
INAUGURAL - DISSERTATION
zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultät

der

Ruprecht - Karls - Universität

Heidelberg

vorgelegt von

Diplom-Mathematiker

Sophon Tunyavetchakit

aus

Bangkok/ Thailand

Tag der mündlichen Prüfung:
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Zusammenfassung

Die Schätzung der Volatilität von Hochfrequenzdaten unter Mikrostruktur-Rauschen wurde
in den letzten Jahren intensiv untersucht. Im Gegensatz zu den meisten bisherigen Forschun-
gen konzentrieren wir uns in dieser Doktorarbeit auf die Spot-Volatilitätsschätzung eines
zeitgeänderten Preismodells, das auf Transaktionszeiten basiert. In diesem Modell wird die
Volatilität in zwei Hauptteile, nämlich die Transaktionszeit-Volatilität und die Transak-
tionsintensität, zerlegt. Diese Teile können anhand gebebener Daten analysiert werden
und enthalten wertvolle Informationen. Durch die einzelne Untersuchung der beiden Kur-
ven gewinnen wir mehr Einblicke in die Ursache und die Struktur der Preisschwankun-
gen. Die zentralen methodologischen und theoretischen Beiträge dieser Arbeit sind die
Einführung und die theoretische Untersuchung eines neuen Volatilitätschätzers, der auf
dieser Volatilitätszerlegung beruht.

Um die Transaktionszeit-Volatilität unter Mikrostruktur-Rauschen zu schätzen, passen
wir einen konsistenten Schätzer, der auf der Pre-Averaging-Methode basiert, auf unsere
Situation an, um das Rauschen in dem Modell zu berücksichtigen. Die asymptotischen
Eigenschaften der beiden Schätzer—der klassische Volatilitätsschätzer und der auf der Zer-
legung basierende Volatilitätsschätzer—werden durch einen “infill”-asymptotischen Ansatz
untersucht. Wir vergleichen diese Schätzer, um den Vorteil der Volatilitätsfaktorisierung
in diesem Transaktionzeit-Modell zu zeigen. Wir stellen fest, dass der alternative den
klassischen Schätzer in vielen Fällen im Vergleich hinsichtlicher Konvergenzrate übertrifft.
Schließlich untersuchen wir die Leistung unserer Schätzer in endlichen Proben in einer Si-
mulationsstudie. Unsere Analyse realer Daten von hohen liquiden Mitteln zeigt uns einige
interessante empirische Phänomene: (i) die U-Form der Spot-Volatilität über einem Han-
delstag ist hauptsächlich das Feature der Intensität; (ii) die Transaktionszeit-Volatilität ist
im Wesentlichen glatter als die Volatilität und die Intensität; (iii) die Auswirkungen des
Mikrostruktur-Rauschens auf die Schätzung der Spot-Volatilität ist sehr gering.
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Abstract

The estimation of volatility for high-frequency data under market microstructure noise has
been extensively studied during recent years. In this work, in contrast to the majority of
previous research, we focus on the estimation of spot volatility of a time-changed price-
model based on transaction times. In this model, volatility is decomposed into the product
of two main curves, namely transaction-time volatility and trading intensity, both of which
can be analyzed from data and contain valuable information. By inspecting these two
curves individually we gain more insight into the cause and structure of volatility. The
main methodological and theoretical contributions of this work are the introduction and
theoretical investigation of a new volatility estimator based on this volatility decomposition.

For the estimation of transaction-time volatility under microstructure noise, we adapt
a noise-robust estimator based on the pre-averaging technique to our situation in order to
cope successfully with the contamination. The asymptotic properties of both estimators—
the classical volatility estimator and the alternative volatility estimator (based on the
decomposition)—are investigated using an infill asymptotic approach. We compare these
estimators in order to see the benefit of factorizing the volatility in this transaction-time
model. We find that the alternative estimator outperforms the classical one in many cases
in terms of the rate of convergence. Finally, we explore the performance of our estimators
in the finite-sample setting in simulations. Our real-data analysis of high-liquid assets
reveals several interesting empirical phenomena: (i) the U-shape in the spot volatility
over a trading day is primarily the feature of the intensity; (ii) the tick-time volatility
is considerably smoother than the clock-time volatility and intensity; (iii) the impact of
microstructure noise on spot volatility estimation is very small.
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Chapter 1

Introduction

The estimation of volatility for high-frequency data under market microstructure noise has
been extensively studied during recent years; see Zhang et al. [70], Zhang [69], Barndorff-
Nielsen et al. [11] and Jacod et al. [47], among many others, and see also Aı̈t-Sahalia and
Jacod [2] for an overview. The majority of these investigations have been in the framework
of a diffusion model. In this work, contrary to the majority of previous research, we focus
on the estimation of spot volatility of a time-changed price-model based on trading times.
In this model, volatility is decomposed into two main factors, namely transaction-time
volatility (or tick-time volatility) and trading intensity, both of which can be identified
and both of which contain valuable information. The main methodological and theoretical
contributions of this dissertation are the introduction and the theoretical investigation of
a volatility estimator based on this volatility decomposition.

For the estimation of tick-time volatility under microstructure noise we have to adapt
an estimator from diffusion models to our situation which can cope successfully with mi-
crostructure noise. Standard volatility estimators have been reported in practice to be
non-robust to financial data observed at very high frequencies. Many noise-robust estima-
tors have therefore been introduced in the literature, such as those approaches presented by
the authors listed above. Starting with the excellent work of Zhang et al. [70], the combina-
tion of two different timescales—coarse and fine grids—leads to a consistent estimator for
the integrated volatility. This idea is extended later to the multi-timescale estimator that
achieves the optimal rate of convergence n−1/4; see Zhang [69]. Barndorff-Nielsen et al. [11]
suggest a flat-top kernel-type estimator, which they call a realized kernel, which combines
different lags of autocovariances to eliminate the effects of the microstructure noise con-
tamination. In this work, we apply the pre-averaging technique, which is introduced by
Podolskij and Vetter [60] and later extended by Jacod et al. [47], in order to construct
a noise-robust estimator for the tick-time volatility of our time change model. Recently,
the estimator based on a local method of moments, presented by Reiß [64] and Bibinger
and Reiß [15], has gotten more attention, as their estimator achieves asymptotic efficiency
while the other three approaches above do not. We place our emphasis on the pre-filtering
technique since it has the advantages of being intuitive and extendable in a straightforward
way to other power variations. In addition to these major approaches, which are mainly

1



2 Chapter 1. Introduction

based on additive noise models, a more complex structure such as nonlinear microstructure
noise models is also discussed in Dahlhaus and Neddermeyer [25].

Time-changed price-models were first investigated in Clark [22] in connection with fi-
nance. In his work, the volume of trades is suggested to be a subordinator of a Brownian
motion in order to recover the normality of the distribution of the future cotton price.
Afterwards a relationship between asset returns, price fluctuation, and market activities
measured by trading volume and numbers of transactions is extensively discussed. Ané
and Geman [5] conclude that the number of trades explains the volatility change better
than their volume, so they recover the normality of asset returns through this stochas-
tic time change in high-frequency data; see also Jones et al. [50], Plerou et al. [59] and
Gabaix et al. [34] for more detailed discussions of this correlation. Due to the existence of
various mathematical tools, time-changed Brownian motion is an attractive and tractable
process for studying arbitrage-free asset returns, which are shown to be semimartingales
(see e.g. Delbaen and Schachermayer [27]). Indeed, having a class of time-changed Brown-
ian motion is satisfactory since it is as large as a class of semimartingale; see Monroe [57].
In recent years, other time change models have been extensively studied, in particular a
time-changed Lévy process which allows for a more complex structure in the price models
in order to cope with some stylized effects emerging in the real market; for details refer to
Carr et al. [19] and Carr and Wu [20], and to Belomestny [14] for a statistical treatment
of this kind of models.

As mentioned, instead of a classical semimartingale model, we use a diffusion model
subordinated by transaction time

dXt = σ(t) dWNt for t ∈ [0, T ],

where W· is a standard Brownian motion, and the stochastic time change is a point process
Nt with a time-varying intensity λ(t) representing the accumulated number of trades up to
time t. We assume that the drift of the price process is zero, as we are working with short
time intervals. Our main objective is the spot volatility of this model, which is expressed
by the product of the transaction-time volatility σ2(·) and the intensity λ(·), i.e.

σ2
clock(t) = σ2(t) · λ(t);

“volatility per time unit is equal to volatility per transaction multiplied by the average
number of transactions per time unit”.

This volatility decomposition enables us to construct an alternative volatility estimator
by multiplying estimators of λ(·) and σ2(·). By inspecting these two estimation curves
separately we gain more insight about the cause and structure of volatility. In particu-
lar, it is empirically shown that the tick-time volatility estimator of high-liquid stocks is
considerably smoother than the clock-time volatility and the trading intensity. Beyond its
empirical interpretation, this has an important implication, i.e. we may choose a larger
bandwidth, giving us effectively more data, than with the classical volatility estimator.
This is reflected, in theory, in a higher rate of convergence of the estimator. A similar
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volatility decomposition is obtained by Dahlhaus and Neddermeyer [25]. In their work, in
which the models are based on non-linear microstructure noise models, a sequential EM-
algorithm on the filtering distributions of the efficient log-prices is used to determine the
spot volatility. This estimator will be used as a benchmark in our simulation studies to see
the quality of pre-averaging type estimators in finite samples.

We investigate asymptotic properties of the voltility estimators by a type of infill-
asymptotics. Specifically, we let the parameters depend on the time span T , similarly
to nonparametric regression with time-varying coefficients or locally stationary processes;
see Robinson [65] and Dahlhaus [24]. The asymptotic inference is drawn by letting T go
to infinity. As the time span T increases, more and more local information of the same
structure of parameter curves can be obtained. Therefore, a rescaled time version of the
transaction-time model is given as follows:

dXt,T = σ

(
t

T

)
1√
T
dWNt,T for t ∈ [0, T ],

where Nt,T is a nonhomogeneous Poisson process admitting an intensity function λ(t/T ),
and σ(t/T ) is a tick-time volatility function. We have also assumed for simplicity that N·,T
and W· are independent; this does not appear to be strictly necessary (in which case some
additional asymptotic variance terms will emerge; see our discussions in Chapter 5). As our
approach is purely nonparametric, we impose some smoothness conditions, namely Hölder
continuity, on the underlying parameter curves σ2(·) and λ(·) so that they are required to
vary slowly over time. To deal with a measurement error induced by market microstructure
noise, we adapt the pre-filtering technique of Jacod et al. [47] to our observable transaction-
time model

Yti,T = Xti,T + εi for i = 1, ..., NT .

For instance, a tick-time volatility estimator is given by

σ̂2
pavg(uo) :=

T

NH

1

g2

io+N∑
i=io−N

k

(
i− io
N

)(
4Y ti,T

)2
− T

2NH

∑H−1
l=1 h2(l/H)

g2

io+N∑
i=io−N

k

(
i− io
N

)(
Yti,T − Yti−1,T

)2
,

where io := inf {i : ti ≥ uoT}, for uo ∈ (0, 1).

The asymptotic results of our pre-averaging volatility estimators are compared in the
terms of their asymptotic variance and rate of convergence; this comparison is summarized
in Table 4.2. It turns out that the new volatility estimator based on the volatility decom-
position outperforms the volatility estimator based on the classical method in many cases,
including the case when the tick-time volatility evolves more smoothly than the trading in-
tensity. In particular, an example given at the end of Chapter 4 shows that the alternative
estimator can achieve a smaller risk than the lower bound for spot volatility estimation
applied to the classical diffusion models which is derived in a minimax sense with respect
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to the L2-loss function; see Munk and Schmidt-Hieber [58]. This highlights the potential
of the volatility decomposition in the transaction-time model.

In Chapter 2, we state the mathematical foundations required in the work, in particu-
lar nonparametric estimation techniques for deriving spot volatility in the high-frequency
framework. In particular, we focus on the kernel-filtering of realized volatility suggested by
Kristensen [53] and Fan and Wang [33]. An overview of volatility estimation under market
microstructure noise is presented. This noise is indeed the price discrepancy between the
efficient log-price and the observed log-price, which is caused by bid-ask spreads, price dis-
creteness, or price formation, etc. Furthermore, some properties of Poisson point processes
with links to martingale theory are also given in this chapter for the sake of referring to
them later.

In Chapter 3, an introduction to asset price models based on a stochastic time change,
which reflects market activities, is provided. The main contribution of this dissertation
is the introduction of the new volatility estimator based on the volatility decomposition,
which is proven under a quite general assumptions; see Assumptions 3.1.

Chapter 4 is devoted to infill asymptotics for our transaction-time model, which we
carry out by applying the rescaling method. The asymptotic properties of both estimators—
the classical volatility estimator and the alternative volatility estimator–are compared in
Table 4.1 and 4.2 (for the noiseless and noisy model respectively) to demonstrate the ben-
efit of factorizing the volatility. In particular, under the presence of noise, the alternative
one outperforms the usual one in many cases in that a faster rate of convergence can be
achieved.

A consistent estimator of spot volatility has more to offer than an estimator of the
integrated volatility, as it enables the construction of estimators of many functionals of the
spot volatility, of which integrated volatility is one example. One of the main drawbacks is
its extra smoothing parameter, which needs to be chosen. Chapter 5 discusses the selection
of these smoothing parameters and also proposes a method to deal with boundary effects
of our statistics. The extension to endogenous time models allowing for a leverage effect
between the price process, volatility, and market activities is also briefly discussed. We note
that this generalization gives rise to some additional asymptotic variances of the volatility
estimators.

In Chapter 6, we examine the performance of our estimators in Monte-Carlo simu-
lations and discuss implications for application. We present some simulation results for
our pre-averaging type estimators for a situation with simplified but practical model pa-
rameters. From the empirical analysis, we have observed the following on the volatility
curve and microstructure noise of ultra-high-frequency data: (i) the typical U-shape over
a trading day is mainly the feature of the intensity; (ii) the tick-time volatility estimator is
in general smoother than the clock-time volatility and intensity estimators; (iii) the effect
of microstructure noise on spot volatility estimation is very small. Moreover, issues con-
cerning the quality of pre-averaging method are also discussed. The overall conclusion is



5

that the pre-averaging estimator is robust to the different types of noise considered here;
however, it performs poorly for small sample sizes due to its slow rate of convergence.

Conclusions are discussed in Chapter 7. Appendices (A), (B) and (C) correspond to
the proofs of Chapters 3, 4 and 5, respectively. Throughout this dissertation the following
notations are used: f (n) is the n-th derivative of a function f ; IA is the indicator function
of A; and an integer part of a real number x is denoted by bxc. If not otherwise stated, all
equalities and inequalities of random expressions are expressed in an almost sure sense.
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Chapter 2

Preliminaries

2.1 Brownian Semimartingales and Some Properties

In the last decades financial mathematics has grown very fast, and a lot of models for asset
returns have been introduced, both in the discrete- and continuous-time settings. Among
many continuous-time models, a standard model for log-price processes is a Brownian
semimartingale, which is the solution of the equation

dX∗t = µ∗tdt+ σ∗t dWt for t ∈ [0, T ], (2.1)

where µ∗t and σ∗t are adapted càdlàg stochastic processes and Wt is a standard Brownian
motion. This model is a special case of the more general process called a semimartingale,
which is defined as the sum of a local martingale and an adapted process with finite varia-
tion on the compact interval1. For more details see Jacod and Shiryaev [49] and Protter [62],
among many others. The semimartingale has been shown to be an appropriate choice for
modeling arbitrage-free asset price returns; see e.g. Delbaen and Schachermayer [27]. The
special model (2.1) is attractive and tractable for studying the behavior of price movement
of financial products due to its simplified form and the various mathematical tools available
for analyzing it. The most important component lying in the Brownian motion part, the
volatility σ∗2t , is mainly used in finance and econometrics for risk managing, option pric-
ing, etc., since it explains the uncertainty in the price movement; see an early application
of stochastic volatility in option pricing in Hull and White [45]. The process µ∗t is the
drift coefficient, which plays a less important role in the risk analysis, especially when one
considers prices over a small period of time, such as a day or a shorter period.

In the high-frequency framework2 it is well-known that the integrated volatility over a
given fixed time period [0, T ] can be consistently estimated by the realized volatility (also

1It can also be equivalently defined as a good integrator on a class of processes as introduced by Prot-
ter [62].

2meaning that the observations X∗t1 , X
∗
t2 , ..., X

∗
tn over the fixed time interval [0, T ] become more dense

as n→∞; it is therefore an infill asymptotic framework.

7



8 Chapter 2. Preliminaries

called realized variance, realized quadratic variation). That is

n∑
i=1

∣∣∣X∗ti −X∗ti−1

∣∣∣2 P−→
∫ T

0
σ∗2s ds

as the number of subintervals n goes to infinity, where 0 = t0 < t1 < ... < tn = T
is a deterministic sampling (or a stochastic sampling under some stronger assumptions)
with maxi |ti − ti−1| → 0 and T fixed. In fact the integrated volatility is the same as
the quadratic variation of the model (2.1). Nowadays observing high-frequency data has
become easier due to the efficiency of modern technologies. Figure 2.1 shows some examples
of transaction data of assets traded on the NASDAQ stock exchange for April 1, 2014.
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Figure 2.1: Some examples of high-frequency asset prices traded on NASDAQ for April 1, 2014. In the
first row (from left to right): C, CSCO, INTC, and JPM and in the second row (from left to right): GM,
IBM, MSFT, and VZ. X-axis is in 1-second resolution, i.e. 09:30 AM = 0 and 04:00 PM = 23400.

Asymptotic normality for the realized volatility has also been shown under a variety
of assumptions. It is easiest to show in the case of deterministic equidistant observation
times, that is when the price process is observed at every time point ti = (i · T )/n. We
obtain

√
n

{
n∑
i=1

∣∣∣X∗ti −X∗ti−1

∣∣∣2 − ∫ T

0
σ∗2s ds

}
D−→ N

(
0, 2

∫ T

0
σ∗4s ds

)
. (2.2)

Therefore the resulting limit distribution is a normal variance mixture. To get a feasible
version of this central limit theorem we can estimate the stochastic variance by the realized
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power variation of order 4 called realized quarticity. This leads to

∑n
i=1

∣∣∣X∗ti −X∗ti−1

∣∣∣2 − ∫ T0 σ∗2s ds√
2
3

∑n
i=1

∣∣∣X∗ti −X∗ti−1

∣∣∣4
D−→ N (0, 1)

under some conditions on µ∗t and σ∗t . See Andersen et al. [3], [4], Barndorff-Nielsen and
Shephard [7], [8], and the literature therein; the history about the application of the sum
of squared increments in finance can also be found in these papers. Due to the popularity
of this research area, a vast number of results for this model and its extension are devel-
oped in the literature, including realized power variation, bipower or multipower variation,
and cases of nonequidistant subdivision; see Barndorff-Nielsen and Shephard [8], [9], [10],
and Barndorff-Nielsen et al. [13] among many others. In particular, the bi-/multipower
variation has the benefit of testing for jumps in the price model. Furthermore, some of
these results are generalized to provide functional limit statements; see the excellent work
of Jacod and Shiryaev [49] and more recently Jacod and Protter [48]. We also recommend
the more accessible work of Podolskij and Vetter [61] for understanding the main issues
behind those deep theories and proofs. In particular, this work offers a clear explanation
of stable convergence, which is a very useful tool for limit theorems of semimartingales
observed at high-frequency. Of course we cannot mention all of the related results in this
thesis; nevertheless, most of them can be found in the works of the authors mentioned and
in the references therein.

2.2 Poisson Point Processes and Stochastic Intensity Models

A Poisson point process is a fundamentally useful process along with Brownian motion
in the theory of continuous-time processes and is widely used for modeling arrivals or
occurrences of events of interest. The main interest in this process is in its rate of arrivals,
called intensity, which describes the average number of arrivals per unit of time. In many
situations it is often useful to consider a Poisson process with a time-varying (or time-
dependent) intensity called a nonhomogeneous Poisson process (NHPP). Such a process still
has independent increments, but its stationary property does not hold anymore. Formally,
given a probability space (Ω,F ,P), let {Nt}t≥0 be a NHPP with respect to the natural

filtration
{
FNt
}
t≥0

with a deterministic non-negative real-valued intensity function λt, i.e.

i) N0 = 0 a.s.,

ii) Nt −Ns is independent of FNs for all 0 ≤ s ≤ t, and

iii) P (Nt −Ns = k) = exp
{
−
∫ t
s λldl

}
· (
∫ t
s λldl)

k

k! for k ∈ N, 0 ≤ s ≤ t,

where FNt = σ (Ns : s ≤ t) contains all information of the process up to time t. It turns
out that all realizations of Nt are right-continuous with left limits (càdlàg) which plays a
key role in modeling jumps in asset price returns; see Jacod and Protter [48] and Cont



10 Chapter 2. Preliminaries

and Tankov [23]. Note that there are other equivalent definitions for Poisson processes
which can be found in the literature. The representation used here is more convenient for
our purposes. In particular, the associated arrival times ti := inf {t : Nt ≥ i} are stopping
times with respect to the natural filtration

{
FNt
}
t≥0

since {tn ≤ t} = {Nt ≥ n} ∈ FNt .

A more general process is the doubly stochastic Poisson process (or conditional Poisson
process or Cox process), which allows for stochastic intensity; however, the intensity process
is still independent of the Poisson process. More precisely, we first draw a realization of
the random intensity λt, and once the whole path of λt is selected we generate a Poisson
process with this intensity. Having such a stochastic intensity is already interesting in
practice, but we can go further and extend it to a more general point process with stochastic
intensity that need not be Poisson anymore. This can be done by extending Watanabe’s
characterization of the doubly stochastic Poisson process to a large class of stochastic
intensity models—so large that it contains almost all point processes of practical interest;
see Brémaud [16, chapter II]. It has been pointed out that there is a connection between this
point process and martingale dynamics (it is very helpful since many tools in martingale
theory can be applied now). To easily see this relation we look at the compensated Poisson
process with a constant intensity λ > 0. It implies that Nt−λt is a martingale with respect
to FNt if Nt is integrable.

The following definition of general stochastic intensity models is the one taken by
Brémaud [16]. In fact it is an extension of Watanabe’s characterization of doubly stochastic
Poisson processes. Throughout this section we will always assume that a filtered probability
space (Ω,F , {Ft}t≥0 ,P) is given such that {Ft}t≥0 is right-continuous, i.e. ∩ε>0Ft+ε = Ft,
and F0 contains all P−null sets.

2.1 Definition (Brémaud [16], Definition D7, p.27) Suppose that a point process Nt is
adapted to a filtration Ft, and a non-negative Ft-progressive process λt is given such that∫ t

0
λsds <∞ P− a.s., for all t ≥ 0,

holds. Then Nt is said to admit the Ft-intensity λt if the following condition holds:

E
[∫ ∞

0
cs dNs

]
= E

[∫ ∞
0

csλs ds

]
, (2.3)

for all non-negative Ft-predictable processes ct.

In most applications the intensity is restricted to predictable, in which case the intensity
process is uniquely determined. Indeed, a predictable version of the intensity is always
available; see Brémaud [16, Chapter II.4.]. The concept of predictable processes is very
important in stochastic integral theory; for our present work it is enough to know that any
left-continuous adapted process with right-hand limits (cáglág) is predictable.
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There are some essential remarks and results relating to our work when we look at
stochastic intensity dynamics, and therefore we summarize them here for the purpose of
refering to them later (all the proofs can be found in Brémaud [16]). A review of the whole
martingale theory with respect to Poisson point processes can also be looked up in, for
example, Kuo [54] and Jacod and Protter [48]. See also a short review in Aalen [1].

2.2 Remark i) A doubly stochastic Poisson process is a special case of Definition 2.1
in that its intensity λt is restricted to being F0-measurable. Hence, conditionally
on F0, all information about the form of intensity is accessible. In formal language,
conditionally on F0, Nt is an Ft-NHPP.

ii) By setting the function cs = 1(0,τ ](s) in (2.3) where τ is an Ft-stopping time3, we
have

E [Nτ ] = E
[∫ ∞

0
1(0,τ ](s)dNs

]
= E

[∫ ∞
0

1(0,τ ](s)λsds

]
= E

[∫ τ

0
λsds

]
.

In particular, for t ≥ 0

E [Nt] = E
[∫ t

0
λsds

]
,

which also implies that N0 = 0 a.s.

iii) The corresponding arrival times ti := inf {t : Nt ≥ i} are Ft-stopping times. More-
over, for any Ft-adapted process φt, φti is Fti-measurable or even Ft−i -measurable if

φt is (left-)continuous. The stopping filtration at a random time τ is defined by

Fτ = σ {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, for all t ≥ 0} ;

intuitively, it contains all information up to the random time τ . The strict past Fτ−
is defined by

Fτ− = σ (A ∩ {t < τ} , A ∈ Ft, t ≥ 0) .

Particularly Fτ− ⊂ Fτ . See Brémaud [16, Appendix A2].

iv) The following important properties are listed in Theorem T8, Brémaud [16, p.27]:

a) Nt is non-explosive, i.e. Nt <∞ P-a.s. for t ≥ 0.

b) Mt := Nt −
∫ t

0 λsds is an Ft-local martingale.

c) If yt is an Ft-predictable process such that E
[∫ t

0 |ys|λsds
]
< ∞ for all t ≥ 0,

then
∫ t

0 ysdMs is an Ft-martingale.

3Since τ is an Ft-stopping time, we have that {τ ≤ s} ∈ Fs for all s, and therefore {τ ≥ s} ∈ Fs+ = Fs
by the right-continuity of the filtration. Thus ct = 1(0,τ ](t) is Ft-predictable (Ft-adapted and left-continuous
with right limits).
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v) According to b), for a sequence of Ft-stopping times τn ↑ ∞, Nt∧τn −
∫ t∧τn

0 λsds is
an Ft-martingale. Therefore

E
[
Nt∧τn −Ns∧τn

∣∣∣ Fs] = E
[∫ t∧τn

s∧τn
λudu

∣∣∣ Fs] .
Letting τn go to infinity, we obtain

E
[
Nt −Ns

∣∣∣ Fs] = E
[∫ t

s
λldl

∣∣∣ Fs]
if λt is assumed to be bounded. This yields that independent increments do not exist
in this general setting. Moreover, if λt is continuous, and therefore predictable, then

lim
t→s

1

t− s
E
[
Nt −Ns

∣∣∣ Fs] = λs P− a.s.,

which reminds us of the classical definition of intensity functions.

vi) The boundedness of λt (which we shall always assume in our work) implies that
E[Nt] < ∞ and Mt is a square integrable Ft-martingale. Therefore we can avoid
working with local martingales. Moreover, by Doob-Meyer’s decomposition theorem
the compensator of M2

t , denoted by < M >t, is equal to
∫ t

0 λsds. This result is useful
as we can now apply many properties of stochastic integration with martingales
as integrators such as Itô’s isometry or Burkholder-Davis-Gundy’s inequalities, see
e.g. Kuo [54, Theorem 6.5.8] and Jacod and Protter [48, p.39] respectively.

2.3 Nonparametric Curve Estimation: Spot Volatility Esti-
mator

In this section we will discuss statistical methods used to derive the main parameter in the
asset price model (2.1). First it is interesting to have a brief look at some (nonparametric)
techniques that are mainly used for estimating underlying curves, particularly in nonlinear
regression and density estimation. We begin by thinking of a scatter plot of some data
which could have a very complex structure. Our aim is to fit an appropriate curve to it. In
nonlinear regression there are two approaches: the first one is the parametric approach, in
which we fit a linear (which is normally biased) or a polynomial regression function to the
scatter plot. To do this we would need to deal with the choice of the polynomial degree, say
p. It is clear that large p can reduce the modeling bias but it can also cause high variability
as the number of parameters is too high. In order to avoid the problem of specifying a
model, the second approach of nonparametric fitting may be used. A lot of methods are
developed in the nonparametric estimation literature, and some of them apply locally on
the data set. The most common tools are kernel type estimators, local linear/polynomial
fittings, wavelet thresholdings, and spline smoothings. All of these methods have their own
advantages over the others, which can be seen in detail in many textbooks; we recommend
Härdle and Linton [42] and chapter 2 of Fan and Gijbels [30] for an overview of these
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smoothing techniques in the density estimation and regression analysis contexts. Local
polynomial fitting in particular is intensively discussed in the latter. Instead of reviewing
nonparametric devices in the connection with those topics, we prefer to discuss some of
the techniques mentioned above in the volatility curve estimation context.

As mentioned in the beginning of this chapter, the integrated volatility can be con-
sistently measured by the sum of squared increments observed with high-frequency. To
extract the time-varying spot volatility σ∗2t , the most intuitive way is to proceed as though
the volatility process were constant on a small neighborhood. Then we can filter the re-
alized volatility to get an approximation of the spot volatility at a specific time point
to ∈ [0, T ], i.e. given high-frequency observations X∗t1 , ...X

∗
tn of the model (2.1)

1

2h

∑
to−h<ti≤to+h

∣∣∣X∗ti −X∗ti−1

∣∣∣2 ≈ σ∗2(to)

for a small window h > 0. By assigning smaller weights for data points that are remote
from the interested time point to, a lower modeling bias will be obtained. This procedure
leads to the kernel-based estimator introduced by Kristensen [53] and Fan and Wang [33],
i.e.

σ̂∗2to :=
n∑
i=1

1

h
K

(
ti − to
h

) ∣∣∣X∗ti −X∗ti−1

∣∣∣2 , (2.4)

where K is a kernel function satisfying regularity conditions, and h is the bandwidth
depending on n (recall that the high-frequency framework (or infill asymptotics) is being
applied, i.e. we assume that more and more observations on the fixed interval [0, T ] are
available as n goes to infinity). Since this quantity only estimates the volatility at a single
time point to, the whole volatility line is therefore obtained by applying this local estimator
to a grid of points. Having spot volatility estimates is convenient since we are now able
to estimate any functional of the spot volatility such as the former integrated volatility,
derivatives of spot volatility (needed in the case of differentiable processes), etc. In order
to draw some asymptotic inferences, of course, we need to know more about the structure
of this volatility curve. It is natural to assume that the volatility curve satisfies some
smoothness condition since we still want to stay in the nonparametric context rather than
specifying a parametric model for the volatility. The following asymptotic results are given
under assumptions (A.1)− (A.4) and (K.1) in Kristensen [53].

2.3 Theorem (Kritensen [53], Theorem 3) Suppose that we have equidistant observations,
i.e. ti = iT/n. Then for any a→ 0 with a/h→ 0 we obtain

sup
t∈[a,T−a]

∣∣σ̂∗2t − σ∗2t ∣∣ = Op (hα) + Op

(
log(n)/

√
nh
)
,

and if the bandwidth conditions nh → ∞ and nh2α+1 → 0 hold, we get the following
asymptotic normality:

√
nh
{
σ̂∗2to − σ

∗2
to

} D−→ N
(

0 , 2σ∗4to

∫
R
K2(x)dx

)
, (2.5)
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for to ∈ (0, T ), where α is the Hölder exponent of the volatility curve.

The same result is also obtained by Fan and Wang [33, Theorem 1] with a slightly
different set of conditions on the volatility process and the bandwidth. They have shown
that common volatility models in the literature (such as geometric OU process, Nelson
GARCH diffusion process, CIR process) satisfy all these conditions.

As a matter of fact, the main concern in kernel-based methods is the choice of the
smoothing window h, since it plays a crucial role in the complexity of the estimation. If
the bandwidth is chosen to be small, then the bias will be small. However, the variance
will increase since we have fewer data points in each small neighborhood. On the other
hand, if the bandwidth is large then the variance will decrease, but we will get a larger
bias term. Thus it is necessary to trade-off between these two terms in order to get the
most appropriate choice for the smoothing window. Solutions to the bandwidth selection
problem have been discussed for a long time, e.g. plug-in and cross-validation methods.
The Plug-in method is more restrictive, as we might need to know a priori the smoothness
of the curve. A more complicated data-driven bandwidth selection is therefore desirable
in many situations, especially when the smoothness/roughness of the curve of interest is
unknown; see e.g. cross-validation criterions in Silverman [68] and Härdle [40] for imple-
mentations. Kernel estimation has also been applied to extract the stochastic intensity of
point processes; see e.g. Ramlau-Hansen [63].

Apart from the bandwidth selection problem, kernel-type estimators have a weakness
at their domain boundaries. Since kernel functions are normally chosen to be symmetric
functions, the estimators will cause biases at the edges of their domain due to the lack of
data points. To overcome this problem one can use one-sided kernel functions or reflection
methods; see Zhang and Karunamuni [71] and Fan et al. [31]. A more efficient solution
that is automatically adapted to boundaries is a local linear fit. This method basically fits
a linear model to the scatter plot locally around the time point of interest (in contrast to
the kernel-based method which fits only a constant to the local area). For a more detailed
discussion about how it can reduce the modeling biases at the edges, we refer the reader
to Fan and Gijbels [30]. To overcome boundary effects of spot volatility estimation (2.4)
a local linear fit has been briefly discussed in Kristensen [53, section 4] by solving the
following problem:

min
b0,b1

n∑
i=1

K

(
ti − to
h

){
σ̃∗2ti − {b0 + b1(ti − to)}

}2
,

where σ̃∗2ti is an approximation of the spot volatility at time ti, leading to the local linear
estimate of σ2∗

to (to ∈ [0, T ])

n∑
i=1

1

h
K∗c

(
ti − to
h

)[(
X∗ti −X

∗
ti−1

)2
+ o(1)

]
, (2.6)

where K∗c is the so-called equivalent kernel function; see Kristensen [53, eq. (9)] and Fan
and Gijbels [30, chapter 3].
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Instead of local linear fits, we can also apply higher-order polynomial fitting, which fits
the scatter plot better and also reduce the modeling bias. However we will need to deal with
the higher order of the polynomial. Another advantage of using local polynomial fitting
is the ability to estimate higher-order derivatives of parameter curves, which is useful
in, for example, the plug-in method (where the second derivative of the curve normally
plays a role in the bandwidth size). In constrast to the parametric approach of polynomial
regression, where the degree of polynomials is normally large, local polynomial fitting works
locally. We will therefore generally require fewer parameters (controlled by the degree of
the polynomial). Typically the degree p is m + 1, where m is the smoothness order of
the parameter curve; see Fan and Gijbels [30]. As can be seen in the literature, standard
volatility processes are normally driven by a Wiener process, which has non-differentiable
paths, so a local polynomial of degree p = 1 (local linear) should work well for the derivation
of spot voaltility curves. For a detailed discussion of local polynomial fitting techniques,
see Fan et al. [29] and Fan and Gijbels [30].

