
New Directions in Programming Environments: Extensible Software

Günther Sawitzki
StatLab Heidelberg

Im Neuenheimer Feld 294
D 69120 Heidelberg

Abstract

If we want software that can be adapted to our needs on the
long run, extensibility is a main requirement. For a long
time, extensibility has been in conflict with stability and/or
efficiency. This situation has changed with recent software
technologies. The tools provided by software technology
however must be complemented by a design which exploits
their facilities for extensibility. We illustrate this using
Voyager, a portable data analysis system based on Oberon.

Introduction

Extensibility is a critical requirement if we want software
that can be adapted to our needs on the long run. The exten-
sions required may be simple adaptations (like customisation
of the user interface) or complex (like the integration of a
new statistical method). Software technology can provide
prerequisites for extensibility. The main contribution how-
ever has to come from system design, and the critical step is
to separate abstract concepts and principles from implemen-
tation.

In the extremes, there are simple solutions to achieve ex-
tensibility. In a completely open system, we have complete
extensibility. But we are prone to lose system stability. In
the other extreme, in a closed system, stability may be guar-
anteed. But we can extend a closed system only by wrapping
it up in a script or macro environment, and we will lose ef-
ficiency. We must find a balance between extensibility, effi-
ciency and stability.

Driven by the need to define the directions of our own
computing environment for the years to come, we started a
project to explore how recent developments in software
technology can be made fruitful in statistical computing. As
part of this project we developed Voyager, a portable and ex-
tensible system. We will use Voyager as an example.
Voyager is based on Oberon. Oberon is both a programming
language and an operating system, developed at ETH Zürich.
Building upon Oberon, Voyager provides the basis for inter-
active data analysis.

1. Voyager

A general introduction to Voyager is given in (Sawitzki,
1996). Some of the material needs to be repeated here, to
give a first impression of Voyager. We will focus on aspects
of extensibility. As an example, we look at possibilities to
adapt the user interface.

Simple tuning of interface parameters does not need exten-
sibility. Quite often however, we do not even want a statis-
tical system to have an interface of its own, but we want the
results imbedded in a report. We want the statistical output
imbedded as an element in a text, and we would like to use
our preferred editor and keep its interface. This may be a
problem in a non-extensible system. In Voyager, output
defines text components which can be imbedded in an envi-
ronment of the user’s choice. Figure 1a shows Voyager,
used with the standard Oberon V4 text editor Edit.

Commands to Voyager are entered and executed from the
editor envionment. Output is returned as text or as graphical
text elements and placed in a text document. The connection
to Voyager is not lost, even after the output is imbedded. So
you can use brushing in one graphical text element and get
the corresponding points highlighted in linked displays, or
you can select single points and get their identification. If

Figure 1a Voyager integrated in an editor. Voyager output
appears as integrated text elements.



Figure 1b Voyager integrated in a desktop. Voyager output
appears as integrated text elements, or as desktop compo-
nents.

however our preference is towards a desktop model with
windows and buttons, we can keep the desktop interface as
in Figure 1b. Figure 1b shows Voyager, used with the
Gadgets desktop environment under Oberon System 3.

Figure 1a and 1b both show Voyager in an Oberon envi-
ronment. Figure 2a goes a step further. At first look, the
document looks like a text document, following the conven-
tion of the host operating system. The host operating
system shown is MacOS. In a Windows environment, the
document will have the typical form of a Windows
document. The only exception to the general look of the
host system are some control elements imbedded in the text,
which can be used to activate commands. The graph in this
figure however is "live". It updates if the underlying data are
changed, and new data can be analysed by just dropping them
onto the graph as usual in an editor with drag-and-drop
facilities. The “clock” in the upper right corner is a random
number generator, generating a new sample periodically. If
you drop it onto the plot, you get a “life” simulation.

Figure 2b shows a variant of Voyager on a Newton PDA.
While the previous examples used exactly the same underly-
ing program, the Newton variant of Voyager needs changes
for using NewtOS instead of Oberon as a base system.

Of course the statistics in Voyager does not depend on the
user interface. It follows the well-known methods, and dis-
plays provide the usual facilities which should by now be
familiar in all statistical systems, including linked plots,
brushing and identification of data points, and free rotation
of 3D-data.

