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III. Abstract 

Death ligands such as CD95L and TRAIL initiate the extrinsic apoptotic signalling cascade by 

activation of the death-inducing signalling complex (DISC). Upon ligand binding to the 

receptor, the adaptor protein FADD is subsequently recruited to the receptor, thereby 

allowing for further recruitment of caspase-8 and its negative regulator cFLIP. In addition to 

the well-known caspase-8-mediated cell death induction, DISC-induced gene expression via 

the activation of NF-κB ruled out to be an important signalling pathway. Even if the major key 

players in DISC signalling have been described, the molecular mechanisms in DISC 

formation remain to be elucidated. In addition, the function of some DISC-associated proteins 

is unknown to date. To this day, the role of caspase-10, a homologue of caspase-8, in DISC 

signalling remains unknown and is controversially discussed. 

In this study, we elucidated the function of caspase-10 in DISC-induced cell death signalling 

and unexpectedly observed anti-apoptotic features under endogenous protein conditions. In 

contrast to previous thoughts, our data reveal that caspase-10 negatively regulates 

caspase-8-mediated cell death signalling in the DISC by blocking the recruitment to the 

complex and thereby the activation of caspase-8. Furthermore, we demonstrate that 

caspase-10 functions independent of cFLIP for inhibition of caspase-8 activation in the DISC. 

In addition, we show that caspase-8 does not compete with other tandem DED proteins such 

as cFLIP or caspase-10 in binding via FADD to the receptor as current models suggest. By 

utilising CRISPR-Cas9 mediated homologous recombination, we generated caspase-8 

knockout cell lines and were able to demonstrate that caspase-8 has to be placed upstream 

of both cFLIP and caspase-10 in the DISC. We found that even FADD association with the 

DISC was drastically reduced in the absence of caspase-8. Interestingly, reconstitution of 

wild type caspase-8 and its active site mutant rescued the phenotype, indicating that 

caspase-8 is indispensable for the formation and/or stability of the DISC independent from its 

enzymatic activity. Moreover, we identified caspase-10 to promote DISC-mediated NF-κB 

activation. Caspase-10 favours at least the degradation of IκBα upon DISC stimulation 

resulting in enhanced NF-κB activation and inflammatory gene expression.  

Therefore, our data are consistent with a model in which caspase-10 rewires DISC signalling 

to NF-κB activation and cell survival. As a consequence, caspase-10 and cFLIP co-ordinately 

regulate caspase-8-mediated cell death signalling whereas both proteins contrast in their 

ability to induce gene expression upon death receptor activation. 
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IV. Zusammenfassung 

Todesliganden wie CD95L und TRAIL initiieren die extrinsische Apoptose durch die 

Aktivierung des „Death-Inducing Signalling Complex“ (DISC). Nach Bindung des Liganden 

an den Rezeptor wird das Adaptermolekül FADD zum Rezeptor rekrutiert und ermöglicht so 

die Bindung der Caspase-8 und seines negativen Regulators cFLIP. Neben der wohl 

bekannten, durch Caspase-8 vermittelten Zelltodinitiierung, stellt die durch NF-κB-

Aktivierung induzierte Genexpression einen wichtigen Signalweg unterhalb des DISCs dar. 

Obwohl die Hauptbestandteile des DISCs beschrieben wurden, so sind die 

zugrundeliegenden molekularen Mechanismen, die zur Formierung des Komplexes führen, 

bisher nicht vollständig aufgeklärt. Des Weiteren ist die Funktion mancher DISC-assoziierter 

Proteine bisher unklar. Bis heute wird kontrovers diskutiert welche Rolle die Caspase-10, ein 

Homolog der Caspase-8, im Signalweg des DISCs einnimmt. 

In dieser Studie haben wir die Funktion der Caspase-10 im Signalweg des DISCs aufgeklärt 

und überraschenderweise unter endogenen Bedingungen antiapoptotische Eigenschaften 

beobachtet. Im Gegensatz zum heutigen Wissenstand zeigen unsere Daten, dass 

Caspase-10 den Caspase-8 vermittelten Zelltod negativ reguliert, indem sie die Rekrutierung 

mit einhergehender Aktivierung der Caspase-8 zum Komplex blockiert. Des Weiteren 

demonstrieren wir, dass Caspase-10 auch unabhängig von cFLIP die Aktivierung der 

Caspase-8 im DISC inhibiert. Zusätzlich zeigen wir, dass Caspase-8 nicht mit anderen 

Tandem DED Proteinen, wie cFLIP oder Caspase-10, um die Bindung an FADD konkurriert, 

wie bisherige Modelle vermuten lassen. Indem wir die CRISPR-Cas9 vermittelte homologe 

Rekombination nutzten, haben wir Caspase-8 knockout Zelllinien generiert und konnten 

zeigen, dass Caspase-8 oberhalb von cFLIP und Caspase-10 im DISC bindet. Wir fanden 

heraus, dass selbst die Assoziation von FADD mit dem DISC ohne Caspase-8 drastisch 

reduziert wurde. Interessanterweise hob die Rekonstitution von Wildtyp-Caspase-8 und einer 

Mutante, in der das aktive Zentrum mutiert ist, den Phänotyp auf. Dies deutet darauf hin, 

dass Caspase-8, unabhängig von seiner enzymatischen Aktivität, unabdingbar für die 

Formierung und/oder Stabilität des DISCs ist. Zusätzlich zeigen wir, dass Caspase-10 die 

DISC vermittelte NF-κB-Aktivierung fördert. Caspase-10 unterstützt dabei mindestens die 

Degradation von IκBα nach DISC-Stimulation, wodurch NF-κB verstärkt aktiviert und 

inflammatorische Zytokine exprimiert werden. 

Unsere Daten gehen daher mit einem Model einher, in dem Caspase-10 den DISC-

Signalweg in NF-κB-Aktivierung und zelluläres Überleben umwandelt. Dadurch koordinieren 

Caspase-10 und cFLIP den Caspase-8-vermittelten Zelltod, jedoch unterscheiden sich die 

Proteine in ihrer Fähigkeit die DISC vermittelte Genexpression zu induzieren. 
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V. Introduction 

 

The first observation of naturally occurring cell death dates back to the middle of the 19th 

century. In 1842, Carl Vogt has first described cell death in the development of the midwife 

toad [1]. Over a century passed until this topic was rediscovered in 1972 when Kerr, Wyllie, 

and Currie first described the programmed form of cell death as ‘apoptosis’ [2]. Since then, 

the number of publications dealing with apoptosis or programmed cell death grew 

exponentially [3]. Ultimately, Sydney Brenner, H. Robert Horvitz, and John E. Sulston have 

been awarded with the Nobel Prize in Medicine in 2002 for the identification of genes 

regulating apoptosis in the nematode C. elegans [4].  

 

V.1. Apoptosis 

Apoptosis usually occurs in multicellular organisms, but has been described in unicellular 

organisms, too [5]–[8]. It is most likely that programmed cell death first developed in 

unicellular organisms as a defense strategy and was later adapted by multicellular organisms 

[9]. In higher organisms, apoptosis has been described to be important for the embryonic 

development, aging, and homeostasis of tissues, as well as a defense strategy against 

damaged cells caused by various diseases or poisonous agents [10]–[12]. Programmed cell 

death plays an important role in the development of the immune system, where it controls the 

maturation of lymphocyte progenitor cells into T and/or B cells [13]. Deregulated apoptosis is 

associated with immunodeficiency, several autoimmune diseases, AIDS, and degenerative 

disease of the central nerve system [14]. Furthermore, cell death resistance is one of the 

early described hallmarks of cancer and is a major obstacle in the treatment of patients (15). 

Tumour cells develop a variety of strategies to escape from cell death induction. They usually 

do so by either up-regulating anti-apoptotic regulators or by silencing pro-apoptotic factors 

[16]. As a consequence, the tumour increases its mass, ensures survival of the population, 

and renders resistance to therapy. 

However, under normal terms the apoptosis-inducing machinery is powerful and tightly 

controlled. When cell death is initiated, pro-apoptotic factors are activated and switch the 

well-orchestrated balance between pro- and anti-apoptotic regulators. Whenever a certain 

point of no return is reached, each dying cell shows characteristic morphological features 

while it undergoes apoptosis. At the early stage, the whole cell shrinks and is rounded 

because of the disruption of the cytoskeleton [17]. Now the organelles are tightly packed and 

the cytoplasm appears dense. Next, the cell undergoes an event which is called pyknosis [2]. 
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During pyknosis the nuclei shrink in size and chromatin is condensed into a structureless and 

solid mass. Afterwards, the nuclear envelope becomes discontinuous. The DNA inside is 

fragmented in a process known as karyorrhexis and the nucleus breaks into several discrete 

pieces [18]. Moreover, the plasma membrane shows irregular blisters (an event which is 

known as blebbing) and, at the end, cellular fragments are separated into vesicles called 

apoptotic bodies. These bodies consist of cytoplasm and dense packed organelles. The 

integrity of the organelles is maintained in the apoptotic bodies and the plasma membrane is 

still intact [19]. The remaining debris of a dead cell is most typically eliminated by 

macrophages through phagocytosis [20], thereby preventing the activation of dendritic cells 

and further immune response [21]. 

V.1.1. Molecular mechanism 

Apoptosis can be initiated by two main pathways: the intrinsic or mitochondrial pathway and 

the extrinsic so-called death receptor pathway. Additionally, cytotoxic T-cells and natural 

killer cells can induce apoptosis via the perforin/granzyme A/B pathway [22]. The apoptotic 

signalling pathway is driven by a family of cysteine aspartate-specific proteases called 

caspases [23]. Caspases are commonly expressed as an inactive proenzyme and they can 

cleave other proteins at aspartic acid residues [24]. Once activated, caspases induce a 

deadly cascade in which they often activate other caspases or even undergo autoactivation 

[19]. Thus far, 14 caspases have been described, but for classification solely the caspases 1-

10 have been considered. However, caspases are subdivided into initiator (caspase-2, -8, -9, 

-10), effector (caspase-3, -6, -7), and inflammatory caspases (caspase-1, -4, -5) [25]. The 

other caspases have been shown to be involved in the regulation of apoptosis and cytokine 

maturation under septic shocks (caspase-11) and the mediation of endoplasmic-specific 

apoptosis and amyloid-β cytotoxicity (caspase-12) [26], [27]. Caspase-13 is a bovine specific 

caspase and caspase-14 is highly expressed in embryonic but absent in adult tissues [28], 

[29]. However, the apoptosis inducing machinery always results in the activation of 

caspase-3 and subsequent DNA degradation [19], with one exception: solely granzyme A is 

able to induce a caspase-independent apoptotic pathway resulting in single-stranded DNA 

damage [30]. 
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V.1.1.1. The intrinsic signalling pathway 

Diverse intracellular signals are able to initiate the intrinsic apoptotic signalling pathway. 

These include physico-chemical stresses such as chemotherapeutic agents (i.e. 

doxorubicin), DNA damage-inducing agents, and free radicals. Furthermore, the removal of 

nutrients, oxygen or growth factors, alterations in temperature and osmolarity, as well as pro-

inflammatory cytokines can trigger the intrinsic signalling pathway [31]–[34]. These stress 

signals activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) homology 3 (BH3)-only proteins [35] 

which in turn activate the Bcl-2-associated X protein (Bax) and Bcl-2 antagonist or killer (Bak) 

[36], [37], as shown in figure 1. Upon activation, Bax and Bak subsequently undergo 

conformational changes, resulting in the translocation of Bax to mitochondria. Furthermore, 

both proteins homo-oligomerise, thereby enabling the formation of pores in the outer 

membrane of mitochondria [38], [39]. This process is called mitochondrial outer membrane 

permeabilization (MOMP) and finally leads to the release of proteins from the intermembrane 

space (IMS) into the cytosol. The activity of Bax and Bak is largely controlled by other anti-

apoptotic Bcl-2 family members to prevent spontaneous cell death induction [40]. After 

disruption of the mitochondrial membrane potential, cytochrome c is released into the cytosol 

[41]–[43]. Cytochrome c binds the apoptotic protease-activating factor 1 (APAF1), which 

thereby oligomerises and forms the so-called apoptosome. This complex recruits and 

activates the initiator caspase-9 which cleaves and further activates the executioner (also 

known as effector) caspases-3 and -7 [44]. Once activated, caspase-3 and -7 initiate the last 

phase of the apoptotic cascade. Endonucleases such as the caspase-activated DNase 

(CAD) are activated and cytokeratins, as well as nuclear and plasma membrane cytoskeletal 

proteins are cleaved, finally leading to the previously described morphological features of 

apoptosis [45], [46].  

It is important to control the activity of the apoptosome as well as caspase-3 and -7 therewith 

cell death is not spontaneously induced. The main regulator in this process is the anti-

apoptotic protein called X-linked inhibitor of apoptosis protein (XIAP). It regulates the activity 

of caspase-3, -7, and -9 by binding and thereby inhibiting these proteins [47]. The inhibitory 

function of XIAP is neutralized by the second mitochondria-derived activator of caspases 

(Smac; also known as DIABLO) and the serine protease HtrA2 (also known as OMI). Alike 

cytochrome c, both proteins are released from the IMS upon permeabilization of 

mitochondria and promote the intrinsic signalling cascade [48], [49]. 
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 Figure 1 Molecular mechanisms of the intrinsic and extrinsic signalling pathways 
in apoptosis. The intrinsic pathway is induced via diverse intracellular stress signals 
that lead to MOMP, release of cytochrome c, formation of the apoptosome and effector 
caspase activation. Death ligands induce the extrinsic pathway by caspase-8 activation, 
which can either directly activate caspase-3 and-7 or induce MOMP by Bid cleavage. 
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V.1.1.2. The extrinsic signalling pathway 

Formation of a membrane bound so-called death-inducing signalling complex (DISC) initiates 

the extrinsic apoptotic signalling cascade [50]. Therefore, death ligands such as the cluster of 

differentiation 95 ligand (CD95L; also known as FasL and Apo-1L), tumor necrosis factor 

(TNF), and TNF-related apoptosis inducing ligand (TRAIL) bind to their respective receptors. 

The receptors become activated leading to subsequent recruitment of Fas-associated protein 

with death domain (FADD). Homotypic interaction mediates the recruitment of the adaptor 

molecule FADD via its death domain to the cytosolic domain of the receptor [51]. Next, the 

initiator caspase-8 binds via its two death effector domains (DED) to the DED of FADD [52]. 

The large and small catalytic subunits of caspase-8 are cleaved and assemble the highly 

active caspase-8 homodimer. Upon activation, caspase-8 can directly activate the 

executioner caspase-3 and -7 [53] to induce further apoptotic events which were described 

above (Figure 1). Interestingly, some cell types, are incapable to propagate the signalling 

cascade from caspase-8 directly to caspase-3/-7 [54]. These cells are called type II cells and 

need in contrast to type I cells the circuit over mitochondria to trigger cell death signalling. 

The crosstalk between the extrinsic and intrinsic pathways is orchestrated by the pro-

apoptotic Bcl-2 family member BH3 interacting-domain death agonist (Bid) [55]. Bid is 

activated by cleavage through active caspase-8 (Figure 1). Truncated Bid (tBid) then in turn 

induces conformational changes in Bax, leading to MOMP, the release of cytochrome c from 

mitochondria, the formation of the apoptosome, and the activation of caspase-3 and -7 [56].  

The following chapters will focus on the extrinsic apoptotic signalling cascade, the initiation of 

cell death signalling by DISC formation and diverse signalling beyond the DISC. 

 

V.2. TNF superfamily 

Death ligands, such as TNF, TRAIL, and CD95L belong to the TNF superfamily. This 

superfamily consists of 19 different ligands and 29 receptors [57]. As the ratio of ligand to 

receptor indicates, some ligands solely interact with their respective receptor such as CD95L, 

but others are able to bind up to five different receptors, for instance TRAIL [58]. The ligands 

are mostly expressed as type II membrane proteins and organised as homotrimers, whereas 

the receptors are type I membrane proteins. Soluble forms of the ligands exists as well, 

which result from proteolytic cleavage of the membrane bound form or from alternative 

splicing [59]. The ligand trimer interacts with three receptor molecules as cross-linking and 

crystallographic experiments revealed [60]. Notably, ligands preferentially interact with 

preformed receptor trimers which assemble an N-terminal pre-ligand-binding assembly 

domain (PLAD) [61], [62].  
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Without any exception, all members of the TNF superfamily have pro-inflammatory activity 

which is mainly driven by the activation of the transcription factor nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB). On top, some members have proliferative 

effects on hematopoietic cells, play a role in differentiation, and some function in the initiation 

of apoptosis [63]–[65]. Characteristic for the members of the TNF receptor superfamily is the 

presence of up to six copies of an extracellular cysteine-rich domain (CRD). The receptors 

can be further classified into two subclasses depending on the existence of an intracellular 

death domain (DD). This is a cytoplasmic, 45 amino acid long protein-protein interaction 

domain, which is essential for the induction of apoptosis [57], [66]. Interestingly, some 

receptors do not contain a DD, such as CD40 or TNF-receptor 2 (TNF-R2), but they are 

nonetheless able to induce apoptosis by transcriptionally up-regulating other death ligands 

[67].  

V.2.1. CD95 and TRAIL receptors 

As mentioned before, TRAIL interacts with five different receptors. These are the TRAIL 

receptors (TRAIL-R) 1-4 and osteoprotegerin (OPG). OPG does not preferentially bind TRAIL 

and it seems that OPG blocks rather than promotes the apoptotic potential of TRAIL [68]. All 

four TRAIL receptors contain 2 CRDs domains, but only TRAIL-R1 and -2 are able to transfer 

apoptotic signalling. The lack of a DD in TRAIL-R3 and the presence of a truncated form in 

TRAIL-R4 avoids apoptotic induction [69]. Whereas TRAIL-R1 can be activated by soluble as 

well as membrane-bound TRAIL, TRAIL-R2 can solely be efficiently activated by membrane-

bound ligand [70]. Similar to TRAIL-R2, CD95 is only activated by its membrane-bound 

ligand. Even if soluble CD95L, which is cleaved by metalloproteases, exists under normal 

physiological conditions, it is not effective in inducing apoptosis [71]. However, it is possible 

to crosslink six CD95L monomers to form a hexameric protein which contains two CD95L 

trimers. The resulting ligand is highly efficient in inducing apoptosis even in its soluble form 

[72].  

In contrast to TRAIL receptors, the CD95 receptor contains three CRDs in its extracellular tail 

[59], but both receptor types share analogical signalling machineries. TRAIL and CD95 

receptors activate the apoptotic signalling in a similar manner. In the first step, the receptors 

assemble the PLAD domain to allow efficient ligand binding. Then the adaptor molecule 

FADD is recruited via its C-terminal DD to the DD of the receptors by homophilic interaction 

[73]. Now, caspase-8 can be recruited to the DISC by binding with its N-terminal DED to the 

likewise N-terminal DED of FADD. This protein-protein interaction is also driven by 

homophilic interaction [59]. Interestingly, DEDs and DDs share structural similarities; both 

domains consist of six conserved α-helices [74]. The DISC is composed of at least three 

death receptor molecules but it is most likely that the ligands and receptors form highly stable 
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supra-molecular clusters by their extracellular domains [75]. In addition, it has been shown 

that death receptors are able to form oligomeric structures with FADD via DD interaction [76]. 

