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Abstract

This essay is organized around the theoretical and computational problem of con�

structing bootstrap con�dence sets� with forays into related topics� The seven section

headings are� Introduction� The Bootstrap World� Bootstrap Con�dence Sets� Com�

puting Bootstrap Con�dence Sets� Quality of Bootstrap Con�dence Sets� Iterated and

Two�step Bootstrap� Further Resources�

�� Introduction

Bradley Efron	s 
��� paper on the bootstrap in Statistics gained the imme�

diate interest of his peers for several historical reasons� First� the bootstrap

promised to extend formal statistical inference to situations too complex for ex�

isting methodology� By the late 
���	s� theoretical statisticians had recognized

that classical formulations of statistics� whether frequentist or Bayesian or oth�

erwise� did not provide a reasonable way to analyze the large data sets arising

in the computer age� This awkward defensive position made theoreticians re�

ceptive to the bootstrap� as well as to other data analytic ideas that seemed less

model�dependent than classical statistical theory�

Second� by the 
���	s� developments in theoretical statistics had provided

tools that soon proved powerful in analysing the behavior of bootstrap proce�

dures� For instance� the theory of robust statistics accustomed researchers to

working with continuous or di�erentiable statistical functionals� This prepared

the way for the later interpretation of bootstrap distributions as statistical func�

tionals� The need to quantify contamination neighborhoods in robustness studies

drew attention to metrics for probability measures� Huber 

��
� presents both



developments in robust statistics� Several decades of work on asymptotic opti�

mality theory� culminating in the early 
���	s with the local asymptotic minimax

bound and with H�ajek	s convolution theorem� encouraged statisticians to think

about weak convergence of triangular arrays� Ibragimov and Has	minskii 

��
�

give a comprehensive account� Edgeworth expansions and saddlepoint approx�

imations saw a revival in the 
���	s that is summarized by Hall 

����� These

various theoretical ideas were well�suited to studying the convergence in prob�

ability of bootstrap distributions and the asymptotic properties of bootstrap

procedures�

Third� bootstrap�like methods were natural as computers proliferated� From

the 
���	s onwards� some data analysts� not all statisticians� began experiment�

ing with Monte Carlo simulations from �tted distributions� These resampling

experiments were based more on intuition rather than on logical analysis and

were published outside the main�stream statistical journals� Since a careful

historical study has not yet been done� it is possible that the origins of the

resampling idea are substantially older� 
After all� the paired comparisons de�

sign in Statistics can be traced back to the philosopher Carneades� head of the

Academy in Athens around 
�� B� C�� who argued that the di�erent fortunes of

twins disproves the e�cacy of astrology�� An essential contribution of Efron	s



���� paper was to formulate the bootstrap idea� as an intellectual object that

could be studied theoretically� and give it a name�

The purpose of this essay is to introduce the bootstrap� to indicate when

and in what sense it works� to discuss basic questions of implementation� and

to illustrate the main points by example� The exposition is organized around

the construction of bootstrap con�dence sets�an application where bootstrap

methods already enjoy considerable success�with forays into related topics�

Section � contains suggestions for further reading�

�� The Bootstrap World

We recall that a statistical model for a sample X � 
X�� � � � �Xn� consists of a

family of distributions� written fPn��� � � �g� One member of this model� the

true distribution� is considered to generate probability samples similar to the

observed data� However� the value of the parameter � that identi�es the true

distribution is not known to the statistician� We suppose that the parameter

space � is metric� but do not require it to be �nite dimensional�

Bootstrap methods are a particular application of simulation ideas to the



problem of statistical inference� From the sample X� we construct an estimator
��n � ��n
X� that converges in Pn���probability to �� for some convergence concept

