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Abstract

This essay is organized around the theoretical and computational problem of con-
structing bootstrap confidence sets, with forays into related topics. The seven section
headings are: Introduction; The Bootstrap World; Bootstrap Confidence Sets; Com-
puting Bootstrap Confidence Sets; Quality of Bootstrap Confidence Sets; [terated and

Two-step Bootstrap; Further Resources.

1. Introduction

Bradley Efron’s 1979 paper on the bootstrap in Statistics gained the imme-
diate interest of his peers for several historical reasons. First, the bootstrap
promised to extend formal statistical inference to situations too complex for ex-
isting methodology. By the late 1970’s, theoretical statisticians had recognized
that classical formulations of statistics, whether frequentist or Bayesian or oth-
erwise, did not provide a reasonable way to analyze the large data sets arising
in the computer age. This awkward defensive position made theoreticians re-
ceptive to the bootstrap, as well as to other data analytic ideas that seemed less
model-dependent than classical statistical theory.

Second, by the 1970’s, developments in theoretical statistics had provided
tools that soon proved powerful in analysing the behavior of bootstrap proce-
dures. For instance, the theory of robust statistics accustomed researchers to
working with continuous or differentiable statistical functionals. This prepared
the way for the later interpretation of bootstrap distributions as statistical func-
tionals. The need to quantify contamination neighborhoods in robustness studies

drew attention to metrics for probability measures. Huber (1981) presents both



developments in robust statistics. Several decades of work on asymptotic opti-
mality theory, culminating in the early 1970’s with the local asymptotic minimax
bound and with Héjek’s convolution theorem, encouraged statisticians to think
about weak convergence of triangular arrays. Ibragimov and Has'minskii (1981)
give a comprehensive account. Edgeworth expansions and saddlepoint approx-
imations saw a revival in the 1970’s that is summarized by Hall (1992). These
various theoretical ideas were well-suited to studying the convergence in prob-
ability of bootstrap distributions and the asymptotic properties of bootstrap
procedures.

Third, bootstrap-like methods were natural as computers proliferated. From
the 1960’s onwards, some data analysts, not all statisticians, began experiment-
ing with Monte Carlo simulations from fitted distributions. These resampling
experiments were based more on intuition rather than on logical analysis and
were published outside the main-stream statistical journals. Since a careful
historical study has not yet been done, it is possible that the origins of the
resampling idea are substantially older. (After all, the paired comparisons de-
sign in Statistics can be traced back to the philosopher Carneades, head of the
Academy in Athens around 150 B. C., who argued that the different fortunes of
twins disproves the efficacy of astrology). An essential contribution of Efron’s
(1979) paper was to formulate the bootstrap idea, as an intellectual object that
could be studied theoretically, and give it a name.

The purpose of this essay is to introduce the bootstrap, to indicate when
and in what sense it works, to discuss basic questions of implementation, and
to illustrate the main points by example. The exposition is organized around
the construction of bootstrap confidence sets—an application where bootstrap
methods already enjoy considerable success—with forays into related topics.

Section 7 contains suggestions for further reading.

2. The Bootstrap World

We recall that a statistical model for a sample X = (Xj,..., X, ) consists of a
family of distributions, written {P,4:0 € ©}. One member of this model, the
true distribution, is considered to generate probability samples similar to the
observed data. However, the value of the parameter § that identifies the true
distribution is not known to the statistician. We suppose that the parameter

space O is metric, but do not require it to be finite dimensional.

Bootstrap methods are a particular application of simulation ideas to the



problem of statistical inference. From the sample X, we construct an estimator
0, = én(X) that converges in P, g-probability to 0, for some convergence concept

to be chosen. The bootstrap idea is then to:

e Create an artificial world in which the true parameter value is 0, and the
sample X™ is generated from the fitted model P ; . That is, the conditional
distribution of X*, given the data X, is P ; .

o Act as if sampling distributions computed in the artificial world are accurate
approximations to the corresponding true (but unknown) sampling distri-

butions.