Other nonparametric methods such as Fourier/wavelet transforms and spline smoothing
are also popular and can be applied to estimate spot volatility curves. None of these
techniques will be applied or discussed further in this work, so we have omitted the detail
and refer the reader to Malliavin and Mancino [55] and Mancino and Sanfelici [56] for a
comprehensive treatment of Fourier transforms and to Fan and Wang [32] and Schmidt-
Hieber [67] for wavelet thresholdings. We note that wavelet-based methods have shown
to be nearly minimax (in rate) for a large class of functions when the smoothness level is
unknown.

2.4 Microstructure Noise Models

It has been observed in practice that the naive volatility estimators discussed above are
not consistent when the data is observed with high frequency, such as every minute or at
a finer resolution; see e.g. Bandi and Russell [6]. This means that the model formation for
arbitrage-free price processes is disturbed by some factors in the real asset market. The
reason of this incompatibility lies in the so-called market microstructure noise, possibly
induced by discreteness of prices, bid-ask spreads or price formation, etc. It produces
a noisy component in the arbitrage-free price process (2.1), leading to non-robustness of
standard volatility estimators when the sampling interval is too small. Therefore many
practitioners prefer to investigate data over longer time intervals in order to obtain unbiased
results. Using a coarser grid of data, gathered at, say, a 5-minute or 20-minute resolution,
makes the naive estimators more robust. For example, given tick-by-tick data of a liquid
asset observed over a trading day Y ∗t1 , ..., Y

∗
tn , one would measure the integrated volatility

by ∑(
Y ∗τi − Y

∗
τi−1

)2
, with τi = ti·K for K ∈ N, (2.7)

where the sum is taken over 0 < τi ≤ T with, e.g. K = 300 (if the trades are assumed
to be exercised nearly every second, 5-minute interval is equal to 300). This approach is
quite popular in the early empirical finance literature. However, using such coarse data in
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order to avoid microstructure effects is unacceptable from a statistical point of view, since
it is unsatisfactory to throw away data, especially such a huge amount of information (for
example, if prices are observed at every second and we use data at a 5-minute resolution,
then in every 5-minute period we will ignore 299 data points in the analysis); see Zhang et
al. [70]. As a result, many statistical methods dealing with microstructure noise have been
discussed to fully exploit the information hidden in the high-frequency data.

Statistically we can view market microstructure noise as an observation error. For the
analysis, observable log-price processes are normally assumed to follow an additive noise
model

Y ∗ti = X∗ti + εi for i = 1, ..., n, (2.8)

where εi is assumed to be a noise with

E[εi] = 0 and Var[εi] = ω2 <∞;

the latent log-price process X∗t satisfies the model (2.1) (no other assumption on the dis-
tribution of noise is made). Independence between the noise ε and the price process X∗

is typically assumed for simplicity of the proofs, but it is not essential. For this overview
we will consider only time-equidistant data ti = iT/n for i = 1, ..., n in order to avoid
complications.

To clarify why the standard realized volatility based on high-frequency observations Y ∗ti
is an inappropriate quantity for the integrated volatility, we look at

E

[
n∑
i=1

(
Y ∗ti − Y

∗
ti−1

)2
]

= E

[
n∑
i=1

(
X∗ti −X

∗
ti−1

)2
]

+ E

[
n∑
i=1

(εi − εi−1)2

]

=

∫ T

0
σ∗2t dt + 2nω2.

This expectation explodes as n goes to infinity (we assume that σ∗t is at least locally
bounded), so that the variablility of the noise term dominates the variability of the latent
process. Nevertheless, the standard realized volatility can be used to measure the variance
of the microstruture noise ω2; see Zhang et al. [70].

To overcome this non-robustness problem, many methods dealing with microstructure
noise have been introduced. Starting with the first idea of Zhou [72], the effect of the
contamination is now counteracted by adding a bias correction term into the common
realized volatility, leading to an unbiased estimate

n∑
i=1

(
Y ∗ti − Y

∗
ti−1

)2
− 2

n∑
i=1

(
Y ∗ti − Y

∗
ti−1

)(
Y ∗ti−1

− Y ∗ti−2

)
.

Unfortunately, this estimate remains inconsistent since the variability is still too high;
see also Zumbach et al. [73] for the comparison of this estimate with other methods in
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simulation studies and applications to real foreign exchange data. The intuitive idea of
using higher-lag covariance terms is proposed by Barndorff-Nielsen et al. [11].

Now we will demonstrate three main approaches that have been extensively used in the
analysis of microstructure noise models in practice. The first approach is from the excellent
work of Zhang et al. [70], which uses different time scales to construct a consistent estimator
for integrated volatility. Their combination of sparse and frequent sampling, which is
satisfying from an empirical as well as a statistical point of view, is given by

1

K

K∑
k=1


∑

τ
(k)
i ∈Gk

(
Y ∗
τ
(k)
i

− Y ∗
τ
(k)
i−1

)2

− n̄

n

n∑
i=1

(
Y ∗ti − Y

∗
ti−1

)2
, (2.9)

where the original set of grid points {t1, ..., tn} is now partitioned into K subgrids Gk, k =

1, ...,K. Usually Gk is chosen to be
{
τ

(k)
1 , τ

(k)
2 , ..., τ

(k)
nk

}
:= {tk, tk+K , tk+2K , ...tk+nkK} and

n̄ =
∑K

k=1 nk/K. The first term is the average over multiple grids of sparsely observed
realized volatility (compare with (2.7)), which reduces the bias and variance of the con-
ventional volatility estimator. The second term is a slight modification of the realized
volatility, which deals with the rest of the bias induced by the disturbance ε. As discussed
in their work, the best result of the combination of these two different time scales can
be attained by choosing the parameter K optimally with respect to mean squared error
minimization. In particular the asymptotic properties when K → ∞ as n → ∞ for this
estimator and related quantities, such as asymptotic variance estimator and the estimator
of the noise spread, are provided in their work. The rate of convergence of order n−1/6 is
derived for this integrated volatility estimator. Furthermore, many ideas of how to con-
struct robust estimators are fruitfully discussed in their work, both from statistical and
practical standpoints.

Unfortunately, Zhang et al.’s estimator cannot, as one would expect, reach the optimal
convergence rate of n−1/4 from the parametric maximum likelihood estimator in Gloter and
Jacod [36]. Zhang [69] has therefore improved their two-timescale estimator to a multi-
timescale estimator which achieves the optimal rate. In fact, this estimator is a direct
extension of the best estimator given by Zhang et al. [70], combining different, say H,
timescales to build a rate-optimal estimator for the integrated volatility.

Using the idea of autocovariances, the second approach is the realized kernel approach
proposed by Barndorff-Nielsen et al. [11] and has the form:

γ0(Y ∗) +
H∑
h=1

K

(
h− 1

H

)
{γh(Y ∗) + γ−h(Y ∗)} , (2.10)

where

γh(Y ∗) :=

n∑
j=1

(Y ∗ti − Y
∗
ti−1

)(Y ∗ti−h − Y
∗
ti−h−1

)
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is the realized autocovariance with lag h of the price series Y ∗; K(x) is a weight function
defined on [0, 1] with K(1) = 0 and the flat-top property K(0) = 1 (the flap-top kernel is
in fact needed to eliminate the bias caused by the additional noise). This estimate consists
of the standard realized volatility (the first term) and the flat-top kernel smoothing terms
(the second term); see Barndorff-Nielsen et al. [11]. If H = 0 the inconsistent volatility
estimate, realized volatility, is recovered; if H = 1, it is equivalent to Zhou’s estimator,
which is unbiased but still inconsistent. Thereby one can reduce the variability of the
estimation induced by the noise factor by using many lags of autocovariances. In this way
one can construct a consistent estimator that achieves the optimal rate of convergence as
found in the multi-timescale setting. This approach is applicable to data with endogenous
time points, such as transaction data, which make it more useful in real data analysis.
It is noteworthy that the extension of the realized kernel with finite lags to the realized
kernel with infinite lags can achieve the efficiency bound given in the parametric version of
this problem; see Barndorff-Nielsen et al. [11, section 4.5]. However, this idea is of limited
relevance in practice as we will not observe a sufficient number of returns to construct
virtually infinite lags. For implementation and extensive empirical analyses of this method,
we refer to Barndorff-Nielsen et al. [12]; in particular, the effect of market microstructure
noise on real stock prices is demonstrated via realized kernels.

The last technique we demonstrate here is introduced by Podolskij and Vetter [60] and
later on extended by Jacod et al. [47]. This approach relies on the natural idea of using
realized volatility based on local averages Ȳ ∗t0 , Ȳ

∗
t1 , ..., where Ȳ ∗ti is defined as the average

of, say, H data points Y ∗ti , ..., Y
∗
ti+H−1

. By doing this the variance of microstructure noise
in the pre-averaged terms can be reduced by a factor of 1/H. Lastly the bias induced by
the added noise is taken care of by a bias-correcting term. This pre-averaging estimator is
explicitly given by

ĈnT :=
1

H

1∫ 1
0 g(u)2du

n−H∑
j=0

(
4Y ∗tj

)2
− 1

2H

∫ 1
0 g

(1)(u)2du∫ 1
0 g(u)2du

n∑
i=1

(
Y ∗ti − Y

∗
ti−1

)2
(2.11)

where

4Y ∗tj =

H−1∑
h=0

g

(
h

H

)(
Y ∗tj+h − Y

∗
tj+h−1

)
is the average of the price increments weighted by a function g over the block of size
H; g is defined on [0, 1]. This approach has some features which cannot be seen in the
multi-timescale and realized kernel approaches: (i) it enables straightforward construction
of consistent estimators for other power variations of the process X∗; in particular the
asymptotic variance of the estimator (2.11) can be quantified by such a technique in order to
get feasible central limit theorems; (ii) together with the concept of bipower (or multipower)
realized volatility, it can be used to detect jumps in the price model and to construct jump-
robust estimators; see Podolskij and Vetter [60]. Although the pre-averaging estimate can
achieve the optimal rate of convergence n−1/4, its asymptotic variance is less efficient than
that of the realized kernel. In fact, the realized kernel is shown to have the smallest
asymptotic variance among these three approaches. We state the asymptotic normality of
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the pre-averaging estimator below for the sake of referring to it later, as our method will
be based on this technique.

2.4 Theorem (Jacod et al. [47], Theorem 3.1) Suppose that assumptions (H) and (K)
in [47] hold. Let the weighting function g defined on [0, 1] satisfy: g is piecewise continuously
differentiable with piecewise Lipschitz derivatives g(1), g(0) = g(1) = 0 and

∫ 1
0 g(u)2du > 0.

With H = θ · n1/2 + o(n1/4) we get

n1/4

{
ĈnT −

∫ T

0
σ∗2t dt

}
→
∫ T

0
γt dBt, (2.12)

with the asymptotic variance

γ2
t =

4(∫ 1
0 g(u)2du

)2 ·

[∫ 1

0

(∫ 1

ν
g(u)g(u− ν)du

)2

dν · θσ∗4t

+ 2

∫ 1

0

(∫ 1

ν
g(1)(u)g(1)(u− ν)du

)(∫ 1

ν
g(u)g(u− ν)du

)
dν · σ

∗2
t ω

2

θ

+

∫ 1

0

(∫ 1

ν
g(1)(u)g(1)(u− ν)du

)2

dν · ω
4

θ3

]
,

where the above convergence is in the stably-in-law sense (for more details see e.g. Podol-
skij and Vetter [61]), and B is another standard Brownian motion, being independent of
the original space where σ∗t lives. Moreover, the asymptotic variance can be consistently
estimated by ΓnT given in their work [47, eq.(3.7)] which leads to a feasible version of

the central limit theorem n1/4
{
ĈnT −

∫ T
0 σ∗2(t)dt

}
/
√

ΓnT
D−→ N (0, 1) as a result of stable

convergences.

Of course we have not stated all conditions for which the asymptotic properties of
these three estimators hold. We emphasize that what they all have in common is that
their smoothing parameter H plays a crucial role in the estimation. Some solutions of how
to select H in practice are therefore discussed in these and related works. Apart from these
three main approaches there are many approaches dealing with market microstructure noise
in the literature. Recently, the method given by Bibinger and Reiß [15] and Reiß [64]
has gotten more attention, as the asymptotic efficiency of parametric volatility estimation
can be achieved. We still rely on the pre-averaging procedure because of the advantages
mentioned earlier.

In empirical analysis it has been shown that the noise conditions given in model (2.8)
are somewhat too restrictive, since the noise sequence exhibits correlation with/dependence
on the efficient price process; see Hansen and Lunde [39] and Kalnina and Linton [52].
Nevertheless, all these methods are able to deal with noise structures more general than
i.i.d. noise (however, it is much more complicated; see details in their works). The literature
investigates not only the effect of additive noise on the realized volatility, but also noise
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with more complex structures such as rounding noise, additive noise plus a rounding effect,
or nonlinear market microstructure noise; see e.g. Delattre and Jacod [26], Rosenbaum [66]
and Dahlhaus and Neddermeyer [25].

As one might notice, none of the estimators (2.9), (2.10), and (2.11) are necessary
non-negative, which contradicts the positivity of the spot volatility. Nevertheless, this is
likely to be irrelevant in the empirical analysis of high-frequency data, as it has been shown
that the noise is sufficiently small such that these three main estimators give satisfactory
results; see also our simulation in Chapter 6. Positive estimators for asymptotic variance
based on the subsampling method have been proposed by, e.g. Kalnina [51].

Finally, it is noteworthy that all of these noise-robust estimators work quite well even in
the noiseless model, i.e. Y ∗ti = X∗ti for all i = 1, ..., n. As a matter of fact, the variability of
the estimates is too high compared with the variability of the standard realized volatility
due to the slower rate of convergence, n−1/4 versus n−1/2. Thus, there is no gain in
using such estimates in the absence of noise; in other words, it is better to use standard
realized volatility when one knows without doubt that the underlying price process is not
contaminated or that the noise is almost negligible.



Chapter 3

Time Change Model and Volatility
Decomposition

Instead of the classical semimartingale (2.1) which is normally considered in the usual
timescale, called calender time or clock time, we want to look at asset price returns relying
on a different time clock. This time clock is controlled by a stochastic process that reflects
market activities. In this work our main interest is the investigation of the spot volatility
(also called instantaneous volatility) of a time-changed price-model based on trading times.
This model is a pure jump process which can be interpreted as an asset price model
having price changes at every transaction time. The main contributions of this work are
the introduction and theoretical investigation of a new volatility estimator based on the
volatility decomposition obtained in this time change model. In this chapter we introduce
our model, show the volatility decomposition, and discuss the implications for applications.

3.1 Time Change Model

The study of statistical and empirical relationships between stochastic time clock and price
processes, particularly the link between market activities, price fluctuations, and asset
returns, has been extensively discussed in the financial literature. There is convincing
evidence of a correlation between price volatility and the number/volume of trades. The
investigation began when the distribution of asset returns over a short time period, such
as a day or shorter, was reported to be non-normal1. To recover the normality of price
distribution many stochastic time change models have been proposed,2 in particular, a
time-changed Brownian motion

dXt = σ(t) dWT (t) for t ∈ [0, T ], (3.1)

1We note that the non-normality of asset returns of the standard diffusion model (2.1) can be directly
seen when the volatility process is non-deterministic, in which case price processes are mixed normal.

2We briefly define a time change as a (possibly) stochastic non-decreasing function T : [0,∞)→ [0,∞)
with T (0) = 0 and T (t) → ∞ as t → ∞. Thus for an arbitrary function/process f and a time change T ,
we have fT (t) = f ◦ T (t), where ◦ is the mapping composition.

21
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where W· is a Brownian motion, σ(t) is a stochastic process, and T (t) is a time change pro-
cess carrying some market infomation which has an impact on asset prices. For instance,
T (t) could represent the accumulated volume up to the time t or it could be the accumu-
lated number of transactions up to time t as well. The former is suggested by Clark [22]
from a theoretical and practical perspective that subordinating a Brownian motion by a
directing process—in his work the volume of trades—can achieve the normality of the price
distribution. This model is therefore applied to real cotton futures price data to show the
normality. Since then the link between market activities—measured by the trading volume
and the number of trades—and price fluctuation or volatility has been frequently discussed.
Ané and Geman [5] conclude that the main reason of the volatility change is rather the
number of trades than their size. In particular they recover the normality of asset returns
through this stochastic time change in high-frequency data sampling; see more discussions
on this topic in Jones et al. [50], Plerou et al. [59] and Gabaix et al. [34].

In the following, asset returns depend on market activities at each time period in the
sense that price processes are controlled by a stochastic time clock given in (3.1). Thus
prices evolve slowly if there is not much new information, and they evolve faster if there
is a lot of news related to the asset—both company-related and general market news.
Now σ2(t) represents the price variation per stochastic time clock (in contrast to σ∗2t in
the standard diffusion model (2.1), which represents the price fluctuation in the usual
timescale, called calendar-time or clock-time volatility). Having the representation (3.1)
for asset returns means that identifying the process Xt is the same as identifying σ(t) and
T (t). The leverage effect of the volatility and the price process is now introduced in the
correlation between the Brownian motion, the tick-time volatility, and the time change.
Since T (t) need not be continuous, the resulting process WT (t) is allowed to have jumps.

In this work the stochastic time change Tt = Nt is a point process representing the
accumulated number of trades up to time t. Since Nt is a counting process, WNt is a pure
jump process. The use of this kind of process for modeling asset returns is also supported by
the work of Geman et al. [35] and many others in the time change model literature. Recently
a time-changed Brownian motion has been employed to model credit risk, leading to a
solution of the first passage problem for a class of processes related to financial modeling;
see Hurd [46]. Indeed, modeling arbitrage-free asset price returns with such a model is
reasonable since it has been shown that: (i) under a no-arbitrage assumption, asset prices
are semimartingales (see Delbaen and Schachermeyer [27]); and (ii) any semimartingale
can be transformed into a time-changed Brownian motion (Monroe [57]). Therefore having
a class of time-changed Brownian motions is tractable because it is as large as a class
of semimartingales. Particularly the standard Brownian semimartingale

∫ t
0 σ
∗
sdWs can be

transformed into B∫ t
0 σ
∗2ds where B· is another Wiener process.3

Other time change models have been extensively studied in recent years, in particular a
time-changed Lévy process, which allows for a more complex structure in the price models

3In contrast to the usual definition of time-changed Brownian motion, we do not have Tt to be a stopping
time with respect to Ft in order to define WTt . In our framework Nt is a stopping time with respect to the
discrete stopping filtration Fti .
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in order to cope with some stylized effects emerging in the financial market; see Geman et
al. [35], Carr et al. [19] and Carr and Wu [20]. For a statistical treatment of such a model
see Belomestny [14] and the reference therein.

Our model:

As mentioned above, instead of classical semimartingales we use a time change model
based on trading times, more precisely

Xt =

∫ t

0
σs dWNs for t ∈ [0, T ], (3.2)

where the directing processNt is a point process with intensity λt reflecting the accumulated
number of transactions up to time t, σ2

t is called the volatility per transaction time (also
called the volatility per tick or the tick-time volatility), and W (·) is a standard Brownian
motion. The simplest case is the case in which σt and λt are non-random and in which W (·)
and N· are independent; in this case, Nt is a nonhomogeneous Poisson process (NHPP).
In a more general setting these processes are stochastic and depend on past realizations
of Xt and Nt. The leverage effect between W (·) and N· is replaced by some martingale
structure; in fact, W (·) need not be Gaussian (see below).

Clearly, this model is a pure jump model whose jumps occur at every arrival time or
transaction time ti := inf {t : Nt ≥ i} for i = 1, 2, ..., since the counting process Nt is a
pure jump process having jumps of size 1. The intensity λt serves as an arrival rate of
transactions per unit of time. We denote by NT the number of all transactions on the time
horizon [0, T ]. In (3.2) the process σt represents the price fluctuation per unit of stochastic
time and not the volatility per calendar time (the usual timescale). Nevertheless, we can
define volatility per calendar time for this model as a portion of price variation per unit
of time, see (3.3) below. In particular, we will show that by looking at this kind of time
change model, clock-time volatility appears to be a multiplication of two factors: tick-time
volatility and intensity. This result corresponds to the observation that market activities
are strongly related to uncertainty of asset prices. We do not consider a drift term in our
analysis as we are interested in price oscillations over short time periods such as a day or
shorter, and therefore the drift term has less impact on the analysis.

3.2 Volatility Decomposition

We mainly focus on the estimation of spot volatility for the financial transaction-time
model (3.2), which is not the function σ2

t . Rather, σ2
t represents the price variation per

transaction time, which is different from the meaning of σ2
clock(t) in the classical clock-time

diffusion model (say dXt = σclock(t)dWt). We therefore start with a model-independent
definition for spot volatility and clarify below its relation to the tick-time volatility σ2

t . Let
us assume that there exists a filtered probability space (Ω,F , (Ft)t≥0,P), where (Ft)t≥0 is
an increasing sequence of σ-fields; roughly speaking, it contains all information available
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up to and including time t. For an asset price model X(t) we define

vola2
t := lim

∆t→0

E
[
(X(t + ∆t)−X(t))2

∣∣∣ Ft

]
∆t

. (3.3)

It is remarkable that in the classical diffusion model vola2
t does not depend on the point

process, and under the assumption that σclock(t) is a right-continuous process with left-
limits adapted to Ft we have vola2

t = σ2
clock(t).4 Therefore, we use σclock(t) in this work as

a synonym for vola t, i.e. we define

σ2
clock(t) := vola2

t.

In the transaction-time model considered in this work, we prove below that σ2
clock(t) =

σ2
t · λt. We first present the assumptions for this result. To understand our assumptions,

note that in (3.2) we do not use the whole process W (·) but only the increments Ui :=
W (Nti)−W (Nti−1), which we now assume to be a martingale difference sequence.

3.1 Assumption The Xti at observation times ti follow the model Xti = Xti−1 + σtiUi,
where the ti are the arrival times of a point process Nt. We assume that there exists a
filtered probability space (Ω,F , (Ft)t≥0,P), where F0 includes all null sets and the filtration
(Ft)t≥0 is right-continuous such that

i) Nt is a point process admitting an Ft -intensity λt (as in Definition 2.1; see also
Brémaud [16, Definition D7]); in particular λt is an Ft -progressive process and Nt is
adapted to Ft;

ii) σ2
t is a non-negative Ft -predictable process; in particular σ2

t is Ft− -measurable;

iii) Ui is Fti -measurable for each i with

E
[
Ui

∣∣∣ Fti−] = 0 and E
[
U2
i

∣∣∣ Fti−] = 1.

(Remark that for asymptotic consideration we will need a condition on higher mo-
ments of this sequences, see Chapter 4.)

This point process Nt is quite general, as one can see in Section 2.2, since it allows for
the dynamics of both processes λt and Nt as they react to each other. Under all these
assumptions, a leverage effect between all processes—the tick-time volatility, the intensity,
the point process and the innovations Ui—can be constructed to account for the correlation
between market information, volatility, and asset prices. Note that no other condition on

4Since E
[
(Xt+δ −Xt)2

∣∣∣ Ft] = E
[∫ t+δ
t

σ2
clock(s)dWs

∣∣∣ Ft] = E
[∫ t+δ
t

σ2
clock(s)ds

∣∣∣ Ft], the result fol-

lows if σ2
clock(·) is right-continuous.
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the distribution of Ui is required. The martingale difference structure of Ui is satisfied, for
example, for an i.i.d. sequence with mean zero and unit variance.

Examples for processes which fulfill these assumptions are given at the end of this section.
The natural filtration which satisfies the above conditions is

Ft = σ ({Ns : s ≤ t} , {λs : s ≤ t} , {σs : s ≤ t} , {UNs : s ≤ t}) .

3.2 Proposition Suppose Assumption 3.1 holds. If σt and λt are continuous processes
we have

σ2
clock(t) = σ2

t · λt. (3.4)

Proof. See Appendix A.

Therefore, in the transaction-time model the volatility can be decomposed into the
product of two curves which can both be identified from the data. There exists an intuitive
interpretation of this decomposition in that the formula reflects the change of time unit.
The formula says that

“volatility per time unit is equal to volatility per transaction multiplied by the average
number of transactions per time unit”.

This formula clearly explains the model for interaction between market activities and
volatility of price, i.e. in a more active business day, reflected by a high activity rate,
the volatility for the economy is high.

A highlight of the decomposition is the ability to estimate both curves σ2
t and λt

separately by various estimates, say σ̂2(t) and λ̂(t). We use these estimates in two ways:

i) to construct an alternative estimator of σ2
clock(t) via

σ̃2
clock(t) := σ̂2(t) · λ̂(t);

ii) to look at the two curves individually in order to gain more insight about the cause
and structure of volatility.

A well-known result in econometrics is that standard volatility estimators are not ap-
propriate in a noisy model when the data is observed with high frequency. To study the
effect of so-called market microstructure noise, an additive noise model is introduced, i.e.

Yti = Xti + εi, for i = 1, ..., NT .

The contamination εi is, for example, an i.i.d. noise with E[εi] = 0 and Var[εi] < ∞. For
more details about this model and robust volatility estimates we refer to the next chapter
(and also to section 2.4).
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Now we want to briefly discuss the implications of our model for applications. For real
data analysis (and also for our theoretical results in Chapter 4) we mainly use kernel-type
estimators, i.e. an estimator of λt at time t0 ∈ (0, T ) is

λ̂(t0,M) :=
1

M

NT∑
i=1

K

(
ti − t0
M

)
.

In order to handle microstructure noise, the pre-averaging technique of Podolskij and
Vetter [60], extended by Jacod et al. [47], is applied for the estimation of σ2

t (adapted to
the present model):

σ̂2
pavg(t0,m) :=

1

mH

1

g2

i0+m∑
i=i0−m

k

(
i− i0
m

)(
4Y ti

)2
− 1

2mH

∑H−1
l=1 h2( lH)

g2

i0+m∑
i=i0−m

k

(
i− i0
m

)(
Yti − Yti−1

)2
,

where i0 := inf {i : ti ≥ t0}. The pre-averaging term is

4Y ti :=
H−1∑
l=1

g

(
l

H

)(
Yti+l − Yti+l−1

)
and h(l/H) := g((l+ 1)/H)−g(l/H). The bandwidth m is the main smoothing parameter
of the estimate, while H is the smoothing parameter in the pre-averaging step (a detailed
analysis of this pre-filtering estimator is postponed until the next chapter). This leads to a
new alternative clock-time estimator based on the volatility decomposition (3.4), given by

σ̃2
clock,pavg(t0,m,M) := σ̂2

pavg(t0,m) · λ̂(t0,M)

whereas the “classical” pre-averaging clock-time volatility estimate is

σ̂2
clock,pavg(t0,M) :=

1

MH

1

g2

NT∑
i=1

K

(
ti − t0
M

)(
4Y ti

)2
− 1

2MH

∑H−1
l=1 h2(l/H)

g2

NT∑
i=1

K

(
ti − t0
M

)(
Yti − Yti−1

)2
.

As can be seen in some empirical analyses, e.g. Zumbach et al. [73] and Dahlhaus and
Neddermeyer [25], tick-time volatility normally varies in a smoother way than the intensity
process. Therefore, we have examined this characteristic in some real data examples. In
Figures 3.1–3.2 we have applied both volatility estimates to high-frequency data of trans-
action prices—approximately 25,000 and 30,000 transactions per day—from the NASDAQ
stock exchange (MSFT = Microsoft, GM = General Motors). The first row always shows
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Figure 3.1: Volatility of MSFT on April 1, 2014:
Clock-time volatility(a), transaction-time volatility(b),
trading intensity(c).
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Figure 3.2: Volatility of GM on April 1, 2014: Clock-
time volatility(a), transaction-time volatility(b), trading
intensity(c).

the logarithm log σ̂2
clock,pavg(t,M) (red) and log σ̃2

clock,pavg(t,m,M) (blue), the second row

log σ̂2
pavg(t,m) (blue), and the third row the log trading intensity log λ̂(t,M) (blue). For

these examples we choose M = 200, m = b200 · {# of trades} /23400c, and H = 15; more
details about the data, the choice of parameters, and the explanation of the green curves
can be found in Chapter 6. Due to the additive relation

log σ̃2
clock,pavg(t,m,M) = log σ̂2

pavg(t,m) + log λ̂(t,M)

the blue curves in the second and third row sum up to the blue estimator in the first row.
From these examples it can be seen that:

i) row (a) shows that the new alternative estimator based on relation (3.4) (blue curve)
nicely coincides with the classical clock-time estimator (red);

ii) the tick-time volatility estimator log σ̂2
pavg(t,m) in row (b) is in general smoother

than the clock-time estimator in row (a) and log λ̂(t,M) in row (c); in particular,
the fluctuation of trading intensity in row (c) is the major source of fluctuation of
clock-time volatility in row (a);

iii) the decomposition makes it possible to determine to a certain extent the source of
volatility changes: for example the peak in 2(a) at 3 PM is mostly due to a peak of
trading intensity;

iv) in particular, the curves in 1(a) and 2(a) exhibit the typical U-shape over the trading
day. It is notable that this U-shape is mainly a feature of the trading intensity.



28 Chapter 3. Time Change Model and Volatility Decomposition

In these examples (and more examples in the real data analysis section 6.2) tick-time
volatility is considerably smoother than trading intensity. Apart from its practical inter-
pretation, the difference in smoothness of these curves has an important implication for
estimation: microstructure noise only affects the smoother curve (b) and not (c). Thus
coping with microstructure noise becomes easier in our model with our estimator since we
may choose a larger bandwidth with effectively more data than with the classical estimator
(red curve in (a)). This is reflected mathematically in a higher rate of convergence of the
estimator (see Section 4.5). We mention that in Figures 3.1 and 3.2 we have chosen the
same bandwidth for all blue and red estimates for the sake of comparability.

In the following, examples of the time change model based on trading time given in
Assumption 3.1 are demonstrated.

3.3 Example (i) The simplest case is the model in (3.2) where σt and λt are deterministic
and W (·) and N· are independent—i.e. Nt is a NHPP with intensity λt and Ui is an i.i.d.
normal distributed sequence. Even in this case, the derivation of asymptotic results for
the estimates is non-standard since the classical asymptotic setting cannot be applied. We
therefore introduce a type of infill asymptotics for this setup in the next chapter.

(ii) The more general model allowing for stochastic parameters is dXt = σtdLt, where Lt
is a pure jump process of the form

∑Nt
i=1 Ui. The point process Nt and the sequence of

innovations Ui need to satisfy the conditions given in Assumption 3.1, i.e. that Nt has an
Ft-intensity λt and Ui has a martingale difference structure. The process Lt can be seen
as a generalization of a Lévy process without a diffusion part. In fact, a pure jump Lévy

process is a compound Poisson process
∑Ñt

i=1 Ũi (in this case Ñt is a Poisson process and
Ũi are i.i.d. random variables, whereby Assumption 3.1 is fulfilled).

The leverage effect between all processes can be constructed, for example, by setting λt :=
α2
t with

dαt = atdBt + a′tdB
′
t

and

dσt = btdBt + b′′t dB
′′
t ,

where Bt, B
′
t, and B′′t are three different Ft-Brownian motions; at, a

′
t, bt and b′′t are Ft-

adapted processes. The dependence between the price process and the intensity (also the
tick-time volatility) lies in the process at (also in a′t, bt and b′t). For instance, we could
model at by dat+ = a∗t dXt where a∗t is an adapted predictable process.

(iii) It is interesting that GARCH-type-models “almost” fit into this framework. For ex-
ample, let Nt be a point process with right-continuous λt satisfying Assumption 3.1, and
let

σ2
s := a0 + a

{
Xtj(s) −Xtj(s)−1

}2
+ bσ2

tj(s)
∈ Fs−,

where j(s) := max {j : tj < s} and a0, a, and b are positive constants. Clearly, this volatil-
ity function σ2

t is a left-continuous Ft-adapted step function, and therefore predictable.
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Since it is not right-continuous we obtain instead of (3.4), with the same proof,

σ2
clock(t+) = σ2

t+ · λt

(note that (Ft)t≥0 is right-continuous).