The polymorphism is the result of a basic design feature
of Voyager and of Oberon: a strict separation of concerns.
The user interface is strictly separated from the computa-

Figure 2a Voyager as a document component. If you drop a
data set onto this graph, it will plot this data set. If you link
it to a random number generator, it will show a running
simulation.

Figure 2b Voyager as an imbedded system on a Newton

PDA.

tional kernel. This allows to use the same computing and
data management, while showing quite different visual repre-
sentations as required by the environment. The interface is
handled by the general Oberon system. Voyager contributes
components, which extend Oberon. For a general informa-
tion about Voyager, see (Sawitzki, 1996). We will concen-



trate on some of the more technical aspects here.

2. Separation of Concerns

Voyager is a modular system. All modules have well-defined
functions and communicate only by well-defined input and
output. Each module can be freely replaced by alternate im-
plementations, possibly extending the functionality.

A key feature of Voyager is a strict separation of concerns.
For example, deriving statistical information is one issue,
rendering a presentation and bringing it to the user is some-
thing else. In Voyager, the user interface is strictly separated
from the proper statistical kernel. Separation of concerns is a
principle that requires considerable system analysis before it
can be put to practical work. We will give some examples
later on.

In some cases, there are guiding models. One of these is
the model-view-controller separation used in Smalltalk for
interactive applications. The model component has to main-
tain consistency of and to provide access to the data to be
presented. The viewer component is responsible for
rendering and presenting the data. Several, possibly different
viewers can exist on the same model, and consistency is
guaranteed since only the model controls the data. The
controller is responsible for handling the user interactions. It
will co-operate with the viewer and possibly and may
delegate the actual execution to external operations.

While the separation is easy in principle, it needs work in
practical applications. Consider a simple plot, like a his-
togram. If you think of a histogram plot as a view and the
raw data as a model, you are trapped. This separation is too
simple to allow the most obvious extensions, like choice of
a bin width and an offset point. And it cannot even handle
the simple task to show a histogram, given the bin counts.

Separation of concerns and modular programming are keys
to extensibility. Yet there may be a run time efficiency trade
off. For example, as far as “classical” statistics is concerned,
separating the user interface from computing does not im-
pose any problem. In classical statistics, you have a data set
and a test or an estimator. You apply the test or estimator to
the data set and present the result. This scheme worked well
in any batch oriented environment, and is simple to imple-
ment.

In data analysis, the situation is changed drastically. You
start asking “what if”-questions, and these questions are de-
fined by reference to the data at hand. You want to give this
reference in an interactive way and of course you hope for an
immediate feed back. For interactive data analysis, a close

feed-back loop between user action and system response is
necessary. If the user interface is separated from the compu-
tational kernel, this may be a problem. You need an efficient
communication mechanism to allow for interactive data
analysis.

Similar considerations apply to the data input side. If data
input and data management are intrinsic immutable compo-
nents of the data analysis system, extending the input facili-
ties may be severely restricted. Access to data should be con-
sidered a communication process, not a controlled service.
As a consequence, data access may be error prone or not
guaranteed. Data may come in over distributed systems that
may need to access data using instable channels. Or your
analysis may run on an imbedded system with limited band-
width. We should take these kinds of computing environ-
ments into account. Data consistency becomes a problem,
and we must have precautions to handle it.

3. The Oberon Environment

For the implementation of Voyager, we have chosen the
Oberon system as programming and run-time environment.
We give a short overview here. For more information, see
(Wirth & Gutknecht, 1989) or (Sawitzki, 1996)

Oberon is both a programming language and an operating
system, developed at ETH Zürich. It is a light-weight sys-
tem that can be implemented on top of (or besides) existing
operating systems without much overhead. It is available as
a co-operative emulation on top of most of the common op-
erating systems (UNIX, MS-DOS, MS-DOS&Windows,
LINUX, MacOS, etc.) and for most of the common hardware
architectures (Intel x86, Motorola 68xxx, PowerPC, MIPS
Risc, SPARC etc.). Oberon solves the portability problem
for us: instead of porting our software, we use a portable
system as a base.

The Oberon language is a strongly typed language in the
tradition of Algol and Pascal. It supports object oriented
programming. Oberon programs are modular with type
safety guaranteed across module boundaries.

