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Abstract:

In this thesis mean square slope has been calculated from slope images which were
recorded by the Imaging Slope Gauge (ISG) at the annular wind-wave tank Aeolotron
in Heidelberg. The calculations have been realized using three different methods, which
are, (i) calculation of the variance, (ii) integration of the slope power spectrum and
(iii) fitting the probability distribution function of slope with a model function. The
resulting values have been compared to each other and to the existing live evaluation
of the ISG for a wide range of wind and fetch conditions. Also the fetch dependence of
mean square slope has been analyzed, which obtains information about the evolution
of a wave field.

Additionally the slope images have been separated with the use of band pass filters
into slope images of gravity waves and capillary waves. By separating gravity from
capillary waves it was possible to analyze their slope probability distribution functions

individually.

Ubersicht:

Im Rahmen dieser Arbeit wurde die mittlere quadratische Neigung aus Neigungs-
bilder berechnet, welche mit der Imaging Slope Gauge (ISG) am Aeolotron, einem
ringformigen Wind-Wellen Kanal in Heidelberg aufgenommen wurden. Zur Berech-
nung wurden drei verschiedene Methoden angewandt, (i) Berechnen der Varianz, (ii)
Integration des Neigungsspektrums und (iii) Anfitten einer Modellfunktion an die
Héaufigkeitsverteilung der Neigunswerte. Die Resultate wurden fiir einen weiten Bere-
ich an Windgeschwindigkeiten und Windwirkléangen, sowohl untereinander verglichen,
als auch mit der vorhandenen Live-Auswertung der ISG. Mit den ermittelten Werten
wurde auch die Fetch-Abhéngigkeit der mittleren quadratischen Neigung untersucht,
welche Informationen iiber die Entwicklung eines Wellenfeldes enthélt.

AuBerdem wurden die Neigungsbilder unter Zuhilfenahme von Bandpassfiltern in
Bilder zerlegt die entweder die Neigungen der Gravitationswellen oder der Kapillar-
wellen beinhalten. Durch das Trennen von Gravitations- und Kapillarwellen war es

moglich deren Haufigkeitsverteilungen der Neigungen getrennt zu untersuchen.
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1. Introduction

One important process in the global carbon cycle is air-sea gas exchange, because the
ocean is both, sink and source of atmospheric COs. Gas exchange at the water surface
is a mass flux and is parameterized by the transfer velocity k& which mainly depends
on near-surface turbulence and therefore also on wind and waves (amongst others, see
e.g. Kiethaber (2014)).

To get a better understanding for the air-sea gas exchange and the transfer velocity
k, the Aeolotron, a large annular wind-wave facility was set up in the Institute of
Environmental Physics in Heidelberg. Using different measurement methods, insight
is gained in the physical processes at the air-water interface.

One technique developed and applied there is the Imaging Slope Gauge (ISG), which
is a refractive system that measures the surface slope of the wavy water surface. From
the recorded slope data it is possible to determine mean square slope of the wave field.
This parameter is interesting because Jah and Frew et al. (2004) found, that the mean
square slope is a better parameter for the description of air-water transfer rates than

the conventional wind speed parameterizations.

There are three different approaches for the calculation of mean square slope from
slope images. One of those methods is already implemented as a live evaluation, which
is printing out values of mean square slope during the measurement. Due to this on-
line evaluation the algorithm has to be fast and suffers some confinements e.g. in
resolution.

The purpose of this thesis is, to investigate if the live evaluation is giving reliable
results for mean square slope. Additionally an easy to use off-line evaluation is to
be implemented in an existing Python-framework to ensure the accessibility of this
important parameter. The implemented methods for the determination of mean square
slope shall be compared to each other for a wide range of wind and fetch conditions.

With the resulting values the fetch dependency of mean square slope is to be analyzed.
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2. Theory

First, the basic physical laws of waves and hydrodynamics are given. After that the
mathematical description of wave fields is explained. In the last part of this section

some essential image processing routines are introduced.

2.1. Physical Laws

Navier-Stokes Equation

The basic equation for fluid mechanics is the Navier-Stokes equation, which results
from fundamental conservation laws in combination with the continuity equation. A
formally derivation of the Navier-Stokes equation can be found for instance in Kun,
?;? + (V)i = —V® — ;% — 2@ x @) + vV, (1)
Looking on this equation one can identify acceleration terms of different forces, acting
on a viscous fluid. The terms on the left hand side represent local and convective
acceleration of the fluid which indicates, that this equation holds in the Eulerian de-
scription. On the right hand side, the terms display from left to right: gravitational
acceleration, pressure gradient acceleration, Coriolis acceleration and frictional accel-
eration.
Summing up, the Navier-Stokes equation is a momentum balance equation that
describes viscous flow. Because of the non-linearity in the convection term, it is only

possible to solve the above equation analytically with some simplifying approximations.

Waves on the Water Surface

From the Navier-Stokes equation, it is possible to derive some special cases of surface
water waves. In the following, linear waves in irrotational, inviscid flow are roughly
described. A derivation and more detailed information can be found in Kun.

Waves on the water surface can be distinguished from their main restoring forces.
Gravity waves are surface displacements which are restored by gravity. Their wave-
length is in the range from several hundred meters to centimeters.

Capillary waves are those whose main restoring force is surface tension. Thus they

have low curvature radius, corresponding to short wavelengths from only a few mil-
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limeters.
Waves with wavelengths in between gravity waves and capillary waves are called
gravity-capillary waves.

The dispersion relation of phase velocity ¢ and wavelength A\ for small-amplitude

waves in deep water is given by

W=+ 22 2

where ¢ is the acceleration of gravity, p the density of the fluid and o the surface
tension. For wavelengths that are dominated by one restoring force, expression (2)
can be simplified further, using only the left term for gravity waves or the right term

for capillary waves (Rocholz, 2008).

2.2. Description of Wave Fields

Observing not only one wave i.e. as solution of a specific equation but looking at an
area of a wavy water surface induced by the wind, one can barely identify a regular
pattern. Instead the surface seems to be the superposition of a huge number of waves
with different wavelengths, amplitudes and phase speeds. Phillips (1977) described it
that way:

The waves found on the surface of the sea are almost always random in
the sense that the detailed configuration of the surface varies in an irrequ-
lar manner in both space and time. Only the various statistical measures
of the motion can be regarded as significant observationally or predictable

theoretically.

There are two ways to describe a wave field that account for the ’irregular manner’.

Both possibilities are introduced below.

2.2.1. Spectral Description

Generally, a wave field can be described by the surface displacement 7n(Z,t) from the

mean water level, so that 77 = 0. Following Phillips (1977) the wave spectrum X (k,w)
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is the Fourier transform of the autocorrelation of n(Z,t),

X(Fw) = ARG = [ [ [RED e arar, 3)

where R(7,7) is the autocorrelation function

R(7,7) = (@ ) n(@ + 7t + 1) = F [ [A(k,w)]]. (4)

The last equality is shown in Kiefhaber (2014) and is really useful, because recombining
(3) and (4) leads to

X(kvw) - ’ﬁ(k7w)‘2 (5)
So the wave spectrum is simply given by the squared absolute value of the Fourier

components of surface displacement.