(iv) In the spirit of the last example we may construct more complex examples where λt
is also left-continuous Ft-adapted depending both on past arrival times of N(t) (e.g. via
a structure similar to those in Hawkes-models) and on past log-prices. The volatility σt
may, adding on to the GARCH-structure above, also depend on the intensity of the point
process. In that way we could explicitly model the dependence between the price process
and the trading intensity.
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Chapter 4

Infill Asymptotics: Spot Volatility
Estimation

In order to draw statistical inferences for the transaction-time model (3.2) we introduce
a type of infill asymptotics relying on the rescaling method. Our asymptotic arguments
are similar to those used in nonparametric regression with time varying coefficients or in
modeling locally stationary processes. In this setup a volatility decomposition analogous
to (3.4) continues to hold, allowing us to construct an alternative volatility estimator as
the product of a tick-time volatility estimator and an intensity estimator. As we will only
make assumptions about the smoothness of these parameter functions and not restrict
them to any parametric model, our approach is purely nonparametric and is based on a
kernel weighting scheme. To handle the effect of market microstructure noise we adapt the
so-called pre-averaging procedure for our estimation. A comparison between the estimator
based on the classical method and the new estimator based on the factorization of volatility
is presented in the last section. It is shown that the alternative estimator outperforms the
usual one in many cases, especially when the tick-time volatility is smoother than the
clock-time volatility; see Table 4.2.

4.1 Model Setting and Assumptions

In principle, there are two types of asymptotics dealing with statistical inference for as-
set price models. The first one is the so-called high-frequency framework, in which it is
essentially assumed that more and more observations on a fixed time horizon, say [0, T ],
are obtained. Therefore the time differences between adjacent observations will go to
zero; in other words, the frequency of observations tends to infinity. The second one is the
low-frequency setup which requires that the time span T go to infinity. For our transaction-
time model (3.2) we cannot directly use the first approach relying on the high-frequency
assumption since only finite observations over a fixed interval [0, T ] are available. For this
reason it is necessary to let the time span T go to infinity so as to collect more data to
draw inferences. Nevertheless, it is not clear whether increasing T will lead to beneficial
asymptotic results, since the parameters σt and λt vary over time and do not behave in a
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periodic way such as would conform to stationarity or ergodicity. Similar problems have
been widely discussed in the area of nonparametric regression with time-varying parame-
ters, as by Robinson [65], or later in locally stationary time series as by Dahlhaus [24]. In
those works, parameters of interest are rescaled to the unit interval [0, 1]. For instance, a
rescaled version of an AR(1) autoregressive process with a time-varying coefficient is given
by Xt,T = a(t/T )Xt−1,T + εt, for t = 1, ..., T . In this model, enlarging the sample size T
results in the availability of more and more data for estimating local structure, which leads
to meaningful asymptotic considerations in this nonstationary AR model; for more details
see Dahlhaus [24]. It is worth pointing out that by looking at this rescaled model, only
the parameter function a(·), not the process X·,T , is observed on a finer and finer grid as
T →∞.

According to the problem of asymptotic construction, we suggest a type of infill asymp-
totics for this time change model based on trading times. For the sake of simplicity, we
assume that log-price processes are of the form

dXt,T = σ

(
t

T

)
1√
T
dWNt,T for t ∈ [0, T ], (4.1)

where W· is a standard Brownian motion and Nt,T is a nonhomogeneous Poisson process
(NHPP for short) with a continuous non-negative real-valued intensity function λ(t/T );
WNt,T is therefore a time-changed Brownian motion. In this model σ2(·) is a real-valued
deterministic continuous function called tick-time volatility, since it responds to price vari-
ation from one trade to the next.

We see that the price process X·,T now depends on the time span T , as the intensity
and tick-time volatility depend on T . Our asymptotic inference is indeed drawn by letting
the time span T go to infinity in a way similar to the above rescaling idea. That is,
the parameters of interest are observed on a finer and finer grid when the time horizon
increases. Roughly speaking, we see these parameters as if they were very smooth over
small neighborhoods and just slightly changing over time. Throughout this section we will
work under the following conditions.

4.1 Assumption i) The processes N·,T and W· are independent;

ii) λ(u) and σ2(u) are bounded continuous functions and bounded away from zero uni-
formly in u ∈ [0, 1].

As our main objective is to find a nonparametric method for deriving the spot volatility
of the price process, we must, as is usually done in nonparametric estimation, impose some
smoothness restrictions on these parameter curves to ensure that they will change slowly
in some sense over time (later on we will require stronger conditions in order to provide
limit distributions). The independence between N·,T and W· enables us to make arguments
conditional on the entire process N·,T which greatly simplifies the proofs. In particular, for
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consecutive arrival times tj−1 and tj we have

Xtj ,T −Xtj−1,T
law
= σ

(
tj
T

)
1√
T
Uj , (4.2)

since the time-changed Brownian motion WNt,T has the same law as
∑Nt,T

i=1 Ui,
1 where Ui

are i.i.d. normally distributed variables with zero mean and unit variance and independent
of N·,T .

A leverage effect between W· and N·,T could be allowed for in order to explain the cor-
relation between market activities and price processes; see the formation of general models
in Assumptions 3.1. A thoroughly asymptotic investigation of this complex transaction-
time model under those assumptions is beyond the scope of this work; nevertheless some
asymptotic properties are discussed in Section 5.3.

4.2 Remark i) The point process Nt,T can also be characterized by its corresponding
arrival times ti = inf {t : Nt,T ≥ i} for i ∈ N. We denote the number of all arrivals
on [0, T ] by NT := NT,T . So as to not complicate the notation, we will avoid using
the double subscript ti,T , although the ti will always depend on the time span T .

ii) The model (4.1) can be directly extended to the more general case of independent
stochastic processes σ(t/T ) and λ(t/T ), where these are also independent of Nt,T

and Wt. In this situation Nt,T becomes a doubly stochastic Poisson process or Cox
process. The proofs remain the same except that we might have to change some ar-
guments presented in Appendix B.1.–B.4. from unconditional versions to conditional
ones (conditional on σ(·) and λ(·)). A more general model allowing for a form of
endogeneity is discussed later.

iii) The square root factor 1/
√
T in (4.1) is necessary for keeping the variance of log-

price increments small as the sample size grows, i.e. E
[(
Xti,T −Xti−1,T

)2]
= O(1/T ).

Otherwise the volatility may be too large and could explode when one considers the
integrated volatility over a period of time. This is similar to the classical semimartin-

gale (2.1) in the high-frequency approach, where E
[(
X∗i/n −X

∗
(i−1)/n

)2
]

= O(1/n)

if σ∗ is bounded, where n is the number of subdivisions on [0, T ]. Therefore our
framework based on the rescaling method is a kind of infill asymptotics.

1Considering the characteristic functions of WNt,T and
∑Nt,T

i=1 Ui, we have, for θ ∈ R,

E
[
eiθ

∑Nt,T
i=1 Ui

]
= E

Nt,T∏
i=1

E
[
eiθUi

∣∣∣ N·,T ]
 = E

[
exp

(
−1

2
θ2Nt,T

)]
= E

[
E
[
e
iθWNt,T

∣∣∣ Nt,T ]] = E
[
e
iθWNt,T

]
.
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4.3 Proposition Suppose that Xt,T satisfies the model (4.1). The variance of the price
increment over [to − bT, to + bT ] is given by

E
[
(Xto+bT,T −Xto−bT,T )2

]
=

∫ uo+b

uo−b
σ2(u)λ(u)du

for to ∈ (0, T ) (denote uo := to/T ) and a small window size b > 0. Furthermore, if b shrinks
to zero we get

1

2b
E
[
(Xto+bT,T −Xto−bT,T )2

]
→ σ2(uo) · λ(uo). (4.3)

Proof. See Appendix B.1.

We denote the clock-time volatility (or volatility per calendar time) by

σ2
clock(·) := σ2(·)λ(·).

This relation shows that a version of the volatility decomposition (3.4) also holds in this
rescaled setting. Due to this factorization, all statistics estimating the left-hand side of
(4.3) or each factor of the product on the right-hand side are good candidate estimators for
the volatility of the model. Throughout this work a nonparametric approach based on a
kernel-weighting scheme is applied to construct volatility estimators. It is notable that the
clock-time volatility in the sense of vola2

t , see (3.3), is indeed given by σ2(t/T )λ(t/T )/T .

As mentioned earlier, it is natural to impose a smoothness condition on the parameter
curves in order to derive asymptotic properties, in particular for the derivation of limit
distributions. Therefore we will need the following definition called Hölder continuity, cf.
Kristensen [53].

4.4 Definition An m-times differentiable function f : [0, 1]→ R is said to lie in the class
Cm,γ [0, 1], for 0 < γ < 1 and m ≥ 0, if

|f (m)(µ+ δ)− f (m)(µ)| ≤ C · |δ|γ , for |δ| → 0 and a constant C.

Many common parametric volatility models in the literature, such as the Heston,
GARCH, CIR, or Chen model, etc., are stochastic processes driven by a Brownian mo-
tion. Hence their realizations, being non-differentiable, lie in this class with m = 0 and
γ < 1/2; see e.g. Durrett [28]. In our setting the volatility curve σ2

clock(·) acts like the one
that is driven by a Brownian motion whenever either of the components of the decompo-
sition (4.3) lies in the Hölder class C0,γ [0, 1] with γ < 1/2, while the other component is
allowed to be smoother (as a consequence, one may choose larger bandwidth for estimating
this curve). Recently other parametric volatility models relying on a fractional Brownian
motion have also been applied in price modeling (if the Hurst index H of the fractional
Brownian motion is equal to 1/2, the process becomes a classical Brownian motion). In
fact, almost-all trajectories of this process with Hurst index H ∈ (0, 1) lie in the Hölder
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class with m = 0 and γ < H. From this viewpoint the Hölder smoothness class seems to
be an appropriate choice of smoothness class for our parameter curves.

In the standard diffusion model (2.1), a specific assumption on the structure of the
volatility processes σ∗2t is normally made to deal with the approximation error; more
precisely, it is assumed to be driven by another Brownian semimartingale, say dσ∗t =
atdt + btdWt + νtdVt; see Barndorff-Nielsen et al. [11] and Jacod et al. [47] among oth-
ers. We here give analogous assumptions for the parameter curves in order to control
approximation errors:

4.5 Assumption i) λ(·) lies in Cm′,γ′ [0, 1] for m′ = 0, 1, 2 and 0 < γ′ < 1 and is
bounded away from zero uniformly in u.

ii) σ2(·) also lies in Cm,γ [0, 1] for m = 0, 1, 2 and 0 < γ < 1 and is bounded away from
zero uniformly in u.

4.2 Transaction Rate Estimator

Now we deal with a rescaled version of an NHPP Nt,T for t ∈ [0, T ] that has an intensity
function λ(t/T ). In our application, it represents the accumulated number of trades from
a starting time point (market opening time 9:30 AM) up to the time t. A generalization of
such processes allowing for stochastic intensity has already been discussed in Section 2.2,
but not for the rescaled setting. Formally, we let {Nt,T }t∈[0,T ] be an NHPP with respect

to the natural filtration
{
FNt,T

}
t∈[0,T ]

, FNt,T = σ (Ns,T : s ≤ t). The intensity function λ(·)
is assumed to be a continuous non-negative real-valued function, i.e.

i) N0,T = 0 a.s.,

ii) Nt,T −Ns,T is independent of FNs,T , for all s ≤ t ≤ T , and

iii) P (Nt,T −Ns,T = k) = exp
{
−
∫ t
s λ
(
l
T

)
dl
}
· (
∫ t
s λ(

l
T )dl)

k

k! , for k ∈ N, s ≤ t ≤ T .

Under the boundedness assumption given above we get

E [Nt,T ] =

∫ t

0
λ
( s
T

)
ds = T ·

∫ u

0
λ(ν)dν <∞,

where we denote by u = t/T a time point in the rescaled interval [0, 1]. This also leads to
Nt <∞ a.s., and therefore non-explosive.

In fact, the properties and proofs stated below are related to martingale theory, even
though one could obtain the same results without using it (since our intensity process
is deterministic), but the calculations could be long or cumbersome. Another benefit
of using martingale dynamics in our setting is that we can easily extend the model to
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the more general case of stochastic intensity models, which are more appropriate in real
applications since the rate of arrival varies by time stochastically and simultaneously with
the point process. For more details on stochastic-intensity processes we refer the reader to
Brémaud [16] and Aalen [1] as well as to Section 2.2.

4.6 Remark i) Obviously Nt,T is not a martingale on [0, T ] since its expectation varies
by time. Nonetheless we can define a compensated Poisson process

Mt,T := Nt,T −
∫ t

0
λ(s/T )ds,

which is now a martingale. The compensator < M >t,T of M2
t,T is given by

< M >t,T =

∫ t

0
λ
( s
T

)
ds.

Note that the compensator occurs in Doob-Meyer’s decomposition of the submartin-
gale M2

t,T such that M2
t,T = M̃t,T + < M >t,T where M̃t,T is another martingale with

respect to FNt,T . See also Remark 2.2 vi).

ii) It is possible to define a stochastic integral
∫ t

0 cs,T dMs,T , where ct,T is a predictable

process. In addition, if E
[∫ T

0 |cs,T |λ(s/T )ds
]
< ∞, then

∫ t
0 cs,TdMs,T is a martin-

gale; see Brémaud [16, II.3. Th. T8]. Indeed, for 0 ≤ s ≤ t,

E
[∫ t

s
cl,TdNl,T

]
= E

[∫ t

s
ct,Tλ(l/T )dl

]
(∗)
=

∫ t

s
cl,Tλ(l/T )dl.

The last equality (∗) holds if cl,T is non-random.

iii) Under the boundedness assumption 4.1 ii) we get

0 < c1 ≤ E [ti − ti−1] ≤ c2 <∞,

for all i ∈ N with constants c1, c2, since 1 = E
[∫ ti
ti−1

dNt,T

]
= E

[∫ ti
ti−1

λ(t/T )dt
]

by

the optional sampling theorem.

For the estimation of intensity, we employ a kernel method similar to that used in
density estimation. Given a set of observed arrival times (in our application transaction
times) {t1, t2, ..., tNT } on (0, T ], the intensity λ(uo) for uo ∈ (0, 1) is measured by

λ̂(uo) :=
1

bT

NT∑
i=1

K

(
ti − uoT

bT

)
=

1

bT

∫ T

0
K

(
t− uoT

bT

)
dNt,T , (4.4)

where the bandwidth b = b(T ) depending on the time span T satisfies b→ 0 and bT →∞
as T →∞. The kernel function K (as well as K and k, to be introduced later) fulfills the
following conditions:
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Condition (K) The kernel function K : R → R+ is a continuous, symmetric function
such that K(x) = 0 for |x| ≥ 1 and

∫
R K(x)dx = 1.

In fact, the kernel function K need not be compactly supported as long as it decays fast
enough in order to eliminate the bias effect of remote points; this restriction, however,
simplifies the proofs. In the following, asymptotic properties for the intensity estimate are
given.

4.7 Theorem Under Assumption 4.1 we get

λ̂(uo)
P−→ λ(uo)

and √
bT
(
λ̂(uo)− Eλ̂(uo)

)
D−→ N

(
0, λ(uo)

∫
R
K2(x)dx

)
as T →∞, for uo ∈ (0, 1). Moreover if λ(·) fulfills Assumption 4.5 i) with b2(m′+γ′)+1T =
o(1), then

√
bT

(
Eλ̂(uo)− λ(uo)−

b2

2
λ(2)(uo)

∫
R
x2K(x)dx · I{m′=2}

)
= op(1),

particularly

√
bT

(
λ̂(uo)− λ(uo)−

b2

2
λ(2)(uo)

∫
R
x2K(x)dx · I{m′=2}

)
D−→ N

(
0, λ(uo)

∫
R
K2(x)dx

)
.

Proof. See Appendix B.2.

4.8 Remark i) The bandwidth condition b2(m′+γ′)+1T → 0 is essential for controlling
the asymptotic bias of the estimation. It therefore has a direct impact on the rate of
convergence: the smoother the intensity function is, the faster the obtainable rate of
convergence.

ii) We can also apply this estimator to extract the arrival rate of models with random
intensity, such as Cox processes or even more general stochastic intensity models. For
such cases, martingale dynamics will come into play; see e.g. Ramlau-Hansen [63]. He
applies a kernel-based method to obtain an estimator for the time-varying stochastic
intensity in the multiplicative intensity model.

4.3 Spot Volatility Estimators: Clock Time vs. Tick Time

To nonparametrically quantify the spot volatility of our time-changed model based on
trading times, we adopt the same concept of using quadratic increments as in the classical
semimartingale. More precisely, a kernel-filtering of the sum of squared increments will be
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applied in this section; compare with (2.4). As a result of the volatility decomposition,
we propose two distinct estimators for the spot volatility: the first one is similar to the
classical estimator in the standard diffusion model (adapted to our rescaled transaction
time model) and the second one is based on the product of the tick-time volatility and
intensity estimators. At the end of this section we will give a comparison between these
two estimators.

4.3.1 Standard Volatility Estimator

Suppose that asset log-returns satisfy the model (4.1). We reiterate that σ2
clock(uo) is the

product of σ2(uo) and λ(uo). Under a given set of observed transaction data (t1, Xt1,T ), ...,
(tNT , XtNT ,T

), we estimate σ2
clock(uo) by

σ̂2
clock(uo) =

NT∑
i=1

1

b
K

(
ti − uoT
bT

)
(Xti,T −Xti−1,T )2 (4.5)

for uo ∈ (0, 1). The bandwidth b depends on the time span T with b → 0 and bT → ∞
as T → ∞, and the kernel function K satisfies condition (K). Obviously b and K may be
different from those of the preceding section. In the beginning, we have assumed that the
volatility functions are smooth enough that we can proceed as though they were constant
on very small segments. Therefore only the data whose arrival times lie in the vicinity of
uo, i.e. in [uo − b, uo + b] for a small window size b, will contribute to the estimation of
σ2
clock(uo).

Corresponding to the independence between N·,T and W·, it is helpful to look at the
following conditional expressions:

E
[
σ̂2
clock(uo)

∣∣∣ N·,T ] =

NT∑
i=1

1

bT
K

(
ti − uoT
bT

)
σ2

(
ti
T

)
=

∫ T

0

1

bT
K

(
t− uoT
bT

)
σ2

(
t

T

)
dN·,T ,

and

Var
[
σ̂2
clock(uo)

∣∣∣ N·,T ] = 2

NT∑
i=1

1

b2T 2
K2

(
ti − uoT
bT

)
σ4

(
ti
T

)
= 2

∫ T

0

1

b2T 2
K2

(
t− uoT
bT

)
σ4

(
t

T

)
dN·,T .

4.9 Proposition Under Assumption 4.1, we obtain

σ̂2
clock(uo)

P−→ σ2
clock(uo),
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and

√
bT

 σ̂
2
clock(uo)− E

[
σ̂2
clock(uo)

∣∣∣ N·,T ]√
2σ4(uo)λ(uo)

∫
RK

2(x)dx

 D−→ N (0, 1)

as T →∞, for uo ∈ (0, 1). The limiting is independent of the Poisson process N·,T .

Proof. see Appendix B.3.

4.10 Theorem Suppose that Assumptions 4.1 and 4.5 are fulfilled, and b2α+1T = o(1)
with α = min {m+ γ,m′ + γ′}. Then the following asymptotic normality holds:

√
bT
{
σ̂2
clock(uo)− σ2

clock(uo)−BIAS
} D−→ N

(
0, 3σ4(uo)λ(uo)

∫
R
K2(x)dx

)
(4.6)

as T →∞, for uo ∈ (0, 1). The bias term is given by

BIAS =
1

2

(
σ2
clock(uo)

)(2)
b2
∫
R
x2K(x)dx · I{m=m′=2}.

Proof. see Appendix B.3.

4.11 Remark i) Many techniques for deriving spot volatility have been proposed in
the literature of standard diffusion models. Our method is similar to those of Fan and
Wang [33] and Kristensen [53] based on the kernel filtering of integrated volatility. It
is clear that our asymptotic results based on transaction-time sampling are different
from their results; in particular the asymptotic bias and variance derived above rely
on the transaction intensity; compare (4.6) to (2.5).

ii) Spot volatility estimators have more to offer than the usual integrated volatility
estimators in that they allow for the construction of many consistent estimators
for functionals of spot volatility (including the integrated volatility) by using the
continuous-mapping theorem. For instance, the unknown component in the asymp-
totic variance σ4(uo)λ(uo) can be clearly estimated by the square of σ̂2

clock(uo) divided

by λ̂(uo). Alternatively, one could construct a consistent estimator for the asymp-
totic variance by applying the so-called kernel-weighted quarticity, as in the classical
semimartingale (see Appendix B.3.):

KQ(uo) :=

NT∑
i=1

T

3b
K

(
ti − uoT
bT

)
(Xti,T −Xti−1,T )4.

This implies that

√
bT

{
σ̂2
clock(uo)− σ2

clock(uo)− B̂IAS
}

√
3 ·KQ(uo)

∫
RK

2(x)dx

D−→ N (0, 1),

which is a feasible version of the above asymptotic normality, where B̂IAS is an
estimator of the bias term.
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4.3.2 Alternative Volatility Estimator

Looking at statistics in clock time or transaction time is an important issue. For example, a
high-volatility of a liquid asset could be the effect of the transaction-time volatility or that
of the intensity, as can be seen in our volatility factorization formula (4.3). Therefore it is
particularly interesting to study the cause and the structure of volatility by evaluating these
two factors separately. Since an estimator for the intensity has already been introduced
in Section 4.2, we only suggest an estimator for σ2(uo), which is also based on the kernel-
weighting scheme:

σ̂2(uo) =
T

H1,N

io+N∑
j=io−N

k

(
j − io
N

)(
Xtj ,T −Xtj−1,T

)2
=

T

H1,N

N∑
j=−N

k

(
j

N

)(
Xtio−j ,T −Xtio−j−1,T

)2
, (4.7)

where io := inf {i : ti ≥ uoT} for uo ∈ (0, 1), i.e. tio is the first arrival time after or at the
time point of interest to (uo = to/T ). The second representation of the estimate (4.7) has
the advantage that no random elements appear inside the kernel function, which simplifies
the proofs. We here define the normalizing factor Hn,N :=

∑N
j=−N k

n(j/N), where the
segment length N = N(T ) with N → ∞ and N/T → 0 as T → ∞. The existence of the
limits Hn,N/N →

∫
R k

n(x)dx is assumed for all n ∈ N. The kernel function k also satisfies
Condition (K), i.e. k is a symmetric, smooth, and bounded function with k(x) = 0 for
|x| ≥ 1, and

∫
R k(x)dx = 1.

At first sight, both estimates σ̂2
clock(·) and σ̂2(·) look very similar, as they are based on

the filtering of sums of squares of increments. However, there is a distinction between these
two: one is based on tick time and the other is based on clock time. More precisely, in (4.7)
the (exactly) N -nearest observed increments from both sides of the considered time point
uo = to/T are taken into account so that the influence of the arrival rate is removed, while
K in (4.5) uses all increments inside the interval [to − bT, to + bT ]. As a matter of fact,
the number of transactions/increments over this interval is random and depends on the
trading intensity. This is an important concern in empirical analysis since the bandwidth
for the volatility estimation of low- and high- liquid stock data should be chosen according
to the number of transactions of each stock and trading day.

Likewise, by the independence between N·,T and W·, we first derive the conditional
expectation and variance:

E
[
σ̂2(uo)

∣∣∣ N·,T ] =
1

H1,N

N∑
j=−N

k

(
j

N

)
σ2

(
tio−j
T

)
and

Var
[
σ̂2(uo)

∣∣∣ N·,T ] =
2

H2
1,N

N∑
j=−N

k2

(
j

N

)
σ4

(
tio−j
T

)
.
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4.12 Proposition Suppose that Assumption 4.1 is fulfilled. Then

√
N

 σ̂
2(uo)− E

[
σ̂2(uo)

∣∣∣ N·,T ]√
2σ4(uo)

∫
R k

2(x)dx

 D−→ N (0, 1),

as T →∞, for uo ∈ (0, 1), where the normal limiting is independent of the NHPP N·,T .

Proof. See Appendix B.3.

It is remarkable that the bias derivation for this estimate is much more complicated
than that of σ̂2

clock(·) in the case of higher orders of smoothness, i.e. min(m,m′) ≥ 1.
Specifically, the explicit bias term BIAS in Theorem 4.10 cannot be explicitly stated, even
though the kernel function is symmetric and the parameter functions are twice differentiable
(m = m′ = 2). This weakness leads to a reduction in the rate of convergence2 in many
cases, particularly when min(m,m′) ≥ 1 (compare the rate of convergence in Theorem 4.10
with that of Theorem 4.13). Some preliminary results for proving the next theorem are
given in Lemma 1 and Corollary 1 in Appendix B.3. The segment conditions (4.8) are
given to enable us to neglect some asymptotic bias terms.

4.13 Theorem Let Assumptions 4.1 and 4.5 hold, i.e. let the volatility per tick-time unit
σ2(·) and the intensity λ(·) lie in Cm,γ [0, 1] and Cm′,γ′ [0, 1], respectively, for m,m′ = 0, 1, 2
and 0 < γ, γ′ < 1. This implies that

√
N

 1

H1,N

N∑
j=−N

k

(
j

N

)
σ2

(
tio−j
T

)
− σ2(uo)

 = op(1)

as

N1+2γ/T 2γ → 0 for m = 0,

N3+γ∗/T 2+γ∗ → 0 for m = 1 and m′ = 0,

N3+γ/T 2+γ → 0 for m = 1 and m′ = 1, 2,

N3+γ′/T 2+γ′ → 0 for m = 2 and m′ = 0,

N4/T 3 → 0 for m = 2 and m′ = 1, 2, (4.8)

with γ∗ = min {γ, γ′}. Furthermore,

√
N
{
σ̂2(uo)− σ2(uo)

} D−→ N
(

0, 2σ4(uo)

∫
R
k2(x)dx

)
(4.9)

as T →∞, for uo ∈ (0, 1), where the limit distribution is independent of the point process
N·,T .

2More precisely, (I4,2,1) and (I4,2,2) in the proof of Theorem 4.13 only vanish if N4/T 3 → 0. This is
indeed due to the randomness of time sampling.
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Proof. See Appendix B.3.

With respect to the volatility decomposition (4.3), we can construct a new measure for
the spot volatility by multiplying σ̂2(uo) and λ̂(uo) together, i.e.

σ̃2
clock(uo) := σ̂2(uo) · λ̂(uo). (4.10)

The consistency of the product is evident, as each estimate is consistent, but its asymp-
totic normality still needs to be examined. We see that the rate of convergence for σ̃2

clock(·)
depends on the relation between the convergence rates bT and N in Theorems 4.7 and
4.13, respectively. For example, if N = o(bT ) it is reasonable to look at

√
N
{
σ̃2
clock(uo)− σ2

clock(uo)
}

= λ̂(uo)
√
N
{
σ̂2(uo)− σ2(uo)

}
+ σ2(uo)

√
N√
bT

√
bT
{
λ̂(uo)− λ(uo)−BIASλ

}
+ σ2(uo)

√
N ·BIASλ

= λ̂(uo)
√
N
{
σ̂2(uo)− σ2(uo)

}
+ σ2(uo)

√
N ·BIASλ + o(1),

with

BIASλ =
b2

2
λ(2)(uo)

∫
R
x2K(x)dx · I{m′=2},

and therefore the limit distribution is mainly given by the last theorem.

4.14 Theorem Let all assumptions in Theorem 4.13 be satisfied. We get

√
N
{
σ̃2
clock(uo)− σ2

clock(uo)− ˜BIAS
}
D−→ N (0, V 2) (4.11)

with (assume N/bT = co > 0 if N and bT are of the same order)

V 2 = 2σ4(uo)λ
2(uo)

∫
R
k2(x)dx · I{m=m′=0,γ≤γ′ or m=m′=1,γ≤2γ′ or m<m′ or m=m′=2}

+ coσ
4(uo)λ(uo)

∫
R
K2(x)dx · I{m=m′=0,γ=γ′ or m=m′=1,γ=2γ′},

and

√
bT
{
σ̃2
clock(uo)− σ2

clock(uo)
} D−→ N (0,W 2) (4.12)

with

W 2 = σ4(uo)λ(uo)

∫
R
K2(x)dx · I{m=m′=0,γ>γ′ or m=m′=1,γ>2γ′ or m>m′}.
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The additional conditions for the bandwidth b and segment length N are given in Theo-
rems 4.7 and 4.13, respectively, and

˜BIAS =
b2

2
(λ(uo))

(2) σ2(uo)

∫
R
x2K(x)dx · I{m=1,m′=2 or m=m′=2}.

Proof. See Appendix B.3.

Until now we have established two different estimators for the spot volatility, namely
σ̂2
clock(·) and σ̃2

clock(·), whose results are presented in Theorems 4.10 and 4.14. We discover
not only that the asymptotic variances of both estimates are dissimilar, but also that their
rates of convergence are unequal in some cases. We therefore compare these two estimators
and summarize the results in Table 4.1. For the purpose of comparability, the same kernel
functions for k,K and K are adopted.

Table 4.1: Comparison of rates of convergence and asymptotic variances between spot volatility estimators
σ̃2
clock(·) and σ̂2

clock(·)

Case Conditions Rate(σ̃2
clock) vs. Var

[
σ̃2
clock

]
vs.

Rate(σ̂2
clock) Var

[
σ̂2
clock

]
C1 m > m′ - -

C2 m = 0, m′ = 0 γ > γ′ -

C3 m = 1, m′ = 1 γ > 2γ′ -

C4 m < m′ - λ(uo) ≤ 3/2 same smaller

C5 m = 0, m′ = 0 γ = γ′ λ(uo) ≤ (3− co)/2

C6 m = 0, m′ = 0 γ < γ′ λ(uo) ≤ 3/2

C7 m = 1, m′ = 1 γ = 2γ′ λ(uo) ≤ (3− co)/2

C8 m < m′ - λ(uo) > 3/2

C9 m = 0, m′ = 0 γ = γ′ λ(uo) > (3− co)/2

C10 m = 0, m′ = 0 γ < γ′ λ(uo) > 3/2 same larger

C11 m = 1, m′ = 1 γ = 2γ′ λ(uo) > (3− co)/2

C12 m = 1, m′ = 1 γ < 2γ′

C13 m = 2, m′ = 2 slower

Table 4.1 displays the performance of the alternative estimator based on the volatility
decomposition to that of the classical estimator by comparing their rates of convergence
and asymptotic variances. It turns out that the convergence rate of σ̃2

clock(·) is as fast as
that of σ̂2

clock(·), and the asymptotic variance of σ̃2
clock(·) is smaller in C1–C7. These cases

also include most situations in which the tick-time volatility curve is smoother than the
trading intensity curve; see C1–C3. In the next section of microstructure noise models we
will see that by decomposing the volatility, not only is the asymptotic variance significantly
improved, but also the theoretical rate of convergence.
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In addition to the smoothness conditions, an extra restriction on the magnitude of
the intensity function is required to determine the goodness of the estimators in C4–C11.
The condition λ(·) ≤ 3/2 (or λ(·) ≤ (3 − co)/2 for small co) is normally satisfied in our
transaction data analysis except at the beginning and end of trading days (where the
trading activity is high in general; see more details and intensity plots of some real data
in Chapter 6). We conjecture that for a time period during which the trading intensity
is extremely high, the intensity curve over that period might be ragged, which leads to
m′+γ′ < m+γ; in particular C8–C11 rarely happen. The major weakness of the alternative
estimator appears in cases C12–C13, in which the rate of convergence of σ̃2

clock(·) is worse
than that of σ̂2

clock(·). This is due to the fact that in a random-time sampling setting, the
bias of σ̂2(·) cannot be explicitly derived as in the bias derivation of σ̂2

clock(·); thus the rate
of convergence decreases.

4.4 Volatility Estimation under Microstructure Noise

One of the major problems of analyzing high-frequency financial data in practice is the
discrepancy between efficient log-prices and observed log-prices, which is due to so-called
market microstructure noise effects, such as the presence of bid-ask spread bounces, the
discreteness of price changes, etc. We refer to Hasbrouck [44] for a thorough review on this
topic from an empirical perspective. Since microstructure effects lead to a serial correlation
in observed returns, the usual volatility estimates become biased and inconsistent when one
observes data with high frequency. This incompatibility has been extensively discussed in,
e.g., Bandi and Russell [6] and Zhang et al. [70]. See also our short review in Section 2.4.

To account for the effect of microstructure noise we have incorporated an observation
error into our model, i.e. we suppose that the observed trading data follows an additive
noise model

Yti,T = Xti,T + εi for i = 1, ..., NT , (4.13)

where εi is assumed to be an i.i.d. noise with

E[εi] = 0, Var[εi] = ω2 <∞, and Var[ε2
i ] = θω4, for θ ∈ R+.

The underlying log-price process Xt,T satisfies the model (4.1), and independence between
the noise ε and the price process X is assumed. In fact, it has been empirically shown
that the assumption about the independence of the noise sequence is justifiable for high-
frequency intraday data with transaction sampling, but not for other sampling schemes
such as quotation sampling, business-time sampling, 1-minute sampling, etc.; see Hansen
and Lunde [39] and Griffin and Oomen [37].

Under the model (4.13) we can see that the volatility estimate σ̂2
clock(uo) adapted to
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the observations {Yti,T }i=1,...,NT
is now biased, since

E
[
σ̂2
clock(uo)

]
=

1

b
E

[
NT∑
i=1

K

(
ti − uoT
bT

)(
Yti,T − Yti−1,T

)2]
→ σ2

clock(uo) + 2Tω2λ(uo).