The original world of the statistician’s model consists of the observable X
whose distribution is P, 4. The bootstrap world consists of the observable X*
whose conditional distribution, given X, is P, ; . In the original world, the
distribution of X is unknown. However, in the bootstrap world, the distribution
of X* is fully known. Thus, any sampling distribution in the bootstrap world
can be computed, at least in principle.

This brief description omits several important issues. First, for each statis-
tical model, there may be many possible bootstrap worlds, each corresponding
to a different choice of the estimator d,,. Only some choices may be success-
ful. Second, the plug-in method for constructing the model distribution in the
bootstrap world can be generalized, and sometimes must be. When a high or
infinite dimensional # lacks a consistent estimator in a natural metric, it may
still be possible to construct a useful bootstrap world that mimics only relevant
aspects of the model in the original world. Time series analysis and curve es-
timation provide leading examples; see Mammen (1992) and Janas (1993) as
well as Example 1 in Section 3. Third, computation of sampling distributions in
the bootstrap world often involves Monte Carlo approximations, whose design
raises further issues. Fourth, bootstrap methods are rarely exact; their theoreti-
cal justification typically rests on asymptotics under which the bootstrap world
converges to the original world. These points will be developed further as the

essay proceeds.

3. Bootstrap Confidence Sets

Suppose we wish to construct a confidence set for the parametric function
7 = 7(6). Classical theory advises us to find a pivot—a function of the sample
X and of 7 whose distribution under the model P, is continuous and com-

pletely known. Archetypal are confidence intervals for the mean of a N(u,o?)



distribution when location p and scale o are unknown. Here § = (u,0), the
parametric function 7(6) = g, and the pivot is the t-statistic, whose sampling
distribution does not depend on the unknown #. Though important as an ideal
case, the exact pivotal technique is rarely available. It already fails to generate
confidence intervals for the difference of two normal means in the Behrens-Fisher
problem, for lack of a pivot.

Bootstrap ideas permit generalizing the pivotal method. Let R, (X,7) be
a function of the sample and of 7, whose distribution under the model P, 4 is
denoted by H,,(6). Because it need not be a pivot, but plays an analogous role,
we call R, a root. A plausible estimator of the root’s sampling distribution is
then the bootstrap distribution [:In,B = Hn(én) This bootstrap distribution has

two complementary mathematical interpretations:

e As defined, [:In,B is a random probability measure, the natural plug-in esti-
mator of the sampling distribution of R, (X, 7). From this viewpoint, [:In,B

is a statistical functional that depends on the sample only through 0,.

A

e Alternatively, H, g is the conditional distribution of R, (X*, T(én)) given the

sample X. In other words, H, p is the distribution of the root R, in the
bootstrap world described at the end of Section 2.

The interpretation as conditional distribution leads readily to Monte Carlo
approximations for a bootstrap distribution (see Section 4). The interpretation
as statistical functional is the starting point in developing asymptotic theory for
bootstrap procedures, as we shall see next.

Suppose that, for some convergence concept in the parameter space 0, both

of the following conditions hold, for every § € O:
A. The estimator 4, converges in probability to § as n increases.

B. For any sequence {6, } that converges to 6, the sampling distribution H,(6,)
converges weakly to the limit H ().

Then, the bootstrap distribution [:In,B also converges weakly, in probability,
to the limit distribution H(#). Though apparently very simple, this reasoning
provides a template for checking the consistency of bootstrap estimators. The
skill lies in choosing the convergence concept so as to achieve both conditions A
and B.

We can now construct bootstrap confidence sets by analogy with the clas-
sical pivotal method. Let ]A{;g(oz) denote the a-th quantile of the bootstrap

distribution and let T' denote the space of possible values for the parametric



function 7 = 7(0). Define the bootstrap confidence set for 7 to be
Cop = {t € T: R, (X, 1) < H (a)}). (3.1)

If conditions A and B above hold and if the limiting distribution H(#) is contin-
uous at its a-th quantile, then the coverage probability P, ¢(C, 5 > 8) converges
to « as n tends to infinity. The following application to Stein confidence sets
illustrates two key aspects of the bootstrap method: its remarkable power and
the care often needed to harness this power when the dimension of # is high

relative to sample size.

