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Abstract

In order to address the hierarchy problem and to simultaneously explain small
neutrino masses, we study conformal extensions of the Standard Model (SM),
which realize an inverse seesaw mechanism. Furthermore, we give a systematic
discussion of the neutrino mass matrix in a generalized type-I seesaw set-up.

We study the conformal inverse seesaw mechanism (CISS), in which the con-
formal symmetry is spontaneously broken via the Coleman-Weinberg mechanism
at a few TeV. We confirm that in this set-up the electroweak vacuum expectation
value and the Higgs mass are obtained within experimental uncertainties. The
scalar sector in the broken phase contains, besides the Higgs, a massive scalar
with a mass in the TeV-range and the pseudo-Goldstone boson of broken scale
invariance with a mass of the order of hundreds of GeV. The CISS also fea-
tures a hidden Abelian gauge symmetry. We show that the CISS generates active
neutrino masses and mixings in agreement with oscillation data. Additionally,
the neutrino spectrum contains a warm dark matter (DM) candidate with mass
in the keV-range and tiny mixing of the order of 107! or smaller to the active
neutrinos. Furthermore the CISS comprises sterile neutrinos with pseudo-Dirac
masses, which can be as large as several TeV. The active-sterile mixing obtained
in the model is naturally sizable.

In the extended conformal inverse seesaw (ECISS), the new gauge group is
identified with U(1)g_1. The scalar and neutrino sectors of the CISS are altered
to allow for a large Majorana mass for the right-handed neutrinos leading to ample
lepton number violation (LNV). Besides LNV, the phenomenology of the CISS is
maintained. We show that the contributions of the heavy sterile neutrinos to the
effective Majorana mass of neutrinoless double beta decay can saturate current
limits on the half-life. In both the CISS and ECISS the new particles lead to
collider signatures above SM backgrounds, which should leave a clear signal in
Run 2 at the Large Hadron Collider (LHC). In particular, the Z’ associated with
U(1)p_r and the sterile neutrinos in the ECISS produce LNV signals. For a
luminosity of 300 fb™' at a center-of-mass energy of 14 TeV the ECISS predicts
a signal at the LHC of about 400 events in the same-sign di-lepton channel plus
two hadronic jets, which is induced by sterile neutrinos with a mass of 500 GeV.

In the last part of the thesis we systematically analyze the neutrino mass
matrix obtained in a generalized type-I seesaw. The set-up contains two different
neutrino species with arbitrary numbers of generations that are connected via
a Dirac mass. One species is assumed to possess an arbitrary Majorana mass
term. This includes Majorana masses much larger or much smaller than the
Dirac mass, vanishing Majorana mass or a singular structure. In this set-up, a
general prediction for the number of vanishing eigenvalues is derived. We discover
that many scenarios are related to others, thereby, simplifying the analysis. The
eigenvalue spectra of the mass matrices for all non-singular scenarios and for one
scenario with a singular set-up are obtained.
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Zusammenfassung

Um uns des Hierarchieproblems anzunehmen und gleichzeitig kleine Neutrinomassen zu
erkléren, studieren wir konforme Erweiterungen des Standardmodells (SM), die einen
inversen Seesaw realisieren. Aufterdem legen wir eine systematische Auseinandersetzung
mit der Neutrinomassenmatrix in einer verallgemeinerten Typ-I Seesaw-Anordnung dar.

Wir studieren den konformen inversen Seesaw (CISS)-Mechanismus, in dem die kon-
forme Symmetrie bei einigen TeV spontan durch den Coleman-Weinberg-Mechanismus
gebrochen wird. Wir bestétigen, dass der elektroschwache Vakuumerwartungswert und
die Higgsmasse in diesem Aufbau innerhalb der experimentellen Ungenauigkeiten er-
halten werden. Der skalare Sektor enthélt in der gebrochenen Phase neben dem Higgs
einen massiven Skalar mit einer Masse im TeV-Bereich und das Pseudo-Goldstone-Boson
der gebrochenen Skaleninvarianz mit einer Masse in der Grofienordung von hunderten
von GeV. Der CISS fiihrt auch eine versteckte Abelsche Eichsymmetrie mit sich. Wir
zeigen, dass der CISS aktive Neutrinomassen und -mischungen im Einklang mit Oszilla-
tionsdaten erzeugt. Zusétzlich beinhaltet das Neutrinospektrum einen warmen Dunkle-
Materie(DM)-Kandidaten mit einer Masse im keV-Bereich und winziger Mischung in
einer Grofenordnung von 10710 oder weniger zu den aktiven Neutrinos. Dariiber hin-
aus umfasst der CISS sterile Neutrinos mit Pseudo-Dirac-Massen, die bis zu einigen TeV
groft sein konnen. Die im Modell erhaltene aktiv-sterile Mischung ist naturgeméf grof.

Im erweiterten konformen inversen Seesaw (ECISS) wird die neue Eichgruppe mit
U(1)p—r, identifiziert. Der Skalar- und Neutrinosektor des CISS werden veradndert,
um eine groke Majorana-Masse fiir die rechtshandigen Neutrinos zu erlauben, was zu
einer reichhaltigen Leptonzahlverletzung (LNV) fiihrt. Bis auf die LNV bleibt die
Phénomenologie des CISS erhalten. Wir zeigen, dass die Beitrige der schweren sterilen
Neutrinos zur effektiven Majorana-Masse des neutrinolosen Doppel-Beta-Zerfalls die
derzeitigen Grenzen fiir die Lebensdauer séttigen konnen. Sowohl im CISS wie auch im
ECISS fithren die neuen Teilchen zu Kollidierer-Signaturen iiber dem SM-Hintergrund,
die ein deutliches Signal in Run 2 am Large Hadron Collider (LHC) hinterlassen soll-
ten. Insbesondere das der U(1)p_y zugehorige Z’' und die sterilen Neutrinos erzeugen
LNV Signale. Fiir eine Luminositéit von 300 fb~! und bei einer Energie im Ruhesystem
von 14 TeV sagt der ECISS ein Signal am LHC voraus von etwa 400 Ereignissen im
same-sign di-lepton Kanal mit zwei hadronischen Jets, das von sterilen Neutrinos mit
einer Masse von 500 GeV hervorgerufen wird.

Im letzten Teil der Arbeit analysieren wir die aus einem verallgemeinerten Typ-I
Seesaw erhaltene Neutrinomassenmatrix systematisch. Der Aufbau enthéilt zwei ver-
schiedene Neutrinoarten mit beliebigen Anzahlen von Generationen, die iiber eine Dirac-
Masse verbunden sind. Von einer Art wird angenommen, dass sie einen willkiirlichen
Majorana-Massenterm besitzt. Das schliefit Majorana-Massen mit ein, die viel grofer
oder viel kleiner als die Dirac-Masse sind, verschwindende Majorana-Massen oder eine
singuldre Struktur. In dieser Anordnung wird eine allgemeine Vorhersage iiber die An-
zahl der verschwindenden Eigenwerte hergeleitet. Wir entdecken, dass viele Szenarios
mit anderen in Verbindung stehen, was die Analyse vereinfacht. Die Eigenwertspektren
der Massenmatrizen fiir alle nicht-singuléren Szenarios und fiir ein Szenario mit einem
singularen Aufbau werden gewonnen.
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Disclaimer

The results of this work presented in Chapters 3 and 4 have already been published
and were done in collaboration with others: Chapter 3 is based on Reference [1] in
collaboration with M. Lindner and J. Smirnov; Chapter 4 is based on Reference
2] together with M. Lindner, S. Patra and J. Smirnov. The research presented in
Chapter 5 has not been published yet and represents original work by the author.
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CHAPTER 1

INTRODUCTION

.. after all, our purpose in theoretical physics
is not just to describe the world as we find it,
but to explain — in terms of a few fundamental
principles — why the world is the way it is.

Steven Weinberg

The triumphal march of the Standard Model of particle physics was finally com-
pleted by the discovery of the theory’s last missing piece, the Higgs boson, in the
year 2012 [3, 4]. However, the smallness of that particle’s mass requires a severe
fine-tuning known as the gauge hierarchy problem [5-9]. In essence, the problem
states that if the Standard Model is embedded into another gauge theory, whose
symmetry is spontaneously broken at some high energy scale, the Higgs mass,
due to quantum effects, will receive corrections, which are quadratically sensitive
to the scale of the high-energy quantum field theory. This high energy scale and,
accordingly, the Higgs mass are expected to be extremely large. Typical exam-
ples for such large scales are the scale of grand unification, or the Planck scale
associated with gravity. In contradiction to this expectation the observed value
of the Higgs mass is of the order of the relatively small electroweak scale of the
Standard Model [10]. So how can the hierarchy problem be solved?

The most famous attempt to overcome the gauge hierarchy problem is super-
symmetry [11, 12]. In that framework each Standard Model particle possesses
a superpartner with opposite statistics. In presence of the superpartners the
quadratic corrections are systematically cancelled and the hierarchy problem can-
not emerge. But, as to date no supersymmetric particles have been discovered
at the Large Hadron Collider [13, 14|, an increasing tension is placed on the vi-
able parameter space of supersymmetric models with a symmetry breaking scale
close to the electroweak scale. Supersymmetry breaking at a certain distance to
the electroweak scale, however, reintroduces the hierarchy problem. Other theo-
ries that are able to solve the hierarchy problem include technicolor [15-17] and
composite-Higgs models [18-20], extra-dimensions [21, 22|, and theories based on
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a scale-invariant Lagrangian [23|. In this thesis we will focus on the latter class
of theories, which we will (in slight abuse of terminology) refer to as conformal
theories.

In a conformal theory no dimensional couplings and, in particular, no masses
are allowed in the Lagrangian by the conformal symmetry. However, in a generic
quantum field theory the conformal symmetry is anomalous. As argued by
Bardeen, this conformal anomaly can only lead to logarithmic divergences, but
not to quadratic ones [23]. A further justification for Bardeen’s argument was
given in [24] in the context of the Wilsonian approach to renormalization theory
[25]. Consequently, the gauge hierarchy problem does not appear in conformal
theories.

The spontaneous breaking of the electroweak symmetry [26-28| within the
Higgs mechanism [29-31] represents one of the cornerstones of the Standard
Model. But, actually, it has to face several difficulties besides the aforemen-
tioned hierarchy problem. First, the assumption that the mass parameter of the
Higgs potential in the unbroken phase is negative in order to create a non-trivial
minimum is merely of technical nature. The origin of spontaneous symmetry
breaking, however, remains obscure. Second, studies related to triviality [32] and
the stability [33-35] of the Higgs potential, which are sensitive to the Higgs mass
and the top-quark mass, suggest that the ground state of the Universe happens
to reside in a very special region of the available parameter space that allows for
a renormalization group evolution of the Standard Model up to the Planck scale
without encountering Landau poles or instabilities. As the particles’ masses are
not predicted by the theory, the Standard Model gives no explanation for such a
‘convenient’ parameter choice. Third, the electroweak theory cannot incorporate
the emergence of the Planck scale. Nevertheless, the future Standard Model of
high-energy physics ultimately needs to include the effects of gravity. Because
of these shortcomings, we argue that it is vital to investigate alternatives to the
electroweak symmetry breaking in the Standard Model. The fact that the Stan-
dard Model with a vanishing Higgs mass parameter becomes scale invariant may
be interpreted as a hint at an underlying conformal symmetry in Nature.

The spontaneous breakdown of a conformal symmetry can be triggered by ra-
diative corrections as described in the Coleman-Weinberg mechanism [36]. Soon,
it was realized that the Coleman-Weinberg mechanism does not work for the
scalar sector of the Standard Model, since the Coleman-Weinberg effective po-
tential is unbounded from below, when the top quark is heavier than the Z boson
[37]. Consequently, the scalar sector in the Standard Model needs to be extended
by new degrees of freedom in order to allow for spontaneous conformal symmetry
breaking. This necessity can be turned into a merit. If more scalar particles are
included in the theory, this naturally allows for a richer phenomenology. With
the additional particles one always obtains new couplings in the scalar potential.
The couplings, however, are not arbitrary, but possess a strong interdependence,
which is caused by spontaneous symmetry breaking. This gives conformal the-
ories considerable predictive power. In this context, the aforementioned conve-
nient values that allow for a consistent extrapolation up to the Planck scale of



the parameters in the scalar potential may be understood as a consequence of
the requirements for successful spontaneous conformal symmetry breaking. An-
other prediction of the Coleman-Weinberg mechanism is that there can be only
one symmetry breaking scale, which must lie close to the electroweak scale. This
means that the new particles required by the conformal symmetry are in principle
accessible at the Large Hadron Collider. As was pointed out in [38], the Planck
scale might emerge from a non-renormalizable theory of quantum gravity, which
gives rise to an effective conformal theory at energies below the Planck scale. We
note that similar ideas (but without the explicit referral to conformal theories)
were discussed in [39]. The positive prospects of conformal theories have drawn
a substantial amount of attention in recent years [40-69].

A different issue of the Standard Model is how to accommodate small but
finite neutrino masses in the theory. Almost a century after Pauli “... postulated
a particle that cannot be detected”! [71], and 60 years after its first detection
due to Cowan et al. [72], the neutrino still remains an elusive particle at the
present day. Originally, neutrinos were assumed to be massless and, consequently,
there was no need to include right-handed neutrinos into the particle content of
the Standard Model. However, the observation of neutrino oscillations in solar,
atmospheric, reactor and accelerator beam neutrino experiments [73-76] have
shown that neutrinos are in fact massive. Hence, neutrino oscillations constitute
a first direct evidence for physics beyond the Standard Model. However, compared
to the other fermions the neutrinos must have extremely small masses. This raises
two questions: How do neutrinos become massive? And why are their masses so
small?

As for the other fermions, the masses for neutrinos could also be generated in
the Higgs mechanism provided the Standard Model’s particle content is extended
by right-handed neutrino fields. This, however, does not answer the second ques-
tion as it would require neutrino Yukawa couplings many orders of magnitude
smaller than those for the charged leptons. A different possibility was realized
by Weinberg [77]. He suggested that neutrino masses could be obtained from
an effective dimension-5 operator (now called the Weinberg operator), which can
already be constructed using Standard Model fields only. The interaction behind
this operator is assumed to be mediated by a super-heavy particle, whose mass
effectively suppresses the neutrino mass, thereby, explaining the smallness of the
latter. Note that the neutrino mass generated in this way violates lepton number.

The most popular way of generating naturally small neutrino masses is the
seesaw mechanism, which was first formulated in [78-81|. The basic idea of the
seesaw relies on augmenting the theory by right-handed neutrinos, which do not
participate in the interactions of the Standard Model. As these new neutrinos
are gauge singlets they can possess a bare Majorana mass. Since this mass has
no connection to the electroweak symmetry breaking scale, it can in principle be
arbitrarily large. Eventually, the seesaw mechanism leads to a suppression of the
Standard Model neutrino masses, which is found to be inversely proportional to

L As quoted by F. Reines in the foreword to [70].
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the potentially large Majorana mass. As the seesaw mechanism represents a tree-
level realization of the Weinberg operator, the small neutrino masses generated
this way violate lepton number.

It was pointed out in [60] that the inverse seesaw mechanism [82-84] in the
context of a conformal theory could possibly lead to an interesting phenomenology
including electroweak precision tests, collider signatures and dark matter. In
order to address the hierarchy problem and to explain small neutrino masses
we are led to study the conformal inverse seesaw mechanism. Additionally, we
will systematically analyze the neutrino mass matrix in a generalized seesaw
mechanism set-up to gain further insight into neutrino masses.

The outline of this thesis is as follows. In Chapter 2 we briefly review elec-
troweak symmetry breaking in the Standard Model. There, we will also discuss
physics beyond the Standard Model in correlation with this work. The model
of the conformal inverse seesaw mechanism is introduced in Chapter 3. After
deriving the neutrino mass spectrum and mixing pattern as well as the sponta-
neous conformal symmetry breaking of the model, we will discuss the predicted
phenomenology in connection with electroweak precision test, collider signatures
and dark matter. In Chapter 4 the so-called conformal inverse seesaw is extended
in order to allow for large lepton number violation. We will discuss how this can
be achieved without altering the established phenomenology of active neutrino
masses and mixing, of electroweak precision tests and of dark matter. Then, we
will examine the possibilities for neutrinoless double beta decay and same-sign
di-lepton signals in the extended conformal seesaw. The systematic examination
of the neutrino mass matrix in the generalized seesaw scenario is presented in
Chapter 5. There, we will predict how many vanishing eigenvalues exist in the
generalized set-up of the neutrino mass matrix. Furthermore, we will derive the
eigenvalue spectra of several different structures of the neutrino mass matrix.
Finally, we will summarize our results and provide an outlook in Chapter 6.



CHAPTER 2

THE STANDARD MODEL AND
BEYOND

The Standard Model (SM) of particle physics is the quantum field theory (QFT)
of the strong, weak and electromagnetic interactions. The description of the latter
two is combined in the electroweak theory [26-28|. Within the Higgs mechanism
[29-31] the electroweak gauge symmetry is spontaneously broken by the vacuum,
leaving only the strong and electromagnetic gauge groups as remaining symme-
tries of the theory. The mechanism of electroweak symmetry breaking (EWSB)
is induced when the potential of a scalar particle, the Higgs boson, develops a
non-trivial minimum at a finite vacuum expectation value (vev). The vev, in
turn, generates masses for the SM fermions, for the weak gauge bosons associ-
ated with the spontaneously broken symmetry groups and, finally, for the Higgs
itself. The dynamics of the fermions in the broken phase of the electroweak theory
are described by the charged- and neutral-current interactions, and by quantum
electrodynamics.

We will briefly review EWSB in the SM in Section 2.1. Afterwards, in Sec-
tion 2.2, we will take up the aspects of physics beyond the SM (BSM) in correla-
tion with this work, namely, neutrino masses and the seesaw mechanism, lepton
number violation, dark matter and conformal theories.

2.1 The Standard Model of particle physics

The outline of this section is as follows. First, the SM gauge group and particle
content will be introduced. Then we will discuss the spontaneous breaking of
the electroweak gauge symmetry in the SM by the vev of the Higgs. Following
this, we will see how, by virtue of EWSB, gauge-invariant fermion mass terms
are obtained. Finally we will discuss the charged-current interactions between the
charged weak gauge bosons and the fermions in the presence of neutrino masses.
There, the lepton mixing matrix will be introduced. The information, on which
this section is based on, can be found in any introductory QFT textbook, see

e.g. 85, 86.
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Table 2.1: The fermion and scalar field content of the Standard Model. The SU(3).
and SU(2); rows show to which representation of the corresponding gauge group the
fields belong, and the U(1)y row specifies the Abelian hypercharge quantum number of
the fields. The indices o and 8 label the flavor of the quarks and leptons, respectively.
Note the absence of a right-handed neutrino field in the Standard Model.

[ B H+
fielld | Q¢ = (Z%) wg | de | P = (Zg) lr | H= ( HO)
L

SU(3). 3| 3 3 1| 1 1
SU(2)L 2| 1 1 2| 1 2
U(1)y 1/6 | 2/3 | —1/3 —1/2 | -1 1/2

The SM is a gauged QFT with the local symmetry group
Gsu = SU(3), x SU(2);, x U(1)y,

where the indices label the groups as color, weak isospin, and hypercharge, re-
spectively. The gauge bosons belonging to the groups are called gluons for SU(3).
and electroweak gauge bosons for SU(2); x U(1)y. We will denote them by

SUB), : ¢, i=1,...,8;
SU@2), : W i=1,2,3;
U(l)y : B,.
The properties of the SM scalar and fermionic particles with respect to the gauge
groups are listed in Table 2.1.

2.1.1 Electroweak symmetry breaking

In the SM the Higgs possesses a mass parameter u? and quartic self-interactions
A. Accordingly, the SM scalar potential is given by

V(H) = p*H H + N HTH)?, (2.1)

where the Higgs doublet H = (H™, H°)T has been introduced in Table 2.1. In
order to be stable, the potential in Eq. (2.1) must be bounded from below for large
field values, which requires A > 0. Then for 2 > 0 it only possesses a trivial
minimum. However, under the assumption that the mass parameter is negative,
u? = —|p?| < 0, the potential develops a non-trivial minimum at the field value

Vew = V| 12|/ (2.2)

This field value defines the vev in the SM.! We illustrate the Higgs or “Mexican
hat” potential, which is obtained for a negative mass parameter ;2, in Figure 2.1.

INote that in theories with more involved symmetry breaking patterns, as is the case in
conformal theories, which are the subject of this study, there can emerge vevs that are distinct
from the one in the SM. To make this distinction apparent we denote the vev of EWSB in the
SM by Vew. The numerical value of vey, is given in Eq. (2.13).

10
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Figure 2.1: Higgs potential in the complex plane of the Higgs boson’s neutral com-
ponent HY in the SM obtained for a negative mass parameter. The subspace of the
charged component is suppressed. The minimum of the potential lies at a non-zero field
value. Note the angular degeneracy of the potential’s minimum.

In the figure the potential is restricted to the complex plane of the Higgs boson’s
neutral component H°. Note that the Mexican hat potential possesses a rota-
tional symmetry with respect to the phase of H°, which in particular holds for
the minimum. Accordingly, a possible phase of the vev can always be absorbed
and is not physical. Furthermore, we can use the three gauge degrees of freedom
of the generators that get spontaneously broken by the Higgs vev to gauge away
the Goldstone modes of the Higgs. A particularly convenient choice is the unitary
gauge, in which only physical particles remain in the Lagrangian. In this gauge
the Higgs takes on the following simple form

HT 1 (hy+ihg\ uwe 1 [0
H = = — i = — 2.3
(i) =5 (i) ™ 75 () 2%
where the last expression is obtained after imposing the unitary gauge. We can

expand the Higgs field around its minimum, which was given in Eq.(2.2), by
replacing

h3(x) = Vew + hs(z) . (2.4)

When we insert the above expansion into the kinetic term for the Higgs, we obtain
the expressions and masses for the physical gauge bosons in the broken phase of
electroweak theory. The weak gauge bosons are defined as

WE = (W) Fi?) (25)
gW3 — g/B .
/
sin By = g cos thy = J (2.7)

(92 +g/2)1/2 ’ <92 +g/2)1/2 '

11
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In the last of the above equations we have introduced the Weinberg angle Oyy.
The other linear combination of the gauge fields, namely

_ gWi+gB,

= o) 3
G o sin Ow W, + cos Ow B, , (2.8)

is the photon field. Since the physical Higgs is electrically neutral, the photon does
not couple to it and remains massless. In fact, the charged degrees of freedom
of the Higgs, which would in principle couple to the photon, get eaten by the
W= bosons and become their longitudinal degree of freedom. A third degree of
freedom of the Higgs gets eaten by the Z boson. Note that we can express W/f
and B, through Z,, and A, according to

W:’ _ cgs Ow  sinfOy Z, . (2.9)
B, —sinfw costw /) \ A,
After EWSB, the weak gauge bosons and the Higgs become massive. From the

kinetic term and the potential of the Higgs their masses can be derived according
to

2,2
m2, = 2 ZGW , (2.10)
2,2 2
2 9 Vew my

= = 2.11
M2 = Y eos? Ow  cos? by’ (2.11)
Mg = 2AUZ, - (2.12)

The value of the SM vev is related to Fermi’s constant G according to

2 2

Vi, = LGpt = (246221 GV)? with G = V29 (2.13)

5 -
8 miy

The numerical value for Fermi’s constant is given by Gy = 1.1663787x 107> GeV 2
[87] to very good precision. We also quote the numerical value of the Weinberg
angle, which at m in the MS scheme is given by sin? 6y = 0.23126 [87].

2.1.2 Fermion mass terms

So far we have not considered mass terms for the fermions. We define the Dirac
mass term for a spinor ¥ = ¢{* + ¥), where « is a flavor index, according to

mass

LOTC — s Jgd;ﬁ +h.c. with map =mj, . (2.14)

For the charge conjugation of a left-handed spinor field we first define the unitary
charge conjugation matrix C' through the following relation with the Dirac -
matrices

Oy, C = =71 (2.15)

o

12
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and then choose as convention

W= () = PCY, (2.16)

where Pr denotes the right-handed projection operator. Note that with this
convention the index L/R of a particle, at first, is to be understood as a label and
not as an indicator of the chirality. In particular, the charge conjugate of a field
has opposite chirality as indicated by the label. However, we naturally preserve
the relations Py, = ¢, and Priyp, = 0 for the original spinor. A particle ¢ is
called a Majorana particle if it satisfies the Majorana condition given by

Y =y° (2.17)

up to a complex phase. Note that the above equation implies that ) = 1, + 1§ is
a Majorana particle. We define the Majorana mass term for a left-handed spinor
as [88]

/:Majorana — _%maﬁ w_ng,C + h.c. with Mag = Mgy - (218)

mass

Note, however, that in the SM the bare mass terms in Egs. (2.14) and (2.18) are
not gauge-invariant and hence forbidden. Then again, the Yukawa interactions
with the Higgs

Lyukawa = —yg‘;) Q_ﬁfluﬁ - ygg Qe Hd}, — y((j;L_fHEg +h.c. | (2.19)

where H = iooH *, are gauge-invariant. When the Higgs develops its vev ve,, and
breaks the electroweak symmetry as described in Section 2.1.1, it generates Dirac
mass terms of the form of Eq. (2.14) for the quarks and the charged leptons from
Eq. (2.19) according to

Lyukawa = —mgﬁ) uFup — m&‘g dody — m&% 0% +hee. (2.20)
where
f) y(fﬁ)
m'y = "= v with f=u,d, (. 2.21
af \/5 f ( )

Note that there is no mass term for the neutrinos in the SM due to the absence
of right-handed neutrino fields.