to be chosen� The bootstrap idea is then to�

� Create an arti�cial world in which the true parameter value is ��n and the

sample X� is generated from the �tted model Pn���n � That is� the conditional

distribution of X�� given the data X� is Pn���n �

� Act as if sampling distributions computed in the arti�cial world are accurate

approximations to the corresponding true 
but unknown� sampling distri�

butions�

The original world of the statistician	s model consists of the observable X

whose distribution is Pn��� The bootstrap world consists of the observable X�

whose conditional distribution� given X� is Pn���n � In the original world� the

distribution of X is unknown� However� in the bootstrap world� the distribution

of X� is fully known� Thus� any sampling distribution in the bootstrap world

can be computed� at least in principle�

This brief description omits several important issues� First� for each statis�

tical model� there may be many possible bootstrap worlds� each corresponding

to a di�erent choice of the estimator ��n� Only some choices may be success�

ful� Second� the plug�in method for constructing the model distribution in the

bootstrap world can be generalized� and sometimes must be� When a high or

in�nite dimensional � lacks a consistent estimator in a natural metric� it may

still be possible to construct a useful bootstrap world that mimics only relevant

aspects of the model in the original world� Time series analysis and curve es�

timation provide leading examples� see Mammen 

���� and Janas 

���� as

well as Example 
 in Section �� Third� computation of sampling distributions in

the bootstrap world often involves Monte Carlo approximations� whose design

raises further issues� Fourth� bootstrap methods are rarely exact� their theoreti�

cal justi�cation typically rests on asymptotics under which the bootstrap world

converges to the original world� These points will be developed further as the

essay proceeds�

�� Bootstrap Con�dence Sets

Suppose we wish to construct a con�dence set for the parametric function

� � � 
��� Classical theory advises us to �nd a pivot�a function of the sample

X and of � whose distribution under the model Pn�� is continuous and com�

pletely known� Archetypal are con�dence intervals for the mean of a N
�� ���



distribution when location � and scale � are unknown� Here � � 
�� ��� the

parametric function � 
�� � �� and the pivot is the t�statistic� whose sampling

distribution does not depend on the unknown �� Though important as an ideal

case� the exact pivotal technique is rarely available� It already fails to generate

con�dence intervals for the di�erence of two normal means in the Behrens�Fisher

problem� for lack of a pivot�

Bootstrap ideas permit generalizing the pivotal method� Let Rn
X� � � be

a function of the sample and of � � whose distribution under the model Pn�� is

denoted by Hn
��� Because it need not be a pivot� but plays an analogous role�

we call Rn a root� A plausible estimator of the root	s sampling distribution is

then the bootstrap distribution �Hn�B � Hn
��n�� This bootstrap distribution has

two complementary mathematical interpretations�

� As de�ned� �Hn�B is a random probability measure� the natural plug�in esti�

mator of the sampling distribution of Rn
X� � �� From this viewpoint� �Hn�B

is a statistical functional that depends on the sample only through ��n�

� Alternatively� �Hn�B is the conditional distribution of Rn
X�� � 
��n�� given the

sample X� In other words� �Hn�B is the distribution of the root Rn in the

bootstrap world described at the end of Section ��

The interpretation as conditional distribution leads readily to Monte Carlo

approximations for a bootstrap distribution 
see Section ��� The interpretation

as statistical functional is the starting point in developing asymptotic theory for

bootstrap procedures� as we shall see next�

Suppose that� for some convergence concept in the parameter space �� both

of the following conditions hold� for every � � ��

A� The estimator ��n converges in probability to � as n increases�

B� For any sequence f�ng that converges to �� the sampling distribution Hn
�n�

converges weakly to the limit H
���

Then� the bootstrap distribution �Hn�B also converges weakly� in probability�

to the limit distribution H
��� Though apparently very simple� this reasoning

provides a template for checking the consistency of bootstrap estimators� The

skill lies in choosing the convergence concept so as to achieve both conditions A

and B�

We can now construct bootstrap con�dence sets by analogy with the clas�

sical pivotal method� Let �H��
n�B
�� denote the ��th quantile of the bootstrap

distribution and let T denote the space of possible values for the parametric



function � � � 
��� De�ne the bootstrap con�dence set for � to be

Cn�B � ft � T �Rn
X� t� � �H��
n�B
��g� 
��
�

If conditions A and B above hold and if the limiting distribution H
�� is contin�

uous at its ��th quantile� then the coverage probability Pn��
Cn�B � �� converges