These facts indicate that several caspase-8 molecules can be recruited to the DISC, are 

brought into close proximity, and can therefore be activated by dimerisation. Recent studies 

showed that the interaction of FADD and caspase-8 is even more complex as previously 

suggested. By utilising mass spectrometry, two independent studies showed that a single 

FADD molecule is able to recruit a multitude of caspase-8 molecules [77], [78]. Different 

caspase-8 molecules can assemble in chains by interactions between their DEDs after being 

recruited to the DISC. Thus, the recruitment of a single FADD molecule to the receptor is 

sufficient to induce autoprocessing of caspase-8 and further cell death signalling.  

Mature caspase-8 protein consists of two N-terminal DEDs and a large (p18) plus a small 

(p10) catalytic subunit (Figure 2). Two different isoforms are expressed (‘a’ and ‘b’) that differ 

solely in a flexible linker region between the DEDs and the catalytic domain. If caspase-8 

proform dimerises in the DISC, the mature protein is processed by autoproteolytic cleavage 

into the p18 and p10 subunits [79], [80]. As the initial step, the p10 subunit is cleaved from 

the proform. The resulting intermediate p43/41 fragment is still bound the DISC via FADD. It 

contains the two DEDs, as well as the p18 subunits and differs in size depending on the 

isoform of caspase-8 (Figure 3). Importantly, the p10 subunit is still associated with the 

p43/41 fragment by non-covalent interaction. In the next step, the p18 subunit is released 

from the intermediate fragment. Once these processing steps occurred at least in two 

caspase-8 molecules, two p18 and two p10 subunits assemble to form the highly active 

caspase-8 homodimer which is ultimately released from the DISC. 

V.2.1.1. DISC regulation by cFLIP 

DISC-mediated caspasse-8 activation is negatively regulated by the cellular FLICE (FADD-

like IL-1β-converting enzyme)-like inhibitory protein (cFLIP). It is a caspase-like protein 

without enzymatic activity [81]. Several isoforms of cFLIP have been described but cFLIP-

short (cFLIPs) and cFLIP-long (cFLIPL) are the best studied and most frequently detected in 

cellular systems. Both isoforms contain two N-terminal DEDs, but solely cFLIPL contains a 

caspase-like domain without protease activity. The short isoform consist solely of the two 

DEDs (Figure 2). Both isoforms are recruited to the DISC upon ligand stimulation and, similar 

to caspase-8, associates with FADD via the DEDs. In the DISC, cFLIP blocks 

caspase-8-mediated cell death signalling (Figure 3) [82]–[84]. Furthermore, knockout of 

cFLIP causes embryonic lethality in mice and even the transient knockdown in cell culture 

systems is reported to induce spontaneous cell death [85]–[87], indicating the indispensable 

role of cFLIP in regulating cell death processes. 

. 
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Compared to caspase-8, cFLIP is less present in the DISC. Computational modelling in line 

with mass spectrometry data show that the ratio of caspase-8 to cFLIP molecules in the 

DISC is around 1:10 [88]. It appears that cFLIP regulates caspase-8 activation in the DISC 

through insertion into the caspase-8 DED chains, without terminating chain elongation [88]. 

While cFLIPs fully blocks processing and thereby activation of caspase-8 in the DISC, the 

role of cFLIPL in inhibiting caspase-8 is more complex and not fully elucidated to date. When 

overexpressed, cFLIPL is functionally blocking cell death [89]. Heterodimerisation between 

cFLIPL and caspase-8 with reduced proteolytic activity has been described. These 

heterodimers can process caspase-8 into the p43/41 and p10 fragment, however as they are 

not released from the DISC, they are not sufficient to induce apoptosis [90]. Furthermore, 

cFLIPL has independently been reported in several studies to have caspase-8 activating 

abilities [90]–[93]. In contrast, selective knockdown of solely cFLIPL promotes the formation 

of the DISC, as well as activation, processing, and release of caspase-8 [86]. Thus, 

endogenous cFLIPL inhibits caspase-8 activation in the DISC and further effector 

caspase-mediated cell death. However, presented data are highly controversial and it is still 

under debate whether cFLIPL has pro- or anti-apoptotic abilities. Nevertheless, it seems that 

caspase-8 has a broader function spectrum than solely inducing apoptosis. It appears that 

the caspase-8/cFLIP heterodimer in contrast to the caspase-8 homodimer has the ability to 

trigger non-apoptotic signalling [94], [95].  

Figure 2 Structural organisation of the DED containing protein family members FADD, 
caspase-8, cFLIP, caspase-10, and their isoforms  
DED: death effector domain; DD: death domain 
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A multitude of other signalling proteins have been reported that are associated with the DISC 

or bind directly to the CD95 or TRAIL receptor. However, the function of these proteins in 

death receptor signalling is presently unclear and remains to be elucidated [96]. 

V.2.1.2. Non-apoptotic cell death signalling of the DISC 

The induction of apoptosis is the best characterised function of the CD95- and TRAIL-DISC. 

However, death ligand-induced formation of the DISC can trigger other signalling cascades 

leading to non-apoptotic outcomes (Figure 4). Recently, another form of programmed cell 

death, namely necroptosis, was discovered. This cell death mechanism lacks the 

morphological hallmarks of apoptosis [97]. Instead, it is a programmed form of necrosis and 

is driven by deregulation of the death domain-containing serine-threonine kinase RIPK1 

(receptor-interacting protein kinases 1) and RIPK3 [98], [99]. This deregulation leads to the 

activation and oligomerisation of the pseudokinase mixed lineage kinase domain-like (MLKL) 

within the plasma membrane and thereby to the loss of membrane integrity [100]. 

Figure 3 Caspase-8 activation and its regulation by cFLIP in the DISC. After ligand 
binding, the adaptor molecule FADD is recruited to the death receptor. Next, caspase-8 
and its regulator cFLIP assemble the complex via FADD. Several caspase-8 molecules 
assemble the DISC by forming DED chains. Through their close proximity, p10 subunits of 
caspase-8 are autoprocessed and stay associated with the complex. Finally, the p18 
subunits of caspase-8 are cleaved from the prodomain and assemble with the small 
subunits of the active caspase-8 homodimer. cFLIPL/S inhibit either the processing of 
caspase-8 (cFLIPS) or build an inactive caspase-8-cFLIPL-heterodimer. 
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Necroptosis is driven by a multiprotein complex named the ripoptosome. Complex formation 

can be induced by a variety of stimuli including genetoxic stress, Toll-like receptor (TLR) 

ligation, the depletion of cellular inhibitor of apoptosis proteins (cIAPs) which control the 

ubiquitination of RIPK1, and of course by death receptor stimulation [101]. Importantly, 

necroptotic cell death solely occurs if caspase activity is actively blocked by the use of 

synthetic or viral inhibitors [97]. 

V.2.1.3. Pro-inflammatory signalling of the DISC 

As previously described, all members of the TNF superfamily harbour pro-inflammatory 

activity. Upon ligand stimulation, the CD95- and TRAIL-DISCs are able to induce the 

activation of NF-κB resulting in cytokine gene induction [102]–[106]. The molecular 

mechanisms rewiring apoptosis induction into cytokine production remain largely unknown, 

although it appears to act similar to the well-described TNF signalling pathway. Even if TNF 

is able to induce apoptosis in some cell lines, its deadly activity has a minor function in vivo 

compared to its gene inducing capacities [107]. Upon ligand binding to the TNF-R1, the TNF 

receptor type 1-associated DD protein (TRADD) is recruited to the complex by interacting 

with the DD of the receptor [108]. The adaptor protein TRADD represents an assembly 

platform to allow further recruitment of TNF receptor-associated factor 2 (TRAF2), RIPK1 and 

cIAP1/2 [109]. RIPK1 undergoes polyubiquitination in the complex, a reaction which is 

catalysed by TRAF2, cIAPs and the ubiquitin conjugating enzyme E2 D1 (UbcH5) [110]. 

TNFα-induced protein 3 (TNFAIP3) or better known as A20, is a zinc finger protein with 

deubiquitinase as well as E3 ubiquitin ligase domains. A20 regulates RIPK1 ubiquitination via 

interfering with cIAP1 and TRAF2 activity by antagonising the interaction with UbcH5 [111]. 

RIPK1 ubiquitination leads to the recruitment of the inhibitor of NF-κB kinase (IKK) complex 

to the receptor. The IKK complex consists of three components named IKK1, IKK2, and NF-

κB-essential modulator (NEMO). Whereas IKK1 and -2 are catalytically active, NEMO is 

essential for the association of the IKK complex to the ubiquitin chains [112], [113]. In 

addition to the IKK complex, the TNF-R1 complex recruits another complex to the membrane 

via the ubiquitin chains. This complex consists of the transforming growth factor β-activated 

kinase 1 (TAK1), the TAK1 binding protein 1 (TAB1), and TAB2. TAK1 then mediates the 

activation of the IKK complex [114]. As this activation is usually not sufficient to fully 

propagate downstream signalling, the linear ubiquitin chain assembly complex (LUBAC), 

consisting of heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L), HOIL-1L interacting protein 

(HOIP) and shank-associated RH domain-interacting protein (SHARPIN), is recruited to the 

ubiquitin chains in the receptor complex [115]. HOIP and HOIL catalyses ubiquitination of 

NEMO, leading to enhanced association and full activation of the IKK complex [116]. The 

activated IKK complex phosphorylates inhibitor of NF-κB (IκB) proteins, thereby marking 

them for proteasomal degradation [117]. IκB proteins inhibit NF-κB dimers by masking their 
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nuclear localisation sequence, thereby keeping them in an inactive state. The best studied 

member of this inhibitory family is IκBα. Upon activation of the TNF signalling pathway, IκBα 

is rapidly degraded leading to the release and nuclear translocation of NF-κB [118]. NF-κB 

induces the transcription of a variety of genes, which are mainly involved in immune 

response, inflammation, cell survival, differentiation, and proliferation [119]. 

The above described TNF-R1 complex which leads upon ligand engagement to the 

activation of NF-κB and subsequent gene induction is called complex I. It is important to 

dissect it from the TNF-R1 complex II which triggers the apoptotic signalling pathway and 

consists of RIPK1, TRADD, FADD, caspase-8, and cFLIP. In contrast to other death 

receptors, FADD is unable to directly bind the intracellular DD of TNF-R1 [120]. RIPK1 and 

TRADD have to be released from complex I to induce cell death. Deubiquitination of RIPK1, 

the inhibition of protein translation, and inhibition of cIAPs are possible factors to induce the 

release of RIPK1 and TRADD [121], [122]. Detached from the receptor, FADD is able to 

assemble the complex to further recruit caspase-8 and its regulator cFLIP [123]. Cell death 

initiation occurs similar to CD95L- and TRAIL-induced apoptosis. Caspase-8 is activated and 

transfers the signal either directly or via cleavage of Bid to effector caspases. 

TNF-R1 signalling has been studied intensively in the past. Due to its complexity, many other 

proteins have been shown to be involved in the activation of NF-κB. Especially the 

importance of ubiquitin-editing to activate or regulate the different kinase complexes is 

currently under research. In addition to the above described canonical or classical NF-κB 

activation pathway, TNF is able to induce NF-κB by the non-canonical or alternative pathway 

[124]. The canonical NF-κB activation is a rapid process which occurs independent from 

protein synthesis. In contrast, the non-canonical NF-κB activation is time consuming and 

depends on protein synthesis [125]. Whereas stimulation of the TNF-R1 leads to canonical 

NF-κB activation, stimulation of the TNF-R2 activates the non-canonical pathway [124]. The 

central protein which propagates the signal from the TNF-R2 to NF-κB activation is the 

NF-κB-inducing kinase (NIK). TRAF2 and TRAF3 are associated with NIK and cIAPs under 

normal conditions and induce the cIAP-mediated polyubiquitination of NIK. This leads to the 

proteasomal degradation of NIK and prevents NF-κB activation [126]. Stimulation of the 

TNF-R2 leads to the degradation of cIAPs, TRAF2, and TRAF3, thereby preventing NIK from 

degradation [127]. NIK is now able to phosphorylate IKKα dimers which further activate 

NF-κB [128].  

Many other facts increase the complexity of research on TNF signalling and NF-κB 

activation. For example, many stimuli have been described to induce either the canonical or 

the non-canonical NF-κB pathway, besides TNF [129]. On top, five NF-κB isoforms have 

been described to have differential gene-inducing possibilities [130]. Furthermore, TNF 
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signalling is known to activate gene transcription independent of the NF-κB pathway. 

Activation of mitogen-activated protein kinases (MAPK) signalling pathways, including p38, 

extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) have been 

reported upon TNF stimulation [107], [131]. These diverse signalling possibilities downstream 

the receptor indicate how complex this machinery is. However, it is not relevant for this thesis 

to dissect these pathways in more detail. 

 

 

 

 

 

As described above, the CD95- and TRAIL-DISCs are able to induce the activation of NF-κB 

as well. Even if the molecular mechanisms are not fully elucidated to date, it appears that 

RIPK1 has a central function in propagating the signal from the DISC to the IKK complex 

resulting in the degradation of IκBα and translocation of NF-κB to the nucleus [132]. It is thus 

far unknown how and especially where RIPK1 is activated upon DISC formation. However, 

Figure 4 Diverse DISC-induced signalling pathways. Formation of the DISC 
mainly results in apoptosis through the activation of caspase-8. Once caspase 
activity is blocked, necroptotic cell death can be induced by the activation of 
RIPK1, RIPK3, and MLKL. Additionally, RIPK1 is able to induce the degradation of 
IκBα upon DISC stimulation resulting in NF-κB activation and subsequent gene 
induction. 
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Cullen and colleagues showed that knockdown of RIPK1 fully abrogates NF-κB activation 

upon DISC stimulation. Interestingly, the association of RIPK1 to the DISC is in general very 

weak, but the blockade of caspase activity could drastically enhance the recruitment and 

binding of RIPK1 to the complex [132]. Upon death ligand stimulation, RIPK1 accumulates in 

a soluble complex containing caspase-8, FADD, and solely the long isoform of cFLIP [133]. 

Compared to DISC-bound protein levels, the relative amount of RIPK1 bound to this soluble 

complex is much higher and can again be enriched by caspase inhibitors [132]. Of note, 

cFLIP is not only inhibiting caspase-8 mediated cell death signalling, it is also reported to be 

a negative regulator of DISC-induced NF-κB activation [134]. It appears that DISC signalling 

functions in an opposite fashion compared to the TNF-R1 signalling. The TNF-complex 

mainly drives NF-κB activation and cytokine production through the receptor bound complex I 

and only induces apoptosis under some circumstances in the soluble complex II. In contrast 

to the TNF complex, DISC signalling favours cell death induction from the receptor 

(complex I) and activates NF-κB in a RIPK1-dependent manner via formation of a soluble 

complex (complex II). 

 

V.3. Caspase-10 

Another DED-containing protein which is involved in DISC signalling is caspase-10. This 

enzyme is a close homologue of caspase-8 with structural similarities and thought to be an 

initiator caspase as well. Like caspase-8, it contains two N-terminal DEDs plus a large and a 

small catalytic active subunit (Figure 2) [135]. Caspase-10 is a highly conserved caspase 

throughout evolution, but interestingly absent in rodents [136], [137]. Thus far, seven human 

caspase-10 isoforms (caspase-10a-g) have been described [138]. However, only the 

isoforms ‘a’, ‘d’, and ‘c’ can be detected under endogenous protein conditions in cellular 

systems. The other four isoforms have solely been described by polymerase chain reaction 

(PCR) or overexpression studies. Like caspase-8 and cFLIP, the caspase-10 gene is located 

on chromosome 2q33-q34 and alternative splicing results in the different isoforms [139]. 

Interestingly, despite the presence of two DEDs in all isoforms, only caspase-10a and –d are 

catalytically active. Whereas caspase-10c is structurally similar to cFLIPS and solely consists 

of the two DEDs and a small overhang, the isoforms ‘a’ and ‘d’ contain a large and small 

subunit (Figure 2). Both isoforms harbour an equal small p12 fragment, but differ in size of 

the large subunit. The isoform ‘a’ contains a p17 subunit, whereas caspase-10d is larger and 

contains a p22 subunit, instead. 

Mutations in the caspase-10 gene are associated with an autoimmune lymphoproliferative 

syndrome (ALPS) type II [140]. This disease is characterised by abnormal lymphocyte and 
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dendritic cell homeostasis and defective immune regulation [141], [142]. The same clinical 

hallmarks can be observed in ALPS type I patients, but this disease is characterised by 

mutations in mainly CD95 or, less likely, its respective ligand [143], [144]. Mutations in 

caspase-10 which cause ALPS type II lead to diminished caspase activity and death 

receptor-induced apoptosis. Mutations in the caspase-10 gene seem to affect the enzymatic 

subunits and not the DED structure. Therefore, mutated caspase-10 is most likely recruited 

to the DISC and blocks caspase-8 processing by its decreased enzymatic activity [140].  

A few reports have described the function of caspase-10 outside the DISC. Caspase-10 has 

been reported to be associated with the ripoptosome [98]; however, its function in this 

complex remains to be elucidated. In addition, caspase-10 has been described to be 

involved in an alternative intrinsic apoptotic pathway. After permeabilization of mitochondria, 

adenylate kinase 2 translocates into the cytosol and forms a complex with FADD and 

caspase-10 that triggers caspase-3 activation. Furthermore, caspase-10 has recently been 

described to be an inhibitor of autophagic cell death and removal of caspase-10 causes 

autophagy induction [145].  

In general, the main function of caspase-10 seems to be related with DISC signalling. 

Caspase-10 has been shown to be recruited to the native TRAIL- as well as CD95-DISC 

[146]. Processing-dependent activation of caspase-10 in the DISC occurs analogue to 

caspase-8 activation. First, the small p12 subunit is cleaved via proximity-induced 

autoprocessing and remains afterwards associated with the complex. Next, the large p17/22 

subunit is cleaved and finally two subunits of p12 and p17/22 are able to assemble the active 

caspase-10 homodimer [147]. Even if the substrate repertoire of caspase-8 and -10 is 

similar, the substrate specificities of both caspases vary. For example, caspase-10 is more 

efficient in cleaving RIPK1 compared to caspase-8. Interestingly, caspase-10 cleaves Bid at 

a distinct position in contrast to caspase-8, but it is still unknown which consequences 

differential Bid cleavage has for MOMP initiation upon death ligand stimulation [139]. 

Heterodimerisation of caspase-10 with cFLIPL has been reported, but its function is as 

controversial as caspase-8/cFLIP heterodimer formation. Interestingly, the caspase-10/cFLIP 

heterodimer is in contrast to the caspase-8/cFLIP heterodimer able to cleave Bid [148], [149]. 

Furthermore, heterodimers between caspase-8 and -10 have been observed by the use of 

chemical dimerisers [150]. The resulting heterodimers are most likely catalytically inactive 

and thus far it has not been ruled out if caspase-8 and -10 are able to build heterodimers 

under native conditions.  

Studies analysing the functional substitution potential of caspase-10 for caspase-8 obtained 

conflicting results. Sprick and colleagues reported that caspase-10 is unable to functionally 

substitute for caspase-8 in cell death signalling [146], whereas others observed a functional 
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redundancy [147]. In general, the function of caspase-10 in DISC signalling is highly 

controversial. Most of the data base solely on overexpression experiments which putatively 

heavily derail the stoichiometry of the complex and lead to artificial results. However, the 

absence of caspase-10 in rodents and the homology to caspase-8 led to a kind of omission 

of research on this caspase. 
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VI. Material and Methods 

All materials not listed below are commercially available analytical reagents or 

laboratory-grade materials. 

