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Integrative multimodal image analysis using physical models for characteriza-
tion of brain tumors in radiotherapy

Therapy failure with subsequent tumor progress is a common problem in radiotherapy of
high grade glioma. Definition of treatment volumes with CT and MRI is limited due to
uncertainties concerning tumor outlines. The goal of the presented work was to enable
assessment of tumor physiology and prediction of progression patterns using multi-modal
image analysis and thus, improve target delineation. Physiological imaging modalities, such
as 8F-FET PET, diffusion and perfusion MRI were used to predict recurrence patterns.
The Medical Imaging Interaction ToolKit together with own software implementation
enabled side-by-side evaluation of all image modalities. These included tools for PET
analysis and a module for voxel wise fitting of dynamic data with pharmacokinetic models.
Robustness and accuracy of parameter estimates were studied on synthetic perfusion data.
Parameter feasibility for progression prediction was investigated on DCE MRI and *F-FET
PET data. Using the developed software tools, a pipeline for prediction of tumor progres-
sion patterns based on multi-modal image classification with a random forest machine
learning algorithm was established. Exemplary prediction analysis was applied on a small
patient set for illustration of workflow functionality and classification results.

Integrative multimodale Bildgebungsanalyse mit physikalischen Modellen zur
Charakterisierung von Hirntumoren in der Strahlentherapie

Fortschreitendes Tumorwachstum aufgrund von Therapieversagen ist ein hidufiges Problem
bei der Bestrahlung von hochgradigen Gliomen. Die Definition der Bestrahlungsvolumina
mithilfe der Bildgebungsverfahren CT und MRT ist aufgrund von Unsicherheiten tiber
die Tumorbegrenzung limitiert. Ziel der vorgestellten Arbeit war es, Messmethoden der
Tumorphysiologie zu untersuchen und die Progression der Tumore durch multimodale
Bildanalysen vorherzusagen, um die Zielvolumendefinition zu verbessern. Physiologische
Bildgebungsmodalititen, wie '*F-FET PET, Diffusions- und Perfusions-MRT, wurden zur
Vorhersage von Rekurrenzmustern verwendet. Das Medical Imaging Interaction ToolKit
wurde mit eigenen Implementierungen erweitert, um eine gleichzeitige Auswertung aller
relevanten Bilder zu ermoglichen. Dabei wurde Software zur Auswertung von PET-Bildern,
sowie ein Modul fiir voxelbasiertes Fitten von dynamischen Daten mit pharmakokinetischen
Modellen entwickelt. Robustheit und Genauigkeit der pharmakokinetischen Modellierung
in der Perfusions-MRT wurde an synthetischen Daten untersucht. Studien zu Nutzung
von Parametern aus Perfusions-MRT und '8 F-FET PET wurden zur Vorhersage von
Progressionsmustern durchgefithrt. Mithilfe der entwickelten Software wurde eine Pipeline
zur Vorhersage von Tumorwachstumsmustern implementiert, die auf Klassifikation mittels
maschinellen Lernens durch Random Forest Algorithmen basiert. Eine exemplarische
Analyse wurde anhand eines kleinen Patientenkollektivs durchgefithrt, um Funktionalitét
und Ergebnisse der Auswerteroutine zu illustrieren.
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1 Introduction

Therapy failure with subsequent tumor progress is one of the most common problems in
radiotherapy of patients diagnosed with high grade glioma. These tumors present with
rapid growth and strong infiltration of the surrounding healthy brain tissue, making them
difficult to address with surgery. Radiotherapy in combination with chemotherapy has
been established as standard treatment procedure. However, median survival remains poor,
as treatment planning of radiotherapy is confronted with a number of challenges. One
major hurdle is the definition of tumor outlines due to micro-invasions into the surrounding
healthy tissue. Magnetic resonance imaging (MRI) provides good soft tissue contrast.
Furthermore, the break-down of the blood-brain-barrier, commonly observed in high grade
glioma, induces leakage and hence, accumulation of the contrast agent in the interstitial
volume, causing bright image contrast of the lesion. Therefore, standard target definition
in radiotherapy is based on contrast enhanced 77 weighted MRI together with a planning
computed tomographic (CT) image. Microscopic outliers of the tumor, however, are difficult
to assess with these modalities. The possibly resulting underdosage of brain tissue at risk
poses the danger of progression, which leads to recurrence of the tumor. Furthermore,
tumor heterogeneity presents with additional challenges, as different parts of the lesion
require different radiation doses. Hypoxic conditions, for example, decrease the tissues
sensitivity to radiation and thus higher doses need to be applied in order to induce cell
death.

The aim of the presented thesis was to somehow “visualize” and assess the physiology of
malignant and healthy brain tissue, in particular the tumor heterogeneity, for identification
of potentially malignant tissue and estimation of the recurrence probability. Gained
information could be used as prediction of the physiological tumor extent and could thus
improve radiotherapy target delineation and inhibit progress formation.

Recent developments in the field of radiologic imaging have given rise to metabolic,
(molecular-) biological and functional imaging modalities, which enable more detailed
assessment of the tissue physiology in the brain rather than just anatomical structures. Due
to increased amino acid transport, probably originating from enhanced protein synthesis,
amino acid tracers, such as [*®F]-fluoro-ethyl-tyrosin (*F-FET), have shown accumulation
in brain tumors in positron emission tomography (PET) imaging. Thus, they provide
a good opportunity to identify metabolically active tumor tissue with high sensitivity
and specificity. Assessment of hemodynamic parameters, such as cerebral blood flow
and cerebral blood volume, with dynamic contrast enhanced MRI (DCE MRI) provides
interesting measurement parameters in various pathologies in the brain as they enable
quantification of tissue micro-circulation and micro-vascularization. Diffusion MRI has
been established as a useful diagnostic tool in various brain diseases, including stroke and
hemorrhages, and is frequently consulted in neuro-oncology.
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However, until now, these imaging options have been considered and investigated individu-
ally, and mostly with respect to their concordance with standard techniques. The goal of
the presented work was not to replace information acquired with standard images but to
draw additional information from these physiological modalities and to evaluate them with
respect to tumor progression patterns. Furthermore, information from different modalities
was not considered individually but as an entity.

The ultimate goal would be to combine the different parameters to a functional relation
giving the probability of a tissue element to become malignant. It is obvious, that such
a relation is difficult to “find by hand®, as tumors and patients present with strong
heterogeneity and large variation in the parameter characteristics. A good example for
this inter-patient variability is the standard uptake value, derived from PET images. It
is difficult to define fixed value thresholds for definition of pathological uptake, since the
degree of tracer uptake varies greatly between patients.

A solution to the above described problem could be found by using machine learning
approaches for pattern recognition. The classification algorithms present with the opportu-
nity to evaluate large data sets with the aim to find empirical classification rules amongst
multiple patients and parameters. Thus, they are good candidates for the task at hand
of finding multi-modal multi-parametric models for tumor progression predictions. The
presented work aimed to develop a workflow, which enables the use of available image data
for prediction of tumor progression growth by using classification algorithms to determine
pixels of tissue at risk of becoming tumor.

During the course of this thesis, a workflow for such a multi-modal, multi-parametric image
analysis for tumor progression prediction was established. Focus was laid especially on
parameters derived from dynamic contrast enhanced perfusion MRI and '®F-FET PET.
The software implementations, required to enable side by side evaluation and preprocessing
of all imaging modalities, are presented. Several feasibility studies of DCE MRI and
IBP_FET PET data were done, in order to quantify the ability of the resulting parameters
for aiding the cause of tissue classification and to determine the extent of their validity.

The chapter Theory briefly reviews advances and challenges in treatment of glioma,
and the fundamental physical principles, up on which radiological imaging (CT, MRI
and PET) and radiotherapy are based. In Methods the different imaging techniques
and analysis approaches used in this thesis are introduced, with special focus on the
surrogate values of parameters derived from them. Furthermore, software concepts of
image processing methods relevant to this work are discussed. In the chapter Results,
methodological developments and their applications are presented. Results from several
studies on DCE MRI and ®F-FET PET data are shown. This chapter concludes with
an exemplary presentation of the developed workflow for multimodal image classification.
All developments and study findings, their validity, advantages and drawbacks as well as
improvements and an outlook to further research are reviewed in chapter Discussion.
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The following chapter introduces the basic physical concepts relevant to this work. Sections
2.1 and 2.2 start with a general overview over the disease of cancer and the special challenges
posed by high grade glioma. Radiotherapy as well as several modalities of radiological
imaging are based on the fundamental principles describing interaction of ionizing radiation
with matter. Images acquired with computed tomography (CT) derive from the interactions
of photons with matter. Nuclear medicine in general uses radioactive materials for both
diagnostic and therapeutic applications, and positron emission tomography (PET) in
particular acquires images by detection of annihilation photons from tissue interactions
with 87 isotopes. Radiotherapy uses the biological effects of particle interactions with the
patient body in order to kill cells. Conventional radiotherapy uses photon beams, were as
in particle therapy patients are irradiated with ions, i.e. charged particles. Therefore, the
physical theory of radiation and its interaction with matter is discussed in detail in section
2.3. The concept of dose and the biological effects of radiation are briefly introduced as they
play a role in both radiology and radiooncology. Magnetic resonance imaging (MRI) derives
from the interaction of particle spins with external magnetic fields and the phenomenon of
nuclear magnetic resonance. Hence, the theoretical basics thereof are described in section
2.4. Finally, section 2.5 reviews the basic concepts of radiotherapy and current standard
target delineation.

2.1 Cancer

With over 14 million incidences and 8.2 million related deaths worldwide, cancer is among
the leading causes of death in modern society [WHO Cancer Fact Sheet N° 297, 2015]. In
Germany, 500 thousand new cases and a mortality of 224 thousand cases were reported
in 2015 [Deutsche Krebshilfe, 2016]. In general, cancer is an umbrella term for disease
including the formation of malignant neoplasms, which can originate from any part of
the body. The formation of such tumors is due to unregulated, abnormal cell growth and
proliferation, forming a bulky tissue mass. Their malignancy is defined by rapid growth,
infiltration of surrounding healthy tissue and the ability to spread through the body and
form distant secondary tumor sites, so-called metastasis.

Cancer formation has been related to genetics and increasing age as well as environmental
factors such as diet, smoking, infections and radiation damage. However the true cause
of individual diseases is a complex interplay between many factors and cannot always be
identified. For male patients, the most frequent tumor entities are lung, prostate and
colorectal carcinoma (see figure 2.1). In women the primary site of cancer is the breast,
followed by colorectum, lung and cervix [Deutsche Krebshilfe, 2016]. The three major
treatment options for malignant tumors include surgery, chemotherapy and radiation
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Figure 2.1: Cancer incidence rates in 2010 in Germany for men and women [DKFZ Atlas of Cancer
Mortality, 2010].

therapy. Chemotherapy makes use of cytotoxic chemical substances that target rapidly
growing cells. Radiotherapy uses the biological effects of ionizing radiation to induce
localized cell death.

2.2 Glioma

Glioma is a tumor entity deriving from the supportive tissue of the brain, namely the
glia cells. Depending on the concrete cell of origin, one can distinguish between various
subtypes. The WHO! classifies them based on histological characteristics into low grade (I
and II) and high grade (III and IV) glioma. Grading is associated with patient prognosis
and survival.

Low grade gliomas are considered benign brain tumors with good prognosis, as they are
well-differentiated and grow slowly. High grade glioma, including glioblastoma (grade IV),
exhibit rapid tumor growth. Glioblastoma are the most frequent and aggressive form
of primary brain tumors in adults, with poor median overall survival. They are divided
into primary (de novo) tumors and secondary tumors, which develop gradually from low
grade glioma. Due to their location and diffuse infiltration patterns in surrounding normal
brain tissue, high grade glioma constitute augmented therapeutic challenges. With surgery
alone, overall survival of glioblastoma lies between 3 and 5 month. Additional radiotherapy
treatment has been shown to improve median survival to 9-12 months [Walker et al., 1979].

For diagnostics of glioma, magnetic resonance imaging is the method of choice, due to
its high soft tissue contrast, followed by computed tomographic images. Surgery with
maximal tumor resection is the first step of treatment, followed by a combination of
chemotherapy, e.g. with temozolomide, and radiation therapy. For management of high-
grade glioma, radiotherapy has been established as common treatment option, either in
combination with chemotherapy or as sole treatment [Stupp et al., 2005]. Current standard
definition of tumor target volumes in radiotherapy planning for high grade glioma is
based on contouring anatomical information from contrast agent enhanced 177 weighted

World Health Organization
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MRI, as leakage of contrast agent into tissue regions with disturbed blood brain barrier
and increased vascularization results in clear visibility of the macroscopic tumor extent.
Detection of invasive tumor fronts with these imaging techniques is limited though and
contributes to uncertainties in defining the actual tumor boarder in radiotherapy planning.
Therefore, local tumor recurrence is the predominant pattern of therapy failure in these
patients leading to poor overall survival. In 80% of the cases recurrence patterns occur
within 2 — 3 cm margins from the primary tumor [Gaspar et al., 1992]. A second course of
radiotherapy for management of recurrent high grade glioma is difficult due to the high
risk of treatment related side effects. Recent developments in the field of ion therapy have
opened the possibility for irradiation of recurrent high grade glioma through their ability
of precise dose delivery (section 2.3.1).

2.3 Radiation

Many methods in radiology and radiation oncology are based on the physical principles of
interaction of radiation with matter. Thus, a short review of these processes is beneficial
and required for a better understanding of methods and effects in both fields. More detailed
information can be found in many physics textbooks. This chapter is oriented on the work
of Bille and Schlegel [2002], which presents an adequate overview for medical applications.

2.3.1 Interaction of Radiation with Matter

In general, one can distinguish between ionizing and non-ionizing radiation. For medical
purposes, the effects of ionizing radiation are of high interest.

Directly ionizing Radiation

Charged particles are considered directly ionizing radiation. They slowly lose their energy
through Coulomb interactions until they come to rest. The incident radiation particle can
interact with both orbital electrons and nuclei of the absorber atoms, resulting in either
elastic or inelastic collisions. In elastic collisions, the particle is deflected without energy
loss. Inelastic collisions can be soft, hard or nuclear, depending on the impact radius and
the interaction partner. Coulomb interactions with orbital electrons are discriminated by
the energy transfer from incident particle to the target electron. In soft collision, only
a small part of the particles energy is transferred to the orbital electron. This leads to
atomic excitation as the orbital electron is lifted to an energetically higher shell. Hard
collision on the other hand are processes in which a significant amount of the incident
energy (< 50%) is transferred to the orbital electron. The energy transfer yields ejection
of the orbital electron and hence, ionization of the interacting atom. Both types of energy
loss through collisions are described by the collision stopping power in the Bethe-formula:

dE 2 2 Z 22 2m662 . ( }5)2 . ”maw 2
— =92 e .o—N, - — . — 2.1
Scol = - = 4TTMeC P a 5 |}’I’L ( 12 B ( )
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where Wi,a, is the maximum energy transfer of single collision, I the mean excitation
potential, z the effective charge of projectile and g the projectile velocity. p, Z and A
describe the traversed medium in terms of density, atomic and mass number. Coulomb
interactions with the atomic nucleus lead to radiation loss through bremsstrahlung. This
effect is described by the radiative stopping power.

The total linear stopping power, which describes the mean energy loss dE of a charged
particle per path length dx in a material, is the sum of both contributions together with an
additional component of nuclear stopping power from elastic scattering. Whereas electrons
undergo only Coulomb interaction, ions exhibit further nuclear reactions in fragmentation
process, and medium effects such as Cerenkov radiation. For heavy charged particles the
radiative stopping power is considered negligible.

Indirectly lonizing Radiation

Neutral, uncharged particles are defined as indirectly ionizing radiation as they deposit
energy in two steps. First, the energy is transferred to secondary charged particles, which
in terms deposit the energy as described above. Most medical applications are based on the
interactions of photons with matter, which can be summarized in the linear attenuation
coefficient p(£,). The attenuation coefficient, also referred to absorption coefficient, is
the probability of a photon interaction with an absorber atom per unit path length. The
Lambert-Beer law describes the correlation between absorption, depth and interaction
properties of the traversed medium:

I(Az) = I(0) - e HE)A (2.2)

Az is the length of the traversed medium and I(z) the beam intensity. In the energy
regimes used for radiotherapy, energy loss of photons originates from three interaction
processes: the photon can be either absorbed completely while its energy is transferred to
light charged particles (e™, et) or scattered, both elastically or inelastically.

The photoelectric effect describes the process of total disintegration of the photon by
ionization of an atom. A part of the photon energy F, is used to overcome the ionization
potential and release a bound electron from the atomic shell. The rest is transferred to the
electron as kinetic energy. The photo effect can be seen as true absorption without any
photon scattering.

Compton scattering is inelastic scattering of the incident photon on the electrons of the
medium, where only a part of the photon energy E, is used for ionization and kinetic energy
of the target electron. The remaining energy is transported away from the interaction
point by the scattered photon. Due to the fact that the incident photon energy is usually
much larger than the binding energy of the atom, the process is assumed to be inelastic
scattering on free electrons at rest. Elastic scattering of the photon can also occur, however
since no energy is transferred to the medium it is of minor interest to the considerations of
radiotherapy and will not be discussed in this work.

Pair production can occur from the interaction of the incident photon with the electro-
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Figure 2.2: Absorption coefficients depending on the photon energy E., for Compton scattering
(red), photoelectric absorption (green) and pair production(blue) in lead and water.

magnetic field of the atomic nucleus. If the photon energy exceeds two times the electron
mass, i.e. E, > 1.022 MeV, it can disintegrate spontaneously into an electron-positron
pair. The electron deposits its energy as described above while the positron travels a few
millimeters through the tissue until it binds with an electron from the tissue into a state
called positronium. The positronium then disintegrates under emission of two back-to-back
photons of each 0.511 MeV, which undergo further interactions.

All of the above processes have in common that free electrons with ranges up to a few
millimeters are produced, that in terms deposit the energy locally via Coulomb interaction.
The respective cross section of each process and hence the absorption contribution depends
on the photon energy and the traversed matter, as illustrated in figure 2.2. All these
aspects have to be considered for both radiological imaging with x-rays and photon based
radiation therapy.

2.3.2 Biological Effects of Radiation

Radiation effects on biological systems result from direct and indirect ionization of
biomolecules. Direct effects are the ionization of DNA molecules, leading to single- and
double-strand breaks, and of enzymes and cell membranes. Indirect damage is caused
via radiolysis of water and hence the production of hydroxyl-radicals, which lead to in-
flammatory responses as well as destruction or mutation of the DNA. As a result the
sensitivity to radiation is decreased under anoxic and hypoxic conditions compared to
normal oxygenation.

An important quantity concerning directly ionizing charged particles is the linear energy
transfer (LET), which is used to describe the mean energy loss of the particles via local
transfer to the medium per path length. LET is dependent on the velocity and charge
of incident particle as well as the nuclear composition of the traversed medium. Higher
LET does not necessarily lead to a higher energy transfer at individual interactions but
much rather on a more dense deposition of energy “packages® along the particle tracks.
This in terms means that irradiation with low LET radiation leads to homogeneous
dose depositions, whereas high LET radiation deposits high local doses. The biological
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effectiveness of a type of radiation is highly dependent on its LET. Experiments have shown,
that for high LET radiation much less dose is needed to achieve the same biological effect
compared to low LET radiation. Since the concept of dose is not sufficient to describe these
effects, a biological-physical quantity called relative biological effectiveness (RBE) has been
introduced. RBE is explicitly defined for a certain biological effect as the ratio of doses
needed for two different radiation types to cause this effect and is primarily dependent on
the radiation types LET. Aside from the steep dose gradients, an increased RBE is argued
as an advantage of ion irradiation compared to photons. Fractionation of applied total
dose has been shown to increase the tumor control probability, since it allows regeneration
and repair mechanisms in normal tissue, whereas these effects are much less expressed in
tumor tissue.

The effects of radiation on tissue are diverse and depend on the affected organ. Both
anatomic and functional deficits can be observed including inflammations, edema and
vascular abnormalities up to radio necrosis. These side effects play an important role in
the aftermath of radiation therapy for the discrimination between radiation damage and
tumor growth progress or recurrence.

2.3.3 Dose Concepts

The microscopic effects of radiation are described on a macroscopic scale by the concept of
energy dose, which is defined as the amount of deposited energy AF in a sufficiently small
enough mass element of tissue Am

5. AE

-2 (2.3)

in units of Grey Gy = kig. The energy is deposited by free electrons produced in the

ionization processes. These electrons have little energy of a few electron volts (eV) and
consequently short ranges up to a few millimeters. Thus, it can be assumed that they
deposit their energy locally in cascade processes of scattering and further ionization. The
detailed interactions of radiation with matter depend on both radiation type and beam
energy. The dose in depth = can be derived as.

D(z) = d(z)" 2 E, (2.4)

®(x) assigns the photon fluence (number of photons N passing a surface A) in depth z
following the exponential decay of the Lambert-Beer law (c.f. 2.2):

B(z) = Nf) — Pyelo —HE (2.5)

Hence the dose deposition in dependence of x, so-called depth-dose curves should exhibit
a decreasing exponential course. However it can be observed that the depth-dose curves
show a build-up effect within the entrance region of the photon beam. This effect is due to
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the secondary electron equilibrium, i.e. the compensation of energy loss and energy gain
from electrons, which is only reached after a depth of one electron range.

The dose deposited by photons depends on the corresponding total absorption coefficient .
For charged particle radiation such as electrons and protons, the mean differential energy
loss, described by the Bethe formula, is the important physical quantity to characterize
energy deposition. The depth-dose curves of heavy charged particles exhibit an increased
ionization potential at the end of the particles course. This phenomenon is called Bragg
peak and is a result of electron capture processes at low velocities, which decrease the
ration Z/f in the Bethe formula. It can be observed that the Bragg peak is lower and wider
with increasing depth in material, meaning that ions at same energies exhibit different
ranges. This effect is called range straggling and is due to the stochastic nature of the
interaction processes.

2.4 Nuclear Magnetic Resonance

The effects of nuclear magnetic resonance (NMR) form the basis of magnetic resonance
imaging (MRI), an important diagnostic tool in neuro-oncology. The following section
reviews the underlying physical principles, based on literature from E. Yankeelov and Price.
[2011] and Abragam [2007].

2.4.1 Nuclear Spin and Magnetic Moment

Nuclear particles, e.g. protons and neutrons, feature an intrinsic quantum mechanical
property called spin, which is responsible for the hyperfine structure splitting in atomic
spectra. It can have half-integer values for fermions or integer values for bosons. The
spin of a nucleus results from the entity of the spins of the component nucleons. The
spin represents a quantum mechanical angular momentum, characterized by two quantum
numbers: the spin quantum number I and the magnetic quantum number mj;. mj; can
take values between {—1I, ..., I} The momentum states |I,my) are eigenstates of the spin
operator I? and its z-component

2|1, m7) = I(I + 1)h? |1, m;) (2.6)
L|I,m;) = msh|I,my) (2.7)

The spin is coupled to a magnetic dipole moment

with the gyromagnetic ratio v being a nucleus specific, experimentally determined constant.
For protons, 'H, the gyromagnetic ratio is /27 = 42.58 MHz/T. Without perturbations
via external fields, the states of I are degenerated into (27 + 1) values. The interaction of
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an external magnetic field B with the magnetic dipole moment is described by the following
Hamiltonian:

H =—pB (2.9)

If B points along the z-axis (B = Byé€) the states of |I, my) are also eigenstates of H with
energy eigenvalues E,,,:

H = —yhBol, (2.10)
Emj = —’yhB()m] (211)

The solution is described by a harmonic oscillator with discrete energy states

Ba= (n1 ) 21

Hence the energy levels will split in (27 + 1) equidistant levels, as illustrated in figure
2.3A, where the difference between two states yields AE = vABy = hwy with the Larmor
frequency wg := wr. This process is called Zeeman splitting.

For medical applications, the hydrogen nucleus, i.e. a single proton, is of particular interest.
Protons carry spin I = % and hence in an external magnetic field, the spin has (27 +1) = 2
energy states with either higher or lower energy. These states are commonly called parallel
to B and antiparallel to B.

2.4.2 Multi-Particle Systems

For an ensemble of N particles, the spins form a net magnetization M. Without external
magnetic field, the magnetic moments of all particles point into random directions, which
leads to M = Yy o = 0. In an external magnetic field B = (0,0, By), the spins will
align parallel or anti-parallel with the z-axis. Since the parallel state is energetically
more favorable, one would assume, that all IV spins align parallel with the magnetic field.
However due to thermal movement, some of the N particles have enough energy to occupy
the antiparallel state. Hence the occupation probability of the state m follows Boltzmann
statistics:

e—wh,mBo/kBT

Pm (2.13)

= —~hmBo /kgT
Zm:—fe ynm O/B

With this, the ground state macroscopic magnetization in an external magnetic field, which
is the expectation value of the magnetic moments per volume, can be approximated as

+1 252
R N~2R2I(I + 1)
M = — m = - —
N > pwmylflmr) S%nT

my=—1

B (2.14)



2.4 Nuclear Magnetic Resonance

11

z z
I l > anti-parallel BOT flip angle a y BOT y
§ _________ _
g e |T> parallel AE=ho
4] N —— B N
T=Mx By
By X X

Figure 2.3: A: Zeeman splitting of the spin states into parallel and anti-parallel with the external
magnetic field. B: If the spin is aligned parallel to an external magnetic field Bg along the z-axis,
perturbation from B satisfying the resonance condition wy = yB; will rotate the magnetization M
will rotate into the xy-plane by the flip-angle a. C: The external magnetic field Bgy acts orthogonally
as torque T = M X Bp on the magnetization M. This leads to the process of precession.

For typical MRI field strengths of a few tesla, this yields a very small ratio of 1 : 10® of
spins aligned in parallel with the magnetic field compared to those which align anti-parallel,
so the magnetization is very close to the equilibrium state. Thus measurements have to be
very precise to assess the signal of this small magnetization effect.

2.4.3 NMR and Precession

The alignment with the external magnetic field acts orthogonally as torque. Unless M
and B are perfectly aligned, the magnetic moment will trace a circular path around the
axis of B with the frequency wy = 7 - By (see figure 2.3C). The circular motion of the
magnetization is called precession.

Nuclear magnetic resonance occurs, when the magnetization M is tipped away from its
equilibrium state. If the spin of a proton is aligned parallel to an external magnetic field
B = Byé., a perturbation from a second magnetic field B’ = B¢, satisfying the resonance
condition wy, = vB; will lead to precession of the magnetization around é,. Thus, M
will rotate into the xy-plane by a so-called flip-angle «, which is dependent on the time
that the perturbation is active (figure 2.3B). After removal of B, the magnetization will
precess around B in the xy-plane. As every system seeks equilibrium, a second motion,
the so-called nutation will move M from the transversal plane back into alignment with B.
Hence the magnetic moment will undergo two rotations, leading to a spiraling path.
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2.4.4 Bloch Equations and Relaxation Times

The Bloch equations describe the temporal change in magnetization M caused by a
perturbation in form of an external magnetic field B. In the Equilibrium State (M || B)
they derive as

dM,

o =1(M xB); =0 (2.15)
dM,

dty =v(M xB), =0 (2.16)
dM,

o =71(M xB). =0 (2.17)

Tipping the magnetization away from its equilibrium state with a 90° pulse leads to B 1. M,
which yields for the Bloch equations:

dM,

o = TMyB. (2.18)
dM,
Wy = —yM,B, (2.19)
dM,

= =0 (2.20)

As mentioned before, M will not stay in the xy-plane. The time evaluation of the signal is
known as relaxation process, and derives from interactions in tissue and external forces.
The magnetization will strive back to equilibrium, which is described by the so called
longitudinal relaxation time T1. Mathematically, this leads to an empirical extension to
the z-component of the Bloch equations:

dM, _ M, — My
da 'V(M X B)z T1

(2.21)

As the z-magnetization will recover exponentially o< e */7, T} represents the time that it
takes the z-magnetization to recover. As the spins in the ensemble are not independent but
interact with each other, the magnetic field varies locally due to different shielding from
the molecules etc. The Larmor precession frequency is directly linked to the perturbing
magnetic field, thus the spins composing the overall system magnetization will have slightly
different angular precession frequencies. As a result, the transversal magnetization M, will
disperse, which is called transversal relaxation. Extension of the transversal component of
the Bloch equations yields

dM, M

L —~(M x B), — —= 2.22
i — 1M xB), - (2.22)
dM, M
—Y =~(M x B), - ¢ 2.2
i =M xB), - (2.23)
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For transversal relaxation, two factors contribute to the signal decay: the molecular spin-
spin interactions, with the native T5, and static local field inhomogeneities. T5 decay is a
function of completely random interactions between spins. However, the external By field
is not completely homogeneous. leading to a faster observed decay time

1 1 1
- 4 2.24
Ty Ty + T ( )
The T4 component can be counteracted for example by refocusing the transversal magne-
tization by applying a 180° pulse, leading to a so called spin echo signal, from which 75
can be deduced. Since different tissue types exhibit different 77 and 75 relaxation times,
measurements of NMR can be used for imaging.

2.5 Radiotherapy and Treatment Planning

Radiotherapy is considered a loco-regional treatment form of cancer and other diseases.
It can be used for locally confined tissue destruction, but at the same time offers the
possibility for regional large-volume treatment of microscopic tumor extensions in the
same way that chemotherapy does. Oncological radiotherapy can be applied with curative
intents as well as palliative. It is usually applied in combination with other treatment
approaches such as surgery and chemotherapy. In general the goal of radiotherapy can be
stated as using the biological effects of ionizing radiation for destruction of tumor tissue
without causing severe damage in surrounding healthy tissue.

The radiotherapy treatment aim is to use these DNA destructive effects to induce cell death.
Even though radiotherapy refers to various strategies for the irradiation of tissue, including
intra-operative irradiation (IORT) and brachytherapy, the presented work is confined to
teletherapy. For teletherapy, usage of different radiation types is possible, depending on
tumor entity and location site. The most common approach is to use photons, originating
from either isotope sources, like %°Co, or electron accelerators through bremsstrahlung
such as linear accelerators.

The physical principles of dose deposition are based on the absorption of photons in a
medium. The reason photons are widely used for radiotherapy is their advantageous
depth-dose profiles for deep-seated tumors. Production of secondary electrons results in
a build-up region of the depth dose. This effect is of high clinical relevance as it enables
sparing of the skin tissue. The maximum of the dose deposition shifts to greater depths
with increasing energy. The depth dose profiles of electrons show a very narrow region of
build-up and a rapid drop off, which makes them a good choice for treatment of superficial
tumors, e.g. melanoma, and for IORT. Novel approaches for radiotherapy include treatment
with ions, such as 'H and '2C. Their energy loss in matter is described by the mass stopping
power in equation 2.1. Together with a plateau shape of low entrance dose, the steep dose
gradient of the Bragg peak leads to an advantageous depth dose profile of good tumor
coverage with concurrent skin and healthy tissue sparing. Furthermore due to different
interaction processes, irradiation with ions yields different biological effects. The most
often used therapeutic ion is the proton. Current research studies the applicability of
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treatment with carbon, helium and oxygen ions. For those particles, fragmentation of both
projectile and target, which result in further nuclear processes, has to be considered.

The amount of tumor cells killed by radiation is stochastically dependent on the applied
energy dose. Hence radiotherapy aims to apply very high, conformal doses in the tumor or
target volume and at the same time keep the dose to the surrounding health tissue low.
An important part is the sparing of certain organs in the neighborhood of the tumor, so
called organs at risk (OAR), where the dose has to be kept under a certain organ specific
threshold.