Type safety across module boundaries is supported by the
Oberon operating system even at run time. Modules are
linked dynamically and stay resident until unloaded explic-
itly. Garbage collection is supplied.

The quality of services provided for module loading may
depend on the implementation. All implementations support
a semantic version control upon load time. Attempts to load
inconsistent modules are detected and trapped by the system.
The mechanisms applied vary from coarse version controls



to fine fingerprint systems that allows loading of modules
that are inconsistent or out of date, but still are satisfactory
for the application at hand. “Version” here refers to the ver-
sion defined by the module declaration part– its signature, if
you like. Oberon does not try to rely on programmer pro-
vided version information, like textual version stamps or .h
files. If you consider extensibility for a long time schedule,
of course fine fingerprints may save you from considerable
amount of requests to rebuild the system.

More recent Oberon systems have means to keep code in a
system independent way. Instead of generating the final run
time code, an intermediate code is produced which is post-
processed at load time and casted for the loading environ-
ment. The same compiled code can thus be used on different
CPUs without recompilation. In contrast to traditional byte
code interpreters that follow a fixed scheme, the coding
scheme adapts to the code at hand. As a side effect, the code
is compressed. Taking into account the access times from
disk or other media, in most cases the portable code turns
out more efficient than classical native code (Franz, 1994).

Resident modules and type safety across module bound-
aries are the basis for efficient and reliable communication
with extensions. As long as the base system and the exten-
sion reside on the same CPU, we have a system with shared
memory and in many cases communication boils down to
passing a memory reference, while the system guarantees
type safety for the access.

In contrast to weakly typed systems, we trade in some
flexibility in a system where all types must be fixed at
compile time. The potential bonus is speed and safety, since
critical type checks are already performed at compile time.
Since Oberon (as all object oriented systems) supports
polymorphism, part of this flexibility can be regained using
appropriate type hierarchies.

Graphical display and a basic window system are part of
the Oberon operating system. Like PLAN 9, Oberon tries to
avoid modes. Any text, or item displayed by the Oberon sys-
tem may be used as an input - there is no separate command
line or command menu. Any exported parameterless proce-
dure is a command and can be executed in any textual con-
text. The context can be retrieved by querying the global
system state. So textual parameters can be accessed and
evaluated without procedural parameters.

A large part of the flexibility and extensibility demon-
strated above is due to the general properties of Oberon.
Voyager adds specific modules to the general architecture of
Oberon. Since modulers are resident, this can be done even
at run time. Since state information may be exported, effi-
cient communication with extensions is possible, while
overall stability is supported. Of course an appropriate

design is needed to make use of these possibilities. We will
turn to some of the more technical aspects now.

4. Case Study: Graphics

We have seen various displays from Voyager  in Fig. 1 and
Fig. 2. By convention, all displays in Voyager support the
usual interaction, like brushing, inspection, etc., and
corresponding displays are linked. In this section, we will
have a short look behind the scenes.

Graphical display and interaction facilities are not uniform
throughout platforms. To have a portable and extensible sys-
tem, we need a convenient base definition that can be used in
any environment. For this presentation, we assume that we
have a unified graphic model supporting at least the graphic
primitives like line and circle drawing. In practice, this is
not the case (but we do have unifying glue modules for all
major systems, so we can ignore this problem).

Voyager graphics is based upon ports. As usual, a port
has information about its display space in the current display
system, and an access channel to actually perform displays.
Moreover, a port has a handler – the facility to respond to
messages and interactions. User interaction is not unique
throughout platforms. You may need translations. On some
systems, you may have a three button mouse for input, on
other system a one button mouse and a keyboard. On a
PDA, you may have a pen and nothing else, while in still
other systems you only have voice input.