VI.1. Materials 

Table 1 Reagents and kits 

Reagents and kits Company Catalog # 

4-(2-Aminoethyl)-benzenesulfonyl Fluoride 

(AEBSF) Hydrochloride 

AppliChem A1421 

Agarose Low Melt Roth 6351.5 

Ampicillin sodium salt Roth K029.1 

Aprotinin Roth A162.3 

BD OptEIA™ Human IL-8 Set BD Biosciences 555244 

BD OptEIA™ Reagent Set B BD Biosciences 550534 

Benzamidine Sigma-Aldrich 12072-10G 

Bis-Tris Applichem A1025,0500 

Bovine Serum Albumin (BSA) Santa Cruz sc 2323A 

Bromophenol blue Sigma-Aldrich B8026 

Calcium chloride dihydrate Sigma-Aldrich C3306 

cOmplete Protease Inhibitor Cocktail Tablets Sigma-Aldrich 11836145001 

Crystal violet Applichem A0691.0250 

di-Sodium hydrogen phosphate dihydrate Roth 4984.1 

Deoxynucleoside triphosphate (dNTPs)  Thermo Scientific   R0193 

Dithiothreitol (DTT) Applichem A2948.0025 

E.Z.N.A. FastFilter Plasmid Maxi Kit OMEGA D6924-04 

E.Z.N.A. Gel Extraction Kit  OMEGA D2500-02 

Ethanol denatured Roth K928.4 

Ethanol ROTIPURAN Roth 9065.3 

FACS Shutdown solution BD Biosciences 334224 
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FACSFlow Sheath Fluid BD Biosciences 342003 

FastDigest BamHI Thermo Scientific FD0054 

FastDigest EcoRI Thermo Scientific FD0274 

FastDigest HpaI Thermo Scientific FD1034 

FastDigest NheI Thermo Scientific FD0973 

FastDigest SwaI Thermo Scientific FD1244 

GeneChip® Human Gene 2.0 ST Array Affymetrix  902112 

GeneJET Plasmid Miniprep Kit  Thermo Scientific K0503 

GeneRuler 1 kb DNA Ladder Thermo Scientific SM0312 

GeneRuler 100 bp DNA Ladder Thermo Scientific SM0242 

Glycerin ROTIPURAN Roth 3783.2 

iBlot 2 Transfer Stacks Life technologies IB24001 

KAPA SYBR FAST Universal Peqlab 07-KK4600-03 

LB-Agar (Lennox) Roth X965.2 

LB-Medium (Lennox) Roth X964.2 

Leupeptin  Sigma-Aldrich L2884 

Luminata Forte Western HRP substrate Merck Millipore WBLUF0500 

Methanol AnalaR NORMAPUR  VWR 20847.360 

Microlance 3 27 G ¾’’ BD 302200 

MOPS for buffer solutions AppliChem  A1076,1000 

Nancy-520 Sigma-Aldrich 01494 

NuPAGE Novex 4-12 % Bis-Tris Protein Gels Invitrogen NP0329BOX 

Pacific Blue Annexin V Biolegend 640918 

PageRuler Prestained Protein Ladder Life technologies 26617 

Phusion High-Fidelity DNA Polymerase New England BioLabs M0530L 

Pierce ECL Western Blotting Substrate Thermo Scientific 32106 

Potassium chloride Roth 6781.3 

Potassium dihydrogen phosphate Roth 3904.1 
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Propidium iodide (PI) Sigma-Aldrich 81845-100MG 

Protein Assay Reagent A Bio-Rad 5000113 

Protein Assay Reagent B Bio-Rad 5000114 

Protein Assay Reagent S Bio-Rad 5000115 

Protein G Agarose Roche 05015952001 

Restore Western Blot Stripping Buffer Thermo Scientific 21063 

RNaseOUT Recombinant Ribonuclease 

Inhibitor 

Invitrogen 10777-019 

RNeasy Mini Kit  Qiagen 74106 

SDS Pellets Roth CN30.3 

Skim Milk Powder Sigma-Aldrich 70166-500G 

Sodium chloride (NaCl) Roth 3957.2 

Sodium citrate dihydrate Sigma-Aldrich W302600 

Sodium hydroxide (NaOH) solution Roth KK71.1 

Sodium orthovanadate Sigma-Aldrich S6508 

SuperScript II Reverse Transcriptase Invitrogen 18064-071 

T4 DNA Ligase  Thermo Scientific  EL0016 

Tris ultrapure AppliChem A1086,1000 

Triton X-100 AppliChem A1388,0500 

Tween 20  Roth 9127.3 

UltraPure DNase/RNase-Free  Distilled Water Invitrogen 10977-049 

β-Glycerophosphate disodium salt hydrate Sigma-Aldrich G9422-10G 

β-Mercaptoethanol Merck Millipore 805740 

 

 

 

 



Material and Methods 

19 

Table 2 Cell culture reagents 

Cell culture reagents Company Catalog # 

(Z)-4-Hydroxytamoxifen Sigma-Aldrich H7904 

AllStars Negative Control siRNA Qiagen 1027281 

Corning™ cell scraper  Sigma-Aldrich CLS3010 

Dimethyl sulfoxide (DMSO) AppliChem  A3672,0100 

DMEM, high glucose, GlutaMAX Thermo Scientific 61965-059 

DoxyHEXAL solution Hexal  Pharmacy-only 

DPBS, calcium, magnesium Thermo Scientific 14040-174 

Ethylenediaminetetraacetic acid (EDTA) 

(Versen) 

Merck Millipore L 2113 

Fetal Bovine Serum (FBS) Thermo Scientific 10270-106 

Hepes solution Sigma-Aldrich H0887 

Hygromycin B A&E Scientific P21-014 

Lipofectamine 2000 Transfection Reagent Invitrogen 11668-019 

Necrostatin-1 (Nec) Sigma-Aldrich N9037-25MG 

Opti-MEM I Reduced Serum Medium Thermo Scientific 31985-047 

Polyprene (Hexadimethrine bromide) Sigma-Aldrich H9268-5G 

Puromycin Dihydrochloride Thermo Scientific A11138-03 

RPMI 1640 Medium Thermo Scientific 21875-091 

Sodium Pyruvate Thermo Scientific 11360-088 

Sterile Cellulose Nitrate Membranes GE Healthcare 10401170 

TRIPZ Human CASP10 shRNA GE Healthcare RHS4696-200761700 

TRIPZ Inducible Lentiviral Non-silencing 

shRNA Control 

GE Healthcare RHS4743 

Trypsin 2,5% Invitrogen 15090-046 

Zeocin Selection Reagent Thermo Scientific R250-01 

z-Val-Ala-DL-Asp-fluoromethylketone 

(zVAD-fmk) 

Bachem N15100025 
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Table 3 Stimulatory cytokines 

Stimulatory cytokines Source 

CD95L-Fc  M. Feoktistova [133] 

His-Flag-TRAIL (HF-TRAIL) P. Diessenbacher [151] 

 

Table 4 Antibodies 

Target Species/Feature Application Company Catalog # 

Primary Antibodies     

A20 (TNFAIP3) Mouse IgG1 WB Imgenex IMG-161 

APO-1 (CD95) Mouse IgG3 IP Provided by P.H. 

Krammer 

 

Caspase-10 Mouse IgG1 WB MBL M059-3 

Caspase-8 Rabbit WB Millipore 04-574 

Caspase-8 Mouse IgG2b WB Provided by P.H. 

Krammer 

 

Caspase-8 Goat IP Santa Cruz sc-6136 

CD95 Rabbit WB Santa Cruz sc-715 

CD95 Mouse IgG1 FACS Provided by P.H. 

Krammer 

 

cFLIP Mouse IgG1 WB Enzo Life Science ALX-804-

961-0100 

c-Jun Rabbit WB Santa Cruz sc-44 

FADD Mouse IgG1 WB BD Biosciences F36620 

IκBα Rabbit WB Santa Cruz sc-371 

JNK Rabbit WB Cell Signaling 9252 

p38 Rabbit WB Santa Cruz sc-535 

Phospho-IκBα Rabbit WB Cell Signaling 9246 

Phospho-JNK Rabbit WB Cell Signaling 9251 

Phospho-p38 Rabbit WB Cell Signaling 9215 
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Phospho-RIPK1 

(S166) 

Rabbit WB Provided by P. 

Gough 

 

RIPK1 Mouse IgG2a WB BD Biosciences R41220 

TRAIL-R1 Mouse IgG1 FACS Biomol AG-20B-

0022-C100 

TRAIL-R2 Mouse IgG1 FACS Biomol AG-20B-

0023-C100 

β-Tubulin Mouse IgG1 WB Sigma-Aldrich T4026 

Secondary Antibodies     

mouse IgG1 Goat/HRP WB SouthernBiotech 1070-05 

mouse IgG2a Goat/HRP WB SouthernBiotech 1080-05 

mouse IgG2b Goat/HRP WB SouthernBiotech 1090-05 

rabbit Goat/HRP WB SouthernBiotech 4030-05 

rat Goat/HRP WB SouthernBiotech 3030-05 

goat IgG Rabbit/HRP WB SouthernBiotech 6160-05 

mouse IgG Goat/Biotinylated FACS SouthernBiotech 1030-08 

Tertiary Reagents     

Streptavidin PE-Cy5  FACS BD Bioscience 554062 

 

 

 

VI.2. Buffer solutions: 

PBS (pH 7.4) 

2.7 mM KCl 

1.5 mM KH2PO4 

137 mM NaCl 

8 mM Na2HPO4 

Lysis buffer 

30 mM TRIS-HCL (pH 7.5) 

120 mM NaCl 

10 % (v/v) Glycerol 

1 % (v/v) Triton X-100 

2 tablets cOmplete Protease Inhibitor/100 ml 
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5x Laemmli 

250 mM Tris-HCl (pH 6.8) 

10 % (w/v) SDS 

50 % (v/v) Glycerol 

0.1 % (w/v) Bromophenol blue 

 

2x HBS buffer (pH 7.05) 

280 mM NaCl 

50 mM Hepes 

1.5 mM Na2HPO4 

Annexin buffer 

10 mM Hepes 

140 mM NaCl 

2.5 mM CaCl2 

 

Hypotonic fluorochrome solution 

0,1 % (w/v) Sodium citrate  

0,1 % (v/v) Triton X-100  

50 µg/ml Propidium iodide (PI)  

Crystal violet dye 

0.5 % (w/v) crystal violet 

20 % (v/v) methanol 

 

FACS buffer 

1 % (w/v) BSA in PBS 

Phospho-lysis buffer 

20 mM Tris (pH 7,4) 

137 mM NaCl 

10 % (v/v) Glycerol 

1 % (v/v) Triton X-100 

2 mM EDTA 

50 mM β-Glycerophosphate disodium salt     

           hydrate 

1 mM Na orthovanadate 

1 mM AEBSF Hydrochloride 

5 µg/ml Aprotinin 

5 µg/ml Leupeptin 

5 mM Benzamidine 
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VI.3. Software and devices 

Table 5 Analysis software 

Analysis software Source 

BD FACSDIVA Software BD Biosciences 

FCS Express V3 De Novo Software 

GraphPad Prism 5 GraphPad Pris 

Image J National Institute of Health (NIH) 

MxPro QPCR Software Agilent 

Primer3 Whitehead Institute for Biomedical 

Research 

Wallac 1420 WorkOut Data Analysis software PerkinElmer 

 

Table 6 Devices 

Devices Company 

Curix 60 AGFA 

FACSCanto II  BD Biosciences 

Gel iX20 Imager INTAS 

Mx3005P QPCR System Agilent 

NanoDrop 2000 Spectrophotometer Thermo Scientific 

T100 Thermal Cycler BioRad 

VICTOR3 1420 Multilable Reader PerkinElmer 



Material and Methods 

24 

VI.4. Methods 

VI.4.1. Cell culture 

All human cell lines used in this study (Table 7) were cultured in a humidified atmosphere at 

37 °C and 5 % CO2. Except Jurkat cells, the cell lines were grown in Dulbecco´s Modified 

Eagle Medium (DMEM) containing 4,500 mg/l glucose and 4 mM L-glutamine, supplemented 

with 1 % Hepes, 1 % sodium pyruvate, and 10 % heat inactivated fetal bovine serum (FBS), 

from here on referred as DMEM medium. Routinely tests were performed to exclude 

mycoplasma contaminations of the cell lines. Cells were grown in respective medium and 

further subcultured when they reached a confluence of 90-100 %. Therefore, cells were 

washed in PBS and detached from the cell culture dish using 2.5 % trypsin solution. By the 

addition of DMEM medium, trypsinisation was stopped and cells were resuspended until a 

homogeneous suspension was reached. The cell suspension was centrifuged for 5 min at 

400 x g and room temperature (RT) to pellet the cells. The supernatant was removed and the 

cell pellet was resuspended in fresh medium. The dilution of the cells depended on the used 

cell line and the period of cultivation, but was in general between 1:1 and 1:15. Importantly, 

HaCaT cells were never diluted less than 1:5. 

VI.4.1.1. Cultivation of Jurkat cells 

Jurkat cells were grown in RPMI 1640 medium supplemented with 10 % FBS. As these cells 

grow in suspension, cells were splitted when they reached a confluence of 1 million cells/ml. 

Therefore, cells were collected and centrifuged for 5 min at 400 x g. Pelleted cells were 

resuspended in fresh medium and diluted in a ration between 1:1 and 1:10 depending on the 

period of cultivation. 

     Table 7 Cell lines 

Cell line Origin 

HaCaT Keratinocytes 

HEK-293 Embryonic kidney cells  

HeLa Cervical carcinoma 

Jurkat T lymphocytes 

MC Melanoma 

SK-Mel Melanoma 

 

VI.4.2. Polymerase chain reaction (PCR) 

To amplify the respective DNA fragment, vectors already containing the gene of interest were 

used as a template. Plasmids containing caspase-10 constructs in pEF6/V5-His-TOPO were 

kindly provided by Martin Sprick, and Marion McFarlane kindly provided us with caspase-8 
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constructs in pcDNA3.1 [94]. Specific forward and reverse primer pairs were designed 

(Table 8) for each PCR which were complementary to the template DNA and had an equal 

melting temperature (Tm). Thereby, each primer contained the respective restriction site for 

later ligation with the plasmid.  

A master mix with a final volume of 50 µl was used for the PCR. It contained 0.01 µg 

template DNA, 0.2 mM dNTPs, 0.5 µM of each primer, 1 U Phusion High-Fidelity DNA 

Polymerase, and 10 µl 5x reaction buffer (New England Biolabs). 

The PCR program was carried out as follows: 

• 98 °C for 3 min 

30 cycles of: 

• 98 °C for 10 s 

• Tm+3 °C for 30 s 

• 72 °C for 45 s 

Final extension: 

• 72 °C for 10 min 

The samples were kept at 4 °C for storage to exclude nuclease activity. 

Table 8 PCR primers 

Primer forward reverse Tm 

[°C] 

Restriction 

site 

Caspase-10 in 

pCFG5-IEGZ 

ACTGGAATTCATGAAAT

CTCAAGGTCAACA 

CCGCATTTAAATCTATAT

TGAAAGTGCATCCA 

58 EcoRI 

SwaI 

Caspase-10 in 

pF 5 × UAS W 

SV40 Puro 

GCGAGGATCCATGAAA

TCTCAAGGTCAACA 

GCGTGCTAGCCTATATT

GAAAGTGCATCCA 

62 BamHI 

NheI 

Caspase-8 in 

pF 5 × UAS W 

SV40 Puro 

GTCAGCTAGCATGGAC

TTCAGCAGAAATCT 

GCCGGTTAACTCAATCA

GAAGGGAAGACAA 

62 NheI 

HpaI 

 

To visualize and separate the amplified DNA fragments, samples were run on agarose gels 

containing 0.5x Nancy-520 (Sigma-Aldrich) and exposed to UV light. Successfully amplified 

samples were cut out from the gel and purified using the E.Z.N.A. Gel Extraction Kit (Omega) 

according to manufacturer´s instructions and eluted in DNase free water. 
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VI.4.3. Restriction digest and ligation 

The PCR DNA fragments and the corresponding empty vectors (pCFG5-IEGZ kindly 

provided by B Baumann; pF 5x UAS MCS W SV40 Prom. kindly provided by J. Silke) were 

digested by restriction enzymes. Therefore, a master mix of 20 µl was used. It contained 

10-30 µg of the PCR DNA fragment or 1.5 µg plasmid, 1 µl of each FastDigest restriction 

enzyme (Table 8), and 2 µl 10x reaction buffer (Thermo Scientific). The samples were 

incubated for 15 min at 37 °C and cleaned up via agarose gel electrophoresis as described 

above.  

To combine the digested DNA fragments and plasmids, a master mix of 10 µl was used. 

Therefore, 1 µl plasmid, 5-7 µl DNA fragment, 1 µl T4 DNA ligase, and 1 µl ligation buffer 

(Thermo Scientific) were incubated over night at 15 °C.  

VI.4.4. Transformation and plasmid isolation 

To introduce the ligated plasmids into chemically competent TOP10F E. coli (Invitrogen) , the 

whole ligation mixture was incubated together with 100 µl bacteria on ice for 30 min. 

Afterwards, cells were heat shocked for 45 s at 42 °C and rested again for 2 min on ice. 

Next, 500 µl lysogeny broth (LB) medium was added and the samples were further incubated 

gently shaking for 1 h at 37 °C. Transformed bacteria were plated on pre-warmed LB agar 

plates containing 100 µg/ml ampicillin and incubated over night at 37 °C. Single colonies 

were picked and transferred into new reaction tubes containing approximately 5 ml LB 

medium and 100 µg/ml ampicillin. The tubes were again incubated over night at 37 °C. 

Plasmid DNA was isolated using the GeneJET Plasmid Miniprep Kit (Thermo Scientific) 

according to manufacturer´s instructions. The constructs were verified by restriction digest 

and sequencing. Successfully generated plasmids were again transformed into bacteria as 

described above and plated on LB agar plates. Single colonies were picked and incubated 

over night at 37 °C in a sterile Erlenmeyer flask containing 200 ml LB medium supplemented 

with 100 µg/ml ampicillin. Plasmids were isolated using the E.Z.N.A Fastfilter Plasmid Maxi 

Kit (Omega) according to manufacturer´s instructions. Plasmids were eluted in 1.5 ml DNase 

free water and analysed with a NanoDrop 2000 spectrophotometer. Solely samples 

complying with the quality recommendations (260 nm/ 280 nm ratio: 2.0 +/- 0.2; 260 nm/ 

230nm ratio: 2.0 +/- 0.2) were further used. 

VI.4.5. Transfection and transduction 

To generate viral particles, cells were seeded at various concentrations to receive a 

confluence of 50-60 % at the day of transfection or transduction. 
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VI.4.5.1. Generation of retroviral particles  

To generate retroviral particles, the retroviral helper cell line Phoenix-AMPHO which 

originates from HEK-293 cells was cultured in 10 cm dishes. Cells were transfected with the 

pCFG5-IEGZ vector [152], which constitutively overexpresses the gene of interest, by 

calcium phosphate transfection. Therefore, 20 µg DNA was diluted in in a total volume of 

500 µl containing 250 mM CaCl2. 500 µl 2x HBS buffer were prepared in a separate tube. By 

carefully blowing air inside the HBS buffer to increase the surface and the oxygen uptake, 

the DNA CaCl2 solution was dropwise added into the mixture. The combined solution was 

incubated for 25 min at RT. In the meanwhile, medium was removed from the cells and 5 ml 

fresh medium containing 25 µM chloroquine was added. The transfection solution was 

dropwise added to the cells and they were incubated at 37 °C (5 % CO2). On the next day, 

medium containing retroviral particles was collected, filtered (0.45 µm), shock frozen in liquid 

nitrogen, and stored at -80 °C. Fresh medium was added to the cells for a second collection 

of viral supernatants on the next day. All steps described were carried out according to the 

safety class two requirements. 

