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Abstract

Stable convergence is a type of convergence of random variables, which is stronger than
weak convergence but weaker than convergence in probability. It has been used in asymp-
totic theory of statistics and probability since Rényi originated his work (cf. [91]) in 1963.
In this thesis, we study applications of stable convergence in two aspects. First, we show
how to estimate the asymptotic (conditional) covariance matrix, which appears in many
central limit theorems for stable laws in high-frequency estimation. We employ the idea
of subsampling to provide a positive semi-definite estimator for this matrix. We show that
our estimator is consistent in both noiseless models and models with additive microstruc-
ture noise. This estimate together with stable convergence theorems allow us to make
some statistical inferences such as constructing confidence intervals or doing hypothesis
testing. Moreover, we provide a decomposition of the leading error terms, from which
we are able to get some insights about how to configure the subsampler by optimally
choosing its tuning parameters (e.g., the number of subsamples). This leads to a rate of
convergence for the subsampler.

Second, we apply stable convergence theorems to show a weak limit theorem for
a numerical approximation of Brownian semi-stationary processes studied in [32]. In
the original work of [32], the authors propose to use Fourier transformation to embed a
given one dimensional Lévy semi-stationary process into a two-parameter stochastic field.
For the latter, they use a simple iteration procedure and study the strong approximation
error (in L2 sense) of the resulting numerical scheme given that the volatility process is
fully observed. In this work, we give a more precise assessment of the numerical error
associated with the Fourier method. We complement their study by analyzing the weak
limit of the error process in the framework of Brownian semi-stationary processes, where
the drift and the volatility processes need to be numerically simulated.
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Zusammenfassung

Stabile Konvergenz ist eine Konvergenzart von Zufallsvariablen, die stärker als die schwache
Konvergenz ist, jedoch schwächer als die Konvergenz in Wahrscheinlichkeit. Diese Konvergenz
findet Anwendung in der asymptotischen Theorie der Statistik und Wahrscheinlichkeitstheorie,
seit Rényi seine Arbeit (siehe [91]) in 1963 verfasste. In dieser Doktorarbeit untersuchen wir
zwei Aspekte von Anwendungen der stabilen Konvergenz. Zunächst zeigen wir, wie man die
asymptotische (bedingte) Kovarianzmatrix, die in vielen stabilen zentralen Grenzwertsätzen in
der Hochfrequenzschätzung vorkommt, schätzt. Dabei verwenden wir die Technik des Subsam-
plings, um einen positiv semidefiniten Schätzer für diese Matrix bereitzustellen. Wir zeigen,
dass unser Schätzer in der Situation eines rauschfreien Modells und eines Modells mit additivem
Microstructure-Noise konsistent ist. Durch Anwendung von stabilen Konvergenzsätzen auf diesen
Schätzer können wir einige statistische Schlussfolgerungen wie die Konstruktion von Konfidenz-
intervallen und Hypothesentests ziehen. Darüber hinaus geben wir eine Zerlegung der führenden
Fehlerterme, die uns eine optimale Wahl der Tuning-Parameter (die Anzahl der Subsamplings) des
Subsamplers ermöglicht. Damit erhalten wir eine Konvergenzrate für den Subsampler.

Im zweiten Teil dieser Arbeit verwenden wir stabile Konvergenzsätze, um einen schwachen
Grenzwertsatz für eine numerische Approximation von Brownschen semi-stationären Prozessen,
die in [32] behandelt wurden, zu zeigen. In der Arbeit [32] schlagen die Autoren Benth, Eyjolf-
sson und Veraart vor, Fouriertransformationen zu benutzen, um einen eindimensionalen Lévy
semi-stationären Prozess in ein zweiparametriges Zufallsfeld einzubetten. Die Autoren Benth,
Eyjolfsson und Veraart nutzen nun eine einfache Iterationsmethode für das Zufallsfeld, um eine
Approximation für den Lévy Prozess zu erhalten. Sie untersuchen dann den starken Approxima-
tionsfehler (im L2-Sinne) im Falle, dass der Volatilitätsprozess vollständig beobachtet wird. In
unserer Arbeit führen wir in einem von [32] verschiedenen Modell eine detailliertere Betrachtung
des Schätzfehlers der Fouriermethode durch. Durch die Analyse von schwachen Grenzwerten
des Fehlerprozesses von Brownschen semi-stationären Prozessen erweitern wir die Resultate aus
[32]. Außerdem erlauben wir im Gegensatz zu [32], dass der Volatilitätsprozess nicht beobachtet,
sondern ebenfalls simuliert wird.
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Chapter 1

Introduction

Since the last decade, the advent of financial high-frequency data has led to a huge number
of researches in the volatility estimation (see, e.g., [3, 25]). Volatility is a key component
in the assessment and prediction of financial risk, be it in asset and derivatives pricing
(e.g., [37, 94]), portfolio selection (e.g., [75]), or risk management and hedging (e.g.,
[66]). High-frequency data are recorded at the tick-by-tick level and store information
about the time, price (i.e., a bid-ask quote or transaction price), and size of individual
orders and executions.

Suppose a Brownian semimartingale Xt is characterized by the equation

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs, (1.1)

observed at the discrete time i/n, i = 0, ..., [nt] whereX0 is the starting point, a = (at)t≥0

is a predictable and locally bounded drift process, σ = (σt)t≥0 is an adapted, càdlàg
volatility process, while W = (Wt)t≥0 is a standard Brownian motion. The process
X = (Xt)t≥0 in the expression (1.1) can be interpreted as interest rates or stock prices.

In financial econometrics, a quantity of interest to understand and evaluate financial
risk is functionals of volatility:

IV (f)t =

∫ t

0

f(σs)ds, (1.2)

i.e. integrated functions of the diffusion coefficient, for some suitable function f . In case
of f(x) = x2, then IV (f)t is a so-called integrated volatility or integrated variance de-
noted by IVt =

∫ t
0
σ2
sds. The econometric challenge is that the objects of interest appear-

ing in (1.2) are latent. Therefore, volatility estimation became a popular field of research
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6 CHAPTER 1. INTRODUCTION

in developing robustness and efficiency. It is well-known that the realized variance

RV n
t =

[nt]∑
i=1

(X i
n
−X i−1

n
)2 (1.3)

estimates the integrated volatility
∫ t

0
σ2
sds discussed by Andersen and Bollerslev [2] and

Barndorff-Nielsen and Shephard [23]. To estimate the functionals of volatility in general
cases, Barndorff-Nielsen et al. [15] show asymptotic theory for the processes

V (f)nt =
1

n

[nt]∑
i=1

f
(√

n∆n
iX
)

(1.4)

V (f, g)nt =
1

n

[nt]∑
i=1

f
(√

n∆n
iX
)
g
(√

n∆n
i+1X

)
, (1.5)

under some appropriated functions f and g where ∆n
iX = Xi/n − X(i−1)/n for i =

1, . . . , n. These two processes are called power and bipower variations, respectively. For
example, they derive that under some assumptions on Rm-valued function f ,

V (f)nt
P−→ V (f)t :=

∫ t

0

ρσs(f)ds,

where ρx(f) = E[f(xU)] for x ∈ R, U ∼ N(0, 1) and P−→ denotes convergence in
probability. Furthermore, the authors provide a central limit theorem for the statistic
V (f)nt :

√
n
(
V (f)nt − V (f)t

)
dst−→MN(0,Σ), (1.6)

where the notation dst−→ means stable convergence (see, Definition 2.18) and Σ is the
m×m asymptotic conditional covariance matrix, which has elements

Σij =

∫ t

0

[
ρσs(fifj)− ρσs(fi)ρσs(fj)

]
ds.

Note that V (f)nt coincides with the realized variance RV n
t when f(x) = x2.

However, empirical studies show that this usual realized volatility RV n
t estimates the

integrated variance for moderate frequency data such as 5 or 15 min data but no longer
works in high frequency data, say 1 minute or less (see, [4, 5, 7, 78]). The source of this
error is known as microstructure noise. In other words, the observed prices are contam-
inated by microstructure noise such as bid-ask spreads, price discreteness, and so forth
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[36, 73, 93]. From the mathematical point of view, Zhou [102] suggested to econometrics
that the observed price process should be written in the form

Y i
n

= X i
n

+ ε i
n
, (1.7)

where X is the latent process in the form of (1.1) and ε is the microstructure noise. This
paved the way for the next cohort of estimators that were designed to be more resistant to
noise, e.g., multiscale estimators introduced by Zhang et al. [100, 101], realized kernel
estimators by Barndorff-Nielsen et al. [16] and pre-averaging estimators by Podolskij and
Vetter [85] and generalized by Jacod et al. [16]. As such, much progress has been made
and today there is no shortage of estimators to provide consistent estimates of volatility
functionals in various contexts.

In the meantime, estimation of the asymptotic (conditional) covariance matrix, which
appears in many central limit theorems in high-frequency estimation of volatility such
as Σ in (1.6), has received less attention. This is surprising, because it can give infer-
ence about volatility such as construction of confidence intervals or hypothesis tests. In
practice, the asymptotic (co)variance is not trivial to estimate because it often relies on
parameters that are substantially more difficult to back out from the available sample of
high-frequency data. Moreover, the expression for the asymptotic (co)variance also rests
typically and heavily on the properties of the data and it is bound to change depending on
these. This is an unpleasant concern with real high-frequency data, which are contami-
nated by market microstructure noise. While the noise is often assumed to be i.i.d. and
independent of the efficient price, there is some empirical and theoretical support for a
serially correlated, heteroscedastic and potentially, endogenous noise process at the tick
level ( e.g., [7, 47, 70, 55]). An estimator of the asymptotic variance designed for i.i.d.
and independent noise cannot be expected to give valid inference, if the underlying con-
ditions are violated. It is not trivial to verify the conditions imposed on the noise [58],
which makes it more pressing to find estimators that are robust against modeling criteria.
Finally, in multivariate analysis, inference would at some stage require an estimate of the
asymptotic covariance matrix. Here, the proposed estimator should ideally be positive
semi-definite, while, in contrast, some existing estimators of the asymptotic covariance
matrix in the high-frequency setting are not assured to be that (see, Section 5.3).

In this work, we propose to use subsampling for assessing the uncertainty embed-
ded in high-frequency estimation of functionals of volatility. Subsampling is based on
creating several—properly rescaled—estimates of the parameter(s) of interest using lo-
cal stretches of sample data and then studying the sampling variation of these. It was
originally developed in the context of stationary time series in the long-span domain by
Politis and Romano [88]. The term subsampling appeared in the high-frequency litera-
ture in Zhang et al. [101], who proposed a two-scale realized variance based on price
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subsampling. This is different from traditional subsampling and actually does not work
for asymptotic variance estimation, because it leads to an overlapping samples problem
in the subsampled returns, causing the subsample estimates to be too strongly correlated
in large samples. This was pointed out by Kalnina and Linton [69] and Kalnina [67], who
propose an alternative inference strategy based on infill return subsampling, which leads
to better asymptotic properties. Kalnina [68] extends these ideas to inference about a mul-
tivariate parameter, while Ikeda [60] and Varneskov [95] consider subsample estimation
of the asymptotic variance of the realized kernel.

The first part of this thesis contains the recent results of Christensen et al. [41]. We ap-
ply the idea of subsampling to construct estimators of asymptotic covariance matrices for
power and bipower variations, in the forms of (1.4) and (1.5), in both noiseless and noisy
markets. Among three main approaches to moderate the effect of noise, i.e. multiscale
[100, 101], realized kernel [16] and pre-averaging [16, 85], we choose the pre-averaging
one since it allows estimation of other powers of volatility. The idea of this approach is
that averaging on a number of Yi/n’s near the time point i/n, one can get an estimate, say
Ȳi/n, which tends to be close to the latent process Xi/n because the noise is largely aver-
aged away. Averaging our discrete sample of noisy high-frequency data this way leads to
a new set of increments,

∆Ȳ n
i =

kn∑
j=1

wnj ∆n
i+jY,

for a weight function w (see, Subsection 5.1.1 for the details).

Moreover, we show that our estimators are consistent in both settings (with and with-
out noise). This estimate together with stable convergence theorems allow us to make
some statistical inferences such as to construct conficence intervals or to do hypothesis
testing (see, (4.21)). Furthermore, we provide a decomposition of the leading error terms
of the statistic, from which we are able to get some insights about how to configure the
subsampler by optimally choosing its tuning parameters (e.g., the number of subsamples).
This leads to an optimal rate of convergence for the subsampler; a result that has, to the
best of our knowledge, not been derived in earlier work.

There are at least three advantages to use our subsampling technique. First, subsam-
pling is intuitive and relatively easy to compute, because it does not require an extra set
of estimators; it uses copies of the original statistic. Second, in the multivariate context, it
leads to variance-covariance matrix estimates that are positive semi-definite by construc-
tion. Third, subsampling does not explicitly rely on the form of asymptotic variance.

Another application of stable convergence is shown in the following second part of
this thesis.
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In 2007, Barndorff-Nielsen and Schmiegel introduced a class of spatio-temporal stochas-
tic processes called ambit fields in a series of papers [20, 21, 22] in the context of turbu-
lence modelling. However, the ambit fields has found manifold applications in mathemat-
ical finance such as energy spot prices [10], power markets [32] and electricity forward
markets [11] and in biology (modelling of tumor growth) [19]. In full generality they are
described via the formula

Xt(x) = µ+

∫
At(x)

g(t, s, x, ξ)σs(ξ)L(ds, dξ) +

∫
Dt(x)

q(t, s, x, ξ)as(ξ)dsdξ (1.8)

where t typically denotes time while x gives the position in space. Furthermore, At(x)

and Dt(x) are ambit sets, g and q are deterministic weight functions, σ represents the
volatility or intermittency field, a is a drift field and L denotes a Lévy basis. We recall
that a Lévy basis L = {L(B) : B ∈ S}, where S is a δ-ring of an arbitrary non-empty
set S such that there exists an increasing sequence of sets (Sn) ⊂ S with ∪n∈NSn = S, is
an independently scattered random measure.

In this thesis, attention has been given to a special class of ambit fields, a Brownian
semi-stationary process, which is defined as

Xt = µ+

∫ t

−∞
g(t− s)σsW (ds) +

∫ t

−∞
q(t− s)asds, (1.9)

where g and q are non-negative deterministic kernels, (at)t∈R and (σt)t∈R are adapted
càdlàg processes, andW is a two sided Brownian motion. The notion of a semi-stationary
process comes from the fact that the process (Xt)t∈R is stationary whenever (at, σt)t∈R is
stationary and independent of (Wt)t∈R. We note that if the Brownian motion W in (1.9)
is replaced with a Lévy process L, then the process Xt is called Lévy semi-stationary
process instead.

We should point out that a Brownian semi-stationary process of the form (1.9) is not
always a semimartingale. For example, the Brownian semi-stationary process with the
gamma kernel

g(x) = xα exp−λx

for α ∈ (−1
2
, 0) ∪ (0, 1

2
) and λ > 0, which was used to turbulence study in [43], is no

longer a semimartingale.

In the past decade, stochastic analysis, probabilistic properties and statistical inference
for Brownian (Lévy) semi-stationary processes have been studied in numerous papers.
We refer to [8, 9, 13, 14, 29, 22, 33, 43, 51, 82] for the mathematical theory as well as to
[12, 83] for recent surveys on theory of ambit fields and their applications.
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For practical applications in sciences, numerical approximation of Brownian (Lévy)
semi-stationary processes, or, more generally, of ambit fields, is of importance. We re-
mark that due to a moving average structure of a Brownian (Lévy) semi-stationary pro-
cess (cf. (1.9)), there exists no simple iterative Euler type approximation scheme. For
this reason, the authors of [31, 32] have proposed two different embedding strategies to
come up with a numerical simulation. The first idea is based on the embedding of a Lévy
semi-stationary process into a certain two-parameter stochastic partial differential equa-
tion. The second one is based upon a Fourier method, which again interprets a given Lévy
semi-stationary process as a realization of a two-parameter stochastic field. We refer to
the PhD thesis of Eyjolfsson [48] for a detailed analysis of both methods and their ap-
plications to modeling energy markets. We would also like to mention very recent work
[39], which investigates numerical simulations of spatio-temporal ambit fields.

The second part of this thesis contains the results from Podolskij and Thamrongrat
[84]. We consider the Fourier numerical approach introduced in [32]. The main advan-
tage of this numerical scheme is that it separates the simulation of the stochastic ingredi-
ents (σ and W ) and the approximation of the deterministic kernel g. This contrasts with
a straightforward discretization scheme. The aim of this part is to study the weak limit
theory of the numerical scheme associated with the Fourier method proposed in [32, 48].
In the original work [32], the authors discussed the strong approximation error (in the L2

sense) of the numerical scheme for Lévy semi-stationary processes, where the volatility
process (σt)t∈R was assumed to be observed. We complement their study by analyzing the
weak limit of the error process in the framework of Brownian semi-stationary processes,
where the drift and the volatility processes need to be numerically simulated. This obvi-
ously gives a more precise assessment of the numerical error associated with the Fourier
method.

The thesis is organized as follows. In Chapter 2, we provide some basic definitions
and results that are applied in the entire work. In Chapter 3, we prepare a powerful tool,
Malliavin calculus, to use in Chapter 4 and 5. In Chapter 4, we show how to construct
a positive semi-definite estimator of a asymptotic variance in noiseless models based on
a technique of subsampling. Furthermore, we show that our estimator is consistent and
a rate of convergence is provided. In Chapter 5, we turn our attention to models with
additive microstructure noise. We show that by applying the same subsampling technique,
our estimator is robust to noise. At the end of this chapter, we do numerical simulations
in order to inspect the finite sample performance of our estimator. Finally, in Chapter
6, which can be studied independently from Chapter 4 and 5, we present a weak limit
theorem for a numerical approximation of Brownian semi-stationary processes.



Chapter 2

Preliminaries

2.1 Basic definitions and results

This section states some basic definitions and examples that will be used in the following
chapters. Throughout this thesis, all processes are defined on a filtered probability space
(Ω,F , (Ft)t≥0,P). Furthermore, we assume that the filtered probability space satisfies the
usual assumptions: it is complete, i.e. F0 contains all P-null sets, and right continuous,
i.e. Ft = Ft+ where

Ft+ =
⋂
u>t

Fu,

for all t ≥ 0.

2.1.1 Skorohod spaces and càdlàg processes

A function f defined on real numbers is called càdlàg if it is right continuous and has left
limits everywhere. Let D = D[0, T ] be the set of all càdlàg functions on [0, T ], T > 0.
We introduce a uniform norm on D by setting

‖f‖ = sup
0≤t≤T

|f(t)|.

Let Λ denote the set of all strictly increasing, continuous bijections from [0, T ] to itself.

Definition 2.1
A Skorohod metric on D is defined by

d(f, g) = inf
λ∈Λ
{‖λ− I‖ ∨ ‖f − g ◦ λ‖},

where I : [0, T ]→ [0, T ] is the identity function and ‖ · ‖ is the uniform norm on D.

11



12 CHAPTER 2. PRELIMINARIES

The topology generated by the skorohod metric is called the Skorohod topology and
the space D is called the Skorohod space.

The idea of càdlàg functions allows us to study stochastic theory beyond continuous
sample path processes because it admits jumps.

Definition 2.2
A stochastic process X = (Xt)t≥0 is called càdlàg if almost all its sample paths t 7→ Xt

are càdlàg.

Example 2.3
Classical examples of càdlàg processes are Brownian motion and Poisson processes.

2.1.2 Stopping times and semimartingales

To define a semimartingale, we first present notions of stopping times and local martin-
gales.

Definition 2.4
A random variable τ : Ω → [a, b] is called a stopping time with respect to a filtration
{Ft | a ≤ t ≤ b} if {τ ≤ t} ∈ Ft for all t ∈ [a, b].

A stopping time is often interpreted as a mechanism to make a decision whether to
continue or stop a process at time t on the basis of the information provided by Ft.

Definition 2.5
An Ft-adapted stochastic process X is called a local martingale with respect to the fil-
tration {Ft | a ≤ t ≤ b} if and only if there exists a sequence of stopping times (τn)n∈N
such that (τn)n∈N increases monotonically to b almost surely as n → ∞ and for each n,
the stopped process Xt∧τn is a martingale with respect to {Ft | a ≤ t ≤ b}.

Note that, from this definition we can easily see that every martingale is local martin-
gale. One can also prove that every bounded local martingale is martingale. The example
below is a process which is local martingale but not martingale.

Example 2.6
Let W be a Brownian motion. For each t > 1/4, we define a process Xt as

Xt =

∫ t

0

exp{W 2
s }dWs.

Then, the processX is a local martingale. Indeed, these type of processes are always local
martingales because they are integrals of continuous processes with respect to Brownian
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motion (see, [71, Theorem 5.5.2.]). However, it is not martingale since E[exp{W 2
t }] =∞

for t > 1/4 which implies that Xt is not integrable.

We are now ready to define a semimartingale.

Definition 2.7
A stochastic process X defined on (Ω,F , (Ft)t≥0,P) is called a semimartingale if and
only if there exist a local martingale process M and a predictable process with finite
variation A such that

X = X0 + A+M, (2.1)

where X0 is F0-measurable and A0 = M0 = 0. If the process M in the decomposition
(2.1) is of the form

Mt =

∫ t

0

σsdWs,

where σ is a càdlàg process and W is a Brownian motion, we will call X a Brownian
semimartingale.

We can see that the class of semimartingale contains all the processes of martingales
and local martingales.

Example 2.8
(i) All adapted càdlàg processes with finite variation paths are semimartingales.
(ii) Brownian motion and Lévy processes are semimartingales.
(iii) Itô processes, which can be expressed as

Xt = X0 +

∫ t

0

σsdWs +

∫ t

0

µsds,

where W is a Brownian motion and σ and µ are adapted processes, are semimartingales.

We consider a semimartingale of the form

Zt = Z0 +

∫ t

0

σsdWs +

∫ t

0

µsds+ Jt, (2.2)

where W is a Brownian motion, σ and µ are adapted processes and Jt denotes the jump
part of Z and it is observed on [0, 1] at high frequency, i.e. at 0 = t0, ..., ti = i/n, ..., tn =

1 with n→∞. Its quadratic variation (see, [90]),

[Z]t =

∫ t

0

σ2
sds+

∑
0≤s≤t

|∆Xs|2

with ∆Xs = Xs −Xs− , is one of the most important unobserved characteristics that we
need to know. We call [Z]ct :=

∫ t
0
σ2
sds the continuous part of the quadratic variation and

call [Z]dt :=
∑

0≤s≤t |∆Xs|2 the discontinuous part of the quadratic variation. Z is said to
be a quadratic pure jump semimartingale if [Z]ct = 0.
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2.1.3 Burkholder inequalities

One of the remarkable tools which we often use in the proofs of the main results in
this thesis is Burkholder inequality. It helps us to find the bounds of stochastic incre-
ments. For the sake of application, we provide two cases separately. The first one is for
continuous local martingales and the other case is for discrete martingales. We define
X∗t = sups≤t |Xs|.
Proposition 2.9 (Burkholder inequality for continuous local martingales ([92], Theorem
4.1))
Let X = (Xt)t≥0 be a continuous local martingale such that X0 = 0. For all 0 < q <∞,
there exist positive constants cq and Cq such that

cqE[[X]
q/2
t ] ≤ E[(X∗t )q] ≤ CqE[[X]

q/2
t ],

where [X]t denotes the quadratic variation of a process X .

Example 2.10
Let X be an 1-dimensional stochastic process such that Xt =

∫ t
0
σsdWs where σ is a

bouned process and W is a Brownian motion. Then, by Burkholder inequality for contin-
uous local martingales we can conclude that

E

[∣∣∣ ∫ t

u

σsdWs

∣∣∣q] ≤ Cq|t− u|q/2,

for any u, q ≥ 0.

Proposition 2.11 (Burkholder inequality for discrete martingales ([44]))
Let X = (Xn)n≥0 be a discrete martingale such that X0 = 0. For all 1 ≤ q < ∞, there
exist positive constants cq and Cq such that

cqE[(S(X))q/2] ≤ E[(X∗∞)q] ≤ CqE[(S(X))q/2],

where S(X) =
∑∞

i=1(Xn −Xn−1)2.

2.2 Modes of convergence

In this section, we present some concepts of stochastic convergence which will be used in
this thesis. Throughout this thesis we use the notation Op in the context of Zn = Op(an)

if and only if for every ε > 0 there exist positive constants C and N such that for every
n > N , P(|Zn| ≤ Can) > 1−ε. We also use the notation op in the sense that Zn = op(an)

if and only if
Zn
an

P−→ 0

as n→∞.
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2.2.1 Tightness and convergence in finite dimensional distribution

Tightness and convergence in finite dimensional distribution are elementary tools for
showing weak convergence of stochastic processes.

Definition 2.12
A sequence (Xn)n∈N of random variables is said to be tight or bounded in probability if
for each ε > 0 there exists a positive real number Kε such that

sup
n
P(|Xn| ≥ Kε) < ε.

Example 2.13
A sequence (Xn)n∈N of random variables such that supn E[|Xn|p] <∞ for some p > 0 is
tight. It follows from the Markov inequality.

The next proposition gives conditions of showing tightness of measures.

Proposition 2.14 (Kolmogorov’s tightness criteria ([38], Theorem 9.9) )
Let (M,ρ) be a complete metric space satisfying the Heine-Borel property and (Sn)n≥1

be M -valued continuous stochastic processes on [0, 1]. The following conditions are sat-
isfied:
(i) there exist γ, ε > 0 and C <∞ such that

sup
n∈N

E[ρ(Snt , S
n
s )γ] ≤ C|t− s|1+ε

for all 0 ≤ s, t ≤ 1,
(ii) ∃m0 ∈M such that

sup
n∈N

P(ρ(Sn0 ,m0) > k) = 0

as n → ∞. Then the collection of measures, {µn = Law(Sn)}n≥1 on C([0, 1],M) is
tight.

Definition 2.15
A sequence of stochastic processes (Xn)n∈N on [0, T ] is said to converge in finite dimen-
sional distribution to a stochastic process X if ∀ti ∈ [0, T ] and k ∈ N, then

(Xn
t1
, Xn

t2
, ..., Xn

tk
)

d−→ (Xt1 , Xt2 , ..., Xtk)

where d−→ means convergence in distribution.

It has been known that convergence in finite dimensional distribution is necessary for
convergence in distribution but not sufficient. However, it can be shown that convergence
in finite dimensional distribution together with tightness imply weak convergence [34].
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2.2.2 UCP convergence and stable convergence

We say that a sequence of functions fn : R+ → R converges uniformly on compacts to a
function f if and only if for each t > 0

sup
0≤s≤t

|fn(s)− f(s)| −→ 0

as n −→∞. This type of convergence is used to define ucp convergence.

Definition 2.16
We say that a sequence of stochastic processes (Xn)n∈N on [0, T ] converges to a stochastic
process X uniformly on compacts in probability or ucp denoted by Xn ucp

=⇒ X if for each
ε > 0

P( sup
0≤s≤T

|Xn
s −Xs| > ε) −→ 0

for n −→∞.

We can see that when the stochastic processes Xn and X are nice, e.g. left or right
continuous then this definition makes sense since the supremum is confined to measurable
countable set of rational times.

Example 2.17
(i). If (Xn)n∈N is a sequence of càdlàg martingales and X is a stochastic process such
that for each t > 0

E[|Xn
t −Xt|] −→ 0,

as n −→∞, then by Doob’s martingale inequality one can show that Xn ucp
=⇒ X .

(ii). If M is a semimartingale and (Xn)n∈N is a sequence of predictable processes con-
verging pointwise to X such that

sup
n
|Xn| is M -integrable,

then by dominated convergence theorem for stochastic integral we can show that
∫
XndM

ucp
=⇒

∫
XdM (see, [90, Theorem 32]).

Next, we introduce the concept of stable convergence of random variables which plays
an important role in this thesis.

Definition 2.18
A sequence (Yn)n∈N of random variables defined on a probability space (Ω,F ,P) with
values in a Polish space (E,Γ) (i.e. a separable, completely metrizable topological space)
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is said to converge stably in law with limit Y , denoted by Yn
dst−→ Y , where Y is defined

on extension (Ω′,F ′,P′), if and only if for any measurable and bounded random variable
Z and any bounded continuous function g it holds that

E[g(Yn)Z] −→ E
′[g(Y )Z]

as n→∞.

Note that by this definition the random variables Yn can also be random processes.
Moreover, the stable convergence is stronger than weak convergence but weaker than ucp
convergence. We refer to [91] for the original definition of stable convergence and to
[65] for further details. We now state some crucial properties of stable convergence in the
following part which will be applied to our results.

Proposition 2.19 ([87], Proposition 2.2)
Let (Yn)n∈N be a sequence of random variables. The following conditions are equivalent:
(i) Yn

dst−→ Y

(ii) (Yn, Z)
d−→ (Y, Z) for any F-measurable variable Z

(iii) (Yn, Z)
dst−→ (Y, Z) for any F-measurable variable Z.

The above proposition gives equivalent definitions for showing stable convergence of
random sequences.

Lemma 2.20 (Continuous mapping theorem for stable convergence)
Let (Yn)n∈N be a d-dimensional sequence of random variables with Yn

dst−→ Y . Let g :

R
d −→ R

k be a continuous function. Then

g(Yn)
dst−→ g(Y ).

Proof. Applying Proposition 2.19, we have that (Yn, Z)
d−→ (Y, Z) for all F-measurable

Z. Since g is countinuous, we obtain by the classical continuous mapping theorem that

(g(Yn), Z)
d−→ (g(Y ), Z).

We finish the proof by applying the equivalence of (i) and (ii) in Proposition 2.19.

For now, it is not obvious that how to use stable convergence in practice. The next
proposition will allow us to apply stable convergence to construct confidence intervals.
Firstly, we give an auxiliary lemma and present a concept of mixed normal distributions.
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Lemma 2.21
Let (Yn)n∈N and (Vn)n∈N be a d-dimensional sequence of random variables with Yn

dst−→
Y and Vn

P−→ V . It holds that

(Yn, Vn)
dst−→ (Y, V ).

Proof. Let Z be F-measurable. Then, Proposition 2.19 implies (Yn, V, Z)
d−→ (Y, V, Z).

Moreover, Vn − V
P−→ 0 by assumption. Therefore, (Yn, Vn, Z)

d−→ (Y, V, Z). Again
using Proposition 2.19, we complete the proof.

Definition 2.22
We call a random variable Y = V U a mixed normal distribution with random conditional
variance V 2 denoted by Y = MN(0, V 2) if V > 0, U ∼ N(0, 1) and V and U are
independent.

From the statistical point of view, the weak convergence Yn
d−→ V U = MN(0, V 2)

is useless if the distribution of V is unknown because confidence intervals are unavailable.
More precisely, for a normal distribution with non-deterministic variance V 2, the weak
convergence Yn

d−→ V U = MN(0, V 2) does not imply Yn/Vn
d−→ N(0, 1) where Vn is

an estimator of V (see, [87, p.331]) but the stable convergence does as we shall see in the
following proposition.

Proposition 2.23
Let (Yn)n∈N be a 1-dimensional sequence of random variables with Yn

dst−→ Y . Suppose
Y ∼ MN(0, V 2) with V being F-measurable. If there exists a 1-dimensional sequence
of random variables (Vn)n∈N such that Vn

P−→ V and Vn, V > 0, then

Yn
Vn

d−→ N(0, 1).

Proof. We complete the proof by applying Lemma 2.20 and Lemma 2.21.

2.3 Limit theorems for semimartingales

In this section, we mainly present asymptotic results for continuous semimartingale pro-
cesses, namely a law of large numbers and a central limit theorem. These asymptotic
properties will be needed in Chapter 4 and 5. The results are based on the work of
Barndorff-Nielsen et al. [15]. We also present Jacod’s stable central limit theorem at the
end of this section to show how to derive limit results for diffusion processes in practice.
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We consider a scalar process X = (Xt)t≥0 defined on a filtered probability space
(Ω,F , (Ft)t≥0,P) and adapted to (Ft)t≥0 in the form of a continuous Itô semimartingale
as expressed by the equation:

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs, (2.3)

where X0 is the starting point, a = (at)t≥0 is a predictable and locally bounded drift
process, σ = (σt)t≥0 is an adapted, càdlàg volatility process, while W = (Wt)t≥0 is a
standard Brownian motion. We also point out that a and σ are left unspecified, and our
results are completely nonparametric (within this class of models). While we do not im-
pose assumptions a priori, we sometimes need an additional regularity condition on σ of
the following type.