Another possibility for a spectral description is to characterize the wave field over
the slope s(Z,t) in each point, resolved in time. Actually it is easier to measure the
slope of waves with short wavelength than determining their surface displacement.

Following Balschbach (2000), the two quantities are related via the Nabla-Operator,

—

H&@,t) = V(i t). (6)

One basic property of the Fourier transform is, that derivations in the spatial domain
become multiplications in the Fourier domain and vice versa. Using this we can rewrite
(6) to

Sk, w) = —ikn(k,w) . (7)

Writing the slope spectrum S (E,w) in analogy to the wave spectrum, we find the

following relationship:

—

S(k,w) = | 8k, w)|? = k| 7k,w)|? = kK X (k,w). (8)

2.2.2. Probability Distribution

Instead of using a spectral description of the wave field it is also possible to analyze
probability distributions of slope, surface elevation or phase.

For this thesis only the distribution of slope is relevant and therefore the introduc-
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Fic 1: Gaussian distributions with mean p = 0 and standard deviation o = 1 but with
different skewness parameters -y.

tion of probability distributions is confined to slope distributions. For more detailed

information, see i.e. Holthuijsen (2007).

Assuming linear wave theory, which implies that the principle of superposition is
fulfilled and using the central limit theorem (see Rice (1995)) the resulting slope dis-
tribution is Gaussian. Due to non-linear interactions between the waves the Gaussian
distribution is disturbed. Due to this the real probability density function (pdf) shows
deviations from the Gaussian distribution. Another reason for this effect is, that the
steepness of water waves is limited to a maximum before the waves are breaking.
Additionally there are capillary waves riding almost always on the downwind side of
gravity waves. This leads to a displacement of the most probable slope in positive
x-direction of the distribution (Balschbach, 2000). This characteristics are mathemat-

ically described by the parameters of skewness v and kurtosis k.

As illustrated in figure 1, skewness holds for the asymmetry of a distribution.
For positive skewness parameters v the most probable value is shifted in positive
x-direction, whereas for negative v it is shifted in negative x-direction. For v = 0 the

standard Gaussian distribution is recovered. Mathematically skewness is given by the
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third standardized moment

; 9)

where p is the mean of the random variables X ... X, and o the standard deviation,

given by

o= (iZoc —m?);. (10)

Kurtosis & is given by the fourth standardized moment and describes how peaked’

the distribution is, compared to a standard Gaussian distribution.

_ % Z?:1(Xi - N)4

K
ot

(11)

Using the parameters of skewness and kurtosis it is possible to define a model func-
tion which fits to the measured pdf of slope data. The model function is based on a
standard Gaussian distribution with Hermite polynomials as correction terms and is

given in one dimension by,

_ (s — p)? 1 1
p(s)=A exp( 52 1+67H3—|—24HH4+... , (12)

where the H,, are Hermite polynomials of degree n. There is no physical justification
for (12), but it was proposed by Longuet-Higgins (1963), used by Kiefhaber (2014)

and it accounts well for the shape of the slope distribution.

2.2.3. Mean Square Slope

Mean square slope (oy,ss) is defined as the variance of the surface slope and is a

measure for the roughness of the water surface,
Omss = 0926 + 05 . (13)

The 02 and o7 are the squared standard deviations (see (10)), which are called vari-
ances, in along- and crosswind direction.
It is possible to simply add the variances in along- and crosswind direction to achieve

the two-dimensional information, if those directions are the principal axes of the sys-
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tem, which is given in this case.

This means, that the covariances in z- and y-direction are zero and therefore the
distribution is fully described by the variances o2 and 05. Figure 2 and 3 illustrate this
behavior. In Fig.2 a random distribution with non-vanishing covariances is created,
whereas in Fig.3 a representative two-dimensional distribution of slope values is shown.
It is apparent that the covariance of the slopes in x- and y-direction is vanishing or at

least is close to zero.

The idea of using o,,ss is to link gas transfer to wave-related processes of surface
turbulence generation and surface renewal events. Although there is no theoretical
justification for the use of 0,55, it was shown by Jah that it correlates well with the
transfer velocity k.

In practice, measurements are limited in one way or the other. Additionally o,
can be determined in multiple ways (following Kiefhaber (2014)), each with its own

advantages and drawbacks. All methods listed below refer to recorded slope data.



17

e Statistics: It is simple to calculate the variances of a recorded set of slope data.
Unfortunately it is not possible to exactly measure slope values without upper
limit. Due to this the calculated o,,ss is underestimated. Additionally capillary
waves with very small wavelengths can not always be resolved. This leads to
further underestimation of o,,ss, because the small capillary waves typically

have the highest slopes.

e Probability Distribution: The o,,ss can also be determined by fitting the proba-
bility density function (pdf) to the distribution. The huge problem is, that it is
not possible to write down an analytical function that represents the pdf. But it
is possible to find an appropriate model function that can be fitted to the slope
distribution. One possible model function,which will be used within the scope
of this thesis is introduced in (12). The main advantage of determining o,,ss
by fitting the distribution is, that the fit function extrapolates the higher slope

values that cannot be measured.

e Spectral Integration: It is also possible to calculate o,,ss in the Fourier domain,
which is simply the Integral over all wave numbers. Determining o,,ss this way
has the same limitations as adding the variances of the data set. One advantage
of spectral integration over the statistical methods is, that the contribution of

different wavelengths to o,,ss can be investigated easily.

2.3. Image Processing

In this section some basics of image processing used in this thesis are presented. The
most important tool is the discrete Fourier transform. Directly connected with Fourier
transform is Parseval’s theorem, as well as window functions. Furthermore, a Gaussian

smoothing filter was applied on the data and is introduced below.

Discrete Fourier Transform

The sensor elements of a camera are usually organized on a regular rectangular grid so
that an image with regular rectangular picture elements (pixel) is received. To apply

Fourier transform to such an image, the continuous form needs to be discretized.

Let the picture have M - N pixel with the pixel length Az in both spatial directions.
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Then the discrete Fourier transform (DFT) of a two dimensional signal gy, is

1 N-1 M-1 i i
guv = m Z ( Z 9Imn e M )6_ N (14)
n=0 m=0

This representation is equivalent to the continuous form, but the integral is replaced

by the sum. The inverse discrete Fourier transform is then given as

N-1 ,M-1 . .

gmn:Z( Juve M >e N (15)
v=0 u=0

The normalization factor of ﬁ is usually multiplied to the inverse transform, but

is here used differently. The advantage of doing this is that Parseval’s theorem (see

below) can be applied without any further normalizing.

Parseval’s Theorem

Parseval’s theorem states, that the squared sum of a signal amplitude x(n) is the
same as the squared sum of its Fourier transform. For the discrete Fourier transform

introduced above, the relation is

N-1 N-1 N-—1
Do le@)P =Y [Flem)]P = [2(k)P. (16)
n=0 k=0 k=0

This guarantees energy conservation when calculating the spectrum of an image.

Windowing

One requirement of discrete and bounded Fourier transform is, that the transformed
signal is periodic. If it is not, artifacts are created at the edges of the image which
leads to high frequencies in Fourier domain. To avoid such artifacts, it is possible to
use window functions that decrease to zero at the edges of the image. Multiplying the
signal with such a window function makes the signal periodically continuable.