Moreover, it explodes as T → ∞. As usual, this bias can be eliminated by adding a
correction term, for example:

σ̂2
clock(uo) + 2

NT∑
i=1

1

b
K

(
ti − uoT
bT

)(
Yti+1,T − Yti,T

) (
Yti,T − Yti−1,T

)
.

Unfortunately, the resulting estimator is still inconsistent. The main reason is a (higher-
order) serial correlation in observed returns which keeps the variance of the estimator from
vanishing as T → ∞. To solve this problem, a vast literature on estimating volatility
using high-frequency data has emerged. We follow the idea of the pre-filtering technique
introduced by Podolskij and Vetter [60] and later generalized by Jacod et al. [47]. For a
detailed discussion of this approach, especially for a comparison of this approach with two
other main approaches—the realized kernel approach by Barndorff-Nielsen et al. [11] and
the multi-timescale approach by Zhang [69]—we refer the reader to their original work.

Hence, under an observed data set
{

(t1, Yt1,T ), ..., (tNT , YtNT ,T )
}

regarded as transaction

data, we now estimate the clock-time volatility σ2
clock(·) at a time point uo ∈ (0, 1) by

σ̂2
clock,pavg(uo) :=

1

bH

1

g2

NT∑
i=1

K

(
ti − uoT
bT

)(
4Y ti,T

)2
− 1

2bH

∑H−1
l=1 h2(l/H)

g2

NT∑
i=1

K

(
ti − uoT
bT

)(
Yti,T − Yti−1,T

)2
, (4.14)

with pre-averaging steps 4Y ti,T given by

4Y ti,T :=

H−1∑
l=1

g

(
l

H

)(
Yti+l,T − Yti+l−1,T

)
= −

H−1∑
l=1

{
g

(
l + 1

H

)
− g

(
l

H

)}
Yti+l,T

=: −
H−1∑
l=1

h

(
l

H

)
Yti+l,T .

We define h(l/H) := g((l + 1)/H) − g(l/H), where g is another differentiable weight
function defined on [0, 1] with g(0) = g(1) = 0 and which has piecewise Lipschitz continuous
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derivatives g(1). The kernel function K and the bandwidth b are similar to those of the
preceding section, i.e. K satisfies the condition (K) and b depends on the time span T such
that b → 0 and bT → ∞ as T → ∞. Moreover the pre-averaging block size H = H(b)
also depends on T such that H → ∞ and H/bT → 0 as T → ∞. We assume that the
limits

∑H−1
l=1 g(l/H)n/H and

∑H−1
l=1 g(1)(l/H)n/H exist and equal gn :=

∫ 1
0 g(x)ndx and

g′n :=
∫ 1

0 g
(1)(x)ndx, respectively, for n ∈ N.

The subscript pavg stands for the name of the procedure, pre-averaging. As its name
suggests, we first calculate the average of log returns weighted by a function g over each
block of size H, and then we apply a local sum of squares of these averages (similar to the
filtering of realized volatility) to construct a spot volatility estimate. By doing this, the
variance of the noise is reduced by a factor of 1/H, as can be seen in the proof; cf. Jacod
et al. [47]. In particular, this block size H will play a crucial role in this setting along with
the main bandwidth size b. Finally, a bias term induced by the additional measurement
error will be corrected by the second term of the formula (4.14).

4.15 Theorem Suppose that Assumptions 4.1 and 4.5 are fulfilled. Let K have bounded
first derivatives and let the block size H = δ · T 1/2 for δ ∈ (0,∞) and b2α+1T 1/2 = o(1)
with α = min {m+ γ,m′ + γ′}. Then√

bT 1/2
{
σ̂2
clock,pavg(uo)− σ2

clock(uo)−BIAS
} D−→ N

(
0, δη2

A +
1

δ
η2
B +

1

δ3
η2
C

)
as T →∞, for uo ∈ (0, 1), where

η2
A = 2σ4(uo)λ(uo)

∫
R
K2(x)dx,

η2
B = 4ω2σ2(uo)λ(uo)(g

′
2/g2)

∫
R
K2(x)dx,

η2
C = 2ω4λ(uo)(g

′
2/g2)2

∫
R
K2(x)dx, and

BIAS =
1

2

(
σ2(uo)λ(uo)

)(2)
b2
∫
R
x2K(x)dx · I{m=m′=2}.

Proof. see Appendix B.4.

In this theorem, the asymptotic consistency of the volatility estimator has been implic-
itly proven. We see that our result based on the transaction-time model is different from
the classical result based on the standard diffusion model in the way that the asymptotic
bias and variance rely on the transaction intensity. Compare this with the original result
in (2.12) for the integrated volatility estimator.

Due to the concept of volatility decomposition, we now formulate an alternative esti-
mator for the clock-time volatility with the following product

σ̃2
clock,pavg(uo) := σ̂2

pavg(uo) · λ̂(uo). (4.15)
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For this product, the intensity estimator (4.4) remains the same, since the microstructure
noise only affects the price level (or implicitly the tick-time volatility curve) and not the
arrival of transactions. Thus, we only need to deal with the estimation of σ2(·) in the
presence of noise. This is done by

σ̂2
pavg(uo) :=

T

NH

1

g2

io+N∑
i=io−N

k

(
i− io
N

)(
4Y ti,T

)2
− T

2NH

∑H−1
l=1 h2(l/H)

g2

io+N∑
i=io−N

k

(
i− io
N

)(
Yti,T − Yti−1,T

)2
, (4.16)

where io := inf {i : ti ≥ uoT}. The conditions on the kernel function k and the segment
length N are the same as for σ̂2(·), i.e. N = N(T )→∞ and N/T → 0 as T →∞. In fact,
this estimator also relies on the pre-averaging approach, and therefore the same conditions
for g and h are taken from the preceding clock-time volatility estimator with the block size
H = H(N) satisfying H →∞ and H/N → 0 as T →∞. Note that we have used the same
letters g, h, and H for both estimators in order to not complicate the notation.

4.16 Theorem Under Assumptions 4.1 and 4.5, the pre-filtering block size H = δ · T 1/2

for δ ∈ (0,∞), and k has bounded first derivatives, we obtain√
N

T 1/2

{
σ̂2
pavg(uo)− σ2(uo)

} D−→ N
(

0, δξ2
A +

1

δ
ξ2
B +

1

δ3
ξ2
C

)
,

where

ξ2
A = 2σ4(uo)

∫
R
k2(x)dx,

ξ2
B = 4ω2σ2(uo)(g

′
2/g2)

∫
R
k2(x)dx, and

ξ2
C = 2ω4(g′2/g2)2

∫
R
k2(x)dx,

under the segment conditions

N1+2γ/T 1/2+2γ → 0 for m = 0, (4.17)

N3+γ∗/T 5/2+γ∗ → 0 for m = 1 and m′ = 0,

N3+γ/T 5/2+γ → 0 for m = 1 and m′ = 1, 2,

N3+γ′/T 5/2+γ′ → 0 for m = 2 and m′ = 0,

N4/T 7/2 → 0 for m = 2 and m′ = 1, 2,

with γ∗ = min {γ, γ′} as T →∞.
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Proof. See Appendix B.4.

From (4.15), the alternative estimator σ̃2
clock,pavg(·) is clearly consistent, since it is the

product of two consistent estimators. The limit distribution is given below, where the rate
of convergence will depend on the convergence rate bT and N/T 1/2 in Theorems 4.7 and
4.16, respectively. For example, for N/T 1/2 = o(bT ), we have

√
N

T 1/2

{
σ̃2
clock,pavg(uo)− σ2

clock(uo)
}

= λ̂(uo)

√
N

T 1/2

{
σ̂2
pavg(uo)− σ2(uo)

}
+ o(1) + σ2(uo)

√
N

T 1/2
·BIASλ

with BIASλ = b2

2 λ
(2)(uo)

∫
R x

2K(x)dx · I{m′=2}. Thereby, the resulting limit distribution

is dominated by the limit of σ̂2
pavg(·) given in the last theorem, not that of λ̂(·).

4.17 Theorem Let all assumptions be satisfied and suppose that the bandwidth b and
the segment length N fulfill the conditions given in Theorem 4.7 and 4.16, respectively.
For uo ∈ (0, 1) we obtain√

N

T 1/2

{
σ̃2
clock,pavg(uo)− σ2

clock(uo)
} D−→ N (0, V 2

pavg)

with

V 2
pavg = λ2(uo)

{
δξ2
A +

1

δ
ξ2
B +

1

δ3
ξ2
C

}
×

× I{
m=m′=0,γ′> γ

2γ+2
or m=1,m′=0,γ′> γ∗+2

2γ∗+8
or m=2,m′=0,γ′>

√
65−7
4

or m′=1,2
},

and

√
bT
{
σ̃2
clock,pavg(uo)− σ2

clock(uo)
} D−→ N (0,W 2

pavg),

with

W 2
pavg = σ4(uo)λ(uo)

∫
R
K2(x)dx · I{

m=m′=0,γ′≤ γ
2γ+2

or m=1,m′=0,γ′≤ γ∗+2
2γ∗+8

or m=2,m′=0,γ′≤
√
65−7
4

}
+ c1λ

2(uo)

{
δξ2
A +

1

δ
ξ2
B +

1

δ3
ξ2
C

}
· I{

m=m′=0,γ′= γ
2γ+2

or m=1,m′=0,γ′= γ∗+2
2γ∗+8

or m=2,m′=0,γ′=
√

65−7
4

},
where c1 := bT/(N/T 1/2) if bT and N/T 1/2 are of the same order.

Proof. See Appendix B.4.
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4.18 Remark i) For the pre-averaging steps, the block size H in (4.14) may differ
from H in (4.16) (both are related to T ). For this theoretical investigation, we select
H = O(T 1/2) to balance the rate of convergence of the limit distributions (I), (II),
and (III) in order to obtain those asymptotic normality results; see the beginning of
the proofs of Theorems 4.15 and 4.16 in Appendix B.4.

ii) From a practical point of view, all of the unknown components in the asymptotic
variances can be estimated by using the existing statistics presented in this section.
For instance, the variance ω2 of the market microstructure noise can be estimated
by σ̂2

clock(u)/(2T λ̂(u)), since σ̂2
clock(u) = 2Tω2λ(u) + op(1). In the next chapter, we

present a method based on least-squares cross-validation to adequately select the
smoothing parameters b, b, N , H(b), and H(N) from the data.

4.5 Comparison

It is well-known that the presence of microstructure noise causes a reduction in the rate of
convergence of volatility estimation; compare the convergence speed in (2.2) with that in
(2.12). In our noisy model setting, the advantage of the decomposable volatility estimate
is highlighted since the market microstructure noise does not disturb the arrival of trans-
actions, but rather the price level of X·,T ; see (4.13). In Chapter 6, our empirical analysis
suggests that the tick-time volatility curve is in general less fluctuated than the intensity
curve. Therefore coping with microstructure noise becomes easier, as we may choose a
larger window for σ̂2

pavg(·) with effectively more data than with σ̂2
pavg,clock(·), which is as

rough as the intensity curve. Mathematically, this leads to a higher rate of convergence of
the volatility estimator (in some cases even better than the lower bound of the estimation
for spot volatility in the standard noisy model, see below).

From this point of view, we now compare the performance of these two different esti-
mates σ̂2

clock,pavg(·) (based on the classical pre-averaging method) and σ̃2
clock,pavg(·) (based

on the volatility decomposition). Clearly, the same kernel functions K, k, and K and
weighting function g are used for the purpose of comparability. Before discussing the com-
parison which is summarized in Table 4.2, we explicitly demonstrate one of those cases
in order to emphasize the benefit of volatility factorization in the transaction-time model
(other cases can be done similarly). Let m = m′ = 0 and γ′ ≤ γ/2(γ + 1). According to
Theorems 4.17 and 4.15 we have

√
bT
{
σ̃2
clock,pavg(uo)− σ2

clock(uo)
} D−→ N (0,W 2

pavg)

under the bandwidth condition b2γ′+1T → 0, and√
bT 1/2

{
σ̂2
clock,pavg(uo)− σ2

clock(uo)
} D−→ N (0, δη2

A +
1

δ
η2
B +

1

δ3
η2
C)

under another bandwidth condition b2γ
′+1T 1/2 → 0. We see that both constraints imply

bT = o
(
T

2γ′
2γ′+1

)
and bT 1/2 = o

(
T

γ′
2γ′+1

)
,
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meaning that the rate of convergence of σ̃2
clock,pavg(·) is much faster than that of σ̂2

clock,pavg(·)
in this case.

Moreover, in the standard diffusion model with the presence of noise, a lower bound
for spot volatility estimation is derived in a minimax sense with respect to the L2-loss

function. This equals n
−α

2α+1 , given a Hölder-exponent of α for the spot volatility function
and where n is the number of subdivisions; see Munk and Schmidt-Hieber [58]. Our
estimate σ̃2

clock,pavg(·) exceeds that bound in this particular case and in many other cases;
see Table 4.2. Thus, the approach based on volatility decomposition of transaction-time
models outperforms previous approaches applied to the standard model in these cases.

Table 4.2: Comparison of rates of convergence and asymptotic variances between spot volatility estimators
σ̃2
clock,pavg and σ̂2

clock,pavg

Case Conditions Rate(σ̃2
clock,pavg) vs. Var

[
σ̃2
clock,pavg

]
vs.

Rate(σ̂2
clock,pavg) Var

[
σ̂2
clock,pavg

]
c1 m = 0, m′ = 0 γ > γ′

c2 m = 1, m′ = 0 -

c3 m = 1, m′ = 1 2γ′ < γ faster

c4 m = 2, m′ = 0 -

c5 m = 2, m′ = 1 γ′ < 1/2

c6 m = 0, m′ = 0 γ ≤ γ′

c7 m = 0, m′ = 1 -

c8 m = 0, m′ = 2 - same smaller, if λ(·) < 1;

c9 m = 1, m′ = 1 γ = 2γ′ larger, otherwise.

c10 m = 2, m′ = 1 γ′ = 1/2

c11 m = 1, m′ = 1 γ < 2γ′

c12 m = 1, m′ = 2 -

c13 m = 2, m′ = 1 γ′ > 1/2 slower

c14 m = 2, m′ = 2 -

Table 4.2 compares the performance of σ̂2
clock,pavg(·) and σ̃2

clock,pavg(·) in terms of their
rates of convergence and asymptotic variances. We see that the alternative volatility es-
timator outperforms the standard estimator in the sense that its rate of convergence is
highly improved; see c1–c5. In these cases, the smoothness order of the tick-time volatility
is higher than that of the clock-time volatility and intensity3. In fact, our data analysis in
Chapter 6 and some other empirical analyses, e.g. Dahlhaus and Neddermeyer [25], have

3This is clear from above, as we can choose larger window for estimating tick-time volatility than for
estimating clock-time volatility.
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found that the tick-time volatility curve is in general smoother than the transaction inten-
sity. Thus, we can significantly improve volatility estimation by considering the volatility
decomposition. In c6–c10, both estimators possess the same rate of convergence, but the
asymptotic variance of σ̃2

clock,pavg(·) turns out to be smaller if the intensity is less than 1;

otherwise σ̂2
clock,pavg(·) yields better results.4 As a result of the bias correction term of

σ̂2
pavg(·), also mentioned in the noiseless model (see also C12–C13 in Table 4.1), the alter-

native estimator has a slower rate of convergence than that of the classical one in cases
c11–c14.

4In these cases, the resulting limit distribution is dominated by the limit distribution of σ̂2
pavg(·), that is√

N/T 1/2
(
σ̃2
clock,pavg(·)− σ2(·)

)
= λ̂(·) ·

√
N/T 1/2

(
σ̂2
pavg(·)− σ2(·)

)
+ op(1).

Therefore the variance is directly proportional to the rate of arrivals; particularly, the asymptotic variance
of this estimate is even less than that of Theorem 4.15 if λ(·) < 1.
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Chapter 5

Other Discussions

5.1 Boundary Effects

As was discussed in Section 2.3, conventional kernel-type estimators will cause biases when
estimating points near domain boundaries. Therefore many solutions dealing with this
effect in curve estimation have been introduced; see e.g. Fan and Gijbels [30]. In this
work we will use the so-called local polynomial fitting technique to eliminate such an edge
problem. This method was originally applied in nonparametric regression and later adapted
to density estimation. Recently, it has also been employed in volatility curve estimation
for standard diffusion models, e.g. by Kristensen [53].

The asymptotic results presented in the previous chapter are only valid for interior time
points u ∈ (0, 1), and do not hold for time points near 0 or 1 for the same reason for which
boundary problems arise in nonparametric regression.

For example, if u = 0, the standard clock-time volatility estimate σ̂2
clock(u) becomes

1
b

∑NT
i=1K

(
ti
bT

) (
Xti,T −Xti−1,T

)2
, taking only data from the right-hand side of u into ac-

count, which leads to an estimation bias (since the information from the other side is
unavailable). Hence, in order to avoid this boundary effect, we apply a local linear fit to
our transaction-time model so that biases will be automatically corrected when consider-
ing points near borders. We start by creating a local linear estimate (LLE) for σ2(·) at
uo ∈ [0, 1] in the noiseless model (4.1). LetW be a weight function satisfying condition (K)
and h > 0 be a bandwidth. We solve the following problem:

min
a0(uo),a1(uo)∈R

NT∑
i=1

W
(
ui − uo
h

)(̂̂σ2
(ui)− {a0(uo) + a1(uo)(ui − uo)}

)2
, (5.1)

where ̂̂σ2
(ui), called the response, is an approximation of the tick-time volatility at ui,

which we will define later. Then the LLE is defined by â0(uo), which is the solution of the
above minimization problem:[

â0(uo)
â1(uo)

]
=

[
ST,0(uo) ST,1(uo)
ST,1(uo) ST,2(uo)

]−1 [
TT,0(uo)
TT,1(uo)

]
,

53
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where

ST,j(uo) =

NT∑
i=1

W
(
ui − uo
h

)
(ui − uo)j , for j = 0, 1, 2

and

TT,j(uo) =

NT∑
i=1

W
(
ui − uo
h

)
(ui − uo)j ̂̂σ2

(ui), for j = 0, 1.

In particular,

σ̂2
LLE(uo) := â0(uo) =

ST,2(uo) TT,0(uo) − ST,1(uo) TT,1(uo)

ST,2(uo) ST,0(uo) − ST,1(uo) ST,1(uo)
.

Furthermore the solution â1(uo) can be used to measure the first derivative of the tick-time
volatility σ2(uo)

(1); this is one of the special features of the local linear/polynomial fitting
method. To have an idea of how this method extends the standard idea of kernel-type
estimators, which can be regarded as local constant fits, we look at the following example
of the case of local constant approximation, i.e. a1(uo) = 0. In the noiseless model, one
may define the response as

̂̂σ2
(ui) =

(
Xti,T −Xti−1,T

)2 · T, (5.2)

since E
[(
Xti,T −Xti−1,T

)2]
= σ2(ti/T )/T . Then by (5.1), we get

â0(uo) =
TT,0(uo)

ST,0(uo)

=

∑NT
i=1W

(
ui−uo
h

)
·
(
Xti,T −Xti−1,T

)2 · T∑NT
i=1W

(
ui−uo
h

)
=
σ̂2
clock(uo)

λ̂(uo)
. (by setting K(·) = K(·) =W(·), and b = b = h)

Therefore, we have recovered the usual kernel estimates given in the previous chapter. We

can certainly also employ another choice for the response ̂̂σ2
(ui) that is more accurate than

(5.2). In our analysis, we utilize the kernel-based estimator σ̂2(ui) with segment length N
given in (4.7) as the response for constructing the LLE, that is

̂̂σ2
(ui) = σ̂2(ui) =

T

H1,N

i+N∑
j=i−N

k

(
j − i
N

)(
Xtj ,T −Xtj−1,T

)2
.

Roughly, we will choose N such that N/T << h.
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Similarly, we can construct other local linear estimates for λ(uo) and σ2
clock(uo), i.e.

λ̂LLE(uo) =
ST,2(uo) TT,0(uo) − ST,1(uo) TT,1(uo)

ST,2(uo) ST,0(uo) − ST,1(uo) ST,1(uo)
, (5.3)

where

TT,j(uo) =

NT∑
i=1

W
(
ui − uo
h

)
(ui − uo)j

̂̂
λ(ui)

with ̂̂
λ(ui) = λ̂(ui) =

1

bT

NT∑
j=1

K

(
tj − ti
bT

)

and

σ̂2
clock,LLE(uo) =

ST,2(uo) TT,0(uo) − ST,1(uo) TT,1(uo)

ST,2(uo) ST,0(uo) − ST,1(uo) ST,1(uo)
, (5.4)

where

TT,j(uo) =

NT∑
i=1

W
(
ui − uo
h

)
(ui − uo)j ̂̂σ2

clock(ui)

with ̂̂σ2

clock(ui) = σ̂2
clock(ui) =

1

bT

NT∑
j=1

K

(
tj − ti
bT

)(
Xtj ,T −Xtj−1,T

)2
.

To account for market microstructure noise, we replace ̂̂σ2

clock(ui) and ̂̂σ2
(ui) given

above by the noise-robust responses σ̂2
clock,pavg(ui) and σ̂2

pavg(ui), respectively. Note that

we will use the same symbols σ̂2
clock,LLE and σ̂2

LLE , even though the LLEs are equipped
with the noise-robust (pre-averaging) responses, in order to not complicate the notation.
Likewise, an alternative clock-time volatility estimate based on local linear fitting can be
constructed by

σ̃2
clock,LLE(uo) := σ̂2

LLE(uo) · λ̂LLE(uo). (5.5)

We note that the LLE method entails the choice of an additional tuning parameter,
namely the bandwidth h. In our considerations, h is normally chosen such that h >> b,
h >> b, and h >> N/T for the corresponding estimators. Under this choice of the
bandwidth h, we conjecture that the asymptotic properties of these local linear estimators
can be studied via similar arguments to those of LLEs in nonparametric regression and
density estimation (see Fan and Gijbels [30] and Cheng [21]). In fact, the bandwidth
h needs to be chosen optimally, but this matter is left for future work. This method
has the apparent disadvantage of being computational inefficient; in particular one needs
to approximate responses (based on pre-filtering) beforehand, which can take a lot of
time. One might improve these LLEs by using a fast Fourier transform together with an
equivalent kernel. However, we have omitted these developments as our main purpose is
not to build a fast computational method, but rather to provide a first step in dealing
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with edge effects. For this reason, we will apply such estimates only for a few points near
the boundaries to avoid inefficient computation and still use the kernel-based estimates for
estimating curves at interior points.

5.2 Bandwidth Selection

One of the most important issues in nonparametric estimation is the determination of
appropriate bandwidth choices from data. In fact, we are more concerned with the choice
of bandwidths than with the choice of kernel functions. It is well-known that if the tuning
parameter is chosen to be small, then the bias will be small, but the variance will increase.
On the other hand, if it is large, then the variance will decrease, but we will get a larger
bias term. Therefore it is necessary to trade-off between the bias and the variance. A
lot of bandwidth selection techniques have been proposed in the literature, e.g. plug-in
methods, cross-validation, etc.; see for instance Hart [43] and Härdle [40]. In our situation,
we cannot derive the optimal bandwidth choice in terms of the mean squared error (MSE)
criterion, since the smoothness order of each curve is unknown. Nevertheless, optimizing
tuning parameters without knowledge of the smoothness of the curves to be estimated can
be done by cross-validation. This data-driven selection method is well-known and has been
developed into many variations; we adopt the technique called least-squares cross-validation
in our analysis. The basic idea is to choose a bandwidth from the considered domain such
that it optimize a criterion used to measure the distance between the estimator and the
true curve. In our consideration, the tuning parameters should be chosen to minimize the
integrated squared error (ISE). In fact, we will first need to approximate ISE since it has
latent factors. This will be demonstrated later.

In the following, we provide a data-based method for selecting the tuning parameters b,
b, and N from data. This procedure relies on the method mentioned above, that is, the cho-
sen window sizes bCV , bCV , and NCV will be the minimizers of data-based approximations
to ∫

I

{
λ̂(u)− λ(u)

}2
du,∫

I

{
σ̂2
clock,pavg(u)− σ2

clock(u)
}2
du, and∫

I

{
σ̃2
clock,pavg(u)− σ2

clock(u)
}2
du,

respectively, where I is a time domain of interest. Setting I = [0, 1] corresponds to seeking
a global bandwidth choice. We can also explore a local one by decreasing the size of the
interval, for instance setting I = [uo − δ, uo + δ] with small δ. To enable us to estimate
the parameter curves, we apply this local procedure to a grid of time points over [0, 1] to
obtain adaptive bandwidth windows. In the case of symmetric kernel functions, we should
carefully choose the interval I to avoid boundary effects.

This idea is similar to that used in Brooks and Marron [18]. That is, we find b which
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minimizes the following integrated squared error

ISE
λ̂
(b) :=

∫
I

{
λ̂(u)− λ(u)

}2
du

=

∫
I
λ̂(u)2du− 2

∫
I
λ̂(u)du

∫
I
λ(u)du+

∫
I
λ(u)2du.

The first term can be computed directly from the data and the last term can be neglected
since it does not depend on b. Thus, the second term is the only one that needs to be
estimated from the data. Essentially, the optimal bandwidth bCV should minimize the
cross-validation function

CV
λ̂
(b) :=

∫
I
λ̂(u)2du− 2

T

∑
ui∈I

λ̂(i)(ui), (5.6)

that is, bCV = argminb CVλ̂(b) over b ∈ Θb, where

λ̂(i)(ui) :=
1

bT

NT∑
j=1,tj 6=ti

K

(
tj − ti
bT

)
is the so-called leave-one-out estimator (ui = ti/T ). The range of bandwidths Θb needs to
be appropriately restricted. We can prove that this cross-validation function is an unbiased
estimator for ISE

λ̂
(b) −

∫
I λ(u)2du (see Appendix C). Thus, bCV should be considerably

close to the bandwidth that minimizes ISE
λ̂
(b). We conjecture that one can also show the

asymptotic optimality for this bandwidth bCV by using similar arguments to those used
in density estimation or intensity estimation; see e.g. Härdle et al. [41] and Brooks and
Marron [18]. By asymptotic optimality of bCV , we refer to the property that

ISE
λ̂
(bCV )

infb∈Θb
ISE

λ̂
(b)

→ 1, a.s.

Since our aim is not to give a comprehensive bandwidth selection study, but rather an illus-
tration of the behavior of both volatility estimators, we do not give a complete investigation
of asymptotic optimality for these bandwidth choices.

In much the same way, we can design asymptotically unbiased estimators for the ISEs
of σ̂2

clock,pavg(·) and σ̃2
clock,pavg(·) and find the optimal solutions bCV and NCV by minimizing

the functions

CVσ̂2
clock,pavg

(b) :=

∫
I

(
σ̂2
clock,pavg(u)

)2
du− 2

T

∑
ui∈I

σ̂
2(i)
clock,pavg(ui) · σ̂

2(i)
pavg(ui) (5.7)

(with values of N and H(N) for σ̂
2(i)
pavg(ui) and H(b) for σ̂

2(i)
clock,pavg(ui) selected beforehand)

and

CVσ̃2
clock,pavg

(N) :=

∫
I

(
σ̃2
clock,pavg(u)

)2
du− 2

T

∑
ui∈I

(
σ̂2(i)
pavg(ui)

)2
· λ̂(i)(ui) (5.8)
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over Θb and ΘN , respectively. Note that in (5.8), the optimal window bCV is used for
evaluating λ̂(i)(ui) and H(N) is pre-selected. The optimal block lengths H(b) and H(N) in
the pre-averaging steps of σ̂2

clock,pavg(·) and σ̃2
clock,pavg(·) can also be achieved by minimizing

CVσ̂2
clock,pavg

(bCV ) and CVσ̃2
clock,pavg

(NCV ) with respect to H(b) and H(N), respectively.

5.3 Endogenous Transaction-Time Models

Up to this point, the asymptotic properties for the volatility estimators were investigated
under Assumption (4.1). In particular, the point process Nt,T was a nonhomogeneous
Poisson process with a non-random intensity function λ(t/T ), and the tick-time volatility
σ(t/T ) was considered to be a deterministic function as well.

In Remark 4.2 ii) we pointed out that a first step towards having stochastic volatility
models is letting λt,T and σt,T be independent random processes, both of which are also
independent of the Poisson process Nt,T and the innovations Ui (all the proofs remain
the same if one carefully constructs arguments conditional on these processes). From
the point of view of real application, however, there is a leverage effect between prices,
volatility, and news flow. Particularly, the frequency of transactions will depend directly
on the information flow, which will influence the price processes. In order to allow for
such correlation between those processes, a rescaled version of the transaction-time model
similar to (4.1) is determined by assuming that the price process fulfills Assumption 3.1.

Let the price process X observed at transaction time ti satisfy Assumption 3.1, that is

Xti,T = Xti−1,T + σ

(
ti
T

)
1√
T
Ui,

where Nt,T is a point process having an Ft,T -intensity λt,T = λ(t/T ) and ti are the corre-
sponding arrival times of Nt,T . Now σt,T = σ(t/T ) is an Ft,T -predictable process and Ui is
Fti,T -measurable for each i with

E
[
Ui

∣∣∣ Fti−,T ] = 0 and E
[
U2
i

∣∣∣ Fti−,T ] = 1.

We also assume that E
[
U4
i

∣∣∣ Fti−,T ] exists. Some examples of such a model are already

given in the end of Section 3, including the transaction-time model (4.1). Indeed, this
model can be written in continuous time as

dXt,T = σ(t/T )
1√
T
dLt,T , where Lt,T :=

Nt,T∑
i=1

Ui

is a pure jump process, which is more general than pure jump Lévy processes. It is worth
pointing out that in contrast to other frameworks our setting is purely nonparametric in
that we do not give any parametric models to the volatility process. For example, in the
continuous GARCH model, the leverage effect is obtained by modeling the volatility σ2

t to
incorporate this effect—namely via a continuous ARMA model (see Brockwell et al. [17]).
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It is seen that Xt,T is a martingale with respect to the filtration Ft,T , where Ft,T consists
of all information available up to time t, roughly speaking. Moreover we will assume that
realizations of λ(·) and σ2(·) fulfill Assumption 4.5, in particular that they are Hölder
continuous and bounded away from zero uniformly.

We thus obtain an analogous volatility decomposition

lim
δ→0

1

δ
E
[
(Xt+δT,T −Xt,T )2

∣∣∣ Ft,T ] = σ2(t/T )λ(t/T ) =: σ2
clock(t/T ),

so that we can proceed along the same lines of investigation into the asymptotic properties
of intensity and volatility estimators as before; however, the proofs become much more
difficult, since we need to deal with the correlations between all processes, namely the
point process, intensity process, tick-time volatility, and price process. A preparation for
such proofs of this general case is provided in our work as some of the asymptotic results
being presented are based on martingale theory, in particular Lemma 1 and Corollary 1.
We show below that the intensity estimator given in (4.4) can be used in this general
setting to measure λ(uo) for uo ∈ (0, 1). We find that the same asymptotic result as in
Theorem 4.7 still holds, that is

√
bT

(
λ̂(uo)− λ(uo)− b2

2 λ
(2)(uo)

∫
R x

2K(x)dx · I{m′=2}

)
√
λ(uo)

∫
R K2(x)dx

D−→ N (0, 1) ; (5.9)

see Appendix C. A complete study on the asymptotic behaviors of σ̂2
clock(·) and σ̂2(·) (or

σ̂2
clock,pavg(·) and σ̂2

pavg(·) when microstructure noise is present) is postponed to future work,
as this kind of endogeneity is not easy to handle. We note that an additional asymptotic
variance term for volatility estimators will occur in this stochastic volatility model due to
the endogeneity. We discuss this further in Appendix C.
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Chapter 6

Empirical Analysis and Simulation

6.1 Simulation

In this section we illustrate the performance of our volatility estimators in the finite sample
setting. For simulation studies, we generate efficient prices from the transaction-time model
(4.1) with the following parameter functions:

σ2(u) = exp(−8 + 0.2 cos(10uπ)) (6.1)

and

λ(u)(·) = B2
u(·) for u ∈ (0, 1), (6.2)

where Bu is another standard Brownian motion on [0, 1] which is independent of W·. Note
that a realization of the stochastic intensity (6.2) is simulated and kept fixed throughout
this section1. The intensity curve is chosen to be quite rough (since a Brownian motion
has always non-differentiable paths), whereas the tick-time volatility varies in a smoother
way; this example belongs to case c4 in Table 4.2 from the theoretical results. In fact,
these parameter values are set to be reasonable for a real asset. According to the volatility
decomposition, the spot volatility curve σ2

clock(·) is still non-differentiable since it is the
product of σ2(·) and λ(·). The trajectory of intensity and the transaction-time (or tick-
time) volatility curve are depicted below in Figure 6.1. Row (a) displays the underlying
(clock-time) volatility curve on a logarithmic scale. It is therefore the sum of the logarithm
of the tick-time volatility in (b) and the log-intensity in (c). We note that in the following,
all graphics with the tag (a), (b) and (c) always express plots of (clock-time) volatility, tick-
time volatility, and intensity curves, respectively (all on a logarithmic scale). Figure 6.3
shows another set of parameters in which the frequency of transactions remains the same,
but for which a realization from a stochastic process is selected as a source for the tick-time
volatility.