VI.4.5.2. Generation of lentiviral particles 

HEK-293 cells were cultured in 10 cm dishes to generate lentiviral particles via the 2nd 

generation packaging system. Cells were cotransfected with 3 µg pMD2.G, 7.5 µg pSPax2, 

and 3 µg pcDNA3.1/p35 of lentiviral packaging vectors together with 10 µg of the transfer 

vector. To inducible overexpress the gene of interest the transfer vector 

pF 5 × UAS W SV40 Puro [153] which expresses the gene of interest in a Gal4-dependent 

fashion was used. For inducible shRNA expression, the pTRIPZ lentiviral shRNAmir system 

was applied. Calcium phosphate transfection and collection of viral supernatants was carried 

out as described above. 

VI.4.5.3. siRNA-mediated knockdown 

For transient knockdown experiments the following siRNA duplexes were used: FlexiTube 

siRNA for caspase-8 (Hs_CASP8_11), caspase-10 (Hs_CASP10_8, Hs_CASP10_9, 

Hs_CASP10_10, and Hs_CASP10_11), cFLIP (Hs_CFLAR_9) and the respective control 

siRNA (AllStars Negative Control siRNA 1027281). All siRNA preparations were from 

QIAGEN. For transient transfection 2x105 cells per well were seeded in a 6-well plate and 

incubated over night. Prior to transfection, cells were incubated with Opti-MEM medium for 

20 min followed by transfection according to the manufacturer ́s recommendations using 

Lipofectamine 2000 and the respective siRNA species. In case of single cFLIP knockdown, 

the molarity of cFLIP siRNA was reduced to 500 pM (HeLa) and 1 nM (HaCaT). 
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VI.4.5.4. Generation of stable cell lines  

To generate stable cell lines, viral particles were added to the cells containing 5 µg/ml 

polybrene and cells were spin-infected for 1.5 h at 30 °C. The day after, cells were at least 

washed 3 times and successfully transduced cells were selected using antibiotic resistance. 

Therefore, cells were cultured in medium containing the lowest concentration of antibiotics 

which was sufficient to kill 100 % of untransduced control cells (Table 9). All steps were 

carried out according to the safety class two requirements until the cells were washed at 

least 6 times in virus-free medium after transduction. 

Stable cell lines, inducible overexpressing the gene of interest by addition of 

4-Hydroxytamoxifen, were transduced with a virus containing the pF GEV16 Super 

PGKHygro vector [153] prior to transduction with pF 5 × UAS W SV40 Puro.  

          Table 9 Antibiotics used for selection 

Vector Antibiotic Concentration  Time [d] 

pCFG5-IEGZ Zeocin 3 µl/ml 10-20 

pF 5 × UAS W SV40 Puro Puromycin 1 µg/ml 3-7 

pF GEV16 Super PGKHygro Hygromycin B 300 µg/ml 5-10 

pTRIPZ Puromycin 1 µg/ml 3-7 

 

VI.4.6. Generation of knockout cell lines 

Caspase-8 deficient HeLa cells were kindly generated by Tencho Tenev (Pascal Meier lab, 

ICR, London) using the CRISPR-Cas9 system. Therefore, HeLa cells were seeded in a 24-

well plate and transiently cotransfected with the pMA-T vector (carrier of the cassette-U6-

gRNA(casp8)-TTTTT; Life technologies) and hCas9-pcDNA3.3-TOPO (Addgene) by the use 

of Lipofectamine LTX Reagent with PLUSTM Reagent (Thermo Fischer Scientific) due to 

manufacturer´s recommendations. The following gRNA sequences were used: 

Casp8-1: GCCTGGACTACATTCCGCAA 

Casp8-2: GCTCTTCCGAATTAATAGAC 

Two days after transfection, cells were sorted with a BD FACSAria I (BD Bioscience) and 

plated as single clones in 96-well plates. Arising clones were cultured for 2-3 weeks and 

analysed for successful caspase-8 knockout by Western blotting. 

VI.4.7. Immunoblotting 

Cells were collected by trypsinisation to extract proteins. Pelleted cells were washed in PBS 

and lysed in lysis buffer for 1 h on ice. The samples were centrifuged for 30 min at 20,000 x g 
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and 4 °C to remove cellular debris. Protein concentration was measured using the DCTM 

Protein Assay (BioRad) according to manufacturer´s instructions. 

For Western blotting, protein lysates were prepared in Laemmli buffer under reducing 

conditions (5 % DTT (1M)) at a concentration of 0.5-2 µg/µl and boiled for 10 min at 96 °C. 

Samples were loaded on NuPAGE 4-12 % BisTris gels (Invitrogen) and proteins were 

separated according to manufacturer´s protocol using MOPS buffer. To control the molecular 

weight and the separation of the proteins PageRuler Prestained Protein Ladder (Life 

Technologies) was loaded on each gel. 

Proteins were transferred on polyvinylidene difluoride (PVDF) membranes using the iBlot 2 

Transfer Stacks (Life Technologies) according to manufacturer´s instructions. The 

membranes were blocked with 5 % non-fat dried milk in PBS + 0.1 % Tween 20 (from here 

on referred as PBST) for 1 h at RT. Primary antibodies were diluted in 5 % milk in PBST or 

5 % bovine serum albumin (BSA) in PBST with the respective concentrations (Table 10). 

Membranes were incubated gently shaking over night at 4 °C with the primary antibodies. 

Membranes were brought to RT and washed four times in PBST. The respective secondary 

antibodies were diluted 1:10,000 in 5 % milk in PBST and incubated with the membranes for 

1 h at RT. Membranes were washed three times in PBST and once in PBS and signals were 

visualised depending on the strength of the signal using Pierce ECL Western Blotting 

substrate (Thermo Scientific) or Luminata Forte Western blot HRP (Millipore) and the 

Curix 60 (AGFA) developing machine.  

VI.4.7.1. Detection of phospho-proteins 

To analyse the phosphorylation state of the protein of interest, cells were harvested as 

described above. The washed cell pellet was lysed by the use of a special lysis buffer 

containing phosphatase inhibitors (phospho-lysis buffer). Therefore, phospho-lysis buffer was 

added to the cells and they were quickly homogenised by pushing the cells three times 

through a 0.4 mm Microlance needle (BD). The samples were then centrifuged and further 

processed exactly as described above, with the exception that the PVDF membranes were 

blocked in PBST containing 5 % BSA. 

VI.4.8. Immunoprecipitation 

For precipitation of the CD95-DISC 1.5x107 cells were used for each condition. Cells were 

treated with the indicated concentrations of CD95L-Fc for the indicated times. Afterwards, 

cells were washed three times in ice-cold PBS and scraped off using a cell scraper. Cells 

were lysed in 1 ml lysis buffer and incubated gently shaking for 45 min at 4 °C. Lysates were 

centrifuged at 20,000 x g for 5 min and 4 °C. A minor fraction was used to determine the 

respective protein concentration as described above. Therefore, a total protein amount of 
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1-2.5 mg protein was used and each lysate was set to the same concentration. To precipitate 

the CD95 receptor and its associated proteins, 1.5 µg Apo-1 IgG3 antibodies (kindly provided 

by P.H. Krammer) were added to each lysate. 40 µl protein G beads (Roche) were used to 

precipitate the complexes. Samples were incubated gently shaking for 16-24 h at 4 °C. 

Beads were washed 4 times with ice cold lysis buffer before the protein complexes were 

eluted from dried beads by addition of reducing Laemmli buffer. Sample preparation and 

detection of respective proteins were carried out as described above.  

A second precipitation of caspase-8 was subsequently prepared after depleting CD95 from 

the lysate. Therefore, supernatants were carefully removed from the protein G beads after 

CD95 precipitation and incubated with 1 µg caspase-8 antibodies (Santa Cruz) for 16-24 h at 

4 °C followed by precipitation as described above.  

 

  Table 10 Antibodies for Western blotting 

Antibody Dilution Diluent  

A20 1:1000 Milk 

Caspase-10 1:2000 Milk 

Caspase-8 (C-term.) 1 µg/ml Milk 

Caspase-8 (N-term.) 1:1000 Milk 

CD95 1:1000 Milk 

cFLIP 1:100 Milk 

c-Jun 1:1000 Milk 

FADD 1:1000 Milk 

IκBα 1:1000 Milk 

JNK 1:1000 Milk 

p38 1:1000 Milk 

Phospho-IκBα 1:1000 BSA 

Phospho-JNK 1:1000 BSA 

Phospho-p38 1:1000 BSA 

Phospho-RIPK1 1:1000 BSA 

RIPK1 1:2000 Milk 

β-Tubulin 1:5000 Milk 

 

VI.4.9. Quantification of specific proteins 

To quantify specific proteins, respective protein bands were densitometrically analysed with 

ImageJ software. Therefore, non-saturated exposures of blots were used. Protein band 
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intensity was calculated in respect to either β-Tubulin as the loading control or to precipitated 

CD95 as control of the immunoprecipitation. 

VI.4.10. RNA isolation and reverse transcription 

Total RNA isolation from human cell lines was performed using the RNeasy Mini Kit 

(Quiagen) according to manufacturer´s instructions. In brief, cells were washed in PBS and 

lysed in RLT buffer containing 1 % β-mercaptoethanol. RNA was extracted using spin 

column purification. The samples were washed twice and RNA was eluted using RNase free 

water. 

RNA quality and concentration was measured using a NanoDrop 2000 spectrophotometer as 

described above. 

1.5 µg RNA of each sample was used for the reverse transcription reaction. Therefore, RNA 

was diluted in RNase free water to a final volume of 9.8 µl. 1 µl 10 mM deoxynucleoside 

triphosphate (dNTP), 1 µl 100 µM random nonamers and 0.2 µl 100 µM oligo dT primer were 

added to the sample. The probes were incubated in a thermocycler for 5 min at 65 °C. 

Afterwards, 4 µl 5x First Buffer, 2 µl 0.1 M DTT, 1 µl RNase out (Life Technologies), and 

0.7 µl Superscript II (Life Technologies) was added into the reaction tube. The samples were 

further incubated in a thermocycler for 2 min at 42 °C, 12 min at 25 °C, 50 min at 42 °C, and 

finally 15 min at 70 °C. Before the use, cDNA was diluted to a final concentration of 10 ng/µl. 

VI.4.11. Quantitative real time polymerase chain reaction (qPCR) 

Primers (Table 11) used for this study were designed using Primer3 software. qPCR 

experiments were performed in triplicates, each having a final volume of 20 µl, using the 

KAPA SYBR FAST Universal master mix (Peqlab) and a Mx3005P QPCR System (Agilent). 

100 ng cDNA per sample was used for each condition. Equal cycling conditions were used to 

amplify the genes of interest.  

The qPCR program was set as follows:  

• 15 min at 95 °C  

followed by 42 cycles of: 

• 95 °C for 15 s 

• 55 °C for 30 s 

• 72 °C for 30 s 

Melting curve analysis was used to confirm the specific amplification of a single product of 

the expected size for each gene. Furthermore, all primers used for qPCR studies have been 
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tested before by cDNA dilution curves to show an efficiency within 80-110 %. In addition, all 

samples were tested to have a low variance in the housekeeping gene (Gapdh) expression 

(< 2 cycles). Serial dilutions of cDNA (1, 1/5, and 1/25) were amplified for the construction of 

a standard curve and used for the estimation of the pPCR efficiency using MxPro software. 

The relative quantification was calculated after dividing the standard curve value of the 

respective genes by that of the housekeeping gene (Gapdh) for each individual sample using 

Excel and GraphPad Prism 5. 

        Table 11 qPCR primer 

Primer Forward Reverse 

IL-8 CACCCCAAATTTATCAAAGA ACTGGCATCTTCACTGATTC 

TNF TCAGATCATCTTCTCGAACC TGGTTATCTCTCAGCTCCAC 

GAPDH CCTGGTATGACAACGAATTT AGTGAGGGTCTCTCTCTTCC 

Caspase-10 AGAAGGCATTGACTCAGAGA CTCCAGGCATGTCAGATTAT 

 

VI.4.12. Cell death quantification by different assays 

To induce cell death, constructs for expression of CD95L-Fc [154] (kindly provided by P. 

Schneider, Switzerland) and His-FLAG-TRAIL (HF-TRAIL) [151] were used. 1 U of CD95L-Fc 

was determined as 1 U/ml supernatant that was sufficient to kill 50 % (LD50) of parental 

HeLa cells within 16-20 h. Ligand-mediated cell death was fully blocked by addition of 

soluble CD95-Fc or TRAIL-R2-Fc protein. 

VI.4.12.1. Crystal violet staining 

Crystal violet staining of attached living cells was performed after stimulation with the 

indicated concentrations and time points of death ligands. Therefore, 1-1.5x104 cells were 

seeded in triplicates per condition in 96-well plates. Cells were treated with the respective 

inhibitors and death ligands as indicated. Medium was removed and cells were carefully 

washed with PBS. After removing the PBS, plates were put upside down on a tissue to 

remove remaining liquids. 50 µl 0.5 % crystal violet dye was added into each well and the 

plates were incubated on a shaker for 20 min at RT. Plates were carefully washed with water 

until unbound crystal violet was removed, put upside down on a tissue, and dried at least for 

2 h at RT to remove remaining liquids. 200 µl methanol was added per well to dissolve the 

crystal violet and plates were incubated for 20 min on a shaker at RT. Optical density of the 

samples was analysed with a VICTOR3 1420 Multilable Reader and optical density of control 

conditions (cells treated with diluents) was normalised to 100 % to allow comparison of 

independent experiments. Calculations were performed using Excel and graphs were 

visualised in GraphPad Prism 5. 
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VI.4.12.2. Nicoletti staining 

HeLa cells were seeded in 6-well plates and treated with CD95L-Fc as indicated. Medium, 

containing dead cells, was collected and cells were washed in PBS. The PBS was collected 

as well and cells were harvested by trypsinisation. The medium, PBS, and the cell solution 

were combined and the samples were centrifuged for 5 min at 400 x g. The cell pellet was 

washed twice in PBS and carefully resuspended in 0.5 ml hypotonic fluorochrome solution 

containing 50 µg/ml PI. The samples were stored at 4 °C in the dark for 48 h. Afterwards, 

samples were again carefully resuspended and finally analysed by flow cytometry using a 

FACSCanto II (BD Biosciences) and the BD FACSDIVA software. Visualisation of the results 

was done using FCS Express V3 software and summary of independent experiments was 

carried out using GraphPad Prism 5. 

VI.4.12.3. Annexin V staining 

To analyse the externalisation of phosphatidylserine, 1x105 HeLa cells were seeded per well 

in a 6-well plate and stimulated with CD95L-Fc as indicated. Cells were collected by 

trypsinisation, washed twice in PBS, and once in Annexin buffer. The cell pellet was 

resuspended in 800 µl Annexin buffer. 5 µl Pacific Blue Annexin V (Biolegend) was added to 

100 µl of the cell suspension. Samples were vortexed and incubated for 15 min at RT in the 

dark. 400 µl Annexin buffer was added to the samples before they were analysed via flow 

cytometry and the FACSCanto II as described above. 

VI.4.13. Enzyme-linked immunosorbent assay (ELISA) 

To measure the concentration of IL-8 in the supernatant of CD95L-Fc stimulated HeLa cells, 

the BD OptEIATM Human IL-8 Set (BD Biosciences) was used. Therefore, 6x104 cells were 

seeded per well in 24-well plates. Cells were treated with starvation medium (0.5 % FBS) 

containing CD95L-Fc concentrations as indicated for 24 h. Supernatants were collected, 

centrifuged for 5 min at 400 x g to get rid of dead cells and diluted 1:10 for further use. The 

ELISA was performed according to manufacturer´s instructions. In brief, 96-well plates were 

coated with capture antibody, blocked with assay diluent, standard and samples were added 

in duplicates, detection antibody was added, and enzyme reaction was applied. The plates 

were washed multiple times between the individual step using a multichannel pipette. The 

plates were finally analysed by absorbance measurement using the VICTOR3 1420 Multilable 

Reader and the Wallac 1420 WorkOut Data Analysis software. 

VI.4.14. Receptor expression staining 

HeLa cells were cultured in 6-well plates and harvested by trypsinisation. Cells were pelleted 

and resuspended in fresh medium. 2x105 cells were dissolved in 100 µl FACS buffer and 

incubated with 10 µg/ml of the respective primary antibodies (anti-CD95, anti-TRAIL-R1, and 

anti-TRAIL-R2) for 1 h at 4 °C. Next, cells were washed in FACS buffer and resuspended in 
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100 µl FACS buffer containing 1 µl of the secondary antibodies (anti-mouse IgGI-Biotin). 

Samples were incubated for 30 min at 4 °C and again washed in FACS buffer. Then, 100 µl 

FACS buffer containing 1 µl of the tertiary staining reagent (PE-Cy5 Streptavidin) was added 

to the cells and the samples were incubated for 30 min at 4 °C. Cells were again washed 

with FACS buffer, dissolved in 500 µl FACS buffer, and measurement was performed via 

flow cytometry and the FACSCanto II as described above. 

VI.4.15. Microarray analysis 

HeLa cells were seeded in 6-well plates and respective shRNA expression was induced by 

the addition of 0.5 µg/ml doxycycline for 72 h. In three independent experiments, cells were 

pre-starved for 4 h in starvation media followed by zVAD-fmk treatment (10 µM) for 1 h. 

Afterwards, cells were stimulated with 0.1 U/ml CD95L-Fc for 3 h. Total RNA from stimulated 

and control cells was isolated as described above. The following steps were kindly performed 

by the group of Carsten Sticht (ZMF, Mannheim). In brief, RNA was tested by capillary 

electrophoresis on an Agilent 2100 bioanalyzer (Agilent) and high quality was confirmed. 

Gene expression profiling was performed using arrays of human Hugene-2_0-st-type 

(Affymetrix) according to manufacturer´s instructions. Bioinformatic evaluations were done as 

previously described [155]. Significant regulated genes (adjusted p values (FDR) < 0.05) 

were considered by a log2 fold change > 1 compared to unstimulated control cells. The 

complete data set is available in the GEO database (http://www.ncbi.nlm.nih.gov/geo; GSE 

number: GSE75365) 

VI.4.16. Statistical analysis 

Statistical analysis was carried using GraphPad Prism 5. Statistical significance (p values) 

was analysed using paired Student´s t-test and assumed for p values < 0.05. 
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VII. Aims of the thesis 

The discovery of the extrinsic apoptosis pathway enabled new possibilities in the treatment of 

various diseases, including cancer. First clinical trials using death ligands to target malignant 

cells showed inauspicious results. It ruled out that primary cells are usually more sensitive to 

death stimulations than their malignant counterpart. Indeed, most tumour cells develop 

resistance mechanisms to undergo cell death induction by either extrinsic or intrinsic stimuli. 

Nevertheless, there is also evidence that death ligands promote tumour growth even if these 

cells are fully resistant to cell death. Furthermore, many autoimmune diseases have been 

linked to deregulations in the extrinsic signalling pathway. It is of high relevance to 

understand the molecular mechanism undergoing cell death induction by death ligands to 

generate potential therapies for patients.  

In the last years, many studies showed that the DISC is much more complex than previously 

thought. However, the processes regulating the diverse DISC signalling pathways are poorly 

understood. Especially caspase-10 remains to be a mystery in the DISC. Its function has 

solely been analysed by overexpression studies and it is still controversial if it can substitute 

for caspase-8. Its absence in rodents exacerbates research on it but may be highly important 

for the differences between species. 

 

Therefore, this thesis aims to address the following outstanding questions: 

 

• What is the general function of caspase-10 in DISC-induced cell death 

signalling and gene expression? 