The window used in this thesis is the Hann function and is given in one dimension

» 1 21
o= 31 (22)] )

where N is the sequence length. To apply the Hann window to an image, a two
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Fia 4: One-dimensional Hann func- Fia 5: Two-dimensional Hann func-
tion for a sequence length of tion for an image shape of 960 x
N = 300. 768pz.

dimensional function is required

w(n,m) = i [1 ~ cos <2]7;”ﬂ - {1 ~ cos (2;\7)] , (18)

where N, M are the dimensions of the image. The one- and two-dimensional functions

are shown in figure 4 and 5.

Smoothing Filter

Smoothing an image means, that fine patterns are blurred and only larger structures

remain visible.

This can be done by using a two dimensional Gaussian filter with standard deviation
o. For a given filter mask with odd length N, the maximum value of the filter is placed
in the center of the mask, so that the mean p is equal to zero. Also considering the

normalization, the N x N filter becomes,

n?c —|—n2
- exp < — 53 y) , (19)

1
G =
b V2o

with —% < ng,ny < % the positions in the filter mask. From this formula a fil-
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ter mask with variable length and standard deviation can be created. Convolving the
resulting filter mask with an image produces the smoothed image, where smaller struc-
tures are blurred. More detailed information as well as some examples on Gaussian

filters can be found in Jahne (2005).
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3. Generation and Preprocessing of the Data

In this section the experimental setup as well as the preprocessing of the recorded

image sequences is briefly explained.

3.1. Imaging Slope Gauge

The Imaging Slope Gauge (ISG) was developed in Heidelberg and further improvement
is still ongoing. With this device it is possible to detect small scale wind-water waves
with high temporal and spatial resolution. The ISG that recorded the data evaluated
in this thesis is installed at the Aeolotron in Heidelberg and is described in detail in

Kiefhaber et al. (2014). Here only the basic mode of operation is introduced.

Imaging Setup

Figure 6 shows a schematic of the ISG at the Aeolotron in Heidelberg. The camera is
observing the water surface from above and the water body is illuminated from below
with a programmable LED light source. On its way to the camera the light rays are
passing a Fresnel lens that guarantees telecentric alignment, before they are refracted

at the water surface corresponding to Snell’s law
Ng sin(a) = ny, sin(F) , (20)

where n, =~ 1 and n,, =~ 1.33 are the refractive indexes of air and water.

Due to the fact, that the light source is installed in the focal plane of the Fresnel
lens, all rays with an exit angle a correspond to exactly one position of the light
source. In other words, slopes of the water surface belong to distinct positions on the
illumination screen independent of their position on the water surface. This important

relation is sketched in Figure 7.

Extracting Slope Data

In the images recorded by the camera, one pixel belongs to a spatial position of the
water surface. The numerical value of this pixel corresponds to the incoming inten-
sity, that originates from the light source. If the light source is coded with a spatial
brightness gradient, it is possible to relate the intensity of a pixel to the slope of the

corresponding point of the water surface.
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To get the slope of the surface in both spatial directions, two intensity gradients
(one in each direction) would be necessary. However, in the used setup, four different
gradients (shown in Figure 8) are applied. This has the additional advantage that
lens effects of the water surface as well as inhomogeneities of the light source can be

minimized by calculating normalized intensities (see section 3.2).

3.2. Data Preprocessing

The routines for normalization, calibration and interpolation of the ISG image se-
quences were implemented in Python by Klein (2015) and used for the evaluation in
this thesis. In the following the main steps that are necessary to get slope information

from a raw ISG image sequence are explained.

Dark Image

First a dark image is subtracted from every image of the sequence. This is done to
reduce electronic artifacts of the camera (Jahne, 2005). The dark image is generated

by averaging images that are recorded with covered camera lens.
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F1c 8: Brightness Gradients of the ISG. Source: Kiefhaber et al. (2014)

Normalization

The normalized intensities are

A-B

L=418 (21)
C-D

Y C+D (22)

with A, B, C, D an image sequence, illuminated with the four intensity gradients like
shown in figure 8. The advantage of the normalized intensities is, that lens effects and

inhomogeneities of the light source are eliminated by normalizing to the total intensity.

Calibration

For the assignment of absolute slope values to the appropriate intensities in each pixel,
a look up table (LUT), similar to the one introduced in Rocholz (2008), is created.
For the generation of the LUT a calibration sphere is used. For this sphere the slope
value in every point is known, so that it is possible to relate slope values directly to
recorded intensities. The details of the calibration process are for example explained
in Klein (2015) and Reith (2014).

Interpolation

During the above explained processes of recording, normalizing and calibrating the
images, bad pixels can occur. Those bad pixels can be determined by thresholding,
and are saved in a separate array. In the last step of preprocessing they are interpo-

lated by an algorithm that was originally developed by D’Errico (2004) and matched
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to the ISG data by Klein (2015). Details concerning the algorithm as well as a test of
suitability can also be found in Klein (2015).

Below, the full preprocessing routine is illustrated in a flow chart.

Raw Images

A B, C, D

Normalization

A-B C-D
A+B° C+D

[ Dark Image ]—»

Zero Images
LUT

j - [ Calibration ] —_— ( Bad Pixels ]
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Bad Pixels
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4. Data Evaluation

The intensity images recorded with the ISG are evaluated in Python. The preprocess-
ing routines (see section 3.2) are reused to generate calibrated slope images.

In the scope of this thesis, the Python framework for the ISG images is extended
by some specific processing routines which calculate o,,ss from the slope-images. Ad-
ditionally the resulting slope distributions are analyzed in more detail. In this section

the methods are explained and difficulties are discussed.

4.1. Statistics

Following the definition of o,,ss (see (13)) it seems simple to calculate the variances
of both slope components s, and s,, add them up and get a result. Then the o,
would be

Omss = 02 + 02 , (23)

with the general definition of variance
0% = (s%) — (s)*. (24)

In the special case of investigating the slope of a water surface the above formula can
be simplified further, because the mean slope of the water surface is expected to be

zero, so that (s;)? = (s,)? = 0, and therefore,
Tmss = (s3) + <3§> : (25)

However in the case of evaluating data from the ISG at the Aeolotron this assumption
is not quite true. Instead it holds, that (s,) > 0 , whereas (s,) ~ 0 as expected. This
is due to the circularity of the facility and is discussed below in more detail.

The first problem with (23) is now, that the image sequences from which the o,
is calculated contains about 2000 images with each a size of 960 x 768px. Due to this
huge amount of numbers it is not possible to read all data at once into the RAM to
apply Pythons built-in function for variance to the data. This means that we need to
calculate the variance for smaller fractions of the data set and then average over the
determined values to become the overall variance.

For the sake of compatibility with the preprocessing routines we do not decompose
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the data set into a few subsets, but we first calculate the variance for each image
with the built-in function of Python and then average over all determined values.