Assumption (V): σ is of the form:

σt = σ0 +

∫ t

0

ãsds+

∫ t

0

σ̃sdWs +

∫ t

0

ṽsdBs

+

∫ t

0

∫
E

δ̃(s, x)1{|δ̃(s,x)|≤1}(µ̃− ν̃)(ds, dx) +

∫ t

0

∫
E

δ̃(s, x)1{|δ̃(s,x)|>1}µ̃(ds, dx),

(2.4)

where σ0 is its initial value, ã = (ãt)t≥0, σ̃ = (σ̃t)t≥0 and ṽ = (ṽt)t≥0 are adapted, càdlàg
stochastic processes, while B = (Bt)t≥0 is a standard Brownian motion that is indepen-
dent ofW . Furthermore, (E, E) is a Polish space, µ̃ is a random measure on R+×E, which
is independent of (W,B) and has an intensity measure ν̃(ds, dx) = dsF̃ (dx), where F̃ is
a σ-finite measure on (E, E). Also, δ̃ : Ω × R+ × E → R is a predictable function and
(Sk)k≥1 is a sequence of stopping times increasing to∞ such that |δ̃(ω, s, x)|∧1 ≤ ψ̃k(x)

for all (ω, s, z) with s ≤ Sk(ω) and
∫
E
ψ̃2
k(x)F̃ (dx) <∞ for all k ≥ 1.

We consider the power variation of the form

V (f)n =
1

n

n∑
i=1

f
(√

n∆n
iX
)
, (2.5)

where f = (f1, f2, ..., fm)′ is Rm-valued function which satisfies the following assump-
tion.

Assumption (K): The function h : R 7→ R is even and continuously differentiable.
Moreover, both h and its derivative h′ are at most of polynomial growth.

Note that a function h : R 7→ R is at most of polynomial growth if and only if

|h(x)| ≤ C(1 + |x|p),
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for some positive numbers C and p.

Both Assumptions (V) and (K) are standard conditions for the validity of central
limit theorems for classical high-frequency statistics. The following propositions, which
are adapted from [15, Theorem 2.1 and 2.3], describe the limiting properties of power
variation.

Proposition 2.24 (Law of large numbers)
Assume that X is a continuous Itô semimartingale as in (2.3) and the function f is con-
tinuous with at most polynomial growth. Then, as n→∞, it holds that

V (f)n
P−→ V (f) =

∫ 1

0

ρσs(f)ds, (2.6)

where ρx(f) = E[f(xU)] for x ∈ R and U ∼ N(0, 1).

Proposition 2.25 (Central limit theorems)
Assume that X is a continuous Itô semimartingale as in (2.3), where the volatility process
σ follows Assumption (V) and Assumption (K) holds true for each component of f =

(f1, . . . , fm)′. Then, as n→∞, it holds that

√
n
(
V (f)n − V (f)

)
dst−→MN(0,Σ), (2.7)

where Σ is the m×m asymptotic conditional covariance matrix, which has elements

Σij =

∫ 1

0

[
ρσs(fifj)− ρσs(fi)ρσs(fj)

]
ds.

The above propositions provide the necessary foundation for making inference about
power variation. It shows that V (f)n is consistent for V (f). Moreover, the asymptotic
distribution of V (f)n is mixed normal, i.e. it has a random variance-covariance matrix
Σ, which is independent from the randomness of the normal distribution. To transform
this into a probabilistic statement based on the standard normal distribution, it would be
tempting to look at (2.7) and deduce that Σ−1/2

√
n
(
V (f)n−V (f)

)
d−→ N(0, Im), where

Im is the m-dimensional identity matrix.

We give a practical illustration for our interested quantity V (f)n.

Example 2.26
Let us consider the 1-dimensional case with f(x) = x2. We have that

V (f)n =
n∑
i=1

(X i
n
−X i−1

n
)2,
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which is the so-called realized variance (or realized volatility). The the law of large num-
bers (2.6) and the central limit theorem (2.7) above are translated to

V (f)n
P−→
∫ 1

0

σ2
sds, and

√
n(V (f)n − V (f))

dst−→MN(0, 2

∫ 1

0

σ4
s)ds,

where
∫ 1

0
σ4
sds is called the integrated quarticity (IQ). A feasible estimator of the IQ is

the realized quarticity

IQn =
n

3

n∑
i=1

(X i
n
−X i−1

n
)4,

from which it follows that
√
n(V (f)n −

∫ 1

0
σ2
sds)√

2IQn

d−→ N(0, 1).

In practice, it is not simple to show stable convergence of processes. The next theorem
introduced by Jacod [65] gives an important tool to derive stable limits in general setting
for partial sums of triangular arrays.

LetM = (Mt)t≥0 be a continuous d-dimensional local martingale on (Ω,F , (Ft)t≥0,P)

with M0 = 0 and we defineMb(M
⊥) = {bounded Martingale N |N0 = 0 and the covari-

ation process 〈M,N〉 = 0}, i.e. the set of all bounded orthogonal martingales to M . We
consider a sequence (Y n)n≥1 of q-dimensional semimartingales of the form

Y n
t =

[nt]∑
i=1

Xin. (2.8)

Theorem 2.27 (Jacod’s stable central limit theorem ([65], Theorem IX.7.28))
Let M be a square integrable continuous local martingale and Xin’s be F i

n
-measurable

and square integrable random variables. Suppose that there exist continuous processes
F and G with values in R

q×q and R
q×d, respectively, and a continuous q-dimensional
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process B of bounded variation such that

[nt]∑
i=1

E[Xin|F i−1
n

]
ucp−→ Bt ∀t, (2.9)

[nt]∑
i=1

E[XinX
T
in|F i−1

n
]− E[Xin|F i−1

n
]ET [Xin|F i−1

n
]

P−→ Ft ∀t, (2.10)

[nt]∑
i=1

E[Xin(M i
n
−M i−1

n
)T |F i−1

n
]

P−→ Gt ∀t, (2.11)

[nt]∑
i=1

E[‖Xin‖2
1{‖Xin‖>ε}|F i−1

n
]

P−→ 0 ∀t ∀ε > 0, (2.12)

[nt]∑
i=1

E[Xin(N i
n
−N i−1

n
)T |F i−1

n
]

P−→ 0 ∀t ∀N ∈Mb(M
⊥). (2.13)

We further assume that there exist predictable processes u, v and w with values in Rq×d,
R
d×d and Rq×q, respectively, such that

〈
M,MT

〉
t

=

∫ t

0

usu
T
s ds ∀t, (2.14)

Gt =

∫ t

0

vsusu
T
s ds ∀t, (2.15)

Ft =

∫ t

0

vsusu
T
s v

T
s + wsw

T
s ds ∀t. (2.16)

Then,

Y n
t

dst−→ Yt = Bt +

∫ t

0

VsdMs +

∫ t

0

WsdW
′
s, (2.17)

where W ′ is a Brownian motion defined on an extension of the original probability space
(Ω,F , (Ft)t≥0,P) , which is independent of F .

For the purpose of demonstration of how Theorem 2.27 works, let us give a classical
example but useful in practice.

Example 2.28 ([87], Example 2.10)
We consider one-dimensional case. Let f, g be real valued continuous functions on R,
where g is at most of polynomial growth. We define

Xin =
1√
n
f(σ i−1

n
)(g(
√
n∆n

iW )− E[g(
√
n∆n

iW )]), (2.18)
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where σ is a càdlàg, adapted and bounded process and W is a Brownian motion. We
consider the process Y defined by

Y n
t =

[nt]∑
i=1

Xin. (2.19)

To see the limiting process Yt of Y n
t , we have to check all conditions of (2.9)–(2.13).

For (2.9), since g is of polynomial growth, E[Xin|F i−1
n

] exists and it is 0. Then, we obtain
B = 0.
For (2.10), a simple computation shows that

[nt]∑
i=1

E[X2
in|F i−1

n
]

P−→ Ft := a2

∫ t

0

f 2(σs)ds,

where a = var(f(U)) and U ∼ N(0, 1).
For (2.11), we choose M = W . Then, we obtian

[nt]∑
i=1

E[Xin(W i
n
−W i−1

n
)|F i−1

n
]

P−→ Gt := b

∫ t

0

f(σs)ds,

where b = E[g(U)U ] and U ∼ N(0, 1). Therefore,

ws =
√
a2 − b2f(σs) and vs = bf(σs).

For (2.12), since σ is a bounded process, we have
[nt]∑
i=1

E[X2
in1{|Xin|>ε}|F i−1

n
] ≤ 1

ε2

[nt]∑
i=1

E[X4
in|F i−1

n
]

≤ C
1

nε2
, C > 0

P−→ 0.

For (2.13), martingale representation theorem (see, (3.18)) implies that we can write

g(
√
n∆n

iW )− E[g(
√
n∆n

iW )] =

∫ i
n

i−1
n

φnsdWs,

for some process φn. Furthermore, employing the Itô isometry and the fact that 〈W,N〉 =

0 yields
[nt]∑
i=1

E[Xin(N i
n
−N i−1

n
)|F i−1

n
] =

1√
n
f(σ i−1

n
)E
(∫ i

n

i−1
n

φnsdWs

∫ i
n

i−1
n

dNs

)
=

1√
n
f(σ i−1

n
)E
(∫ i

n

i−1
n

φnsd 〈W,N〉
)

= 0.
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Applying Theorem 2.27, we conclude that

Y n
t

dst−→ Yt = b

∫ t

0

f(σs)dWs +
√
a2 − b2

∫ t

0

f(σs)dW
′
s,

where W ′ is a Brownian motion independent of F .



Chapter 3

Elements of Malliavin calculus

We devote this section to introduction of some concepts and the main theoretical results
of Malliavin calculus which will be used later in Chapter 4 and 5. The introduction relies
on the approaches of Nualart [77] and Øksendal [80]. The further details and rigorous
proofs can also be found in these references. Malliavin calculus allows us to compute
derivatives of random variables. We provide some useful tools such as the chain rule
and the integration by parts formula. To that end, we present the so-called Clark-Ocone
formula which gives explicit form of the martingale representation theorem.

3.1 Isonormal Gaussian processes

The general framework of an isonormal Gaussian process associated with a Hilbert space
H is defined here to introduce the Malliavin derivative in the following section.

Let (Ω,F ,P) be a complete probability space and H a separable Hilbert space with
the inner product and norm denoted by 〈· , ·〉H and ‖.‖H , respectively.

Definition 3.1
A centered Gaussian family W = {W (h)|h ∈ H} is called an isonormal Gaussian
process on (Ω,F ,P) if

E[W (h)W (g)] = 〈h, g〉H
for all h, g ∈ H .

Example 3.2
Let H := L2([0, T ]) denote the Hilbert space of square integrable functions f : [0, T ] →
R. For each h ∈ H , we define the random variable

W (h) =

∫ T

0

h(t)dBt

25
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where B is a Brownian motion. We have E[W (h)] = 0, and with the Itô isometry, we
obtain

E[W (h)W (g)] =

∫ T

0

h(t)g(t)dt = 〈h, g〉H ,

for all h, g ∈ H . Then, W = {W (h), h ∈ H} is an isonormal Gaussian process.

Example 3.3
Let H = R

m for some m ∈ N and (e1, ..., em) be an orthonormal basis in Rm with respect
to the standard Euclidean inner product. Then, for each h ∈ H , we can write

h =
m∑
i=1

ciei

for coefficient ci = 〈ei, h〉. Let {Y1, ..., Ym} be a set of i.i.d. random variables such that
Yi ∼ N(0, 1) for each i. We set

W (h) =
m∑
i=1

ciYi.

Then, W = {W (h), h ∈ H} is an isonormal Gaussian process.

The linearity and the existence of an isonormal Gaussian process are shown below.

Proposition 3.4 ([77])
Let H be a real separable Hilbert space. Then,

(i) the mapping h 7→ W (h) is linear from H to a closed subspace of L2(Ω,F ,P):

E[|W (λh+ µg)− λW (h)− µW (g)|2] = 0⇒ W (λh+ µg) = λW (h) + µW (g) a.s.,

for any λ, µ ∈ R and h, g ∈ H ,

(ii) there exists an H-isonormal Gaussian process W .

Proof. We will sketch a proof only for (ii) based on an idea of Komolgorov’s exten-
sion theorem. Since every separable Hilbert space has a countable orthonormal basis,
let (ei)i∈N be a countable orthonormal basis of H . We denote µ the standard Gaussian
measure on R. Define a product space

(Ω,F ,P) :=
( ∞∏
i=1

R,⊗∞i=1B(R),⊗∞i=1µ
)
.

By construction, the random variables πn defined by πn((ωi)i∈N) := ωn are independent
and Gaussian. We complete the proof by defining W : H → L2(Ω,F ,P) such that
W (ei) = πi.
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3.2 Malliavin derivative

Malliavin derivative allows us to compute derivatives of random variables. We first intro-
duce a concept of tensor product, which will be used to define the Malliavin derivative.

Let H be a Hilbert space with scalar product 〈· , ·〉H . We define

H⊗n := span{h1 ⊗ · · · ⊗ hn |hi ∈ H},

where the tensor product h1 ⊗ · · · ⊗ hn is multilinear, i.e.

(i) h1⊗h2 · · ·⊗(hi+gi)⊗· · ·⊗hn = h1⊗h2 · · ·⊗hi⊗· · ·⊗hn+h1⊗h2 · · ·⊗gi⊗· · ·⊗hn

(ii) h1 ⊗ h2 · · · ⊗ (λhi)⊗ · · · ⊗ hn = λ(h1 ⊗ h2 · · · ⊗ hn) for a constant λ.

The scalar product on H⊗n is induced by

〈ei1 ⊗ · · · ⊗ ein , ej1 ⊗ · · · ⊗ ejn〉H⊗n :=
n∏
p=1

〈
eip , ejp

〉
H
.

Let C∞p (Rn) denote the space of infinitely differentiable functions such that all deriva-
tives exhibit polynomial growth. The set of smooth random variables is introduced with

S =
{
F = f

(
W (h1), . . . ,W (hn)

)∣∣n ≥ 1, hi ∈ H and f ∈ C∞p (Rn)
}
.

Definition 3.5
The kth order Malliavin derivative of F ∈ S, denoted by DkF , is defined by

DkF =
n∑

i1,...,ik=1

∂k

∂xi1 · · · ∂xik
f
(
W (h1), . . . ,W (hn)

)
hi1 ⊗ · · · ⊗ hik . (3.1)

Note that the Malliavin derivative is closable from (Ω,F ,P) toL2(Ω;H) whereL2(Ω;H)

is a class of H-valued random elements Y that are F-measurable and E[‖Y ‖2
H ] < ∞. In

the setting of H = L2([0, T ]), this L2(Ω;H) can be identified with L2([0, T ],Ω). We also
note DF (t) = DtF and for notational ease by L2(Ω) we always mean L2(Ω,F ,P). We
can extend the domain of the derivative D by considering the completion of the set S.

Definition 3.6
Let F ∈ S, we define the norm ‖ · ‖k,q by

‖F‖k,q ≡

(
E
[
|F |q

]
+

k∑
m=1

E
[
‖DmF‖qH⊗m

])1/q

.

Moreover, we define the Banach space Dk,q to be the completion of the set S with respect
to the norm ‖ · ‖k,q.
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We have that if p ≤ q and k ≤ j, then ‖F‖k,q ≤ ‖F‖j,q for any F ∈ S. Therefore, if
k ≥ 0 and p > q, then Dk+1,p ⊂ Dk,q.

Example 3.7
Let B be a Brownian motion and h ∈ H

(i) if F = W (h), then DF = D(W (h)) = h,

(ii) if H = L2([0, T ]) and F =
∫ T

0
h(t)dBt, then DF = (hs)s∈[0,T ],

(iii) let (Yi)i≥1 is i.i.d. with N(0, 1)-distributed and define

Sn =
n∑
i=1

f(Yi) and Yi = W (hi).

For F = Sn, then D(Sn) =
∑n

i=1 f
′(Yi)hi.

As in classical calculus, linearity, product rule, chain rule and integration by parts still
hold for Malliavin calculus.

Proposition 3.8 ([77])
Let F,G ∈ D1,2 and h ∈ H . It holds that

(i) linearity:
D(F +G) = D(F ) +D(G), (3.2)

(ii) product rule:
D(FG) = F ·D(G) +G ·D(F ), (3.3)

(iii) chain rule: If g ∈ C1(R), then

D(g(F )) = g′(F )DF, (3.4)

(iv) integration by parts formula:

E[〈DF, h〉H ] = E[FW (h)]. (3.5)

Proof. We will give a proof only for (iv) and we refer to Nualart [77] for the rest. Without
loss of generality, we assume that h = e1, F = f(W (e1), ...,W (en)) where e1, e2, ..., en
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are orthonormal elements ofH and f ∈ C∞p (Rn). Denote ϕ(x) the density of the standard
normal distribution on Rn. Then, we have

E[〈DF, h〉H ] = E[
∂

∂x1

f(W (e1), ...,W (en))]

=

∫
Rn

∂

∂x1

f(x1, ..., xn)ϕ(x)dx

=

∫
Rn

x1f(x)ϕ(x)dx

= E[f(W (e1), ...,W (en))W (e1)]

= E[FW (h)].

Therefore, from Proposition 3.8 one can easily show that

E[G〈DF, h〉H ] + E[F 〈DG, h〉H ] = E[FGW (h)]. (3.6)

The integration by parts formula will play an important role along this thesis.

We present the Malliavin calculus for diffusion processes in the next proposition.

Proposition 3.9 ([77], p.124)
If (Xt)t∈[0,1] is a solution of a stochastic differential equation (SDE)

dXt = a(Xt)dt+ σ(Xt)dBt,

and a, σ ∈ C1(R) with bounded derivatives, then DXt is given as the solution of the SDE

DsXt = σ(Xs) exp
(∫ t

s

(a′ − 1

2
(σ′)2)(Xu)du+

∫ t

s

σ′(Xu)dBu

)
, (3.7)

for s ≤ t, and DsXt = 0, if s > t.

3.3 Wiener chaos

Definition 3.10
Let Hn(x) denote the nth Hermite polynomial, which is defined by

Hn(x) = (−1)n exp(x2/2)
dn

dxn
(exp(−x2/2)), n ≥ 1

and H0(x) = 1.
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The Hermite polynomials are the coefficients for the power expansion of

F (x, t) = exp(xt− t2

2
)

= exp(
x2

2
) exp(−1

2
(x− t)2)

= exp(
x2

2
)
∞∑
n=0

tn

n!
(
dn

dtn
exp(−1

2
(x− t)2))|t=0

=
∞∑
n=0

tn

n!
Hn(x).

For example, H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x and
(x− d

dx
)Hn(x) = Hn+1(x).

The next lemma shows a relation between Hermite polynomials and Gaussian random
variables.

Lemma 3.11 ([77], Lemma 1.1.1)
Let X and Y be jointly normally distributed with E[X2] = E[Y 2] = 1. Then, it holds that
for all n,m ≥ 0

E[Hn(X)Hm(Y )] =

{
0, if n 6= m

n!(E[XY ])n, if n = m.

Proof. The generating function ϕ and the characteristic function of joint Gaussian random
variables give

E[ϕ(s,X)ϕ(t, Y )] = E

[
exp

(
sX − s2

2

)
exp

(
tY − t2

2

)]
= exp(stE[XY ]),

for any s, t ∈ R. Taking the (n+m)th partial derivative at s = t = 0 yields

E

[ ∂n
∂sn

ϕ(x,X)|s=0
∂n

∂tn
ϕ(t, Y )|t=0

]
=

∂n

∂sn
exp(stE[XY ](sE[XY ]m))|s=t=0.

Then,

E[Hn(X)Hm(Y )] =

{
0, if n 6= m

n!(E[XY ])n, if n = m.

We will denote the σ-field generated by the random variables {W (h), h ∈ H} by G.
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Lemma 3.12 ([77], Lemma 1.1.2)
The random variables {exp(W (h)), h ∈ H} form a total subset of L2(Ω,G,P). This
means if X ∈ L2(Ω,G,P) such that

E[X exp(W (h))] = 0

for all h ∈ H , then X = 0 almost surely.

Let us now define the spaces

Hn = span{Hn(W (h)) |h ∈ H with ‖h‖H = 1} ⊂ L2(Ω,G,P). (3.8)

These are called the Wiener chaos of order n. We see thatH0 is the set of constants while
H1 coincides with the set of random variables {W (h), h ∈ H}. The previous Lemma 3.11
shows that the spaces Hn and Hm are orthogonal for n 6= m. We present an orthogonal
decomposition of L2(Ω,G,P) in the next theorem.

Theorem 3.13 ([77], Theorem 1.1.1)
The space L2(Ω,G,P) can be decomposed as an orthogonal sum of the subspaces Hn,
n ≥ 0, i.e.

L2(Ω,G,P) = ⊕∞n=0Hn. (3.9)

The connection of Hermite polynomials and multiple stochastic integrals is provided
in the following result.

Proposition 3.14 ([77], Proposition 1.1.4)
LetHn(x) be the m-th Hermite polynomial, and let h ∈ H = L2([0, T ]) such that ‖h‖H =

1. Then, it holds that

n!Hn(W (h)) =

∫
[0,T ]n

h(t1) · · · h(tn)dBt1 · · · dBtn ,

where the integral in the right hand side of the equation is a multiple stochastic integral
(see, [77, Section 1.1.2] for the precise definition).

We say that a function g : [0, T ]n → R is symmetric if

g(tσ1 , ..., tσn) = g(t1, ..., tn)

for all permutation σ of the set {1, ..., n}. As a result, we have the following version of
the Wiener chaos expansion.
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Theorem 3.15 (Wiener Chaos representations ([77], Theorem 1.1.2))
Any square integrable random variable F ∈ L2(Ω,G,P) admits the expansion

F =
∞∑
n=0

In(fn), (3.10)

where In(·) is the multiple stochastic integral

In(fn) =

∫
[0,T ]n

fn(t1, t2, ..., tn)dBt1 · · · dBtn

for fn ∈ L2([0, T ]). Then, it holds that f0 = E[F ] with the identity mapping I0. Moreover,
we can assume that the functions fn ∈ L2([0, T ]n) are uniquely determined by F and
symmetric.

With the Chaos expansion (3.10), we can compute the Malliavin derivative of a square
integrable random variable F easily by using the next proposition.

Proposition 3.16 ([80], Theorem 4.18)
Let F ∈ D1,2 be a square integrable random variable with Wiener chaos representation∑∞

n=0 In(fn). Then, F ∈ D1,2 if and only if

∞∑
n=1

nn! ‖fn‖2
L2([0,T ]n) <∞ (3.11)

and in this case

DtF =
n∑
i=1

nIn−1(fn(·, t)). (3.12)

To compute the Malliavin derivative of conditional expectations shown in Proposition
3.18, it requires the following auxiliary lemma.

Lemma 3.17 ([77], Lemma 1.2.5)
Let H = L2(A,A,m) where (A,A,m) is a separable σ-finite, atomless measure space.
Suppose that F is a square integrable random variable with Wiener chaos representation∑∞

n=0 In(fn). Let G ∈ A. Then

E[F |FG] =
∞∑
n=0

In(fn1
⊗n
G ), (3.13)

where FG is the σ-field generated by the random variables {W (B) |B ⊂ G,B ∈ A}.
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Proof. Without loss of generality, we assume that F = In(fn) and fn = 1B1×···×Bn where
B1, ..., Bn are mutually disjoint sets of finite measure. Then,

E[F |FG] = E[W (B1) · · ·W (Bn)|FG]

= E

[ n∏
i=1

(W (B1 ∩G) +W (B1 ∩Gc))|FG
]

= In(1(B1∩G)×···×(Bn∩G)).

Proposition 3.18 ([80], Proposition 5.6)
Let G ∈ D1,2. It holds that for any t ≥ 0

(i) E[G|Ft] ∈ D1,2 and

(ii) Ds(E[G|Ft]) = E[DsG|Ft]1{s≤t}.

As a consequence of Proposition 3.18, we can show that the Malliavin derivative at
time t of an Fs-adapted stochastic process is Fs-adapted for all t.

Corollary 3.19 ([80], Corollary 5.7)
Let σs(w) be an Fs-adapted stochastic process. Suppose that σs(·) ∈ D1,2 for all s. It
holds that

(i) Dt(σs(w)) is Fs-adapted for all t and

(ii) for t > s,
Dt(σs(w)) = 0.

Proof. We can complete the proofs for both (i) and (ii) by using Proposition 3.18. That is

Dt(σs(w)) = Dt(E[σs(w)|Fs])
= E[Dtσs(w)|Fs]1[0,s](t).

3.4 Divergence operator

This section introduces the divergence operator δ which is the adjoint of the Malliavin
derivative. The Malliavin DerivativeD is an unbounded operator fromL2(Ω) intoL2(Ω;H).
Furthermore, the domain of D, D1,2, is dense in L2(Ω) ([77]). Then, we can define its ad-
joint δ.
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Definition 3.20
The operator δ is the adjoint of D such that the domain of δ denoted by Dom(δ) is the
following set:

Dom(δ) = {u ∈ L2(Ω;H)||E[〈DF, u〉H ]| ≤ cu ‖F‖L2(Ω) ,∀F ∈ D1,2},

and if u ∈ Dom(δ), then δ(u) is uniquely characterized by the

E[〈DF, u〉H ] = E[Fδ(u)] (3.14)

for all F ∈ D1,2. δ is called divergence operator.

The equation (3.14) is also called integration by parts formula. Next, we give exam-
ples of elements in Dom(δ) when Hilbert spaces are provided.

Example 3.21
(i) Let h ∈ H = L2([0, T ]). Since E[〈DF, h〉H ] = E[FW (h)] for all F ∈ D1,2 (see,
(3.5)),

E

[ ∫ T

0

DsF · h(s)ds
]

= E[〈DF, h〉H ]

= E[FW (h)] = E

[
F

∫ T

0

h(s)dBs

]
.

Therefore, h ∈ Dom(δ) and

δ(h) =

∫ T

0

h(s)dBs.

Moreover, from the above computation, we get another version of the integration by parts
formulas

E

[
F

∫ T

0

h(s)dBs

]
= E

[ ∫ T

0

DsF · h(s)ds
]
. (3.15)

(ii) Let u =
∑n

i Fihi where Fi ∈ S and hi ∈ H . Employing the linearity (3.2), product
rule (3.3) and integration by parts formula (3.5), for any F ∈ S, we have

|E[〈DF, u〉H ]| =
∣∣∣E[〈DF,

n∑
i=1

Fihi〉H ]
∣∣∣ =

∣∣∣E[
n∑
i=1

Fi〈DF, hi〉H ]
∣∣∣

=
∣∣∣ n∑
i=1

E[FFiW (hi)]− E[F 〈DFi, hi〉H ]
∣∣∣

≤ C ‖F‖L2(Ω) ,
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for some constant C. Then, u ∈ Dom(δ). Furthermore, from the above computation, we
obtain

E[〈DF, u〉H ] = E[F
n∑
i=1

(FiW (hi)− 〈DFi, hi〉H)].

Therefore, using (3.14), we can conclude that

δ(u) =
n∑
i=1

FiW (hi)− 〈DFi, hi〉H .

Moreover, we can derive a commutativity relationship between the divergence opera-
tor δ and the Malliavin derivative D.

Proposition 3.22 ([77],(1.46))
Let F ∈ S and u =

∑n
i Fihi where Fi ∈ S and hi ∈ H . It holds that

〈D(δ(u)), h〉H = 〈u, h〉H + δ(〈Du, h〉H).

The next result shows that we can factor out scalar random variables from the diver-
gence.

Proposition 3.23 ([77], Proposition 1.3.3)
Let F ∈ D1,2 and u ∈ Dom(δ) such that Fu ∈ L2(Ω;H). Then, Fu ∈ Dom(δ) and the
equality

δ(Fu) = Fδ(u)− 〈DF, u〉H , (3.16)

holds ture if the right-hand side of (3.16) is square integrable.

Proof. Suppose that J is a smooth random variable with compact support. By using (3.6),
we have

E[Fδ(Fu)] = E[〈DJ, Fu〉H ]

= E[〈D(FJ), u〉H − J〈DF, u〉H ]

= E[FJδ(u)− J〈DF, u〉H ]

= E[J(Fδ(u)− 〈DF, u〉H)].

We are done.

The following proposition expresses the divergence operator δ in terms of the Wiener
chaos decomposition. We will see that the class Dom(δ) coincides with the subspace of
L2([0, T ]× Ω) under a certain condition.
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Proposition 3.24 ([77], Proposition 1.3.7)
Let u ∈ L2([0, T ]× Ω) with Wiener chaos decomposition

u(t) =
∞∑
n=0

In(fn(·, t)).

Then, u ∈ Dom(δ) if and only if

δ(u) =
∞∑
n=0

In+1(fn) (3.17)

converges in L2(Ω).

3.5 Clark-Ocone formula

We recall the well-known martingale representation theorem from Itô calculus that under
a certian condition a random variable can be written in terms of an Itô integral with respect
to a Brownian motion.

Proposition 3.25 (Martingale representation theorem ([81], Theorem 4.3.4))
Let 0 ≤ t ≤ T , B be a Brownian motion on a probability space (Ω,F ,P) and (Ft)t≥0 be
the filtration generated by this Brownian motion B. Let X be a martingale with respect
to the filtration (Ft)t≥0. Then, there is an adapted process φ such that

Xt = X0 +

∫ t

0

φudBu, 0 ≤ t ≤ T. (3.18)

The process φ in (3.18) is implicit. However, if we know that a process X belongs to
D1,2, the adapted process φ can be identified as the conditional expectation of the Malli-
avin derivative of X . In other words, we derive an explicit form of the martingale repre-
sentation theorem.

Proposition 3.26 (The Clark-Ocone formula ([77], Theorem 1.3.14))
Let F ∈ D1,2 be Ft-measurable. Then,

F = E[F ] +

∫ t

0

E[DuF | Fu]dBu. (3.19)

Proof. [77, Theorem 1.3.14]
Owing to Theorem 3.15, we can write F =

∑∞
n=0 In(fn). Using (3.12) and (3.13), we
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have

E[DtF |Ft] =
∞∑
n=1

nE[In−1(fn(·, t))|Ft]

=
∞∑
n=1

nIn−1(fn(t1, ..., tn−1, t)1{t1∨···∨tn−1<t}).

Define φt = E[DtF |Ft]. By Proposition 3.24, the integral δ(φ) is computed as

δ(φ) =
∞∑
n=1

In(fn) = F − E[F ].

Since the process φ belongs to the class of measurable adapted processes, the integral
δ(φ) is an Itô integral of φ. We complete the proof.
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Chapter 4

Subsampling high-frequency data

In this chapter, we consider a scalar continuous Itô semimartingale X = (Xt)t≥0 of the
form

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs, (4.1)

where X0 is the starting point, a = (at)t≥0 is a predictable and locally bounded drift
process, σ = (σt)t≥0 is an adapted, càdlàg volatility process, while W = (Wt)t≥0

is a standard Brownian motion. This process is defined on a filtered probability space
(Ω,F , (Ft)t≥0,P) satisfying the usual assumptions and adapted to (Ft)t≥0. It could rep-
resent the log-price of some financial security.

We are in the high-frequency setting. We suppose that historical data ofX is available
in the time frame [0, 1]. In this interval, we assume that X is recorded at equidistant time
points ti = i/n, for i = 0, 1, . . . n, so that n+ 1 is the total number of observations in the
sample. We define the n increments of X as:

∆n
iX = Xi/n −X(i−1)/n, for i = 1, . . . , n. (4.2)

The asymptotic theory we derive below is then infill, i.e. we are at some point going to
let n→∞.

In econometrics, the quantity of interest is integrated functions of the diffusion coef-
ficient

IV (f)t =

∫ t

0

f(σs)ds, (4.3)

for some suitable function f . When f(x) = x2, it is called integrated volatility.

The challenge is that the objects of interest appearing in (4.3) are latent, but they can
be estimated from the available sample in high-frequency framework. A popular statistic,
which is well-suited to do this, is the bipower or multipower variation introduced in [24].