 

• How are the three tandem DED proteins caspase-8, caspase-10, and cFLIP 

interconnected in propagating the signal downstream the death receptor? 

 

By utilising overexpression, knockdown, and knockout approaches in several human cell 

lines, this thesis examines the surprising function of caspase-10 in rewiring DISC signalling 

to NF-κB activation and cell survival. It will furthermore highlight the interplay between 

caspase-8 and its two regulators cFLIP and caspase-10 und will point out the importance of 

caspase-8 as a central element in DISC formation and stability. 

 



Results 

36 

VIII. Results 

VIII.1. Caspase-10 promotes CD95L-induced and spontaneous cell death 

upon overexpression 

To initially study the impact of caspase-10 on DISC-induced cell death signalling, stable 

HeLa cell lines were generated which constitutively overexpress caspase-10. Therefore, the 

isoforms ‘a’, ‘d’, and ‘c’ as well as the respective active site mutants (ASM; from ‘a’ and ‘d’) 

were cloned into a retroviral vector system. Thereby, caspase-10a ASM carried a cysteine to 

serine mutation at amino acid position 358 (C358S) and caspase-10d ASM a C401S 

mutation. Each construct was successfully overexpressed upon transduction (Figure 5A), but 

the overexpression of the long caspase-10 isoforms led to spontaneous cell death induction 

after 48-72 hours (Figure 5A, indicated by crosses). Interestingly, even the ASMs killed the 

cells and solely the short isoform ‘c’ did not alter cell survival when overexpressed.    

To avoid spontaneous cell death induction by the long isoforms of caspase-10, new stable 

cell lines were generated via lentiviral transduction. These cell lines allowed an inducible 

overexpression of the gene of interest by the addition of 4-hydroxytamoxifen (4-HT). As seen 

before, overexpression of the long isoforms induced spontaneous cell death independent 

from their enzymatic activity (data not shown). To circumvent this surprising toxicity, the 

induction of caspase-10 expression was adapted. Within four hours of 4-HT stimulation, 

caspase-10a and its respective ASM were highly overexpressed in HeLa cells (Figure 5B). 

The inducible system showed a strong leakiness and led to a drastic caspase-10 expression 

even if the cells were not treated with 4-HT (Figure 5B). Based on the strong overexpression 

and the leakiness of the system, endogenous caspase-10 expression could only be detected 

weakly (Figure 5B). However, overexpression of caspase-10a resulted in a sensitisation to 

CD95L stimulation which was fully blocked by the expression of the ASM (Figure 5C). 

Thereby, caspase-10 promoted DISC-induced cell death only when protein expression was 

further up-regulated by the addition of 4-HT. Cell death induction was so strong that the pan-

caspase inhibitor zVAD-fmk failed to completely block it. Although caspase-10 was strongly 

overexpressed solely by the leakiness of the vector system, cell death response was 

unchanged under these conditions (compare Figure 5B and C). Figure 5D illustrates that the 

overexpression was appropriately adapted to exclude any spontaneous cell death induced by 

caspase-10. 

These data confirm the previously observed function of caspase-10 as an initiator caspase in 

DISC-mediated cell death signalling. However, we strongly wondered that caspase-10 has to 

be highly overexpressed to promote cell death and that the overexpression caused by the 

leakiness had no effect on cell death response.  
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VIII.2. Caspase-10 inhibits death receptor-induced cell death 

As the overexpression of caspase-10 might drastically derail the stoichiometry of the DISC 

and potentially leads to artificial results, the impact of caspase-10 on DISC signalling was 

next analysed by utilising knockdown approaches. Therefore, caspase-10, caspase-8, or the 

combination of both were knocked down by siRNA in HeLa cells and analysed for their 

Figure 5 Caspase-10 overexpression promotes CD95L-induced apoptosis 
A HeLa cells were transduced with retroviruses containing different caspase-10 (C10) 
isoforms and their respective active site mutants (ASM) in pCFG5. 24 h after transduction, 
cells were tested by Western blotting for the constitutive overexpression of the respective 
caspase-10 variants. Crosses mark the cell lines which spontaneously died after 
transduction. B HeLa cells inducible overexpressing either caspase-10a (C10a), its 
respective active site mutant (C10a ASM), or the empty vector were incubated for 4 h with 
100 nM 4-hydroxytamoxifen (4-HT). The overexpression and the leakiness of the inducible 
vector system were analysed by Western Blotting. C Triplicates of 4-HT treated cells from B 
were additionally incubated with 10 µM zVAD-fmk (zVAD) for 1 h and stimulated with 2 U/ml 
CD95L-Fc for 80 min. Cell viability was analysed by crystal violet staining. D Cell viability of 
4-HT treated cells from C were analysed in respect to untreated cells. Shown are mean 
values ± SEM of three independent experiments. Significance levels (p values) were 
measured by Student´s t-test (n.s.: not significant). 
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impact on CD95L stimulation (Figure 6A). The single and combined knockdown of caspase-8 

fully prevented cells from cell death, but loss of caspase-10 surprisingly resulted in an 

enhanced cell death response. The observed effect was reproducibly investigated in 

independent experiments and was fully apoptotic as zVAD-fmk fully prevented from cell 

death, whereas the blockade of RIPK1 by Necrostatin-1 (Nec) had no impact on the 

phenotype (Figure 6A). 
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To rule out if the sensitisation to death ligands by loss of caspase-10 is a general 

phenomenon, we next performed the same experiments as described above but induced cell 

death by stimulating the TRAIL-receptors (Figure 6B). As observed before, caspase-10 

inhibited death receptor-induced cell death. The mode of cell death was again caspase-8-

mediated as the single knockdown of caspase-8 and the combined knockdown of caspase-8 

and -10 fully prevented from death induction (Figure 6B). To exclude any off-target effect of 

the used siRNA, we next knocked down caspase-10 using four different siRNAs. Whenever 

caspase-10 was lost by RNA interference, cells showed an enhanced response to CD95L 

(Figure 6C). Thus, the observed sensitisation to death ligands following knockdown of 

caspase-10 is exclusively driven by the loss of caspase-10. 

Furthermore, stable HeLa cell lines were generated which inducible expressed a shRNA 

against caspase-10 by the addition of doxycycline. These cells additionally confirmed the 

inhibitory function of caspase-10 in DISC-induced cell death signalling in a time-dependent 

CD95L stimulation (Figure 7A). As a next consequence, we analysed the function of 

caspase-10 in extrinsic apoptosis in other cell death assays to exclude any assay-specific 

effects. Therefore, the externalisation of phosphatidylserine upon apoptosis induction was 

investigated by annexin V staining after the knockdown of caspase-10 by shRNA and CD95L 

stimulation (Figure 7B). In addition, specific cell death was measured by analysing DNA 

fragmentation by PI staining following loss of caspase-10 and death ligand stimulation 

(Figure 7C). Independent from the applied apoptosis assay, knockdown of caspase-10 

sensitised to death receptor-induced cell death under all conditions. 

 

 

Figure 6 Caspase-10 protects from death ligand-induced cell death 
A HeLa cells were treated with caspase-10 (siC10), caspase-8 (siC8), the combination of 
both, or control siRNA (siCTRL) for 72 h. Triplicates were pre-incubated with 10 µM zVAD-
fmk (zVAD) or 50 µM Necrostatin-1 (Nec) or the combination of both for 1 h followed by 
stimulation of 1 U/ml CD95L-Fc for 16-20 h. Knockdown efficiency was controlled by Western 
blotting. B HeLa cells were treated as described above and stimulated with 1 µg/ml 
HF-TRAIL for 16-20 h. Cell viability was analysed by crystal violet staining. C HeLa cells 
were treated with four different siRNAs against caspase-10 (siC10 #1-4) or control siRNA 
(siCTRL) for 72 h. Triplicates were pre-incubated with 10 µM zVAD for 1 h followed by 
stimulation of 1 U/ml CD95L-Fc for 16-20 h. Cell viability was analysed by crystal violet 
staining. Knockdown efficiency was controlled by Western blotting. Shown are mean values 
± SEM of three independent experiments. Significance levels (p values) were measured by 
Student´s t-test. Asterisks indicate the p values in comparison to the respective reference 
(* p<0.05; ** p<0.01). 
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Figure 7 shRNA-mediated knockdown of caspase-10 confirms its anti-apoptotic role in 
DISC-signalling   
HeLa cells inducible expressing a shRNA against caspase-10 (shC10) or control shRNA 
(shCTRL) were treated with 0.5 µg/ml doxycycline for 72 h. A Cells were stimulated in 
triplicates for the indicated times with 2 U/ml CD95L-Fc. Cell viability was analysed by crystal 
violet staining. Knockdown efficiency was controlled by Western blotting. B Cells were 
stimulated with 1 U/ml CD95L-Fc for 3 h. Annexin V-Pacific Blue positive cells were 
measured using flow cytometry. C Cells were stimulated with the indicated CD95L-Fc 
concentrations for 7 h. DNA degradation was quantified by flow cytometry using PI staining 
for sub G1 populations. Shown are mean values ± SEM of at least three independent 
experiments. Significance levels (p values) were measured by Student´s t-test. 
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The increased sensitisation to the death ligands was not caused by a caspase-10 

knockdown-induced alteration in the expression pattern of the death receptors. Following 

knockdown of caspase-10, receptor surface expression pattern of the CD95, TRAIL-R1, as 

well as TRAIL-R2 death receptors were unaltered in HeLa cells (Figure 8).  

 

 

 

 

Taken together, our data demonstrate that caspase-10 is an inhibitor of death receptor-

mediated cell death signalling in HeLa cells. Cell death is thereby exclusively mediated by 

caspase-8 and independent from other cell death modes. 

VIII.2.1. High expression of caspase-10 abolishes its anti-apoptotic features 

Thus far, the impact of caspase-10 on DISC signalling has only been studied in HeLa cells. 

To spread our analysis on other cellular systems, we screened other cell lines (diverse 

melanoma (SK-Mel, IGR, WK, and MC), B-cell and T-cell lymphoma (BJAB and Jurkat), and 

spontaneously transformed keratinocytes (HaCaT)) for their impact of caspase-10 on death 

receptor stimulation. As previously observed in HeLa cells, SK-Mel melanoma cells were 

significantly sensitised after the knockdown of caspase-10 against CD95L stimulation 

(Figure 9A). In sum, caspase-10 protected from CD95L-induced cell death in 3 out of 8 cell 

lines that we screened (data not shown for the other cell line). Interestingly, the cell lines 

which were not sensitised to CD95L by the knockdown of caspase-10 were also not 

protected against the death ligand. These cells were unaffected by the depletion of 

caspase-10 in respect to cell death response (exemplarily shown for MC (Figure 9B) and 

HaCaT (Figure 9C) cells). Remarkably, all cell lines which were unaffected by the knockdown 

of caspase-10 showed a much higher expression pattern of caspase-10 compared to the cell 

lines that were sensitised upon death ligand stimulation (exemplarily shown for HaCaT/MC 

Figure 8 Death receptor expression is unchanged after knockdown of caspase-10 
HeLa cells were treated with caspase-10 (siC10) or control siRNA (siCTRL) for 72 h and 
analysed for CD95, TRAIL-R1, and TRAIL-R2 surface expression by flow cytometry. Isotype 
control staining was used to verify the specificity of the antibodies.  
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vs. HeLa/SK-Mel in Figure 9D). Noticeable, protein levels remaining after successful 

knockdown of caspase-10 in HaCaT or MC cells were comparable to endogenous protein 

levels in HeLa or SK-Mel cells (Figure 9D).  

 

 

 

 

 

 

 

 

 

Figure 9 Caspase-10 expression levels predict its anti-apoptotic function 
A SK-Mel cells were treated with caspase-10 siRNA (siC10) or control siRNA (siCTRL) for 
72 h. Triplicates were pre-incubated with 10 µM zVAD-fmk (zVAD) for 1 h followed by 
stimulation of 0.5 U/ml CD95L-Fc for 16-20 h. Caspase-10 knockdown efficiency was 
analysed by Western blotting. Cell viability was analysed by crystal violet staining. B 
Triplicates of siRNA treated MC cells as outlined in A were pre-incubated for 1 h with 10 µM 
zVAD and stimulated for 16-20 h with 0.5 U/ml CD95L-Fc. Cell viability was analysed by 
crystal violet staining. C HaCaT cells were treated with siRNA as described in A. Triplicates 
were pre-incubated with 10 µM zVAD for 1 h followed by stimulation of 0.1 U/ml CD95L-Fc 
for 16-20 h. Cell viability was analysed by crystal violet staining. D Different cell lines were 
treated with siC10 or siCTRL for 72 h. Knockdown efficiency and proteins involved in DISC 
signalling were analysed by Western blotting. Cell lines with high expression of caspase-10 
(HaCaT and MC) were compared to low expressing cell lines (HeLa and SK-Mel). Shown are 
mean values ± SEM of three independent experiments. Significance levels (p values) were 
measured by Student´s t-test (n.s.: not significant).  
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This stoichiometry of caspase-10 between the different cell lines was also reflected in the 

DISC. The CD95-DISC was precipitated in HaCaT cells following knockdown of caspase-10 

and compared to the DISC of parental HeLa cells (Figure 10). When caspase-10 was 

depleted by shRNA in HaCaT cells by the addition of doxycycline, the levels of DISC-

associated caspase-10 were comparable to endogenous levels in HeLa cells. This finding 

indicates that caspase-10 is functional relevant in DISC signalling and led us to the initial 

hypothesis that the remaining caspase-10 levels after the knockdown in HaCaT or MC cells 

might be sufficient to protect from the observed phenotype in HeLa and SK-Mel cells. 

 

 

 

 

 

 

Figure 10 Caspase-10 is functional relevant for death receptor signalling  
Caspase-10 (shC10) or control (shCTRL) shRNA expression was induced in HaCaT cells by 
the addition of 0.5 µg/ml doxycycline for 72 h. Cells were stimulated with 1 U/ml CD95L-Fc 
for 40 min and compared to equally treated HeLa cells. CD95 was immunoprecipitated from 
total cell lysates (TL) and coprecipitated proteins were analysed by Western blotting. The 
asterisks mark unspecific bands. 
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VIII.2.2. HaCaT cells counter-regulate loss of caspase-10 by up-regulation of cFLIP 

However, the above described experiment represented solely a snapshot into the 

stoichiometry of the DISC. A closer look into the formation of the DISC in HaCaT cells 

revealed a surprising, reciprocal counter regulation of cFLIP after inducible knockdown of 

caspase-10 (compare cFLIP expression in total lysate (TL) in Figure 11A). These changes in 

cFLIP expression were also reflected in the DISC. When we precipitated the CD95-DISC in a 

time-dependent CD95L stimulation, DISC-associated cFLIP(p43) fragments were 

reproducibly enriched at the late time points after the knockdown of caspase-10 

(Figure 11A). In contrast, FADD as well as caspase-8 association with the receptor was 

unchanged. A time kinetic to induce the expression of the shRNA against caspase-10 

showed that cFLIP is up-regulated in response to loss of caspase-10 in HaCaT cells 

(Figure 11B). These data indicate that caspase-10 and cFLIP have a critical and synergistic 

protective function in DISC-induced cell death signalling. To address this assumption, the 

knockdown of caspase-10 and cFLIP was combined in HaCaT cells and analysed in respect 

to CD95L stimulation (Figure 11C). The siRNA-mediated knockdown of caspase-10 had 

again no influence on cell death (Figure 11C, bright red columns). As HaCaT cells express 

very low levels of cFLIP (compare Figure 9D), depletion of cFLIP slightly sensitised to CD95L 

stimulation (Figure 11C, black columns). Remarkably, combined knockdown of both cFLIP 

and caspase-10 could further sensitise to death receptor stimulation than the single 

knockdown (Figure 11C, compare dark red to black columns at a concentration of 0.5 U/ml 

CD95L). 

Taken together, in contrast to previous thoughts, caspase-10 is a negative regulator of death 

receptor-induced cell death. Independent from the applied assay or used cell line, 

caspase-10 never showed any pro-apoptotic features in death receptor-mediated cell death 

induction. As exemplified by HaCaT cells, caspase-10 and cFLIP are able to cooperate their 

function to protect from caspase-8-mediated cell death. 

 

 

 

 

 

 

 



Results 

45 

 

 

 

 

 

 

 

 

 

 

Figure 11 cFLIP compensates for caspase-10 in HaCaT cells 
A Caspase-10 (shC10) or control shRNA (shCTRL) expression was induced in HaCaT cells 
by the addition of 0.5 µg/ml doxycycline for 72 h. Cells were stimulated with 1 U/ml CD95L-
Fc for the indicated time points. CD95 was immunoprecipitated from total cell lysates (TL) 
and coprecipitated proteins were analysed by Western blotting. The asterisk marks an 
unspecific band. B Respective shRNA expression was induced in HaCaT cells by the 
addition of 0.5 µg/ml doxycycline (Doxy.) for the indicated time points. DISC-related proteins 
were analysed by Western blotting. C HaCaT cells were treated with caspase-10 (siC10), 
cFLIP (sicFLIP), the combination of both, or control (siCTRL) siRNA for 48 h. Cells were 
pre-incubated in triplicates with 10 µM zVAD-fmk (zVAD) for 1 h followed by stimulation with 
the indicated concentrations of CD95L-Fc for 4 h. Cell viability was analysed by crystal violet 
staining. Knockdown efficiency was controlled by Western blotting. Shown are mean values 
± SEM of three independent experiments. Significance level (p value) was calculated by 
Student´s t-test. 
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VIII.3. Caspase-10 blocks caspase-8 recruitment to and activation in the 

DISC 

The above presented functional data show that caspase-10 does not favour pro-apoptotic 

DISC signalling. To analyse weather caspase-10 modulates the assembly of the DISC and 

therefore cell death outcome, the CD95-DISC was precipitated in a time-dependent kinetic in 

the presence and absence of caspase-10 in HeLa cells (Figure 12A). Whenever caspase-10 

was knocked down by shRNA, full-length and p43/41 caspase-8 fragments were enriched in 

the DISC. In contrast, association of FADD and cFLIP to the complex was unaffected by the 

depletion of caspase-10. The enhanced sensitisation to death ligands following knockdown 

of caspase-10 was also confirmed by increased processing of caspase-8. When caspase-10 

was depleted, a higher processing rate of caspase-8 to the p43/41 fragments was detected 

(Figure 12A; total lysate). To demonstrate the significance of the enhanced caspase-8 

recruitment to the DISC in the absence of caspase-10, the relative ratio of co-precipitated 

full-length and p43/41 caspase-8 in the DISC was quantified in respect to precipitated CD95 

from three independent experiments (Figure 12B, left panel). The quantification showed a 

significant enrichment of caspase-8 in the DISC at early time points which was caught up in 

control cells over time. Furthermore, FADD and cFLIP(p43) association to the DISC proved 

to be unaffected by knockdown of caspase-10 (Figure 12B, middle and right panel). Of note, 

a slight up-regulation of cFLIP after the knockdown of caspase-10 in HeLa cells was 

detectable in some of the experiments (compare total lysates in Figure 12A). However, this 

up-regulation did not increase the association of cFLIP to the DISC or alter the increased 

recruitment of caspase-8. These findings even further strengthen the inhibitory function of 

caspase-10 in death receptor signalling. 