EXAMPLE 1. We observe the time-series X = (Xi,...,X,), which is re-
lated to the signal § = (0y,...,60,) by the following model: the distribution
of X is normal with mean vector # and with covariance matrix identity. The
parametric function 7 of interest is the signal 6 itself. The classical confidence
set of level a for # is a sphere centered at X, with radius determined by the
chi-squared distribution having n degrees of freedom. Let | - | denote Euclidean

norm. A Stein confidence set is a sphere centered at the Stein estimator
0,5 = [1 — (n —2)/| X} X. (3.2)

The root that is used to determine the radius of a Stein confidence set is
Ro(X,0) = ™ *{|f,5 = 0 = [n — (n — 2)*/|X ]}, (3.3)

which compares the loss of the Stein estimator with an unbiased estimator of
its risk. This approach to confidence sets for § was proposed at the end of Stein
(1981). By invariance under the orthogonal group, the sampling distribution of
the root (3.3) depends on 6 only through |f|, and so may be written in the form
H, (0 n).

Let {#, € R",n > 1} denote any sequence such that |0,]*/n — «a, a fi-
nite non-negative constant. Then H,(|0,]*/n) converges weakly to a normal

distribution with mean 0 and variance
0'2(@) =2—4a/(1+ a)z. (3.4)

This is condition B for this example. To meet condition A requires a careful

choice of the estimator of #, such as

bron =[1—(n—2)/|XYX. (3.5)



Note the square root in (3.5), unlike in (3.2). The essential point is that, un-
der the sequence {f,} described above, the estimators {|0, c1|?/n} converge in
probability to @, the limiting value of {|0,]*/n}. Consequently, the bootstrap
distribution [:In,B = Hn(|én7c,;|2/n) converges to the same N(0,0%(a)) limit as
does the actual sampling distribution of the root.

On the other hand, the plausible alternative estimators H,,(], s|2/n) and
H,(]X|?*/n) both converge weakly, in probability, to the wrong limits (Beran,
1993). In the successful bootstrap world for this problem, the conditional dis-
tribution of X* is N(0,.cp, 1), not N(X,I) or N(0,.s,1).

The bootstrap confidence set ,, g in this example is just the sphere centered

at the Stein estimator éms with radius

dp = [n— (0 = 2)7/|X[* 4 0 PH T (a)] (3.6)
By the reasoning sketched above, the coverage probability of this bootstrap Stein
confidence set is asymptotically «, in the uniform sense that

lim sup |P,g(Chp360)—al=0 (3.7)

n—oo |€|2 S?’LC

for every positive finite ¢. For more on bootstrap Stein confidence sets, see Beran
(1993).

A very different approach to constructing bootstrap confidence sets is Efron’s
BC, method. This is suited to one-dimensional parametric functions 7. The

asymptotic relationship between the BC, method and the root-based method
described above is discussed in Hall (1992).

4. Computing Bootstrap Confidence Sets

Only rarely does a bootstrap distribution [:In,B have a closed form distribution.
Strategies for computing the quantile [:In_}g fall into two broad categories: Monte
Carlo approximations on the one hand; Edgeworth expansions or saddlepoint
approximations on the other hand. Computers are potentially useful in doing
the algebra of the analytic approximations as well as in performing Monte Carlo
simulations. However, the computational emphasis to date has been on Monte
Carlo algorithms.

