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Zusammenfassung

Automatische Segmentierung fiir die Konnektomik unter Beriick-
sichtigung komplexen biologischen Vorwissens

Diese Dissertation stellt neue Methoden fiir die automatische Segmentierung von Neu-
ronen auf der Basis elektronenmikroskopischer Aufnahmen vor, die sich auf Techniken
aus dem Bereich des maschinellen Lernens stiitzen. Es wird aufgezeigt, wie komplexe
biologische Zusammenhénge beriicksichtigt werden kénnen.

Zum einen wird der V-Multicut eingefiihrt, der es ermoglicht topologische Bedingun-
gen an die Detektion der neuronalen Membranen zu stellen. So kénnen biologisch un-
plausible Membranverlaufe korrigiert werden. Des Weiteren wird gezeigt wie, zusatzlich
zur lokalen Membrandetektion und topologischen Kriterien, die Beriicksichtigung kom-
plexer biologischer Zusammenhénge von Vorteil ist. Fiir die Umsetzung dieser Aufgabe
erweisen sich sowohl der Asymmetric Multiway Cut als auch der hier vorgestellte Semman-
tic Agglomerative Clustering Algorithmus als geeignet. Konkret wird die in Sédugetieren
beobachtbare ortliche Trennung von Axonen und Dendriten ausgenutzt, um eine sig-
nifikante Verbesserung der Segmentierungsqualitét zu erwirken.

Weiterhin werden neue Ansétze prasentiert, welche die Skalierbarkeit der verwende-
ten Algorithmen verbessern. Zusammengefasst leistet diese Arbeit einen Beitrag zum
Forschungsfeld Connectomics indem sie die automatische Segmentierung von Neuronen
vorantreibt.

Abstract

Automated Segmentation for Connectomics Utilizing Higher-Order
Biological Priors

This thesis presents novel methodological approaches for the automated segmentation of
neurons from electron microscopic image volumes using machine learning techniques. New
potentials for neural segmentation are revealed by incorporating (high-level) biological
prior knowledge. This goes beyond the modeling of neural tissue which has been applied
for the purpose of its segmentation, so far.

Firstly, the V-Multicut algorithm is introduced which enables the consideration of
topological constraints for segmented membranes. In this way, biologically implausible
appearances of membranes are corrected. Secondly, this thesis proves that, in addition to
local evidence and topological requirements for the detection of neural membranes, the
consideration of high-level biological prior knowledge is beneficial. For this task, both the
recently proposed Asymmetric Multiway Cut and the introduced Semantic Agglomerative
Clustering algorithm are implemented and quantitatively evaluated. To be precise, the
spatial separation of dendrites and axons in mammals is exploited to significantly improve
the segmentation quality.

Additionally, new ways to improve the scalability of the used algorithms are presented.
All in all this thesis serves as another step towards fully automated segmentation of
neurons and contributes to the field of connectomics.
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Chapter 1

Introduction

1.1 Connectomics and its Computational Challenges

What underlies intelligent behavior, consciousness or memorization? These are ques-
tions that belonged in the realm of philosophy for a long time. Recent technological
advances e.g. in imaging techniques lead to the hope that natural sciences could also
have a word in the discussion. The complexity of the questions demands for an inter-
disciplinary approach. Among others, co-operation between the fields of neurobiology,
chemistry, physics, cognitive science, engineering and computer science is pivotal. This
thesis aims at contributing to the automation of data analysis for this field, specifically
to the fully automated segmentation procedure, a necessity given the amounts of image
data, showing neural cells, that requires processing.

Cognitive phenomena seem to origin from a variety of different mechanisms. The
existence of a Society of Plant Neurobiology [I] and the findings in the research area
of swarm intelligence as e.g. described by Garnier et al. [2] are hinting at a wide range
of processes that underly the basic object of study: cognition. To make them more
manageable, the following considerations will be restricted to intellectual abilities arising
from distinct nervous cells as one finds in all major animal groups comprised in the clade
of eumetazoans. The understanding of the function of such a nervous system is still
a sophisticated task. Only recent developments in imaging techniques and advances in
computational and algorithmic abilities have been fueling hopes that the goal of revealing
some of the secrets behind cognition can be accomplished.

Nervous systems are networks of neurons. They are able to transmit and process
information that are encoded in chemical and electrical signals. These signals can be
passed from one cell to another at special structures, the synapses.

From this brief sketch of the basic building blocks of nervous systems one can already
see that both the architecture of the neurons and the temporal pattern emerging in the
network must be understood in order to explain the systems way of functioning. In other
words on needs to know which neuron is connected via synapses to which other neuron
and how certain signals propagate to the given network.

This is already where the first difficulties arise. Nowadays there are two major trends
in the imaging community relating to the problem at hand. The technique of Diffusion
MRI allows to capture the dynamics of a system due to its non-invasive nature. The
current maximal achievable spatial resolution is around 1-1073m [3]. This resolution is
not sufficient to capture the individual neurons. The diameter of human axon fibers can
be as huge as 2.5 - 107>m but typically they will be thinner than 107%m [3]. Processes
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1 Introduction

as small as 50 - 107"m can be encountered in the used image volumes (e.g. in the data
described in appendix. The spatial resolution of electron microscopes (EM) is good
enough to capture even these thin processes. The big disadvantage here is that the sample
of interest can either be scanned on its surface only via reflected electrons, or given an
adequately thin probe imaged via transmitted electrons. This requirement on its own
prevents an in vivo imaging. Therefore, one is in principle either able to see dynamics
on a rough scale measuring superpositions of countless signals or to get a spatially well
resoluted snapshot in time.

Having access to the spa-
tial structure, parts of the func-
tional interactions may emerge
by means of network analysis.
The branch of research that
has set itself the task of recon-
structing the whole circuit dia-
gram (connectome) that repre-
sents the individual neurons and
their connections is called con-
nectomics. [6] reviews the im-
pact that the knowledge about
the spatial structure of nervous
systems has. According to the
author, opinions on the topic
vary between the assessment that
a connectome is completely use-
less and the estimate that a con-
nectome is the one most useful
@ ' ingredient in understanding the

e ® e brain. He summarizes the aver-

w W aged opinion of the field like this:

“A connectome is necessary, but
Figure 1.1: A connectome of C. elegans. Neurons | .t sufficient'[6]. Tasks arising in

(data described in [4]) are represented by nodes and vicinity of connectomics can
their connections are depicted via directed edges be-
tween them. Since the neuronal structure of this ani-
mal is consistent over individuals the neurons can ac-
tually be named. The coloring is encoding the func-
tion of the respective neurons. The figure was created
with the tool provided in [5]

be assigned to one of three con-
secutive steps: 1) acquisition of
images showing all parts of inter-
est, ii) construction of a connec-
tome based on these images, iii)
network analysis on the connec-
tome.

This work aims at contributing to step ii) by providing novel methods for the segmen-
tation of neurons from EM image volumes. A precise segmentation allows the reliable
reconstruction of the numerous connections mediated by the strongly branching neurons.
In particular we will see that so far proposed segmentation algorithms lack the ability to
include higher-order biological priors in their segmentation decision. This is information
that human experts would use when performing the task manually. The contribution of
this thesis is the formalization of multiple of these priors and their inclusion into opti-
mization problems that are solvable on reasonable problem sizes. We observe that due to



1.1 Connectomics and its Computational Challenges

species #neurons #synapses
C. elegans 302 [7] 7500 [
common fruit fly 1.35 x 10°  [9] 1x 107 [10]
house mouse 7.089 x 107 [11] 5.5 x 101 [12]
human 8.6 x 1019 [13] 1.5 x 101 [14]

Table 1.1: Comparison of estimated mean number of neurons and synapses in the central
nervous system that need to be recovered in order to construct a complete connectome of
the respective species.

the included biological priors the segmentation quality improves significantly. This can
be seen as one step toward a fully automated segmentation procedure and therefore as
one step towards the long term goal of a possible human connectome.

That the steps involved in the construction of a connection between synapses are highly
demanding can be seen by a looking into the history of the field. The first comprehensive
connectivity map of an organism was constructed 1986 by White et al. [7] for the nematode
Caenorhabditis elegans. It took more than 20 years until the next complete connectome
of C. elegans was put together by Varshney et al. [§]. In fact this model organism with its
302 neurons is the only organism whose complete connectome was successfully constructed
up to this point in time.

The reason why we still lack a connectome of a more complex organism becomes
apparent when having a closer look at actual number of connections that need to be
reconstructed. For C. elegans, even though the number of neurons is relatively low,
the number of connections mediated via synapses amounts to roughly 7500. This hints
already towards the complexity that we nowadays face when aiming for connectomes of
more complex model organism like the common fruit fly (Drosophila melanogaster) or the
house mouse (Mus musculus). From Table [1.1] where the estimated numbers of neurons
and synapses are presented for different species, one can get an idea of the increasing
complexity of the task and how huge the project of creating a human connectome is.

All efforts to reconstruct a connectome rely on volumetric image data covering a
sufficiently large section of the neuronal network in the required quality. As I will elucidate
in section only electron microscopy is able to fulfill the requirements for the spatial
resolution and only advanced microtomes, automated slicing devices, allow the imaging
of larger sections in reasonable time. The amount of data that these imaging facilities
produce is immense. Lichtman et al. [I5] estimate that the complete human cortex will
take a zetabyte of storage space. Seeing this number makes it clear that automated
methods will eventually not only be judged by their quality of segmentation but also by
their scalability.

The following section will further explain the different angles from which automated
image analysis could approach the problem. The ensuing section will have its focus
more on the specific approaches that have been proposed so far. Subsequently section
will give an overview on the contribution of this thesis to the field of automated neuron
segmentation.

1.1.1 The Need for Automation

John White and his colleagues started in 1969 with the project of constructing the com-
plete set of synaptic connections in the nervous system of C. elegans. As described in [11]

3



1 Introduction

(a) EM image volume (b) respective segmentation

Figure 1.2: An exemplary isotropic EM image volume in (a), recorded by Knott et. al. [16],
described in detail in the appendix and a respective color-coded segmentation (b) of
the neurons.

it took them 15 years to complete this task. The reconstruction was done manually by
tracing the neurons on printouts of the data with a thin pen. Nowadays, computers can
support the manual tracing of neurons. Still the time for a manual reconstruction of a
human connectome, as estimated by Plaza et al. [I7], is around 1.4 x 10" man-years.
This illustrates how valuable a reliable algorithmic solution to the tracing problem is.

Besides the determination of the course of the neurons, the tracing human experts as
well as any automated solution is required to detect synapses, the structures that form the
connection between th neurons. In addition the determination of the respective synaptic
partners and the excitatory or inhibitory nature of the synapses are essential [18]. It has
been shown that the detection of synapses can reliably be done automatically by Kreshuk
et al. [19], Becker et al. [20] and Fua and Knott [21]. Also for the problem of synaptic
partner detection algoritmic solutions are made available by Kreshuk et al. [22].

The challenge that I will address in this work is the actual establishment of the connec-
tions between the synapses via the neurons. In Figure[I.I]the connections of two neurons
via synapses are indicated via the directed edges in the graph. The task of tracing the
neurons is then complementary with the task of identifying the synaptic partners in the
direct adjacency of the synapses with each other.

Let us distinguish two different directions that an automation can take:

A1l An algorithm could trace the course of neurons and thereby construct a corresponding
skeleton. This is the way humans approach the problem.

A2 Alternatively, an algorithm could detect all cell membranes. This corresponds to a
complete segmentation of the individual neurons as is shown in Figure [1.2]

The course of a skeleton (as produced e.g. by human tracers) is not at all unique. The
decision on the course of the skeleton depends not on local indicators in the data but
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1.2 Background

on indirect information from the surrounding membranes. While for human annotators
the consideration of membrane configuration in a huge field of view is an easy task,
image analysis algorithms do utilize their strengths better when detecting the membranes
directly.

Therefore, within this work we I concentrate on the second approach (A2). The
detection of Membranes can be based on the local appearance of the respective parts of
the data. Different convolution filters help in this binary classification problem. Rather
than handcrafting the decision rules based on these filters, they are learned.

1.1.2 Machine Learning in Image Analysis

Machine Learning, also refereed to as pattern recognition is one subfield of artificial in-
telligence. According to Bishop [23] “[t]he field of pattern recognition is concerned with
the automatic discovery of regularities to take actions such as classifying the data into
different categories”. A distinction between unsupervised and supervised learning is often
made. In unsupervised learning only the data itself is available and patterns/clusterings
must be detected solely on the distribution of the data-points in some feature space. In
supervised learning in contrast, one additionally provides the desired output of the learn-
ing algorithm, the ground truth, on a special training set. The goal then is to learn rules
from the training data that are general enough that one can apply them to unseen data.
This methodology is useful in a huge range of fields, image analysis being one of them.
Handcrafting rules for image analysis tasks is especially desperate since capturing all rel-
evant configurations on a pixel grid of possibly multiple channels must be ensured. An
exception are low level image analysis tasks like edge detectors that could be constructed
learning free.

In this work I will make use of different classifiers like the random forest to compute
certain local probabilities and I will utilize models expressible as probabilistic graphical
models to find a global consensus of all local indications (e.g. in chapter [3)) and to include
biological prior information that helps in the segmentation task (as e.g. done in chapter @

In the field of segmentation for connectomics the vast majority of the recently presented
algorithms (described in section[L.3) utilize aspects from machine learning to some extent.

1.2 Background

Being able to think about the problem of automatic segmentation for connectomics in the
first place is only made possible due to advances in imaging techniques in recent years. To
get an impression of the achievements of the imaging community an overview on commonly
used methods will be given. Subsequently I will describe what one can actually see on the
taken images. Understanding some aspects of the biology of the neurons will turn out to
be crucial in the improvement of the current automated segmentation approaches.

1.2.1 Image Acquisition

All efforts on automated segmentation, as well as all other efforts in the direction of
connectomics, rely on the fact that images covering the relevant parts of the neural tissues
are available. This can not be taken for granted. As we will see in the following, the
technical requirements on the resolution of the recordings are high and therefore the
production of high quality image volumes is a delicate endeavor.
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Since thin neural processes of a diameter of 50 nm do exist, the raw data, on which
the connectome is based on, must necessarily have a resolution better than 50 nm. In
addition, the complete connectome requires the imaging of the complete nervous system.
Therefore the imaging techniques must be scalable. In the following, several imaging
principles are presented and their applicability for the given task is discussed. We will see
that only a few are able to match the minimal requirements.

Photon Microscopy

One choice of visualization principle is based on the measurements of photons. The
concrete setup of the imaging device depends on the wavelength of the respective radiation.

Light Microscopy In the domain of (visible) light microscopy there are several tech-
niques to beak the diffraction barrier associated with Ernst Abbe (1873). Without these
approaches the resolution would not suffice:

For a light microscope with a typical a numerical aperture (NA) of 1.5 the maximally
possible resolution d would be d = ﬁ. With blue light of a wavelength A of 400 nm this
results in d ~ 250 nm.

So far, the mentioned surpassing of the diffraction limit is always restricted to special
experimental conditions. As shown by Ausserré and Valignat [24] a technique called Sar-
fus for example enables the detection of particles with a diameter of 10 nm. This is only
possible though if the particles are isolated. If the probe can be made photo-switchable
florescent other approaches like [25, 26, 27] are feasible. They rely on a sequential activa-
tion of the fluorescence dyes. From the received signals they can recover super-resoluted
images. This approach is able to image the sparsely occurring synapses quite well [28] but
does still seem to fail in the task of imaging neural membranes reliably and in a sufficient
resolution.

An approach introduced by Livet et al. [30], pro-
viding optically pleasing images of neurons via light
microscopy, is called Brainbow. Fluorescent pro-
teins of different colors are expressed in the indi-
vidual neurons in random fractions and result in an
individual coloring of the cells as it can be seen in
Figure (1.3 The coloring clearly gives a huge advan-
tage in the segmentation progress. The cell bodies
and the thick branches of the neurons can be easily
distinguished but the fine processes can not be re-
solved. The value of this data for connectomics on
the neuron level is therefore limited. This kind of
imaging reflects nicely one of the major difficulties in
segmenting neurons. In all recordings with sufficient
resolution they are mostly locally indistinguishable
from each other. For a long time the membrane ev-
idence was the only indication used for segmenting
individual neurons. In chapter [6] I will show how to partly evade the indistinguishably.

Figure 1.3: Examplary Brainbow
image from [29]. Each neuron is col-
ored individually.

X-Ray Microscopy One way to increase the resolution is to increase the energy of the
used photons. With common X-ray microscopes one can achieve resolution of several 10

6



1.2 Background

nm [31]. In [32] the imaging of neurons with a 15 nm resolution is achieved. The imaging
is made possible by a staining via the The Golgi-Cox method put forward by Ramon-
Moliner [33]. This methods relies on the fact that one can apply a staining to only a
small subset of all neurons. In the X-ray images one can observe the difference between
the stained and the non stained neurons. While this method can be utilized to analyze
the shape and topology of single neurons it is not suited for connectomics. Distinguishing
only two kinds of neurons (stained and not stained) can not in any ratio of stained vs not
stained be used for a dense segmentation into all individual neurons.

Electron Microscopy

With wavelengths of orders of magnitudes less than visible light, accelerated electrons
are able to resolve finer structures. In order to adjust the naturally low electron optical
contrast of biological tissue a staining, often times including heavy metals, is necessary.
This staining can make a distinction of cell membranes, cytoplasm and some organelles
possible but as it can be seen in Figure it does not distinguish individual neurons. If
an electron beam hits a stained tissue, a fraction of the electrons are cast backwards while
some do penetrate the tissud] This causes the division of the methodology of electron
microscopy in transmission electron microscopy (TEM) and scanning electron microscopy
(SEM). The “scanning” is due to the point-wise probing of the tissue on an regular grid.
A similar scanning procedure as in SEM, where the backscattered electrons are captured
and therefore the object may be massive, can be applied for TEM leading to the technique
of scanning transmission electron Microscopy (STEM).

No matter which kind of microscope is chosen, one will end up with a two dimensional
image of the probe. Obviously the reconstruction of a connectome can hardly be done
by imaging the brains surface only. Also a single slice through the neural tissue is not
sufficient. Thus, a consecutive slicing of the tissue is necessary. Therefore the volumetric
resolution of the combined images is not only determined by the resolution in 2D of the
microscope but also depends on the thickness of the slicing of the probe.

TEM/SSTEM The resolution of variants of the TEM can reach up to 0.05 nm [34].
This allows the imaging of single atoms. Lichtman et al. [15] consider the fact that the
high lateral resolution is beneficial for identifying fine structural details in neural tissues
but the fact that the slice of tissue has to be cut of in a way that preserves the structure
restricts the resolution in cutting direction. In practice the cutting is done via a thin
diamond blade. Both Silvestri et al. [35] and Wanner et al. [36] report a minimal slice
thickness of ~ 40 nm. If an automated mictorome is used to cut the slices which are then
automatically transported to the imaging device, the term serial section transmission
electron microscopy (ssTEM) has established itself [37].

SEM SEM in contrast scans the surface of a tissue. To be able to get a three dimen-
sional impression of the complete tissue, this surface needs to be removed gradually. The
big advantage over transmission based techniques is that there is no need for the removal

!There are multiple effects that can be responsible for electrons that are cast backwards. Besides a
simple backscattering so called secondary electrons can escape the surface as a result of ionizing radiation
of any kind that is caused by the primary electrons. The Auger effect is another possible source of
returning electrons. The penetrating electrons, leaving the the tissue in the original beam direction, can
both be scattered or transmitted unperturbed.



1 Introduction

. B W . EY F. o .
Synaptic cleft l
< [ ’

¥
Vesicleﬁ« f
Vo U P

“Mitocho

V
-

'3

-‘.‘
A

Figure 1.4: A section of an electron microscopic image of a somatosensory cortex of an
adult mouse (data described in appendix [A.1]). All organelles that are of relevance within
this thesis are visible.

procedure to preserve the erased layer. Besides the already mentioned diamond knives,
focused ion beams can be utilized (FIB-SEM). Respective setups could generate volumet-
ric images of an isotropic resolution of 5 nm as shown by Knott et al. [I6]. Approaches
utilizing SEM will generally suffer less from alignment problems between the individual
images than TEM based methods. Goldstein et al. state that resolutions around 1 nm
can routinely be achieved via commercial instruments.

A big advantage of nondestructive methods is that the imaging process can be dis-
tributed to multiple microscopes and therefore the overall imaging time can be reduced [36].
This speed advantage is also owed to improved microtomes, tools able to automatically
cut thin slices from a tissue as developed by Denk and Horstmann [39] and Hayworth et
al. [40].

In principle one wants the resolution to be just as good such that automated re-
construction is possible. Increasing resolution over this point will unnecessarily lead to
increased imaging and processing time in addition to a need for bigger storage space. Al-
though the best trade-of resolution has to be determined yet, human tracing performance
leads to the assumption that the complete exhausting of the maximal possible resolution
will probably not be necessary. The concrete type of electron microscope that was used to
produce the data, used within this thesis, and the respective resolution will be specified
for the individual experiments separately.

1.2.2 Biology of Neurons

Figure [T.4] shows a small section of neural tissue imaged by an electron microscope. This
image contains all of the cells’ components that will play a role within this thesis. There
are several prominent organelles appearing in most eukaryotic cells like Mitochondria,
involved in the cells energy supply or the Microtubules that are part of the cytoskeleton
and do facilitate the mechanical stability of the cells. The herefore mentioned internal
substructures are embedded in the liquid parts of the cytosol which holds all kinds of
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dissolved materials and proteins. The cells cytoplasm, the cytosol and the organelles is
confined by a selectively permeable membrane.

There are also characteristics only occurring in neural cells. At some places the neural
membrane is additionally reinforced by tubes of myelin. This fatty substance reduces
the electrical capacitivity of the neurons and therefore enables a fast signal transmission
via saltatory conduction. The color of the myelin gives the white matter in the brain,
where myelinated cells are frequent, its name. In contrary regions with low percentage of
myelizations are called gray matter. The crucial places where signals can leap from one
cell to another are called synapses. At their presynaptic side (in the “sending” neuron)
oftentimes vesicles, holding neurotransmitters ready to be released into the synaptic cleft,
are detectable.

Cells in general and neurons in particular are extremely complex structures consisting
of many more building blocks. We restrict ourself in this brief outline to the ones that
are visible in the used recordings from electron microscopes and relevant in the process
of automated reconstruction of the connectome. Readers with deeper biological interests
can refer to the textbook of Alberts et al. on cell biology [41] and the textbook of Levitan
and Kaczmarek [42] with the focus on neural cells.

1.3 Related Work

Reconstruction of neural circuits from image data attained by electron microscopy is a
necessary task in the process of constructing a connectome. Consequently the scientific
interest in this area is huge. A big variety of approaches have been proposed to solve
this problem. While some rely on human interaction, others try to fully automate the
process. To be able to pigeonhole the contributions of this thesis I will give an overview
over respective prominent and influential approaches of the different paradigms.

1.3.1 Manual Reconstruction

Lichtman et al. [I5] state that humans are capable of producing segmentations that are
good enough to reconstruct neural connections with a satisfying accuracy. The authors
report more than 99.9% consensus in connectivity in cases where multiple tracers process
the same data independently.

In the following I want to give an overview over some of the most popular approaches
in this direction:

o In [43] [44] a software package named Knossos is introduced. Knossos allows the
visualization of huge data volumes as well as the tracing of skeletons by a humans.

o Raveler [45] is another annotation tool developed by the Fly EM project team at
the Janelia Research Campus. It allows its users the creation and modification of
segmentations.

« A similar functionality offers the tool Mojo [46] and its web based relative Dojo [46].

o The Carving algorithm [47], made available within the ilastik software [48], ap-
proaches the problem from a slightly different angle by doing a seeded segmentation
where the user provides the seeds in an interactive way.
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» The Catmaid software introduced in [49] is able to trace neurons through huge image
volumes cooperatively and in addition proivides the means for semantic segmenta-
tion.

For Plaza et al. [I7] a combination of Raveler and Carving is the most efficient way to
manually construct a dense segmentation of neurons. According to the authors a complete
reconstruction of a human brain in this way would take around 14 x 10° man-years of
manual annotations. Still overwhelmingly 4.5 x 10° years are estimated for a mouse brain
and according to them the fruit-fly brain would take 4.7 x 103 years.

These numbers make it very clear that automation of the segmentation process is not
only nice to have but an absolute necessity. This does by no means render all manual
annotation tools superfluous. On the one hand even a reconstruction of some small
subpart of a nervous system could reveal some of its functional principles. On the other
hand supervised learning algorithms rely on ground truth. Manual annotation tools can be
an important instrument in the creation of labeled data of a certain quality and quantity.

1.3.2 Semi Automated Methods

Methods that try to partly unburden human annotators are summarized in this section.
Some of them could be described as proofreading tools. These are programs that can be
used to manually correct an existing segmentation. If a tool is able to construct a segmen-
tation from the scratch it will also be able to modify an existing one. Therefore all tools
presented in section creating segmentations are able to proofread an automatically
produced segmentation [45], 46] and can therefore be listed here if used in such a context.

Chklovskii et al. [50] introduce a complete pipeline including 2D segmentation, linking
in the third dimension and an subsequent proofreading step. Such an inbuilt proofreading
possibility is also offered by the workflow presented by Jurrus et al. [51]. There, results
of an automated membrane detection and linking of neurons over anisotropic slices can
be corrected. In the more recent approach of Jones et al. [52] a merging hierarchy is
automatically determined and users are asked to correct presented regions in order to
improve segmentation quality. The idea to apply level set segmentation in a semi auto-
matically way was introduced by Joeng et al. [53]. The presented tool NeuroTrace links
two dimensional contours of neurons via a tracking approach in the third dimension.

For non-dense neuron data, (e.g. single prepared neurons via Neurobiotin or fluorescent
dye from optical microscopy), an approach aiding the tracing was presented in [54]. The
application to images from electron microscopy is questionable though. Already their
visualization of the skeletons does rely on the sparse nature of the data.

The more parts of a complete segmentation pipleline can be automatized without
loosing the necessary segmentation quality, the closer the community comes to the goal
of a complete connectome of an animal more complex than the nematode Caenorhabditis
elegans. Therefore, having a fully automated approach that needs human interaction at
most in a training phase is most desirable.

1.3.3 Automated Segmentation

The work presented in this thesis falls into the category of automated segmentation.
Therefore a closer look into the related fully automated segmentation approaches is ap-
propriate.
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Pixel Level

Many of the proposed fully automated segmentation algorithms start from pixel-wise
membrane detection. On its own this turned out to be not sufficient at the current
resolution and data quality (see section for more details). Nevertheless a good
detection accuracy on the pixel level is beneficial for all subsequent higher reasoning.

In recent years artificial neural networks got viral in the Computer Vision community.
Their often times reported high performance became possible only lately due to advances
in graphics cards, which they can exploit efficiently. In the filed of neuron segmentation
already Jain et al. [55] report an increase in quality of membrane detection over approaches
utilizing common Markov Random Field or Anisotropic diffusion. The applicability of
this class of classifiers to membrane segmentation in two dimensions is also proven by
Ciresan et al. [56]. The potential the increased memory of modern graphic cards is also
impressively demonstrated by Huang and Jain [57]. The authors show how far one can
get by increasing the size of the network and thereby the space of parameters that are
available for fitting an meaningful mapping.

One interesting idea is pursued by Jurrus et al. [58] where multiple neural networks
are stacked. Seyedhosseini et al. [59] continue their work in this spirit. They also combine
multiple artificial neural networks in an hierarchical way whereby the images are down-
sampled from stage to stage to learn more higher-order relations. Ronneberger et al. [60]
provide the newest popular contribution that could be seen in relation to [58] and [59].
Here the down-sampling is included directly in the network. The attained higher-order
information is up-sampled again with the help of lower level but better resoluted filter
responses from earlier layers.