In an ideal therapy, the dose prescribed by the physician would be deposited completely in
the tumor, whereas the neighboring healthy tissue is spared. Unfortunately the preservation
of the surrounding tissue is only possible to an extent, thus a compromise between sufficient
tumor damage and the exposure of normal tissue has to be found. The dose distribution can
be optimized by careful choice of radiation type, prescribed dose and precise confinement of
the irradiated areas. This optimization is part of the treatment planning process. Crucial
for the definition of the irradiation treatment plan is the definition of target volumes and
organs at risk.

According to the ICRU? report n°® 50 and 62 [Chavaudra and Bridier, 2001], the treated
tumor is defined by three sub-volumes, illustrated on a recurrent high grade glioma patient
in figure 2.4. The macroscopic visible extent of the tumor is called the gross tumor volume
(GTV). Malignant neoplasms grow highly invasive and cannot always be clearly delineated,
whereas benign tumors are non-invasive and are confined more distinctively. Therefore the
clinical target volume (CTV) includes margins for possible extensions of the tumor and
infiltrations of the surrounding tissue. Finally the planning target volume (PTV) introduces
a safety area around the tumor in order to accounts for patient mispositioning, organ
movement and other uncertainties in dose delivery. The responsible physician prescribes
minimum doses for the target volume PTV together with the fractionation scheme as
well as maximum dose values for each of the surrounding organs at risk, depending on
their sensibility to radiation. Values for both total dose and fractionation are based on
experience and depend on the tumor entity and treatment intent as well as the patient’s
general state of health.

Target delineation is usually performed based on the planning CT image (figure 2.4,
left). In some cases, especially brain tumors, additional information for MRI (figure 2.4,
right) is used, due to the enhanced soft tissue contrast. These prescriptions lead to an
irradiation scheme for the number and direction of fields, conformity, intensity of each
beam etc. According to this scheme dose calculations are performed based on electron
density information from CT and knowledge of physical processes of radiation, in order to
estimate delivered dose distribution.

2International Commission on Radiation Units and Measurements
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Figure 2.4: RT planning target contours gross tumor volume (red), clinical target volume (cyan)

and planning target volume (magenta) of a brain tumor patient, displayed in the contrast enhanced
planning CT (left) and the contrast enhanced T1 weighted MRI (right).

Various techniques for estimation of the distribution of dose based on the physical in-
teractions of the radiation exist, such as convolution algorithms from analytical model,
and Monte Carlo simulations based on the various physical interaction processes between
radiation and matter. Based on the dose calculations the treatment plan is gradually
optimized with respect to dose prescription in target and sparing of surrounding healthy
tissue and OAR.






3 Methods

The presented work aims to investigate multimodal image data from recurrent high grade
glioma patients with respect to possible surrogate parameters in order to find patterns of
tumor recurrence and growth prediction.

In the first part of the following chapter, the different image modalities are presented and
their physiological correlates are discussed. After a general introduction on computed
tomography (CT) and standard magnetic resonance imaging (MRI) (sections 3.1 and
3.2), dedicated focus is set on physiological (functional and metabolic) imaging modalities,
such as perfusion and diffusion weighted MRI (sections 3.2.4 and 3.2.5), and amino acid
positron emission tomography (PET) (section 3.3). Since most of the presented studies
dealt with dynamic image series of PET and MRI, the underlying physical principles of
pharmacokinetic modeling are discussed in more detail in section 3.4.

In the second part, software concepts used for analysis and post processing of the various
images, are introduced. The multi-modal approach of finding tumor progression patterns
was based on machine learning classification concepts and random forests. Hence, these
approaches are reviewed in section 3.6. The medical imaging interaction toolkit (MITK) is
presented in section 3.7, as it was used as base framework for all software developments
and image analysis steps. Acquisition details of the used data from recurrent high grade
glioma patients are presented in section 3.8.

3.1 Computed Tomography

Due to the fact, that the absorption coefficient depends on the atomic number and density
of the material, the absorption of photons in matter leads to a contrast between materials of
different densities. This effect can be used for imaging. Radiography acquires 2D projection
images of the patients distribution of absorption coefficients pu(z,y, z), however the poor
soft tissue contrast and missing depth information of the projections are often insufficient
for detailed diagnosis. To overcome these limitations and resolve the superposition of
structures, computed tomography (CT) uses the acquisition of several 2D projection images
taken under different angles within an arc of at least 180°. As mentioned in chapter 2.3.1,
the absorption coefficient depends on the traversed material and the energy of the incident
photon. The energy distribution of the photon beam results from bremsstrahlung spectra
and characteristic x-rays of the utilized x-ray tube and is influenced by the tube voltage,
target anode material, angle of the anode and beam filters. Thus, the images produced
at CT scanners with different x-ray tubes are not comparable. To enable inter-scanner
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Treatment planning CT

Figure 3.1: Transversal slice of a CT scan in a brain tumor patient. The level window is set to
C/W = (35/60) HU, covering the soft tissue range. More dense structures, like the skull bone, with
higher HU values are displayed in white, less dense structures with lower HU values in black.

comparison, the Hounsfield value HU was introduced as normalization of the absorption
coefficient 1 to water:

HU () := % -1000 (3.1)
2

From the Hounsfield value, electron densities can be approximated for dose calculations
via different interpolation methods.

Computed tomography is a sensitive method to assess bone structures as well as lung,
abdominal and pelvic diseases. Today high resolution in the sub-millimeter range and fast
acquisition times of a few seconds are possible. Fast acquisition methods enable cardiac
imaging of the coronary arteries. In head and neck, CT is used especially for imaging of
infarction, calcifications and hemorrhage. An example of a transversal slice of a treatment
planning CT image is shown in figure 3.1. CT imaging can also be applied for tumor
diagnosis in the brain, however MRI provides superior soft tissue contrast. On the other
hand, MRI requires long acquisition times and is expensive. Thus, CT is an essential part
in diagnosis and treatment of glioma. It plays a major role in radiation oncology, since the
3D patient electron density distribution is crucial for dose calculations.
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3.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a valuable diagnostic imaging modality. Contrast in

MRI is based on different relaxation times 77 and 75 of different morphological structures.

With technical advances and increasing applications, further methods to measure functional
and physiological processes from NMR effects have been developed. For diagnosis and
treatment planning of brain tumors, MRI is superior to CT due to its distinct soft tissue
contrast.

3.2.1 Image Acquisition

The precession movement of the magnetization M in a static magnetic field By after
perturbation from a radio frequency (RF) pulse, as described in nuclear magnetic resonance
(NMR), induces a voltage in a receiver coil. This offers the possibility to measure the signal
of the magnetization, since the precession movement of M around B is a change in magnetic
flux. In a nearby conductor, a signal proportional to the transversal magnetization S o
wr M| can be detected. The signal will follow the decay of the transversal magnetization
M, precessing in the xy-plane, represented by a sinusoidal curve oscillating with the
Larmor frequency. This signal, shown in figure 3.2, is called free induction decay (FID).

Using equation 2.14 for the transversal magnetization, proportionality of the signal with
the squared magnetic field strength can be derived:

2

B
S o Nk,TOT (3.2)

where N is the number of spins (see section 2.4.2). Hence, higher magnetic fields lead to
greater potential signals. With the classical NMR experiment, the FID will be a sum over

all protons in the examined volume (i.e. the body), precessing at Larmor frequency wry..
For imaging, spatial encoding of the signal contributions from different locations is needed.

The precession frequency wy, is directly proportional to the applied magnetic field strength
By. Using a linearly varying magnetic field along one axis, called magnetic field gradient
G, will result in a spatially varying Larmor frequency:

w(z)=79(Bo+ G, 2) (3.3)

For an RF excitation pulse Bj, there is exactly one position x, at which the Larmor
frequency wy (z) satisfies the resonance condition. This frequency dependent excitation
is called slice selection. A slice of thickness Az in position space corresponds to a band
width Aw in frequency space. If Bj(w) is chosen to be a band function (step function) in
frequency space it can be related to a sinc-function in position space Bj(t) via Fourier
transformation (F'T).

After slice selection during the excitation pulse, only spins in a 2D plane are excited and (in
homogeneous matter) precess with the same frequency. Application of a gradient G, along
one axis (perpendicular to the slice selecting gradient) for a time ¢ will cause the spins to
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time t

Figure 3.2: Free induction decay: The time dependent signal intensity of an NMR signal, induced in
a receiver coil by the precession movement of the transversal magnetization M,,, = M.

dephase due to spatially dependent precession frequencies w(y) = v(Bo + Gy - y), as some
precess faster and others slower. After switching off the gradient, the magnetization at
position y will again precess with the same frequency, but with position-dependent phase
angles ¢(y) = (YGyy) - t := ky - y. Hence the signal contributions from different locations
are phase encoded with the spatial frequency k, = yGyt. Repeating the phase encoding
gradient N times with linearly increasing gradient field strength will result in projections

of the signal

S(t) x Py(z) = /M(x,y)eikyydy (3.4)

from which the spatial position y can be recovered from Fourier transformation.

In principle, phase encoding can be applied in the missing third direction as well, however,
acquisition of each projection requires N repetitions of excitation and acquisition, which
leads to long measurement times. Thus the concept of frequency encoding is often used.
Application of a third gradient G, during the image acquisition time Tgro leads to different
precession frequencies w(x) of the spin contributions at different locations z. The FID
signal will then not have a single oscillation frequency but contributions from all w(x), that
can be recovered through Fourier analysis

Su(t) = / M (2)e™@Tro (3.5)

Thus the magnetization contribution from location z is encoded with a respective spatial
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frequency k,. In total, the 2D magnetization distribution M (x,y, z) is related to the FID
signal S(t) by a 2D Fourier transformation.

S(t) = //MJ_(LL’,:(/7 z) - ehuy . etka gy (3.6)

k, and k, span the so-called k-space, and image acquisition is performed by discrete
sampling of this k-space.

3.2.2 Contrast Agents

MRI provides high soft tissue contrast without the use of ionizing radiation. Contrast
agents (CA) can further improve sensitivity and specificity by influencing the relaxation
times. Their application is used for example in the diagnosis of high grade glioma, where
CT and native MRI do not provide enough information for distinct visualization of the
tumor outline. In the brain, contrast agents are usually confined to the intravascular
space due to the blood-brain-barrier (BBB). Highly malignant brain tumors often exhibit
disruption and leakage of the BBB. Thus, extravasation of the contrast agent into the
extravascular extracellular space (EES) is possible, which can be detected as signal changes
in the images. Furthermore, high grade glioma are highly vascularized hence, application
of contrast agents leads to increased contrast and visibility of the vessels.

The effects of contrast agents are based on alterations of the relaxation times. Com-
pared to other modalities, contrast agent in MRI are never visualized directly, but
through their effects on the spin relaxation. There are mainly two types of MRI contrast
agents: Gadolinium-based, paramagnetic chelates and iron-oxide-based, super-paramagnetic
chelates. Gadolinium based contrast agents are the most widely used. Gadolinium Ga>*
is a paramagnetic ion, whose unpaired electrons shorten the longitudinal relaxation time
T1 via dipole-dipole interactions. The effects on relaxation rate Ry = T% can be assumed
linearly with the CA concentration ¢

Ri=_—+=Rio+ri-c (3.7)

where Ry is the relaxation rate without presence of contrast agent and r; is the CA specific
relaxivity. In addition, the paramagnetism leads to local magnetic field inhomogeneities
between spaces, that contain CA and those that do not. These field gradients yield further
dephasing of proton spins and hence a reduction of the 75 transversal relaxation time. Both
the dipole-dipole interaction and the local field inhomogeneities are short ranging effects.
Hence, gadolinium contrast agents only affect their immediate neighborhood tissue. Among
other applications, gadolinium-based contrast agents are used for imaging brain tumors,
especially in permeability and perfusion assessment. The interaction of iron-oxide-based
contrast agents with the adjacent tissue mainly leads to shortened 75 times, however they
also effect 77 times.
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3.2.3 Sequences

The interplay of radio-frequency (RF) stimulation, magnetic field gradient and image
acquisition is referred to as MRI pulse sequence. The time between successive pulse
sequences applied to the same slice is referred to as repetition time (Tgr). For a better
understanding, a short review of the basic sequences of magnetic resonance imaging and
those used in this work is presented. More detailed information can be found for example
in Bernstein et al. [2004]. Special focus will be given to the prognostic and physiological
meaning of the sequences for imaging of glioma. The principles of diffusion and perfusion
MRI are covered in dedicated sections (3.2.4 and 3.2.5).

Spin echo (SE) pulse sequences use a 90° pulse, followed by a 180° refocusing pulse. The
90° pulse tips the magnetization into the transversal plain. Local field inhomogeneities
lead to dephasing of the spins, characterized by the T5 relaxation time. The 180° RF pulse
is used to flip the spins into the opposite direction in the transversal plane, which causes
the dephased spins to refocus. This refocusing induces an echo signal. The time between
the application of the 90° pulse and the echo signal is called echo time (7). Gradient echo
sequences (GRE) are an alternative technique that use gradient fields to create dephasing
of the spins. A second, rephasing gradient acts in the same way as the 180° pulse in
SE sequences, inducing an echo signal. GRE sequences use flip angles usually smaller
than 90°. The low flip angles preserve parts of the original longitudinal magnetization
and thus, the build-up time for longitudinal magnetization is significantly reduced. With
this technique, gradient echo sequences allow fast image acquisition. Inversion recovery
(IR) pulse sequences are SE sequences that use an initial 180° RF pulse to invert the
magnetization. The following 90° RF pulse flips the longitudinal magnetization into the
transversal plane. However at that time, the initial longitudinal magnetizations of different
tissues has been separated due to different 77 times, which enhances image contrast. The
time between the two pulses is called inversion time (77). Fast low angle shot (FLASH)
sequences are gradient echo sequences which set the transverse magnetization to zero after
readout, which allows for even shorter acquisition times.

The magnetization prepared rapid gradient echo (MP-RAGE) sequence [Mugler
and Brookeman, 1990] uses an initial 180° inversion pulse to create enhanced T} contrast.
After the inversion time, this pulse is followed by a FLASH sequence for image acquisition.
During data acquisition, T} relaxation is still in process. In order to avoid contrast
artifacts, the MP-RAGE includes a time period for magnetization recovery after the
FLASH. Measurement parameters such as Tr, Ty and the flip angle can be made small,
since the inversion pulse ensures sufficient 77 contrast. Thus, MP-RAGE yields short
acquisition times around 1 minute [Mugler and Brookeman, 1991]. The improvement in
diagnosis of brain tumors by usage of MP-RAGE has been shown for example by N6th et al.
[2015]. An example of an image derived from MP-RAGE with and without administration
of a contrast agent is shown in figure 3.3.

In the diagnosis of brain lesions, the hyper intense signal from cerebrospinal fluid (CSF)
can cause problems in 75 weighted images. The fluid-attenuated inversion-recovery
(FLAIR) sequence [Hajnal et al., 1992] uses an inversion recovery pulse sequence and long
T1, since the longitudinal relaxation time of CSF is considerably longer than those of brain
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T1 weighted MPRAGE MRI
w/o CA w/ CA

Figure 3.3: Standard 77 weighted MPRAGE MRI in a recurrent glioma patient with and without
contrast agent (CA) enhancement. The CA shortens 77 relaxation in its surrounding tissue, leading to
an increased signal. Thus, CA accumulating regions appear brighter in the image. The CA is confined
to the plasma space in presence of an intact blood brain barrier. The main accumulation regions are
the blood vessels and the lesion, due to a disrupted blood-brain-barrier.

parenchyma and most lesions. Thus, FLAIR sequences remove the effects of free fluid, that
are not bound in tissue, in order to create a heavy T weighting among tissues other than
CSF. Figure 3.4 shows a transversal slice of a head acquired with a T FLAIR sequence.
Several study showed the prognostic value of Ty weighted FLAIR imaging in different
pathologies of the brain [Essig et al., 1998; Rydberg et al., 1994; De Coene et al., 1992].
Considering T, weighted FLAIR yields superior results for tumor delineation close to CSF
in gliomas patients compared to conventional imaging due to an improved differentiation
between tumor and edema [Essig et al., 2001; Husstedt et al., 2000].

Volumetric interpolated breath-hold examination (VIBE) is an interpolated 3D
Ti-weighted GRE sequence developed for abdominal imaging. The sequence offers short
acquisition times and improved resolution by using asymmetric k-space sampling and
interpolation. It was shown, that VIBE can also be used to form rapid, high-spatial-
resolution images of the brain [Wetzel et al., 2002]. With fast acquisition times, VIBE
constitutes a good candidate for dynamic MRI.

3.2.4 Diffusion Weighted MRI

Diffusion weighted imaging (DWI) measures the diffusion process of water molecules with
a special MRI sequence. Free molecules move random due to Brownian thermal motion.
If no physical boundaries or constraints are present, this movement is isotropic. After a
certain time t, the molecules have traveled

(x2) = V2Dt (3.8)
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T, weighted FLAIR

Figure 3.4: T; weighted FLAIR MRI in a recurrent glioma patient. The sequence suppresses signal
from free fluids, thus the ventricles appear dark. With removal of the hyper intense signal from free
fluids, it causes a strong T> weighting for detection of fluids bound in tissue (edema) as can be found
in the surrounding of the lesion.

on average. D is the diffusion coefficient. This diffusion movement can be measured
with the following sequence principle. Initially, a 90° RF pulse is applied, rotating the
magnetization into the transversal plane. A gradient field is applied in one direction,
causing spins at different locations to precess with different frequencies w(x), which leads to
dephasing of the magnetization. A subsequent 180° pulse inverts the magnetization in the
transversal plain. A second gradient, equal in strength to the first one but with reversed
polarity, is applied. If the molecules are stationary, the second gradient refocuses the spins,
leading to a standard spin echo signal. However, due to diffusion motion, the molecules
move between the 90° and 180° pulse. Hence, refocusing with the second gradient is not
complete, as the spins experience different rephasing and dephasing frequencies, depending
on their respective locations before and after the 180° pulse. This causes a measurable
signal loss, containing information on the particle motion.

In tissue, the assumption of free diffusion is invalid due to cell membranes limiting molecule
motion. Therefore, D is referred to as the apparent diffusion Dy, which is a measure for
cellularity or cell density.

In nerve fibers, free diffusion is possible along the axons. Perpendicular to the nerve fibers
diffusion is restricted. As diffusion motion can occur in all three dimensions, gradients along
each of the patient axes x; are applied. The diffusion tensor is used to map diffusion within
the 3 space dimensions. D is a symmetrical matrix with six independent directions x; x;.
From the diffusion tensor, two rotational invariant quantities can be deduced: The apparent
diffusion coefficient (ADC) and the fractionated anisotropy (FA), with 0 < FA < 1.
F A = 0 represents isotropic diffusion whereas F'A = 1 represents completely directional
diffusion. Figure 3.5 shows exemplary maps of the ADC and F' A in a transversal slice of a
head, acquired with diffusion weighted MRI.

DWI is widely used in examinations of the brain for detection of ischemic strokes, char-
acterization and differentiation of brain tumors and diagnosis of intracranial infections.
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Diffusion weighted MRI
ADC FA

Figure 3.5: Parameter maps of the ADC and the F A from diffusion weighted MRI in a recurrent
glioma patient. In liquids, such as the CSF in the ventricle, diffusion is more free compared to tissue,
where the cells restrict diffusion. This leads to an enhanced ADC| indicated by a brighter image signal.
In the F'A, nerve fiber structures are indicated since they induce more directed diffusion compared to
regions of isotropic diffusion such as the CSF.

Physiologically, the ADC reflects the degree of diffusion of water molecules in the extra-
cellular water compartments and has been correlated with cellularity in various studies
[Rowley et al., 1999; Sugahara et al., 1999; Ellingson et al., 2012]. Hence, it can be used to
describe tumor physiology through changes in cell density, edema and necrosis. Destruction
of water diffusion boundaries from decreasing cancer cell density leads to an increased
ADC'. On the other hand, a decrease in ADC' indicates enhanced cellularity of the tumor
and thus proliferation. These changes in ADC can be used as surrogate biomarker for the
structure of the tumor physiology [Brynolfsson et al., 2014].

3.2.5 Dynamic Contrast Enhanced MRI

Tissue perfusion can be assessed through dynamic MRI by measuring the time course of
the contrast agent concentration after bolus administration. Hemodynamic parameters,
describing tissue perfusion and permeability, can be derived from these curves by using
pharmacokinetic theory. As described before, paramagnetic CA such as gadolinium based
chelates, primarily shorten 77 relaxation times, which lead to an increased MRI signal.
These effects are used in dynamic contrast enhanced MRI (DCE MRI) with 77 weighted
acquisition. Furthermore the contrast agents paramagnetism produces local magnetic field
inhomogeneities which shorten the transversal 75 relaxation time. The resulting decrease
of signal intensity is the basis of dynamic susceptibility contrast MRI (DSC MRI). DCE
can be applied to measure permeability parameters in most organs, since they offer large
blood volume and easy extravasation of the contrast medium to the EES. This results in a
total amount of CA large enough to cause strong signal changes. The quantification of
tumor angiogenesis through measurement of micro-vascularization is used in numerous
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studies for malignancy characterization and monitoring of treatment response in various
tumor entities, such breast [Brix et al., 2004] and prostate [Buckley et al., 2004].

In the brain, however, the setting is different. Apart from the low blood volume, the
BBB prevents contrast agent extravasation to the EES, so that the tracer is confined
to the vessels. These conditions lead to only small changes in DCE MRI, thus DSC
MRI was traditionally the method of choice for brain perfusion measurements. Absolute
quantification of the hemodynamics with DSC MRI is difficult though [Rosen et al., 1991;
Rempp et al., 1994]. Quantification of the cerebral blood flow (CBF) is usually done
by assessment of the mean transit time (MTT) and cerebral blood volume (CBV). This
approach however poses a number of difficulties. In reality, one does not deal with an
ideal delta-function shaped bolus [Knutsson et al., 2010]. Furthermore determination of
the CBV required calculation of the area under the arterial CA concentration (arterial
input function AIF). Calculation thereof is hindered by the fact, that the T3 relaxivities of
contrast agents are different in tissue and arterial blood. Relative values of CBV can be
obtained by assuming a constant value for the integral AIF for the entire brain, but this
complicates inter-patient comparisons or follow-up studies. An additional challenge is the
reduction of the local magnetic field gradients through leakage of the contrast agent into
the EES in case of a disrupted blood-brain-barrier and the resulting loss of susceptibility
contrast. This leakage also leads to accumulation in the EES, which in terms yields an
increase of T} effects. For all of the above named reasons, both Sourbron et al. [2009]
and Larsson et al. [2009] proposed the application in DCE to brain tissue. Recent studies
have shown the applicability of DCE MRI as diagnostic tool in other neuronal diseases,
including stroke [Kassner et al., 2005] and multiple sclerosis [Ingrisch et al., 2012]. In
brain tumors the measurement of tissue perfusion for assessment of blood-brain-barrier
leakage or break-down can provide useful information for staging and assessment of therapy
response [Moller et al., 2015; Jain, 2013].

From Signal to Contrast The extraction of CA concentration from signal intensities is a
crucial part of DCE MRI data analysis, since pharmacokinetics are primarily deduced from
concentrations. The contrast agent changes both longitudinal and transversal relaxation
times, which in terms leads to a change of the measured signal intensities. In DCE MRI,
the signal is dominated by the influence on the longitudinal relazivity R = T% T5 effects
play a minor role, since echo times are usually chosen very short. From the signal-time
curves, contrast agent concentrations, or at least approximations thereof, can be derived
again. The underlying mechanisms of the T} shortening effects derive from MR signal
theory and are rather complex. However it has been shown that assumption of a linear
relationship between relaxation rate and contrast agent concentration C(t) is sufficient
[Pintaske et al., 20006]

Ry(t) = Ry +r - C(t) (3.9)

The time varying concentration, as measured with perfusion MRI, can thus be expressed as

o) = Tl = fio (3.10)

™
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The relation between signal intensity and relaxation time depends on a number of sequence
specific factors, such as the coil sensitivity, the sequence flip angle and 75> dependencies. For
most sequences used in DCE MRI, these quantities can be merged into a time-independent
constant I'(x). With this, the time varying signal intensity can be expressed as

S(t) = T(z) - ma(R(t)) (3.11)

m(R(t)) describes the relation between longitudinal magnetization and relaxation rate.

Assuming linearity between m, and R leads to absolute and relative signal enhancement
as approximations for the CA concentration:

C(t) = SBuu(t) = k- (S(1) - 5(0)) (3.12)
_ _ Rip S(t) —5(0)
C(t) - SETel(t) - r S(O) (313)

For absolute signal enhancement, the proportionality constant k depends on the flip angle
and coil sensitivity. These quantities cancel out for relative parameter comparisons, if k is
equal in tissue and artery. This does not apply for relative signal enhancement, because
the factor k = Ry /r1 is independent of these quantities. However, Ry is different in
artery and tissue, leading to a scaling error of Ry gytery/Ri tissue in parameter estimates.

Analysis of Contrast Agent Kinetics The systemic transport of a CA bolus is described
by indicator dilution theory, stating that the time course of the contrast agent distribution
in tissue can be expressed as convolution of the concentration in a tissue feeding artery (AIF)
with a so-called residue function, describing the tissue physiology and the contrast agent
behavior. For a detail derivation, see section 3.4. Analysis in DCE MRI uses mathematical
models based on the knowledge of contrast agent and tissue physiology to describe this
residue function. Parameter estimation in pharmacokinetic modeling is straight forward
from this point on. The goal is to find the set of n model parameters qg ={¢1, ..y On}
that best describes the experimental data. Convolution of the parameter dependent model
representation of R(t,¢;) with the measured AIF is fitted to the measured concentration
time curves of the tissue with non-linear least square techniques (see figure 3.6).

It is obvious, that assessment of the right AIF is a crucial step in this analysis, as wrong

estimation of the supplying influx time course can gravely influence the parameter estimates.

Usually, C,(t) cannot be measured directly, but is deduced from the blood concentration
Cp(t) measured in a tumor supplying artery within the MRI image. C, and Cp can be
linked via the hematocrit level HC'L

Cp(1)

Cal(t) = (- HCL)

(3.14)

In most cases, a literature value of HC'L = 0.45 is used.
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Figure 3.6: Principle of non-linear least square fitting on the example of concentration-time curves
C(t;) in pharmacokinetic modeling of DCE MRI. From the dynamic image, the concentration-time
curve of interest is extracted together with the arterial input function (AIF). Convolution of the AIF
with the residue function R(t, ¢;), describing the tissue physiology and the contrast agent behavior,
yields the theoretical concentration time curve of the contrast agent in tissue. In an iterative process,
an optimizer adjusts the model parameters ¢;, until the similarity measure A2 (usually the sum of

squared residuals) between theoretical and measured tissue concentration-time curve falls under a
defined threshold.
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3.3 Positron Emission Tomography

Standard MRI and CT are primarily used for imaging of anatomical structures and densities
in the body. In neuro-oncology, MRI has been established as tool of choice for diagnosis
and radiotherapy planning of brain tumors. However, the differentiation of tumor tissue
from edematous, necrotic and fibrotic tissues is challenging. The accumulation of contrast
agent in tumors, which is used for detection of malignant tissue, results from disruption
of the blood-brain barrier. Accumulation can also be related to inflammation caused by
surgery or radiation therapy though. In this case, positron emission tomography (PET)
can help to distinguish tumor tissue.

3.3.1 Basic Principles

PET is an imaging technique in nuclear medicine, which enables the measurement of certain
physiological processes, such as metabolism of a substance. The substance of interest
is labeled with a radioactive isotope undergoing B*-decay, and injected intravenously.
Within the body, the emitted positrons annihilate with a next possible electron from the
surrounding tissue atoms, emitting two back-to-back 180° photons of each 511 keV. These
photons traverse and exit the body, and can be detected in coincidence measurements using
a circular, scintillator-based detector around the patient. Reconstruction of the projected
lines-of-response leads to a two dimensional visualization of the tracer distribution. Slice-
wise measurements yield the 3D tracer distribution of the patient. In the body, the tracer
accumulates at specific physiological sites, where it is metabolized. This accumulation can
be seen in the PET images.

The intensity of accumulations can be evaluated by means of the standardized uptake value
(SUV). SUV is defined as the ratio between decay corrected signal intensity [Bq/ml]
and injected tracer activity per patient body weight. Considering decay correction of the
injected activity for the time window between tracer injection and measurement, SUV is
calculated as

SUV = A[%} : ! L e~m@)/T (3.15)
Ao | %] w kgl po |10 ]

where A is the tissue activity concentration, Ay the initially injected activity and w the
patient’s body weight. ¢ is the time passed between injection and measurement and T
is the half-life of the tracer isotope. Segmentation and quantification of PET images is
usually conducted with isocontours, which represent a percentage of the maximum SUV
within a region or volume of interest.

3.3.2 Amino Acid PET with F-FET

In nuclear medicine, radionuclides are bound to metabolic substances (pharmaceuticals),
forming a so called radiopharmaceutical, often referred to as tracer. The detection of
malignancies via PET is based on the different metabolisms of these tracers.



30

3 Methods

A prominent example is the radioactive tracer [*®F]-fluoro-2-deoxy-D-glucose (**F-FDG).
Deoxy-D-glucose is a type of sugar, which is labeled with the T isotope '®F with a half-life of
109.8min. Fast-growing tumors have an increased glucose metabolism. Therefore, '8F-FDG
accumulates in such tumor cells and can be detected with a PET measurement. For detection
of glioma, however, usage of '8F-FDG is unsuitable due to the high glucose metabolism of
the brain, which leads to an increased background signal. Tracer accumulation in tumor
lesions can therefore not be sufficiently distinguished from the high background signal. In
addition, '8F-FDG is also taken up by inflammatory cells.

Amino acids (AA) serve as building blocks for proteins and precursors of hormones and
neurotransmitters. Tumor cells frequently exhibit enhanced protein synthesis and amino
acid transport [Huang and McConathy, 2013], whereas both processes are relatively low in
healthy brain tissue. Hence radioactive labeled amino acids present potentially suitable
compounds for detection of tumor tissue. The low uptake of AA in inflammatory tissue
yields advantageous specificity of these tracers compared to '8F-FDG [Del Sole et al., 2001].
Unlike in contrast enhanced MRI, a disrupted blood brain barrier is not a prerequisite for
intra-tumoral AA accumulation.

For interpretation of tracer pharmacokinetic analysis, a detailed comprehension of the
amino acid tracers metabolism is mandatory. Methyl or ethyl groups in most amino acid
radiotracers prevent them from being incorporated into protein synthesis or metabolic
pathways. Thus, tracer accumulation in tissues is mainly based on transport systems
[Ishiwata et al., 1993]. After being transport into cells, different amino acid tracers present
with specific metabolic fates, which can be used for tumor imaging. For most amino acid
tracers, uptake is governed by transport via specific amino acid carrier systems, namely
the sodium-independent amino acid transport system L. System L amino acid transporters,
which transport a variety of neutral amino acids, play a superior roll in the tracer kinetics
with respect to survival and growth of tumor cells. They are therefore widely expressed in
primary human cancer cells [Imai et al., 2010; Zitron et al., 2013; Del Amo et al., 2008].
Since L-system transport is reversible [Verrey, 2003], efflux of non-metabolized amino acids
is possible as well.