39
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It is based on the summation of products of the absolute value of adjacent high-frequency
returns. Here, we adopt the more general definition of bipower variation from [15]:

V (f, g)n =
1

n

n−1∑
i=1

f
(√

n∆n
iX
)
g
(√

n∆n
i+1X

)
, (4.4)

where f = (f1, . . . , fm)′ and g = (g1, . . . , gm)′ are Rm-valued functions. Note that in Eq.
(4.4) the multiplication is understood to be done element-by-element. Indeed, we have
already discussed a special case, power variation, in Section 2.3. In [15], the authors show
a stochastic limit theorem for the statistic in (4.4).

Proposition 4.1 ([15], Theorem 2.1)
Assume that X is a continuous Itô semimartingale as in (4.1) and the functions f, g are
continuous with at most polynomial growth. Then, as n→∞, it holds that

V (f, g)n
P−→ V (f, g) =

∫ 1

0

ρσs(f)ρσs(g)ds (4.5)

where ρx(f) = E[f(xU)] for x ∈ R and U ∼ N(0, 1).

Furthermore, the authors also provide a central limit theorem for the associated statis-
tic. To be able to acquire a central limit theorem, we recall an additional regularity condi-
tion on σ of the following type.

Assumption (V): σ is of the form:

σt = σ0 +

∫ t

0

ãsds+

∫ t

0

σ̃sdWs +

∫ t

0

ṽsdBs

+

∫ t

0

∫
E

δ̃(s, x)1{|δ̃(s,x)|≤1}(µ̃− ν̃)(ds, dx) +

∫ t

0

∫
E

δ̃(s, x)1{|δ̃(s,x)|>1}µ̃(ds, dx),

(4.6)

where σ0 is its initial value, ã = (ãt)t≥0, σ̃ = (σ̃t)t≥0 and ṽ = (ṽt)t≥0 are adapted, càdlàg
stochastic processes, while B = (Bt)t≥0 is a standard Brownian motion that is indepen-
dent ofW . Furthermore, (E, E) is a Polish space, µ̃ is a random measure on R+×E, which
is independent of (W,B) and has an intensity measure ν̃(ds, dx) = dsF̃ (dx), where F̃ is
a σ-finite measure on (E, E). Also, δ̃ : Ω × R+ × E → R is a predictable function and
(Sk)k≥1 is a sequence of stopping times increasing to∞ such that |δ̃(ω, s, x)|∧1 ≤ ψ̃k(x)

for all (ω, s, z) with s ≤ Sk(ω) and
∫
E
ψ̃2
k(x)F̃ (dx) <∞ for all k ≥ 1.

Moreover, we also recall a smoothness property of the functions f and g in (4.4),
which we state with a generic function h.
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Assumption (K): The function h : R 7→ R is even and continuously differentiable.
Moreover, both h and its derivative h′ are at most of polynomial growth.

Both Assumption (V) and (K) are standard conditions for the validity of central limit
theorems for classical high-frequency statistics (see, [15]). The following proposition,
which is adapted from that paper, then describes the limiting properties of bipower varia-
tion.

Proposition 4.2
Assume that X is a continuous Itô semimartingale as in (4.1), where the volatility process
σ follows Assumption (V) and Assumption (K) holds true for each component of f =

(f1, . . . , fm)′ and g = (g1, . . . , gm)′. Then, as n→∞, it holds that

√
n
(
V (f, g)n − V (f, g)

)
dst−→MN(0,Σ). (4.7)

Finally, Σ is the m×m asymptotic conditional covariance matrix, which has elements

Σij =

∫ 1

0

[
ρσs(fifj)ρσs(gigj) + ρσs(fi)ρσs(gj)ρσs(fjgi)

+ ρσs(fj)ρσs(gi)ρσs(figj)− 3ρσs(fi)ρσs(fj)ρσs(gi)ρσs(gj)
]
ds.

(4.8)

Proof. See [15].

In fact, the Proposition 4.2 can be extended to non-differentiable functions f and g by
replacing Assumption (K) with Assumption (H’) and (K’) from [15]. More precisely,

Assumption (H’): The process σ2 > 0.

Assumption (K’): The function f is even and continuously differentiable on the com-
plement Bc of a closed subset B ⊂ R, and satisfies

|y| ≤ 1⇒ ‖f(x+ y)− f(x)‖ ≤ C(1 + |x|p)|y|r (4.9)

for some constants C > 0, p ≥ 0 and r ∈ (0, 1]. Furthermore,

a) if r = 1, then B has Lebesgue measure 0,
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b) if r < 1, then B satisfies
for any positive numberC and anyN(0, C)-random variableU , the distance d(U,B)

from U to B has a density φC on R+, such that

sup
x∈R+,|C|+|C−1|≤A

φC(x) <∞ (4.10)

for all A <∞, and we have

x ∈ Bc, |y| ≤ 1 ∧ d(x,B)

2
⇒

{
‖∇f(x)‖ ≤ C(1+|x|p)

d(x,B)1−r
,

‖∇f(x+ y)−∇f(x)‖ ≤ C(1+|x|p)|y|
d(x,B)2−r

.
(4.11)

Assumption (H’) is a technical condition used in the proof of the Proposition 4.2 for
non-differentiable functions f and g, while Assumption (K’) puts suitable restrictions on
the set, where f and g are not differentiable.

Example 4.3
A classical example, which is used intensively in applied work, is the original bipower
variation of [24]. Let

fi(x) = |x|qi and gi(x) = |x|ri ,

for 1 ≤ i ≤ m and qi, ri ∈ (0, 1], which do not satisfy Assumption (K). However,
Assumption (K’) is fulfilled. More precisely, the condition (4.9) is obviously satisfied for
any p ≥ 0. After observing that B = {0}, then it has Lebesgue measure 0 and satisfies
(4.10). Since d(x,B) = d(x, 0) = |x|, (4.11) is satisfied. Still, if Assumption (H’) is also
fulfilled, Proposition 4.2 holds. Then,

V (fi, gi)
n =

1

n

n−1∑
i=1

|∆n
iX|qi |∆n

i+1X|ri , V (fi, gi) = µqiµri

∫ 1

0

|σs|qi+rids, (4.12)

where µq = E[|Z|q] and Z ∼ N(0, 1). And Σ has the form:

Σij =
(
µqi+qjµri+rj + µqiµrjµqj+ri + µqjµriµqi+rj − 3µqiµqjµriµrj

) ∫ 1

0

|σs|qi+qj+ri+rjds.
(4.13)

The aim of this chapter is to construct an estimator of the asymptotic variance Σ

based on a technique of subsampling of high-frequency data. This subsampling was sug-
gested by Kalnina and Linton [69] and Kalnina [67] for the asymptotic variance of the
two-scale realized variance, following earlier work in the classical time series literature
[88, 89]. Our estimator is not only highly intuitive and simple to implement but also is
positive semi-definite by construction which can be use to construct confidence intervals
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for V (f, g) (see, remark 4.7). We will discuss later in Section 5.3 that some existing
estimators fail to be positive definite.

This chapter is arranged as follows. The first section starts with illustrating how to
build subsampling estimators for power variation and shows an optimal rate of conver-
gence. Next, we generalize to the case of bipower variation. This can not be directly
adapted from the power variation. We provide all proofs of the presented results in the
last section.

4.1 Main results

4.1.1 Subsampling for power variation

In order to give an intuition for the general bipower (or multipower) variation case, we
shall start with an easier case, the power variation, i.e.

V (f, 1)n = V (f)n =
1

n

n∑
i=1

f
(√

n∆n
iX
)
.

However, the result in this case is interesting in its own right compared to the general case
because of the differences of convergence rates. We refer to Section 2.3 for the asymtotic
results of V (f)n.

Given discrete observations X0, X 1
n
, X 2

n
, . . . , X1, we construct the estimator with the

following steps.

1. We split up all samples into L subsamples where L divides n. For each 1 ≤ l ≤ L,

l-th subsample is composed of the increments ∆n
(i−1)L+lX where 1 ≤ i ≤ n/L

(see, Figure 4.1).

2. Let Vl(f)n be the m × 1 dimensional power variation type estimator computed on
l-th subsample:

Vl(f)n =
1

n/L

n/L∑
i=1

f(
√
n∆n

(i−1)L+lX).

Intuitively, under suitable conditions on L, Vl(f)n
P−→ V (f) and its asymptotic

distribution (more or less) follows from Proposition 4.2, except that its rate of con-

vergence is (n/L)−1/2, i.e.
√
n

L

(
Vl(f)n − V (f)

)
dst−→ MN(0,Σ). Moreover, as
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each subsample is based on non-overlapping increments, the Vl(f)n’s are, asymp-
totically, conditionally independent. This suggests that by averaging the sum of

outer products of
√
n

L

(
Vl(f)n−V (f)

)
, we should get a consistent estimator of Σ.

3. We define

Σn =
1

L

L∑
l=1

(√
n

L
(Vl(f)n − V (f))

)(√
n

L
(Vl(f)n − V (f))

)′
, (4.14)

where x′ denotes the transpose of x. We can see that Σn in (4.14) is positive semi-
definite by construction and should be a consistent estimator of Σ.

4. We replace the latent V (f) by its estimator V (f)n that can be computed from data
and get the following feasible version of Σn:

Σ̂n =
1

L

L∑
l=1

(√
n

L
(Vl(f)n − V (f)n)

)(√
n

L
(Vl(f)n − V (f)n)

)′
. (4.15)

This does not affect the asymptotics, because V (f)n converges much faster than
Vl(f)n.
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Figure 4.1: The construction of the subsampling estimator for L = 3.

For our asymptotic theory, we need to suppose an additional assumption, which is stronger
than (V), that the driving terms in bothX and σ can be modeled as Brownian semimartin-
gales:
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Assumption (H): σ is continuous and follows Assumption (V), and each of a, ã, σ̃ and
ṽ is continuous of the form in (4.6).

Furthermore, we require a technical Assumption (M) that provides the Malliavin
smoothness of the random variables appearing in Assumption (H).

Assumption (M): We assume that for any 0 ≤ t ≤ r ≤ s: σs, σ̃s, ṽs, Dr(σs), Dr(σ̃s),
Dr(ṽs) ∈ D1,2 and

E[|Dt(σs)|32] + E|Dt(σ̃s)|32] + E[|Dt(ṽs)|32] ≤ C,

E[|Dt(Dr(σs))|16] + E[|Dt(Dr(σ̃s))|16] + E[|Dt(Dr(ṽs))|16] ≤ C.
(4.16)

Moreover, f ∈ C3(R), while f , f ′, f ′′ and f ′′′ exbibit polynomial growth.

Remark 4.4
Assumption (M) is not a necessary condition to show consistency of our estimator but it
will be used to derive an optimal rate of convergence. We refer to (4.66) for the computa-
tion of the Malliavin derivative in this case.

Now, we state the main result which leads to a convergence rate of Σ̂n.

Theorem 4.5
Assume that X is a continuous Itô semimartingale as in (4.1), where Assumption (H)

holds true, as is Assumption (K) for each component of f = (f1, . . . , fm)′. Moreover, we
assume that Assumption (M) is fulfilled. As n → ∞, L → ∞, and n/L → ∞, it holds
that

Σ̂n − Σ = Op

(
1√
L

)
︸ ︷︷ ︸

CLT

+Op

(
L

n

)
︸ ︷︷ ︸

blocking

. (4.17)

Proof. See Section 4.2.

Theorem 4.5 presents the leading errors inherent in Σ̂n. The first term, 1/
√
L, intu-

itively follows from a central limit theorem result, because Σ̂n is an empirical mean of L
asymptotically, conditionally independent statistics. However, it is not easy to apply this
relationship for a formal derivation of the error rate. The second error is more subtle. It
comes from freezing the volatility process at the beginning of a subblock of length L/n.
If volatility is assumed to be Hölder continuous of order α ∈ (0, 1], a rough estimate im-
plies an error rate of (L/n)α. However, due to the semimartingale structure of σ, we can
improve this to L/n by applying a more refined estimation technique. As such, we should
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point out that the proof of Theorem 4.5 is much more complex compared to subsampling
of i.i.d. observations.

By balancing both errors, we can find the fastest rate of convergence for our method.
This requires:

L = O
(
n2/3

)
, (4.18)

such that
Σ̂n − Σ = Op

(
n−1/3

)
. (4.19)

The stable central limit theorem of Proposition 4.2 is also valid for a non-differentiable
function f , given that Assumptions (H’) and (K’) are satisfied. However, under these
weaker conditions, it appears out of reach to derive a convergence rate for Σ̂n. We can
nonetheless show that Σ̂n still converges in probability to Σ, which is relevant for applied
work.

Theorem 4.6
Assume that X is a continuous Itô semimartingale as in (4.1), where Assumption (V)

holds true, as are Assumption (H’) and (K’). As n → ∞, L → ∞, and n/L → ∞, it
holds that

Σ̂n
P−→ Σ. (4.20)

Proof. See Section 4.2.

Remark 4.7
We can combine the consistency of Σ̂n from Theorem 4.6 with the convergence in distri-
bution in (4.7) to obtain a feasible central limit theorem. Applying the properties of stable
convergence, we get the following feasible result:

Σ̂−1/2
n

√
n
(
V (f)n − V (f)

)
d−→ N(0, Im), (4.21)

which can be used to construct confidence intervals for V (f) or do hypothesis testing. If
the convergence had not been stable in law, this result would not follow in general.

4.1.2 Subsampling for bipower variation

In the previous section, we presented a subsampling estimator for the asymptotic con-
ditional covariance matrix of power variation. If we are interested in bipower (or mul-
tipower) variation, the theory derived there does not readily apply. This is because the
summands in (4.4) are, asymptotically, 1-dependent, which the subsampling approach
shown in Figure 4.1 does not adequately capture.
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In order to consistently estimate Σ in the bipower case, we use an intuitive blocking
approach, which is described next. We define the ith block of high-frequency data by
taking:

Bi(p) =
{
j : (i− 1)p ≤ j ≤ ip

}
, (4.22)

where p ≥ 2 is an integer, and i ≥ 1.

Bi(p) is composed of adjacent observation time points of X(i−1)p/n,. . .,Xip/n. From
this, we can compute p consecutive returns ∆n

(i−1)p+1X,. . .,∆
n
ipX . Therefore, Bi(p) plays

the role of the interval [(i − 1)/n, i/n] for power variation, which was used to compute
a single return ∆n

iX . The only change is that we need to make this interval longer, such
that we can consistently estimate the covariance structure of V (f, g)n. As the Bi(p)’s
are based on non-overlapping increments, it still holds that bipower variations computed
from different subsamples are, asymptotically, conditionally independent.

We reset Σ̂n as follows:

Σ̂n =
1

L

L∑
l=1

(√
n

L

(
Vl(f, g)n − V (f, g)n

))(√n

L

(
Vl(f, g)n − V (f, g)n

))′
, (4.23)

where, assuming Lp divides n,

Vl(f, g)n =
Lp

n

n/Lp∑
i=1

v(i−1)L+l(f, g)n,

vi(f, g)n =
1

p− 1

∑
j,j+1∈Bi(p)

f
(√

n∆n
jX
)
g
(√

n∆n
j+1X

)
.

(4.24)

Note that n/Lp is the number of blocks assigned to each subsample, and that the sub-
sample statistic vi(f, g)n is computed only from data within the ith block Bi(p). As in
the above, we definitely require n → ∞, p → ∞, L → ∞, and n/pL → ∞ to prove
the asymptotic theory for Σ̂n. It turns out, however, we need a slightly stronger condi-

tion for the last part to ensure consistency. This is because the rate
√
n

L
in the definition

of (4.23) corresponds to the martingale part of Vl(f, g)n − V (f, g)n, while the statistic
Vl(f, g)n − V (f, g)n also has a bias term, which is of order Lp/n. Thus, to make the
bias negligible with respect to the martingale part, we need n/Lp2 → ∞. Hence our
“minimal” assumptions are based on this condition.

Theorem 4.8
Assume that X is a continuous Itô semimartingale as in (4.1), where Assumption (H)

holds true, as is Assumption (K) for each component of f = (f1, . . . , fm)′ and g =
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(g1, . . . , gm)′. Moreover, Assumption (M) is fulfilled. As n → ∞, p → ∞, L → ∞, and
n/Lp2 →∞, it holds that

Σ̂n − Σ = Op

(
1√
L

)
︸ ︷︷ ︸

CLT

+Op

(
Lp2

n

)
︸ ︷︷ ︸

blocking

+Op

(
1

p

)
︸ ︷︷ ︸

HAC

. (4.25)

Proof. See Section 4.2.

The first two errors in (4.25) can be interpreted as those in Theorem 4.5, except the
second is also affected by the block size p. Meanwhile, the decomposition of Σ̂n − Σ in
Theorem 4.8 has an extra error of order Op(1/p). The additional term, which emerges
from the computation of the conditional variance of vi(f, g)n, has an intuitive interpreta-
tion. If we recall that in the current setting of bipower variation, the summands in (4.24)
(or (4.4)) are asymptotically 1-dependent.

Let us consider the following stylized example. Assume that (Zi)i≥1 is a sequence of
stationary 1-dependent random variates. Then,

var

(
1
√
p

p∑
i=1

Zi

)
= var(Z1)+2

(p− 1)

p
cov(Z1, Z2)→ var(Z1)+2cov(Z1, Z2), (4.26)

as p→∞.

This calculation shows that the finite sample variance on the left-hand side is not equal
to, but converges towards, the asymptotic variance. The difference, i.e. the bias, is the
term−2cov(Z1, Z2)/p, which has orderO(1/p). This example also helps to illustrate that
Theorem 4.8 does not change, and in particular the convergence rate of Σ̂n is unaffected,
if we were to compute a higher order multipower variation statistic. Then there would be
more covariance terms in (4.26), but the bias in each of them would still be O(1/p).

The fastest rate is again found by balancing the errors, which means taking:

L = O(n2/5), p = O(n1/5), (4.27)

for which
Σ̂n − Σ = Op(n

−1/5). (4.28)

Moreover, we note again that the consistency of Σ̂n holds under the weaker assumptions
and does not require Assumptions (K) and (M). We note that the condition L/p → ∞ is
necessary to deal with an additional bias term.

Theorem 4.9
Assume that X is a continuous Itô semimartingale as in (4.1), where Assumption (V)
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holds true, as are Assumption (H’) and (K’). As n → ∞, p → ∞ L/p → ∞, and
n/Lp2 →∞, it holds that

Σ̂n
P−→ Σ. (4.29)

Proof. See Section 4.2.

To end this section, we should point out that for the power variation estimator covered
by Theorem 4.5 in the previous subsection, it follows the work of [15] that there exists
another consistent, positive semi-definite estimator of Σ:

Ŝn =
1

2n

n−1∑
i=1

(
f
(√

n∆n
iX
)
− f
(√

n∆n
i+1X)

)(
f
(√

n∆n
iX
)
− f
(√

n∆n
i+1X)

)′
. (4.30)

Ŝn has a better rate of convergence n−1/2 compared to n−1/3 derived in the previous
section for Σ̂n. Ŝn is, therefore, more efficient for power variation, but it does not work
for bi- or multipower variation.

4.1.3 Subsampling for truncated bipower variation

In an efficient market, equilibrium prices should adjust instantly to new information about
fundamentals. If this leads to a significant revision of the fair value of the asset, the price
has to move sharply and, potentially, discretely. This feature of price formation is not
captured by the previous setup, where X has continuous sample paths. In this section,
we therefore add a jump term to X and develop a framework for jump-robust inference
about volatility based on subsampling truncated bipower variation [64, 74]. Accordingly,
we assume that:

Assumption (J): X is of the form:

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs

+

∫ t

0

∫
E

δ(s, x)1{|δ(s,x)|≤1}(µ− ν)(ds, dx) +

∫ t

0

∫
E

δ(s, x)1{|δ(s,x)|>1}µ(ds, dx),

(4.31)

where X0, a = (at)t≥0, σ = (σt)t≥0 and W = (Wt)t≥0 are defined as in (4.1), while
(E, E) is a Polish space, µ is a random measure on R+×E with compensator ν(ds, dx) =

dsF (dx), where F is a σ-finite measure on (E, E). Also, δ : Ω × R+ × E → R is a
predictable function and (Sk)k≥1 is a sequence of stopping times increasing to ∞ such
that |δ(ω, s, x)| ∧ 1 ≤ ψk(x) for all (ω, s, z) with s ≤ Sk(ω) and

∫
E
ψβk (x)F (dx) < ∞
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for all k ≥ 1 and β ∈ [0, 1).

β relates to the activity index of the price jump process. The condition imposed on β
implies that the jumps in X are (absolutely) summable, i.e. we restrict attention to jump
processes with paths of finite variation, but, possibly, infinite activity.

Although the theory derived here should work with a general f and g, it requires a lot
of notation. To develop ideas and maintain a streamlined exposition, we focus on the class
of pure bipower variations in this section. The kth coordinate of the truncated bipower
variation V̌ (q, r)n is therefore:

V̌ (qk, rk)
n =

1

n

n−1∑
i=1

|
√
n∆n

i X̌|qk |
√
n∆n

i+1X̌|rk , (4.32)

where ∆n
i X̌ = ∆n

iX ·1{|∆n
i X|≤un} is the increment after jump-trucation and the threshold

level un = αn−ω̌ with α > 0 and ω̌ ∈ (0, 1/2). By excluding the largest increments of X ,
the bipower variation statistic is, asymptotically, merely based on those high-frequency
returns that are compatible with a continuous sample path model.

First, we recall the central limit theorem for V̌ (q, r)n.

Proposition 4.10
Assume thatX is a jump-diffusion process as in Assumption (J) and σ follows Assumption
(V) with σ > 0. We denote by s = 1 ∧ min{qk, rk : qk > 0, rk > 0, 1 ≤ k ≤ m} and

s′ = 1 ∨ max{qk, rk : 1 ≤ k ≤ m}. Then, if β ≤ s, ω̌ >
s′ − 1

2(s′ − β)
, and as n → ∞, it

holds that √
n
(
V̌ (q, r)n − V (q, r)

)
dst−→ MN(0,Σ), (4.33)

where the elements of V (q, r) and Σ are given as in (4.12) and (4.13).

Proof. See Theorem 13.2.1 and Example 13.2.2 in [64].

In the jump-diffusion setting, we define the subsample estimator of Σ as:

Σ̂n =
1

L

L∑
l=1

(√
n

L

(
V̌l(q, r)

n − V̌ (q, r)n
))(√n

L

(
V̌l(q, r)

n − V̌ (q, r)n
))′

, (4.34)

where, assuming Lp divides n,

V̌l(qk, rk)
n =

Lp

n

n/Lp∑
i=1

v(i−1)L+l(qk, rk)
n,

vi(qk, rk)
n =

1

p− 1

∑
j,j+1∈Bi(p)

|
√
n∆n

j X̌|qk |
√
n∆n

j+1X̌|rk ,

(4.35)
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and Bi(p) is given as in (4.22).

Finally, we are ready to state a consistency result.

Theorem 4.11
Assume thatX is a jump-diffusion process as in Assumption (J) and σ follows Assumption

(V) with σ > 0. Moreover, we require that β ≤ s and ω̌ >
s′ − 1

2(s′ − β)
. Then, as n → ∞,

p→∞, L/p→∞ and n/Lp2 →∞, it holds that

Σ̂n
P−→ Σ. (4.36)

Proof. See Section 4.2.

4.2 Proofs

First of all, we assume without loss of generality that the processes a, σ, ã, σ̃ and ṽ are
bounded following a standard localization procedure (see, [15]). Precisely, under (4.1)
and Assumption (V), there exists a sequence of stopping times Tk incresing to∞ a.s. and
constants Ck such that

‖as‖+ ‖σs−‖+ ‖ãs‖+ ‖σ̃s−‖+ ‖ṽs−‖ ≤ Ck ∀s ≤ Tk.

We set

(ã(k)
s , σ̃(k)

s , ṽ(k)
s ) =

{
(ãs, σ̃s, ṽs) for s ≤ Tk

(0, 0, 0) for s > Tk,
(4.37)

and set

σ
(k)
t = σ0 +

∫ t

0

ã(k)
s ds+

∫ t

0

σ̃(k)
s dWs +

∫ t

0

ṽ(k)
s dBs,

i.e. σ(k)
t = σs∧Tk . We set again a(k)

s = as∧Tk and associate X(k) with a(k) and σ(k) by

X
(k)
t = X0 +

∫ t

0

a(k)
s ds+

∫ t

0

σ(k)
s dWs,

and similarly V (f, g)n,(k), V (f, g)
n,(k)
l and Σ̂

(k)
n with X(k) by (4.4), (4.24) and (4.23),

respectively, and also V (f, g)(k) and Σ(k) with σ(k) by (4.5) and (4.7). We know that the
localizing sequence Tk converges to infinity. Therefore, whenever (4.17), (4.20), (4.25)
and (4.29) hold for a sequence of stopped processes, they also hold for the non-stopped
process.



52 CHAPTER 4. SUBSAMPLING HIGH-FREQUENCY DATA

We denote by C or Cp (if dependent on a parameter p) a generic constant which might
differ from line to line. And, due to the polarization identity

cov(X, Y ) =
1

4
(var(X + Y )− var(X − Y )),

we can (and shall) assume throughout that m = 1, so that all statistics are 1-dimensional.

4.2.1 Proof of Theorem 4.5

We start by observing an important approximation

∆n
iX =

∫ i
n

(i−1)
n

asds︸ ︷︷ ︸
Op(1/n)

+

∫ i
n

(i−1)
n

σsdWs︸ ︷︷ ︸
Op(1/

√
n)

.

We define
αni =

√
nσ i−1

n
∆n
iW, (4.38)

which is a first order approximation of
√
n∆n

iX. Let us also denote

χni = f(αni )− E
[
f (αni )

∣∣∣F i−1
n

]
.

The next lemma can be shown easily by using Burkholder inequality.

Lemma 4.12
Let p ≥ 2 and h be any function of polynomial growth. Then, we obtain

E[|αni |p] + E[|
√
n∆n

iX|p] + E[|h(αni )|p] + E[|χni |p] ≤ Cp, (4.39)

E[|
√
n∆n

iX − αni |p] ≤ Cpn
−p/2. (4.40)

In the proofs, we will use Burkholder inequality several times. For any process Y of
the form (4.1), we have that for any p ≥ 2, then

E[|Yt − Ys|p] ≤ Cp|t− s|p/2 (4.41)

(see, Example 2.10 for the details). Following the comments above, the definition of Σ̂n

here collapses to:

Σ̂n =
1

L

L∑
l=1

(√
n

L

(
Vl(f)n − V (f)n

))2

,
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To estimate Σ̂n − Σ, we introduce the following approximations:

Σn =
1

L

L∑
l=1

(√
n

L

(
Vl(f)n − V (f)

))2

, Qn =
1

n

L∑
l=1

(
n/L∑
i=1

χn(i−1)L+l

)2

,

Un =
1

n

L∑
l=1

n/L∑
i=1

(
χn(i−1)L+l

)2
, Rn =

1

n

L∑
l=1

n/L∑
i=1

E

[(
χn(i−1)L+l

)2 | F (i−1)L+l−1
n

]
.

An intuitive explanation for these approximations is as follows. Firstly, Σ̂n is approxi-
mated by Σn by replacing V (f)n with its limit V (f). Secondly, since αni ≈

√
n∆n

iX , for
each subsample, Vl(f)n and V (f) can be represented by L

n

∑n/L
i=1 f(αn(i−1)L+l) and by an

average L
n

∑n/L
i=1 E[f(αn(i−1)L+l)|F i−1

n
], respectively. Therefore, Qn estimates Σn. Thirdly,

we consider the sum of square in Un instead of the square of sum in Qn. Next, we ap-
proximate Un by its conditional expectation Rn, which should be the best guess for Un.
Finally, the Riemann sum Rn estimates Σ.

With these notations, it is easy to see that Theorem 4.5 is proven, if we show the
following estimates:

Proposition 4.13
Under the conditions of Theorem 4.5, it holds

(i) E[|Σn −Qn|] ≤ C
(
L
n

+ 1√
L

)
,

(ii) E[|Qn − Un|] ≤ C√
L
,

(iii) E[|Un −Rn|] ≤ C√
n
,

(iv) E[|Rn − Σ|] ≤ C
n
,

(v) E[|Σ̂n − Σn|] ≤ C
L
.

We prove these estimates in the order (iii), (ii), (iv), (i) and (v) where (i) is the hardest
step.

Proof of Proposition 4.13 (iii). This part is almost trivial. Indeed, we note that

Un −Rn =
1

n

n∑
i=1

(
(χni )2 − E[(χni )2 |F i−1

n
]
)
,

which is a sum of martingale differences. Moreover, Lemma 4.12 implies E[(χni )4] ≤ C.

Then, it is finished as
E[|Un −Rn|2] ≤ C/n. (4.42)
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Proof of Proposition 4.13 (ii). We observe that

Qn − Un =
1

n

L∑
l=1

Anl

where, for each l, we use the notations

Anl =

n/L∑
i=1

χn(i−1)L+l

2

−
n/L∑
i=1

(
χn(i−1)L+l

)2
=
(
S
n/L
l

)2

− T n/Ll

=

n/L∑
i,j=1,i 6=j

χn(i−1)L+lχ
n
(j−1)L+l.

Since Anl1 and Anl2 are uncorrelated for every l1 6= l2, we obtain

E[(Qn − Un)2] =
1

n2

L∑
l=1

E[(Anl )2] ≤ C

n2

L∑
l=1

(
E[(S

n/L
l )4] + E[(T

n/L
l )2]

)
. (4.43)

Define Sml =
∑m

i=1 χ
n
(i−1)L+l. We observe that (Sml )

n/L
m=1 is a discrete martingale for each

fixed l. Then, the discrete Burkholder and Cauchy-Schwarz inequalities and Lemma 4.12
imply

E

[(
S
n/L
l

)4
]
≤ CE

n/L∑
i=1

(χn(i−1)L+l)
2

2 ≤ C
(n
L

)2

. (4.44)

Using Lemma 4.12 again for T n/Ll term, we conclude the proof with

E
[
(Qn − Un)2

]
≤ C/L. (4.45)

Proof of Proposition 4.13 (iv). We note that

E

[
(χn(i−1)L+l)

2|F (i−1)L+l−1
n

]
= ρσ (i−1)L+l−1

n

(f 2)− ρ2
σ (i−1)L+l−1

n

(f),

where ρ is introduced in Proposition 2.24. Hence Rn is a Riemann approximation of Σ

because

Rn =
1

n

n∑
i=1

ρσ i−1
n

(f 2)− ρ2
σ i−1
n

(f).
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Now, we suppress f and define τ(x) = ρx(f
2)− ρ2

x(f). We note that the mapping

φ(x) := ρx(f) =

∫
R

f(y)√
2πx2

exp
(−y2

2x2

)
dy

is a smooth function, since f has polynomial growth. Hence τ is also smooth. Then,
Taylor’s theorem and (4.41) applied to σ imply

Rn − Σ =
n∑
i=1

∫ i
n

i−1
n

[
τ(σ i−1

n
)− τ(σs)

]
ds =

n∑
i=1

µni (1) +
n∑
i=1

µni (2) +Op

( 1

n

)
,

where

µni (1) = −τ ′
(
σ i−1

n

) ∫ i
n

i−1
n

(∫ s

i−1
n

ãudu
)

ds and

µni (2) = −τ ′
(
σ i−1

n

) ∫ i
n

i−1
n

(∫ s

i−1
n

σ̃udWu +

∫ s

i−1
n

ṽudBu

)
ds,

and the error Op(1/n) is due to the third order of Taylor’s theorem. An application of
Burkholder inequality and boundedness of ã, σ̃ and ṽ yields

E[|µni (1)|2] ≤ C

n4
and E

[
|µni (2)|2

]
≤ C

n3
. (4.46)

Using martingale difference property, this implies

E

∣∣∣∣∣
n∑
i=1

µni (2)

∣∣∣∣∣
2
 = E

[
n∑
i=1

|µni (2)|2
]
≤ C

1

n2
. (4.47)

Now, we are done due to (4.46) – (4.47) and the Cauchy-Schwarz inequality.