2.1.3 Charged-current interactions

The interactions of the weak gauge bosons and of the photon with the fermions
is contained in the covariant derivatives of the latter. Here we will focus on the
interactions of the W bosons with the fermionic charged current. These are the
charged-current (CC) interactions, which in the electroweak theory are given by

9

V2

Loo = Wi Lagyag + vivel} +ne. (2.22)
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CHAPTER 2. THE STANDARD MODEL AND BEYOND

Note that they are diagonal with respect to the fermion flavors. We take this
property of the CC interactions to define the flavor basis of the fermions. Ac-
cordingly, the Yukawa couplings and mass terms in Eqs. (2.19) - (2.21) have been
written in the flavor basis. The fermion mass matrices m'/) defined in Eq. (2.21)
are in general not diagonal. In order to find the physical masses of the SM
fermions we need to diagonalize these matrices. This can always be done with a
bi-unitary transformation

mé{ig = diag(mgf), méf), méf)) = Uéf)Tm(f)Ul({f) : (2.23)

where UIEf ) and Ulgf ) denote unitary matrices. The new basis obtained after this
transformation

=00 fe, (2.24)
f=Ur fs, (2.25)

with f = u, d, £, is called the mass basis.? To keep the discussion compressed, we
will also allow for the possibility of neutrino masses in the following. Accordingly,
we define the unitary transformation relating the flavor and mass bases of the
neutrinos according to

o= U e (2.26)

as for the other fermions. With the unitary transformations defined via Egs. (2.23) -
(2.26) we can express the charged-current interactions of Eq. (2.22) in terms of
the mass basis as

ﬁCC = %Wj {a_L’Y'u Ve CiL + ﬂ_L UPTMNS ’V#EL} +h.c. ) (2'27>
The matrices Vioyy and Upyys introduced above denote the quark mixing or CKM
matrix (for Cabibbo, Kobayashi, Maskawa) and, respectively, the lepton mixing
or PMNS matrix (for Pontecorvo, Maki, Nakagawa, Sakata). They are defined as

Ve = UM and Upnins = ULTU) (2.28)

From Egs. (2.27) and (2.28) we see that in the mass basis the CC interactions for
the quarks are no longer diagonal. Finally, we remark that if neutrinos were mass-
less, the degrees of freedom for the unitary transformation defined in Eq. (2.26)
could be used to obtain Upyns = 1. Note that the inequality between the neu-
trino flavor and mass bases leads to flavor oscillations during the propagation of
a neutrino. Accordingly, the observation of neutrino oscillations is interpreted as
a sign of neutrino masses.

2We use Greek indices (a, 3, ...) for the flavor basis and Latin indices (i, j, ...) for the
mass basis.
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2.2. BEYOND THE STANDARD MODEL

2.2 Beyond the Standard Model

In this section we will discuss BSM physics, which will be addressed in this work.
First, we will briefly review the seesaw mechanism and the current status of
neutrino phenomenology. Other BSM phenomenology addressed here includes
baryon and lepton number violation (LNV) and, in particular, neutrinoless beta
decay as well as dark matter (DM). At the end of this section we will present
the Gildener-Weinberg formalism, which is used to systematically minimize the
scalar potential in conformal theories.

2.2.1 Neutrino masses and leptonic mixing

Neutrino masses

In the introduction we have already mentioned that naturally small neutrino
masses can be generated by the Weinberg operator and also in the seesaw mecha-
nism. In the following we will elaborate on the second option. For completeness,
we note that, to this day, Dirac neutrinos with Yukawa couplings of the order of
below 107!, as would be required for neutrino masses generated via the Higgs
mechanism, do not contradict any experimental observation made and also are
considered in the literature (see e.g. [89] for a leptogenesis model with Dirac neu-
trinos).

In the canonical or type-I seesaw mechanism [78-81] the SM is extended by
three right-handed neutrino fields Ng with a large Majorana mass term (typically
above the order of 10!* GeV), which can be introduced as consequence of e.g. some
symmetry or by hand. The neutrino mass Lagrangian of the type-I seesaw in the
Majorana basis ny, = (v, Ng)T is given by

ﬁgs:;l = —N_RMDI/L - %N_FC{MRNR + h.c. = —%TL_EM ni, + h.c. s (229)
where Mp and Mg denote the 3 x 3 Dirac and Majorana mass terms, respectively.
Accordingly, the neutrino mass matrix in the above equation is defined as

0 M
M = (MD ME) : (2.30)

After diagonalization, the neutrino mass matrix possesses three very heavy eigen-
states mainly given by the right-handed neutrino fields, and three very light eigen-
states, which mainly consist of the left-handed neutrino fields. While the mass
matrix of the heavy eigenstates is approximately given by Mg, the mass matrix
of the light eigenstates is obtained in the seesaw formula [90], which to leading
order reads

m, = —MJ My" M. (2.31)

15



CHAPTER 2. THE STANDARD MODEL AND BEYOND

The above equations shows that the light neutrino mass m,, is suppressed by the
large Majorana mass introduced for the right-handed neutrinos.

The type-II seesaw extends the canonical mechanism in order to include Ma-
jorana mass terms also for the left-handed neutrinos. Type-II seesaw models are
usually based on higher symmetry groups, which are eventually broken down to
the SM gauge group (see e.g. [91] based on an SO(10) GUT, and [92] for a left-
right-symmetric model). Typically, a scalar SU(2);, triplet A is introduced with
Yukawa couplings to the lepton doublet according to

Ll 5 Ly L€ ioy A Ly, + hec. (2.32)

mass

When the triplet upon spontaneous symmetry breaking develops a vev, it can
induce a Majorana mass term for the left-handed neutrinos. The left-handed
Majorana mass terms to leading order do not change the diagonalizing transfor-
mation for the neutrino mass matrix [90] and lead to an additional contribution to
the light neutrino masses. Interestingly, this contribution can be suppressed and
of the same order of magnitude as the type-I contribution from the heavy right-
handed Majorana masses. However, the suppression of the left-handed Majorana
masses has its origin in the minimization of the scalar potential. In particular,
the suppression resides in the vev of the neutral component of the scalar, A°,
which generates the left-handed Majorana masses. Note that, in principle, the
Majorana mass for the left-handed neutrinos alone could already suffice to obtain
phenomenologically correct neutrino masses.

Yet another version of neutrino mass generation is the type-III seesaw mech-
anism [93]. In this seesaw mechanism a fermionic SU(2);, triplet ¥ with heavy
Majorana mass and Yukawa coupling to the lepton doublet and the Higgs dou-
blet is introduced. Its neutral component XY plays the role of the right-handed
SU(2)y, singlet neutrinos Ng of the type-I seesaw and in consequence yields light
neutrino masses suppressed by the heavy Majorana mass of the triplet.

We remark that according to [94] the three different seesaw types described
above are the only renormalizable, tree-level realizations of the effective Weinberg
operator. We illustrate the corresponding Feynman diagrams for the tree-level
seesaw types in Figure 2.2. Besides these three canonical seesaws a wide spectrum
of altered seesaw mechanisms has been proposed, which include the inverse [82—
84], double [95], singular [96-98], linear [99-101|, schizophrenic [102| and split
[103] seesaw. For completeness, we mention that neutrino masses can also be
generated radiatively (see e.g. [94, 104] for discussions of loop-generated neutrino
masses).

After this discussion of the seesaw mechanism, let us now describe the known
phenomenology of neutrino masses and mixing.

Absolute mass scale and mass ordering

Until today three different kinds of neutrinos, namely, v., v, and v, have been
observed |72, 105, 106]. The number of light neutrino species coupled to the Z
boson has been measured in high-precision experiments at LEP as N, = 2.9840+
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2.2. BEYOND THE STANDARD MODEL

Figure 2.2: Feynman diagrams for the different tree-level seesaw types. Left: Type-I
mediated by a heavy fermionic SU(2)y, singlet (N) and type-III by the neutral compo-
nent of a heavy fermionic SU(2), triplet (X°). Right: Type-II mediated by the neutral
component of a heavy scalar SU(2)y, triplet (A?).

(H% (H%
(H% (H?% X X
X X

; I \YIO
A A
Y w——Mu

0.0082 in agreement with the expected number of neutrinos [107]. The effective
number of relativistic neutrinos related to the radiation energy density in the early
universe has been measured as Neg = 3.30702] at 95% confidence level [108]. All
mentioned observations are consistent with the three neutrino generations of the
SM. For completeness, we remark that the collected oscillation data can also be
consistently fitted to oscillations with more than three neutrino flavors, but the
fit suffers from tension between data sets from different experiments [109].

The absolute mass scale of neutrinos has not been measured, yet. However,
upper limits on the neutrino mass can be obtained from Kurie plot experiments,
neutrinoless double beta decay and from cosmological considerations. The best
limit from a direct mass measurement comes from tritium beta spectroscopy and
is given by the Mainz experiment as mg < 2.3 €V at 95% confidence level [110].
The mass observed in the experiment can theoretically be expressed as

3 1/2
mg = (Z |Ueil2m§> . (2.33)
i=1

In the future the current limit from the Mainz experiments is expected improve
down to neutrino masses of about 0.2 eV by the KATRIN experiment [111, 112].
Aside from this direct mass measurement, there are two further observables which
are sensitive to the absolute mass scale, namely, the effective Majorana mass in
neutrinoless double beta decay, m%, and the sum of relativistic neutrino species
Y,. The discussion of the effective Majorana mass will be postponed until Sec-
tion 2.2.3. The sum of relativistic neutrino species defined as

S,=) m (2.34)

=1

can be constrained by cosmological observables. If the temperature fluctuations
in the spectrum of the cosmic microwave background (CMB) radiation measured
by the Planck satellite and baryon acoustic oscillations are taken into account,
the mass sum is limited as ¥, < 0.23 eV at 95% confidence level [108]. If data
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from the Lyman-« forest power spectrum is included, the limit can be tightened
down to ¥, < 0.12 eV at 95% confidence level [113, 114].

Even though there are only upper limits for the absolute neutrino mass scale,
the differences of the mass-squares have been measured to quite some precision.
The mass-squared differences for the neutrino masses are defined as

Am2 =m? —m? with 4, j=1,2,3. (2.35)

Note that there exist only two independent mass-squared differences, which usu-
ally are chosen to be Am2, and Am?,. Since the sign of the latter is still unknown,
there exist two possible orderings for the neutrino masses called the “normal or-
dering” (NO) and “inverted ordering” (IO). They correspond to the following
relations between the neutrino masses

_ _ 2
NO: M3 > Mg > 1 = Mijghtest , ATn’Sl > 07

10: my >my > myg = Miightess, Amz; <0, (2.36)

where Myigntest denotes the lightest neutrino mass. The mass-squared differences
can be derived from neutrino oscillation experiments [73-76|. Their best-fit values
with one standard deviation are given by [115]

Am3, = (7.507017) x 107%eV?, (2.37)
|Am3,| = (2.45770047) x 107%eV?. '

Note that the presence of two individual non-vanishing mass-squared differences
implies that at least two of the three neutrinos in the SM are massive. The
individual neutrino masses can be expressed through migntest and the two mass-
squared differences according to

NO: AmZ, >0 10: Am3, <0
M1 = Miightest ; M3 = Miightest »

— 2 2 . _ 2 2.
ma = \/mlightest + A,'/n21 ) my = \/mlightest + |Am31| )

— 2 2 . — 2 2 2
ms = \/ Miightest + DM31; My = \/ Mightest + [AME, | + Am3, .

(2.38)

In the limit that mg,, .. is much larger than |[Am3,| one enters the “quasi-
degenerate” regime (QD), in which the above equations for both mass orderings
yield my &= my &= mg3. From Eq. (2.38) we see that the limit on the sum of neu-
trino masses of about 0.12 eV reported above is getting closer to the region of the
inverted ordering, for which the largest neutrino mass is bounded from below as
ms 2 0.05 eV, where we have inserted the values of the mass-squared differences
given in Eq. (2.37).

Neutrino mixing and oscillations

Neutrino oscillations were first considered by Pontecorvo [116], and Maki, Nak-
agawa and Sakata [117]. Three-flavor neutrino oscillations (in vacuum) are de-
scribed by eight parameters. These are the two independent mass-squared dif-

ferences Am?j, three mixing angles 6;;, one Dirac phase dcp and two Majorana
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phases o and 5. In the following we will abbreviate ¢;; = cos 6;; and s;; = sin 0;;.
Then the lepton mixing matrix can be parametrized by three rotations and a
phase matrix as

U= R23(9237 0) . R13(9137 (SCP) : R12(912> O) P

C12 C13 512 C13 S13 €7 10cP
= | —S12C3 — C12 523 513 €7 €13 Ca3 — 12 Sog 513 €1CP 523 C13 S
S12 S23 — C12 Cog S13€°CP  —Cyg So3 — S12 o3 S13€9F 3013
(2.39)

where P = diag(1, €, ¢'”) in the case that neutrinos are Majorana particles, and
P = 1 in the case that neutrinos are Dirac particles. The Majorana phases a and
B do not enter neutrino oscillations. They are, however, present in the effective
Majorana mass of neutrinoless double beta decay as we will see in Section 2.2.3.
We remark that the matter or MSW effect [118-121] leads to a change in the
neutrino oscillation pattern. It describes the effect of the electrons present in
matter on the electron neutrino in form of an effective potential due to neutral
current interactions.

2.2.2 Inverse seesaw mechanism

To conclude the discussion of neutrino masses we will give an example of neu-
trino mass generation within the inverse seesaw mechanism [82-84]. Note that
in Chapters 3 and 4 we will study an inverse seesaw scenario in the context of
conformal theories. In the inverse seesaw mechanism (ISS) the SM is extended
by right-handed neutrinos Ng and an equal number of left-handed neutrinos Sy,
of another species. Both are introduced as singlets of the SM gauge group. Fur-
thermore, it is assumed that the additional left-handed singlets have a relatively
small Majorana mass term p. On the other hand, a Majorana mass for the right-
handed neutrinos is forbidden, e.g. due to a suitable symmetry or due to the
absence of a scalar that could lead to a mass term after spontaneous symmetry
breaking. In the described scenario the Lagrangian containing the neutrino mass
terms is given by

LS — —Nampug, — NaMTS, — 158 1S + hee (2.40)

where we have defined the Majorana basis as ny, = (v, N§, Sp)T. According to
the above equation the neutrino mass matrix reads

0 mL 0
M=|mp 0 MT|. (2.41)
0 M pu

If we assume a hierarchy M > mp, p between the mass scales, the light neutrino
masses are given by the inverse seesaw formula

m, ~mL (MT) " u M mp . (2.42)
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In order to obtain sub-eV neutrino masses one typically chooses M of the order
of a few TeV and p in the keV range. Then again, it is apparent from Eq. (2.42)
that the neutrino mass is only sensitive to the ratio mp/M. Hence, there is no
problem in having M in the GeV range if the Yukawa couplings in the Dirac
mass term mp are sufficiently small. The remaining eigenvalues of the neutrino
mass matrix are heavy pseudo-Dirac masses of the order of £M + p. The main
difference between the type-I and the inverse seesaw is that, in the former, a huge
Majorana mass is required for the successful suppression of the neutrino masses.
On the contrary, in the inverse seesaw, suppressed masses can be obtained with
a small LNV Majorana mass @ and GeV to TeV-scale Dirac mass terms in the
heavy neutrino sector.

2.2.3 Baryon and lepton number violation

Baryon and lepton numbers B and L are accidental global symmetries of the SM
Lagrangian. Consequently, these quantum numbers are conserved in all pertur-
bative SM particle reactions.® Conversely, in our Universe we observe a striking
asymmetry between the amount of matter and anti-matter present. The baryon
asymmetry of the Universe (BAU) is given by [124]
ng = 2B —6.2x10710, (2.43)
Ny

where np and n, denote the number density of baryons and photons, respec-
tively. A theory that successfully explains the generation of the BAU is called
baryogenesis. Standard scenarios of baryogenesis satisfy the three Sakharov con-
ditions [125]: The interactions responsible for baryogenesis must violate baryon
number; they have to violate C and CP conjugation; and they need to be out of
equilibrium. It is also possible to generate the BAU via LNV, which is dubbed
leptogenesis [126]. The idea of this mechanism goes as follows. If LNV effects
generate a lepton asymmetry in the Universe (with accordingly adapted Sakharov
conditions for lepton number), this asymmetry can be converted into a BAU by
a suitable interaction violating a linear combination of baryon and lepton num-
ber. A prominent example are the non-perturbative sphalerons [122|, which are
efficient only at high temperatures and violate the combination B + L. Also the
combination B — L is typically spontaneously broken in leptogenesis. Discussing
the opportunities of leptogenesis lies beyond the scope of this work. We will, how-
ever, investigate a model, in which a gauged U(1)p_ symmetry is spontaneously
broken in Chapter 4.

Apart from cosmology, LNV effects also can show up in low-energy and high-
energy physics. In the following we will discuss one representative of the former
class. Later, in Chapter 4, we will also examine LNV collider signatures.

3The non-perturbative sphalerons [122] or, respectively, instantons [123], however, violate
B + L while at the same time conserving the difference B — L.
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Neutrinoless double beta decay

Neutrinoless double beta decay (Ovf5f) is the simultaneous decay of two neutrons
in a nucleus of an isotope (A, Z) into two protons and two electrons without the
emission of neutrinos according to

0wBp: (A, Z) — (A, Z+2)+2e . (2.44)

The non-observation of Ov3( can be interpreted as a lower limit on the half-life
of the isotope under investigation. Besides a claim of a positive signal of O3/ in
the isotope ®Ge by a fraction of the Heidelberg-Moscow collaboration [127, 128,
which, however, has received quite some criticism [129], no observation of the
decay has been reported to the present day. Recent data collected by the GERDA
collaboration strongly disfavors the claim of [127, 128] and sets the currently best
lower limit on the half-life of "*Ge as T10/l/2 > 3 x 10% y at 90% confidence level
[130]. Note that the double beta decay mode with the emission of neutrinos

WHB: (A, Z) — (A, Z +2) + 2~ + 27, (2.45)

has already been observed in several isotopes (see [131] for a calculation of the
values of the half-lives). From a particle physicist’s point of view the observa-
tion of Ovff would prove the existence of an (effective) operator that violates
lepton number by two units. The interpretation of the observation in terms of
the Schechter-Valle theorem [132], which states that an observation of the de-
cay would imply that the electron neutrino is massive, is correct but a rather
academic one [133].

Theoretically, the half-life of an isotope (A, Z) that might undergo Ovf33 can
be expressed in terms of a phase-space factor G%(Q, Z), a nuclear matrix element

M (OX 7 and a dimensionless effective parameter 7.4 according to

(Tlo/VQ)(Al’Z) = GOV(Q? Z) ‘M(OZ,Z) neﬁ‘Q : (246>
The phase-space factor is responsible for the kinematics of the decay and typically
scales with the fifth power of the endpoint energy () or (Q-value of the double-beta
spectrum. Accordingly, isotopes with a high @Q-value (typically of O (1) MeV) are
particularly suitable in order to search for Ov33. We have plotted the spectrum for
the two decay modes given in Eqs. (2.44) and (2.45) in Figure 2.3. It schematically
illustrates the distinct characteristics of the two spectra. Note, however, that
the OvfBB spectrum is strongly exaggerated in this figure. The nuclear matrix
element (NME) in Eq. (2.46) implements the transition of the nucleus into its
daughter nucleus. Since it describes a multi-particle process, the NME represents
the largest source of uncertainties in deriving particle physics constraints from the
experimental bounds on the half-life. Finally, the effective parameter 7. contains
the particle physics of the transition 2d — 2u+2e~ inside of the involved nucleons.
Note that an effective Majorana mass of Ov3 can be defined by converting the
dimensionless effective parameter into a mass according to

Ml = Meet (2.47)
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Figure 2.3: Schematic energy spectrum of the two electrons emitted in double beta
decay with (2v33, black line) and without neutrinos (Ov3s, red line). Note that the
peak of the OvfB3 curve at the endpoint energy @ is plotted strongly exaggerated to
make it visible in the graph.

2v6p
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OvBps
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Figure 2.4: Neutrinoless double beta decay (at the constituent-quark level) mediated
by neutrino exchange and charged-current interactions. The internal neutrino line im-
plies a sum over all mass eigenstates v; with mixing to the electron neutrino given by
the mixing matrix elements Uy;.

dL U,
WZL%
U, {——— .

dL u,

where m, denotes the electron mass. The effective Majorana mass is conveniently
used to transfer the half-life of O3/ into particle physics parameters.

The simplest theoretical explanation for Ov3g is referred to as mass mecha-
nism (see e.g. [134]), which was first considered in [135, 136]. It assumes that the
neutrinos we observe in oscillation experiments mediate the decay as illustrated
in Figure 2.4. For the mass mechanism the effective parameter introduced in
Eq. (2.46) is given by

3
m 1
vo— ce _ - U2~ ;
Neoft m, m. ( E ei T )

i=1

(2.48)

1 . .
2 2 2 2 2ia 2 2i
e

m3) 3

where the effective light Majorana mass m., is normalized to the electron mass m.,
and U,; denotes the elements of the neutrino mixing matrix. In the last step we

22



2.2. BEYOND THE STANDARD MODEL

have assumed the parametrization of the mixing matrix as presented in Eq. (2.39).
If the only contribution to Ov3/3 comes from the above equation the effective
Majorana mass defined in Eq. (2.47) is simply given by m% = m.n% = me.. To
understand the origin of Eq. (2.48) we can evaluate the leptonic fermion line of
the diagram in Figure 2.4 according to

+m m;
AOVﬁ,B ~ ZPL ezZ; UezPL =R Z &Zﬁ ) (2‘49)

i=1 v

where we have used the properties of the projection operators P? = P, PLPg =0
and PLy"* = 7" Pr. The summation is performed over all neutrino states that
mediate the decay. The typical momentum transfer in OvSf is given by p? =
—|p|*> = —(100 MeV)%* If we approximate Eq. (2.49) for light neutrinos, i.e. for
m; < |p|, we obtain an expression proportional to Eq.(2.48). If, however, the
internal neutrinos are heavy particles meaning m; > |p|, we can approximate
Eq. (2.49) to obtain the effective parameter for heavy neutrino exchange, which

is defined as
( U ) . (2.50)
i€heavy

The effective parameter in the above equation is normalized to the proton mass
m,, by convention, which is extracted from the NME.

Finally, we remark that massive Majorana neutrinos are not the only way to
realize OvGS3. In principle any new physics that violates lepton number (effec-
tively) by two units can lead to OvfSf (see [137] and [138| for a thorough cate-
gorization and analysis of the long-range and short-range interactions in Ov3s5.).
Additionally, it is possible that not only one but several mechanisms give signif-
icant contributions to the amplitude of Ov53, which can lead to constructive or
destructive interference effects (see e.g. [139-144)).

2.2.4 Dark matter

Evidence for DM has been found in the velocity dispersion of galaxies (first noted
in the Coma cluster [145]), in rotation curves of galaxies [146, 147], and in grav-
itational lensing effects (see e.g. [148] and in particular the evidences from bullet
clusters [149, 150]). The measurements of the CMB spectrum [108] and of large-
scale structures [151] have shown that ordinary (visible baryonic) matter makes
up only about 5 % of the energy budget of the universe. The larger fraction of
matter in the Universe’s of about 27 % consists of a yet unknown form of stable
matter, which is called DM. Finally, the bulk of about 68 % of the energy in the
universe exists in yet another unknown form called dark energy.

4The momentum transfer is estimated from the typical distances between nucleons in a
nucleus of 2 ~ O (1 fm?).
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For a long time, now, it has been suggested that DM is made of weakly in-
teracting massive particles (WIMPs) (see [152] for an overview of particle DM
candidates). The freeze-out density of a thermal relic X can generally be esti-
mated as [153]

2
1 m4

(Can. V) g%

Ox x (2.51)
where (0an, v) denotes the thermally averaged annihilation cross section. If the
particle’s mass myx is chosen at the electroweak scale (at about 100 GeV) and the
coupling gy is associated with the typical weak coupling strength of gyear = 0.65,
the WIMP happens to be abundant in exactly the right amount in order to match
the experimentally observed DM relic density. This natural concurrence of just
the right parameters is known as the WIMP miracle. With the latest results from
the DM searches of the XENON100 experiment [154] and the LUX experiment
[155] a large area of the available parameter region has been excluded for the spin-
independent WIMP-nucleon cross section down to the order of og; ~ 10™% cm?,
thus, disfavoring WIMP masses between the orders of 10 GeV to 1 TeV. In the
next two years the XENONIT DM search will reach its ultimate sensitivity of
os1 ~ 2 x 107% c¢m? [156]. If no DM signal is found by XENONIT, the WIMP
miracle’s appeal of naturally generating the right DM abundance will probably
fade away.

A viable alternative to DM constituted by WIMPs is found in warm DM,
which is usually characterised by a mass scale in the keV range [157|. A partic-
ularly suitable candidate for warm DM is represented by a neutrino, which does
not possess SM charges [158]. In Chapter 3 we will present a model that features
such a warm DM candidate. There we will explore how the right DM abundance
can be obtained in the context of the model.

2.2.5 The Coleman-Weinberg mechanism

In this section we will discuss spontaneous symmetry breaking in conformal theo-
ries within the Coleman-Weinberg (CW) mechanism [36]. As already anticipated
in the introduction, the concept of the CW mechanism lies in the spontaneous
breaking of the scale invariance by higher-order processes: Quantum effects lead
to the development of a non-trivial minimum in the effective scalar potential
which, in turn, induces spontaneous conformal symmetry breaking. In order to
study spontaneous conformal symmetry breaking, we will work in the Gildener-
Weinberg (GW) formalism presented in [159], which is especially suitable for
scalar sectors with many particles, as it systematizes the minimization of the
CW potential. We will present the details of the GW formalism in the following.

Let us assume that the scalar particle spectrum of the theory consists of the
real degrees of freedom ¢;. Then the most general conformal tree-level potential
can be written as

V(@) = f;jf Di0j PP (2.52)
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where ® = (¢1, ¢o, ...)T denotes the vector containing all scalar degrees of free-
dom. The dimensionless coupling constants f = f(A) depend on the renormal-
ization scale A. The tree-level potential is assumed to possess a flat direction
denoted by ®gq,., along which it vanishes. Now, quantum corrections, while nor-
mally being sub-leading effects, give a relevant contribution to the potential along
the flat direction. Accordingly, it is assumed that at a certain energy scale Agy,
called Gildener-Weinberg scale, the quantum effects induce a bent in the flat
direction. In consequence, a non-trivial minimum is generated in the potential,
which spontaneously breaks the conformal symmetry.