Various tracer combinations with amino acids have been studied for tumor imaging.
Amongst them L-[methyl-!!C]methionine (MET) for PET and 3-['**IJiodine-a-methyl-
l-tyrosine (IMT) for single photon emission computed tomography (SPECT) represent
the most used ones [Jager et al., 2001]. However, SPECT suffers from the lower spatial
resolution compared to PET imaging. On the other hand, the short half-life of ''C allows
MET-PET at centers with on-site cyclotron only. These reasons resulted in the desire for a
18F-labeled amino acid tracer. The most common of those tracers is O-(2-[**F]fluoroethyl)-
l-tyrosine (*¥F-FET) [Wester et al., 1999], shown in figure 3.7, which enables the broad
application of amino acid PET in clinical routine due to its easy production in sufficient
amounts. '8F-FET is metabolically stable and shows only minor degradation in the human
body [Pauleit et al., 2003]. It was shown that ¥ F-FET is not incorporated into proteins
and does not participate in specific metabolic pathways [Pauleit et al., 2003]. The increased
uptake derives from transportation only. Due to the lack of participation in protein
synthesis and metabolism after transport, '8 F-FET uptake can be used for measuring
amino acid transport rates. Heiss et al. [1999] presented that ®F-FET uptake into tumor
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Figure 3.7: The O-(2-['*F]fluoroethyl)-l-tyrosine molecule and its uptake distribution in a brain

tumor patient. The tracer distribution is shown in units of the SUV.

cells is mainly caused by the L-type transport system. '8F-FET presents with significantly
lower uptake in inflammatory cells compared to '®F-FDG and MET and thus provides
higher specificity for differentiation between tumor tissue and inflammation. In summary,
BE_FET shows little metabolism and remains chemically stable after accumulation in
tumor tissue. Nevertheless the increased regional uptake of ¥F-FET in the brain is not
100% specific for glioma tissue. For instance, basal ganglia present with physiological
uptake of 18F-FET [Langen et al., 2006]. In addition, studies showed low urinary excretion
corresponding to a high 'F-FET concentration in the blood [Pauleit et al., 2003]. This
leads to visualization of large vessels which can lead to misinterpretation of brain tumors
with intense vascularization.

The infiltrative nature of high grade glioma results in difficulties for tumor extent detection
and target delineation in radiotherapy. "*F-FET PET offers the possibility to overcome
these problems, as it offers high sensitivity and specificity for glioma tissue and high
I8F-FET SUV has been correlated with cell density [Pauleit et al., 2005; Stockhammer
et al., 2008]. ®F-FET positive volumes have been associated with relapse patterns of
glioma patients after the application of chemotherapy [Weber et al., 2009] and have been
shown to provide a prognostic value for progression-free and overall survival [Piroth et al.,
2011]. Several authors studied response assessment [Dhermain et al., 2010] and applicability
of BF-FET PET for radiotherapy planning [Grosu and Weber, 2010], [Weber et al., 2008],
both in primary [Rosenschold et al., 2014] and recurrent glioma [Grosu et al., 2005]. The
possibility for improved target delineation by usage of ®F-FET PET is especially interesting
with regards to the steep dose gradients in ion radiotherapy [Rieken et al., 2013].

3.3.3 Dynamic ®F-FET PET

Dynamic PET acquisition is often used to study tissue physiology and uptake kinetics.

The probably most common example is dynamic '®F-FDG PET. Analysis of the time
activity curves is analogue to evaluation of DCE MRI data. Pharmacokinetic models
are fitted iteratively to the data in order to obtain parameter estimates of physiological
quantities (see section 3.4.5). While most '8F-FET PET studies rely on static uptake
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images, recently it has been suggested that dynamic imaging can be useful for staging
of glioma [Pépperl et al., 2007]. Dynamic '®F-FET PET has been presented in several
studies, however analysis with pharmacokinetic models is rarely performed. Most studies
either focus on the analysis of single frames [Weckesser et al., 2005] or resort to qualitative
description of time-activity curve types [Jansen et al., 2014; Thon et al., 2015]. Popperl
et al. [2006] introduced the method of weighted frames for grading of recurrent gliomas.
The technique takes the physiological dynamics of ®¥F-FET into account and quantifies
the changes between time frames in order to account for the individual time-course. Thiele
et al. [2009] used pharmacokinetic models among other methods for evaluation of the
prognostic value of dynamic '8F-FET PET in a group of nine high-grade glioma patients.
However, dynamic data modeling was performed on time-activity curves averaged over
the whole lesion, thus neglecting tumor heterogeneity. Furthermore limitations in their
analysis software only allowed for qualitative investigation of the goodness of fit.
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3.4 Pharmacokinetic Modeling and Indicator Dilution Theory

Pharmacokinetic modeling, sometimes also called tracer kinetic modeling, is the foundation
for analysis of physiology studying time series in CT, MRI and PET. In fact, early models
for DCE MRI derived from CT perfusion measurements and were built on the principles that
had already been used to study metabolism kinetics in dynamic PET series. Since parameter
estimation from pharmacokinetic models in both DCE MRI and PET is important for the
course of this thesis, a general review of the basic principles, applicable to all modalities
and studied substances, is presented. In the later sections, more detailed explanations
of models applied in the respective imaging scenario and the meaning of the extracted
parameters will be given. More detailed literature on the general theory of compartmental
analysis can be found in Jacquez et al. [1985], and the dedicated applications on DCE
MRI and PET are thoroughly reviewed in Sourbron and Buckley [2011] and Phelps [2004],
respectively.

3.4.1 General Terms and Definitions

On a general scope, the analysis of the time course of a substance through the tissue is
based on the indicator dilution theory (IDT). An indicator is a substance that is introduced
into a physiological system and can be detected. Measuring the path of the indicator yields
physiological information about the system. An important aspect is that the indicator
must not change the system and its behavior. Tracers are a type of indicator with the same

chemical composition as the studied systemic substance, but can be detected separately.

Radioactive labeled substances used for PET, e.g. "8F-FDG are tracers, whereas MRI
contrast agents, such as gadolinium chelates, are typically indicators. For the following
discussion, the behavior of the more general indicators will be reviewed.

Within a sample of tissue, the change of material of systemic substances is driven by influx
through an entity of inlets (i € Inlets) and outflux via a number of outlets (o € Outlets),
as shown in figure 3.8. The time an indicator particle needs for entering the tissue trough
an inlet and leaving it through an outlet is referred to as transit time. Considering all
inlets and outlets, this transit time has the form of a probability distribution H(t). The
mean transit time is the expectation value of H(t).

The volume of distribution V is the volume of systemic substance containing the indicator.

As the true volume of distribution is difficult to access, definition is often done by normalizing
the volume of distribution to the volume of tissue. This normalized volume of distribution
v can thus take values between 0 and 1. The concentration c(t) of the indicator in tissue
is defined as the amount of indicator divided by the volume of distribution. The tissue
concentration C(t) is linked to c¢(t) via

C(t) = v-c(t) (3.16)

The flux J is defined as the amount of indicator passing through an inlet or outlet per
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Figure 3.8: An element of tissue, having three indicator inlets [a, b, c¢] and two outlets [e, d]. The
change of the indicator concentration c¢(t) is the difference between total indicator influx Jo(¢) 4+ Jo(t) +
Je(t) and total outflux Je(t) + Ja(t).

unit of time. The rate of change of the amount of indicator in the tissue sample can be
expressed as the difference between all influx and outflux:

%(t): S oan- Y (3.17)

i€Inlets o€Qutlets

3.4.2 Linear and Stationary Systems

In most cases it is safe to presume linear and stationary behavior of the indicator in tissue.
Linear means, that the system response to the indicator influx is directly proportional to
the amount of indicator influx. Stationary systems are systems where the response of the
influx is independent of the arrival time, and in particular does not change during the
measurement. For linear and stationary systems, the transit time distribution H(t) acts as
propagator for of the system [Meier and Zierler, 1954]:

Do Loty = D Hi(t)« Ji(t) (3.18)

o€Qutlets i€lnlets

where * denotes the convolution of H;(t) and J;(t). Using this, the concentration can be
written in terms of a residue function R(t) (see figure 3.9):

Cmlt) = Y Ri(t)* Ji(t) (3.19)

i€Inlets

Ri(t) = 1— / H(t)dt! (3.20)
0
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Figure 3.9: The time course of an indicator in tissue (measured concentration-time-curve) can be
described as a convolution of the concentration in the arterial inlet (AIF) with a tissue and indicator
specific residue function R(t). The goal of pharmacokinetic analysis is to find this residue function.

R;(t) represents the fraction of entering particles with transit time larger than ¢, or in other
words the number of particles, that are left in tissue at time t after entering at ¢t = 0.

The goal of every pharmacokinetic analysis is to determine the residue function R(¢). This
can be done using a model-free, purely numerical method often referred to as “deconvolution’
[Rempp et al., 1994]. Alternatively, the tissue architecture and interactions can be modeled
mathematically, which leads to a functional representation R(t, ¢;). {¢:} is the set of model
describing parameters. This technique is pursued in the following section.

i

3.4.3 Modeling Residue Functions: Compartmental Systems

Indicator behavior is often studied in compartments, which are defined as homogeneous and
well-mixed macroscopic subunits of the physiological systems. Compartments describe the
amount of substance that kinetically acts as homogeneous and well-mixed. A compartment
does not necessarily need to be a physical volume or physiological space. It can also refer
to a certain state of the indicator, say after a chemical interaction, for example in the case
of 8F-FDG. Multiple compartments interact via the exchange of material and thus form a
compartmental system. The exchange is driven by fractional transfer coefficients, defined
as the fraction of a the compartment material, that is transferred per unit of time.

In a linear compartment system, the influx and outflux are assumed to be directly propor-
tional to the concentration [Sourbron and Buckley, 2011]

Jl(t) = ki . C(t) (3.21)
Jo(t) = ko - c(t) (3.22)

k; and k, are exchange rates, sometimes referred to as clearance of the inlet or outlet.
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Inserting this relation into equation 3.18, the basic laws of interactions in compartment m
can usually formulated as first order differential equation

dec%”(t)z S okialt)— > ke colt) (3.23)

i€lnlets o€Qutlets

Hence, a system of n differential equations leads to n coupled differential equations.

For n < 3, a closed-from analytical solution can be derived for functional representation of
R(t). Using the linear relation between flux and concentration 3.23 in the residue function
formulation 3.19, the concentration in compartment m can be stated as:

Cm(t) = Z k; - Rz(t) * Ci(t) (3.24)

i€lnlets

For a single compartment, the residue function can be expressed as a mono-exponential
function, decaying with the mean transit time of the compartment:

m(t) = —t/Tm ‘thTmzyim 2
i () ‘ . ZoGOutlets kO (3 5)

In most cases, it is safe to assume that each compartment has only one inlet. In this case,
the time-dependent total tissue concentration Cr(t) = >0 _; Umcm(t) is related to the
temporal course of the concentration in a supplying blood vessel ¢, (t) as

Cr(t) = ky - R(t) * ca(t) (3.26)
R(t) = an R (1) (3.27)
m=1

The influx concentration c,(t)is called arterial input function AIF and can be measured
either directly from blood samples or from the signal changes in the image itself.

In summary, there are two ways of describing the time-dependent interplay of the concen-
trations of a multi-compartmental system and the time-course of total tissue concentration:
either by the system of coupled differential equations, or by the convolution of the tissue
residue function with the arterial input function. Solving differential equations with nu-
merical algorithms can be time consuming, whereas convolutions can be performed very
fast with modern computational algorithms.

3.4.4 Compartment Models in DCE MRI

DCE MRI is based on the concentration time course of MRI contrast agents in tissue.
Contrast agents, such as gadolinium chelates, are extracellular contrast agent, thus their
volume of distribution is restrained to the blood (plasma) and the EES. The microcirculation
of these two compartments, having fractional volumes v}, and v,, is generally described



3.4 Pharmacokinetic Modeling and Indicator Dilution Theory

37

F, Plasma F,
C,(t), vp
I PS
EES
C.(t), ve

Figure 3.10: The two compartment exchange model describes microcirculation with two compartments:
the plasma and the EES with fractional volumes v, and v. respectively. Contrast agent is transported
from the blood (artery) into the capillary bed with plasma flow Fj,. The rate of CA exchange over the
capillary walls into the interstitial is the permeably-surface-area product PS.

with the two compartment exchange model (2CXM) [Brix et al., 2004], shown in figure
3.10.

CA is transported into the capillary bed through the artery with flux J, and transported
away through the venous drain J,. From the plasma, the CA can cross over the capillary
wall into the interstitial with flux J.. This transport is bidirectional, hence the plasma is
fed with an inlet flux J; from the EES

Jult) = Fy - calt) (3.28)
Jo(t) = F, - cp(1) (3.29)
Jo(t) = PS - ¢, (t) (3.30)
Ji(t) = PS - co(t) (3.31)

¢p(t) is the CA concentration in the capillaries (plasma) and ¢,(t) is the arterial concentra-
tion. Fj, denotes the plasma flow, carrying indicator into the tissue. PS is the permeability
surface area product, that quantifies transport over the capillary membrane. Permeability
P is defined as the transport of indicator per unit of wall and per concentration. Since the
area of the wall is unknown, P is integrated over the whole volume, leading to PS.

Following the formalism presented above, the concentration in the plasma compartment
has two inlets (J, and J;) and two outlets (J, and Je). It can thus be written as

ypdcdpi ) gt di— gy, (3.32)
= Fp(ca(t) — cp(t)) — PS(cp(t) — ce(t)) (3.33)
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The interstitial volume exchanges tracer only with the plasma with the exchange rate P.S,

hence

dee(t)
dt

Ve

= PS(cy(t) — cel(t)) (3.34)

The total tracer concentration in tissue yields

Cr(t) =vp - cp(t) + ve - ce(t) (3.35)

The two mass balance equations yield residue functions R, (t) and R.(t):

Ry(t) = e™0 4+ TpKye (72 — e75) (3.36)
Re(t) = (1 = TpKy)e (72 — 7t (3.37)
R(t) = Ry(t) + Re(t) (3.38)
with the abbreviations
PP (N ST R P (330
N R T, T. T,T. ‘
K —Tg!
_ 4
€ K K, (3.40)

T, and T, are the plasma and interstitial mean transit time, respectively, and T’g is the
mean transit time of a hypothetical intravascular tracer. They are linked to the four
parameters defining the model by

1% 1% 1%
T,=——2 7Y 3.41
PTPS+F, ¢ PSP F (3.41)

With this, the total tissue concentration can be written as

Cr(t) = By (1= e e 72 gy (1) (3.42)

The extended Tofts model (eTM) [Tofts et al., 1999] is widely used in clinical applications,
where data quality is often insufficient to resolve additional structures, in particular
the plasma flow. It derives from the 2CXM as approximation for the highly perfused
regime by substituting the complex plasma residue function 3.37 with a delta distribution.
Convolution with the arterial input concentration then yields:

() = vp - ca(t) + Kipans - € Ktrans/Ve s ¢, (1) (3.43)

A very common notation is to write kep = Kirans /Ve. The eTM is an extension of the
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Figure 3.11: The classical Tofts model models contrast agent exchange between the blood and the
interstitial volume directly. This assumption is only valid for weakly vascularized tissues with v, ~ 0.
In the high perfusion regime, the plasma residue function can be approximated by a delta distribution,
leading to the extended Tofts model.

classical Tofts model [Tofts and Kermode, 1991], one of the initial models in compartmental
analysis of DCE MRI, which assumes contrast agent exchange directly between blood
and EES (see figure 3.11). The classical Tofts model is a one-compartment model with a
single-exponential residue function, depending on two parameters: the transfer constant
Kirans and the volume of the EES v,.

ct(t) = Kirans - €7" Kirans/ve 4 cq(t) (3.44)

The model assumptions hold true only for weakly vascularized tissue, where the capillary
bed (plasma volume) can be neglected. In tumors this condition is not necessarily fulfilled.

3.4.5 Compartment Models in Dynamic PET

One of the main differences between tracer-kinetic modeling of dynamic PET and DCE
MRI is that in PET, transport between two compartments does not necessarily have the
same value in both directions. Since PET compartments often describe metabolic states of
the tracer, it is possible that the transfer between the two states can happen at different
rates or the chemical modulation of the tracer is not reversible and hence exchange between
the compartments only works in one direction. The simplest model is the one tissue
compartment model (1TCM), which is the PET analog the classical Tofts model in DCE
MRI. It is a two compartment model that describes the tracer exchange between the blood
pool and the tissue pool. Since the blood concentration is the measured AIF, ¢,(t), the
remaining differential equation for the tissue concentration c;(t) yields an exponential
residue function

c1(t) = Ky - cq(t) x e F2t (3.45)

The two tissue compartment model (2TCM), as shown in figure 3.12, is a 3-compartment
model. The compartments might describe for example the tracer in blood plasma, tracer in
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Figure 3.12: A general two tissue compartment model, describing the kinetics of a tracer that can be
exchanged between the blood pool and the interstitial volume with exchange rates K; and k2. From
the interstitial space, the tracer can also be transported into cells. The transport process is quantified
by the transport rates ks and k4.

the EES and tracer in cells, respectively. Again, the concentration in the blood pool ¢, (t)
is commonly measured directly, leaving two differential equations for the concentrations
c1(t) and co(t):

deq(t

clzt( ) Kyea(t) — koer(t) + kaca(t) — kaea (£) (3.46)

deo(t
CQZt( ) = k301 (t) — k402(t) (3.47)

The analytical closed-form solution is given by

K —at —aot
e1(t) = ———ca(t) * (ks — a1)e™ " + (ag — ky)e ] (3.48)
Qy — a1
Kk -« -
co(t) = ﬁca(t) % (e70t — g2ty (3.49)
ko + ks + k ko + k3 + kq)? — dkok

with:a1,2:(2+ 3+ ka) F /(b2 + ks + ka) ok4 (3.50)

2

A prominent example, where three compartments are needed is the tracer '®F-FDG. The
compartments describe '®F-FDG in blood plasma, '®F-FDG in tissue and phosphorylated
BF_FDG in tissue, respectively. '8F-FDG can diffuse nearly free between EES and cellular
space, thus no distinction between these two in form of a compartment is necessary and
they can be put together as the compartment “FDG in tissue”. The phosphorylation
process is not reversible, thus for '8 F-FDG, k4 = 0 can be assumed.

For dynamic ®F-FET-PET data, Thiele et al. [2009] used the 1TCM and 2TCM amongst
other analysis approaches to determine the value of the determined parameters for the
clinical outcome of patients with glioblastoma. The choice of a 2TCM topology was based
on the bidirectional transport of '®F-FET to tumor cells. It is hypothesized that after
crossing the blood-brain barrier, ®F-FET is taken up specifically by LAT2 transporters, a
bidirectional L-type amino acid transporters regulating neutral amino acid transport from
extracellular fluids into the cells, which is located on the membrane of tumor cells. Hence
the 2TCM would represent '8F-FET in the interstitial space after crossing the blood-brain



3.4 Pharmacokinetic Modeling and Indicator Dilution Theory

41

barrier and "8F-FET in cells after uptake through LAT2. Their results showed better
goodness-of-fit but less robust results amongst the patients studied for the 2TC model
compared to the 1"TCM. However they fitted mean TACs within the tumor volumes, thus
neglecting possible heterogeneity, and accessed the goodness of fit on a visual basis.

3.4.6 Non-Compartmental Analysis

In cases where data quality does not allow for proper pharmacokinetic compartment mod-
eling to be performed, one can resort to more simple, non-compartmental pharmacokinetic
analysis of the concentration-time curves by determining curve describing parameters.
Parameters in non-compartmental analysis are often deduced from statistical moment
analysis. The zeroth moment of the concentration time curve, often referred to as area
under the curve (AUC)

T
AUC = [ O@t) dt (3.51)
/

is a popular parameter for “landscaping” of dynamic image series, as it yields stable
results and is helpful for the assessment of tissue physiology. On the general scope of
pharmacokinetic theory, the AUC of a substances concentration-time curve reflect the total
amount of the substance reaching systemic circulation and thus enables comparison of
bioavailability of the substance. For dynamic MRI using contrast agents in particular, the
AUC is related to the blood volume, as shown by Rosen et al. [1991].

The ratio between the zeroth and first moment of the concentration time curve [Gibaldi
and Perrier, 1982], [Riviere, 2011]

AUMC  [Tt-C(t)dt
AUC o) de

MRT = (3.52)

yields a parameter called mean residence time (MRT). MRT represents the elimination
rate of a substance from the body and can be interpreted as “half-life” of the substance,
describing its persistence in the body. It is inversely related to the elimination rate k.; of
an open one-compartment model

1

o = ———
e = MRT

(3.53)

Two further quantities, the peak (plasma) concentration Ch,q, and the corresponding time
to peak (T'TP), are of potential interest for pharmacokinetics. The peak concentration
marks the point at which alienated and absorbed amount of the substance are equal and is
related to the absorption and elimination rates. The TP is dependent on the absorption
rate [DiPiro, 2010].
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3.5 Image Processing

3.5.1 Registration

The clinical usage of medical images often resorts to complementary information gained
from different imaging modalities. Thus, proper integration of the separate image data
is often required. The task at hand is to bring the modalities in question into spatial
alignment. This so-called registration procedure is a key pre-processing method in medical
image computing and gains more and more importance due to a growing number and
diversity of modalities. An apparent example is the combined usage of CT and MRI images
in radiotherapy treatment planning.

In general, image registration tries to align corresponding anatomical or functional locations
in different images. The goal is to find a transformation T : (x,y, z) — (2/,/, 2’) mapping
a point (z,y,z) in the source or moving coordinate system to the corresponding point
(2',y',2") in the target coordinate system. An intra-subject registration aligns images from
different modalities (multimodal) or different time points (serial) of one and the same
subject. In other clinical settings, it is supposably useful to register images from different
subjects for inter subject comparison. Both approaches involve the search for an optimal,
or at least sufficient, geometric transformation, that maximizes image correspondence.
Registration routines can be divided into 4 parts:

e The transformation model defines the geometric transformation between images.
In general, one can distinguish between rigid, affine, projection and deformable
transformations

e The degree of alignment is measured by the similarity measure. Feature based
approaches aim at minimizing distances of corresponding features, such as reference
points, within the image. However this strategy requires landmark detection or
segmentation algorithms. Voxel based similarities on the other hand directly use
image intensities in an attempt to measure the degree of similarity and spatial
correspondence.

e An optimization method is used to optimize the similarity measure

e For assessment of accuracy and robustness, usually a validation protocol is defined to
measure performance of the registration algorithm.

The complexity of the transformation model is characterized by the degrees of freedom
involved. The simples transformation of image coordinates is the rigid transformation having
6 degrees of freedom, three from translational and three from rotational movements. Such
rigid transformations are usually described in a transformation matrix with homogeneous
coordinates: y; = a;jrj, where x and y are the old and new coordinate vectors respectively.
Images of the head can usually be transformed using these models, because the skull is
rigid. Thus it is safe to assume, that it underlies no considerable changes, except growth
in young patients. Other transformation include affine transformations, which include
correction for scaling and shearing, and projection transformations, relating 3D and 2D
images. A coordinate transformation that maps lines onto curves is called elastic or
deformable transformation. Elastic transformations are often used for soft tissue mapping,
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for example of the liver or lung. There are various approaches for similarity measures as
well as optimization methods, but their review would go beyond the scope of this work.
Hence they are not discussed further, but an overview can be found in Deserno [2011]. For
registration of different image modalities in this work, the MatchPoint framework [Floca,
2009] integrated in MITK was utilized.

3.5.2 Segmentation

Segmentation is the process of dividing an image into semantically connected regions and
can be seen as a pre-stage of classification. In medical applications it is used to define
diagnostically or therapeutically relevant image areas, such as organ outlines or pathological
target tissues. There are numerous approaches for segmentation, from manual and semi-
automatic techniques to fully automatic algorithms. The following section presents an
overview of segmentation techniques relevant to this work.

For many cases, manual segmentation by visually drawing the desired delineation is
feasible, for example in target definition of GTV, CTV and PTV in radiotherapy. For
some tasks, however, more sophisticated techniques, such as isocontours, Otsu thresholds
or region growing are necessary to enable time-efficient analysis. Pixel-based approaches,
that only consider the gray-scale intensity of each single pixel without consideration of
the neighboring pixels, include static and adaptive thresholding techniques. Isocontours
[Paulino et al., 2005], which are widely used for delineation of potential pathological uptake
structures in PET, use static thresholds. They include all pixels within a given region
with intensities exceeding a certain specified percentage of the maximum value in the
region. The Otsu threshold is an adaptive thresholding technique, used for automated
multi-segment determination based on an “object vs background” model. It determines
histogram thresholds by minimizing the intra-class variance of the gray-scale values of
the determined classes while maximizing the inter-class variance. Region growing (2D)
and volume growing (3D) are agglomerative procedures, which is a type of region based
method that considers only connected segments based on similarity measures. Starting
from automatically or manually defined seed points, the algorithm iteratively includes
neighboring pixels into the segment, if their corresponding similarity measure falls under a
certain threshold, until no more spreading can be performed. The result of this algorithm
is influenced by the number and position of seed points, as well as the applied similarity
measure and its corresponding threshold. A completely different approach for multi-labeled,
semi-automated image segmentation was proposed by Grady and Funka-Lea [2004]. For a
given number of seed points, the algorithm assigns unlabeled voxels to a seed point that is
most likely reached by a random walker starting from the pixel in question. The boundary
constraints are applied as in graph theoretic electrical potentials. With these assumptions,
the probability of the random walker first reaching a seed point is the solution to a Dirichlet
problem with boundary conditions where the seed point in question is set to unity while
others are fixed at zero.
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3.5.3 Non-Linear Least Square Fitting

Parameter estimation in dynamic imaging is often performed by non-linear least square
fitting of a pharmacokinetic model to a measured time course. The goal is to fit the model
representing function to the measured curve in an iterative process, in order to find the set
of model parameters that best describes the experimental data. Non-linear least square
fitting fits the data by minimizing the sum of quadratic objective functions f;(z)

m

min /(7) = Y 2(7) (3:54)

=1

Usually the sum of squared residuals , referred to as X2, is minimized with respect to the
n model parameters gi_; = {é1, ..., pn}. This means that the objective functions take the
form of the difference between the measured sample C*(¢;) and the model function S(;, @)
at time ¢; in the measured time interval ¢; € [to, T :

T

min X2(1,6) = 3 (O7(1) = $(05. ) (3.55)

t;=to

This poses an unconstraint optimization problem that can be solved by a number of different
algorithms. The iteration process mostly breaks down to finding an approximation to the
Hessian matrix. The above problem 3.55 can be written as

min f(x Z fA(x) )T F(z) (3.56)

with vector functions F(z) = (f1(x)fa(x)...fm(x))T. The first derivative V f(x) follows
according to the chain rule as

Vf(x)=VF(z)F(z) (3.57)
and hence the Hessian yields

V2 f(x) = VF(x)V +Zﬂ )V fi(a (3.58)

Assuming that z* is the solution to the optimization and f(z*) = 0, then f;(z*) = 0 for all
i and the model fits the data perfectly without errors. Using this, it follows that F'(z*) =0
and thus V f(2*) = 0 as well, which would satisfy the first-order condition for an extremum.
Furthermore, it implies that

V2if(z*) = VE(z*)VF(z*)T >0 (3.59)
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and hence the Hessian is positive semi-definite at the solution. From F(z*) = 0 one can
assume that F(z) ~ 0 for  ~ z*. This leads to the approximation

V2f(z) = VF(2)VF(z)" + i V2fi(x) =~ VF(x)VF(x)T (3.60)

i=1

which only depends on first derivatives of {f;}. Hence, if the model fits the data appro-
priately, the Hessian matrix can be found by using only first order derivatives. This is
the approach of several methods for non-linear least square data fitting. The simplest
algorithm is the Gauss-Newton method, which uses equation 3.61 directly to calculate a
search direction from Newton’s method

V3 f(x)p = =V f(x) (3.61)
= VF(x)VF(2)'p= -VF(z)F(z) (3.62)

Solving for p gives the next iteration step x — = + p. However, the Gauss-Newton method
leads to poor results in cases, where the residuals at the solution are not small, because
the function does not fit the data well.

The Levenberg-Marquardt algorithm is an extension of the Gauss-Newton method. It
approximates the second term of the Hessian Matrix in equation 3.59 with the method of
gradient descent by using

m

> fil@) VP fi(x) = A (3.63)

=1

with a scalar A <0
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3.6 Classification and Machine Learning

Generative modeling of medical physiological interactions can be difficult in systems with
complex underlying fundamental principles, since explicit mathematical formulations for all
system influencing parameters have to be defined. Classification and pattern recognition
tasks address this problem on an empirical, discriminative basis and are thus valuable
tools for analysis of medical data, especially in the evaluation of large data cohorts (big-
data). The search for recurrent patterns in data is interesting for the aim of the presented
work as recurring image patterns on multi modal image sets present an chance for tissue
classification and tumor growth prediction.

Pattern recognition tasks are often addressed with machine learning methods. On a given
labelled training set, a general mapping is learned between the input data points and the
corresponding classes that are known in advance. For the trainings set {X} of observation
variables x, the corresponding categories y, referred to as target vectors, are known in
advanced. The result of the machine learning process is a function y(x) that relates an
input data point to an output category y. The training phase is the learning process of the
assignment rule y(x). In the testing phase, this rule is applied to a test set of previously
unseen data points.

Regression algorithms attempt to predict a (possibly) continuous output value given a
stream of input data. Classification algorithms deal with the task of assigning discrete
categories to input data points. Most widely used classifiers are support vector machines
(SVM) which can handle binary classifications problems with maximum-margin separation
and good generalization for relatively little training data points at the same time. They
project the data into a high dimensional space where it is easily separable. Boosting is
another, iterative approach, building strong classifiers from linear combinations of many
weak classifiers. They “boost” training examples one which the classifier works poorly,
thus increasing their associated training weight. In artificial neural networks, which are
inspired by working principles of the brain, a layered set of primitive units learns to predict
output values for a given multi-dimensional input. In the feed-forward manner, each unit
implements a non-linear transformation of its input and projects it down to the next layer.
Learning is achieved by adjusting the weights between units. Tree-based models, based on
decision trees, aim to exploit a training set in order to make prediction of the value of the
target variable (class) for a new value of the input value.

3.6.1 Decision Trees

Decision Trees, as shown in figure 3.13, are tree-like graphs or models of decisions and
their possible consequences. The so-called internal or split nodes represent a “test“ on an
characteristic attribute of the observation variable. Each outcome of a test, referred to as
split, is represented by an outgoing branch from the split node. Terminal nodes, called
leaves, represent the final classification or decision after all tests on the attributes are
applied. The tests for decision making are organized hierarchically in a tree-like structure,
and each way down the tree (lane) represents a classification rule. Given a previously
unseen data point, the decision tree applies the predefined tests and the data point is
sorted to a leaf node with a predictor, depending on the results of each test.
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Figure 3.13: A decision tree is a hierarchical structure of tests on the attributes xx of the observable
Z. Each test results in a split of the node into branches. Each leaf represents a class ¢; out of all p
classes. After the observable is run down the tree (blue line) a certain class is assigned to it. During
training, the parameters of the split at each node are optimize in such a manner that each of the N
observables in the training sample S = {X} = {#1,....,2x} is assigned with the right, previously
known class.

Key to a decision tree is to establish all the test function associated to each internal node
and the decision making predictors associated with each leaf. The concrete tree structure is
learned automatically during training, by optimizing the parameters of the split functions
at each internal nodes and the leaf predictors.

Using a training set of data points and the associated ground truth classes, the tree
parameters are chosen to maximize the information gain of the split. The tree is grown

from the training data, defined in terms of observation variables ¥ = (x1, ....,2x) with
K attributes, called features. The entire data set consists of N cases of Z: S = {X } =
{#1,....,25}. The cases z; are each assigned a class label ¢, € C = {¢1,ca,...,cpr} of all

M available classes.

During growth of the tree, only a number of features k£ < K is made available at each node.

The node tries to find a classification of all training sample cases based on these k features,
to find the best split of the cases into the p classes. If there are still wrongly classified
cases in the child nodes, another test based on newly sampled k features is applied and the
sample is split again. This process is repeated until all cases of the training sample are
assigned to the right classes.