A commonality of all approaches including neural networks is the need for large
amounts of training data which, in the case of neuron segmentation, is hard to come
by. Since random forests can deal with much less training data as can be seen in [4§]
they are the weapon of choice in this thesis for the problem of the determination of initial
pixel-wise membrane probability. The idea of stacking the classifiers applied in [58] can
naturally also be applied for random forests where it improves results as well.

Superpixel Level

As T will elucidate further in section [2.4] going from pixels to the superpixel level is
advantageous not only in terms of runtime but also in terms of quality. The specifics of
the applied pipelines strongly depend on the kind of available image data. As mentioned
in section [[.2.1], transmission electron microscopy depends on preserved thin slices of
tissue. This restricts the resolution in slicing direction to ~ 40 nm. Since resolution in
the imaging plane is higher this leads to anisotropic data. Oftentimes a stepwise approach
is deployed — first doing a 2D segmentation followed by a linking in 3D.

For isotropic data as e.g. produced by a FIB-SEM approaches working intrinsically in
3D are more suitable.

Anisotropic Data A typical approach of 2D segmentation with subsequent linking in
3D is presented by Yang and Choe [61]. The graph cut algorithm (see chapter@ is utilized
for the segmentation part.

The idea of co-clustering is brought to neuron segmentation by Vitaladevuni and
Basri [62]. The two dimensional segmentation of consecutive slices are coupled. The
assumption is that the spatial proximity of the slices results in a similar appearance.
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Weak membrane evidence within one slice can thereby be overcome by evidence from
neighboring slices.

Uncertainty in the 2D segmentation due to insufficient image quality is tried to be over-
come by Vazquez-Reina et al. [63] and Funke et al. in [64] by the consideration of multiple
segmentation hypothesis. Only if a 2D hypothesis leads to a plausible 3D continuation it
will finally be chosen.

The basic idea of allowing multiple hypotheses is also underlying the work of Kaynig
et al. [65]. For initial 2D segmentation they aim to close holes in membranes via an
anisotropic smoothing cast in a conditional random field. They combine their hypothesis
into consistent 3D segmentations via segmentation fusion.

The trend to utilize as much information from neighboring slices as possible is also
apparent in the work of Laptev et al. [66]. Their method of choice for doing this is the
SIFT Flow algorithm. It basically matches densely sampled, pixel-wise SIF'T features.

Looking closely to what causes an improvement in the segmentation quality over the
years one finds that utilizing 3D information is definitely important. Therefore it might
be assumed that a fully automated segmentation algorithm delivering sufficient quality
will first be found for isotropic data where the 3D information is much more valuable and
an intrinsic 3D representation is possible.

Isotropic Data For data with isotropic resolution, the advantage of reliable information
from neighboring slices is given and most segmentation algorithms operate directly in 3D.
The stepwise segmentation approach, first proposed by Andres et al. [67], is currently
used by many other 3D segmentation pipelines. The initial supervoxel oversegmentation
introduces structure and drastically reduces the problem size, thus allowing more advanced
algorithms to be used. Jain et al. [68] use a reinforcement learning approach to merge
the supervoxels. Similarly, Nunez-Iglesias et al. [69] use reinforcement learning within
a learning-based iterative hierarchical clustering algorithm. While very fast, this greedy
approach can make incorrigible wrong merge decisions.

Parag et al. [70] delay the merging decisions by several steps, until some of their
consequences are visible and the merging can be reverted if necessary. Liu et al. [71]
proposes to greedily solve the segmentation problem within the framework of a merge-
tree, and recently the merge-tree approach has been further improved to the globally
optimal level by Uzunbas et al. [72]. This method is still limited to the segmentations
contained in the merge-tree.

Andres et al. [73] introduce an overall globally optimal segmentation (for a given
supervoxel oversegmentation and supervoxel boundary evidence) that is found by the
introduction of topological constraints on the supervoxel adjacency graph. This work
builds in part on this set of constraints and on the Multicut algorithm [74] in general.
But, unlike [73] and all other methods listed above, I am not basing the merge/split
decisions purely on the local boundary evidence.

1.4 Contributions

Having an overview of the field of connectomics and an idea of where in this endeavor
the contributions of this thesis have to be located, I want to give an overview over the
main novelties presented in this thesis that aim to take forward automatic segmentation
approaches for neurons from electron microscopic image volumes. While semi automated
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methods may still be superior in terms of segmentation quality, the vast amount of data
requires full automation eventually (see chapter for an overview of semi automated
and fully automated methods).

biological
priors

see chapter

membrane
representation: additional semantic segmentation
flat to volouminous

v-multicut asymmetric semantic _aggl.
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Figure 1.5: A sketch of the main contributions of this thesis in relation to an established
workflow deploying the Multicut on pairwise merge probabilities (face probabilities) com-
puted on the basis of superpixels and pixel-wise membrane probabilities. The V-Multicut
is an extension of the principles behind the Multicut transfered to a volouminous represen-
tation. Both with the ussage of the Asymmetric Cuts and the Semantic Agglomerative
Clustering I show how higer order biological priors can be considered during the seg-
mentation. The experiments including the Asymmetric Multiway Cuts allow for a direct
comparison with the Multicut. A significant improvement can be observed when including
the additional biological prior information.

Figure [1.5] is meant to give an overview of the three major contributions of this the-
sis. In a way they can all be related to the previous state-of-the-art in fully automated
neuron segmentation, which is given by a pipeline including the Multicut algorithrrﬂ.
The algorithm will be explained in chapter [3| such that all implemented improvements

2This statement is based on the SNEMI3D challenge [75] organized by the Massachusetts Institute of
Technology where the currently best ranking approach is a version of the Multicut as proposed by the
Image Analysis and Learning (IAL) group, Heidelberg University.
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and extensions can be understood. One improvement directly related to the Multicut is
presented in section [3.3] It is shown how the optimization problem related to the Multi-
cut can be decomposed into several small problems without loosing global optimality in
practice. In the performed experiments this results in a significant speedup.

The well known Agglomerative Clustering procedure is presented in chapter [l It is
extended by a novel way of determining the right moment to stop the iterative clustering
even if the weights, used for clustering, give no indication on how to stop. We will see in
chapter [7] that only the availability of such a stopping criterion enables the utilization of
semantic labels within the Agglomerative Clustering procedure.

In chapter [5| we will see how the idea of enforcing consistent (no open ends in mem-
branes) solutions in the explicit flat representation, as it is utilized in the Multicut case,
can be translated to a voluminous representation. While the finding of inconsistencies on
lower dimensional objects is straight forward it is nontrivial to detect inconsistencies in
the voluminous representation unambiguously. This problem is solved within this chap-
ter by relating to the membranes’ skeleton where topological constraints are more easily
found.

Chapter [6] opposes the long held assumption, underlying all methods mentioned in
section that the cell membranes are the only usable indications for the task of
segmenting neurons from EM images. It is shown how an extension of the Multicut,
the Asymmetric Multiway Cut, can be utilized to incorporate information about general
neuron structures. In particular the fact that pre- and post-synaptic parts in individual
mammalians neurons are spatially separated is exploited.

The contribution of chapter[7]is to show how the well known Agglomerative Clustering
algorithm can be extended to include biological prior knowledge as well. We will see that
the greedy nature of the Semantic Agglomerative Clustering comes with an advantage in
runtime and a disadvantage in segmentation quality in comparison to the globally optimal
Asymmetric Multiway Cut. Finally a novel approach to handle Mitochondria-segments
in a neuron segmentation result is presented in chapter [§

It is not proven yet that automated segmentation algorithms can in principle achieve
human segmentation quality. Increasing the quality automated methods to reduce the gap
to human performance is the main focus of this thesis. Nevertheless one needs to keep
the enormous amounts of data in mind that wait for a reliable automatic segmentation
pipeline. Therefore I present experiments on the decomposition of the Multicut and the
V-Multicut that show that a globally optimal solution can often times achieved by a
optimization of several disjunct subproblems. The decomposition is naturally emerging
from the structure of the constraints.
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Chapter 2

Segmentation Essentials

As explained in chapter one promising way to get the connections formed by the
neurons is attaining a complete segmentation of the neurons. This thesis will follow this
path exclusively. To base further considerations on solid ground, I will give an introduction
to the foundations of segmentation algorithms in image analysis in the following.

All image segmentation algorithms must utilize information about attraction /repulsions
between pixels of one sort or another in order to produce meaningful results. For a big
variety of problem instances there is a clear notion of edges. In this context edges corre-
spond to pattern in an image that indicate a change of segment. There are other cases
where getting a clear concept of localized edges is hard but a clear repulsion between non
adjacent regions can be established for example due to differences in color or texture.
The following sections will give a more detailed explanation for the different sources of
attraction/repulsion between regions in an image and show the peculiarities of neuron
segmentation.

2.1 Edges

2.1.1 Ridges and Steps

In the image analysis literature one can find the distinction between ridge edges and
step edges [76]. Occasionally one can also find the notion of ramp edges and roof edges.
These are mere smoothed versions of the ridge edge and the step edge. In Figure [2.1
the idealized edge-types (green) as well as some respective exemplary one-dimensional
extracts from actual EM data (blue) are compared.

As it can be seen in Figure[l.4]individual neurons are separated by cell membranes that
mostly appear as black lines (they are basically extended over two dimensional surfaces
but in a sliced profile they appear as lines). In Figure these membranes can be seen
as ridge edges. One can see that step edges are also appearing in the data. Mitochondria,
which are organelles of the cells (see chapter [1.2.2)), should not be separate segments in
a final neuron segmentation. We see that differentiating these edges already at this early
stage is of importance for the results. Only cell membranes appearing as ridge edges
should induce a repulsion. Even at this stage one can see that the mitochondria are a
potential source of errors in the segmentation: On the one hand they have their own
membrane. The transition in Figure therefore is more like a superposition of a pure
step- and a pure ridge edge. This can result in a confusion of mitochondria membranes and
cell membranes. On the other hand the mitochondria can be positioned inside the neuron
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Figure 2.1: Two examples of different edges in EM images as described in appendix
in the upper row. The lower row gives the respective one dimensional distribution of gray
values within the blue frames in the upper images. The green curves are showpieces of
the respective idealized edge classes. (The vertical axis is inverted for visual convenience)

in direct proximity of the membranes and thereby veil the characteristic appearance of
the membranes, exacerbating their detection. One typical example is shown in Figure [2.2]

From this example one can get the impression that detecting the membranes purely
based on basic filter operations like first or second derivative filters (as introduced in[2.1.3)
will not work reliably. Applying machine learning algorithms that are able to consider
a big field of view around the questionable membrane as well as having the possibility
to do a higher-order reasoning based on the seen data turns out to be necessary. The
mitochondria, for which I will introduce a possible solution in chapter [§ are only one
of the difficulties of this kind of data that is tackled in this thesis. As can be seen in
Figure [I.4] there are many other organelles and imaging artifacts that make the reliable
detection of membranes hard.

2.1.2 Region Information

Imagine a chain of elements each only insignificantly different than their neighbors. There-
fore the edge evidence between all elements is weak. Nevertheless both ends of the chain
can look completely different. We see that there is more in image segmentation than edge
information: Region Information. The segmentation of neurons is rather the exception
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Figure 2.2: Mito-
chondria touching
cell membranes.
These are difficult
cases for mem-
brane detection
because the ridge
nature of the
cell membranes
is veiled by the
step nature of the
mitochondria.

than the rule in image analysis problems in the sense that the desired segments locally
look mostly indistinguishable. While e.g. blue sky and green grass in natural images can
easily be distinguished by color and texture even if the transition is out of focus and the
precise localization of the transition is hard, not even experts can tell for most pairs of
patches of neural tissue if they belong to the same cell or not.

A special kind of sparsely occurring region-wise information will be discussed in chap-
ter [ There, edges are neither blured due to effects related to the depth of field of the
recording device nor extended gradients (edge that are defined on a bigger scale). The
scenario is rather that the location of the segment transition based only on region-wise
information is impossible to deduce, but the existence of a transition is evident. Two
players of the same sports team that overlap on an image due to partial occlusion can
be hard to separate since e.g. their shirts are alike. If both of their numbers are visible
though it can be deduced that there must be a segment transition somewhere between
the two detected numbersﬂ We will see in chapter |§| that the principle behind this ad-
mittedly hypothetical example can actually be applied to neuron segmentation. I will
show how knowledge about biological functionality can complement edge indicators (local
membrane evidence) in the segmentation process.

2.1.3 From Filter Responses to Learned Edge Indicators

What kind of information would one use to determine if one pixel is probably belonging
to a cell membrane or not? First of all the gray-scale value originating directly from
the electron microscopic imaging process . Since a thresholding of the data leads
not to a sufficient segmentation quality (see section for an related experiment),
more information is needed. The only other source of information available is the gray-
scale values of the other pixels, thereby the neighborhood of the pixel in question has to
be considered. Low level image analysis convolution filters have proven to be an solid
starting point [77] for a meaningful extraction of the pixels context. The discrete version
of a convolution of an three dimensional image volume I with a discrete kernel k£ can be

INote that in this scenario the two players could probably be separated when utilizing prior information
about the shape of the persons that ought to be segmented. Since the plausible shapes of neurons are
very diverse this approach is not easy applied there. But since humans are partly able to detect wrongly
segmented neurons only by their shape this task (that is not explored further in this thesis) is not
completely past any hope.
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written as:

Livigia = 2222 Kivigi (5, i) (1) i ig) = K %1 (2.1)

iy iy iy

where i,,4/, are integers indexing a 3D image grid here. In praxis, the coefficients of the
kernel for bigger distances |i, — i/,| are vanishing. Therefore only a localized neighborhood
of the pixel in question is given influence.

In the field of scale-space theory an image (in general any signal) will be represented
on different scales by a family of smoothed continuous images L (x, ) with x € R? as the
continuous generalization of the coordinates and ¢ € R indicating the scale related to the
smoothing. Lindeberg [78] describes L as the solution of the diffusion equation

oL = ;VQL (2.2)
with L (x,t = 0) = I (x) (2.3)

with the bed of nails like version of the the given d dimensional image

Z ) (X — (i1, - ,Zd)T> I (2.4)

U15ee8d

that one can probe continuously as initial state. L needs to be constructed in a way that

new structures are not hallucinated in when going from a low scale parameter ¢ to a higher
one. The solution of Eq. (2.2)) is given by

/exp ( x—y) (x- y>> I(y)dy, (2.5)

2t

L(x,t) = \/ﬁ

a multidimensional Gaussian kernel. For a (big enough) given scale parameter ¢ one does
now have a meaningful continuous representation of the image. On this base a series
expansion on the basis of the derivatives of L can be created (jet representation [79]). In
the scope of this thesis I will utilize the first two spatial derivatives of L as rotational
invariant features characterizing the individual pixels. The gradient magnitude

d
2
VL (x,t)| = JZ <(9IQL(X', t)) (2.6)
i=1
for the scale t gives an estimate for the slope of the steepest increase at coordinate x.
Therefore it is a detector for step edges of a scale of the order ¢. As a “blob detector”; a
detector of spherical symmetrical objects, the Laplacian operator applied on L is suitable.

V2L Za O L(X', 1) (2.7)
=1 x/=x
The eigenvalues of the Hessian Matriz H € R4

describe the local curvature at the scale of ¢ in the direction of the principal axis. Higher
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order derivatives have been found to be more vulnerable to noise. In addition the ex-
traction of scalars as features is not trivial for higher dimensional tensors. Eq. does
characterize the slope on one scale t. Information about the coherence of the gradients
on scale t on a specific bigger scale s is also be of interest. It is covered by the structure
tensor S.

(S (x18));; = [0 (vi5) (9L (x = 3,0)) (00, L (x = y,0)) dy (2.9)

Lindeberg [78] reasons why not only the smoothing within L, but also the smoothing over
the orientations done by the window function w should be of Gaussian nature. Taking
the eigenvalues of S again provides the desired property of rotational invariance of the
features. Note that rotational invariance is not generally desirable. Think about natural
images where blue sky tends to be more present in the upper parts of the image while
green grass will probably more often appear on the lower parts. This does not at all mean
that rotational invariant filters are useless on these kind of images though. EM images
of neural tissue do not have any intrinsic preferred direction. Therefore the restriction
to rotational invariant features as presented in this section is justifiable. Evaluating the
attained continuous functions

fe(x) e {L(x;1),|[VL(x;0)], AL (x;1) , H (x;1) , Sw (x5 ¢,5) } (2.10)

at the centers of the respective pixel squares (see Eq. (2.12))) one reattains a discretized
image: (f), =1 (i,7). All presented features are relying on derivatives of L and therefore
derivatives of a Gaussian g convolved with the image I:

Ol (5,8) = O, <\/;_7rt /eXp (‘ - Y);(X - y>> I(y) dy) (2.11)
¢;—m / (ax,.eXp <_ (x - y>;<x - y))) Loy,

In short 0 (g * I)=(0g) * I means that all described pixel-wise features can be computed
in practice by a convolution of the image with an altered kernel. For actual computations
we draw on the open source library for computer vision presented by Kothe et al. [80]
called vigra. It is based on C++. Most of the functionality is wrapped to python making
experimentation easy. Taken the filter responses of on different scales as features
one is able to train a classifier for the task at hand: pixel-wise membrane detection. To
be able to use the advantages of supervised learning algorithms ground truth labels have
to be provided.

In practice the ilastik software [48] provides an interface for interactive labeling and
direct assessment of the resulting classification quality. The core classification algorithm
is a random forest as introduced by Liaw and Wiener [81]. It is used in ilastik due to
its fast training time (parallelizable since ensemble method) as well as due to its relative
robustness with respect to its hyper parameters. One exemplary pair of raw data and
respective membrane pseudo probability produced this way is shown in Figure (a) and

(b).
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Figure 2.3: The figures visualize the steps in a naive segmentation procedure of the neurons
shown in (a) described in appendix based on pixel-wise membrane probabilities in
(b). As it can be seen in (e), different thresholds for a membrane classification lead to
different connected components that do lead to different segmentation quality. (c¢) shows
the classified membrane pixels (in black are the thresholded probabilities at 0.3) and the
resulting connected components (color-coded). Given the nature of the ground truth in
(f) the results in (c) need to be cleansed of the membrane pixels (as shown in (d)). This
is done by a watershed seeded on the already existing segments grown on the probability
map itself.
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2.1.4 The Need to Go Beyond Pixel Level

The pixel-wise membrane detectors, that are available so far, can only be an interim step
on the way to a segmentation because of the sensitivity of the connected components
of neurons to single pixel decisions. To make this point clear, Figure presents a
naive segmentation pipeline using only the pixel-wise membrane-probabilities (learned
interactively with ilastik [48] by a random forest using filter responses as introduced in
m as features): The membrane probabilities are thresholded and connected components
are determined. In order to compare the resulting segmentation to the given ground truth
the neurons are grown in to the membrane class via a watershed (see section on the
probability itself. The best segmentation that can be produced this way is achieved at a
threshold of 0.2 when relying on the Rand index (RI) as quality measure (RI = 0.9879.
The best variation of information (VI) of VI = 0.7692 can be achieved by applying
the threshold of 0.3 (a detailed description of the used quality measures can be found
in section . Note that the absolute numbers are not trivially comparable between
different problem instances. Using them to compare approaches on the exact same dataset
is much more illuminating.

The fact that the best segmentation is found for a threshold below 0.5 can be explained
as follows: Like in general two class-classification problems one can divide possible errors
into false positives (pixels that should not be membrane but are classified as such) and
false negatives (pixels that should be membrane but are missed). Due to the structure
of the neural membranes, false negatives on the pixel level are more crucial than false
positives. A few false negative pixels can easily lead to a perforation of a membrane and
therefore to a false merge of neurons. A complete mistakenly separated part of one neuron
via false positives is less probable. An accidental tight 2D surface requires more errors in
the classification, given a sufficient diameter of the processes, than an accidental hole.

The quality (details on the uses measures in chapter achievable in this way is
not sufficient for an extraction of an meaningful connectome. Still it is remarkable how
relatively good the results of this naive approach are and how hard it is to close the gap
to perfection.

We will show in the later chapters , [l [ [6] and [7] how to go beyond the the localized
pixel-wise information. All these approaches will rely on superpixels. The following
sections will lay the foundation to the understanding of superpixles and their neighboring
relations.

2.1.5 Representation of Edges

Within this thesis the representation, in which the desired segmentation is encoded varies.
We will utilize two different approaches to which we will refer to as flat representation
and voluminous representation. As their names suggest they differ in the dimension-
ality of the membranes as they appear in the segmentation.

The most common representation for segmentations is the one shown in (b), the
implicit flat representation in which each pixel is assigned to a segment id/color. Note
that the particular ids are irrelevant. For neighboring pixels only the information of a
label transition is crucial. We will see that for some optimization problems the ambiguity
of the particular labeling is problematic for actual computations (see chapter [3)).

In these cases it will be more useful to explicitly encode the one relevant information:
label transition yes or no? It is convenient to introduce interpixel facets as explicit objects
that separate the segments. In section I will describe how these facets can be
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(b) id pixel labeling; (c) interpixel edges; (d) bin. pixel
implicit flat repres. explicit flat repres. labeling;
voluminous repres.

Figure 2.4: Possible representations of a segmentation of neurons in the raw image (a)
described in more detail in the appendix : (b) shows a segmentation represented by
neuron ids that are assigned to the individual pixels (color-coded). This representation is
closely related to (c¢) where an inter-pixel boundary marks the transition of neurons. (d)
provides an alternative approach: A binary classification of the pixels in membrane and
no membrane.

administered in practice. In this representation the introduction of constraints enforcing
closed surface is feasible (e.g. in chapter [3| and @ The explicit and the implicit flat
representation are different description of the same situations — they are transformable
into one another.

In contrast to this, the voluminous representation as depicted in (d) is funda-
mentally different. There exist particular pixels representing the cell membrane. This
representation is adapted by all approaches that work directly on a pixel level (as in
section . As already mentioned in section many approaches with impressive
pixel-wise accuracy have been proposed. Eventually this is no immediate guarantor for a
good resulting segmentation. Single pixel decisions can alter the connectivity of segments
and therefore lead e.g. to undesired connections in the connectome (see section [2.1.4).

In chapter [5] I will propose a novel method, the V-Multicut, relying on the voluminous
representation. I will overcome the shortcomings that normally come with this repre-
sentation by introducing closeness inducing constraints. These are inspired by the ones
imposed in chapter [3| where the original Multicut algorithm is explained. We will see to
what extent the benefits of both representations can be combined.

2.2 Formalizing Segmentation

The basic object in all image analysis tasks is the image or image volume I. We assume
it to be a set of N measured intensities y, where I = {y,;a=1,2,..., N} and y, € R
The image can contain ¢ channel dimensions. It will simplify future definitions to have
an explicit name to call the pixel p, holding the attribute y,. In all cases discussed
within this thesis the pixels will be arranged on a regular grid in d dimensions (primitive
cubic system). Therefore the pixel positions can alternatively be indexed by d indicesEl:
Divio,..iy With 4, € [1,2,..., Np]. An exact definition of a pixel can be given in the spirit

2The mapping between the flat indices p, and the ones respecting a spatial embedding of the mea-

,,,,
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of Peters [82] in an appropriately normalized space R%:
Ditio,..sig = {(:vl, T, ... ,Zl‘d); 1, — 0.5 <xp <1p+0.5 Vl’b c R} , (212)

as a d dimensional cube. Since within this work I will segment 2D and 3D images only, we
will restrict ourselves to d = 2 and d = 3 from now on. The indices/the coordinates of the
pixels will play an important role in considerations about digital topology in section [2.2.1]
Therefore an explicit symbol is given to the tuple of coordinates for pixel p: cf,g = (4,7)
or ¢g0 = (4,4, k).

The goal of all segmentation algorithms is the assignment of a segmentation id S :
I — N to all pixels in the image (volume).

S(p)e{l,...,N} (2.13)

Here N is the total number of segments if all integers in the range [1, N| are used. Such
cases are called dense labellings. We explicitly require the mapping S to be designed
in a way that the resulting segments, I D s; = {p;; S (p;) =i} are spatially connected

(—

Pa € 5,0 €5 S (pa) =S (1) € Pa = D (2.14)

2.2.1 Digital Topology

Given a segmentation S (p) by means of a labeled image/volume, it is beneficial to define
a construct responsible for the bookkeeping of neighborhood relations. Being able to
easily access e.g. all neighboring segments of some particular segment will simplify the
theoretical explanations of the algorithms presented in chapters [3], [4 [6] and [7] as well as
the actual implementation of these algorithms. In addition the skeletonization algorithm
presented in chapter o[ relies on the concepts presented within this section.

For a d dimensional problem there are d natural ways to introduce the neighborhood
N (p) C P of a pixel p € P.

For 2D we can define

as d-neighborhood (2.15)

—1
o € N(pa) © pa € N(p) & [l — ;)| { <3 as S-neighborhood

In 3D we can distinguish

=1 as 6-neighborhood
P € N(pa) © pa € N(pp) < ||c§;aD - C;Q;?H <2 as 18neighborhood Va #0b (2.16)
<3 as 26-neighborhood

The 18-neighborhood is not used commonly in practice. The used restriction of a # b
means that we are defining a pixel to not be in its own neighborhood. Because the frequent
usage of these neighborhood relations we will define an adjacency relation (><):

Da ™= Pb <= Pa € N4/6(pb) . (217)

3The concept of connectedness is straight-forward and intuitive. For a strict definition see Eq. (2.34)).
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with respect to the smallest of the available neighborhoods, the 4-neighborhood N, and
the 6-neighborhood Ng. This neighborhood relations can be easily be generalized to
segments. For them, it is not intuitive to speak of 4-/8-/6-/18-/26-neighborhood any
more. For 2D we define:

N2D () 3 85 < 3p1 € 4, pa € 55 5.4 Ny (p1) > po (2.18)
Nfe%ex (si) 2 8; < 3Ip1 € 54, p2 € 55 5.8 Ng(p1) 2 p2 (2.19)

And analogous in 3D the definitions are:

NiE (si) > s; < Tp1 € 51, p2 € 55 5.6 N (p1) 3 pe (2.20)
NP (s;) > s; < 3p1 € 54, pa € 55 5.8 Nig (p1) 2 po (2.21)
N (5:) 3 s; < dp1 € si, p2 € 55 8.t Nog (p1) 3 p2 (2.22)

It is important to think about the different neighborhood systems when talking about
connectedness. Think about a binary labeling of an image where a closed path in the
foreground region passes through a connected background region. We see that using the
8-neighborhood in both classes can lead to unintuitive configurations. This phenomenon
is known as a connectivity paradox or as a topological paradox in the literature (e.g.
described by Kong and Rosenfeld [83]). In chapter |5 where we aim to construct con-
straints based on the connectedness of the different classes this insight is vital. Also in
the chapters [3 [, [6] and [7] it is important to have a clear understanding of adjacency of
superpixels.

Within this work I will utilize two kinds of data structures responsible for the book-
keeping of all neighborhood relations. Both will introduce explicit objects for the contact
area of neighboring superpixels. This is beneficial since they allow an easy, lower dimen-
sional representation of membranes in the case of neuron segmentation (a perspective
that is e.g. take in sections[3.1.2/and [6.2.2| and visualized in Figure [2.4] (¢)). The first is a
classical region adjacency graph utilized in a large variety of applications. Nunez-Iglesias
et al. [84] and Trémeau and Colantoni [85] e.g. draw on this data structure. The second
is the abstract cell complex originated in digital topology mentioned in the early work of
Listing [86] and summarized by Klette and Rosenfeld [87]. It is for example deployed by
Andres et al. [73].