A necessary condition in order for the potential to develop a minimum is that
its first derivative with respect to each real scalar degree of freedom vanishes at
the minimum,

ov
a(bl min

=0 forall 7. (2.53)

If we assume a regular potential, in which all real scalar degrees of freedom appear
at least squared, the above equation is trivially satisfied for all components ¢;
that do not develop a finite vev. Consequently, the minimum condition imposes
as many conditions on the scalar couplings as there are non-vanishing vevs in
the scalar spectrum. A further condition is that the scalar tree-level potential
vanishes at the minimum. These conditions, referred to as Gildener-Weinberg
conditions, can be collectively denoted as

R(f)lA:AGW =0 (2.54)

and are required to hold at the scale of symmetry breaking Acyw. It turns out
that one of the mentioned conditions is always redundant. Next we will discuss
how we can determine the ground state of a conformal theory.

Suppose that the potential vanishes along a ray in scalar space, which is
identified as the flat direction ®g,;. Then we can characterize the flat direction
by a unit vector n pointing in the direction along the ray and the position ¢ on
the ray according to

Do =mnop. (2.55)

At tree level the flat direction represents a continuous spectrum of degenerate
vacua. As already mention, quantum effects, however, lead to a bent of the flat
direction thereby singling out the true vacuum at (®g..) = n{p). At one-loop
level the effective potential along the flat direction is given by

2
V%P (@hat) = Ap® + Bp'log ( L > , (2.56)

2
AGW

where Agyw has been chosen as the renormalization scale, and A and B denote
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the loop functions

=S 42 D2 d; -t (nfi)) (logm—ci), 2.57)

1 2s; 4
= a2 (o) zi:(—l) di - m; (n(p)). (2.58)
The sums in Egs. (2.57) and (2.58) run over all particles in the theory, where s;,
d; and m; denote the spin, the real degrees of freedom and the tree-level mass
of the particle, respectively. The coefficients ¢; depend on the renormalization
scheme. In the MS scheme (applied here) they are given by ¢; = 2 for gauge
bosons and ¢; = % for scalars and fermions. Note that the particle’s masses in the
loop functions are understood to be evaluated at the minimum of the potential
and implicitly depend on the renormalization scale Agy through the couplings.
At this point it is important to notice that it is reasonable to take Agy as the
renormalization scale because, due to dimensional transmutation, all dimensional
quantities will be proportional to the scale of symmetry breaking.

The minimum of the one-loop effective potential defined in Eq. (2.56) is given
by

1 A

(p) = Agw - exp (Z - ﬁ> : (2.59)

which finally yields the true vacuum of the theory. This equation shows that
the GW scale Agw and the scale of the vacuum (p) are of the same order of
magnitude unless B is anomalously small. This is a necessity to guarantee the

validity of the loop expansion as perturbative series in the logarithm log ( <§\>N>.

The vacuum breaks the anomalous scale invariance also spontaneously. As
consequence, the theory contains a pseudo-Goldstone boson (PGB), which is
massless at tree level, but obtains a mass through loop corrections. In particular,
the PGB is the scalar excitation along the flat direction and its mass-squared
at one-loop level is given by the curvature of the effective potential Eq. (2.56)
according to

) 62 lloop )
MpeB = — 5 35 =8B(p)". (2.60)

As the above equation is the second derivative of the one-loop effective potential,
the extremum of the potential is a minimum only if the PGB mass-squared turns
out to be positive. In the SM, the loop function B is negative since it is dominated
by the top-quark contribution. To render B positive it is necessary to introduce
new bosonic degrees of freedom that can counteract the top-quark mass. In the
following Chapters 3 and 4 we will study two different conformal theories, which
realize this possibility.
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CHAPTER 3

CONFORMAL INVERSE SEESAW
MECHANISM

As laid out in the introduction, the hierarchy problem of the electroweak theory
demands for a modification of EWSB. We have also mentioned that the SM needs
to be extended in order to allow for neutrino masses. Following the argument of
Bardeen, we have discussed that in conformally invariant theories the hierarchy
problem is solved naturally by the absence of a physically meaningful cutoff scale.
Furthermore, we have seen how the seesaw mechanism can account for naturally
small neutrino masses in Section 2.2.1. The general picture of EWSB and neu-
trino masses in the context of conformal invariance was discussed in much detail
in [60]. In that work it was pointed out that in a conformal theory the inverse
seesaw mechanism can have an interesting phenomenology, including electroweak
precision observables, collider signatures and dark matter. Motivated by this
prospect we will study the model of the conformal inverse seesaw (CISS) mech-
anism in this chapter. The research presented in this chapter is based on the
published work [1].

In the CISS the SM gauge group is extended by a local U(1) y gauge symmetry,
under which the SM particles transform as singlets. The scalar sector of the SM
also needs to be extended in order to enable spontaneous symmetry breaking of
the conformal scalar potential as was pointed out in Section 2.2.5. We discuss the
consequences of the new bosons associated with these extensions, which lead to
new collider signatures potentially detectable at the LHC. Furthermore, the model
features non-SM neutrinos with masses at the keV scale, which represent excellent
warm dark matter (DM) candidates. We show that the model’s parameter space
allows for stable dark matter with masses and mixings to the SM neutrinos that
evade the Tremaine-Gunn bound as well as X-rays limits. Additionally, we discuss
the dark matter production mechanism in the CISS that yields the correct relic
abundance.

The outline of this chapter is as follows. First, we will introduce the model
of the CISS in Section 3.1. Afterwards, we will discuss the diagonalization of the
neutrino mass matrix in Section 3.2. In Section 3.3 the electroweak symmetry
breaking pattern is explained. Section 3.4 deals with the phenomenology in the
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CISS including low-energy particle physics, collider signatures and dark matter
production.

3.1 The model

The model of the CISS is based on the SM gauge group with an additional local
U(1)x symmetry,

GCISS = GSM X U(l)X (31)

The SM particles are not charged under the new symmetry group and, hence, do
not participate in the interactions with the associated gauge boson X,,. Therefore,
we will refer to the new sector as hidden sector and to the vector particle X, as
hidden gauge boson. The fermion sector of the SM is extended by a complete
gauge singlet field vr, and two chiral fields Ny, and N each carrying one unit of
the hidden charge. Note that introducing pairs of chiral fermions automatically
cancels the gauge anomaly associated with U(1)y. The scalar sector is extended
by two SM-singlet representations, namely ¢; and ¢, with U(1) y charges one and
two, respectively. In Table 3.1 we summarize the charges of the particles relevant
for the model. The relevant part of the CISS Lagrangian for one generation is
given by

Lciss D — {yDL_LVRﬁ + 1 Novron + i NgvReT + 2 NL Ny + 2N Nrgh + hec. }

- %XMVF,U,V - V(Ha ¢17 ¢2) :
(3.2)

The left-handed lepton doublet Ly, = (v, ¢,)7 was introduced in Table 2.1 and
the SM Higgs boson is given by H = (HT, HO)T = \%(hl +1 hg, hy +1 hy)T as
defined in Eq.(2.3). The complex SM singlets ¢; and ¢, are normalized in a
similar way as the Higgs. In the first line of the above equation the fermions’
Yukawa couplings are given, where yp, y; and g, are of Dirac type and y, and g5 of
Majorana type. Note that with the lepton number assignments given in Table 3.1
the Yukawa couplings y; and y; explicitly violate lepton number. Hence, lepton
number is not a symmetry of the Lagrangian in the CISS. In the first term in
the second line of Eq. (3.2) the expression X* = 9 X" — 9 X* denotes the field
strength tensor of U(1)x, where £ parametrizes the kinetic mixing between the
gauge bosons of the hidden sector and of the SM hypercharge U(1)y. The scalar
potential given by

A A A
V(H, é1, ¢2) = S-(HH) + Ton| + 5 lonf!
+ HHlHTH’(bl‘Z + HHzHTHWz’Q + K12| @1 |*|d2]? .

(3.3)

We remark that all couplings of the theory are dimensionless. In particular, there
are no masses in the model. Hence, the underlying model at tree level describes
a conformal theory as discussed in Section 2.2.5.
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Table 3.1: Charges under U(1)x and U(1)y, and dimension of the SU(2)y, representa-
tion for the relevant particles in the model. We have included the SM Higgs and lepton
doublet here since they possess interactions with the new particles. Note that lepton
number is not a symmetry of the model’s Lagrangian. Still, we have listed the would-be
quantum numbers in the last line of the table.

field | Lu|we | Nu|Ne| H|¢i| ¢
U(l)x 0 0 1 1 0O 1] 2
U(l)y —-1/2] 0| O 0|1/2] 0| 0O
SU(2)L, 2|1 1 1 2| 1|1
lepton number 11 1 0 0 0| 0 O

The particle spectrum of the CISS contains three scalar fields. We will as-
sume that a scalar field develops a non-vanishing vev if it is electrically neutral
and CP-even, i.e. invariant under U(1)e, and CP transformations, respectively.
Accordingly, hs and the real parts of ¢; and ¢, are assumed to develop vevs in the
model. We will denote the non-vanishing vevs by (hs), (¢1) and (¢2), where (¢;)
is a short-hand notation for (Re (¢;)). In particular, we will assume the following
hierarchy among the scalar condensates

(¢1) > (h3) > (¢2) - (3.4)

The vevs spontaneously break the symmetries of the scalar potential (except for
U(1)em) as will be described in Section 3.3. There, we will also explain how the
mentioned vev hierarchy is obtained. From the kinetic terms for ¢; and ¢, it is
then straightforward to derive the mass of the hidden gauge boson in the broken
phase,

mx = gx (<¢1>2 + 4<¢2>2)1/2 ~ gx (1) , (3.5)

where in the approximation we have taken into account the assumed hierarchy of
the vevs.

3.2 Neutrino masses and leptonic mixing

In this section we will discuss the neutrino masses and mixing induced by the
symmetry breaking pattern in the CISS. In the Majorana basis defined as ny, =
(v, v, Nu, N§)T the neutrino mass matrix is given by

0 yp(hs) 0 0 0O mp 0 O
Mo L yolha) 0yl Gilen) | _ |mp O My M, (3.6)
V2 0 yi{p1)  ya(d2) 0 0 My wm 0| 7
0 71(¢1) 0 2(p2) 0 My 0 p

Note that in writing the above equation we have considered the one-flavor case
for simplicity. It is, however, straightforward to extend the matrix to include
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Figure 3.1: Schematic illustration of the allowed and forbidden neutrino mass terms,
which yield the form of the neutrino mass matrix in the CISS. Solid lines indicate a
gauge-invariant Yukawa coupling of the fields connected by that line and mediated by
the scalar particle assigned to the line. The terms corresponding to dashed lines are
gauge-invariant, too. However, they are not admissible in a conformal theory due to the
lack of an adequate scalar degree of freedom that could induce the necessary Yukawa
coupling.

X ¢] NLD ¢2

x
SNV 4,

more neutrinos in each sector.! In Figure 3.1 we illustrate which neutrino mass
terms can be generated in the underlying conformal model. There, we see that
the interplay between the spectra of scalar particles on the one hand and neutral
leptons on the other leads to the particular pattern of the mass matrix in the
CISS. Note that the possible mass terms for v, with neutrinos other than vg —
including vy, itself — are not present in the Lagrangian given in Eq. (3.2) because
such terms would break SM gauge invariance. The hierarchy for the vevs in
Eq. (3.4) leads to a mass scale hierarchy according to M; > mp > p;. Note that
we assume an approximate Np-Ng exchange symmetry in the neutrino sector,
which is softly violated by higher-order interactions. Accordingly, the symmetry
fixes y; &~ y; or equivalently M; ~ My and p; = ps.

The diagonalization of the mass matrix is presented in Appendix A. The
procedure yields two light mass eigenvalues, which to leading order are given by

Egs. (A.22) and (A.23) as

2
m
m-_ =~ /‘L—&-Vg ) (37)

my =~ fy, (38>

where p4 = %(/h + ) and M? = M2+ M2. The eigenvalues in the heavy sector
given in Eq. (A.24) in the limit Mg — 0 become

1 2
Mizé(u+i,/yi+4M2):j:M%—%j:O(Mﬁ), (3.9)

where in the last step we have expanded the heavy eigenvalues in powers of
M~!. Finally, for the mixing matrix U, which diagonalizes the mass matrix as

In our phenomenological analysis of the CISS, which will be presented in Section 3.4, we
consider a realistic scenario, in which yp is a 3 X 2 matrix and the remaining Yukawa couplings
are 2 X 2 matrices.
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Mg — UT MU, the order of magnitude of its elements has been estimated in
Eq. (A.21) according to

U ~0O (3.10)

S-S @
S-S @

ORONOI
@
Shak T S

with the entries defined as

mp ~ Ht H+
o-"n 6—ol _ B
M’ [0 a N+ M

=
oL

(3.11)

In the following we will discuss the implications of Egs. (3.7)-(3.10) for the
neutrinos in the CISS.

The lightest of the eigenvalues, m_, given by the inverse seesaw formula is to
be identified with the mass scale of the SM neutrinos. Note that in a realistic
scenario, which will be discussed in Section 3.4, Egs. (3.7)-(3.9) denote matrices
and m_ is equal to the SM neutrino mass matrix m,. The eigenvalues My
correspond to a pseudo-Dirac neutrino with Dirac mass proportional to M and
Majorana-type corrections of the order of u,. Finally, the intermediate mass
eigenstate, m, can be an excellent warm dark matter candidate if u, is chosen
in the keV range. We will quantify this statement in our analysis in Section 3.4.
According to the mass spectrum we will denote the neutrino mass eigenstates by

= (Vsm, Mo, N1, No)T = Utng, . (3.12)

With the help of the above equation together with Eq. (3.10) we will now briefly
discuss the mixing for the neutrinos to be expected in our model.

As it is common, we will refer to the SM neutrinos as active neutrinos, while
we will refer to the heavy pseudo-Dirac states as sterile neutrinos. Putting this
terminology into practice, the active-sterile mixing is given by © = mp/M |[see
Eq. (3.10)]. From Eq. (3.7) we see that the leading-order contribution to the active
neutrino masses is given by m, = ©%u,. Then with uy ~ O (1 —10) keV, we
obtain active neutrino masses of m, smaller than 1 eV for active-sterile mixing
of the order of 1072 or smaller. It is important to notice that the active-sterile
mixing in the CISS can be sizable compared to type-I seesaw mixing Oyper ~
Vew/Ncur K 1072 since the neutrino masses of our model are not subject to large
scale separation.

The mixing between the dark matter candidates and the active neutrinos
is given by ©2 = (mp/M)* (u_/py)’. Remember that we assumed an Np-
Ny exchange symmetry, which is softly broken by loop corrections. In order
to maintain this approximate symmetry we require the quantity p_/py, which
incorporates the violation of the symmetry, to be smaller than about 1073, Thus,
we can estimate that the mixing ©2 is of the order of 1071 —107'2. In Section 3.4
we will apply cosmological and astronomical constraints to the mixing © in order
to reduce the parameter space of the CISS.
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After we have seen how neutrino masses and their mixings arise from the
assumed vev hierarchy we will now study the electroweak symmetry breaking in

the CISS.

3.3 Electroweak symmetry breaking

In the following we will discuss how the vacuum expectation values of the scalars
of the theory spontaneously break the symmetry of the potential introduced in
Eq. (3.3). First, we will parametrize the relevant scalar fields and their vevs
and derive the minimum conditions for the potential (i.e. the Gildener-Weinberg
conditions). Afterwards, we will determine the expressions for all non-vanishing
scalar masses. The mass of the PGB of broken scale invariance, which is identical
to the potential’s curvature at the extremum, will be of particular interest. We
will conclude the section with a parameter scan for the PGB mass with respect
to the masses of the other particles of the model to identify the mass ranges, for
which consistent electroweak symmetry breaking can take place.

In order to locate the minimum of the scalar potential within the Coleman-
Weinberg (CW) mechanism [36] we apply the Gildener-Weinberg (GW) formal-
ism [159] as described in Section 2.2.5. Accordingly, we parametrize the electri-
cally neutral, CP-even scalars as

Re(gbl)zr ny =rcosf,
Re(¢2) =7 -ny =rsinfsinw, (3.13)
hs =r-ng=rsinfcosw,

where the n;’s are normalized to ), n7 = 1, and r # 0 denotes the radial coordi-
nate along the flat direction ®g,; = (Re (¢1), Re (¢2), h3)T in scalar field space.
Remember that for the sake of brevity we write Re (¢;) = ¢;. Using the scalar
mixing angles we define the parameters ¢ = tan? 6 and § = tan?w. In terms of ¢
and ¢ the vevs of the components of the flat direction can be expressed as

00 = (= =,
(0 =1, .14
(hs) = v/ s

where we have extracted the common factor v = (¢1) = (r)(1 4 ¢)~/? from the
individual vevs. The quantity v represents the scale of spontaneous conformal
symmetry breaking and in a conformal theory all physical masses must be pro-
portional to this unique scale. Note that in the present scenario the electroweak
vev is given by the Higgs vev as in the SM since both ¢, and ¢, are SM gauge sin-
glets and thus have no influence on the electroweak vev. Accordingly, the scale of
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spontaneous conformal symmetry breaking can be connected to the electroweak
vev in the SM by the simple relation ve, = (hs) = vel/?(1 + §)71/2, where we
have used Eq. (3.14).

After applying the parametrization in Eq. (3.13) and assuming the vev struc-
ture in Eq. (3.14), we can derive the following GW conditions on the couplings
and vevs from the first derivatives of the potential in Eq. (3.3) with respect to ¢y,
¢ and hs

G| o< (1 0\ + erpny +edry = 0, (3.15)
8%/2 X Ved(e0Xy + ekpra + (14 6)kra) L0, (3.16)
g_i‘z/;, i X \/g(g)‘H + (1 +6)km +edkm2) - 0, (3.17)

and from the vanishing of the tree-level potential
V] oA + (1 + 8% +£26% Ny

+2e(1 + ) kg1 + 2620k + 265(1 + 0)kro 0.

min

(3.18)

The above equation as well as Egs. (3.15)-(3.17) have to be satisfied simultane-
ously at the renormalization point Agy. As remarked below Eq.(2.54), one of
these conditions is always redundant.

In the following we will discuss the scalar spectrum in the broken phase.
To reduce the available parameter space we apply GW conditions in order to
eliminate three couplings from the equations of the theory. Then we assume the
hierarchy (¢1) > (h3) > (¢2) among the vevs, which is obtained for small ¢ and
0. After spontaneous symmetry breaking, we expect three physical, electrically
neutral, CP-even scalars that are in general superpositions of h3 and of the real
parts of ¢; and ¢5. Note, however, that the mixing in the scalar sector is relatively
small so that the physical scalars are predominantly given by one of the fields
mentioned. The physical scalar mainly given by hs will be denoted as h. In the
following it is identified with the scalar observed at the LHC, which couples to the
SM fermions. The second scalar mainly consisting of ¢, is labelled H. Finally,
the PGB of broken scale invariance is dominantly given by ¢; and will be called
¢pes- Diagonalizing the mass-squared matrix of the CP-even excitations yields
the non-zero scalar boson masses for h and H, which are given by

Tho_ 3.19
= j» (3.19)
M3, Ay — K M

FI(AH_T(S €= D — (g = A) o] e — gt (3.20)

Note that in a reasonable model the mass defined in Eq. (3.19) must be congruent
to the Higgs mass. In agreement with our discussion in Section 2.2.5, the PGB’s
mass vanishes at tree level and can be computed at one-loop level by means of
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Eq. (2.60) according to

1
m%GB:&T2—<T>2(M;:‘+M§[+6m%v+3mé+3m§(—12mf— Z di-mjle),

1 € heavy

(3.21)

where the sum runs over the heavy neutrino masses and d; denotes the corre-
sponding neutrino’s real degrees of freedom. From the above equation we see
that the PGB mass is determined by the masses of the scalars h and H (the
remaining scalar degrees of freedom are massless due to the GW conditions), by
the masses of the gauge bosons in the theory, i.e. of the W, Z and X bosons, and
finally by the fermion masses, which give a negative contribution to mbqg. In this
context it is important to remember that mpgp > 0 is a necessary consistency
condition since only in this case the extremum of the potential is a minimum.
Note that the contributions from the SM fermions apart from the top quark as
well as from the light neutrinos are relatively small and, accordingly, have been
neglected in Eq. (3.21).

As mentioned at the end of Section 2.2.5, the large top-quark mass always
leads to a negative PGB mass-squared in the SM so no conformal symmetry
breaking can occur in the electroweak model without additional bosons. In the
CISS the PGB mass-squared obtains relevant contributions beyond the SM ones
from the second scalar H, the hidden gauge bosons X and the pseudo-Dirac
neutrinos, which must compensate the top-quark contribution when summed up.
For a constant value of My = 2 TeV and a Higgs mass of M, = 125 GeV
(in agreement with experimental data [10]) the contours of the PGB mass are
plotted in Figure 3.2 in the plane of the hidden gauge boson mass myx and the
pseudo-Dirac mass average my = }12?:6 |m;|. The area, in which conformal
symmetry breaking is consistent, corresponds to parameter configurations that
yield a positive PGB mass-squared, perturbative couplings and a Higgs portal
mixing in agreement with the limit of sin 8 < 0.44 [61].> To assure that the
scalar couplings do not run into Landau poles or that the scalar potential does
not develop instabilities before the Planck scale requires a detailed study of the
renormalization group (RG) equations in the CISS, which lies beyond the scope of
this work. The effects of RG running in quite generic conformal extensions of the
SM have been thoroughly investigated in [69]. That study particularly showed
that a minimum of parameters must be available in order to enable stable RG
running up to the Planck scale. Since the CISS contains more degrees of freedom
in all sectors than the minimal stable conformal extension of the SM presented
in [69], the parameter space of the underlying model is expected to admit the
evolution of the couplings without encountering Landau poles or instabilities
below the Planck scale. The plot in the figure nicely illustrates the negative
impact of the pseudo-Dirac neutrinos as the PGB mass tends to zero for increasing

2Note that the reported limit of sin 3 < 0.37 [56] quoted in [1] meanwhile has been updated
by [61]. Since the updated bound is weaker than the original one, naturally, our analysis is not
affected by this change.
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Figure 3.2: Contour plot of the pseudo-Goldstone boson mass mpqp as function of
the hidden gauge boson mass mx and the averaged heavy pseudo-Dirac neutrino mass
mypy. The plot shows the phenomenologically allowed region with a Higgs mass of
My, = 125 GeV, second scalar mass My = 2 TeV, and with consistent radiative con-
formal symmetry breaking, i.e. positive pseudo-Goldstone mass-squared, perturbative
couplings and Higgs portal mixings compatible with the bound sin 8 < 0.44 [61]|. Note
that for higher values of My the region of allowed PGB masses grows towards higher
values of my.
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sterile masses and eventually becomes negative. For hidden gauge boson masses
below 1 TeV we can even observe a limit of my < 1.2 TeV. At the same time, this
particular region does not admit PGB masses above 400 GeV. Note that if the
mass My, is increased, the region of viable PGB masses is extended, according to
Eq. (3.21), in the direction of higher heavy neutrino masses my.

To conclude the discussion of the electroweak symmetry breaking in the CISS
we present two benchmark points in the scalar sector:

1. (¢1) = 1380 GeV, () =38 GeV,  (hs) = 246 GeV |
M,H = 2170 GeV, Mh =125.5 GeV;

2. (¢1) =1250 GeV, (o) =181 GeV, (h3) = 246 GeV,
My = 3060 GeV, M, =124.9 GeV .

Both of the above points lie within the uncertainty of the value for the Higgs
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mass Mpyiges = [125.09 £ 0.21(stat.) £ 0.11(syst.)] GeV [10] and reproduce the
correct value for the SM vev ve, = (h3) [see Eq.(2.13) and also the discussion
after Eq. (3.14)]. Furthermore, we see that the scale of spontaneous conformal
symmetry breaking, v = (¢1), is typically in the TeV range as well as the mass of
the second scalar, M. Finally, we can observe the hierarchical pattern between
the vevs as anticipated at the beginning of Section 3.2. Note that for the first
benchmark point the hierarchy between (¢9) and (hs) is more pronounced than
for the second.

It is of particular interest to examine the ratios of the vevs for both benchmark
points. We find that the small parameters introduced in the parametrization in
Eq. (3.14) are given as ¢ ~ O (107%) and § ~ O (1072 —107'). This confirms
that the hierarchy among the vevs assumed in the CISS can be obtained for a
quite natural choice of parameters. Furthermore, it reflects the characteristic of
conformal theories that there exists only one scale v to which every dimensional
quantity must be proportional. In consequence, the scales of the vevs cannot lie
too far apart from the common scale of spontaneous symmetry breaking.

3.4 Phenomenology

After we have introduced our model in Section 3.1 and derived the model’s mass
spectrum and symmetry breaking in Sections 3.2 and 3.3, it is now time to ex-
amine the phenomenology of the model. This section is divided into three parts.
The first part (Section 3.4.1) deals with the phenomenology of low-energy par-
ticle physics, the second (Section 3.4.2) with the collider phenomenology of the
underlying model and the third part (Section 3.4.3) with the possibilities for dark
matter production in the CISS.

3.4.1 Low-energy particle physics

In this part we will discuss the phenomenology of our model in the low-energy
regime. The aim of this discussion is to derive constraints on the parameter
space of the CISS. Eventually, these constraints are applied to find viable points
in parameter space, which yield keV-scale masses for the dark matter candidates.
The results of our analysis are plotted in Figures 3.3 and 3.4. The impact of
low-energy phenomenology on these plots is discussed in the following.

Active neutrino masses and oscillations

In Section 3.2 we have considered the neutral lepton mass matrix in the simple
one-flavor case. Here we will set up a realistic scenario containing three SM
neutrino fields vy,. For each additional neutrino species vg, Ni and Ny, we
assume two generations consistent with the minimal inverse seesaw model in
[160]. According to this set-up, the mass matrix defined in Eq. (3.6) isa 9 x 9
symmetric matrix, whose elements are matrices. Equally, the mixing matrix is
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a 9 x 9 matrix. Following our discussion in Section 3.2 we expect an eigenvalue
spectrum with three active neutrino masses given by Eq. (3.7), two keV masses
given by Eq.(3.8) and two pairs of pseudo-Dirac neutrinos with masses as in
Eq. (3.9). Note that the leading-order contribution to the active neutrino masses
in the matrix form is governed by the inverse seesaw formula as

m_ =m, =mL(Mu;'MT) 'mp . (3.22)

Accordingly, we will use the above equation instead of Eq. (3.7) in the following.