To prove Proposition 4.13 (i), we need a preparation. Let us denote

Ṽl(f)n =
1

n/L

n/L∑
i=1

f(αn(i−1)L+l) and V̂l(f)n =
1

n/L

n/L∑
i=1

E

[
f(αn(i−1)L+l)|F (i−1)L+l−1

n

]
.

Using the decomposition

Vl(f)n − V (f) =
(
Vl(f)n − Ṽl(f)n

)
+
(
Ṽl(f)n − V̂l(f)n

)
+
(
V̂l(f)n − V (f)

)
together with the identity (a+ b+ c)2 − b2 = 2a(b+ c) + 2cb+ a2 + c2, we obtain

Σn −Qn = D(1)
n +D(2)

n +D(3)
n +D(4)

n
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where

D(1)
n =

2n

L2

L∑
l=1

(
Vl(f)n − Ṽl(f)n

)(
Ṽl(f)n − V (f)

)
,

D(2)
n =

2n

L2

L∑
l=1

(
V̂l(f)n − V (f)

)(
Ṽl(f)n − V̂l(f)n

)
,

D(3)
n =

n

L2

L∑
l=1

(
Vl(f)n − Ṽl(f)n

)2

,

D(4)
n =

n

L2

L∑
l=1

(
V̂l(f)n − V (f)

)2

.

To estimate these terms, we rely on the following preliminary result.

Lemma 4.14
Assume that the conditions of Theorem 4.5 are fulfilled. Then, uniformly in l:

(a) E[|Ṽl(f)n − V̂l(f)n|2] ≤ C
(
L
n

)
,

(b) E[|V̂l(f)n − V (f)|2] ≤ C
(
L
n

)2

.

(c) E[|Vl(f)n − Ṽl(f)n|2] ≤ C L
n2 .

Proof of lemma 4.14. Part (a) is shown by using the discrete Burkholder inequality as in
(4.44). The proof of part (b) is similar to the proof of Proposition 4.13(iv). To prove part
(c), we recall condition (V) and write

ξni :=
√
n∆n

iX − αni =
√
n

(∫ i
n

i−1
n

asds+

∫ i
n

i−1
n

(
σs − σ i−1

n

)
dWs

)
= ξni (1) + ξni (2).

where

ξni (1) =
√
n

(
a i−1

n

1

n
+

∫ i
n

i−1
n

[
σ̃ i−1

n

(
Ws −W i−1

n

)
+ ṽ i−1

n

(
Vs − V i−1

n

)]
dWs

)
,

ξni (2) =
√
n
(∫ i

n

i−1
n

as − a i−1
n
ds+

∫ i
n

i−1
n

∫ s

i−1
n

ãududWs

+

∫ i
n

i−1
n

[∫ s

i−1
n

(
σ̃u − σ̃ i−1

n

)
dWu +

∫ s

i−1
n

(
ṽu − ṽ i−1

n

)
dVu

]
dWs

)
.
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The Burkholder and Cauchy-Schwarz inequalities give us the inequalities

E[|ξni (1)|4] ≤ C

n2
, (4.48)

E[|ξni (2)|4] ≤ Cβni , (4.49)

E[|ξni |4] ≤ C

n2
, (4.50)

where

βni =
1

n4
+

1

n

∫ i
n

i−1
n

E

(
|as − a i−1

n
|4 + |σ̃s − σ̃ i−1

n
|4 + |ṽs − ṽ i−1

n
|4
)
ds.

Using Taylor’s theorem, we may write Vl(f)n− Ṽl(f)n = Snl (1) +Snl (2) +Snl (3), where

Snl (1) =
1

n/L

n/L∑
i=1

f ′(αn(i−1)L+l)ξ
n
(i−1)L+l(1),

Snl (2) =
1

n/L

n/L∑
i=1

f ′(αn(i−1)L+l)ξ
n
(i−1)L+l(2),

Snl (3) =
1

n/L

n/L∑
i=1

[f ′(ηni,l)− f ′(αn(i−1)L+l)]ξ
n
(i−1)L+l,

for some |ηni,l − αn(i−1)L+l| ≤ |ξn(i−1)L+l|. Since f is even, f ′ is odd which implies the
martingale difference property

E[f ′(αn(i−1)L+l)ξ
n
(i−1)L+l(1)|F (i−1)L+l−1

n

] = 0.

Then, the Cauchy-Schwarz inequality, f ′ being of polynomial growth, Lemma 4.12 and
(4.48) imply

E[|Snl (1)|2] =
L2

n2

n/L∑
i=1

E[|f ′(αn(i−1)L+l)ξ
n
(i−1)L+l(1)|2] ≤ L

n2
. (4.51)

Using Cauchy-Schwarz inequality and condition (V) and (4.49), we obtain

E
[
|Snl (2)|2

]2 ≤ L4

n4
E

n/L∑
i=1

|f ′(αn(i−1)L+l)|2
2E

n/L∑
i=1

|ξn(i−1)L+l(2)|2
2

≤ C
L

n

n/L∑
i=1

βn(i−1)L+l ≤ C
1

n4
. (4.52)
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Employing the Cauchy-Schwarz inequality, twice differentiable property of f and using
(4.50), we obtain

E
[
|Snl (3)|2

]2 ≤ C
L

n3

n/L∑
i=1

E

[∣∣f ′(ηni,l)− f ′(αn(i−1)L+l)
∣∣4] ≤ C

1

n4
. (4.53)

Then, we finish the proof via (4.51)–(4.53).

The next result then implies Proposition 4.13(i), and the entire proof is complete.

Lemma 4.15
Under the conditions of Theorem 4.5, we have

(a) E[|D(4)
n |] ≤ C L

n
,

(b) E[|D(3)
n |] ≤ C 1

n
,

(c) E[|D(1)
n |] ≤ C 1√

n
,

(d) E[|D(2)
n |] ≤ C

(
L
n

+ 1√
n

)
.

Proof of Lemma 4.15. We observe that part (a) is an obvious consequence of Lemma
4.14(b).

Concerning parts (b) and (c), we note that Lemma 4.14 implies

E

[(
Ṽl(f)n − V (f)

)2
]
≤ C

L

n
. (4.54)

Then, the Cauchy-Schwarz inequality and the (4.54) yield

(E[|D(1)
n |])2 ≤ C

n

L2

L∑
l=1

E[|Vl(f)n − Ṽl(f)n|2] = CE[|D(3)
n |].

Hence it is enough to show part (b), which follows Lemma 4.14 (c).

Now, we proceed to the proof of part (d). An application of Taylor’s theorem and
(4.41) for σ permits us to write

D(2)
n = En + Fn +Op(L/n) +Op(1/

√
n),

with

En =
2n

L2

L∑
l=1

(
n/L∑
i=1

φ′(σ (i−1)L+l−1
n

)

∫ iL+l−1
n

(i−1)L+l−1
n

[
σ (i−1)L+l−1

n

− σs
]
ds

)
×
(
Ṽl(f)n − V̂l(f)n

)
,

Fn =
−n
L2

L∑
l=1

(
n/L∑
i=1

∫ iL+l−1
n

(i−1)L+l−1
n

φ′′(σ (i−1)L+l−1
n

)
[
σ (i−1)L+l−1

n

− σs
]2

ds

)
×
(
Ṽl(f)n − V̂l(f)n

)
.
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We note that the error Op(L/n) appears here because of the third order term of Taylor’s
theorem, i.e.

n

3L2

L∑
l=1

(
n/L∑
i=1

∫ iL+l−1
n

(i−1)L+l−1
n

φ′′′(ηns,i,l)
[
σ (i−1)L+l−1

n

− σs
]3

ds

)
×
(
Ṽl(f)n − V̂l(f)n

)
for some ηns,i,l satisfying |ηns,i,l−σ (i−1)L+l−1

n

| ≤ |σs−σ (i−1)L+l−1
n

|, while the errorOp(1/
√
n)

occurs due to the boundary integral term around 0 and 1, i.e.

2n

L2

L∑
l=1

(∫ l−1
n

0

ρσs(f)ds+

∫ 1+ l−1
n

1

ρσ
1+ l−1−L

n

(f)ds

)
×
(
Ṽl(f)n − V̂l(f)n

)
.

Recalling Assumption (V), we can rewrite

En = −(En(1) + En(2) + En(3) + En(4)),

where

En(1) =
2n

L2

L∑
l=1

(
n/L∑
i=1

φ′(σ (i−1)L+l−1
n

)
L2

2n2
ã (i−1)L+l−1

n

)(
Ṽl(f)n − V̂l(f)n

)
,

En(2) =
2n

L2

L∑
l=1

(
n/L∑
i=1

φ′(σ (i−1)L+l−1
n

)

∫ iL+l−1
n

(i−1)L+l−1
n

[
σ̃ (i−1)L+l−1

n

(Ws −W (i−1)L+l−1
n

)

+ ṽ (i−1)L+l−1
n

(Vs − V (i−1)L+l−1
n

)
]
ds

)(
Ṽl(f)n − V̂l(f)n

)
,

En(3) =
2n

L2

L∑
l=1

(
n/L∑
i=1

φ′(σ (i−1)L+l−1
n

)

∫ iL+l−1
n

(i−1)L+l−1
n

∫ s

(i−1)L+l−1
n

(ãu − ã (i−1)L+l−1
n

)duds

)
×
(
Ṽl(f)n − V̂l(f)n

)
,

En(4) =
2n

L2

L∑
l=1

(
n/L∑
i=1

φ′(σ (i−1)L+l−1
n

)

∫ iL+l−1
n

(i−1)L+l−1
n

[ ∫ s

(i−1)L+l−1
n

(σ̃u − σ̃ (i−1)L+l−1
n

)dWu

+

∫ s

(i−1)L+l−1
n

(ṽu − ṽ (i−1)L+l−1
n

)dVu

]
ds

)(
Ṽl(f)n − V̂l(f)n

)
.

Using Assumption (H), Cauchy-Schwarz inequality and (4.41) for ã, σ̃ and ṽ imply that

E[|En(3)|+ |En(4)|] ≤ C
(L
n

)
.

To deal with the term En(1), we first define

Qn
l =

L

n

n/L∑
i=1

φ′(σ (i−1)L+l−1
n

)ã (i−1)L+l−1
n
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and its limit Q =
∫ 1

0
φ′(σs)ãsds. We observe that

En(1) =
1

L

L∑
l=1

Q(Ṽl(f)n − V̂l(f)n) +
1

L

L∑
l=1

(Qn
l −Q)(Ṽl(f)n − V̂l(f)n).

Therefore,

E[|En(1)|] ≤ E

[∣∣∣∣∣ 1L
L∑
l=1

Q(Ṽl(f)n − V̂l(f)n)

∣∣∣∣∣
]

+ E

[∣∣∣∣∣ 1L
L∑
l=1

(Qn
l −Q)(Ṽl(f)n − V̂l(f)n)

∣∣∣∣∣
]

≤ E

 1

L2
Q2

(
L∑
l=1

(Ṽl(f)n − V̂l(f)n)

)2
1/2

+
1

L

L∑
l=1

E[|Qn
l −Q|2]1/2E[|Ṽl(f)n − V̂l(f)n|2]1/2

≤ C

 1

L

(
E

[( L∑
l=1

( 1

n/L

n/L∑
i=1

χni,l

))4]1/4
)

+

√
L

n
E[|Qn

l −Q|2]1/2


≤ C

(
1

n
E

[( n∑
i=1

χni

)4]1/4

+

√
L

n
E[|Qn

l −Q|2]1/2

)

≤ C

(
1√
n

+
L

n

)
(4.55)

where the martingale difference property of χni ’s and Assumption (H) are used to obtain
the last inequality. The same decomposition as for En(1) and the similar techniques
applied to the term Fn yield

E[|Fn|] ≤ C

(
1√
n

+
L

n

)
.

So, for the rest of the proof, we devote to the term En(2) only. Here, we assume that
ṽs = 0. Apart from expositional purposes, this is without loss of generality, as the terms
involving the product of ṽ and B are much simpler to handle, because W and B are
independent. We define

Gn
i,l = φ′(σ (i−1)L+l−1

n

)

∫ iL+l−1
n

(i−1)L+l−1
n

σ̃ (i−1)L+l−1
n

(Ws −W (i−1)L+l−1
n

)ds. (4.56)

Then,

En(2) =
2n

L2

L∑
l=1

(
n/L∑
i=1

Gn
i,l

)(
Ṽl(f)n − V̂l(f)n

)
. (4.57)
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We find that
(En(2))2 = En(2.1) + En(2.2), (4.58)

where

En(2.1) =
4n2

L4

L∑
l=1

( n/L∑
i=1

Gn
i,l

)2

(Ṽl(f)n − V̂l(f)n)2,

En(2.2) =
4n2

L4

L∑
la 6=lb

( n/L∑
i=1

Gn
i,la

)
(Ṽla(f)n − V̂la(f)n)

( n/L∑
i=1

Gn
i,lb

)
(Ṽlb(f)n − V̂lb(f)n).

The Burkholder and the Cauchy-Schwarz inequalities imply that

E[|En(2.1)|] ≤ C

n
. (4.59)

Recalling (4.58), we will finish with the proof of Lemma 4.15 (d) if we show

E[En(2.2)] ≤ C

n
. (4.60)

Proving (4.60) turns out to be rather complicated and involves tools from Malliavin cal-
culus. Note that

En(2.2) =
8

L2

L∑
la 6=lb

n/L∑
i1,i2,i3,i4=1

Gn
i1,la

χn(i2−1)L+laG
n
i3,lb

χn(i4−1)L+lb
. (4.61)

Fix la and lb in (4.61). For several choices of i1, i2, i3 and i4, we will have zero expec-
tations. We recall that expected value of each Gn

i term and χni term is zero. Hence if
we take conditional expectation on the left endpoint of the largest interval and if other
three terms are measurable with respect to this point, the expectation will then vanish. Let
i = max(i1, i2, i3, i4) and j denote the second largest element of these four numbers. If
two of these numbers are equal to i, j = i according to our definition. It is easy to observe
that if i − j > 1, with the conditioning argument above, the expected value will be zero.
This restriction on j means that the number of terms with non-zero expectation is smaller
than Cn3/L3. We will separate the computation in to two cases, i.e.

1.
((i1 − 1)L+ la − 1

n
,
i1L+ la − 1

n

)
∩
((i3 − 1)L+ lb − 1

n
,
i3L+ lb − 1

n

)
6= ∅

2.
((i1 − 1)L+ la − 1

n
,
i1L+ la − 1

n

)
∩
((i3 − 1)L+ lb − 1

n
,
i3L+ lb − 1

n

)
= ∅.

For the first case, without loss of generality, we assume in the following that i2 <

i4 < i1 = i3. Next, we will find an upper bound on the expected values of non-zero
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terms. Since χni is in D1,2 for each i, the Clark-Ocone formula implies that

χn(i−1)L+l =
√
n

∫ (i−1)L+l
n

(i−1)L+l−1
n

ζn,i,lt dWt

where ζn,i,ls = 1√
n
E[Ds(χ(i−1)L+l)|Fs] and (i−1)L+l−1

n
≤ s ≤ (i−1)L+l

n
(see, Proposition

3.26). Then,

En(2.2) =
8

L2

L∑
la 6=lb

n/L∑
i1,i2,i3,i4=1

∫ i3L+lb−1

n

(i3−1)L+lb−1

n

∫ i1L+la−1
n

(i1−1)L+la−1
n

M la,lb,i1,i2,i3,i4
n (s, u)dsdu. (4.62)

where

M la,lb,i1,i2,i3,i4
n (s, u) = τ i1,la,i3,lbn (Ws −W (i1−1)L+la−1

n

)(Wu −W (i3−1)L+lb−1

n

)

× n
∫ (i4−1)L+lb

n

(i4−1)L+lb−1

n

(∫ (i2−1)L+la
n

(i2−1)L+la−1
n

ζn,i2,lat dWt

)
ζn,i4,lbr dWr,

τ i1,la,i3,lbn = φ′(σ (i1−1)L+la−1
n

)σ̃ (i1−1)L+la−1
n

φ′(σ (i3−1)L+lb−1

n

)σ̃ (i3−1)L+lb−1

n

.

In the above expression, we assume that (i2 − 1)L+ la ≤ (i4 − 1)L+ lb − 1. Otherwise,
we will switch the order of the two integrations. In view of (4.62), estimating E[En(2.2)]

amounts to estimating
I := E

[
M la,lb,i1,i2,i3,i4

n (s, u)
]

and it will be completed if we show I ≤ C( L
n2 ) uniformly in s and u. To accomplish this,

we use the integration by parts formula of Malliavin calculus in Proposition 3.8(iv) twice
and use the notation

Ca =

[
(i2 − 1)L+ la − 1

n
,
(i2 − 1)L+ la

n

]
and

Cb =

[
(i4 − 1)L+ lb − 1

n
,
(i4 − 1)L+ lb

n

]
,

we obtain

I = nE
[ ∫

Cb

Dr

(
τ i1,la,i3,lbn (Ws −W (i1−1)L+la−1

n

)(Wu −W (i3−1)L+lb−1

n

)
)

×
(∫

Ca

ζn,i2,lat dWt

)
ζn,i4,lbr dr

]
= nE

[ ∫
Cb

∫
Ca

Dt

(
Dr

(
τ i1,la,i3,lbn (Ws −W (i1−1)L+la−1

n

)(Wu −W (i3−1)L+lb−1

n

)
)

× ζn,i4,lbr

)
ζn,i2,lat dtdr

]
≡ n

∫
Cb

∫
Ca

E[Hn
t,r]dtdr. (4.63)
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SinceDt(Ws−W (i−1)L+l−1
n

) = 1
[
(i−1)L+l−1

n
,s]

(t) for any t and s, we can rewrite the random
variable Hn

t,r as the form

Hn
t,r = Z1

(
Ws −Wti1−1,la−1

)(
Wu −Wti3−1,lb−1

)
+ Z2

((
Ws −Wti1−1,la−1

)
1[ti3−1,lb−1,u](t) +

(
Wu −Wti3−1,lb−1

)
1[ti1−1,la−1,s](t)

)
+ Z3

((
Ws −Wti1−1,la−1

)
1[ti3−1,lb−1,u](r) +

(
Wu −Wti3−1,lb−1

)
1[ti1−1,la−1,s](r)

)
+ Z4

(
1[ti3−1,lb−1,u](r)1[ti1−1,la−1,s](t) + 1[ti3−1,lb−1,u](t)1[ti1−1,la−1,s](r)

)
=

4∑
k=1

Hn,k
t,r , (4.64)

where Zi are random variables with uniformly bounded second moment and ti,l = (iL +

l)/n. We observe that:

E[|ζn,i2,lat |2] ≤ C,

E[|ζn,i4,lbr |4] ≤ C.

To see this fact: the product rule and chain rule of Malliavin derivative properties in
Proposition 3.8 yield

Dt(χ
n
i2,la

) =
√
nf ′(
√
nσ (i2−1)L+la−1

n

∆n
(i2−1)L+laW )(σ (i2−1)L+la−1

n

1
[
(i2−1)L+la−1

n
,
(i2−1)L+la

n
]
(t)),

(4.65)
since (i2−1)L+la−1

n
≤ t and both E[f(

√
nσ (i2−1)L+la−1

n

∆n
(i2−1)L+la

W )|F (i2−1)L+la−1
n

] and
σ (i2−1)L+la−1

n

are F (i2−1)L+la−1
n

-measurable. Then, we get

E[|ζn,i2,lat |2] =
1

n
E[E2[Dt(χ

n
i2,la

)|Ft]]

≤ C

n
E[(Dt(χ

n
i2,la

))2]

≤ C.

The same argument is applied to E[|ζn,i4,lbr |4]. From these facts and Assumption (M), we
readily deduce that

E[|Hn,1
t,r |] ≤ C

L

n
. (4.66)

On the other hand, the term 1
[
(i1−1)L+la−1

n
,s]

(r) is different from 0 only for one index i4 (this

consideration also hold for all other indicator functions). Hence plugging E
[
Hn,k
t,r

]
back



64 CHAPTER 4. SUBSAMPLING HIGH-FREQUENCY DATA

into (4.63), and observing the identity in (4.62), we find that E
[
|Hn,1

t,r |
]

is the dominating
term. We, therefore, conclude that

E
[
En(2.2)

]
≤ C

n
.

For the second case, without loss of generality we assume that i2 < i3 < i1 = i4.
Instead of applying the Malliavin derivative for the two Brownian increments in Dr as in
the expression I above, only one Brownian increment is applied in this case, namely

Hn
t,r = Dt

(
Dr

(
τ i1,la,i3,lbn (Wu −W (i3−1)L+lb−1

n

)
)

(Ws −W (i1−1)L+la−1
n

)ζn,i4,lbr

)
ζn,i2,lat dtdr.

Again, we can rewrite Hn
t,r as the form

Hn
t,r = Z1

(
Ws −Wti1−1,la−1

)(
Wu −Wti3−1,lb−1

)
+ Z2

((
Ws −Wti1−1,la−1

)
1[ti3−1,lb−1,u](t) +

(
Wu −Wti3−1,lb−1

)
1[ti1−1,la−1,s](t)

)
+ Z3

(
Ws −Wti1−1,la−1

)
1[ti3−1,lb−1,u](r)

+ Z41[ti3−1,lb−1,u](r)1[ti1−1,la−1,s](t)

=
4∑

k=1

Hn,k
t,r , (4.67)

where Zi are random variables with uniformly bounded second moment. By considering
as previous case, we completes the proof of (4.60), Proposition 4.13(i), and Theorem 4.5.

Proof of Proposition 4.13 (v). The identity

n∑
l=1

Vl(f)n = LV (f)n

and a simple algebra imply

Σ̂n − Σn =
−n
L

(V (f)n − V (f))2.

Similar arguments as in Lemma 4.14 imply that

E[(V (f)n − V (f))2] ≤ C/n.

We complete the proof.



4.2. PROOFS 65

4.2.2 Proof of Theorem 4.6

We need to show that the quantities which are introduced on the left side of (i)–(v) of
Proposition 4.13 all converge to 0 under the weaker assumptions of Theorem 4.6. By
observing the proof of Theorem 4.5, we discover that the steps behind (ii), (iii) and (v)
do not depend on the stronger Assumption (H) and (M), nor on the differentiability of the
function f . Hence, we can immediately deduce that

E
[
|Qn − Un|

]
→ 0, E

[
|Un −Rn|

]
→ 0, E

[
|Σ̂n − Σn|

]
→ 0.

On the other hand, (iv) follows from Section 8 (Step 2) in [15]:

Rn
p→ Σ.

We should note that, we can prove Lemma 4.14 (a) and (b) under the assumptions of
Theorem 4.6. Consequently, we can show by applying Cauchy-Schwarz inequality that

E[|D(2)
n |] ≤ C

√
L√
n

and

E[|D(4)
n |] ≤ C

L

n
.

We found that to compute E[|D(2)
n |] by using Cauchy-Schwarz inequality we get a worse

bound than using Malliavin calculus’s theorems.

However, Step 3 and 4 in Section 8 [15] imply that

sup
1≤l≤L

E

[∣∣∣√n

L

(
Vl(f)n − V (f)

)
−
√
L

n

n/L∑
i=1

χn(i−1)L+l

∣∣∣1+ε
]
→ 0.

for ε > 0 small enough. Moreover, the discrete Burkholder inequality implies that

E

[∣∣∣√n

L

(
Vl(f)n − V (f)

)
+

√
L

n

n/L∑
i=1

χn(i−1)L+l

∣∣∣1+ 1
ε

]
≤ C.

Hence, we find by Hölder inequality that

E
[
|Σn −Qn|

]
→ 0,

which corresponds to part (i) of Proposition 4.13 and finish the proof.
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4.2.3 Proofs of Theorems 4.8 and 4.9

We can prove Theorem 4.8 by employing the techniques that are used in the proof of
Theorem 4.5 and 5.2 from the next chapter. Hence here we only sketch the main parts
that enable us to find the convergence rate. We define:

Σn =
1

L

L∑
l=1

(√
n

L
(Vl(f, g)− V (f, g))

)2

, Qn =
p2

n

L∑
l=1

(
n/Lp∑
i=1

χn(i−1)L+l

)2

,

Un =
p2

n

L∑
l=1

n/Lp∑
i=1

(
χn(i−1)L+l

)2
, Rn =

p2

n

L∑
l=1

n/Lp∑
i=1

E

[(
χn(i−1)L+l

)2 | F (i−1)L+l−1
n

]
,

with

ηni =
1

p− 1

∑
m∈Bi(p)

f
(√

nσ (i−1)p
n

∆n
mW

)
g
(√

nσ (i−1)p
n

∆n
m+1W

)
and

χni = ηni − E
[
ηni | F (i−1)p

n

]
.

There exists a C > 0, independent of i, such that

E
[
(ηni )4

]
≤ C and E

[
(χni )4

]
≤ C

p2
, (4.68)

where the last inequality holds, because χni is a sum of 1-dependent random variates.
Then, we are done due to the relationship

p/n�
√
p/n� p/

√
n� 1/

√
L,

where a� b means that a is much less than b, (the latter follows from n/Lp2 →∞) and
the following Lemma. We omit the proof because it is similar to the proof of Proposition
5.7.

Lemma 4.16
Assume that the conditions of Theorem 4.8 are fulfilled. Then, we get that

(i) E[|Σn −Qn|] ≤ C
(
Lp2

n
+ p√

n

)
,

(ii) E[|Qn − Un|] ≤ C√
L
,

(iii) E[|Un −Rn|] ≤ C
√
p√
n
,

(iv) E[|Rn − Σ|] ≤ C
(
p
n

+ 1
p

)
,
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(v) E[|Σ̂n − Σn|] ≤ C√
L
.

Lastly, the proof of Theorem 4.9 is analogous to the proofs of Theorems 4.6 and 5.3
and is omitted.

4.2.4 Proof of Theorem 4.11

We denote with X ′ the continuous part of X and introduce the following approximation
of Σ̂n:

Σ̂′n =
1

L

L∑
l=1

(√
n

L

(
V ′l (q, r)

n − V ′(q, r)n
))2

,

where

V ′(q, r)n =
1

n

n−1∑
i=1

|
√
n∆n

i X̌
′|q|
√
n∆n

i+1X̌
′|r,

V ′l (q, r)
n =

Lp

n

n/Lp∑
i=1

v′(i−1)L+l(q, r)
n,

v′i(q, r)
n =

1

p− 1

∑
j,j+1∈Bi(p)

|
√
n∆n

j X̌
′|q|
√
n∆n

j+1X̌
′|r.

The proof of Theorem 4.9 implies that Σ̂′n
p→ Σ. So, it suffices to show that Σ̂n−Σ̂′n

p→ 0.
Note that

Σ̂n − Σ̂′n =
1

L

L∑
l=1

(√
n

L

(
Vl(q, r)

n − V ′l (q, r)n + V ′(q, r)n − V (q, r)n
))

×

(√
n

L

(
Vl(q, r)

n − V (q, r)n + V ′l (q, r)
n − V ′(q, r)n

))
.

For any j ≥ 1, we set:

η̄nj = |
√
n∆n

j X̌|q|
√
n∆n

j+1X̌|r − |
√
n∆n

j X̌
′|q|
√
n∆n

j+1X̌
′|r.

Applying (13.2.21) from [64] with m = 1 + ε and θ = 0, we find that:

E
[
|η̄nj |1+ε|

]
≤ 1

n(1+ε)/2
φn,
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uniformly in j, for some sequence φn going to 0 and ε ∈ (0, 1 − β], and under ω̌ ≥
(ms′ + ε− 1)/2(ms′ − β). Then, the discrete Hölder inequality implies that

sup
1≤l≤L

E

[∣∣∣√n

L

(
Vl(q, r)

n − V ′l (q, r)n
)∣∣∣1+ε

]
→ 0

and

sup
1≤l≤L

E

[∣∣∣√n

L

(
V (q, r)n − V ′(q, r)n

)∣∣∣1+ε
]
→ 0

Applying the arguments of Lemma 4.14, we also have that

sup
1≤l≤L

E

[∣∣∣√n

L

(
V ′l (q, r)

n−V ′(q, r)n
)∣∣∣1+ 1

ε

]
+ sup

1≤l≤L
E

[∣∣∣√n

L

(
Vl(q, r)

n−V (q, r)n
)∣∣∣1+ 1

ε

]
≤ C.

Therefore, again by the Hölder inequality,

E

[
|Σ̂n − Σ̂′n|

]
→ 0.

As ε > 0 can be chosen as small as possible, the proof is complete.



Chapter 5

Subsampling for the bipower-type
pre-averaging estimators

In this chapter, we present how to apply the idea of subsampling method introduced in the
previous chapter to use for an underlying model perturbed by an additive noise term, i.e.

Y i
n

= X i
n

+ ε i
n
, (5.1)

where X is defined as in (4.1), while ε = (εt)t≥0 is a microstructure noise explained in
the next section. The main goal of this chapter is to construct consistent estimators for
the asymptotic variance obtained from a central limit theorem when the model in (5.1) is
considered and to see how microstructure noise affects the speed of convergence.

The structure of this chapter is as follows: the first section starts with the introduction
of microstructure noise. To construct our estimator, we provide pre-averaging method to
get rid of the impact of noise. We also state asymptotic results of bipower variation in the
presence of noise, i.e. law of large numbers and a central limit theorem, in this section.
The next section presents the main results which we adapt our subsampling to obtain a
positive semi-definite estimator and derive a convergent rate. Finally, we devote the last
section to the proofs of the results.

5.1 Microsturcture noise

In order to find a consistent estimator for the integrated volatility IV =
∫ 1

0
σ2
sds in the

noiseless case, the usual realized volatility of X is the right one as we have shown in
Example 2.26. However, empirical studies show that this usual realized volatility ex-
plodes when using high frequency data (see, [4, 5, 7, 78]). The source of this error is

69
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known as microstructure noise. In other words, the observed prices are contaminated by
microstructure noise such as bid-ask spreads, price discreteness, and so forth [36, 73, 93].

From the mathematical point of view, Zhou [102] suggested to econometrics that the
observed price process should be in the form

Y i
n

= X i
n

+ ε i
n
, (5.2)

where X is the latent process in the form of (4.1) and ε is the microstructure noise satis-
fying the following assumption:

Assumption (N):

(i) ε is i.i.d. with E[εt] = 0 and var(εt) = ω2 for all t ≥ 0.

(ii) ε is independent of X .

(iii) The distribution of ε is symmetric around 0.

(iv) E
[
|εt|s

]
<∞ for some s > 0.

Let us consider the realized variance of the process Y :

RV n =
n∑
i=1

(Y i
n
− Y i−1

n
)2

=
n∑
i=1

(X i
n
−X i−1

n
)2 + 2

n∑
i=1

(X i
n
−X i−1

n
)(ε i

n
− ε i−1

n
) +

n∑
i=1

(ε i
n
− ε i−1

n
)2.

Although the limit of the first term is IV =
∫ 1

0
σ2
sds, the stochastic orders of the

second and the third term are 1 and n, respectively. This means that the observed return
process is dominated by the noise term. Hence RV n is inconsistent for IV .

To handle the market microstructure effects in estimating integrated volatility IV ,
Zhang et al. [101] introduce two-scale realized volatility (TSRV) method to deal with this
problem. This estimator combines the realized volatility sampled from two different time
scales. Define

[Y, Y ](n,K) =
1

K

n∑
i=K

(Y i
n
− Y i−K

n
)2,

with K being a positive integer. Note that [Y, Y ](n,1) is a usual realized variance. The
two-scales realized volatility is given by

< X̂,X >TSRV
n = [Y, Y ](n,K) − 2

n−K + 1

nK
[Y, Y ](n,1).
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Its asymptotic behavior is derived when K,n → ∞. The estimator < X̂,X >TSRV
n av-

erages the squared returns from sampling every Kth data point and those from every data
point. The authors show that the TSRV estimator is consistent, asymptotically unbiased,
and normal and found that K = cn2/3 is the optimal choice for some c > 0, this leads to
a stable central limit:

n1/6
(
< X̂,X >TSRV

n −
∫ 1

0

σ2
sds
)

dst−→
∫ 1

0

( 8

c2
ω4 +

4c

3
σ4
s

)1/2

dW ′
s, (5.3)

where W ′ is a Brownian motion, independent of the σ-field F .