Region Adjacency Graph

A region adjacency graph is a common undirected graph G (V, ) whose nodes V corre-
spond to localized regions in an image(volume) I defined via a segmentation S. In our
case each node n; € V corresponds to one segment s;. The edges are determined by the
neighborhood relations of the segments. If two regions/segments s; and s; are adjacent

s; >=< sj < dp, € s; and py € 55 8.8 Py = Dy, (2.23)
there is one respective edge e € £, otherwise not.

V={Ll,...,N} (2.24)
E={e=(5(si),5(sj)); Vs4,s;if s; =< sjand i < j} (2.25)

The (arbitrary) restriction ¢ < j makes sure that edges are unique.
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2.2 Formalizing Segmentation

Abstract Cell Complex

The abstract cell complex as motivated and described by Kéthe et al. [88] and Ko-
valevski [89] is an abstract set. Each element/cell in this set has a nonnegative integer
dimension d assigned to it. For practical purposes we can restrict the abstract cell com-
plex to the dimensionality of three. This means that cells of dimension 0,1,2 and 3 can
occur. In the following they are refered to as pointels, edgels, surfels and voxels.

The introduction of a topological grid simplifies the definition of the relation be-
tween the cells since there they can be uniquely located. Given an original image volume
with pixels p and coordinates ¢, = (4,7, k) with ¢ € {1,..., N}, j € {1,...,N,}, k €
{1,..., N.} an associated topological grid is be of shape (2N, —1, 2N, —1, 2N, —1). In
between each original pixel a new position has been created to explicitly describe e.g. the
boundaries separating two objects. The pixels in the topological grid are refereed to as
Pmno With the topological coordinates ¢; = (m,n,0). The dimensionality of a topological
cell associated with a topological pixel in the topological grid dim (p,,,) is directly coupled
with its coordinates. More specifically with the number of odd coordinates determined
via the modulo operator %:

dim (p) = (1 +m)%2 + (1 +n)%2+ (1 +0)%2. (2.26)

Whenever relevant the dimensionality of a topological pixel is denoted in the superscript:

dim (ﬁﬁm() = d. A bounding relation between two p of different dimension can be estab-
lished:
Do = Pomg & |80 —EE M =1for 0 <d <3. (2.27)

The bounding relation can be generalized:

~dy
pmno

- P2, < 3 {p“dl_l,p“dl_Q, . ,pd2+1} s.t. P, = DT = = 2, for dy < dy < 3.
(2.28)

These bounding relations are important also because the adjacency relations between cells
of certain dimension d can be easily established by them:

Pl = 15? & Pt st pd - pttand ptt < ]5?. (2.29)

This relation together with the placement of the dimensionalities on the topological grid
by Eq. results in an asymmetric neighborhood system for the surfels and the edgels.
This is not unintuitive since in 3D surfaces and lines, geometrical objects the respective
cells can be associated with, do have a preferred direction. The explicit adjacency relations
using only the topological coordinates look like this:

P =B ©lles — 6l =2 (2.30)

5 =0 (16 =zl = V2 (2.31)
or ||& — &pll = 2 and ¢,2%2 = ép;%2)

B =5} & (|lén — énll = V2 (2.32)
or [|é — &, =2 and &, %2 = &, %2)
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2 Segmentation Essentials

Py =Py e1=0 (2.33)

where the modulo operation % acts element-wise. With this definition of the topological
grid at hand it is possible to define the cell complex representation of a labeled volume
S. Here we are interested in connected components of these voxels, surfels, edgels and
pointels. The connected components are defined via a path connection >——:

pi == pl e I{pLp5, . ph) with i = pg = .= (2.34)
and ID (p{) = ID (p5) = - = 1D (5}

The function ID is introduced here only for the purpose of a cleaner notation.

~ not existant for 2D

D (p3) - ) (2.35)
S (p%) for 3D

= [ ~2 S (p2) fOl“ 2D

D (77) = $ [os /oy ol o s
{ID(5}),1D (%)} with i} < , p < p* for 3D

D (p') = {ID (5}),....1D (§})} with 7 = p' fori € {1,...,k} and k € {3,4} (2.37)

D (5°) =& (") (2.38)

(2.36)

Path connections of topological voxels §® are mediated via other topological voxels whose
respective pixles p? have the same segmentation id. S (p*) surfels/edgels are connected if
they are in their neighborhood and if they bound the same segments/surfaces. No pointel
is connected with an other pointel. The relation of the connected components can be
expressed by assigning a label T(p) to all cells associated with the topological pixels p:

T (ﬁ?) =T (ﬁ?) & pl—= p? and Active (ﬁid) and Active (ﬁjd> . (2.39)

A connected component (defined by common label T') of voxels is called supervoxel.
We will refer to connected components of surfels as faces. To avoid confusion with the
adjacency graph nomenclature the connected components of edgels are referred to as lines.
We will refer to connected components of surfels/edgels only as faces and lines if they are
actually seperating two supervoxels/faces:

— t existant for 2D

Active (]33) _ not existan or (240)
True for 3D

— True for 2D

Active (152) =< 7 (2.41)
ID (p}) # ID (p3) with p} > p* , p3 > p* for 3D

—_ — o~ ? o~

Active (p') = 1D (§?) # D (Pl) VP = B'  Pogs = D' (2.42)

Active (7°) = ID (51) £ 1D (5L..) Vit = 5 . ply. = 7 9.43

citve () = 1D (51) £ 1D (7h) ¥t > 7 . s 5. (2,43

The mapping 7 : N” — N can be seen analogous to the mapping S defining the
segmentation. It makes the definition of the concrete objects t¢ = {p%|T (]5‘}) = t}
possible. All relations between these objects can be related to the respective objects on
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2.3 Superpixels

the level of the topological pixels p:

th ~td o Fph € 19 pl2 € 192 st it ~ P2 with ~€ {>, <, =, =<} .

For pixels of the original (not the topological) grid one can use the correspondence:

Pabe == Pijk SP(aa)(a)(2¢) = Dla2i)25)(2h) (2.44)
Pabe ™= Dijk S Plaa)(25)(2¢) ™= Dlai)(2)(2k) (2.45)

The major difference between the edges from section 2.2.1and the faces defined here is the
following: There can be multiple faces between two segments but there can be only one
edge. The reason we are not limiting ourselves here to the simpler region adjacency graph
from section [2.2.1| is twofold. On the one hand this formalism makes the explanation of
concepts from chapter [5| easier. On the other hand the computation of merge probabilities
can be done more differentiated. Later in section 2.4 T will go into more detail about the
classification of faces. In the made experiments the overhead of the abstract cell complex
representation is valuable in cases where the uncertainty of the classifier for the faces is
inaccurate. This can happen for very small faces where the statistics are insufficient. In
these cases it can be beneficial to compose the edge-weights from the face-weights. It
seems to be more natural to classify spatially separated objects individually.

Eventually it makes sense to end up with a representation of the region adjacency graph
if one aims for an implicitly flat representation. Multiple edges between two nodes are
restricted to the same state anyways. Section discusses different possible mappings
from face-wise predictions to edge-wise predictions.

2.3 Superpixels

Oftentimes starting a segmentation procedure from the pixel level is hard. The runtime of
advanced algorithms becomes intractable and the features one can use to classify possible
merges are weak as can be seen in section 2.4, Some algorithms, like the Multicut,
even rely completely on an initial oversegmentation and would even with good features
and independent of runtime produce non-sensible results on am initial pixel level (see
section . A stepwise approach in the context of neuron segmentation has been
proven to be beneficial by Andres et al. [67].

In the following we will treat superpixels as a general segmentation with some ad-
ditional demands {SP(p)} C {S(p)}. Given a ground truth segmentation Sg(p;) —
{1,..., Ny} the desired properties of superpixels sp, = {p;; SP (p;) = a} are that they
do not lead to undersegmentation:

SP (pi) = SP (p;) = Sa(pi) = Sus(ps) (2.46)
An oversegmentation:

SP (p;) # SP (p;) 7 Set(pi) # Sex(p5) (2.47)

is uncritical. Therefore one can refer to superpixel segmentation as oversegmentation.
Since taking the original pixels as superpixles one will ensure Eq. (2.46) but this is not
the only applicable quality criterion. Good superpixels distinguish themselves not only
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by the fact that Eq. (2.46) holds at most parts but also by their size (see Figure [2.5)).

Since in most cases the distinction between 2D and 3D is not necessary, the term
superpixels will encompass 2D superpixels as well as 3D supervoxels as the term pixels
is used to speak of 2D pixels as well as of 3D voxels. At places where the distinction is
necessary I will point this out explicitly.

There is no one best superpixel algorithm for all applications. For natural images
where step edges in the color space are most common the so called SLIC superpixels are
performing well. Achanta et al. [90] demonstrate their generally solid performance. The
principle idea behind this algorithm is a k-means clustering in the combined space of co-
ordinates and color. Since cytoplasm in EM-recordings mostly looks alike independent of
the neuron it belongs to, a clustering according to color similarity, as performed by SLIC,
is not expedient. Therefore, for my experiments I draw upon the Watershed algorithm.
The watershed algorithm relies on two inputs: a set of seed-pixels {seed;} and a scalar
map the size of the original image, the “height-map” H (p) € R.

The watershed WS (p) is a way to assign each pixel p to one of the seeds. The mapping
is described by:

WS (p) =argmin, (minpatheps (maxpiaepath (H (pla)))) (2.48)
Ps ::{<pi17pi27 cee 7pln) ‘p ~ Piy ~ Diy e Pi, ~ Seeds} '

The pixel p gets assigned to the natural number s corresponding to the seed which is
reachable over a path with the least maximal hight on it. The seed that is assigned to
a pixel p is the one of all seeds that is first reached in a gedankenexperiment by water
raining on p if H gives the height of a landscape.

From Eq. (2.46) follows that at least one seed needs to be placed within one of the
segments of a desired segmentation in order to avoid undersegmentation - a wrongfully
merging of segments. The resulting requirement on the height map H is that a ridge exists

where a segment transition is desired. A learned edge indicator as shown in Figure 2.3
(b) would suffice.

2.4 Face-wise Predictions

Given some meaningful oversegmentation, e.g. WS (p) from Eq. the next step is to
merge some of the superpixels in order to end up with the desired segmentation. While the
superpixel procedure was solely relying on pixel-wise information the oversegmentation
gives the problem a structure that can be deployed. The decision whether two neighboring
superpixels do belong to the same segment in the final segmentation can be based e.g. on
the shape of the superpixels, their touching surface and statistics of pixel-wise informations
on the surface as well as on the region themselves.

At this stage the decision on whether to use the region adjacency graph based edges
(section or the cell complex based faces (section becomes relevant. The
feature accumulation and estimation of local merge probability will be effected by this
decision. Since all results originating from a region adjacency graph representation can
be replicated by a cell complex representation, the latter one is chosen for convenience.
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2.4 Face-wise Predictions

2.4.1 Feature Accumulation

The eventual goal is the estimation of a local merge probability of pairs of neighboring
superpixels based on local evidence. This estimation is done by a random forest classifier
based on extracted features. As a basis for feature extraction procedures the raw data as
well as pixel-wise features (as described in section L(x;t), |VL(x;t)], AL (x;t),
H (x;t), Sy (x;t,5), for different smoothing parameters ¢ and s, can be utilized. One can
use statistics either along the pixels that are bounded by the touching face or one can use
statistics on the both superpixles.

Face-Statistics

Statistics on the facelets of which single faces are composed of are not possible since no
data is available. Remember that the raw data provides information only for the voxles.
One facelet bounds two voxles: p* < p3, p* < ps. The statistics for the face can therefore
be computed on the set of all voxels that are bounded by some facelet of the face.

In the presented experiments I will use the mean, median, variance, quantiles, kurtosis
and skewness on the grayvalues of the respective voxels as well as the total number of
faceltes.

Region-Statistics

Statistics can also be computed on the gray-values of the different superpixels. The
same set of statistics used before are computed here as well. In addition the radii of the
segments and histograms on the gray-values are computed. Two feature descriptors f,, f,
computed this way need to be mapped to one feature descriptor of the respective face.
This is done by the following three operations:

min (fu, fo)
fface(u,v) = max (fua fv) . (249)
|fu - fv|

The three operations are meant element-wise. Min and max are reasonable since they
introduce an ordering that would otherwise be arbitrary. The absolute difference of the
values is redundant and therefore any learning algorithm should be able to learn the
relation in principle. Since looking at the difference of the descriptors is one obvious way
to reason about the merge-probability of two segments it is justifiable to add this feature.
The limited number of training examples do not need to be used to learn this dependency
but can be used to learn less obvious dependencies.

2.4.2 The Benefit of Huge Superpixels

If the underlying oversegmentaion is too fine, the extreme case would be the pixelgrid,
the expressiveness of the accumulated features is strongly limited. Therefore, in practice,
a reasonably coarse oversegmentation is a necessary prerequisite.

The following experiment on the data described in appendix illustrates the bene-
fits of big superpixels. The watershed algorithm is used to construct an oversegmentation.
The used underlying height-map H is constructed with the help of a pixel-wise membrane
prediction of a random forest based on features as e.g. shown in Figure (b). Specifi-
cally the height map H,, a slightly smoothed version (Gaussian smoothing with a sigma
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of 2) of the pixel-wise membrane prediction, is taken. The smoothing leads to less wiggly
faces, especially on the membranes.
For this experiments the
number of segments in the
1.0 ‘ ‘ ‘ 14 oversegmentation must be var-
ied. The seeds are therefore
identified with the local min-
ima of of a smoothed version
(Gaussian smoothing with a
variable sigma) of H + 3N.
Here N is white noise of the
same range as H. The varia-
tion of the smoothing parame-
ter allows the adjustment of the
number of resulting seeds and
therefore resulting segments.
035 - s - o In Figure the horizontal
average segment size axis represents the average seg-
ment size resulting from the
varying number of segments.
The quality measures are deter-
mined by ten-fold cross valida-
tion. Even though the number
of training examples decreases for bigger average segment sizes both the recall and the
precision profit from big super-pixels. Interestingly the accuracy stays roughly constant.

The reason is hidden in the structure of the neural membranes. All membrane faces
are basically distributed on a two dimensional subspace. The non-membane faces are
located within the neuron bodies, therefore living in the full three dimensional space. By
consistent increase of the number of segments the proportion of true non-membrane to
true membrane faces increases. Assuming that adding faces in the center of neurons is
equivalent with adding “trivial” decisions, the number of true negative predictions rises.
This affects the accuracy but not precision and recall (see section .

The overall message is that the features on which the face classification is based on
get better with increasing superpixel size. This does not mean that one should use the
biggest superpixels possible. Due to the simplicity of the method there will be violations
of Eq. — there will be undersegmentation. In most possible subsequent processing
steps this can not be corrected.
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Figure 2.5: FExpressive power of features computed for
superpixels of different average size measured by random
forrest classification quality measures

2.4.3 From Face Predictions to Edge-weights

In the previous section we learned of a way to predict the class affiliation of individual
faces/edges. Since an ensemble method (the random forest) is used to condense the
accumulated features, one is left with some kind of a pseudo probability p;;. In following
chapters I will propose different methods how to cluster the superpixels based on some
weight w;;. The question arises how both values should be related. One way is to identify
them one to one:
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One alternative is to utilize the Gibbs measure explained in more detail in Eq. .
The reasoning is the following: If we are formulating the clustering as an energy mini-
mization process in the form of a Markov random field it is natural to interpret w;; as
little contributions to the energy. Following this argumentation, taking the probabilities
for both events split (p;;) and merge (1 — p;;) and following the idea to gauge the energies
in a convenient way from Egs. and , the weights/energies would look like this:

Pij
ij i g (1 _ pw> ) ( )
where weights bigger zero correspond to an attraction and negative weights correspond
to a repulsion of the segments ¢ and j. A minimization of the sum of energies does then
correspond to a maximization of the product of the probabilities. The desired solution is
the maximum a posteriori (MAP) estimation.

Eventually only experimental results will decide for the the direct approach from
Eq. and the evolved way from Eq. . Therefore the following experiment
was carried out: The best superpixels from section [2.4.2| were taken. Edgeweights were
computed as described and evaluated in and depicted in Figure[2.5 Then both alter-
native methods from Egs. and are applied to attain two set of edge-weights.
Based on each of them the Multicut algorithm is applied to perform the final clustering
(see chapter [3| for details). In addition to the mapping from face-wise-probabilities to
face-wise weights, the mapping to edge-weights must be done (as justified also in .
This is the place where different mappings from face to edge can be compared. We restrict
ourself to the following possibilities:

Wi = MiNfee (wf> (2.52)
Wy o = MaXfee (wf> (2.53)
W = > w! (2.54)
fee
!
W = 2L (2.55)
ZfEe 1
Sree w! || £l
wsvmean ~— T 1 (256>
el £l
R SN V7]

(2.57)

w

swmean —  __ [ ..
Yree VIS

Here f € e states that the face f is a part of the edge e: f€e=(i,j) & f <1, f<7].
|| /|l denotes the number of facelets, the face f consists of. The quality of the segmentation
is measured by the Rand index and the variation of information (see section [2.6). The
results of this comparison can be seen in Table 2.1 Almost exclusively the Gibbs weights
from Eq. exceed the direct ones from Eq. . In this experiment, taking the
maximal value of the membrane probabilities of the composing faces for the edges is
the best strategy for mapping face-weight to edge-weights. The fact that the mean is
worse than the weighted mean supports the statement made in that small faces’
predictions are unreliable and supports the usage of the abstract cell complex over the
region adjacency graph where such a differentiated prediction is not possible.
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\ RI H min \ mean sum swmean \ wmean \ max
direct ([2.50 0.98462 | 0.98661 | 0.99085 | 0.99302 | 0.99307 | 0.99425
Gibbs ([2.51 0.98491 | 0.98592 | 0.99221 | 0.99310 | 0.99324 | 0.99460
’ VI H min \ mean \ sum \ swmean \ wmean \ max ‘
direct(2.50) || 0.75315 | 0.63917 | 0.56433 | 0.42600 | 0.41431 | 0.38714
Gibbs (2.51)) || 0.73628 | 0.63928 | 0.49505 | 0.40824 | 0.40515 | 0.36415

Table 2.1: This table illustrates the dependence of the final segmentation quality on
both the mapping from face-probabilities to face-weights (direct vs. Gibbs) as well as
the dependence on the mapping from face- to edge-weights (min vs. mean vs. sum vs.
swmean vs. wmean vs. max). The comparison was done on an image volume described

in appendix
2.5 Graphical Models

Markov Random Fields As a preparation for the following chapters it is helpful to
introduce Markov random fields (MRF'). Both the Multicut and the Asymmetric Multiway
Cut can be formulated within this framework.

MRFs are a way to depict conditional (in-)dependences of variables x; described with
the joint probability distribution p(xi,2,...,2y). The conditional dependencies are
implied via edges in a graph G whose nodes correspond to the random variables. The
goal is to factorize the joint probability in the fashion of Markov networks:

Hc ¢c ('Xc)

,,,,,

p(.rl,xQ,...,.TN) - (258)
where ¢, are the potentials, non negative functions, corresponding to the ¢’th maximal
clique X, of G. A clique X, is a subset of the random variables that are all connected
to each other. It becomes a maximal clique if it is assured that there is no other clique
X; with &; D &;. MRFs can be defined by a set of conditional distributions p (x;|N (z;))
where N (z;) is the set of random variables in the neighborhood of z; established by edges
in the G.. In other words there exists an edge in the graph between the nodes representing
z; and @y if p (2, 25l y) # 9 (@il ) p (2100

According to the Hammersley Clifford Theorem a set of local conditional distri-

butions p (z;|N (z;)) can only form a consistent joint distribution p (xy s, ..., zy) if and
only if that joint distribution can be written as a Gibbs random field:
exp (=8>, E. (X,
p(xlax%"'axN): p( 6 ( )) (259)

,,,,,

with a set of real valued functions FE.. In Eq. (2.58|) this does translate into positive
potentials ¢. In the field of statistical physics Eq. (2.59)) relates to the canonical ensemble,
taking into account all possible states of a mechanical system.

Factor Graphs Eq. (2.58) and therefore also Eq. (2.59)) are in the form of

f(x1,ma,. .. 2N) :H@/), (X) ; (2.60)
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which makes it possible to write them as a factor graph. A factor graph consists of nodes
representing the random variables z; as well as of nodes representing the factors 1; (&;).
Graphically the second type is often times distinguished by rectangles. For each factor
Vi (X;) edges to all variables z; € A; are introduced. This illustration is e.g. utilized
in Figures and [6.2] where the respective models, the Multicut and the Asymmetric
Multiway Cut, are depicted.

For a more detailed introduction to MRFs and Factor Graphs the interested reader is
referred to the textbook of Barber [91].

2.6 Quality Measures

It is of importance that the usability of all made efforts for the final goal, the reconstruc-
tion of the connectome, can be judged. Besides the visual inspection of the results, sensible
quantitative quality measures are needed. Judging the quality of a pixel-wise/face-wise
membrane prediction is a common task in classifications and is described in section [2.6.1]
These measures are not reliably correlated with error measures on the connection net-
work. They are not completely unrelated though. A perfect pixel-wise probability will
necessarily translate in a perfect connectome.

Error measures on the level of segmentations, as described in section [2.6.2] will give
a more reliable estimate of the resulting connectivity quality. The wrongfully merge of
two neurons could be caused by a single unfortunate pixel-decision, merely reflected in
the respective error measure. The error measures working on segmentation level will in
contrast be severely effected as any sensible error measures on the connectome level would

be.

2.6.1 Error Measures for Classification

If dealing with a classification problem with n classes the construction of a so called
confusion matrix M € N"*" is advantageous. M;; reflects the number of times the true
class is ¢ and the given classifier returns class j. A perfect classifiers confusion matrix
therefore would contain exclusively zero valued off-diagonal elements.

Precision and Recall are commonly used to describe aspects of the classification qualify
for class 2:

M.,
Precision; := . 2.61
SR (2.61)

M.
Recall; := S 2.62
SR (2.62)

The precision is the proportion of rightly classified elements of class ¢ vs all elements
classified as i. The recall is the proportion of rightly classified elements of class ¢ vs all
elements that are truly of class i.
While precision and recall are defined per class, the accuracy gives an overall measure
for the classification quality:
> Mi;

Accuracy = ST (2.63)

(%) 1]
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2 Segmentation Essentials

In the special case of a binary classification, where one class can be identified as the class
of interest that the classifier is looking for, often times the precision and the recall are
stated for the classification without specifying this class as a shorthand notation. (E.g.
the precision of a classifier detecting a disease would refer to Precisiongegease and not to
Precision,, gesease). One example for the usage of these quality measures for classification
within this work is the classification of superpixel faces as shown in Figure [2.5]

2.6.2 Error Measures for Segmentation

When comparing two segmentations the actual segmentation ids are irrelevant. A direct
translation of the error measures of is therefore not possible. The relevant informa-
tion of any segmentation/partition is the pairwise affiliation. Either two elements belong
to the same segment or not. Therefore one way to calculate similarity measures for seg-
mentations will be based on pairs of elements (Rand index). Another way is utilizing
the concept of mutual information (variation of information). If one of the compared
segmentation is the ground truth the similarity measure becomes a quality measure for
the other.

Rand Index

The Rand index RI is the segmentation equivalent of the accuracy based on pairs of
elements instead of elements themselves. Given the elements p; and their cluster affili-
ation/segmentation id Sy (p;) from the first segmentation or Sy (p;) from the second one
the Rand index can be computed as:

a0 (5(S1 0.5 (92)) 6 (52 01).5: ()

RI 2.64
D2zl ( )
with 0 being defined as
lifa=1b
S(aby=4 "¢77 (2.65)
0 otherwise.

If both segmentations S; and S5 do agree that two elements ¢ and j should be separated
or merged (have different/identical ids) the Rand index profits. The Rand index ranges
between zero and one. Higher Rand indices do usually correspond also visually to better
correspondence of the pair of segmentations. This error measure is only reliable if the
segmentations are somehow similar and the segment size is not too small in comparison
to the pixel-size.

Variation of Information

The variation of information is based on reflections on the information content I, some-
times sloppily referred to as surprisal, of the clusterings. In general the accumulated
information content of two independent events x; and x5 with the respective probabilities
P (x) and P (z3) should be identical to the information content of the joint event xy N s
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(x1 and x5 are both happening). This is reflected in Eq. (2.66)):

I (31 Nag) =1 (1) + 1 (22) . (2.66)
Since the probability for the joint event x; N x5 is the product of the probabilities of
the single events P(x; N x2) = P(x1)P(x2) one can conclude that [ (P(z1)P(x3)) =
I (P(xy1)) + I (P(z2)). The log of the probability in Eq. (2.67) satisfies the requirement
from Eq. (2.66]).

I (z;) ~ log, (P (z:)) (2.67)
I (x;) = —log, (P (x;)) (2.68)
The sure event with P = 1 does not hold any information (is no surprise). The more

uncertain an event is the bigger is its information content. Since one wants I > 0 there

occurs a minus in the definition of Eq. (2.68)).

The expected information content is called entropy H:
H(X) =>_ P(xi)I(x:) = 3 Plai)log, (P(x:)) (2.69)
H(X,)Y) = Zp(xiayj)l(xiayj) = ZP<Iiayj)logb (P(zi,y5)) (2.70)
ij ij

For all actual computations I will use exclusively the logarithm to the basis b = e. There-
fore the unit of the entropy will be nat. The variation of information can now be defined
as the sum of the difference of the joint entropy of both random variables X and Y and
the respective solitary entropies:

VIX,)Y)=(HX,)Y)-HX))+HX,)Y)-H(Y)). (2.71)
The mutual information M1 of two variables X and Y is
MI(X,)Y)=H(X)+H((Y)-H(X)Y). (2.72)
Hereby theVI can also be written as
VIX,)Y)=(HX)-MI(X,)Y)+(HY)-MI(X,Y)). (2.73)

The mutual information can be interpreted as the amount of information that one can
get from the state of one random variable X about the other variable Y — The more one
has to change one to end up with the other, the more diverse they are and the bigger
the VI gets. A VI of 0 means perfect correspondence between the states of the random
variables. The bigger the value the bigger their deviation.

In the case of segmentations, the discrete random variables X and Y correspond to

segmentations S; and S, and the probability of a certain segmentation id z; or y; is given
5(S(p)—=i ) .

by their relative commonness P(x;) = M where the sums are over all pixels in
pel

the segmented image.
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(a) RI: 0.95238095238095 (b) RI: 0.98823529411764
VI: 0.35632688540993 VI: 0.35632688540993

Figure 2.6: Three exemplary pairs of
simple 2D segmentations for the illus-
tration of the different behavior of both
used measures. The colorful digits indi-
cate a coincidence with (a).

(¢)  RI: 0.95294117647058
VI: 0.35632688540993

RI vs. VI

To get a feeling for both used similarity measures I provide three pairs of segmentation
images in Figure [2.6] as well as the respective similarity measures. The starting point
of this experiment are two 8 x 8 images shown in (a). In (b) the resolution of the
same segmentation has doubled. While the variation of information is unimpressed, the
Rand index significantly improves. This experiment gives an impression of the measures’
behavior in case the segments get bigger. Figure (c) is pretending that the object size
in (a) is fixed but there are now more of the same size. The variation of information is
again completely invariant under this transformation. The Rand index reacts way less
extreme than in (b) but still a noticeably increase can be reported.

Both measures cover different aspects in a comparison and therefore the computation
ob both of them is valuable. Notice the peculiarity of the Rand index that for an increasing
field of view the measure will increase.

2.7 Partitioning vs. Semantic Segmentation

In section it is mentioned how relatively simple algorithms can be utilized to do easy
merge decisions on the pixel level to end up with an oversegmentation. In [2.4] it is shown
how this oversegmentation can lift the computation of merge probabilities to a more
sophisticated level — If one knows about a set of pixels that will definitely belong to one
neuron the computation of all kind of statistics on the data of the pixels in the set is
possible. All following chapters start from this basis.