3.6.2 Random Forests

Breiman [2001] introduced the concept of random forests, an ensemble learning method
for classification and regression problems. Random forests are built from a multitude of
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uncorrelated, randomly trained decision trees. During training, a large number of trees is
grown, each with a randomly sampled subset from the original data. For construction of
the decision trees, n < N cases are sampled with replacement from the original data S,
building the training sample S’. This process is called out-of-bag bootstrapping. Usually
n = % is chosen. The sampling yields n pairs (¥ = (z1,...,xx);c) of samples & with K
features and a corresponding class c.

In testing, a previously unseen data point is put down each of the trees in the forest. Each
tree casts a “vote” for a class. The forest chooses the classification having the most votes
over all trees in the forest. For regression problems, the output value is the mean prediction
over all trees.

An important measure in classification and regression trees is the Gini impurity, a measure
of the degree of incorrect classification of a sample if it is randomly labeled with a class. If
fi denotes the fraction of items labels with class ¢; of all N samples i € {1,2,..., N}, then
the Gini impurity is calculated as

N

Ia(f) =Y (0= f) =Y fifx (3.64)

i=1 ik

Classification errors can be mainly attributed to two things: correlation between the forest
trees and lack of strength of each individual tree. A key aspect of the decision forest is
the fact, that its component trees are all randomly different from one another, thereby
improving the classification results. Correlation is decreased by introducing randomness in
two different ways

1. Random training data set sampling: The training data set are sampled randomly.
This is called bagging and refers to out-of-bag bootstrapping of the original data into
training subsets

2. Randomized node optimization: Not all k available attributes of the data points are
made available, but a number k& < K is specified such that at each node, k variables
are selected at random out of the k and the best split on these m is used to split the
node.

Random forests present a number of advantages for addressing classification problems.
They run efficient on large data sets without the danger of overfitting and can handle a
large number of both input variables and features. Furthermore they provide an estimate
on variable importance and an error estimation of the classification result can be assessed.
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3.7 The Medical Imaging Interaction Toolkit

In order to test different imaging modalities and protocols for their potential to contribute
to an improved multi-parametric model of the tumor and tissue physiology, the necessity
arises to display and analyze the various medical images from CT, MRI and PET. There
is large collection of software solutions for visualization and image processing of medical
data, commercial solutions coupled to imaging scanners as well as stand-alone open source
software. A detailed review of these tools can be found in Wolf [2010]. Commercial software,
such as MatLab [MatLab®, www.mathworks.com] and MeVis [MeVis® | www.mevislab.de],
are closed “black-boxes”, that allow no adaptation and flexibility for user specification.
Open source extensible software, such as the 3D slicer [Gering et al., 1999] or OsiriX [Rosset
et al., 2004], are ready-to-use end-user applications which can be extended by custom code.
They provide high support on the graphical user interface (GUI) front end level, however
their adaptability in terms of framework design is limited. Software toolkits on the other
hand provide a high level of flexibility and user specification. Modern toolkits are often
constructed as object oriented class libraries providing support for specific tasks with a high
level of adaptability and flexibility. For medical imaging, they define a set of implemented
methods and algorithms for image processing, visualization as well as data management.
Nevertheless they are confined within their dedicated purpose and lack the possibility of
easy end-user application with a graphical user interface. The medical imaging interaction
toolkit MITK [Wolf et al., 2005] provides a good compromise between high development
flexibility and support of end-user application interfaces. MITK is a free open-source
software toolkit that supports development of interactive medical imaging software. It
started as an in-house solution for reliable software development in medical imaging in the
department of medical and biological informatics at the DKFZ. Originally designed only as
a toolkit for support of interactive multi-view applications, recent developments have added
an optional layer on the application level and an open-source end-user application using Qt
for the GUI, shown in figure 3.14. With this, it represents a flexible yet easy to use software
system covering all steps of a clinical workflow, including data handling and image analysis
[Nolden et al., 2013]. MITK is implemented in C++ and released open-source in order to
allow users application builds without any restrictions or obligations. It can be built under
Windows, Mac OS and Linux, using the cross-platform, open-source build-system Cmake
[www.cmake.org]. The graphical user interface is provided via the platform independent
library Qt [www.qt.io]. The implementation follows a data-centric concept, which enables
multiple consistent 2D and 3D views on the same data. The core is based on the Insight
Segmentation and Registration Toolkit (ITK, www.itk.org) and the Visualization Toolkit
(VTK, www.vtk.org), reusing as much as possible from these toolkits and adding missing
features required for interactive image processing. It offers the use of further packages, e.g.
Qt [www.qt.io], Boost [www.boost.org], DCMTK [www.dcmtk.org], OpenCV [Bradski and
Kaehler, 2008] or SOFA [Allard et al., 2007], however inclusion of these is not necessarily
required. The ITK is the most widely used toolkit in medical image processing, providing a
large number of multi-dimensional image processing algorithms, especially for registration
and segmentation tasks. The large collection of filters and file readers enable access to
many file formats for MITK. The VTK is a popular toolkit for visualization of data. It
includes the infrastructure for scalar, vector, tensor texture and volume visualization as well
as a large number of algorithms for 3D computer graphics and image processing. MITK
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Figure 3.14: The MITK workbench provides a Qt based application interface for 3D display (3 views:
axial, sagittal and coronal), processing and analysis of radiological images. Segmentation of the an
image (in this case a treatment planning CT) can be performed with various 2D and 3D algorithms.
The statistics plugin enables basic statistical analysis of image intensities within contours. Structure
sets from treatment planning (GTV (red), CTV (magenta) and PTV(purple)) can be loaded via
DICOM RT import.

uses the visualization pipeline for flexible combination of VITK-based and OpenGL-based
rendering.

Originally MITK was intended as a toolkit and not an application or application framework
and thus only contained basic support for building complete applications. In this role it
allows the construction of applications specifically tailored for a medical image analysis
task, providing only those features to the user (physician) that are required. Constant
evolution and a growing number of users have led to the introduction of an extensions to
offer support on the application-level, including a user interface concept and a ready-to-use
application frame for rapid prototyping. The toolkit itself can also be used within existing
software. Algorithms and routines are grouped in modules. A module represents a C+—+
class library covering a specific problem domain. Thus we implemented the basic fitting
infrastructure for pharmacokinetic modeling of dynamic image data into a dedicated module.
Framework functionalities are located in plugins, and a generic plugin framework enables
easy development of service-oriented and modular systems. These plugins build enclosed
workflows for a specific image processing task. The PET SUV calculation (section 4.3.1)
and the model fitting configuration of perfusion MR data (section 4.2.1) are implemented
as plugins, which can be accessed from the graphical user interface.
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MITK supports DICOM! import and retrieval and the corresponding grouping of image
slices into datasets for static as well as time resolved images. Additional features include
volume visualization, measurements and statistics calculations of images and ROIs. It offers
a variety of interactive slice-based and 3D segmentation tools, including several manual

drawing tools, 2D and 3D region growing, absolute and Otsu thresholding amongst others.

Morphological image operations, such as erosion and dilation, and Boolean operations
(differences, unions, intersections) of segmentations are supported. New developments have
introduced the import and visualization of RT structure sets and dose distributions via
RT DICOM, which is an essential tool for the analysis and workflows presented in this
work. For registrations, the MatchPoint framework [Floca, 2009] was used. A separate
application MITK-Diffusion offers a number of plugins for image analysis and diagnosis on
diffusion-weighted MR [Fritzsche et al., 2012].

!Digital Imaging and Communications in Medicine
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3.8 Patient Data

Exemplary data for all studies involving patient data was taken from recurrent high grade
glioma patients treated at the HIT? facility, more specifically data from the CINDERELLA
trial (NCT01166308) [Combs et al., 2010] and data based on the CINDERELLA treatment
protocol (CINDERELLA analog). These patients, who underwent a prior course of standard
photon RT for the primary tumor, were irradiated with fractionated carbon therapy using
single doses of 3 GyE (grey equivalent) and 10 to 16 fractions. Unlike patients with
primary brain tumors, no surgery was performed, which allows the direct co-registration
and comparison of pre- and post-treatment imaging modalities. The treatment volumes for
irradiation with carbon ions were defined as the contrast enhanced region in 77 weighted
MRI, plus a safety margin of 5 mm.

Due to study purposes, some of these patients received multimodal imaging sequences.
Aside from standard imaging protocols such as CT, Tj-weighted MRI with and without
contrast agent and T5-FLAIR sequences, the CINDERELLA protocol included functional
MRI sequences for dynamic perfusion MRI (both DCE and DSC), DWI and susceptibility
weighted MRI (SWI) sequences.

All patients received Ti-weighted MRI with and without contrast agent for the purpose of
treatment planning, however in several cases these MRIs were acquired at external centers.
The Ti1-weighted MRI scans performed at the Heidelberg university clinic were conducted
with a 77 weighted MPRAGE sequence (Tg = 1770 ms, Tp = 3.57 ms, o = 15°) at a 3T

Siemens Verio MRI scanner with a resolution of 0.78 x 0.78 x 1.0 mm?.

For all patients structure sets containing the treatment volumes GT'V (gross tumor vol-
ume), CTV (clinical target volume) and PTV (planning target volume), based on the
treatment planning CT and the Ti-weighted contrast enhanced MRI, and the calculated
dose distributions from carbon irradiation treatment planning were available in the RT
DICOM format.

26 patients received PET scans using the 'F-FET tracer within 2 month prior to radio-
therapy. Measurements were taken using a Siemens Biograph 6 PET scanner 30 to 40
minutes after intravenous injection of 150 MBq and 220 MBq of '®F-FET.

From these 26 patients, 18 patients showed neuro-radiologically confirmed progressive
diseases at an available follow-up examination, which was necessary for the presented
studies in order to investigate the potential of the imaging modalities to predict tumor
progress (see figure 3.15, left side). The other patients either exhibited stable disease at
the time of the presented studies or follow up data was not available. All of the following
studies were performed on data from the cohort of these 18 patients. From treatment
planning MRI, the following sequences were available:

e 11 patients received dynamic ®F-FET PET. The dynamic data was acquired for
40 min in 20 frames (6 x 20,8 X 60 s, 5 x 300s).

e Except for two subjects, all patients also had received Ty weighted FLAIR, MRI
(Resolution: 0.89 x 0.89 x 5 mm?, Tr = 8500 ms, Tx = 135 ms 17 = 2400 ms).

2Heidelberger Ionenstrahl-Therapiezentrum
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Figure 3.15: Available data from recurrent high grade glioma patients in the CINDERELLA trial or
CINDERELLA affiliated. The left side shows the distribution of different endpoints (progress, stable
disease, no information) of the 26 patients that received '*F-FET PET scans. The Venn diagram on
the right side illustrates the available multi-modal image data of the 18 patients, who presented with
progressive disease.

e The scans performed at the university clinic included diffusion weighted MRI of six
directions (Protocol EPI DIFF 51200, Tr = 5000 ms, T = 83 ms) at a resolution
of 1.77 x 1.77 x 5 mm?, providing parameter maps of the ADC and for two patients
also maps of the F'A. For 15 out of the 18 patients, ADC maps were available. In
two cases, the maps of FA were available as well.

e For four patients, DCE MRI data was acquired with a 77 weighted volumetric interpo-
lated brain examination (VIBE) sequence at a resolution of 0.898mm x0.898mm x 5mm
and 21 equidistant time steps at a temporal sampling rate of 12.26 s. The sequence
protocol fi3d1 used Tr = 5.54 ms, T = 2.52 ms and a flip angle of 10°. As contrast
agent bolus, the gadolinium chelate “Gadovist” was used.

e For eight patients, dynamic contrast enhanced T» weighted MRI series (DSC MRI)
were available, however they were not used in the presented work.

Five patients in the cohort received additional MRI scans with the CINDERELLA protocol
on the first and last day of radiotherapy. One additional patient received additional MRI
on the last day of therapy only. These MRI studies provided ADC maps, FA maps
and DCE MRI data in one, three and four additional patients. All of the 18 patients
showed progressive diseases within a year (11 months) after radiotherapy. In 8 cases, the
progression confirming MRI scan included all sequences from the CINDERELLA protocol.

All relevant patient data is summarized in table 3.1. The available data from different
modalities is illustrated in figure 3.15 on the left side. Only five patients could provide
with a complete multi-modal data set.
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Table 3.1: Overview of patient histological diagnosis (Histology (primary tumor/recurrent tumor) ),

irradiation scheme (Dose (fractionation) ), progress after the end of RT (Progress) and available image
data (T FLAIR, ADC maps, FA maps, DCE MRI data and dynamic '*F-FET PET data) of the
recurrent high grade glioma cohort with 18F-FET PET scans. Checkmarks mark the available data

from imaging scans prior to RT. Blue checkmarks indicated that the respective sequence is available
from the MRI on the first day of RT (one day before radiotherapy), instead of the planning MRI.

ID Histo. Dose [GyE] Progress FLAIR ADC FA DCE PET
(initial /recurrent) ( # fractions) [month] (T2) MRI dyn.
1 Astro (II/III) 30 (10) 1 v o v vV
2 GBM (IV/1V) 33 (11) 8.1 v v v v v
3  GBM (IV/1V) 33 (11) 0.9 v v v v v
4 Astro (II/IV) 33 (11) 1 v v v v X
5 GBM (IV/1V) 33 (11) 1 v v X v X
6 GBM (IV/IV) 33 (11) 3.3 v v X v X
7 GBM (IV/IV) 36 (12) 2.1 v v X v v
8 GBM (IV/1V) 39 (13) 9.9 v v v v v
9  Astro (II/III) 39 (13) 0.9 X v X X X
10 GBM (IV/IV) 39 (13) 2.5 X X X X Vv
11 GBM (IV/1V) 30 (10) 6.6 v X X X X
12 Astro (II[/IIT) 33 (11) 3.1 v vooX X v
13 Oligo (II/III) 39 (13) 3.4 v v X X v
14 Astro (III/III) 33 (11) 3.5 v v X X X
15 GBM (IV/1V) 39 (13) 8.5 v v X X v
16 GBM (IV/IV) 39 (13) 14 v v X X v
17 GBM (IV/IV) 30 (10) 115 v X X v
18  Astro (II/III) 33 (11) 3.5 v X X X v




4 Results

The goal of the presented thesis was to investigate the predictive value of parameters
derived from perfusion MRI and amino acid PET with respect to tissue classification.
The medical imaging interaction toolkit (MITK, Wolf et al. [2005]) was used as common
software basis, as it covers all parts of basic image processing, including DICOM'® import,
registration, segmentation, binary image operations and statistics. Analysis software tools
not yet available in MITK were developed during the course of the thesis.

A modality independent software module for fitting of dynamic data with user specific
model functions was designed and implemented. The toolkit was intended in particular for
pharmacokinetic modeling, but its design enables application to all different kinds of fitting
tasks on 4D data sets. Software structure and implementation concepts are presented in
chapter 4.1.

From this dynamic data analysis module, two dedicated plugins with specified analysis
workflow and graphical user interface (GUI) were developed for application in pharmacoki-
netic modeling of dynamic contrast enhanced magnetic resonance imaging (DCE MRI)
and dynamic positron emission tomography (PET) data.

The DCE MRI analysis plugin is briefly presented in section 4.2.1. The plugin was used to
study perfusion data from recurrent high-grade glioma patients. The aim was to assess
the ability of the determined parameters to identify tumor tissue at risk. Furthermore
a simulation tool for generation of synthetic DCE MRI data from parameter images by
inversion of the parameter estimating process was developed based on the dynamic data
analysis module. With the simulation and fitting tools, studies on the 2 compartment
exchange model (2CXM) were performed, in order to investigate accuracy and robustness of
the parameter estimates depending on different configuration aspects of the fitting routine
(section 4.2.3).

Plugins developed for analysis of PET images are presented in section 4.3.1. Two plugins
were implemented for the evaluation of endpoint static PET images, the SUV calculation
plugin and the isocontour plugin. These tools were used to study different segmentation
techniques of the endpoint static '8F-FET PET data, investigating the contour overlap
with the treatment planning contours from contrast enhanced 77 weighted MRI and with
the progress tumor volume.

Furthermore a plugin for pharmacokinetic analysis of dynamic PET data was derived from
the dynamic data analysis module. Suitability of different pharmacokinetic models for
fitting the dynamic *F-FET were studied. Results are presented in section 4.3.3.

Using the presented software and results, a workflow for multimodal image analysis was

!Digital Imaging and Communications in Medicine
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developed, which is described in section 4.4. The implementation of a method for combined
analysis of the various image-derived parameters based on random forest machine learning
is presented. Exemplary results of a classification analysis for tumor progress prediction
are shown in section 4.4.3.

4.1 The MITK Dynamic Data Analysis Module

The presented thesis resorted to pharmacokinetic analysis of DCE MRI and dynamic PET
data, particularly in combination with other imaging modalities. Hence, the need for a
software solution, that can address the task of fitting in both modalities, is apparent. MITK
was used to implement a software module for analyzing dynamic image data by means
of non-linear least square (NLLS) fitting with a specified model function. The module
provides necessary base classes for all data processing steps. It was designed with high
modularity, allowing a large degree of flexibility and user specific definitions. The module
is modality independent, thus application is not limited to a specific analysis purpose,
e.g. pharmacokinetic modeling in DCE MRI, but can be used for various fitting tasks.
Two dedicated applications with graphical user interfaces for pharmacokinetic modeling of
DCE MRI and dynamic PET data were implemented in ready-to-use plugins. Applications
of the model fitting routine and the non-compartmental analysis extension are shown in
studies on data from DCE MRI (section 4.2) and dynamic PET (4.3).

4.1.1 Core Module and Fitting Framework Concepts

The presented module offers a software framework for iterative fitting of a measured data
by means of NLLS, described in section 3.5.3.

Figure 4.1 schematically shows the module structure and interplay between individual
components: Data fitting is an optimization problem with the aim of finding the parameter
set {¢i}, that best describes the measured sample C*[t]. Hence, the central position of the
module is held by the optimizer, whose task is the minimization of a similarity measure,
i.e. an objective function. The crucial point of the data analysis is the theoretical model,
referred to as model function, which is the functional representation f(t,¢;) of the course
of data points. For a given set of parameters, on which optimization should be performed,
this function calculates the corresponding signal C(t,¢;). The cost function links the
model specific function and the generalized optimization routine. The parameter set in
question is passed from the optimizer through this function down to the model, which
returns the theoretical signal. The cost function then calculates the specified similarity
measure, describing the deviation between measured data sample and fitted model function.
Usually the sum of quadratic difference between the sample and theoretical signal, referred
to as sum of squared residuals X2, is used as objective function, but other definitions of
objective functions are possible as well.
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Figure 4.1: Structure and workflow of the dynamic data analysis module. From the input image,
temporal grid [t] and signal-time curve are extracted in every voxel. If necessary, the signal is converted
to concentration units, yielding the sample C*[t]. The optimizer passes the time grid, together with
an estimate for the fit parameters ¢;, to the model via the cost function. The model calculates the
theoretical concentration time curve (signal C(t, ¢;) ) and passes it back to the cost function. The
similarity measure (e.g. sum of squared residuals X?) is calculated and passed to the optimizer. The
optimizer then adjusts the parameter estimates. This routine is repeated, until the measure satisfies
certain stopping criteria. Final parameters are stored in parameter maps. The fit in every voxel
can be evaluated using the modelfit view, which displays the measured sample and the fitted curve,
reconstructed directly from the model function and the parameter values. Each block is its own
software element and can be changed or expanded by the user without influencing the others.

The framework structure of the core module allows for easy implementation of own model
functions, optimizers and optimization measures. The fitting framework supports pixel-
based and region-based fitting. Measured data curves, represented by arrays of intensity
values at sampling points, and the corresponding sampling grids (e.g. the time grid [t;]
of typical dynamic data sets) are extracted in both cases. For region-based fitting, an
averaged sample curve is calculated from the arithmetic mean of all pixels within a defined
region at each time-point. The pixel-based approach fits the sample curve of each spatial
coordinate (3D pixel) separately. Fitting can be performed on any data sampling strategy,
since sampling grids are extracted for each frame of the image data directly. This procedure
allows for support of equidistant, as well as arbitrary sampling.
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Model specific properties, such as model and variable names, functional domain, etc., are
defined in parameterizers. Static input values used for signal calculation and default values
for start parameters and constrains are specified in the parameterizers as well. Within the
framework, each model has its own class that defines the mathematical curve representation,
and a corresponding parameterizer. New models can be derived from model base classes,
which define the fundamental functionalities of each model. Instantiation and management
of models and their parameterizers are handled by model specific factories, which are
generated automatically.

The entire fitting routine is incorporated in ITK [www.itk.org] image filters to perform
fitting on single voxel basis and allow for parallel computing. As a default optimizer the
Levenberg-Marquardt algorithm was chosen, a combination of the Gauss-Newton method
and the method of gradient descents, providing good robustness. This optimizer was used
because of its fast convergence through the definition of multi-valued objective functions.
The corresponding objective function is defined as the individual squared residuals, rather
than their sum.

The initial parameter values for optimization are passed to the optimizer via delegates.
The delegates allow different strategies for definition of start parameters, e.g. global scalar
values for all curves or local values represented by images, with each pixel being a set of
start parameter values. The delegate has a default state, used when the initial values have
not been specified by the users. Various forms of initial values specification and extraction
are possible (scalar value, image, look-up-tables, etc.). The tuple of start parameters can
be accessed, for example by the optimizer, via the current optimized pixel index. Value
constrains can be imposed on the different parameters in order to limit optimization search
space, or to exclude values without physical meaning. Upper and lower constraint values
with a certain tolerance bandwidth can be defined for each parameter and for parameter
combinations, e.g. the sum of two parameters. Violation of constraints during optimization
result in penalties that drastically increase the measure and hence, drive the optimizer
away from such values.

4.1.2 Visualization

The resulting parameter estimates are stored in 3D images, with one image for every
parameter. Additional parameters for evaluation, like the sum of squared residuals, or
other derived quantities, can be defined. The user can navigate through the different
parameter maps, overlay them with different modalities, change the color map and access
single pixel values. For research purposes, the option of accessing the final optimizer state
in parameter maps was included, giving overview over the stopping criteria, number of
iterations and constraint violations.

In order to allow detailed evaluation of data and fits, an extension of the module for
visualization was implemented. Every fitting task performed on a data set generates a user
identifier (UID), linked to a specific fit configuration. Together with the model information
from the parameterizer, this UID is assigned to all output images created in the fit as a
property, allowing for comparison of fits with different models or parameter combinations
of the same data. The modelfit view can access the fit properties linked through the UID
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and display the fitted curves together with the measured raw data points. The fitted curve
is directly reconstructed online with the according fit parameters.

4.1.3 AlIF-based Models

Pharmacokinetic models often depend on an arterial input function (AIF), since indicator
dilution theory postulates the tissue concentration-time course as convolution of the
indicator influx with a specific response function. Therefore, additional base classes
handling models which use an AIF, were defined. The AIF can be extracted from the
dynamic image by segmentation of a respective blood vessel. The extracted curve is
averaged over all pixels in the contour and registered with the parameterizers. The AIF
can be displayed in the modelfit view together with the fitted data. For AIF-based
models, calculation of the theoretical signal is often based on indicator dilution theory
and requires either convolution of AIF and residue function, or directly solving differential
mass balance equations. Both approaches can be handled by the module. The convolution
is performed in position space, rather than frequency space. Since the residue functions
are mostly represented by exponential terms, using linear interpolation of the AIF between
the sampling points yields a recursive analytical expression for the convolution integral
[Ingrisch, 2012] (see Appendix). Solutions of differential equations can be found by using the
Runge-Kutta algorithm (see Appendix), implemented in the boost library [www.boost.org],
which is incorporated in MITK.

4.1.4 Non-Compartmental Analysis Tool

Pixel-wise fitting can be time consuming. Thus, it is rarely used to analyze whole image
scans, but rather for focused analysis of certain regions. For general assessment of the
whole image topology, and identification of areas potentially interesting for dedicated
pharmacokinetic analysis, calculation of semi-quantitative curve parameters from non-
compartmental analysis is often used as a preprocessing step (see chapter 3.4.6). The
software module was extended for easy implementation of such parameter calculations in a
functor-filter style. The underlying workflow extracts the intensity courses from the image
and passes them to the definition of the parameter. The current plugin implementation
offers modality independent derivation of parameters AUC' (area under the curve), AUMC
(area under the first moment curve), TTP (time to peak), Cpae (peak intensity) and MRT
(mean residence time) from 4D image. For applications in DCE MRI and dynamic PET,
the image intensities can be converted to concentration (rel. SE or abs. SE) or SUV values
for normalization, respectively, prior to semi-quantitative parameter calculations. The
calculated parameter values are stored in 3D images.

4.2 DCE MRI

The analysis of image time series from dynamic contrast enhanced MRI by means of
pharmacokinetic modeling played a major role throughout the course of this thesis. Pa-
rameter estimates from perfusion MRI allow for assessment of tissue hemodynamics and



60

4 Results

provide insight into blood-brain-barrier leakage and tumor angiogenesis [Mgller et al., 2015].
Software solutions available prior to this thesis presented with a number of disadvantages.
Most of these tools are stand-alone solutions, developed to serve a single analysis purpose.
Thus, comparison of the data with other imaging modalities, and combination analysis are
difficult to perform. Commercial software, e.g. Dynalab [MeVisLAB, 2016], are usually
black-boxes with rigid analysis configurations. To overcome these limitations, the dynamic
data analysis module was used to implement a plugin for model fitting of DCE data. In
the following section this tool is presented. Its usage and advantages are illustrated on
exemplary studies of the assessment of arterial input functions and the evaluation of non-
compartmental analysis of DCE MRI data from high-grade glioma patients. Inversion of
the fitting routine can yield concentration-time curves from a given set of model parameters.
This approach was used to implement a simulation software tool for DCE MRI data. Data
simulations allowed studies of accuracy, stability and robustness of parameter estimation
in pharmacokinetic modeling. The difference between two different functional definitions
of the 2 compartment exchange model (2CXM) were investigated and the influence of the
initial values of model parameters on the outcome of the optimization routine was studied.

4.2.1 Software Developments

The DCE MRI Plugin

The MITK dynamic data analysis provides a modality independent, highly flexible software
tool for model fitting of dynamic data. The module was used to design a plugin for pharma-
cokinetic analysis of DCE MRI data. Two model functions of widely used pharmacokinetic
models in DCE MRI were implemented:

e The extended Tofts model, described by equation 3.44.

e The 2 compartment exchange model (2CXM). For this model, two approaches for
defining the model can be used: two differential mass balance equations (3.34 and
3.35) or convolution of the arterial concentration with the residue function (equation
3.39). The plugin supports both versions.

Pharmacokinetic models in DCE MRI are usually defined with respect to contrast agent
concentration time courses, hence the acquired image intensity has to be converted to
concentration values before fitting. As discussed in section 3.2.5, the relation between
CA concentration and MRI signal can be expressed in terms of relative or absolute signal
enhancement (rel. SE and abs. SE) with respect to the baseline signal S(¢ = 0). For the
DCE MRI fitting tool, conversion with both options is supported.

The DCE MRI analysis plugin allows fitting of the dynamic image with a pixel- or region-
based strategy. The AIF can be either derived from an image (the same image, that
measures the tissue of interest, or a separately acquired one) or loaded from a file (for
example if an AIF from a patient collective is used). The configuration of the fitting routine
can be specified with several parameters. Constraints can be imposed on the parameters,
in order to exclude unreasonable parameter values and limit the search space, which in
terms decreases computation time. Starting values of the parameters can be defined as
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Figure 4.2: A: Exemplary application of the developed DCE MRI plugin for pharmacokinetic modeling.
A simulated concentration-time-curve (input parameters: F, = ZSW, PS = ﬁéom, Up = 0.1,
Ue = 0.15) was fitted with the two compartment exchange model. The raw data and resulting fit curve
are displayed in the modelfit view. B shows the arterial input function (green), data points (red) and
fit curve (black). In the right panel, the y-axis is reset for better visibility of data points and fitted
curves. In the lower table of the plugin view, parameter estimates are listed: Fj, = 25.36#3)0@,
PS =28. 05717 vp = 0.072 and ve = 0.257.
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static values for all pixels, or as local start parameter values defined in an image. This
option allowed for evaluation of the influence of parameter starting values on the outcome
of the optimization routine, discussed in section 4.2.3.

Figure 4.2 illustrates the functionality of the DCE MRI pharmacokinetic modeling tool. A
simulated concentration-time curve (red dots) and the corresponding fit curve (black line),
displayed in the modelfit view, are shown. The utilized arterial input function is shown
in green (4.2A). The concentration in tissue is much lower than in the artery. Therefore,
figure 4.2B shows the tissue curve with a magnified y-axis. The input parameters, used
for curve simulation, were Fp = 25m, PS = 5m, U, = 0.1 and v, = 0.15.
The fit yielded parameter estimates F), = 25. 36m(1)0ml’ PS =28. 05m, v, = 0.072
and v, = 0.257. The deviations between input values and fitting estimates of the model
parameters are discussed in detail in section 4.2.3
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Figure 4.3: Functionality of the DCE MRI data simulation tool. Using the respective set of model
parameters {dgl} in form of images (maps), and an arterial input function (AIF), the theoretical
concentration-time curve is calculated from the pharmacokinetic model R(t, #;). Random numbers
from a Gaussian distribution are added to the curve in order to account for noise. The resulting
synthetic curve can be used for in-silico validation of the fitting routine.

The DCE Data Simulation Tool

The high flexibility of the dynamic data analysis module, and the possibility for the user
to specify the optimizer configuration, opened the opportunity to study certain aspects
of NLLS fitting in pharmacokinetic kinetic analysis. Based on the dynamic data analysis
module, a simulation tool for DCE MRI data was developed, which enables generation of
synthetic perfusion MRI data.

Data simulation is performed by inversion of the fitting process, as illustrated in figure 4.3:
3D maps of the model parameters {ng} and an arterial input function are used to calculate
the corresponding concentration-time curves from the model function. To simulate noise,
random numbers from a Gaussian distribution are added to the data points. The width of
the noise is calculated from the contrast-to-noise ratio (CNR), defined as ratio between the
maximum concentration of the arterial input and the standard deviation of the Gaussian
noise. The temporal resolution of the synthetic DCE MRI image is defined through the
sampling of the AIF.

The resulting concentration-time curves are stored in 4D images. These simulated images
can be used as input for the fitting routing. This procedure allows for in-silico validation
of the fitting routine. The effects of different configurations on the parameter estimates
can be studied by directly comparing the fitting results to the original parameter values
used for data synthesis.

4.2.2 Studies on Measured DCE MRI Data

DCE MRI data from recurrent high grade glioma patients was investigated with respect
to the applicability of pharmacokinetic modeling and the surrogate value of determined
values for detection of tumor tissue at risk. Three patients were selected for exemplary
studies. The patients were chosen based on good visibility of the arterial tree in the brain,
which is vital for assessment of the arterial input function. The arterial tree was visualized
with the 3D volume rendering tool in MITK.
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Figure 4.4: 3D view of vessel structure, resulting from volume rendering (patient n° 3). Rendering of

the T weighted contrast enhanced MRI was used to assess the arterial tree in the brain and to identify
vessels for AIF measurement. Locations which were used for AIF assessment are indicated with red
arrows (basilar artery: 1, carotid arteries: 2, middle cerebral arteries: 3, frontal cerebral artery: 4).

Figure 4.4 shows two views of the arterial tree in patient n° 3 as an example for volume
rendering from the 77 weighted contrast enhanced MRI. The vessels of interest (basilar
artery: 1; left and right internal carotid artery: 2; left and right middle cerebral artery: 3;
anterior cerebral artery: 4) are marked with red arrows.

Only two patients in the available data cohort provided DCE MRI data prior to radiotherapy,
together with an adequately visible arterial tree: patients n° 2 and n® 3. Thus, an additional
patient, who received DCE MRI sequences before radiotherapy, but no '¥F-FET PET scan,
was used (referred to as patient A).