This TSRV approach was extended to define a multi-scale realized variance estimator
introduced by Zhang [100]:

< X̂,X >MSRV
n =

M∑
i=1

ai[Y, Y ](n,K),

where M > 2 and ai are the weights chosen to get the estimator asymptotically unbiased
and to derive the optimal rate of convergence. This new estimator is based on the same
subsampling and averaging idea of TSRV estimator but achieves a better optimal rate
n−1/4. A drawback of this multi-scale approach is that we still do not have a feasible
version, which will allow the construction of confidence intervals or hypothesis tests (see,
[97]).

Another approach to estimating volatility in the presence of microstructure noise is a
realized kernel method proposed by Barndorff-Nielsen et al. [16]. This method is based
on a linear combination of autocovariances. For simplicity of calculation, we consider a
fixed interval [0, 1] and let k(x) be the non-stochastic weight function defined on [0, 1] and
1/n the time gap. The number of observations is n. We define the realized autocovariance
of order h with the integer bandwidth H > 0, −H ≤ h ≤ H by

γh(Z) =
n∑
i=1

(Z i
n
− Z i−1

n
)(Z i−h

n
− Z i−h−1

n
). (5.4)

Note that γ0(Z) is a usual realized variance. The realized kernel estimator is defined as

K(Z) = γ0(Z) +
H∑
h=1

k
(h− 1

H

)
(γh(Z) + γ−h(Z)) (5.5)

The authors show that the estimator K(Z) is consistent and if k ∈ C2([0, 1]) with k(0) =

1 and k(1) = 0, one has a stable limit theorem with the speed of convergence n−1/6.
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Furthermore, if the additional condition k′(0) = k′(1) = 0 holds, we achieve the better
rate n−1/4. For H = cn1/2 we also have a stable central limit of the form

n1/4(K(Z)−
∫ 1

0

σ2
sds)

dst→MN(0, 4ck1IQ+
8k2ω

2

c
IV +

4k3ω
4

c3
),

where k1 =
∫ 1

0
k(x)2dx, k2 =

∫ 1

0
k′(x)2ds, k3 =

∫ 1

0
k′′(x)2dx and IQ =

∫ 1

0
σ4
sds.

Moreover, when k(x) = 1 − x, its asymptotic distribution and that of the two-scale
estimator coincide. However, we can see from (5.4) that each of γh(Z), h 6= 0, the data
outside [0,1] are used. This may lead to some difficulties in practice (see, [97]).

Besides the above two approaches, pre-averaging is another intuitive approach in-
troduced by Podolskij and Vetter [86]. In this thesis, we land our strategy to this last
approach because it allows estimation of other powers of volatility, which we require in
our study. We also refer to [62] for more details of the pre-averaging method. The concept
of pre-averaging is explained in the next subsection.

5.1.1 Pre-averaging

We now introduce the idea of pre-averaging based on the works of [62, 85, 86]. The idea
is that averaging on a number of Yi/n’s near the time point i/n, one can get an estimate,
say Ȳi/n, which tends to be close to the latent process Xi/n because the noise is largely
averaged away. To implement pre-averaging, we need some extra notations. We choose a
sequence kn of integers and a scalar θ > 0, such that

kn = θ
√
n+ o

(
n−1/4

)
. (5.6)

We also need a weight function w : R 7→ R to do averaging such that

(i) w is continuous on (0, 1) and vanishes outside of it,

(ii) w is piecewise continuously differentiable with a piecewise Lipschitz derivative w′,

(iii)
∫ 1

0
(w(t))2dt > 0.
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The following numbers and functions are associated with w:

φ1(s) =

∫ 1−s

0

w′(u)w′(u+ s)du, φ2(s) =

∫ 1−s

0

w(u)w(u+ s)du, for s ∈ [0, 1],

φ3(s) =

∫ 2−s

0

w′(u)w′(u+ s− 1)du, φ4(s) =

∫ 2−s

0

w(u)w(u+ s− 1)du, for s ∈ [0, 2],

ψ1 = φ1(0), ψ2 = φ2(0), Φij =

∫ 1

0

φi(s)φj(s)ds, for i, j = 1, 2,

ψn1 = kn

kn∑
j=0

(wnj+1 − wnj )2, ψn2 =
1

kn

kn∑
j=1

(wnj )2,

(5.7)

where wnj = w(j/kn).

The pre-averaged return is given as

∆Ȳ n
i =

kn∑
j=1

wnj ∆n
i+jY = −

kn∑
j=0

(wnj+1 − wnj )Y i+j
n
, for i = 1, . . . , n− kn + 2. (5.8)

An example of a weight function that satisfies the above conditions is w(x) = (x ∧
(1 − x)). With this setting of the weight function w and supposing that kn is even, we
have

∆Ȳ n
i =

1

kn

kn−1∑
j=kn/2

Y i+j
n
− 1

kn

kn/2−1∑
j=0

Y i+j
n
. (5.9)

Therefore, the use of the term pre-averaging is clear by the above expression (5.9).

Note that ∆Ȳ n
i can be represented as

∆Ȳ n
i =

∫ i+kn
n

i
n

wn

(
s− i

n

)
dYs where wn(s) =

kn∑
i

wnj 1( j−1
n
, j
n

](s).

We also note that

ψn1 = ψ1 +Op

(
n−1/2

)
and ψn2 = ψ2 +Op

(
n−1/2

)
, (5.10)

which means only ψ1 and ψ2 will appear in the asymptotic theory. Still, it is recommend-
able to use ψn1 and ψn2 for simulations and empirical work, as it entails better finite sample
properties.
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Moreover, we have

∆X̄n
i =

kn∑
j=1

wnj ∆n
i+jX = Op

(√kn
n

)
(5.11)

and

∆ε̄ni =
kn∑
j=1

wnj ∆n
i+jε = Op

(√ 1

kn

)
(5.12)

(see, [97, (3.5)]). We see that the effect of the noise relies on how we choose kn. Specif-
ically, the noise part has less power on ∆Ȳ n

i when a bigger kn is selected. To balance
these orders, in this thesis we pick kn as in (5.6). Therefore, the stochastic orders of the
above (5.11) and (5.12) are the same, i.e. Op(n

−1/4).

5.1.2 Pre-averaged bipower variation

The appearance of microstructure noise in the model (5.1) leads to additional complica-
tions for inference procedures from high-frequency data in general. Hence we limit our
attention only to the class of realized bipower variations. That is, in this section we are
going to assume that

fi(x) = |x|qi and gi(x) = |x|ri ,

where qi, ri ≥ 0. To reflect this change and separate the following results from the
previous ones, we write the pre-averaged bipower variation as V ∗(q, r)n, where q =

(q1, . . . , qm)′ and r = (r1, . . . , rm)′ are m-dimensional vectors, whose coordinates index
the powers.

The kth coordinate of V ∗(q, r)n is defined as:

V ∗(qk, rk)
n =

1

n− 2kn + 2

n−2kn+2∑
i=1

|n1/4∆Ȳ n
i |qk |n1/4∆Ȳ n

i+kn|
rk . (5.13)

The intuition behind this construction is that pre-averaging induces some autocorrelation
(of order kn) in the pre-averaged price series, which is broken by multiplying pre-averaged
returns that are kn terms apart. In essence, this leads to a lower, effective sample of size
n − 2kn + 2. Next, we state results from [85] for a law of large numbers and a central
limit theorem of the statistic V ∗(q, r)n .

Proposition 5.1 ([85], Theorem 1)
Suppose that Yt = Xt+εt is a noisy diffusion model, whereXt is given by (4.1). Let qk and
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rk be non-negative real numbers where k ∈ {1, ...,m}. Assume that E[|εt|2(qk+rk)+s] <∞
for some s > 0. It holds that

V ∗(qk, rk)
n P−→ V ∗(qk, rk) = µqkµrk

∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1ω

2

) qk+rk
2

ds. (5.14)

Moreover, Podolskij and Vetter [85, Theorem 3] also show a central limit theorem for
the bipower variation under some conditions:

n1/4
(
V ∗(q, r)n − V ∗(q, r)

)
dst−→MN(0,Σ∗), (5.15)

where q = (q1, . . . , qm)′ and r = (r1, . . . , rm)′ are vectors of even non-negative real
numbers, Σ∗ is the m × m conditional covariance matrix of V ∗(q, r)n. More precisely,
the matrix Σ∗ has elements

Σ∗ij = 2θ

∫ 1

0

∫ 2

0

hij
(
σu, t, f(s)

)
dsdu, (5.16)

where
hij(x, y, z) = cov(|H1|qi |H2|ri , |H3|qj |H4|rj),

x ∈ R, y = (y1, y2) is two-dimensional vector, z = (z1, z2, z3, z4) is four-dimensional
vector, H1, ..., H4 follow a normal distribution with

(i) E[Hl] = 0 and E[|Hl|2] = y1ω
2 + y2x

2,

(ii) H1⊥H2, H1⊥H4 and H3⊥H4,

(iii) cov(H1, H3) = cov(H2, H4) = z1ω
2 + z2x

2 and cov(H2, H3) = z3ω
2 + z4x

2,

t = (1
θ
ψ1, θψ2) and f = (f1, f2, f3, f4) is defined for any s in [0, 2] by

f1(s) =
1

θ
φ1(s), f2(s) = θφ2(s),

f3(s) =
1

θ
φ3(s), f4(s) = θφ4(s),

see [85] for more details. In a simpler pre-averaged realized variance case, (q, r) = (2, 0),
we have that

Σ∗(2, 0) =

∫ 1

0

4
(
θ3Φ22σ

4
s + 2θΦ12σ

2
sω

2 +
1

θ
Φ11ω

4
)

ds. (5.17)
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Thus, pre-averaging slows down the rate of convergence, but n−1/4 is nonetheless the
fastest rate in noisy diffusion models [52, 53].

We will see later in Section 5.3 that there exists a consistent estimator of the above Σ∗

provided in [85]. Unfortunately, this approach does not ensure that the whole covariance
matrix estimate is positive definite in finite samples. To fix the defect, we construct our
estimator by using the idea of subsampling scheme described in the next section.

5.2 Main results

For building our estimator in the presence of noise, we first imitate the procedure from
Subsection 4.1.1 by splitting the full sample of noisy high-frequency data into subsamples
using a blocking approach.

For simplicity, we try to keep the same notations as in the previous chapter but use
them in the context of noise. We redefine:

Bi(p) =
{
j : (i− 1)pkn ≤ j ≤ ipkn

}
, (5.18)

where p ≥ 3 is an integer and i ≥ 1.

Bi(p) is composed of adjacent observation time points at the ith block of noisy high-
frequency data. We can see that the only change compared to the noiseless setting is
that Bi(p) uses a larger block size. This implies that we can do a sufficient amount of
averaging within each block in order to diminish the noise, while still preserving enough
of an effective sample size to estimate the correlation structure of V ∗(q, r)n.

We set

Σ̂∗n =
1

L

L∑
l=1

(
n1/4

√
L

(
V ∗l (q, r)n − V ∗(q, r)n

))(n1/4

√
L

(
V ∗l (q, r)n − V ∗(q, r)n

))′
, (5.19)

where, assuming Lpkn divides n,

V ∗l (qk, rk)
n =

Lpkn
n

n/Lpkn∑
i=1

v(i−1)L+l(qk, rk)
n,

vi(qk, rk)
n =

1

pkn − 2kn + 2

∑
j,j+kn−1∈Bi(p)

|n1/4∆Ȳ n
j |qk |n1/4∆Ȳ n

j+kn|
rk .

(5.20)

Note that the summands vi(qk, rk)n in the subsample estimates V ∗l (qk, rk)
n exploit data

solely from Bi(p). Therefore, pre-averaging has to be performed locally within the block,
so that there is no overlap in the pre-averaged returns across the various blocks.
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Theorem 5.2
Assume that Yt = Xt + εt is a noisy diffusion model, where Xt is given by Eq. (4.1), that
fulfills Assumption (H) and (M). Also, Assumption (N) with s > 3 ∨ max{2(qk + rk) :

1 ≤ k ≤ m} is true. Let q = (q1, . . . , qm)′ and r = (r1, . . . , rm)′ be vectors of even
non-negative integers. Then, as n → ∞, p → ∞, L → ∞ and

√
n/Lp2 → ∞, it holds

that

Σ̂∗n − Σ∗ = Op

(
1√
L

)
︸ ︷︷ ︸

CLT

+Op

(
Lp2

√
n

)
︸ ︷︷ ︸

blocking

+Op

(
1

p

)
︸ ︷︷ ︸

HAC

(5.21)

Proof. See Section 5.4.

As in the no-noise setting, the minimal assumptions we need to prove consistency are
n → ∞, p → ∞, L → ∞ and

√
n/Lp2 → ∞. The last condition

√
n/Lp2 → ∞

ensures that a bias term of the statistic V ∗l (q, r)n − V ∗(q, r)n is negligible with respect to
its martingale part.

Now, we achieve the best rate

Σ̂∗n − Σ∗ = Op

(
n−1/10

)
, (5.22)

by choosing
L = O(n1/5) and p = O(n1/10). (5.23)

Thus, the existence of microstructure noise also adversely affects the speed of conver-
gence of Σ̂∗n.

In practical work, we need consistency results not only for even non-negative integers
qi and ri as in Theorem 5.2, but also for any choice of the powers greater than zero. In
order to complete this task, we assume some stronger conditions on ε as follows:

Assumption (A):

(i) ε is distributed symmetrically around zero.

(ii) For any −1 < a < 0, we have E[|ε|a] ≤ ∞.

Assumption (A’) (Cramer’s condition):

lim sup
|t|→∞

χ(t) < 1,

where χ is the characterisitic function of ε.
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The Assumption (A) is required for powers in (0, 1]. Specifically, the associated cen-
tral limit theorem for the bipower variation depends upon the fact that the normal distribu-
tion satisfies both (A)(i) and (A)(ii). The Assumption (A’) is needed for non-even powers.
It will be used to get rid of the bias in the pre-averaged statistic |∆Ȳ n

i |q. Usually, the mo-
ments of |n1/4∆ε̄ni | is approximated by the associated moments of a normal distribution.
An expansion of Edgeworth-type, for which (A’) is a standard assumption, is used in this
case to show that this error of the approximation becomes sufficiently small. To summa-
rize, these two conditions are provided in [85] to prove the central limit theorem in (5.15)
for any powers. Note that we can again dispense with Assumption (M) for consistency.

Theorem 5.3
Assume that Yt = Xt + εt is a noisy diffusion model, where Xt is given by Eq. (4.1), σ
is continuous and fulfills Assumption (V) with σ > 0, while the noise fulfills Assumption
(N) with s > 3 ∨ max{2(qk + rk) : 1 ≤ k ≤ m} and also Assumption (A) and (A’).
Then, as n→∞, p→∞, L/p→∞ and

√
n/Lp2 →∞, it holds for any q, r ≥ 0 that

Σ̂∗n
P−→ Σ∗. (5.24)

Proof. See Section 5.4.

Remark 5.4
It is straightforward to extend the results in this section to the multipower-type pre-
averaging estimators.

5.2.1 Extension to dependent and heteroscedastic noise

The i.i.d. framework on the microstructure noise ε is a convenient outset, but it is hard
to defend at the tick frequency, both in theory and practice [47]. An intriguing ability
of the subsampling estimator Σ̂∗n is that it tends to be robust against the intricate features
of the noise process, as long as an associated central limit theorem holds. Kalnina [67]
studied subsampling in the presence of both autocorrelated and heteroscedastic noise for
the two-scale realized variance. In this subsection, we show how our theoretical results
adapt to such models, allowing for more general structure in the noise process.

1. Dependent noise

Autocorrelation in tick-by-tick returns can extend beyond the first lag, depending a bit
on how you gather the data [55, 7]. This cannot be captured by independent noise, so
we start by weakening this assumption to so-called m-dependent noise. Thus, we now
assume that the noise process (εt)t≥0 is stationary and that the random variables εi/n and
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εj/n are independent, only if |i − j| > m. Hautsch et al. [58] prove a central limit the-
orem for pre-averaging in this setup (based on the estimator V ∗(2, 0)n). As indicated by
their results, the law of large numbers and the central limit theorem for the pre-averaged
bipower variation estimator V ∗(q, r)n do not change, except that the noise variance ω2

has to be replaced by the expression ρ2 = ω2 + 2
∑m

j=1 cov(εi/n, ε(i+j)/n), i.e.

V ∗(qk, rk)
n p→ V ∗(qk, rk) = µqkµrk

∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1ρ

2

) qk+rk
2

ds. (5.25)

Here, the form of Σ∗ changes.1 Our proposed estimator Σ̂∗n is still consistent though, as
the change in the bias caused through replacing ω2 by ρ2 is corrected by construction in
(5.19). This is because Σ̂∗n imitates the underlying covariation, irrespective of the true
microstructure model. This implies that the asymptotic results of Theorem 5.2 and 5.3
are also true for the m-dependent noise model.

2. Heteroscedastic noise

The market microstructure reveals itself, for example, via the bid-ask spread. It has been
noticed in many empirical asset price series that such margins are not constant through
time, but tend to vary systematically within the day in the form of a U-shape. Thus, in
the equity market spreads are typically larger in the morning and afternoon than during
the middle of the day. To accommodate this, another setup that has been studied is het-
eroscedastic noise [70]. Here, we follow the exposition in [62] by assuming that

E
[
εt | X

]
= 0, E

[
ε2t | X

]
= ω2

t is càdlàg and (Ft)-adapted, (5.26)

while, conditional on X , εt and εs are independent for any t 6= s. By construction,
this model exhibits a time-varying variance structure of the noise, which depends on the
efficient price X .2 Note that these conditions do not contradict unconditional dependence
in ε. In this case, the consistency result translates to:

V ∗(qk, rk)
n p→ V ∗(qk, rk) = µqkµrk

∫ 1

0

(
θψ2σ

2
s +

1

θ
ψ1ω

2
s

) qk+rk
2

ds. (5.27)

Again, the estimator Σ̂∗n automatically adapts to the new environment, which, in partic-
ular, implies that the consistency result of Theorem 5.3 is still true. In order to maintain

1In particular, Hautsch and Podolskij [58] show that the asymptotic variance of the pre-averaged realized
variance V ∗(2, 0)n is unchanged, apart from replacing ω with ρ everywhere.

2An example of this model is additive, uniform noise plus rounding: Yt = γ
[
(Xt + ut)/γ

]
, where

u = (ut)t≥0 is an i.i.d. U([0, γ])-distributed process that is independent ofX , and γ > 0 is a fixed rounding

level. In this setting, the conditional variance of the noise process is given by: ω2
t = γ2

({
Xt

γ

}
−
{
Xt

γ

}2
)

,

with {x} = x− [x] denoting the fractional part of x.



80CHAPTER 5. SUBSAMPLING FOR THE BIPOWER-TYPE PRE-AVERAGING ESTIMATORS

unchanged error rates as in Theorem 5.2, however, we need to also impose identical as-
sumptions on the process (ωt)t≥0 as for the volatility (σt)t≥0. This is because the role of
both processes are identical in all asymptotic expansions.

5.3 Simulations and empirical work

This section contains the simulation results from Christensen et al. [41], which we con-
duct a small Monte Carlo study. It takes a closer look at the finite sample properties of
covariance matrix estimation by subsampling. Throughout, we restrict attention to the
noisy setting and estimation of Σ∗. We examine the ability of our proposed estimator Σ̂∗n
to assist in drawing feasible inference about the pre-averaged bipower variation.

The efficient log-price X is simulated as:

dXt = σtdWt,

dσ2
t = κ(σ2 − σ2

t )dt+ ξσt(ρdWt +
√

1− ρ2dBt),
(5.28)

where Wt and Bt are independent standard Brownian motions, while κ, σ2, ξ and ρ are
parameters. The process adopted for σ2

t is a Heston [59] model, which is mean-reverting;
features square-root volatility; and accommodates a leverage effect.3

To get a version of the model from which we can actually simulate data, we apply a
standard Euler approximation to the continuous time formulation in (5.28). We then sim-
ulate 10,000 independent sample path realizations of the discretized system of bivariate
equations.4 We use two different sample sizes of n = 2,340 and 23,400. In our empir-
ical investigation, we look at high-frequency equity data from NYSE. With a US stock
exchange trading session running from 9:30am to 4:00pm—or 6.5 hours—these sample
sizes translate into receiving a new price update every ten and one second(s). Our sample
sizes are therefore representative of more frequently traded securities.

We assume that the parameter values in the volatility equation are κ = 5, σ2 = 0.04,
ξ = 0.50 and ρ = −0.50, which is broadly consistent with prior work [7, 67, 99]. This
implies that σt is about 20% on an average, annualized basis, but the configuration of the
model adopted here can generate a substantial degree of intraday variation in volatility
via ξ. An example simulation is provided in Figure 5.1.

3The leverage effect describes a negative correlation between an asset’s return and volatility [35, 42].
Thus, if a leverage effect is present, one would expect ρ to be negative.

4To avoid a systematic effect from an assumed initial condition of volatility, σ2
0 , we restart the

variance process in each simulation by drawing at random from its stationary distribution, σ2
t ∼

Gamma(2κσ2ξ−2, 2κξ−2).
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Figure 5.1: An illustration of a simulation from the Heston model.

Panel A: Cumulative log-return. Panel B: Annualized spot volatility.
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An autocorrelated and heteroscedastic noise term is added to X . First, we create a
set of serially dependent standard normal random variables via an MA(1) filter: ui/n =

u′i/n + ζu′(i−1)/n, where ζ is a parameter and u′i/n
i.i.d.∼ N

(
0,

1

1 + ζ2

)
, independent of

X . Hence, ui/n ∼ N
(
0, 1
)

and cov(ui/n, u(i−1)/n) =
ζ

1 + ζ2
, so that ζ controls the

degree of first-order serial correlation in the noise. In our simulations, we take ζ = −0.4.
Second, as in [6], we set εi/n = γ

σi/n√
n
ui/n, where γ is the noise-ratio parameter [79]. This

formulation implies that, conditional on σ, ωi/n = γ
σi/n√
n

and ensures microstructure noise

variation is conditionally heteroscedastic and proportional to the spot volatility of the
efficient price. We assume that γ = 0.50, which is a realistic choice for more liquid assets,
see, e.g., [40].5 Although this noise setting is not formally covered by our theoretical
frame, we include it here as a robustness check. To alleviate the impact of noise, we
pre-average using the bandwidth kn = [θ

√
n], and we experiment with two choices of

the tuning parameter θ = 1/3 and 1. We set the weight function w(x) = min(x, 1 − x),
which has been shown to deliver nearly efficient estimates of the integrated variance,
when further parametric assumptions are imposed (see, [85]).

5We also experimented with a much larger noise-ratio of γ = 2, as done by [6]. The results were almost
identical, albeit slightly worse, than those we report in the main text and, hence, are omitted to conserve
space.
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5.3.1 A preliminary analysis

We begin by verifying the conjecture made in the introduction of this work, namely that
the finite sample properties of existing estimators of Σ∗ are poor, which renders a signifi-
cant fraction of such estimates either nonpositive definite or at least ill-conditioned. To do
this, we implement the estimator suggested by Podolskij and Vetter [85]. It is constructed
by first defining

Ỹ n
i,m =

1√
n
|n1/4∆Ȳ n

m|qi |n1/4∆Ȳ n
m+kn|

ri , (5.29)

and setting

χnml =
1

2

[
Ỹ n
i,m

(
Ỹ n
j,m+l − Ỹ n

j,m+2kn

)
+ Ỹ n

j,m

(
Ỹ n
i,m+l − Ỹ n

i,m+2kn

)]
, (5.30)

for any 0 ≤ m ≤ n− 4kn + 1 and 0 ≤ l ≤ 2kn. Then,

Σ̃∗ij,n =
2√
n

n−4kn+1∑
m=0

2kn−1∑
l=0

χnml
p→ Σ∗ij, (5.31)

and it follows that Σ̃∗n =
(
Σ̃∗ij,n

) p→ Σ∗.

Table 5.1 shows several diagnostics that highlight the properties of Σ̃∗n based on q =

(2, 1)′ and r = (0, 1)′, i.e. pre-averaged realized variance and (1, 1)-bipower variation.
In the table, we report the outcome from the general noise model, but we also include a
comparable i.i.d. noise environment, which we base on setting ζ = 0 in the above and

replacing σi/n by
√∫ 1

0
σ2
sds in the noise variance, while noting that Podolskij and Vetter

[85] operate under the latter conditions. In addition, the results are also obtained for a
scaled Brownian motion (BM), in which volatility has been fixed at its steady-state value
of σ2. The column SV is for the Heston stochastic volatility model, while SPY represents
some real high-frequency data that are further commented on in Section 5.3.4.

In Panel A, we report the fraction of the computed Σ̃∗n, which fail to be positive def-
inite, i.e. which have a minimum eigenvalue min(λi) ≤ 0. It suggests that for a small
sample of n = 2, 340 and depending on θ, between 18% – 35% of Σ̃∗n are nonpositive
definite. As expected, these numbers decrease as the sample size increases, but even with
a fairly large sample of n = 23, 400 the failure rate is far from negligible. Moreover, it
increases if a longer pre-averaging horizon is employed. As such, this issue therefore has
substantial bite in practice, because larger values of θ are typically preferred, when the
noise is suspected to violate the i.i.d. assumption [40, 58]. Note that going from con-
stant to stochastic volatility changes the numbers only slightly, so allowing volatility to
be time-varying has no discernable impact on the failure rate.
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Turning next to Panel B, we investigate how often the linear combination ω′V ∗(q, r)n

with ω = (1,−µ−2
1 )′ results in a negative variance estimate ω′Σ̃∗nω ≤ 0. The difference

V ∗(2, 0)n − µ−2
1 V ∗(1, 1)n is often used in applied work, as it provides information about

presence of jumps in the price process and permits a statistical test of this hypothesis.
Even when the covariance matrix estimate is not positive definite, it could still result in
a positive variance estimate ω′Σ̃∗nω > 0, thereby allowing the t-statistic to be computed.
While the numbers in Panel B are lower compared to Panel A, they are still high.

In Panel C, we look at those Σ̃∗n estimates that are positive definite. We compute the
percentage of these, which return a condition number cond(Σ̃∗n) ≥ 20.6 The condition
number measures the numerical accuracy of a matrix, and a value above 20 = 10 ×
dim(Σ̃∗n) is generally taken as a sign of an ill-conditioned and nearly singular matrix
[54, 57]. As readily seen, we find that about 5% – 10% of the Σ̃∗n that are deemed ok by a
definiteness criteria show signs of being badly scaled.

Lastly, in Panel D we attempt to estimate the joint asymptotic covariance matrix of a
4-dimensional parameter by using q = (2, 1, 4, 2)′ and r = (0, 1, 0, 2)′. We then report
the percentage of the Σ̃∗n estimates, which are not positive definite, i.e. the numbers
can be compared to Panel A. Not surprisingly, increasing the complexity of the problem
has a detrimental impact on the estimation errors, and up to 80% of the estimates are
now nonpositive definite, making this a devastating issue for inference (e.g., [46, 45, 98,
employ a 3-dimensional statistic to test for the parametric form of volatility in diffusion
models (both with or without noise)]).

5.3.2 Implementation of the subsampler

We now turn to the subsampler, where we again base our investigation on V ∗(q, r)n using
the parameters q = (2, 1)′ and r = (0, 1)′. As Σ̂∗n depends on two tuning parameters, p
and L, we compute it by varying these across a broad range of values in order to gauge
the sensitivity of our estimator to specific choices. We set p = 3, 5 and 10, so that the
block length of noisy returns before pre-averaging goes from three to ten times the pre-
averaging horizon kn. Moreover, we slice the sample into L = 5, 10 and 15 subsamples,

6The condition number of an invertible matrix A is defined as cond(A) = ||A|| · ||A−1||, where || · || is

the L2 matrix norm. cond(A) can be shown to be the ratio between the largest and smallest singular value

of A. It can be interpreted as saying how much small changes in the input matrix get amplified under matrix

inversion.
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yielding a total of nine combinations of p and L.7

Our initial set of simulations suggested that, for small p and L, the raw estimator
defined by (5.19) is downward biased, thereby leading to a systematic underestimation of
Σ∗. We therefore start by briefly outlining a few corrections that are important in finite
samples.

First, in order to center the V ∗l (q, r)n, we should in theory use the unobserved V ∗(q, r),
which we are forced to replace by a feasible, consistent estimator, i.e. V ∗(q, r)n. While
this has no impact asymptotically, because V ∗(q, r)n converges much faster than V ∗l (q, r)n,
a closer inspection of Σ̂∗n shows that the substitution does entail a standard small sample
correction. This implies that Σ̂∗n should be divided by 1− 1/L, i.e. the “right” normaliza-
tion in (5.19) is L− 1 and not L.

Second, there is a HAC error associated with p, which—in contrast to theL correction—
is more subtle to deal with. The problem originates from the estimation of the autocovari-
ances of the pre-averaged returns, |n1/4∆Ȳ n

i |qi |n1/4∆Ȳ n
i+kn
|ri , as exemplified by (4.26).

As such, it depends on the covariance structure of this series, which, in turn, is a function
of several parameters and variables, including spot volatility, the weight function and the
variance of the noise process (see, [85]). If we approximate this function, e.g., by assum-
ing that volatility is constant, a detailed calculation (which is omitted here, but available
upon request) shows that for the pre-averaged bipower variation estimator V ∗(qi, ri)n de-
fined by (5.13), we can roughly correct for the p error by dividing Σ̂∗n with 1− 1/p.

It turns out, however, that this is too much, if either qi or ri is zero, as it happens for
the pre-averaged realized variance, V ∗(2, 0)n. This is because the summands in (5.13)
are, asymptotically, 2kn-dependent for non-zero values of both qi and ri, while they are
only kn-dependent, if either is zero. Thus, the bias induced by p in the latter is, loosely
speaking, half that of the former. This indicates that we ought to divide the elements of Σ̂∗n
involving the variance of V ∗(2, 0)n and its covariance with V ∗(1, 1)n only by 1 − 0.5/p.
This is less appealing, because it would break the positive semi-definiteness property of
Σ̂∗n. We therefore proceed by using a constant scaling for the entire matrix, and—to strike
a balance between the two alternatives—we propose to meet in the middle and rescale Σ̂∗n
by (1 − 0.75/p). This choice produces excellent results for the values of p considered
in this work, as corroborated by our numerical experiments below, while for p ≥ 10 the
correction is of limited importance and can be ignored.

7This implies that for the sample size n = 2, 340, there are some combinations of p and L, for which

there is not enough data to compute the subsampler. Therefore, we restrict attention to n = 23, 400 in the

following. The results for n = 2, 340, when attainable, are not materially worse, reflecting the slow rates

of convergence, and all are available by request.
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Third, our theoretical results hinge on n being a multiple of Lpkn. In practice, where n
varies randomly over time and can be very odd, this is an unrealistic assumption, which is
almost never satisfied. Instead, for a given choice of kn, p and L, the maximum number of
blocks of length pkn that can be assigned to each of the L subsample estimates V ∗l (qi, ri)

n

is:

nblock =

⌊
bn/pknc

L

⌋
. (5.32)

The effective amount of data used to construct the subsampler is therefore often less than
the total sample size, i.e. nblockLpkn ≤ n.

We compute Σ̂∗n from the data that fall within the window [0, nblockLpkn/n] and sub-
sequently inflate this estimate to cover the whole unit interval. While this entails some
loss of information about the underlying variation of the process towards the end of the
sample, in our experience this has a very limited influence on the results, unless the data,
from which Σ̂∗n is computed, is not representative of the overall level of volatility. In
practice, one can minimize this effect by choosing the parameters, such that nblockLpkn is
close to n.

5.3.3 Results

In Figure 5.2, we plot some kernel smoothed density estimates of the standardized pre-

averaged bipower variation, i.e. n1/4
(
V ∗(qk, rk)

n − V ∗(qk, rk)
)
/
√

Σ̂∗kk,n, where Σ̂∗kk,n is

the kth diagonal element of our subsampling covariance matrix estimate Σ̂∗n. Here, we
use θ = 1. The results in Panels A – B are for V ∗(1, 1)n, while Panels C – D are for
V ∗(2, 0)n. In addition, the left-hand portion of the figure is for L = 15 and p changing,
while the right-hand part is based on p = 10 and for different L. The infeasible result for
V ∗(2, 0)n replaces the subsampler with the true variance, which is known here (cf.(5.17)).