The presented approaches for the segmentation of neurons so far did build on the
detection of the membranes. They are the strongest and most obvious indication available.
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2.7 Partitioning vs. Semantic Segmentation

Therefore the respective literature (see in chapter relies on the membrane information
only. In the next three chapters 3] [4] and [5] I work on the segmentation problem following
this pure partitioning paradigm.

In the subsequent two chapters [ and [7] I explore what kind of additional information
about the neurons architecture can be utilized in the segmentation procedure. In a flat
representation, as introduced in section [2.1.5] the membrane evidence translates into edge-
weights of a graph as in sections and All additionally introduced evidence can
be seen as characteristics of the nodes. On a first glance, neurons within EM images look
locally indistinguishable (see Figure . For incorporating any node-wise information
into the segmentation procedure, one needs to make sure that missing data will be treated
properly. More specifically we are facing three facets of sparsity:

1. Within one neuron distinctive node-wise information is sparse.

2. If restricted to a small field of view neurons may not be completely within ifff In
combination with point 1., one concludes that some individual neurons within the
problem do not have distinctive node information at all.

3. Distinguishing individual neurons automatically by their local texture and appear-
ance is not possible from the given images. Therefore in addition to point 1. and
2. there is sparsity in the possibility to distinguish neurons. I will show that even if
detecting a fingerprint of single neurons is not possible it is possible to distinguish
classes of neurons and deduce constraints based on this.

We will refer to the problem class, matching these requirements, as partially seeded
segmentation. “Seeded” refers to point 1. where node-wise information per neuron is
only available at some places from which it can spread. “Partially” refers to point 2. and
point 3.

In the following I will describe two algorithms that are able to include sparse, possibly
semantic, unary information: The Asymmetric Multiway Cut, which could be seen as
the natural generalization of the Multicut for incorporating unaries and a variant of the
Agglomerative Clustering I will refer to as Semantic Agglomerative Clustering.

We will introduce two principally different ways of sparse node-wise information. In
chapter [6] T will make use of the relation of synaptic partners that can be encoded within
two semantic classes. This means that the Asymmetric Multiway Cut as a globally optimal
algorithm is still applicable.

In chapter[7]I will show that the Semantic Agglomerative Clustering is able to greedily
resemble the objective of the Asymmetric Multiway Cut from chapter [0] albeit not being
able to reach segmentation quality as its globally optimal competitor. This algorithm can
show its strengths in cases where additional human input is available. In section[7.2]I show
how Semantic Agglomerative Clustering can handle a huge number of semantic classes,
the individual neuron identities seeded from man-made neuron skeletons. The runtime of
the globally optimal Asymmetric Multiway Cut prevents its usage on this problem.

4In fact in all our experiments the scale of the field of view is far to small to cover one neuron
completely. Every neuron will leave the block of interest at at least one position.
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Chapter 3

Multicut

The Multicutl] algorithm is designed for clustering nodes in an undirected weighted graph
G(V,&) (V is the set of all nodes and £ the set of all edges). The edge-weights can both
be attractive and repulsive. Besides this, its ability to handle more than two segments
differentiates it from the Graph-cut algorithm advanced by Greig et al. [96] and Boykov
and Kolmogorov [97] (a more detailed comparison can be found in section [6.2.3)).

The problem setup is as follows: Each node itself has no affinity to any special label
in the final segmentation/cluster (there are no unaries). Only label transitions are fa-
vored/punished. This describes a well known class of problems and has been discussed
extensively by Kappes et al. [74], [92] and Bansal et al. [95]. Since it can be seen as an
origin of several parts of this work I will introduce the algorithm in the following. For
further information the reader is referred to [92].

3.1 Methods

3.1.1 Node Formulation

The most straightforward way to formalize the Multicut problem is in the implicit flat edge
representation (described in section [2.1.5)) by introducing partition ids (¥ = (lf . ’ZIII)VIS’
one for each node 7 in the graph. Since one has to be able to depict all possible partitions
there must be as many ids as there are nodes. The scenario of every node belonging to
its own cluster is a valid partitioning.

Ped{l,....|IVI} (3.1)

The superscript p here indicates that the label is a pure partition label meaning that,
as usual for the implicit flat representation, the actual id of a node is meaningless —
All permutations of node ids are equivalent. That there is no affinity of some nodes
to certain ids is reflected in the objective function in Eq. adopting a factor graph
representation of the problem (see section . No unary potentials are present. The
only available information lies in the pairwise factors encoding attraction/repulsion of

!Depending on whether the background of the authors lies more in discrete optimization or in machine
learning the exact same problem is called Multicut [74) [92] or correlation clustering [93] [94] [95]. To avoid
confusion I will refer to the problem only as Multicut in the following.
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3 Multicut

neighboring nodes. They contribute in the objective function via the energies £;;:

argmin »_ Ej; (lf, l?) : (3.2)
lp ..
(3,9)€€
In a general factor graph the pairwise factor Ej; (lf 5 ) can attain [|V|| x ||V|| different
states. These are numbered in Eq. (3.3) by upper indices while the lower index tuple (i, j)
is supposed to remind us that there is one individual energetic contribution per edge.

11 12 1V
egil,j) egéj) €
ei- Gi-
Byapy=| 7 (33
Vi .HWMI
(4,9) €(i,5) ”
aig) bag)y o D)
2 | bt [ay =1 (3.4)
] - by G AT '
b 5) agg) )

Due to the restriction that we are dealing with partitions the factor matrix simplifies. If
E;; (IR,17) # Eij (I7,12) for k #1, k # m and j # k would hold then the nodes would not
be energetically indifferent to the actual node label. Therefore = in Eq. holds. The
argmin of the objective function in Eq. is invariant under a global shift

> 5, (01) - ( S &, (zg’,zg)) cam Y (B () +ows). (B3
( (

(i,5)€€ i,j)€E i,j)€E

with a being a scalar. It is now easy to see that alpha can be expanded in a = }; j)ee (i j)
and that these can be commuted in the respective summands of the objective. This gives
us the possibility to encode each factor as it is shown in Eq. (3.4) by just one number

Cli,g)-

0 fr==0r
() = =
i (1) {%m if 7 #17 30

with ¢ ;) = buj) — agj)- Node ¢ and j are now attracted if c(; ;) > 0 and repulsed if
i) < 0. Section discusses how to relate c(; ;) with a learned face-wise membrane
probability. Due to the fact that all permutations of the labels are energetically equivalent
there are (at least) n! equally good global optimal solutions to Eq. where n is the
number of used partition labels in the end. This makes the optimization of the problem
in this formulation difficult. The energetic degeneracy has been resolved by rewriting the
problem in terms of a binary labeling of the edges instead of the partition labeling of the
nodes.
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(Y12,¥13,Y23)
[
] e
|1 ¥/y23
Q)

2 1O @
2 Y13
Y12

(a) exemplary segmentation (b) forbidden edge configurations (red)
(c) node representation (d) node and edge variables  (e) edge
representation

Figure 3.1: Illustration of the two equivalent formulations of the Multicut. Given an
exemplary segmentation (a) where there is one label [; per region (represented by O
in (c) and (d)) and one binary indicator per face (indicated by O in (d) and (e)). In
(c) the Multicut in the node representation is visualized. (e) shows the respective edge
representation. The pairwise factors in (¢) [ translate to unaries in (e). The price one has
to pay is the necessity of one global factor M assuring the consistancy of the edgelabels.
In (b) the invalid configurations, prevented by M are marked in red. The relationship
between the /; and the y;; is made explicit in (d).
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3.1.2 Edge Formulation

In the case of Eq. (3.6 only the information ¥ L I% is energetically relevant. This binary
information can be encoded in the binary state of the edge (7,7) € &:

0 if F="r
LLoe— 2 J
3“’{1 it 240 (3.7)

An edge (i,j) with y;; = 1 is called a cut edge. The intrinsic degeneracy existent in
Eq. is avoided. Note that there can still be some degeneracy depending on the
used weights ¢;; from Eq. . This remaining degeneracy, which is present in the
objective function in Eq. in addition to the one caused by permutation invariance,
is not artificial but inherent to the respective problem instance. There can be different
partitions of the graph that are energetically equal.

The space of possible binary edge labels covers all possible partitions. This can be
seen since each partition given by a node labeling can be transfered to an edge labeling.
But the space of binary edge labels includes also configurations that are not transferable
to a consistent labeling of the nodes in the sense of Eq. . Figure gives an ex-
ample. Nodes that are supposed to have a different partition label due to a separating
edge between them can be connected by a chain of other edges that form a connection
and therefore imply an corresponding partition label; a contradiction. Therefore the price
to pay for the unambiguous representation in Eq. is that one has to explicitly con-
strain the solutions to be within the subspace of consistent solutions. As it can be seen in
Figure (b) for a three dimensional example, all solutions lie on the edges of a hyper-
cube. If we now want to restrict the solution-space we can do this by introducing linear
constraints.

These can be represented as hyperfaces in the solution-space dividing the space into
an accessible and a forbidden halfspace. For example a constraint involving all variables
is cutting away one of the corners of the hypercube defined by the possible solutions.
As T will show in chapter [5| not all of the necessary constraints are of this kind. If a
constraint is only concerning a subset of all variables y. C y the respective hyperplane
will be parallel to all variables y\y.. If a hyperplane representing a constraint is parallel
to a certain dimension representing a variable, the state of this variable does not has any
affect on violation of the constraint. This can be exploited to decompose the problem in
subproblems that can be solved independently of each other.

A class of constraints that is sufficient to completely define the valid subspace of the
solution space, the Multicut polytope are the cycle constraints. Both Kappes et al. [92]
and Kim et al. [93] are using them exactly as described here. Andres et al. [98] are not
considering the clustering of general graphs but is looking closely on the implications of
the cycle constraints in image segmentation. Others, like Nowozin and Jegelka [99], use
the constraints to tighten the Multicut polytope relaxation for an linear program.

The actual constraints are easy to understand: Within all edges of all cyclic paths the
situation of one single cut edge is forbidden. More formal:

> yij#1; VC € Cycle(u,v) CE. (3.8)
(1,5)eC

The slight reformulation in terms of paths, that are basically cycles with one missing edge,
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facilitates the formulation of the constraints as inequalities.
Path(u,v) = Cycle(u, v)\ (u,v) (3.9)

This allows a formulation of the given problem as an integer linear program.

min (Z wiyi> (3.10)

st Y. ¥ij > Yu V(u,v) € E; VP € Path(u,v) C & (3.11)

(i,5)eP

Now all kinds of solvers and techniques from this well examined problem class can be
applied. The number of all possible paths P for all neighboring nodes u and v is growing
fast with the number of edges in the graph. Enforcing all of them would not be sensible.

Depending on the actual graph structure and the actual weights not all possible con-
straints are needed. The problem of finding actually violated and therefore relevant con-
straints is called the separation problem. Iteratively finding violated constraints, adding
them to the originally plain objective in Eq. and resolving it will necessarily result
in a state where none of the possible constraints from Eq. is violated. This state is
a globally optimal consistent solution. This approach is called a cutting planes approach
since more and more parts of the originally untouched hypercube of viable solutions are
cut away by hyperplanes representing linear inequalities.

3.2 Practical Implementation Details

3.2.1 Facet Defining Constraints

As explained by Haas and Hoffmann [100], on a chordless path P. in a graph G none of the
nodes within the path are connected via an edge without the path. With the definition of a
vertex-induced subgraph being a subset of all vertices V, together with the subset of edges
&, whose endpoints are both in the subset of vertices: ((u,v) € &) < (u € Vs and v € V),
a chordless path can also be described as follows: If the vertex-induced subgraph of the
set of nodes in a path P is the path itself, P is chordless.

Chopra and Rao [101I] show that a chordless path corresponds to a facet defining
constraint. The hyperplanes corresponding to a facet defining constraint do coincide
with facets of the respective polytope. This means that during the cutting planes steps
only chordless paths must be considered/only facet defining constraints must be added
to the set of violated constraints. This insight will lead to a stronger localization of the
constraints which lead to a more pronounced decoupling as described in section [3.3]

3.2.2 LP Relaxation

Solving a general integer linear program is NP-hard. If the problem at hand has sufficiently
well behaved weights w; only a small subset of all possible constraints are needed and
problems of relevant size are still tractable. This is often times the case when applying
the Multicut on segmentation tasks in image analysis (e.g. by Andres et al. [98] [102]).
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There the structure given by the neighborhood relations of the used superpixles and the
favorable weights are advantageous.

Nevertheless one might want to relax the problem in the sense that y;; = {0,1} —
yi; = [0,1]. The resulting problem is solvable in polynomial time and therefore will
circumvent the troubles that come with the worst case complexity of the integer linear
program (LP). If one does not rely on the exact globally optimal solution one could solve
the relaxed linear program and round the solutions in the end (the rounding, a projection
to the Multicut polytope to ensure consistency is itself a nontrivial step. Further details
on this topic can be found in the work of Kappes et al. [92]). An alternative usecase for
the relaxation is as provider of a warm start for a subsequent integer linear program.

The total runtime of the Multicut algorithm is determined by the optimization step
as well as the seperation problem where the violated constraints are found. Note that
the shortest path algorithm on a graph with binary edges is of kinder complexity than
the shortest path on a graph with real-valued edge-weights w; as described in Eq. .
Therefore, especially for small problem sizes it is hard to predict whether the overall
runtime of a LP-relaxation of the Multicut or its integer formulation will require more
computational time. If one calls on the LP-relaxation of the Multicut one can think
of adding additional types of constraints like the odd-wheel constraints as discribed by
Kappes et al. [92] to tighten the relaxation.

3.2.3 Optimization

The actual optimization problem is to solve the occurring integer linear programs with
the so far found violated constraints. These minimization steps in the iterative procedure
are best left for a specialized commercial library like CPLEX [103]. They utilize a lot
of heuristics that can make a huge difference when working on discrete combinatorial
optimization problems.

3.2.4 The Need for Superpixels — MC for Closing Gaps

If one gives spatial structure to the graph by localizing the nodes in an image (as done e.g.
by Andres et al. [98|, [102]) the clustering of the graph corresponds to a segmentation of
the image. The naive localization by assigning one node per pixel is not expedient though
in the most cases. It is true that the Multicut enforces closed surfaces and therefore is
suited to close a corrupted membrand?] The membrane is extended in the image domain.
Therefore it must be assured that the final segmentation does not contain the membrane
as an segment of its own. We need to make use of superpixels that are not containing
membranes but do have membranes only at their boundary. In such a setup the closeness
constraints for the segmentation actually translates to closeness constraints of the objects
bounded by the membranes.

Figure [3.2] shows a disrupted membrane on the pixel level. Applying the Multicut al-
gorithm on the pixel level can result in a consistent segmentation that still represents a
disrupted membrane. If one restricts the possible edges by using appropriate superpixels
a situation representing a discontinuous membrane is not possible. Either the Multicut

2In this paragraph we will talk about edges in the image, represented by pixels and edges in the graph.
To avoid confusion and with the application of the segmentation of neurons in mind we will call the first
type membranes and the second type edges in the following.
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Figure 3.2: Gray indicates a membrane. Both images show an interrupted boundary of
an object. The left image shows a pixel oversegmentation while the right image already
has some pixels clustered together in a superpixel oversegmentation. A green line locally
indicates a transition between segments and a red line indicates a shared segment id.
Only in the right case the Multicut has a change of closing the hole in the membrane by
activation of the striped line.

will close the hole in the membrane or it will completely get rid of the open ends at all
(depending on the weights).

The said is not true for the naive application of the Multicut algorithm on the pixel
level. There are different ideas how to do this: Keuper et al. [104] use long-range potentials
to make sure that regions with boundary evidence between are separated even if this
boundary evidence is slightly disrupted. They call this approach the Lifted Multicut.

A different direction is explored in chapter [3.3] The introduction of constraints as
shortest paths is possible in the original framework since the topology of the objects
representing edges is clearly defined. One can easily talk about open ends and one can
decide on which side of the membrane the superpixels are located. I will show how one
can introduce a notion of topology not on an interpixel level but on actually space-filling
representations of membranes.

3.3 Dynamical Decomposition of Multicuts

In the following section I will introduce a way to exploit the structure of the optimization
problem, specified by the localization of the nodes in the image domain, to decompose
it. Global optimal results can be guaranteed while the optimization time is significantly
reduced.

3.3.1 Methods

The Multicut algorithm provides a globally optimal solution with respect to the edgeweights
w; from Eq. . This means that a change in the unary potential of any variable can
influence the optimal state of any other variable in the problem. In Figure this is
depicted by the fact that the factor representing the Multicut-constraints is connected
with all variables y;; in the problem. I will show in the following that this global nature is
not fully exploited in cases of 3D neuron segmentation tasks. Therefore a decomposition
into independently solvable parts is possible in practice without giving up global optimal-
ity. The global factor can then be replaced with a set of localized ones of a much lower
order. As I will show, this decomposition is done dynamically during the cutting planes
approach.

In the beginning of this chapter [3]it is already stated that the Multicut problem can
be optimized utilizing a cutting planes approach where iteratively only the violated facet
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3 Multicut

defining cycle constraints are added. In the very first iteration, where no constraints
have been added yet, each variable is solved completely independent of the others. From
Eq. (3.10) it becomes apparent that a mere thresholding will suffice in the unconstrained
setting:

0, <0
Yij € {0,1}, W5 € R; @(ZE) = { 1 2>0 (312)

mym( > wz‘jyz‘j> = D min (wyy;) =i = O (wy) (3.13)
(

A A Yi
1,j)€E (i,9)€€ 7

Here 3 denotes the optimal solution. Note that the behavior of the Heaviside like function
O(z) at x = 0 is not relevant in this case and can therefore be arbitrarily be declared to
be either one or zero.

The iterations of the cutting planes approach are numbered with ¢ and the initial
thresholding step is defined to be t = 0. In each subsequent iteration ¢ we find violated
constraints that we add to a set of so far found violated constraints Ciy. Since none of

the found constraints is removed (this could lead to endless circles) Cf; C C:5! holds.

!
Cn= D ¥ij2Yuw ; (uv)€E, Py €Path(u,v) CE (3.14)

(,5)€Pm

is one constraint as used in Eq. (3.11)). The set of contained edges in C,, is defined as

Cs = {(i,4); (i,7) € Pu} - (3.15)

The integer linear program that needs to be solved in an iteration ¢ reads then:
m}in (Z; wiyZ) st. Cp VC,, €Cly. (3.16)

Let us approach the nature of the decoupling of this problem in several steps:

1. First, we want to examine the case of solving the problem with only one constraint
present ( ||Cystl] = 1). All variables y;; with (i, ) € C5 can not be solved indepen-
dently any more. The state of one of them can be altered if another one of them
changes its state. Every y;; with (i, j) ¢ C¢, can still be solved by thresholding only.

2. Now we will examine what happens in the presence of multiple constraints because
most of the time one cycle constraint will not be sufficient to cover all inconsistent
solutions that are energetically better than the energetically best solution of the
fully constrained problem.

Through the introduction of multiple constraints, variables y;; and y;, for which
no single constraint C,, can be found such that (i,5) € C5 and (k,l) € C¢,, can be
coupled (can not be solved independently any more as in iteration ¢t = 0). If con-
straints share variables, all variables in the union of these constraints (all connected
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3.3 Dynamical Decomposition of Multicuts

components (€s) must be considered together.

False if CENCE=0
True otherwise

connected(C,,, C,,)=connected (C,,, Cy,) = { (3.17)

CEce

(i,5) € @55 (k1) € 5
& {1, C Cug
s.t. (i,5) € €8, (k1) e C§
and connected (Cy, Coy1)Va € {1,2,...,N — 1}

Such a strict definition of ' is bulky but the idea is simple: Constraints connect
each other via shared edges. €¢ will be the set of all edges that are covered by any
constraint in .

3. As a next step we will emphasize that not all of the variables associated in edge-sets
@¢s do need to be recomputed in each iteration ¢. If one defines edges that are not
part of any constraint as not being their own @', in the zeroth iteration (thresh-
olding phase without any constraints) the number of connected components is zero:
# (@), =0. In the next iteration there might occur # ('), connected components.
This is the maximal number of s one will find during the whole optimization
process: # ('), > # (C'),,, Vt > 1. Every constraint that is introduced in a later
iteration ¢ > 1 must share at least one variable with a constraint that has already
been present in iteration ¢ — 1. Otherwise it could have been already be found in
iteration ¢ = 1. This is the case because we can only expect a change in the inter-
mediate solution y; to the thresholding solution y, at places where constraints are
present. The reduction # (') follows from a merging of existing s e.g. by the
introduction of a new constraint that covers edges in both 's.

The interesting part for the optimization is now that, if a (€' is solved in ¢ and for
t 41 no new constraints are found that do overlap with at least one edge in this ',
the sub-solution for the edges in ' will not change — we already found the optimal
solution given this set of constraints. Therefore it does not need to be recomputed.

myin (Z wiyZ-) s.t. Cp, VC,, € Cygt (3.18)

:Z (m}}n Z wijyij) + (Hly}l’l Z wijyij) s.t. Cm VCm € Cvsf
a (

(i.1)€CE i,§)¢CEVa

The intermediate optimal state for the edge (i, j) at the iteration ¢ shall be called gjfj It
can now be computed according to
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3 Multicut

<argmin (Z(i’j)e@g wijyij)> s.t. Cp, VC,, € T if (i,7) € @
ij

Ya

and @ # @1
N
Yij = <argmin (Z(i,j)e(ﬁg w,-jyij)> s.t. Cp, VO, € @i (i,5) € @

i

Ya

(3.19)

and ©! = C'!
C) (ww) if (Z,j) ¢ @a Ya .

If no additional violated constraints can be found in iteration ¢ then ij = g)f;rl and gjfj
is the globally optimal solution leading to a closed surface segmentation. Note that only
for the first of the three possibilities for the computation of gjfj it is necessary to actually
solve an integer linear problem. The second line utilizes the solution already found in the
previous iteration and the third one copies the stage zero solution, the mere thresholding.

To summarize: I presented a scheme how to dynamically divide the Multicut prob-
lem into several small subproblems without loosing global optimality. One can see that
each step of the cutting plane iterations compulsory ends up with the same intermediate
solution no matter if the problem was solved globally or for each connected component
independently and then composed of the sub-solutions (if there exists an unique optimal
solution). Note that the search for constraints, via e.g. a shortest path algorithm, still
has to be performed on the whole problem.

The Hyperplane Perspective

Since the decoupling is constructed solely on the affiliation of constraints to variables
we can find a geometrical interpretation of the decoupling in the space of all solutions
mentioned in chapter [3] There the constraints correspond to hyperplanes, each defining
a invalid half space. Let H,, be the hyperplane associated with constraint C,,.

(i,5) ¢ C5 = Ho || yig (3.20)
(i,7) € CE = Hp }t vij (3.21)

H,, || y;; means that the hyperplane is parallel to the dimension of the solution-space to
which y;; assigned. The definition in Eq. of two constraints being connected means
geometrically that the two constraints have no dimensions in common, in which they are
not parallel:

connected (C,,, C,,) = True < 3Jy,;; with H,, }f y;; and H,, }f y;; (3.22)
An simplified visualization can be found in Figure[3.3] showing different sets of constraints

in a two dimensional subspace of a Multicut problem.

3.3.2 Experiments

For solving Multicut problems to global optimality I rely on the opengm library pre-
sented by Andres et al. [I05]. This library automatically translates the problem from
a formulation as a graphical model (see 3.1.1)) into an integer linear program that will
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Figure 3.3: Exemplary visualization of constraints in a 2D subspace in the solution space.
Each circle symbolizes a possible solution. Only circles not lying within a colored (con-
strained) half-space can correspond to closed surface solutions. Cy } y1, C1 }f ya; Co I 1,
Cy || y2; C3 || y1, Cs {f y2. The constraints Cy and Cj in (b) do not form one connected
component on their own. (] in (a) on the other hand couples the variables y; and ys.

be solved via the commercial solver CPLEX [103]. Since the actual source code of the
solver is not openly availible, theoretical predictions on the benefit of the decomposition
of the Multicut are hard. We therefore rely on timing experiments on a typical superpixel
oversegmentation on the dataset described in appendix [A.1.3] The results can be seen
in Figure 3.4l It is notable that in all cases where there is an unique globally optimal
solution with respect to the current set of constraints, both tested approaches lead to
completely identical results y* in all intermediate stages as well as in the final iteration.

The presented results are reported for a serial computation of all connected compo-
nents for constraints in the decomposed approach for comparison. Since all connected
components are independent of each other, a parallelization of the decomposed approach
is trivially possible and may, depending on the used hardware, lead to further improve-
ments in runtime.

3.3.3 Conclusion

There exist fast approximate solvers for the Multicut problem like the ones presented by
Beier et al. [106], 107]. Nevertheless in cases where global optimality must be assured or
in cases where even small improvements in the resulting segmentation quality countf],
adopting the presented decomposition is worthwhile.

The advantages in runtime of a blocked problem have already been reported by
Kroger [109]. There one has to give up any guarantees for global optimality. In a sense
the decomposition scheme proposed in this section can be seen as a continuation in the
spirit of [I09]. The advantage is that the blocking is not done on the basis of geometrical
considerations but the particular problem itself specifies the blocking.

This chapter provides the means to scale up the multucut algorithm. Assuming that
there is a maximal size the constraint-clusters will not exceed in practice and that there
is a maximal time that could be spend for such a maximal cluster this would transform
the NP-hard Multicut problem into a problem scaling linearly with the problem size.

3Note that the globally optimal solution is not necessarily the best one according to global error
measures as e.g. presented in section since we are not optimizing for it but for a simpler, hopefully
related energy. One designs the energy function in a way that desired results are probable. As shown
e.g. by Batra et al. [I08] modes that are not globally optimal might also be of interest.
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Figure 3.4: Comparison of the pure accumulated ILP-runtime (the costs for the search
of the path constraints are not included since they are identical in both approaches) per
iteration of the problem. After 32 iterations the globally optimal solution is found by
both the global approach from section and by the decomposed procedure of solution
proposed in this chapter. The final mean runtime of the global approach is 444.7 s whereas
the decomposed approach takes 147.3 s which makes up for a factor of 3 on this typical
problem for neuron segmentation described in appendix .

The existence of a maximal size of constraint-clusters for neural data independent of the
problem size is questionable though. Therefore future work should focus on the further
analysis of the behavior (e.g. the size distribution) of the constraint areas for increasing
problem sizes.
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Chapter 4

Agglomerative Clustering

Agglomerative Clustering can in some ways be seen as the greedy cousin of the Multicut
for image segmentation. While the Multicut aims to find globally optimal solutions given
the edge-weights (w; from Eq. ), Agglomerative Clustering is a stepwise approach.
To base the decision about the inclusion of semantic labels in the hierarchical clustering
in chapter [7| (to e.g. emulate the Asymmetric Cuts from chapter @ on solid ground,
the procedure is described in the following section. A fast initial entry to the algorithm
is granted by the description via Markov Decision Processes as it was done by Jain et
al. [I10]. In addition, I will propose a novel, natural stopping criterion for clusterings
according to non probabilistic and potentially dynamically changing sequencing-weights.

4.1 Agglomerative Clustering as Markov Decision Pro-
cesses

A stochastic Markov decision progress as described by Bellman [IT1] is a tuple (S, A,
P(-,-), R(-,-), 7) consisting of a finite set of states S, a finite set of interactions A,
transition probabilities P, immediate reward R and a discount factor v. An action a; € A
applied in time step t to a particular state s; € S will result in a certain other state
Si11 € S in the subsequent time step with the probability Py, (s¢, S¢41). Ra, (St, Se41) will
be the expected immediate reward for the action a;.