AIF assessment in recurrent high grade glioma patients: inter-patient variability and
measurement locations

Correct determination of the arterial concentration (arterial input function AIF) is vital for
parameter estimation in DCE MRI. Dispersion and delay of the CA bolus through the body
have to be considered, since the administered bolus is not of an ideal, delta-function-like
shape. Thus, the AIF should be determined in a feeding artery as close as possible to
the tissue of interest. However, in the brain, the image resolution of the dynamic scans is
typically in the order of millimeters, hence smaller vessels are difficult to assess.

The following study investigated the feasibility of quantifying hemodynamics with pharma-
cokinetic analysis of DCE MRI data in individual patients. Problems in AIF estimation
arose due to low temporal resolution of the image (At = 12.26s). Temporal under-sampling
is likely to result in missing the first pass of the bolus, which would yield an underestima-
tion of the arterial concentration. In order to study, whether the AIF can be assessed in
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Figure 4.5: Contours for measurement of different arterial input functions (red) in six large brain
feeding arteries: Basilar artery (A), left and right internal carotid artery (B), anterior cerebral artery
and left and right middle cerebral artery (C). The vessels were segmented with help of the contrast
enhanced T7 weighted MRI, here shown in patient n° 3 for illustration.

the available data with sufficient quality, arterial concentration curves were measured at
different locations in the brain in the three selected patients. Six large feeding arteries of
the brain were segmented in one to three slices:

e The basilar artery, located at the junction between medulla oblongata and pons (9-32
pixels)

e The left and right internal carotid artery, the major paired artery on each side of the
neck (6-23 pixels)

e The anterior cerebral artery, a pair of arteries originating from the internal carotid
artery, supplying the frontal and superior medial parietal lobes (15-24 pixels)

e The left and right middle cerebral artery, arising from the internal carotid for blood
supply of the cerebrum (12-42 pixels)

The number in brackets denotes the minimum and maximum size of the contour. Seg-
mentations of the different arteries were drawn using the static, high resolution contrast
enhanced T7 weighted MR image for localization. Figure 4.5 shows the 17 weighted contrast
enhanced MRI of patient n° 3 in three transversal slices. Contours of the basilar artery
(A), the left and right internal carotid artery (B) as well as the anterior cerebral artery
and left and right middle cerebral artery (C) are drawn in red on the image.

The large slice thickness of dynamic scans (~ 5 mm) made segmentation difficult, since the
vessels were visible only in one slice in several cases. Dynamic series were converted to
concentration in terms of relative signal enhancement (rel. SE, & = 1). The concentration-
time curves from all pixels in a region were averaged, resulting in one arterial input curve
each.

The extracted concentration time curves in different arteries of each patient are shown
in the left column of figure 4.6. All six measured arterial concentration curves (basilar
artery: black, left carotid artery: blue, right carotid artery: cyan, left middle artery: red,
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right middle artery: magenta, frontal cerebral artery: green) in arbitrary units of relative
signal enhancement are plotted over the measurement time for patients n° 2 (top), n° 3
(middle) and patient A (bottom; no *F-FET PET). A distinct peak in the concentration
is visible only in the basilar artery (black) in patient n® 3. The left and right internal
carotid show small peaks. In patient n° 2, only the left internal carotid artery shows
higher concentration in the early measurement phase. All other vessels exhibited no
peak. In patient A, concentration shows a similar time course in all arteries, with a small
enhancement in the beginning of the measurement. However, compared to typical arterial
concentrations, this peak is too low. Overall, concentrations time courses in the middle
and frontal cerebral arteries exhibited little to no peak behavior.

Information on the administered dose of contrast agent, or a curve with higher temporal
sampling, were not available. Thus, it is difficult to determine, whether the curves are
representative for the time course of the arterial concentration. It is likely, that the
concentration peak is underestimated, as it is measured at most in one time point. Hence
the probability of missing the true peak is high. Intra-serial registration of the individual

time slices was not performed, thus the possibility of misalignment cannot be excluded.

However, the spatial resolution of the dynamic image (0.898 mm x 0.898 mm x 5 mm) is

lower than the observed movement in-between serial images, especially in the axial plane.

In a second step, the arterial concentration was measured in the three largest vessels
(basilar artery, carotid artery left and right) for one patient at four different time points:

e MRI used for treatment planning, 2 weeks before radiotherapy (red)

e MRI done on the first day of radiotherapy (blue)

e MRI done on the last day of radiotherapy, 14 days after the first fraction (green)
e MRI done at the first follow-up, one month after therapy (black)

The arterial concentration-time curves in the basilar artery (top), right carotid artery
(middle) and left carotid artery (bottom) are shown in the right column of figure 4.6. The
results show, that none of the investigated arteries provide a stable estimate of the AIF,
since concentration-time curves vary greatly between different measurements.

The deviation is unlikely to be a treatment induced effect, because these vessels were
not exposed to irradiation. Again, no clear distinction of the peak is possible. Results
showed, that the data acquired with the study protocol does not provide sufficient quality
for appropriate pharmacokinetic modeling, because the arterial concentration cannot be
determined properly.
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Figure 4.6: A: Arterial concentration-time curves (AIF) in patients 2 (top), 3 (middle) and A (bottom)
for assessment of inter-patient variability and best measurement location. Curves were measured from
DCE MRI data acquired on the first day of radiotherapy in six different large brain arteries: the
basilar artery (black), left and right carotid artery (blue and cyan), left and right middle artery (red
and magenta) and frontal cerebral artery (green).

B: Arterial concentration-time curves in three large brain arteries in patient n° 2, measured at four
different time points over the course of radiotherapy, for assessment intra-patient variability. The
curves were measured in the basilar artery (top), right (middle) and left (bottom) carotid artery. DCE
MRI images were acquired at treatment planning (red), on the first day of radiotherapy (blue), on the
last day of radiotherapy (green) and at the first follow-up examination (black). For all cases, signal
intensity was converted to concentration in terms of relative signal enhancement.
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Perfusion parameter monitoring under therapy: temporal development of
semi-quantitative curve parameters (AUC, MRT, Cpqaz) from DCE MRI in treatment
volumes over the course of radiotherapy

Assessment of the AIF showed, that the available DCE MRI data is not suitable for
dedicated pharmacokinetic modeling, due to coarse temporal sampling. However, one
can resort to determining semi-quantitative parameters from non-compartmental analysis,
describing the curve shape (c.f. section 3.4.6). In the next study, the software tool for non-
compartmental analysis was used to investigate semi-quantitative parameters in different
volumes over the time course of radiotherapy treatment. The goal was to evaluate the
extent, to which any of these parameters could possibly provide more insight into tumor
tissue. The same three patients from the above study were investigated. Dynamic images
from four different time points over the course of radiotherapy were analyzed. The time
series were registered to the treatment planning CT and converted into concentration by
means of relative signal enhancement (rel. SE, k = 1). This was done as normalization
step.

DCE MRI from four different time points was investigated:
e MRI done on the first day of radiotherapy
e MRI done on the last day of radiotherapy, 14 days after the first fraction
e MRI done at the first follow-up, one month after therapy
e MRI done at the second follow-up, three months after therapy

The four quantitative curve describing parameters AUC' (area-under-the-curve), MRT
(mean-residence-time), TTP (time-to-peak) and Ch,e,p (maximum concentration) were
calculated in each voxel. Parameters were then measured within the three different
volumes, illustrated in figure 4.7:

Figure 4.7: Semi-quantitative parameters AUC, MRT, Cy,ae and TTP from non-compartmental
analysis of DCE MRI data were investigated in three different volumes: the macroscopically visible
tumor volume GT'V (green), in the estimated microscopic outliers of the tumor added by the CTV
(CTV \ GTV, blue) and in the additional safety area from the PTV (PTV \ CTV, pink).
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Figure 4.8: Semi-quantitative parameters AUC, MRT, Cypqr and TTP from non-compartmental
analysis of DCE MRI data in patient A. DCE MR images were acquired at treatment planning, on
the first day of radiotherapy, on the last day of radiotherapy and at the first follow-up examination.
Parameters were analyzed within the gross tumor volume GTV (green), the estimated microscopic
outliers of the tumor CTV \ GT'V (blue) and the additional safety area accounting for irradiation
uncertainties PTV \ CTV (pink). The whiskers are defined as first/third quartile -/4 1.5 IQR. The
parameter median is represented by the black line, the black dot shows the mean value.

e Within the macroscopically visible tumor volume GT'V (green)

e In the estimated microscopic outliers of the tumor, that the CT'V includes, calculated
by subtracting GT'V from CTV: CTV \ GTV (blue)

e In the additional safety area accounting for irradiation uncertainties (PTV'), calcu-
lated by subtracting the CTV from the PTV: PTV \ CTV (pink)

In figures 4.8, 4.9 and 4.10, the distributions of each of the measured parameters within
these three volumes at the respective time points is presented in patients n° 2, 3 and A,
respectively. Patient A did not receive a 'F-FET PET scan.

The AUC is shown in the top left box plot of each figure panel. The parameter was
clearly enhanced in G'I'V, compared to the two target volume extensions in patient n® 3.
In patient n° 2, the measured AUC within the GT'V volume spread wider and a slight
tendency towards higher values was observed. This indicates enhanced heterogeneity of
the tissue within the GT'V. In the other two volumes, the parameter was stable. Patient
n° 3 exhibited almost no differences in AUC between volumes. MRT, plotted in the top

right of the figure panels, showed a slight enhancement within the GT'V in patients n® 2
and n° 3. This effect was not observed in patient A. In this case, the measured values for
M RT were stable over time and in different volumes. The distribution of the maximum
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Figure 4.9: Semi-quantitative parameters AUC, MRT, Cuae and TTP from non-compartmental
analysis of DCE MRI data in patient n® 2. DCE MR images were acquired at treatment planning, on
the first day of radiotherapy, on the last day of radiotherapy and at the first follow-up examination.
Parameters were analyzed within the gross tumor volume GT'V (green), the estimated microscopic
outliers of the tumor CTV \ GT'V (blue) and the additional safety area accounting for irradiation
uncertainties PT'V \ CTV (pink). The whiskers are defined as first/third quartile -/4 1.5 IQR. The
parameter median is represented by the black line, the black dot shows the mean value.

concentration Ci,q, is shown in the bottom left box plot. The parameter differed between
volumes in patient n° 3. In patient n° 2, the differences were less distinct, whereas no
difference in parameters was observed in patient A. The bottom right box plot displays
the parameter TTP, which exhibited large variances, thus no dedicated conclusion could
be drawn.

In patient n° 3, a gradual descent of all parameters was observed between treatment
volumes. Over time, the parameters decreased from the first day of radiotherapy to the
first follow up examination and increased again at the second follow up. Both effects were
not observed in the other two patients. All parameters derived from patient A presented
with large stability over time and no differences between the treatment volumes.
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Figure 4.10: Semi-quantitative parameters AUC, MRT, Ciar and TTP from non-compartmental
analysis of DCE MRI data in patient n® 3. DCE MR images were acquired at treatment planning, on
the first day of radiotherapy, on the last day of radiotherapy and at the first follow-up examination.
Parameters were analyzed within the gross tumor volume GT'V (green), the estimated microscopic
outliers of the tumor CTV \ GT'V (blue) and the additional safety area accounting for irradiation
uncertainties PTV \ CTV (pink). The whiskers are defined as first/third quartile -/4 1.5 IQR. The
parameter median is represented by the black line, the black dot shows the mean value.

Figure 4.11 illustrates maps of the semi-quantitative parameters within the PT'V for patient
n® 3. AUC and C),q; presented with similar patterns of parameter distributions. TTP
showed noisy parameter values and less stability, compared to the other parameters. All
parameter maps indicated tumor volume deviation from the GT'V contour (indicated as
black inner contour).

Tumor progress of patient n° 3 was confirmed at the first follow up examination date
(one month after radiotherapy). In order to assess parameter difference within tumor
regrowth, the progress tumor volume GT'Vp,,, was delineated based on T weighted
contrast enhanced MRI. The progress P was defined as the difference between progress
tumor volume GT'Vp,,,. and initial tumor volume GTV

P =GTV \ GTVpyoq. (4.1)

For comparison of parameter values in tumor to healthy tissue conditions, a reference
contour “ROI” was drawn on the contra-lateral side of the brain. ROI was of similar size
as GTV.

Figure 4.12 shows the distribution of parameters AUC' (top left), MRT (top right), Crax
(bottom left) and TTP (bottom right) with the three volumes GT'V (green), P (blue) and
ROI (pink) in patient n° 3 on the first day of radiotherapy and at the progress confirming
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Figure 4.11: Parameter maps of semi-quantitative parameters AUC, MRT, Cpaz and TTP from
non-compartmental analysis of DCE MRI data, acquired on the first day of radiotherapy, in patient n°
3. Parameters were calculated within the PT'V red outer contour). Here, they are shown as overly of
the static, 77 weighted contrast enhanced MRI for localization. GT'V and CTV contours are indicated
in black.
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Figure 4.12: Semi-quantitative parameters AUC, MRT, Cynar and TTP from non-compartmental
analysis of DCE MRI data in patient n® 3. Data was acquired at the first day of radiotherapy and
at the progress confirming follow-up date. Parameters were investigated in the treatment planning
GTV (green), in the progress tumor volume P = GTV \ GT'Vproq. (blue) and in reference healthy
brain tissue ROI (pink). The whiskers are defined as first/third quartile -/4+ 1.5 IQR. The parameter
median is represented by the black line, the black dot shows the mean value.

follow-up examination. A gradual descent between the three different volumes can be
observed for all four parameters. The parameter values in the progress volume and healthy
brain remain stable between the two examination dates, while AUC and C,,,, decrease
within the GTV.

The results indicate, that parameters from non-compartmental analysis could be helpful
surrogates for tissue classification, as they seem to exhibit distinction between the different
volumes and tissue types. However, result differed distinctively between patients. For
further deductions, more patients need to be investigated. While the semi-quantitative
parameters provided a good measure for tissue separation in patient n° 3, they showed
only small differences between the different volume in patient n° 2. This patient, however,
presented with a small overall tumor volume and slow progressive growth: GT'V = 5627mm?,
P =591 mm?. Progress in this patient was detected 8 months after irradiation, whereas
patient n® 3 presented with progress already 1 month after therapy. This suggests, that
differences in the semi-quantitative parameters from DCE MRI could distinguish between
fast and slow growing progress. TTP however provides a wide spread distribution of values
and thus, represents an unstable parameter.
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4.2.3 Studies on Simulated DCE MRI Data

The two-compartment exchange model (2CXM) describes the compartments plasma and
interstitial volume with fractional volume v, and v, and their exchange in terms of plasma
flow F}, and permeability-surface area product PS. The model function is defined by a
system of two coupled differential equations [Brix et al., 2010]. A closed-form analytic
solution as convolution of a biexponential residue function with the arterial concentration
derives from indicator dilution theory. Several studies on model feasibility and comparison
between different models have been performed [Sourbron et al., 2009; Luypaert et al., 2012;
Brix et al., 2009]. However, little attention has been given to technical aspects of the fitting
routine [Luypaert et al., 2010].

The perfusion simulation tool allowed for generation of synthetic DCE MRI data. For
this data, the ground truth of model parameters is known. Thus, fitting of simulated
curves with the model fitting tool allows for in-silico validation and error assessment of
the optimization routine. The purpose of the following studies was to evaluate the results
of parameter estimates with the 2CXM. Different data scenarios and fit configuration were
tested with respect to accuracy, robustness and computation speed, by fitting simulated

concentration time curves in image space, and evaluating the resulting parameter maps.
Image based perfusion data was simulated using the developed simulation software tool.

Concentration-time curves were calculated with the convolution approach of the model
function of the 2CXM, using image based parameter sets [F},, PS, vy, ve](z,y, z) and a
measured arterial input function from a double-bolus injection, acquired in the middle
cerebral artery (temporal resolution of 2.11 s, Ingrisch et al. [2012]). A noise level of CNR
= 300 was applied to the data. All simulated curves were fitted with the 2CXM, using the
previously presented DCE MRI plugin. In order to assure model consistency and limit the

optimizer search space to physically reasonable values, parameter constraints were applied.

The fractional volumes can only have values between 0 and 1, and their sum cannot exceed
a value of 1:

0 <vp,ve <1 (4.2)
Up + Ve < 1, (4.3)

Plasma flow and permeability cannot be negative, and should, for the sake of meaningful
parameter estimates, not exceed 100 [ml/min/100ml]. For PS, values larger then —1 were
allowed in order to cover the range of intact blood-brain-barrier (PS = 0) with a certain
deviation tolerance.

1
0< F, <100 {m} (4.4)

min - 100ml

~1< PS <100 {ml} (4.5)

min - 100ml

The optimizer configuration and start parameters were kept constant for all fits, except in
section 4.2.3, where the influence of the start parameters itself was investigated.
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Table 4.1: Parameter combinations of the simulated concentration-time curves for homogeneous pa-
rameter images. Together with a measured arterial input function, each of the parameter combinations
was used to simulate a homogeneous 30 x 30 pixel dynamic image (169 time points, temporal resolution
2.1s). These images were fitted for assessment of robustness, precision and computational time of
parameter estimates.

F, PS Up Ve
1 1

[minr{lOOml] [minr{IOOml} [_] [_]

Reference 25 5 0.1 0.15
Low F, 5 5 0.1 0.15
Low PS 25 2 0.1 0.15
Low v, 25 5 0.05 0.15
Low v, 25 5 0.1 0.05

Assessment of accuracy, robustness and computation time of 2CXM parameter
estimates using differential equations compared to convolution

The model function of the 2CXM is defined by the two coupled differential equations
3.34 and 3.35 . A closed-form analytic solution as convolution of a bi-exponential residue
function with the arterial concentration derives from indicator dilution theory (equation
3.39). For parameter estimation with the non-linear least squares method, the residuals
can be calculated by either numeric convolution of the closed-form solution, or by directly
solving the differential equations (e.g. using the Runge-Kutta algorithm). The following
study compared both strategies in terms of accuracy, robustness and computation speed by
fitting simulated concentration time curves in image space, and quantitative and qualitative
evaluation of the resulting parameter maps.

Accuracy and robustness were evaluated on concentration-time curves derived from the five
different parameter combinations listed in table 4.1. One reference condition was used with
parameter values similar to those of a brain tumor (F), = 25#501“, PS = Sﬁéoml,
vp = 0.1 and v, = 0.15). The other four curves were set in a way that three of the
parameters were left at reference values, while the remaining parameter was set to a low

value.

Figure 4.13 illustrates the simulated concentration time curves. In the top left the utilized
arterial input function is plotted in green. The other five panels show representative curves
for each of the five parameter combinations: Reference (top right), low plasma flow (middle
left), low permeability (middle right), low plasma volume (bottom left) and low interstitial
volume (bottom right). For illustration, the reference curve shows the simulated curve
without noise (black line) in comparison to the used curve with Gaussian random noise
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(red dots). With each of the five parameter combinations, a homogeneous 30 x 30 pixel

concentration image of time-resolved concentration curves was simulated.
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Figure 4.13: The arterial input curve used for simulations and representative simulated concentration-
time curves of the homogeneous parameter images for reference values, low Fj,, low PS, low v, and
low wve, listed in table 4.1. For illustration, the reference curve shows the simulated curve without
noise (black line) in comparison to the used curve with Gaussian random noise (red dots). The AIF
was taken from measurements of a double bolus injection in the middle cerebral artery (temporal
resolution of 2.11s, [Ingrisch et al., 2012]).
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Figure 4.14: Results of parameter estimates for F,, PS, v, and v, from fitting homogeneous 30 x 30
pixel images of five different parameter combinations (table 4.1) with the convolution model function
(blue) and with the differential equation approach (pink), respectively. The whiskers are defined as
first /third quartile -/+ 1.5 IQR. The parameter median is represented by the black line, the black dot
shows the mean value.

The resulting dynamic images were fitted using both approaches of the 2CXM model
function. The differential equations were solved using the boost [www.boost.org] imple-
mentation of the Runge-Kutta method. For the convolution approach, the arterial input
function was interpolated linearly. The resulting fitted parameters were compared to the
input value by calculating the bias, e.g. the difference between input value and the mean
of the fitting result, and the variance of the mean.

Figure 4.14 shows box plots of the resulting parameter estimates for F,, PS, v, and v,
comparing the fit results using the convolution (blue) to the fit results using the differential
mass balance equations (pink) for all five curve types. The parameter median is represented
by the black line, the black dot shows the mean value. The convolution and the differential
equation approach yielded similar results for a given parameter combination. The fitting
result for v, yielded a poor estimate with many outliers. The mean and median parameter
estimates differed strongly. For low values of F},, both fitting strategies yielded poor fit
stability, large uncertainties and many outliers.

Precision was evaluated by subtracting the mean parameter estimate from the original input
value. The results of the precision in each of the five parameter scenarios are presented in
figure 4.15 for the four model parameters Fj, (top left), PS (top right), v, (bottom left)
and ve (bottom right). The error bars indicate the standard deviation of the mean. The
mean estimates of F}, compared to the true value showed no considerable deviation except
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Figure 4.15: Accuracy and precision of parameter estimates for Fj,, PS, v, and ve from fitting
homogeneous 30 x 30 pixel images of five different parameter combinations (table 4.1) with the
convolution (blue) and Runge-Kutta (pink) approach, in terms of deviation from the true value and
variance. The data points show the accuracy calculated as the difference from the mean parameter
estimate of all 900 fitted curves to the true input value. The error bars represent the precision in
terms of standard deviation of the mean.

for low F),. For the reference situation as well as low PS and low v., parameter estimates
of PS and v, were close to the original values.

The optimization time per pixel required for fitting with the convolution model function
(blue) compared to the approach of solving the differential mass balance equations (pink)
is illustrated in figure 4.16. The convolution approach excelled in terms of computational
time, as it is three orders of magnitude faster than the differential equations.

Influence of fitting start parameters on the parameter estimates in the 2CXM in
image based simulation studies

The influence of starting values on parameter estimates has been mentioned, however, it
was never studied in depth [Brix et al., 2009]. The developed DCE MRI fitting tool allows
definition of starting values for each parameter, not only as scalar values, but also on a pixel-
wise basis in form of images. This opens the opportunity to study the influence of different
starting value combinations and graphically visualize it. The parameter combinations
defined in section 4.2.3 were used to simulate homogeneous 15 x 60 pixel concentration
images of 169 time points. These synthetic images were fitted with the 2CXM, using the
convolution approach.

The start parameters were defined in 15 x 60 pixel images as well. Each start parameter
was either constant over the whole image, or varying between 15 different values along
the x-axis. The values used are listed in table 4.2: The initial values of F), varied between
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Figure 4.16: Optimization time per pixel for fitting homogeneous 30 x 30 pixel images of five different
parameter combinations (table 4.1) with the convolution (blue) and Runge-Kutta (pink) approach,
respectively. The whiskers are defined as first/third quartile -/4 1.5 IQR. The parameter median is
represented by the black line, the black dot shows the mean value.

2.5 [ml/min/100ml] and 37.5 [ml/min/100ml] in steps of 2.5 [ml/min/100ml|. The initial
values for PS ranged from 0 [ml/min/100ml] to 15 [ml/min/100ml] in unity steps. v, and
ve both had initial values ranging from 0.02 to 0.3 in steps of 0.2.

Table 4.2: Initial values for model parameters, studied in the fitting routine. Homogeneous 15 x 60
pixel images, simulated with different parameter sets (table 4.1), were fitted. The starting value of one
parameter took 15 different values along the x-axis, while the other starting values were kept at a
fixed value. This procedure was applied to all for parameters.

Parameter fixed value variation
F, [#}mml} 25 2.5, 5, ... , 35, 37.5
PS [ b 5 0,1,2, ... ,13, 14
vp [-] 0.1 0.02,0.04, ... , 0.3

ve [-] 0.155 0.02, 0.04, ... , 0.3
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Hence, each curve type was fitted with 4 different start parameter configurations, with one
parameter varying and the other 3 staying fixed at constant values:

e [%, = varying, PS = const , v, = const, v, = const
e [%, = const, PS = varying , v, = const, v, = const
e I, = const, PS = const , v, = varying, v, = const
e [%, = const, PS = const , v, = const, v, = varying

Each curve type was fitted 60 times with each of the start parameter configuration in order
to allow calculation of mean parameter estimates.

In order to evaluate accuracy of the parameter estimates in more detail, the fitted values
of all four model parameters Pr; were compared to the respective input values Pyriginai,
used for simulation, by means of the relative error:

Pfit(x7 Y, z, n) - Poriginal(xa Y, z, n)
Poriginal(x7 Y, 2, n)

Erel(xayaz?n) = (46)

For every curve type and every initial optimizer value configuration, the relative deviation
of the fitting result to the original value was calculated for Fj,, PS, v, and v, and averaged
over all 60 values of the same initial optimizer value configuration. This approach yielded
15 x 5 x 4 error maps for each of the four model parameters. Figure 4.17 shows the relative
errors on parameter estimates on F, (A) and PS (B) for the five different curve types
(x-axis). Each map results from fits with one of the starting values varying, Fj,, PS, vy, v,
from top to bottom. The variation in the respective parameter is indicated on the y-axis.
The errors on parameter estimates on v, (C) and v, (D) are mapped in the same manner
in figure 4.18.

Parameter estimates for F}, In general, parameter estimates of F), showed low errors,
except for curves with low F},, which is consistent with the results from the 4.2.3. For
low start value of Fj,, the error on the estimate of F), increased in all five curve types.
Otherwise, the errors showed no dependency on the start value for F,, and PS. For curve
with low F},, the averaged parameter estimates indicated dependency on the start value for
vp and v.. To investigate this further, the calculated mean error on the parameter estimate
for curves with low plasma flow is plotted in figure 4.19. The x-axis represents the varying
initial value for v, (top) and v. (bottom). The error bars denote the standard deviation.
The graphics show that mean error on F, does not depend on either of the starting values
within the standard deviation.

Parameter estimates for PS Errors on the estimate for PS were higher, compared to
errors for Fj,. The error was increased for low start values of F}, and PS. Curve types
with low F), or low v, showed higher errors on the estimate for P.S. There was no visible
dependency with the start value of any of the parameters.
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Parameter estimates for v, The errors on estimates of v, were low, except for curve with
low F},. Error were increased for very low start values of Fj, and PS. Otherwise no visible
dependency with the start values of any of the parameters was found. For curve types
with low F},, the estimate on v, seemed to exhibit dependency with the start value for vy,
especially at low starting values. The plot in figure 4.20 shows the calculated mean error
on the parameter estimate for curves with low plasma flow over the varying initial value of
vp. No dependency of the error is visible within the standard deviation (error bars).

Parameter estimates for ve The errors on v, showed the highest errors of all estimates,
especially for low Fj, and low PS curves. The errors were distinctively larger if the start
value for PS was set to 0. Apart from this, no dependency with the start parameter values
was found.
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Figure 4.17: Relative errors of parameter estimates of F, (A) and PS (B), from fits with varying
initial values of F),, PS, v, and v. (top to bottom).

different values, here displayed on the y-axis, while the other starting values were kept at a fixed value.

The starting value of one parameter took 15

Parameter estimates were averaged over 60 curves and the relative error was calculated with respect
to the original parameter value, used for data simulation. The five different curve types, displayed on
the x-axis, used the input parameter combination for simulation described in table 4.1.
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Figure 4.18: Relative errors of parameter estimates of v, (C) and v. (D), from fits with varying
initial values of F,, PS, vp, and ve (top to bottom). The starting value of one parameter took 15
different values, here displayed on the y-axis, while the other starting values were kept at a fixed value.
Parameter estimates were averaged over 60 curves and the relative error was calculated with respect
to the original parameter value, used for data simulation. The five different curve types, displayed on
the x-axis, used the input parameter combination for simulation described in table 4.1.
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averaged over 60 curves and the relative error was calculated with respect to the original parameter
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Figure 4.20: Relative errors on parameter estimates of v, with varying initial values of v,, for
concentration curves with low F},. The starting value of one parameter took 15 different values along
the x-axis, while the other starting values were kept at a fixed value. Parameter estimates were
averaged over 60 curves and the relative error was calculated with respect to the original parameter
value, used for data simulation. The error bars represent the standard deviation of the mean.
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4.3 18F-FET PET

Evaluation of data from ®F-FET PET imaging was particularly interesting for this thesis,
since metabolic information from tracer uptake reveals properties of amino acid transport
rates in glioma tissue and has been shown to correlate with cell density [Pauleit et al., 2005].
To include PET data into the multi-modal image analysis, software plugins for evaluation
of PET images were implemented in MITK. The tools were further used to analyze '8F-
FET PET data from recurrent high grade glioma patients. Tumor segmentations on
static endpoint '8F-FET PET images, derived from different contouring techniques, were
compared to the gross tumor volume (GT'V) and to the volume of tumor progress at
follow-up.

For analysis of dynamic ®F-FET PET scans, two pharmacokinetic models of tracer
dilution, i.e. the one tissue compartment model (ITCM) and the two tissue compartment
model (2TCM), were fitted to the measured time-activity curves (TAC) and results were
compared for assessment of robustness and model feasibility. Furthermore, semi-quantitative
parameters from non-compartmental analysis were investigated with respect to different
tissue volumes.

4.3.1 Software Developments
The PET SUV Calculation Plugin

So far, it was only possible to display PET images in MITK as grey scale values of the
intensity, but no further PET specific analysis could be performed. For dedicated analysis
of the 18F-FET PET data, a tool for calculation of the standardized uptake value (SUV)
in each image pixel was developed. The plugin requires definition of the time interval
between tracer injection and measurement, the amount of injected activity, the patient
body weight and the tracer isotope. These parameters can be entered manually or read
directly from the DICOM data, if the corresponding tags are set. The SUV is calculated
with these values according to formula 3.16. Calculation of the SUV image is based on the
ITK image filter concept, which handles looping over the image pixels and thus, covers the
question of correct pixel access. This approach allows for parallel computing, improving
the computational time efficiency. 3D and 4D data sets are supported.

The plugin was used to calculated the SUV;,q. values from ¥F-FET PET scans of the 18
recurrent high grade glioma patients. The values for injected activity, patient body weight
and time to measurement were determined from the DICOM tags. For calculation of the
time to measurement, the time stamps of DICOM tags “Acquisition Time” (0008|0032)
and “Radiopharmaceutical Start Time” (0018|1072) were subtracted from each other.

Validation of the calculated SUV was done by comparing the resulting SU V4., derived
from the MITK statistics plugin, to reference values (SUVaq re ) mentioned in the patient’s
medical report from nuclear medicine. Medical reports stating SUV,;,4z rey Were for six
patients. The calculated and reference SUV,,,,,. are listed in table 4.3. The values calculated
with the presented plugin were consistent with those from nuclear medicine reports.
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Table 4.3: SUViua, calculated with the developed MITK plugin, compared to SUVinaqz,rey values,
that were noted in the medical reports from nuclear medicine.

Patient n® Plugin calculation Medical report

SUVinaz [~] SUVinaz,ref [—]
3 2.89 2.9
7 4.57 4.6
] 3.28 3.3
10 3.38 3.4
14 2.49 2.5
15 3.40 3.4

The Isocontour Plugin

In nuclear medicine, segmentation and quantification of PET images is usually performed
using isocontours (see section 3.5.2). A plugin for derivation of isocontours from custom
defined contours was developed for MITK. However, the threshold value for these contours
is not standardized (c.f. chapter 3.3) and various values are used throughout the literature.
Thus, the tool enables flexible definition of the percentage threshold. The user needs
to provide a three dimensional contour, which roughly confines the lesion of interest.
The contour can be drawn manually, via thresholding or other segmentation techniques.
Together with the PET image, the tool extracts all pixels with values exceeding the defined
percentage threshold on the maximum intensity value within the contour. Isocontour
delineation can be performed on PET raw data as well as SUV images. To allow inter-
patient comparison, the isocontour plugin offers the option to normalize the entire image
by dividing the pixel values through the maximum value in the isocontour. This option
was used for SUV feature images in the prediction analysis, presented in section 4.4.3.