Mathematically, this is

1 T 1 T 1 T
= 2D (e (s)F) = 2 DB — D (s)E (26)
— %f_/ — —
t=1 built—in function =1 _t_l,—/

>0

with 7" the number of images, t = 1,...,7T. The same holds for the slope in y-direction.
The right term represents the mean slope of one image squared and then averaged over
all images so that it will be a positive number, because the mean slope in a single image
does not necessarily need to be zero. But, as explained above, the mean slope over the
whole sequence %ZtT:l<si>t is expected to be zero and therefore, we need to correct
for the error made in (26). This can be achieved by adding the falsely subtracted value
after the calculation of the averaged variances.

The true o,,ss then is

T T
am85=a§+a§+%z sm§+1z (27)
t=1 t=1

This calculation can be easily realized in Python by using the built-in functions that
determine mean and variance of a given array.

Applying (27) on the preprocessed sequences still leads to an overestimation of oy,ss
compared to the values determined with the methods presented below in section 4.2
and section 4.3. This is, as mentioned above, due to the circularity of the facility which
causes centrifugal forces that act on the rotating water body. Due to this the mean
slope of the crosswind component is different from zero and needs to be subtracted
from (27) according to (24). The same is done for the mean slope in z-direction even
though the value is close to zero (order 107°). The final equation for the calculation
then is

1 I 1 X 2 1 X 2
Oomssomn = 02+ 02+ z S+ S (s - (T z<sx>t) - (T z<sy>t> .
t=1 t=1 t=1
(28)
A more detailed mathematical derivation of (28) can be found in appendix A.1.

In the flow chart below the full working routine is illustrated.
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4.2. Spectral Integration

Like introduced in section 2.2.3, 0,55 can also be determined by integrating the slope

power spectrum over all wavelengths. The slope power spectrum (see (8)) is given as
S(k,w) = [3(k,w)|*. (29)

This means, that first two-dimensional DFT is applied on every image of the sequence.
The problem arising here is, that the images have sharp edges whereas one of the
requirements of Fourier Transform is the periodicity of the transformed signal. To
allow for this fact, the images are first multiplied with a window function, like it was

introduced in section 2.3 before the Fourier transform is applied. This leads to
Sz (u,v) = F[sz(m,n) - w(m,n)], (30)

with v and v the pixel indices of the Fourier transformed image, s,(m,n) a prepro-

cessed slope image and w(m,n) the two-dimensional window function as introduced
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in (5). The same formula is valid for the slope images s,(m,n).

The interest of doing DFT, is the value of the integral over each image. Due to
this it is necessary to consider the impact of the window function. To do this in a
efficient way, Parseval’s theorem (see section 2.3) is utilized, which states the energy
conservation of Fourier transform. This offers the possibility to multiply the signal in
the spatial domain with a window function, and correct the amplitudes later in the

Fourier domain.

According to (29) we calculate the squared absolute value of the Fourier transformed
images which before were multiplied with the window function. This means that we

need to correct for the impact of the squared Hann function.

Integrating the squared Hann function (17) in one dimension over the image length

N yields
1 N 1 (N1 2 2 3
N/o w(n) dn—N/O 4(1—COS<N-TL>> dn—é. (31)

To correct for the impact of the window function on the image, the amplitudes must

be multiplied with the inverse of the result, which is %. The Hann function applied on

the image sequence is a two dimensional window, so that the correction factor for the
64

spectrum is .

In the next step, the squared absolute value of the Fourier transformed and corrected
image is integrated over all wave numbers, which is simply the sum over all pixel values.
Like in section 4.1 it must be taken into account, that the wave field is observed only on
a small surface patch. Due to this, the mean value in one single image can be different
from zero, though one would expect the mean slope of the whole water surface to be

Z€ero.

Because the integration is applied to the spectrum, which is the squared Fourier
transform of the slope images (see section 2.2.1) it is not possible for the mean values
to compensate for each other when averaging over a large sequence of statistically
independent images. To account for this fact, the mean value, which is in the Fourier
transformed image simply the pixel at the position ©u = v = 0 is set to zero. This is
equivalent to subtracting the mean of a certain image from the integrated value of the

same image.
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Averaging over all the images and taking all the corrections into account yields,

64 1 T=1 M—1N-1
= 513 (XX kawol) ~00F). @
t=0 u=0 v=0 ¢
with T the number of images in one sequence and u and v are the indices for the
pixels in one Fourier transformed image. For the slope in y-direction the calculations
are analogue, so that o,,ss = ag + JZ.

The full processing routine is illustrated in the flow chart below and is equally done

for the slopes in z- and y-direction.
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4.3. Probability Distribution

As already mentioned in section 2.2, it is difficult to determine o, by fitting a pdf to
the slope distribution, because the analytical function for the pdf is not known. There
are different approaches that try to describe slope distributions, which mostly base
upon the standard Gaussian distribution. In this thesis, equation (12) is assumed to

be a reasonable model function,

p(s)—A‘exp<—W)[l—i—é’ﬂ{g—i—;llnfh—i-... : (33)
This is a standard normal distribution with mean p and standard deviation ¢ which
is modified by Hermite polynomials H,, of order n. The parameters v and x account
for skewness and peakedness of the investigated distribution.

This function is fitted to the slope distributions with A, i1, 0 and y as fit parameters.
The Hermite polynomial of fourth order is skipped (and so the fifth fit parameter k),
because praxis has shown that including a fifth parameter does not improve the result
significantly. Due to this, it is a greater advantage to have less fit parameters in the

model function.

In this thesis the one-dimensional model function (33) up to the third Hermite poly-
nomial is fitted to a one-dimensional distribution (separately for z- and y-direction)
and later the results are superimposed to one two-dimensional slope distribution. This
is possible because the chosen directions z (alongwind) and y (crosswind) are the prin-
cipal axis of the investigated system, such that the slopes are statistically uncorrelated.
As already presented in section 2.2.3 this is clearly visible from the two dimensional
slope distributions, which all look similar to the one shown in figure 3 and vary only
in width and shape but not in orientation. To investigate this quantitatively, the nor-
malized cross correlation of the two distributions in z- and y-direction is calculated,
which is | <

7 Dicl ((Sm — (82)) - (8y,i — <3y>))

Pzy = ) (34)
00y

with s, the slope value in one pixel, (s;) the mean slope of the whole sequence and
o the standard deviation (see (10)). Like already mentioned above, p,, is normalized
which means that the result of (34) is a number between —1 and 1.

For the data sets evaluated in the scope of this thesis we find |p.y| < 0.2. This
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indicates only very weak correlation, so that the above assumption is valid, notably
because in most cases we find |pg,| < 0.1 and only for some measurement conditions

the correlation is about 0.2.

At certain conditions of wind speed and fetch the slope distribution has bimodal
shape. For this regimes the model function (33) was adapted in a way, that a super-
position of two functions (with each individual fit parameters A, u,o,v) was used for
the fit.

Because the standard Gaussian distribution is modified with the Hermite polyno-
mial to represent a reasonable model function, the variance is no longer a direct fit
parameter, but needs to be calculated separately. This is realized by first determining

the mean 4’ from the normalized model function by calculating

p = /s -p(s)ds (35)

where p(s) is the fitted model function with the parameters determined by the fit.