The goal is now to find a deterministic decision policy 7 (s;) = a; that maximizes the
expected discounted sum of rewards:

T (8¢) = arginax { Z Py (81, $t41) (Ra, (815 8e41) +9V (5t+1>>} (4.1)
Vi(se) = > Pa(sty8001) (Ray (86, 8041) +9V (5041)) - (4.2)

St+1

The bigger the so called discount factor v € [0, 1], the bigger the influence of future actions
on the current decision a;.

As it is shown by Jain et al. [I10] one can formulate Agglomerative Clustering as as
Markov decision progress. The states s; at a certain time step ¢ correspond to the seg-
mentation produced by the iterative merging of the initial segments of the oversegmen-
tation up to t. We do not deal with any uncertainties concerning the merge operations
P,, (st,8t41) € {0,1}. Therefore we deal with a deterministic Markov decision process.
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4 Agglomerative Clustering

@]

AlgSS | _—— AB D\
D\\AAA >CD///> AB )
A/& /l ABC
BD
NE /\/(F* ABI& \
ﬁ S~
\ABCD | Ao

Figure 4.1: All allowed ways of iteratively clustering the four initial segments A, B, C
and D in the given exemplary segmentation image illustrated via a Hasse diagram (The
fineness of the partitions defines a partial order).

oy}

In the straightforward implementation of the Agglomerative Clustering the actions (the
merge decisions) do not consider future actions. In Eq. the restriction of v = 0
ensures that only the summand concerning the current state is considered. The optimal
action value function is then equivalent with the immediate reward.

The states S, the merge operations A and the discount factor are now specified. Also
the transition probabilities are known.

(4.3)

~ )1 if merged segments are neighbours
10 otherwise

This is not to be confused with the merge probabilities that can contribute to the weights
w;. Eq. states that if the algorithms decide for one possible action it will definitely
succeed.

The most desirable reward is directly related to the error measure (Er) used to judge
the resulting segmentation s; in the end given a ground truth sy e.g. R, (si,8i41) =
Er (s¢, Sgt) — Er (si41,Sgt). Here it is assumed that a lower value in Er is better. The
ground truth is not available in practice. Therefore we rely on local merge probabilities.
The policy 7 is then: merge the pair of neighboring segments with the highest merge
probability. Figure |4.1]illustrates the different ways an agglomeration can take in a simple
example, depending on the respective weights. New pairs of segments emerge through the
merge process. The simplest way to attain their weight is to average the weight of the
composing edges.

There are several possibilities to improve the explained agglomeration procedure. One
can adjust the merge policy m. Prior knowledge on e.g. the size distribution of the final
segments can enter here. Any improvement on the local merge probabilities will enter in 7.
Nunez-Iglesias et al. [84] propose a framework to re-learn a classifier for edge-wise merge
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4.2 Using Intermediate Stages

probabilities and thereby increase the quality of a re-prediction of bigger intermediate
edges. I will compare this approach with the Multicut as well as with Asymmetric Cuts
in section 6.4

Another possibility to improve on the vanilla Agglomerative Clustering is to abolish
the restriction of v = 0. Parag et al. [70] for example take possible future merge decisions
into account when reasoning on the present actions. This way, some wrong merge decisions
can be foreseen and avoided.

Edgeweights vs. Nodeweights

For actual segmentation procedures via Agglomerative Clustering it is beneficial to utilize
superpixels as initial oversegmentation (for reasons stated by Parag et al. [70]). The
nodes V in the graph G (V, €) represent the superpixel regions. Each merge action of two
neighboring nodes a and b changes the graph in the following way:

merge (a,b) : V — (V\ {a,b}) Uc with ¢ = {a} U {b} (4.4)
£ = £\ (((6.J) V] € mn (8)) Vi € {a, b)) (45)
U (¢,7) Vi € (ng (a) Uny (b) \{a,b})
with ¢ == {a} U {b}

Mostly ny, is defined via the 4- or the 6- neighborhood (see section [2.2.1)).
As stated before in section [4.1], at any point in the iteration the edge with the highest
merge weight w;; is merged next.

Although the edges £ cover all pairs of neighboring nodes, there is a fundamental
difference between the computation of weights w; on the nodes with a subsequent mapping
to the edges w;; = d (w;, w;) due to some metric d and a direct assignment of edge-weights
w;j: The direct assignment is not restricted by the triangle inequality. Edge indicators
based on ridges, where both sides of the ridge are equivalent are better assigned directly.
Step edges based on a change in color/intensity of an image can be described via the
metric approach.

4.2 Using Intermediate Stages

The disadvantages in terms of final segmentation quality of an iterative approach in
comparison to the globally optimal Multicut (see chapter are apparent. Parag et
al. [70] show that taking some possible future merges into account is beneficial for the
final segmentation. The Multicut is able to take all possible merge-decisions into account
at the same time.

There are also some aspects in which the Agglomerative Clustering is in a better
position. As seen in section [2.4] the classification of bigger faces tends to be easier than
the classification of smaller faces. In intermediate steps the Agglomerative Clustering is
producing bigger sized edges and thereby has the possibility to increase the intermediate
edge-weight quality while the Multicut has to rely on the initial weights.

As T will show in [6.4] this advantage does not outweigh its shortcomings in terms of
quality. The big advantage of this algorithm lies in its computational speed. While in
the worst case the Multicut is NP-hard, there exist algorithms that are applicable for
the Agglomerative Clustering problem of complexity O (n?) like the one presented by
Sibson [112].
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4 Agglomerative Clustering

4.2.1 Dynamically Alter Merge Priority - Size Regularization

The Multicut can not consider any intermediate states. It finds the globally optimal
solution given some initial edge-weights. As described, Agglomerative Clustering is a
greedy strategy. In general this means that segmentation results do not as good as the
ones produced by the Multicut algorithm (see Figure . The fact that intermediate
states exist enables the usage of these stages. The weights of newly emerging edges can
be updated more evolved (as for example done by Nunez-Iglesias et al. [84]) or other
properties of an intermediate solution can be considered.

The question is what kind of information can be utilized that is not be utilized in
the first place. In the case of neuron segmentation, where the shape of the cells strongly
varies, not much can be said in advance. In the spirit of the method revisited by Murtagh
et. al. [I13] the sizes of the segments are considered here in the following way:

1 1
(sizef + size9.>
I

2 I

with a real, non-negative parameter #. The bigger 6, the bigger the influence of the
sizes become in comparison to the original weights. For § = 0 the weights stay unchanged.
Applying this regularization basically encourages small segments to merge. Eventually
this leads to a more balanced size distribution of the resulting segments. Eq. encodes
a size prior for the segments which is biologically sensible — Neurons within the field of
view will be of a certain minimum size.

This is a heuristic that eventually is only backed by experimental success. The success
of both the Multicut and the Agglomerative Clustering depends strongly on the quality of
th edge-weights w;;. In cases where thresholding leads to the correct result, the Multicut
algorithm, as introduced in chapter [3 will not find any violated constraints in the very first
iteration and therefore terminate immediately. Also the straightforward Agglomerative
Clustering algorithm leads to perfect results for thresholdable weights.

The behavior of both algorithms is interesting for increasingly bad edgeweights. The
following experiment is supposed to give an impression of the capability of both algorithms
for a variety of edgeweights of different quality on a typical neighborhood structure as it
appears in the case of neuron segmentation. On a block of data for which a ground truth
segmentation is available (appendix[A.1.3)), typical initial superpixles (see section [2.3)) are
computed. To be able to theoretically get a perfect segmentation measure, the ground
truth is projected to the superpixels by majority vote. This means that also for the edges
y;; the ground truth solution ¢;; is known. To get an objective, adjustable measure of
face quality, we use a linear combination of white noise n;; € [0, 1] and the ground truth
Ui; € {0,1} as artificial edge probabilities:

P =vnig + (1= )3y,

where 1 — p; is the merge probability for segments 7 and j.

The result of the comparison between the Multicut and the Agglomerative Clustering
based on these artificial edge-weights is condensed in Figure (a). The Agglomerative
Clustering procedure is stopped as soon as there are as may segments as there are in the
ground truth. It becomes obvious that the Multicut (black) is way less error-prone in
case of bad edge-weights than all variants of Agglomerative Clustering that were tested
(in color). Up to a noiselevel v = 0.5, thresholding of the edge-weights leads to a perfect
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(b) runntime comparison

Figure 4.2: (a) shows a comparison of the error-proneness of the Multicut algorithm
and the Agglomerative Clustering algorithm (stopped as soon as the number of segments
apparent in the ground truth are reached) for multiple size regularizations #. The used
error measure is the Rand index. (b) reflects the actual runtime.
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4 Agglomerative Clustering

solution since the noise is normalized. The vanilla Agglomerative clustering with 6 = 0 and
the Multicut both achieve a perfect score in this regime. The bigger the size regularization
parameter ¢, the more the qualitatively good edge-weights get polluted with the less
precise idea of an uniform size distribution. This leads to an early deviation from the
prefect score for all size regularized Agglomerative Clustering algorithms (6 > 0).

Looking at the right side of the graph in Figure4.2|(a), where v > 0.5 the quality of the
edge-weiths get worse. Now the information about an uniform size distribution becomes
more valuable in comparison. In the extreme case where the edge-weights are free of
sensible information, it is beneficial to rely on the sizes and nothing else. It is interesting
to observe the algorithms behavior in the intermediate region, where the edge-weights are
not nonsensical but can be helped by a modest size regularization.

There are no measurements in Figure [4.2| (a) for the Multicut at high noise levels. The
reason is simple: We run against the wall of NP-hardness — computation time explodes.
This is demonstrated in Figure (b). While all variants of Agglomerative Clustering
are completely indifferent to the edge-weight quality, the Multicut has to pay a high price
for its performance (as seen in Figure (a)).

4.2.2 How to Stop?
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Figure 4.3: This image shows a possibility to naturally stop Agglomerative Clustering
with altered edge indicators for a typical small neural segmentation problem. (a) shows
for different parameters 6 the course of the accumulated consensus value of each merge
with decreasing number of segments. The number of segments in the groudtruth image is
244. (b) shows the number of merges that are done against local probability. The bigger
0 the earlier in the merging procedure the clustering merges nodes that locally should
stay seperated.

In the previous experiment from section we run the Agglomerative Clustering
with dynamically altering weights because we used the number of ground truth segments
as stopping criterion. Only as long as the edge-weights correspond to the local merge
probability a stopping criterion can come naturally: Cluster as long as there are edges
left with a merge probability of

Pmerge > 0.5 . (47)
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4.2 Using Intermediate Stages

Edge probabilities that do not have a natural threshold can be stopped by determining
the final number of segments. Since this number is generally not known in advance, for
the case of neuron segmentation, working with these kind of edge-weight is usually seen
as not convenient.

To enable the usage of non trivially thresholdable weights for new data (where we
do not already have the ground truth available) I introduce a differentiation between
the sequencing-weights w?® and the probabilistic weights w?. The sequencing-weights are
the ones for which the clustering is performed and the probabilistic ones do represent
local merge probabilities. The modified weights in Eq. holding nonlocal information
(current segment sizes in this case) are used as sequencing-weights. Staying with this
example the criterion from Eq. is not sensible any more. The sizes can encourage
an edge with a locally low merge probability to contract. Stopping at this early point
prevents future merges to suit local probability.

To introduce a criterion that is able to recover the ability to naturally stop the clus-
tering with non-probabilistic weights I will define a consensus value for each clustering
step:

consensus; = w! — 0.5, (4.8)

where w! is the probability for the ith merge decision initiated due to the weight w;.
It is an indicator of how well the merge decision is backed up by local probability. The
iteration ¢ at which the accumulated consensus ( é‘:o consensus;) takes its maximal value
can be taken as the point at which the local probabilities are most satisfied and therefore
suited as a stopping criterion. Figure (a) shows the accumulated consensus value for
different 6s in Eq. (0 = 0 means not altering the weights at all). A maximum is
identifiable in all cases.

The proposed method is not only valid for the specific altering of the cluster weights
in Eq. (4.6). It is applicable for arbitrary sequencing-weights as long as the knowledge
of probabilistic weights or similarly weights for which a natural stopping criterion can
be defined are available. This encompasses also the Semantic Agglomerative Clustering,
which will be introduced in chapter[7] In section[9.2 an experiment comparing the result-
ing segmentation of an Agglomerative Clustering stopped according to this criterion and
a stopping at the number of ground truth elements is performed. The automatic stopping
does only slightly fall behind the ground truth stopping.

4.2.3 Conclusion

Being able to stop the agglomeration procedure naturally even for dynamically changing
and not naturally thresholdable sequencing weights w; is important. It enables both the
usage of dynamical regularizes like the size regularizer presented in Eq. and the
usage of semantic labels as introduced in chapter [/} The presented stopping procedure is
based on the introduced consensus measure from Eq. . To maximize the performance,
a test of alternative criterion could be an option. It is for example not clear why to prefer
a linear weighting of the difference as done in Eq. over e.g. a squared version.
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Chapter 5

V-Multicut

The segmentation algorithms presented in chapter 3Jand [4relied on the flat representation
of edges. In chapter 3] we saw how this representation enables the introduction of an
abstract cell complex based on the topological grid. That structure allowed the
introduction of constraints that enforce closed surfaces as it was e.g. done by Andres et
al. [08]. In the following we will see how similar constraints can be formulated for the
voluminous representation.

The thicker the edges/membranes in the image get the more stilted the flat represen-
tation gets compared to the volouminous representation (from section . Another
benefit of the voluminous representation described i the following: We already saw that
it is beneficial to introduce superpixels in a segmentation pipeline as an initial overseg-
mentation in cases where a critical boundary needs to be closed via the segmentation
algorithm (one exemplary case is shown in Figure . Algorithms utilizing the flat rep-
resentation rely on a face on top of the weak membrane. If the superpixels are already
merged over the weak edge the situation of the Multicut or Agglomerative Clustering is
desperate. This situation has no equivalent in the voluminous representation. There will
always be a superpixel available to close the gap. The worst case is that the superpixels
is bulky and does not represent the shape of the membrane precisely.

What hinders people from working on the voluminous representation is the difficulty
of introducing gap closing constraints or other consistency constraints in the first place.
Even the unambigous detection and classification of the gaps is not trivial. These are
exactly the problems I will tackle within this chapter.

We will show how topological information based on abstract cell complexes can in
general be used to constrain the shape of objects and present the segmentation of neural
membranes from 2D images. To show that the V-Multuicut is not tailored to the segmen-
tation of neurons but rather a general way to introduce topological constraints on binary
classifications I present its performance on task of classifying a street network and the
task of cell wall detection.

Since an unambiguously anchorage of a cell complex is possible on an object’s skeleton,
we develop a novel, deterministic and local skeletonization algorithm that allows to trace
back the topological information from the skeleton to the original object and therefore
allows the introduction of topological constraints on the object level.

The major difference to the cell complex as introduced in is that there, each
cell has its fixed place rooted in the topological grid. Since here only the original pixels
(or equivalently superpixels) are utilized, the cell complex is dynamically constructed
dependent on the current labeling of the pixels. A d dimensional pixel can represent
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(¢) thresholding solution (d) constrained solution

Figure 5.1: Segmentation of a street network: (a) satellite image (Google Imagery ©
2014 DigitalGlobe, described in more detail in appendix . To its right a superpixel-
wise road probability is shown (b). A thresholded probability is shown in (c¢) and the
segmentation utilizing the topological prior knowledge is shown on the lower right image
in (d).

lower dimensional cells in the cell complex.

Figure [5.1] gives an impression of the impact of the topology driven constraints based
on the cell complex structure on the example of a road network (a). In (b) we can
see a superpixel-wise local road probability computed by a random forest based on local
appearance. The difference between (c) and (d) is due to the constraints formalized on the
basis of a skeleton that express that the road network is not supposed to have any one way
streets. This is surely an assumption that will not hold for general road networks but the
given example shows that the Multicut like constraints on the voluminous representation,
the V-Multicut, are potentially applicable beyond the segmentation of neurons.

One way to look at the problem at hand is to see it as a binary classification problem
of pixels/superpixles only. Since one of the classes is interpreted as membrane, this
binary classification problem translates into a partition problem. The shift in perspective
is comparable to the shift in perspective when going from the edge representation to
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the node representation in the formulation of the Multicut in chapter [3 It justifies the
classification of the V-Multicut as a partition algorithm.

5.1 Related Work

The two related directions of research are the incorporation of prior topological informa-
tion like number of connected components or holes in a binary region labeling and the
usage of abstract cell complexes for unsupervised image segmentation. This work can is
localized between these two fields since I bring topological information, similar to the one
used in the Multicut, to the object level. An early representative of the first direction is
given by Zeng et al. [I14]. The authors include topological priors in a graph based min-
cut/max-flow algorithm. They are for example able to solve a foreground background
segmentation with preset number of foreground objects approximately. A related prob-
lem is approached by Nowozin et al. [I15] who show how to enforce one single connected
foreground region within the framework of MAP-MRF LP relaxations. These problems
are NP-hard and exact solutions can only be found on small problems. Recently there
are attempts to include topological information in a more tractable way. Chen [1106]
changes the unary potentials of a random field iteratively for the final segmentation to
fulfill certain topological requirements and Stithmer et al. [I17] show that, in the case
of a tree shaped foreground object, the connectivity constraint can be enforced via local
constraints only and therefore the optimization can be done more efficient than in models
with higher-order potentials covering global interactions. The second line of research,
that is related to the ideas presented here, is the one on Multicuts relying on the flat
representation of edges. Since this part of the literature was discussed in detail before,
the reader is referred to the respective chapters and 3]

5.2 Methods

This chapter provides all means to unambiguously detect and prevent all kind of topo-
logical priors on any segmented object in 2D. We will use this methodology to close holes
in the segmentation of neural membranes and other network-like structures.

The popper formulation of the ideas outlined in section base on several differ-
ent concepts. The following sections will introduce everything necessary to formulate
topological constraints on the object level. The very basic adjacency and neighborhood
relations utilized within this chapter are specified in the following section On this
basis a skeletonization algorithm that meet all our requirements is constructed in sec-
tion[5.2.3] Section finally shows how localized constraints on the object level can be
constructed from a skeleton in a way that they will stay valid, independent of all future
label configurations.

5.2.1 General Problem Formulation

The problem we aim to solve can be expressed in the following way:

argming Y wy; s.t. C(¢(y)) = True (5.1)
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We aim at finding a binary labeling y € {—1, 1}¥ £ {b, f}¥ of corresponding N superpix-
els as either foreground f or background b according to the weights w. The foreground
class f will be the one that is interpreted as a network like structure later on (road,
membrane, cell-wall). C(¢) is some requirement on the skeleton ¢(y) of the labeled fore-
ground region. The constraints C' are imposed on the skeleton level because there an
unambiguous representation of an abstract cell complex can be found. This means that
the constraints can be formulated in a convenient and reproducible way. Graphically
speaking in Figure defining what is a bump in the foreground and what is a real open
end is hard. On the skeleton level this is trivial. In the following I will show how to
impose constraints on the object level to enforce the constraints C'(¢(y)) on the skeleton
level. The objective function is linear in y and we will see later, that the constraints can
be formulated linearly as well. Therefore existing solvers for integer linear programs can
be used. In the presented examples, the goal is to find the energetic best labeling, that
has a skeleton without dangling edges/open ends.

In an arbitrary background/foreground segmented image, the identification of junction
like regions or endpoints is a haphazard task. However on a skeleton these informations
are easily and unambiguously detectable. A skeleton endpoint has exactly one neighbor, a
junction is characterized by having more than twd'} Note that with this insight only com-
putational limitations prevent us from using this for real world applications. One could
e.g. use a cutting planes approach as follows: After an initial binary segmentation is per-
formed by thresholding on the base of some local foreground indicators, a skeletonization
allows the test on whatever topological constraint that one would like to impose. If the
labeling leads to a skeleton that is not satisfying all demands, a global constraint forbid-
ding this configuration can be imposed. This can be repeated until the resulting skeleton
fulfills all requirements. This just looks in a brute force way through all possible solutions
in an energetic order for the energetically best solution that fulfills the constraints on the
resulting skeleton. In practice this is inefficient since we are not giving the algorithm any
hints on where to correct the solution.

This leads to the next thought: Is a localization of this information possible or in other
words, can one find a subset of all superpixels in the segmentation that lead to a charac-
teristic element (e.g. an endpoint) in the skeleton, independent of all other elements in the
complement of our subset. This depends on the problem instance and the skeletonization
algorithm. The skeletonization must be deterministic and should use only local informa-
tion. A non-deterministic skeletonization does not guarantee a consistent classification of
the given labeling in successive steps in a cutting planes approach. An algorithm using
global information for skeletonization works in principle (as explained above) but in prac-
tice it prevents the localization of the elements that cause a particular configuration in the
skeleton. In the following I will introduce an appropriate skeletonization algorithm and a
way to localize the cause on the object level of different configurations in the skeleton.

5.2.2 Neighborhood Relations

Since we make use of the neighborhood structure of different superpixels in the following
(e.g. in the determination of simplicity and in the classification of skeleton elements), it is
necessary to specify the used adjacency relations. In classical digital topology on a pixel
level one needs to work with different (the lowest and the highest) neighborhoods for the
two different classes to avoid a connectivity paradox (also called topological paradox) as

IFor a rigorous definition see section
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(a) (b)

Figure 5.2: Visualization of connectivity for a local simplicity criterion: The white ele-
ment in the center of (a) is the one for which simplicity is tested. The colored regions are
its neighbors. The white dots in segment B, C', D, E and G mark the elements belonging
to the background class. The others, A, F', H, I, J, K and L are of the foreground
(membrane) class. In image (b) we see the configuration as seen from a position inside
the white center element. The elements shown here correspond to the foreground neigh-
borhood Ny of the central segment. While background segments in the right figure are
connected via all vertical lines, foreground elements are only connected via the gray ones.
These are the ones where no background element is connected to the respective vertex.
This is because for the foreground we do only take elements in Ny into account and for
the background we count in the richer neighborhood NN,. On this example there are two
connected components of foreground composed by F and I, J, L, A. The two connected
components of background consist of G and E, D, C, B.

it is described in more detail in section 2.2.11

We make the design choice that the foreground class in our two dimensional problems
is supposed to be line connected and the background class is vertex connected (as defined
in section [2.2.1)).

Nf — N12D

ine

Nb — N2D

vertex

An example is shown in Figure[5.2] In the left image A, B, D, E, F, I, J and L are in Ny
of the white center element and C, G, H and K are the additional elements in N,.

5.2.3 Skeletonization

The presented skeletonization algorithm works iteratively on a binary labeled set of su-
perpixels. At the beginning one needs to assign an order to all segments. This order can
be chosen randomly but once set, it must not change again.
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Boundary

Once the order is set, one determines the border of the foreground object that has to be
skeletonized: If an element s; is labeled as foreground and at least one element in Ny(s;)
is labeled as background then s; is part of the boundary of the object.

Simplicity

The next step is to check all boundary elements in the preset order for simplicity. A
simple element is one that, if its label is flipped from foreground to background, does not
change the topology of the foreground object: The number of connected components of
foreground and background shall not change. Again theoretically one could stop here and
do a global connected components for both possible labellings of the questionable segment
and compare them. This will prevent a localization of the constraints though.

In the following I will show that the global connectivity test can in 2D be substituted
by an equivalent purely local criterion. This does not only affect the actual runtime of the
simplicity checks but also assures that a localization of the constraints in section is
possible since the skeletonization is not depending on global information.

The core idea is visualized in Figure 5.2l As justified in section we are working
with different neighborhoods for foreground and background. It is enough to count the
number of connected components in the foreground neighborhood of the questionable
element Ny(s;) which is everything that shares a line with segment s;. For considerations
about connectivity between them, the richer neighborhood of the central element Ny(s;)
needs to be considered.

For the simplicity consideration only connectivity on the surface of the central elements
needs to be checked. Concretely the vertices bounding the central elements can be seen
as the relevant connectors if one distinguishes them into two classes. The ones that
bound background segments and the ones that do not (in Figure distinguished by
the shade of the vertex). Background segments are connected via all vertices, foreground
segments only via the ones that do not bound background. For example in Figure [5.2
the foreground elements F' and H are not connected because the background element G
blocks the respective vertex. The two foreground elements J and L are connected because
K, which is not in Ny(s;), is “mediating” the connection.

Alternatively to the graphically formulation with the two kinds of vertices one can
write this in a more formal way utilizing the language established in section [2.2.1] Let us
first define all vertices that are adjacent to a center element s; as v(s;):

P € v(s)) & 3 with §° < %, [ € s, Active () (5.4)

Let us further define all inter-superpixel lines Liq that touch a vertex in v(s;) and do not
touch s; itself as I(s;). Again formulated with the help of the notation from section [2.2.1}

Lia = {p} |ID (p!) = id and Active (})} (5.5)
Liq € U(s;) & 3p°,p',p* with p' € Lig, p° < p', p° < P>, p° € s (5.6)
and Active (]50) and not p! < p? (5.7)

Vertices and lines are now the two entities that can establish connections in the neighbor-
hood of s;. We will now call cc,(E;) the connected components within the set of segments
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E, = s;,,...,5;, that are established by a set of lines and vertices ¢q. For the following
considerations, only the number of existing connected components is relevant. In our no-
tation #p,cc,(E) is the number of connected components in E; restricted to the subset
E5 C Ej of elements. This means that for establishing connections all elements in £ can
be used but for the counting in the end only elements in F5 play a role. The condition
for simplicity for element s; is then

np(ss) = my(si) =1, (5.8)

where
ny(8i) =FN (s CCus) (F (No(s:))) (5.9)
15(87) =F N, (5)CCu(si) (B (No(s4))) - (5.10)

F and B are functions filtering out the elements that are either labeled as background
or foreground. This means that if s; € F(A) = s; = f. The restriction of counting to
the foreground neighborhood N; in Eq. is important since it prevents for example
foreground elements that have only one common vertex with s; from contributing. A
restriction to Ny for looking for connected components does not work since such vertex
connected elements can “mediate”connections of the foreground class.

If an element is found to be simple according to Eq. (5.8)), its label will change to
background. This is respected by further simplicity checks of neighbors. If all elements
in the boundary have been processed, the next layer of boundary is determined and
the simplicity check starts anew. We are counting the number of times the boundary is
recomputed and will refer to it as the boundary level (starting from one). The boundary
level of a node is the one in which it is declared to be simple.

Preservation - Beyond Topology

Skeletonization by pure simplicity checks will result in skeletons which are topologically
equivalent to the original objects. They will not necessarily represent the shape of their
object though. One hole free object, for example, will always collapse to a single skeleton
element. Since we want to be able to draw conclusions about the original objects’ shape
from the skeleton, we need our skeletonization to reflect the appearance of an object as
close as possible. Traditional skeletonization algorithms that rely on thinning preserve
some points like local maxima of an eccentricity transform from the thinning. This turned
out to work quite well in terms of representing shape. For this special use case, where a
localization of the skeletonization is necessary for a further localization of the constraints,
such an approach is unsuitable. The eccentricity transform introduces global dependencies
— the exact location of a local maximum and therefore the location of a potential endpoint
in the skeleton then depends on the whole object. This makes the desired localization of
the problematic regions in a reproducible way impossible.

To resolve this problem one can rely on the following idea: Once a segment is tested for
simplicity and found to be essential for the topology, it is protected from label switches in
future iterations. This procedure, in combination with the random preset ordering of the
elements, leads mostly to acceptable results. The issue is that the results strongly depend
on the initial randomly chosen ordering of the elements. What becomes a large branch in
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a skeleton for one specific order could be completely ignored for another order. To resolve
this ambiguity, we run the skeletonization twice. In the second run the order of elements
is reversed. Every element that is preserved in the first run is also preserved in the second
run. If the order is such that in the first run a branch is completely ignored, reversing
the order will lead to a complete conservation of the branch. Note that this approach
does not completely eliminate the dependency of the result on the order. One example of
such an intrinsic ambiguity is an object (surrounded by background) consisting on three
segments where each segment is connected (Ny) to both others. By changing the order
each of them can become the resulting skeleton element.