The simplest, and very general, Monte Carlo approach is to construct, in
the bootstrap world, M conditionally independent repetitions X7, ... X}, of the
original experiment. The conditional distribution of each bootstrap sample X7,
given X, is P ; . The empirical distribution of the values {R,(X7,0,):1 <



J < M} then converges to the theoretical bootstrap distribution [:In,B as M in-
creases. This approximation technique, whose origins lie in Monte Carlo tests, is
responsible for the name resampling method that is sometimes used imprecisely
as a synonym for bootstrap method. In reality, resampling is only one of the

ways to approximate a bootstrap distribution.

How many bootstrap samples should we use when resampling? The answer
to this question is twofold, as was pointed out by Hall (1986). On the one
hand, to achieve accurate coverage probability, we should choose the number of
bootstrap samples M so that k/(M + 1) = « for some integer k; and then use
the k-th order statistic of the values { R, (X7, 0,)} as the critical value for the
numerical implementation of C,, g. Then, the coverage probability of this Monte
Carlo version of (), g, evaluated under the joint distribution of the sample X
and of the artificial samples {X7:1 < j < M}, is « plus a term that goes to
zero as n increases. That coverage probability can be accurate for large values
of n, when M is small but chosen as above, is useful in debugging a simulation

study of bootstrap confidence sets.

On the other hand, the Monte Carlo approximation to the theoretical confi-
dence set ), p is a randomized procedure. Unless M is large, the computed crit-
ical value, and consequently the computed confidence set, will depend strongly
upon the realization of the artificial samples {X7:1 < j < M}. To limit the
amount of randomization, writers on the bootstrap have moved, with time, from
the suggestion that M be of order O(10?) to the recommendation that M be as
large as possible and preferably at least of order O(10?).

Several authors have investigated more efficient Monte Carlo schemes for ap-
proximating bootstrap distributions. Most successful in the bootstrap context
have been importance sampling (Johns, 1988), balanced resampling (Davison,
Hinkley, and Schechtman, 1986), and antithetic sampling (Snijders, 1984). Ap-
pendix I of Hall (1992) compares the relative efficiencies, when M is large, of

these methods for approximating a bootstrap distribution function or quantile.

The discussion above pretends that random number generators produce real-
izations of independent, identically distributed random variables. This assump-
tion is, at best, a rough approximation. A more satisfactory analysis of Monte
Carlo approximations to bootstrap confidence sets is an open problem.

Edgeworth approximations to bootstrap distributions have proved valuable
in studying the asymptotic properties of bootstrap confidence sets (Hall, 1992).

As a practical means for determining bootstrap critical values, Edgeworth ex-



pansions suffer from relative inaccuracy in their tails as well as algebraic cum-
bersomeness. Saddlepoint approximations to bootstrap distributions, initiated
by Davison and Hinkley (1988), appear to be more accurate, but currently lack

convenient implementation outside the simplest cases.

5. Quality of Bootstrap Confidence Sets

A good confidence set is both reliable and selective. By reliability, we mean that
the coverage probability is accurate; by selectivity we mean that the confidence
set is not too large. Keeping a confidence set small, among all those of coverage
probability «, is a fundamental design question, a matter of picking the root
well. Achieving accurate coverage probability is then the simpler matter of
constructing a good critical value for the chosen root. General criteria for picking
a root include: minimizing P, ¢(C, 5 3 ') for ¢ # 6, as Neyman proposed; or
minimizing a geometrical risk such as Eysup{|t — 0|:t € C,, g}. The bootstrap
Stein confidence set in Example 1 has smaller geometrical risk, at every a and
for sufficiently large n, than does the classical confidence sphere centered at X
(Beran, 1993).