 

VIII.4. Caspase-10 and cFLIP independently block the association of 

caspase-8 to the DISC 

The data collected in HaCaT cells (Figure 11) revealed a close correlation of caspase-10 and 

cFLIP in cooperating the inhibition of caspase-8-mediated cell death signalling. However, it 

has to be mentioned that the expression of cFLIP in HaCaT cells is very low (Figure 9). To 

address the interplay between cFLIP and caspase-10 in more detail, the analyses were 

therefore extended to cell lines with higher cFLIP expression levels. Thus, caspase-10 and 

cFLIP were knocked down by siRNA in HeLa cells and analysed for their impact on CD95L-

induced cell death (Figure 13A). Knockdown of caspase-10 again confirmed its anti-apoptotic 

characteristics (Figure 13A, bright red columns), but the effect was much weaker compared 
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to the depletion of cFLIP (Figure 13A, black columns). Importantly and alike the data in 

HaCaT cells, the combined knockdown of cFLIP and caspase-10 (Figure 13A, dark red 

columns) resulted in a further sensitisation to CD95L as the cFLIP knockdown alone. 
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To explore the impact of cFLIP and caspase-10 in modulating the assembly of the DISC, the 

short half-life of cFLIP protein was utilised. cFLIP is known to be rapidly degraded when 

protein translation is blocked [82]. Therefore, HeLa cells were treated for up to five hours with 

the ribosomal inhibitor cycloheximide (CHX) to block protein translation and analysed for the 

stability of DISC-associated proteins (Figure 13B). Whereas caspase-10, caspase-8, and 

FADD levels were unaffected, cFLIP was substantially degraded within two hours of CHX 

treatment. This mimicked cFLIP knockdown confirmed the siRNA data shown in figure 13A. 

When caspase-10 knockdown was combined with CHX treatment (Figure 13C, dark red 

columns), cell death response to CD95L stimulation was significantly increased compared to 

CHX treatment alone (Figure 13C, black columns). Of note, CHX treatment has obviously 

further effects on cell death signalling than solely the degradation of cFLIP. When cFLIP 

knockdown was combined with CHX, sensitisation to CD95L was further increased as 

compared to either the single knockdown or CHX treatment alone (Figure 13D). 

Being aware of its artificial characteristics, we reasoned that the impact of CHX on the 

composition of the DISC is mainly limited to its capacity to degrade cFLIP. As a next step, 

the formation of the CD95-DISC was analysed after the knockdown of caspase-10 by shRNA 

in combination with CHX treatment (Figure 14). When cFLIP was degraded by CHX, 

caspase-8 as well as caspase-10 recruitment to the DISC was enhanced (Figure 14, 

lanes 1-8). Knockdown of caspase-10 once more confirmed the increased recruitment of 

caspase-8 to the complex (Figure 14, lanes 9-12). Importantly, the combination of CHX 

treatment and caspase-10 knockdown resulted in a more rapid enrichment as well as 

cleavage of caspase-8 in the DISC (Figure 14, lanes 13-16).  

Taken together, caspase-10 has an anti-apoptotic function in death receptor-induced cell 

death signalling. Our data demonstrate that caspase-10 blocks the recruitment and thereby 

activation of caspase-8 in the DISC. Furthermore, caspase-10 and cFLIP act independent in 

inhibiting the extrinsic apoptotic pathway. Both proteins interfere with the recruitment of 

caspase-8 to the DISC and thereby block its activation for further downstream signalling. 

Figure 12 Caspase-10 represses caspase-8 recruitment to the DISC 
A Control (shCTRL) or caspase-10 shRNA (shC10) expression was induced for 72 h by 
0.5 µg/ml doxycycline in HeLa cells. Cells were then incubated for the indicated time points 
with 2 U/ml CD95L-Fc. CD95 was immunoprecipitated from total cell lysates (TL) and DISC 
associated proteins were analysed for DISC recruitment by Western blotting. The asterisks 
mark unspecific bands. B Relative densities of coprecipitated caspase-8 (full length a/b and 
p43/41), cFLIP p43, and FADD were quantified and calculated in respect to precipitated 
CD95 in the CD95L time kinetic of the above described experiment. Shown are mean 
values ± SEM of three independent experiments. Significance level (p value) was calculated 
by Student´s t-test (n.s.: not significant).  
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Figure 13 cFLIP and caspase-10 independently inhibit DISC-signalling 
A HeLa cells were either treated with control (siCTRL), caspase-10 (siC10), cFLIP (sicFLIP), 
or the combination of both siRNAs for 48 h. Cells were pre-stimulated in triplicates with 
10 µM zVAD-fmk (zVAD) for 1 h followed by stimulation with the indicated concentrations of 
CD95L-Fc for 4 h. Knockdown efficiency was controlled by Western blotting. B HeLa cells 
(shCTRL as outlined in C) were treated with 5 µg/ml cycloheximide (CHX) for the indicated 
time points. Cell lysates were analysed for DISC proteins by Western blotting. C Caspase-10 
(shC10) or control (shCTRL) shRNA expression was induced for 72 h in HeLa cells by the 
addition of 0.5 µg/ml doxycycline. Cells were pre-stimulated in triplicates with 5 µg/ml CHX 
for 2 h followed by stimulation with the indicated concentrations of CD95L-Fc for 4 h. D
shCTRL-expressing HeLa cells were treated with either siCTRL or sicFLIP for 24 h.
Triplicates of cells were pre-stimulated for 2 h with 5 µg/ml CHX followed by stimulation with 
the indicated concentrations of CD95L-Fc for 4 h. Knockdown efficiency was controlled by 
Western blotting. Cell viability was measured using crystal violet staining. Shown are mean 
values ± SEM of three independent experiments. Significance level (p value) was measured 
by Student´s t-test. Asterisks indicate the p values in comparison to the respective reference 
(* p<0.05; ** p<0.01). 
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VIII.5. Caspase-8 is indispensable for the assembly and stability of the 

CD95-DISC 

Caspase-10 and cFLIP independently cooperate in inhibiting caspase-8 activation. However, 

it still remains elusive if caspase-10 is generally able to substitute for caspase-8. To address 

this question and to investigate how caspase-10 and cFLIP behave in the DISC in the 

absence of caspase-8, caspase-8 knockout HeLa cells were generated using CRISPR-Cas9-

mediated recombination. Therefore, two independent cell clones (C8 CRISPR) were 

generated using two different gRNA sequences. Both cell lines fully lacked caspase-8 

expression as exemplified by Western blotting and were resistant against CD95L stimulation 

Figure 14 Caspase-10 and cFLIP compete with caspase-8 for DISC recruitment 
Control (shCTRL) or caspase-10 (shC10) shRNA expression was induced in HeLa cells by 
the addition of 0.5 µg/ml doxycycline. Cells were pre-stimulated for 2 h with 
5 µg/ml cycloheximide (CHX) followed by stimulation with 2 U/ml CD95L-Fc for the indicated 
time points. CD95 was immunoprecipitated from total cell lysates (TL) and coprecipitated 
proteins were analysed by Western blotting.  
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(Figure 15A). The inducible shRNA system for knockdown of caspase-10 was also 

introduced in one of the clones to analyse if any specific cell death can be related to 

caspase-10. Irrespective of the expression of caspase-10, caspase-8 knockout cells did not 

respond to CD95L stimulation (Figure 15B). Even if extremely high concentrations of the 

death ligand were applied, the cells fully survived in the absence of caspase-8 (Figure 15B, 

compare black and dark red columns). Of note, C8 CRISPR cells showed repressed cFLIP 

levels compared to parental HeLa cells (Figure 15B).  

 

 

 

 

 

 

 

 

Figure 15 CD95L-induced cell death depends on caspase-8 
A Caspase-8 deficient HeLa cell lines were generated using the CRISPR-Cas9 system with 
two different gRNAs targeting caspase-8. Parental HeLa cells as well as caspase-8 deficient 
cells (HeLa C8 CRISPR) were pre-stimulated with 10 µM zVAD-fmk (zVAD) for 1 h followed 
by stimulation with 1 U/ml CD95L-Fc for 16-20 h. Knockout efficiency was controlled by 
Western blotting. B Parental and caspase-8 deficient HeLa cells were treated for 72 h with 
0.5 µg/ml doxycycline to induce the expression of either control (shCTRL) or caspase-10 
(shC10) shRNA. Cells were pre-stimulated for 1 h with 10 µM zVAD followed by stimulation 
with the indicated concentrations of CD95L-Fc for 4 h. Knockdown efficiency of caspase-10, 
loss of cFLIP, as well as the depletion of caspase-8 were controlled by Western blotting. Cell 
viability was analysed in triplicates by crystal violet staining. Shown are mean values ± SEM 
of three independent experiments. Significance level (p value) was measured by Student´s 
t-test. Asterisks indicate the p values in comparison to the respective reference (** p<0.01). 
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Next, the impact of caspase-10 and cFLIP in DISC formation was studied in the absence of 

caspase-8. Therefore, assembly of the CD95-DISC was compared between parental and C8 

CRISPR HeLa cells in a time-dependent CD95L stimulation. Surprisingly, this experiment 

revealed that the DISC did not form in the absence of caspase-8 (Figure 16). Whereas CD95 

was effectively precipitated, caspase-10 as well as cFLIP were not associated with the 

CD95-DISC in caspase-8 knockout cells. Strikingly, even FADD did not assemble with the 

receptor. Prolonged exposures of the FADD immunoblots were needed to detect a weak 

interaction between FADD and the DISC in the absence of caspase-8 (data not shown). This 

striking observation indicates that caspase-8 is first indispensable for the formation of the 

DISC and second necessary for its stability. 

 

 

 

 

 

 

Figure 16 CD95-DISC does not form in the absence of caspase-8 
CD95-DISC formation was analysed in parental and caspase-8 deficient (C8 CRISPR) HeLa 
cells. CD95 was immunoprecipitated from total cell lysates (TL) after stimulation with 2 U/ml 
CD95L-Fc for the indicated time points. DISC-associated proteins were analysed by Western 
blotting. The asterisk marks an unspecific band. 
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However, for the generation of knockout cell lines via the CRISPR-Cas9 system, cells 

undergo clonal selection which potentially heavily alters the characteristics of the newly 

generated cell line compared to the parental origin. To exclude that this selection caused any 

artefacts which resulted in the inability to form the DISC, caspase-8a and its respective ASM 

were reconstituted in the C8 CRISPR cells by inducible overexpression. To generate an 

enzymatic inactive caspase-8 construct, the cysteine at amino acid position 360 was mutated 

to alanine (C360A). In contrast to the expression of the wild-type protein, the generated cell 

lines showed a high leakiness in the expression of the caspase-8a ASM (Figure 17A). 

However, we were unable to reach endogenous protein levels of caspase-8 by the re-

expression without inducing cell death solely by the reconstitution of caspase-8a (data not 

shown). In contrast to wild-type caspase-8a, the ASM could be reconstituted to reach 

endogenous protein levels (Figure 17A). Importantly, even if the re-expression of caspase-8a 

was weak, it conferred sensitivity to CD95L stimulation (Figure 17A; dark grey columns). In 

addition, expression of the ASM fully prevented from cell death induction by CD95L. As a 

next step, formation of the DISC was analysed after reconstitution of caspase-8 in the C8 

CRISPR cells. Intriguingly, reconstitution of caspase-8a protein restored the recruitment of 

caspase-10, cFLIP, and, importantly, FADD in the CD95-DISC (Figure 17B). Of note, the 

association of FADD with the receptor was diminished after the reconstitution compared to 

receptor-bound FADD levels in parental HeLa cells (Figure 17B, compare lane 3 with 9 and 

12). However, the data show that the formation of the DISC occurred independent from the 

enzymatic activity of caspase-8. Interestingly, the ASM of caspase-8 fully protected the 

cleavage of caspase-10, cFLIP, and, of course, caspase-8 itself (Figure 17B, lanes 11 and 

12). Indeed, the weak expression of enzymatically active caspase-8a resulted in a weaker 

association of caspase-10 and cFLIP with the complex (Figure 17B, lanes 7-9). However, 

these data strongly demonstrate that the formation and stability of the CD95-DISC highly 

depends on caspase-8. Caspase-8 has to be placed upstream of its two regulators, 

caspase-10 and cFLIP, in the DISC to stabilise the association of FADD with the receptor. 

FADD and caspase-8 represent a scaffold in the DISC which can be further regulated by 

caspase-10 as well as by cFLIP.  

 

 

 



Results 

54 

 

 

 

 

 

 

Figure 17 The scaffold function of caspase-8 is indispensable for DISC stability and 
recruitment of DED proteins 
Caspase-8a (C8a) and its respective active site mutant (C8a ASM) were reconstituted in 
caspase-8 deficient (C8 CRISPR) HeLa cells. A Parental and C8 CRISPR HeLa cells either 
overexpressing the empty vector (CTRL), C8a, or C8a ASM were treated with 10 nM 
4-hydroxytamoxifen (4-HT) for 6 h to induce the expression of the respective constructs. 
Cells were pre-stimulated with 10 µM zVAD-fmk for 1 h followed by stimulation with 5 U/ml 
CD95L-Fc for 3 h. Cell viability was analysed in triplicates by crystal violet staining. Shown 
are mean values ± SEM of three independent experiments. Re-expression of C8a and 
C8a ASM and the leakiness of the inducible system were analysed by Western blotting.  
 
                                                                                               (legend continued on next page) 
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B As described in A, caspase-8a was reconstituted in caspase-8 deficient HeLa cells for 6 h 
by 4-HT. Cell lines were stimulated with 2 U/ml CD95L-Fc for the indicated time points. 
CD95-DISC was immunoprecipitated from total cell lysates (TL) and analysed for DISC-
associated proteins. Asterisks mark unspecific bands. Significance level (p value) was 
measured by Student´s t-test. Asterisks indicate the p values in comparison to the respective 
reference (** p<0.01; *** p<0.001).   
 

VIII.5.1. Caspase-8 deficient Jurkat cells express a truncated form of caspase-8 

These finding is in contrast to a previous study in which Sprick and colleagues showed that 

caspase-10 is recruited to the DISC in the absence of caspase-8 [146]. Based on these 

controversial results, we aimed to compare our caspase-8 knockout HeLa cells to their 

cellular model. They used caspase-8 deficient Jurkat JB6 cell lines in their study 

which were generated by the use of mutagens [156]. To compare both cell lines, the 

expression of caspase-8 between both cell lines was analysed. Therefore, caspase-8 was 

detected by immunoblotting using two specific antibodies either directed against the C- or the 

N-terminus of caspase-8 (Figure 18A). Interestingly, Jurkat cells which were supposed to be 

caspase-8 deficient expressed a truncated version of caspase-8 that could be detected with 

both antibodies. Indeed, expression of the truncated form was much weaker compared to 

endogenous protein levels in the control cells. To prove if this truncated form of caspase-8 is 

functional and might explain the controversial results, the CD95-DISC from caspase-8 

knockout HeLa was compared to caspase-8 deficient Jurkat cells. As hypothesised, the 

truncated form of caspase-8 was recruited to the DISC in Jurkat cells (Figure 18B). 

Furthermore, full-length caspase-10 as well as weak levels of cFLIPL were associated with 

the complex. Of note, caspase-10 expression in Jurkat cells is much higher compared to 

HeLa cells and we were unable to detect caspase-10 in the DISC in HeLa when loaded next 

to Jurkat. However, Jurkat cells also showed a repression in the association of FADD with 

the receptor, but these cells also diminished their expression of CD95 (Figure 18B, total 

lysate). Therefore, the amount of precipitated complex is much weaker in caspase-8 deficient 

Jurkat cells and does not allow any comparison to the control cells.  

Summing up, this experiment shows that Jurkat cells used in the studies from Sprick and 

colleagues are not deficient in caspase-8 as previously described. These cells express a 

truncated form of caspase-8 which is able to fulfil the scaffold function of caspase-8 in the 

DISC to recruit other proteins into the complex. The wrong assumption of caspase-8 

deficiency led to false positive results regarding DISC formation in the absence of caspase-8. 

These cells have further deregulations in apoptosis-relevant genes as exemplified for CD95 

and thus have to be critically considered as a suitable tool to study caspase-8-mediated cell 

death. 
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VIII.6. Caspase-10 promotes CD95L-mediated gene induction 

Thus far, the impact of caspase-10 in death receptor-induced cell death signalling has been 

explored. Even if the data strongly reveal a regulatory instead of a pro-apoptotic function of 

caspase-10 in the DISC, it remains to be analysed which function the enzymatic activity of 

caspase-10 has in this process. We hypothesised that caspase-10 might have an additional 

function in DISC signalling which could be related to the recently discovered gene-inductive 

properties exerted by CD95 stimulation [97], [132], [134]. To prove the hypothesis, the impact 

of caspase-10 on death receptor-mediated gene induction was characterised by microarray 

analysis in HeLa cells. Therefore, cells were stimulated with CD95L and significant up-

regulated genes were investigated that had a log2 fold change higher than 1 upon 

stimulation. A typical pattern of NF-κB-induced cytokines such as TNF, interleukins, different 

chemokines, and others were detected to be induced after CD95L treatment (Table 12). 

Interestingly, a subset of these genes were partially induced to lesser extend when 

caspase-10 was knocked down (compare log2 fold changes from shCTRL and shC10 in 

Table 12).  

To further verify these data, selected genes were analysed by alternative methods at the 

mRNA and protein level. Interleukin-8 (IL-8) is a typical target of NF-κB [157], [158] and was 

therefore studied in detail. It was found that HeLa cells secreted high levels of IL-8 following 

CD95L stimulation (Figure 19A, left panel). Confirming the microarray data at the protein 

level, IL-8 secretion upon death receptor stimulation was drastically diminished after the 

knockdown of caspase-10 (Figure 19A, left panel). The overall sensitisation to the death 

ligand was thereby still detectable (Figure 19A, right panel). In addition, specific analysis on 

the mRNA induction of IL-8 upon CD95L treatment by qPCR confirmed the microarray 

results, too. After the knockdown of caspase-10, less IL-8 mRNA was expressed compared 

to control cells (Figure 19B). Interestingly, when caspase activity was blocked by zVAD-fmk, 

gene induction following CD95L stimulation was highly increased compared to death ligand 

treatment alone (Figure 19B). However, caspase-10 promoted IL-8 induction independent of 

Figure 18 Caspase-8 deficient Jurkat JB6 cells express a truncated and functional 
form of caspase-8  
A Parental and caspase-8 knockout (C8 ko) HeLa cells as well as caspase-8 deficient (C8 
def.) Jurkat JB6 and the respective control cells were analysed by Western blotting for their 
deficiency in caspase-8 expression. Therefore, C-terminal and N-terminal antibodies against 
caspase-8 were used for immunoblotting. B Caspase-8 knockout HeLa, caspase-8 deficient 
Jurkat, and the respective control (CTRL) cell lines were treated for 30 min with 2 U/ml 
CD95L-Fc. CD95-DISC was immunoprecipitated from total cell lysates (TL) and analysed for 
DISC-associated proteins. 
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the use of zVAD-fmk. Furthermore, CD95L-mediated induction of TNF mRNA was also 

analysed by qPCR and revealed to be decreased after the knockdown of caspase-10 

(Figure 19C). Therefore, the microarray data and the specific analysis on IL-8 and TNF 

demonstrate that caspase-10 promotes DISC-mediated gene induction. 