5.2.4 About Islands, Endpoints and Junctions

ol o1 | 2 | >2
iy
0 - - -
1 i|elj* | - -
2 - - Y-
>2 - - - J
Table 5.1: Knowing the numbers 7

and n, one can classify the skele-
ton elements. ¢ stands for island.
These are skeletal elements without
any skeletal neighbors. e describes
endpoints. These are the class of
skeletal elements we want to pre-
vent in our experiments. Junctions
are marked by j. The distinction
is necessary because of the ambigu-
ities marked with *’. The bold let-
Figure 5.3: This ﬁgure shows a resulting skele- ters mark the cases that occur on a
ton (blue) of the white foreground object in the regular pixel grid.

special case of an underlying pixel grid. The

cyan pixels are skeleton elements classified as

junctions, the magenta ones are endpoints.

A classification of elements in a 1D skeleton of a 2D object can on a pixel level be done
by counting skeleton neighbors. This classification is essential since the different classes
represent cells (of the abstract cell complex) of different dimensions. We distinguish
between four different classes. Besides line elements, there are islands, endpoints and
junctions. Skeleton elements classified as islands, endpoints and junctions represent zero
cells whereas all other skeleton elements represent one cells. Both the bounding relation <
and the adjacency relation =< of cells are now equivalent with the foreground neighborhood
relation Ny of the segments which are associated with the cells. The concrete classification
of the skeletal elements can be done with the help of Egs. [5.9]and and the Table 5.1]
ny and n, are computed on the skeletonized foreground objects in the image. As shown
in Table [5.1] there is an ambiguity for (ng,n) = (1,1) and (ng,ny) = (2,2). This
happens when more than one element is needed to make up a junction. These cases are
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distinguishable by the fact, that they are touching a vertex, that is surrounded by more
than two skeleton elements (see Figure for an example). This effect can not occur on
the pixel level since it requires an irregular shape of the segments. The case(ny, ny) = (1,0)
only occurs for completely surrounded elements. Their class has to be determined by the
surrounding neighbors. Figure gives an example of a classified skeleton.

5.2.5 From Skeletons to Constraints
Skeletonization as Mapping

Now that both skeletonization procedure and a possibility to detect all desired properties
based on the abstract cell complex that was build upon the skeleton are given, one can
think further. We want to go beyond imposing global constraints. Therefore we need
a possibility to detect which elements in the original labeling cause the critical parts of
the skeleton (the ones that we want to interdict). This is realized by interpreting the
presented skeletonization ¢ as a mapping ¢(s;) = {si,...,8;,}. This can be done in a
simple fashion: Each time an element is found to be simple, its ID, as given by the preset
order (see beginning of section , is passed to its neighbors Ny. To prevent an order
dependent global ID spread, an ID is only passed once per boundary level. In addition a
simple element passes not only its own ID, but also the IDs that it received before. Note
that this way no ID can be lost, meaning that every ID belonging to a foreground element
in the beginning will be stored within at least one element of the skeleton in the end.
An inverse mapping ¢~!(s) can now trivially be constructed. Given a skeleton element s,
¢! (s) maps to all elements whose ID is stored in s. Note also that both ¢ and ¢~! are no
bijections. To make the notation clearer lets define ¢ ({s;,, ..., s, }) == & (s;,)U- - U (s5,,).

Independent Domain

General Concept Imagine the following case: We have a preliminary labeling of our
problem that leads to a skeleton with one endpoint. Assume further that our prior to the
segmentation is that the foreground object does not lead to a skeleton with endpoints?} Is
it now possible to exclude elements from the consideration of how to change the labeling
such that it affects the skeleton in the desired way? To be able to answer this type of
question, I introduce the concept of the independent domain: We call a subset D of the
set of all segments in the problem S an independent domain of a skeleton point s; if we
can assure that each possible label change in S\ D will change neither the fact that s; € S
is an element of the skeleton point nor its classification (according to section [5.2.4). The
independent domain of a set of elements can be defined as the union of the independent
domains of the elements in the input set. To counteract the occurrence of an endpoint one
needs only to enforce a change of label within the independent domain of the endpoint.
We want this domain to be as small as possible. The global problem would be a trivial
independent domain. This would not help.

Concrete Construction One part in determining a small independent domain D (s;)
of a skeleton element s; is to look at ¢(s;). We know that this configuration has been

2Note that these constraints are not completely equivalent to the Multicut constraints since they allow
curls (dangling lines closing on themselves).When taking the intersuperpixel line labels into account to
deduce a region labeling this is utterly necessary. In the case of binary region- labeling this necessity is
not given. In this sense the Multicut constraints are more strict .
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mapped to s. Therefore we know that ¢! (s;) D (s;). To ensure that each following run
will end up having the same skeleton element s, we need to ensure two things: First, all
elements labeled as background before skeletonization and touching ¢~ (s;) (via Ny) must
be part of D as well. They being background in the first place started the skeletonization
as we observed it and only for this specific skeletonization we can predict the outcome
(because we ran it already). The second thing is that each element in ¢~'(s;) should not
be declared to be simple in a boundary level smaller than its original one. This can be
ensured by including all elements in D that are reachable by a breadth-first search on the
foreground starting from each of the elements s; in ¢! (s;) with a depth of the boundary
level of s;, as introduced in section . For elements of ¢! (s;) in a certain depth we
must ensure that it is not tested in an smaller boundary level. Otherwise this mismatch
propagates and influences the skeletal character of s; itself.

To summarize: We want to predict the outcome of the skeletonization of a certain
subset of elements. This allows us to prevent unwanted configurations of skeletons to
appear by constraining the problem in a respective way. Predicting the result of the
skeletonization in general is tricky. Therefore we perform the skeletonization and find the
regions that cause problems. If we can choose the region in a way that makes the decision
on the skeleton independent of all elements that are not in this region, we can make a
general rule (a constraint) out of it — We know it caused problems once and thus we know
that it will do the same in each following run if the labeling within the region does not
change.

5.2.6 Constraints

Given the independent domains (Ds) belonging to the critical regions of a skeleton of a
labeling, the formulation of the constraints is straight forward. Our constraints forbid a
labeling of the Ds, that is identical as it was before. Solving the problem with this con-
straint may resolve the problem immediately but can also cause new ones. New occurring
problems can be of cause be treated in a similar way. Once a constraint is imposed, it
shall not be removed to ensure the convergence to a consistent solution if possible. If F}P
and B are all foreground and background elements in the independent domain D with
the labels they have in the iteration ¢p when the independent domain is found then the
linear constraint is:

PO yo < > yr— Y. = const. (5.11)

flsseFp blsyEBY, flspeFP blsy€B;P

In future iterations ¢ the labeling of all elements in Fj? and B must at least differ by
one. Note that the solution computed by adding constraints for each found D is globally
optimal. This means that it is identical to the solution gained in the “naive” way of
imposing overall constraints whenever the skeleton has undesired properties. Because we
constructed the Ds in a way that elements outside them do not change the classification of
the respective skeleton point, only a label- change inside this regions can resolve problems.
Label changes outside do not decrease the energy and do not change the problematic
regions. A further reduction of the constraint regions to e.g. only the surface of an
object may seem to be sensible but the guarantee to find the globally optimal labeling
(labeling that provides the biggest energetic contribution and at the same time fulfills the
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requirements to its skeleton) is lost.

5.3 Decomposition

In the V-Multicut framework a decomposition of the problem is done in a similar fashion
as in section[3.3} At the very beginning we see our problem as a graphical model containing
only unaries. In following iterations we add constraints that can also be understood as
higher-order factors connecting the nodes in the respective Ds. After the first iteration the
problem can be reduced to just resolving the now connected problems within the Ds (see
Figure for visualization). We know that outside the constraint regions nothing will
change because these elements still are influenced only by their unaries. The different Ds
are completely decoupled problems. When adding additional constraints in the following
iterations their Ds might overlap with the existing ones. The problem now decouples into
all connected components of Ds.

5.4 Experiments

5.4.1 Three Applications

The procedure explained above allows to demand a big variety of requirements from the
skeleton. In the following I will concentrate on forbidding dangling edges and islands in
the skeleton since this has the potential to improve the segmentation of neurons. To test
the robustness of the presented algorithm and to evaluate its potential I choose to try it
for the segmentation of a road network from a satellite image (see Figure and on a
light microscopy image of plant cells and their cell walls in addition to the segmentation
of neural membranes.

The starting point of all three applications is a superpixel oversegmentation. Therefore
the superpixel construction is outlined in the following. The superpixels are created
via watershed on the gradient image of a probability map. The pixel-wise probabilities
are learned by ilastik [48]. Ideally we want to have superpixels on foreground and on
background but no superpixels containing both classes. The superpixel are the elements
s; on which the binary classification, leading to a segmentation, is performed. The unary
potentials w; for the segments s; are for this proof of concept created via averaging of the
respective pixel probabilities.

For the approach of forbidding endpoints, the oversegmentation is essential. Operating
on the pixel level, one could resolve constraints easily by relabeling one single pixel in the
independent domain of an endpoint to background. This creates a loop. When operating
on a reasonable oversegmentation it makes such loops more expensive. For it to work on
the pixel level additional constraints must be introduced. One could forbid lollipop like
configurations (curls) in the same fashion as it is done in the Multicut framework (see
chapter [3)).

Segmenting Road Networks from satellite images is a hard task if one aspires
to get a plausible (connected) road segmentation. For example roofs of buildings are
sometimes hard to distinguish locally from roads when. Via the constraints, the nonlocal
context of the labeled regions is taken into account. Note that the assumption of absence
of open ends in the skeleton/no impasses does not hold on general road maps. One
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Figure 5.4: Segmentation of cell walls from light microscopic images (see appendix
for more details). The top left image shows an image from light microscopy of plant
cells. Since the cells are locally indistinguishable the segmentation of the cells can only
be achieved indirectly by a segmentation of the bright cell walls. To the top right a
wall probability on the superpixel level (gray-scale) and the explicit boundary of the
superpixels used (red) are shown. The bottom left and right figures show the result of a
mere local decision and a segmentation considering the proposed constraints.
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Figure 5.5: Segmentation of neural membranes: From left to right the images show the raw
data originating from an electron microscope (unwrapped surface of 3D volume described

in appendix|A.1]), the superpixel-wise membrane probabilities, the thresholding result and
the constrained segmentation.
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example of such a satellite image is shown in Figure (a) together with the probability
map for streets mapped to the superpixel level in Figure (b). In Figure (c) and
(d), a direct comparison of the results of thresholding and the proposed method on this
data is shown. One can see that gaps are either closed or the dangling edges are removed
completely. Occasionally a dangling edge is transformed into a curl. This undermines the
gap closing properties of the algorithm and indicates that for those places more complex
constraints or better unary information is necessary.

Segmenting Cell Walls is a problem that is closely related to the detection of
neural membranes. As it can be seen in Figure [5.4] the interdiction of open ends in the cell
walls skeletons are visually benefiting the segmentation. Both false positives are revised
and false negatives are recovered to produce a topologically consistent segmentation.

Segmenting Neural Membranes , being the primary goal of this thesis, is of
special interest. The net-like structure arises from a cut through the densely packed
neurons which are in principle (strongly) deformed spheres. Therefore no open ends are
possible. Figure gives an impression of the capabilities of the imposed constraints.
The resulting segmentation definitely looks cleaner and some apparent holes in membranes
have been closed satisfactorily. Some lollipop like structures have formed. At these places
the desired gap closing behavior was prevented. Detection of these structures and their
prohibition is possible on basis of the classified skeleton.

5.4.2 Decomposition

In Figure one can see the benefit of the proposed decomposition in terms of runtime.
There it gets visible that, in some cases an increased problem size leads to a smaller
number of needed iterations. This happens when, for larger images, information that is
outside the field of view in smaller snippets help the algorithm to converge. The variance
of the runtime between the three experiments can be explained with a differing quality
of the respective unaries. Figure illustrates the connected components of constraints
that can be solved independently for the first and the final iteration in the cutting planes
approach.

5.5 Conclusion

In this chapter we saw how in general topological information based on abstract cell
complexes can be considered in a binary image labeling task. I demonstrate the usage of
this method for the task of forbidding dangling edges in the segmentation of network like
structures on 2D images. It is notable that this method does not suffer from shrinking
bias since I do not draw on pairwise regularizers that try to minimize the length of
object boundaries. One could try to include pairwise regularizes that try to promote a
gap closing based on local orientation estimations. Note that this makes it impossible
to decompose the problem in the presented way. Another way to extend the field of
potential application of the algorithm is the inclusion of different constraints. Multicut like
constraints, forbidding also lollipop like structures, can be realized by taking independent
domains of whole paths into account. Allowing only spherical objects for example can be
realized by allowing only islands in skeletons. In addition one could think of constraints
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Figure 5.6: Visualization of decomposed regions in the problem of segmenting cell walls
(a) and (b) and the segmentation of a road network (c) and (d). (a) and (c) show the
thresholded solutions in blue together with all connected components of constraints found
on this thresholded solution color-coded. (b) and (d) show the same color-coded regions
for the last iteration of the cutting planes iterations where all constraints necessary for
the optimal solution (blue) are visualized.
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coupling several independent domains and therefore enforce a skeleton with a fixed number
of junctions and endpoints (for example for the segmentation of a starfish).

This work can also be expendable to higher dimensions. To apply the proposed skele-
tonization algorithm in 3D one has to adapt the localized simplicity criterion. The pre-
sented equality of the localized simplicity criterion and the topological properties of the
skeletonized object do only hold for 2D. If this succeeds it will be possible to correct the
segmentation of membranes and lines embedded in 3D.

Section |5.4.2| shows that the V-Multicut decomposes in a similar way as the Multicut
does (shown in section . Following the arguments from section one can parallelize
the optimization. The skeletonization procedure as presented in section [5.2.3| is still a
global procedure. For large scale problems one could try to decompose the skeletonization
procedure by choosing the skeletonization order explicitly. Remember that that was done
randomly so far. A path consisting of the first elements in the ordering, separating the
image, neighbored by a path consisting of the elements with the latest elements in the
ordering, separates the problem into two independent ones after the first line is processed.
This could be done iteratively. How much this scheme can reduce the skeletonization time
is an open question left for future investigations.
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Chapter 6

Asymmetric Multiway Cut

In this chapter I present a novel approach to the problem of neuron segmentation in
image volumes acquired by electron microscopy. While existing methods rely solely on
the detection of neuron membranes, I augment the membrane information by detecting
markers for higher-level biological priors. These markers are then incorporated directly
into a globally optimal segmentation procedure. The problem is formulated in the recently
proposed framework of the Asymmetric Multiway Cut algorithm family. Within this class
of problems, it is possible to simultaneously achieve an optimal partitioning and semantic
labeling of a graph, representing the supervoxels of the image volume. In particular, we
introduce “axon” and “dendrite” as semantic labels for the supervoxels and show how
to extract the local evidence to support them. My experiments demonstrate that the
introduction of semantic classes significantly improves the solution of the partitioning
problem, i.e. the segmentation of neurons in the volume.

As described in section the main difficulty for the automated segmentation lies in
the fact that heavy metal staining, used for EM imaging, does not make the individual
neural cells locally distinguishable from each other by color or texture. The algorithms
therefore resort to separating the neurons by detecting the cell membranes. This approach
presupposes an extremely high accuracy in the detection of membranes since a tiny local
mistake in their segmentation can cut a neuron in two or merge two neurons together —
a global error, which can substantially influence the reconstructed neural circuit.

Some of these errors can be pinpointed by analyzing the resulting circuit, where, for
example, a segment which consists of two falsely merged neurons will exhibit contradictory
biological properties of its constituents. However, to the best of my knowledge, none of the
existing approaches for automated segmentation can incorporate non-local information of
this kind directly into the segmentation procedure. Such a combination of high-level
biological priors with local membrane evidence is the main target of this contribution.

In more detail, the priors taken into account reflect the probability of a supervoxel to
belong to an axon or a dendrite. While for most supervoxels in the image volume these
priors are uninformative, some contain axon/dendrite indicators, which can be found au-
tomatically. These indicators include, for example, vesicle clouds for axons. As suggested
by Krasowski et. al. [I18] [119], Asymmetric Multiway Cut (AMWC) — a recently pro-
posed algorithm for simultaneous graph partitioning and semantic labeling [120] — can
take such information into account and can ensure that no supervoxel containing dendrite
evidence is found in the same reconstructed neuron as a supervoxel that must, according
to its appearance, belong to an axon. In case the image volume includes neuron somas,
they can be introduced as an additional class, since AMWC can handle multiple semantic
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)|

(a) raw data (b) problematic  (c¢) semantic labeling  (d) the resulting
boundary complements segmentation profits
partitioning

Figure 6.1: To the left an extract of the raw data including hardly visible cell membranes
is shown (a). The second image highlights a possible wrong merge decision with a dotted
lines while easily detectable membranes are marked by continuous lines (b). In addition
semantic affiliation is indicated. Image (c) sketches how a semantic labeling of all neurons
(visualized by color of regions) can help the partition process. The rightmost image (d)
finally shows a resulting segmentation that profited from the semantic labeling in the
intermediate stage.

classes. AMWC uses two complementary sources of features: those describing the affin-
ity of touching segments, as well as those that capture distinct segment characteristics
pointing to its semantic class.

The remainder of this chapter is organized as follows: section [6.1| gives an overview of
related work beyond the one presented on general neuron segmentation in chapter In
the following section [6.2] the core algorithm of this chapter — the Asymmetric Multiway
Cut (AMWC) — is explained in detail. Section shows the variant of AMWC best
suited for the inclusion of sparse biological priors and specifies the complete pipeline from
the raw data to the final segmentation. Section contains the experimental results as
well as a comparison of performance with established algorithms. I compare explicitly
against the learned agglomeration approach of Nunez-Iglesias et al. [69] and Multicut-
based segmentation as proposed by Andres et al. [73] on an isotropic dataset produced
via a FIB/SEM microscope by Knott et al. [I6]. Finally all findings and their implications
are discussed in section [6.5

6.1 Related Work

Andres et al. [73] find an overall globally optimal segmentation, given supervoxel over-
segmentation and supervoxel boundary evidence by introducing topological constraints
on the supervoxel adjacency graph. My work builds on this set of constraints and on the
Multicut algorithm as described by Kappes et al. [74] in general. Therefore all related
work mentioned in chapter [1.3] is relevant for this work as well. But, unlike Andres et
al. [73] and all other methods listed in chapter , the merge/split decisions are not
purely based on the local boundary evidence. The main novelty of this contribution is a
principled way to consider non-local prior information.
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Computationally, I rely on the Asymmetric Multiway Cut algorithm, recently intro-
duced by Kroger er al. [120]. This algorithm extends the Multicut of [73] by a simultaneous
semantic node labeling.

The presented work relies on synapse detections, which provide important clues about
the biological priors I want to include. Kreshuk et al. [19], Becker et al. [20] and Fua and
Knott [21] all present reliable approaches to perform this task.

6.2 Methods

The key part of the presented segmentation pipeline is the Asymmetric Multiway Cut
(AMWC) segmentation algorithm. AMWC was very recently presented in a conference
submission by Kroger et al. [120], and a detailed examination of the algorithm is still
lacking. I therefore offer an extensive explanation of the AMWC algorithm in the following
section [6.2] In [6.3]it is shown how to set the stage for AMWC to tackle the EM neuron
segmentation problem and how exactly one can include the biological prior information
to improve the quality of the segmentation.

The Asymmetric Cuts or Asymmetric Multiway Cut algorithm is a generic algorithm
for joint semantic labeling and partitioning of a graph. In image analysis the graph is
often given by an oversegmentation of an image. In this case, the nodes correspond
to the superpixels of the oversegmentaion. The partitioning is performed according to
pairwise affinities of nodes. Simultaneously, a semantic labeling of the nodes based on
local information is made consistent with respect to the partition.

For the neuron segmentation problem, the motivation for the inclusion of semantic
labeling is, that in difficult cases, where the edge evidence given by the membrane de-
tection is inconclusive, semantic labels provide additional indications that support merge
decisions of neighboring nodes (see Figure .

The work of Kroger et al. [120], where the AMWC problem was originally introduced,
shows that the partitioning and the labeling do benefit from each other — solving the
semantic segmentation problem first and following up with the partitioning problem or
vice versa is not equivalent to the joint solution.

Analogous to the Multicut, the AMWC can be explained with respect to the regions
in the oversegmentation (node representation) or the edges between them (edge represen-
tation). The first view is presented by a pairwise graphical model (an example is given in
Figure (b)). Note, that the consistency between the labeling and the partitioning has
to be ensured by the pairwise factors (see Eq. . Also note that the pairwise affinities
can be both repulsive and attractive. By going to the edge domain, where the random
variables are not the original nodes, but the edges between them, we attain a reduced
(binary) label-space for all random variables that is more optimization friendly and a
more explicit formulation of the constraints.

The following chapter will explain both formulations and their relationship. Figure[6.2
— a simple example rooted in image analysis — will illustrate the descriptions. In principle,
AMWC can be applied to fully connected graphs, but for the sake of clarity and with our
applications in mind a sparsely connected example is chosen.

6.2.1 Node Representation

The AMWC problem can be formulated as a node labeling problem for a graph G =
G(V, &), where each node i has a partition label I¥ as well as a semantic label I§ € T.
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tion sentation variables

Figure 6.2: Two equivalent formulations of the AMWC optimization problem on the basis
of an exemplary oversegmentation of an image (a) into segments [y, [y and [3, separated
by edges 12, Y13 and yo3. Assume that two semantic labels are introduced for the regions.
The node representation, acting on variables [y, ls, I3 (O), can be found in (b). The
edge representation, acting on variables 312, 13, ¥23 (O), can be found in (d). (c)
demonstrates the relationship between the variables of both models, which can be made
explicit by introduction of additional terminal nodes 77 and 7T, (O) for the two semantic
labels. These terminal nodes are connected to the original nodes [y, ls and [3 by terminal
edges 211, ..., z32 (O). In both (b) and (d), the prior information on the edge strength is
shown by ", while Cl-markers represent factors which ensure consistency between labeling
and partitioning (Eq. in the node representation and Eqgs. to in the edge
representation). Note that these factors are pairwise in (b), where they connect two region
nodes, and of higher order in (d) where they connect an internal edge to 2 x |T'| terminal
edges. Prior information on the semantic label affiliation of the regions is encoded in
factors marked by M. In the edge representation, another higher-order factor M has to
be added to ensure that the binary decisions on individual edges correspond to a valid

partitioning (Eq. (3.11)).

Here T is the set of all semantic classes. One can distinguish between two kinds of
semantic classes: T, and T, with T'=T,UT,, and T,N7T, = (). We say we only allow “cuts
within” in semantic classes [* € T,. This means that after joint labeling and partitioning,
adjacent segments may both be of class [* € T, but a segment of class [* € T}, can only
have semantically different neighbors. In the node formulation of AMWC, each supervoxel
1 is associated with a label

el [Tl + [ITe]] (6.2)

where [? is an integer that indicates the affiliation of the node i in the partitioning problem
and [7 denotes its semantic class which can be one of the ||T.|| classes with “cuts within”
or one of the ||T,|| classes without. For the partitioning part of the problem, the number
of final clusters is not known beforehand. To account for all possible partitions, one needs
as many different partition labels as there are nodes: ||V]].

To enforce the desired behavior, I introduce pairwise factors between all neighboring
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nodes, which represent the inclination of a pair of neighbor nodes to end up in the same
cluster and thus to have the same partition label [,. In addition to this, the pairwise
factors enforce consistency between the semantic labels and the partition labels - e.g. if
the semantic labels of an adjoining pair of nodes differ, the partition labels should differ
as well. The semantic labels, in their turn, are influenced by unary factors that encode
the local affinity of nodes to the semantic classes (see Figure (b)). Minimizing the
following energy function results in the MAP state of the graphical model:

arg{nin (wZEi(lf)jL > Eij(li,lj)). (6.3)

[1S% (i,5)e€

Note that the unary terms depend only on the semantic labels.

EWﬂ:4%<pi> (6.4)

Here p;j is the prior probability that node ¢ belongs to the semantic class s € T'. With
pi; being the probability that node ¢ and node j are in different partitions, the pairwise
potentials are constructed in the following way:

0 it 0= =10
Ey; (I, 1;) = —hdﬁ%)ﬂﬁ#@ (6.5)
00 i1 =100 # 1

Solving the partitioning- and the semantic segmentation problem simultaneously to global
optimality is hard. One reason is that the energy function is highly degenerate, as it is
invariant under all permutations of the partition labels. Another reason is the non-
submodular nature of the pairwise factors. On the one hand they may have positive as well
as negative values and on the other hand they implicitly encode consistency constraints
between the partition labels and the semantic labels (encoded in Figure (b) by orange
frames). Nevertheless, Kroger et al. [120] show that globally optimal solutions can be
found for problems of relevant size by rewriting them as a cut problem in the edge domain.

6.2.2 Edge Representation

While the formulation presented in section is intuitive and close to the formulation of
common probabilistic graphical models, only the equivalent formulation as a cut problem
can actually be solved in practice. We will see how it can be written as an integer
linear program, to which a whole variety of solvers can be applied. In the general case,
the problem is NP-hard. Since we apply the algorithm not on arbitrary graphs, but on
graphs that originate from volumetric images, the graph architecture is highly structured.
Kappes et al. [74] show that for those cases only a small subset of the cycle constraints
is really needed to find the globally optimal solution. A cutting-planes approach, where
violated constraints are added iteratively, therefore stands to reason.

The cut formulation in the edge domain relies on binary random variables, which can
be associated with edges in the adjacency graph, and binary variables, which indicate the
affiliation of the nodes to the so called terminal nodes, representing semantic classes. The
price one has to pay for this clear representation is that not every possible edge labeling
corresponds to a consistent node partitioning. Besides, the uniqueness of the affiliations
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to terminal nodes is not given naturally. These shortcomings must be addressed by the
introduction of explicit constraints. One big advantage of this representation is that there
is no intrinsic degeneracy of the objective.

More formally, the graph G from section [6.2.1] is now extended by terminal nodes T
and terminal edges &p. Together with the internal nodes V and the internal edges £ they
describe all nodes V' and all edges £’ in the augmented graph G'(V',£’). Figure (c)
shows the terminal nodes and edges introduced for the graph in Figure (a). Al
terminal nodes are connected to all internal nodes in V via terminal edges Er.

V =VUT,E" =EU&p,where Er = (i,t) |i €V, t €T (6.6)

We introduce binary variables y;; € {0,1} and z; € {0,1} for all edges in £ and 7. The
optimization problem then reads:

argmin (/{ Z V(1 — 2zi) + Z wl’jyi]’) st.y € AMWCq. (6.7)
(

y'€{0,1}I€’I it)EET (i,§)EE

where y' = (y,z) € £ and AMWC is the Asymmetric Multiway Cut polytope. Our
convention is that y;; = 1 stands for separated nodes i and j (the respective edge is cut)
and y;; = 0 stands for merged nodes 7 and j. z; = 0 means that the internal node i is
associated with the semantic class represented by 7;. AMW C¢ is defined by the following
linear constraints:

> ¥ij > Yu Y(u,v) € E; VP € Path(u,v) C & (6.8)
(i,5)EP

Y zy=T|—1VieV; (6.9)
teT

Yo = Zpt — Zyt V(u,v) €E; €T (6.10)

Yuo = Zut — Zoy V(u,v) €E,t €T (6.11)

Yuo < Zog + Z V(u,0) €E; €T, (6.12)

The cycle inequalities , also used in Eq. and described in detail by Kappes et
al. [74], ensure the consistency of the partitioning. Eq. ensures the unique affiliation
of each node with a terminal node. The consistency between semantic labeling and
partition labeling is ensured by Egs. (6.10) and (6.11]). They state that whenever adjacent
nodes are assigned to two different terminal nodes, there is an internal edge separating
them and therefore they must belong to different partition elements. The constraints in
Eq. ensure that “cuts within” are not allowed for all semantic classes t € T),.