For our analysis we consider both neutrino mass orderings, i.e. we carry out
our analysis for both possible signs of Am3,. To ensure a consistent reproduction
of standard neutrino oscillations as described in Section 2.2.1 it is sufficient to
have only two non-vanishing SM neutrino masses. Hence, we set the lightest
neutrino mass equal to zero, Mightest = 0.2 Furthermore, we require for the
mixing matrix Upyns, which is given by the upper-left 3 x 3 block of U, that
its elements should be in agreement with their best-fit values.* To this end,
we employ a parametrization of the Dirac mass matrix mp due to Casas and
Ibarra [161]. Note that in their work a generic supersymmetric version of the
seesaw mechanism was considered while our model for neutrino masses is based
on the inverse seesaw. Hence, we need to adequately derive the formula for the
parametrization of mp in terms of the oscillation parameters in the context of the
neutral lepton mass matrix in the CISS. Notice that it is valid to only consider
the active-neutrino subspace belonging to the massive neutrinos and to neglect
the part belonging to the massless eigenstate. Accordingly, we take Upyyns in
the following parametrization as 3 X 2 matrix without any loss of information.
Let us collect the two non-vanishing active neutrino masses in a diagonal 2 x 2
matrix mygn = diag(ms, ms). For appropriate field redefinitions we can assume
that the 2 x 2 matrix p, is also diagonal. Since ms > 0 and msg > 0, we
can unambiguously define the square-root of the diagonal active neutrino mass

matrix as mlliglt = diag(mé/ 2, mé/ 2) as well as the inverse of the square-root
matrix mgglh/tz = diag(m, /%, m3"?). Similar definitions of the (inverse) square-

root apply to the Majorana mass matrix p,. Then using Eq. (3.22) we can write
the following equation

1= (miglyfoJMNs mb (M7) ™ i/ 2) (ui/ Upans M~ mp mﬁé{f) . (3.23)

Note that the two expressions in parentheses are the transpose of each other.
Accordingly, we can define the orthogonal, in general complex 2 x 2 matrix O(«)
parametrized by some mixing angle « as

O(a) = M}F/QUPMNS M~ mp ml?glh/f . (3.24)

3Note that the rank of the active neutrino mass matrix in Eq. (3.22) obeys rk(m,) < 2 as
can be easily shown using Egs. (B.1) and (B.2), which analytically forces us to set the lightest
neutrino mass to zero at leading order.

4We use the best-fit values for mixing angles and mass-squared differences without errors
as given in [115], where a global analysis of three-neutrino oscillations was performed taking
into account all current constraints on the mixing parameters.
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Solving the above equation for mp yields
~1/2 1/2
mp = My PO0()mig Ul - (3.25)

As mentioned before we take Upyns to be a 3 X 2 matrix in the above equations.
We will use Eq. (3.25) to parametrize mp in our numerical analysis. As a final
remark on Eq. (3.25), let us highlight the fact that mp linearly depends on M.
As a consequence, a possible hierarchy in the Yukawa couplings of mp and M
can cancel in Eq. (3.22) so that the light neutrinos experience only a reduced
hierarchy between their masses.

After having taken care of SM neutrino masses and oscillations, we will discuss
further low-energy constraints on our model in the following.

Non-unitarity of the PMNS matrix

With the additional neutrinos in our model the lepton mixing matrix Upyyg in-
troduced in the charged-current interactions in the mass basis [see Eq. (2.27)] is
no longer necessarily unitary since it is only part of the larger unitary mixing
matrix U. However, the deviation of the mixing matrix Upyys from unitarity
can be constrained by electroweak data. Indeed, as Upyng enters the leptonic
charged-current interactions, the effects of its non-unitarity manifest themselves
in leptonic and semileptonic processes such as leptonic W boson and pion de-
cays and rare lepton decays like u* — e*v. Furthermore, a non-unitary active
neutrino mixing matrix even remains present in the leptonic neutral-current in-
teractions, thus, altering the invisible decay width of the Z boson. Likewise,
since Fermi’s constant Gy is determined in muon decays, this physical quantity
will also be effected by the non-unitarity of Upyns. For a detailed discussion of
lepton non-unitarity and its implications we refer to [162-164].

For our analysis we define the flavor dependent observables

€q = Uyl? with a € {e T}, 3.26
D Uil ) K

1>3

Taking into account that the mixing between the active neutrinos and the dark
matter candidates is suppressed we see from Eq.(3.26) that the non-unitarity
parameters are dominated by the active-sterile mixing. As shown in Section 3.2,
the strength of this mixing is determined by the ratio m?/M?. Remember that
M ~ {(¢1) = v, i.e. the sterile neutrino mass is proportional to the conformal
symmetry breaking scale. Then again, mp is generated at the electroweak scale,
which cannot be too far away from v. Hence, it is possible to obtain sizable
active-sterile mixing in our model. In this context it is of particular interest
that a sizable active-sterile mixing paired with heavy sterile masses can improve
the fit to electroweak precision observables as shown in [163]. Measurable phe-
nomenological consequences of a large mixing can be expected for non-unitarity
parameters £, above the order of 107%. The most sensitive observables to the non-
unitarity are the already mentioned invisible decay width of the Z boson I'Z¥ and
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Fermi’s constant derived from the muon decay constant G,. They depend on the
non-unitarity parameters of Eq. (3.26) as [163]

Ly _1 Y (1-z), (3.27)

C)e 3,2+

G,=Gr(l—e.)(1—¢,). (3.28)

The above equations enable us to constrain our parameter space.

Lepton universality

A further constraint on the parameter space comes from lepton universality. In
the SM leptons are coupled to the electroweak gauge bosons with the same
strength, regardless of their flavor. One can, however, assume that there ex-
ist individual coupling constants for each flavor. The coupling constants can be
constrained by various experiments as discussed in [165]|. Related to the elements
of the mixing matrix this yields the limits

ge — €&, = 0.0022 4 0.0025 ,
ey — & = 0.0017 £ 0.0038, (3.29)
ge — - = 0.0039 = 0.0040 .

The above limits have been taken into account in order to further narrow down
the available parameter space.

Lepton number violation

As mentioned in Section 3.1, in the CISS lepton number is not a symmetry
of the tree-level Lagrangian in contrast to the SM tree-level Lagrangian, which
conserves baryon and lepton number separately at the perturbative level. In
particular, lepton number is violated by one unit in the Yukawa interactions
involving ¢;. Hence, OvBf is in principle possible in the CISS. Note, however,
that the LNV Majorana masses are always proportional to the Yukawa coupling
Y2 (or, respectively, ), which is naturally small for p ~ O (1) keV and (¢s) ~
O (10 — 100) GeV. In the following we will investigate the contributions to Ov5/
from the different types of neutrinos in the CISS. We will show that because the
heavy neutrinos in the model are pseudo-Dirac particles, no Ov3f rate above the
one expected from light neutrino exchange is predicted. For the basics of Ov3p3
we refer to Section 2.2.3.

With masses in the sub-eV and keV region the active neutrinos and, respec-
tively, the dark matter candidates fall in the category of light neutrinos. Their
contribution to the decay rate of Ov33 can be described by the effective param-
eter N defined in Eq. (2.48) once the dark matter candidates are included into
the sum. Note, however, that the dark matter mixing to the active neutrinos is
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negligible and we can approximate

3 5 3
v 1 2 2 —~ 1 2 Mee
Tett = m. (;_1 Ugimi + ;_4 © mi) ~ . (E Ueimi> = me (3.30)

=1

If we insert the eigenvalue for the active neutrinos given in Eq. (3.7), we find from
the above equation that the effective light Majorana mass m,,. is proportional to
©2u,. We can even put an upper limit on the active neutrino contribution if
we remember that in the CISS the lightest neutrino is massless. Hence, we can
evaluate the sum in Eq. (3.30) with myightest = 0, which yields the upper bound

3

= UZm.

mee - eiml
1

< cos 02, cos 07,/ |Am3, | + sin 62, cos 9%3\/]Am§1\ + Am3,
~ 0.049 6V |

(3.31)

where we have used Egs. (2.38) and (2.39) and have assumed an inverted order-
ing (IO) for the SM neutrino masses, which in general yields a larger effective
Majorana mass than the normal ordering (NO). Note that in deriving the above
limit we have neglected possible phases in the mixing matrix as including them
could only lead to even smaller values for m... For the numerical estimate we
have used the best-fit values for IO given in [115]. The limit for the light neutrino
contribution in Eq. (3.31) is well below the reach of current Ov3f experiments (see
Table 4.2 of the next chapter). Next we consider the pseudo-Dirac neutrino con-
tributions.

In the underlying model the mass eigenvalues mg and my;, and mg and mg
respectively form pseudo Dirac mass pairs. From Eq.(3.9) it follows that the
mass sum of a pseudo-Dirac pair is given by

Mg + M7 = Mg + Mg = Uy . (332)

The pseudo-Dirac neutrino masses in the CISS have a wide spectrum and can
range from some MeV up to TeV. Hence, they can be lighter or heavier than the
typical momentum transfer [p| = 100 MeV in OvS35 or of about the same size. If
the pseudo-Dirac neutrinos are lighter than about 100 MeV, their contribution can
be approximated by Eq. (2.48). Note that for pseudo-Dirac masses below 100 MeV
the Yukawa couplings yp need to be sufficiently small in order to maintain © < 1.
Taking into account the active-sterile mixing given by ©, we obtain for the light
pseudo-Dirac neutrino contribution

9
mbg =Y UZm; ~ O°u, (3.33)
=6

where we have used Eq. (3.32). The above equation shows that from light pseudo-
Dirac neutrinos we expect a similar contribution to the rate of Ov53 as from the
active neutrinos, which is limited by Eq. (3.31).

40



3.4. PHENOMENOLOGY

In the case that the pseudo-Dirac neutrinos are heavier than some 100 MeV,
we can approximate their contribution with Eq. (2.50), according to which the
effective parameter is given by

D - o 1 Sy
7753 =My Z Uei% ~ My M2 (334)
i=6 v

where the estimate in the last step can be obtained from direct computation.
To compare the quantity in the above equation with the light neutrino contri-
bution we need to multiply Eq. (3.34) by the electron mass. Accordingly, the
heavy pseudo-Dirac contribution is suppressed with respect to the light neutrino
contribution by a factor m.m,/M?*. For pseudo-Dirac masses above 1 GeV the
suppression factor is smaller than 5 x 10~%, where we have used m, = 0.511 MeV
and m, = 938.272 MeV [87]. Note that a more accurate comparison of the light
and heavy neutrino contributions to OvS5 would actually require to account for
the different nuclear matrix elements. The above estimate, however, is sufficient
to determine that the contribution of the heavy neutrinos is suppressed.

Finally, when the pseudo-Dirac mass is of the same size as the momentum
transfer we put |p| & M. Then from Eq. (2.49) we can deduce that the effective
parameter in this case can be expressed as

Neg = Myp Z |p|2 n m ~ mpm M2 ’ ( . )

which is even more suppressed than the contribution in Eq. (3.34).

In conclusion we have shown that the neutral leptons and in particular pseudo-
Dirac neutrinos in the CISS only give negligible contributions to the rate of Ov33.
In agreement with this conclusion we did not find any additional constraints on
the parameter space from Ovf( in our numerical analysis.

Lepton flavor violation

Even though lepton number violation is suppressed in our model, it is still pos-
sible to have considerable lepton flavor violation (LFV). The currently most
stringent bound on LFV comes from the MEG collaboration, which has searched
for the decay of an anti-muon into a positron and a photon. The collaboration
limits the branching ratio for this process to BR(u™ — e™y) < 5.7 x 10713 at
90% confidence level [166]. The branching ratio can be calculated [167] (see also

[168-171]) according to
2
m2
2o ()

where o, denotes the electromagnetic ﬁne—structure constant and g(x) is a loop
function given by

o(2) :/0 da 2(1—a)(2—a)+a(1—i—a)a:(1_a)‘ (3.37)

l1—a+azx

D(u — ey) 3aem
D(p— evv)

BR(p — ev) = : (3.36)

41



CHAPTER 3. CONFORMAL INVERSE SEESAW MECHANISM

Note that for small neutrino masses the above loop function is simply given by
g(m?/m2,) =~ ¢g(0) = 5/3. We use Eq.(3.36) to calculate the branching ratio
obtained in our model and apply the MEG limit to exclude points in parameter
space that give too large BR(u™ — e'y). We also consider the potential of
the proposed MEG upgrade with a designated sensitivity to branching rations of
BR(ut — ety) =~ 6 x 10714 [172].

Another constraint on LE'V physics can be obtained from the decay channel
pt — efete” (abbreviated as p — 3e). The current limit on this process is
given by BR(u" — efete™) < 1.0 x 107'% at 90% confidence level [173]. In the
meantime, a new experiment, called “Mu3e”, has been proposed in order to search
for this process and is aiming for a sensitivity to reach BR(ut — efete™) ~
1.0 x 10716 [174]. Even though this limit looks supposedly stronger than the one
from p — e7, note that in our model there is no interaction that leads to . — 3e
directly. Hence, the decay 1 — 3e is suppressed by a factor of ap, with respect
to u — ey since it can only take place via the decay u — ey with subsequent
pair creation v — ete™.

Combined limits

In order to find viable points in the parameter space of the CISS we combine
the limits that we have discussed in the preceding subsections. Accordingly, in
our analysis we only include points that correctly reproduce the neutrino mass-
squared differences and standard oscillations. Furthermore, we apply the non-
unitarity and lepton universality limits as well as the constraint from BR(u —
ey).> The results of our analysis are presented in Figures 3.3 and 3.4, which we
will discuss in the following. Note that both figures show a scenario with inverted
neutrino mass ordering. The results for normal ordering are comparable to those
of inverted ordering, but with a little weaker limits on BR(u™ — et7).

The plot in Figure 3.3 shows points in the parameter plane of the sterile
neutrino mass average my = %Z?:G |m;| and the dark matter candidate’s mass
average Mpy = % ?:4 |m;|. Each blue dot corresponds to a complete set of
model parameters in consistence with the previously discussed low-energy phe-
nomenology. The lower red band shows the lepton universality exclusion limit.
Note that the blue dots inside of the excluded region are the result of numerical
uncertainties of the analysis. The upper red band shows the exclusion limit from
dark matter stability considerations. As the dark matter particles are produced
in the early universe, it is necessary that they are sufficiently stable in order to
still be abundant today. In our study we require as a criterion for dark matter
stability that the particle’s lifetime exceeds the age of the universe by a factor
of a hundred according to 75y > 100 Ty,vese- FoOr the age of the universe we
USE Tumiverse = HO_1 = 14.54 x 10° ( ho )_1 y with today’s Hubble rate given by

0.67
Hy =100 hy km s™' Mpc™! = (67.3+£1.2) km s~* Mpc ™! at 68% confidence level

5As already mentioned the constraints from 0v33 on the parameter space are weaker than
limits from the other sources since contributions to the decay are suppressed in the CISS.
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Figure 3.3: Parameter subspace of the averaged sterile neutrino pseudo-Dirac mass my
and averaged dark matter candidate mass mpy. The blue dots correspond to complete
sets of model parameters allowed by low-energy phenomenology constraints. The lower
red band shows the exclusion limit obtained from lepton universality. The upper red
band excludes dark matter masses that yield too short lifetimes. The gray areas show
the constraints from the decay u — e, where the solid (dashed) line corresponds to the
current (future) limit on the branching ratio of the process. The green area highlights
the dark matter mass region favored by relic abundance. Note that the blue dots in
Figure 3.4 are the same as the ones shown here, but in the parameter space of dark
matter candidate mass against mixing angle.

mpym [eV]

[108]. The lifetime of the dark matter candidate, which mainly decays into the
three active neutrinos, can be estimated according to [175]:

B o6 (Mpar 2 108
Tow = 5 x 10% 5 (kev) (—sin2(2(:)) . (3.38)

With active-DM mixing in the range of 107'% — 1072 (cf. Section 3.2) we obtain
from the above equation the rough stability limit of mpy, < 10* keV. The gray
areas in the lower-right corner of Figure 3.3 display the LFV limits. The solid
line marks the border of the current MEG limit of BR(u™ — e™) < 5.7 x 10713,
The dashed line cutting into the area of allowed parameter points corresponds to
the projected limit of BR(u™ — e™) < 6.0 x 107!, which could serve to falsify
the CISS in the future. Finally, the green band highlights the mass range for
DM candidates, in which the correct DM relic abundance can be produced (we
postpone the discussion of the relic abundance until Section 3.4.3).

In Figure 3.4 we show the same points as in Figure 3.3, but this time in the
parameter subspace of DM masses versus the DM mixing angle. As before, the
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green band shows the region favored by DM relic abundance. The red band on
the left takes into account the exclusion limit from the neutrinos’ phase-space-
density bound (Tremaine-Gunn bound) [176], which can be relaxed down to the
keV range by a more conservative treatment of the phase space density [177]. The
red area in the top-right half of Figure 3.4 is excluded by X-ray bounds [178]. The
blue star indicates a benchmark point with DM mass of about 7 keV motivated
by the weak mono-energetic X-ray line at (3.52 + 0.02) keV that was reported in
[179]. At the benchmark point the masses of the pseudo-Dirac pairs are given by
me/7 = 9.25 GeV with a mass splitting of 9 keV, and mg/9 = 638 GeV with a mass
splitting of 10 keV. For the DM candidate masses we obtain m, = 7.013 keV and
ms = 7.006 keV with mixing to the active neutrinos of sin?(20,) ~ 7 x 10~'* and
sin2(2(:)5) ~ 3.2 x 1073, It is an interesting observation that the mass region,
in which the correct amount of DM could be produced, falls just into the small
window of dark matter masses with the largest allowed mixing angle. Note that
the viable parameter region overlaps with the region, in which the Dodelson-
Widrow mechanism [180] does not produce hot dark matter as discussed in [181].

3.4.2 Particle colliders

In this part we will discuss the most promising collider signatures of the new
particles of our model. Therefore, we will investigate the different particle sectors
of the CISS and identify the reactions that could give a significant contribution
above SM backgrounds. For the evaluation of cross sections and decay rates we
use the narrow width approximation [182, 183].

Hidden sector fermions

The DM candidates are coupled too weakly to SM particles to give considerable
signals at particle colliders. Thus, in the fermion sector we focus on leptonic
signals over the SM background from the heavy sterile neutrinos in the CISS. In
a generic model with heavy Majorana neutrinos the same-sign di-lepton channel
with signature pp — W+ — (N — (£(*W7T could lead to a visible signal at
particle colliders. In this channel a primary W boson is produced in a quark-anti-
quark collision, which then decays into a charged lepton and a heavy Majorana
neutrino via the active-sterile mixing. Since it is a Majorana particle, the heavy
neutrino, afterwards, can decay into a lepton with the same electric charge as the
first one and a secondary W boson. If the secondary W boson further decays into
jets, one obtains the Feynman diagram presented in Figure 3.5. Note that this
diagram is a tilted Ov5 diagram (cf. Figure 2.4). Accordingly, the amplitude for
this process is governed by the quantity | > icheavy Ul 2m; |, which is proportional
to the familiar heavy neutrino contribution to the Ovfsp rate [see Eq. (3.34)]. In
neutrino models with strong LNV an excess in the same-sign di-lepton signal
is commonly expected. Models with suppressed LNV such as standard inverse
seesaw models (cf. Section 2.2.2) do not generate such an excess. Note, however,
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Figure 3.4: Parameter subspace of the averaged dark matter candidate mass mpy
and mixing angle sin? (2@)) between dark matter candidates and active neutrinos. The
blue dots correspond to complete sets of model parameters allowed by low-energy phe-
nomenology constraints. The red band on the left marks the Tremaine-Gunn bound
on the mass of the dark matter candidates. The red area covering the upper-right half
corresponds to the bound obtained from X-rays measurements. The green band shows
the dark matter mass range favored by relic abundance. The blue star indicates a
benchmark point with dark matter mass at 7 keV motivated by the claimed observation
of a mono-energetic X-ray line at (3.52+£0.02) keV reported in [179]. Note that the blue
dots in Figure 3.3 are the same as the ones shown here, but in the parameter space of
sterile neutrino mass against dark matter candidate mass.

mpm [eV]

that the inverse seesaw can be modified in order to allow for strong LNV as we
will discuss in detail in Chapter 4.

In [184] the efficiency for the detection of a generic Majorana neutrino in
the same-sign di-lepton channel at the LHC was investigated. In that work it
was estimated that for an upper bound of |U,;|? = 0.0052 on the mixing and for
Majorana masses above 800 GeV the cross section for the di-lepton channel drops
below 1072 fb. As discussed in Section 3.4.1 LNV is suppressed in our model
and, therefore, we expect a negligible signal in the same-sign di-lepton channel.
Let us briefly estimate the contributions from the heavy neutrinos in the CISS.
We have two pairs of pseudo-Dirac neutrinos, for which the sum of the heavy
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Figure 3.5: Same-sign di-lepton signal with two hadronic jets induced by the decay
of a heavy Majorana neutrino n;. Note that this lepton number violating signature is
suppressed in the CISS.

neutrino contributions simplifies to

_ 1 1
> vt =| 3 0 (s )

~
~

i€heavy pD pairs (339)
2 M o K| 2 M
~|Vigp + Ubyp| =203

From the above equation we see that, compared to the generic Majorana neutrino
scenario, the pseudo-Dirac masses in the CISS cause a cancellation that leads to
a suppression factor of {7 < 10~® for the amplitude. In turn, the cross section for
the same-sign di-lepton channel is suppressed by a factor of at least 1076 and,
thus, is rendered irrelevant for detection. Our result for the cancellation effect
agrees with the conclusion in [185].

In [186, 187] it was argued that the best channel involving sterile neutrinos in
the case of suppressed LNV is the tri-lepton channel with missing energy, since it
has a significantly lower SM background. The Feynman diagram for this process
is presented in Figure 3.6. Due to the internal sterile neutrino, the amplitude is
proportional to the square of active-sterile mixing and, thus, to the non-unitarity
parameter £, ~ ©? = md/M? which has been defined in Eq.(3.26). It was
pointed out at the end of Section 3.2 that the neutrino masses in the CISS are
not subject to large scale separation and so sizable active-sterile mixings of up to
ga ~ O (1%) are possible. As we will see in the next subsection (on the hidden
scalar sector) the active-sterile mixing can account for the observed excess in
the opposite-sign di-lepton channel of O (100) events at 2.40 “local” significance
published by the CMS collaboration [188] (a global significance was not reported).
A similar excess should show up in the tri-lepton channel. Note, however, that
we expect a suppressed signal of O (10) events due to the (secondary) off-shell W
boson involved.

Another signal was reported in the channel with two electrons plus two jets
with a number of 29 + 1 4+ 3 events above SM backgrounds at a center-of-mass
energy of y/s = 8 TeV [189], where the first (second) uncertainty corresponds to
the total experimental uncertainty (the particle distribution function cross section
uncertainty). Note that in the analysis presented in [189] no charge requirements
were imposed on the final state charged leptons. A local significance of 2.80 at
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Figure 3.6: Lepton number conserving tri-lepton collider signature in the CISS me-
diated by the sterile neutrino n;. The final-state neutrino vy, escapes the detector as
missing transverse energy.

approximately 2 TeV in the di-electron channel was stated (a global significance
was not reported). If the secondary W boson in Figure 3.6 decays into jets
instead of leptons, the diagram corresponds to the signature pp — (0T + 2 jets.
Since the amplitude for this channel and for the tri-lepton channel differ only by
the branching ratios of the W boson decays into hadrons and into leptons, we
expect both signals to be of the same order of magnitude. Thus, the pseudo-Dirac
neutrinos in the CISS could give rise to the signal reported in [189).

Note that there exists an alternative production mechanism for sterile neutri-
nos at hadron colliders that involves t-channel photons and becomes dominant
for relatively heavy neutrinos as discussed in [190]. In the future this new mech-
anism could test mixings down to e, ~ 10~ for neutrino masses of the order of

(100 — 300) GeV.

Hidden sector scalars

In this subsection we will discuss the possible decays for the new scalars in the
CISS. We will see that the decays of ¢pi can lead to interesting collider signatures
that could serve in order to test the model in future LHC runs.

The PGB is coupled to SM particles via its mixing to the Higgs boson para-
metrized by sin § and could manifest itself as a second Higgs-like particle at the
LHC. The mixing arises from the diagonalization of the mass-squared matrix in
the scalar sector (see Section 3.3) and is proportional to (hs)/{¢1) ~ O(0.1).
Hence, we expect a general suppression by a factor of a hundred for the cross
section of the PGB compared to the one of the Higgs boson. Due to the relatively
heavy mass of ¢pcp around 500 GeV and the large top Yukawa coupling y; ~ O (1),
the scalar’s dominant decay channel into SM particles will be the decay into a
tt pair. In the hidden sector ¢pqp can decay into two sterile neutrinos through
the Yukawa interaction term proportional ;. The sterile neutrinos in turn can
decay via charged-current or neutral-current interactions, or escape the detector
as dark matter. The diagram in Figure 3.7 as an example shows the decay of
the PGB into two neutrinos, one of which leaves the detector undetected (npy,),

61n the following discussion we will not consider §; or, respectively, 7, individually, for they
bear the same phenomenology as y; or, respectively, ys.
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Figure 3.7: Decay of the pseudo-Goldstone boson of broken scale invariance into two
sterile neutrinos. One neutrino (npy) escapes the detector as dark matter, while the
other further decays via a charged-current interaction yielding the signature ¢pgs —
(0T + missing energy. Note that initial-state radiation could possibly add hadronic
jets to the signature shown in this figure.

while the other decays through a charged-current interaction according to v; —
(FWF — (*(Fug,. Note that the channel ¢pas — Npunow, as it involves only
one interaction, will give the largest contribution to the total decay width. As
already mentioned in the preceding subsection (on pseudo-Dirac neutrinos), an
excess in the (/T + jets channel without missing transverse energy of 126 & 41
events at /s = 8 TeV at 2.40 “local” significance has been observed in a data
sample collected by the CMS detector corresponding to an integrated luminosity
of £ =19.4 fb~! [188].7 This excess can be explained in the CISS as we will lay
out in the following.
The possible hidden decay channels for the PGB can be summarized as

¢PGB — NyNj — aﬁi +Jet<S) + ET (340)

with a € {0, ..., 4} specifying the number of charged leptons in the final state and
P+ denotes the missing transverse energy (carried away by final-state neutrinos).
Two comments are in order. First, the jet multiplicity of the decays is not certain
due to initial-state radiation. Hence, for our analysis we summed over decay rates
whose signatures differed from each other only in the number of jets. Second,
there exists one channel without missing energy, namely, the decay ¢pes — 20F +
2(¢q)T, in which no final-state neutrinos are produced. For the PGB’s decay rate
into sterile neutrinos we can estimate at tree level
2

FAB =~ yl?;é—;GBSAB|fAB|2k3AB, (341)
where the subscripts A, B label the branches of the Feynman diagram that belong
to the corresponding primary sterile neutrino. The coefficients s,p and kap

"For completeness, we remark again that no value for the global significance was reported.
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denote the symmetry and kinematic factor for the respective rates, while fap
takes into account the relative strengths of the different decay branches. The
decay rate for the top-pair production at tree level is given by (see e.g. [191])

(3.42)

3y2 mpgp sin® B Am? \*”?
1—‘top = 167 1- )

2
mMpaB

where we have used y? = 2v/2m2Gr [cf. Egs. (2.13) and (2.21)]. With the equa-
tions for the decay rates we are ready to begin our numerical study.