to � as n tends to in�nity� The following application to Stein con�dence sets

illustrates two key aspects of the bootstrap method� its remarkable power and

the care often needed to harness this power when the dimension of � is high

relative to sample size�

EXAMPLE 
� We observe the time�series X � 
X�� � � � �Xn�� which is re�

lated to the signal � � 
��� � � � � �n� by the following model� the distribution

of X is normal with mean vector � and with covariance matrix identity� The

parametric function � of interest is the signal � itself� The classical con�dence

set of level � for � is a sphere centered at X� with radius determined by the

chi�squared distribution having n degrees of freedom� Let j � j denote Euclidean

norm� A Stein con�dence set is a sphere centered at the Stein estimator

��n�S � �
� 
n� ��	jXj
��X� 
����

The root that is used to determine the radius of a Stein con�dence set is

Rn
X� �� � n����fj��n�S � �j� � �n� 
n� ���	jXj��g� 
����

which compares the loss of the Stein estimator with an unbiased estimator of

its risk� This approach to con�dence sets for � was proposed at the end of Stein



��
�� By invariance under the orthogonal group� the sampling distribution of

the root 
���� depends on � only through j�j� and so may be written in the form

Hn
j�j�	n��

Let f�n � Rn� n � 
g denote any sequence such that j�nj
�	n 	 a� a ��

nite non�negative constant� Then Hn
j�nj�	n� converges weakly to a normal

distribution with mean � and variance

��
a� � � � �a	

 � a��� 
����

This is condition B for this example� To meet condition A requires a careful

choice of the estimator of �� such as

��n�CL � �
 � 
n� ��	jXj
��
���
� X� 
����



Note the square root in 
����� unlike in 
����� The essential point is that� un�

der the sequence f�ng described above� the estimators fj��n�CLj�	ng converge in

probability to a� the limiting value of fj�nj�	ng� Consequently� the bootstrap

distribution �Hn�B � Hn
j��n�CLj�	n� converges to the same N
�� ��
a�� limit as

does the actual sampling distribution of the root�

On the other hand� the plausible alternative estimators Hn
j��n�S j�	n� and

Hn
jXj�	n� both converge weakly� in probability� to the wrong limits 
Beran�


����� In the successful bootstrap world for this problem� the conditional dis�

tribution of X� is N
��n�CL� I�� not N
X� I� or N
��n�S � I��

The bootstrap con�dence set Cn�B in this example is just the sphere centered

at the Stein estimator ��n�S with radius

�dn�B � �n� 
n� ��
�	jXj� � n��� �H��

n�B
���
���
� � 
����

By the reasoning sketched above� the coverage probability of this bootstrap Stein

con�dence set is asymptotically �� in the uniform sense that

lim
n��

sup
j�j��nc

jPn��
Cn�B � ��� �j � � 
����

for every positive �nite c� For more on bootstrap Stein con�dence sets� see Beran



�����

A very di�erent approach to constructing bootstrap con�dence sets is Efron	s

BCa method� This is suited to one�dimensional parametric functions � � The

asymptotic relationship between the BCa method and the root�based method

described above is discussed in Hall 

�����

�� Computing Bootstrap Con�dence Sets

Only rarely does a bootstrap distribution �Hn�B have a closed form distribution�

Strategies for computing the quantile �H��
n�B fall into two broad categories� Monte

Carlo approximations on the one hand� Edgeworth expansions or saddlepoint

approximations on the other hand� Computers are potentially useful in doing

the algebra of the analytic approximations as well as in performing Monte Carlo

simulations� However� the computational emphasis to date has been on Monte

Carlo algorithms�

The simplest� and very general� Monte Carlo approach is to construct� in

the bootstrap world�M conditionally independent repetitions X�
� � � � �X

�
M of the

original experiment� The conditional distribution of each bootstrap sample X�
j �

given X� is Pn���n � The empirical distribution of the values fRn
X
�
j �
��n�� 
 �



j �Mg then converges to the theoretical bootstrap distribution �Hn�B as M in�

creases� This approximation technique� whose origins lie in Monte Carlo tests� is