The weights v;; in Eq. are equivalent to the unary energies in Eq. . Also the
weights w;;, which determine attraction or repulsion between the internal nodes 7 and j,
are related to the energies in the node representation:

Pij
vip = Bi(t); w;; = —log | ——— .
t (t) J g <1 — pij>
While the weights w;; are purely encoding pairwise affinities, the pairwise energies L;;
in the node representation also have to ensure the consistency between partitioning and
labeling. Figure (b) shows the visual fragmentation of the pairwise factors, while
Figure (d) shows how it can be done by higher-order AMWC factors.
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(a) MC (b) GC/MWC (¢) AMWC (d) SC
partitioning sem. segmentation sem. seg. sem. seg.
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Figure 6.3: Possible results of the variants of the Asymmetric Multiway Cut algorithm.
(a) partitioning Multicut algorithm. The image is divided into several segments with no
semantic labels. (b) Pott’s model, solved by Graphcut or Multiway Cut. Blue and yellow
indicate the semantic affiliation of the segments. It is not possible to have a subdivision of
connected components of one semantic class. Unlike Graphcut, the Multiway Cut is able
to handle multiple semantic classes and non-submodular potentials. (c) AMWC with
“cuts within” only allowed in the foreground (blue) class. (d) Symmetric Cuts, with
“cuts within” in all classes, used for neural segmentation later on.

6.2.3 Relation to Other Models

The AMWC framework of joint labeling and partitioning generalizes some well known
algorithms.

For ||T,|| = 1 and ||T,,|| = 0 we fall back to the case of the Multicut for unsupervised
partitioning/correlation clustering problems (see chapter 3| and [74]). Here we omit all
unary potentials/all semantic labels in the node formulation or equivalently we omit the
constraints from Egs. (6.10]) to in the edge formulation. The omission of all terminal
edges Er considerably reduces the size of the problem. For pure partitioning/correlation
clustering problems this model provides a globally optimal solution. Figure (a) shows
an exemplary Multicut partitioning.

The Multiway Cut (as introduced by Boykov et al. [I12I]) is the special case of
| T.|| = 0. All semantic classes are forbidden to have “cuts within”. An exemplary problem
from image analysis is an image labeling problem, where a single object is segmented
from the background or where no instances of semantic classes are touching. While
Figure (c) and (d) could not be produced by MWC, (b) is a possible output.

If |T.]] = 0 and ||T},|| = 2 and in addition there are no attractive pairwise poten-
tials, this Pott’s model can be solved by the popular Graphcut algorithm. Since in
Figure (b) only two semantic classes are used and no weights are specified, it could as
well be produced by Graphcut.

If |7.]] # 0 and ||7,]| # 0, only some semantic classes are allowed to have “cuts
within”, while the background does not have inner boundaries. This case is studied by
Kroger et al. [120] and illustrated in Figure (c).

The special case of ||T,|| = 0 — the antagonist of the Multiway Cut — has not been
discussed in detail before. Here all semantic classes are allowed to have “cuts within”, so
we will refer to it as “Symmetric Cuts”. This variant is needed for segmenting images with
no specific background class, such as neural EM volumes. A possible output of Symmetric
Cuts is shown in Figure (d).

In the classic setup of semantic segmentation, establishing the semantic class of every
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(¢) Multicut result (d) AMWC result

Figure 6.4: An illustration of the active principle of the AMWC as an algorithm for
partially seeded segmentation (seeded from the eyes). The original image (a) is provided
by Batra et al. [122]. (b) shows a pixel-wise, learned edge indicator. (c) shows the
segmentation that the Multicut is able to produce bases on the edgeweights only. In (d)
we see that adding “semantic” information in two pixels only leads to a separation of the
geese.

pixel is the overall objective of the algorithm. For AMWC this use case has been explored
by Kroger et al. [120], with simultaneous neuron and mitochondria segmentation serving
as a motivating example. The unaries v;; of Eq. can then simply be derived from an
output of a semantic classifier.

Complementary to the work of Kroger et al. [120] and more suiting to our immediate
use case of neuron segmentation, I would like to explore the use of semantic affiliation
of segments as a means to an end, as additional information for solving the partitioning
problem. This information can be very sparse, with most nodes exhibiting no affinity to
either semantic class. In a way, this problem is similar to seeded segmentation, where
the information is propagated from the seeds to the segment boundaries. Our prior
information is, however, much weaker: seeds of the same semantic class are present in
multiple objects, which need to be separated in the final segmentation. Besides, many
objects do not have seeds at all. Another similar setup is a partitioning Multicut with
additional long range repulsive edges between some non-neighbor segments as introduced
by Andres et al. [123]. This model is equivalent to AMWC, if not more than one seed is
present for each semantic class, or if the costs of switching the semantic label of a node
are infinite (hard constraints). Such constraints are easy to introduce if, for example,
an expert user specifies that two nodes definitely belong to different objects in the final
segmentation (in 3D, this task is very non-trivial). Our goal, however, is to derive the
sparse semantic “seeds” and the corresponding costs of switching the node labels directly
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from the data. This limits the necessary user involvement to training a semantic classifier
on a subset of data.

The predictions of this classifier do not need to represent the semantic class affinity
directly. For example, in the neural segmentation use case, a classifier for vesicle clouds
would indirectly predict that superpixels with a high response likely belong to an axon.
The superpixels with a low response remain unassigned — as many axon superpixels are
not covered by vesicle clouds, negative predictions of the classifier add no class affinity
information. In the following we will refer to such predictions as “proxy probabilities”.

Consequently, we define p? of Eq. (6.4) as
p; = max (0.5,5;)

where p; is the proxy probability. With the unaries defined this way, the sparse semantic
class information can propagate through the nodes with no class affinity (as no cost is
payed to switch their semantic label to either class) and influence the cut decisions for an
uncertain edge far away from the original “seeds” This property is especially important
in our 3D application.

6.3 AMWC Workflow for Neuron Segmentation

This section describes the setup of the AMWC algorithm for the task of neural segmenta-
tion: the creation of supervoxels for the graph, the estimation of supervoxel edge affinities
and the definition of semantic classes and their proxies.

6.3.1 Supervoxel Generation

The oversegmentation of the image volume into supervoxels is based on a pixel-wise
membrane probability map. This probability map is denoised by the non-local means
algorithm described by Budas et al. [124]. Local minima on the smoothed map serve as
seeds for a watershed algorithm. The supervoxels, resulting from the watershed algorithm,
are termed w-supervoxels. For the test block, I constructed 111 164 w-superpixels in total.

The w-supervoxels are coarse enough to compute the first set of pairwise features and
to train a random forest classifier for the respective affinities. The GALA hierarchical
clustering algorithm as introduced by Nunez-Iglesias et al. [69] does this in a convenient
fashion and merges the supervoxel pairs iteratively. The authors recompute the prob-
abilities for all newly emerging pairs. Since this greedy strategy cannot provide any
guarantees, that the solution will be close to the globally optimal one, we do not want
to use it to attain the final segmentation (cluster until there are no pairs of neighboring
supervoxels with a positive affinity left). Instead, we only apply it for easy merges, where
the algorithm can utilize its advantage of adapting edge-weights, and stop at a conserva-
tive threshold to avoid undersegmentation. After running GALA on our test block, there
are 11672 supervoxels left. In the following, we will refer to them as g-supervoxels.

The early stopping at a conservative threshold has multiple advantages: if we want
to follow up with a globally optimal procedure such as AMWC we profit from a smaller
adjacency graph in terms of runtime. Also, features accumulated on supervoxel surfaces
become more expressive the larger the supervoxels get as I demonstrated already in sec-
tion 2.4.2
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semantic indications

(A1) pixel-wise (A2) supervoxel-
sem. prob. wise sem. prob.

(B1) raw data (B2) supervoxel

edge evidence

(C1) pixel-wise (C2) dge—W|se
boundary evidence boundary evidence

Figure 6.5: The flow diagram for the presented segmentation pipeline, with consecutive
steps going from left to right. The starting point (B1) in the central row to the left is
the raw EM volume described in appendix The intermediate image volumes (A1),
(C1) and (C2) rely on predictions of a random forest classifier: (Al) and (C1) show the
voxel-wise semantic and membrane probability. (C2) shows the pairwise split probability
projected on the touching faces of the g-supervoxel oversegmentation (see for details).
The edge color represents how likely the edge is to remain in the final segmentation,
with green indicating the most likely and red indicating the most unlikely edges. (B2)
shows the GALA supervoxels as described in The big GALA supervoxels allow for
expressive features and therefore good classification of the faces. The mapping from the
pixel-wise semantic probabilities to the supervoxel level is described in The core
AMWC algorithm is described in full detail in[6.2] Its result, a jointly optimized semantic
labeling and a partitioning is represented in (B3). For reference, (B3) also shows the final
segmentation, where each object is assigned a different color.
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6.3.2 Probabilities

Both the GALA algorithm and the subsequent AMWC base their merge/split decisions on
the pairwise affinities of supervoxels. I compute these via a random forest classifier, which
determines whether a touching face of two supervoxels is representing a membrane or not.
The classification is based on statistics of pixel feature values in the direct proximity of
the faces and on sorted statistics of the whole volumes of the two supervoxel neighbors.
The pixel-wise features are composed of the following filter responses: Gaussian smooth-
ing, Gaussian gradient magnitude, the Hessian of Gaussian eigenvalues and Laplacian of
Gaussian as explained in section [2.1.3] They are applied on scales 1.6, 4.2 and 8.3. The
following statistics are computed along the faces (all voxels in neuron i/j, which have
a voxel in neuron j/i in their 6-neighborhood): mean, variance, quantiles (25%, 75%),
kurtosis median, skewness and size of the faces. Besides those, histogram of grayvalues,
voxel count, kurtosis, maximum, minimum, quantiles (10%, 25%, 50%, 75%, 90%), radii
of supervoxel, skewness, sum and variance are computed on each of the volumes of two
adjacent supervoxels. All feature pairs can be translated to features of the touching faces
by applying: min(., .), max(.,.) and ||difference(., .)||. This avoids an ambiguity in
ordering of the plain feature pairs of the two touching supervoxels.
In mammalian cortex, a clear sepa-
ration exists between the axon and the
dendrite of a neuron (see Figure [6.6).
Therefore, and since most current high- Axon terminal
resolution image volumes do not encom-
pass the soma, axonic and dendritic neu-
rites inside the volume must be disjoint['}
Consequently, if for every supervoxel in B
the volume we knew whether it belongs to
an axon or a dendrite, edges between ax-

N

7

ons and dendrites would be preserved re- \
N~

Soma Axon

/

/
Synapse

gardless of the strength of the edge indi-
cator. For most supervoxels this informa-
tion is, however, not available and their ax-
onic/dendritic affiliation is not clear even Figure 6.6: Two mammalian neurons and
for expert neuroscientists. Nevertheless, their synaptic connections (green). The pink
sparse affiliation indicators do exist and rectangle sketches qualitatively our field of
the AMWC framework allows us to benefit view. The yellow/blue parts are the two se-
even from a small number of supervoxels, mantic classes used to distinguish neurons.
where these indicators can be found. The (Figure based on [125])

particular indicators we use are listed be-

low:

.— Dendrites

o Synapses. Most chemical synapses in the mammalian cortex are between an axon
and a dendrite or dendritic spine. Spines are small protrusions from the dendrite
and receive the majority of excitatory contacts. Given that synapses in FIB/SEM
data can be found automatically along with their direction ([I9} 20]), we can assign
supervoxels, touching the synapse on the presynaptic side to axons and on the post-
synaptic side to dendrites.

INote that this does not restrict this model from scaling up to bigger volumes. If somas are present
in the data, they just have to be included in the modeling as a separate semantic class.
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6 Asymmetric Multiway Cut

» Vesicle clouds. These are mostly found in axons, as they contain neurotransmitters
for synaptic transmission. We train a pixel classifier to detect vesicles and discard
detections that are not part of a cloud.

e Dendritic cytoplasm. Dendritic shafts can become significantly thicker than ax-
ons. We train another pixel classifier for the cytoplasm of the dendritic shafts and
discard all small connected components of the resulting segmentation.

The mapping of proxy probabilities from pixels to g-supervoxels is performed in two steps.
In the first stage we take the mean pixel value for each w-supervoxel. In the second step we
take the maximum of all the values from the w-supervoxels that compose the respective g-
supervoxel. The mean operation results in lower vulnerability to noise and the maximum
operation expands the volume for which we have the class information available.

Along with axonic and dendritic priors described above, we find it beneficial to separate
the mitochondria in a semantic class of their own. Remember the confusion caused by
mitochindria already described in section [2.1] and visible in Figure 2.2 In addition, false
merging errors often occur at locations, where mitochondria are situated very close to the
neuron membrane (examples for such problematic situations can be found in Figure ,
second and third row). Introduction of the “mitochondrion” semantic class helps the
algorithm to resolve the cases, where a mitochondrion membrane is not distinguishable
from the cell membrane. The prior for mitochondria is also derived from the pixel-wise
mitochondria probability map, but, since mitochondria are directly observable, a simple
averaging over the g-supervoxels is sufficient. Mitochondria are merged back with their
respective neurons by a post-processing step, described in section

Obviously, in a volume of neural tissue an axon can touch another axon and a dendrite
can touch another dendrite. Therefore, I choose the Symmetric Cut variant of the AMWC
as introduced before in section [6.2.3] where “cuts within” are allowed for all semantic
classes.

6.3.3 Optimization

We use the open source library OpenGM [105] together with the commercial optimization
software package CPLEX from IBM for the actual inference. OpenGM allows for the
simple formulation of the problem as a graphical model and performs the transformation
into an explicit integer linear program formulation automatically. Technical details of the
optimization procedure can be found in the work of Kappes et al. [92].

6.3.4 Post-Processing

We aim for a segmentation of neurons. We use Mitochondria as an additional semantic
class and therefore cause their separation in the partitioning. The additional Mitochon-
dria segments will not harm any connectomes that are derived from the segmentation. In
order to do this a Mitochondrion would have to completely plug a thin neural process.
It is harmful though when trying to determine the segmentation quality with respect to
a neuron segmentation ground truth with the help of the Rand index and the variation
of information described in section [2.6] Therefore I introduce a way to merge the Mito-
chondria segments in the respective neuron in chapter [§ The quality measures reported
in Table are all relating to the post processed segmentations.
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6.4 Experiments

| | w-GALA | g-MC [ gAMWC | GT |
RI || 0.9907 [0.9956 | 0.9965 1.0

RI, || 0.9918 [0.9967 | 0.9977 | 0.9989
RI, [| 0.9920 [0.9972 | 0.9981 [ 0.9987
VI [ 0.6971 |0.5745 | 0.5421 0.0

VI, || 04693 ]0.3494| 0.3105 |0.2177
VI, || 04282 [0.2874 ] 0.2490 [ 0.2702

Table 6.1: Segmentation quality of the GALA algorithm with watershed supervoxels (w-
GALA), the Multicut algorithm with GALA supervoxels (g-MC) and the Asymmetric
Multiway Cut algorithm with GALA supervoxels (g-AMWC), as measured by the Rand
index (RI, higher is better) and variation of information (V'I, lower is better), against
pixel-wise ground truth. RI, and VI, show the comparison with the ground truth pro-
jection on w-supervoxels, RI; and VI, — on g-supervoxels. To illustrate the ratio of
supervoxel errors to segmentation algorithm errors, the last column (GT) compares pixel-
wise ground truth with its projections on w- and g-supervoxels.

6.4 Experiments

The presented workflow has been tested on a FIB/SEM dataset from adult mouse so-
matosensory cortex with approximately isotropic resolution of 5 X 5 x 6 nm (for more
details see appendix. The dense volumetric ground truth segmentation of the dataset
was created by an expert neuroscientist using the carving algorithm from ilastik [47, 48]
and the connectome annotation tool Mojo 2.0 [65] mentioned in section

The first block of 900 x 900 x 200 px is used to train the random forests. The pixel-wise
classifiers for the semantic classes and for the membrane/non-membrane predictions are
trained on sparse user labels in ilastik [48]. The random forests that predict the merge
probability of neighboring supervoxels are trained using a projection of the dense, pixel-
wise ground truth on the respective supervoxels. The projection is done in a way that
the projected ground truth respects the supervoxel boundaries, by an argmax operation
on all voxel-wise neuron ids within the voxel composing a supervoxel. All the tests have
been performed on a dataset of 700 x 700 x 700 px, adjacent to the training set, but not
overlapping with it.

Our experiments aim to establish if the globally optimal approach of the Multicut
algorithm is beneficial despite the increased CPU-load and if, in their turn, the semantic
classes, introduced for the AMWC algorithm, carry enough additional information to
improve on the standard partitioning Multicut. For the first point, we compare to the
popular GALA hierarchical clustering algorithm. Table summarizes the results of our
three experiments:

1. GALA segmentation on w-supervoxels (w-GALA)
2. MC on g-supervoxels (g-MC)
3. AMWC on g-supervoxels (g-AMWC)

It is infeasible to run MC/AMWC on small w-supervoxels Running GALA on g-supevoxels
is equivalent to a single run from w-supervoxels to a higher threshold.
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6 Asymmetric Multiway Cut

6.5 Discussion

The comparison of GALA with both MC and AMWC in Table demonstrates the
advantage of global optimal merge decisions. In the commonly used quality measures for
segmentation, Rand index and variation of information (see section , Multicut clearly
outperforms the greedy GALA algorithm on our test data.

As for the additional semantic classes, the comparison between Multicut and AMWC,
using the same supervoxels and the same merge probabilities, shows that the semantic
information is indeed complementary to our boundary evidence and brings a significant
benefit, even when the priors are sparse. Figure illustrates this conclusion by four
difficult examples, correctly solved by AMWC, but not by the Multicut.
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Figure 6.7: Percentage of elements with prior knowledge (p > 0.5). The grey bars show the
volumetric coverage in the testblock (how many pixels have prior information): original
pixel-wise priors (left), projected on w-supervoxels (center), projected on g-supervoxels
(right). The purple bars show the node-wise coverage in percent (supervoxels with prior
information): for w-supervoxels (center) and for g-supervoxels (right).

The RI,, V1,, RI; and VI, rows of Table compare all three algorithms with the
ground truth projection on w- and g-supervoxels. Since both the segmentation and the
ground truth respect the boundaries given by the supervoxels, this comparison minimizes
the effect of insignificant boundary shifts and shows more of the serious, topology-changing
errors. For the AMWC algorithm, such errors are roughly of the same magnitude as
inaccuracies of the boundaries.

Now that the benefit of the introduction of semantic class priors is clear, let us take a
more detailed look at their distribution in the data. As described in[6.3.2] for “axon” and
“dendrite” classes the priors are sparse and indirect: the absence of vesicles, for example,
says nothing about the affinity of a supervoxel to the axonic or dendritic class. Figure
demonstrates, just how sparse our prior knowledge is on the pixel level and how the
volume coverage of the priors increases as we propagate them to w- and g-supervoxels.
It is interesting to note, that the volumetric information gain, which comes from the
max-projection of the priors from w- to g-supervoxels, is not reflected on the node level
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Figure 6.8: Class-wise composition of elements with prior knowledge from Figure :
pixel-wise (left), supervoxel-wise (right, for g-supervoxels used in AMWC). Elements with
conflicting information are marked as overlap between the main classes in red, blue and
yellow. For instance, in (b) 29.4% of all informative nodes (g-supervoxel) vote for the
axon class (blue) and 27.3% do so without local contradiction.

(compare the grey/purple bars in Figure . In fact, we observe a percental decrease of
semantically conclusive supervoxels after GALA clustering.

Seeking to interpret this decrease, I studied the class-wise composition of the priors
(Figure [6.8). The “dendrite” class contains most of the informative pixels (Figure
(a)). However, most of the easy merge decisions, which are delegated to GALA, are made
in the “empty” dendritic shafts, and since the dendrite supervoxels are relatively large,
their absolute number (Figure (b)) is small.

Figure also shows that co-occurence of priors is not very common. In the rare
cases where it happens it does not necessarily harm the segmentation. If all priors had
maximal amplitude, all assignments to semantic classes would be of the same cost and we
would fall back to a prior-less situation of the Multicut.

It is worth mentioning that the runtime of the AMWC as used here excels the one of
the Multicut considerably. While the solution of the Multicut problem on a 700% pixel
plock (described in appendix, given the g-superpixels, took 262 s, the Asymmetric
Multiway Cut took 4898 ]

The fact that AMWC can make use of sparse priors, where most of the data exhibits no
information on class affinity, suggests that the algorithm could be applied to other prob-
lems, where the individuals to be segmented differ only by a small part or by a manually
introduced seed. Another example from the bioimaging domain could be the segmenta-
tion of cells with different nuclei appearance or, for real world images, segmentation of
airplanes with different tail logos or birds with different beaks.

6.6 Conclusion

We introduced a principled approach to incorporate high-level biological priors into the
Multicut neuron segmentation procedure of Andres et al. [73]. While the Multicut al-
gorithm is already superior to greedy approaches due to its globally optimal nature, we
show that it can be further improved by considering sparse global priors of neuron type in

20n an Intel Xeon E5-2650 v3
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6 Asymmetric Multiway Cut

Figure 6.9: Left: difficult locations in the raw data. Center: Multicut fails to correctly
close the edge, pointed out by the arrows. Right: Asymmetric Multiway Cut overcomes
this problem. The red supervoxel edges are merged in the final segmentation, while the
green edges remain “on”. In the AMWC result colors of the final segments denote their
semantic class membership: blue for axon, yellow for dendrite, red for mitochondria.
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addition to local boundary evidence. The formulation of the partitioning problem in the
edge domain allows us to find — by a cutting-planes optimization procedure — a globally
optimal segmentation with respect to both the semantic and the transition probabilities.
The respective increase of the computation time is counteracted by introduction of very
large supervoxels, which also serve to propagate the sparse voxel-wise prior information
to larger parts of the image volume.

Segmentation of neurons with semantic differentiation between axons and dendrites is
only the first of many possible areas of AMWC application. In the future an extension to
other biological classes or other proxies for existing semantic classes is possible. This is
especially important to enable the use of the algorithm for non-mammalian neural tissue
without strong axon/dendrite differentiation.

The AMWC algorithm itself can potentially be generalized further. Eqs. to
are ensuring the consistency of semantic labels and partition labels. Concretely they do
enforce a partition transition if a semantic transition is apparent. What would happen if
these constraints were omitted for some semantic class transitions? In Egs. (6.8)) to (6.12)
one would have to introduce two different indices for the terminal nodes and a matrix
describing the relations between the classes must be introduced. This way one could
introduce an other level of asymmetry. In the case of neuron segmentation situations like
this could be modeled: Axons and dendrites are not allowed to merge but both axon and
dendrite are allowed to merge with a class representing the cell body. With this approach
also other interesting relationships could be modeled. By introduction of semantic classes
without unary evidence but with clear rules on their merging behavior one could enforce
a certain minimal graph distance between two other semantic class detections.

Finally the decomposition of the Asymmetric Multiway Cut can be examined in the
future. The same scheme that was introduced for the decomposition of the Multicut
problem can be applied here since the additional constraints enforcing the consistency of
semantic- and partition label are purely local as well. This can be seen in Figure (d).
This can help to scale up the approach to bigger image volumes.
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Chapter 7

Semantic Agglomerative Clustering

7.1 Methods

As seen in chapter ] Agglomerative Clustering can be done according to edge-weights, ac-
cording to node-weights (together with a metric) or according to both, in a weighted way.
Since the metric is free to choose, all kind of settings with dense unary information can
be handeled. Whenever the unaries of two neighboring nodes are expressive, this assists
the clustering. Simulating the setting of the Asymmetric Cuts from section where
only a subset of the nodes has unary information, with a vanilla Agglomerative Clustering
algorithm is not possible though. In the Asymmetric Cuts setting the requirement that
all nodes eventually need a semantic label leads to the spreading of the semantic classes
from the respective seeds of semantic information. Therefore also two neighboring nodes
that initially both do not have semantic information can be aided in their merge decision.
We will present an addition to the standard Agglomerative Clustering that enables
its employment also in situations with sparse unary information like the semantic differ-
entiation explained in section [6.3.2} Label Propagation. While the AMWC can handle
probabilistic affiliations, the Semantic Agglomerative Clustering must decide for a se-
mantic class immediately and can not wait until the end of the clustering procedure to
ponder possibilities globally. This means that an initial decision on the class label must
be taken. The assumption from chapter [6] was that superpixels within the same partition
will necessarily belong to the same semantic class. The proposition is now to modify the
sequencing-weights (as introduced in section in the following way:

1. If two neighboring nodes 7 and j have both no semantic label, leave the sequencing-
weights for edge (7, j) untouched.

2. In the case where only one of the neighboring nodes 7 and j hold a semantic class
it is possible but not necessary to adjust the edge-weight. There are situations
where a growing behavior from the seeds is desirable. For these cases a respective
modification of the edge-weights can be done here.

3. For the third possible case of both neighboring nodes ¢ and j, holding a semantic
label, the enduing edge modification depends on the equality of both labels:

different In case both labels differ, modify the edge-weights such that a merge will
not be performed.
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7 Semantic Agglomerative Clustering

identical If both semantic labels are identical, the question is whether for this
semantic class cuts within should be allowed (see also section where the
cuts within are introduced).

(a) If cuts within are allowed, leave the edge-weights untouched.

(b) If not, change the sequencing-weights in a way that a merge is inevitable.

Since we do expect parts of neurons within a given field of view that do not have skeletal
information we do not prioritize merge decisions with labeled nodes (point 2. in the
following). The propagation of the label information that was implicitly done in chapter @
due to the globally optimal nature of the algorithm is here now done explicitly:

1. If neither node ¢ nor node j hold a semantic label, the node that results from a
merge does not hold a semantic label either.

2. If either 7 or j holds a semantic label, the merged node consisting of 2 and j holds
this label as well.

3. The only case in which two nodes both holding a semantic label can merge is when
their semantic label is identical. Their union leads to a node of the same label.

In contrast to the Asymmetric Multiway Cut, not all elements must end up with a semantic
label. Only the ones connected with a seed will be labeled. Unlabeled regions fall back
to the non-semantic case of Agglomerative Clustering.

7.2 Experiment: Including Skeleton Information

The following experiment evaluated the inclusion of sparse region-wise information in the
clustering procedure.

The data (described in detail int eh appendix is originating from a ssTEM aper-
ture (see section . Therefore the resolution is anisotropic (3.8 nm in the imaging
plane and a slice thickness of 50.0 nm). The merge decisions between superpixels of dif-
ferent slices are delicate and therefore we will not leave them to the initial watershed
constructing the oversegmentation (see section . Therefore all used supervoxels are
flat — All pixels within have the same z-coordinate. In Figure (b) the superpixel faces
parallel to the imaging plane, as can be seen in a region-wise shading while the orthogonal
ones are lines. The color is encoding the merge probability. All presented algorithms so
far worked on general superpixels. Therefore it is reasonable to assume that they work
on flat superpixels as well.