The SUV calculation plugin enables superposition of standard 77 weighted contrast
enhanced MRI with the SUV image, as illustrated in figure 4.21. Isocontours (50%: black
contour, 70%: light blue contour) can be drawn on basis of the SUV image and compared
to the radiotherapy planning contours (GTV: red contour).

Dynamic PET Analysis Plugin

PET image acquisition can also be performed dynamically, in order to study tissue physiol-
ogy and extract information on metabolic exchange rates and transport properties. As
discussed in section 3.3.3 the time course of the tracer uptake can be described by phar-
macokinetic models (tissue compartment models) with varying number of compartments,
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Figure 4.21: The MITK SUYV calculation plugin allows for overlay of standard 77 weighted contrast
enhanced MRI (right bottom) with the SUV image (colored), calculated from ‘*F-FET PET scans.
Isocontours can be drawn on basis of the SUV image and compared to the radiotherapy planning

contours. Here, the isocontour 50% (black contour) and 70% (light blue contour) are compared to the
treatment planning GTV (red contour).

depending on the system transport and metabolic states of the tracer in question. A
plugin for analysis of time activity curves with such models was implemented, using the
dynamic data analysis module. The two tissue compartment model (2TCM), generally
used for dynamic studies of the 8F-FDG tracer, and a simple one tissue compartment
model (1TCM) were implemented. They represent potential candidates for analysis of
dynamic '8F-FET data. Definition of an arterial input function and the fit configuration
(starting values and constraints of model parameters) were implemented similarly to the
DCE MRI analysis tool. Unlike in DCE MRI, conversion to concentration of the 4D images
is not explicitly necessary in pharmacokinetic modeling of PET, since the raw data images
are naturally in concentration units of [Bq/ml]. Nevertheless, the data can be transformed
to SUV with the afore mentioned SUV calculation plugin (section 4.3.1).
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4.3.2 Analysis of Endpoint Static ®F-FET PET

In the following study, the value of ®F-FET PET contouring for detection of areas at risk
for tumor progress formation was investigated on 18 recurrent high-grade glioma patients,
who received ¥F-FET PET scans prior to radiotherapy. The goal was to assess the volumes
added to standard treatment volume with PET-based delineation, and compare them to
the progression volumes of the tumor found at follow-up.

Six different segmentation techniques were applied to contour lesions in '*F-FET PET
images: isocontours of 40%, 50%, 60% and 70%, and two semi-automated segmentation
algorithms: 3D region growing (RG) and the multi-labeled random walker (RW) (see
chapter 3.5.2). For the semi-automated segmentation algorithms, the implementations in
the VIRTUOS treatment planning system [Bendl et al., 1993] were used and the resulting
contours were imported in MITK.

The maximum SUV (SUV,,4.) was determined for each lesion using the SUV calculation
plugin presented above. For normalization to healthy brain tissue, a region of similar
size to the lesion, providing stable SUV values, was contoured in the contralateral part
of the brain, in three slices around the SUV,,,, presenting slice. The reference SUV of

the contralateral healthy brain, SUV,.r, was determined as mean SUV within this region.

The tumor-specific uptake ratio TU R was calculated as

SUVmam

TUR = 2"
UR = Sy

(4.7)

Not every contouring technique could be applied in every patient, since the level of uptake
varies greatly between patients. In patients with generally low uptake, application of low
isocontour thresholds (40% and 50%) was not reasonable, because these thresholds included
background values. Application of isocontours 40%, 50% and 60% failed in 10 patients
(55%), 6 patients (33%) and 4 patients (22%), respectively. From the TUR, tolerance
values for adequate and reasonable application of the different isocontours could be derived

e Isocontour 40%: TUR > 2.72
e Isocontour 50%: TUR > 2.10
e Isocontour 60%: TUR > 1.62

The isocontour 70% failed in one patient (patient n° 13), because of very low TUR = 1.13.

For one patient, contouring with 3D region growing and the multi-label random walker
was not possible due to failed registration in VIRTUOS (patient n° 9). In two patients (n°
16 and n° 18), the random walker segmentation failed for unknown reasons.

Tumor regrowth GT'Vp,,, was delineated based on the 77 weighted contrast enhanced
MRI, acquired at the first progress-confirming follow-up. All studied patients received
different irradiation doses, due to the dose escalation scheme of the trial. The influence of
the dose was, however, not considered in this study.
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Figure 4.22: Conformity index of different PET-based contouring techniques with respect to the
treatment planning GT'V (blue) and the progress tumor volume GTVproq. (pink). Conformity indices
Carv and Cprog. were calculated as intersection between intersection between PET-based and MRI-
based contours (GTV and GT'Vprog.), divided by their union. The whiskers are defined as first/third
quartile -/4 1.5 IQR. The median is represented by the black line, the black dot shows the mean value.

PET-based contours were compared to the GT'V and GTVp.g by calculation of the
intersection between contours for each patient and normalizing it to the union. This yielded
the conformity index C"

PETNGTV c _ PETNGTVpyog.
PETUGTV Progress = PET U GTVProg.

Caorv = (4.8)

Table 4.4 lists the SU Va2, TU R and the contouring technique yielding the largest confor-
mity index with GT'V and GT'Vp,,4. together with the corresponding value, respectively.

Results of the conformity indices with GTV (blue) and GT'Vp,oq. (pink) are plotted in
figure 4.22, for the different contouring methods along the x-axis. The isocontour of 60%
yielded the highest conformity with the treatment planning GT'V most often (six cases),
closely followed by the isocontours of 40% and 50%. However, figure 4.22 shows that
on average, the isocontour of 40% yielded the highest conformity with a mean value of
Ceary (iso 40%) = 0.40 £ 0.2. For patient n°14, the conformity between GT'V and PET
contour was low for all contour techniques, with a maximum value of Cg7y = 0.08 for the
isocontour of 60%. This was due to a very small GT'V volume in general (Vgry = 634mm3).

Figure 4.23 shows the correlation between the SUV,,,,; and PET contour yielding the
largest conformity with the GT'V' (blue dots) and with the GTVp,q4. (red cross). At the
first glance, a roughly linear relation could be assumed.

For detailed insight into the congruence between ¥F-FET PET-active region and tumor
progress volume, GT'V was subtracted from the PET-based contours, yielding the volume
A= PET\ GTV. A denotes the volume, which shows enhanced PET tracer uptake but
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Table 4.4: Results for the largest conformity index between PET contour and treatment planning
GTV, and between PET contour and tumor volume GTVp,.q4. at progress, respectively. For every
patient, the SUV,,qz of the lesion was calculated and decided by the reference SUV,.s in healthy
brain tissue (uptake-to-noise ratio TUR). Conformity indices Cory and Cprog. were calculated as
intersection between intersection between PET-based and MRI-based contours (GT'V and GTVpreg.),
divided by their union. Column 4 lists the contouring technique that yielded the larges conformity
index (column 5) for overlap with the GT'V. Column 6 lists the contouring technique that yielded the
highest conformity index (column 7) for overlap with the GT'Vp,oq..

Patient SUViee TUR Best match Cgry  Best match  Cppog.

(] (-] GTV =] GTVpryy.  [-]
1 3.87 3.46 Iso 50% 0.28 Iso 40% 0.25
2 1.83 1.63 RW 0.39 Iso 70% 0.46
3 2.89 3.66 Iso 60% 0.69 Iso 40% 0.49
4 3.98 2.74 Iso 60% 0.50 Iso 50% 0.59
5 1.26 1.62 RG 0.31 Iso 70% 0.27
6 3.75 4.17 Iso 40% 0.53 Iso 40% 0.51
7 4.57 3.20 Iso 40% 0.56 Iso 40% 0.44
8 3.28 2.80 Iso 40% 0.62 Iso 40% 0.50
9 2.74 2.71 Iso 60% 0.64 Iso 60% 0.30
10 3.38 4.07 Iso 40% 0.54 Iso 40% 0.34
11 3.00 2.61 Iso 50% 0.51 Iso 40% 0.40
12 1.97 1.50 Iso 70% 0.49 RW 0.28
13 1.08 1.13 RW 0.23 RW 0.04
14 2.49 2.59 Iso 60% 0.08 Iso 50% 0.50
15 3.40 3.43 Iso 60% 0.49 Iso 40% 0.27
16 1.52 2.05 Iso 60% 0.20 Iso 60% 0.50
17 2.79 2.56 Iso 50% 0.22 Iso 50% 0.32

18 1.16 1.43 Iso 70% 0.40 Iso 70% 0.07
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Figure 4.23: Relation between SU V4, and the PET-based contour, which yielded the best conformity
index with the GT'V (blue dots) and GT'Vprog. (red crosses).

no MRI contrast-agent uptake. The volume difference between GTVp,,,. and treatment
planning GT'V was calculated, P = GT'Vp;o4. \ GT'V, similar to the approach in section
4.2.2. Figure 4.24 schematically shows the different contours GT'V' (red), GT Vprqg. (blue)
and PET-based contour (green), and the respective volumes P (light blue), A (light green),
derived from them. The intersection between the two volumes, I = P U A (pink), was used
as indicator for evaluation of the ability to detect potential tissue at risk with ¥*F-FET

PET.

GTV
GTVProg.

PET

Figure 4.24: Different volumes that were investigated for quantification of the overlap of progress and
PET-based contours. The GTV (red), the progress tumor volume GTVp,oq. (blue) and the PET-based
contour (green) were used for analysis. The volume differences between PET-based contour and GTV
is the defined as A = PET \ GTV. Progress was defined as difference between GT'V and GTVpyog.
(blue): P = GTVprog. \ GTV. The intersection I = P U A (pink), was used as indicator for evaluation
of the ability to detect potential tissue at risk with *F-FET PET.
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Figure 4.25: Illustration of different scenarios for comparisons between GTV (red), progress tumor
volume GTVpog. (blue) and the PET-based contour (green), with corresponding values for sensitivity
and specificity. If the PET-derived contour is very large, sensitivity will be close to 1 and specificity
will be smaller than 1. If GT'V was delineated broadly, specificity will be close to 1, but sensitivity
will be small. Good coverage of the tumor progress volume by the PET-active area exists only, if both
sensitivity and specificity are close to 1.

Two parameters quantifying the degree of overlap between tumor progress and '8F-FET
PET volumes were defined:

PUA I
itivity: = = — 4.
Sensitivity: Se 2 Iz (4.9)
PUA I
ificity: = = — 4.1
Specificity: Sp 1 I (4.10)

The different scenarios for overlap between GTV (red), GT Vprog. (blue) and PET-based
contour (green), and the values for sensitivity and specificity, that they lead to, are
illustrated in figure 4.25. If the PET-derived contour is very large, which is the case
especially for low isocontour thresholds, sensitivity will be close to 1 and specificity will be
smaller than 1. On the other hand, if GTI'V was delineated broadly, specificity will be close
to 1, but sensitivity will be small. Good coverage of the progress volume by the PET-active
area exists only, if both sensitivity and specificity are close to 1.

In all cases, the false prediction of the PET-based contour (false positives), i.e. the volume
that would be added to the GT'V by ®F-FET PET, but is not associated with progress,
can be derived as:

ANT I

In the same manner, the false negatives, i.e. parts of the progress volume that are not
detected by the PET-based contour, yield

_PAL_ T g, (4.12)

fn. Iz Iz
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Results for sensitivity (blue) and specificity (pink) of the different PET contouring tech-
niques are shown in figure 4.26 for each patient. The isocontour of 40% clearly yielded
the highest conformity with regards to the progress tumor volume GT'Vp,,4. in most cases
and on average with a mean value of Cpyogress(iso 40%) = 0.40 = 0.1. However, the results
displayed in figure 4.26 indicate, that isocontour 50% presented the best relation between
high sensitivity and high specificity with respect to the tumor progress volume. In general,
specificity was close to one in most patients for the large isocontour thresholds (60% and
70%) as well as region growing and random walker technique. On the other hand, sensitivity
was generally low for these patients. This effect arose mostly due to large GT'V contours
for treatment planning, that completely enclosed the smaller PET-contours. In patient n°
6 and n° 7, the isocontours of 60% and 70%, as well as the region growing and random
walker algorithms did not add any volume to the GT'V (A = 0).

4.3.3 Analysis of Dynamic ®F-FET PET
Pharmacokinetic modeling of dynamic 18F-FET PET using the 17TCM and 2TCM

Few studies have investigated the possibility of pharmacokinetic modeling on ¥*F-FET
PET [Thiele et al., 2009]. Using the PET fitting plugin, feasibility of pharmacokinetic
analysis for the available dynamic '8F-FET PET data was investigated. The standard
one tissue compartment model (1TCM) provides a simple but stable representation of the
IBF_FET tracer in plasma and tissue. The bidirectional transport of '8 F-FET into cells by
system L would justify usage of the two tissue compartment model (2T'CM), representing
IBF_FET exchange between the three compartments “blood”, “interstitial volume” and
“cells”.

Applicability of the 1TCM and the 2TCM for analysis of dynamic '8 F-FET PET time-
activity curves in high grade glioma patients was investigated on seven patients, for which
segmentation with the isocontour 50% was applicable. All patients had received dynamic
and endpoint static '8 F-FET PET prior to radiotherapy.

Based on the endpoint static image, isocontour 50% was drawn around the lesion, as
illustrated in figure 4.27. The standard T} weighted contrast enhanced MRI image (left) is
displayed together with the GT'V (red) of three patients (n° 1: top, n° 7: middle, n° 8:
bottom), compared to the isocontour 50% (purple) on corresponding SUV maps (right).
Isocontour 50% was chosen, as it presented the best results in terms of sensitivity and
specificity in the afore mentioned study. However, it can be seen, that the PET contour
and GTV differ in size in all three patients. There is a distinct mismatch between GT'V
and isocontour in patient n° 1.

Within the isocontours, time-activity curves of each voxel were fitted with the 1TCM and
2TCM, yielding maps for each parameter k;. Positivity constraints were imposed on all
exchange rate parameters, 0 < k;, because they are defined in terms of unidirectional
flux. For the 2TCM, the fractional blood volume Vg is normalized to a volume element
of tissue. Thus, the additional condition 0 < Vp < 1 was applied. For evaluation of fit
quality, parameter maps of the sum of squared residuals X? were studied.
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Figure 4.26: Results for sensitivity (blue) and specificity (pink) in every patient, for different PET-
based contouring techniques. Sensitivity is calculated as intersection between progress tumor volume
P = GTVprog. \ GTV and volume added to the GTV by the PET-based contour A = PET \ GTV,
normalized to the volume P added to the GT'V by tumor progress. Specificity is defined as intersection
between progress tumor volume P = GT'Vp,og. \GTV and volume added to the GT'V by the PET-based
contour A = PET \ GTV, normalized to the volume A added to the GT'V by the PET-based contour.

Higher sensitivity and specificity indicate better coverage of tumor progress by PET-active volume.

False prediction of the PET-based contour (false positives), i.e. the volume that would be added to

the GTV by ®F-FET PET, but is not associated with progress, can be calculated as 1 — Speci ficity.

False negatives, i.e the part of the progress volume that is not detected by the PET-based contour,
can be calculated as 1 — Sensitivity.
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Patient 1

SUV,pa = 3.77

Patient 8

Figure 4.27: T} weighted, contrast enhanced MRI (left) and the macroscopic visible tumor volume
GTV (red contour), compared to SUV maps from *F-FET PET (right) and isocontour 50% (purple
contour) for patients n° 1, 7 and 8.



4.3 18F-FET PET 95
Table 4.5: Mean values and standard deviation of parameter estimates from fits with the one tissue
compartment model (1TCM, K; and k2) and the two tissue compartment model (2TCM, K, k2, ks,
k4 and Vg) for seven different patients. Parameters were averaged within the isocontour 50%.

Patient 1TCM 2TCM

n° Kilgzl ke lgg] K1 [55] k2 (] ks (] ke (] Ve [-]

1 0.07+0.02 0.124+0.04 0.09 £+ 0.08 0.63 +1.32 0.19+£0.33 0.09+0.28 0.03+0.01
3 0.18+0.09 0.324+0.18 15.62+ 179 136.16 £ 1540 0.154+0.24 0.15£0.30 0.09 £0.04
7 0.17+0.08 0.234+0.14 88.31 + 554 810 + 4524 0.37+0.36 0.154+0.38 0.06 +0.04
8 0.15+0.10 0.314+0.27 0.17+2.8 1.01 £ 27 0.14+0.26 0.144+0.27 0.09 + 0.06
10 0.89+7.2 2.34 £20.1 19.55 £166 210.33 £1624 0.284+0.35 0.114+0.21 0.04 +0.03
15 029+1.4 0.73 £4.7 0.37 £0.43 2.08 £ 2.46 0.24 £0.15 0.09£0.05 0.03£0.04
17 0.10£0.05 0.23+£0.15 75.6 + 340 1086 + 4665 0.29+£0.34 0.09£0.14 0.04£0.02

Table 4.5 presents the results for mean parameter estimates from the 1'TCM and 2TCM
with corresponding standard deviations, averaged within the isocontour 50%, for all seven
patients.

Parameter estimates from the 1TCM yielded reasonable results, with values in plausible
physiological ranges and adequate standard deviations, except for patient n® 10. The
estimated values are comparable to the results found by Thiele et al. [2009].

Parameter estimates resulting from fits with the 2CXM were less stable. In several cases,
the mean parameter estimates yielded unreasonably high values, pointing at decreased fit
stability and outliers. The large mean values and standard deviations for K7 and ko from
the 2TCM hinted at overfitting. Estimates for k3, k4 and Vp were more plausible, however
since the model seems to overfit the data, these results are not reliable. Furthermore, the
values exhibit enhanced standard deviations.

Overall, the results suggest, that two out of the five model parameters from the 2TCM are
not needed to describe the data. The 1TCM could be extended with a third parameter,
similar to the extended Tofts model, for improved description of the time-activity curves.

This heterogeneity can also be seen in figure 4.28, showing maps of the parameter estimates
from fitting with the 1TCM (top row) and 2TCM (middle and bottom row) for patient n°
1. The parameter estimates from the 1TCM exhibit tumor heterogeneity beyond the one
observed in the SUV map (see figure 4.27). This result indicates, that parameter estimates
from dynamic FET PET can provide a more detailed insight on tumor heterogeneity,
compared to endpoint static acquisition.

The maps obtained from fitting the 2T'CM presented with even larger heterogeneity (voxels
without color coding (transparent) present values 0 < v < 107°). The parameter estimates
from the 2TCM fit exhibit enhanced clustering and large outlier values.

Three different areas within the parameter map of K; from the 1TCM were chosen to
illustrate the curve shape in hot spots and cold spots (see figure 4.29, left). For these
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Figure 4.28: Maps of parameter estimates within the isocontour 50% (colored) from fitting time-
activity curves of patient n° 1 with the one tissue compartment model (1TCM K; an k2) and the two

tissue compartment model (2TCM K, ko, k3, ka). The parameters are displayed on the PET raw

data image (grey scale). All parameters are in units of [mlin] Voxels within the isocontour containing

values of less than 107° are not color-coded, due to a visualization limitation of MITK.
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Figure 4.29: Measured time-activity curves (red dots) and fitted model curves from the one tissue
compartment model (black line) and the two tissue compartment model (blue dotted line) for 3
representative voxels in patient n° 1. The voxels were placed in distinct hot spots/cold spots,
illustrated in the parameter map of K, from fitting with the 1TCM (left image).

three voxels, representative measured TACs with fit curves from the 1TCM and 2TCM are

shown in figure 4.29 (right). It could be observed, that the 2TCM seemed to fit the data
better.

For a more general assessment of the fit quality of both models, the X2 values from fits
with the ITCM (blue) and 2TCM (pink) in three patients are plotted in figure 4.30. The
median is represented by the black line, the black dot shows the mean value. As expected
the 2TCM fits yielded lower X2, since the increased number of parameters offer more

degrees of freedom. However, more outliers to large X? values were observed with the
2TCM, and the values were wider spread.

In summary, even though the 2TCM seemed to yield better fits, the results indicated
overfitting and less robust fits. It is likely, that the acquired image quality (temporal
sampling and noise level) is not sufficient to resolve the physiological detail level described

with the 2TCM. The parameter estimates obtained with the 1TCM fit offered increased
stability.
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Figure 4.30: Sum of squared residuals X2, resulting from fits of time-activity-curves with the one
tissue compartment model (blue) and the two tissue compartment model (pink) model within the
isocontour 50%, for patients n° 1, 7 and 8. Due to the large values, X2 is displayed on a logarithmic
scale. The whiskers are defined as first/third quartile -/+ 1.5 IQR. The median is represented by the
black line, the black dot shows the mean value.

Non-compartmental analysis of dynamic 18F-FET PET: Evaluation of
semi-quantitative parameters in different tissue volumes

Pharmacokinetic modeling on the whole acquired ®*F-FET PET image is very time con-
suming, since a large number of pixels have to be fitted. Furthermore, the requirements and
assumptions of the compartmental models are not met in all tissue structures of the brain.
For example, it is not advisable to define a single arterial input curve for the entire head.
Thus, the possibility of using semi-quantitative parameters from non-compartmental analy-
sis for possible applicability in the multi-modal image analysis approach was investigated,
similar to the study presented in section 4.2.2.

For the seven patients mentioned above, the dynamic '®F-FET PET image was registered to
the treatment planning CT and converted to SUV images. The parameters of AUC, MRT
and SUVjear (= Cinaa) were calculated on the entire image. Mean values and standard
deviations of the three parameters, averaged within the isocontour 50%, are listed in table
4.6 for each patient. MRT provided a very stable measure with low standard deviation and
little variance among different patients. SUVjeqr was naturally lower than the SU V4, (c.f.
table 4.4), since SUVjeqr, was averaged over the entire contour, whereas SUV;y,q, represents
a single voxel with the highest uptake. AUC exhibited large parameter differences and high
standard deviations, representing the afore mentioned heterogeneity within the volume.

Similar to the analysis of semi-quantitative parameters in DCE MRI data, the values of
parameters from non-compartmental analysis of dynamic '*F-FET PET were investigated
in three different volumes: the GT'V, the progress P = GTV \ GTVp,oq. and a healthy
tissue reference region. The latter two volumes were both already defined in section 4.3.2.

Figure 4.31 shows the resulting mean values with standard deviation of the parameters
AUC (top), MRT (middle) and SUV)eq, (bottom) for all seven patients. The values were
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Table 4.6: Semi-quantitative parameter mean values and standard deviations from non-compartmental
analysis of *®F-FET PET time-activity curves of several different patients. Parameters were averaged
within the isocontour 50%.

Patient AUC [au.]  MRT [s]  SUVpear [—]
Patient 1 4590 £ 798 1011 £22 2.59+0.43
Patient 3 3695 £ 744 1011 £28 2.12+0.37
Patient 7 5850 £ 1075 1011 +£25 3.32+0.58
Patient 8 4276 £724 1039 £32 2.52£0.39
Patient 10 3970 £649 1000 £35 2.31 £0.51
Patient 15 4135 £639 1010£26 2.42£0.50
Patient 17 3112 £527 1033 £29 1.82£0.30

averaged over the GT'V (blue diamond), the progress volume P (green square) and in the
healthy tissue reference region (pink circle). The MRT provides a stable measure with
little differences between different patients. The parameter does not help to distinguish
between tumor, progress and healthy tissue though. Only for patient n° 15, the value of
MRT = 951 £ 48 was measured in the healthy tissue reference region was lower than in
the other patients. However, the values are consistent within the error bars. The larger
standard deviation in this case indicates enhanced heterogeneity of the measured values,
which was also observed in SUV)eqk-

In AUC and SUVeq, variations between the different volumes could be observed, especially
between the G'I'V and the other two volumes. The individual values of these two parameters
were similar in most patients. Only patient n°® 17 exhibited no difference in AUC between
the three different volumes. It was observed that the measured values in the progress
volume and healthy tissue region were similar to those of the other patients, but AUC in
the GTV was distinctively lower. The average AUC within the isocontour 50 % also took
the lowest value in this patient: AUC = 3112 + 527. The patient also showed no difference
in SUVpeqr, between different volumes and a low mean SUV,eqr = 1.82 4+ 0.3 within the
isocontour. AUC' and SU V)¢, exhibited very similar parameter behavior. In patients n° 1
and 3, they show distinct differentiation between GT'V, progress and healthy tissue. This
result does not translate to the other patients though, as in these cases the parameters
differ only between GTV and the other two tissue types.

In summary, the results indicate that parameters from non-compartmental analysis of
BF_FET PET time-activity curves might provide a good measure to distinguish tumor
tissue. However, they are able to detect the progressive volume only to an extent.
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Figure 4.31: Semi-quantitative parameters AUC, MRT and SUVpeak (= Cmae) from non-
compartmental analysis of dynamic **F-FET PET data of seven patients. Parameter mean values

were averaged within the treatment planning GT'V (blue diamond), the progress tumor volume
P = GTV \ GTVpro4. (green square) and healthy brain tissue (pink circle). Error bars denote the
standard deviation of the mean.
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4.4 Multi-Modal Image Analysis using Random Forest Machine
Learning

The presented analysis software, together with the already available MITK tools, made
pre-processing of all different presented modalities from the multimodal image set possible.

The aim of the following study was to find rules in terms of parameter combinations,
which are able to predict the probability for tumor progression in each pixel. Various
machine learning algorithms can be used to address this classification problem. The
presented work resorted to random forest classification, because of its capability to handle
a multitude of different samples and features. Of course, it is possible to address the
classification problem with other algorithms and techniques, such as support vector machines
or clustering algorithms. However, these approaches do not naturally extent for multiple
classes. Furthermore they are at risk of running into boundaries concerning computational
capacity, when confronted with large data sets.

The forest is trained to assign each pixel with a tissue morphology describing class, based
on intensities from various imaging modalities. This pixel wise identification of tumor
tissue based on radiological images acquired prior radiotherapy could be used to support
and improve planning target delineation. The method was initially introduced by Weber
et al. [2015], who used random forest mainly grown from features of diffusion weighted
MRI for training and prediction of tumor growth.

The following section presents a workflow for the described analysis of image pre-processing
and random forest machine learning, based on developed and already existing tools in
MITK. An example analysis on a small set of patient data is shown for illustration of the
functionality and results.

4.4.1 Software Developments

The software library VIGRA [Ko6the et al., 2008] includes an implementation of random
forests for classification and regression problems. The library, together with the infras-
tructure for handling of features and classes in training and testing, was incorporated into
MITK by Weber et al. [2015]. Based on this classification module, a command line tool for
classification of the available data of recurrent high grade glioma patients was developed.

The different types of images used for classification are referred to as feature images. In
the language of classification, an image pixel (referenced by its image index 7) represents a
sample Z. The intensity from the K different imaging modalities are the samples attributes,
or features, 6 = (©1,09,...,0k). The class mask defines the assignment of the samples to
one of the m =1, ..., M classes ¢,, (target vectors) in an integer valued image.

In VIGRA, the features of each pixel are stored as rows in the feature matriz. In this
matrix, each row represents a sample Z. The first column is the samples pixel index 1,
the following columns represent each the corresponding value of a feature image. For
several patients, the samples from each patient are listed after one another. Thus, for N
patients with K features and p,, samples in patient n = {1, ..., N}, the feature matrix is a

(25:1 pn> x (K + 1) matrix with rows [, 01, ...,Ok]. The class matriz, which stores the
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assignment of the samples to the corresponding class, consists of only two columns, the
pixel index and the class index [i, ¢;,].

The workflow of the random forest is illustrated in figure 4.32. For training (left side), a set
of patients with corresponding feature images, on which classification should be performed,
is selected. The developed classification tool loads the required images for training from an
input file, defining the list of training patients and features, together with the corresponding
class mask. From these images, the feature and class matrices are extracted.

Configuration of the random forest is read from a separate configuration file. The following
random forest parameters can be defined:

o Minimum split node size: The number of samples in a node required for the node to
split further. If the number of samples in the node is below this threshold, the node
does not split, even if classification is not yet perfect.

e Tree count: How many trees are grown for the forest.
o Tree depth: How many splits are grown at most
e Precision: The splitting precision

e Fraction: Specifies the fraction of the total number of samples used for training of a
tree (out-of-bag sampling).

o Sample with replacement: Boolean value if out-of-bag sampling is performed with or
without replacement

The split criterion is the Gini impurity. In principle, it is possible to derive the test, that
is applied to split a node, from linear combinations of multiple features. However, in
the presented work, this option was not exploited, and splitting of a node was based on
applying a threshold to a single feature.

The configured forest is trained to learn classification rules based on the feature matrix
and class matrix. The fully trained forest can afterwards be used for prediction, i.e testing,
on previously unseen feature images of new patients, as indicated on the right hand side of
figure 4.32. The patients for testing are defined in the input file as well. The feature images
in question are loaded with a prediction mask, defining the pixels on which classification
should be performed, and the feature matrix is extracted. All samples in the testing feature
matrix are run down the trees in the forest and the resulting voted class of each pixel is
stored in a prediction image, similar to a class mask. The predicted classification image
can be loaded and evaluated in MITK.

4.4.2 Development of a Classification Workflow

The inclusion of physiological imaging modalities was especially interesting for this thesis,
focusing on the predictive value of metabolic parameters from FET-PET and hemodynamic
parameters from DCE MRI. As shown before, the available DCE MRI data was not suitable
for pharmacokinetic analysis. Hence, semi-quantitative curve-describing parameters from
non-compartmental analysis were used. Data from dynamic and endpoint static ¥F-FET-
PET scans was included, because it provides high sensitivity and specificity of ¥F-FET
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Figure 4.32: Workflow of the random forest implementation. From the multimodal image data set
and the class mask, the feature matrix and class mask used for training are extracted and passed to
the forest. The forest growth a multitude of decision trees for classification of the samples (image
pixels) with the associating classes (defined in class mask). The trained forest can then be used for
prediction on a feature matrix from a previously unseen image data set. The prediction result is a
class mask as well that can be loaded and displayed in MITK.
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for glioma tissue and high SUV has been correlated with cell density [Pauleit et al., 2005].
Maps of the apparent diffusion coefficient (ADC) from diffusion weighted MRI and T5
weighted MRI images using FLAIR were also used as features. The ADC has been shown
to correlate with cellularity [Ellingson et al., 2012] and the heavy T5 weighting from FLAIR
sequences induces strong contrast for edema. Furthermore, the irradiated dose distribution,
derived from Monte Carlo simulations of the carbon ion irradiation plan, was included.
Fractionation differences in the patients were only accounted for through the total applied
dose.

All image raw data was imported from the CHILI PACS system [CHILI®, HIT Research
Data Base] in DICOM format. For each patient, all relevant images were loaded in
MITK. Co-registration to the treatment planning CT and interpolation to the same spatial
resolution was done using the Matchpoint multimodal rigid registration algorithm for head
and neck images [Floca, 2009]. Pre-processing of the feature images was performed in
order to calculate feature maps. The SUV images from endpoint static *F-FET PET
were normalized by division through the SUV,,4, of the lesion, since tracer uptake varies
greatly between patients (see section 4.3). Parameter images of AUC', MRT and C\,q, were
derived from DCE MRI data, as shown in section 4.2.2. The dynamic '®F-FET-PET data
was converted to 4D SUV images and parameters AUC, MRT and SU V4, were derived
with non-compartmental analysis from SUV-time curves. Pharmacokinetic analysis with
compartment models was not suitable, since large amounts of pixels would need to be
fitted. Furthermore, the requirements and assumptions of the compartmental models are
not met in all tissue structures of the brain, which would lead to wrong estimates and bias
the analysis. From diffusion MRI, the native parameter maps of the ADC and fractionated
anisotropy (F'A) were used. The T5 FLAIR image was z-transformed to account for the
qualitative nature of MRI images and inter-patient variability. The dose distribution,
representing the dose value in [cGyE] in each pixel, was loaded from RT DICOM files and
stored as feature images.