1The realization of the intensity curve is chosen to mimic common transaction intensity as observed in
the real market, typically forming a U-shape. With it we can produce an NHPP having around 23,000
transactions per day.
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Figure 6.1: Underlying parameter curves given
by (6.1) and (6.2) (all in log-scale): (a) clock-time
volatility, (b) tick-time volatility (mimicking the
case where the true curve is smooth), and (c) in-
tensity.
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Figure 6.2: Some examples of simulated high-
frequency log-price processes with the parameters
shown in Figure 6.1, having approximately 23,000
transactions per day.
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Figure 6.3: Underlying parameter curves (all in
log-scale) with fluctuated tick-time volatility and in-
tensity given by (6.2): (a) clock-time volatility, (b)
tick-time volatility (as a path of BM, emulating the
case where the true curve is fluctuated), and (c)
intensity.
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Figure 6.4: Some examples of simulated high-
frequency log-price processes with parameters
shown in Figure 6.3, having approximately 23,000
transactions per day.
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The time span T is chosen to be 23400 corresponding to one-day trading hours in
1-second resolution, i.e. 09:30 AM - 04:00 PM (for example in NYSE and NASDAQ—
excluding the pre- and after-market hours). We set the start price Xt0,T = X0,T = 20. In
our experiments, market microstructure noise is considered to be an additive white noise.
In particular we generate

Yti,T = Xti,T + εi, for i = 1, ..., NT , (6.3)

where εi is an i.i.d. Gaussian disturbance sequence with mean zero and a small variance
ω2 = 0.00052 (as small as shown in empirical market value; see the next section). The
magnitude of this standard deviation will play a crucial role in the quality of volatility
estimation when the sample size is small (discussed at the end of this section). Our choice
of standard deviation has also been used in many simulation studies for standard Brownian
semimartingales under market microstructure noise, particularly in the pre-filtering con-
text2. Also, in the end of this section, we will show that our pre-averaging estimators are
robust against additive noise with a rounding effect. This will be demonstrated together
with results of a benchmark estimator presented by Dahlhaus and Neddermeyer [25], which
is based on non-linear microstructure noise model, particularly rounding error.

Under the above settings, transaction data with approximately 23,000 trades per day is
generated, which is typical for one-day trading data of highly liquid stocks. Some examples
of simulated prices can be seen in Figures 6.2 and 6.4. Having around 23,000 transactions
over the time period T means that on average one transaction is executed per second. In
fact, it is possible to have many transactions at the same timestamp, i.e. ti = ... = ti+k, for
some i, k ∈ N, with possibly different prices Xti , ..., Xti+k . This is quite common for high-
frequency data in the real market since many trades could occur simultaneously within a
second.

In this section, the performance of the pre-averaging estimators σ̂2
clock,pavg(·) and σ̃2

clock,pavg(·)
on simulated intraday transaction data is assessed according to the numerical bias, relative
bias, variance, and mean squared errors over a grid of time points u = 0.01, 0.02, . . . , 0.99
(a total of 99 time points). These results are based on the average of 500 repetitions of the
above system (6.3) with the parameters (6.1) and (6.2). The local linear estimators given
in Section 5.1 for estimating parameters close to the boundary are also used in our study,
however only on a few points at the borders3.

Although an analytical method for optimal bandwidth selections has already been de-
veloped in the previous chapter, it is quite difficult in practice to apply it to every single
iteration (in this case 500 iterations) on a personal computer due to the computational
time required (especially for such a big data set). We have therefore omitted data-driven

2In many empirical analyses of this type of problem, ω is often found to be 0.0005, since the noise-to-
signal ratio is normally estimated to be around 10−3, leading to ω = 0.0005791914 when σ2(·) ≈ exp(−4);
see Hansen and Lunde [39]. This level of noise is also used by Zhang et al. [70] and Jacod et al. [47] in their
Monte Carlo experiments.

3Calculating the LLE estimator at all points is very computationally intensive, an issue that needs to
be improved, but which we leave to future work.
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bandwidth selection in these experiments, postponing the comprehensive investigation and
an improvement of such algorithms to future work.

In our simulations, we therefore examine the behavior of the estimators under many
different global bandwidth sizes, ranging from a small window size4 0.004 to a large window
size 0.014 for b (and similarly for b and N ≈ bT ). For example, if b = 0.01, it means that
only those data points lying in the time frame of size 2bT = 234 (approx. 4 minutes) around
the time point of interest uo contribute to the intensity estimation at time uo. We will see
that our choices are appropriate in the sense that they correctly estimate the parameter
curves and do not over-smooth them5. In what follows, we will use the notation N ∼ bT
(used for the estimation of the tick-time volatility) to indicate that N is varying by time
depending on the number of transactions around that time point. More precisely, given a
time point uo, we set N to be the number of transactions on the interval [uo−4bT, uo+4bT ]
divided by 8. We did not choose N as #{transactions on [uo − bT, uo + bT ]}/2, so as not
to let the tick-time volatility estimator be greatly influenced by the intensity.

By doing this, we are able to compare the smoothness of two curves: the tick-time
volatility estimate and the clock-time volatility estimate, since the segment length is ad-
justed by time so that it is not too large for time periods of low trading activity and not too
small for those of high activity. Now, it can be said that the choice of the bandwidths b, b,
and the segment N are almost of the same level, and as a result that the smoothness of all
curves can be compared6. Of course, it is advisable to construct an efficient adaptive band-
width method for finite samples, which automatically adapts to the smoothness/roughness
level of the curves.

When studying nonparametric kernel estimation, one can compare many kernel func-
tions to obtain the best one for volatility estimation. However, it is well-known that the
choice of kernel functions has much less of an impact on curve estimation than the choice
of tuning parameters in nonparametric estimation. Therefore, instead of discussing kernel
selection at length, we simply compare two different choices of the kernel function: the
triweight and Epanechnikov kernels. The first one assigns more weight to observations
nearer to the time point of interest than the second one, which is well-known to be optimal
in classical smooth function estimation. Our study shows that the Epanechnikov kernel
leads to a reduced mean squared error (MSE) of all estimates at most time points. More-
over the global measure—mean integrated squared error (MISE)—is also smaller under
the Epanechnikov kernel. For example, the MISE for σ̂2

clock,pavg(·) with triweight kernel

function is 1.970044× 10−8 whereas with Epanechnikov it is only 1.502683× 10−8 (all the
bandwidths are selected to be the same, in this case b = 0.008 and H = 15). In what
follows, we will choose only the Epanechnikov kernel, i.e. K(u), K(u), and k(u) will be
3
4

(
1− u2

)
I{|u|≤1}. As a weighting function for pre-filtering steps, g(x) is chosen to be

4with respect to the number of transactions of data, having around 23,000 transactions on a single
trading day.

5It is important to remember that the volatility typically has non-differentiable paths, meaning that a
too-large kernel window may produce an imprecise result.

6This choice is just an approximation used specifically for this simulation study in order to compare the
roughness of the curves.
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x(x− 1){0≤x≤1}.

It is noteworthy that the choice of the block sizes H(b) and H(N) in the pre-averaging
steps plays a minor role in the quality of spot volatility curve estimation (the choice of the
main smoothing windows b and N are more important); however, a minimum of H = 5 is
suggested. If H = 2, the pre-averaging estimates σ̂2

clock,pavg(·) and σ̂2
pavg(·) will have the

same properties as the standard realized volatilities σ̂2
clock(·) and σ̂2(·), which are non-stable

in the noisy models. From our experiments (we do not record all of them here), the choice of
H = 15 is suitable for the level of noise corresponding to ω = 0.0005. In fact, a larger block
size does not yield better results and only decelerates the calculation. From Figures 6.5
and 6.6 we see that the values of the volatility estimates at the time points u = 0.1, . . . , 0.9
tend to almost the same values after H = 15 (these results are based on 10 iterations
only). In order to derive an optimal choice of the pre-averaging block size H, the relation
H = δ · T 1/2 obtained in our theoretical discussions might be exploited by minimizing the
asymptotic variance to get the optimal δopt, and then redefining H = δopt ·T 1/2 (see Jacod
et al. [47]). We have so far ignored this issue as it is still unclear how to estimate the
unknown parameters properly in small samples.
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Figure 6.5: Clock-time volatility estimate
σ̂2
clock,pavg(u) (y-axis) against block size H(b) (x-

axis) for u = 0.1, 0.2, . . . , 0.9 (from upper left to the
bottom right). The bandwidth b = 0.008 is used.
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Figure 6.6: Tick-time volatility estimate σ̂2
pavg(u)

(y-axis) against block size H(N) (x-axis) for u =
0.1, 0.2, . . . , 0.9 (from upper left to the bottom
right). The segment length N ∼ 0.008T is used.

In addition to the concern about selecting the block size, the performance of pre-
averaging type estimators in small sample data has been discussed in Jacod et al. [47]. In
particular it has been pointed out that they are slightly biased. More precisely, the second
term of σ̂2

clock,pavg(·) (or σ̂2
pavg(·)), which is responsible for correcting the bias induced by the

contamination, leaves a small bias term (which in large enough samples becomes negligible)
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so that, heuristically,

σ̂2
clock,pavg(uo) ≈ σ2

clock(uo) +
1

2bH

∑
h2(l/H)

g2

NT∑
i=1

K

(
ti − uoT
bT

)(
Xti,T −Xti−1,T

)2
≈ σ2

clock(uo) +
1

2H

∑
h2(l/H)

g2
σ2
clock(uo).

Thus, the estimator should be corrected by multiplying a scaling factor, i.e.

σ̂
2 (adj)
clock,pavg(uo) :=

1

1 + 1
2H

∑
h2(l/H)
g2

· σ̂2
clock,pavg(uo) ≈ σ2

clock(uo).

The tick-time volatility estimate σ̂2
pavg(·) also needs to be adjusted to σ̂

2 (adj)
pavg (·) by the

same scaling factor to eliminate this small bias. The importance of this adjustment in our
finite-sample simulations is depicted in Figure 6.7. We see that the adjusted pre-averaging
estimators can effectively diminish this small-sample bias. From now on, all simulated
curves that depend on the pre-filtering technique will be automatically adjusted by this
factor.

Figure 6.7: Log of pre-averaging estimates log σ̂2
clock,pavg(u) and log σ̂2

pavg(u) (left panel, (a) and (b)) vs.

and log of bias-adjusted pre-averaging estimates log σ̂
2 (adj)
clock,pavg(u) and log σ̂

2 (adj)
pavg (u) (right panel, (a) and

(b)). These results are the averages of 500 simulations based on the window size b = 0.008 or N ∼ 0.008T
(with H = 15). The grey curves are the true parameter curves and the blue curves are the corresponding
estimates.

According to our experiments, we find that if the bandwidth/segment length is chosen
to be too large, the estimation will over-smooth the underlying volatility curve so that
only its rough shape can be detected, but not its details or kinks. On the other hand,
if the bandwidth is too small, it leads to an inaccurate volatility estimator. In the first
step, as we do not know beforehand whether the tick-time volatility is smoother than the
clock-time volatility, all window sizes are chosen such that they correspond to the same
smoothness level for the sake of comparability of the smoothness/roughness of the two
different volatility estimates.
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From our experience, we prefer the following choices: b = 0.008, b = 0.008, and N ∼
0.008T , as appropriate choices7 for the tuning parameters (similar results were obtained
for the other choices of bandwidth and segment length, and we therefore do not report
them here)8.

To evaluate the precision of the volatility estimation, mean squared errors and mean
integrated squared error are calculated, where the integration is discretely approximated.

Table 6.1 reports the numerical results for these values of σ̂
2 (adj)
clock,pavg(u), σ̃

2 (adj)
clock,pavg(u), λ̂(u),

and σ̂
2 (adj)
pavg (u) at the time points 0.1, . . . , 0.9. We see that our estimators perform satis-

factorily with respect to the quadratic errors. In fact, we examine these estimates over a
finer grid of time points, every 0.01 step, i.e. u = 0.01, 0.02, . . . , 0.99. It turns out that
the alternative estimator based on the volatility decomposition outperforms the classical
estimator for only 43 out of 99 points. Thus the alternative estimator does not exhibit
any superiority over the original estimator in this situation. This may be due to an im-
proper choice of the segment length for estimating σ2(·), which is by construction much
smoother than the intensity λ(·) and clock-time volatility curve σ2

clock(·). The numerical

MISE is calculated for each estimate: σ̂
2 (adj)
clock,pavg, σ̃

2 (adj)
clock,pavg, λ̂, and σ̂

2 (adj)
pavg , and is equal to

1.267811× 10−8, 1.341613× 10−8, 7.174735× 10−3 and 1.887689× 10−8 respectively.

With a priori knowledge that the tick-time volatility curve is smoother than the inten-
sity curve, one might assign larger segment length N >> bT to enhance the performance
of the alternative estimator. To see this, we set N ∼ 0.012T and let b and b be unchanged.

Table 6.2 shows the Monte Carlo results for the estimators with this set of bandwidths.
We see that the numerical MSEs of σ̃

2 (adj)
clock,pavg(u) have been improved and are less than

those of σ̂
2 (adj)
clock,pavg(u) at almost every time point (in fact, at 97 out of 99 time points).

Moreover, the numerical MISE of σ̃2
clock,pavg(·) has been reduced (by about 30%). The

numerical MISEs are now equal to 1.267811× 10−8, 0.936115× 10−8, 7.174735× 10−3, and

1.263474× 10−8 for σ̂
2 (adj)
clock,pavg, σ̃

2 (adj)
clock,pavg, λ̂, and σ̂

2 (adj)
pavg , respectively.

Hence, the volatility decomposition scheme can improve the volatility estimation in the
case that the volatility per tick varies in a smoother way than the trading intensity; this
coincides with the theoretical result presented in c1–c5 in Table 4.2.

Figure 6.8 displays the volatility plots (all in log-scale) with these bandwidth choices:
b = 0.008, b = 0.008, and N ∼ 0.012T . The left column is constructed by a smooth
tick-time volatility given in Figure 6.1 (b) and the right one is set up by a fluctuated tick-
time volatility given in Figure 6.3 (b). Relying on 500 simulations, the classical volatility

estimator σ̂
2 (adj)
clock,pavg(·) (red) and the alternative estimator σ̃

2(adj)
clock,pavg(·) (blue) are almost

identical and consistent with the latent parameter curves (grey).

7with respect to the amount of data, 23,000 transactions per trading day in this case.
8It has been noted above that with this choice of N , σ̂2

pavg(·) uses approximately the same amount of data
as considered by σ̂2

clock,pavg(·). If we set N = bT fixed through the line, then it is possible that over some
periods of low trading activity (which usually occur in the middle of trading days) the estimator σ̂2

pavg(·)
might be too smooth, so that some kinks of the underlying parameter function are blurred. Additionally,
this segment length might be too small at the beginning and the end of trading days where the trading
activity is quite high; see the next section.
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Figure 6.8: The performance of: (a) volatility curve estimators log σ̂
2 (adj)
clock,pavg(u) (red) and

log σ̃
2 (adj)
clock,pavg(u) (blue), (b) tick-time volatility estimator log σ̂

2 (adj)
pavg (u) (blue), and (c) intensity curve es-

timator log λ̂(u) (blue). These results are based on 500 simulations with b = 0.008, b = 0.008, N = 0.012T .
The grey lines are the corresponding true parameter curves, where the tick-time volatility is quite smooth
in the left column (see Figure 6.1) whereas it is fluctuating in the right column (see Figure 6.3).

Before we end this section, we want to discuss the quality of our volatility estimators
in the situation where the standard deviation of additive noise ω varies over 0, 0.00005,
0.0005, 0.001. The last one is regarded as a large effect of disturbance. In Figure 6.9, the

pre-averaging estimators σ̂
2 (adj)
clock,pavg(·) and σ̂

2 (adj)
pavg (·) are drawn together with the standard

estimators σ̂2
clock(·) and σ̂2(·), which are consistent for the (tick-time) volatility in the

noiseless situation. For each experiment, only one iteration of the system is carried out
in order to mirror a single real-data application of volatility estimation. Furthermore, the
transaction arrivals used here are taken from a real stock: Cisco Systems on April 1, 2014,
in order to mimic the real trading intensity. The smoothing parameters and weighting
schemes are the same as used in Table 6.1 above.

In the noiseless setting, i.e. for ω = 0, it is clear that the simple (tick-time) realized
volatility performs better than the pre-filtering-based estimator in that σ̂2(·) (orange) is

everywhere smoother than σ̂
2 (adj)
pavg (·) (blue)9. The reason for the flutter exhibited by the

9Although the latter is robust even in the absence of noise, it is less imprecise than the former one. One
of the main reasons that the estimators based on the pre-averaging technique do not look good enough is due
to their slower rate of convergence. Thus, one desires to have much more frequent intraday data, e.g. 100,000
trades or more per day for an individual stock in order to extract the spot volatility properly. However, this
amount of data seems to be unusual in practice, as ultra-high-frequency data normally consists of about
20,000–40,000 transactions over a trading day.
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pre-averaging type estimators is the increase in the finite-sample variance due to the slow
rate of convergence. In fact, it has been shown theoretically that the rate of convergence
of the standard realized volatility in the noiseless model is much faster than that of the
pre-averaging estimators (other estimation techniques dealing with microstructure noise
also have the same convergence rate; see Section 2.4).

As the noise level gets higher, the precision of the realized volatility becomes worse,
particularly inconsistent, see Figure 6.9 (ii)–(iv). The orange curve in (b) shows that
instead of estimating the underlying tick-time volatility (grey), it detects the variance size
ω2 (a well-known result in the literature of market microstructure noise on high-frequency
data). More precisely, from the theoretical viewpoint,

σ̂2(uo) =
T

H1,N

io+N∑
j=io−N

k

(
j − io
N

)(
Ytj ,T − Ytj−1,T

)2 P−→ σ2(uo) + 2Tω2,

so it can be roughly said that log(σ̂2(uo)) ≈ log(2Tω2) in the long run, which is identical
to our simulated value, that is in Figure 6.9 (iii) log(2Tω2) = −4.448 for ω2 = 0.00052, or
in (iv) log(2Tω2) = −3.06 for ω2 = 0.0012. From the empirical analyses of high-frequency
data that we present in the next section, we will see that microstucture noise of real assets
can be very small (quite similar to Figure 6.9 (ii) with ω = 0.00005). We can conclude
that the pre-averaging estimates are robust to all levels of noise, but their quality is lacking
for small sample data. Therefore, it is recommended to apply the pre-averaging technique
only when the noise factor is shown to be significant and cannot be discarded from the
model (otherwise, the standard realized volatility performs better).

In practice, the market does not allow price processes to be continuous, but it specifies
that the price stay on a certain grid, the fineness of which is determined by the tick
size–e.g. rounding to the nearest cent. Therefore, it is natural to include this kind of
measurement error into the system. This issue is examined by adding a rounding effect
into the additive noise model, i.e. we observe a log-price series10

Yti,T = log (b100 · (exp(Xti,T ) + εi)c/100)

with εi ∼ N (0, ω2). In Figure 6.10, the quality of the pre-averaging estimator in this noisy
model is demonstrated11 and compared with that of a benchmark estimator suggested by
Dahlhaus and Neddermeyer [25], denoted by σ̂2

DN (u). This is an online volatility estima-
tor developed for nonlinear market microstructure noise models, particularly under the
consideration of rounding noise error.12

10Note that a measurement error is added to the price process, not to the log-price, which is more natural
from the real market perspective.

11Although we did not prove the consistency of our estimators when noise comes from another source.
Nevertheless we will see that the estimation is quite accurate.

12This estimator is constructed by a nonparametric recursive EM algorithm based on an efficient particle
filter, which updates the results immediately after the occurrence of a new transaction. The selection of
their tuning parameter is also automatic, adapting to the roughness of the estimated curves. We thank the
authors for providing the source code of the green estimator used here, which is adapted to our simulations.
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Figure 6.9: Comparison between: (a) pre-averaging estimates log σ̂
2 (adj)
clock,pavg(u) (red), log σ̃

2 (adj)
clock,pavg(u)

(blue) vs. realized volatility log σ̂2
clock(u) (orange) in additive noise models, (b) log σ̂

2 (adj)
pavg (u) (blue) vs.

log σ̂2(u) (orange). In (b), the grey line is the true tick-time volatility curve. In (c), the intensity estimate
is derived from real transaction data: Cisco systems on April 1, 2014. The market microstructure noise is
assumed to be N (0, ω2).
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From Figure 6.10 (i)–(iii), we see that in (b), the pre-averaging estimate (blue) is
robust to this kind of noise even when the additive noise factor is of high level. The green
estimator is, however, robust to small additive noise with a rounding effect. Whenever
the green estimator is justified, it can detect the underlying curve (grey) better than the
oscillating blue estimator; see Figure 6.10 (i) and (ii).

This remark emphasizes again that the pre-averaging estimators are robust to many
different types of noise, but their performance is poor in finite-sample experiments due
to their slow rate of convergence. On the contrary, the Dahlhaus and Neddermeyer esti-
mator is robust and can capture the shape of the volatility better in the rounding plus
(small) additive noise models. It is unfortunately non-robust to large variances of noise,
see Figure 6.10 (iii). We will see in the next section when discussing the size of market
microstructure noise in reality that the volatility plot pattern looks very similar to that in
Figure 6.10 (ii). Thus, the smoothness of the green estimator more closely resembles the
smoothness of the unknown curve. In particular, this confirms that tick-time volatility is
usually much smoother than clock-time volatility and trading intensity in real applications;
see the next section.

6.2 Real Data Analysis

In this section, we conduct some empirical analyses of high-freqeuncy financial data pro-
vided by the data vendor QuantQoute TickView. We analyze the intraday transaction data
listed in the Dow Jones Industrial Average (DJIA), having 40 symbols, from April 1–30,
2014.13 As is typical of transaction data, we do not have the form of the measurement
error regarding the construction of the price, which is seen in e.g. 1-minute data (this can
be built by using linear interpolation or previous price, etc). It is clear that the number
of transactions of each stock on each day is different. Therefore, we list these values for
all stocks for April 1, 2014 in Table 6.3 to get an idea of how large they are for common
stocks. We see that heavily traded stocks typically have upwards of 15,000 transactions
per day; such ultra-high-frequency data is suitable for our real data analysis in order to
estimate the volatility curve (see the previous section). Barndorff-Nielsen et al. [12] have
shown that the size of microstructure noise on each market exchange could differ. Thus,
we will mainly investigate the properties of high-frequency data that is traded on only a
single exchange, the NASDAQ stock exchange.

13A transaction price is recorded whenever a transaction is completed (no matter whether the price has
changed or not). Some authors use the term tick data for transaction/quotation data, which could lead to
confusion since tick data normally refers to price data that is recorded when there is a price change of at
least one tick (how large a tick depends on the stock and the market). Note that in our terminology, we
always use the term tick time as a short form of transaction time.
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Table 6.3: Number of transactions of stocks from DJIA for April 1, 2014, traded on NYSE and
NASDAQ.

TICKER NASDAQ NYSE TICKER NASDAQ NYSE TICKER NASDAQ NYSE
AA 8561 4287 HD 8296 4205 NKE 4341 2846
AIG 7470 6295 HON 4162 2400 PFE 9324 5530
AXP 6433 3642 HPQ 11384 4672 PG 9851 5843
BA 7793 3749 IBM 11407 5378 PGP - -

BAC 8790 4609 INTC 13827 - T 13964 5365
C 20144 7716 JNJ 10178 5851 TRV 3256 2788

CAT 8204 4294 JPM 16645 5701 UNH 4815 3375
CSCO 35056 - KO 11483 5523 UTX 7426 3622
CVX 9201 6275 MCD 7056 4146 V 5852 2835
DD 5802 3160 MDLZ 11621 - VZ 13170 5746
DIS 8561 6616 MMM 4348 3535 WMT 9367 6328
GE 7843 5640 MO 4081 2230 XOM 15479 6585
GM 31044 9423 MRK 9147 4632
GS 7727 3409 MSFT 25198 -

This is an example of transaction data con-
sisting of the following information: trading
time, transaction price, volume, market ex-
change and sales conditions. In general we
clean raw data before analyzing it in the fol-
lowing main steps: i) deleting all pre- and
after-market data, i.e. only transactions be-
tween 09:30 AM and 04:00 PM are considered;
ii) choosing only transactions traded on the

NASDAQ stock exchange so as not to mix the influence of microstructure noise from dif-
ferent exchanges; iii) filtering raw data from the outliers, such as price errors, and deleting
entries with abnormal sale conditions (see QuantQuote’s documentation for full descrip-
tion). Although the accuracy of transaction time is down to milliseconds, the resolution of
timestamps is limited to only one second, which leads to the possibility of having multiple
consecutive transactions occurring at the same time. Nevertheless, the order of the trades
is correctly placed by the data vendor. In the case of multiple trades, which is often the
case for liquidly traded equities, these time points will be separated into equally-spaced
times, for example t10, t11 and t12 occurring at time 34210 (= 09:30:10 AM) are adjusted
to t10 = 34210, t11 = 34210.33 and t12 = 34210.67.14 We note again that there are 6.5
market hours in a trading day, which is equal to T = 23, 400 seconds.

It has been pointed out in practice that market microstructure noise is time-dependent
and correlated with the efficient price. However, when one considers data with transaction-
time sampling, the noise becomes independent;15 see Griffin and Oomen [37] and Hansen

14We will compare our estimates with the results of the Dahlhaus and Neddermeyer estimator, whose
timestamps are adjusted.

15Note that this is not true for other time sampling schemes, such as calendar-time sampling (e.g. 1-minute
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and Lunde [39]. To confirm this empirical fact for our ultra-high-frequency data in 2014, we
look at the autocorrelation function (ACF) of log-returns Yti,T−Yti−1,T (not the price itself)
of Cisco Systems for 20 consecutive trading days from April 1 - 29, 2014. We note that
similar results were obtained for other stocks and are thus not reported here. The ACF plots
in Figure 6.11 suggest that the averaged first-order autocorrelation is considerable, and that
other higher-order ACFs are mostly (statistically) insignificant. This result supports our
independent noise assumption in the model setting, since Cov(Yti,T − Yti−1,T , Yti−h,T −
Yti−h−1,T ) = 0 for each i ∈ N and h ≥ 2 if the noise εi is an independent sequence.
As a consequence, assuming the noise is of an i.i.d. type seems to be reasonable when
transaction data are being considered. For more characteristics of microstruture noise
from the practical perspective, we refer to Hansen and Lunde [39] and Hasbrouck [44].

To extract the underlying intraday spot volatility from price data, we use the pre-
averaging estimators presented in Section 3.2. The distinction between these estimators
and the estimators given in the infill-asymptotics section lies in the factor 1/T , that is

σ̂2
clock,pavg(t,M) = σ̂2

clock,pavg

(
t

T

)
· 1

T

and

σ̃2
clock,pavg(t,m,M) = σ̂2

pavg(t,m) · λ̂(t,M) = σ̂2
pavg

(
t

T

)
· 1

T
· λ̂
(
t

T

)
,

for t ∈ [0, T ] if we set M = bT and m = N . For the sake of comparability, we select on
average the same size of smoothing parameters for M and m. In particular, the roughness
of the transaction-time volatility can be directly compared to the fluctuation of the (clock-
time) volatility and intensity curves.

For the investigation of high-liquid stocks, the choice of tuning parameters are as follows:
M = 250, m ∼ 250 and H = 15.16 The capital M can be seen as the window size used
for the clock-timescale estimators while the small m is the window size used for the tick-
timescale estimation17. Therefore, the latter can differ from the former, as the number of
transactions over each period of time is random. The choice M = 250 is ad hoc, although
it is confirmed through our experimentation among many bandwidth choices to be, in our
opinion, appropriate, as it does not oversmooth or undersmooth the parameter curves and
is still robust against microstructure noise (tested in our experiments). Of course, one
still desires to have an adaptive bandwidth approach for volatility estimation which could
detect the smoothness of the curve for each time period, as discussed in the preceding
section. The weighting functions applied here are the same as in the simulation part, that
is K(x), K(x), and k(x) are Epanechnikov kernels 3

4

(
1− x2

)
I{|x|≤1} and the weighting

function g(x) in the pre-averaging steps is g(x) = x(1− x)I{0≤x≤1}.

or 5-minute data), quotation-time sampling, or business-time sampling; see Hansen and Lunde [39].
16See Section 6.1 for an explanation of the notation m ∼ 250.
17For σ̂2

clock,pavg(to,M), all observed pre-averaging terms 4Y ti inside the interval (to − M, to + M ]
contribute to the estimator at time to, whereas exactly m observed pre-averaging terms from the left- and
the right-hand side of to contribute to the estimator σ̂2

pavg(to,m); therefore it does not depend on the
transaction intensity.
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We do not report the results of all stocks listed in the DJIA but only those of five
ultra-high-frequency stocks: Cisco System (CSCO), Citigroup (C), General Motors (GM),
Microsoft Corporation (MSFT), and Intel Corporation (INTC). Figures 6.12–6.16 show the
analyses of the intraday transaction data for these stocks traded on April 1–4, 2014; the
number of transactions are stated in the bracket for each stock and day. As usual, (a) always
depicts the plot of logarithm of clock-time volatility estimates log σ̂2

clock,pavg(·,M) (red) and

log σ̃2
clock,pavg(·,m,M) (blue). The log of tick-time volatility estimate log σ̂2

pavg(·,m) (blue)

are visualized in (b) along with the Dahlhaus and Neddermeyer estimator (green)18. The
orange line in (b) is the standard tick-time realized volatility log σ̂2(·), which is robust only
in the noiseless model. In (c), the log of the intensity estimate log λ̂(·,M)(blue) is drawn.
Remind that all plots are on a logarithmic scale so that the blue lines in (b) and (c) sum
up to the blue line in (a) due to the volatility factorization, i.e.

log σ̃2
clock,pavg(·,m,M) = log σ̂2

pavg(·,m) + log λ̂(·,M).

In order to deal with boundary effects caused by the lack of data at the borders, we apply
the local linear fit (over a small number of points at the borders only), which automatically
corrects biases.

Our main interest is in the behavior of volatility plots over a trading day. From Fig-
ures 6.12–6.16 we see that the volatility decomposition gives us some insight into the cause
and structure of volatility. In particular, the results from these four days highlight some
interesting issues:

i) row (a) shows that the alternative estimator based on the volatility decomposition
(blue curve) nicely coincides with the classical clock-time estimator (red curve). This
blue estimator is the sum of the blue estimators in rows (b) and (c) (in log-scale);

ii) the typical volatility smile (U-shape) over a trading day is mainly driven by the
trading intensity in row (c). The tick-time volatility is normally high at the beginning
of trading days and often decreases at the end of the day, which we see in plot (b);

iii) the tick-time volatility estimator log σ̂2
pavg(t,m) in row (b) is in general smoother

than the clock-time estimator log σ̂2
clock,pavg(t,m,M) in row (a) and the intensity

estimator log λ̂(t,M) in row (c) for ultra-high-frequency data, i.e. the fluctuation
in trading intensity in row (c) is the major source of the fluctuation in clock-time
volatility in row (a);

iv) the decomposition enables us to determine to a certain extent the source of volatility
changes; for example, in Figure 6.16 the peak in GM on 04/01/2014 at 15 is mostly
due to the spike of intensity (i.e. most likely due to some general—not company
related—news), or similarly the sudden decrease of the GM on 04/03/2014 at 11.2 is
the effect of tick-time volatility;

18The resulting curve needs to be corrected in our plot, as this estimator uses a one-sided window in
contrast to our two-sided kernel-based estimators. Therefore, the green curve is shifted to the left by a
factor depending on the number of trades; more details can be found in their paper [25].
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v) in row (b), the green and blue lines have almost the same level of volatility, similarly
to their behavior in Figure 6.10 (i) and (ii) of the previous simulation study. This
indicates that the market microstructure noise must be very small19. In particular,
it confirms again that tick-time volatility is usually much smoother than clock-time
volatility and trading intensity.

In most of our examples for highly liquid stocks, the tick-time volatility in row (b) is
considerably smoother than the trading intensity in row (c) during the days, for example in
CSCO between 10 and 13 on 04/01/2014 or between 10 and 12.5 on 04/03/2014. Apart from
its practical interpretation, this feature also has an important consequence for estimation:
microstructure noise only affects the smoother curve (b) and not (c), i.e. coping with
microstructure noise becomes easier since we may choose a larger bandwidth with effectively
more data than with the classical estimator (red curve in (a)). Mathematically this is
reflected in a higher rate of convergence of the estimator (see Chapter 4 and in particular
Table 4.2). We mention again that in these figures, we have chosen on average the same
bandwidth size for all blue and red estimators for the sake of comparability.

From the asymptotic results, we have seen that market microstructure noise plays a
crucial role in the model. In practice, however, at least for the stocks from DJIA in April
2014, the influence of this noise on the spot volatility estimation was shown to be quite
small, which coincides with one of the facts stated in Hansen and Lunde [39]. Moreover,
on all stocks and days considered here, our pre-filtering-based estimators resulted in only
positive values, even though the technique itself does not guarantee this (since the second
term of pre-averaging estimators is subtracted from the first term to eliminate the bias
induced by noise). This also supports the empirical observation that the standard deviation
of the measurement error is very small in practice; if it is large, the second term will
dominate the first, leading to negative values of the pre-averaging estimators. In fact,
standard deviation of the measurement error is so small that one can hardly distinguish
between noise-robust estimates (blue or green curves) and the standard noiseless estimate
(orange) of the spot volatility. Despite this fact, the noise cannot be neglected, especially
when one considers integrated volatility over a longer time period.

Finally, we present the application of these estimators on less liquid assets. Figure 6.17
visualizes the result of spot volatility estimation of GM traded on the NYSE, which is
to some extent different from when it is traded on the NASDAQ; transactions on the
NASDAQ occur more frequently than on the NYSE, typically 2–3 times over a trading
day.