2

Knowing the mean g, the variance ¢’ can be determined by solving the integral,

o = / (s — 12 p(s) ds. (36)

The total g,,ss is then given as the sum of the variances for the slope distributions
in - and y-direction,

Omss = 0;2 + J'y2 . (37)

Analysis of Slope Distributions

Due to the fact that the shape of the measured slope pdfs is varying with wind and
fetch conditions, it seems interesting to further investigate the distributions.

To get some more information about the wave field, band pass filters (see section
2.3) are applied to the slope images. The standard deviation of the Gaussian filter is
chosen to be 15. This leads to an image where the small structures of the capillary
waves are blurred and only the slopes of the gravity waves are visible (low pass filter).
To get the information of the capillary waves, the blurred image is subtracted from

the original image, which results in an image containing only the slope data of waves



33

with short wavelengths (high pass filter).

Figure 9, 10 and 11 represent the result of the procedure, applied to an exemplary
image at conditions of 10Hz wind and 21m fetch, where figure 9 is the original image
and figure 10 and 11 are the separated slopes of gravity and capillary waves.

This procedure of separating the long and the short wavelengths is done for a whole
sequence of images to yield slope distributions for gravity waves and capillary waves
separately. The evolution of these pdfs with increasing wind speed or fetch obtains

information about the development of the wave field at the corresponding condition.



34 4. Data Evaluation

-0.15

—0.30

Y - Axis

—0.45

—0.60

-0.75

X - Axis
—0.90

FiG 9: Slope image at 10Hz wind and 21m fetch.

0.6
0.24
0.4
700 :
600 0.2
500
0.0
400 ’ ;
300
-0.2
200 /)
100 -0.4
0
0 200 400 600 800
X - Axis X - Axis -0.6

Fia 10: Slopes of gravity waves ex- Fia 11: Slopes of capillary waves de-
tracted from figure 9 using a termined by subtracting figure
Gaussian blurring filter. 10 from figure 9.

Y - Axis




35

5. Results

In the scope of this thesis the analysis of wave measurements is performed. The data
was recorded at the Heidelberg Aeolotron by Jakob Kunz and Christine Krauter in
June and July 2015. Different data sets are evaluated, which include five wind speeds
under varying fetch conditions and a wide range of different wind speeds with unlimited
fetch. The calculated values that are used for the plots presented in this section are
listed in appendix A.2 in tables 1 and 2.

In the following, the results will be presented and discussed.

Characterization of Wind Speed

For the characterization of wind speed over a wave field, there are several definitions
that are used for different purposes. For the evaluation of the slope images in this
thesis, there are two relevant parameters that characterize the wind speed condition
in the Aeolotron. One is the frequency which is used as a setting for the electronics
that control the wind generator given in Hz and the other is u,.f, given in m/s which
is measured with a vane anemometer in the facility approximately 1m above the water
surface. The value of u,.y for each measurement is important to know, because depen-
dent on the wave field the mean wind speed u,.; can vary for a fixed wind condition
given in Hz. It was not possible in the scope of this thesis to estimate the magnitude
of this variations due to the fact that until the end of this thesis not all the values for
uref had been available.

The measured values for u,.; are presented in appendix A.2 for the conditions where
the wind sensor was working properly. For the further discussion of the results the
wind condition given in Hz is used to characterize wind speed. For more detailed
information about the wind field in the Aeolotron, the different parameterizations of

wind speed and the corresponding measurements see Bopp (2014).

5.1. Evaluation Methods

Figure 12 shows 0,55 plotted against fetch for fixed wind conditions of 10.0Hz, 12.6Hz,
15.8Hz, 19.9Hz and 25.1Hz. The range of 0,55 used in the plots is adapted to the
total range that appears in the different measurement for comparability. The four
curves in the plots represent different evaluation methods, which are described in

section 4, except for the live-calculation (dark blue). The live-calculation of 0,5
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was implemented by Daniel Kiefhaber and is in principle the same as the statistical
method. The difference is, that this value is printed out during the measurement
and is determined by calculating the variance over the last 600 recorded slope images
for each recorded image. The value for g,,ss given in this thesis as result of the live
evaluation is the last value printed out at the end of the measurement. The temporal
trend of 0,55 Over a whole measurement sequence has been investigated and we found
it to be very stable, so that choosing the last value is a reasonable representation of

the determined values for the conditions that were investigated in this study.

In the plots shown in figure 12 it is conspicuous, that the values determined by
fitting the measured pdf with the model function don’t match the values from the other
methods. Nevertheless, in figure 13, which shows the calculated ¢,,ss for conditions
with unlimited fetch, the values for the fitting method are in good agreement with
the values from live-calculation and the statistics method. Here the calculation in the
Fourier domain (red graph) seems to underestimate oy, for higher wind speeds. This
behaviour can also be observed for wind speeds greater than 15.8Hz in figure 12, where

the red curve lies beneath the other two lines.

Mean Square Slope at unlimited Fetch Conditions

Figure 13 represents the calculated values for o,,ss at conditions with unlimited fetch.
Obviously there are no big differences between the different evaluation methods. In
contrast to the limited fetch conditions, here the fitting method is in better agreement
to the other methods. The specific observation in this plot is the value for oy,
at 12.6Hz wind condition, which seems to underestimate the real value, if a smooth
graph is expected. Due to the fact, that all evaluation methods match together,
there must either be some underlying physical process or some systematic error in the

measurement is responsible for this effect.

To investigate which of the assumptions is more likely, some values from Aeolotron
measurements performed in 2011 (taken from Reith (2014)) are plotted in the same
figure. The value from Reith (2014) for 12.6Hz wind condition is higher than the value
calculated in this thesis and seems much more reasonable compared to the neighbour-
ing values. This leads to the assumption that a systematic error in the measurement

is more likely than some underlying physical process.

It is known that surfactants on the water surface are damping the wave field and
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F1G 13: opmss as a function of wind speed under conditions with unlimited fetch. The
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therefore lead to a decrease in o,,5s. Additionally the development of surfactants
during the measurement is a common problem when investigating water waves. Due to
this we assume that the water surface was not perfectly clean during the measurement
with unlimited fetch at 12.6Hz wind condition. This indeed is a physical process but
due to the fact that the measurements evaluated in this thesis are performed with clean
water surface this is also a systematic error in the measurement. This assumption
cannot be proven, but in Krall (2013) the same behaviour has been observed and

interpreted the same way.

5.1.1. Discussion: Fit-Method

In plots 12 and 13 the values for 0,,ss determined by the fitting method do not match
the other values under fetch-conditions, but yield good results for conditions with
unlimited fetch.

This behaviour is quite unclear, especially because there is no trend visible in the
deviations. Actually, it is not always easy to fit the measured pdf and for a few
distributions it was not possible to get a converging fit. Figure 14 - 16 show some of

the fitted model functions and represent typical shapes of the distributions and the
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problems that appear for fitting the model function.

From the plots shown, it becomes evident that it is possible to describe the slope
pdf with the model function (33), even if the parameter for peakedness is skipped as
explained in section 4.3. In figure 14 on the right it is visible that the fitted model
function lacks peakedness compared to the measured pdf. On the other hand in figure
15 on the right the model function also fits the peakedness of the distribution quite
well. As already described in section 4.3 it is very difficult to achieve a converging
fit with the additional parameter of peakedness in the model function. Additionally
the fitted model functions including the peakedness-parameter are rarely more peaked
than the fits with the simpler model function.