4.1 Graphical Input

The Voyager graphic base defines events and lateral infor-
mation, but leaves the implementation to be specified.
Capturing low level events and translating them to the
events understood by Voyager is left to glue modules. Since
Voyager is under development, the list of events will be
outdated at the time you read this article. This is the list of
events supported at the time this article is written:

unknown Just unknown

empty No event

loc Get location

ident Identify

select Add to selection

remove Remove

copy Copy data

copyAttr Copy attributes

open Open a new plot



From the selection of events we support, you can see that
besides the usual interaction like brushing, identification etc.
we have three activities we consider worth a central role: a
remove action (the target of which must be defined) and two
copy actions: an action to copy data itself, and an action to
copy attributes only. An example for the latter is the copy
action for formats: if you have two corresponding plots,
some scales may be difficult to compare. You want to see
them on a common scale. Using the Voyager model, you
select one of the displays and copy over its attributes to the
other. How you actually do the copy, i.e. which keys to
press, may depend on your implementation. The system
generically is able to support the concept of attributes, and
to identify a “copy attributes” message. User interactions are
translated into abstract events, and these are handled in a
generic way.

An event message communicates additional information.
At present, it records the position of the (a) mouse pointer at
the time the event occurred, the time, and the status of
optional control keys.

Event = RECORD

gesture: INTEGER;

x, y: INTEGER;

time: LONGINT;

keys: SET

END;

4.2 Graphical Output

On the output side, a problem to solve is to allow for
output with several components aligned to a common
reference system. One solution would be to place all
components into a common reference plane, and to optimise
their placement. This is not a trivial problem. In Voyager,
we have chosen a different access. Since most display
elements come in groups (like data points, ticks and scales,
legends) we delegated the placement task to these groups.
What these groups need is at least an information about a
common (real world) reference system. This information is
kept by the port. Each group is responsible to find its
appropriate layout. The graphical display of all groups is
added, like putting transparent layers on top of each other.

The appropriate abstraction to support this is an abstract
type “layer”. Layers are attached to ports. Ports are the
owner of real world co-ordinate systems. If a co-ordinate sys-
tem is changed (zoomed, shifted…), all layers can react in a
consistent way. A layer always covers the complete port.
Only the port has information about the display environ-
ment. If the port is moved or resized, all the layers go with
it.

On top of the abstract layer data type, there are data types
for 2D and 3D plots that form the basis for all concrete
extensions.

User interaction needs some caution. The first step to
handle a user interaction is to find a port that might be the
intended target. If the action refers to the content of the port,
any one of the Layers may be the intended target, and a
conflict may occur. We have chosen a bidding system. First,
a message is passed through all layers informing them about
the incoming user request. Each layer may return with a flag
indicating that it could handle the request, and a weight. The
responsive layer with the highest weight wins and gets the
user request to handle it (of course possibly by delegating
it). The message sequence can be controlled by the user,
which allows some adaptation. This model is still an
experimental model, and it is not clear whether it can handle
all the requirements of forthcoming extensions. So far, it
has performed to full satisfaction.

We do lose some fine tuning capabilities if we allow full
control over the complete port area for each layer. So far the
experience is that user control can compensate for this. But
of course it would be nice to have an automatic placement
system taking away the chores of fine tuning.

The graphics base is a componenet which rarely will be
extended. However it has to be flexible enough to cover a
wide spectrum of environments. It needs adaptation if you
move to a new platform. After that, it is applied rather than
extended. Extensions start with derived entities, like layers.
The base catches host system dependencies, so derived layers
are not affected.

5. Voyager Object Hierarchy

In contrast to the graphical base, the basis of the object
hierarchy is often extended directly. The first definitions have
to be most versatile to allow all kinds of extensions. On the
other hand, it has to encapsulate all management and house
keeping information needed for a stable system.

Voyager works with objects. A Voyager object can be
anything that is worth its own identity, like data, access in-
formation, displays. Voyager objects are abstract data types.
As objects, they can encapsulate data and methods, and of
course the semantics of the data part is defined in terms of
the methods. Objects are linked in a list. A simplified pic-
ture of the Voyager object structure is given in Fig. 3.



handler

identification

next

parameters

handler

identification

next

parameters

handler

identification

next

parameters

Figure 3: Simplified Structure of a Voyager Object Chain.

Objects are linked in a list. All Objects have a handler

responding to incoming messages

This picture will look familiar to FORTH programmers,
and LISP programmers will find an easy way to translate it
into a familiar picture for them.