Let us assume that the production cross section for the PGB is given by the
corresponding Higgs production cross section suppressed by the portal coupling
as m%. For a PGB mass of mpgg &~ 500 GeV we find that, in order to explain
the excess, a portal coupling of nf, ~ (.25 is required, which yields a production
cross section of o(pp — ¢pes) ~ 0.25 pb if we take the Higgs production cross
section as in [192]. For the active-sterile mixing we use € ~ O (0.01) as discussed
in the previous subsection. For the mixing of the heavy sterile states to non-
active neutrinos numerical values of |Upy;|? = 0.8 — 1.0 are needed. Note that
this range is in agreement with DM phenomenology. To give an example we
consider the benchmark point with ¢ = 0.017 and |Uy;|? = 0.97. For the scalar
mixing we choose sin § = 0.35 in accordance with the vev hierarchy in the CISS
and the limit sin5 < 0.44 [61]. For these values we find branching ratios of
Br(¢pas — (F0F +jet(s) + Fr) ~ 1.6% and Br(dpes — tt) =~ 2.0% corresponding
to a signal of approximately 75 events in the di-lepton channel and, respectively,
100 events in the tf channel in the energy region of 500 GeV to 600 GeV in
agreement with the uncertainties in [193, 194]. For the future LHC run the
designated integrated luminosity is reported as 300 fb™* by the year 2021 [195].
For this luminosity the CISS predicts 1170 events in the di-lepton channel and
1530 events in the ¢¢ channel, which should be sufficiently strong signals to test
the hypothesis of our model.

Now that we have analyzed the decays of ¢pqgs, let us briefly discuss the
phenomenology of H. The study of the scalar sector in Section 3.3 has shown
that the second scalar’s vev is of the order of 10 — 100 GeV. As pointed out
in the discussion on LNV in Section 3.4.1, DM masses in the keV range require
tiny Yukawa couplings y, ~ O (1077). Consequently H will mainly decay via the
Higgs portal. However, we do not expect many events caused by H, due to its
large mass My ~ O (1) TeV, which substantially reduces the production cross
section.

Hidden sector gauge boson

Finally, let us investigate the decays in the hidden gauge sector. The mass of
the new gauge boson is given by Eq.(3.5). Taking the hierarchy between the
scalar vevs into account, we find my =~ gx(¢1) ~ O(1) TeV. If we consult
Figure 3.2, we see that a PGB mass of mpgp ~ 500 GeV with My, < 2 TeV

can be obtained for a sterile neutrino mass average of my < mpgp and hidden

49



CHAPTER 3. CONFORMAL INVERSE SEESAW MECHANISM

gauge boson masses in the range 1 TeV < my < 2 TeV. As an example we
take myxy = 1.5 TeV in this subsection. With a mass in the TeV range the
hidden gauge boson is well within the reach of the LHC. It can be produced
in a proton-proton collision due to its coupling to the Z boson via the kinetic
mixing proportional to £, which was introduced in Eq. (3.2). Because ¢ actually
parametrizes the kinetic mixing between X and the gauge boson of U(1)y, B, we
need to include an extra factor of sin®#fy in the suppression of the production
cross section [cf. Eq. (2.6)]. Furthermore, since the hidden gauge boson is much
heavier than the Z boson, the production is also kinematically suppressed. If we
take all the mentioned effects into account, we find that the total suppression
factor for the cross section is given by ¢2sin® Oy (m?%/m%). With the inclusive
production cross section for the Z boson of o(pp — Z + anything) x Br(Z —
0T07) = 1.12£0.01(stat.) £ 0.02(syst.) £ 0.05(lumi.) nb at /s = 8 TeV [196] and
the branching ratio Br(Z — ¢*¢~) = (3.3658 £ 0.0023)% [87] we can calculate
the production cross section for the hidden gauge boson according to

my

o(pp = X) = o(pp — Z + anything) £*sin® Oy —= . (3.43)
m

X

where we take my = 91.1876 GeV [87] and sin® Oy ~ 0.231 (cf. Section 2.1.1).

The X boson can decay into sterile neutrinos in the same way as ¢pqs. The
most clearly visible signals of X decays are those with one and two charged leptons
in the final state. For the parameters that were used in the previous subsection
to explain the signal of [188] we find an upper limit for the kinetic mixing of
€] < 0.02 in order to be consistent with [197].

We have studied the collider phenomenology of the hidden sector particles in
the CISS and pointed out which deviations from the SM are to be expected. In
the next section we will examine the possibilities to produce dark matter in the

CISS.

3.4.3 Dark matter relic abundance

The dark matter (DM) candidates in the CISS, which are labelled by npy,, are
the eigenstates of the neutrino mass matrix with eigenvalues proportional to the
intermediate scale py [see Eq. (3.8)]. In the following we will discuss how DM is
produced in the CISS and how the correct relic abundance of DM in the Universe
is obtained. In particular, we will elaborate on which mechanisms might be
responsible for a consistent DM production.

One of the simplest DM production mechanisms, which is generically present
in models with sterile right-handed neutrinos, is the Dodelson-Widrow mecha-
nism [180]. In this mechanism the sterile neutrinos represent the DM candidate,
which is produced in active-sterile neutrino oscillations. However, the possibil-
ity of sterile neutrinos as warm DM produced in oscillations is already severely
constrained by structure formation observations [198-200] even though it is not
completely ruled out, yet (see for instance the ¥MSM [175]). In any case, it is
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required to adjust the model’s parameters to very specific values in order to ob-
tain the correct amount of DM energy density from sterile neutrinos, which is,
of course, a valid solution, but might not be satisfying from a theoretical point
of view. Even though the Dodelson-Widrow mechanism is active in the CISS, it
only produces a fraction of the relic abundance insufficient to explain the total
DM energy density for natural model parameters.

Another possibility could be that DM neutrinos are thermalized by the mas-
sive hidden gauge boson. However, if the gauge boson is too light, the neutrinos
are always overproduced [201]. The so-called over-closure of the Universe still
can be avoided if a heavy, relic particle dominates the energy density of the early
Universe, which upon decay produces a large amount of entropy (in form of radia-
tion) [202]. In the CISS, such an entropy injection could be obtained from the de-
cay of the heavy pseudo-Dirac neutrinos. However, this scenario suffers the same
fate as the Dodelson-Widrow mechanism as making this production scheme work
requires a conspiracy between model parameters as discussed in [181, 203, 204].

None of the production mechanisms mentioned so far seems to be suitable for
the CISS. Thus, we will discuss yet another possibility for DM production that
is naturally realized in our model, namely, the non-thermal freeze-in mechanism
[205-208]. The idea of non-thermal freeze-in consists of two synergetic processes.
In one process, which is efficient at earlier times in the evolution of the Universe,
the abundance of a feebly interacting massive particle (FIMP) is produced via
freeze-in from the thermal plasma. In the CISS this FIMP is represented by the
scalar H mainly given by ¢5. As we will see H, due to its ‘feeble’ interactions,
never enters thermal equilibrium as opposed to freeze-out scenarios. In the other
process the DM particle np, is produced via the decay H — npunpu, which
becomes efficient at temperatures T ~ My,. Note that the Boltzmann equation for
the evolution of the number density of the DM candidate is always dominated by
the production through the decay of the scalar [209]. One important requirement
for the freeze-in mechanism to be at work is that the DM candidate npy, is also
a FIMP so that the particle is not thermalized. Since the intermediate-scale
neutrinos have masses in the keV range, while the vev generating their mass term,
(¢2), is of the order of 1 GeV up to the electroweak scale ve, ~ O (100) GeV,
we can expect the interaction strength to be ypy ~ 9o ~ 107¢ — 1078, which is
indeed feeble. Another consequence of keV masses is that the effective number of
relativistic degrees of freedom Ngg is unaffected. Furthermore, the DM particle
must not be thermalized by the hidden gauge boson. Accordingly, the ratio of the
hidden gauge coupling over the gauge boson mass gx/mx &~ (¢1) " [cf. Eq. (3.5)]
needs to be sufficiently tiny. Since (¢1) ~ O (1) TeV, this is the case in the CISS.

In the underlying freeze-in mechanism the yield of DM particles can be cal-
culated via the formula [210]

2.38 My ae

YDM(OO> ~ 9, Plg :
migi\/ gt My

where g2 and g? denote the effective number of degrees of freedom for the entropy

and energy density, respectively, at T ~ My, and g4, is given by the internal

' (H — npunow) (3.44)
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degrees of freedom of H. The factor I' (H — npuynpy) denotes the rate of the
scalar’s decay into two DM particles. With the yield given in Eq. (3.44) we obtain
for the DM relic abundance [210]

3 (TeV\? /100 GeV 10°
Qo ?=0.11 e vV ' .
h 0.11 x (10 keV) <<¢2>) ( My, ) (gf 95> 349

Let us investigate which DM mass is needed in the CISS in order to align
the above equation with the reported value of Qpyh? = 0.1199 £ 0.0027 at
68% confidence level [108] for the relic DM energy density. The vev of the sec-
ond scalar (¢9) can vary between tens and hundreds of GeV, while the mass
My is in the TeV range. The additional degrees of freedom in the CISS com-
pared to the SM add up to 16 and practically do not make any difference at
T = M. At such high temperatures we roughly have ¢g° ~ g ~ 100 [211], so
that 103/(¢5/¢?) ~ 1. Hence, a DM mass between 1 keV and 10 keV is favored
in the freeze-in mechanism within the CISS as indicated by the green bands in
Figures 3.3 and 3.4. Note that, in contrast to the model discussed in [210], a DM
mass at this scale comes natural in the CISS so that we do not have to rely on
cancellations for the mass terms.

Before we conclude the discussion of the relic abundance we remark a final
subtlety of the model. In the CISS there are in total two DM neutrinos with a
small mass splitting of the order of ;. Due to the much smaller mixing with the
active neutrinos, the heavier of these neutrino is not produced in the Dodelson-
Widrow mechanism and, thus, is less abundant than the lighter DM candidate
by at least 20% — 30%. This leads to a slightly asymmetric double X-ray line
with an energy splitting of p_ in the sub-keV range, which should give a very
characteristic signal in future astrophysical observations.
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CHAPTER 4

EXTENDED CONFORMAL INVERSE
SEESAW MECHANISM

In the preceding chapter we have discussed the model of the conformal inverse
seesaw (CISS) mechanism and its phenomenological implications in full detail.
There, we have seen that in the set-up of the CISS lepton number violation (LNV)
is systematically suppressed due to cancellations in contributions from the sum of
pseudo-Dirac masses. In this chapter we will extend the CISS in order to allow for
ample LNV effects. The model of the extended conformal inverse seesaw (ECISS)
mechanism, which will be presented in the following, is based on the published
work [2]. In the discussion we will put special emphasis on the differences between
the CISS and its extension. The model of the ECISS will be introduced in Sec-
tion 4.1. Afterwards, in Section 4.2, we will derive the neutrino mass spectrum
and mixing pattern followed by the discussion of electroweak symmetry breaking
in the ECISS in Section 4.3. In Section 4.4 we will analyze the impact of the
new LNV physics on neutrinoless double beta decay and on signatures at particle
colliders.

4.1 The model

The main ingredient of the ECISS, which will allow for considerable LNV, is a
large Majorana mass term for the right-handed neutrinos vg. Such a term can be
obtained if the CISS is extended by a suitable scalar degree of freedom that can
induce the desired Yukawa coupling. If this scalar upon spontaneous symmetry
breaking develops a large vev, the right-handed neutrinos can acquire an equally
large Majorana mass term. Another interesting aspect of the model is that in
the ECISS the additional gauge group U(1)x can be identified with U(1)g_y,
where B and L denote baryon and lepton number, respectively. In the CISS this
identification was not possible since there did not exist any way to consistently
assign a B — L quantum number to ¢, the scalar responsible for the Dirac-type
Yukawa couplings between vg on one hand and Ny, and Ng on the other hand
[cf. Eq. (3.2)]. In the ECISS this issue is overcome by providing the scalar sector
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Table 4.1: Charges under U(1)p_r, U(1)y and dimension of the SU(2)r, representation
for the fermions and scalars in the extended conformal inverse seesaw model.

field | Qu| ur| dr| Lol ern| va| N | Ne| H|x2|xalxe
UW)pr | 1313 173] —1[-1]-1] 3] 3] of 2] 4] 6
Uy |16 12/3| =1/3| =12 =1 o] o| ol1/2] o] o o
su@y | 2| 1| 1| 2| 1| 1| 1| 1] 2| 1| 1|1

with two different scalars, which jointly share the role of ¢; in the symmetry
breaking, but are separately responsible for the Yukawa coupling for Ny, and
vr, and Ng and vg. Additionally, one of the new scalars can also generate the
mentioned Majorana mass term for vg so it can serve two purposes at the same
time.

In Table 4.1 we summarize the fermionic and scalar particle spectrum and the
quantum numbers of the ECISS including the new B — L charges. Naturally, the
fermions of the SM carry baryon and lepton numbers and, due to the gauging of
U(1)p—r, their covariant derivatives therefore need to be altered. When the new
gauge boson, which we denote by Z’, is included, the derivatives are replaced by

D, — D)= D, —igs, (B~ L) Z, (4.1)

for each SM fermion, where gg;, denotes the U(1)p_; gauge coupling.
The relevant part of the Lagrangian in the ECISS is given by

Leorss O — {yDL_LVRj:] + ?/FLVRX4 + yN_f{l/RX;
+5 VR vR X2 + %ENEXG + %N_ﬁNRxg +h.c. } (4.2)
o %Z/MVFNV - V(H7 X2, X4, XG) .

The first two lines in the above equation show the Dirac-type and Majorana-
type Yukawa interactions, respectively. Note that, after spontaneous symmetry
breaking, we assume a symmetry similar to the one in the CISS with respect to
the simultaneous exchanges N, <+ Nj and (x2) <> (x4) in the Yukawa sector.
Accordingly, we have introduced the same Yukawa couplings y and 3/ in a suitable
way for the operators involving N, and Ng. The third line of Eq. (4.2) contains
the kinetic mixing between the Abelian gauge bosons, which is parametrized by
&g, and the potential of the scalar sector. The expression for the scalar potential
will be given in Section 4.3. Under the assumption that all electrically neutral,
CP-even scalars develop a non-vanishing vev the mass-squared of the new gauge
boson is given by

my = 4g%, ((x2)” + 4(xa)* + 9(x6)") - (4.3)

As in the CISS we write (x;) as abbreviation for (Re (x;)). Note that, since the
Higgs is not charged under U(1)p_; and the new scalars are not charged under
the SM gauge group, the masses of the electroweak gauge bosons are given by
their SM values, which have been presented in Section 2.1.1.
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4.2 Neutrino masses and leptonic mixing

In this section we will analyze the neutrino mass spectrum and the mixing matrix
in the ECISS. Compared to the mass spectrum of the CISS [given in Eqs. (3.7)-
(3.9)] we will see that the inclusion of the heavy Majorana mass term Mg only
changes the pseudo-Dirac eigenvalues.

We take the Majorana basis as ny, = (v, v, Ni, N§)T as defined in the CISS.
Then, after spontaneous symmetry breaking, the neutrino mass matrix is given
by

0 yplhs) O 0 0 mp 0 0
M= L olha) yrixe) b)) yixa) | _ | mo Mg My M (4.4)
V2 0 y(x2) ¥{xe) O 0 My w0 [ 7
0 y(Xa) 0 ¥ (xe) 0 My 0 po

As will be explained in Section 4.3 we assume that all electrically neutral, CP-
even scalars develop a non-vanishing vev with the hierarchy (x2) = (x4) > (h3) >
(x6). With this symmetry breaking pattern the mass scales M;, My and My are
all proportional to the same vev. At the same time, we want My to be the largest
of the mass terms in Eq. (4.4). Accordingly, we assume y < yg for the Yukawa
couplings, which together with the vev hierarchy leads to the desired mass scale
hierarchy Mg > M; > mp > u;.

As in the CISS we refer to Appendix A for the diagonalization of the mass
matrix defined in Eq. (4.4). Using the abbreviations p. = 1(p + o) and M? =
M? + M? the light neutrino mass spectrum in the ECISS is given by Egs. (A.22)
and (A.23) as

2
M2’ (4.5)

my =~ g,
which remains unchanged with respect to the CISS. However, for Mg # 0 the

heavy eigenvalues given by Eq. (A.24) take on a different form. Since Mg > M,
they can be expanded yielding

M2
M o~

My (4.6)
M+ ~ MR7

where we have neglected contributions proportional to ;. < M.! The mixing
matrix U diagonalizes the mass matrix given in Eq. (4.4) and connects the mass
and flavor bases according to

MBE = UTMU , (4.7)
7 = (Vear, Nows N1, No)T = Uty . (4.8)

'Note that the resemblance of the heavy eigenvalues in Eq. (4.6) to the type-I seesaw formula
is no coincidence but follows from the definition of My in Eq. (A.10) for Mg > M > us.
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The order of magnitude of the mixing matrix’s elements can be estimated as in
the CISS by Eq. (A.21) as

1 &y, © ©

© . L L
U~0lg oL 2 2|, (4.9)

V2 V2 V2

© L L 1

V2 V2 V2

where the abbreviations © = mp/M, © = Ou_/u, and s = ps /M have been
used. Let us discuss the neutrino mass spectrum and mixing of the ECISS.

The light eigenvalues given in Eq.(4.5) correspond to the active neutrino
masses and to the mass of the dark matter candidate, respectively, as was the
case in the CISS. Thus, maintaining dark matter masses of py ~ O (1 — 10) keV
and active-sterile mixing angles of © < 1072 leads to active neutrino masses of
m, < 1 eV within the phenomenological limits. Furthermore, from Eqgs. (4.8) and
(4.9) it can be seen that the mixing between the dark matter candidates np,, and
the active neutrinos is, again, proportional to ©2 = 02 (u_/u,)* ~ 10710 — 1012
for the small parameter /. < 1073, which violates the Ny, <> N§ exchange
symmetry in the neutrino sector (cf. Section 3.2). Accordingly, the dark matter
candidates are quasi-stable [for the dark matter lifetime formula see Eq. (3.38)].
Moreover, the dark matter particles can be produced in the same freeze-in mech-
anism as in the CISS.

The major difference between the neutrino mass spectrum in the CISS and
in its extension is due to the heavy masses given in Eq. (4.6). While in the CISS
these masses corresponded to a pair of pseudo-Dirac neutrinos, we obtain in the
ECISS one heavy Majorana neutrino denoted by N, with mass given by the large
LNV scale M, = Mg and another Majorana state N; with suppressed Majorana
mass M_ = M? /Mg, which is still relatively large compared to the light neutrino
masses. Therefore, large LNV phenomena are expected to occur in the ECISS. It
is, however, important to notice that besides LNV the low-energy phenomenology
of the CISS discussed in Section 3.4.1 is unaffected by the presence of Mg. This
is due to the fact that in the ECISS the light neutrino mass spectrum as well as
the neutrino mixing is the same as in the CISS.

4.3 Electroweak symmetry breaking

In the ECISS the general, conformally invariant tree-level potential, which was
introduced in Eq. (4.2), is given by
Ay A A4 A
V(H, X2, Xa) X6) = 7(HTH)2 + §2|X2|4 + §|X4|4 + §6|X6|4
+ i H H X + kpa H H | xal? + s H Hxol”  (4.10)

+ aa X2 [xal® + Kas|xal?lx6]” + K26l xa|*|x6]?
+ (Rixaxg + RaxaXixg + hee. ) .
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Note that in particular the terms in the last row of the above equation are gauge
invariant and, thus, have to be included in a general theory. We will, however,
assume that the scalar potential is symmetric with respect to the exchange xo <>
X4, which constrains the couplings as Ay = Ay, Ko = Kpg4, Kog = Kag, and
especially 71 = Ry = 0. Accordingly, the potential in Eq. (4.10) can be rewritten
as

Ao A A

V(H, X2, x4, x6) = 5 (HUH)? + 22 (el '+ Dal') + 5 sl
+ kmH H (be2l” + Ixal?) + kreHH|xs|*
+ raalx2l?|Xal® + Kas (Ix2|® + [xal?) [xsl? -

Aside from forcing the couplings k1 and ks to vanish, the assumed exchange sym-
metry possesses another important feature, namely, that the symmetry breaking
of the four-scalar potential of the ECISS can effectively be performed in a similar
way as it was done for the three-scalar potential of the CISS in Section 3.3. For
EWSB we assume the following vev hierarchy

(4.11)

IR A SR S
b = ) = 2\ [T = 7
(x6) = v 1155 : (4.12)
() = v 1j5’

where r denotes the radial coordinate along the flat direction ®g.c = (X2, X4, X6, h3)7,
and € and § are small parameters [cf. Egs. (3.13) and (3.14)|. Note that the scalar
exchange symmetry is respected by (x2) = (x4). The largest of the vevs, v, is the
unique scale of the underlying model, which is induced by conformal symmetry
breaking. Note that the parametrization as given above suggests the hierarchy
(x2) = (xa) > (h3) > (x6) if € and 0 are chosen small.

After spontaneous symmetry breaking, we obtain three massive scalars in
addition to the PGB of broken scale invariance. As in the CISS we have a
physical scalar mainly composed of hs, which is denoted by h, and another scalar
‘H mainly consisting of yg. The mass-squares of h and H in the ECISS are —
mutatis mutandis — given by Eqs. (3.19) and (3.20), respectively. The PGB and
the remaining massive scalar (apart from h and H) are connected to the sub-
system of yo and y4. In spontaneous conformal symmetry breaking the PGB
of broken scale invariance is always associated with the scalar degree of freedom
that develops the largest vev. Since in the ECISS both x» and y,4 are assumed to
develop the same vev v, the scalar spectrum does not only contain the PGB, which
possesses a vanishing tree-level mass, but also another scalar with suppressed
mass. We will denote this scalar by S (and the PGB by ¢pcp as before). The
additional mass-squared at tree level is given by

ME  [Au

'U2 = 7 — ()\H — HHG)(s 62 . (413)
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From the above equation we see that compared to M7? and M3 the new scalar
mass-squared is suppressed by an extra factor of e. But we should not jump
to conclusions: Noting the parallelism between ¢pep and S due to the assumed
exchange symmetry between (x,) and (x4) it is possible that the mass of S obtains
sizable contributions from loop-corrections similar to the PGB. A quantitative
study of whether such contributions are present or not would require a thorough
analysis of the one-loop effective potential and lies beyond the scope of this work.
We will, however, see that our results are not particularly sensitive to Mg. If we
neglect M2 for the time being, the one-loop PGB mass-squared in the ECISS is
of the form of Eq. (3.21) and comprises the scalar masses M), = Mmpiges and My,
the masses of the electroweak gauge bosons and of the additional Z’ boson, which
all give positive contributions, as well as the fermion masses, which contribute
with a minus sign. The dominant contributions in the fermion sector are the top
mass and the heavy neutrino masses as in the CISS. It is important to notice that
including a sizable mass Mg in the formula for the PGB mass will even stabilize
the RG running of the theory.

4.4 Lepton number violation

In this section we will investigate the phenomenology of LNV in the ECISS. First
we discuss neutrinoless double beta decay followed by an analysis of same-sign
di-lepton signals at particle colliders. Both of the mentioned processes involve
charged-current interactions, which have been formulated for the flavor and for
the mass bases in Eqgs. (2.22) and (2.27), respectively. Note that the lepton mixing
matrix Upyns introduced there, in the ECISS denotes a 3 x 9 matrix. Accordingly,
all massive neutrino species defined in Eq. (4.8) enter the CC interactions. In the
following we will discuss the impact of this alteration on Ovg3p.

4.4.1 Phenomenology of neutrinoless double beta decay

In this subsection we will analyze the potential signal for Ov33 in the ECISS.
We will calculate the half-life Tl% defined in Eq. (2.46) and determine the corre-

sponding effective Majorana mass m%, which has been introduced in Eq. (2.47).

In the ECISS the decay rate for Ov3[ obtains contributions both from light
and from heavy neutrino exchange. In particular, the active neutrinos and the
dark matter candidates are relatively light, while the Majorana states N; and
N, are relatively heavy compared to the typical momentum transfer in Ov33 of
Ip|*> = (100 MeV)?2. Note that the phenomenology in the light neutrino sector in
the ECISS is the same as in the CISS. Accordingly, the effective parameter for
light neutrino exchange is given by Eq. (3.30) and the effective light Majorana
mass cannot be larger than m.. ~ 0.049 eV [see Eq. (3.31)].

With Eq. (2.50) the effective parameter in the heavy sector can be expressed
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as

7 9
1 1 m
N __ § 2 E 2 — P
T]eﬁ = mp (.6 Uei_mi + - Uez_m’L) = —mN s (414)

Note that due to the presence of My as largest mass scale in the neutrino mass
matrix, the heavy neutrinos in the ECISS are Majorana particles as opposed to the
pseudo-Dirac neutrinos in the CISS. Accordingly, the contribution in Eq. (4.14)
is not subject to cancellations in the present model.