Each image pixel was assigned with one of the class labels listed in table 4.7. Segmentation
of patients into anatomical structures was performed for definition of the class masks. The
treatment planning GT'V was used as contour for assignment of pixels to the class initial
tumor volume c3. The ventricles were segmented based on the 77 weighted MRI, using 3D
region growing, and assigned to the class CSF (c1). In cases, were the GT'V included parts
of the ventricles, it was subtracted from the CSF volume. The progress tumor volume cq4
was labeled according to segmentation of GT'Vp,.4., from which the initial tumor volume
and CSF were subtracted. The CSF was ranked above the progress, because the goal was
determination of progress tissue at risk in the initial state and thus, progress originating
from healthy tissue expulsion was not of interest.

Background was segmented by applying the Otsu threshold to the CT image, segmenting
it into 4 regions. The inner content of the skull was made subject to a closing operation
(erosion followed by dilation), and the result was used for further processing. Using
the 3D region growing technique with a lower threshold than before, cerebrospinal fluid
including the sulci was segmented. This contour was subtracted from the inner skull
content. Afterwards, an opening operation (dilation followed by erosion) was performed for
smoothing the contours. From the remaining volume the contours of initial tumor, progress
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Table 4.7: Different class labels used for tissue classification. The “background” class includes pixels
outside of the head, bone structures, skin, structures of the spine and jaws, etc. The “CSF” class is
defined in order to account for ventricles and resection cavities. “Initial tumor volume” was determined
from the treatment planning GT'V. “Progress was calculated as GTVprog. \ GT'V.

Class Description Index
co Background 0
c1 Cerebrospinal fluid (CSF) 1
co  Healthy (white and grey) brain matter 2
c3 Initial tumor volume 3
cy4 Progressive tumor volume 4

and CSF were subtracted. The remaining pixels were assigned to the healthy brain tissue
(c2) class.

An example of a class mask is shown in the middle panel of figure 4.33. The integer value
image is laid over the T weighted contrast enhanced MRI (left panel). The color coding
shows background (cg, transparent), CSF (c1, green), healthy brain matter (cs, light blue),
initial tumor volume GTV (cq, orange) and progress tumor volume from the follow up MRI
(cq, red).

Figure 4.33: Class mask of patient n® 3 used for training (middle) and testing (right). The
corresponding 77 weighted contrast enhanced MRI is shown on the left. Class labels are background

(co, dark blue), CSF (c1, green), healthy brain matter (cs, light blue), initial tumor volume GTV (c4,
orange) and progress tumor volume from the follow up MRI (¢4, dark red).

4.4.3 Tumor Progression Prediction
To illustrate the developed workflow of classification analysis, an example analysis was
performed on a sample set of eight recurrent high grade glioma patients.

For training and prediction, patients were selected, for which a large variety of imaging
data was available: patient n° 1 to 8. Feature images from seven of these patients were
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Table 4.8: Different combinations of patients and features used for training of the random forest.
Prediction was performed on patient n° 3.

Feature
Patient n°
Ts ADC FA DCE MRI SUV dyn. PET DOSE
FLAIR (MRT, AUC, Cmaz) (MRT, AUC, SUVpeqr )
#1 1,2,4,5,6,7,8 v v X v v X X
#2  1,2,4,5,6,7,8 v v X v v X v
#3 1,2,8 v v v v v v v
#4 1,2,4,5,6,7,8 v v X v X X v

used for training in four different combinations. The grown forest was tested for tumor
progress prediction in the remaining patient (n°3). Prediction in the testing phase was
performed on the entire volume within the skull, shown in the right panel of figure 4.33.
Training was performed with different combinations of patients and features. Table 4.8 lists
the different patients by number that were used for training of the forest. The respective
feature images that were used for training and prediction are indicated with a check mark.

The random forest was configured to grow 500 trees (tree count) with each a depth of 10
split levels (tree depth). The minimum split node size was set to 2. Out-of-bag sampling

was performed with replacement on two third of the data (fraction = %)

Figure 4.34 illustrates the resulting classification maps (predictions) of patient n° 3 from
all four training combinations in three representative slices. In the top row, the manually
defined class mask of said patient is shown for comparison of certain structures, i.e. the
“true” location of ventricles, initial tumor and progress volume. The rows below show the
corresponding slices in the resulting classification images, for the four different prediction
combinations (table 4.8). The color coding shows again background (co, transparent), CSF
(c1, green), healthy brain matter (cs, light blue), initial tumor volume GTV (c4, orange)
and progress tumor volume from the follow up MRI (cq, red).

All four training combinations yielded roughly accurate classification of brain tissue and
ventricle. To some extent, sulci are detected as well. Smaller structures were not assessed,
most likely because of the low spatial resolution of most feature images. All training
configurations predicted larger initial tumor volumes compared to the actual GT'V contour
from treatment planning.

Combination #1 barely classified any pixels as progressed tumor. However, the predicted
initial tumor volume is comparable to the combined volume of tumor and progress in the
class mask. The difference between predictions #1 and #2 was inclusion of the irradiated
dose distribution. This led to a reduction of “noisy” pixels throughout the brain, wrongly
classified as initial tumor volume. Furthermore, consideration of the dose distribution led
to an increased predicted progressed tumor volume at the edges of the initial tumor volume.

Combination #3 utilized less patients for training and more features, including the param-
eters from non-compartmental analysis of the dynamic FET-PET curves. The prediction
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Figure 4.34: Results from predictions on patient n® 3 with training configurations 1 to 4 in three
different images slices compared to the class mask. The color coding shows background (co, dark blue),
CSF (c1, green), healthy brain matter (cs, light blue), initial tumor volume GTV (c4, orange) and
progress tumor volume from the follow up MRI (c4, dark red).
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yielded sharper contours and less outlier pixels, compared to the other configurations. This
is natural, since more patients provide increased heterogeneity of the training collective,
making it more difficult for the forest to find precise classification rules. In the top slice
(slice 3), prediction #3 estimated the larges progress tumor volume, compared to the other
scenarios. This progress volume is close to the volumes defined in the class mask.

Combination #4 was chosen almost identical to combination #2, however, it did not include
the normalized SUV as feature. This combination was chosen to investigate whether the
SUYV has a large impact on the classification result. This seems, however, not to be the
case, since prediction #2 an #4 yield almost identical results.

In the following, the two predicted volumes initial tumor mass IT Mp,.q. and progressed
tumor mass PT Mp,.q are studied in detail. The predicted volumes were compared to
the original initial tumor volume GT'V and progressed tumor volume GT'Vpyoq4. in terms of
sensitivity and specificity, similar to section 4.3.2. For sensitivity, the intersection between
mask volume and predicted volume was divided by the mask volume

Se — Vpred. N Virask _ I
e = =
VMask VMask:

(4.13)

The specificity was calculated as intersection between mask volume and prediction volume,
divided by the prediction volume:

VPred. N VMask 1
Sp = = 4.14
VPred. VPred. ( )

Figure 4.35 presents results of sensitivity (blue) and specificity (pink) for predicted volumes
compared to the original volumes in the class mask. Four combinations of comparison were
possible, that are illustrated in respective schematics next to the bar plot:

1. Left top panel: Comparison of IT Mp,..q. (light blue) compared to GT'V (orange)

2. Left bottom panel: Comparison of IT'Mp,.q. (light blue) compared to GTVp,q. (red)
3. Right top panel: Comparison of PT'Mp,.q. (dark blue) compared to GT'V (orange)
4

. Right bottom panel: Comparison of PT'Mp,q. (dark blue) compared to GTVpyg.
(red)

For prediction configuration #1, nearly no volume was classified as progressed tumor,
hence the comparisons to GT'V and GTVp,.g. yielded same values for sensitivity and
specificity. The intersection between ITMp;.q. and GT'Vp;.q. yielded highest specificity
for all predictions: Spy1 = 0.88, Spyo = 0.73, Spuz = 0.79, Spys = 0.73. The highest
sensitivity was found in the comparison between PT'Mp,.q and GTV: Sey; = 0.92,
Seus = 0.97, Seys = 0.98, Seyyq = 0.97. These sensitivity values close to 1 indicate that
the predicted progress tumor volume includes the actual initial tumor almost entirely.
However, specificity was low in this comparison. This means, that a large additional
volume was added by the prediction that did not contain tumor tissue. Overall, comparison
between IT Mpyeq. and GT'Vp,q. yielded the best relation between good sensitivity and
specificity. This result suggests, that the gained information from the modalities used in
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Figure 4.35: Sensitivity (blue) and specificity (pink) for predicted volumes initial tumor mass
ITMpyreaq. (light blue) and progressed tumor mass PT Mpreq. (dark blue) resulting from four different
training configurations (prediction n°), compared to original volumes GT'V (orange) and GT Vprog.
(red). Schematics of the compare volumes are drawn next to each bar plot, respectively (left side). I
denotes the intersection between the two investigated volumes. Respective formulas for calculation of
sensitivity and specificity are listed for each case.

forest training provide with an improved target volume, compared to usage of T} contrast
enhanced MRI alone.

The presented results illustrate different prediction scenarios, based on the available image
data. However, for dedicated analysis and more reliable results, training and prediction
with only one data sample is insufficient. In theory, a large number of training patients
and a large number of testing patients is required. Due to the limited amount of available
image data, this was not possible. Nevertheless, validation of the prediction results can
be performed to an extend by using the leave-one-out method, thus creating several data
sets from one available data set. The concept is based on the above used approach of
training on data from seven patients and predicting on the remaining patient. The testing

patient is permuted through the cohort, thus “creating” eight samples form the initial one.

This method provides a compromise between the limited amount of data and a sufficient
number of training sets. Tissue classification was predicted on each patient with a forest
grown from the remaining patients, using training configuration #2.

In figure 4.36 sensitivity (blue) and specificity (pink) of the predicted tumor volume for
all patients are presented, together with schematics of the four volume combinations, in
the same manner as before. In the intersection between PT Mp,.q and GT'V, sensitivity
was high (Se > 0.8) for most patients. In patient n° 6, sensitivity was comparably low
Se = 0.28. Then again, patient n° 6 presented with maximum specificity Sp = 1. Low

sensitivity and high specificity could be observed in all volume comparisons of patient n° 6.

The effect resulted from the fact, that GT'V was contoured broadly, thus, it enclosed the
predicted volumes entirely.



110 4 Results

_ I
Sen = GTV 02

Spe

PTMpreq 1 2 3 4 5 6 7 8
Patient n® Patient n°

o

.8

0.6 1 L6
0.4 4 4-
1 1
Sen = 02 1 Sen = ———+— 2+
GTVproq. I GTVpyoq,
0 0
1 2 3 4 s 6 71 8 1 2 3 4 s 6 71 8

_ 1 _ 1
SPe = MMy Pe =Py,

o
EY

o
=

5

Patient n° Patient n°

Figure 4.36: Sensitivity (blue) and specificity (pink) for predicted volumes initial tumor mass
ITMpyea. (light blue) and progressed tumor mass PT Mpy.q. (dark blue) of different patients (patient
n?) , compared to original volumes GT'V (orange) and GT'Vp,o4. (red). Schematics of the compare
volumes are drawn next to each bar plot, respectively (left side). I denotes the intersection between
the two investigated volumes. Respective formulas for calculation of sensitivity and specificity are
listed for each case. Training configuration #2 was used for all predictions.

Table 4.9 lists mean values and standard deviations of sensitivity and specificity, averaged
over all patients, for the different volume comparisons (intersections).

The averaged sensitivity was highest for the overlap between PT Mp,..q. and GT'V with a
value of Se = 0.8 +0.24. Thus, the predicted progress tumor volume is able to detect the
actual initial tumor almost entirely. However, for this case, specificity had the lowest mean
value (0.44 £ 0.29). Specificity was lower in general, with a maximum average value of
Sp = 0.63 £ 0.23 for the overlap between IT Mp;cq. and GT'Vp,oq.. In this case, sensitivity
features the lowest value of 0.59 +0.20. Hence, the prediction would add a large percentage
of treated volume that is not tumor. The question, whether the predicted volume is
compatible with healthy tissue sparing depends on the actual tumor volume and is thus to
be decided for every patient individually.

Table 4.9: Mean values with standard deviations of sensitivity and specificity for comparison between
predicted and original tumor volumes. Values are averaged over all patients.

Volume Intersection I  Sensitivity  Specificity

ITMpyeq N GTV 0.75+£0.27 0.47 +0.29
ITMpreq, NGTVproy  0.59+0.20 0.63 +0.23
PTMpyeq N GTV 0.80£0.24 0.44 +0.29

PTMpreq. N GTVprog.  0.65£0.19 0.60 +0.23




5 Discussion

The main objective of the presented thesis was development of a workflow for multi-
modal, multi-parametric analysis of radiological images from different modalities. The
developed approach enables investigation of DCE MRI and dynamic contrast enhanced
magnetic resonance imaging (DCE MRI) as well as positron emission tomography (PET)
for the surrogate value of extracted parameters with respect to tumor tissue identification.
Progressive growth is a common problem in radiotherapy of patients with high grade
glioma, leading to poor overall survival. Usage of multimodal information from various
physiological imaging techniques for assessment of microscopic outliers and heterogeneity
of the tumor could improve target delineation in radiotherapy and thus prevent tumor
recurrences.

To achieve this goal, the first step was to provide a common analysis framework for all image
modalities of interest. The framework should enable all necessary preprocessing and analysis
steps required for concurrent evaluation of different patients and images. Therefore, the
medical imaging interaction toolkit (MITK) was employed to address this task. Additional
software tools were developed and implemented, providing means for quantitative analysis
of PET images and both pharmacokinetic modeling as well as non-compartmental analysis
of data from DCE MRI and dynamic PET.

Since parameters derived from DCE MRI and dynamic '®F-FET PET were especially
interesting to this work, several analyses on patient data were performed. Technical aspects
of quantitative pharmacokinetic modeling in DCE MRI were addressed using synthetic
data, in order to evaluate accuracy, precision and robustness of parameter estimates of
the analysis routine. The aim of these studies was illustration of the evaluation procedure
and feasibility assessment of certain features of interest to multimodal image analysis.
Contouring methods for '®F-FET PET images were investigated on 18 patients, gaining
more insight on the overlap between tracer uptake regions and macroscopically visible
tumor extents, derived from 77 weighted contrast enhanced MRI. The goal was to estimate
the extent to which the metabolic information from "8 F-FET PET can predict patterns of
tumor progression.

The presented software extensions to MITK enabled development of a workflow for prepro-
cessing of multi-modal patient data sets. The aim was to combine information from different
modalities for predictions on tumor progression patterns with the help of classification
algorithms. A command line tool for classification of data into healthy and malignant
structures was developed based on random forest machine learning. Together with the
multimodal patient data set, this tool sets up the environment to train a forest on a subset
of data to learn classification rules based on the various image intensities, in order to assign
each pixel from a previously unseen testing patient with a tissue morphology describing
class. For illustration of the possible classification options, enabled with the presented
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work, an example analysis for tumor progress prediction was performed on a sample of
eight recurrent high grade glioma patients.

5.1 Software Developments

5.1.1 Dynamic Data Analysis Module

Analysis of dynamic data is part of various image processing approaches and analysis steps.
The most prominent example is pharmacokinetic modeling of dynamic measurements from
various imaging modalities such as magnetic resonance imaging (MRI) [Tofts and Kermode,
1991; Sourbron and Buckley, 2011], computed tomography (CT) [Kiessling et al., 2004;
Brix et al., 2010] and positron emission tomography (PET) [Phelps, 2004; Carson, 2005].
However, there are a number of different applications for generalized fitting of 4D data.
Assessment of interstitial fluid pressure and flow velocity was presented by Hompland et al.
[2012] by fitting of peritumoral contrast enhanced rims in MRI with exponential models.
Stahl et al. [2015] determined temperature induced stimulation of brown adipose tissue
by linear fits of fat fraction maps over temperature decreases, derived from time resolved
DIXON MRI [Dixon, 1984] measurements. Fitting certain physiological and biological
image parameters over several study time points during follow up can be used to assess
treatment response in radiotherapy.

All these evaluation routines share a common principle: relevant parameters are estimated
by fitting a model representing function to the measured curve in an iterative process,
in order to find the set of model parameters that best describes the experimental data.
This task is usually performed by non-linear least square (NLLS) optimization techniques.
NLLS iteratively fits the data by minimizing the sum of quadratic objective functions f;(z)
with respect to the n model parameters (see section 3.5.3) [NIST/SEMATECH, 2013].

A software module for analysis of 4D image data by means of NLLS fitting was developed
in this thesis. Originally, the software module was intended for pharmacokinetic modeling
in perfusion MRI.

Parameter estimation in DCE MRI is usually performed by NLLS fitting of a pharma-
cokinetic model to a measured concentration-time curve [Sourbron and Buckley, 2011].
Numerous tools are available for such analysis, however they present with certain disad-
vantages.

Commercial software, such as Dynalab [MeVisLAB, 2016] or MK-model [Holford, 1994], is
usually of a closed-source form and software code cannot be accessed, which makes error
assessment difficult in cases of fit failure or problematic DICOM import. Furthermore,
these solutions are often limited in the number of available models and implementation
of own developments is difficult. Some authors resort to MatLab®, www.mathworks.com
[Kershaw and Buckley, 2006]. The obtained results are, however, challenging to transfer
into medical image processing tools. In some cases, commercial software programs for
DICOM workstations and radiological image processing offer tools to analyze data (e.g.
Siemens Tissue4D™), however mostly standard protocols are supported without room for
research developments. In addition, these software solutions are commonly “black-boxes”
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with hidden configuration aspects and rigid algorithmic routines. Hence few aspects of the
fitting process can be changed and studied. The IDL software tool MINPACK MPFIT
[Moré, 1978; Markwardt, 2009] is an open-source solution used by many authors [Ingrisch
and Sourbron, 2013; Luypaert et al., 2012]. Few open-source solutions for analysis of DCE
MRI data exist, that are integrated into DICOM workstations [Zollner et al., 2016; Haider
et al., 2015; Sung, 2015]. However, these tools are often designed to serve a single analysis
purpose.

Most authors resort to in-house developed software tools, e.g. the VIRTUOS Biolmage
module [Neff, 2005; Sourbron et al., 2009]. This approach presents the disadvantage of
complicated comparison between results. Most in-house solutions require conversion and
transfer of the data from DICOM workstations [Sourbron, 2010]. Furthermore the software
tools are often designed for only a specific analysis purpose and hence integration of other
image processing steps, e.g. segmentation or registration, and comparison of modalities
are difficult [Sourbron, 2010].

To overcome these limitations and allow for integration of dynamic data from MRI and
PET into the multimodal image analysis approach, the dynamic data analysis module
was developed for MITK. The goal was to design and implement an independent, flexible
and reusable software module that can be used for dynamic data modeling of DCE MRI
as well as dynamic PET data. Furthermore, it should offer a high degree of freedom
for definition of fitting configurations. The module was designed with characteristics
of a software toolkit as well as a framework. The toolkit nature allows for integration
of existing functionalities and models into other software tools, for example intravoxel
incoherent motion imaging (IVIM) [Koh et al., 2011]. The framework structure provides
an established fitting infrastructure, which can be appended with own implementations of
models, optimizers and cost functions.

Raw data and fit results can be assessed visually with the modelfit view, which offers
pixel-wise evaluation of analysis results. The arterial input function (AIF) and fitted
curves from different models can be compared directly to the measured data. Quantitative
evaluation of fit results is possible via parameter maps (images) and the optimization
measure X2,

An extension for calculation of semi-quantitative curve describing parameters enables
non-compartmental analysis for data of less quality. In analogy to the model function for
fitting, further parameters in terms of the calculation function can be easily implemented by
the developer without having to deal with the underlying framework. Calculation of these
parameters is very fast on a voxel wise basis for entire images. This approach can be used
for landscaping of tissue structures, which are then fitted with the region-based approach
to improve fit stability for detailed assessment of physiological parameters [Gibaldi and
Perrier, 1982; O’Connor et al., 2008].

One major advantage of the presented MITK dynamic data modeling software is its high
modularity, making it superior to other software solutions. This feature provides decoupling
of the fitting routine from input images. Thus, the individual components are modality
independent and can be used for development of software tools with different study and
analysis purposes. Decoupling of the model function from the rest of the optimization
routine allows for simple implementation of other models by the user without concern for
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the rest of the module. Additionally, the stand-alone functionality of the fitting routine
enables concrete studies of different aspects of optimization, such as optimization algorithm,
optimizer configuration and similarity measure.

For the presented applications of the dynamic data analysis module in DCE MRI and
dynamic PET, the Levenberg-Marquardt optimizer [www.itk.org] was used. This opti-
mizer is widely utilized and presents with good stability and fast convergence due to the
multivalued cost function [Ahearn et al., 2005].

The developed software module allows for a number of studies on technical aspects of the
model fitting routine. Investigating the influence of different optimizers, such as Powell
optimization or particle swarm optimization, on the outcome of pharmacokinetic modeling
can be used for error assessment in both DCE MRI and dynamic PET. Furthermore,
different approaches for cost functions can be investigated. A native selection for the cost
function is the sum of squared residuals instead of the multivalued squared residual cost
function.

Since MITK can be used as a toolkit, application of the dynamic data analysis module
does not depend on usage of a graphical user interface. Hence, the software module can be
incorporated into scripting environments and command line tools, giving the opportunity
of (semi-)automatic analysis of large patient data sets.

Two dedicated applications for pharmacokinetic analysis of DCE MRI and dynamic PET
data were developed from the module. A plugin with dedicated workflow and graphical
user interface for pharmacokinetic modeling of DCE MRI data was implemented. Model
functions of the two compartment exchange model [Brix et al., 2004] and the extended
Tofts model [Tofts and Kermode, 1991] are available. Application of the plugin was
shown in the studies on simulated perfusion data. Compared to other tools for DCE MRI
data analysis, the plugin offers enhanced flexibility for definition of the fit configuration
in terms of initial parameter values, model parameter constraints and conversion from
signal intensities to concentration units. The modelfit view offers visual assessment of the
goodness of fit not only for regional averaged curves, but on a single-pixel basis. Because
of the modular structure of the underlying dynamic data analysis module, the plugin
can be easily expanded by the user with own model implementations as well as different
optimizers and cost functions. Linkage of the module to MITK offers a large collection
of image preprocessing options that is not available in most other DCE MRI analysis
software solutions. For example, inter- and intra-serial registration can be performed
with the Matchpoint registration framework [Floca, 2009]. As shown in the study on
non-compartmental parameters from DCE MRI data, combination of the plugin with RT
DICOM import allows for study of hemodynamic parameters within treatment volumes
from radiotherapy. MITK offers a large variety of segmentation tools. Arterial input
function (AIF) and region segmentation for pharmacokinetic analysis can be facilitated by
using images from other modalities or sequences.

An extension to the module in form of a simulation tool for creation of synthetic DCE
MRI data was developed and used to study different aspects of parameter estimation in
pharmacokinetic modeling. Data simulation is a popular tool in pharmacokinetic analysis
of perfusion MRI for studies on model feasibility and comparison between models [Sourbron
et al., 2009; Brix et al., 2009; Luypaert et al., 2012; Ingrisch, 2012]. Often, authors resort
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to the Java-based simulation system JSIM [www.physiome.org/jsim]. The simulation tool
presented in this thesis allows for simulation beyond single concentration-time curves, on
whole 4D data sets. In addition, the approach is image-based, which facilitates assessment
of parameter estimates resulting from fits of the synthetic data and enables data transfer.

For analysis of dynamic PET, similar challenges arise with the existing software solution as
for DCE MRI The available software solution PMOD [PMOD®] is used by several authors
[Dimitrakopoulou-Strauss et al., 2001; Mikolajczyk et al., 1998]. However this tool is a
commercial solution and expansion or changes in the configuration and available models
were not possible. Thus, the dynamic data analysis module was used to design a dynamic
PET analysis plugin. The plugin offers the same functionalities as the DCE MRI analysis
plugin. Its application was shown in the study on model feasibility for dynamic '*F-FET
PET data, discussed in section 5.3.1.

Both tools are used by several groups within the DKFZ! for evaluation of both DCE MRI
and dynamic PET data.

For broadened analysis of DCE MRI data in various organs, implementation of further
pharmacokinetic models is necessary. The concentration of MRI contrast agents in plasma
cannot only be described by a compartment but also by the plug-flow approach [Larson
et al., 1987], which models the capillary as a tube system and accounts for concentration
gradients along these tubes. With this approach, the tissue homogeneity model [Johnson
and Wilson, 1966] and the distributed parameter model [Sangren and Sheppard, 1953]
derive as two region models. Approximations of these models, such as tissue uptake models,

are used for various organ studies and in analysis of arterial spin labeling perfusion MRI.

Dynamic susceptibility contrast (DSC) MRI offers assessment of perfusion parameters such

as the cerebral blood flow, cerebral blood volume and mean transit time [Rosen et al., 1991].

DSC uses deconvolution for finding the residue function from indicator dilution theory

[Rempp et al., 1994]. Evaluation of DSC data, has not been explored in this thesis so far.

However, analysis of concentration curves from DSC MRI could as well be addressed with
the presented software module.

Simulation studies can be pursued further, concerning error estimation in different parameter
regimes or influence of optimizer configuration.

The simulation framework could be extended for PET data. This would also allow for
combination with Monte Carlo simulations of PET acquisition, and hence, modeling the
data quality for dynamic PET scans.

5.1.2 PET Software Developments

PET data is usually analyzed directly at clinical workstations belonging to the scanner,
e.g. the Siemens® syngo system, or commercial software (e.g. ROVER [ABX advanced
biochemical compounds]). This approach leads to the disadvantage that analysis can only
be performed with tools provided by the manufacturer. Furthermore, it is often desired to
compare and overlay PET data with various other modalities, especially in the context
of radiotherapy, which cannot be done intuitively at scanner workstations. Open-source

!Deutsches Krebsforschungszentrum
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solutions, for example RT_IMAGE [Graves et al., 2007], can overcome these drawbacks.
On the other hand, they are often limited in the analysis of other modalities, like MRI.

In order to evaluate PET data together with other investigated modalities, software tools
were implemented in MITK. The MITK plugin for calculation of the standardized uptake
value (SUV') provides a simple but helpful tool for analysis of endpoint static images from
PET. The tool does not only provide mean and maximum SUV within a contour but rather
in every pixel of the entire image. This allows for display adjustments and single value
evaluation of SUV, as well as segmentations based on SUV values (e.g. thresholding).
Mean and maximum SUV of a lesion can be easily computed with the statistics plugin.
SUYV calculations were validated on six patients by comparing SU V4, values determined
with the plugin to values mentioned in the medical reports.

Though isocontours are a simple thresholding technique, they constitute a well-established
part of PET analysis workflows [Paulino et al., 2005; Zaidi and El Naga, 2010]. The
developed isocontour plugin allows definition of various percentiles, and thus, the user can
try different thresholds to find the most suitable for the analysis. A drawback of the tool is
its limitation of segmentations to the predefined contour boundaries. Even though the 3D
interpolation technique of MITK allows for fast definition of the contour, care must still be
taken with regards to other tracer-enhancing, non-pathological structures. The tool could
be improved by allowing extension of the isocontour over the predefined contour within a
connected region, similar to region growing.

5.2 DCE MRI

After over 20 years of research, DCE MRI has turned out to be a popular method for
characterization of tissue physiology in various diseases. Measurement of tissue perfusion
allows assessment of blood-brain barrier leakage or break-down, an often considered aspect
for diagnosis and staging of brain cancer [Sourbron et al., 2009; Larsson et al., 2009; Mgller
et al., 2015]. Recent studies have shown the applicability of perfusion MRI as diagnostic
tool in other neuronal diseases, including stroke [Kassner et al., 2005] and multiple sclerosis
[Ingrisch et al., 2012]. Furthermore, quantification of tumor angiogenesis through measure-
ment of micro-vascularization is used in numerous studies for malignancy characterization
and monitoring of treatment response in various tumor entities, including brain, breast and
prostate [Mgller et al., 2015; Brix et al., 2004; Buckley et al., 2004]. Perfusion quantification
is based on dynamic measurements of administration of a contrast agent (CA) bolus and
the subsequent temporal changes in image signal, which are dependent on local capillary
blood supply and extravasation of the contrast agent into the surrounding tissue. DCE MRI
data were investigated for the purpose of this thesis, because hemodynamic parameters
describing tissue perfusion and permeability could provide detailed physiological insight
into tumor heterogeneity.

5.2.1 Studies on Measured DCE MRI Data

ATF determination is a big challenge in DCE MRI, even if the data is acquired at appropriate
temporal resolution Sourbron [2014, 2010]. Various organs present with different challenges
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in estimation of the arterial concentration. In the brain, arteries directly feeding the tissue
of interest can rarely be assessed. Measurements of arterial concentration in large, easily
accessible vessels require correction for dispersion and delay of the bolus in pharmacokinetic
models. If the arterial concentration is measured in the carotid arteries, inflow effects are
likely to distort the true contrast agent (CA) concentration, as they present with signal
enhancement even in the absence of CA [Kim et al., 2002]. In small vessels, on the other
hand, partial volume effects complicate correct estimation of the arterial concentration.
All these aspects have to be considered when choosing a strategy for AIF measurement
specifically tailored for the investigation at hand. One approach to overcome the obstacles
of AIF measurements is fitting a sum of gamma-variate functions to the measured arterial
concentration, and use the fitted curve as AIF [Sourbron et al., 2009]. Another approach
is averaging the AIF of several patients [Weinmann et al., 1983]. The resulting curve,
together with scaling factors for individual patient corrections, can be used as standardized
ATIF on the entire patient set [Degani et al., 1997; Simpson et al., 1999]. To allow for this
option, the fitting tool offers loading of an AIF from an external, comma-separated value
(CSV) file. The study on AIF assessment revealed insufficient quality of the available DCE
MRI data due to temporal under-sampling. The arterial concentration resulting from the
bolus injection cannot be determined adequately from the images, especially in the peak
area. Thus, the data is not suitable for quantitative pharmacokinetic analysis.

If data quality from perfusion MRI is insufficient for proper pharmacokinetic modeling
to be performed, one can resort to non-compartmental analysis by calculation of semi-
quantitative, curve describing parameters. These parameters can be used to assess basic
features of tissue physiology and hemodynamics [O’Connor et al., 2014, 2012, 2008]. In
the presented thesis, non-compartmental analysis was enabled through extension of the
dynamic data analysis module. Analysis of parameters from non-compartmental analysis of
DCE MRI data from recurrent high grade glioma patients was performed in three patients.
The goal was to illustrate the workflow and applicability of such an analysis with the
developed tools. Data sets of several time points during the course of radiotherapy were
investigated. Semi-quantitative parameters exhibit differences between different treatment
volumes. There was a distinct difference in parameters between gross tumor volume (GT'V)
and the volumes added by clinical target volume (CTV) and planning target volume
(PTV). No consistent tendency of functional dependence of the parameters over the time
course of radiotherapy was observed.