5.1 Message Passing

Following the usual Oberon conventions, the handler field
does not hold a reference to fixed code operating on the in-
ternal parameters, but a reference to a message handling pro-
cedure. The handler procedure takes two arguments, a mes-
sage, and a reference to an object to operate on, usually the
containing object. It tries to identify the message. If that is
identified as a message the object can handle, the handler
proceeds and responds to the message. If it cannot handle the
message, by convention the message handler stays quiet.
This is a common strategy in Oberon programs, and dis-
cussed in (Marais, 1996). Action requests are passed by mes-
sages. Ignoring unidentified messages allows adding message
types at a later stage. New objects that understand messages
of an extension can react to them, while older components
simply ignore them and pass them on.

This strategy is possible because messages can be poly-
morphic and allow type inspection. It relies on a language
feature of Oberon. In Oberon, you can define abstract data
types, like records, and you can extend records to give de-
rived data structures. We use this language feature exten-
sively. At the base, we define

TYPE Message = RECORD

END;

So to begin with, a message is just an empty record. One
extension is

PrintMessage = RECORD

(Message)

END;

This is still an empty data structure. But in a strongly
typed environment, the type of a PrintMessage is clearly dis-
tinct from any other message type, and a handler that has to
handle an incoming message, Msg say, can query the mes-
sage type using a language construct

IF Msg IS PrintMessage THEN …  ELSE …  END;

No additional information is necessary. The type of the
incoming message may be enough to decide upon the action
to take, and no more overhead occurs. Of course additional
information may be appropriate, and it is possible to add
data fields to a derived data structure. It is not required if it is
not necessary.

Only the very basics are defined for general Voyager ob-
jects, and as much as possible is left for extensions. The de-
sign challenge is to find a basis that is light enough to al-
low flexible extensions without imposing to much over-
head, yet being solid enough to provide effective support for
an interactive system. For a generic object, we have defined
message types

LoadMessage internalise (read from a file)

StoreMessage externalise (write to a file)

ReadMessage read from display environment

WriteMessage write to display environment

PrintMessage print it

DumpMessage write extended information

UpdateMessage adjust to changed state

CopyMessage copy object

CloneMessage copy object, including all

referenced objects

Data, for example are represented by an abstract data type
based on objects that understands additional messages for all
arithmetic operations. Extensions introduce new object
types, based on generic Voyager objects, and message types
as required.

5.2 Names and Identification

Fig. 3 is simplified. Identification and parameters have more
structure and meaning. Let us consider identification first.
We may see identifications in various rôles. Identification
may mean a user reference to some object. This may be con-
text dependent and need not be unique. For example, the
term “Residual” may be used as a generic term to refer to the
residual of the most recent estimation. Identification may as
well mean the unique identification of a data item or a vari-
able, irrespective of how it is named by a user. Or it may
mean the identification of a specific state of a data item or a
variable. This may be relevant in a situation where you have
on-line data that may change with time, or if you work in a
distributed environment, where consistency over different
sources is not guaranteed but needs to be checked. It would
be fatal to assume a simplistic model for identification, like
some name string.

The identification must be flexible enough to anticipate
extensions. On the other hand, it must be defined at a very



low level due to its central rôle. The solution taken in
Voyager is to separate naming from the basic object
management. The identification part has several
components.

identification

created

modified

key

name

unique id

 

Figure 4: Object Identification

A “unique id” field holds a system defined identification.
This identification is used for internal purposes only. In par-
ticular, it can be used for externalisation and internalisation
of objects, i.e. to support persistent objects. In an environ-
ment where you store complete memory images to have a
persistent state, this would not be necessary. You could use
(relative) pointer addresses to identify objects. If you do not
insist on complete memory images, you need a possibility
to identify objects that is independent of addresses, and the
“unique id” satisfies these purposes.

The “name” field holds an identification on user level,
usually some string. It is vain to define the name structure
ultimately. There will be always some application that needs
a more complex alphabet, or a more complex name structure
then you anticipated. So instead of fixing the name data
type, this is an abstract data type that needs to be extended
by some specific implementation. As a consequence name
management and lookup are not a part of the Voyager
kernel, but a service provided by a separate module. You can
replace this module by a module of your choice to adjust the
naming system to your needs. Only the abstract rules are
fixed in the Voyager kernel. The naming system must be
able to use a “name” to look up one or more objects and
return the unique identification of these objects. It should be
able to handle the arbitration in case of conflicts. The name
stored with an object is only a cached value of some recently
used references, used for reporting purposes.