The light and heavy neutrino exchange in general have different nuclear matrix
elements (NMEs). We will denote them by M, and My, respectively.? Then,
from Eq. (2.46) we can derive the expression for the inverse half-life in the ECISS
according to

2

2
M, N

(Tl%)_l = GY | M,k + MNné\fff|2 ~ GY #

Mee + MMy, , (4.15)

where in the last step we have used m.. = m.n% and Eq.(4.14). From the
previous equation together with Eq. (2.47) it follows that the effective Majorana
mass in the ECISS is given by

M
md = Mee + mempﬁij\,l ) (4.16)

For the analysis of the effective Majorana mass in the ECISS we assume that
the contribution from the light neutrinos is negligible. This is a reasonable as-
sumption due to the upper bound on m... But if one contribution is dominant
compared to the other, the interference between them can be neglected with-
out loss of generality. Note, however, that in general the above equation implies
interference effects between the light and heavy neutrino contributions.

The current limits for the half-life of Ov53 and the effective Majorana mass
derived thereof for the two isotopes under investigation, namely, "*Ge and 3°Xe
are listed in Table 4.2.2 In order to study whether the quantities defined in
Egs. (4.15) and (4.16) can saturate the experimental limits, we need knowledge
of the phase space factor and the NMEs. In Table 4.3 we show the numerical
values, which were used in the present analysis, for the phase space factor and
the NMEs of the two isotopes. With the ranges for the NMEs and neglecting the
light neutrino contribution we can conservatively estimate the effective Majorana
mass as

9
M U2 10 GeV
md ~ 771677”Lpﬁ]\[771]_\,1 2 Z (106_24) < ¢ ) eV, (4.17)
v i=6

m;

2Note that we suppress the specification of the isotope (A, Z) here and in the following.
3We chose the isotopes “Ge and *¢Xe for our analysis, because they yield the currently
strongest limits on the half-life of Ovj34.
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Table 4.2: The current lower limits on the half-life Tlo/”2 and upper limits on the
effective mass parameter mgf”f of neutrinoless double beta decay for the isotopes “5Ge
and !36Xe. The range for the effective mass parameter is due to the different methods
of calculating the nuclear matrix elements.

Isotope | TY%, [10® y] | md [eV] | Experiment
> 1.9 n/a HdM [212]
wae | LT | < (033-13) IGEX 213, 214]
> 2.1 n/a GERDA [130]
> 3.0 <(02-04) | HIM+IGEX GERDA  [130]
>16 | <(0.14 033 EXO 215]
136X e > 1.9 n/a KamLAND-Zen [216]
>36 | <(0.12-0.25) | EXO+KamLAND-Zen  [216]

Table 4.3: The numerical values of the phase-space factor Gp, and nuclear matrix
elements for the isotopes "%Ge and !36Xe taken from [143]. The nuclear matrix elements
M, and My for light and, respectively, heavy neutrino exchange were obtained in the
self-consistent renormalized quasiparticle random phase approximation [143]. Note that
the ranges for the nuclear matrix elements correspond to the extremal values given in
the reference.

Isotope ‘ Go, [1071° y71] ‘ M, ‘ My
6Ge 7.98 3.85-5.82 | 172.2-411.5
136X e 59.2 2.19-3.36 | 117.1-172.1

where we have used Eq.(4.14) and have inserted the electron and proton mass
as given below Eq. (3.34). From the above equation we see, that for active-sterile
mixings U,; of the order of 1% and heavy neutrino masses of some 100 GeV, we
obtain effective Majorana masses of the order of 0.1 eV. Thus, one can saturate
the experimental limits given in Table 4.2. Conversely, for increasing neutrino
mass or decreasing active-sterile mixing, effective Majorana masses as small as
10~* eV can easily be obtained as well.

In Figure 4.1 we show the results of our analysis for the effective Majorana
mass mY% (left panel) and the half-life T10/V2 (right panel) of Ovf in the ECISS.
The contributions from heavy neutrinos predicted in the model by Egs. (4.15)
and (4.16) are displayed as yellow dots. Note that we only present dots that lie
around the current limits even though one can in principle find configurations in
the ECISS that fill up the entire parameter space shown in the figure. Lightest
neutrino masses within the purple-shaded areas are disfavored by cosmological
data: The areas labelled Planck and Planck + BAO show the limits from Planck
data [108], where for the latter the effects of baryon acoustic oscillations (BAO)
were additionally taken into account; the limit labelled Planck + BAO + Lya was
derived combining Planck + BAO limit with Lyman-« forest data [113, 114] and
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Figure 4.1: Heavy neutrino contributions to the effective Majorana mass (left panel)
and the corresponding half-life (right panel) of neutrinoless double beta decay versus
the lightest neutrino mass displayed as yellow dots. The dots show values that saturate
the experimental limits on neutrinoless double beta decay, which are represented by
turquoise horizontal lines and the respective shaded areas for the combined limits in
"Ge and in '%Xe (for the numerical values see Table 4.2). Note that the seemingly
more stringent constraints in the plot of the effective Majorana mass are a result of the
uncertainty in the nuclear matrix elements. The purple-shaded areas labelled Planck,
Planck + BAO and Planck + BAO -+ Lya correspond to the limit on the sum of light
neutrino masses from cosmological data [108, 113, 114]. The vertical red line marks
the projected reach of the KATRIN detector [111, 112]. The green and red areas,
respectively, show the 30 allowed ranges in a three-neutrino scheme for oscillations in
normal ordering (NO) and for inverted ordering (10), respectively. The quasi-degenerate
regime (QD), where NO and IO merge, is indicated.
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represent the currently strongest limit on the sum of relativistic neutrino masses.
The projected reach of the KATRIN detector for electron-neutrino masses down
tom,, ~ 0.2 eV [111, 112| is marked by the vertical red line. The turquoise areas
correspond to the combined limits for the effective Majorana mass and the half-
life in "*Ge and '3°Xe as given in Table 4.2. Note that the excluded area for m2
appears larger than the one for Tlo/”2 due to the uncertainty in the NMEs. When
comparing the position of the yellow dots and the excluded areas, it becomes
apparent that the heavy neutrino contribution in the ECISS can easily saturate
current experimental bounds on Ovj3f5.

If upcoming experiments observed a signal of OvS3f3, it could be explained
by the LNV due to heavy Majorana neutrinos in the ECISS. In particular, a
signal outside of the parameter region allowed by the mass mechanism could be
interpreted as hint at the ECISS. Note, however, that such a feature is quite
common to models adopting the seesaw mechanism. Hence, we will now study
the collider phenomenology related to LNV in the ECISS in order to find more
indicators to test our model.
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Figure 4.2: Left: Same-sign di-lepton signal with two hadronic jets in the ECISS
induced by the decay of a heavy Majorana neutrino n;. Right: Decay of the Z’ in the
ECISS. The decay yields a same-sign di-lepton signal with four hadronic jets.

4.4.2 Probing lepton number violation at colliders

In this subsection we will discuss LNV same-sign di-lepton collider signatures.
The cleanest channels that could probe LNV in the ECISS are pp — N/* —
(F0*F42jets and pp — Z' — (F(F 44 jets, both without missing transverse energy,
where N; denotes the Majorana neutrino state with mass my, ~ M?/Mg [see
M_ given in Eq. (4.6)]. Note that Ny with typical masses of the order of 10 TeV
or larger is too heavy to give relevant contributions to cross sections at the LHC
with a center-of-mass energy of 8 TeV. Both reactions are depicted in Figure 4.2.
The Feynman diagram shown on the left is typical for theories, in which LNV
can be mediated by the presence of Majorana neutrinos, while the one on the
right is generic for LNV induced by spontaneous breaking of the U(1)p_; gauge
symmetry. The amplitudes for the processes shown in the figure depend on the
active-sterile mixing U,y and on the mass my, of the heavy neutrinos /Vj.

The size of the neutrino mass naturally has significant impact on the particle’s
half-life. It has been estimated that for N; masses of about 1 GeV up to 30 GeV
and mixings Uyy ~ 1072 the neutrino can travel a distance of some (1072 — 1) m
in the detector before it decays [217, 218|. The delayed decay leads to a displaced
vertex, which could improve the sensitivity on the active-sterile mixing. Another
observable that permits insight on the heavy neutrino mass scale is the opening
angle between the two charged leptons in the (/*¢* + 2jets) signal. While for
mpy, ~ 100 GeV the charged leptons leave the vertex within a tight cone, they
are emitted mostly back-to-back for my, ~ 800 GeV [184].

The ((*(* + 4jets) signal is induced by a Z’ decay as shown in Figure 4.2
(right). Note that there exists another s-channel diagram with this signature. To
see this remember that in conformal symmetry breaking all scalars that develop
a finite vev are mixed among each other. This includes the physical Higgs boson,
which in the ECISS is given by a superposition of all scalar degrees of freedom of
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the theory.* Accordingly, the scalars y; couple to the physical Higgs and can be
produced in proton-proton collisions via the mixing to the Higgs boson provided
the center-of-mass energy is sufficiently high.

Therefore, the signal in Figure 4.2 (right) can be obtained as well by replacing
the Z' by a ;. Taking into account that the (¢*¢* + 4jets) signal from a Z’ or
x; decay occurs via the s-channel, one should in principle be able to see the
resonances of all mediators in the total invariant mass of the final states. The
resonances from the scalars are, however, expected to be suppressed by the small
mixing to the Higgs. We remark that aside from the aforementioned s-channel
diagrams, the (/£¢* + 4jets) signal can also arise in a t-channel topology as
described in [190]. For a thorough study of the pair production of two heavy
neutrinos in the decay of a Z’ we refer to [219].

In [47, 48] it was shown that a gauged U(1)p_, symmetry in a conformal the-
ory is naturally broken at the scale of spontaneous conformal symmetry breaking,
which lies at the order of TeV. Accordingly, the mass of the corresponding gauge
boson in the ECISS is expected to be at that scale, too. The searches for a res-
onance in 20.3 (20.5) fb~! of data in the di-electron (di-muon) channel collected
by the ATLAS collaboration and in 20.6 (19.7) fb™' of data in the di-electron
(di-muon) channel collected by the CMS collaboration at a center-of-mass energy
of 8 TeV exclude Z' masses below (2 — 3) TeV at 95% confidence level for sev-
eral models including such, in which the Z’ is the gauge boson associated with
U(1)p—r 220, 221]. With more data from Run 2 at the LHC at a higher center-
of-mass energy of 13 TeV but with yet a smaller luminosity of presently 3.2 fb™*,
the lower bound was improved to 3.40 TeV at 95% confidence level [222]. By
means of Eq. (4.3) we can estimate that for a conformal symmetry breaking scale
of O (1) TeV and natural gauge couplings gp_ of the order of 0.1 to 1 the Z’
mass in the ECISS is expected to be slightly above that limit. As more data is
collected at the LHC, the exclusion limit on the Z’ mass is expected to further
increase. Hence, the present model is probably going to be tested in the near
future. For completeness we note that the limits on the Z’ boson’s mass given by
[220-222| were derived considering specific models. Judging whether these limits
directly apply also to our model would require a dedicated analysis of the cross
section of the Z’ production in the ECISS, which lies beyond the scope of this
work.

In the following we will estimate the strength of the LNV (££/* + 2 jets) signal
at the LHC to be expected from the Majorana neutrinos in the ECISS. The
naturally sizable active-sterile mixing in the model can lead to sufficiently large
signals in the same-sign di-lepton channel. Simultaneously, the active neutrinos’
sub-eV masses, consistent with oscillation data, are maintained owing to the
inverse seesaw formula. The cross section for the diagram shown in Figure 4.2

40f course, hs, the scalar degree of freedom that couples to the SM fermions, must give the
dominant contribution to the physical Higgs.
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(left) can be calculated in the narrow width approximation (cf. Section 3.4.2) as

o(pp — Ny — (505 + 2jets) = o(pp — N £F) x Br(N, — 1 + 2jets) .
(4.18)
Within the present scenario the branching ratio of the heavy neutrino decay can
be expressed as
(N, — W)

total
FN

Br(N, — (F + 2jets) = X Br(W — 2jets) , (4.19)

where Br(W — 2jets) = 0.674 [87]. The total decay rate of the heavy neutrino
is constituted by the following individual rates

2|17, n |12 m3 2\ 2 2
DV, = wet) = S0l My (1 = m—QW) (1 + 2m—2W) , (4.20a)
321 myy, N i
2 2 3 2\ 2 2
(N, — Zv, zp) = 10, (1 = mf) <1+2m—f) . (4.20b)
647 cos? Oy my, my, my,
2|17, |12 m3 M2 2
I'(N, — hv, ho) = f"ﬁTm'm_y (1 - —Qh) : (4.20c)
T mW le
2|17, n |12 m3 M2 2
I'(N, — Sv, S7) = %T“V‘m—g (1 - —25) : (4.20d)

which were calculated assuming my, m, < my, and where h denotes the Higgs-
like particle observed at the LHC. Obtaining Eqgs. (4.20a) and (4.20Db) is straight-
forward, but some comments on computing the rates given in Egs. (4.20c) and
(4.20d) are in order. The decay rate of the heavy neutrino into the Higgs given
in Eq. (4.20c) and an active (anti-)neutrino contains a sum over the Yukawa cou-
plings between all three involved particles due to the mixing between mass and
flavor eigenstates of the neutrinos on the one hand, and due to the mixing in the
scalar sector on the other hand. As already mentioned, h is in general a super-
position of all CP-even scalar degrees of freedom which, however, is dominated
by hg, the scalar that couples to the SM fermions. Accordingly, the dominant
contribution to I'(N; — hv, hv) is proportional to y3 [cf. Eq. (4.2)], which can be
expressed in terms of the SU(2);, gauge coupling g, the W boson mass my, and
the heavy neutrino mass my, = M?/Mpy as

2 2 2 A2 2, 2
2mg, B 2mN1 mp Mg o gmyy

2
= = ~ 4.21
b V2, v2, M? M? 2mi, (421)
where in the last step we have used Eq.(2.13) and approximated TJ—%%—% =

@2]};—% ~ 1. The decay rate in Eq.(4.20d) can be estimated in a similar way.
Since S mainly consists of x2 and x4, it couples to the neutrinos with strength y.
This coupling can be expressed according to

2M? 2m? M?2 2m?
== T R S T (4.22)
V2, v2,  M? 2my,
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Table 4.4: The expected number of events in the same-sign di-lepton channel mediated
by heavy neutrino decay with two jets and no missing transverse energy. The values
for production cross section (second column) are taken from [223|. Note that for the
values shown in the table an extra factor of 10™! has been included to compensate
for the different mixing used in our model. The third and fourth columns give the
approximate number of events expected in the current and upcoming LHC run. Note
that the center-of-mass energy for the upcoming run is given by /s = 14 TeV.

my, [GeV] | a(pp — Nit*) [pb] | # at £ =194 [fb~'] | # at £ =300 [fb"']
200 0.100 556 8600
500 0.005 25 390

where ¢ = v2, /v? and in the last step we have approximated & %—% ~1.

With the help of Eq. (4.18) we will investigate how many events in the same-
sign di-lepton channel are expected in the ECISS. To this end, we assume a
mixing of |Uyy|? = 107* and consider two different masses for my, with the
production cross section o(pp — N1£F) taken from [223]. In that analysis a
mixing of |Uyn|* = 1072 was assumed. Accordingly, the numerical values for the
production cross section that we use for our calculation are smaller by a factor
of 107! compared to those in [223]. In Table 4.4 we summarize the results of our
study, where we compute the number of events for the luminosities of the current
and projected performance of the LHC [195]. For the calculation of the numbers
in the table we have assumed a mass of Mg ~ /e M, in agreement with Eq. (4.13).
Remember that after this equation, we had mentioned the possibility that Mg
could obtain sizable loop corrections. Considering larger values for Mg leads to a
slight increase of the event numbers by a factor of O (1), but in conclusion leads
to the same qualitative signal.

From Table 4.4 we see that the cross section for a heavy neutrino with
mpy, = 200 GeV produces too many events in the same-sign di-lepton chan-
nel, so this relatively small mass is to be excluded. But the signal from the
mpy, = 500 GeV neutrino is consistent with current measurements at the LHC,
which do not observe any significant excess above the SM background expecta-
tion in the same-sign di-lepton channel [189, 224]. In the future the roughly 400
events predicted for the next run should lead to a clear signal at the LHC.

The discussion of the LNV Z’" decay as well as the expected number of events
in the LNV di-lepton channel with two jets previously presented, show that the
ECISS will probably be tested once further LHC data become available.

Finally, we mention a possibility to use gravitational waves in order to probe
conformal theories with gauged U(1)p_ as discussed in [68]. First, it is assumed
that some scalar particle with B — L charge spontaneously breaks both the confor-
mal symmetry and U(1)p_1, by developing a finite vev via the Coleman-Weinberg
mechanism. After spontaneous symmetry breaking the evolution of the vacuum
is determined by an effective potential taking into account finite-temperature ef-
fects. It is further assumed that the U(1)p_ symmetry is restored at the time of
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reheating so that the vacuum is trapped in a minimum of the effective potential
at the origin of scalar field space. As the Universe cools down, the minimum
at the origin becomes a false vacuum at some critical temperature and a true
vacuum at finite vevs is developed. Accordingly, the scalar will eventually tunnel
from the false into the true vacuum. Note that this is a first-order phases tran-
sition. The bubble nucleation associated with the tunnelling hence can lead to
strong gravitational waves induced by bubble collisions, turbulences and sound
waves. It was pointed out in [68] that in a conformal theory with gauged B — L
symmetry the gravitational waves’ amplitude is expected to be large and thus de-
tectable by future interferometer experiments. Accordingly, gravitational waves
could represent an investigation method complementary to collider searches for
the parameter space of conformal theories. This possibility is of particular inter-
est in the context of the recent discovery of gravitational waves by LIGO [225]
opening up the observational window into the distant past of the Universe.
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CHAPTER 5

ANALYSIS OF THE GENERALIZED
TYPE-1 SEESAW

In the preceding chapters we have studied two different realizations of the inverse
seesaw mechanism in the context of conformal electroweak symmetry breaking.
In both cases the neutrino mass matrix played a decisive role in model building
as well as in phenomenological predictions. In this chapter we will study the
neutrino mass matrix in a formal context. The study is based on original work
of the author and has not yet been published. The definitions and calculations
used for the results presented in this chapter are summarized in Appendix B.

This chapter is organized as follows. In Section 5.1 we will introduce the
set-up for the neutrino mass matrix. There, we will also give some motivation
for the venture of analyzing the matrix in a general way. Then, in Section 5.2
we will discuss for which scenarios the mass matrix possesses exactly vanishing
neutrino masses. Finally, we will derive the eigenvalue spectrum of the neutrino
mass matrix for several scenarios in Section 5.3.

5.1 The set-up

In order to perform the following analysis in the most general way we restrain
ourselves to using the least possible number of assumptions regarding the set-
up. So let us consider a theory with two different neutrino species vi! and v,
which could for instance represent the active (i.e. interacting with the electroweak
gauge bosons) and sterile (i.e. non-interacting) neutrinos with a and b generations,
respectively. Furthermore, we assume that the neutrinos of sector A do not have
a Majorana mass term. This could for example be due to a gauge symmetry for
which the neutrinos of sector A are part of a gauge multiplet (like the neutrinos
in the SM), while the neutrinos of sector B are gauge singlets with respect to
this symmetry. Then the neutrino mass Lagrangian in the Majorana basis ny, =

B . .
(i, vy ©)T is given by

Lonass = —EMDVI:4 - %yg’cMRyg +h.c. = —%n_i./\/l ny, +h.c. | (5.1)
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where Mp denotes a b X a matrix and Mg a symmetric b X b matrix. The complete
symmetric neutrino mass matrix in this theory is an (a+b) x (a+0b) block-matrix,
which is given by

:
M = (]\313 %};) c @(a—&-b)x(a—l—b) ) (52>
Note that at this point of the discussion we do not specify how large the elements
of Mp and Mg are relative to each other. Neither do we determine whether Mg
is singular or not. Also, the numbers of generations a and b are arbitrary at this
stage of the discussion (aside from being positive integers, of course). The matrix
given in the above equation represents the most general form of the neutrino mass
matrix in the type-1 seesaw.

Before we present the results, let us briefly review the status quo of the an-
alytical study of the mass matrix’s eigenvalue spectrum. In the canonical type-I
seesaw, discussed in Section 2.2.1, three assumptions on the mass matrix given
in Eq.(5.2) are made. It is assumed that all eigenvalues of Mg are non-zero
(i.e. Mg is non-singular) and much larger than those of Mp (usually denoted as
“Mpg > Mp”). Furthermore, it is assumed that there exists an equal number of
neutrinos in sector A and sector B (i.e. @ = b). Under these assumptions the
masses of the neutrino species A after the diagonalization can be found order by
order by means of the seesaw formula [90], which at leading order yields

m,, = —MJ} Mg Mp. (5.3)

The masses in sector B are given by Mg to very good approximation. Note that
it is straightforward to prove that the seesaw formula also applies in the case
a < b. The canonical type-I seesaw in the case a > b was investigated in [226].
There it was shown that the matrix given in Eq. (5.2) with a > b possesses a — b
exactly vanishing eigenvalues regardless of the relation between My and Mp. In
other words, for each Majorana mass in sector B one obtains upon diagonalization
exactly one non-vanishing Majorana mass in sector A. This behaviour is tagged
“seesaw fair play rule”. Note that in the analysis presented in [226] the assumption
that Mg is non-singular was maintained.

The possibility of a singular seesaw mechanism was first discussed in [96-98|.
The singular set-up deserves attention on its own for it is in principle able to suc-
cessfully explain neutrino mass-squared differences and mixing angles [227, 228§].
However, usually only a specific set-up with fixed numbers of sterile neutrinos
and vanishing eigenvalues is considered, see e.g. [96, 227-230]. This motivates
us to study the possibility of a singular Majorana mass term in a general con-
text. It is important to notice that the appearance of singular matrix structures
is not exotic. Imagine that the Majorana masses of the neutrinos from sector
B are induced by some flavor-blind interaction, which becomes relevant at some
higher scale (as for instance discussed in [231]). If this flavor blindness is exact,
the Majorana mass term is necessarily singular. We remark that such universal
interactions are nothing special. Indeed, the gauge couplings in the SM are not
sensitive to the flavors of the fermions.
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To the best of our knowledge the only more general analytical treatment of
the eigenvalue spectrum in a seesaw with possibly singular Majorana mass term
was performed in [232].! Under the assumption that Mg is much larger than
Mp it was shown in that work that the number of small neutrino masses, which
are naturally obtained in the type-I seesaw, must be smaller than or equal to
la — b+ t|, where t = rk(MRg) < b denotes the rank of Mg. Note that the matrix
MRy is singular if and only if ¢ < b. As a test for the validity of the method used in
the analysis we have confirmed that the results are in agreement with the status
quo as described in the preceding paragraphs.

In the following we will present our analysis with all technical details given
in Appendix B. When we investigate the different possible structures of the mass
matrix given in Eq. (5.2), we categorize the scenarios by means of the following
three properties:

1 det(My) - det(Mg) # 0 : n.on—singular
det(Mgr) =0: singular

a>b: unsaturated (u)

2. avs.b: <a=0b: saturated (s) (5.4)

la < b: over-saturated (o)

(Mg > Mp : Majorana (M)
3. Mg : { Mg < Mp : pseudo-Dirac (PD) .
(Mgr =0: Dirac (D)

Several comments are in order. First, note that in the singular Majorana and
pseudo-Dirac cases the relation between Mg and Mp refers to the non-vanishing
eigenvalues of Mg. Second, we always count the Dirac case among the non-
singular category even though det(Mp) is zero in that scenario. The reason for
this will become apparent in the course of the discussion in Section 5.3. Third,
for the second category in Eq. (5.4) we have introduced the notion of ‘saturation’.
As we will see in the following discussion, the eigenvalues of the neutrino mass
matrix in Eq. (5.2), if possible, always form pairs with mass scales characteristic
for the relations between My and Mp given in the third category. This matching
works perfectly in the saturated cases. However, in the unsaturated cases there
are not enough Majorana masses at hand so that vanishing eigenvalues appear
in the eigenvalue spectrum (as will be shown in Section 5.2). Conversely, in
the over-saturated scenarios the matrix Mg possesses an overweight of Majorana
masses. In consequence, there are always non-vanishing eigenvalues, which do
not participate in the matching. Fourth, we remark that for the Dirac case the
unsaturated and the over-saturated versions are analytically identical. Accord-
ingly, we will not discuss the over-saturated Dirac scenario separately as it can

We acknowledge that in [98] a singular scenario, which is contained as a sub-class in the
more general discussion presented in [232], was studied.
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be obtained from the unsaturated one by exchanging a and b. And fifth, note
that the relation Mg ~ Mp is not listed in the third category in Eq. (5.4). Such a
relation between the mass terms would typically correspond to a theory, in which
the neutrino masses in both sectors A and B are generated by the same physics
at the same scale. But then the distinction between the sectors would not make
sense in the first place. Hence, we do not consider the case Mg ~ Mp.

Varying through all scenarios listed in Eq. (5.4) we encounter three qualita-
tively different structures of the neutrino mass matrix. We define them as

(0 M (a-+b)x (a-+b)
My = (MD MR) e C , (55)
(0 M (a-+b)x (a-+b)
My = (MD 0 ) e C , (56)
O Mlgs M]Bt
Ms=|Mp, 0 0 e Qlatstt)x(atstt) (5.7)

Mp: 0 Mgy

where the dimensions a, b, s and t are all positive and s +t = b. In the above
equations Mp, and Mp,; are defined as s X a and ¢ X a matrices, respectively. The
matrices My and Mpg; are defined as invertible, square matrices of dimension b
and t, respectively.? If not stated otherwise, we will assume that a matrix has
maximal rank in the following discussion. The first structure given in Eq. (5.5)
corresponds to the canonical seesaw if Myr > Mp, and to the pseudo-Dirac
seesaw if Mr < Mp, both with non-singular Mg. The second structure defined
in Eq. (5.6) is easily identified as the typical Dirac-type matrix. Finally, the
third structure in Eq. (5.7) is the canonical form encountered in singular seesaw
scenarios, where we have the relation Mg; > Mp in the singular Majorana case,
and Mgr; < Mp in the singular pseudo-Dirac case. For completeness let us give
two examples for our categorization:

1. The “singular uPD (a, s, t)” corresponds to a neutrino mass matrix of type
3 given by Eq. (5.7), because it is a singular scenario; the dimensions of the
matrix satisfy the relation a > b = s+t since it is an unsaturated scenario;
and, finally, the relation between the involved mass matrices is Mgr; < Mp
according to the defining property of a pseudo-Dirac scenario.