Comparing the results of both exchanges, we see that the estimated clock-time volatility
curve on the different exchanges are almost the same. The shapes of both intensity curves

19so that all estimates lead to almost the same shape and level, even though they are based on different
types of noise models. As was discussed, the quality of pre-averaging estimation (in the sense of variance)
is not as good as that of the realized volatility (orange) or that of the Dahlhaus and Neddermeyer estimate
(green). We conjecture that some of the large-amplitude oscillation of the blue line in (b) owes to this
concern.
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vary in essentially similar ways, whereas the tick-time volatility estimate on the NYSE is
quite rough, owing to the poor quality of pre-averaging estimates on small sample sizes. In
fact, as the number of transactions on the NYSE are fewer than on the NASDAQ for this
particular example, each transaction arising on the NYSE will incorporate the cumulative
information of several trades occurring on the NASDAQ, so that the price change at every
tick of the latter evolves more slowly than that of the former.
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Figure 6.10: Comparison between: (a) pre-averaging estimates log σ̂
2 (adj)
clock,pavg(u) (red), log σ̃

2 (adj)
clock,pavg(u)

(blue) and realized volatility log σ̂2
clock(u) (orange) in additive plus rounding noise models; (b) log σ̂2

pavg(u)
(blue) vs. log σ̂2(u) (orange) vs. log σ̂2

DN (u) (green). In (c), the intensity estimate is derived from real
transaction time of Cisco Systems on April 1, 2014. The additive noise is assumed to be N (0, ω2), and
the rounding error is of one cent. The grey line in (b) is the true tick-time volatility curve: for (i)
σ2(u) = exp(−8), and for (ii)-(iii) σ2(u) = exp(−8 + cos(10uπ)).
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Figure 6.11: ACF of log-returns of CSCO from April 1-29, 2014 (from upper left to bottom right).
The blue dashed line represents an approximate 95% confidence interval. These ACF plots suggest
that the noise process is significantly correlated with only a lag of one transaction.
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Figure 6.12: Cisco Systems (CSCO) traded on April 1 - 4, 2014 on NASDAQ. The clock-time volatility es-
timates σ̂2

clock,pavg(t,M) (red) and σ̃2
clock,pavg(t,m,M) (blue) are plotted in (a). In (b), the transaction-time

volatility estimate σ̂2
pavg(t,m) (blue), the noiseless tick-time realized volatility (orange) and the Dahlhaus

and Neddermeyer estimate (green) are compared. In (c), the intensity curve estimate (blue) is drawn.



6.2. Real Data Analysis 81
−

23
−

21
−

19
−

17

time

(a)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

−
22

−
20

−
18

time

(b)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

−
22

−
20

−
18

timesPlot[int]

−
3

−
2

−
1

0
1

2

(c)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

(i) C on 04/01/2014 (20,144 transactions)

−
23

−
21

−
19

−
17

time

(a)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

−
22

−
20

−
18

time

(b)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

−
22

−
20

−
18

timesPlot[int]

−
3

−
2

−
1

0
1

2

(c)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

(ii) C on 04/02/2014 (16,408 transactions)

−
23

−
21

−
19

−
17

time

(a)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

−
22

−
20

−
18

time

(b)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

−
22

−
20

−
18

timesPlot[int]

−
3

−
2

−
1

0
1

2

(c)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

(iii) C on 04/03/2014 (20,050 transactions)

−
22

−
20

−
18

−
16

time

(a)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

−
22

−
20

−
18

time

(b)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

−
22

−
20

−
18

timesPlot[int]

−
2

−
1

0
1

2
3

(c)

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

(iv) C on 04/04/2014 (24,723 transactions)

Figure 6.13: Citigroup (C) traded on April 1 - 4, 2014 on NASDAQ. The clock-time volatility estimates
σ̂2
clock,pavg(t,M) (red) and σ̃2

clock,pavg(t,m,M) (blue) are plotted in (a). In (b), the transaction-time volatil-
ity estimate σ̂2

pavg(t,m) (blue), the noiseless tick-time realized volatility (orange) and the Dahlhaus and
Neddermeyer estimate (green) are compared. In (c), the intensity curve estimate (blue) is drawn.
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Figure 6.14: Microsoft Corporation (MSFT) traded on April 1 - 4, 2014 on NASDAQ. The clock-time
volatility estimates σ̂2

clock,pavg(t,M) (red) and σ̃2
clock,pavg(t,m,M) (blue) are plotted in (a). In (b), the

transaction-time volatility estimate σ̂2
pavg(t,m) (blue), the noiseless tick-time realized volatility (orange)

and the Dahlhaus and Neddermeyer estimate (green) are compared. In (c), the intensity curve estimate
(blue) is drawn.
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Figure 6.15: Intel Corporation (INTC) traded on April 1 - 4, 2014 on NASDAQ. The clock-time
volatility estimates σ̂2

clock,pavg(t,M) (red) and σ̃2
clock,pavg(t,m,M) (blue) are plotted in (a). In (b), the

transaction-time volatility estimate σ̂2
pavg(t,m) (blue), the noiseless tick-time realized volatility (orange)

and the Dahlhaus and Neddermeyer estimate (green) are compared. In (c), the intensity curve estimate
(blue) is drawn.
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Figure 6.16: General Motors (GM) traded on April 1 - 4, 2014 on NASDAQ. The clock-time volatility es-
timates σ̂2

clock,pavg(t,M) (red) and σ̃2
clock,pavg(t,m,M)(blue) are plotted in (a). In (b), the transaction-time

volatility estimate σ̂2
pavg(t,m) (blue), the noiseless tick-time realized volatility (orange) and the Dahlhaus

and Neddermeyer estimate (green) are compared. In (c), the intensity curve estimate (blue) is drawn.
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Figure 6.17: General Motors (GM) traded on April 1 - 4, 2014 on NYSE (having less liquidity than
NASDAQ). The clock-time volatility estimates σ̂2

clock,pavg(t,M) (red) and σ̃2
clock,pavg(t,m,M) (blue) are

plotted in (a). In (b), the transaction-time volatility estimate σ̂2
pavg(t,m) (blue), the noiseless tick-time

realized volatility (orange) and the Dahlhaus and Neddermeyer estimate (green) are compared. In (c), the
intensity curve estimate (blue) is drawn.
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Chapter 7

Conclusion

In this dissertation we have advocated the use of a spot volatility estimator based on a
volatility decomposition in a time-changed price-model according to the trading times. In
this model clock-time volatility is factorized into the product of two curves, namely tick-
time volatility and trading intensity. Both curves can be identified and we have argued that
both curves contain valuable information about the original volatility curve. For example,
the volatility smile and the increase of volatility at the end of the trading day are in our
opinion solely features of trading intensity, while the influence of company related news
mainly impacts tick-time volatility or both curves.

A finding which is important in our view is that the tick-time volatility curve is often
much smoother than the clock-time volatility curve. This means that the major part of
fluctuations in clock-time volatility is due to fluctuations in the trading intensity. These
findings also have important implications for statistical inference: microstructure noise
does not influence the estimate of trading intensity but influences only the estimator of
tick-time volatility. Since this usually is the smoother curve, we may choose a larger
bandwidth, resulting in a better rate of convergence and helping the estimator to better
cope with microstructure noise. In particular, one may outperform the rate of convergence
of the optimal estimator in the classical diffusion model.

For the mathematical investigation of this model we have introduced an infill asymptotic
approach and derived the asymptotic properties of the new estimator in the case of a
deterministic volatility curve and a deterministic intensity curve of a point process. This
can be extended to account for stochastic volatility and intensity processes and also for a
leverage effect between price process, price variation, and market activities as discussed in
Chapter 5. A comprehensive treatment of this situation seems challenging and is beyond
the scope of this paper. From an applied point of view it is probably also of great interest
to find proper models where the trading intensity depends on past log-prices and where
the volatility has some GARCH-type structure—possibly depending, in addition, on the
past intensity of the point process.
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Appendices

A. Proofs for Chapter 3

Proof of Proposition 3.2. The continuous-time version of the model under above as-
sumptions is given by Xt =

∑
ti≤t σtiUi. For a small δ > 0 we define

til := inf{ti : ti > t} and tiu := sup{ti : ti ≤ t+ δ}

to be the first trading time after t and the last trading time before or at time t + δ,
respectively. Thus, the conditional variance of the price increment over (t, t + δ] is given
by

E
[
(Xt+δ −Xt)

2
∣∣∣ Ft] = E

 ∑
t<ti≤t+δ

σtiUi

2 ∣∣∣ Ft


(∗)
= E

 ∑
t<ti<tiu

σtiUi

2 ∣∣∣ Ft
+ E

2

 ∑
t<ti<tiu

σtiUi

E
[
σtiuUiu

∣∣∣ Ft−iu] ∣∣∣ Ft


+ E
[
E
[
σ2
tiu
U2
iu

∣∣∣ Ft−iu] ∣∣∣ Ft]
= E

 ∑
t<ti<tiu

σtiUi

2 ∣∣∣ Ft
+ E

[
σ2
tiu

∣∣∣ Ft]
= · · ·

= E
[
σ2
tiu

+ σ2
tiu−1

+ ...+ σ2
til

∣∣∣ Ft]
= E

[∫ t+δ

t
σ2
s dNs

∣∣∣ Ft]
= E

[∫ t+δ

t
σ2
s · λs ds

∣∣∣ Ft]
which implies the assertion due to the dominated convergence theorem, as the processes
σt and λt are continuous over [0, T ]. The last equality holds by the martingale property of∫ t

0 σsdMs, since Mt := Nt −
∫ t

0 λsds is a martingale and therefore the stochastic integral
with Mt as integrator is also a martingale. In (∗) we can take σtiu out of the conditional
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expectation, since we have assumed that σt is Ft-predictable, so σti is Fti− -measurable. �

B. Proofs for Chapter 4

B.1. Proofs for Section 4.1

Proof of Proposition 4.3. This proposition is a special case of Proposition 3.2, which
is applied to the rescaled time version of the transaction-time model. Since there is no
leverage effect between W· and N·,T , we are able to give arguments conditional on the
whole process N·,T , i.e.

E
[
(Xto+bT,T −Xto−bT,T )2

]
= E

[(∫ to+bT

to−bT
σ

(
t

T

)
1√
T
dWNt,T

)2
]

= E

∑
ti∈S

σ2

(
ti
T

)
1

T
· E
[(
WNti,T

−WNti−1,T

)2 ∣∣∣ N·,T]


= E

∑
ti∈S

σ2

(
ti
T

)
1

T

 = E
[∫ to+bT

to−bT
σ2

(
t

T

)
1

T
dNt,T

]

=

∫ uo+b

uo−b
σ2(u)λ(u)du,

where S = {ti : ti arrival times of N·,T in (to − bT, to + bT ]}. The last equality is valid un-
der the assumption of the continuity of the tick-time volatility and intensity functions. �

B.2. Proofs for Section 4.2

In what follows, some steps of the proofs are related to martingale theory. Although one
could obtain the same results without using martingale theory, the calculations could be
long and cumbersome.1 Another benefit of using martingale theory in our work is that
we can extend all the proofs more easily to a more general case of stochastic intensity
models, since martingale dynamics are needed in these situations. We define Mt,T :=Nt,T −∫ t

0 λ(s/T )ds (clearly, it is a martingale). Then, it is possible to define a stochastic integral∫ t
0 cs,T dMs,T , where ct,T is a predictable process. We can show that

E
[∫ t

0
cs,T dMs,T

]2

= E
[∫ t

0
cs,Tλ(s/T ) ds

]
; (A.1.)

1Without martingale tools, we would often need to calculate conditional probability/ density/ expecta-
tion, e.g. for t, s > 0

P
(
tj − tj−1 > t

∣∣∣ tj−1 = s
)

= P
(
Nt+s,T −Ns,T = 0

∣∣∣ tj−1 = s
)

= exp

(
−
∫ s+t

s

λ(l/T )dl

)
.
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see e.g. Kuo [54, Chapter 6]. Throughout the proofs, C is used as a generic constant.

Proof of Theorem 4.7. By the isometry (A.1.), we have

E
[
λ̂(uo)−

1

bT

∫ T

0
K

(
t− uoT

bT

)
λ

(
t

T

)
dt

]2

=
1

b2T 2
E
[∫ T

0
K

(
t− uoT

bT

)
dMt,T

]2

=
1

b2T 2

∫ T

0
K2

(
t− uoT

bT

)
λ

(
t

T

)
dt

=
1

bT

∫
R
K2(x)λ(uo + xb)dx → 0,

for b ≤ uo ≤ 1− b with 0 < b ≤ 1/2. A usual bias calculation gives

1

bT

∫ T

0
K

(
t− uoT

bT

)
λ

(
t

T

)
dt− λ(uo) =

∫ (1−uo)/b

−uo/b
K(x)λ(uo + xb)dx− λ(uo)

=

∫
R
K(x) {λ(uo + xb)− λ(uo)} dx,

which implies the consistency of the intensity estimate λ̂(·), since λ(·) is bounded con-
tinuous. To show the asymptotic normality we use the limit theorem for triangular
arrays. First, we divide [0, T ] into MT equidistant subintervals of a fixed length 4,
i.e. MT = bT/4c → ∞. We define 4j := j4 for j = 0, 1, ...,MT and rewrite

λ̂(uo) =

MT∑
i=1

∫ 4i
4i−1

1

bT
K

(
t− uoT

bT

)
dNt,T +

∫ T

4MT

1

bT
K

(
t− uoT

bT

)
dNt,T ,

which gives

√
bT

(
λ̂(uo)−

1

bT

∫ T

0
K

(
t− uoT

bT

)
λ

(
t

T

)
dt

)
=

MT∑
i=1

∫ 4i
4i−1

1√
bT

K

(
t− uoT

bT

)
dMt,T +

∫ T

4MT

1√
bT

K

(
t− uoT

bT

)
dMt,T

=:

MT∑
i=1

Zi,T + R. (A.2.)

Owing to independent increments of Nt,T , the random variables Zi,T , i = 1, ...,MT , are
independent with E[Zi,T ] = 0. We can show that i)

V 2
MT

:=

MT∑
i=1

E[Z2
i,T ]

=

∫ T

0

1

bT
K2

(
t− uoT

bT

)
λ

(
t

T

)
dt−

∫ T

4MT

1

bT
K2

(
t− uoT

bT

)
λ

(
t

T

)
dt

→ λ(uo)

∫
R
K2(x)dx =: V 2,



92 APPENDIX

since

E[Z2
i,T ] = E

[∫ 4i
4i−1

1

bT
K2

(
t− uoT

bT

)
λ

(
t

T

)
dt

]
,

and ii) (Lindeberg’s condition) for all ε > 0,

1

V 2
MT

MT∑
i=1

E
[
Z2
i,T I{|Zi,T |≥ε·VMT }

]
=

1

V 2
MT

MT∑
i=1

E
[
Z2
i,T I

{∣∣∣∫4i4i−1
K( t−uoTbT )dMt,T

∣∣∣≥√bT ·ε·VMT }
]
→ 0

by the dominated convergence theorem, since E
[
Z2
i,T

]
<∞. Thus

∑MT
i=1 Zi,T

D−→ N (0, V 2)

as T → ∞, which implies that (A.2.)
D→ N (0, V 2) as the rest term R is asymptotically

negligible. Similarly, we derive that

E
[
λ̂(uo)

]
− λ(uo) =

1

2
λ(2)(uo)

∫
R
b2x2K(x)dx · I{m′=2} + O

(∫
R
K(x)|xb|m′+γ′dx

)
,

since λ(·) lies in Cm′,γ′ . The assertion of the theorem is therefore verified by the bandwidth
restriction b2(m′+γ′)+1T = o(1). �

B.3. Proofs for Section 4.3

Proof of Proposition 4.9. By virtue of the independence between N·,T and W·, we can
prove the assertion by arguing below conditionally onN·,T .2 Thereby, we see as if the arrival
times ti, i = 1, ..., NT , were a deterministic time sampling. We begin by investigating the
following limit distribution

σ̂2
clock(uo)− E

[
σ̂2
clock(uo)

∣∣∣ N·,T ]√
Var

[
σ̂2
clock(uo)

∣∣∣ N·,T ]
D−→ N (0, 1). (A.3.)

We set

cti,T :=

1
bTK

(
ti−uoT
bT

)
σ2
(
ti
T

)√∑NT
j=1

1
b2T 2K2

(
tj−uoT
bT

)
σ4
(
tj
T

) .
2For example, if a statistic DT D→ N (0, 1) conditional on N·,T , where N (0, 1) is independent of N·,T ,

then

P(DT ≤ d) = E[P(DT ≤ d|N·,T )] → E[limP(DT ≤ d|N·,T )] = P(Z ≤ d),

where Z is a standard normal random variable.
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Conditional on N·,T , the left-hand side of (A.3.) has the same law as (see also (4.2))

NT∑
i=1

cti,T

(
U2
i − 1√

2

)

with
U2
i −1√

2
i.i.d. random variables with mean zero and unit variance and independent of

N·,T . According to Barndorff-Nielsen and Shephard [10, Corollary 3.1], the limit distri-

bution (A.3.) holds, since
∑NT

i=1 c
2
ti,T

= 1 and maxi=1,...,NT |cti,T | → 0.3 To conclude the
result, the denominator is shown to be

bT ·Var
[
σ̂2
clock(uo)

∣∣∣ N·,T ] = 2σ4(uo)λ(uo)

∫
R
K2(x)dx+ op(1), (*)

thus

√
bT

 σ̂
2
clock(uo)− E

[
σ̂2
clock(uo)

∣∣∣ N·,T ]√
2σ4(uo)λ(uo)

∫
RK

2(x)dx

 = (A.3.) ·
√
bT

√
2
∑NT

i=1
1

b2T 2K2
(
ti−uoT
bT

)
σ4
(
ti
T

)
√

2σ4(uo)λ(uo)
∫
RK

2(x)dx

D−→ N (0, 1).

For the derivation of (*), it is sufficient to show that

E

[
NT∑
i=1

1

bT
K2

(
ti − uoT
bT

)
σ4

(
ti
T

)
− σ4(uo)λ(uo)

∫
R
K2(x)dx

]2

→ 0,

which is justified by

E

[
NT∑
i=1

1

bT
K2

(
ti − uoT
bT

)
σ4

(
ti
T

)
−
∫ T

0

1

bT
K2

(
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bT

)
σ4

(
t

T

)
λ

(
t

T

)
dt

]2

= E
[∫ T

0

1

bT
K2

(
t− uoT
bT

)
σ4

(
t

T

)
dMt,T

]2

=

∫ T

0

1

b2T 2
K4

(
t− uoT
bT

)
σ8

(
t

T

)
λ

(
t

T

)
dt

=
1

bT

∫
R
K4(x)σ8(uo + xb)λ(uo + xb)dx → 0

3due to the boundedness of σ2(·) and λ(·),

E

[
NT∑
i=1

K2

(
ti − uoT
bT

)
σ4

(
ti
T

)]
= E

[∫ T

0

K2

(
t− uoT
bT

)
σ4

(
t

T

)
dNt,T

]
= bT

∫
R
K2(x)σ4(uo + xb)λ(uo + xb)dx,

therefore c1 · bT ≤
∑NT
i=1K

2
(
ti−uoT
bT

)
σ4
(
ti
T

)
≤ c2 · bT , for some constants c1 and c2.
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and [∫ T

0

1

bT
K2

(
t− uoT
bT

)
σ4

(
t

T

)
λ

(
t

T

)
dt − σ4(uo)λ(uo)

∫
R
K2(x)dx

]2

=

[∫
R
K2(x)

{
σ4(uo + xb)λ(uo + xb) − σ4(uo)λ(uo)

}]2

→ 0,

since σ2(·) and λ(·) are bounded continuous. Finally, in order to prove the asymptotic
consistency, we still need to provide the negligibility of the estimation bias. Similarly, we
have

E
[
σ̂2
clock(uo)

∣∣∣ N·,T ]− σ2
clock(uo)

=
{
E
[
σ̂2
clock(uo)
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σ2
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E
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σ2
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]
− σ2
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}

=
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1
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(
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(
t

T

)
dMt,T +

∫
R
K(x)

{
σ2
clock(uo + xb)− σ2

clock(uo)
}
dx

= op(1).

�

Proof of Theorem 4.10. We rewrite the left-hand side of (4.6) as

√
bT
{
σ̂2
clock(uo)− σ2

clock(uo)
}

=
√
bT
{
σ̂2
clock(uo)− E

[
σ̂2
clock(uo)

∣∣∣ N·,T ]}
+
√
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E
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clock(uo)
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[
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+
√
bT
{
E
[
σ̂2
clock(uo)

]
− σ2

clock(uo)
}

= : (A) + (B) + (C).

The first term (A) has already been done in the previous proposition, having the normal
limit distribution N

(
0, 2σ4(uo)λ(uo)

∫
RK

2(x)dx
)

which is independent of N·,T . Next,
similar to the proof for the intensity estimate we obtain

(B) =
√
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}
D−→ N

(
0, σ4(uo)λ(uo)
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)
.

And lastly, the bias term (C) is equal to

√
bT
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K

(
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)
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(
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T

)
λ

(
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}
=
√
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{∫
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}
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}
=
√
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2
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∫
R
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}
+ o(1),
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as b2α+1T → 0, with α = min {m+ γ,m′ + γ′}. Thus, the claim of the theorem is justified
by all these terms4. �

Proof of Remark 4.11 ii). This proof relies on the same concept of the proof for σ̂2
clock(·).

The conditional expectation and variance of KQ(uo) are given by

E
[
KQ(uo)

∣∣∣ N·,T ] =

NT∑
i=1

1

bT
K

(
ti − uoT
bT

)
σ4

(
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T

)
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bT

)
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)
.

Direct calculations yield

Var [KQ(uo)] = E
[
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clock(uo)
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E
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(
t
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dt → 0.

The bias term vanishes asymptotically by the continuity of parameter functions, that is

E [KQ(uo)]− σ4(uo)λ(uo) =

∫
R
K(x)

{
σ4(uo + xb)λ(uo + xb)− σ4(uo)λ(uo)

}
dx

→ 0.

�

Proof of Proposition 4.12. By following the arguments of the proof of Proposi-
tion 4.9, we get conditional on N·,T

σ̂2(uo)− E
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∣∣∣ N·,T ]√
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√∑N
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√
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)
D−→ N (0, 1)

4We note that the limit of (A) + (B) can be verified by its characteristic function, i.e. for all t ∈ R

E [exp (it {(A) + (B)})] = E
[
exp (it(B)) · E

[
exp (it(A))

∣∣∣ N·,T ]]
→ E

[
lim exp (it(B)) · limE

[
exp (it(A))

∣∣∣ N·,T ]]
(by dominated convergence theorem)

→ exp

(
− t

2a2

2

)
· limE [exp (it(B))] = exp

(
− t

2(a2 + b2)

2

)
,

since the limit of (A) is independent of {N·,T }. N (0, a2) and N (0, b2) are the limits of (A) and (B)
respectively.
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with (U2
j − 1)/

√
2 ∼i.i.d. N (0, 1), since

∑
j C

2
j,N = 1 and maxj |Cj,N | → 0. Further we look

at the denominator

N ·Var
[
σ̂2(uo)

∣∣∣ N·,T ] = N · 2

H2
1,N

N∑
j=−N

k2

(
j

N

)
σ4

(
tio−j
T

)

= N · 2

H2
1,N

N∑
j=−N

k2

(
j

N

){
σ4

(
tio−j
T

)
− σ2(uo)

}
+ N · 2

H2
1,N

N∑
j=−N

k2

(
j

N

)
σ2(uo)

= op(1) + 2σ2(uo)

∫
R
k2(x)dx,

since

E

N · 2

H2
1,N

N∑
j=−N

k2

(
j

N

) ∣∣∣∣σ4

(
tio−j
T

)
− σ2(uo)

∣∣∣∣


≤ C · N
2

H2
1,N

1

N

N∑
j=−N

k2

(
j

N

)
E
[∣∣∣∣ tio−jT

− to
T

∣∣∣∣γ]

≤ C · N
γ

T γ
N2

H2
1,N

1

N

N∑
j=−N

k2

(
j

N

)(
|j|
N

)γ
→ 0 (see Lemma 1 below)

as N/T → 0. This completes the proof. �

For the bias derivation of the tick-time volatility estimate σ̂2(·) (and also σ̂2
pavg(·) in the

next section of microstructure noise models) we will need the following results—Lemma 1
and Corollary 1. In fact, these results are investigated under a general setting for point
processes allowing for stochastic intensity. More precisely, given a filtered probability space
(Ω,F , (Ft,T )t∈[0,T ] ,P), a point process Nt,T has an Ft,T -intensity λ(t/T ) if the conditions

in Definition 2.1 hold, cf. Brémaud [16, D7].

Lemma 1 Suppose the intensity process λ(u) is bounded continuous and bounded away
from zero uniformly in u ∈ [0, 1], with probability 1. Then, for j ∈ N and 0 < l ≤ 4, it
implies that

i) E
[∫ ti+j
ti

λ(s/T )ds
∣∣∣ Fti,T ] = j,

ii) E
[(∫ ti+j

ti
λ(s/T )ds

)2 ∣∣∣ Fti,T] = j2 + j, and

iii) E
[
(ti+j − ti)l

∣∣∣ Fti,T ] = O(jl).

Proof. Since Mt,T = Nt,T −
∫ t

0 λ(s/T )ds is a martingale and the arrival times ti are
stopping times, we get

j = E
[
Nti+j ,T −Nti,T

∣∣∣ Fti,T ] = E
[∫ ti+j

ti

λ(s/T )ds
∣∣∣ Fti,T]
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by the optional sampling theorem. Moreover, it is clear that M̃t,T := M2
t,T −

∫ t
0 λ(s/T )ds

is another martingale, thus

0 = E
[
M̃ti+j ,T − M̃ti,T

∣∣∣ Fti,T ]
= E

[
M2
ti+j ,T −M

2
ti,T

∣∣∣ Fti,T ]− E
[∫ ti+j

ti

λ(l/T )dl
∣∣∣ Fti,T]

= E
[(
Mti+j ,T −Mti,T

)2 ∣∣∣ Fti,T ]− j
= E

[(
j −

∫ ti+j

ti

λ(l/T )dl

)2 ∣∣∣ Fti,T
]
− j,

i.e. E
[(∫ ti+j

ti
λ(s/T )ds

)2 ∣∣∣ Fti,T] = j2 + j. Therefore we have shown i) and ii). In fact,

iii) has also been displayed for l = 1, 2, since λ is bounded and bounded away from zero.
Burkholder-Davis-Gundy’s inequality (see Jacod and Protter [48, p.39]) yields

E
[∣∣Mti+j ,T −Mti,T

∣∣4 ∣∣∣ Fti,T ] ≤ C · E

[(∫ ti+j

ti

λ(s/T )ds

)2 ∣∣∣ Fti,T
]

≤ E
[
(ti+j − ti)2

∣∣∣ Ftj ,T ] = O(j2).

By applying Hölder’s inequality, E
[∣∣Mti+j ,T −Mti,T

∣∣3 ∣∣∣ Fti,T ] = O(j3/2). Hence

E
[
(ti+j − ti)4

∣∣∣ Fti,T ] ≤ C · E

[(∫ ti+j

ti

λ(s/T )ds

)4 ∣∣∣ Fti,T
]

= C · E
[(
Mti,T −Mti+j ,T + j

)4 ∣∣∣ Fti,T ]
= C ·

(
E
[(
Mti,T −Mti+j ,T

)4 ∣∣∣ Fti,T ]+ 3jE
[(
Mti,T −Mti+j ,T

)3 ∣∣∣ Fti,T ]
+ 6j2E

[(
Mti,T −Mti+j ,T

)2 ∣∣∣ Fti,T ]+ 3j3E
[
Mti,T −Mti+j ,T

∣∣∣ Fti,T ]+ j4
)

= O(j4),

since E
[
Mti,T −Mti+j ,T

∣∣∣ Fti,T ] = 0. The rest can be easily justified by employing Hölder’s

inequality. �

Corollary 1 Let paths of λ(·) lie in Cm′,γ′ [0, 1] and satisfy Assumption 4.5 i). For j ∈ N,
we get

i) E
[
ti+j − ti

∣∣∣ Fti,T ] = j
λ(ti/T ) −

1
2
λ(1)(ti/T )
λ2(ti/T )

j2

T I{m′ 6=0} +O
(
j1+m

′+γ′

Tm′+γ′
I{m′ 6=2}

)
+O

(
j3

T 2 I{m′=2}

)
,

ii) E
[
(ti+j − ti)2

∣∣∣ Fti,T ] = j2+j
λ2(ti/T )

+ O
(
j2+γ

′

T γ′
I{m′=0} + j3

T I{m′ 6=0}

)
.
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Proof. By Lemma 1 we get

E
[
λ(ti/T )(ti+j − ti)

∣∣∣ Fti,T ] = E
[∫ ti+j

ti

{λ(ti/T )− λ(l/T )} dl
∣∣∣ Fti,T]︸ ︷︷ ︸

=:(Λ)

+ j.

Therefore, the first statement i) can be verified by considering the following cases: (for
ω ∈ Ω)

a) for λ(·)(ω) ∈ C0,γ′ [0, 1],

(Λ) ≤ C ·

[∫ ti+j

ti

(
l − ti
T

)γ′
dl
∣∣∣ Fti,T

]

≤ C · E

[
(ti+j − ti)1+γ′

T γ′

∣∣∣ Fti,T
]
≤ C · j

1+γ′

T γ′
; (see Lemma 1)

b) for λ(·)(ω) ∈ C1,γ′ [0, 1],

(Λ) = − λ(1)

(
ti
T

)
E
[∫ ti+j

ti

(
l − ti
T

)
dl
∣∣∣ Fti,T]+O

(
E

[∫ ti+j

ti

(
l − ti
T

)1+γ′

dl
∣∣∣ Fti,T

])

= − 1

2
λ(1)

(
ti
T

)
E
[

(ti+j − ti)2

T

∣∣∣ Fti,T]+O

(
E

[
(ti+j − ti)2+γ′

T 1+γ′

∣∣∣ Fti,T
])

(∗)
= − 1

2

λ(1)(ti/T )

λ2(ti/T )

j2

T
+O

(
j2+γ′

T 1+γ′

)
;

c) for λ(·)(ω) ∈ C2,γ′ [0, 1],

(Λ) = − λ(1)

(
ti
T

)
E
[∫ ti+j

ti

(
l − ti
T

)
dl
∣∣∣ Fti,T]+O

(
E

[∫ ti+j

ti

(
l − ti
T

)2

dl
∣∣∣ Fti,T

])

= − 1

2
λ(1)

(
ti
T

)
E
[

(ti+j − ti)2

T

∣∣∣ Fti,T]+O

(
E
[

(ti+j − ti)3

T 2

∣∣∣ Fti,T])
(∗)
= − 1

2

λ(1)(ti/T )

λ2(ti/T )

j2

T
+O

(
j3

T 2

)
.

To show (∗) in b) and c), we have to apply the result ii) beforehand. Without doing
this we can approximate them to only the order O(j2/T ); this order is, however, enough



99

to show the assertion ii). More precisely, similar to a) - c) without (∗) we get

E

[(∫ ti+j

ti

λ(ti/T )dl

)2

−
(∫ ti+j

ti

λ(l/T )dl

)2 ∣∣∣ Fti,T
]

= E


∫ ti+j

ti

{λ(ti/T )− λ(l/T )} dl︸ ︷︷ ︸
see i) without (∗)

·
∫ ti+j

ti

{λ(ti/T ) + λ(l/T )} dl︸ ︷︷ ︸
=O(ti+j−ti)

∣∣∣ Fti,T


= O

(
j2+γ′

T γ′
I{m′=0} +

j3

T
I{m′ 6=0}

)

by Lemma 1. In particular,

E
[
λ2(ti/T )(ti+j − ti)2

∣∣∣ Fti,T ] = E

[(∫ ti+j

ti

λ(l/T )dl

)2 ∣∣∣ Fti,T
]

+ E

[(∫ ti+j

ti

λ(ti/T )dl

)2

−
(∫ ti+j

ti

λ(l/T )dl

)2 ∣∣∣ Fti,T
]

= j2 + j +O

(
j2+γ′

T γ′
I{m′=0} +

j3

T
I{m′ 6=0}

)
.

�

The next lemma is an application of Corollary 1 applied to the case of deterministic
intensity. This result will be often used in the coming proofs, and therefore we explicitly
state it here; the proof is straightforward.

Lemma 2 Under the same conditions as stated in Corollary 1, if the intensity λ(·) is
deterministic, we have

i) E [tio+j − tio ] = j
λ(uo)

− 1
2
λ(1)(uo)
λ2(uo)

j2

T I{m′ 6=0} +O

(
|j|1+m′+γ′

Tm′+γ′
I{m′ 6=2}

)
+O

(
|j|3
T 2 I{m′=2}

)
,

ii) E
[
(tio+j − tio)2

]
= j2+j

λ2(uo)
+O

(
|j|2+γ′

T γ
′ I{m′=0} + |j|3

T I{m′ 6=0}

)
,

for j ∈ Z, where io := inf {i : ti ≥ uoT} for a given (fixed) time point uo ∈ (0, 1). �

Proof of Theorem 4.13. For notational simplicity we will examine only the case of
twice-differentiable functions, i.e. m = m′ = 2 (other cases can be examined in much the
same way). For this bias derivation, we will have to use Lemmas 1 and 2 again and again.
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For σ(·) ∈ C2,γ and λ(·) ∈ C2,γ′ , we can expand

√
N

 1

H1,N

N∑
j=−N

k

(
j

N

){
σ2

(
tio−j
T

)
− σ2

(
to
T

)}
=

√
N

H1,N

N∑
j=−N

k

(
j

N

)
×

×

{
(σ2(uo))

(1)

(
tio−j
T
− to
T

)
+

(σ2(uo))
(2)

2

(
tio−j
T
− to
T

)2

+O

(∣∣∣∣ tio−jT
− to
T

∣∣∣∣2+γ
)}

= : (A) + (B) + (C).