responsible for the name resampling method that is sometimes used imprecisely

as a synonym for bootstrap method� In reality� resampling is only one of the

ways to approximate a bootstrap distribution�

How many bootstrap samples should we use when resampling� The answer

to this question is twofold� as was pointed out by Hall 

����� On the one

hand� to achieve accurate coverage probability� we should choose the number of

bootstrap samples M so that k	
M � 
� � � for some integer k� and then use

the k�th order statistic of the values fRn
X�
j �
��n�g as the critical value for the

numerical implementation of Cn�B� Then� the coverage probability of this Monte

Carlo version of Cn�B� evaluated under the joint distribution of the sample X

and of the arti�cial samples fX�
j � 
 � j � Mg� is � plus a term that goes to

zero as n increases� That coverage probability can be accurate for large values

of n� when M is small but chosen as above� is useful in debugging a simulation

study of bootstrap con�dence sets�

On the other hand� the Monte Carlo approximation to the theoretical con��

dence set Cn�B is a randomized procedure� UnlessM is large� the computed crit�

ical value� and consequently the computed con�dence set� will depend strongly

upon the realization of the arti�cial samples fX�
j � 
 � j � Mg� To limit the

amount of randomization� writers on the bootstrap have moved� with time� from

the suggestion that M be of order O

��� to the recommendation that M be as

large as possible and preferably at least of order O

����

Several authors have investigated more e�cient Monte Carlo schemes for ap�

proximating bootstrap distributions� Most successful in the bootstrap context

have been importance sampling 
Johns� 
����� balanced resampling 
Davison�

Hinkley� and Schechtman� 
����� and antithetic sampling 
Snijders� 
����� Ap�

pendix II of Hall 

���� compares the relative e�ciencies� when M is large� of

these methods for approximating a bootstrap distribution function or quantile�

The discussion above pretends that random number generators produce real�

izations of independent� identically distributed random variables� This assump�

tion is� at best� a rough approximation� A more satisfactory analysis of Monte

Carlo approximations to bootstrap con�dence sets is an open problem�

Edgeworth approximations to bootstrap distributions have proved valuable

in studying the asymptotic properties of bootstrap con�dence sets 
Hall� 
�����

As a practical means for determining bootstrap critical values� Edgeworth ex�



pansions su�er from relative inaccuracy in their tails as well as algebraic cum�

bersomeness� Saddlepoint approximations to bootstrap distributions� initiated

by Davison and Hinkley 

����� appear to be more accurate� but currently lack

convenient implementation outside the simplest cases�

�� Quality of Bootstrap Con�dence Sets

A good con�dence set is both reliable and selective� By reliability� we mean that

the coverage probability is accurate� by selectivity we mean that the con�dence

set is not too large� Keeping a con�dence set small� among all those of coverage

probability �� is a fundamental design question� a matter of picking the root

well� Achieving accurate coverage probability is then the simpler matter of

constructing a good critical value for the chosen root� General criteria for picking

a root include� minimizing Pn��
Cn�B � ��� for �� 
� �� as Neyman proposed� or

minimizing a geometrical risk such as E� supfjt� �j� t � Cn�Bg� The bootstrap

Stein con�dence set in Example 
 has smaller geometrical risk� at every � and

for su�ciently large n� than does the classical con�dence sphere centered at X


Beran� 
�����

Bootstrap theory has made signi�cant progress in understanding how to

control coverage probability once the root is chosen� A number of important ex�

amples exhibit the following structure� The left continuous distribution function