Parameters from compartmental analysis were also compared in the progressive tumor
volume and healthy tissue for one patient. These preliminary results showed, that a closer
look and more detailed studies of the parameters from non-compartmental analysis with
larger patient numbers could be interesting for the pursued multi-modal image analysis
approach for tumor tissue identification. Parameters from non-compartmental analysis
could be helpful surrogates for tissue classification. This is the basis further studies with
more patients to widen the scope of the technology which was developed in this thesis.
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5.2.2 Studies on Simulated DCE MRI Data

Various models for pharmacokinetic analysis of DCE MRI data have been proposed.
Feasibility and comparison between different models have been studied by several authors
[Sourbron et al., 2009; Brix et al., 2009], especially under consideration of the Akaike
information criterion [Luypaert et al., 2012; Ingrisch, 2012]. Parameters from perfusion MRI
data are usually estimated by non-linear least square fitting (NLLS) of the pharmacokinetic
model to the measured time courses of the CA concentration derived from image signals
[Sourbron et al., 2009; Brix et al., 2010].

NLLS-fitting by minimizing the sum of quadratic objective functions with respect to model
parameters (see section 3.5.3) poses an unconstraint optimization problem that can be
solved by a number of different optimization routines. One major challenge in NLLS
the fact, that the determined minimum of the objective function does not necessarily
represent the global minimum [NIST/SEMATECH, 2013]. Thus, parameter estimates
yield ambiguous results that can differ from the true values. Ability of the optimization
algorithm to find the true minimum depends on a number of requirements imposed on
both data quality and technical configuration of the fitting routine. The importance of
correct data acquisition for input of pharmacokinetic analysis has been shown in a study
on the effects of temporal sampling and noise level of the acquired image data [Luypaert
et al., 2010]. Apart from this, little attention was given to technical aspects of the fitting
routine and their influence on the parameter estimates.

Two studies on accuracy and robustness of parameter estimates from pharmacokinetic
modeling with the two compartment exchange model were performed, based on simulated
concentration time curves. The closed-form analytical convolution and differential equations
for definition of the model function yielded similar results in terms of accuracy and precision.
Fitting with the closed form solution is superior in computational time. Both approaches
are limited in accuracy for situations with low blood flow. The model parameter or
the fractional interstitial volume shows great instability and little reliability in all cases.
However, results are representative only to an extent, since one type of arterial input
function and one noise level were used. Furthermore, stability assessment was performed
with the small number of different curve types. A statistical analysis was not conducted,
because the examined samples, i.e. the simulated concentration time curves, are not
statistically independent. The individual curves were functionally identical for the given
parameter set and differed only in noise. Hence, statistical evaluation of the results would
be unreasonable.

Nevertheless, the presented results revealed that different parameter combinations yielded
different levels of accuracy and robustness of the fit.

It has been hypothesized that the choice of initial parameter values influences the opti-
mization routine, and thus, the parameter estimates [Brix et al., 2009]. In the presence of
several local minima for the similarity measure, initial position will determine the direction
of optimization. Under these circumstances, it is possible for the optimizer to find a
local minimum, close to the initial values, rather than the correct global minimum for the
parameter estimate. This problem is also known in the area of dynamic PET, where various
strategies are used to find the optimal set of initial values [Boxenbaum et al., 1974; Yaqub
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et al., 2006]. In DCE MRI, necessity for the appropriate choice of starting parameters
has been mentioned, but it has never been studied in depth to the best of the author’s
knowledge.

The influence of starting values for model parameters on the outcome of the fitting process
was investigated using simulated concentration-time curves. Results showed that accuracy

and precision of parameter estimates are influenced by the initial values less than expected.

Estimates on Fj,, and PS are sensitive to their own start values at low values. Apart
from that, no clear relation between start value and error on the parameter estimate was
found. However, only the effects of varying one start parameter were investigated. For
further clarification, the next step would include variation of start values of two parameters
simultaneously. Again, it should be considered that only one type of AIF was used.

For detailed quantification of fitting accuracy and possible inter-parameter dependencies,
further studies have to be performed. Using the image based approach within the simulation
framework, a large number of parameter combinations can be simulated and results can
be visually assessed. From the resulting large variety of parameter estimates, regions of
increased or decreased stability and accuracy can be deduced. These regions can be studied
again as representative parameter sets on a large number of curves, in order to find a model
for the error on parameter estimates, which could be integrated into the fitting routine.

5.3 8F-FET PET

Amino acid PET is a promising modality for detection and characterization of brain
tumors, because it offers high sensitivity and specificity for glioma tissue. Uptake of the
I8F-FET tracer has been correlated with cell density [Pauleit et al., 2005; Stockhammer
et al., 2008]. Various authors have investigated correlation *F-FET positive volumes with
tumor progression [Weber et al., 2009] and progression-free and overall survival [Piroth
et al., 2011]. Applicability of !®F-FET PET for radiotherapy planning and its capability
to improved target delineation have been shown in several studies [Grosu and Weber,
2010; Weber et al., 2008]. Thus, inclusion of data from F-FET PET was desired for the
presented multi-modal multi-parametric analysis approach.

5.3.1 Studies on Dynamic 8F-FET PET

To the best of the author’s knowledge, pharmacokinetic modeling on dynamic '*F-FET
PET data has been performed so far by a single group [Thiele et al., 2009]. Thus, the
question which model suites best the tracer kinetics is still unanswered. In principle, the
kinetics of !8F-FET can be modeled with the two tissue compartment model (2TCM) due
to the bidirectional transport of ¥F-FET through system L. The compartments represent
IBF-FET in blood or plasma (c,(t)), in EES and in the cells. However, if data quality
is not sufficient, the five parameters in the 2TCM can lead to overfitting. In this case
parameter estimates are inconclusive. The one tissue compartment model (1TCM) on the
other hand is widely used in dynamic PET, as it is a simple representation of the tracer
transport between blood and tissue. Most studies either focus on the analysis of single
frames [Weckesser et al., 2005] or resort to qualitative description of time-activity curve
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types [Jansen et al., 2014; Thon et al., 2015]. The approach of Popperl et al. [2006] using
weighted frames provides an alternative analysis strategy.

The implementation of a GUI-based analysis workflow for pharmacokinetic modeling of
dynamic PET data allowed investigation of the feasibility of describing the time activity
curves from dynamic FET-PET scans with two widely used tracer kinetic models, the one
tissue and two tissue compartment model.

Since dynamic acquisition of '®F-FET PET scans, described in section 3.3.3, might reveal
further details of tumor physiology, analysis of this data was of high interest. The
developed dynamic data analysis module allowed implementation of a tool for voxel wise
pharmacokinetic fitting of TACs from dynamic 'F-FET PET and assessment of parameter
estimates as well as fitting quality.

Available data from recurrent high grade glioma patients provided dynamic ¥F-FET PET
scans for twelve patients. The data acquisition mode of non-equidistant time sampling
steps provided high temporal sampling in beginning of measurement, in order to catch
the bolus arrival in the arteries. At later measurement time points, coarser sampling is
sufficient to assess curve tendencies. These conditions allowed for appropriate estimation of
arterial concentration in the carotid arteries. In five patients, the afore described study on
the endpoint static image showed that tracer uptake is too low for reasonable application of
the isocontour 50%. For the remaining seven patients, voxel-wise fits of the model functions
of the 1" TCM and the 2TCM were performed within the volume of the isocontour 50%, in
order to study applicability and robustness of both models for the available *F-FET PET
dynamic data.

The resulting parameter maps for fitting estimates of K; (1TC), ko (1TC), K; (2TC),
k2 (2TC), ks (2TC), k4 (2TC) and Vi (2TC) were averaged within the isocontour 50%.
Large errors in terms of standard deviations, especially in parameter estimates with the
2TCM, indicated decreased robustness of this model. Closer investigations of the parameter
maps and fit curves revealed, that increased number of degrees of freedom in the 2TCM
(five free fitting parameters) support overfitting of the curve. In general, two out of the
five parameters seemed to be unnecessary for description of the curve and hence, were
estimated with illegitimate values. Nevertheless, the enhanced degree of freedom of the
2TCM yields smaller X? values. Additional fitting parameters allow a better adaption
of the model curve to the measured data points. However, a large number of outliers in
parameter estimates and X2 in an unreasonably large value regime revealed decreased
robustness of the fits and hint at insufficient data quality of the measurements to assess the
complex physiological interplay described by the 2TCM. For stable parameter estimates,
the 1TCM provides a good approach. These results are in concordance with findings of
Thiele et al. [2009].

Like in DCE MRI, deriving semi-quantitative curve parameters from non-compartmental
analysis provides an alternative evaluation method to pharmacokinetic modeling [DiStefano,
1982; Gibaldi and Perrier, 1982; Riviere, 2011]. For this thesis, non-compartmental analysis
was performed in these seven patients. The semi-quantitative parameters AUC' (area under
the curve) and SUV,eqi exhibited differences between initial tumor volume, progressive
tumor volume and healthy tissue. The M RT (mean residence time) showed stable values
with little variations between patients. However in five of the seven patients, the MRT
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was slightly higher in the tumor progress volume compared to the GT'V and healthy brain
tissue. The evaluated parameters could be helpful markers in tissue classification.

5.3.2 Studies on Endpoint Static ®F-FET PET

The SUV calculation and the isocontour segmentation plugin implementations made
quantitative studies of PET data with MITK possible. This option is particularly interesting
for combination with other modalities (MRI) and information from radiotherapy treatment
planning, e.g. structure sets and dose distributions. Both tools were used for a study of
endpoint static '*F-FET PET data from recurrent high grade glioma patients.

The prognostic value of '8 F-FET PET, and the effects of its inclusion into the radiotherapy
treatment planning procedure, have been investigated by various authors [Grosu et al.,
2005]. There is no gold standard for delineation of lesions in PET images in general |Lee,
2010]. The level the tracer uptake, which has to be considered pathological and hence
included into segmentation, is unclear and presumably varies between tracers. The SUV
somewhat normalizes the measured activity to the patient, however, the assumption of
SUV = 1 for normal tissue is based on assuming free diffusion of the tracer and a tissue
density of water throughout the whole patient body. These assumptions are valid only to
an extent, and thus thresholding the SUV for values larger than 1 does not yield satisfying
results, even under consideration of the noise level [Keyes Jr et al., 1995]. Isocontours are
widely used in clinical routine. Nonetheless, there is no standard threshold and different
centers use different values.

Selection of an appropriate segmentation algorithm is crucial for interpretation and quan-
titative evaluation of ®F-FET tracer uptake in brain lesions [Zaidi and El Naga, 2010].
Vees et al. [2009] compared different contouring methods on ®*F-FET-PET images of
high-grade glioma patients to the standard delineation based on contrast-enhanced T}
weighted MRI. Investigated segmentation techniques included manual delineation, a fixed
cutoff of SUV > 2.5, isocontours of 40% and 50%, a signal-to-background ratio (SBR)
based adaptive threshold, a gradient finder based on the Marr-Hilldreth operator and 3D
region growing. Results showed, that PET-based contours were usually smaller than the
MRI-based segmentation, however 'F-FET-PET was able to detect lesions not visible in
MRI. In 33% of the cases, PET-based contours included substantial volumes outside of the
MRI based GTV. The fixed cutoff SUV > 2.5 and the gradient finder yielded poor results.
The SBR thresholding yielded best performance and most reliable results.

In the presented work, segmentation volumes resulting from different contouring techniques
were compared to treatment planning gross tumor volume and tumor progress volume. For
delineation of the PET active lesions in 18 recurrent high grade glioma patients, isocontours
of 40%, 50%, 60% and 70%, and two semi-automated segmentation algorithms, 3D region
growing (RG) and the multi-labeled random walker (RW), were used. The maximum SUV
in all 18 lesions varied between 1.08 and 4.57, which is low compared to uptake of tracers
like 18F-FDG.

It could be observed that applicability of certain contours depends on the level of tracer
uptake. In order to use isocontours of low percentiles (i.e. 40% and 50%) with reasonable
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outcome, the tracer uptake gradient between lesion and background has to exceed certain
thresholds. Application criteria could be formulated in terms of thresholds on the ratio
between maximum and reference SUV values (tumor-specific uptake ratio).

Conformity between MRI-based contours of GT'V and PET-active regions were only valid
to an extent, with a maximum conformity index of Cary =~ 0.6. With decreasing maximum
uptake, smaller contours (larger isocontour thresholds, region growing and random walker)
yielded better conformity. In some cases substantial mismatches between PET and MRI
contours could be observed.

Conformity of the PET-based contours with the GT'Vp,,4. was generally lower than with
the treatment planning GT'V. Overall, larger contours (isocontour 40%) yielded better
conformity with the GT'Vp,oq.. Detailed study revealed that the isocontour 50% provides
best trade-off between sensitivity and specificity of all PET-based contours, with respect
to tumor progress volume. In summary, no contouring technique showed clear superiority.

With regards to the presented results, it is questionable, wither definition of a fixed
contouring method for delineation of lesions in '8 F-FET PET images is meaningful. The
large heterogeneity of tracer uptake between patients suggests that the contouring method
should be chosen individually adjusted to the patient, depending on the amount of tracer
uptake. This hypothesis is supported by the relation between SUV,,q, and best conformity
yielding contour, illustrated in figure 4.23. At the first glance, a roughly linear relation
could be assumed. Logistic regression could provide a more realistic estimate on the relation
between SUV,,.. and suitable contouring technique, as it accounts for saturation of the
conformity index in low and high value regimes.

In this study, the irradiated dose and its 3D distribution were not considered, even though
it obviously influences the formation of progressive tumor volume and thus the overlap
between PET-based contours and progressive tumor G1'Vry. At first glance, no relation
between dose and conformity, sensitivity of specificity could be observed. A more detailed
study of the effects of the applied dose is however easily applicable with the presented
software environment.

5.4 Multi-Modal Image Analysis using Random Forest Machine
Learning

The previously presented software tools allowed for multi-modal, multi-parametric im-
age analysis and development of a framework for prediction of tumor growth patterns.
Most approaches for simulating tumor growth are based on generative modeling. This
approach can be difficult in systems with complex underlying fundamental principles, since
explicit mathematical formulations for all system influencing parameters have to be defined.
Swanson et al. [2000] presented a method for modeling tumor expansion velocity in grey
and white brain matter using diffusion-reaction-equations. Several authors have applied
diffusion tensor imaging for modeling diffusion processes in tissue [Jbabdi et al., 2005;
Swanson et al., 2003; Konukoglu et al., 2010].

This thesis was based on the approach of Weber et al. [2015], who presented a discriminative
modeling approach using random forest machine learning. However, the presented work
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used a novel approach of including metabolic and hemodynamic surrogate parameters,
derived from amino acid PET and DCE MRI, in combination with information from
radiotherapy treatment planning for prediction of tumor tissue volumes.

The random forest algorithm was chosen to perform classification of data because of its
capacity for multi-class pattern recognition and efficiency on large data sets, without the
danger of overfitting. With the ability to handle a large number of both input variables and
features, random forests are suitable for the task at hand, where hundreds of thousands
of pixels from each patient need to be classified. A command line tool was developed
for easy setup of forest training and prediction. In principle, it is possible to start forest
training and prediction directly within MITK with loaded feature images. However, if a
large amount of data (many different patients and/or features) should be investigated this
procedure is inefficient.

Applicability of the established analysis workflow was shown on retrospective data of eight
patients with recurrent high grade glioma, for which sufficient multi-modal image data
was available. Besides hemodynamic parameters, derived from DCE MRI, and metabolic
quantities estimated from both endpoint static and dynamic *F-FET PET, parameters
from diffusion weighted and T FLAIR MRI sequences were included for forest training.
Furthermore, the irradiated dose was considered in the analysis, as it influences the
formation of progress patterns significantly. All image preprocessing steps were done with
MITK. Performance of the classification workflow was tested with four different training
configurations and subsequent prediction of tumor growth patterns with the resulting
forests in one patient.

In general, the presented predictions could identify the tumor volume rather well without
usage of standard modalities like T7 weighted contrast enhanced MRI. The classification
results based on physiological modalities suggested larger GT'V volumes. Inclusion of the
predicted initial and progressive tumor volumes would yield a larger treatment planning
contour, which might include micro-invasions of surrounding healthy tissue. Using the
calculated dose distribution from radiotherapy planning smoothened and improved the
classification result.

In order to increase the number of testing and training samples, the leave-one-out method
was used for tissue classification of all eight patients. Training was performed on seven
patients with the feature images T> FLAIR MRI, ADC maps from diffusion MRI, normalized
SUYV values from endpoint static '¥*F-FET PET, semi-quantitative parameters AUC, M RT
and Craz (SUVipge) from dynamic MRI and PET measurements, and the calculated dose
distribution. The patient used for testing was permuted through all eight patients. Results
were evaluated in terms of sensitivity and specificity of the predicted volumes for “initial
tumor” and “progressed tumor” with respect to the “ground truth” defined in the class
mask. Sensitivity was high in most patients. The maximum sensitivity of 0.80 + 0.24
was found in the predicted progressed tumor mass with respect to the mask defined
GTYV . Specificity was lower. The highest specificity was found in the comparison between
predicted progressed tumor mass compared to the mask defined GT'Vp,,,. with an average
value of 0.60 £ 0.23.

Prediction results were not optimal with 100% sensitivity and specificity. However, sen-
sitivity and specificity were larger compared to results of the study on *F-FET PET
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alone. Especially the predicted “progressed tumor” volume yielded good results except
in one patient. The presented study provides a novel approach for tissue classification.
Results show, that tumor tissue can be predicted using only functional and metabolic
imaging modalities. Furthermore, the prediction analysis detected initial tumor volumes,
larger than those visible in the 77 weighted contrast enhanced MRI and CT images. Other
investigation could assess absolute predicted volumes with respect to additional doses
applied to non-tumorous tissues. This trade-off between volumes receiving unnecessarily
high doses and good tumor coverage is essential for therapy planning in radiation oncology.

The random forest classification tool that was developed in this work performed in terms
of computational time and efficiency, as well as easy configuration of training and testing
conditions. Parallel computing made the algorithm reasonably fast and efficient in terms of
computational storage. No difficulties were encountered with larger training sets (6 patients,
10 features, roughly 10° pixel per patient). In principle, resolution of the prediction is
determined by image with highest spatial resolution. At this resolution two image positions
(pixels) are possibly different in their attributes and hence can be distinguished from one
another in classification. However, dominant features with lower spatial resolution will
distort this and hence, influence the prediction resolution.

Manual data preprocessing is inevitable but time consuming. One of most time consuming
steps presents export of raw data from the CHILI PACS? [CHILI®, HIT Research Data
Base|. Coupling of the analysis routine to the PACS could facilitate this step and thus,
speed up data preparation. Some steps of the preprocessing workflow could partly be done
automatically, e.g. image registration and most calculations of feature maps. This approach
is, however, hindered by the large heterogeneity of the available data. Not every modality
is available for every patient. Inclusion of data acquired at external centers implies differing
sequence and acquisition parameters for same feature images. Some procedures have to be
performed manually nonetheless, in particular creation of class masks for forest training.

Prediction results of a forest depend greatly on finding the right cohort (sample) for
training. In the presented work, patients with recurrent high grade glioma were chosen.
These patients did not undergo surgery and thus, direct mapping of imaging pixels before
and after therapy is possible. Furthermore, the patients received irradiation from a single
plan, i.e. no boost was applied, and radiation was delivered from a single beam direction.
This made direct study of images before and after radiotherapy possible without distortion
factors from different treatment courses between patients. For analysis of data from primary
tumors, an adequate classification protocol has to be found.

Another issue is quantification and interpretation of prediction results for evaluation. The
used class mask does not necessarily provide the ground truth, describing the true tumor
extent.

Patients investigated were diagnosed with both glioblastoma and anaplastic astrocytoma.
It has yet to be investigated, whether these entities should be separated in the classification
process. Furthermore, the question of the sample size has to be discussed. It was shown,
that the number of patients used for training influences the prediction outcome. On the
one hand, more patients lead to statistically more relevant and trustworthy results, due to

2picture archiving and communication system
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an increased number of samples. On the other hand, a larger variety of patients introduces
an increased degree of heterogeneity, which makes it more difficult for the forest to find
generalized classification rules.

The endpoint, on which training is performed, can be varied. In this study, additionally
grown tumor volume at the first progress confirming follow up was used. This was due to
the fact that the study aimed to investigate whether the progressive regions possibly arise
from underestimation and thus, under dosage, of the tumor extend at planning. The goal
was to identify these regions in advance using additional physiological imaging modalities.
The GTV was used as definition of initial tumor volume, because the progress was also
defined in terms of contrast enhancing region in the 77 weighted MRI. Using a cohort
of patients with favorable outcome (disease free, stable disease) could be used to learn
adequate rules for target volume definition. Predictions from the resulting forest could be
used for guidance in GT'V delineation.

Further studies should be done to investigate the appropriate choice of features on which
classification should be performed. In this work, focus was put on parameters from
physiological imaging modalities. Weber et al. [2015] used data from diffusion weighted MRI
together with several distance and texture measures, accounting for the distance of each pixel
from primary tumor site and nerve fiber paths, describing tissue structure. These parameters
could be combined with the presented multi-modal features for improved classification with
both anatomical and physiological tissue properties. Another option is considering further
information from treatment planning. For ion therapy, range uncertainties of the distal

edge could be included to find possible regions of under-dosage at the steep dose gradients.

Feature importance analysis can be used to determine the parameters most relevant for
correct classification. These parameters could be considered accordingly with increased
weighting in clinical treatment planning and target delineation.

The presented workflow can be used for longitudinal data analysis of several time points
in order to study progress formation and growth. It might be especially interesting to
investigate consecutive time points from follow up over a long time period. This setup
excludes the possibility of pseudo-progression and could yield a deeper understanding of
the differences between fast and slow growing tumors.

The presented workflow uses the random forest algorithm for tissue classification. Random
forests also present the opportunity for regression analysis, which might be more suitable
for yielding the probability of each pixel being or becoming tumor. The regression results
could be included as “probability maps” into the treatment planning routine.
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The goal of radiotherapy is to induce destruction of the tumor while spearing the sur-
rounding healthy tissue. Target delineation, i.e. the definition of the tumor extent, is
based on radiological images, which allow for differentiation between tumor and normal
tissue. Current standard definition of radiotherapy target volumes is based on contouring
anatomical information from computed tomographic (CT) images, providing information
on the tissue density distribution. Detection of tumor fronts for primary brain tumors
(glioma) is limited due to diffuse infiltration patterns of the surrounding normal brain.
These tumors often exhibit breakdown of the blood-brain-barrier. This effect can be
assessed using contrast agent enhanced 77 weighted magnetic resonance imaging (MRI).
Usage of biological imaging, e.g. amino acid tracer positron emission tomography (PET),
can provide further information.

The presented thesis aimed to improve radiotherapy target delineation of high grade glioma
using an integrative image analysis approach. Focus was set on physiological imaging
modalities, including metabolic and functional images from PET as well as diffusion and
perfusion MRI. Amino acid tracers for PET provide enhanced uptake in glioma tissue, which
has been shown to correlate with cell density in the literature. Several authors have shown
that usage of '8 F-FET can increase survival time significantly by improving treatment
planning. Perfusion and diffusion MRI have been established as a useful diagnostic tool
in various brain diseases in several studies. Dynamic contrast enhanced (DCE) perfusion
imaging enables quantification of tissue micro-circulation and micro-vascularization by
measuring hemodynamic parameters, such as cerebral blood flow and volume. Diffusion
weighted imaging enables assessment of nerve fiber structures and the derived apparent
diffusion coefficient, which has been shown to correlate with cellularity by a number of
authors.

Data from recurrent high grade glioma patients, included in the CINDERELLA trial
[Combs et al., 2010] at the HIT! facility, was studied. Image data from this study included
standard imaging protocols (CT and Tj-weighted MRI with and without contrast agent),
as well as T, fluid attenuation inversion recovery sequences, functional MRI sequences for
perfusion, diffusion weighted and susceptibility weighted imaging sequences.

The first step was to investigate of the surrogate value of these modalities. Parameter
assessment was studied with respect to the physiological correlates, as well as parameter
stability and robustness. For this purpose, software tools for the quantitative analysis of
the available image data were developed. The medical imaging interaction toolkit (MITK)
was used as a common software basis. For analysis of dynamic image series, a software
module for extraction and fitting of signal-time curves with a dedicated model function was

!Heidelberger Ionenstrahl-Therapiezentrum
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implemented. In principle, the developed module can be used for any kind of 4D dynamic
data modeling. In the context of this work, it was mainly used for pharmacokinetic
modeling of indicator behavior in dynamic PET and DCE MRI. An extension to the
model provides means for calculation of semi-quantitative, curve-describing parameters
from non-compartmental analysis, e.g. the area under the curve and mean residence time.
Additionally, a tool was developed for calculation of standardized uptake values (SUV),
a widely used clinical measure for assessment of tracer uptake in PET. Segmentation of
PET images is usually done using isocontours, a percentage thresholding method. Hence, a
plugin for automatic delineation of isocontours with a variable threshold was implemented.

Model feasibility of two pharmacokinetic models was studied for dynamic '*F-FET PET
data in seven patients. The results showed, that the two tissue compartment model
represents, in principle, a feasible description of '8F-FET kinetics. However, the one
tissue compartment model yielded better results with regards to stability and robustness.
Furthermore, non-compartmental analysis of time-SUV curves were performed, yielding
semi-quantitative parameters in different tissue volumes. Parameters differed in initial and
progressed tumor volume compared to healthy tissue, leading to surrogate parameters in
tumor assessment.

DCE MRI data were investigated for feasibility to pharmacokinetic modeling in three
sample patients using the presented software tools. Assessment of the arterial concentration
showed, that the acquired data were not suitable for dedicated pharmacokinetic modeling
analysis due to low temporal resolution. Non-compartmental analysis of the concentration-
time curves yielded semi-quantitative parameters, which could be shown to differ between
target volumes from radiotherapy planning and progressive tumor volume. Hence, they
could provide stable measures for tissue classification.

Pharmacokinetic modeling provides a complex analysis method that is prone to error,
if not used properly. Parameters are usually estimated by fitting a model function to
measured data using standard non-linear least squares methods (NLLS). NLLS poses an
unconstrained optimization problem that does not necessarily yield a unique solution.
Different factors concerning data quality as well as optimization algorithmic can influence
the outcome, since the optimizer might find a local minimum instead of the global one.
In the literature, several studies on model feasibility and comparison between different
models have been performed. However, little attention was given to technical aspects of
the fitting routine. The high flexibility of the presented dynamic data analysis software,
and the possibility for specifying both model function and optimizer configuration, gave
the opportunity to study certain aspects of non-linear least square fitting in tracer-kinetic
modeling. During the course of this work a simulation tool for perfusion data was developed,
which allows for generation of synthetic perfusion MRI data. The tool works opposite to
the fitting process, using a model function and maps of the corresponding parameters to
calculate the resulting concentration-time curve and store it in a 4D image. Synthetic DCE
MRI data, created with the simulation tool, was used for two studies on accuracy and
robustness of parameter estimates in DCE MRI with the two compartment exchange model.
This model is defined by two coupled first-order differential equations, which can be solved
analytically or by direct integration. Both strategies were compared for different parameter
scenarios on synthetic 4D images. The resulting parameter estimates were evaluated in
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terms of accuracy, precision and computational speed. Both approaches yielded similar
results in parameter determination, the convolution excelled in computational speed. It
has been mentioned by several authors, that the choice of initial parameter values has an
influence on the optimization routine and thus the parameter estimates. In the presence of
several local minima for the cost function within the search space, the initial position will
determine the direction of the optimization. Under these circumstances, it is likely, that
the optimizer does not choose the correct global minimum for the parameter estimate but
rather a local one lying closer to the initial values. The necessity for adequate choice of
starting parameters has not been studied before. Since the presented fitting module allows
definition of starting values for each parameter on a pixel-wise basis in form of images,
the influence of the optimization parameter start values could be studied in the presented
work. Results show that the influence of starting values of the optimization routine on the
accuracy of the parameter estimates was less than expected.

The second step of analyzing multimodal image data from primary brain tumor patients
conducted studies on comparison between parameter from different modalities. The goal
was to investigate the extent, to which combined image information could yield conclusive
information. Such an analysis was enabled with the developed software tools. Inclusion of
radiotherapy parameters was used to assess mismatches between modalities. The prognostic
value of BF-FET PET with respect to tumor recurrence was analyzed on different PET
delineation techniques, including isocontours of 40%, 50%, 60% and 70% and the two
semi-automatic segmentation algorithms, 3D region growing and the multi-label random
walker. The volumes that these PET-based contours added to the treated gross tumor
volume from radiotherapy planning, were compared to the progression patterns of the
tumor in follow-up examinations. The results showed that no contouring technique was
clearly superior and could provide high conformity, sensitivity and specificity with regards
to the progressive tumor volumes in all patients. Since the level of tracer uptake varies
greatly between patients, results suggested, that an appropriate contouring technique
should be chosen based on tracer uptake in the lesion compared to the healthy brain tissue
background.

The results of these comparison studies were not satisfying. Thus, a novel integrative
approach was pursued as third step. A technique for combining information from multimodal
imaging was developed and tested in this thesis, in order to find physical models describing
the tumor progress formation. The above mentioned modalities and software tools were used
for prediction of tumor progression patterns based on multimodal image classification with
a random forest machine learning algorithm. All images from relevant modalities can be
loaded and preprocessed within MITK, including registration, segmentation and calculation
of the necessary features. A command line tool for automatic training configuration of a
random forest with the desired group of patients and features, and subsequent prediction
boasted on classification of previously unseen patient data. Exemplary prediction analysis
of tumor progression was performed with different training configurations on a small set of
patients with recurrent high grade glioma in order to illustrate functionality of the workflow
and classification results. The developed software environment provides the means for
a number of different studies on multi-modal multi-parametric data sets with regards
to tumor growth patterns. Classification and regression analysis can be performed on
large patient cohorts, with regard to recurrences as well as longitudinal growth behavior
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of tumors. Further studies on the appropriate set of features, patients and investigated
endpoints have to be conducted in the future.

To conclude, this thesis presented a novel approach for quantitative, integrative analysis of
multimodal image data that was developed, established and tested on real patient data.
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Runge-Kutta method

The Runge-Kutta method is an iterative method for approximation of solutions to ordinary
differential equations. The differential equations form the following initial value problem:

Y (@) = f(z,y(@))
(@) = filz, y1(2), o yn (@)
Yo(@) = fo(2,y1(2), .o yn (@)
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Defining a step size h, such as x; = x¢ + ih, then the solution y(z) to the initial value
problem can be approximated with a functionw;, that can be calculated iteratively using:
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This method is referred to as order Runge Kutta.

Convolution with arterial input functions

The convolution of two functions f(t), g(t) is defined as
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Indicator dilution theory states that the concentration time course of an indicator can
be described by convolution of the indicator influx c,(t) (arterial concentration) with a
model specific residue function R(¢, ¢;). For closed-form analytical solutions, this residue
function is a sum of exponential functions R, = e *! with decay constants \,. The
arterial concentration is usually measured from image data, thus it is provided as discrete
array cq[t;] at sampling time points t; € [to, T']. With this, the convolution yields

+oo
Co(t) = (Rp % ca)(t) = / Rt — 7)ca(7)dr
T

= / e_)‘"(ti_T)ca(T)dT

to

This approach requires evaluation of ¢,(7) at all times 7. Approximating the integral via
a sum of discrete sample points leads to major errors in estimating C(t), especially if
temporal sampling ¢; is low. Ingrisch [2012] proposed linear interpolation of the arterial

concentration
At =t — t;
_ Ca(tiv1) — ca(ts)
At
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Using this approach, an iterative formula for calculation of C'(¢;) :=Y; can be found. If Y;
is known, the subsequent element Y;; can be calculated via
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The first sampling point can be assumed as C'(tg) = 0, since the contrast agent concentration
is usually zero at the beginning of the measurement. The second integral can be derived as

tit1
I= /efA”(ti*’rT)ca(T)dT

ti
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ti t;
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With this, the convolution of the exponential residue function with the discretely sampled
arterial concentration c,(t) yields
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