First, we prove that (A) = op(1) by separating it into (A1) and (A2), where

(A1) =

√
N

H1,N
(σ2(uo))

(1)
N∑

j=−N
k

(
j

N

)(
tio−j
T
− tio
T

)
and

(A2) =

√
N

H1,N
(σ2(uo))

(1)
N∑

j=−N
k

(
j

N

)(
tio
T
− to
T

)
.

Obviously, (A2) is of order op(1). We will show below that E
[
(A1)2

]
= o(1), which results

that (A1) = op(1). By the symmetry of the kernel function k we can rewrite

(A1) =

√
N

H1,N
(σ2(uo))

(1)
N∑
j=1

k

(
j

N

){(
tio−j
T
− tio
T

)
+

(
tio+j
T
− tio
T

)}
,

thus (by denoting σ′. := (σ2(uo))
(1), σ′′. := (σ2(uo))

(2), λ′. := (λ(uo))
(1) and λ. := λ(uo) )

E
[
(A1)2

]
=

N

H2
1,N

σ′2.

N∑
i,j=1

k

(
i

N

)
k

(
j

N

)
×

×

(
E
[(

tio−i
T
− tio
T

)(
tio−j
T
− tio
T

)]
+ E

[(
tio−i
T
− tio
T

)(
tio+j
T
− tio
T

)]

+ E
[(

tio+i
T
− tio
T

)(
tio−j
T
− tio
T

)]
+ E

[(
tio+i
T
− tio
T

)(
tio+j
T
− tio
T

)])
=: (I1) + (I2) + (I3) + (I4).

Since Nt,T has independent increments, the non-overlapping interarrival times are indepen-
dent, particularly E [(ti − tj)(tk − tl)] = E [ti − tj ]E [tk − tl] for l < k ≤ j < i. Therefore,
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by Lemma 2

(I2) =
N

H2
1,N

σ′2.

N∑
i,j=1

k

(
i

N

)
k

(
j

N

)
E
[
tio−i
T
− tio
T

]
E
[
tio+j
T
− tio
T

]

=
N

T 2
σ′2.

1

H2
1,N

N∑
i,j=1

k

(
i

N

)
k

(
j

N

)
×

×
{
−i
λ.
− 1

2

λ′.
λ2
.

i2

T
+O

(
i3

T 2

)}{
j

λ.
− 1

2

λ′.
λ2
.

j2

T
+O

(
j3

T 2

)}
=: (I2,1) + ...+ (I2,9)

with

(I2,1) =− N3

T 2
· σ
′2
.

λ2
.

N2

H2
1,N

(
1

N

N∑
i=1

k

(
i

N

)
i

N

)2

,

(I2,2) =
N4

T 3
· σ
′2
.

2

λ′.
λ3
.

N2

H2
1,N

(
1

N

N∑
i=1

k

(
i

N

)
i

N

) 1

N

N∑
j=1

k

(
j

N

)
j2

N2

 ,

(I2,3) = O

N5

T 4
· N

2

H2
1,N

(
1

N

N∑
i=1

k

(
i

N

)
i

N

) 1

N

N∑
j=1

k

(
j

N

)
j3

N3

 ,

(I2,4) =− N4

T 3
· σ
′2
.

2

λ′.
λ3
.

N2

H2
1,N

 1

N

N∑
j=1

k

(
j

N

)
j

N

( 1

N

N∑
i=1

k

(
i

N

)
i2

N2

)
,

((I2,2) cancels out (I2,4))

(I2,5) =
N5

T 4
· σ
′2
.

4

λ′2.
λ4
.

N2

H2
1,N

(
1

N

N∑
i=1

k

(
i

N

)
i2

N2

)2

,

(I2,6) = O

N6

T 5
· N

2

H2
1,N

(
1

N

N∑
i=1

k

(
i

N

)
i2

N2

) 1

N

N∑
j=1

k

(
j

N

)
j3

N3

 ,

(I2,7) = O

N5

T 4
· N

2

H2
1,N

(
1

N

N∑
i=1

k

(
i

N

)
i3

N3

) 1

N

N∑
j=1

k

(
j

N

)
j

N

 ,

(I2,8) = O

N6

T 5
· N

2

H2
1,N

(
1

N

N∑
i=1

k

(
i

N

)
i3

N3

) 1

N

N∑
j=1

k

(
j

N

)
j2

N2

 and

(I2,9) = O

N7

T 6
· N

2

H2
1,N

(
1

N

N∑
i=1

k

(
i

N

)
i3

N3

)2
 .

In particular, we obtain
(I2) = (I2,1) + o(1) (A.4.)
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if N5/T 4 → 0 (which is indeed satisfied by our segment length condition N4/T 3 → 0). We
will see later that (I2,1) will be eliminated so that (I2) = o(1). Let us continue to (I4).

(I4) =
N

T 2
· σ′2.

1

H2
1,N

N∑
i=1

k2

(
i

N

)
E
[
(tio+i − tio)2

]
+
N

T 2
· σ′2.

1

H2
1,N

∑
i 6=j,j<i

k

(
i

N

)
k

(
j

N

)
E [(tio+i − tio)(tio+j − tio)]

+
N

T 2
· σ′2.

1

H2
1,N

∑
i 6=j,j>i

k

(
i

N

)
k

(
j

N

)
E [(tio+i − tio)(tio+j − tio)]

=: (I4,1) + (I4,2) + (I4,3),

where

(I4,1) =
N

T 2
· σ′2.

1

H2
1,N

N∑
i=1

k2

(
i

N

){
i2 + i

λ2
.

+O

(
i3

T

)}
→ 0, (by Lemma 2)

and

(I4,2) =
N

T 2
· σ′2.

1

H2
1,N

∑
i 6=j,j<i

k

(
i

N

)
k

(
j

N

)
E
[
(tio+i − tio+j)(tio+j − tio) + (tio+j − tio)2

]
=: (I4,2,1) + (I4,2,2).

Again by the independence of interarrival times and Lemma 2 we get

(I4,2,1) =
N

T 2
· σ′2.

1

H2
1,N

∑
i 6=j,j<i

k

(
i

N

)
k

(
j

N

)
E [tio+i − tio+j ]E [tio+j − tio ]

=
N

T 2
· σ′2.

1

H2
1,N

∑
i 6=j,j<i

k

(
i

N

)
k

(
j

N

){
E [tio+i − tio ]E [tio+j − tio ]− (E [tio+j − tio ])

2
}

=
N3

T 2
· σ
′2
.

λ2
.

N2

H2
1,N

1

N2

∑
i 6=j,j<i

k

(
i

N

)
k

(
j

N

)
i

N

j

N

− N3

T 2
· σ
′2
.

λ2
.

N2

H2
1,N

1

N2

∑
i 6=j,j<i

k

(
i

N

)
k

(
j

N

)
j2

N2
+ o(1)

=: (I4,2,1,1) + (I4,2,1,2) + o(1)

as N4/T 3 → 0 (in the same way as in the derivation of (I2)). The next term

(I4,2,2) =
N

T 2
· σ′2.

1

H2
1,N

∑
i 6=j,j<i

k

(
i

N

)
k

(
j

N

)
E
[
(tio+j − tio)2

]
=

N

T 2
· σ′2.

1

H2
1,N

∑
i 6=j,j<i

k

(
i

N

)
k

(
j

N

){
j2 + j

λ2
.

+O

(
j3

T

)}

=
N3

T 2
· σ
′2
.

λ2
.

N2

H2
1,N

1

N2

∑
i 6=j,j<i

k

(
i

N

)
k

(
j

N

)
j2

N2
+ o(1)



103

as N4/T 3 → 0. Evidently, the first term of (I4,2,2) wipes out (I4,2,1,2). Furthermore, by
changing the role of i and j, the same results can be derived for (I4,3), and therefore

(I4) = (I4,2,1,1) + (I4,3,1,1) + o(1).

Fortunately, we see that the sum of (I4,2,1,1) and (I4,3,1,1) is exactly the negative of (I2,1)
in (A.4.), thus

(I2) + (I4) = o(1) as N4/T 3 → 0.

Analogously, we can show that (I1) + (I3) = o(1), so we can conclude that (A1) is of
order op(1). Finally, the negligibility of (B) and (C) is done by

E |(B)| =
√
N

T 2
· σ
′′
.

2

N

H1,N

1

N

N∑
j=−N

k

(
j

N

)
E
[
(tio−j − to)2

]
=

√
N

T 2
· σ
′′
.

2

N

H1,N

1

N

N∑
j=−N

k

(
j

N

){
j2

λ2
.

− j

λ2
.

+O

(
|j|3

T

)}
= o(1),

and

E |(C)| = O

 √N
H1,N

N∑
j=−N

k

(
j

N

)
E

[∣∣∣∣ tio−jT
− to
T

∣∣∣∣2+γ
]

= O

 N

H1,N

√
NN2+γ

T 2+γ

1

N

N∑
j=−N

k

(
j

N

)
j2+γ

N2+γ

 = o(1).

The assertion of the limit distribution is the consequence of this bias derivation and
the limit distribution in Proposition 4.12. �

Proof of Theorem 4.14. The basic idea of how to derive this limit distribution has
already been demonstrated in an example before the theorem. Here, we present only
the case of m = 0 explicitly. Other cases (m = 1, 2) can be determined by the same
considerations with the corresponding restriction on the window size b and the segment
length N . Interestingly, the bias term in the case of m′ = 2 does not vanish.

Case 1: m = 0, m′ = 0. From Theorems 4.7 and 4.13 it is necessary to restrict b and
N such that

N = o
(
T

2γ
1+2γ

)
and bT = o

(
T

2γ′
1+2γ′

)
in order to get those limit distributions. We divide it again into a), b) and c):
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a) If γ = γ′ then N = O(bT ). This gives

√
N
{
σ̂2(uo)λ̂(uo)− σ2(uo)λ(uo)

}
= λ̂(uo)︸ ︷︷ ︸

P−→λ(uo)

√
N
{
σ̂2(uo)− σ2(uo)

}
+ σ2(uo)

√
N√
bT︸ ︷︷ ︸

=
√
co

·
√
bT
{
λ̂(uo)− λ(uo)

}

D−→ N
(

0, 2σ4(uo)λ
2(uo)

∫
R
k2(x)dx + coσ

4(uo)λ(uo)

∫
R
K2(x)dx

)
,

where the limit distribution of these two summands is attained by the same arguments as
in Theorem 4.10.

b) If γ < γ′ then N = o(bT ). This leads to

√
N
{
σ̂2(uo)λ̂(uo)− σ2(uo)λ(uo)

}
= λ̂(uo) ·

√
N
{
σ̂2(uo)− σ2(uo)

}
D−→ N

(
0, 2σ4(uo)λ

2(uo)

∫
R
k2(x)dx

)
.

c) If γ > γ′ then bT = o(N), which implies that

√
bT
{
σ̂2(uo)λ̂(uo)− σ2(uo)λ(uo)

}
= σ2(uo) ·

√
bT
{
λ̂(uo)− λ(uo)

}
D−→ N

(
0, σ4(uo)λ(uo)

∫
R
K2(x)dx

)
.

Case 2: m = 0, m′ = 1. Accordingly, b and N are restricted to

N = o
(
T

2γ
1+2γ

)
and bT = o

(
T

2+2γ′
3+2γ′

)
,

which yields that N = o(bT ) always holds. Therefore

√
N
{
σ̂2(uo)λ̂(uo)− σ2(uo)λ(uo)

}
D−→ N

(
0, 2σ4(uo)λ

2(uo)

∫
R
k2(x)dx

)
.

Case 3: m = 0, m′ = 2. The smoothing parameters are restricted to

N = o
(
T

2γ
1+2γ

)
and bT = o

(
T

4+2γ′
5+2γ′

)
,

in particular N = o(bT ). As a consequence, we get

√
N
{
σ̂2(uo)λ̂(uo)− σ2(uo)λ(uo)− σ2(uo) ·BIASλ

}
= λ̂(uo) ·

√
N
{
σ̂2(uo)− σ2(uo)

}
+ σ2(uo)

√
N√
bT
·
√
bT
{
λ̂(uo)− λ(uo)−BIASλ

}
D−→ N

(
0, 2σ4(uo)λ

2(uo)

∫
R
k2(x)dx

)
.
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With respect to the above conditions on N and b, the bias term
√
Nσ2(uo)BIASλ vanishes

asymptotically, therefore

√
N
{
σ̂2(uo)λ̂(uo)− σ2(uo)λ(uo)

}
D−→ N

(
0, 2σ4(uo)λ

2(uo)

∫
R
k2(x)dx

)
.

�

B.4. Proofs for Section 4.4

As the proofs in this section are quite long, we have omitted some details that are similar
to those of the preceding section in the noiseless situation. As usual, C is used as a generic
constant.

Proof of Theorem 4.15. First we will focus on the asymptotic normality of the statistic

σ̂2
clock,pre(uo) :=

1

b

1

g2

MT−1∑
i=0

K

(
tiH − uoT

bT

)(
4Y tiH ,T

)2
− 1

2bH

∑H−1
l=1 h2(l/H)

g2

NT∑
i=1

K

(
ti − uoT
bT

)(
Yti,T − Yti−1,T

)2
with MT := bNT /Hc being the random number of blocks. The first term consists of
non-overlapping blocks of data so that, conditionally on N·,T , a central limit theorem for
independent triangular arrays can be applied. The second term of σ̂2

clock,pre(·) remains

the same as that of σ̂2
clock,pavg(·) and plays no role in the limit distribution; however, it

corrects the bias caused by the additive microstructure noise. In the end of the proof, we
will show that the distinction between the two estimates σ̂2

clock,pre(·) and σ̂2
clock,pavg(·) is

asymptotically negligible so that both have the same limit distribution.

We divide the proof into following parts. Parts (I)−(III) concern the limit distribution,
where the rate of convergence will be balanced by the choice of the block size H. Parts
(IV )−(V ) are related to biases; especially (V ) deals with the bias caused by the additional
noise.

(I)

√
bT

H

{
1

b

1

g2

MT−1∑
i=0

K

(
tiH − uoT

bT

){(
4XtiH ,T

)2 − E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ]}} D−→ N (0, η2
A),

(II)
√
bH

{
1

b

2

g2

MT−1∑
i=0

K

(
tiH − uoT

bT

)(
4XtiH ,T

) (
4εiH

)} D−→ N (0, η2
B), and

(III)

√
bH3

T

{
1

b

1

g2

MT−1∑
i=0

K

(
tiH − uoT

bT

){(
4εiH

)2 − E
[(
4εiH

)2]}} D−→ N (0, η2
C).

Furthermore, under the condition H = δ·T 1/2 for δ ∈ (0,∞) and the condition b2α+1T 1/2 →
0 with α = min {m+ γ,m′ + γ′}, the biases are negligible in the limit, i.e.
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(IV )
√
bT 1/2

{
1

b

1

g2

MT−1∑
i=0

K

(
tiH − uoT

bT

)
E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ]− σ2(uo)λ(uo)−BIAS

}
= op(1), and

(V )
√
bT 1/2

(
1

b

1

g2

MT−1∑
i=0

K

(
tiH − uoT

bT

)
E
[(
4εiH

)2]
− 1

2bH

∑H−1
l=1 h2(l/H)

g2

NT∑
i=1

K

(
ti − uoT
bT

)(
Yti,T − Yti−1,T

)2)
= op(1).

We set the left-hand side of (I) to be
∑MT−1

i=0 Ai,T , where

Ai,T =

√
bT

H

1

b

1

g2
K

(
tiH − uoT

bT

){(
4XtiH ,T

)2 − E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ]} .
We see that conditional on N·,T , {Ai,T }i=0,...,MT−1 is an independent triangular array, so
it is sufficient to show that (see e.g. Hall and Heyde [38, Corollary 3.1])

a)

MT−1∑
i=0

E
[
A2
i,T

∣∣∣ N·,T ] P−→ η2
A and b)

MT−1∑
i=0

E
[
A4
i,T

∣∣∣ N·,T ] P−→ 0.

Corresponding to independent increments of X·,T , it gives

MT−1∑
i=0

E
[
A2
i,T

∣∣∣ N·,T ]
=

MT−1∑
i=0

T

bH

1

g2
2

K2

(
tiH − uoT

bT

){
E
[(
4XtiH ,T

)4 ∣∣∣ N·,T ]− (E [(4XtiH ,T

)2 ∣∣∣ N·,T ])2
}

=

MT−1∑
i=0

2

H

1

bT

1

g2
2

K2

(
tiH − uoT

bT

)
×

×


H−1∑
l=1

g4

(
l

H

)
σ4

(
tiH+l

T

)
+

(
H−1∑
l=1

g2

(
l

H

)
σ2

(
tiH+l

T

))2

(see (a1) and (a2) below)

=

NT∑
i=1

2

H2

1

bT

1

g2
2

K2

(
ti − uoT
bT

)
σ4

(
ti
T

)
H−1∑
l=1

g4

(
l

H

)
+

(
H−1∑
l=1

g2

(
l

H

))2
 + op(1)

(see (a3) and (a4) below)
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=
2

H2

(
∑
g2(l/H))2

g2
2

NT∑
i=1

1

bT
K2

(
ti − uoT
bT

)
σ4

(
ti
T

)
+ op(1)

P−→ 2σ4(uo)λ(uo)

∫
R
K2(x)dx.

(a1) : by independent increments of X·,T ,

E
[
(4XtiH ,T )4

∣∣∣ N·,T ] = E

{H−1∑
l=1

g

(
l

H

)(
XtiH+l,T

−XtiH+l−1,T

)}4 ∣∣∣ N·,T


=
H−1∑
l=1

g4

(
l

H

)
E
[(
XtiH+l,T

−XtiH+l−1,T

)4 ∣∣∣ N·,T ]
+ 3

∑
l 6=l′

g2

(
l

H

)
g2

(
l′

H

)
E
[(
XtiH+l,T

−XtiH+l−1,T

)2 ∣∣∣ N·,T ]×
× E

[(
XtiH+l′,T −XtiH+l′−1,T

)2 ∣∣∣ N·,T]

= 3

H−1∑
l=1

g4

(
l

H

)
σ4

(
tiH+l

T

)
1

T 2
+ 3

(
H−1∑
l=1

g2

(
l

H

)
σ2

(
tiH+l

T

)
1

T

)2

−
H−1∑
l=1

g4

(
l

H

)
σ4

(
tiH+l

T

)
1

T 2
.

(a2) :

(
E
[
(4XtiH ,T )2

∣∣∣ N·,T ])2
=

(
H−1∑
l=1

g2

(
l

H

)
E
[(
XtiH+l,T

−XtiH+l−1,T

)2 ∣∣∣ N·,T ])2

=

(
H−1∑
l=1

g2

(
l

H

)
σ2

(
tiH+l

T

)
1

T

)2

.

(a3) : (and (a4) analogously)

H ·
MT−1∑
i=0

1

H

1

bT

1

g2
2

K2

(
tiH − uoT

bT

)H−1∑
l=1

g4

(
l

H

)
σ4

(
tiH+l

T

)

−
NT∑
j=1

1

H

1

bT

1

g2
2

K2

(
tj − uoT
bT

)H−1∑
l=1

g4

(
l

H

)
σ4

(
tbj/Hc·H+l

T

)
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+

NT∑
j=1

1

H

1

bT

1

g2
2

K2

(
tj − uoT
bT

)H−1∑
l=1

g4

(
l

H

)
σ4

(
tbj/Hc·H+l

T

)

−
NT∑
j=1

1

H

1

bT

1

g2
2

K2

(
tj − uoT
bT

)H−1∑
l=1

g4

(
l

H

)
σ4

(
tj
T

)
= : (∗) + (∗∗)

= O

(
H

bT

)
+Op

(∣∣∣∣HT
∣∣∣∣γ) = op(1),

since H/bT → 0. As K has bounded first derivatives and σ(·) ∈ Cm,γ ,

(∗) ≤ C ·
NT∑
j=1

1

H

1

bT

∣∣∣∣K2

(
tbj/Hc·H − uoT

bT

)
−K2

(
tj − uoT
bT

)∣∣∣∣ · H−1∑
l=1

g4

(
l

H

)

≤ C ·
NT∑
j=1

1

bT

∣∣∣(K2(...)
)(1)
∣∣∣ ∣∣∣∣ tbj/Hc·H − tjbT

∣∣∣∣ · 1

H

H−1∑
l=1

g4

(
l

H

)
= O

(
H

bT

)
,

(see also Lemma 2), and

(∗∗) ≤ C ·
NT∑
j=1

1

H

1

bT
K2

(
tj − uoT
bT

)H−1∑
l=1

g4

(
l

H

) ∣∣∣∣σ4

(
tbj/Hc·H+l

T

)
− σ4

(
tj
T

)∣∣∣∣
≤ C · 1

H

H−1∑
l=1

g4

(
l

H

)
·
NT∑
j=1

1

bT
K2

(
tj − uoT
bT

)
·O
(∣∣∣∣HT

∣∣∣∣γ) = Op

(∣∣∣∣HT
∣∣∣∣γ) .

We now turn to condition b):

MT−1∑
i=0

E
[
A4
i,T

∣∣∣ N·,T ]
≤ C · T 2

b2H2

MT−1∑
i=0

K4

(
tiH − uoT

bT

)
E
[{(
4XtiH ,T

)2 − E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ]}4 ∣∣∣ N·,T]

≤ C · T 2

b2H2

MT−1∑
i=0

K4

(
tiH − uoT

bT

)(H−1∑
l=1

g2

(
l

H

))4
1

T 4
(see (***))

= op(1),



109

since H/bT → 0 and E
[(
4XtiH ,T

)8 ∣∣∣ N·,T ] ≤ C · {∑H−1
l=1 g2

(
l
H

)
σ2
(
tiH+l

T

)}4
1
T 4 holds.

(∗ ∗ ∗) = E
[{(
4XtiH ,T

)2 − E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ]}4 ∣∣∣ N·,T]
= E

[(
4XtiH ,T

)8 ∣∣∣ N·,T ]− 4E
[(
4XtiH ,T

)6 ∣∣∣ N·,T ] · E [(4XtiH ,T

)2 ∣∣∣ N·,T ]
+ 6E

[(
4XtiH ,T

)4 ∣∣∣ N·,T ] · (E [(4XtiH ,T

)2 ∣∣∣ N·,T ])2

− 4
(
E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ])4
+
(
E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ])4
.

In order to derive the limit distribution in (II) we set

√
bH

{
1

b

2

g2

MT−1∑
i=0

K

(
tiH − uoT

bT

)(
4XtiH ,T

) (
4εiH

)}
=:

MT−1∑
i=0

Bi,T .

Likewise we show that (conditional on N·,T )

c)

MT−1∑
i=0

E
[
B2
i,T

∣∣∣ N·,T ] P−→ η2
B and d)

MT−1∑
i=0

E
[
B4
i,T

∣∣∣ N·,T ] P−→ 0.

Since

E
[(
4εiH

)2]
= E

(H−1∑
l=1

h

(
l

H

)
εiH+l

)2
 = ω2

H−1∑
l=1

h2

(
l

H

)
,

it implies that

E
[
B2
i,T

∣∣∣ N·,T ]
=

H

b

4

g2
2

K2

(
tiH − uoT

bT

)
E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ] · E [(4εiH)2 ∣∣∣ N·,T ]
=

H

b

4

g2
2

K2

(
tiH − uoT

bT

)(H−1∑
l=1

g2

(
l

H

)
σ2

(
tiH+l

T

)
1

T

)(
ω2

H−1∑
l=1

h2

(
l

H

))
.

(see (a2))

Hence

MT−1∑
i=0

E
[
B2
i,T

∣∣∣ N·,T ]
=

4ω2

g2
2

·H
MT−1∑
i=0

1

bT
K2

(
tiH − uoT

bT

)
σ2

(
tiH+l

T

)
·
H−1∑
l=1

g2

(
l

H

)
·
H−1∑
l=1

h2

(
l

H

)
P−→ 4ω2σ2(uo)λ(uo)(g

′
2/g2)

∫
R
K2(x)dx, (similar to (a3))
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since

H−1∑
l=1

h2

(
l

H

)
=

H−1∑
l=1

{
g

(
l + 1

H

)
− g

(
l

H

)}2

=

H−1∑
l=1

{
g(1)

(
l

H

)
1

H
+ o

(
1

H

)}2

.

Similarly,

MT−1∑
i=0

E
[
B4
i,T

∣∣∣ N·,T ]
=

MT−1∑
i=0

H2

b2
16

g4
2

K4

(
tiH − uoT

bT

)
E
[(
4XtiH ,T

)4 ∣∣∣ N·,T ] · E [(4εiH)4 ∣∣∣ N·,T ]

≤ C ·
MT−1∑
i=0

H2

b2
K4

(
tiH − uoT

bT

)(H−1∑
l=1

g2

(
l

H

)
1

T

)2(H−1∑
l=1

h2

(
l

H

))2

(see (a1))

≤ C · H
2

bT

MT−1∑
i=0

1

bT
K4

(
tiH − uoT

bT

)(
1

H

H−1∑
l=1

g2

(
l

H

))2(
1

H

H−1∑
l=1

(
g(1)

(
l

H

))2

+ o

(
1

H

))2

P−→ O

(
H

bT

)
· λ(uo)

∫
R
K4(x)dx ·

(∫
g2(x)dx

)2

·
(∫

g′(x)2dx

)2
P−→ 0.

Therefore c) and d) have been proven. We proceed analogously to show the limit dis-
tribution (III). We denote the left-hand side of the assertion by

∑MT−1
i=0 Ci,T and show

that

e)

MT−1∑
i=0

E
[
C2
i,T

∣∣∣ N·,T ] P−→ η2
C and f)

MT−1∑
i=0

E
[
C4
i,T

∣∣∣ N·,T ] P−→ 0.

On account of the assumption E
[
ε4
i

]
= θω4, θ ∈ R+, we have (similar to the calculation of

E
[
(4Xi,T )4

]
)

E
[
(4εiH)4

]
= E

(H−1∑
l=1

h

(
l

H

)
εiH+l

)4


=
H−1∑
l=1

h4

(
l

H

)
E
[
ε4
iH+l

]
+ 3

∑
l 6=l′

h2

(
l

H

)
h2

(
l′

H

)
E
[
ε2
iH+l

]
E
[
ε2
iH+l′

]

= (θ − 1)

H−1∑
l=1

h4

(
l

H

)
ω4 + 3

(
H−1∑
l=1

h2

(
l

H

))2

ω4,
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thus

MT−1∑
i=0

E
[
C2
i,T

∣∣∣ N·,T ]
=

MT−1∑
i=0

H3

bT

1

g2
2

K2

(
tiH − uoT

bT

){
E
[(
4εiH

)4]− (E [(4εiH)2])2
}

=

MT−1∑
i=0

H3

bT

ω4

g2
2

K2

(
tiH − uoT

bT

)(θ − 1)

H−1∑
l=1

h4

(
l

H

)
+ 2

(
H−1∑
l=1

h2

(
l

H

))2


=
1

H
·H

MT−1∑
i=0

1

bT
K2

(
tiH − uoT

bT

)
· (θ − 1)ω4

g2
2

·

{
H−1∑
l=1

(
g′
(
l

H

))4 1

H
+ o

(
1

H

)}

+
2ω4

g2
2

·H
MT−1∑
i=0

1

bT
K2

(
tiH − uoT

bT

)
·

{
H−1∑
l=1

(
g′
(
l

H

))2 1

H
+ o

(
1

H

)}2

P−→ 2ω4λ(uo)(g
′
2/g2)2

∫
R
K2(x)dx,

which leads to e). In fact, f) can be established in the same manner as before, therefore
omitted. To build the joint distribution of (I), (II) and (III), it suffices to show that

MT−1∑
i=0

a
√
δAi,T + b

1√
δ
Bi,T + c

1√
δ3
Ci,T

D−→ a
√
δA+ b

1√
δ
B + c

1√
δ3
C

by Cramer-Wold’s theorem, for all a, b, c ∈ R, where A,B and C are the limits of (I), (II)
and (III), respectively. The pre-averaging block size H is chosen to equal δ · T 1/2 with
δ ∈ (0,∞). Indeed, this joint limit is a direct consequence of a)− f). To sum up, we have
shown the first main part of the limit distribution of σ̂2

clock,pre(uo), i.e.

√
bT 1/2

{
MT−1∑
i=0

1

b

1

g2
K

(
tiH − uoT

bT

){(
4Y tiH ,T

)2 − E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ]− E
[(
4εiH

)2]}}
D−→ N (0, δη2

A +
1

δ
η2
B +

1

δ3
η2
C),

since
(
4Y tiH ,T

)
=
(
4XtiH ,T

)
+
(
4εtiH ,T

)
.

We carry out the proof by showing the asymptotic biases in (IV ) and (V ). In order to
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derive (IV ) we see that

√
bT 1/2

(
1

b

1

g2

MT−1∑
i=0

K

(
tiH − uoT

bT

)
E
[(
4XtiH ,T

)2 ∣∣∣ N·,T ]− σ2(uo)λ(uo)−BIAS

)

=
√
bT 1/2

1

H

1

g2
·

(
H

MT−1∑
i=0

1

bT
K

(
tiH − uoT

bT

)H−1∑
l=1

g2

(
l

H

)
σ2

(
tiH+l

T

)

−
NT∑
j=1

1

bT
K

(
tj − uoT
bT

)H−1∑
l=1

g2

(
l

H

)
σ2

(
tbj/Hc·H+l

T

))

+
√
bT 1/2

1

H

1

g2

NT∑
j=1

1

bT
K

(
tj − uoT
bT

)
·

(
H−1∑
l=1

g2

(
l

H

)
σ2

(
tbj/Hc·H+l

T

)

− σ2

(
tj
T

)H−1∑
l=1

g2

(
l

H

))

+
√
bT 1/2

(
1

H

1

g2

NT∑
j=1

1

bT
K

(
tj − uoT
bT

)
σ2

(
tj
T

)H−1∑
l=1

g2

(
l

H

)

− σ2(uo)λ(uo)−
1

2

(
σ2(uo)λ(uo)

)(2)
b2
∫
R
x2K(x)dxI{m=m′=2}

)
=: (i) + (ii) + (iii) = op(1), (A.5.)

since K has first bounded derivatives and σ(·) ∈ Cm,γ ; see also (a3). The last equality
(A.5.) is satisfied by the bandwidth condition b2α+1T 1/2 → 0. More precisely,

(i) ≤ C ·
√
bT 1/2

1

H

H−1∑
l=1

g2

(
l

H

) NT∑
j=0

1

bT

∣∣∣∣K ( tbj/Hc·H − uoTbT

)
−K

(
tj − uoT
bT

)∣∣∣∣
= O

(√
bT 1/2 · H

bT

)
= o(1),

(ii) ≤ C ·
√
bT 1/2

1

H

H−1∑
l=1

g2

(
l

H

) NT∑
j=1

1

bT

∣∣∣∣K ( tj − uoTbT

)∣∣∣∣ ∣∣∣∣σ2

(
tbj/Hc·H+l

T

)
− σ2

(
tj
T

)∣∣∣∣
= Op

(√
bT 1/2

∣∣∣∣HT
∣∣∣∣γ) = op(1),
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and

(iii) =
√
bT 1/2

(
1

H

1

g2

NT∑
j=1

1

bT
K

(
tj − uoT
bT

)
σ2

(
tj
T

)H−1∑
l=1

g2

(
l

H

)

− E

 1

H

1

g2

NT∑
j=1

1

bT
K

(
tj − uoT
bT

)
σ2

(
tj
T

)H−1∑
l=1

g2

(
l

H

))

+
√
bT 1/2

(
E

 1

H

1

g2

NT∑
j=1

1

bT
K

(
tj − uoT
bT

)
σ2

(
tj
T

)H−1∑
l=1

g2

(
l

H

)
−
{
σ2(uo)λ(uo) +

1

2

(
σ2(uo)λ(uo)

)(2)
b2
∫
R
x2K(x)dx · I{m=m′=2}

})

=
√
bT 1/2

(∫ T

0

1

bT
K

(
t− uoT
bT

)
σ2

(
t

T

)
dMt,T

)
·

1
H

∑H−1
l=1 g2(l/H)

g2
+O

(√
bT 1/2bmin(γ,γ′)

)
= op(1).

Finally, we separate (V ) into two summands

√
bT 1/2

{
1

b

1

g2

MT−1∑
i=0

K

(
tiH − uoT

bT

)
E
[(
4εiH

)2]− T

H

λ(u0)

g2

H−1∑
l=1

h2
(
l

H

)
ω2

}

+
√
bT 1/2

{
T

H

λ(u0)

g2

H−1∑
l=1

h2
(
l

H

)
ω2 − T

2H

∑H−1
l=1 h2(l/H)

g2
· 1

bT

NT∑
l=1

K

(
ti − uoT
bT

)(
Yti,T − Yti−1,T

)2}
=: (iv) + (v).