Bootstrap theory has made significant progress in understanding how to
control coverage probability once the root is chosen. A number of important ex-
amples exhibit the following structure: The left continuous distribution function

H,(-,0) of the root admits an asymptotic expansion
H,(2,0) = Ha(z,0) + n_k/zh(:zj, ) + O(n_(k"'l)/z), (5.1)

where the first two terms on the right hand side are smooth functions of 8,
k is a positive integer, and the asymptotic distribution function H4(x,8) is
continuous and strictly monotone in x. In this setting, a competitor to the

bootstrap confidence set €, g is the asymptotic confidence set for 7:
Coa={teT:R,(X,t) < H;'(a,0,)}. (5.2)

Like (), g, the asymptotic coverage probability of C), 4 is .
To compare rates-of-convergence of the coverage probabilities to «, suppose

that the estimators {én} are n~'/%-consistent. By heuristic argument, as in

Beran (1988b), we find:

o [f the asymptotic distribution H 4 of the root depends on 8. then the coverage

probabilities of C), 4 and (), p converge to « at the same rates.



o [f the asymptotic distribution H4 does not depend on 6, then the coverage
probability of C), p converges to « faster than does the coverage probability
of CTL,A'

In the first case, both the asymptotic and bootstrap approaches estimate the
leading term of the expansion (5.1). In the second case, the bootstrap approach
successfully estimates the second term in the expansion (the leading term is now
known); however the simple asymptotic approach continues to estimate only
the first term, having no information about the second term. The asymptotic
approach might be refined by using a two term Cornish-Fisher expansion to
generate the critical value in (5.2). In practice, this refinement may not be easy.
The bootstrap approach is attractively intelligent in its handling of both cases
without technical intervention by the statistician. Hall (1992) has placed the

heuristics above on a rigorous footing, in a certain more specialized setting.

EXAMPLE 2. As an instance of the case most favorable to bootstrapping,
let us consider the Behrens-Fisher problem—devising a confidence interval for
the difference between two means when the variances in two independent nor-
mal samples are unknown and possibly unequal. We take as root the t-statistic
constructed from the difference of the two sample means. The limiting distribu-
tion of this root, under the normal model, is standard normal. Bootstrapping
from the fitted normal model for the two samples yields a confidence set that
is asymptotically equivalent and numerically close to Welch’s solution (Beran,
1988b). Moreover, if n denotes the combined sample size, the error in cover-
age probability of both the Welch and the bootstrap confidence sets is of order
O(n™?). By contrast, the asymptotic confidence set based on the normal lim-
iting distribution of the t-statistic incurs a coverage probability error of order
O(n™h).

EXAMPLE 1 (continued). In this Stein confidence set problem, the limiting
normal distribution of the root depends upon the unknown parameter through
the limiting value of |#|*/n. The asymptotic variance of the root (3.3) is esti-
mated consistently by

62 = 0" (|0ncrl/n) (5-3)

for o2 defined in (3.4). The bootstrap Stein confidence set C, g was described
in Section 3. The corresponding asymptotic Stein confidence set is the sphere

centered at éms with radius

dos =[n—(n—2)2|X)* +n?6,07 ()]} (5.4)



Here the coverage probability errors of (), 4 and C,, p are both of order O(n‘l/z),
as shown in Beran (1993). Figure 1 plots, for n = 19, the coverage probabili-
ties of C,, 4 (diamonds) and C,, g (crosses) against the normalized noncentrality
parameter |#|>/n. The intended coverage probability is a = .90; each bootstrap
critical value is computed from 199 bootstrap samples by the method described
in Section 4; and the coverage probabilities themselves are estimates based on
20,000 pseudo-random normal samples. The marked changes that occur in cov-
erage probability as the normalized noncentrality parameter increases from 0 to
2 reflect variations in the asymptotic skewness and in the slope of the asymptotic

variance of the root.
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FIGURE 1. Coverage probabilities in Example 1 of C), 4 (diamonds), of

Cn.p (crosses), and of C,, rp (squares) when « is .90 and n is 19.