2. The “non-singular sM (3, 3)” corresponds to the canonical type-I seesaw.

In this fashion all possible scenarios for the mass matrix given in Eq. (5.2) can
be categorized by the three properties specified in Eq. (5.4). Note that in some
cases we will suppress the indication of a structure’s dimensions for the sake of
brevity. In the following we will present and discuss the results of our analysis
derived in Appendix B.

2Note that for a square matrix the three following properties are equivalent: i) it is invertible,
ii) it has maximal rank, and iii) it is non-singular [cf. Eq. (B.5)].
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5.2 Exactly vanishing eigenvalues

When analyzing or constructing a neutrino mass matrix in a given model, it is
convenient to know in advance how many of the neutrino masses exactly vanish.
Such an information is relevant for instance in the context of active neutrino
masses as less than two massive active neutrinos are inconsistent with oscillation
phenomenology (cf. Section 2.2.1). Another example could be a model, in which
a certain number of vanishing eigenvalues is desired in order to generate neutrino
masses through higher-order loop corrections. Note, however, that an exactly
vanishing eigenvalue can be stable against radiative corrections as was shown in
[233] for the minimal seesaw model [234].

In our study we have analyzed how many exactly vanishing eigenvalues are
present in all possible scenarios for the matrices given in Eqgs. (5.5)-(5.7). Note
that the number of vanishing eigenvalues is independent of the relation between
Mg and Mp (including the case Mg ~ Mp). The results, which are summarized
in Table B.1, show that all matrix structures in unsaturated scenarios (i.e. the
ones with a > b) always possess a — b exactly vanishing eigenvalues. There is an-
other structure with vanishing eigenvalues, which is classified as Mj3(0*), i.e. the
singular matrix structure given by Eq.(5.7) in an over-saturated scenario with
the additional condition that not only b > a, but also s > a. This structure yields
s — a exactly vanishing eigenvalues. The unsaturated and the M3(0o*) structures
are the only ones with exactly vanishing eigenvalues. All other scenarios possess
solely non-vanishing eigenvalues. As anticipated below Eq.(5.4), this result is
no coincidence, but rather we coined the expression ‘unsaturated’ to reflect this
behaviour.

The outcome for the unsaturated scenarios and for the case M3(0*) are a gen-
eralization of the seesaw fair-play rule. As mentioned above, in [226] the singular
case was not analyzed. In this respect, the results presented here complete the
study of vanishing eigenvalues in the generalized type-I seesaw performed in that
work.

5.3 Eigenvalue spectrum of the mass matrix

In Section B.2.2 we perform a systematic study of the eigenvalue spectrum for
all scenarios for the mass matrix given in Eq. (5.2). In our survey we have found
that the eigenvalue spectra of some matrix structures can be related to those of
other matrix structures. We call scenarios of this type reducible. Every scenario
that is not reducible is called irreducible. In the flowchart displayed in Figure 5.1
we show how the cases can be related to each other. The figure will be discussed
in the following. More detailed information about the reducible and irreducible
structures is listed in Tables B.2 and B.3.

Let us first take a look at the unsaturated (u) scenarios in the upper row of
Figure 5.1. There we see that all unsaturated scenarios can be reduced to the cor-
responding saturated scenario (following the vertical arrows pointing down). In
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Figure 5.1: Flowchart of all possible scenarios in the generalized type-I seesaw. Sce-
narios with a black frame are reducible. The arrows show to which structure a reducible
scenario is related. A label on an arrow indicates an additional condition that needs to
be satisfied. The red-framed scenarios are those, for which we could not obtain a form
of the characteristic polynomial, from which the eigenvalues could be derived. Con-
versely, for the scenarios with a green frame we have found the eigenvalue spectrum.
The abbreviation “sing.” stands for “singular”. The categorization of the scenarios is
defined in Eq. (5.4).

non-sing.] [non-sing.] (non-sing. sing. sing.
uD uM uPD uM uPD
) ) Al
~
Y Y Y Y b Y
Ny
T N\ T N\ T \ /é )  EETsE—
non-sing.] [non-sing.| (non-sing. ~ sing. o) sing.
sD || sM | | sPD & sM 2 sPD
€
Js (5 8
N J
(non-sing.| (non-sing.|(a >s)[ sing. sing. sing.
oM | | oPD | — |oM(a<t) oM (a>t) oPD

practice, this means that for example the non-singular unsaturated Majorana sce-
nario or in brief non-singular uM (a, b) can be reduced to the saturated Majorana
scenario or in brief non-singular sM (b, b). Notice the change in the structure’s
dimensions in going from the unsaturated to the saturated case. As discussed in
the previous section each unsaturated scenario possesses a — b exactly vanishing
eigenvalues. Equivalently, it possesses 2b non-vanishing eigenvalues, which can be
obtained from the non-singular sM (b, b) scenario in the case of the non-singular
uM (a, b). As mentioned above a more detailed overview of the correspondences
for all unsaturated cases containing additional information on the change in the
structure’s dimensions is given in Table B.2.

Next we consider the singular scenarios, which are aligned on the right-hand
side of the figure. Except for the singular over-saturated Majorana scenario with
the additional condition that a < t, there is no connection from the singular to
the non-singular side on the left. Following the arrows on the singular side we see
that each singular scenario — save the mentioned exception — eventually ends up
in the singular saturated or over-saturated pseudo-Dirac scenarios (the ones with
a red frame). We have analyzed these scenarios, but could not obtain a form
of the characteristic polynomial, from which the eigenvalues could be derived.
Information about the eigenvalues strongly depends on the different relations
between a, s and t. Details on the reducible structures in the singular scenarios
are given in Table B.3.

Finally, we study the non-singular side on the left of Figure 5.1. Here, all struc-
tures end up in green-framed, irreducible scenarios. For these irreducible scenarios
we have found a solution to the eigenvalue problem. Our method of analyzing the
eigenvalue spectrum of the irreducible structures presented in Section B.2.2 is dif-
ferent from the treatment in the canonical type-I seesaw. As already mentioned,
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the seesaw can be applied if Mg is non-singular and if the relation My > Mp
holds. Then the expressions for the eigenvalues are found order by order in ma-
trix form through the seesaw formula. In our analysis we consider the exact
characteristic polynomial defined in Eq. (B.42) of the matrix under investigation
in order to find the eigenvalue spectrum. This method represents a new ansatz to
the eigenvalue problem of the neutrino mass matrix. The results of our analysis
for the eigenvalue spectra in the non-singular saturated scenarios are summarized
for convenience in Table 5.1. They are obtained from Eqs. (B.49)- (B.51) and for
the non-singular over-saturated scenarios by Eqgs. (B.54) and (B.55). As already
mentioned, the eigenvalue spectra of the non-singular unsaturated scenarios can
be derived from the spectra of the corresponding saturated cases. In the following
we discuss the results.

In Table 5.1 we have assumed that the eigenvalues of Mp are generically
proportional to some mass scale mp. A similar assumption applies to the eigen-
values of Mg. Note that in the non-singular over-saturated Majorana case the
total number of eigenvalues with mass scale mg is given by b in agreement with
the expectation from the type-I seesaw. The most interesting observation that
can be made from the table is that the eigenvalues of the mass matrix, if possible,
always form pairs. This result analytically confirms the intuitive expectation that
the matrix’s symmetry should somehow be imprinted in the eigenvalue spectrum.
If we take a look at the scales of the eigenvalue pairs in the table we see that
they nicely reflect the characteristic mass scales of the Majorana, pseudo-Dirac
and Dirac scenarios, respectively. In Figure 5.2 we schematically illustrate the
evolution of an eigenvalue pair as a function of the Majorana mass. Note that
on the y-axis we show the absolute values of the eigenvalues. In the unsaturated
case with a > b the overweight of the zero block in the mass matrix manifests
itself in the a — b eigenvalues, which are not paired, as they exactly vanish (in
agreement with the results in Section B.2.1). Equally, in the over-saturated sce-
narios with a < b the overweight in the Majorana mass term Mg produces b — a
single eigenvalues proportional to mg.

Lastly, we show the eigenvalue spectra for the different cases of the singular
over-saturated Majorana scenario with the additional condition a < ¢ in Table 5.2.
The spectra have been derived using the flowchart in Figure 5.1 (or respectively
using Table B.3) and Table 5.1. Note that the singular over-saturated Majorana
scenario with a < t always possesses t eigenvalues proportional to mg. The re-
maining eigenvalues are obtained from a substructure that realizes a non-singular
pseudo-Dirac scenario of the form

’r_ 0 MDS (st+a)x(s+a)
M = (MBS My e C , (5.8)
where My = —MJ, Mg Mp; [see Eq. (5.7)]. Accordingly, we have det(Mx) # 0
and the eigenvalues of Mx are proportional to mx = m% /mg. Whether this struc-
ture is unsaturated, saturated or over-saturated depends solely on the relation
between s and a as can be seen in the table.
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Table 5.1: Eigenvalue spectra of the neutrino mass matrix for all different scenarios
in the non-singular seesaw with defining properties. The “#” and “~” signs indicate
the number of eigenvalues and the corresponding mass scale, respectively. The “= 0"
signifies that the eigenvalues exactly vanish. Note that for the Dirac type matrix the
cases a > b and a < b are (analytically) equivalent. Note as well that the phase of the
negative eigenvalues can always be absorbed by a redefinition of the fields.

7

non-singular Majorana (M), Mg > Mp

unsaturated (u) saturated (s) over-saturated (o)
a>b a=>b a<b
#b ~ —m? /mgr #b ~ —m? /mgr #a ~ —m? /mg
#b ~ mg #b ~ mg #a ~ mg
#(a—b) =0 #(b —a) ~ mg

non-singular pseudo-Dirac (PD), Mr < Mp
unsaturated (u)
a>b
#b ~ —|—mD —f- mR/Q
#b ~ —mp + mR/Q
#a—b) =0

over-saturated (o)
a<b
#a ~ +mp + mp/2
#a ~ —mp + mg/2
#(b—a) ~mg

saturated (s)
a=">
#b ~ —|—mD + ’ITLR/2
#b ~ —mp + mR/2

non-singular Dirac (D), Mg =0

unsaturated (u) saturated (s) unsaturated (u)

a>b a=b a<b
#b ~ +mp #b ~ +mp #a ~ +mp
#b ~ —mp #b ~ —mp #a ~ —mp
#(a—0)=0 #(b—a)=0

Table 5.2: FEigenvalue spectra of the neutrino mass matrix for the singular over-
saturated Majorana scenario with dimensions (a, s, t) and the additional condition a <
t. The “#” and “~” signs indicate the number of eigenvalues and the corresponding mass
scale, respectively. The “= 0”7 signifies that the eigenvalues exactly vanish. The mass
scale mx is proportional to m% /mpg. Note that the phase of the negative eigenvalues
can always be absorbed by a redefinition of the fields.

singular over-saturated Majorana (a, s, t), a <t

S >a

S=a

s<a

#a ~ +mp + mx /2
#a ~ —mp + mx /2
#(s—a)=0
#t ~ mg

#a ~ +mp + mx /2
#a ~ —mp + mx/2

#t ~ mg

#s ~ +mp + mx/2
#s ~ —mp + mx/2
#(a — s) ~ mx
#t ~ mg
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5.3. EIGENVALUE SPECTRUM OF THE MASS MATRIX

Figure 5.2: Schematic illustration of the evolution of a pair of eigenvalues with in-
creasing Majorana mass (red lines) on a double-logarithmic plot. At a Majorana mass
of about mp the transition between the (pseudo-)Dirac and the seesaw regime takes
place (dashed line).

3

\

(pseudo-)Dirac canonical seesaw

leigenvalues|

3
]

Y

my Majorana mass

75



CHAPTER 6

CONCLUSION

With the final confirmation of the Standard Model (SM) of particle physics by
the discovery of the Higgs boson, but without new physics at the Large Hadron
Collider (LHC), the gauge hierarchy problem appears to be unavoidable within
electroweak symmetry breaking. Interpreting the appearance of quadratic correc-
tions due to quantum effects as a technical flaw, we have followed the argument
of Bardeen, according to which the anomalous symmetry breaking in theories
with a scale-invariant Lagrangian can only lead to logarithmic divergences. The-
ories with this quality (in slight abuse of terminology) have been referred to as
conformal theories. It has been argued that spontaneous symmetry breaking in
conformal theories by higher-order corrections represents a viable alternative to
standard electroweak symmetry breaking. In order to also accommodate small
neutrino masses, we have studied the conformal inverse seesaw (CISS) mechanism
in two implementations. Furthermore we have analyzed the neutrino mass matrix
in the context of a generalized type-I seesaw.

The CISS has been presented in Chapter 3. In the model the scalar and
the neutrino sectors of the SM are expanded. Also, the gauge group of the SM is
extended by a hidden Abelian gauge group. It has been emphasized that by virtue
of the conformal symmetry all fermion mass terms must be induced by Yukawa
interactions. Hence, the pattern in the neutrino mass matrix that is required for
the inverse seesaw is generated by the adjustment of the particle spectra in the
scalar and in the neutrino sectors of the CISS.

We have shown how sub-eV masses for the SM neutrinos in agreement with
oscillation data can be obtained from the neutrino mass matrix. The diagonal-
ization of the mass matrix also brings about heavy neutrinos with pseudo-Dirac
masses typically of the order of a few TeV. It has been noted that smaller pseudo-
Dirac masses, however, are also allowed. Furthermore, we have remarked that the
mixing between the active and the sterile neutrinos in the CISS can naturally be
of the order of up to 1% as the model is not subject to a large scale separation. Ac-
cordingly, processes involving the active-sterile mixing can proceed unsuppressed.
The neutrino spectrum in the CISS also contains a long-lived warm dark mat-
ter (DM) candidate with masses from about 1 keV to 10 keV and tiny mixing to
the active neutrinos of the order of 1071° to 107!2. It has been discussed how the
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DM particle can be produced in the early universe via a non-thermal freeze-in
mechanism. There, we have provided a computation of the relic abundance ex-
pected in the CISS, which for the mass range and mixing angles given above is
in agreement with measurements of the large-scale structure and of the spectrum
of the cosmic microwave background radiation. We have mentioned that the DM
in the CISS can explain the mono-energetic X-ray line at about 3.5 keV reported
in [179]. It is remarkable that in the CISS there are in total two DM neutrinos,
whose mass splitting lies in the sub-keV range. As it has been pointed out, the
mass splitting manifests itself in form of a slightly asymmetric double X-ray line,
which, if observed, would constitute a strong hint at the CISS.

In the context of spontaneous conformal symmetry breaking, we have dis-
cussed how a particular hierarchy among the scalar vacuum expectation val-
ues (vevs) that induces the desired hierarchy among the masses in the neutrino
sector can be obtained naturally. The scale of spontaneous conformal symmetry
breaking in the CISS is of the order of a TeV. The scalar spectrum in the broken
phase contains the Higgs, the pseudo-Goldstone boson (PGB) of broken scale
invariance and an additional massive scalar. The PGB mass dominantly depends
on the masses of the heaviest particles in the model. The analysis of the param-
eter space has shown that consistent spontaneous conformal symmetry breaking
is obtained for PGB masses of the order of hundreds of GeV, while the masses of
the additional scalar, the heavy neutrinos and the gauge boson associated with
the hidden gauge group are all at the symmetry breaking scale. In this context
consistent means that the PGB mass-squared is positive, the scalar couplings
are perturbative, and that the numerical values of the electroweak vev and the
Higgs mass fall within the experimental uncertainties. Also, the mixing of the
Higgs with other scalar fields is in agreement with current experimental limits.
We have mentioned that, in the future, it would be important to assure that the
renormalization group evolution of the theory remains stable up to the Planck
scale in a study as it was performed in [69]. As we have pointed out, the model
of the CISS in principle possesses sufficient leeway in the couplings to make the
evolution work. The question is how natural the required values for the couplings
turn out to be.

After the discussion of the neutrino and scalar spectrum in the CISS, an anal-
ysis of the phenomenology of the model has been carried out. There, it has been
shown that the viable parameter space of the CISS passes all electroweak preci-
sion test. In particular, we have seen that the future limits of the branching ratio
from the lepton flavor violating decay pu — ey has the potential to exclude the
heaviest sterile neutrino masses of a few TeV. Furthermore, two collider signa-
tures have been identified, namely the ones in the opposite-sign di-lepton and the
(also lepton number conserving) tri-lepton channel, which can give rise to signals
above SM backgrounds. We have estimated that the excess of about 130 events in
the opposite-sign di-lepton plus jets channel observed by the CMS collaboration
[188] can be explained in the CISS within the experimental uncertainties by the
decays of a PGB with a mass of 500 GeV. We have also computed that the num-
ber of expected events in the aforementioned channel for the future luminosity of
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300 fb~! amounts to more than a thousand, which should leave a clear signal in
the detectors at the LHC.

In Chapter 4 we have studied the extended conformal inverse seesaw (ECISS),
which supplements the CISS with large lepton number violation (LNV). In the
ECISS the scalar and the neutrino sectors of the CISS are altered in order to
allow for a large Majorana mass term for the right-handed neutrinos, which can
induce an equally large LNV. Another important difference between the models
lies in the hidden Abelian gauge group which, in the ECISS, is identified with
U(1)p_r. It has been confirmed that the presence of the heavy Majorana mass
leaves both electroweak and DM phenomenology of the CISS invariant.

We have analyzed the new LNV phenomenology in the ECISS. It has been
shown that the contribution of the heavy sterile neutrinos to the effective Majo-
rana mass of neutrinoless double beta decay (0v53) can saturate current experi-
mental limits on the half-life for masses of the order of 10 GeV and active-sterile
mixings of about 1%. We have noted that if future Ov 33 experiments discover the
decay, such a signal can be accounted for by the ECISS. In particular, a signal in
a parameter region, which is inaccessible to Ov /3 mediated by three light Majo-
rana neutrinos (i.e. by the mass mechanism), would represent a point in favor of
the model. We have discussed the LNV decays of the sterile neutrinos and the Z’
boson associated with U(1)g_z. In the same-sign di-lepton plus two jets channel
the ECISS predicts a signal of about 390 events at the LHC for a luminosity of
300 fb~! at a center-of-mass energy of 14 TeV from sterile neutrino decays with a
mass of 500 GeV. This makes the model testable by future LHC data. We have
also discussed that the viable Z’ mass region, which lies typically slightly above
the order of the spontaneous conformal symmetry breaking scale at a few TeV,
is going to be tested by the LHC in the near future. Finally, we have pointed
out the possibility to probe conformal theories with a gauged U(1)p_1, by grav-
itational waves. It has been laid out that gravitational waves with amplitudes
large enough to be detected by future interferometer experiments can be created
in the bubble nucleation by a first-order phase transition of the ground state.

Lastly, in Chapter 5 we have given a systematic analysis of the neutrino mass
matrix in a generalized set-up of the type-I seesaw mechanism. The generic
neutrino sector that has been considered consists of two different neutrino species
with arbitrary numbers of generations, which are connected by a Dirac mass term.
One of the species is assumed to have an arbitrary Majorana mass term, which
signifies that the Majorana mass term could be much smaller or much larger than
the Dirac mass term, it could be singular, or vanish completely. In this set-up we
have studied the different available scenarios for the neutrino mass matrix.

We have predicted the number of exactly vanishing eigenvalues of the mass
matrix for all scenarios. In the discussion of the eigenvalue spectra obtained
in the different scenarios, it has been shown that many of the scenarios can be
related to others, thereby simplifying the analysis. We have derived the eigenvalue
spectrum of the mass matrix for all scenarios with a non-singular Majorana mass
term and also for one singular scenario. The results demonstrate that the mass
matrix tends to form eigenvalue pairs with mass scales characteristic for the
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corresponding scenario. We have remarked that this observation confirms the
intuitive presumption that the symmetry of the neutrino mass matrix should be
reflected in the eigenvalues.

In a future study, it will be important to systematically analyze the unitary
transformation matrix that diagonalizes the mass matrix. In particular, if the
active neutrinos are involved (which will be the usual case), the transformation
matrix needs to be consistent with oscillation data. A more profound under-
standing of the connection between a certain structure of the mass matrix and
the transformation matrix could be used to tailor matrix structures that yield a
desired neutrino mixing pattern. In the next stage of the systematic discussion,
it will be interesting to expand the investigated set-up to include a third neu-
trino species. In this extended set-up, double seesaw structures can be realized,
which many seesaw variants are based on as, for instance, the inverse seesaw.
The double seesaw structure, however, would contain substantially more degrees
of freedom and the systematic analysis of all possible scenarios might turn out to
be difficult.

Finally, we propose a new direction for the study of conformal theories as we
will briefly elaborate. As we have seen in the course of this thesis, the symmetry
breaking scale in conformal theories, which brings forth consistent electroweak
symmetry breaking, is naturally of the order of a few TeV. Accordingly, the new
physics associated with the spontaneous symmetry breaking also is located at that
scale. Now, suppose that in Run 2 at the LHC no signs of physics beyond the SM
would be found. Then, the hypothesis of the SM being a generic conformal theory
would be difficult to maintain. In answer to this matter, we propose to study
how a larger separation between the conformal symmetry breaking scale and the
electroweak scale can consistently be attained. In the discussion of the CISS
we have shown how a relatively mild hierarchy among the vevs of the different
scalars is obtained. So one ansatz to separate the scale of conformal symmetry
breaking from the electroweak scale could be to study whether it is possible
to magnify this hierarchy among the vevs. We hope that this new direction
may deepen our understanding of the mechanisms of spontaneous electroweak
symmetry breaking.
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APPENDIX A

NEUTRINO MASS MATRIX
DIAGONALIZATION

In this part of the appendix we will derive the neutrino masses and mixing ma-
trix for the neutral lepton mass matrix in the conformal inverse seesaw (CISS)
discussed in Chapter 3 and its extensions (ECISS) discussed in Chapter 4.
We define the Majorana basis as n, = (v, v, NL, N§)T. After electroweak
symmetry breaking, the mass Lagrangian in the Majorana basis is given by
LV

mass

=—in{ Mny+hec. | (A.1)
where the mass matrix in the ECISS reads

0 mp O 0
mp Mg M, M,

0O My m O
0 My 0 o

M= (A.2)

The mass matrix in the CISS is obtained from the above equation by taking the
limit Mg — 0. In writing Eq. (A.2) we have considered the one-flavor case for
simplicity. Note that in both the CISS and the ECISS an approximate exchange
symmetry in the Ni-Vg sector is assumed, which leads to M; ~ Ms and 1 ~ po.
Accordingly, there are four different mass scales present in Eq. (A.2), which are
assumed to obey the hierarchy My > M; > mp > u;.

A good strategy for finding the diagonal form of the mass matrix is to split up
the transformation into a block-diagonalization denoted by V), and a transforma-
tion W that diagonalizes the individual blocks obtained from the transformation
with V. The diagonal mass matrix can then be found by the transformation with
the unitary mixing matrix U =V - W as

MEE — UTMU = (V- W)TMV-W) (A.3)
and, accordingly, the mass basis is defined by

ﬁL = UTTLL . (A4)
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As we will see in the following the results derived here are valid for vanishing Mg
as well as for My # 0 so they equally apply to the CISS as well as to the ECISS.

The block-diagonalization V consists of three transformations, which will be
discussed in the following. As first transformation we perform a rotation in the
Np-Ng-plane with tanf = % in order to eliminate the M, entries in the mass
matrix. This transformation leaves the vp-v;-plane invariant, but mixes Ny, and

Ny, according to
Ni,\ _ [ cosf sinf N,
(NQL) - (— sinf cos 0> (Nf{) ' (A.5)

After applying the above transformation, we obtain the following structure for
the mass matrix

0 mp 0 0
(1) _ mp MR 0 M
M 0 0 o (A.6)
0 M op ps
where we have defined the abbreviations
M = \/M}?+ M3, op = —Mlﬁli(ﬁé“z) )
(A.7)
_ MZp+MZpy _ MEp+MZpuy
Ha = —apiaz o Hs = —Mzniz

In the second transformation step we simply reorder the Majorana basis according
to

149 1 000 vy,
1 N . 0010 Vﬁ
A A e RO (A-8)
12 0100 Nop,
After changing to the basis ny, the mass matrix reads
0 0 0 mp
0 4] 0
2) _ Ha K
M 0 ou p. M (A.9)

mp 0 M MR

As third step we want to apply the seesaw mechanism. To this end, let us divide
the matrix in the above equation into four 2 x 2 block matrices following

(0 0 (0 u
() (%)

_ | Ms M -1 _ 1 MR -M
MR - <M MR) ) MR " det(MR) (_M s ) '

(A.10)
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Note that Mﬁl exists even in the limit Mr — 0. In order to apply the seesaw
mechanism with Mg as the heavy scale we need to require that the eigenvalues
of Mg are larger than those of Mp. The exact eigenvalues of My can be found
by means of Eq. (B.8) as

1
Mj: = 5 (/,LS -+ MR + \/(,us — MR)2 —+ 4M2) . (All)

The eigenvalues of Mp are similarly found to be £(dump)*/2. Remember that
we assumed an approximate symmetry in the Np-N§ sector [see the discussion

after Eq. (A.2)]. If we take this symmetry into account, we can approximate for
the abbreviations defined in Eq. (A.7)

M ~\2M, =~ \/2M,, op =~ 5( — p2) = pe,
(A.12)

L

Mo =R (14 p2) = e, e R g+ ) = piyg

The parameter p_ can be used to quantify the amount of violation of the exchange
symmetry, which is expected to be small. Hence, it is safe to assume that |My| >
(§mp)'/? and that we can apply the seesaw mechanism.! By means of the block
matrices in Eq. (A.10) the seesaw transformation can be found to arbitrary order
as shown in [90]. To leading order the transformation is given by

- 1 B, . - 1 mpM  —psmp

where the identity matrices are 2 x 2 matrices. After applying the seesaw to M)
given in Eq. (A.9) we obtain

M) — (M(l)ight Ml(l)eavy) ’ (A.14)

where all entries of M®) are 2 x 2 matrices and the non-vanishing blocks to
leading order are given by [90]

Miigne = My, — MJ, Mz Mp

0 0 1 mé —6pump M
= — ’ Al
(0 ua) AR (—(m mp M optMy ) (A1D)

Mheavy = MR . <A16)

Note that we already have derived the eigenvalues of Myayy to leading order in
Eq. (A.11). Under the assumption that M? > usMpg the eigenvalues of Mgy

'For the mass scales considered in Chapters 3 and 4 the relation |My| > (Sump)'/?

translates into M > 0.1 eV, which is easily satisfied by M.
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can be expanded in powers of M =22 Using Eq. (B.8) the result of the expansion
reads

m? u* 3 m?
+

2 .9

- + ua M,
WM:M+O+H?@LJ£_E

T >+OM4%%M+ (A.18)
J’_

From the above equations we see that the approximated eigenvalues of Mg, do
not depend on M.