As the figure shows, the studentized pre-averaging estimators tend to track the asymp-
totic normal approximation closely across combinations of p and L. The sole exception,
appearing in Panel A, is for V ∗(1, 1)n, when Σ̂∗n is implemented using p = 3. Note that
if p = 3, the effective sample size within a block of noisy high-frequency data is kn + 2

after pre-averaging, whereas the summands of V ∗(1, 1)n are 2kn-dependent. With such
a small value of p, the block length is therefore inadequate to permit estimation of all
the required autocovariances. As |n1/4∆Ȳ n

i |qk |n1/4∆Ȳ n
i+kn
|rk is strongly positively auto-

correlated, this leads to a severe underestimation of the true variation of V ∗(1, 1)n and,
hence, a pronounced overdispersion of the estimated density. As a practical guide, one
should therefore avoid computing Σ̂∗n with p = 3, if both qk and rk are different from zero,
for any i = 1, . . . ,m. In comparison, the corresponding graph for V ∗(2, 0)n in Panel C is
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much better scaled, reflecting the lesser dependence inherent in this estimator. Apart from
that, the fit tends to improve for larger values of p and L, as expected.8 Lastly, comparing
with the infeasible result in Panels C – D, we note that the estimated densities appear
slightly negatively skewed, owing to a modest, positive correlation between V ∗(qk, rk)n

and Σ̂∗kk,n.

We turn next to Figure 5.3, where we explore how sensitive our findings are to the
choice of θ. In this figure, and throughout the remainder of this section, we fix the pa-
rameters of Σ̂∗n to p = 10 and L = 15. As apparent from both panels, the relatively large
change in θ has only a minuscule effect on the shape of the estimated density for V ∗(1, 1)n

and V ∗(2, 0)n.

In Figure 5.4, using θ = 1, we look at an application that requires one to use infor-
mation about the full covariance matrix estimate by reporting some results for the linear
combination ω′V ∗(q, r)n with ω = (1,−µ−2

1 )′, i.e. V ∗(2, 0)n − µ−2
1 V ∗(1, 1)n. In Table

5.1, we noted it was problematic to standardize this difference with the covariance matrix
estimator put forth by Podolskij and Vetter [85], which was often found to be nonpositive
definite. The subsampler does not suffer from this issue. In Panel A of Figure 5.4, we
therefore plot the time series of the studentized statistic across the simulations runs, us-

ing the delta method to conclude that n1/4ω′
(
V ∗(q, r)n−V ∗(q, r)

)
/

√
ω′Σ̂∗nω

d→ N(0, 1).
Panel B inspects the kernel smoothed density estimate of the t-statistic. As evident, the
asymptotic distribution theory is a decent description of the actual finite sample variation,
although the fit is not perfect. As explained above, V ∗(2, 0)n − µ−2

1 V ∗(1, 1)n provides
information about the presence of jumps in asset prices, and significant positive values
would lend support to this hypothesis. Here, the shape of the estimated density implies
that the one-sided coverage probabilities of the t-statistic are slightly too large in the right
tail. This would render such a hypothesis test mildly conservative, which is preferable
in practice (e.g., using the 95% quantile from the standard normal distribution gives a
coverage rate of 96.7% in the above figure).

At last, we compare our subsampler Σ̂∗n to an alternative, nonparametric estimator of
Σ∗, namely the observed asymptotic variance (AVAR) of [76]. As in our setting, the ob-
served AVAR is based on squared increments (or outer products) of the original statistic(s)
computed on smaller streches of high-frequency data, but there are several differences be-
tween the construction of the subsampler and observed AVAR. Moreover, there is little
guidance on how to select tuning parameters for the latter. We therefore proceed as fol-

8Of course, with a fixed sample size n and pre-averaging window kn, the parameters p, L, and nblock are

not free. Thus, everything else is not “fixed”, because nblock is decreasing for larger values of either p or L

(while holding the other fixed).
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Figure 5.2: Kernel density estimate of the standardized V ∗(qk, rk)n: changing p and L.

Panel A: V ∗(1, 1)n (L = 15) Panel B: V ∗(1, 1)n (p = 10)
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Panel C: V ∗(2, 0)n (L = 15) Panel D: V ∗(2, 0)n (p = 10)
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Note. We show the kernel smoothed density estimates of the standardized pre-averaged bipower variation estimator:

n1/4
(
V ∗(qk, rk)n − V ∗(qk, rk)

)
/
√

Σ̂∗kk,n, where Σ̂∗kk,n is the kth diagonal element of Σ̂∗n. Throughout this fig-

ure, n = 23, 400, θ = 1 and we set kn = [θ
√
n] to implement pre-averaging. The simulation data is from a Heston

stochastic volatility model, as described in the main text. In the left panel, the subsampler is based on L = 15 subsamples,

while varying the block length at p = 3, 5 or 10 × kn. The right panel is based on p = 10, while changing the number

of subsamples at L = 5, 10 or 15. The nsim = 10, 000 simulated t-statistics are smoothed using a Gaussian kernel with

optimal bandwidth selection h = 1.06σ̂n
−1/5
sim , where σ̂ is the sample standard deviation of the data. The infeasible result

for V ∗(2, 0)n replaces the subsampler with the true variance (cf., (5.17)). The density function of a standard normal random

variable (the solid black line) is superimposed as a visual reference.
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Figure 5.3: Kernel density estimate of the standardized V ∗(qk, rk)n: changing θ.

Panel A: V ∗(1, 1)n (p = 10, L = 15) Panel B: V ∗(2, 0)n (p = 10, L = 15)
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Note. We show the kernel smoothed density estimates of the standardized pre-averaged bipower variation estimator:

n1/4
(
V ∗(qk, rk)n − V ∗(qk, rk)

)
/
√

Σ̂∗kk,n, where Σ̂∗kk,n is the kth diagonal element of Σ̂∗n. Throughout this fig-

ure, n = 23, 400, L = 15, p = 10, and we set kn = [θ
√
n] to implement pre-averaging using θ = 1/3 and θ = 1. The

simulation data is from a Heston stochastic volatility model, as described in the main text. The left panel holds the results

for V ∗(1, 1)n, while the right panel is for V ∗(2, 0)n. The nsim = 10, 000 simulated t-statistics are smoothed using a

Gaussian kernel with optimal bandwidth selection h = 1.06σ̂n
−1/5
sim , where σ̂ is the sample standard deviation of the data.

The density function of a standard normal random variable (the solid black line) is superimposed as a visual reference.

lows. The sampling grid consists (using their notation) of B = L blocks at the outset.
This helps to ensure comparability with Σ̂∗n. We then compute the observed AVAR us-
ing a two-scale approach, as a linear combination of the K-averaged apparent quadratic
covariation with K1 = 1 and K2 = 2; see (24) in [76].9 A forward half-interval ap-
proach is adopted to reduce the impact of edge effects induced by pre-averaging. The
outcome is reported in Figure 5.5, where we plot the standardized pre-averaged bipower
variation V ∗(2, 0)n and V ∗(1, 1)n using both Σ̂∗n and the observed AVAR. As apparent,
standardization with the subsampler tracks the standard normal curve closer compared to
the observed AVAR. Indeed, the standard error of the studentized pre-averaged bipower
variation is about 1.05 using Σ̂∗n, while it is about 1.20 using the observed AVAR.

Overall, the simulation results suggest that inference based on Σ̂∗n is fairly robust and

9The observed AVAR has a bias, which—although asymptotically negligible—could impair its accuracy

in finite samples. The virtue of the two-scale construction, as advocated by Mykland and Zhang [76], is

that the bias term cancels out.
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Figure 5.4: Properties of the standardized V ∗(2, 0)n − µ−2
1 V ∗(1, 1)n.

Panel A: Point estimate Panel B: Kernel density estimate
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Note. We plot ω′V ∗(q, r)n with ω = (1,−µ−2
1 )′, after it has been standardized by Σ̂∗n based on p = 10 and L = 15, i.e.

n1/4
(
V ∗(2, 0)n−µ−2

1 V ∗(1, 1)
)
/

√
ω′Σ̂∗nω. In Panel A, we plot the point estimates of this t-statistic across simulations,

while Panel B displays the corresponding kernel smoothed density estimate. Throughout the figure, n = 23, 400, and we

set kn = [θ
√
n] to implement pre-averaging using θ = 1. The simulation data is from a Heston stochastic volatility model,

as described in the main text. In Panel B, the nsim = 10, 000 simulated t-statistics are smoothed using a Gaussian kernel

with optimal bandwidth selection h = 1.06σ̂n
−1/5
sim , where σ̂ is the sample standard deviation of data. The density function

of a standard normal random variable (the solid black line) is superimposed as a visual reference.

delivers excellent outcomes, even for modest values of its tuning parameters.

5.3.4 Empirical work

Here, we provide a brief illustration of the subsample estimator in the context of some
real financial high-frequency data. We analyze tick-data from the Standard and Poor’s
depository receipts, which is an exchange-traded fund that tracks the performance of the
S&P 500 stock index. The shares are listed on several U.S. stock exchanges and trade
under the ticker symbol SPY. It is a highly liquid security and provides a good starting
point for the subsampler, which is data-intensive. We extracted a transaction price series
of the SPY from the TAQ database. The data are recorded at milli-second precision and
our complete sample covers the time period from January, 2007 to March, 2011; a total of
1,169 business days. The raw data was filtered for outliers using the recommendations of
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Figure 5.5: Comparison of the subsampler and observed asymptotic variance.
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Note. We show kernel smoothed density estimates of the standardized pre-averaged bipower variation estimator:

n1/4
(
V ∗(qk, rk)n − V ∗(qk, rk)

)
/
√

Σ∗kk , where Σ∗kk is the kth diagonal element of Σ∗. We replace Σ∗ by the sub-

sampler (based on L = 15 and p = 10) and the observed asymptotic variance. The latter is computed with B = 15,

and a two-scale combination of the K-averaged apparent quadratic covariation with K1 = 1 and K2 = 2 using forward

half-interval estimators, as explained in [76] around (24). In the figure, n = 23, 400 and we set kn = [θ
√
n] to implement

pre-averaging using θ = 1. The simulation data is from a Heston stochastic volatility model, as described in the main

text. The left panel holds the results for V ∗(1, 1)n, while the right panel is for V ∗(2, 0)n. The nsim = 10, 000 simu-

lated t-statistics are smoothed using a Gaussian kernel with optimal bandwidth selection h = 1.06σ̂n
−1/5
sim , where σ̂ is the

sample standard deviation of the data. The density function of a standard normal random variable (the solid black line) is

superimposed as a visual reference.

[40].10 We also restrict attention to the NYSE trading session, which runs from 9:30am
till 4:00pm Eastern Time. Table 5.2 provides a few descriptive statistics that summarize
key features of the dataset.

In Panel A of Figure 5.6, we plot the sample autocorrelation function (acf) of the noisy
return series, ∆n

i Y , up to lag 15. There is a pronounced, significantly negative first-order
autocorrelation of about -0.35, which is consistent with a bid-ask bounce interpretation of
microstructure noise. The acf then increases and turns positive at lag three. The fourth

10The [40] filter is to a large extent based on the cleaning routines of [17]. The former use a backward-

forward matching algorithm to compare a trade to the quote conditions prevailing in the market around the

time of the transaction. The latter evaluate each trade against a single preceding bid-ask quote, which may

lead to excessive removal of data in fast-moving markets. Apart from that, the filters are identical.
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Table 5.2: Summary statistics of the SPY high-frequency data.

Statistic Sample average [Min; Max]

roc 0.003 [-8.254;7.349]

σ̂roc 17.037 [3.474;127.923]

n 113.769 [13.127;533.203]

K 320 [115;730]

Note. We report some descriptive statistics of the SPY high-frequency data. roc is the open-to-close return (in percent), i.e. the

difference between the log-price of the last and first transaction of the day. σ̂roc is a realized measure of the standard deviation

of roc. We set σ̂roc = 100 ×
√

250× ÎV , where ÎV is defined in (5.33). n is the sample size (in 1,000s), while K is the

pre-averaging window. The sample period is January, 2007 through March, 2011.

Figure 5.6: Autocorrelation function of SPY return series.

Panel A: Noisy returns, ∆n
i Y Panel B: Pre-averaged returns, ∆Ȳ ni
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Note. We compute the empirical autocorrelation function (acf) of the SPY returns. Panel A is for the noisy returns (defined

in (5.1)), while Panel B is for the pre-averaged returns (defined in (5.8)). The acf is estimated daily and then averaged over

time. The sample period covers January, 2007 through March, 2011. The dashed line represents a 95% confidence interval

for assessing the white noise null hypothesis.

and fifth autocorrelation actually fall outside the 95% confidence bands based on a white
noise null hypothesis. Together with the subsequent monotonic decay of the acf, this
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indicates that noise operating at the tick-level is not i.i.d., as consistent with prior work
[55]. We therefore proceed using a pre-averaging window based on θ = 1, which should
be a robust choice in light of the empirical evidence. The acf of the corresponding pre-
averaged returns, ∆Ȳ n

i , is presented in Panel B of the figure. As expected, there is a
strong dependence in this series up to lag kn.

Figure 5.7: Time series of integrated variance estimates and standard error.

Panel A: Integrated variance Panel B: Standard error
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Note. In Panel A, we report the time series of the daily V ∗(2, 0)n and µ−2
1 V ∗(1, 1)n estimates. The series were trans-

formed into measures of the daily integrated variance, as detailed in (5.33). In Panel B, we plot the associated standard

errors, based on
√

Σ̂∗n(2, 0) and
√

Σ̂∗n(1, 1). We use p = 10 and L = 15 to implement the

To facilitate the readability of the figure, the series based on µ−2
1 V ∗(1, 1)n and

√
Σ̂∗n(1, 1) are reflected in the x-axis.

We report the resulting time series of V ∗(2, 0)n and µ−2
1 V ∗(1, 1)n in Panel A of Figure

5.7. Note that the graph for µ−2
1 V ∗(1, 1)n has been reflected in the x-axis. The statistics

are first computed day-by-day across the whole sample and subsequently updated using
(5.14) to provide annualized measures of the integrated variance (assuming 250 trading
days p.a., on average), i.e.:

ÎV =
V ∗(2, 0)n

θψkn2

− ψkn1 ω̂2

θψkn2

p→
∫ 1

0

σ2
sds, (5.33)

with an identical transformation of µ−2
1 V ∗(1, 1)n.

The term
ψkn1 ω̂2

θψkn2

is a small bias correction that compensates the pre-averaged bipower
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variation for the residual effect of microstructure noise.11 ω̂2 is an estimate of the noise
variance, ω2. There are several estimators, which can serve the role of ω̂2 [50]. Among
these, we adopt the one from Oomen [79], which relies on the first-order autocorrelation
of the noisy returns:

ω̂2 = − 1

n− 1

n−1∑
i=1

∆n
i Y∆n

i+1Y
p→ ω2. (5.34)

We find a high degree of time-variation and persistence in the ÎV series. The onset of the
financial crisis and—in particular—the unprecedented volatility surrounding the collapse
of Lehman Brothers in 2008 stands out visibly. To attach a measure of uncertainty to

these estimates, Panel B charts the associated standard error estimate,
√

Σ̂∗11,n/θψ
kn
2 and√

Σ̂∗22,n/θψ
kn
2 , where the latter are based on the subsampler with L = 15 and p = 10. As

expected, high levels of volatility spill over into the standard errors and tend to decrease
estimation accuracy. The apparent outliers showing up in the standard error series in Q3,
2007 and Q2, 2010 correspond to single days with unusual market activity. The first is
September 18, 2007, where the Federal Open Market Committee (FOMC) announced an
unexpected reduction of its target for the federal funds rate by 50 basis points, while the
second is May 6, 2010; the day of the S&P 500 Flash Crash.

Turn next to Figure 5.8, where we conduct inference about V ∗(2, 0)n−µ−2
1 V ∗(1, 1)n.

In Panel A, we compute the difference in the logarithms of these numbers, i.e. ln
(
V ∗(2, 0)n

)
−

ln
(
µ−2

1 V ∗(1, 1)n
)
, which tends to be less volatile compared to the raw statistic. As shown,

the majority of the point estimates hover around zero, which is the theoretical limit in dif-
fusion models. There are some notable exceptions though, and in Panel B we examine one
of these by zooming in on the month of December, 2007. Alongside the statistic, we here
report a two-sided 95% confidence interval. Standard errors were found by applying the
delta method (for the function f(x, y) = ln(y)− ln(µ−2

1 x)) to the joint asymptotic distri-
bution in (5.15) and then replacing the asymptotic variance of the difference by a feasible
estimate. In particular, we compare a set of intervals based on the subsampler, Σ̂∗n, with
those computed from the observed AVAR of [76], which is again computed as explained
in the simulation section, and to the [85] estimator, Σ̃∗n. If the latter leads to a negative
variance estimate, it is excluded. As consistent with Table 5.1, this is a recurrent problem.
Moreover, if all three estimates are well-defined, they are often closely aligned, but both
the subsampler and observed AVAR appear less erratic, while Σ̃∗n is often very narrow

11The bias correction in (5.33) is only correct, when the noise is i.i.d. Meanwhile, the estimator of ω2

we propose in (5.34) is robust to the presence of a heteroscedastic noise process, but it is generally not

consistent for ρ2 from Section 5.2.1, if the noise is autocorrelated. As the current application is merely

illustrative, we ignore that issue here.
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Figure 5.8: Inference about ln
(
V ∗(2, 0)n

)
− ln

(
µ−2

1 V ∗(1, 1)n
)
.

Panel A: Point estimate Panel B: Confidence interval
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Note. We compute the difference ln
(
V ∗(2, 0)n

)
− ln

(
µ−2
1 V ∗(1, 1)n

)
, which shows potential violations of the assumed

continuous sample path model. V ∗(2, 0)n and V ∗(1, 1)n are defined in (5.13). In Panel A, we plot the time series of the

daily estimates of this number across the sample, which covers January, 2007 through March, 2011. In Panel B, we add a

two-sided 95% confidence interval for the log-difference during the month of December, 2007. The standard errors are found

by applying the delta method to the joint asymptotic distribution in (5.15). We replace the asymptotic covariance matrix

by the subsampler (wide, grey box), Σ̂∗n, the [76] observed asymptotic variance computed as described in the simulation

section (narrow, red box), and the estimator proposed in [85] (blue whisker), Σ̃∗n. The former is implemented by setting

p = 10 and L = 15. In both panels, the dashed line represents the limiting value in a pure diffusion model.

or wide. This is most visible from the big discrepancy on December 11, 2007, marking
a day with yet another rate cut by the Fed. On this day, the condition number of Σ̃∗n is
cond(Σ̃∗n) = 452.36, which suggest that the underlying covariance matrix estimate is very
fragile. The corresponding figure for the observed asymptotic variance is 64.68, which is
again rather high, and indeed it also leads to a very large confidence interval here. Mean-
while, the condition number of the subsampler is more modest at cond(Σ̃∗n) = 15.16, and
it generally appears to be the most stable over time.

To end the section, we provide an alternative application, where the subsampler is
used to draw inference about the amount of heteroscedasticity in noisy high-frequency
data. To do this, we start by computing the statistics V ∗(2, 0)n and V ∗(4, 0)n, i.e. the pre-
averaged bipower variation based on the parameter q = (4, 2)′ (and r = (0, 0)′). Taking
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these as input, we appeal to (5.14) by forming the estimate:

ÎQ =
µ−1

4 V ∗(4, 0)n

(θψkn2 )2
− 2ψkn2 ψkn1 ω̂2

(θψkn2 )2
ÎV− (ψkn1 ω̂2)2

(θ2ψkn2 )2

p→
∫ 1

0

σ4
sds, (5.35)

which converges to the so-called integrated quarticity. We then exploit that
√

ÎQ/ÎV
p→√∫ 1

0
σ4
sds/

∫ 1

0
σ2
sds ≥ 1, with equality if and only if σ is constant. Thus, an estimated

ratio far above one suggests there is significant variation in volatility within the day, while
a ratio close to one means σ can be regarded, as if it was approximately constant. This type
of statistic has been exploited in earlier work to test for the parametric form of volatility
[46, 98].

Figure 5.9: Inference about ln
(√

ÎQ/ÎV
)

.

Panel A: Point estimate Panel B: Confidence interval
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Note. We compute the log-ratio ln
(√

ÎQ/ÎV
)

, which measures the degree of heteroscedasticity in σ within the day. ÎV and

ÎQ are defined in Eqs. (5.33) and (5.35). In Panel A, we plot the time series of the daily estimates of this number across the

sample, which covers January, 2007 through March, 2011. In Panel B, we add a left-sided 95% confidence interval for the

log-ratio during the month of December, 2007 (the upper end of the interval extending to +∞ is not shown). The standard

errors are found by applying the delta method to the joint asymptotic distribution in (5.15). We replace the asymptotic

covariance matrix by the subsampler (wide, grey box), Σ̂∗n, the [76] observed asymptotic variance computed as described in

the simulation section (narrow, red box), and the estimator proposed in [85] (blue whisker), Σ̃∗n. The former is implemented

by setting p = 10 and L = 15. In both panels, the dashed line represents the limiting value in a constant volatility model.

The outcome of this exercise is collected in Figure 5.9. In Panel A, we plot the time
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series of the estimated log-ratio, i.e. ln
(√

ÎQ/ÎV
)

. We again use a log-transformation
in order to improve the scaling of the results and facilitate interpretation of the graphs.
The log-ratio should cluster around zero, if volatility is constant. We observe an extreme
degree of fluctuation in this statistic over time, and, as anticipated, there are many days,
where the log-ratio is large. Still, we also find a decent portion of estimates, which are
close to zero. Small negative numbers can be observed as a result of sampling variation.
In Panel B, we complement the analysis by looking at the month of December, 2007.

We add a left-sided 95% confidence interval for ln
(√

ÎQ/ÎV
)

, where standard errors
are again retrieved via the delta method and three estimates of the asymptotic covariance
matrix. The interpretation is that on some days, such as the day of the FOMC meeting,
volatility is changing a lot, while on others it is not moving much, which is consistent
with the findings of [76, Figure 1]. Of course, the latter finding can also arise, if the
high-frequency data is not informative enough to discriminate random sampling errors
from genuine parameter variation in σ, which could be difficult in times of severe stress
in financial markets. In this respect, it is important to acknowledge the limitations of the
subsampler, which, albeit consistent, is itself subject to a substantial degree of sampling
uncertainty in practice.

5.4 Proofs

5.4.1 Proof of Theorem 5.2

Again as in the noiseless case, we assume without loss of generality that the processes
a, σ, ã, σ̃ and ṽ are bounded following a standard localization procedure (see, [15]). We
denote by C or Cp (if dependent on a parameter p) a generic constant which may differ
from line to line. And, due to the polarization identity, we can (and shall) assume through-
out that m = 1, so that all statistics are 1-dimensional. We begin by introducing some
notation. For m ≥ i, we define

∆Ȳ n
m,i =

kn∑
j=1

w

(
j

kn

)(
σ i
n
∆n
m+jW + ∆n

m+jε
)
. (5.36)

We note that ∆Ȳ n
m,i approximates ∆Ȳ n

m by evaluating σ at the point i/n. Moreover, we
state two auxiliary results from [85], which provide the stochastic order of the statistics
∆S̄ni for the processes, S = W,X, ε or Y for the former and allow us to use the limits ψi
instead of ψni for i = 1, 2 without influencing the consistency statement for the latter.
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Lemma 5.5 ([85], Lemma 1)

Assume that s is a non-negative real number, such that E[| εt |s] <∞. Then, for any i and

n,

E

[
|∆Ȳ n

m,i|s | F i
n

]
+ E

[
|∆Ȳ n

i |s | F i
n

]
≤ Cn−s/4. (5.37)

Lemma 5.6 ([85], Lemma 2)

Let s ≥ 0. Then,∫ 1

0

(
θψn2σ

2
u +

1

θ
ψn1ω

2

)s
du−

∫ 1

0

(
θψ2σ

2
u +

1

θ
ψ1ω

2

)s
du = op

(
n−1/4

)
. (5.38)

We use the short form notation ti,l = (iL + l)pkn/n and introduce some approxima-
tions of Σ̂∗n and Σ∗ as in Section 4.5:

Σn =
1

L

L∑
l=1

(
n1/4

√
L

(
V ∗l (q, r)n − V ∗(q, r)

))2

, Qn =
k2
np

2

n3/2

L∑
l=1

(
n/Lpkn∑
i=1

χn(i−1)L+l

)2

,

Un =
k2
np

2

n3/2

L∑
l=1

n/Lpkn∑
i=1

(
χn(i−1)L+l

)2
, Rn =

k2
np

2

n3/2

L∑
l=1

n/Lpkn∑
i=1

E
[(
χn(i−1)L+l

)2 | Fti−1,l−1

]
,

where

ηni =
n
q+r
4

pkn − 2kn + 2

∑
m,m+kn−1∈Bi(p)

|∆Ȳ n
m,(i−1)pkn|

q|∆Ȳ n
m+kn,(i−1)pkn|

r,

and
χni = ηni − E

[
ηni | F (i−1)pkn

n

]
.

There exists a C > 0, independent of i, such that

E

[(
ηni
)4
]
≤ C and E

[(
χni
)4
]
≤ C

p2
, (5.39)

where the last inequality holds because of an application of Burkholder inequality and
kn-dependence of the term ∆Ȳ n

m,(i−1)pkn
for each i.

As in the no-noise setting, we complete the proof by showing the following results
and the fact that p/

√
n� √p/n1/4 � 1/

√
L (which follows

√
n/Lp2 →∞).
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Proposition 5.7

Under the conditions of Theorem 5.2, it holds

(i) E[|Σn −Qn|] ≤ C
(
Lp2√
n

+ 1√
L

)
,

(ii) E[|Qn − Un|] ≤ C√
L
,

(iii) E[|Un −Rn|] ≤ C
√
p

n1/4 ,

(iv) E[|Rn − Σ∗|] ≤ C
(

p√
n

+ 1
p

)
,

(v) E[|Σ̂∗n − Σn|] ≤ C√
L
.

We proceed as in the noiseless case, i.e. in the order (iii), (ii), (iv), (i) and (v). How-
ever, the proof of (i) is the most complicated one.

Proof of Proposition 5.7 (iii). We observe that

Un −Rn =
k2
np

2

n3/2

n/pnkn∑
i=1

(χni )2 − E
[
(χni )2|F (i−1)pkn

n

]
.

In view of the martingale difference property as in the proof of Proposition 4.13(iii) and

(5.39), we finish the proof with

E[|Un −Rn|2] ≤ C
k4
np

4

n3

n

pkn

1

p2
≤ C

p

n1/2
. (5.40)

Proof of Proposition 5.7(ii). Note that

Qn − Un =
k2
np

2

n3/2

L∑
l=1

Anl
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where

Anl =

n/Lpkn∑
i,j=1 i 6=j

χn(i−1)L+lχ
n
(j−1)L+l =

n/Lpkn∑
i=1

χn(i−1)L+l

2

−

n/Lpkn∑
i=1

(χn(i−1)L+l)
2


≡
(
S
n/Lpkn
l

)2

− T n/Lpknl .

Since Anl1 and Anl2 are uncorrelated for every l1 6= l2, we obtain

E[|Qn − Un|2] =
k4
np

4

n3

L∑
l=1

E[(Anl )2] (5.41)

≤ C
k4
np

4

n3

L∑
l=1

(
E

[(
S
n/Lpkn
l

)4
]

+ E

[(
T
n/Lpkn
l

)2
])

. (5.42)

To estimate the first sum above, we define Sml :=
∑m

i=1 χ
n
(i−1)L+l. We observe that

(Sml )
n/Lpkn
m=1 is a discrete martingale for each l. Then, the discrete Burkholder and Cauchy-

Schwarz inequalities and (5.39) imply

E[(S
n/Lpkn
l )4] ≤ CE

n/Lpkn∑
i=1

(
χn(i−1)L+l

)2

2 ≤ C
( n

Lpnkn

)2 1

p2
≤ C

n

L2p4
(5.43)

Using the Cauchy-Schwarz inequality and (5.39) again yield

E[(T
n/Lpkn
l )2] ≤ C

n

L2p4
. (5.44)

Then, we finish the proof using (5.41), (5.43) and (5.44).

Proof of Proposition 5.7 (iv). We draw upon the proof of Lemma 8 in [85]. Since h is

differentiable, we find that

Σ∗ = 2θ

∫ 1

0

∫ 2

0

h
(
σu, t, f(s)

)
dsdu

=
2√
n

pkn
n

n/pkn∑
i=1

2kn−1∑
j=0

h

(
σ (i−1)pkn

n

, tn, f
n

(
j

kn

))
+Op

(
pkn
n

)

≡ R′n +Op

(
pkn
n

)
(5.45)
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where the function h defined in (5.16), tn =
(√

n
kn
ψn1 ,

kn√
n
ψn2

)
and

fn1 (s) =
√
n

kn(1−s)∑
j=0

(gnj − gnj+1)(gnj+skn − g
n
j+skn+1)

fn2 (s) =
1√
n

kn(1−s)∑
j=0

gnj g
n
j+skn .

The term Op

(
pkn
n

)
in (5.45) comes from Riemann approximation of σ, which dominates

the others.

To estimate the term Rn −R′n, we recall that

Rn =
k2
np

2

n3/2

n/pkn∑
i=1

E

[
(χni )2 | F (i−1)pkn

n

]
.

For m ≥ l ≥ i, we get

h

(
σ i
n
, tn, f

n

(
m− l
kn

))

= E

[
|n1/4∆Ȳ n

m,i|q|n1/4∆Ȳ n
m+kn,i|

r × |n1/4∆Ȳ n
l,i|q|n1/4∆Ȳ n

l+kn,i|
r | F i

n

]
− E

[
|n1/4∆Ȳ n

m,i|q|n1/4∆Ȳ n
m+kn,i|

r | F i
n

]
× E

[
|n1/4∆Ȳ n

l,i|q|n1/4∆Ȳ n
l+kn,i|

r | F i
n

]
.

Note that the above term vanishes form−l ≥ 2kn. Then, by denotingN = pkn−2kn+2,

we find that

NE
[
(χni )2 | F (i−1)pkn

n

]
= h

(
σ (i−1)pkn

n

, tn, f
n(0)

)
+

2

N

2kn−1∑
j=1

(N − j)h

(
σ (i−1)pkn

n

, tn, f
n

(
j

kn

))

= 2
2kn−1∑
j=0

h

(
σ (i−1)pkn

n

, tn, f
n

(
j

kn

))
+Op(1) +Op

(
kn
p

)
.

This yields that:

pkn√
n
E

[(
χni
)2 | F (i−1)pkn

n

]
=

2√
n

2kn−1∑
j=0

h

(
σ (i−1)pkn

n

, tn, f
n

(
j

kn

))
+Op

(
1√
n

)
+Op

(
1

p

)
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uniformly in i. As a result,

E
[
|Rn −R′n|

]
≤ C

(
1√
n

+
1

p

)
. (5.46)

In view of (5.45) – (5.46), the proof is complete.

To show Proposition 5.7 (i), we need a preparation. Let us denote

Ṽ ∗l (q, r)n =
Lpkn
n

n/Lpkn∑
i=1

ηn(i−l)L+l, V̂ ∗l (q, r)n =
Lpkn
n

n/Lpkn∑
i=1

E

[
ηn(i−l)L+l | Fti−1,l−1

]
.

Then, from the decomposition

V ∗l (q, r)n − V ∗(q, r) =
(
V ∗l (q, r)n − Ṽ ∗l (q, r)n

)
+
(
Ṽ ∗l (q, r)n − V̂ ∗l (q, r)n

)
+
(
V̂ ∗l (q, r)n − V ∗(q, r)

)
together with the identity (a+ b+ c)2 − b2 = 2a(b+ c) + 2cb+ a2 + c2, we obtain

Σn −Qn = D(1)
n +D(2)

n +D(3)
n +D(4)

n ,

where

D(1)
n =

2
√
n

L2

L∑
l=1

(
V ∗l (q, r)n − Ṽ ∗l (q, r)n

)(
Ṽ ∗l (q, r)n − V ∗(q, r)

)
,

D(2)
n =

2
√
n

L2

L∑
l=1

(
V̂ ∗l (q, r)n − V ∗(q, r)

)(
Ṽ ∗l (q, r)n − V̂ ∗l (q, r)n

)
,

D(3)
n =

√
n

L2

L∑
l=1

(
V ∗l (q, r)n − Ṽ ∗l (q, r)n

)2

,

D(4)
n =

√
n

L2

L∑
l=1

(
V̂ ∗l (q, r)n − V ∗(q, r)

)2

.