Another characteristic of some of the pdfs is the bimodal shape which can be seen in
figure 15 on the left and in figure 16 on the right. It is also visible that the chosen model
function can deal with this bimodal shape if it is adapted as discussed in section 4.3.
It is also visible that the fits do not match perfectly, but they still fulfill our criterion
that the residuals have a maximum deflection of 0.1, which are 10% of the maximum
value of the pdf. This means that figure 16 on the right shows the worst evaluated fit.
For even greater deviations of the model function from the measured pdf, the pdf is
called 'not fittable’.

Another typical behaviour of fitted model functions is illustrated in figure 15 on the
left, where the positive tail of the model function shows oscillations. This is due to
the Hermite polynomials which are multiplied to the normal distribution to achieve
a reasonable model function. In most cases it was possible to eliminate this effect by
varying the fit-parameters but sometimes the best result was only a maximal reduction
of the oscillations. However, also in this case the residuals are in the required range
and the fit is used for the calculation of o,,s.

In figure 16 on the left the fitted pdf for conditions with unlimited fetch at 31.5Hz
wind condition is shown. Compared to the other distributions this plot shows several
smaller ledges on the flanks of the measured pdf. This shape is typical for distributions
of unlimited fetch conditions that were investigated in this thesis. As a consequence the
fitted model function cannot represent this pdf in great detail because it has smooth
flanks, which leads to continuously scattering residuals.

As illustrated with the help of the plots 14 - 16 it is possible to fit different shapes
of measured pdfs quite satisfactory. For both cases (limited and unlimited fetch) there

are quite good fits (15 on the right and 14) but also some poor results (15 on the left



40

5. Results

— model function
— measured pdf

1.0H

0.8

0.2+

0.0F f
-15 -1.0 -0.5 0.0 0.5 1.0

Residuals
T

1.01

0.8

0.6

0.2}

0.0F - . .
-05 -04 -03 -02 -01 0.0 0.1 0.2 0.3

0.08

0.06
0.04
0.02

0.00

—0.02
—0.041

— model function
— measured pdf

Residuals
T T

—0.06
0

F1a 14: Fits of the model function (33) to the measured slope pdf at 12.6 Hz wind
condition and Tm fetch. The pdf is normalized to the mazimum value for
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pdf in y-direction.
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value for comparability.

and 16 on the right). Due to this it is still unclear why the fit-method yields good
results of o,,ss for conditions with unlimited fetch but shows clear deviations for fetch

conditions.

5.1.2. Discussion: Spectral Integration

For the resulting plots of o,,ss (figure 12 and 13) it is noticeable that the values which
are calculated in the Fourier domain (see section 4.2) are lying slightly beneath the
values calculated with the statistics method. The deviations are at maximum 10% and
increase with wind speed and fetch. Following Kiefhaber (2014) the result of spectral
integration and the statistics method should be exactly the same.

After investigating all possible sources of errors, a mistake in the subtraction of the
mean slope has been identified. The evaluation routine is calculating (according to

section 4.2)

64 1
926007"7“ ~ o T (052(; - Sﬂ?[O? ODt ) (38)
7 0T =

g
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with o2 the integral over the slope power spectrum S, for one image, and S.[0, 0] the
mean of the slope power spectrum of the picture ¢. Calculating the o,,ss this way
is exactly the same as averaging over momentary variances of single images, which
is discussed in section 4.1 and appendix A.l to yield the wrong result for the global

variance.

The physical explanation why this calculation cannot be correct is, that the mean
slope of one single image should contribute to o,,ss, While the global value of mean
slope is expected to be zero. However, in the Aeolotron especially the cross wind
component of the global mean slope is different form zero due to the centrifugal forces
acting on the water body so that we must correct for it. Mathematically the global

mean in the Fourier domain is

. 1
<5>glob = T

WE

3[0,0], (39)
t=1
with § the Fourier transform of a slope image and its mean at the position u = v = 0.

Before doing the Fourier transform on each image we multiply the slope image with
the window function (18). In section 4.2 it was argued, that the impact of the window
function on the amplitudes must be corrected with the corresponding normalization
factor (see (31)).

However, the value for the global mean must be corrected before calculating the
square, so that it is necessary to determine the corresponding normalization factor by

solving the integral,

;/ONw(n)dn:;/ON;<1—COS<3\T;'H>>CWL:;. (40)

The normalization factor for the Hann function in 1D therefore is 2. Due to the fact

that we apply the 2D-function on the image, the normalization factor we use is 4.

This means, that the correct calculation for o,,ss in the Fourier domain is 0,55 =

2 | ;2
oy + o, and

: (41)

with T' the sequence length and $§[u,v] the Fourier transform of the slope image mul-
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tiplied with the window function.

Due to the fact, that the calculations are very time expensive only a few data sets at
present have been evaluated a second time, with the new correction implemented. For
the reevaluated data sets we find a good agreement with the values calculated from
the statistical method. The deviations are at maximum 3% from the statistical value.

Those deviations can possibly result from the linear calibration which is used in
the preprocessing routine, which converts intensity images into slope images. This
assumption arises, because the Fresnel lens placed between the light source and the
water body (see figure 6) is not an ideal lens which leads to errors especially at the
edges of an image. This results in a non homogeneous slope signal, even though the
wave field is assumed homogeneous. When applying the window function (5) to the
images the amplitudes at the edges are damped before the spectrum is calculated and
integrated to yield o,,ss. This way the more precisely calibrated pixels from the center
of the image are contributing stronger to the resulting value of g,,ss than the pixels
at the image borders. In the statistical method all pixels of the image are used with
their full amplitudes for the calculation of o,,ss, which can cause a deviation from the
true value due to aberrations.

In the scope of this thesis it was not possible to investigate this further, though
there are some simple ideas how to approximate the errors that are caused by the
linearity of the calibration. One possibility is to calculate o,,ss for the center and the
edges of the images separately. From the relation between those two values it should

be possible to estimate the errors.

5.1.3. Discussion: Statistics & Live-Evaluation

It becomes clear from figures 12 that the determined values for the statistics method
don’t differ from those of the live evaluation. This is not surprising insofar as both
methods are calculating the variances of the data sets to yield o,,ss. The difference
however is, that the statistical method determines o0,,ss from the complete sequence
of recorded images (see section 4.1), whereas the live evaluation is determining o,ss
during the measurement.

If the ISG is running in the statistical mode which produces statistical independent

images, there is enough time for one image to be calibrated and evaluated before the
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next image is recorded. The calibration used in the live evaluation is similar to the
work flow presented in section 3, but uses only a resolution of 1/8 compared to the
calibration that is done in the scope of this thesis. This means that for one slope value
in the live calibration there are 8 slope values in the calibration, used in this thesis.