The mass matrix in the form of Eq. (A.14) is now block-diagonal. The transfor-
mations that have led to the block-diagonal form constitute the unitary matrix V,
which has been introduced in Eq. (A.3). The individual blocks Miight and Mhyeayy
can further be diagonalized by the unitary 2 x 2 matrices Wight and Wheavy. Both
transformations can be summarized in a single diagonalization matrix according
to

[ Wiight 0
W—( i Wheavy). (A.19)

With the block-diagonalization matrix ¥V and the individual diagonalizations col-
lected in W the mixing matrix is determined as U =V - W. We will refrain from
writing down the exact expression for U since it is rather complicated. Instead,
we give an estimate for the order of magnitude of the mixing matrix’s elements.
With the abbreviations

m ~
@:ﬁD, @:@zi and ni:’uﬁ (A.20)

the order of magnitude of U to leading order is given by

On

U~ 0 (A.21)

OROROIE
SIS T
SSI-S- @
SS-S- @

Note that in the above equation we have used UT (and not U) so the columns
correspond to flavors and the rows to mass eigenstates.

Let us summarize the findings in this appendix. We have started with a mass
matrix in the form of Eq. (A.2). We derived its block-diagonal form in Eq. (A.14)
with the light and heavy mass matrices as defined in Eqs. (A.15) and (A.16).
Furthermore, we have found the eigenvalues of the light and heavy mass matrices
to leading order in Eqgs. (A.17) and (A.18), and in Eq. (A.11), respectively. And
we just have given an estimate of the order of magnitude for the mixing matrix
in Eq. (A.21). All of the mentioned equations hold for Mg # 0 as well as in the

2Note that in the limit My — 0 the largest scale is M so the expansion in powers of M 2
can be performed trivially in the CISS.
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limit Mg — 0. For reference we reprint the eigenvalue spectrum of the neutrino
mass matrix, which is given by

2 2 2
mp ue —3 mp
= 1— M3 ~ . —2 A.22
m ,u+M2< Ni)—i_o( ) P2 ( )
2
pnemi + pg M
m+—,u+(1+_2 DM2+ R)+O(lj 3)zﬂ+ (A.23)
+
1
Mi:§(u++l\4Ri\/(M+—MR)2+4M2), (A.24)

where in the last equation we have inserted p, ~ p14 [see Eq. (A.12)].
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APPENDIX B

MATRIX CALCULUS

In this part of the appendix we will discuss general and specific properties of
matrices used in this work. In Section B.1 we will revive basic concepts of matrix
calculus, which will represent a nice catalogue of convenient formulas. In Sec-
tion B.2 we will perform the calculations in connection with the formal study of
the neutrino mass matrix presented in Chapter 5.

B.1 Basics

The basics of matrix calculus introduced in this section can be found in any
textbook on linear algebra, see for instance [235].

B.1.1 The rank of a matrix

Consider the matrices A, B and C' with dimensions m X n, n X k and k x /,
respectively. Then the following inequalities hold

rk(A) < min(m,n), (B.1)
rk(AB) < min <rk(A) ,rk(B)) : (B.2)
rk(AB) + rk(BC) < rk(B) + rk(ABC). (B.3)
From Eq. (B.1) we see that
A has maximal rank < rk(A) = min(m,n). (B.4)

We take Eq. (B.4) as the definition of the matrix property mazimal rank. In the
discussion that follows we will assume that a matrix in principle has maximal
rank if there is no particular condition that reduces its rank.
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B.1.2 Square matrices

For a square matrix M with dimension m the three following properties are
equivalent:

i) M is invertible & dM,
ii) M has maximal rank < rk(M)=m, (B.5)
iii) M is non-singular & det(M) #0.

A general complex-valued square matrix M can always be diagonalized by a bi-
unitary transformation according to

VIMU = M%& = diag(Ay, ..., ), (B.6)

where \; denote the eigenvalues of M. Note that U and V' can always be cho-
sen in a way that all \; are real non-negative numbers. Similar to the general
case a symmetric matrix M = MT is diagonalized by means of an orthogonal
transformation

RTMR = M (B.7)

with M 48 as before in Eq. (B.6). In the simple case that M denotes a symmetric
2 X 2 matrix a direct computation shows that the eigenvalues Ay of M can in
general be expressed through the matrix’s invariants according to

Ao =1 (tr(M) + \/tr(M)? — 4det(M)) . (B.8)

B.1.3 Block matrices

Consider arbitrary matrices A, B, C' and D with dimensions m x k, m x £, n X k
and n x {, respectively. Then we define that a block-matrix M with dimension
(m +n) x (k+ ) has the form

M= (é g) | (B.9)

Now let M be an (m + n) x (m + n)-dimensional block-matrix. Then A and D
are square matrices. If A is invertible, one can show that the determinant of M
can be expressed as

det(M) = det(A)det (D — CA™'B) . (B.10)
Equally, if D is invertible, we have
det(M) = det(D)det (A — BD™'C) . (B.11)

When defining a general (m + n) x (k + ¢) block-matrix M as in Eq. (B.9) we
imply that it possesses the alternative representation

M, M,
M — mxk mx4£ B12
(Mnxk Mnxf) ( )
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or for symmetric M with m =k and n = /¢

M, scm (Mg m)T)
M = (Mmx xm) B.13
(MM Moy (B.13)

where in both equations the labels specify the dimensions of the matrices.

B.1.4 Kernel

Consider a general m x n matrix M with m < n.! Then the kernel of M, which is
denoted by ker(M), is defined as the vector space spanned by all n-dimensional
vectors v satisfying

Mv=0. (B.14)

The rank of M and the dimension of the kernel are related via the number n of
columns of M according to

n = rk(M) + dim(ker(M)). (B.15)

With Eq. (B.1) it follows that every rectangular matrix with m < n possesses
a non-trivial kernel, i.e. ker(M) # (). If M is a square matrix, the condition
in Eq.(B.14) is equivalent to the condition for an eigenvector with vanishing
eigenvalue. This means that for m =n

# (vanishing eigenvalues of M) = dim(ker(M)). (B.16)

B.1.5 Kernel projections

Now we will develop a transformation technique to project out the true rank of a
matrix. By the expression ‘to project out’” we mean a transformation that brings
a matrix into a form in which the number of non-zero columns is equal to the
rank of the matrix. Let us abbreviate r = rk(M) and p = dim(ker(M)) =n — r,
where we used Eq. (B.15). We assume that the kernel of M is given by

ker(M) = {v}, ..., vi} #0, (B.17)

where v denotes an n-dimensional unit vector satisfying Eq. (B.14) and we specif-
ically demand p > 0, i.e. that the kernel contains at least one vector. Further-
more, we assume r > 0, which is equivalent to M # 0. If we regard all vectors of
the kernel as columns and use them to form the matrix

Us., = (vf ... v%), (B.18)

nxp

it follows from Eq. (B.14) that

MUY, = Opxyp, (B.19)

n

If m > n, simply exchange M by MT and m by n in the following discussion.
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where 0,,x, denotes an m x p matrix with all elements equal to zero. With the

help of U, , we can define an n x n unitary matrix

Uker = (Unxr Uk ) ) <B20)

nxp

where the matrix U, y, is built from the r = n — p unit vectors of dimension n
orthogonal to ker(M). The particular form of UX,  and U,, is not relevant for

nxp
our discussion. When we now multiply M by Uy, from the right we are led to
M = MU = (MUpnyxy MU,,) = (M), Omxp) - (B.21)

Notice that if M is a symmetric square matrix, it follows from Eq. (B.19) that
(UXer \TM = Opxm. Then, it is easy to derive that

nxp
M., 0 (Unsir)T M Upyr 0
T _ X7 _ nxr nxr
UL M Uger = ( ; 0) = < . 0 (B.22)

for symmetric M.

B.1.6 Canonical matrix structures

Consider the symmetric block-matrix

M= (é‘ %T) , (B.23)

where A and B are symmetric matrices with dimension a and b, respectively.
Accordingly, C' has dimension bxa. The matrix M has the form of a neutrino mass
matrix in the Majorana basis encountered in a generic theory with two neutrino

sectors (cf. Chapter 5). In such a theory M is always sandwiched between the

T
. B . .
neutrino state vector ny, = (Vﬁ‘, VR’C> and the vector’s charge-conjugate. Since

the neutrino fields v, & are — from an analytical point of view — arbitrary, we

can absorb a unitary transformation of the form

(ﬁ 0 VA DA
T — A L = L —m

into the field definitions without mixzing the sectors. We can exploit these degrees
of freedom to bring M into a simpler form. Note, however, that if the v{' are
identified with the neutrinos in the Standard Model, the matrix U, will enter the
charged-current interactions (cf. Section 2.1.3). In the following we will develop
two useful canonical forms of M. The first has a simpler diagonal structure and
the second a simpler off-diagonal structure. In practise we can assume that M is
already in one of the simpler canonical forms without loss of generality.

For the first structure let R4 and Rg denote orthogonal matrices that diago-
nalize A and B, respectively [see Eq. (B.7)]. Then we can define the orthogonal

transformation matrix
R 0
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Note that the elements of these transformations are typically of O(1). In the
spirit of Eq. (B.24) we now define the first canonical matrix structure as

A’ <7T) _ ( Adieg (RTL.OR,)T

canonical __ _
M(i) = U(Ti)MU(i) - (Cl B R}'BCRA Ppdiag ) , (B26)

which, obviously, has a simpler diagonal structure than the original matrix.
Now we turn our attention to the second structure. The derivation here is a
little more involved, but no problem with our preparations in Section B.1.5. We
go back to the matrix in Eq. (B.23). Let us assume without loss of generality that
b > a and put b = a + a with @ > 0. Then we can split up B and C' according to

Ba><a (Baxzz)T Caxa
_ T — I
B=5bl= (Baxa Baxa ) ’ O N (Caxa> ’ (B27)

where the labels denote the dimensions of the individual block matrices. With
Eq. (B.27) the matrix M can be written as

A (Caxa) (Coxa)T
M = Caxa Baxa (Baxa>T . (B28)
Caxa Baxa Baxa

Now we know from the discussion in Section B.1.4 that C'T has a non-trivial kernel
of dimension a.? Therefore, we can define a unitary b x b transformation matrix
Uker analogously to Eq. (B.20) from the kernel of CT, which obeys

C(T(]ker =C7 (bea U;(xa) = (CTUbXa Oaxa) . <B29)

With Uy, and with the same R, as already used in the first structure we build
the unitary matrix

R 0
oo = () (B.30)

With the help of the above matrix we finally define the second canonical matrix
structure as

; A C'T
canonical __ _
M) —U®Mmm_< )

c' B
=G (e
= axXa axXa aXxXa
i B B (B:31)
Adiag ((bea)TCRA)T Oaxa

= [ (Upxa)TCRA  (Upxa)™BUpxa ((UE0)TB Usya))'
OOch (Ug(xa)TB Ub><a (Ug(xa)TB Ug{xa

This second structure may not look too appealing at first sight, but it takes on a
very simple and useful form when B = 0.

2Remember that we assume that matrices in principle have maximal rank.
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B.2 Seesaw related matrix calculus

In this section we will derive the eigenvalue spectra of the matrix structures
encountered in the generalized type-I seesaw mechanism (see Chapter 5). We will
use the categorization introduced in Eq. (5.4) and analyze the matrix structures
as defined in Egs. (5.5)-(5.7). The results of the analysis of the matrix structures
are summarized in Tables B.1, B.2, B.3 and 5.1.

B.2.1 Exactly vanishing eigenvalues

As already pointed out in Eq. (B.16) the number of exactly vanishing eigenvalues
of a square matrix is equal to the dimension of the kernel. An exactly van-
ishing eigenvalue in the neutrino mass matrix is especially interesting, since it
corresponds to an exactly massless neutrino mass eigenstate at tree level. In an
analytical context, vanishing eigenvalues can be quite cumbersome in the diago-
nalization procedure. Hence, it is advantageous to know the kernel of a matrix
in advance and, if necessary, to project out the kernel in order to split the ma-
trix into its singular and non-singular part. In the following we will apply the
techniques introduced in Sections B.1.4 and B.1.5 to determine under which cir-
cumstances the neutrino mass matrix develops a non-trivial kernel. Let us first
reprint the definitions of the three qualitatively different matrix structures intro-
duced in Egs. (5.5)-(5.7) for convenience. They were defined as

_ 0 MB (a+b)x (a+b)
M, = (MD MR) e C , (B.32)
_ 0 MB (a+b)x(a+b)
My = (MD 0 ) e C , (B.33)
0 M].:r)s M].:I;t
Mg=|Mp, 0O 0 € Qlatstixlatstt) (B.34)

Mp, 0 Mg

where Mg and Mg, are invertible symmetric matrices. It is important to notice
that for the derivation of the kernels we do not need to fix the relation between
the eigenvalues of My and Mp. The kernel is independent of it.

We begin by examining the kernel of the first matrix structure. Applying
Eq. (B.14) yields the conditions

o 0 M]B Vo) ! Oa
()R o

where v; denotes a generic i-dimensional vector. The above equation corresponds
to the following two linear systems of equations

M] v, = 0,, (B.36)
Mp v, + Mg vy = 0y . (B.37)
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In our general discussion we need to distinguish the three cases (u): a > b
(unsaturated), (s): a = b (saturated), and (0): a < b (over-saturated). In the
unsaturated and saturated cases Eq. (B.36) can only be satisfied trivially, i.e. by
setting v, = 0;,.% Then in the unsaturated case we have a > b degrees of freedom
of v, to satisfy the b conditions of Eq. (B.37). This can be done non-trivially and
leaves us a — b > 0 degrees of freedom. We find, accordingly, for the kernel in the
case a > b that

dim (ker(M;)) =a -0, (B.38)

and for the vectors spanning the kernel
v . !
Uker = (Oa) s with MD UV, = Ob . <B39>
b

In the saturated case, where a = b we can satisfy Eq. (B.37) only by putting
v, = 0, so the kernel is empty in this case.

In the over-saturated case, with a < b, first let us try to satisfy the conditions
of Eq. (B.37).% We need all a degrees of freedom of v, and b — a degrees of
freedom of v, to satisfy the b conditions of the equation. But then we only have

a degrees of freedom of v, left to satisfy Eq. (B.36). This leads to v, = 0, and

subsequently to v, = 0, so the kernel is empty as in the saturated case.

Let us briefly summarize our findings for the matrix structure M;. Under the
assumption that Mg is invertible, and that Mp has maximal rank we have found
that for the unsaturated case, a > b, the dimension and span of the kernel are
given by

dim (ker(M;)) =a -0, (B.40)

Vker = <1(;Z) y with MD Va ; 0b> <B41>

respectively. For the saturated and over-saturated cases with a < b the kernel is
empty, i.e. there are no vanishing eigenvalues.

In a similar way we can find the kernels in the different cases for the structures
My and M3, too, where in the latter we use the ansatz vy, = (v,, vs, v)7 for
a vector of the kernel. In Table B.1 we summarize all the non-trivial kernels and
the conditions on their corresponding vector space. All cases not listed in this
table have a trivial kernel and do not possess any vanishing eigenvalues.

B.2.2 Reducible and irreducible matrix structures

In this part we will describe our method used to find the eigenvalue spectra of
the different scenarios encountered in the generalized type-I seesaw. In general

3Remember that we assume that Mp has maximal rank.
4Naturally, the argument is unaffected if we start satisfying the conditions of Eq. (B.36)
first.

94



B.2. SEESAW RELATED MATRIX CALCULUS

Table B.1: Non-trivial kernels for the different structures and cases in the generalized
type-I seesaw. The second and third columns show the dimension and span, respectively.
The last column is the defining condition for the kernel vector space. Note that in
the third row for the Dirac case the relation a < b exceptionally corresponds to an
unsaturated scenario. Note as well that the case in the last row, M3 (0*), is a special
version of the over-saturated case with b > a, in which additionally s > a.

structure (case) | dim(ker) | span | condition
M (u):a>b a—>b Vker = (3“) Mp v, = 0y
b
Vg !
My (u): a>b a—>b vker:(O) Mp v, = 0,
b
0, !
My (u): a<b b—a vker:(v> MJ v, =0,
b
Vg v '
Msjz (u): a>b a—b Vier = | O E(“) Mpwv, = 0,
0
0:
0, '
Ms (0%): a<s s—a Vier = | Vs M v, =0,
0,

the eigenvalue spectrum of an m-dimensional square matrix M is given by the m
roots \; with ¢ =1, ..., m of the characteristic polynomial defined as

Xar(A) = det (A - 1, — M) . (B.42)

In the above equation 1,, denotes the m-dimensional identity matrix. In the fol-
lowing we will analyze all possible matrix structures with respect to their eigen-
value spectrum. We will find that several structures can be related to other
structures so they do not have to be discussed individually. In order to avoid
multiple labels we will write Mp = C and Mr = B in this part. Important
results, however, will be expressed in terms of Mp and Mg, again. In the follow-
ing we will specify which matrix structures can be reduced to other structures.
Once all structures have been categorized as either reducible or irreducible, we
will discuss the expected eigenvalue spectrum for the latter class of matrices.

Reducible matrix structures

We start our discussion with the case of a general unsaturated matrix

M= (g %T) (B.43)
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with @ > b and B may be non-singular, singular or B = 0. A brief investigation
of structure in the above equation leads to the conclusion that any unsaturated
case can be reduced to the corresponding saturated case. Putting a = b+ f and
applying the second canonical form given in Eq. (B.31) to M directly yields

0 0 0 0. 0
M=10 0 (Cu)']= ((f M,), (B.44)
0o ¢, B

where 03 denotes a S-dimensional zero matrix. The matrix M obviously possesses
8 = a — b vanishing eigenvalues and the submatrix M’ is a saturated matrix,
which is (non-)singular if and only if B is (non-)singular. Note that the number
of vanishing eigenvalues is in perfect agreement with the non-trivial kernels of
Table B.1. Furthermore, the relation of B and C for M is passed on to M’, so
if M realizes a Majorana scenario, so does M’ (and equally for the Dirac and
pseudo-Dirac cases). As anticipated we have reduced the unsaturated case to the
saturated one. In Table B.2 we summarize the results for the general unsaturated
reducible matrix structures.

Next, we turn our attention to the singular saturated and over-saturated Ma-
jorana cases with M given by the third matrix structure M3 defined in Eq. (B.34),
and with a < b and B; > (. In this case we can apply the seesaw formula to M
and obtain to leading order [90]

Aa (CSXG/)T 0 "
M=(Cx 0 0]= (Ag g) (B.45)
0 0 B, !
with Ay = — (Cyxa)" By ' Cixe and 1k(A,) = min(a, t). Note that A, < C.

The matrix M’ always possesses t eigenvalues with magnitude proportional to
B; = Mpg;. For the remaining a + s eigenvalues we must distinguish two cases.
If a < t, then A, has full rank and the submatrix M" realizes a non-singular
pseudo-Dirac structure with dimensions (s, a). And if a > ¢, we have rk(A,) =t
so that M" realizes a singular pseudo-Dirac structure with dimensions (s, a—t, t).
Hence, the spectrum of the remaining eigenvalues depends on the relation between
a and t. Note that in the saturated case with a = b we automatically have a > ¢
and a > s. Accordingly, the singular saturated Majorana case is always reduced
to a singular over-saturated pseudo-Dirac substructure. In Table B.3 we list the
results for the singular saturated and over-saturated Majorana reducible matrix
structures.

These are all reducible structures. In summary we have found that any un-
saturated structure can be reduced to a matrix with a — b vanishing eigenvalues
and a saturated (b + b)-dimensional substructure exhibiting the same scenario
as the original matrix. Furthermore, we have shown that the singular satu-
rated Majorana case can be reduced to a matrix with ¢ eigenvalues of order
B; = Mpg; and a singular over-saturated pseudo-Dirac substructure with di-
mensions (s, a — t, t). The singular over-saturated Majorana case possesses t
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Table B.2: Summary of general unsaturated reducible matrix structures. The second
column characterizes the structure of the submatrix that is obtained after bringing the
matrix into second canonical form. Note that all cases displayed possess a — b vanishing
eigenvalues independent of and in addition to the substructure (with b = s + ¢ in the
singular cases).

reducible structure (dimensions) ‘ substructure (dimensions)
non-sing. uM (a, b) non-sing. sM (b, b)

non-sing. uD (a, b) non-sing. sD (b, b)

non-sing. uPD (a, b) non-sing. sPD (b, b)

sing. uM (a, s, t) sing. sM (s +t, s, t)

sing. uPD (a, s, t) sing. sPD (s +t, s, t)

Table B.3: Summary of singular reducible matrix structures in the saturated and over-
saturated Majorana cases. In the second column we show the conditions that lead to the
different substructures in the third column. Note that the condition in the saturated
case is trivial since a = s 4+ t implies a > s. The substructures are obtained after
applying the seesaw formula. Note that all cases displayed possess t eigenvalues of the
order of Mgy, independent of and in addition to the substructure.

red. structure (dimensions) | condition | substructure (dimensions)
sing. sM (a, s, t) | a > s (trivial) sing. oPD (s, a —t, t)

a<s sing. uPD (s, a —t, t)

a>t { a=s sing. sPD (s, a — t, t)

: a>s sing. oPD (s, a — t, t)

sing. oM (a, 5, ) a<s non-sing. uPD (s, a)

a<t { a=s non-sing. sPD (s, a)

a>s non-sing. oPD (s, a)

eigenvalues of order B; = Mg, too, and the sub-matrix is either a non-singular
pseudo-Dirac structure with dimensions (s, a) if a < ¢, or a singular pseudo-Dirac
structure with dimensions (s, a — t, t) if a > ¢t. Whether the pseudo-Dirac struc-
tures are unsaturated, saturated or over-saturated is determined by the relation
between s and a. Next we discuss the irreducible structures.

Irreducible matrix structures

Before we start with the actual discussion of the irreducible matrix structures, let
us anticipate that we have investigated the singular saturated and over-saturated
pseudo-Dirac cases, but could not obtain a refined form of the characteristic poly-
nomial. In these scenarios information about the eigenvalues strongly depends
on the different relations between a, s and t.

The first analytically calculable structure we consider is the non-singular sat-
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urated case with the symmetric (a 4+ a) x (a + a) matrix

M= (g Cg) (B.46)

where B is either non-singular (Majorana and pseudo-Dirac cases) or B = 0
(Dirac case). Note that in the saturated case M does not possess any vanishing
eigenvalues since a = b (see Table B.1). The matrix’s characteristic polynomial
is given by

ar(A) = det (A - oy — M) = det (A Lo 07 )

-C \-1,—-B
=Adet (A-1,— B—\"'CCT)
=det (\*-1,—AB—CCT)

(B.47)

where in the second line we have used Eq. (B.10) with A # 0. Comparing the first
and third line of the above equation it is important to notice that we have traded
a 2a-dimensional eigenvalue problem linear in A for an a-dimensional eigenvalue
problem quadratic in .

Of course, we cannot give a general analytic expression for the roots of
Eq. (B.47). However, the fact that the argument of the determinant is a quadra-
tic polynomial tells us that the eigenvalues of M come in pairs. Additionally, we
can give an estimate for the eigenvalue pairs in the different cases (M, D, PD)
when we treat B and C' as ordinary numbers for a moment. Then we obtain the

general and exact solution
=2+ E+CCr. (B.48)

For the Majorana case with B > C' the solutions in Eq. (B.48) become

ccT MpMj,

+ R B MR

(B.49)

to leading order in consistency with the eigenvalues obtained from the well-know
seesaw formula. In the Dirac case with B = 0 the solution is simply

)\:i: =tV CCTEZE\/MDMIT). <B50>

In the pseudo-Dirac case with B < C' we obtain

A =£VOCT+ B =+, /MpM] + M= (B.51)

to leading order. We take Eqgs. (B.49) - (B.51) as symbolic solutions to the eigen-
value problem in the non-singular saturated cases.
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In the non-singular over-saturated cases with a < b = a+ o we use the second
canonical form of Eq. (B.31), for which M is given by

0 (Céxa)T 0 T
v=lc B wa)=(0'Y) . e
0" B.. Bi.

The a + b eigenvalues of M are found by solving the equation

/ / T
xu(N) =A% det [\ Lgpq —AB' — (C (gjm) 8)} =0. (B.53)

As in the saturated case we cannot derive a general solution to this eigenvalue
problem. Still we can estimate which solutions to the above equation can be ex-
pected. Due to the singular form of the matrix-product C’-(C”")" we estimate with
the help of Eq. (B.53) that there are a eigenvalue pairs A1 solving the equation

N A\B —C , (C. ) =0
/ 2( va) (B.54)
= =2+ \/E 40 (),

and o = b — a single solutions to
A—DB' =0. (B.55)

In order to validate these estimates we confirmed that they coincide with the
exact solution in the most simple over-saturated case with a = 1 and b = 2, and
assuming that B’ is diagonal.

Again, we remark that Eqs. (B.54) and (B.55) are to be understood as sym-
bolic solutions. Note that the solution in Eq. (B.54) has the same form as the
solution in Eq. (B.48) in the saturated case (apart from the primes, which merely
indicate the transformation to the canonical form). Accordingly, the solutions to
Eq. (B.54) in the Majorana and in the pseudo-Dirac case are given by Eqs. (B.49)
and (B.51), respectively. Remember that there is no over-saturated Dirac case.

In summary we have found that the eigenvalue spectrum of the non-singular
over-saturated cases with a < b = a + « is given by a pairs of eigenvalues with
the same form as in the corresponding saturated cases augmented by a = b — a
single eigenvalues with solution given as in Eq. (B.55), i.e. with a characteristic
mass scale of the order of B"). In Table 5.1 we summarize our findings for all
non-singular cases.
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