To bound these terms, we exploit the following auxiliary Lemma.

Lemma 5.8

Assume that the conditions of Theorem 5.2 are fulfilled. Then, uniformly in l:
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(a) E[|Ṽ ∗l (q, r)n − V̂ ∗l (q, r)n|2] ≤ C L√
n
,

(b) E[|V̂ ∗l (q, r)n − V ∗(q, r)|2] ≤ C
(
L2p2

n
+ 1√

n

)
,

(c) E[|V ∗l (q, r)n − Ṽ ∗l (q, r)n|2] ≤ C Lp2

n
.

Proof of Lemma 5.8. Part (a) is derived from exploiting the martingale difference prop-

erty with (5.39). To prove part (b), we start with the decomposition

V̂ ∗l (q, r)n − V ∗(q, r) =
(
V̂ ∗l (q, r)n − V̌ ∗l (q, r)n

)
+
(
V̌ ∗l (q, r)n − V ∗(q, r)

)
,

where

V̌ ∗l (q, r)n = µqµr
Lpkn
n

n/Lpkn∑
i=1

(
θψ2σ

2
ti−1,l−1

+
1

θ
ψ1ω

2

) q+r
2

. (5.47)

To deal with the second term, we recall Lemma 4.14 (b). Hence the Riemann approxima-

tion yields

E

[
|V̌ ∗l (q, r)n − V ∗(q, r)|2

]
≤ C

L2p2

n
. (5.48)

To estimate the first term, let m ∈ Bi(p). We employ Lemma 4 from [85] to conclude

that

E

[
|n1/4∆Ȳ n

m,(i−1)pkn|
q|n1/4∆Ȳ n

m+kn,(i−1)pkn|
r | F (i−1)pkn

n

]
= µqµr

(
θψ2σ

2
(i−1)pkn

n

+
1

θ
ψ1ω

2

) q+r
2

+ op
(
n−1/4

)
, (5.49)

uniformly in i and m. Consequently, we find that

E
[
ηni | Fti−1,l−1

]
= µqµr

(
θψ2σ

2
(i−1)pkn

n

+
1

θ
ψ1ω

2

) q+r
2

+ op
(
n−1/4

)
,

uniformly in i and m. Using these insights, we can finish part (b) by deducing that

E

[
|V̂ ∗l (q, r)n − V̌ ∗l (q, r)n|2

]
≤ C√

n
. (5.50)
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As for the proof of part (c), we proceed as in the proof of noiseless case (see also page

2818 in [85]). Thus, we merely provide a sketch of the main steps for r = 0. For any

m ≥ i, we define

ξnm,i(1) ≡
kn∑
j=1

w
( j
kn

)( 1

n
a i
n

+

∫ m+j
n

m+j−1
n

[
σ̃ i
n

(
Ws −W i

n

)
+ ṽ i

n

(
Bs −B i

n

)]
dWs

)

ξnm,i(2) ≡
kn∑
j=1

w
( j
kn

)(∫ m+j
n

m+j−1
n

(
as − a i

n

)
ds+

∫ m+j
n

m+j−1
n

∫ s

i
n

ãududWs

+

∫ m+j
n

m+j−1
n

(∫ s

i
n

(
σ̃u − σ̃ i

n

)
dWu +

∫ s

i
n

(
ṽu − ṽ i

n

)
dBu

)
dWs

)
.

We note that ∆Ȳ n
m −∆Ȳ n

m,i = ξnm,i(1) + ξnm,i(2) ≡ ξnm,i. Assumption (H), the Hölder and

Burkholder inequalities imply

E
[
|ξnm,i(1)|4

]
≤ C

p2

n2
, (5.51)

E
[
|ξnm,i(2)|4

]
≤ C

p4

n3
, (5.52)

E
[
|ξnm,i|4

]
≤ C

p2

n2
. (5.53)

Now, we let f(x) = |x|q. Taylor’s theorem then yields that

V ∗l (q, r)− Ṽ ∗l (q, r)n = Snl (1) + Snl (2) +Op

( p√
n

)
,
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where

Snl (1) =
Lpkn
n

nq/4

pkn − 2kn + 2
×

n/Lpkn∑
i=1

∑
m∈B(i−1)L+l(p)

f ′
(

∆Ȳ n
m,((i−1)L+(l−1))pkn

)
ξnm,(i−1)L+(l−1))pkn(1),

Snl (2) =
Lpkn
n

nq/4

pkn − 2kn + 2
×

n/Lpkn∑
i=1

∑
m∈B(i−1)L+l(p)

f ′
(

∆Ȳ n
m,((i−1)L+(l−1))pkn

)
ξnm,(i−1)L+(l−1))pkn(2),

and the error Op

(
p/
√
n
)

occurs due to the differentiability of f and (5.53). In order to

bound these terms, we note that Assumption (N) implies that (W,B, ε)
d
= −(W,B, ε).

Also, since f ′
(
∆Ȳ n

m,i

)
is an odd function and ξnm,i(1) is an even function of (W,B, ε), it

follows

E

[
f ′
(
∆Ȳ n

m,ipkn

)
ξnm,ipkn(1) | F ipkn

n

]
= 0.

This property together with the Cauchy-Schwarz inequality, (5.37) and (5.51) mean that

E
[
|Snl (1)|2

]
≤ C

Lp2

n
. (5.54)

Applying the Cauchy-Schwarz inequality again, combined with (5.37) and (5.52), we also

find that

E
[
|Snl (2)|2

]
≤ C

p2

n
, (5.55)

and with (5.54) – (5.55) at hand, the proof is complete.

The following results are then sufficient to complete the proof of Theorem 5.2.

Lemma 5.9

Assume that the conditions of Theorem 5.2 are fulfilled. Then, it holds that
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(a) E[|D(4)
n |] ≤ C

(
Lp2√
n

+ 1
L

)
,

(b) E[|D(3)
n |] ≤ C p2√

n
,

(c) E[|D(1)
n |] ≤ C

(
p

n1/4 +
√
Lp2√
n

)
,

(d) E[|D(2)
n |] ≤ C

(
1√
L

+ Lp3/2√
n

)
.

Proof of Lemma 5.9. Again, part (a) follows from (b). Concerning parts (b) – (c), we

apply Lemma 5.8 and find that

E

[(
Ṽ ∗l (q, r)n − V ∗(q, r)

)2
]
≤ C

(
L√
n

+
L2p2

n

)
. (5.56)

Then, the Cauchy-Schwarz inequality and (5.56) yield(
E
[
|D(1)

n |
])2 ≤ C

(
1+

Lp2

√
n

)√
n

L2

L∑
l=1

E
[
|V ∗l (q, r)n−Ṽ ∗l (q, r)n|2

]
= C

(
1+

Lp2

√
n

)
E
[
|D(3)

n |
]
.

Hence it is enough to show part (b), which follows from Lemma 5.8 (c).

Regarding part (d), we start by denoting φ(x) = µqµr

(
θψ2x

2 +
1

θ
ψ1ω

2
) q+r

2
. Note

that φ(x) is a smooth function of x, because both q and r are even. After recalling (5.47),

an application of Taylor’s theorem and (4.41) for σ implies that

D(2)
n = En + Fn +Gn +Op

(
Lp3/2

√
n

)
+Op

(
p

n1/4

)
,

where the last error term comes from the boundary integral around 0 and 1,

En =
2
√
n

L2

L∑
l=1

(
n/Lpkn∑
i=1

φ′(σti−1,l−1
)

∫ ti,l−1

ti−1,l−1

(
σti−1,l−1

− σs
)
ds

)
×
(
Ṽ ∗l (q, r)n − V̂ ∗l (q, r)n

)
,

Fn = −
√
n

L2

L∑
l=1

(
n/Lpkn∑
i=1

φ′′(σti−1,l−1
)

∫ ti,l−1

ti−1,l−1

(
σti−1,l−1

− σs
)2ds

)
×
(
Ṽ ∗l (q, r)n − V̂ ∗l (q, r)n

)
,

Gn =
2
√
n

L2

L∑
l=1

(
V̂ ∗l (q, r)n − V̌ ∗l (q, r)n

)(
Ṽ ∗l (q, r)n − V̂ ∗l (q, r)n

)
.
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From the Cauchy-Schwarz inequality, Lemma 5.8(a) and (5.50), we get

E
[
|Gn|

]
≤ C√

L
.

At this stage, we assume ṽs = 0 as in the noiseless setting. We recall Assumption (H),

apply (4.41) to ã, σ̃, and subsequently use Taylor’s theorem to conclude that

En = −En(1)− En(2) +Op

(
Lp3/2

√
n

)
,

where

En(1) =
2
√
n

L2

L∑
l=1

(
n/Lpkn∑
i=1

φ′(σti−1,l−1
)
L2k2

np
2

2n2
ãti−1,l−1

)(
Ṽ ∗l (q, r)n − V̂ ∗l (q, r)n

)
,

En(2) =
2
√
n

L2

L∑
l=1

(
n/Lpkn∑
i=1

φ′(σti−1,l−1
)

∫ ti,l−1

ti−1,l−1

σ̃ti−1,l−1

(
Ws −Wti−1,l−1

)
ds

)(
Ṽ ∗l (q, r)n − V̂ ∗l (q, r)n

)
.

For the termEn(1), we proceed as in the noiseless case. After recalling (5.39) and Lemma

5.8(a), we find that

E
[
|En(1)|

]
≤ C

(
p

n1/4
+
Lp3/2

√
n

)
.

Next, the term Fn can be handled in a similar fashion. Thus, we get the estimate

E
[
|Fn|

]
≤ C

(
p

n1/4
+
Lp3/2

√
n

)
.

So, it will be completed if we can show that

E
[
|En(2)|

]
≤ C

p

n1/4
. (5.57)

Without loss of generality, we assume throughout the remainder of the proof that r = 0.

We then appeal to the binomial theorem in order to find an expansion of

|∆Ȳ n
m,i|q = (∆Ȳ n

m,i)
q =

(
σ i
n
∆W̄ n

m + ∆ε̄nm

)q
,
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whereby we can separate Ṽ ∗l (q, r)n− V̂ ∗l (q, r)n, and hence En(2), into q+ 1 terms of the

form

En(2) =

q∑
s=0

E(s)
n (2),

where

E(s)
n (2) =

2
√
n

L2

L∑
l=1

(
n/Lpkn∑
i=1

φ′(σti−1,l−1
)

∫ ti,l−1

ti−1,l−1

σ̃ti−1,l−1
(Ws −Wti−1,l−1

)ds

)

×

(
Lpkn
n

n/Lpkn∑
i=1

χn(i−1)L+l(s)

)
,

χni (s) =
q!

s!(q − s)!
nq/4

pkn − kn + 2

∑
m∈Bi(p)

(
σ (i−1)pkn

n

)q−s(
(∆W̄ n

m)q−s(∆ε̄nm)s

− E
[
(∆W̄ n

m)q−s(∆ε̄nm)s
])
.

As a result, it is sufficient to show that

E
[
|E(s)

n (2)|
]
≤ C

p

n1/4
, (5.58)

where s is an arbitrary integer chosen from 0 ≤ s ≤ q. Note the equality:

(∆W̄ n
m)q−s(∆ε̄nm)s − E

[
(∆W̄ n

m)q−s(∆ε̄nm)s
]

= E
[
(∆ε̄nm)s

](
(∆W̄ n

m)q−s − E
[
(∆W̄ n

m)q−s
])

+ (∆W̄ n
m)q−s

(
(∆ε̄nm)s − E

[
(∆ε̄nm)s

])
.

We then divide χni (s), and hence E(s)
n (2), into two parts and denote (by preserving the

above order)

E(s)
n (2) = Ē(s)

n (2) + Ẽ(s)
n (2). (5.59)

The term Ē
(s)
n (2) can be handled using a decomposition as in (4.58) in the no-noise proof:

(
Ē(s)
n (2)

)2
= Ē(s)

n (2.1) + Ē(s)
n (2.2),
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where Ē(s)
n (2.1) and Ē(s)

n (2.2) are, respectively, composed of squared and mixed terms.

We recall that the sequence ns/4E
[
(∆ε̄nm)s

]
is uniformly bounded in m and n. Then,

proceeding as in (4.59), we find that

E

[
Ē(s)
n (2.1)

]
≤ C

p2

√
n
. (5.60)

Assumption (M), and the steps in the Malliavin calculus are also applied in (4.63) –

(4.67), mean that

E

[
Ē(s)
n (2.2)

]
≤ C

p2

√
n
. (5.61)

For the last term Ẽ
(s)
n (2), we recall thatX and ε are independent and (∆ε̄nm)s−E

[
(∆ε̄nm)s

]
has mean zero. Then, we decompose

(
Ẽ

(s)
n (2)

)2 as in (4.58), and since the mixed terms

for different l’s are mean zero, we find that

E

[(
Ẽ(s)
n (2)

)2
]
≤ C

p2

√
n
. (5.62)

Hence (5.60) – (5.62) lead to (5.58).

Proof of Proposition 5.7 (v). Using a difference of squares, we can write

Σ̂∗n − Σn =

√
n

L2

L∑
l=1

(
V ∗(q, r)− V ∗(q, r)n

)(
2
(
V ∗l (q, r)n − V ∗(q, r)

)
−
(
V ∗(q, r)n − V ∗(q, r)

))
. (5.63)

We know that V ∗(q, r)− V ∗(q, r)n = Op(1/n
1/4) and due to Lemma 5.8, we have

n1/4

√
L

(
V ∗l (q, r)n − V ∗(q, r)

)
= Op(1)

n1/4

√
L

(
V ∗(q, r)n − V ∗(q, r)

)
= Op

(
1√
L

)
.

Plugging in these facts into (5.63) yields

E[|Σ̂∗n − Σn|] ≤
C√
L
.
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5.4.2 Proof of Theorem 5.3

The proof is reminiscent to the proof of Theorem 4.6. A careful inspection of the proof
of Theorem 5.2 implies that the following steps also hold under the weaker assumptions
of Theorem 5.3:

E
[
|Qn − Un|

]
→ 0, E

[
|Un −Rn|

]
→ 0, E

[
|Rn − Σ∗|

]
→ 0, E

[
|Σ̂∗n − Σn|

]
→ 0,

Hence given the rates on p and L, it suffices to show that E
[
|Σn − Qn|

]
→ 0. A di-

rect consequence of discrete Burkholder inequality implies Lemma 5.8(a) while applying
Lemma 4 from [85], we can prove Lemma 5.8(b). Therefore, we can show by applying
Cauchy-Schwarz inequality that

E[|D(2)
n |] ≤ C

(√Lp
n1/4

+
1√
L

)
and

E[|D(4)
n |] ≤ C

(Lp2

n
+

1

L

)
.

Furthermore, from the proof of Lemma 5 ((A.16)–(A.17)) in [85], we can prove that the
right-hand side estimate of Lemma 5.8(c) changes from Lp2/n to p/

√
n, because the

estimate in (5.52) is p2/n2 instead of p4/n3. Then, we finish the proof by an additional
condition L/p → ∞, which implies that the right-hand side estimate of Lemma 5.8(a)
dominates that of Lemma 5.8(c).



Chapter 6

Approximation of Brownian

semi-stationary processes

In 2007, Barndorff-Nielsen and Schmiegel introduced a class of spatio-temporal stochas-
tic processes called ambit fields in a series of papers [20, 21, 22] in the context of finding
flexible stochastic models to describe turbulence. However, manifold applications have
been found in mathematical finance such as energy spot prices [10], power markets [32]
and electricity forward markets [11] and in biology (modelling of tumor growth) [19]. We
refer to (1.8) for the general formula of the ambit fields.

An important purely temporal subclass of ambit fields are the so called Lévy semi-
stationary processes or in short LSS processes, which are defined as

Xt = µ+

∫ t

−∞
g(t− s)σsL(ds) +

∫ t

−∞
q(t− s)asds, (6.1)

where L is a two-sided one dimensional Lévy motion and the ambit sets are given via
At = Dt = (−∞, t). The notion of a semi-stationary process comes from the fact
that the process (Xt)t∈R is stationary whenever (at, σt)t∈R is stationary and independent
of (Lt)t∈R. In the past years, stochastic analysis, probabilistic properties and statistical
inference for Lévy semi-stationary processes have been studied in numerous papers. We
refer to [8, 9, 13, 14, 29, 22, 33, 43, 51, 82] for the mathematical theory as well as to [96]
for an application of LSS models in electricity prices and to [12, 83] for recent surveys
on theory of ambit fields and their applications.

In this thesis, attention is given to a class of ambit fields, a Brownian semi-stationary

111
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process or in short BSS process, i.e. LSS process driven by Brownian motion. We
consider a complete filtered probability space (Ω,F , (F)t∈R,P), on which all processes
are defined. Let a Brownian semi-stationary process be the form

Xt = µ+

∫ t

−∞
g(t− s)σsW (ds) +

∫ t

−∞
q(t− s)asds, (6.2)

where g and q are non-negative deterministic kernels, (at)t∈R and (σt)t∈R are adapted
càdlàg processes, and W is a two sided Brownian motion, i.e.

Wt :=

{
Bt, if t ≥ 0

−B′−t, if t < 0,

whereB is a Brownian motion defined on R≥0 andB′ is an independent copy ofB defined
on R+. We should note that a Brownian semi-stationary process of the form (6.2) is not
necessary to be a semimartingale. For example, let X = (Xt)t∈R be a centered Gaussian
process of the form

Xt =

∫ t

−∞
g(t− s)σsW (ds), (6.3)

where the gamma kernel g(x) = xα exp−λx for α ∈ (−1
2
, 0) ∪ (0, 1

2
) and λ > 0. Basse

[27] show that g(0+) < ∞ and g′ ∈ L2(R+) are necessary conditions for being a semi-
martingale of X . However, in this case g′ /∈ L2(R+) since g′ is not square integrable near
0. Hence if σ 6= 0, the process X is no longer a semimartingale.

To ensure that the first integral appearing in (6.2) is well-defined, we further assume
that ∫ t

−∞
g2(t− s)σ2

sds <∞ almost surely (6.4)

for all t ∈ R (see, [28, 90]). Note that when (σt)t∈R is a square integrable stationary
process and g ∈ L2(R≥0), the above condition (6.4) holds.

A numerical scheme to simulate such Brownian semi-stationary processes in (6.2) is
offered in [32, 48]. The authors have introduced a Fourier approximation method and
discussed the strong approximation error (in the L2 sense) of the numerical scheme for
Lévy semi-stationary processes. We shall emphasize that in [32, 48] the volatility process
(σt)t∈R is assumed to be observed. In this work, we complement their study by analyz-
ing the weak limit of the error process in the framework of Brownian semi-stationary
processes, where the drift and the volatility processes need to be numerically simulated.
This obviously gives a more precise assessment of the numerical error associated with the
Fourier method.
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The outline of this chapter is organized as follows. In Section 6.1, we describe the
Fourier approximation scheme for Brownian semi-stationary processes and present the
main results on strong approximation error derived from Benth et al. [32, 48]. Section 6.2
is devoted to our main result, a weak limit theorem associated with a slight modification
of the Fourier method.

6.1 A Fourier approximation scheme

We now explain the Fourier approximation scheme based on the works of Benth et al.
[32, 48]. First of all we mention that the presence of the drift process (at)t∈R and µ in
(6.2) will be essentially ignored in this section. We start with the following assumptions
on kernels involved in the description (6.2):

Assumption (A):

(i) The kernel functions g and q have bounded support contained in [0, τ ] for some
τ > 0.

(ii) g, q ∈ C(R≥0).

The Assumption (A) guarantees that g ∈ L2(R≥0). Therefore, it satisfies (6.4). In some
cases these conditions are rather restrictive and we will also take a look at the case when
the kernel function g has a singularity. We will give remarks on them later.

A strategy for simulating a discrete trajectory Xt0 , ..., XtM for some t0, ..., tM ∈ R by
Fourier approximation scheme is to define an even function on R from the original kernel
function g. For any given λ > 0, we define

h(x) := g(|x|) and hλ(x) := h(x) exp(λ|x|). (6.5)

Notice that g = h on [0, τ ] so

Xt =

∫ t

t−τ
h(t− s)σsW (ds).

We introduce the Fourier transform of hλ via

ĥλ(y) :=

∫
R

hλ(x) exp(−ixy)dx. (6.6)

Since in general f ∈ L1(R) does not imply f̂ ∈ L1(R) for example when f(x) = 1[0,1](x),
if we aim to rewrite the function h in the form of Fourier transform, we need to add some
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conditions on h. Here, we assume that ĥλ ∈ L1(R), the inverse Fourier transform exists
and we obtain the identity

h(x) =
exp(−λ|x|)

2π

∫
R

ĥλ(y) exp(ixy)dy. (6.7)

Since the Fourier transform maps L1(R) functions into the space of continuous functions,
we require that h ∈ C(R). This fact explains the Assumption (A)(ii) for the kernel func-
tion g. Since h is an even function, the Fourier transform, ĥλ is also even and for a given
number N ∈ N, we deduce an approximation of h by cutting the tail of the integral off:

h(x) =
exp(−λ|x|)

2π

∫
R

ĥλ(y) cos(yx)dy (6.8)

≈ hN(x) := exp(−λ|x|)

(
b0

2
+

N∑
k=1

bk cos(
kπx

τ
)

)
(6.9)

with

bk =
ĥλ(kπ/τ)

τ
. (6.10)

Obviously, the above approximation is an L2-projection onto the linear subspace gener-
ated by orthogonal functions {cos(kπx/τ), sin(kπx/τ)}Nk=0, hence we deal with a clas-
sical Fourier expansion of the function h (recall that the function h is even by definition,
thus the sinus terms do not appear at (6.8)). Now, the basic idea of the numerical approx-
imation method proposed in [32, 48] is based upon the following relationship:∫ t

u

g(t− s)σsW (ds) ≈
∫ t

u

hN(t− s)σsW (ds)

=

∫ t

u

exp(−λ(t− s))

{
b0

2
+

N∑
k=1

bk cos(
kπ(t− s)

τ
)

}
σsW (ds)

=
b0

2
X̂λ,u(t, 0) + Re

N∑
k=1

bkX̂λ,u(t,
kπ

τ
), (6.11)

where the complex valued stochastic field X̂λ,u(t, y) is defined via

X̂λ,u(t, y) :=

∫ t

u

exp{(−λ+ iy)(t− s)}σsW (ds) (6.12)
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and u ∈ [t− τ, t]. In a second step, for a δ > 0 small, we observe the approximation

X̂λ,u(t+ δ, y) =

∫ t+δ

u

exp{(−λ+ iy)(t+ δ − s)}σsW (ds) (6.13)

= exp{(−λ+ iy)δ}
(
X̂λ,u(t, y) +

∫ t+δ

t

exp{(−λ+ iy)(t− s)}σsW (ds)
)

≈ exp{(−λ+ iy)δ}
(
X̂λ,u(t, y) + σt(Wt+δ −Wt)

)
. (6.14)

Hence, we obtain a simple iterative scheme for simulating the stochastic field X̂λ,u(t, y)

in the variable t. Recall that we assume the drift process a is zero and we wish to simulate
the trajectory of Xt0 , . . . , XtM given the information available at time t0. It is important
to understand the meaning of knowing the information about the involved processes up
to time t0. When the stochastic model for the process (σt)t∈R is uncoupled with (Xt)t∈R,
then we may use u = t − τ at (6.11). Indeed, in typical applications such as turbulence
and finance this is the case: (σt)t∈R is usually modeled via a jump diffusion process driven
by a Lévy process, which might be correlated with the Brownian motion W . However,
when the process (Xt)t∈R is itself of a diffusion type, i.e.

Xt = µ+

∫ t

t−τ
g(t− s)σ(Xs)W (ds) +

∫ t

t−τ
q(t− s)a(Xs)ds

it is in general impossible to simulate a trajectory of (Xt)t∈R, since for each value t the
knowledge of the path (Xu)u∈(t−τ,t) is required to compute Xt. But, in case we do know
the historical path, say, (Xu)u∈[−τ,0], the simulation of valuesXt, t ≥ 0, becomes possible.

Thus, the numerical simulation procedure is as follows:

(a) Simulate the independent increments Wti −Wti−1
∼ N(0, ti − ti−1) for i = 1, . . . ,

M .

(b) For each i = 1, . . . ,M and k = 0, . . . , N , simulate X̂λ,u(ti, kπ/τ) from
X̂λ,u(ti−1, kπ/τ), Wti −Wti−1

and σti−1
by using (6.13).

(c) Simulate Xti applying steps (a), (b) and (6.11) (with u = t0).

This procedure provides two approximation errors:

(i) The error in N scale from approximation function h by cutting off the tail of the
integral of Fourier transform.

(ii) The error in M scale from the discretization error obtained at (6.13).
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The main advantage of the numerical scheme described above is that it separates the
simulation of the stochastic ingredients (σ and W ) and the approximation of the deter-
ministic kernel g (or h). In other words, the stochastic field X̂λ,u(t, y) is simulated via
a simple recursive scheme without using the knowledge of g, while the kernel g is ap-
proximated via the Fourier transform at (6.8). This is in contrast to a straightforward
discretization scheme∫ tj

t0

g(t− s)σsW (ds) ≈
j−1∑
i=1

g(tj − ti)σti(Wti+1
−Wti).

This numerical property is useful when considering a whole family of kernel functions
(gθ)θ∈Θ, since for any resulting model Xt(θ) only one realization of the stochastic field
X̂λ,u(t, y) needs to be simulated. This can be obviously useful for the simulation of
parametric Brownian semi-stationary processes.

We now assess the strong approximation error (in L2 sense) of the Fourier approx-
imation scheme in both errors, i.e. the approximation of the deterministic kernel and
the discretization error. We assume for the moment that the volatility process (σt)t∈R is
square integrable with bounded second moment. We start with the analysis of the error
associated with the approximation of the deterministic kernel g by the function hN . Then
a straightforward computation (e.g., [32, Eq. (4.5)]) implies that

E

[(∫ t

t0

{g(t− s)− hN(t− s)}σsW (ds)
)2
]
≤ C

1− exp{−2λ(t− t0)}
λ

(
∞∑

k=N+1

|bk|

)2

,

(6.15)

where C is a positive constant and the Fourier coefficients bk have been defined at (6.10).
We remark that

1− exp{−2λ(t− t0)}
λ

→ 2(t− t0)

as λ→ 0, while
1− exp{−2λ(t− t0)}

λ
∼ λ−1

as λ→∞. Thus, it is preferable to choose the parameter λ > 0 large.

Example 6.1

A standard model gamma kernel function g in the context of turbulence (see, [43]) is

given via

g(x) = xα exp(−λ̄x)
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with λ̄ > 0 and α ∈ (−1
2
, 0)∪ (0, 1

2
). Obviously, this gamma kernel violates the statement

of the Assumption (A) because it has a singularity at x = 0 for the values α ∈ (−1/2, 0)

and has unbounded support. Furthermore, the BSS process with this gamma kernel func-

tion is not semimartingale. However, one can easily construct an approximating function

gTε which coincides with g on the interval [ε, T ] and satisfies the Assumption (A). More

precisely, we define

gTε =



g(ε), if 0 ≤ x ≤ ε

g(x), if ε ≤ x ≤ T

φ(x), if T ≤ x ≤ T ′

0, if x > T ′,

where φ : [T, T ′] → R is a continuous function such that φ(T ) = g(T ) and φ(T ′) = 0

for some T ′ ≥ T . Assuming again the boundedness of the second moment of the process

(σt)t∈R, the approximation error is controlled via

E

[(∫ t

−∞
{g(t− s)− gTε (t− s)}σsW (ds)

)2
]
≤ C‖g − gTε ‖2

L2((0,ε)∪(T,∞)).

Such error can be made arbitrary small by choosing ε small and T large. Clearly, this is a

rather general approach, which is not particularly related to a given class of kernel func-

tions g. In a second step one would apply the Fourier approximation method described

above to the function gTε . At this stage, it is important to note that the parameter λ > 0

introduced at (6.5) is naturally restricted through the condition λ < λ̄; otherwise the ker-

nel hλ would have an explosive behaviour at∞. Thus, the approximation error discussed

at (6.15) can not be made arbitrarily small in λ.

Remark 6.2

The Fourier coefficients bk can be further approximated under stronger conditions on the
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function h, which helps to obtain an explicit bound at (6.15). More specifically, when

h ∈ C2n(R) and h(2j−1)
λ (τ) = 0 for all j = 1, . . . , n, then it holds that

|bk| ≤ Ck−2n.

This follows by a repeated application of integration by parts formula (see, [32, Proposi-

tion 4.1] for a detailed exposition). In fact, the original work [32] defines another type of

smooth interpolation functions h, rather than the mere identity h(x) = g(|x|), to achieve

that the relationship h(2j−1)
λ (τ) = 0 holds for all j = 1, . . . , n and some n ∈ N.

Now, let us turn our attention to the discretization error introduced at (6.13). We
assume that t0 < . . . < tM is an equidistant grid with ti− ti−1 = ∆t. According to (6.13)
the random variable

ηj(y) :=

j∑
i=1

exp{(−λ+ iy)(j + 1− i)∆t}σti−1
(Wti −Wti−1

) (6.16)

is an approximation of X̂λ,t0(tj, y) for any y ∈ R whenever the drift process a is as-
sumed to be absent. When (σt)t∈R is a weak sense stationary process, a straightforward
computation proves that

E[|X̂λ,t0(tj, y)− ηj(y)|2] ≤ C(tj − t0)
(

(λ2 + y2)(∆t)2 + E[|σt1 − σt0|2]
)
. (6.17)

We refer to [32, Lemma 4.2] for a detailed proof.

Example 6.3

Assume that the process (σt)t∈R is a continuous stationary Itô semimartingale, i.e.

dσt = ãtdt+ σ̃tdBt,

where B is a Brownian motion and (ãt)t∈R, (σ̃t)t∈R are stochastic processes with bounded

second moment. Then the Itô isometry implies that

E[|σt1 − σt0|2] ≤ C∆t.

Hence, in this setting ∆t becomes the dominating term in the approximation error (6.17).
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Combining the estimates at (6.15) and (6.17), we obtain the strong approximation
error of the proposed Fourier method, which is the main result of [32] (see, Propositions
4.1 and 4.3 therein).

Proposition 6.4

Let t0 < . . . < tM be an equidistant grid with ti − ti−1 = ∆t. Assume that condition (A)

holds and (σt)t∈R is a weak sense stationary process. Then the L2 approximation error

associated with the Fourier type numerical scheme is given via

E

[∣∣∣ ∫ tj

t0

g(tj − s)σsW (ds)−
(b0

2
ηj(0) +

N∑
k=1

bkηj(
kπ

τ
)
)∣∣∣2] (6.18)

≤ C

(
1− exp{−2λ(t− t0)}

λ

( ∞∑
k=N+1

|bk|
)2

+ (tj − t0)

{
λ2
( |b0|

2
+

N∑
k=1

|bk|
)2

(∆t)2 + (
π

τ
)2
( N∑
k=1

k|bk|
)2

(∆t)2

+
( |b0|

2
+

N∑
k=1

|bk|
)2

E[|σt1 − σt0|2]

})

for a positive constant C.

6.2 Main results

We consider a Brownian semi-stationary process in (6.2) and assume the condition (6.4).
In the previous section, we discussed the strong approximation error (in the L2 sense) of
the numerical scheme for Brownian semi-stationary processes, where the volatility pro-
cess (σt)t∈R is assumed to be observed. In this section, we present the weak limit theory
of the numerical scheme associated with the Fourier method proposed in [32, 48]. We
complement their study by analyzing the weak limit of the error process in the framework
of Brownian semi-stationary processes, where the drift and the volatility processes need
to be numerically simulated. This obviously gives a more precise assessment of the nu-
merical error associated with the Fourier method. We shall emphasize that the Fourier
approximation scheme investigated in [32, 48] basically ignored the need of simulating
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the volatility process (σt)t∈R in practical applications (the same holds for the drift process
(at)t∈R).