Another reason why differences between the two methods can possibly occur is, that
the live calculation is using poorer statistics, because it needs to be fast. In the live
evaluation the o,,ss is calculated over a sequence length of 600 images which corre-
sponds to about 20% to 50% of the sequence length used for the statistical method.
Due to those confinements (in resolution and sequence length) of the live evaluation,
one objective of this thesis was if the resulting value for o,,ss is just approximating
the real value or if the result is reliable.

With the results presented in this thesis it is verified that the live-evaluation of o,

yields correct results.

5.2. Analysis of Slope Distributions

As described in section 4.3 the images of one sequence are separated in gravity and
capillary waves to yield distributions for longer and shorter wavelengths separately.
The pdfs of gravity waves show remarkable differences between limited and unlimited
fetch conditions, whereas the pdfs of the capillary waves look very similar.

Figures 17 and 18 represent the distributions of gravity and capillary waves in
semilogarithmic scale at conditions with unlimited and limited fetch, respectively. The
distributions are presented dimensionless as a function of s/o, with s the slope-value
and o = /0,5 the root mean square.

As can be seen in figure 17 the slope pdf for gravity waves roughly follows a Gaussian
distribution. This is a typical observation for slope pdfs of gravity waves at unlimited
fetch conditions. The distribution of the capillary waves is much broader than the
pdf of the gravity waves and therefore also broader than a normal distribution. It is
consistent with general observations (e.g. Kiefhaber (2014)), that the small scale waves
typically have the highest slope values. In figure 18 the slope distribution of capillary
waves is also broader than the pdf of the gravity waves, but the two distributions look
very different from those in figure 17.

Comparing the slope distributions of gravity waves, which are represented by the

blue curves, one observes that at conditions with limited fetch the pdf has a plateau
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around slope zero and looks much more asymmetric than the pdf at unlimited fetch
conditions. This shape seems reasonable when taking into account that for conditions
with limited fetch a dominant wave length can be observed. The wave field is no
longer a superposition of all possible wavelengths as it is the case for unlimited fetch

conditions.

Additionally, for both pdfs of gravity waves it can be observed that the deviation
from the Gaussian distribution is a little more pronounced for small positive slopes.
This shape accounts for the front-back asymmetry of the wave profiles, which is illus-
trated in figures 19 and 20. The conditions for the represented slope images are the
same as those for which the slope pdfs are shown in figures 17 and 18. In the slope
profiles the tendency that small positive slopes occur more frequently than small neg-
ative slopes is visible. Like shown in figures 17 and 18 this pattern is more pronounced

for the fetch-limited condition.

Investigating the pdfs of capillary waves for the two conditions shown in figures 17
and 18 the distributions look quite different. However, this effect mainly depends on

wind speed but not on different fetch lengths. For both cases (limited and unlimited
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fetch) the distributions of capillary waves are really peaked for small wind speeds and
become broader for higher wind speeds. Figure 21 shows the pdfs of capillary waves
for different wind speeds at conditions with unlimited fetch in semilogarithmic scale.
It can be observed, that the range of detected slope values is growing broader with
wind speed.

The evolution of shape with increasing wind speed seems reasonable, because at
very small wind speeds (5Hz - 10Hz) only a few capillary waves are riding in front
of the waves crest. Those small ripples have the highest slopes at the corresponding
condition, which leads to a broad basis of the distribution. The sharp peak at slope zero
represents the relatively rare occurrence of the capillary waves in those wind regimes,
so that slope zero occurs very often compared to higher slope values. With the increase
of wind speed the relative occurrence of slope zero is decreasing, because the overall
surface roughness is increasing which explains the broadening of the distributions at
medium slope values.

Directly linked to this effect, is the observation of a step in the broadness of the
distribution which occurs from wind conditions of 10Hz to 15.8Hz. One possible ex-
planation for this effect is the beginning of micro scale breaking of the capillary waves.
At 10Hz wind condition no micro scale breaking is detected, whereas at 15.8Hz wind
condition it is frequently observed (personal communication with Angelika Klein).

Another interesting observation in figure 21 is the transition of the pdfs of higher
wind speed conditions (> 19.9Hz) at a slope value of approximately —0.8. For slope
values between zero and —0.8 the pdf nearly has a linear shape in the logarithmic
scale, whereas for slope values less than —0.8 the graph looks more similar to the
normal distribution. See the Gaussian distribution (¢ = 0.2 and p = 0) plotted in the
dashed line, appearing as a parabola in the logarithmic scale. For positive slopes this

behaviour is not that pronounced, but also visible.

A more detailed investigation and interpretation of the distributions shown in figure

21 is not possible in the scope of this thesis, but seems worth to be done in the future.

5.3. Fetch Dependence of o,,,

Figure 22 shows the fetch dependency of o,,ss for different wind speed conditions. The

surface roughness increases with wind speed as well as with increasing fetch.
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An interesting observation in the plot is that for lower wind conditions, up to 12.6Hz
(green and blue graph) the value for 0,55 at unlimited fetch conditions (the last data
point) is significantly smaller than for the measurements at 21m fetch.

A similar behaviour was observed by Caulliez (2013), who calculated the dominant
wave steepness aky under fetch limited conditions. The graph of akg over fetch first
increases before it is then dropping at a fetch length of 26m.

The physical process causing this effect is the general evolution of a wave field,
which is well known from the experimental point of view, but not perfectly understood
theoretically due to the nonlinear interactions.

Figure 23, 24 and 25 represent typical slope images with corresponding slope profiles
at 12.6Hz wind and different fetch conditions. The images correspond to the last three
data points of the green graph in figure 22, which means that o, is increasing from
figure 23 (12m fetch) to figure 24 (21m fetch) and is then significantly smaller in figure
25 (unlimited fetch). From the slope profiles this effect becomes directly clear, because
the range of occurring slope values is much smaller for unlimited fetch conditions than
for those with limited fetch.

The evolution of a wave field is really complex and experimental observations are
described in more detail in Caulliez and Guérin (2012). What can be seen even in the
sample images 23 and 24 is, that with increasing fetch (and also with increasing wind
speed) the dominant wave length of the gravity waves becomes larger, therefore the
wave length of the parasitic capillaries decreases and the range of slope increases. This
is happening from figure 23 to figure 24, where additionally the slope is increasing.
For still larger fetches (or higher wind speeds) it can be observed, that more and more
different wave lengths are superposing, which results in a stationary wave field for

conditions with unlimited fetch.
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6. Conclusion & QOutlook

6.1. Conclusion

In this thesis, existing data sets have been evaluated to verify the live evaluation and
to analyze the fetch dependency of mean square slope.

The evaluated data was recorded with the Imaging Slope Gauge (ISG), which is
installed at the Aeolotron (see section 3.1) and the resulting images have been prepro-
cessed using the routines of normalization, calibration and interpolation, which were
already implemented in Python (see section 3.2).

The preprocessing routines result’s are slope images, from which mean square slope
(0mss) has been calculated. Three different methods have been implemented, which
are, (i) calculation of the variance, (ii) integration of the slope power spectrum and
(iii) fitting the slope pdf with a model function (see section 4). The implementations
are utilizing successive processing routines, such that it is now possible to do the
calculations on a computer with limited memory. However, the first attempts of
successive evaluation were defective especially due to the non zero mean slope in
crosswind direction at the Aeolotron. The errors have been investigated and corrected
(see sections 4.1 and 4.2 and appendix A.1).