To improve coverage probability accuracy of the Stein confidence set (), g,
we can pursue a more sophisticated strategy: First transform the root in a one-
to-one way so that its asymptotic distribution does not depend on the unknown
parameter; and then construct the bootstrap confidence set based on the trans-
formed root. Studentizing, as was done implicitly in Example 2, is an instance

of such transformation. However, studentizing does not work well for moderate



values of n in Example 1 or in other cases where the distribution of the root is
substantially non-normal. More successful in Example 1 is the use of a variance

stabilizing transformation. Instead of (3.3), consider the root
Ryr(X,0) = n'*{g[|0s = 01" /n] = g[1 — (n = 2)*/(n| X|")]}, (5.5)

where

g(u) = 27" log[—2 + 4u + 2%2(2u® — 2u + 1)/7]. (5.6)

The limiting distribution of root (5.5) is standard normal, in view of (3.4).
Let C,, 1B denote the transformed bootstrap Stein confidence set that is based
on R,7(X,0). The coverage probability error in C, 75 is of order O(n™!), a
significant improvement over C, 4 and (), g that is borne out by the coverage

probabilities (squares) plotted in Figure 1.

6. Iterated and Two-step Bootstrap

We can use the bootstrap itself to transform a root R,(X,7) into a new root
whose limiting distribution does not depend on the unknown parameter. Let

[A{mB(-) denote the left continuous bootstrap distribution function of the root

R,, and define

R.p(X,7) = H, p(R.(X,7)) = H,(R.(X,7),0,). (6.1)
When the limiting distribution of R, is continuous, the limiting distribution of
the new root R, g is typically Uniform (0,1). Let C, g denote the bootstrap

confidence set based on R, 5. If [A{mBB denotes the bootstrap distribution of
R, (X, ), then

Copp=1{l€T:R,(X,1) < ﬁ;g[H;}BB(a)]}. (6.2)

In the light of Section 5, we expect that the coverage probability of C, g con-
verges to « at a faster rate than the coverage probability of €, g. This often
turns out to be the case, as argued in Beran (1988b) and elsewhere. The trans-
formation (6.1) is called prepivoting, because it maps the original root into one
that is more nearly pivotal when n is large.

Construction of ), gp involves two bootstrap worlds. In the first bootstrap
world, as described in Section 2, the true parameter is 0, and we observe an
artificial sample X whose conditional distribution, given X, is P, . Write 0},

for én(X*), the recalculation of the estimator in the first bootstrap world. In



the second bootstrap world, the true parameter is 87 and we observe an artificial

sample X whose conditional distribution, given X and X*,is P, g:. Then

e The conditional distribution of R} = Rn(X*,T(én)), given X, is the boot-
strap distribution [:]n,B-

e The conditional distribution of R p = RmB(X*,T(én)), given X, is the
bootstrap distribution ]:In,BB- Moreover, by (6.1),

ny’n

wp = H (R, 00) = P(R" < R | X, X7), (6.3)

where R = R, (X™,7(67)).

From this we see that practical computation of €, g generally requires a
double nested Monte Carlo algorithm. The inner level of this algorithm approx-
imates H, p, while both levels are needed to approximate H, gg. For further
details, see Beran (1988b). Constructing the second bootstrap world is often
called iterated or double bootstrapping. The underlying idea is that differences
between the first bootstrap world and the original world (which are unknown)
approximately equal corresponding differences between the second bootstrap
world and the first bootstrap world (which are computable).

Prepivoting is not the only use for iterated bootstrapping. Other inferential
problems, such as bias reduction, can benefit from repeated bootstrapping, as
discussed by Hall and Martin (1988). Alternative constructions of iterated boot-
strap confidence sets, asymptotically equivalent to those derived from prepivot-
ing, are treated by Hall (1992).

Superficially similar to double bootstrapping, but different logically and
much less intensive computationally, is two-step bootstrapping. Two-step boot-
strapping provides a way to extend the classical Tukey and Scheffé simultaneous
confidence sets from normal linear models to general models. Suppose that
the parametric function 7 has components labelled by an index set U; that is
7(0) = {7u(0):u € U}. For each u, let C, , denote a confidence set for the com-
ponent 7,. By simultaneously asserting the confidence sets {C,, .}, we obtain a
simultaneous confidence set C), for the family of parametric functions {7,}. The

problem is to construct the component confidence sets {C,, , } in such a way that
Po(Chu 3 7y) is the same for every u € U (6.4)

and

Pog(Cy 3 7) = a. (6.5)