Since E
[(
4εiH

)2]
=
∑H−1

l=1 h2
(
l
H

)
ω2, direct calculations yield

E
[
(iv)2

]
≤ C · bT 1/2

(
H−1∑
l=1

h2

(
l

H

))2

E

[
1

b

MT−1∑
i=0

K

(
tiH − uoT

bT

)
− T

H
λ(uo)

]2

≤ C · bT 1/2 T
2

H2

(
H−1∑
l=1

h2

(
l

H

))2

×

×

(
E

[
H

bT

MT−1∑
i=0

K

(
tiH − uoT

bT

)
− E

[
H

bT

MT−1∑
i=0

K

(
tiH − uoT

bT

)] ]2

+

(
E

[
H

bT

MT−1∑
i=0

K

(
tiH − uoT

bT

)]
− λ(uo)

)2)

= O

(
bT 1/2 T

2

H2

1

H2

1

bT

)
+O

(
bT 1/2 T

2

H2

1

H2
b2γ
′
)

= o(1).
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The last term (v) is divided again into the sum of (v1) and (v2), where

(v1) :=
√
bT 1/2

[
T

H

λ(u0)

g2

H−1∑
l=1

h2

(
l

H

)
ω2

− T

2H

∑H−1
l=1 h2(l/H)

g2

1

bT

NT∑
l=1

K

(
ti − uoT
bT

)
(εi − εi−1)2

]

and

(v2) := −
√
bT 1/2

[
T

2H

∑H−1
l=1 h2(l/H)

g2

1

bT

NT∑
l=1

K

(
ti − uoT
bT

)
×

×
((
Xti,T −Xti−1,T

)2
+ 2

(
Xti,T −Xti−1,T

)
(εi − εi−1)

)]
.

It is easy to show that E
[
(v1)2

]
= o(1) and E [ |(v2)| ] = o(1) hold. In summary, we have

therefore shown the asymptotic normality for σ̂2
clock,pre(uo).

To complete the proof, the difference between σ̂2
clock,pavg(uo) and σ̂2

clock,pre(uo) needs to
be determined; in particular, we show that

√
bT 1/2

{
σ̂2
clock,pre(uo)− σ̂2

clock,pavg(uo)
}

= op(1).

Since the derivative of K is bounded, it is enough to verify that (see also (a3))

√
bT 1/2

1

bH

1

g2

NT∑
i=1

K

(
ti − uoT
bT

){(
4Y tbi/Hc·H ,T

)2
−
(
4Y ti,T

)2}

=
√
bT 1/2

1

bH

1

g2

NT∑
i=1

K

(
ti − uoT
bT

)( {(
4Xtbi/Hc·H ,T

)2
−
(
4Xti,T

)2}

+

{(
4εbi/Hc·H

)2
−
(
4εi

)2}
+ 2

{(
4Xtbi/Hc·H ,T

)(
4εbi/Hc·H

)
−
(
4Xti,T

) (
4εi

)} )
=: (T1) + (T2) + (T3) = op(1). (A.6.)

We perform only the proof of the first term (T1), since (T2) and (T3) can be done in the
same manner by employing 4εi = −

∑H−1
l=1 h

(
l
H

)
εi+l; compare with (II) and (III). We

will prove below that E
[
(T1)2

∣∣∣ N·,T ] = op(1) which concludes that (A.6.) = op(1).
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E
[
(T1)2

∣∣∣ N·,T ] =
T 1/2

bH2

1

g2
2

NT∑
i,j=1

K

(
ti − uoT
bT

)
K

(
tj − uoT
bT

)
×

×

(
E
[(
4Xtbi/Hc·H ,T

)2 (
4Xtbj/Hc·H ,T

)2 ∣∣∣ N·,T]− E
[(
4Xtbi/Hc·H ,T

)2 (
4Xtj ,T

)2 ∣∣∣ N·,T]

− E
[(
4Xti,T

)2 (4Xtbj/Hc·H ,T

)2 ∣∣∣ N·,T]+ E
[(
4Xti,T

)2 (4Xtj ,T

)2 ∣∣∣ N·,T])
=: (41)− (42)− (43) + (44).

The first term is split up into three small terms:

(41) =
T 1/2

bH2

1

g2
2

∑
i=j

K2

(
ti − uoT
bT

)
E
[(
4Xtbi/Hc·H ,T

)2 ∣∣∣ N·,T]

+
T 1/2

bH2

1

g2
2

∑
|i−j|≥H

K

(
ti − uoT
bT

)
K

(
tj − uoT
bT

)
×

× E
[(
4Xtbi/Hc·H ,T

)2 ∣∣∣ N·,T] · E [(4Xtbj/Hc·H ,T

)2 ∣∣∣ N·,T]
(since both terms are independent.)

+
T 1/2

bH2

1

g2
2

∑
0<|i−j|<H

K

(
ti − uoT
bT

)
K

(
tj − uoT
bT

)
×

× E
[(
4Xtbi/Hc·H ,T

)2 (
4Xtbj/Hc·H ,T

)2 ∣∣∣ N·,T]
=: (41,1) + (41,2) + (41,3).

Likewise, we expand (42) = (42,1) + (42,2) + (42,3). It is clear that (41,1) and (42,1)
are of smaller order than the others, therefore neglected. Since (41,2) is equal to (42,2),
they cancel each other out. Lastly,

(41,3) − (42,3)

=
T 1/2

bH2

1

g2
2

∑
0<|i−j|<H

K

(
ti − uoT
bT

)
K

(
tj − uoT
bT

)
×

× E
[(
4Xtbi/Hc·H ,T

)2
{(
4Xtbj/Hc·H ,T

)2
−
(
4Xtj ,T

)2
} ∣∣∣ N·,T]

=
2T 1/2

bH2

1

g2
2

NT∑
i=1

H−1∑
α=1

K

(
ti − uoT
bT

)
K

(
ti+α − uoT

bT

)
×

× E
[(
4Xtbi/Hc·H ,T

)2
{(
4Xtb(i+α)/Hc·H ,T

)2
−
(
4Xti+α,T

)2
} ∣∣∣ N·,T]
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=
2T 1/2

bH2

1

g2
2

NT∑
i=1

K2

(
ti − uoT
bT

)
×

× E


(
4Xtbi/Hc·H ,T

)2
H−1∑
α=1

{(
4Xtb(i+α)/Hc·H ,T

)2
−
(
4Xti+α,T

)2
}

︸ ︷︷ ︸
(♣)

∣∣∣ N·,T
+ o(1)

=
2T 1/2

bH2

1

g2
2

NT∑
i=1

K2

(
ti − uoT
bT

)
o

(
H3

T 2

)
+ o(1) = op(1),

since g is differentiable, g(1) is Lipschitz’s continuous, and

(♣) =

H−1∑
α=1

{(
4Xtb(i+α)/Hc·H ,T

−4Xti+α,T

)
·
(
4Xtb(i+α)/Hc·H ,T

+4Xti+α,T

)}

=

H−1∑
α=1

H−(j mod H)∑
l,l′=1

{
h

(
l + (j mod H)

H

)
− h

(
l

H

)}
×

×
{
h

(
l′ + (j mod H)

H

)
− h

(
l′

H

)}(
Xtα+l,T −Xtα+l−1,T

) (
Xtα+l′,T −Xtα+l′−1,T

)
.

Thus, we get that (41) − (42) = op(1). Analogously, (44) − (43) = op(1) and hence
(T1) = op(1). �

Proof of Theorem 4.16. The proof of this theorem is analogous to that of Theorem 4.15
with an exception of the bias term (IV ), which is non-trivial in this case. Therefore, we
have omitted its details and give only the outline of the proof. We begin by reformulating
the tick-time volatility estimate

σ̂2
pavg(uo) =

T

NH

1

g2

N∑
i=−N

k

(
i

N

)(
4Y tio+i,T

)2

− T

2NH

∑H−1
l=1 h2(l/H)

g2

N∑
i=−N

k

(
i

N

)(
Ytio+i,T − Ytio+i−1,T

)2
.

This formula has a benefit of having non-random elements in the kernel function, which
simplifies the proof. Let

σ̂2
pre(uo) :=

T

N

1

g2

M∑
j=−M

k

(
j

M

)(
4Y tio+jH ,T

)2

− T

2NH

∑H−1
l=1 h2(l/H)

g2

N∑
i=−N

k

(
i

N

)(
Ytio+i,T − Ytio+i−1,T

)2
,



117

where M = M(T ) = bN/Hc.5 Similar to the previous theorem, we point out that the dif-
ference between these two statistics— σ̂2

pre(uo) and σ̂2
pavg(uo)—is asymptotically negligible,

i.e. √
N/T 1/2

{
σ̂2
pre(uo)− σ̂2

pavg(uo)
}

= op(1).

This means seeking the limit distribution of σ̂2
pre(uo) is sufficient to infer the limit of

σ̂2
pavg(uo). Likewise, we must show the following statements:

(I) :

√
N

H

 T

N

1

g2

M∑
j=−M

k

(
j

M

){(
4Xtio+jH ,T

)2
− E

[(
4Xtio+jH ,T

)2 ∣∣∣ N·,T]}


D−→ N (0, ξ2
A),

(II) :

√
NH

T

 T

N

2

g2

M∑
j=−M

k

(
j

M

)(
4Xtio+jH ,T

) (
4εio+jH

) D−→ N (0, ξ2
B),

(III) :

√
NH3

T 2

 T

N

1

g2

M∑
j=−M

k

(
j

M

){(
4εio+jH

)2 − E
[(
4εio+jH

)2]} D−→ N (0, ξ2
C),

and the asymptotic biases

(IV ) :

√
N

H

 T

N

1

g2

M∑
j=−M

k

(
j

M

)
E
[(
4Xtio+jH ,T

)2 ∣∣∣ N·,T]− σ2(uo)

 = op(1), and

(V ) :

√
NH3

T 2

(
T

N

1

g2

M∑
j=−M

k

(
j

M

)
E
[(
4εio+jH

)2]

− T

2NH

∑H−1
l=1 h2(l/H)

g2

N∑
i=−N

k

(
i

N

)(
Ytio+i,T − Ytio+i−1,T

)2)
= op(1).

Although the essential idea for the derivation of (I)−(III) is the same as the preceding
theorem, we explicitly demonstrate the first claim in order to see how those arguments can
be adapted to this tick-time volatility estimator. Let us denote the left-hand side of (I) by

√
N

H

 T

N

1

g2

M∑
j=−M

k

(
j

M

){(
4Xtio+jH,T

)2
− E

[(
4Xtio+jH ,T

)2 ∣∣∣ N·,T]}


=:
M∑

j=−M
Aj,M .

5For simplicity, we might assume that M = N/H is an integer, as the result remains the same in
asymptotic.
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We see that conditional on N·,T , {Aj,M}j=−M,...,M are independent. Hence, it suffices to
show that

a)
M∑

j=−M
E
[
A2
j,M

∣∣∣ N·,T ] P−→ ξ2
A and b)

M∑
j=−M

E
[
A4
j,M

∣∣∣ N·,T ] P−→ 0.

Due to the calculations (a1) and (a2) from the last proof, we have

M∑
j=−M

N

H

T 2

N2

1

g2
2

· k2

(
j

M

){
E
[(
4Xtio+jH,T

)4 ∣∣∣ N·,T]− (E [(4Xtio+jH ,T

)2 ∣∣∣ N·,T])2
}

= 2
M∑

j=−M

N

H

T 2

N2

1

g2
2

· k2

(
j

M

)H−1∑
l=1

g4

(
l

H

)
σ4

(
tio+jH+l

T

)
1

T 2

+ 2
M∑

j=−M

N

H

T 2

N2

1

g2
2

· k2

(
j

M

)(H−1∑
l=1

g2

(
l

H

)
σ2

(
tio+jH+l

T

)
1

T

)2

=: (a∗1) + (a∗2)
P−→ 2σ2(uo)

∫
R
k2(x)dx,

since

(a∗1) =
2

HN

1

g2
2

·
M∑

j=−M
k2

(
j

M

)
·
H−1∑
l=1

g4

(
l

H

){
σ4

(
to
T

)
+

(
σ4

(
tio+jH+l

T

)
− σ4

(
to
T

))}

=
M

N

2

g2
2

· 1

M

M∑
j=−M

k2

(
j

M

)
· 1

H

H−1∑
l=1

g4

(
l

H

){
σ4

(
to
T

)
+O

(∣∣∣∣jHT
∣∣∣∣γ)}

= O

(
M

N

)
+ O

(
1

H
·
∣∣∣∣NT
∣∣∣∣γ) → 0,

and

(a∗2) =
2

NH

1

g2
2

·
M∑

j=−M
k2

(
j

M

)(H−1∑
l=1

g2

(
l

H

)
σ2(uo)

)2

+
2

NH

1

g2
2

·
M∑

j=−M
k2

(
j

M

)(H−1∑
l=1

g2

(
l

H

){
σ2

(
tio+jH+l

T

)
− σ2(uo)

})2

+
2

NH

1

g2
2

·
M∑

j=−M
k2

(
j

M

)(H−1∑
l=1

g2

(
l

H

)
σ2(uo)

)(
H−1∑
l=1

g2

(
l

H

){
σ2

(
tio+jH+l

T

)
− σ2(uo)

})

= 2σ4(uo)

∫
R
k2(x)dx + O

(∣∣∣∣NT
∣∣∣∣2γ
)

+ O

(∣∣∣∣NT
∣∣∣∣γ) .

Similar calculations imply that b) is of the order O(H/N), particularly o(1). As was pointed
out in the beginning, one of the most difficult parts in this proof is the derivation of the
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asymptotic bias (IV ), which is not obvious in the tick-time volatility estimation. We have√
N

H

 T

N

1

g2

M∑
j=−M

k

(
j

M

)
E
[(
4Xtio+jH ,T

)2 ∣∣∣ N·,T]− σ2(uo)


=

√
N

H

T

N

1

g2

1

H

N∑
j=−N

{
k

(
bj/Hc
M

)
− k

(
j

N

)}
E
[(
4Xtio+bj/Hc·H ,T

)2 ∣∣∣ N·,T]

+

√
N

H

 T

N

1

g2

1

H

N∑
j=−N

k

(
j

N

)
E
[(
4Xtio+bj/Hc·H ,T

)2 ∣∣∣ N·,T] − σ2(uo)


=: (i) + (ii),

where

(i) ≤ C ·
√
N

H

T

N

1

H

N∑
j=−N

k(1)(...)

∣∣∣∣bj/HcM
− j

N

∣∣∣∣ · H−1∑
l=1

g2

(
l

H

)
1

T
= O

(√
H

N

)
= o(1)

by the boundedness of derivatives k′(·), and

(ii) =

√
N

H

 T

N

1

g2

1

H

N∑
j=−N

k

(
j

N

)
E
[(
4Xtio+bj/Hc·H ,T

)2 ∣∣∣ N·,T] − σ2(uo)


=

√
N

H
·

 1

N

1

g2

1

H

N∑
j=−N

k

(
j

N

)H−1∑
l=1

g2

(
l

H

)
σ2

(
tio+bj/Hc·H+l

T

)
− σ2(uo)


=

√
N

H
· 1

N

1

g2

1

H

N∑
j=−N

k

(
j

N

)H−1∑
l=1

g2

(
l

H

)
×

×

( {
σ2

(
tio+bj/Hc·H+l

T

)
− σ2

(
tio+j
T

)}
+

{
σ2

(
tio+j
T

)
− σ2(uo)

} )

= O

(√
N

H
·
∣∣∣∣HT
∣∣∣∣γ
)

+

√
N

H

1

N

N∑
j=−N

k

(
j

N

){
σ2

(
tio+j
T

)
− σ2(uo)

}
︸ ︷︷ ︸

(♣)

= o(1) + op(1),

as the segment length condition (4.17) holds. To obtain (♣), the same proof for the asymp-
totic bias in Theorem 4.13 is carried over (with a small change in the rate of convergence).
Lastly, the derivation of (V ) is straightforward. In summary, from (I) to (V ) we can
conclude that √

N

T 1/2

{
σ̂2
pre(uo)− σ2(uo)

} D−→ N
(

0, δξ2
A +

1

δ
ξ2
B +

1

δ3
ξ2
C

)
,



120 APPENDIX

if the block size H is chosen to be δ · T 1/2, with δ ∈ (0,∞). �

Proof of Theorem 4.17. In the case of m = m′ = 0, it is necessary to restrict the
the bandwidth size b and the segment length N according to Theorems 4.7 and 4.16,
respectively, i.e.

N/T 1/2 = o
(
T

γ
1+2γ

)
and bT = o

(
T

2γ′
1+2γ′

)
in order to obtain those limit distributions. We analyze it by looking at the following
situations:

a) If γ′ = γ
2γ+2 then N/T 1/2 = O(bT ). This gives

√
bT
{
σ̂2
pavg(uo)λ̂(uo)− σ2(uo)λ(uo)

}
= σ̂2

pavg(uo)︸ ︷︷ ︸
P−→σ2(uo)

·
√
bT
{
λ̂(uo)− λ(uo)

}
+ λ(uo)

√
bT√

N/T 1/2︸ ︷︷ ︸
=
√
c1

·
√
N/T 1/2

{
σ̂2
pavg(uo)− σ2(uo)

}

D−→ N
(

0, σ4(uo)λ(uo)

∫
R
K2(x)dx + c1λ

2(uo)

{
δξ2
A +

1

δ
ξ2
B +

1

δ3
ξ2
C

})
,

since the limits of the first and second terms are independent.

b) If γ′ > γ
2γ+2 then N/T 1/2 = o(bT ). This leads to√

N/T 1/2
{
σ̂2
pavg(uo)λ̂(uo)− σ2(uo)λ(uo)

}
= λ̂(uo) ·

√
N/T 1/2

{
σ̂2
pavg(uo)− σ2(uo)

}
D−→ N

(
0, λ2(uo)

{
δξ2
A +

1

δ
ξ2
B +

1

δ3
ξ2
C

})
.

c) If γ′ < γ
2γ+2 then bT = o(N/T 1/2), which implies that

√
bT
{
σ̂2
pavg(uo)λ̂(uo)− σ2(uo)λ(uo)

}
= σ2(uo) ·

√
bT
{
λ̂(uo)− λ(uo)

}
D−→ N

(
0, σ4(uo)λ(uo)

∫
R
K2(x)dx

)
.

Other cases—m = 0 together with m′ = 1, 2, or m = 1, 2— can be verified by the same
arguments with the corresponding restrictions on b and N . �

C. Proofs for Chapter 5

Proof of unbiasedness of CV
λ̂
(b). To demonstrate the unbiasedness of CV

λ̂
(b) for

ISE
λ̂
(b)−

∫
I λ(u)2du, we need to show that

E

 1

T

∑
ui∈I

λ̂(i)(ui)−
∫
I
λ̂(u)λ(u)du

 = 0.
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Without loss of generality, we set I = [0, 1]. We define Kb(x) := K(x/bT )/b, so the
expectation of the first term is given by

E

[
1

T

NT∑
i=1

λ̂(i)(ui)

]
= E

 1

T

NT∑
i=1

1

bT

NT∑
j=1,tj 6=ti

K

(
tj − ti
bT

)
= E

 1

T 2

NT∑
j=1

NT∑
i=1

1

b
K

(
tj − ti
bT

)
I{tj>ti}

 + E

 1

T 2

NT∑
i=1

NT∑
j=1

1

b
K

(
tj − ti
bT

)
I{tj<ti}


= 2E

[
1

T 2

∫ T

0

(∫ T

0
Kb(s− t)I{s>t}dNt,T

)
dNs,T

]
(since K is symmetric at 0)

= 2E
[

1

T 2

∫ T

0

(∫ T

0
Kb(s− t)I{s>t}dNt,T

)
λ(s/T )ds

]
(as inner integrals are predictable, see remark (2.2))

=
2

T 2

∫ T

0

(∫ T

0
Kb(s− t)I{s>t}λ(t/T )dt

)
λ(s/T )ds

=
1

T 2

∫ T

0

∫ T

0
Kb(s− t)λ(s/T )λ(t/T )I{s 6=t} ds dt,

which is equal to E
[∫ 1

0 λ̂(u)λ(u)du
]

(except null sets) since

E
[∫ 1

0
λ̂(u)λ(u)du

]
=

∫ 1

0
E
[
λ̂(u)

]
λ(u)du

=

∫ T

0
E
[∫ T

0
Kb(s− t)dNs,T /T

]
λ(t/T ) dt/T

=
1

T 2

∫ T

0

∫ T

0
Kb(s− t)λ(s/T )λ(t/T ) ds dt.

�

Proof of unbiasedness of CVσ̂2
clock,pavg

(b). (The proof of the unbiasedness of CVσ̃2
clock,pavg

(N)

is analogous, therefore omitted.) Below, all equalities with the sign (∗) mean they hold
only in asymptotic. First, we want to show that

E

[
1

T

NT∑
i=1

σ̂
2(i)
clock,pavg(ui)σ

2(ui)−
∫ 1

0
σ̂2
clock,pavg(u)σ2

clock(u)

]
(∗)
= 0. (A.7.)
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We start by calculating the expectation of the first term

E

[
1

T

NT∑
i=1

σ̂
2(i)
clock,pavg(ui)σ

2(ui)

]

(∗)
= E

 1

T

NT∑
i=1

1

bH

1

g2

NT∑
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K

(
tj − ti
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)(
4Y (i)
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2

(
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T

)
− E

 1

T

NT∑
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1

2bH

∑
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g2

NT∑
j=1

K

(
tj − ti
bT

)(
Ytj ,T − Ytj−1,T

)2
I{tj 6=ti} · σ

2

(
ti
T

)
=: (A)− (B),

where 4Y (i)
tj ,T is the leave-one-out pre-averaging term (i.e. every term with the time index

ti does not appear in the formula). Since

E
[(
4Y (i)

tj ,T

)2 ∣∣∣ N·,T] =
H−1∑
l=1

g2

(
l

H

)
σ2

(
tj+l
T

)
1

T
I{tj+l 6=ti} + ω2

H−1∑
l=1

h2

(
l

H

)
,

we have

(A) = E

 1

T

NT∑
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1

bH

1

g2

NT∑
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K

(
tj − ti
bT

)
E
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4Y (i)

tj ,T
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I{tj 6=ti} · σ

2

(
ti
T

)
+ E

 1

T

NT∑
i=1

1

bH

ω2
∑
h2(l/H)

g2

NT∑
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K
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I{tj 6=ti} · σ

2

(
ti
T

)
=: (A1) + (A2).

Similar to the previous proof, we obtain
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bHT 2

∑
g2(l/H)

g2

NT∑
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NT∑
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( s
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λ
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T
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λ

(
t
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and

(A2) =
1

bHT

ω2
∑
h2(l/H)

g2

∫ T

0

∫ T

0
K

(
s− t
bT

)
λ
( s
T

)
λ

(
t

T

)
I{s 6=t} ds dt.
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Further,
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NT∑
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(
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σ2

(
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T

)
λ
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)
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(
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]
+ E

[
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bHT
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(
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(
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)
λ
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)
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(
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]
.

Likewise, we can derive the second part

E
[∫ 1

0
σ̂2
clock,pavg(u)σ2(u)λ(u)du

]

= E

∫ 1

0

1

bH

1

g2

NT∑
j=1

K

(
tj − t
bT

)(
4Y tj ,T

)2
σ2

(
t

T

)
λ

(
t

T

)
dt

T


− E

∫ 1

0

1

2bH

∑
h2(l/H)

g2

NT∑
j=1

K

(
tj − t
bT

)(
Ytj ,T − Ytj−1,T

)2
σ2

(
t

T

)
λ

(
t

T

)
dt

T


=: (C)− (D).

By direct calculations we can show that (C) and (D) are equal to (A) and (B), respec-
tively (except null sets), and therefore we have derived the equality (A.7.). Finally, we can

estimate σ2(ui) in (A.7.) by another leave-one-out estimate σ̂
2(i)
pavg(ui) with pre-choices of

the segment length N and block size H. We conclude that, 1
T

∑NT
i=1 σ̂

2(i)
clock,pavg(ui)σ̂

2(i)
pavg(ui)

is an asymptotic unbiased estimator for
∫ 1

0 σ̂
2
clock,pavg(u)σ2

clock(u)du. �

Proof of limit distribution in (5.9). The verification of the asymptotic normality
of λ̂(uo) in the stochastic intensity model runs as before; see section 4.2. The intensity
estimator is given by

λ̂(uo) =
1

bT

NT∑
i=1

K

(
ti − uoT

bT

)
=

1

bT

∫ uoT+bT

uoT−bT
K

(
t− uoT

bT

)
dNt,T ,
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since K(x) assigns zero for x outside [−1, 1] (thus, only the data inside [uoT −bT, uoT +bT ]
contributes to the estimate). We divide the interval (uoT − bT, uoT + bT ] into MT sub-
intervals of fixed length 4, and we assume that b2bT/4c = MT being an integer. By
setting 4i,T := uoT − bT + i4, we show that

√
bT

(
λ̂(uo)−

1

bT

∫ uoT+bT

uoT−bT
K

(
t− uoT

bT

)
λ

(
t

T

)
dt

)
=

MT∑
i=1

∫ 4i,T
4i−1,T

1√
bT

K

(
t− uoT

bT

)
dMt,T

= :

MT∑
i=1

Ai,T

converges in distribution to a normal random variable. Recall that Mt,T := Nt,T −∫ t
0 λ(t/T )dt is a squared integrable martingale w.r.t. its natural filtration. Let a discrete

filtration Gi,T := σ (Ns,T , λs,T : s ≤ 4i,T ), in which Gi,T contains all information about the
point process up to the time uoT − bT + i4. In particular

λto−bT,T = λ

(
to − bT

T

)
= λ(uo − b) is G0,T -measurable

(which plays an important role later). We see that the triangular array Ai,T is a martingale
difference sequence w.r.t. Gi,T , satisfying conditions given in the stable version of central
limit theorem for martingale difference sequences in Hall and Heyde [38, Corollary 3.1], i.e.

(i) E
[
Ai,T

∣∣∣ Gi−1,T

]
= 0,

(ii)
∑MT

i=1 E
[
A2
i,T

∣∣∣ Gi−1,T

]
P−→ η2, where η2 is G0,T -measurable, therefore nested in every

σ-algebra Gi,T , and

(iii)
∑MT

i=1 E
[
A4
i,T

∣∣∣ Gi−1,T

]
P−→ 0.

Note that the nesting condition is substituted by the measurability of η2 such that the
theorem also holds, however, without stability. In fact, we will show that

1

η

MT∑
i=1

Ai,T
D−→ N (0, 1).

By construction, it is clear that (i) is fulfilled. To show (ii), we see

MT∑
i=1

E
[
A2
i,T

∣∣∣ Gi−1,T

]
=

MT∑
i=1

E

(∫ 4i,T
4i−1,T

1√
bT

K

(
t− uoT

bT

)
dMt,T

)2 ∣∣∣ Gi−1,T


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=

MT∑
i=1

E

[∫ 4i,T
4i−1,T

1

bT
K2

(
t− uoT

bT

)
λ

(
t

T

)
dt
∣∣∣ Gi−1,T

]

= λ(uo − b)

MT∑
i=1

E

[∫ 4i,T
4i−1,T

1

bT
K2

(
t− uoT

bT

)
dt
∣∣∣ Gi−1,T

]

+

MT∑
i=1

E

[∫ 4i,T
4i−1,T

1

bT
K2

(
t− uoT

bT

){
λ

(
t

T

)
− λ(uo − b)

}
dt
∣∣∣ Gi−1,T

]

= λ(uo − b)

∫
K2(x)dx + O(bγ

′
),

by the conditional isometry property. The statement (iii) is provided by

MT∑
i=1

E
[
A4
i,T

∣∣∣ Gi−1,T

]
=

MT∑
i=1

E

(∫ 4i,T
4i−1,T

1√
bT

K

(
t− uoT

bT

)
dMt,T

)4 ∣∣∣ Gi−1,T


≤ C ·

MT∑
i=1

E

(∫ 4i,T
4i−1,T

1

bT
K2

(
t− uoT

bT

)
λ

(
t

T

)
dt

)2 ∣∣∣ Gi−1,T


≤ C · 1

b2T 2

MT∑
i=1

42 = O

(
1

bT

)
,

by Burkholder-Davis-Gundy’s inequality (see Jacod and Protter [48, p.39]). We remark
that the derivation of the asymptotic bias is the same as in Theorem 4.7, therefore omitted.
Thus, we can conclude that the normal limit distribution (5.9) holds. �

Discussion on asymptotic normality of volatility estimators

As was mentioned, it is much more difficult to prove central limit theorems for tick-
time/clock-time volatility estimators in the general setting of stochastic volatility than to
prove those for deterministic one. In the following, we will give only the outline of the
proof of the limit distribution for σ̂2

clock(·), and emphasize that the asymptotic variance is
not the same as in the exogenous case, in that an additional variance term will appear in
this general case (see the first term of (A.9.)). Similar to the last proof, we rewrite

σ̂2
clock(uo) =

MT∑
i=1

1

b

∑
4i−1,T<tj≤4i,T

K

(
tj − uoT
bT

)(
Xtj ,T −Xtj−1,T

)2
= :

MT∑
i=1

♠i,T .

First, we want to show that

√
bT

{
MT∑
i=1

♠i,T − E
[
♠i,T

∣∣∣ Gi−1,T

]}
=:

MT∑
i=1

Bi,T
D−→ N (0, 1),
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where now Gi,T contains, roughly speaking, all information up to time uoT − bT + i4. Due
to the central limit theorem given by Hall and Heyde [38, Corollary 3.1], it is sufficient to
show that

i) Bi,T ∈ Gi−1,T ,

ii) E
[
Bi,T

∣∣∣ Gi−1,T

]
= 0,

iii)
∑MT

i=1 E
[
B2
i,T

∣∣∣ Gi−1,T

]
P−→ κ2, where κ2 is G0,T -measurable, and

iv)
∑MT

i=1 E
[
B4
i,T

∣∣∣ Gi−1,T

]
P−→ 0.

By construction, it is obvious that i) and ii) hold. It is noteworthy that the distinction
between the asymptotic variances of endogenous and exogenous cases lies in the conditional
variance term iii), which will be displayed below. In what follows, (∗) means that the
equality holds in asymptotic sense. Similarly, we adopt the notations (corresponding to
each interval that is being considered):

t
(k)
il

= inf{tj : tj > 4k−1,T } and t
(k)
iu

:= sup{tj : tj ≤ 4k,T }.

We will write shortly til and tiu for t
(k)
il

and t
(k)
iu

if it is clear from the context, on which
interval they are considered. We begin by looking at

E
[
♠i,T

∣∣∣ Gi−1,T

]
=

1

b
E

 ∑
4i−1,T<tj≤4i,T

K

(
tj − uoT
bT

)(
Xtj ,T −Xtj−1,T

)2 ∣∣∣ Gi−1,T


=

1

b
E

 ∑
4i−1,T<tj<tiu

K

(
tj − uoT
bT

)(
Xtj ,T −Xtj−1,T

)2 ∣∣∣ Gi−1,T


+

1

b
E
[
E
[
K

(
tiu − uoT

bT

)(
Xtiu ,T −Xtiu−1,T

)2 ∣∣∣ Ftiu−,T] ∣∣∣ Gi−1,T

]

=
1

b
E

 ∑
4i−1,T<tj<tiu

K

(
tj − uoT
bT

)(
Xtj ,T −Xtj−1,T

)2 ∣∣∣ Gi−1,T


+

1

b
E
[
K

(
tiu − uoT

bT

)
σ2

(
tiu
T

)
1

T

∣∣∣ Gi−1,T

]
= · · ·

=
1

bT
E

 ∑
4i−1,T<tj≤4i,T

K

(
tj − uoT
bT

)
σ2

(
tj
T

) ∣∣∣ Gi−1,T


=

1

bT
E

[∫ 4i,T
4i−1,T

K

(
t− uoT
bT

)
σ2

(
t

T

)
λ

(
t

T

)
dt
∣∣∣ Gi−1,T

]
.



127

It is shown that

bT ·
MT∑
i=1

(
E
[
♠i,T

∣∣∣ Gi−1,T

])2 (∗)
= σ4(uo − b)λ2(uo − b)

1

bT

MT∑
i=1

(∫ 4i,T
4i−1,T

K

(
t− uoT
bT

)
dt

)2

(A.8.)
Next,

bT

MT∑
i=1

E
[
♠2
i,T

∣∣∣ Gi−1,T

]

=
bT

b2

MT∑
i=1

E

 ∑
4i−1,T<tj≤4i,T

K

(
tj − uoT
bT

)(
Xtj ,T −Xtj−1,T
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bT

b2

MT∑
i=1

E
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4i−1,T<tj<tiu

K

(
tj − uoT
bT

)(
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E
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(
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MT∑
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E
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(
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)(
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= : (I) + (I1) + (I2),

where
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E
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(· · · ) E
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and

(I2) =
bT

b2

MT∑
i=1

E

[(
K

(
tiu − uoT

bT

)(
Xtiu ,T −Xtiu−1,T
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(
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(
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T 2
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,

where we have assumed that E
[
U4
i

∣∣∣ Fti−,T ] = µ4 < ∞. The first term (I) can be

split up again into the next step that (I) = (II) + (II1) + (II2), and repeatedly (II) =
(III) + (III1) + (III2) and so on. Thus

bT
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i=1

E
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With (A.8.) and (A.9.), we can proceed with the condition iii), since

MT∑
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E
[
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[40] Härdle, W. (1991). Smoothing Techniques: With Implementation in S. Springer Sci-
ence and Business Media.
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