With the determined values of 0,55 it was possible to verify the live evaluation (see
section 5.1.3). However, the live evaluation presupposes that the slope calibration is
processed and reliable at the time of measurement, which is not always possible. If
this is not the case 0,55 can be obtained from the evaluations developed in this thesis.

The implemented methods showed consistent results for o,,ss at unlimited fetch
conditions. However, for fetch limited measurements the fitting method is scattering
around the results determined by the other methods. This behaviour is still unclear
and the question could not been solved within the scope of this bachelor thesis.

Analyzing fetch dependency of ¢, it has been observed, that for fetch limited con-
ditions at medium wind speeds up to 15.8 Hz, 0,55 has higher values for large fetches
than for unlimited fetch. It was possible to give a reasonable physical explanation for
this observation with the general evolution of a wave field (see section 5.3).

The slope probability distribution functions (pdfs) show significant deviations from
a Gaussian distribution as well as from the used model function. Due to this for gravity
and capillary waves have been separated in the images by applying band pass filtering

(see section 4). With this method it was possible to investigate the distributions for
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gravity and capillary waves individually. It was found, that the pdfs of gravity waves
approximately follow a Gaussian distribution whereas the distributions of capillary
waves show strong deviations from the normal law (see 5.2). However, the pdf for
slope of capillary waves shows an interesting evolution in shape with increasing fetch,

worthwhile further investigation.

6.2. QOutlook

With the evaluation and analysis done so far lots of ideas arise about how complemen-
tary investigations could be performed, which however can not be part of this bachelor

thesis due to the temporal confinement.

e In addition to the fetch limited measurements, it would be interesting to record
ISG sequences of the temporal evolution of the wave field (at starting wind). For
a sufficient number of such measurements it would be possible to compare the

results to those of the fetch limited measurements (spatial evolution).

e It would be interesting to investigate the small differences in 0,,ss between the
spectral integration and the calculation of the variances. Possibly the accuracy
of the linear calibration can be approximated from those differences (see section
5.1.2).

e The slope pdfs for different measurement conditions as well as the separated
distributions of gravity and capillary waves are not analyzed in-depth in this
thesis (see section 5.2). A more exhaustive investigation and interpretation of

the shapes and their evolution with wind and fetch seems worthwhile.

A correlation of the shapes of the distributions with micro scale breaking is

currently under research.

e A more detailed statistical investigation of the wave field could be performed.
The higher cumulants could be calculated from the measured pdf of slope to
relate them to typical wave profiles at certain fetch conditions and therefore get

a deeper understanding about the evolution of a wave field.
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A. Appendix

A.1. Corrections for Statistical Method

As discussed in section 4.1 some corrections for the calculation of o,,ss need to be ap-
plied when using the statistical method. Here the physical argumentation is skipped

for the sake of clarity and only the mathematical reasons are presented.

The definition of o,,ss is

2 2
Omss = Oy + Oy

with o2 and 02 the variances of the slope data. The variance is defined as
o? =((s—(5))*) = (s?) = (s)°.

The following calculations are done for only one of the variances o, or o, and is
therefore just named o. The whole formula with the corrections applied on both
spatial directions = and y is presented in (28).

In the scope of this thesis we are first calculating momentary variances for each
image separately and later average those values to yield the global variance for the

whole image sequence. Due to averaging we are calculating
T
2 ].

T T
Oavg = T Z (<82>t - <8>?) = Z<32>t - Z<3>?7

t=1 t=1 t=1

S| =
N =

where t is one image of a sequence with length 7. The mistake that originates here
is, that it holds
1 & 21
()7 =(ZD () ) # 7 ()i
T T
t=1 t=1
This means, that if we want to calculate the global variance for one huge array by

averaging over local variances of sub arrays, we must calculate
1 T 1 T 2
2 2 2
7= oty 7 0~ (7 0]
t=1 t=1

The advantage of this procedure compared to calculating the global variance at once

is, that for a large set of images we don’t need to compute (s) for all images in advance.
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A. Appendix

A.2. Calculated Values for o,

Wind Upef AN TR Live Statistic Spectrum  pdf-Fit
[Hz] [m/s] [m/s]
5 1.366 0.029 0.0053 0.00537 0.007299  0.00544
6.3 1.710 0.040 0.0089 0.008903  0.010657  0.00822
7.9 2.336 0.039 0.011 0.011207  0.012791  0.01201
10 2.992 0.042 0.0124 0.012891  0.013837  0.0145
12.6 3.789 0.049 0.017 0.016358  0.016744  0.01475
15.8 4.705 0.051 0.045 0.044612  0.042455  0.04054
19.9 5.759 0.068 0.0716 0.071778  0.064927  0.07079
25.1 7.081 0.114 0.106 0.104607  0.094733  0.10285
31.5 8.348 0.193 0.1446 0.142267  0.126731  0.14341
39.7 9.594 0.256 0.167 0.167322  0.151716  0.16916
50 11.300 0.334 0.1908 0.190159  0.175019  0.19639
Table 1: Calculated values for opmss under varying wind speeds with unlimited fetch

conditions. The values of the live-calculation are taken from the corresponding
documentations of the measurements and u,.y was kindly provided by Maz
Bopp. The other values are calculated as discussed in section 4. The data
was recorded in June 2015.



o7

Wind[H ] Fetch Live Statistics Spectrum pdf-Fit
[m]

10 2 0.001058  0.001057 0.0012798  0.0008313
7 0.015982  0.016021 0.0176415  0.0131641
12 0.024884  0.024498 0.0252318  0.0145159
21 0.034927  0.034181 0.0341817  0.0286111

12.6 2 0.014595 0.0148495 0.0164016 0.015299
) 0.028482 0.0281202 0.0287801 0.029784
7 0.0345 0.0342125 0.0347234 0.030919
9 0.039407 0.0390065 0.0391395 0.037332
12 0.043849 0.0434649 0.0427277 0.038307
21 0.039942 0.0392729 0.0383766 0.042535

15.8 1 0.012371 0.0122653  0.013941 0.00868
3 0.045807 0.0457916  0.045021 0.03493
5 0.047233 0.0467676  0.045737 0.04023
7 0.051131 0.0511203  0.050153 not fittable
12 0.056276 0.0562292  0.053934 0.04075
21 0.050897 0.0505589  0.046855 not fittable

19.9 2 0.061619 0.0611376  0.059431 0.05343
3 0.061452 0.0613008  0.059611 0.05207
12 0.070981 0.0709184  0.066055 0.07701
21 0.073321 0.0725685  0.065557 0.09621

25.1 1 0.079741  0.079451  0.076198 0.07571
2 0.074192  0.073886  0.071819 0.07283
3 0.08407  0.083456  0.077393 not fittable
12 0.101358  0.100753  0.090112 0.07999
21 0.103953  0.104513  0.092901 0.1423

Table 2: Calculated values for op,ss under fetch conditions.
calculation are taken from the corresponding documentations of the measure-
ment. The other values are calculated as discussed in section 4.

The data was recorded in July 2015.

The values of the live-
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