We again wish to simulate the path (Xt)t∈[t0,T ] for a given terminal time T > t0. We
consider t0 as the starting point, as in the previous section, we fix a time t0 and assume
the knowledge of all processes involved up to that time. Here we propose a numeri-
cal scheme for simulating the path (Xt)t∈[t0,T ] which is a slightly modified version of
the original Fourier approach. We recall the imposed Assumption (A), in particular, the
weight functions g and q are assumed to have bounded support contained in [0, τ ]. First
of all, we further assume some condition on the stochastic process (at, σt)t∈[t0,T ].

Assumption (B):

There exist càdlàg estimators (aMt , σ
M
t )t∈[t0,T ] of the stochastic process (at, σt)t∈[t0,T ]

and the convergence rate νM → ∞ as M → ∞ such that the following functional stable
convergence holds:

νM
(
aM − a, σM − σ

) dst−→ U = (U1, U2) on D2([t0, T ]), (6.19)

where the convergence is on the space of bivariate càdlàg functions defined on [t0, T ]

equipped with the Skorohod topology D2([t0, T ]).

In the following, we will deal with the space of càdlàg processes equipped with the
Skorohod topology or with the space of continuous processes equipped with the uniform
topology. We remark that the estimators (aMt )t∈[t0,T ] and (σMt )t∈[t0,T ] might have a differ-
ent effective convergence rate. In this case, we will have either U1 ≡ 0 or U2 ≡ 0.

Before we go to the next step, let us present some examples of convergence at (6.19)
to highlight the most prominent results. For simplicity we assume that a ≡ 0 in all cases.

Example 6.5

Let us consider a continuous diffusion model for the volatility process σ, i.e.

dσt = ã(σt)dt+ ṽ(σt)dBt, σt0 = x0,

where B is a Brownian motion possibly correlated with W . We consider an equidistant

partition t0 = s0 < s1 < . . . < sM = T of the interval [t0, T ] and define the continuous
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Euler approximation of σt via

σMt = σMsk + ã(σMsk )(t− sk) + ṽ(σMsk )(Bt −Bsk), t ∈ [sk, sk+1].

When the functions ã and ṽ are assumed to be globally Lipschitz and continuously differ-

entiable, it holds that

√
M(σM − σ)

dst−→ U2 on C([t0, T ]),

where U2 is the unique solution of the stochastic differential equation

dU2
t = ã′(σt)U

2
t dt+ ṽ′(σt)U

2
t dBt −

1√
2
ṽṽ′(σt)dW ′

t ,

where W ′ is a new Brownian motion independent of F . We refer to [63, Theorem 1.2]

for a detailed treatment of this result.

Example 6.6

Let us now consider a discontinuous diffusion model for the volatility process σ, i.e.

dσt = ṽ(σt−)dLt, σt0 = x0,

where L is a purely discontinuous Lévy process. In this framework we study the dis-

cretized Euler scheme given via

σMsk+1
= ṽ(σMsk )(Lsk+1

− Lsk), k = 0, . . . ,M − 1.

We define the process UM
t = σM[tM ]/M−σ[tM ]/M . In [61], several classes of Lévy processes

L has been studied. For the sake of exposition, we demonstrate the case of a symmetric

β-stable Lévy process L with β ∈ (0, 2). Let us assume that ṽ ∈ C3(R). Then, it holds

that

(M/ log(M))1/βUM dst−→ U2 on D([t0, T ]),
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where U2 is the unique solution of the linear equation

dU2
t = ṽ′(σt−)U2

t−dLt − ṽṽ′(σt−)dL′t

and L′ is another symmetric β-stable Lévy process (with certain scaling parameter) inde-

pendent of F . We note that this result does not directly correspond to our condition (6.19)

as the discretized process σ[tM ]/M is used in the definition of UM
t .

Now, we propose our numerical scheme by following the Fourier type approach from
the previous section. We refer to (6.5) the definition of h, hλ and to (6.6) the definition
of the function ĥλ. We replace the Fourier transform approximation proposed at (6.8)
by a Riemann sum approximation evaluating the integrand by its left end points of a
partition. More specifically, for each fixed N and an equidistant partition, since h is an
even function, we introduce the approximation

h(x) =
exp(−λ|x|)

2π

∫
R

ĥλ(y) exp(ixy)dy

=
exp(−λ|x|)

2π

∫
R

ĥλ(y) cos(xy)dy

≈ h̃N(x) :=
exp(−λ|x|)

πN

cN∑
k=0

ĥλ

(
k

N

)
cos

(
kx

N

)
, (6.20)

where cN is a sequence of numbers in N satisfying cN/N → ∞ as N → ∞. The above
approximation obviously gives two types of error. The first one comes from the Riemann
sum approximation while the other one comes from the tail approximation. Intuitively
the former error should dominate the latter. In the following we will also assume that the
sequence cN additionally satisfies the condition

N

∫ ∞
cN/N

|ĥλ(y)|dy → 0 as N →∞. (6.21)

Clearly, such a sequence exists, since ĥλ ∈ L1(R). Condition (6.21) guarantees that the
Riemann sum approximation error will dominate.

Remark 6.7

Under some stronger conditions the tail integral at (6.21) can be bounded from above
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explicitly. Assume that h ∈ C2([−τ, τ ]) and has bounded support on [−τ, τ ]. Then a

repeated application of integration by parts formula implies

ĥλ(y) =

∫
R

hλ(x) cos(yx)dx

=
1

y

∫ τ

−τ
hλ(x) cos(yx)d sin(xy)

=
2

y
hλ(τ) sin(τy) +

2

y2
h′λ(τ) cos(τy)− 1

y2

∫ τ

−τ
h′′λ(x) cos(yx)dx

= − 1

y2

∫ τ

−τ
h′′λ(x) cos(yx)dx

for any y > 0 where the last equation comes from the fact that h is continuous and has

bounded support on [−τ, τ ]. Thus, for any u > 0, we deduce the inequality∫ ∞
u

|ĥλ(y)|dy ≤ C‖h′′‖L1

∫ ∞
u

y−2dy

≤ C‖h′′‖L1u−1.

Hence, condition (6.21) holds whenever N2/cN → 0 as N →∞.

Remark 6.8

We remark that the Fourier transform used at (6.8) comes from the L2 theory. Thus, in

contrast to the L2-distance ‖h − hN‖L2 , the limiting behaviour of a standardized version

of h(x) − hN(x) is difficult to study pointwise. This is precisely the reason why we

use the Riemann sum approximation instead, for which we will show the convergence of

N(h(x)− h̃N(x)).

If one can freely choose the simulation rates N and M , the Fourier transform of (6.8)

is numerically more preferable. According to the estimate (6.15) and the upper bound

for the Fourier coefficient of Remark 6.2 applied for n = 1, we readily deduce the rate

N−1 for the L2-error approximation connected to (6.8). On the other hand, the effective



124CHAPTER 6. APPROXIMATION OF BROWNIAN SEMI-STATIONARY PROCESSES

sample size of the Riemann approximation at (6.20) is cN . In the setting of the previous

remark, the overall Riemann approximation error is max(N−1, N/cN). Recalling that

cN/N → ∞, the obtained rate is definitely slower than the one associated with Fourier

approximation proposed at (6.8).

Nevertheless, as our aim is to precisely determine the asymptotics associated with the

N scale, we will discuss the Riemann approximation approach in the sequel. A statement

about the Fourier transform (6.8) will be presented in Remark 6.15.

Recall that

X̂λ,u(t, y) =

∫ t

u

exp{(−λ+ iy)(t− s)}σsW (ds)

We now essentially proceed as in the steps (6.11)–(6.13). The first step, it holds that∫ t

u

g(t− s)σsW (ds) ≈
∫ t

u

h̃N(t− s)σsW (ds)

=

∫ t

u

exp(−λ(t− s))

{
cN∑
k=0

b̃k cos(
k(t− s)
N

)

}
σsW (ds)

= Re
cN∑
k=0

b̃kX̂λ,u(t,
k

N
), (6.22)

where b̃k = ĥλ(k/N)/(πN). In the second step, for δ > 0, we obtain the approximation

X̂λ,u(t+ δ, y) = exp{(−λ+ iy)δ}
(
X̂λ,u(t, y) +

∫ t+δ

t

exp{(−λ+ iy)(t− s)}σsW (ds)
)

≈ exp{(−λ+ iy)δ}
(
X̂λ,u(t, y) +

∫ t+δ

t

exp{(−λ+ iy)(t− s)}σMs W (ds)
)
.

(6.23)

When the estimator σM is assumed to be constant on intervals [si−1, si), i = 1, . . . ,M ,
the last integral at (6.23) can be easily simulated. We remark that this approximation
procedure slightly differs from (6.13) as now we leave the exponential term unchanged.
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In summary, given that the information up to time t0 is available, we arrive at the
simulated value

XN,M
t :=

∫ t

t0

h̃N(t− s)σMs W (ds) +

∫ t

t0

q(t− s)aMs ds (6.24)

of the random variable

X0
t =

∫ t

t0

g(t− s)σsW (ds) +

∫ t

t0

q(t− s)asds. (6.25)

Note that the drift part of the Brownian semi-stationary process X is estimated in a direct
manner, although other methods similar to the treatment of the Brownian part are possible.
Now, we wish to study the asymptotic theory for the approximation error XN,M

t − X0
t .

Our first result analyzes the limiting behaviour of the function N(h(x)− h̃N(x)).

Lemma 6.9

Define the function ψN(x) := N(h(x)− h̃N(x)). Let us assume that the condition

x̂hλ(x) ∈ L1(R), ̂x2hλ(x) ∈ L1(R) (6.26)

holds. Then, under Assumption (A), (6.21) and (6.26), it holds that

ψN(x)→ ψ(x) = − ĥλ(0)

2π
exp(−λ|x|) as N →∞ (6.27)

for any x ∈ R. Furthermore, it holds that

sup
N∈N, x∈[0,T ]

|ψN(x)| ≤ C

for any T > 0.

Proof. See Section 6.3.

Remark 6.10

If our function hλ in Lemma 6.9 is a Schwartz function, then it satisfies the condition

(6.26). Note that a Schwartz function is a smooth function whose derivatives decay at
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infinity faster than any power. More precisely, f : R → C is a Schwartz function if and

only if f is infinitely differentiable and for all integers m,n ≥ 0

lim
x→±∞

xmfn(x) = 0.

Remark 6.11

We can also apply Lemma 6.9 to a kernel function with singularity. To see this, we define

the kernel function g by

g(x) = xαf(x)

where α ∈ (−1
2
, 0) and function f ∈ C1(R≥0) has bounded support contained in [0, τ ] for

some τ > 0 satisfying f(0) 6= 0. It is clear that the kernel g has a singularity at x = 0. To

make Lemma 6.9 applicable to the kernel function g, we first amend it in a neighborhood

close to zero by constructing an approximating function

gε =


g(ε), if 0 ≤ x ≤ ε

g(x), if x ≥ ε,

for some ε > 0. Suppose that the conditions (6.21) and (6.26) hold for corresponding

terms of gε. Using Lemma 6.9, we have

N(hε − hεN)→ − ĥ
ε
λ(0)

2π
exp(−λ|x|),

asN →∞where hε(.), hεN(.) and hελ(0) are defined relatively to gε as in (6.5). Finally, by

helping from the monotone convergence theorem, we can extract the asymptotic behavior

of the error when ε converges to zero . That is,

lim
ε→0

lim
N→∞

N(hε − hεN) =
ĥλ(0)

2π
exp(−λ|x|).
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In order to prepare the main result, we need a further condition on the kernel function
g to prove tightness later.

Assumption (C):

(i) The kernel function g has the form

g(x) = xαf(x)

for some α ≥ 0 and function f satisfying f(0) 6= 0.

(ii) f ∈ C1(R≥0) has bounded support contained in [0, τ ].

Notice that the assumption α ≥ 0 is in accordance with the Assumption (A)(ii). Assump-
tion (C) implies the following approximation result:∫ 1

0

|g(x+ δ)− g(x)|4dx ≤

{
Cδ4 α = 0

Cδmin(4,4α+1) α > 0
(6.28)

for δ ∈ [0, T ]. The case α = 0 is trivial, while the other one follows along the lines of the
proof of [51, Lemma 4.1]. As a matter of fact, we also require a good estimate of the left
side of (6.28) when the kernel g is replaced by the function ψN defined in Lemma 6.9. In
the following, we will assume that

sup
N∈N

∫ 1

0

|ψN(x+ δ)− ψN(x)|4dx ≤ Cδ1+ε (6.29)

for some ε > 0 and δ ∈ [0, T ].

Remark 6.12

Obviously, as in the case of function g, condition (6.29) would hold if

ψN(x) = xαfN(x),

where fN ∈ C1(R≥0) with uniformly bounded derivative in N ∈ N and x in a compact

interval. We can prove condition (6.29) explicitly when the function g is differentiable.

Assume that yĥλ(y), yĥ′λ(y) ∈ L1(R≥0) and cN is chosen in such a way that the condition

N

∫ ∞
cN/N

|yĥλ(y)|dy → 0 as N →∞
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is satisfied. As in the proof of Lemma 6.9, we conclude that

|∂x∂yκx(y)| ≤ (|ĥλ(y)|+ |yxĥλ(y)|+ |yĥ′λ(y)|)

where κx(y) = ĥλ(y) cos(yx) and we deduce that

sup
x∈[0,T ]

|ψ′N(x)| ≤ C

(
N

∫ ∞
cN/N

|yĥλ(y)|dy +N

∫ ∞
cN/N

|ĥλ(y)|dy

+

cN∑
k=0

∫ (k+1)/N

k/N

|∂yκx(ζk,N(y))|dy +

cN∑
k=0

∫ (k+1)/N

k/N

|∂x∂yκx(ζ̃k,N(y))|dy

)

for certain values ζk,N(y), ζ̃k,N(y) in the interval (k/N, y). Then, due to our integrability

conditions, we obtain

sup
N∈N, x∈[0,T ]

|ψ′N(x)| <∞.

Moreover, condition (6.29) is trivially satisfied due to mean value theorem. However,

showing (6.29) under Assumption (C) seems to be a much harder problem for α ∈ (0, 1).

The next result is the main theorem of this chapter.

Theorem 6.13

Assume that Assumptions (A), (B), (C), (6.21), (6.26) and (6.29) hold, and the processes

(σt)t∈[t0,T ] and (σMt )t∈[t0,T ] has finite fourth moment with

sup
t∈[t0,T ]

E[σ4
t ] <∞ and sup

t∈[t0,T ]

sup
M∈N

E[(σMt )4] <∞.

We also assume that the process UM
t = νM(σMt − σt) satisfies

sup
t∈[t0,T ]

sup
M∈N

E[(UM
t )4] <∞. (6.30)

Then, we obtain the decomposition

XN,M
t −X0

t = AN,Mt +BM
t
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such that

NAN,M
ucp
=⇒ A =

ĥλ(0)

2π

∫ ·
t0

exp(−λ(· − s))σsW (ds) as N,M →∞, (6.31)

and

νMB
M dst−→ B =

∫ ·
t0

g(· − s)U2
sW (ds) +

∫ ·
t0

q(· − s)U1
s ds as M →∞, (6.32)

where the stable convergence holds on the space C([t0, T ]) equipped with the uniform

topology.

Proof. See Section 6.3

Remark 6.14

We remark that the stronger conditions (C) and (6.29) are not required to prove the finite

dimensional version of convergence (6.31) and (6.32).

Theorem 6.13 immediately applies to the weak approximation error analysis. Assume
for simplicity that M = M(N) is chosen such that νM/N → 1, so that the Riemann
sum approximation error and the simulation error from (6.19) are balanced. We consider
a bounded test function ϕ ∈ C1(R) with bounded derivative. The mean value theorem
implies the identity

ϕ(XN,M
t )− ϕ(X0

t ) = ϕ′(ξN,M)(XN,M
t −X0

t ),

where ξN,M is a random value between X0
t and XN,M

t with ξN,M
P−→ X0

t as N →∞. By
properties of stable convergence, we deduce that (ξN,M , N(XN,M

t −X0
t ))

dst−→ (X0
t , At +

Bt). Hence, given the existence of the involved expectations, we conclude that

E[ϕ(XN,M
t )]− E[ϕ(X0

t )] = N−1
E
′[ϕ′(X0

t )(At +Bt)] + o(N−1). (6.33)

We recall that the limit At +Bt is defined on the extended probability space (Ω′,F ′,P′).

Remark 6.15

The results of Theorem 6.13 may also apply to the original Fourier approximated method
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proposed in [32, 48]. Let us keep the notation of this section and still denote the approx-

imated value of X0
t by XN,M

t . Recalling the result of (6.15) (see also Remark 6.2) and

assuming that M = M(N) is chosen such that
∑∞

k=N+1 |bk| � νM , we readily deduce

that

νM(XN,M
t −X0

t )
dst−→ Bt.

Remark 6.16

The results of Theorem 6.13 might transfer to the case of Lévy semi-stationary processes

Xt = µ+

∫ t

−∞
g(t− s)σsL(ds) +

∫ t

−∞
q(t− s)asds

under suitable moment assumptions on the driving Lévy motion L (cf. [32]). However,

when L is e.g. a β-stable process with β ∈ (0, 2), it seems to be much harder to access

the weak limit of the approximation error.

6.3 Proofs

6.3.1 Proof of Lemma 6.9

Proof. We recall that

κx(y) = ĥλ(y) cos(yx),

and denote by κ′x(y) the derivative of κx(y) with respect to y. The derivative κ′x(·) and

κ′′x(·) exist because of xhλ(x), x2hλ(x) ∈ L1(R). Thus,

κ′x(y) = −xĥλ(y) sin(xy) + cos(xy)ĥ′λ(y) and

κ′′x(y) = (−xĥλ(y) sin(xy))′ + (cos(xy)ĥ′λ(y))′.
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We recall a well known result from Fourier analysis (e.g., [49, Theorem 8.22]): The

condition (6.26) implies that

ĥ′λ ∈ L1(R), ĥ′′λ ∈ L1(R). (6.34)

Now, observe the decomposition

ψN(x) =
N exp(−λ|x|)

π

cN∑
k=0

∫ (k+1)/N

k/N

(
κx(y)− κx(

k

N
)

)
dy

+
N exp(−λ|x|)

π

∫ ∞
(cN+1)/N

κx(y)dy

=
N exp(−λ|x|)

π

cN∑
k=0

∫ (k+1)/N

k/N

(
κx(y)− κx(

k

N
)

)
dy + o(1).

The approximation follows by the inequality |κx(y)| ≤ |ĥλ(y)| and condition (6.21).

Notice from the above that κ′x(·), κ′′x(·) ∈ L1(R≥0) because of the condition (6.34), we

deduce that

ψN(x) =
N exp(−λ|x|)

π

cN∑
k=0

∫ (k+1)/N

k/N

κ′x(
k

N
)

(
y − k

N

)
dy + o(1)

=
exp(−λ|x|)

2πN

cN∑
k=0

κ′x(
k

N
) + o(1)

→ exp(−λ|x|)
2π

∫ ∞
0

κ′x(y)dy as N →∞.

Next, we are going to show that∫ ∞
0

κ′x(y)dy = −ĥλ(0). (6.35)

Let b > 0, the fundamental theorem of calculus implies that∫ b

0

κ′x(y)dy = κx(b)− κx(0)

= ĥλ(b) cos(xb)− ĥλ(0).
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Since hλ ∈ L1(R≥0), ĥλ vanishes at infinity. Then, taking b → ∞ yields (6.35). In order

to prove the second assertion of the lemma, we observe the inequality

|ψN(x)| ≤ exp(−λ|x|)
π

( cN∑
k=0

∫ (k+1)/N

k/N

|κ′x(ζk,N(y))|dy +N

∫ ∞
cN/N

|ĥλ(y)|dy
)
,

where ζk,N(y) is a certain value with ζk,N(y) ∈ (k/N, y). Clearly, the second term in the

above approximation is bounded in N since it converges to 0. On the other hand, we have

that |κ′x(y)| ≤ |x||ĥλ(y)|+ |ĥ′λ(y)|, and since ĥλ, ĥ′λ ∈ L1(R≥0), we readily deduce that

sup
N∈N, x∈[0,T ]

|ψN(x)| ≤ C.

This completes the proof of the lemma.

6.3.2 Proof of Theorem 6.13

Proof. We start by proving the stable convergence in (6.32). Let us first recall a classical

result about weak convergence of semimartingales (see, [65, Theorem VI.6.22] or [72]):

Let (Y n
s )s∈[t0,T ] be a sequence of càdlàg processes such that Y n dst−→ Y on D([t0, T ])

equipped with the Skorohod topology. Then we obtain the weak convergence∫ ·
t0

Y n
s W (ds) =⇒

∫ ·
t0

YsW (ds) on C([t0, T ])

equipped with the uniform topology. This theorem is an easy version of the general result

since the integrator W does not depend on n and hence automatically fulfills the P-UT

property (see, [65, page 377]). The stable nature of the aforementioned weak convergence

follows by joint convergence (
∫ ·

0
Y n
s W (ds), Y n,W ) =⇒ (

∫ ·
0
YsW (ds), Y,W ) (cf. [72]).

Hence we deduce that∫ ·
0

Y n
s W (ds) dst−→

∫ ·
0

YsW (ds) on C([t0, T ]) (6.36)
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equipped with the uniform topology.

It is important to note that this result can not be directly applied to the process BM
t

since this process is not a semimartingale in general. For example when a kernel function

g is given by

g(x) = xα exp(−λx)

with λ > 0 and α ∈ (−1
2
, 0) ∪ (0, 1

2
). Thus, we will prove the stable convergence (6.32)

by showing the stable convergence of finite dimensional distributions and tightness, we

refer these concepts to Section 2.2.

To prove the stable convergence of finite dimensional distribution, we fix u1, . . . , uk ∈

[t0, T ]. Due to the condition (6.19), the finite dimensional version of (6.36) and continuous

mapping theorem for stable convergence, we conclude the joint stable convergence({
νM

∫ uj

t0

g(uj − s){σMs − σs}W (ds)
}
j=1,...,k

, νM

∫ ·
t0

q(· − s){aMs − as}ds
)

dst−→
({∫ uj

t0

g(uj − s)U2
sW (ds)

}
j=1,...,k

,

∫ ·
t0

q(· − s)U1
s ds
)

(6.37)

as M → ∞. Here we remark that the stable convergence for the second component

indeed holds, since the mapping F : C([t0, τ ])×D([t0, T ])→ C([t0, T ]),

F (q, a) =

∫ ·
t0

q(· − s)asds

is continuous. Hence, we are left with proving tightness for the first component of the

process BM
t . We fix u, t ∈ [t0, T ] with t > u and observe the decomposition

νM

(∫ t

t0

g(t− s){σMs − σs}W (ds)−
∫ u

t0

g(u− s){σMs − σs}W (ds)
)

= R
(1)
M (t, u) +R

(2)
M (t, u),
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where

R
(1)
M (t, u) = νM

∫ t

u

g(t− s){σMs − σs}W (ds) and

R
(2)
M (t, u) = νM

∫ u

t0

{g(t− s)− g(u− s)}{σMs − σs}W (ds).

Using Burkholder and Cauchy-Schwarz inequalities and (6.30), we have

E[|R(1)
M (t, u)|4] ≤ C(t− u)

∫ t

u

|g(t− s)|4ds.

Thus, we conclude that

E[|R(1)
M (t, u)|4] ≤ C(t− u)2. (6.38)

Now, using the same methods we conclude that

E[|R(2)
M (t, u)|4] ≤ C

∫ u

t0

|g(t− s)− g(u− s)|4ds

≤ C(t− u)min(4,4α+1), (6.39)

where we used the inequality (6.28). Thus, applying (6.38), (6.39) and the Kolmogorov’s

tightness criteria, we deduce the tightness of the first component of the process BM
t . This

completes the proof of (6.32).

Next we prove the the ucp convergence at (6.31). To complete the proof, we first show

pointwise convergence at (6.31). We start with the decomposition

XN,M
t −X0

t = AN,M +BM
t ,

where

AN,Mt =

∫ t

t0

{h̃N(t− s)− g(t− s)}σMs W (ds),

BM
t =

∫ t

t0

g(t− s){σMs − σs}W (ds) +

∫ t

t0

q(t− s){aMs − as}ds.
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Recalling the notation from (6.27), we need to show that∫ t

t0

{ψN(t− s)− ψ(t− s)}σMs W (ds) P−→ 0 as N,M →∞,

for a fixed t. The Itô isometry immediately implies that

sup
M∈N

E

[∣∣∣ ∫ t

t0

{ψN(t− s)− ψ(t− s)}σMs W (ds)
∣∣∣2] ≤ C

∫ t

t0

{ψN(t− s)− ψ(t− s)}2ds

→ 0 as N →∞,

which follows by Lemma 6.9 and the dominated convergence theorem. Hence we obtain

pointwise convergence at (6.31). Since the limiting process A is continuous, to conclude

ucp convergence from pointwise convergence in probability we need to show that

sup
N,M∈N

E[N4(AN,Mt − AN,Mu )4] ≤ C(t− u)1+ε

for t0 < u < t. To this end, we apply the same methods as in (6.38) and (6.39) to deduce

the inequality

sup
N,M∈N

E[N4(AN,Mt − AN,Mu )4]

≤ C

(
(t− u)

∫ t

u

|ψN(t− s)|4ds+

∫ u

t0

|ψN(t− s)− ψN(u− s)|4ds
)

≤ C(t− u)1+ε,

which follows by Lemma 6.9 and condition (6.29). Therefore, the proof of Theorem 6.13

is completed
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(Ω,F , (Ft)t≥0, P ) filtered probability space, 11

(aMt , σ
M
t ) estimators of stochastic process (at, σt), 120

(e1, ..., em) orthonormal basis in Rm, 26

(f1, f2, ..., fm)′ Rm-valued function, 19

[X] quadratic variation of a process X , 13

αni approximator of ∆n
iX , 52

∆Ȳ n
i pre-averaging, 73

∆n
iX increment of X,Xi/n −X(i−1)/n, 6

ε microstructure noise, 69

Σ̂∗n positive semi-definite estimator of Σ∗, 76

Σ̂n feasible version of Σn, 44

Λ set of all strictly increasing, continuous bijections on [0, T ], 11

〈· , ·〉H inner product in separable Hilbert space H , 25

D set of all càdlàg functions on [0, T ],T > 0, 11

S set of smooth random variables, 27

µq the qth absolute moment of N(0, 1), 20

ω2 variance of εt, for each t, 70

⊗ tensor product, 27
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Σ m×m conditional covariance matrix of V (f, g)n, 41

σ volatility function, 5

Σ∗ m×m conditional covariance matrix of V ∗(q, r)n, 75

Σn positive semi-definite estimator of Σ, 44

a.s.−→ almost sure convergence, 12

dst−→ converge stably in law, 17

d−→ convergence in distribution, 15

p−→ convergence in probability, 6

ucp
=⇒ ucp convergence, 16

τn sequence of stopping time, 12

ã, σ̃, ṽ adapted, càdlàg stochastic process, 19

Vl(f)n power variation type estimator computed on l-th subsample, 43

ĥ Fourier transform of h, 113

h̃N(x) estimator of h(x), 122

{Ft; 0 ≤ t ≤ ∞} or (Ft)t≥0 filtration, 12

a drift function, 5

B Brownian motion independent of W , 19

Bi(p) the ith block of high-frequency data, 47, 76

BSS Brownian semi-stationary, 112

Ck(R) set of all k times continuous differentiable functions on R, 28

C∞p (Rn) space of infinitely differentiable functions with polynomial growth, 27

d(·, ·) metric, 11

DkF kth order Malliavin derivative of F ∈ S, 27

Dt(·) Malliavin derivative at time t, 33
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IV (f)t integrated function of the diffusion coefficient, 5

kn pre-averaging window, 72

L number of sumsamples, 43

L2[0, T ] Hilbert space of square integrable functions f : [0, T ]→ R, 25

MN(·, ·) mixed normal distribution, 20

p block size, 48

SDE stochastic differentiable equation, 29

V (f) integrated volatility, 20

V (f)n power variation, 19

V (f, g) stochastic limit of V (f, g)n, 40

V (f, g)n bipower variation, 40

V ∗(q, r) stochastic limit of V ∗(q, r)n, 74

V ∗(q, r)n noisy bipower variation, 74

V ∗l (q, r)n noisy bipower variation type estimator computed on l-th subsample, 76

Vl(f, g)n bipower variation type estimator computed on l-th subsample, 47

vi(f, g)n subsample statistic computed only from data within the ith block Bi(p), 47

vi(q, r)
n noisy subsample statistic computed only from data within the ith block Bi(p),
76

W Brownian motion, 5

XN,M
t estimator of BSS X0

t , 125
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distribution, 129, 133
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transform, 113, 114

high-frequency, 5, 39
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integrated volatility, 5, 39
isonormal Gaussian process, 25, 26
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martingale difference, 53
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martingale representation theorem, 36
microstructure noise, 7, 69, 74
mixed normal distribution, 20
multipower variation, 43, 46, 49

noisy diffusion, 74

polynomial growth, 19, 40, 55, 57
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power variation, 20, 43, 46, 47
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rate of convergence, 46, 49, 76
Riemann approximation, 54, 103,
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Schwartz function, 125
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Itô, 19, 39

singularity, 113, 117, 126
Skorohod

space, 12
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stable convergence, 16, 17, 46, 120, 129,
132, 133

stopping time, 12
strong approximation error, 112, 113,
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temporal modelling - with a view to biological growth. In: Finkenstdt, B., Held
L., IshamV. Statistical Methods for Spatio-Temporal Systems, pp. 47–75. London:
Chapman and Hall/CRC (2007)



BIBLIOGRAPHY 145

[20] Barndorff-Nielsen, O.E., Schmiegel, J.: Ambit processes; with applications to tur-
bulence and cancer growth. In: Benth, F.E., Nunno, G.D., Linstrøm, T., Øksendal,
B., Zhang, T. (Eds.). Stochastic Anal. Appl. The Abel Symposium 2005, pp. 93–
124. Springer, Heidelberg (2007)

[21] Barndorff-Nielsen, O.E., Schmiegel, J.: Time change, volatility and turbulence. In:
Sarychev, A., Shiryaev, A., Guerra, M., Grossinho, M.d.R.(Eds.) Proceedings of the
Workshop on Mathematical Control Theory and Finance, Lisbon 2007, pp. 29–53.
Springer, Berlin (2008)

[22] Barndorff-Nielsen, O.E., Schmiegel, J.: Brownian semistationary processes and
volatility/intermittency. In: Albrecher, H., Runggaldier, W., Schachermayer, W.
(Eds.) Advanced Financial Modelling. Radon Series Comp. Appl. Math. 8., 1–26
(2009)

[23] Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realised volatility
and its use in estimating stochastic volatility models. J. of Roy. Stat. Soc., Series B
64, 253–280 (2002)

[24] Barndorff-Nielsen, O.E., Shephard, N.: Power and bipower variation with stochas-
tic volatility and jumps. J. Financ. Econ. 2(1), 1–48 (2004)

[25] Barndorff-Nielsen, O.E., Shephard, N.: Variation, jumps, market frictions and high
frequency data in financial econometrics in Advances in Economics and Econo-
metrics: Theory and Applications, Ninth World Congress, Volume III, ed. by R.
Blundell, P. Torsten, and W. K. Newey. Cambridge University Press, Cambridge,
328–372 (2007)

[26] Barndorff-Nielsen, O.E., Shephard, N., Winkel, M.: Limit theorems for multipower
variation in the presence of jumps. Stoch Process Their Appl. 116(5), 796–806
(2006)

[27] Basse, A.: Gaussian moving averages and semimartingales. Electron. J. Probab.
13(39), 1140–1165 (2008)

[28] Basse-O’Connor, A., Graversen, S.-E., Pedersen, J.: A unified approach to stochas-
tic integration on the real line. Theorey Probab. Appl. 58, 355–380 (2013)
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[91] Rényi, A.: On stable sequences of events. Sankhyā Ser. A. 25, 293–302 (1963)
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