In a similar way, the “key” field is defined in an abstract
way, and interpretations are delegated to secondary compo-
nents. The key is used to ease the aliasing problem. Imagine
you have accessed some data. You have cached the data, and
made some extensive calculations based on your personal
copy of the data. Now imagine the data originated from
some external source. When reporting your results, you
should verify that your data are still valid. The key is the

abstract instrument to conclude your transaction. You have
to call a system service to verify that your key is still valid.
Again, the details are left to secondary components. The
Voyager kernel supports an abstract data type to hold a key,
and defines the appropriate actions.

Creation and modification time and date are additional
fields. They should not be used to verify validity of data -
spoofing clocks is too easy, and keeping clocks in syn-
chrony is too difficult. But in well-behaved environments,
time and date stamps may be a helpful tool to monitor an
analysis.

5.3 Parameters

Most of the parameter structure needs to be left to exten-
sions. Only some general administrative structure can be de-
fined in a generic way. The most important feature we have
identified is support for interactive features. Although the
dependency may form a complex graph, the central need is to
notify all direct “dependants” if the state of some object
changes. To support this, each object can hold a list of its
“users”. If the state of an object changes, all dependants need
to be notified. There are two system services needed to sup-
port this service. You need a subscription service that
registers one object as a user of a different object, and you
need an update service that marks one object as updated and
informs all users. As is to be expected, message passing is
used in Voyager to implement these services.

parameters users

cache

o (= some object)

 

Figure 5: Generic Parameter Field

The cache field is a generic field supplied for optimisation.
Any calculation can use it to store intermediate results that
may speed up later accesses. The cache field is cleared if the
object is modified, using the system update service.

The “o” field is a trick to overcome certain design deci-
sions of Oberon. Oberon is designed to be a lean language,
and all features that did not have efficient implementations
or obvious use have been excluded. Unfortunately, as a con-
sequence, list structures and iterators are not supported as
primitive elements in Oberon. Adding a free object slot, the
“o” field, allows to implement generic queues and iterators.
To avoid overhead, the basic Voyager types are “items”, not
objects. Items are like objects. They have a handler, can ref-
erence to another object, and can be queued. Yet they do not
have an identification, or administrative overhead. Voyager



objects are implemented as descendants of items. All types
that can benefit support from the generic services of Voyager
are extensions of Voyager objects.

6. Case Study: Random Numbers

We have seen the extensibility, or adaptability of the user
interface. Although this is most spectacular seen from the
outside, from a system point of view this is only superfi-
cial. We have seen how the basic system defines abstractions
designed for extensibility. The need to design components
for extensibility or exchangeability is not restricted to the
abstract base levels. It occurs again on all levels of the sys-
tem. As an example, we will study how to implement ran-
dom number generators in a re-usable extensible way.

Generation of (pseudo) random numbers is at the base of
many statistical methods, like bootstrap and other re-
sampling methods. And of course random number generation
is the heart of statistical simulation. An elementary imple-
mentation would be to provide a function (Random, say) and
a way to initialise the random number generator (a procedure
SetSeed, say) which sets a state variable (Seed, say) of the
random number generator to a specific state. The extension
to be anticipated here is that you want to replace some de-
fault random number generator with a generator of your
choice.

Thinking of common models like linear congruential
generators, a first implementation would be to supply a
global seed variable and a transition function

VAR Seed: LONGINT;

PROCEDURE Random(): LONGINT;

where Random runs the random number generator one step
and returns the new seed. What is the problem with this set-
up as far as extensibility is concerned? Obviously, you can-
not replace the Random number generator with a generator
of your choice. In an environment where functions are first
class citizens, the solution is to introduce a variable of pro-
cedure type to hold the actual random number generator. The
second problem is that seed and transition function are inti-
mately related. If you replace the transition function, the old
seed looses its meaning. It may even contain a value that is
out of the scope of the new random number generator. The
way out is to encapsulate random number generator and seed
in an object structure leading to

TYPE Generator = RECORD

Seed: LONGINT;

Random: PROCEDURE(): LONGINT

END;