 

Table 12 CD95L-mediated gene induction analysis after the knockdown of caspase-10 by microarray 

Gene symbol log 2 fold change p-values Full name 

 shCTRL shC10 shCTRL shC10  

CSF1 1.00 0.99 0.005 0.005 colony stimulating factor 1 

IER5 1.01 0.69 0.002 0.020 immediate early response 5 

SOD2 1.02 1.11 < 0.001 < 0.001 superoxide dismutase 2, mitochondrial 

KDM6B 1.03 0.93 0.003 0.007 lysine (K)-specific demethylase 6B 

NR4A2 1.04 0.76 < 0.001 0.002 nuclear receptor subfamily 4, group A 

NUAK2 1.06 1.05 < 0.001 < 0.001 NUAK family, SNF1-like kinase, 2 

DUSP5 1.08 0.91 < 0.001 < 0.001 dual specificity phosphatase 5 

OLR1 1.12 1.21 < 0.001 < 0.001 oxidized low density lipoprotein  

TNF 1.16 0.61 0.001 0.031 tumor necrosis factor 

NFKBIE 1.16 0.79 < 0.001 0.002 nuclear factor of kappa light polypeptid 

ICAM1 1.36 1.26 0.001 0.001 intercellular adhesion molecule 1 

IRF1 1.46 1.45 < 0.001 < 0.001 interferon regulatory factor 1 

EFNA1 1.51 1.59 < 0.001 < 0.001 ephrin-A1 

JUN 1.60 1.12 < 0.001 0.001 jun proto-oncogene 

NFKBIA 1.77 1.46 < 0.001 < 0.001 nuclear factor of kappa light polypeptid 

IL1A 1.85 1.53 0.001 0.005 interleukin 1, alpha 

TNFAIP3 1.96 1.56 < 0.001 < 0.001 tumor necrosis factor, alpha-induced pro 

EGR1 1.99 1.17 < 0.001 < 0.001 early growth response 1 

CXCL3 2.03 1.76 0.012 0.022 chemokine (C-X-C motif) ligand 3 

IL6 2.07 1.71 < 0.001 0.001 interleukin 6 (interferon, beta 2) 

CCL2 2.09 1.80 0.015 0.031 chemokine (C-C motif) ligand 2 

PTX3 2.69 2.41 < 0.001 < 0.001 pentraxin 3, long 

IL8 4.57 4.17 < 0.001 < 0.001 interleukin 8 

CCL20 4.65 4.75 < 0.001 < 0.001 chemokine (C-C motif) ligand 20 

 

Previously, our group reported that cFLIP inhibits death receptor-mediated gene induction 

[134]. Thus, cFLIP was depleted by CHX in combination with a caspase-10 knockdown and 

analysed for IL-8 mRNA induction after CD95L treatment. Confirming the previous data, 

depletion of cFLIP by CHX resulted in a strong induction of IL-8 (Figure 19D). When 

combined with caspase-10 knockdown, IL-8 induction was diminished compared to CHX 

treatment alone. These data reveal that caspase-10 and cFLIP cooperate their function in 

regulating caspase-8-mediated cell death, but both proteins have differential abilities in gene 

induction. 
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Figure 19 Caspase-10 promotes CD95L-mediated gene induction 
HeLa cells expressing caspase-10 (shC10) or control (shCTRL) shRNA were treated 72 h 
with 0.5 µg/ml doxycycline (A-D). A Doublets were stimulated in media containing 0.5 % FBS 
with the indicated concentrations of CD95L-Fc for 24 h. Supernatants were analysed for 
secreted Interleukin-8 by ELISA. Cell viability was assayed using crystal violet staining. 
Shown are mean values ± SEM of three independent experiments. B HeLa ± shC10 cells 
were pre-starved for 4 h in media containing 0.5 % FBS followed by treatment with 10 µM 
zVAD-fmk (zVAD) for 1 h. Cells were stimulated with 0.1 U/ml CD95L-Fc for 3 h. RNA was 
isolated, reverse transcribed to cDNA and mRNA expression levels of Interleukin-8 were 
analysed by qPCR. C TNF mRNA expression from zVAD treated cells from B were analysed 
by qPCR. D HeLa ± shC10 cells were treated with 5 µg/ml cycloheximide (CHX) for 2 h 
during starvation and further treated as described in B. DISC-mediated gene-induction was 
analysed in the presence of zVAD. E Parental and caspase-8 deficient (C8 CRISPR) HeLa 
cells were treated with 10 nM 4-hydroxytamoxifen for 6 h in media containing 0.5 % FBS to 
induce the expression of either control plasmid, caspase-8a (C8a), or the respective active 
site mutant (C8a ASM). Cells were stimulated with zVAD and CD95L-Fc as described in B 
and analysed for Interleukin-8 mRNA expression by qPCR. Shown are mean values ± SEM 
of three independent experiments. 
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Next, the finding for the indispensable function of caspase-8 in placing upstream of 

caspase-10 and cFLIP in the DISC should be corroborated in light of DISC-mediated gene 

induction. Therefore, caspase-8a and its ASM were reconstituted in C8 CRISPR HeLa cells 

and analysed for their IL-8 mRNA induction upon CD95L treatment. Gene induction was fully 

absent in caspase-8 knockout cells, whereas reconstitution with caspase-8a allowed for IL-8 

induction (Figure 19E). Of note, IL-8 was induced to a lesser extent after the reconstitution 

compared to parental cells. Interestingly, re-expression of the caspase-8a ASM also induced 

IL-8 expression after CD95L treatment, albeit the induction was very weak (Figure 19E). 

As described for TNF-R-signalling, CD95L-mediated gene induction is driven by multiple 

protein kinases such as the IKK complex, JNK, or p38 MAP kinases [132], [159]. Cullen and 

colleagues found that NF-κB activation after DISC formation is mainly driven by IκBα. To 

characterise if caspase-10 promotes the activation of NF-κB through IκBα, the 

phosphorylation-dependent degradation of IκBα was analysed upon CD95L stimulation. 

When caspase-10 was knocked down by shRNA, DISC-induced degradation and 

phosphorylation of IκBα were delayed (Figure 20A). The quantification of relative IκBα 

degradation in control and caspase-10 knockdown cells from three independent experiments 

revealed the significance of this finding (Figure 20B). A20/TNFAIP3 inhibits TNF-mediated 

NF-κB activation and apoptosis and is potently induced upon NF-κB activation [160]. The 

microarray analysis showed that A20 gene induction is promoted by caspase-10 (Table 12). 

To confirm these data at the protein level, A20 expression was investigated under the same 

conditions as the IκBα degradation. In line with the microarray, CD95L-induced A20 

expression was promoted by caspase-10 when compared to unstimulated expression levels 

(Figure 20A). However, the phosphorylation status of JNK as well as p38 was additionally 

analysed under conditions of CD95L stimulation and caspase-10 knockdown. Both proteins 

were phosphorylated following DISC stimulation, but caspase-10 was not affecting this 

process (Figure 20C). The transcription factor c-Jun was also found to be differentially 

regulated by caspase-10 in the microarray screen (Table 12), but these data could not be 

confirmed at the protein level (Figure 20C).  

Taken together, caspase-10 is a negative regulator of caspase-8-mediated cell death, but it 

promotes DISC-mediated gene induction. Caspase-10 favours at least the degradation of 

IκBα resulting in enhanced activation of NF-κB and subsequent gene induction. 
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Figure 20 Caspase-10 promotes IκBα phosphorylation/degradation 
A HeLa cells expressing caspase-10 (shC10) or control (shCTRL) shRNA were treated 72 h 
with 0.5 µg/ml doxycycline. Cells were pre-starved for 4 h in media containing 0.5 % FBS 
followed by treatment with 10 µM zVAD-fmk for 1 h and stimulated with 0.1 U/ml CD95L-Fc 
for the indicated time points. Caspase-10 knockdown efficiency, A20 expression, and IκBα 
phosphorylation as well as degradation were analysed by Western blotting. B Relative 
degradation of IκBα in respect to untreated cells was quantified. Shown are mean values ± 
SEM of three independent experiments. C Cells treated as described in A were analysed by 
Western blotting for the phosphorylation of JNK (p-JNK) and p38 (p-p38) as well as the 
expression of c-Jun after the knockdown of caspase-10. Significance level (p value) was 
measured by Student´s t-test. 
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VIII.6.1. Caspase-10 prevents RIPK1 from phosphorylation at serine166 

The signalling pathway connecting DISC formation and IκBα degradation remains elusive. 

However, we analysed the impact of caspase-10 on DISC bound RIPK1 and on the soluble 

complex II which forms upon DISC stimulation. Therefore, the CD95-DISC was first 

precipitated following knockdown of caspase-10 and CD95L treatment and then a second 

immunoprecipitation enriching soluble caspase-8 was performed. The knockdown of 

caspase-10 had no influence on the association of RIPK1 to either the DISC or complex II 

(Figure 21). But strikingly, the phosphorylation of complex-bound RIPK1 at serine166 was 

drastically enriched in the absence of caspase-10. This effect was seen both in the DISC and 

in complex II (Figure 21, lanes 13-15 and 30-32). Indeed, as previously reported, the 

inhibition of caspase activity enhanced the assembly of RIPK1 to the complexes and solely 

cFLIPL was found within complex II [132], [133]. Furthermore, caspase-8 was again enriched 

in the DISC in the absence of caspase-10 at the early time point (Figure 21, compare lanes 

3+4 and 10+11), whereas FADD and cFLIP were unaffected by caspase-10 in the DISC as 

well as in complex II. However, this experiment showed for the first time, that caspase-10 

assembles with the soluble complex II upon CD95L stimulation (Figure 21, lanes 23-25). 

Summing up, in contrast to previous thoughts, caspase-10 negatively regulates caspase-8-

mediated cell death signalling. Caspase-10 and cFLIP act independently, but cooperate to 

block the recruitment of caspase-8 to the DISC and thereby delay its activation. Caspase-10 

and cFLIP do not compete with caspase-8 in binding via FADD to the receptor. Caspase-8 

represents the scaffold which is modulated by caspase-10 and cFLIP for further signalling. 

Caspase-10 rewires cell survival to NF-κB activation and gene induction by at least 

enhancing the degradation of IκBα. Even if the molecular mechanisms are elusive, 

caspase-10 enhances the dephosphorylation of RIPK1 in the DISC as well as in complex II. 
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Figure 21 Caspase-10 inhibits RIPK1 phosphorylation 
Caspase-10 (shC10) or control (shCTRL) shRNA expression was induced for 72 h in HeLa 
cells by the addition of 0.5 µg/ml doxycycline. Cells were pre-treated with 10 µM zVAD-fmk 
(zVAD) for 1 h followed by stimulation with 2 U/ml CD95L-Fc for the indicated time points. 
CD95-DISC was immunoprecipitated from total cell lysates. After the depletion of CD95, cell 
lysates were immunoprecipitated against caspase-8. Coprecipitated proteins bound either to 
the DISC or caspase-8 were analysed by Western blotting. Total lysates of untreated 
HeLa+shCTRL cells (input) served as loading control. The asterisk marks an unspecific 
band.   
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IX. Discussion 

 

IX.1. Caspase-10 inhibits DISC-mediated cell death signalling  

Research on the extrinsic apoptotic signalling pathway made substantial progress in the last 

years. Since its discovery, a lot of knowledge was gained about the DISC and its key players. 

However, studies analysing the DISC and its signalling pathways have mainly focussed on 

caspase-8 and its regulator cFLIP. In contrast, the function of caspase-10 is more 

controversial and less understood to date. Indeed, the absence of caspase-10 in rodents 

restricts the possibilities to study it; nevertheless, this thesis clearly demonstrates the 

requirement to study caspase-10 simultaneously with the other tandem DED proteins, 

caspase-8 and cFLIP.  

The above presented results reveal a tight connection in the genetic regulation of 

caspase-10, cFLIP, and caspase-8. Modifying the expression of one of these proteins by 

either knockdown or knockout approaches frequently resulted in the counter regulation of at 

least one of the other tandem DED proteins. For example, knockout of caspase-8 led to 

down-regulation of cFLIP in HeLa cells (Figure 15B, 16, 17B). This effect was additionally 

observed when caspase-8 was knocked down by siRNA as well as shRNA (data not shown). 

Indeed, it appears to be logical that cells respond with a reduction of cFLIP as a 

consequence to loss of caspase-8. When the caspase is absent, its inhibitors are redundant. 

Furthermore, HaCaT cells counter-regulated the loss of caspase-10 by an up-regulation of 

cFLIP (Figure 11A+B) and caspase-8 deficient Jurkat cells expressed less caspase-10, as 

previously shown by Sprick and colleagues [146] and in figure 18B. These phenomena occur 

remarkably fast during the cultivation of the cells and demonstrate how closely these proteins 

are interdependent and critical for cell survival. Interestingly, genes encoding for caspase-10, 

caspase-8, and cFLIP are located on the same chromosome 2q33-q34. It can solely be 

speculated if there is a correlation between the close interdependence and the genetic 

localisation of these proteins, but genetic studies revealed that co-regulated genes tend to be 

clustered within the same genetic neighbourhood [161].  

Moreover, the initial analysis on overexpressed caspase-10 shows that the approach to 

study DISC signalling might drastically determines the experimental results. In line with 

previous publications, caspase-10 seemed to be an pro-apoptotic initiator of CD95L-induced 

cell death (Figure 5) [139], [162]. When overexpressed, caspase-10 increases sensitivity to 

death receptor stimulation. However, only overexpression which was far apart from 

physiological expression levels promoted cell death (Figure 5). If caspase-10 was up-
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regulated by solely the leakiness of the inducible vector system, this, still strong, 

overexpression had no effect on cell death response to CD95L stimulation (Figure 5). As 

further studies using siRNA as well as shRNA-mediated knockdown of caspase-10 show, 

caspase-10 is an inhibitor rather than a promoter of DISC-induced cell death (Figure 6+7). 

Therefore, the experimental approach is absolutely critical to study the DISC and its 

components.  

An interesting finding is the spontaneous cell death induction upon overexpression of 

enzymatically inactive caspase-10 (indicated in Figure 5A). It is remarkable that a dead 

protease induces cell death whereas overexpression of caspase-10c has no effects on cell 

survival. DED proteins have been reported to assemble in DED filaments upon 

overexpression which induce apoptosis [163]. In contrast, only the overexpression of 

caspase-10c has been published to form filaments whereas other caspase-10 isoforms did 

not show this phenotype [164]. However, our observations cannot confirm this report as the 

overexpression of caspase-10c did not result in cell death induction (indicated in Figure 5A). 

Thus a potential formation of DED filaments by the overexpression of caspase-10a/d ASMs 

which might lead to cell death will not explain the observed spontaneous cell death induction. 

It remains an open question how the ASM of caspase-10 triggers cell death, but as this 

finding again based on overexpression experiments, we decided not to analyse the 

molecular mechanisms inducing spontaneous cell death under this conditions to avoid highly 

artificial results. 

In this study, the focus was put on the function of caspase-10 by knockdown and knockout 

approaches to extrapolate the role of endogenous caspase-10 in cell death signalling. The 

data strikingly demonstrate that caspase-10 is a negative regulator of DISC-mediated cell 

death (Figure 6+7). Thereby, knockdown of caspase-10 sensitises against both death 

ligands, CD95L as well as TRAIL (Figure 6A+B). As both receptors have redundant 

mechanisms in the initiation of cell death, the mechanistic analyses of caspase-10 were 

proceeded solely in the CD95-DISC. Furthermore, the presented data reveal the specificity of 

the observed phenotype. The use of four different siRNAs plus a shRNA confirmed the anti-

apoptotic function of caspase-10 and ruled out any off-target effect of RNA interference 

(Figure 6C+7A). In addition, the inhibitory function of caspase-10 was demonstrated by the 

use of three different apoptosis assays (Figure 7). Indeed, knockdown of caspase-10 did not 

sensitise each cell line analysed against the death ligand (Figure 9), but as these cell lines 

were not protected from cell death by the knockdown, the data exclude any pro-apoptotic 

function of caspase-10. All cell lines unaffected by the knockdown of caspase-10 expressed 

relatively high levels of caspase-10. Thereby, protein levels remaining after the knockdown 

were comparable to endogenous protein levels in cell lines which were sensitised by the loss 
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of caspase-10 (Figure 9). Therefore, we initially hypothesised that the protein levels 

remaining after successful knockdown might be sufficient to prevent from the observed 

phenotype. In line with this assumption, DISC-associated caspase-10 in HaCaT cells 

following knockdown was comparable to endogenous levels in HeLa cells (Figure 10). Since 

RNA interference will not fully deplete the gene of interest, caspase-10 has to be knocked 

out by CRISPR-Cas9-mediated recombination in these high expressing cell lines to prove 

this hypothesis. However, a thorough analysis of the CD95-DISC stoichiometry in 

caspase-10 knockdown HaCaT cells revealed that the loss of caspase-10 is compensated in 

these cells by an up-regulation of cFLIP (Figure 11A+B). When the knockdown of 

caspase-10 was combined with cFLIP knockdown, HaCaT cells were further sensitised 

against the death ligand compared to the single cFLIP knockdown (Figure 11C). How HaCaT 

cells circumvent the loss of caspase-10 by an up-regulation of cFLIP remains elusive; but, as 

these cells express only weak levels of cFLIP, caspase-10 seems to be the main regulator of 

cell death in these cells. Therefore, loss of caspase-10 would have drastic effects on the 

control of cell death. Thus, cFLIP might be up-regulated in HaCaT cells to guarantee cell 

survival. This finding once more emphasises the necessity to study all tandem DED proteins 

simultaneously.  

The anti-apoptotic function of caspase-10 in the initiation of cell death is indeed very 

surprising and against current scientific knowledge. However, a more recent study has 

proposed a pro-survival function of caspase-10, as well. In line with our data, Lamy and 

colleagues described a more complex role of caspase-10 in controlling cell survival. They 

showed that caspase-10 inhibits autophagic cell death in multiple myeloma cell lines [145]. 

Simply the knockdown of caspase-10 favoured the induction of autophagy after six to nine 

days in their study. To prove that the induction of autophagic cell death is not interfering with 

our analysis, we screened HeLa cells for autophagy markers after the knockdown of 

caspase-10. The conditions used for the knockdown in our study did not induce any 

autophagy pathway (data not shown). However, the control of autophagy together with our 

finding demonstrates that the previous assumptions postulating a pro-apoptotic function of 

caspase-10 are not contemporary anymore. 

When the impact of caspase-10 on DISC signalling was mechanistically studied, it ruled out 

that caspase-10 is blocking the recruitment of caspase-8 to the complex (Figure 12). As a 

result, less caspase-8 is processed and the overall cell death response is diminished 

(Figure 12A). Previous mass spectrometry analysis of the native CD95- as well as TRAIL-

DISCs revealed that a single FADD molecule is able to recruit a multitude of caspase-8 

molecules to the complex. These findings led to novel model in which caspase-8 elongates in 

DED chains in the DISC [77], [78]. In contrast to caspase-8, the respective ratio of 
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caspase-10 or cFLIP to FADD in the DISC is much lower, but this has not been examined in 

detail to date. A recent study suggested that short DED proteins, other than caspase-10 or 

cFLIP, do not modify chaining of caspase-8 [88]. Based on our data, it is a likely scenario 

that caspase-10 disturbs chain formation of caspase-8, which would explain why caspase-8 

is enriched in the DISC in the absence of caspase-10. However, to prove this hypothesis, 

further quantitative mass spectrometry analyses are required to address the impact of 

caspase-10 on caspase-8 chaining. Another possibility for caspase-10 in inhibiting DISC-

mediated cell death could be that caspase-10 forms inactive heterodimers with caspase-8 

upon DISC stimulation. Heterodimerisation between caspase-8/-10 and cFLIP has been 

reported [91], [92], but it is highly controversial if the resulting heterodimer has pro- or anti-

apoptotic functions [reviewed in 165]. However, it is difficult to address this hypothesis, 

because recombinant caspase-10 as well as caspase-8 undergo autoproteolytic cleavage 

during purification of the precursor forms. Thus, it is intricate to analyse heterodimer 

formation and its enzymatic activity. 