This data set differentiates itself form the data used e.g. in chapter [6] not only by its
resolution but also by the availability of ground truth. While for the isotropic data used
for the Asymmetric Multiway Cut (described in appendix dense segmentation ground
truth is available, here one has can only rely on skeletons. This means that a very small
subset of pixels is annotated, with individual neuron ids, by a human expert. Images in
the first row of Figure color the superpixels which contain skeleton pixels. Even on a
relatively small problem instance of 500 x 500 x 6 pixels with 7338 watershed superpixels
(as e.g. shown in Figure neither the multi-cut nor the Asymmetric Multiway Cut
terminate within two days. The underlying edge-weights have been trained by sparse
man-made labels (659 out of 51519 possible faces have been labeled).
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Figure 7.1: An subset of the raw data (describes in appendix [A.2)) in the imaging plane
(a) and the interactively learned face probabilities in the image plane (lines) as well as
between the slices (regions) in (b).

Visually the probabilities of the faces parallel to the imaging plane are inferior to
the orthogonal ones. Since no segmentation ground truth is available, a quantitative
evaluation is restricted to the pixels for which the skeleton information is accessible. Con-
sequently the evaluation of the error metrics Rand index Rl and variation of information
VI is based on the skeleton pixels only. This is mainly a measure for the topology of
the neurons and is indifferent w.r.t deviations at the boundary of the neurons.

The first step is to compare vanilla Agglomerative Clustering for pure 2D segmentation
and 3D segmentation in the following way:

1. Do Agglomerative Clustering on the faces in the imaging plane according to the
shown probabilities according to Figure (b) for each slice individually. For
evaluation compare the slices individually (RIZ?, VIZP).

2. Do a full 3D Agglomerative Clustering allowing both merges in the imaging plane
as well as merges between the slices. For the evaluation also examine only 2D slices
individually (RIZZ, VI2P).

The quantitative evaluation is presented in Table [7.I} It basically shows that the 2D
segmentation is easier than the additional 3D segmentation.

” RIZD ¢ | VIZP | Table 7.1: Comparison of a

I ac? [ 0.92647 + 0.01822 | 0.94000 £ 020243 | P two dimensional Agglom-

. . 2D
2. ac®” || 0.79509 % 0.04606 | 1.65246 £ 0.19758 erative Clustering ac”™ and the
3D variant.

It is concluded that the quality of the predictions of the faces parallel to the imaging
plane is worse than the quality of the orthogonal faces. This is to be expected due to
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(a) 2D Agglomerative Clustering (b) 3D Agglomerative Clustering

Figure 7.2: A visual comparison of standard Agglomerative Clustering without allowed
mergers in the slicing direction (a) and the case where merge decisions in the third di-
mension are treated equally (b) according to the learned merging probability as shown in
Figure (b). The underlying data is described in appendix [A.2,

the differences in the image resolution. Visually one can see problems in 2D arising from
taking the third dimension into account in Figure[7.2] Insufficient quality in the flat faces
oftentimes leads to false merges. Furthermore false splits can be observed.

The next question is how the consideration of the skeletal information, as presented in
section is aiding the segmentation. Since skeleton information is induced in the clus-
tering process, evaluating on it will not be informative. Evaluating the gained precision
in the exact course of the cell boundaries by adding the skeletal information must be left
solely to visual inspection. One way to evaluate how much potential for corrections based
on the skeletal information there is, is to test the vanilla 3D semantic segmentation ac®”
on the full 3D skeleton (RI?? and VI?P). The results of this experiment are condensed
in Table Note that the quality measures are applied on the resulting spatial parti-
tioning, not on the resulting semantic labeling. If only spatially connected segments do
have the same label and if the skeleton pixels are not connected, this can lead to discon-
nected partitions of the same semantic class. Note also that connectedness of semantic
classes can not be enforced by the presented procedure. If one compares not the resulting
partitioning but the resulting semantic labeling, prefect scores both of the Rand index
RI*?P and the variation of information restricted to skeleton pixels in 3D VI2P would be
assured.

‘ H RIP 1 ‘ VIEP | ‘ Table 7.2: Comparison of the Agglomerative Cluster-
acsP 1 0.82741 | 1.85323 ing without any semantic information in 3D ac®*” and
sacsD{70.97279 | 0.41727 two variants of the Semantic Agglomerative Clustering

sac3P || 0.97680 | 0.35039 sac3P and sac3P also natively in 3D.

One can see in Table[7.2]as well as in Figure[7.3 how the clustering procedure translates
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the sparse skeleton information into a more plausible dense segmentation. In section [7.1]
where the basic principles of brining semantic labels to Agglomerative Clustering are pre-
sented, the potential of favoring the merging with already labeled segments is mentioned.
One argument in favor of this is, that the skeleton lines most often lay in the middle
of the neurons where most merge decisions are easy. It can be argued that merging the
easy decisions in the neurons’ centers first is beneficial for the critical decisions on the
neurons’ boundaries. Due to previous merge actions, when it eventually comes to the
merge decisions close to the cell boundaries, the faces in question are bigger. Therefore
the weights are more expressive (see chapter . I already argued why prioritizing
semantic merges is problematic for partially seeded segmentation.

Nevertheless the desired behavior can be mimicked. Section 2.I] shows how to end
up with a pixel-wise membrane probability. Therefore one has an admittedly imperfect
membrane estimation. It is now possible to binarize this by thresholding at 0.5 and cal-
culating a distance transform on it. These pixel-wise distance values can be accumulated
along the faces and their mean value can be determined. Now one has an estimate on
how close to the cell membrane a particular face is. The new clustering weight will now
be the mean of the normalized distance and the locally estimated merge probability —
probable merges far from any membrane evidence will be performed first. In Table
and Figure [7.3[this approach is abbreviated with sac3P. sac3P denotes the approach where
the cluster probabilities are only modified via a small size regularization of § = 0.01 (as
explained in . The prioritizing of faces far from membrane evidence is beneficial for
the segmentation quality.

7.3 Conclusion

This chapter introduces a way how to include sparse semantic classes, related to the Asym-
metric Multiway Cut from chapter [0, into the Agglomerative Clustering procedure. It is
possible to introduce a large amount of semantic classes without any measurable effects on
the runtime (see section . This enables the usage of Agglomerative Clustering when
working with already skeletonized neural data as done in the previous section In ad-
dition the fast procedure allows for an interactive approach where e.g. human annotators
put seeds in single neurons and correct their segmentations where necessary.

The inclusion of the semantic information is only possible because of the new stopping
criterion introduced in section 2.2l As mentioned before the metric on how to include
the semantic information can freely be chosen. So far, I handle only binary decisions
for class affiliations. The rules for propagating this information in case of sparsity are
intuitive (section . In principle, it is possible to influence the merge decision based
on probabilities instead of constraining it. Therefore one has to determine how different
probabilities from different segments are merged into a new segment. To avoid handcraft-
ing rules one could relearn the semantic affiliations of segments in the same way as the
GALA algorithm relearns the edgewise merge probabilities (presented in [84]). This way
one could emulate the behavior of the Asymmetric Multiway Cut, that is able to also
consider semantic probabilities, more closely.
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Figure 7.3: The three columns show consecutive slices of the data. Row one shows the
raw data (as described in appendix ) in the imaging plane as well as color-coded
the superpixles that contain a skeleton element. The second one depicts the results of a
standard Agglomerative Clustering in 3D. The last two rows show two different approaches

of Semantic Agglomerative Clustering without cuts within (sac*” and sac3P).
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Chapter 8

Post-Pocessing

We already saw in section and Figure that the classification of superpixel faces
get better the bigger the superpixels get. If not an oversegmentation is given but a
segmentation that claims to represent the actual neurons, the amount of prior knowledge
that can be applied is much bigger. Solely by the shape or the topology of segments
humans can detect errors in the segmentation. To add such prior knowledge in the initial
segmentation procedure is not trivial at all. The shape of an object is a nonlocal property.
Therefore all naive approaches rely on higher-order factors rendering the relevant problem
sizes unsolvable.

While this knowledge could not be incorporated in the segmentation step, one can usie
it in a post-processing step. This means that any given segmentation proposal can be
checked for implausible configuration and corrected if necessary. Below I will introduce
two rules to detect critical segments in a segmentation. In principle it all boils down
to the same general idea: Segments representing true neurons must be connected to the
block boundaries since the extent of currently processable blocks is way smaller than the
neurons extent. The detection of the critical places is only the first step though. For bigger
parts of inter-cellular space that has been collected within one segment, an automated
correction is challenging. Thus in this work, two special cases are chosen which enable an
automated correction:

1. Completely enclosed segments, which are segments that have only one neighbor
and do not touch the block-borders, can be directly merged with the one respective
neighbor. The reasoning is that completely enclosed neurons make biologically no
sense and do not contribute to the connectome.

2. Mitochondria, if ended up in a separate segment must be merged into the re-
spective neuron. This relies on two things: First the mitochondrial nature of the
segments must be determined (if it is not automatically done by the algorithm as
shown in chapters |§] and [7] a separate classification of the segments is necessary).
Secondly, the respective neuron must be determined. This is not always trivial .
Oftentimes mitochondria touch cell membranes and in mean cases as shown in Fig-
ure [R.1] two mitochondria seem to to be in touch over cell membranes. This can lead
to segments containing multiple mitochondria of different neurons. I propose the
following procedure based on the approximately spherical shape of the metochon-
dria:

(a) After detecting a mitochondrion as visualized in Figure|8.1| (b) a shortest path
between all pairs of superpixels within the mitochondrion segment is computed.
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Figure 8.1:  Exemplary
merging of mitochondria |
segment in the respective |
neurons. (a) shows the
raw data (described in ap-
pendix [A.T). (b) and (c)
show aspects of a proposed
segmentation that is sup-
posed to be corrected. (d)
indicates the measure used
to detect the critical super-
pixel and (e) shows the cor-
rectly merged segments.

(d) pathcount color-coded (e) automatically repaired
in shades of pink segmentation

Each segment keeps track on how often a shortest path passes through. This
measure is visualized in Figure (d). Local maxima in this measure encode
possible bottlenecks (superpixels connecting two Mitochondria).

(b) Now the local maxima are excluded from the segment and the remaining con-
nected components are determined.

(¢) The remaining connected components are all iteratively merged into the one
neighboring neuron with which it has the biggest common surface.

(d) Finally the remaining (possibly) connecting segments are merged according to
the same rule.

Both actions will be beneficial for the segmentation quality (comparing against a dense
segmentation ground truth). Besides the experiments done in chapter |§| the compari-
son experiment described in section [9.2] can give an idea of the value of the presented
procedures for segmentation quality.

Nevertheless they corrections do not change the connectivity implied by the segmen-
tation and therefore do not change the resulting connectome. For algorithms respecting
a semantic Mitochondria class like the AMWC from chapter [6] and the Semantic Ag-
glomerative Clustering presented in [7] applying this postprocessing is necessary to judge
the segmentation quality when comparing against e.g. the Multicut that does not aim at
separating Mitochondria.
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Chapter 9

General Discussion and Conclusion

This thesis introduces novel ideas to improve automated segmentation procedures for
connectomics from electron microscopic image volumes. In the following section I
will condense the made contributions and summarize the algorithmic solutions. Since
the prerequisites of most of these algorithms are identical we have the opportunity to
compare them directly. This comparison is conducted in section[9.2] On this basis, a final
conclusion and an outlook are offered in section [9.3]

9.1 Summary

Section outline the three major contributions of this thesis: The V-Multicut, the
possibility to introduce biological prior information via the Asymmetric Multiway Cut
and the Semantic Agglomerative Clustering. In the following recap I elucidate these
contributions as well some minor but important ideas. To get a quick overview on the
basic segmentation paradigm that underlies the different algorithms I will distinguish pure
partition algorithms and algorithms that are jointly solving a partitioning and a semantic
labeling problem. Since membrane detection is the backbone of all approaches, also the
classification of the algorithms by the utilized membrane representation is illuminating.

I will start with a recap of the partitioning Multicut problem as e.g. described by
Kappes et. al. [74] and presented in chapter [3l Multicut-based algorithms do currently
rank highest on public challenges for neuron segmentation (like the SNEMI3D chal-
lenge [75] for anisotropic data). The explicit flat representation of the neural membranes
allows for an unambiguous classification of topological implausible membrane configura-
tions. They are corrected via a cutting planes approach. The Multicut can be seen as the
origin of several contributions of this thesis.

One contribution inspired by it is the V-Multicut. The basic question is the following:
How can one impose Multicut-like constraints when working not with a flat, but an
voluminous membrane representation? It turns out that the unambiguous detection of
topologically implausible membrane configurations is not trivial. I show in chapter
how Multicut-like gap closing behavior can be imposed while simultaneously the benefits
of the voluminous membrane representation are obtained. This is done by relating not
to the detected membrane itself but to its skeleton, attained via a novel skeletonization
approach.

Starting again from the Multicut problem, progress can also be achieved by staying
within the flat representation but leaving the domain of pure partitioning. The recently
proposed Asymmetric Multiway Cut is a generalization of the Multicut that is able to
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9 General Discussion and Conclusion

include sparse semantic information. I show in chapter [6] how this algorithm can utilize
the spatial separation of axons and dendrites in mammals to significantly improve upon
segmentations attainable via Multicut.

In addition to the improvements in segmentation quality, I provide a dynamical de-
composition scheme of both the original Multicut and the V-Multicut that provides a
significant speedup in all tested problem instances in sections and

So far, the proposed methods are providing globally optimal segmentations with re-
spect to the provided weights. In section is is shown that for problem instances where
local membrane evidence is not reliable, globally optimal methods can be unfeasible. The
presented alternative is Agglomerative Clustering, a well known greedy partitioning pro-
cedure working on the flat representation. In section I introduce a novel stopping
criterion that is not requiring probabilistic membrane detection. What seems like a minor
modification turns out to be one of the keys to enable the introduction of sparse semantic
information to Agglomerative Clustering. The resulting algorithm, that is described in
chapter [7] is called Semantic Agglomerative Clustering. This algorithm is able to imi-
tate the Asymmetric Multiway Cut. In section an application is presented, for which
globally optimal methods do not terminate on reasonable timescales. There, Semantic
Agglomerative Clustering can demonstrate its strengths: Its runntime is indifferent to
the quality of the used weights/the membrane detector (see Figure .

The eventual quality of all utilized segmentation algorithms does always depend on
the initial oversegmentation (see sections and as well as on the quality of the
used weights. In the following section [0.2] I will use the fact that all presented segmenta-
tion procedures, but the V-Multicut, rely on the flat representation, to perform a direct
quantitative comparison.

9.2 Comparison Experiment

Since presented algorithms aim to achieve the same goal, the segmentation of neurons,
it is of interest to directly compare both their segmentation quality and their runtime.
To do so one needs to keep in mind that the eventual segmentation quality depends not
only on the final segmentation procedure (Multicut, Asymmetric Multiway Cut, Semantic
Agglomerative Clustering) but also on all previous steps like the supervoxel generation
and the learned affinities between them. An overview on the necessary prerequisites of
the presented algorithms was already given in Figure [I.5] For all but chapter [ I relied
on the flat representation of membranes (see section , where the membranes are
supposed to coincide with the supervoxel boundaries. This means that the Multicut
(MC), the Agglomerative Clustering (AC), the Asymmetric Multiway Cut (AMWC) and
the Semantic Agglomerative Clustering (SAC) can be performed on identical supervoxels
and identical face-weights. This makes a direct comparison feasible.

This section reports on the results of this comparison. They form the basis for the
final discussion of the findings of this thesis. The V-Multicut is excluded from this direct
comparison. Not only is the concept so far only realized for 2D, but also does the utilized
voluminous representation dictate supervoxels of a different nature (see section .

In cases where such semantic information is available for the superpixels, even if it
is only available sparsely, both the Asymmetric Multiway Cut from chapter [6] and the
Semantic Agglomerative Clustering, introduced in chapter [7] are able to include it in the
partitioning process. Also here the stopping criterion from section [4.2.2] determining the
best possible solution based on probabilistic weights, is applied.
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9.2 Comparison Experiment

In addition to these algorithms I introduce several post-processing procedures. De-
pending on the availability of semantic information different post-processing steps are
possible. For example, the merging of mitochondria, introduced in chapter [§ requires
their detection in the first place. In case of the Asymmetric Multiway Cut and Semantic
Agglomerative Clustering this post-processing enables a meaningful comparison to the
Multicut and the vanilla Agglomerative Clustering.

Given all these algorithms it is now interesting to see them performing on the exact
same superpixels, the same edge-weights and the same node-wise information (as far as
they can utilize it). The face-wise membrane predictions are computed by a random for-
est as explained in section [2.4] and are then mapped to the respective edges in the region
adjacency graph by the max operation as suggested by the experiments in section [2.4.3]
The superpixel-wise sparse affiliation to the semantic classes (axon, dendrite and mito-
chondrion) are also learned by a random forest as presented in section As reasoned in
section [7.1] the Semantic Agglomerative Clustering does not handle probabilistic semantic
affiliations. The propagation of already made class decisions (hard labels) can be done
conclusively. For this experiment I chose to transform the individual class probabilities
into hard labels in the following way: If the probability of some class ¢ is higher than 0.75
and no other class has a probability higher than 0.5 than the hard decision for class c is
done right away. This concrete class can now be propagated as explained in section [7.1]

Table 9.1] condenses the result of this comparison experiment. The quality measures,
the Rand index and the variation of information (see section are evaluated on a
pixel-wise, dense ground truth that does not necessarily need to respect the superpixel
boundaries. In addition the runtime for the respective inference and the post-processing
is listed.

Generally, it can be concluded that adding the semantic information benefits the
segmentation quality. The post-processed Asymmetric Multiway Cut (VI = 0.50139)
improves significantly over the post-processed Multicut (VI = 0.54526). Even stronger
improvements are observed when going from AC to SAC. Since there initial state is worse,
there are more places that semantic information can help.

Note that in the AMWC as well as in the SAC variants, without post-processing, the
mitochondria are in their separate partition element. Therefore, the respective algorithms
have an disadvantage with respect to the ones without semantic information (MC and
AC) when compared against neuron segmentation ground truth. The not post-processed
Asymmetric Multiway Cut compared to the Multicut suffers more from the additional
mitochondria segments than it benefits through the prevention of false merges due to
semantic information. These two effects basically cancel out for the equivalent comparison
of Agglomerative Clustering. This means the absolute value of the error measure attained
by missegmenting all mitochondria is as big as the gain that is attainable via semantic
priors.

In terms of stopping criteria for the Agglomerative Clustering one can say that the
automatic stopping in AC*™°, ACZI?, SAC*™ and SAC:. leads to slightly worse seg-
mentation quality than the one attained by the injection of ground truth information
in AC®', ACE. ., SAC®" and SACS,,,. This justifies the stopping criterion introduced in
section [4.2.2] experimentally.

Time-wise it is apparent that the improvements of segmentation quality, gained by the
globally optimal approaches MC and AMWC has a price. While one run of Agglomerative
Clustering takes around one second, the Asymmetric Multiway Cut takes over three min-
utes. Note that here the global, not decomposed approaches are considered. The actual
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| | RE | VU | ¢ | tpow | 6T | tpew |

post

MC 0.98947 | 0.55027 | 38.1 £5.5 - 76.4+1.0 -

CUACT L0073 | 102761 | 0801 | - | 08k0l | -
CUACT 1 0.07808 | LOTML | L6001 | - | 1601 | -

0.98141 | 0.69487 718 £ 11

SACH 1 0.07496 | 100204 | 08200 | - | 08k01 | -
SACM 1007432 | 106884 | 14203 | - | 16E01 | -

Table 9.1: This table shows a comparison of several algorithms utilized within this thesis.
As quality measures the Rand index (RI, higher is better) and the variation of information
(VI, lower is better) are used. In addition, the respective absolute inference time t,
the respective absolute post-processing time t,qs; and the CPUEltime tCPU as well as the
CPU time for the post-processing tgoig are reported. The rows where post-processing is
applied are shaded in gray. The very left column visually indicates the use of semantic
information. While pink rows do rely on pairwise affiliations only, the blue ones utilize
semantics in addition. The algorithms tested are the Multicut (MC), the Agglomerative
Clustering stopping when the number of segments in the ground truth is reached (AC#")
as well as the Agglomerative Clustering stopped naturally by the criterion introduced
in section (AC™°). In addition the Asymmetric Multiway Cut (AMWC) and the

Semantic Agglomerative Clustering (SAC) in both stopping variants are tested.

advantage of the Agglomerative Clustering based algorithms is the scalability as discussed
in chapter [, The automatic stopping of the Agglomerative Clustering is twice as slow as
the one stopped using ground truth information. This reflects its actual implementation.
One complete run of the Agglomerative Clustering is performed until only one segment is
left to determine the best possible stopping point according to the introduced criterion.
In a second round the algorithm is terminated at this best point.

As it can be seen in the runtime of the post-processing steps in Table the imple-
mentation of the merging procedure of the mitochindria, relevant for AMWC,, o, SACffost

and SAC;‘;‘;‘;’, is slow. The routine of computing the shortest path for all pairs of su-
perpixles within one connected component of mitochondrion gets out of hand for bigger
mitochondria segments very fast. Therefore it can be seen as a proof of concept only.
In any upscaled pipeline one could, for example, try to subsample the pairs within the
connected mitocondria components for the determination of the connecting elements (see
chapter . The following section will interpret the presented results, look into implica-

tions of this work and conclude this thesis.

ntel Xeon E5-2650 v3
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9.3 Conclusion and Outlook

9.3 Conclusion and Outlook

The three major contribution of this work are: The introduction of Multicut-like con-
straints in a volouminous representation via the V-Multicut, the consideration of biologi-
cal priors via the Asymmetric Multiway Cut and the consideration of biological priors via
the Semantic Agglomerative Clustering (introduced respectively in chapters |§] and .

While the key idea of the V-Multicut, to bring prior information about the topology
of cell membranes to the level of voluminous membrane segmentations, is appealing the-
oretically, the algorithm (as formulated in section is so far restricted to 2D. This
prevents it currently from being widely applicable for neural segmentation. To elevate
the V-Multicut also to 3D, two things have to be adapted. The simplicity criterion, de-
termining the relevance of a given superpixel for the topology, must be modified. It is an
open research question how this can be done in a localized way. This is necessary to allow
the localization of respective constraints. Secondly, the criteria on which the skeleton
elements are to be classified must be adapted. Eventually it would be most desirable to
generalize the formulation to be valid irrespective of the dimension of the problem. An
orthogonal direction to evolve the presented algorithm is the introduction of new con-
straints. Constraining not only open ends, but demanding a truly closed surface for the
membranes, as in the Multicut case, could resolve more problems in the segmentation of
the neural membranes.

The conducted comparison experiment in section is suitable as a basis for conclud-
ing thoughts on both the Asymmetric Multiway Cut and the Semantic Agglomerative
Clustering. As one can also observe in the comparison between the Multicut algorithm
and the vanilla Agglomerative Clustering, the increased runtime that global optimality
demands pays off in terms of quality. A similar trend is apparent in the comparison of the
Asymmetric Multiway Cut and the Semantic Agglomerative Clustering in section[9.2] The
conducted experiments prove that the inclusion of the sparse biological priors supports the
(otherwise membrane driven) segmentation of neurons: The Asymmetric Multiway Cut
exceeds the Multicut and the Semantic Agglomerative Clustering exceeds the Agglomera-
tive Clustering quality-wise. Further biological inquiries may further increase the number
of usable semantic classes. It might, for example, be possible to distinguish astrocytes, a
type of support cells for the neurons, and introduce them as an additional semantic class
in the presented frameworks to further improve the segmentation.

One next important milestone for the field of segmentation for connectomics is to show
that automated methods can match human performance. Of the presented approaches,
the Asymmetric Multiway Cut is the most promising candidate for this task. It allows
for the inclusion of higher-level biological prior information via the sparse semantic la-
bels. The utilized information is also used by human experts when performing manual
tracing. 1 show that the spatial separation between axons and dendrites in mammals
can be exploited in this way. In a direct comparison in chapter [f] and section this
inclusion leads to a significant improvement over the results produced by the Multicut
algorithm, which can not take these clues into account. Besides the Assymmetric Mul-
tiway Cut, other ways to include semantic information are conceivable. For example
the mentioned, recently proposed Lifted Multicut is theoretically able to model semantic
repulsions via long-range potentials. Whether the pipeline first achieving human perfor-
mance will be based on the AMWC or not is hard to predict. The achieved improvements
within this work suggest that the presented semantic information will most certainly be
utilized. There are image volumes for which the globally optimal methods, as described
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in chapters [3] and [6], embedded in the currently used pipelines are not suitable because of
insufficient data quality. One example is shown in chapter [/} The resolution of the data
makes a local membrane classification challenging. Globally optimal methods rely on a
certain edge quality. Here the variants of the Agglomerative Clustering as presented in
chapters [4] and [7] are applicable since their runtime is indifferent to the hardness of the
problem at hand. I show how within this framework, available semantic information can
be included (chapter (7). This approach reveals the algorithm’s potential for a wider range
of applications. Not only could skeletons be inflated to a full neuron segmentation but
also interactive settings, where users place seeds for respective neurons at corrupted places
are possible due to the advantages in runtime. If in the future reliable microtubules de-
tectors exist, these detected structures could replace the handmade skeletons as seeds in a
Semantic Agglomerative Clustering workflow to end up with a fully automated approach.

I hope that the demonstrated improvements will lead other researchers to consider
more high-level biological information and finally serve as another step to fully automated
connectome reconstruction.
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Appendix A

Data Specifications

Within this work different images and image volumes are used to demonstrate and test the
presented algorithms in practice. In this Appendix these different data sets are described
in more detail.

A.1 FIBSEM - Mouse

This data shows parts of the somatosensory cortex of an adult mouse (female, C57BL/6;
10 weeks of age). The details on how it was taken via serial section scanning electron
microscopy is described by Graham Knott et al. in [I6] from the Ecole polytechnique
fédérale de Lausanne, Switzerland. The resolution is about 4 nm in the imaging plane
and 5 nm in the slicing direction. It can be considered isotropic for the purposes of this
thesis. There are three volumes in particular that were used within this thesis:

A.1.1 Volume 1

A volume holding 898 x 899 x 198 pixels used exclusively for training of both the re-
spective pixel-wise probabilities (membrane and semantic) as well as the face-wise merge
probabilities.

A.1.2 Volume 2

A 700 x 700 x 700 pixel volume used for testing e.g. in chapter [6]

A.1.3 Volume 3
This testing block holds 400 x 401 x 402 pixels. It is a subset ob block 2.

All three blocks are carefully chosen in order to avoid myelin sheaths which, if not treated
explicitly, can mess up the pixel-wise membrane probabilities and the superpixels. What
distinguishes these three datasets is the fact that dense segmentation ground truth pro-
duced by human experts via ilastik/carving 48, 47] and mojo [46] is available. This
does not only allow for a tangible training set but also for a reliable way to measure the
performance of the presented algorithms.
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A.2 ssTEM - Fruit Fly

This data set, taken by Berck et al. [126] in the Lab of Albert Cardona from the Janelia
Research Campus in Ashburn, Virginia, shows parts of an antennal lobe of a common fruit
fly. The specific section that is used in the chapter presenting the Semantic Agglomerative
Clustering in [7] encompasses 500 x 500 x 6 pixels.

For the subset that is relevant for this thesis a skeleton is available for every neuron.

A.3 Satellite Image

The used satellite image of Brussels used in chapter 5| was taken from Google Maps (Map
data ©2014 Google Imagery ©2014 , Aerodata International Surveys, Cnes/Spot Image,
DigitalGlobe, Landsat) on the 12.8.2014.

A.4 Plant Cell Walls

The image used in chapter [5|was taken by Maryline Lievre from the Labotatoire d’Ecophysiologie
des Plantes Sous Stress Environnementaux Equipe SPIC : Stress Environnementaux et
Processus Intégrés and Léo Guignard from the INRIA project-team Virtual Plants, both
located at the University in Montpelier, France.
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