Hn
�� �� of the root admits an asymptotic expansion

Hn
x� �� � HA
x� �� � n�k��h
x� �� �O
n��k������� 
��
�

where the �rst two terms on the right hand side are smooth functions of ��

k is a positive integer� and the asymptotic distribution function HA
x� �� is

continuous and strictly monotone in x� In this setting� a competitor to the

bootstrap con�dence set Cn�B is the asymptotic con�dence set for � �

Cn�A � ft � T �Rn
X� t� � H��
A 
�� ��n�g� 
����

Like Cn�B� the asymptotic coverage probability of Cn�A is ��

To compare rates�of�convergence of the coverage probabilities to �� suppose

that the estimators f��ng are n�����consistent� By heuristic argument� as in

Beran 

���b�� we �nd�

� If the asymptotic distributionHA of the root depends on �� then the coverage

probabilities of Cn�A and Cn�B converge to � at the same rates�



� If the asymptotic distribution HA does not depend on �� then the coverage

probability of Cn�B converges to � faster than does the coverage probability

of Cn�A�

In the �rst case� both the asymptotic and bootstrap approaches estimate the

leading term of the expansion 
��
�� In the second case� the bootstrap approach

successfully estimates the second term in the expansion 
the leading term is now

known�� however the simple asymptotic approach continues to estimate only

the �rst term� having no information about the second term� The asymptotic

approach might be re�ned by using a two term Cornish�Fisher expansion to

generate the critical value in 
����� In practice� this re�nement may not be easy�

The bootstrap approach is attractively intelligent in its handling of both cases

without technical intervention by the statistician� Hall 

���� has placed the

heuristics above on a rigorous footing� in a certain more specialized setting�

EXAMPLE �� As an instance of the case most favorable to bootstrapping�

let us consider the Behrens�Fisher problem�devising a con�dence interval for

the di�erence between two means when the variances in two independent nor�

mal samples are unknown and possibly unequal� We take as root the t�statistic

constructed from the di�erence of the two sample means� The limiting distribu�

tion of this root� under the normal model� is standard normal� Bootstrapping

from the �tted normal model for the two samples yields a con�dence set that

is asymptotically equivalent and numerically close to Welch	s solution 
Beran�


���b�� Moreover� if n denotes the combined sample size� the error in cover�

age probability of both the Welch and the bootstrap con�dence sets is of order

O
n���� By contrast� the asymptotic con�dence set based on the normal lim�

iting distribution of the t�statistic incurs a coverage probability error of order

O
n����

EXAMPLE 
 
continued�� In this Stein con�dence set problem� the limiting

normal distribution of the root depends upon the unknown parameter through

the limiting value of j�j�	n� The asymptotic variance of the root 
���� is esti�

mated consistently by

���
n � ��
j��n�CLj

�	n� 
����

for �� de�ned in 
����� The bootstrap Stein con�dence set Cn�B was described

in Section �� The corresponding asymptotic Stein con�dence set is the sphere

centered at ��n�S with radius

�dn�A � �n� 
n� ��
�	jXj� � n�����n 

��
���
���
� � 
����



Here the coverage probability errors of Cn�A and Cn�B are both of order O
n������

as shown in Beran 

����� Figure 
 plots� for n � 
�� the coverage probabili�

ties of Cn�A 
diamonds� and Cn�B 
crosses� against the normalized noncentrality

parameter j�j�	n� The intended coverage probability is � � ���� each bootstrap

critical value is computed from 
�� bootstrap samples by the method described

in Section �� and the coverage probabilities themselves are estimates based on

������ pseudo�random normal samples� The marked changes that occur in cov�

erage probability as the normalized noncentrality parameter increases from � to

� re!ect variations in the asymptotic skewness and in the slope of the asymptotic

variance of the root�
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FIGURE 
� Coverage probabilities in Example 
 of Cn�A 
diamonds�� of