 

IX.2. Caspase-10 and cFLIP cooperate to inhibit caspase-8 

The regulation of cell death by caspase-10 and cFLIP is tightly linked. As discussed above, 

HaCaT cells counter regulate the knockdown of caspase-10 by an up-regulation of cFLIP. 

When both inhibitors of caspase-8 were studied in HeLa cells which express in contrast to 

HaCaT cells adequate levels of cFLIP (Figure 9D), it showed that cFLIP blocks cell death 

signalling much more efficient as compared to caspase-10 in these cells (Figure 13A). Of 

course, as the molarities of these proteins are unknown in HeLa cells, it cannot be ruled out 

who is the stronger inhibitor of caspase-8. However, both proteins independently inhibit 

CD95-mediated cell death signalling (Figure 13A). Furthermore, cFLIP and caspase-10 

interfere with the recruitment of caspase-8 to the DISC and its activation in the complex 

(Figure 14). As described above, it can solely be speculated if cFLIP and caspase-10 block 

chain elongation of caspase-8 and it would need further mass spectrometry analysis to prove 

this hypothesis. Interestingly, DISC-bound caspase-10 is strongly enriched when cFLIP is 

down-regulated, whereas the vice versa effect does not occur (Figure 12A and 14). This 

indicates that the affinity of cFLIP to the DISC is higher as compared to caspase-10. In a 

model in which cFLIP and caspase-10 cooperate in modulating caspase-8 chaining in the 

DISC, cFLIP might be faster recruited to the complex and competes with caspase-8 in chain 

elongation. 

An obvious question rises at this point: What is the differential function of cFLIP and 

caspase-10 if both act as inhibitors of caspase-8 with different affinities? In contrast to the 
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short half-life of cFLIP, the stability of caspase-10 protein is unaffected by translational 

inhibitors such as CHX for up to five hours (Figure 13B). It is therefore a likely hypothesis 

that in a physiological setting in which protein translation is mostly inhibited by stress signals, 

e.g. DNA damage [166], caspase-10 could serve as a cellular backup for cFLIP. Thus, it 

potentially prevents from excessive caspase-8 activation and cell death even in the absence 

of cFLIP. 

cFLIP is absolutely essential in the regulation of cell fate. cFLIP knockout mice are 

embryonic lethal [85] and even the knockdown of cFLIP in cellular systems induces 

spontaneous cell death [86], [87]. We observed the same phenomenon when we introduced 

the knockdown of cFLIP in HaCaT and HeLa cells (data not shown). By drastically 

decreasing the molarity of cFLIP siRNA the knockdown was accomplished without inducing 

spontaneous cell death (Figure 13A). To mechanistically study the impact of cFLIP in the 

DISC, CHX was used to decrease cellular protein levels. CHX has obviously further effects 

on cell death signalling than solely the depletion of cFLIP (Figure 13D). However, CHX-

induced depletion of cFLIP confirmed the data collected by knockdown approaches 

(Figure 13C) and we reasoned that the impact of CHX on the formation of the DISC is mainly 

limited to cFLIP. As all other key players in the DISC were unaffected by CHX treatment, we 

supposed it as a suitable tool to study the function of cFLIP in the DISC. 

 

IX.3. Caspase-10 and cFLIP do not compete with caspase-8 for DISC 

recruitment 

It is currently assumed that cFLIP competes with caspase-8 for binding via FADD to the 

death receptor [81], [167], [168]. Thereby, less caspase-8 is activated in the DISC resulting in 

diminished cell death induction. The above presented data now lead to the conclusion that 

the same function is linked to caspase-10. However, the data collected by the use of 

caspase-8 knockout cells demonstrate that caspase-8 is absolutely critical for the formation 

of the DISC (Figure 16+17). They furthermore show that caspase-8 has to bind upstream of 

caspase-10 and cFLIP to the DISC and it is relevant for the formation and stability of the 

complex. Thus, the DISC is not forming in the absence of caspase-8 (Figure 16). Re-

expression of wild type as well as mutant caspase-8 restored the recruitment of caspase-10 

and cFLIP. Most importantly, even receptor-bound FADD levels were recovered after the re-

expression (Figure 17). Interestingly, the enzymatic activity of caspase-8 is dispensable in 

this process. Independent if the cells express wild type or mutant caspase-8, both variants 

enabled DISC formation. This leads to the conclusion that caspase-8 has a scaffold function 

in the DISC which is necessary and critical for DISC formation and/or stability. 
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These findings underline the elusive and in part controversial role of caspase-10 and its 

homologue. In contrast to caspase-8, caspase-10 is not essential for DISC signalling. When 

caspase-8 is absent, death receptor-induced cell death is fully blocked (Figure 15B). Thus, 

endogenous caspase-10 cannot substitute for caspase-8. The presented data demonstrate 

that caspase-10 and cFLIP do not compete with caspase-8 in binding to FADD. They support 

a new model in which caspase-8 binding via FADD primes the DISC and caspase-10 as well 

as cFLIP negatively regulate caspase-8-mediated cell death signalling downstream of 

caspase-8 but within the DISC. Another fact supports this model as well. Interestingly, 

caspase-10 and cFLIP are mainly found as processed fragments in the DISC whereas full 

length caspase-8 is usually present (Figure 12A, 14, 16, and 18B). This indicates that full 

length caspase-8 is able to linger in the DISC whereas the regulators, caspase-10 and 

cFLIP, are rapidly processed. All these findings strengthen the hypothesis that caspase-10 

and cFLIP control DED chain elongation of caspase-8. 

In the past, caspase-8 deficient Jurkat cell lines have been a fundamental tool to study DISC-

mediated apoptosis and gene induction. In contrast to the here presented data, a previous 

report using these cells reported that caspase-10 binds to the DISC in the absence of 

caspase-8 [146]. The screening of caspase-8 deficient Jurkat cells revealed that they are not 

deficient in caspase-8 (Figure 18A). Cell death signalling might be heavily impaired in these 

cells, but they do express a truncated version of caspase-8 which can still be recruited to the 

DISC (Figure 18B). Therefore, the DED structure seems to be intact and thus allows further 

recruitment of caspase-10 and cFLIP to the complex. Indeed, nor caspase-10 neither cFLIP 

are processed in the DISC, but it is highly important that even the weak expression of the 

truncated caspase-8 version allows for DISC formation and stability.  

Based on the data, the collected knowledge from caspase-8 deficient Jurkat cells should be 

critically re-evaluated. These cells do express caspase-8 and they repressed their 

expression levels of CD95 (Figure 18B). As this dramatically impacts cell death signalling, it 

is likely that some data have been misinterpreted. The finding that caspase-8 deficient Jurkat 

cells form a DISC, even if it is weak, might explain why others observed that these cells died 

upon heavy stimulations with CD95L [146], [147], [169]. It can solely be speculated what the 

relevant cell death trigger is, but interestingly, caspase inhibition by zVAD-fmk does not 

prevent it [169]. As Holler and colleagues suggested, RIPK1 might potentially be activated 

upon CD95L stimulation in these cells and induces necroptotic cell death. But in contrast to 

what they suggested, DISC-induced and RIPK1-mediated cell death depends on caspase-8. 

Without caspase-8, the DISC would not form and RIPK1 could not been activated. 

However, the most striking finding in light of caspase-8 is that the association of FADD to the 

death receptor seems to be dependent on caspase-8 (Figure 16+17B). FADD dissociates 
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from the receptor in the absence of caspase-8. Thus, caspase-8 might stabilise the binding 

of FADD with its death domain to the receptor. This highly important and in part bizarre 

finding needs further analysis to clarify the molecular mechanisms underlying the 

stabilisation of FADD by caspase-8. Previously, it has been reported that FADD interaction 

with the DISC is regulated by ubiquitination [170]. The E3 ubiquitin-protein ligase makorin-1 

(MKRN1) mediates ubiquitination of FADD, thus marking it for proteasomal degradation. 

Depletion of MKRN1 resulted in the stabilisation of DISC-associated FADD and enhanced 

cell death signalling. It is a likely scenario that caspase-8 binding prevents FADD from 

ubiquitination by e.g. blocking the binding site of MKRN1 and therefore ensures the stability 

of the DISC.  

Taken together, the presented data support a model in which caspase-8 binding to the DISC 

is an indispensable upstream event in DISC signalling. Subsequently, caspase-10 and cFLIP 

independently bind to caspase-8 and both negatively regulate further DED chain elongation 

of caspase-8.  

 

IX.4. Caspase-10 promotes DISC-mediated gene induction 

Apart from the necroptotic signalling pathway which can solely be activated when caspase 

activity is actively inhibited, two major DISC-induced signalling pathways have been studied 

in the last years. DISC-mediated gene induction is the second important pathway which can 

be activated either concomitant to apoptotic cell death (Figure 19A and [132]) or independent 

of apoptotic caspase activation, e.g. by the use of caspase inhibitors [134], [171], [172]. 

Interestingly, the blockade of caspase activity highly increases the gene inductive properties 

of the DISC (Figure 19B).  

When the impact of caspase-10 on DISC-mediated gene induction was studied, the data 

demonstrated for the first time that caspase-10 promotes cytokine expression (Table 12 and 

Figure 19). Of note, knockdown of caspase-10 did not fully abolish gene induction and only a 

subset of CD95L-induced genes were affected by the depletion of caspase-10, but even 

small changes in gene regulation might have dramatic effects on protein expression and cell 

signalling. For instance, the repression of IL-8 mRNA detected by microarray analysis was 

very small following knockdown of caspase-10 (Table 12) and only slightly stronger when the 

same conditions were analysed by qPCR (Figure 19B). However, the secretion of IL-8 

protein was up to five times less in the absence of caspase-10 (Figure 19A). Further 

investigations on the impact of caspase-10 on DISC-mediated cytokine production at the 
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mRNA (TNF, Figure 19C) and protein (A20, Figure 20A) level confirmed the gene inducing 

properties of caspase-10. 

Our group previously demonstrated that cFLIP blocks death receptor-mediated gene 

induction in epithelial cells [134]. This report was confirmed when cFLIP was depleted by the 

use of CHX (Figure 19D). Importantly, knockdown of caspase-10 compensated the 

hyperactivation of cytokine production following depletion of cFLIP (Figure 19D). Thus, in 

contrast to cFLIP, caspase-10 promotes gene induction. As observed in DISC-induced 

apoptotic cell death, caspase-10 and cFLIP act independent in cytokine regulation. 

Confirming our DISC model for the critical upstream binding of caspase-8 to FADD, 

caspase-8 knockout cells fully lost their gene-inductive properties (Figure 19E). However, 

when caspase-8 was reconstituted in these cells, they were again able to induce the 

expression of IL-8 mRNA, albeit to a lesser extend (Figure 19E). The inability to re-express 

caspase-8 to the same extent when compared to parental cells (Figure 17) might be a 

potential explanation for the reduced IL-8 induction. Interestingly, an impaired IL-8 induction 

was also observed when the enzymatic inactive mutant of caspase-8a was re-expressed in 

the knockout cells (Figure 19E). Caspase-8 protein levels in this cells reached endogenous 

levels (Figure 17), thus indicating that the scaffold function of caspase-8 is necessary for 

DISC-mediated gene induction, but its enzymatic activity is required for full activation of the 

NF-κB activation pathway. 

Similar to the detailed TNF signalling pathway, TRAIL and CD95L induce cytokine 

expression via the activation of different protein complexes such as IKK/IκBα, p38 MAPK, or 

MEK/ERK [159]. A more recent study reported that p38, JNK, as well as ERK have no or just 

little impact on CD95-mediated gene induction, whereas the knockdown of the NF-κB p65 

subunit profoundly attenuated cytokine production [132]. The here presented data confirm 

these findings. Caspase-10 promoted gene induction by enhancing the degradation of IκBα 

(Figure 20A and B). In contrast, other signal transducer such as JNK or p38 were unaffected 

by the knockdown of caspase-10 (Figure 20C). The activation of JNK, p38, or ERK is 

potentially a secondary event during DISC-induced cytokine production and thus is not or just 

slightly influenced after DISC stimulation. The microarray screen showed that a number of 

immediate early response genes such as IER5, EGR1, or JUN are upregulated following 

CD95L treatment (Table 12). They potentially induce a feedback loop in which JNK, p38, or 

ERK are activated. 

 

Cullen and colleagues showed that RIPK1 interconnects DISC formation and cytokine 

production analogous to TNF signalling [132]. They further reported that RIPK1 assembles in 
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a soluble complex II with caspase-8, cFLIPL, and FADD after DISC stimulation. It is unknown 

if RIPK1 is activated in the DISC or in complex II, but its kinase activity seems to be 

redundant in this pathway. Therefore, RIPK1 revealed to act as a scaffold to promote gene 

induction [132]. The here presented data now demonstrate that caspase-10 is also recruited 

to complex II (Figure 21). Besides its function in the DISC, caspase-10 has no impact on the 

composition of complex II. It does not interfere with the association of RIPK1 to the DISC or 

complex II, but it efficiently inhibits phosphorylation of RIPK1 at serine166 in both complexes 

(Figure 21). It is thus far unknown which consequences the phosphorylation of RIKP1 has at 

this position. It was shown that phosphorylation of RIPK1 and RIPK3 stabilises their 

association with the ripoptosome and activates pro-necroptotic kinase activity [173]. If RIPK1 

comprises a scaffold function in DISC-mediated gene induction, as Cullen and Co. 

suggested, it might be of advantage to keep RIPK1 dephosphorylated. Thus its necroptotic 

kinase activity would be reduced and the activation of NF-κB might be enhanced. In contrast, 

it has been reported that phosphorylation of RIPK1 by IKKα/β prevents it from entering the 

cell death complexes in TNF signalling [174]. However, it remains to be elucidated how 

caspase-10 interferes with RIPK1 and how it is involved in either promoting the 

dephosphorylation or preventing the phosphorylation of RIPK1. 

Taken together, the data presented in this thesis are consistent with a DISC model 

(Figure 22) in which caspase-8 binding via FADD to the receptor is an indispensable initiation 

step in DISC formation. Thereby, caspase-8 stabilises the association of FADD with the 

receptor and allows further recruitment of other caspase-8 molecules which assemble in 

DED chains in the DISC. Next, caspase-10 and cFLIP are recruited via caspase-8 to the 

complex and both negatively modulate the activation of caspase-8 in the DISC. In contrast to 

cFLIP, caspase-10 promotes DISC-mediated gene induction by interfering with the 

phosphorylation status of RIPK1, enhancing the degradation of IκBα, and thereby the 

activation of NF-κB. 
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The newly described function of caspase-10 as an inhibitor of caspase-8-mediated cell death 

and a facilitator of DISC-mediated gene induction separates the function of cFLIP and 

caspase-10 in the DISC. The presented data clearly delineates that caspase-10 is not an 

initiator of DISC-induced apoptosis as previously believed [81], [167], [168]. These findings 

change our current understanding of the extrinsic apoptotic signalling pathway and open new 

possibilities in studying other tandem DED protein containing complexes. The ripoptosome 

as well as TNF complex II have been reported to contain caspase-8, cFLIP, and caspase-10 

[98], [99], [175]. In light of the here presented findings, this complexes can be studied for the 

differential functions of the different tandem DED proteins. If caspase-10 interferes with the 

phosphorylation of RIPK1 in the DISC, does this happen in the ripoptosome as well and has 

this an influence on cell death response? Furthermore, this study hint at a possibility to 

modulate the expression levels of caspase-10 as a therapeutic oncological target. As 

inflammatory gene expression has been shown to favour tumour formation and progression 

[176], specific inhibitors of caspase-10 could be used to block cytokine expression. 

Figure 22 Proposed working model of caspase-10 function in the DISC 
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Moreover, the indispensable function of caspase-8 in DISC signalling may facilitate future 

therapies for the treatment of cancer. Currently developed treatments of death receptor 

agonist may require robust expression of caspase-8 to allow killing of tumour cells. 
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XI. Abbreviations 
 

% Percent 

°C Degree celcius 

µ Micro 

4-HT  4-hydroxytamoxifen 

A Alanine 

ALPS Autoimmune lymphoproliferative syndrome 

APAF1 Apoptotic protease-activating factor 1  

ASM Active site mutant 

Bak Bcl-2 antagonist or killer  

Bax Bcl-2-associated X protein  

Bcl-2 B-cell lymphoma 2 

BH3 Bcl-2 homology 3 

Bid BH3 interacting-domain death agonist  

BSA Bovine serum albumin  

C Cysteine  

C10 Caspase-10 

C8 Caspase-8 

CAD Caspase-activated DNase  

CD40L Cluster of differentiation 40 ligand 

CD95L Cluster of differentiation 95 ligand  

cFLIP Cellular FLICE-like inhibitory protein 

CHX Cycloheximide 

cIAPs Cellular inhibitor of apoptosis proteins  

CRD Cysteine-rich domain  

CTRL Control 

d Days 

DD Death domain 

DED Death effector domain 

DISC Death-inducing signalling complex  

DNA   Deoxyribonucleic acid 

dNTP Deoxynucleoside triphosphate  

Doxy Doxycycline 

DTT Dithiothreitol 

EDTA Ethylenediaminetetraacetic acid 

ERK Extracellular-signal-regulated kinase 

FADD Fas-associated protein with death domain 

FCS Fetal calf serum 

FLICE FADD-like IL-1β-converting enzyme 
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g Gramm 

GAPDH Glyceraldehyde 3-phosophate dehydrogenase 

h Hour 

Hepes 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 

HOIL-1 Heme-oxidized IRP2 ubiquitin ligase 1 

HOIP HOIL-1L interacting protein  

IKK IκB kinase  

IL-8 Interleukin-8 

IMS Intermembrane space 

IκB Inhibitor of NF-κB 

JNK c-Jun N-terminal kinase  

kDa Kilodalton 

l Liter 

LB Lysogeny broth 

m Milli 

M Molarity 

MAPK Mitogen-activated protein kinases 

min Minute 

MKRN1 E3 ubiquitin-protein ligase makorin-1  

MLKL Mixed lineage kinase domain-like 

MOMP Mitochondrial outer membrane permeabilization 

n Nano 

n.s. Not significant 

Nec Necrostatin-1 

NEMO NF-κB-essential modulator 

NF-κB Nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells 

NIK NF-κB-inducing kinase  

OPG Osteoprotegerin  

PBS Phosphate buffered saline 

PCR Polymerase chain reaction  

PI Propidium iodide  

PLAD Pre-ligand-binding assembly domain 

PVDF Polyvinylidene difluoride  

RIPK Receptor-interacting protein kinase  

RNA Ribunucleic acid 

RT Room temperature 

S Serine 

sh  Short hairpin 

SHARPIN Shank-associated RH domain-interacting protein 

si  Small interfering 

SMAC Second mitochondria-derived activator of caspases  
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TAB1 TAK1 binding protein 1 

TAK1 Transforming growth factor β-activated kinase 1  

tBid Truncated Bid 

TL  Total cell lysate 

TLR Toll-like receptor  

Tm Melting temperature 

TNF Tumor necrosis factor 

TNFAIP3/A20 TNFα-induced protein 3 

TNF-R2 TNF receptor 2 

TRADD TNF receptor type 1-associated death domain protein  

TRAF2 TNF receptor-associated factor 2  

TRAIL TNF-related apoptosis inducing ligand  

TRAIL-R TRAIL receptor 

TWEAK TNF-related weak inducer of apotosis 

UbcH5 Ubiquitin conjugating enzyme E2 D1  

UV Ultra violet 

V  Volt 

v/v Volume per volume 

w/v Weight per volume 

x g Gravitational acceleration 

XIAP X-linked inhibitor of apoptosis protein  

zVAD-fmk z-Val-Ala-DL-Asp-fluoromethylketone  
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