VAR CurrentGenerator: Generator;

For convenience, you may always provide an access func-
tion which shields the user from the details and just returns
the next value of the current random number generator,
whatever that may be, like

PROCEDURE Random(): LONGINT;

BEGIN RETURN CurrentGenerator.Random()END;

PROCEDURE SetSeed(VAR seed: LONGINT);

BEGIN RETURN CurrentGenerator.Seed:=seed END;

An open question is how we should handle random num-
ber generators with differing base type. So far, we used one
base type, long integer numbers, in these examples. You
may want to install a random number generator that has a
period that is beyond what can be represented as a long inte-
ger number. You may even have a random number generator
that has state information that cannot be expressed in a nu-
merical variable at all. So you must allow for type exten-
sion for the seed as well. The way out is to introduce the
seed as an abstract data type. You then define the required ac-
tions as operating on variables of this abstract type. By
defining the type as an extension of the generic object type,
we can use all the services of the basic Voyager system.

TYPE Seed = RECORD END;

Generator = RECORD (Object)

GetSeed: PROCEDURE(VAR seed: Seed);

SetSeed: PROCEDURE(VAR seed: Seed)

NextRandom: PROCEDURE();

GetRandom: PROCEDURE():LONGINT;

GetRandomX: PROCEDURE():LONGREAL

END;

In this data structure, we have added one more element.
We have separated the transition function NextRandom from
the read-out function, which we supply in two forms: give a
long integer number defined by the current state of the gen-
erator, and give a long real number. If you allow for now
ranges, there is no guaranteed common rule how to derive
standard cased like uniform random numbers over
[0,MAX(LONGINT)[ or [0,1] from the seed. So instead of
relying on user supplied transformations, we require the ran-
dom number generator to supply the common forms. We
have re moved all information about the implementation of
the seed from the abstract definition. If we allow for extensi-
bility, there is no way to allow direct access to the state in-
formation. Any specific implementation now has to define
its appropriate extension to the seed data structure, and its
specific set and get functions. (Of course, as a common case,
the long integer variants are pre defined.)



7. Summary and Conclusions

We have seen various design details of Oberon. We will
close with an example where these pieces are put together
and used in action. This example is taken from a recent pro-
ject of M. Diller, a system for simulation of locally station-
ary time series, built upon Voyager.

The simulation combines a series of Voyager objects.
Voyager does not know about the internals of this simula-
tion. But it knows about their dependency structure and can
produce a dependency graph. Moreover, it can identify the
class of each of these objects. By a minor extension, the
nodes of the graph can be made active buttons and used to
call a graphical editor, say, if the object is some input func-
tion, or a line plot for real valued output. These displays are
pre-defined components supported by Voyager, The applica-
tion programming can concentrate on the original applica-
tion tasks.

Figure 6: Sample Application. Voyager used to simulate

locally stationary time series. A dependency graph is

generated automatically. This graph at the top can be used to

evoke additional displays, as the function editor in the

middle used for interactive control of phase and amplitude of

the ARMA roots, or the output display at the bottom.

In time past, we have uses program libraries to develop
our programs. In times present, we are used to systems and
packages. We have gained considerable conveniences, but we
have lost the flexibility and control. With component tech-
nologies we can have both, a convenient system where we
want it, and the flexibility once provided by libraries.

References

Franz, F. (1994) Code-Generation On-the-Fly: A Key for
Portable Software. Dissertation. Institut für Computer-
systeme, ETH Zürich. 1994.

see <http://www.inf.ethz.ch/publications/diss.html>
Marais, J. (1996), “Extensible Software Systems in
Oberon,” To appear in Journal of Computational and
Graphical Statistics Vol. 5 No. 3, 1996.
Sawitzki, G. (1996), “Extensible Statistical Software: On a
Voyage to Oberon”. To appear in Journal of Computational
and Graphical Statistics Vol. 5 No. 3, 1996.
Wirth, N.; Gutknecht, J. (1989), “The Oberon System,”
Software–Practice and Experience, 19(9), 857–893.

Figure 2 is taken from (Sawitzki, 1996).

For more information see
<http://www.statlab.uni-heidelberg.de>

To appear in: Proceedings of the 28th Symposium on the
Interface, Sydney 1996