Cn�B 
crosses�� and of Cn�TB 
squares� when � is ��� and n is 
��

To improve coverage probability accuracy of the Stein con�dence set Cn�B�

we can pursue a more sophisticated strategy� First transform the root in a one�

to�one way so that its asymptotic distribution does not depend on the unknown

parameter� and then construct the bootstrap con�dence set based on the trans�

formed root� Studentizing� as was done implicitly in Example �� is an instance

of such transformation� However� studentizing does not work well for moderate



values of n in Example 
 or in other cases where the distribution of the root is

substantially non�normal� More successful in Example 
 is the use of a variance

stabilizing transformation� Instead of 
����� consider the root

Rn�T 
X� �� � n���fg�j��n�S � �j�	n�� g�
� 
n� ���	
njXj���g� 
����

where

g
u� � ��� log��� � �u� ����
�u� � �u � 
������ 
����

The limiting distribution of root 
���� is standard normal� in view of 
�����

Let Cn�TB denote the transformed bootstrap Stein con�dence set that is based

on Rn�T 
X� ��� The coverage probability error in Cn�TB is of order O
n���� a

signi�cant improvement over Cn�A and Cn�B that is borne out by the coverage

probabilities 
squares� plotted in Figure 
�

�� Iterated and Two	step Bootstrap

We can use the bootstrap itself to transform a root Rn
X� � � into a new root

whose limiting distribution does not depend on the unknown parameter� Let
�Hn�B
�� denote the left continuous bootstrap distribution function of the root

Rn and de�ne

Rn�B
X� � � � �Hn�B
Rn
X� � �� � Hn
Rn
X� � �� ��n�� 
��
�

When the limiting distribution of Rn is continuous� the limiting distribution of

the new root Rn�B is typically Uniform 
��
�� Let Cn�BB denote the bootstrap

con�dence set based on Rn�B� If �Hn�BB denotes the bootstrap distribution of

Rn�B
X� � �� then

Cn�BB � ft � T �Rn
X� t� � �H��
n�B�

�H��
n�BB
���g� 
����

In the light of Section �� we expect that the coverage probability of Cn�BB con�

verges to � at a faster rate than the coverage probability of Cn�B� This often

turns out to be the case� as argued in Beran 

���b� and elsewhere� The trans�

formation 
��
� is called prepivoting� because it maps the original root into one

that is more nearly pivotal when n is large�

Construction of Cn�BB involves two bootstrap worlds� In the �rst bootstrap

world� as described in Section �� the true parameter is ��n and we observe an

arti�cial sample X� whose conditional distribution� given X� is Pn���n � Write �
�
n

for ��n
X
��� the recalculation of the estimator in the �rst bootstrap world� In



the second bootstrap world� the true parameter is ��n and we observe an arti�cial

sample X�� whose conditional distribution� given X and X�� is Pn���
n

� Then

� The conditional distribution of R�
n � Rn
X

�� � 
��n��� given X� is the boot�

strap distribution �Hn�B�

� The conditional distribution of R�
n�B � Rn�B
X

�� � 
��n��� given X� is the

bootstrap distribution �Hn�BB� Moreover� by 
��
��

R�
n�B � Hn
R

�
n� �

�
n� � P 
R��

n 
 R�
njX�X

��� 
����

where R��
n � Rn
X��� � 
��n���

From this we see that practical computation of Cn�BB generally requires a

double nested Monte Carlo algorithm� The inner level of this algorithm approx�

imates Hn�B� while both levels are needed to approximate Hn�BB� For further

details� see Beran 

���b�� Constructing the second bootstrap world is often

called iterated or double bootstrapping� The underlying idea is that di�erences

between the �rst bootstrap world and the original world 
which are unknown�

approximately equal corresponding di�erences between the second bootstrap

world and the �rst bootstrap world 
which are computable��

Prepivoting is not the only use for iterated bootstrapping� Other inferential

problems� such as bias reduction� can bene�t from repeated bootstrapping� as

discussed by Hall and Martin 

����� Alternative constructions of iterated boot�

strap con�dence sets� asymptotically equivalent to those derived from prepivot�

ing� are treated by Hall 

�����

Super�cially similar to double bootstrapping� but di�erent logically and

much less intensive computationally� is two�step bootstrapping� Two�step boot�

strapping provides a way to extend the classical Tukey and Sche��e simultaneous

con�dence sets from normal linear models to general models� Suppose that

the parametric function � has components labelled by an index set U � that is

� 
�� � f�u
���u � Ug� For each u� let Cn�u denote a con�dence set for the com�

ponent �u� By simultaneously asserting the con�dence sets fCn�ug� we obtain a

simultaneous con�dence set Cn for the family of parametric functions f�ug� The

problem is to construct the component con�dence sets fCn�ug in such a way that

Pn��
Cn�u � �u� is the same for every u � U 
����

and

Pn��
Cn � � � � �� 
����



Suppose that Rn�u � Rn�u
X� �u� is a root for the component parametric

function �u� Let Hn�u
�� �� and Hn
�� �� denote the left�continuous distribution

functions of Rn�u and of supuHn�u
Rn�u� �� respectively� The corresponding boot�

strap estimators for these two distributions are then �Hn�u�B � Hn�u
�� ��n� and
�Hn�B � Hn
�� ��n�� De�ne the critical values