Suppose that R,, = R,.(X,7,) is a root for the component parametric
function 7,. Let H,,(-,8) and H,(-,0) denote the left-continuous distribution
functions of R, and of sup, H, (R, 0) respectively. The corresponding boot-
strap estimators for these two distributions are then [A{th = Hmu(-,én) and
[:In,B = H,(-, én) Define the critical values

dy = 7L [H75 (). (6.6)

n,u,B

Let T, and T denote, respectively, the ranges of 7,(6) and (). Every point in
the range set T' can be written in component form ¢ = {¢,}, where ¢, lies in T,,.

Define a bootstrap confidence set for 7, by
CTMMB = {tu E Tu: Rn,u(Xv tu) S Czn,u} (67)

Simultaneously asserting these component confidence sets generates the follow-

ing bootstrap simultaneous confidence set for 7:
Cop={teT:R,.(X,1,) < CZM for every u € U}. (6.8)

Asymptotically in n, the confidence set (), p satisfies the overall coverage
probability condition (6.5); and the confidence sets {C,, ., g} satisfy the balance
condition (6.4). Regularity conditions that ensure the validity of these conclu-
sions are analogous to conditions A and B in Section 3. Beran (1988a) gives
particulars. Interestingly, the Tukey and Scheffé simultaneous confidence inter-
vals in the normal linear model are special cases of the bootstrap confidence set
(6.8). These classical procedures satisfy (6.4) and (6.5) exactly.

Since the definition of simultanecous confidence set (', p involves only the
first bootstrap world, a Monte Carlo approximation to the critical values (6.7)

requires only one round of resampling. Indeed, [A{th and [:In,B are just the con-

A A

ditional distributions of R, ,(X™*, 7,(0,)) and of sup, Hy (R u(X*, 7.(0,), én)),
given X. Computational difficulties can arise when the index set U is not fi-
nite. However, in practice we are usually interested in only a finite number of
parametric functions. Iterated bootstrapping can be used to improve the rate
at which the simultaneous confidence set approaches properties (6.4) and (6.5)

as n increases. For details, see Beran (1990).

7. Further Resources

In this short account, we have sketched only how bootstrap methods may be used

to construct reliable confidence sets. Significant progress has occurred in several



additional directions, including: bootstrap tests; bootstrap prediction regions;
bootstrap confidence sets for models where the dimension of the parameter space
is high relative to sample size (Example 1 illustrates this situation); bootstrap
inference based on nonparametric regression estimators or density estimators;
bootstrap inference for spectral density estimators. Further information on these

and other bootstrap developments may be found in the following sources:

Monographs. Efron and Tibshirani (1993) give a wide-ranging, relatively
nonmathematical introduction to the bootstrap and its applications. Hall (1992)
uses Edgeworth expansions to study higher-order asymptotic properties of boot-
strap methods; the appendices treat other important aspects of bootstrap the-
ory. Each chapter ends with brief bibliographical notes citing related work by
other authors. Mammen (1992) develops higher-order bootstrap analyses with-
out Edgeworth expansions; bootstrap worlds for models where the dimension of
the parameter space is large relative to sample size (the wild bootstrap); and
bootstrap methods for M-estimators in such circumstances. The dissertation
of Janas (1993) covers bootstrap procedures based on the periodogram. Beran
and Ducharme (1991) records six introductory lectures on bootstrap inference.

Efron (1982) raises several problems that remain incompletely solved.

Survey papers. Surveys of bootstrap theory, which reflect the state of knowl-
edge at the time of writing, include: Hinkley (1988), DiCiccio and Romano
(1988), and Beran (1984). The Trier proceedings volume (Jockel, Rothe, and
Sendler, 1992) contains papers on random number generation as well as on boot-

strap theory and applications. A second bootstrap proceedings volume is Billard

and LePage (1992).
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