�dn�u � �H��
n�u�B�

�H��
n�B
���� 
����

Let Tu and T denote� respectively� the ranges of �u
�� and � 
��� Every point in

the range set T can be written in component form t � ftug� where tu lies in Tu�

De�ne a bootstrap con�dence set for �u by

Cn�u�B � ftu � Tu�Rn�u
X� tu� � �dn�ug� 
����

Simultaneously asserting these component con�dence sets generates the follow�

ing bootstrap simultaneous con�dence set for � �

Cn�B � ft � T �Rn�u
X� tu� � �dn�u for every u � Ug� 
����

Asymptotically in n� the con�dence set Cn�B satis�es the overall coverage

probability condition 
����� and the con�dence sets fCn�u�Bg satisfy the balance

condition 
����� Regularity conditions that ensure the validity of these conclu�

sions are analogous to conditions A and B in Section �� Beran 

���a� gives

particulars� Interestingly� the Tukey and Sche��e simultaneous con�dence inter�

vals in the normal linear model are special cases of the bootstrap con�dence set


����� These classical procedures satisfy 
���� and 
���� exactly�

Since the de�nition of simultaneous con�dence set Cn�B involves only the

�rst bootstrap world� a Monte Carlo approximation to the critical values 
����

requires only one round of resampling� Indeed� �Hn�u�B and �Hn�B are just the con�

ditional distributions of Rn�u
X
�� �u
��n�� and of supuHn�u
Rn�u
X

�� �u
��n�� ��n���

given X� Computational di�culties can arise when the index set U is not ��

nite� However� in practice we are usually interested in only a �nite number of

parametric functions� Iterated bootstrapping can be used to improve the rate

at which the simultaneous con�dence set approaches properties 
���� and 
����

as n increases� For details� see Beran 

�����


� Further Resources

In this short account� we have sketched only how bootstrap methods may be used

to construct reliable con�dence sets� Signi�cant progress has occurred in several



additional directions� including� bootstrap tests� bootstrap prediction regions�

bootstrap con�dence sets for models where the dimension of the parameter space

is high relative to sample size 
Example 
 illustrates this situation�� bootstrap

inference based on nonparametric regression estimators or density estimators�

bootstrap inference for spectral density estimators� Further information on these

and other bootstrap developments may be found in the following sources�

Monographs� Efron and Tibshirani 

���� give a wide�ranging� relatively

nonmathematical introduction to the bootstrap and its applications� Hall 

����

uses Edgeworth expansions to study higher�order asymptotic properties of boot�

strap methods� the appendices treat other important aspects of bootstrap the�

ory� Each chapter ends with brief bibliographical notes citing related work by

other authors� Mammen 

���� develops higher�order bootstrap analyses with�

out Edgeworth expansions� bootstrap worlds for models where the dimension of

the parameter space is large relative to sample size 
the wild bootstrap�� and

bootstrap methods for M�estimators in such circumstances� The dissertation

of Janas 

���� covers bootstrap procedures based on the periodogram� Beran

and Ducharme 

��
� records six introductory lectures on bootstrap inference�

Efron 

���� raises several problems that remain incompletely solved�

Survey papers� Surveys of bootstrap theory� which re!ect the state of knowl�

edge at the time of writing� include� Hinkley 

����� DiCiccio and Romano



����� and Beran 

����� The Trier proceedings volume 
J"ockel� Rothe� and

Sendler� 
���� contains papers on random number generation as well as on boot�

strap theory and applications� A second bootstrap proceedings volume is Billard

and LePage 

�����
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