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ZUSAMMENFASSUNG

Die Rekonstruktion von Bildern anhand abgetasteter tomographischer Daten-
punkte hat sich in vielen praktischen Situationen als allein stehendes Forschungs-
gebiet etabliert, wie etwa in den Bereichen der medizinischen Bildverarbeitung,
der Seismologie, der Astronomie, der Flussanalyse, der industriellen Überprüfung
und vielen anderen. Bestehende (kontinuierliche) Methoden scheitern daran das
untersuchte Objekt korrekt zu modellieren. Daher untersuchen wir in dieser
Arbeit diskrete tomographische Ansätze, welche zusätzliche Nebenbedingungen
ermöglichen, die das zu analysierende Objekt besser beschreiben und somit das
Endergebnis verbessern. Dabei legen wir einen besonderer Schwerpunkt auf die
Annahmen der Abtastungs-Methodik des Signals, wofür wir uns mit dem kürzlich
eingeführten Compressed Sensing (CS) Ansatz befassen, der zu bemerkenswerten
Ergebnissen führte, abhängig davon, wie dünn besetzt das Signal ist. Allerd-
ings lässt sich die Forschung im CS-Bereich nicht exakt auf alltägliche Prob-
leme anwenden, weil angenommen wird, dass die Objekte, welche uns umgeben,
stückweise konstant (und nicht automatisch dünn besetzt) sind. Darüber hinaus
spiegeln, vom Standpunkt des CS, die Eigenschaften der Abtastungs-Matrix nicht
die Bedingungen realer Datenerfassung wieder. Durch diese Mängel motiviert,
untersuchen wir dünn besetzte Signale in einer gegebenen Darstellung, z.B. den
Vorwärts-Differenzen Operator (Totale Variation) und entwickeln Rekonstruktions-
Diagramme (Phasen-Übergänge) mit Hilfe linearer Programmierung, konvexer
Analyse und Dualität, welche dem Anwender (mit Rücksicht auf die Sparsity)
ermöglichen, den Typ des zu rekonstruierenden Objekts festzulegen, gegeben einer
Menge von Erfassungsrichtungen. Ferner wird durch Hinzufügen verschiedener
Störungen (entropisch, quadratisch) zum bereits eingeschränkten linearen Pro-
gramm ein besonderer Augenmerk auf die Handhabung groe Datenmengen gelegt.
In empirischen Bewertungen führten Störungen zu einer verbesserten Rekonstruk-
tionsrate. Es ist unnötig zu sagen, dass das Thema dieser Arbeit durch indus-
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trielle Anwendungen motiviert ist, bei denen der Datenerfassungsprozess auf max-
imal neun Kameras beschränkt ist und daher zu einem stark unterbestimmten
inversen Problem führt.
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ABSTRACT

Image reconstruction from tomographic sampled data has contoured as a stand
alone research area with application in many practical situations, in domains
such as medical imaging, seismology, astronomy, flow analysis, industrial inspec-
tion and many more. Already existing algorithms on the market (continuous)
fail in being able to model the analysed object. In this thesis, we study discrete
tomographic approaches that enable the addition of constraints in order to better
fit the description of the analysed object and improve the end result. A particular
focus is set on assumptions regarding the signals’ sampling methodology, point
at which we look towards the recently introduced Compressive Sensing (CS) ap-
proach, that has shown to return remarkable results based on how sparse a given
signal is. However, research done in the CS field does not accurately relate to real
world applications, as objects usually surrounding us are considered to be piece-
wise constant (not sparse on their own) and the properties of the sensing matrices
from the viewpoint of CS do not reflect real acquisition processes. Motivated by
these shortcomings, we study signals that are sparse in a given representation,
e.g. the forward-difference operator (total variation) and develop reconstruction
diagrams (phase transitions) with the help of linear programming, convex analy-
sis and duality that enable the user to pin-point the type of objects (with regard
to their sparsity) which can be reconstructed, given an ensemble of acquisition
directions. Moreover, a closer look is given to handling large data volumes, by
adding different perturbations (entropic, quadratic) to the already constrained
linear program. In empirical assessments, perturbation has lead to an increased
reconstruction rate. Needless to say, the topic of this thesis is motivated by in-
dustrial applications where the acquisition process is restricted to a maximum of
nine cameras, thus returning a severely undersampled inverse problem.
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NOTATION

N Natural numbers, 0 /∈ N.

R Real numbers.

R≥0 Real numbers with only positive entries.

[n] := {1, 2, . . . , n} Arbitrary set.

[J ]c := [n] \ J Complement set [J ]c for J ⊆ [n] .

[n]0 := {0, 1, . . . , n− 1} Another example of a set.

|J | Cardinality of a set, i.e. the # of elements it comprises.

x Scalar value.

x := (x1, . . . , xn)> Vector, usually x ∈ Rn, n ∈ N.

0 := (0, . . . , 0)> Vector containing only values of 0.

1 := (1, . . . , 1)> Vector containing only values of 1.

ei := (0, . . . , 0, 1, 0, . . . , 0) Vector with i-th component 1 and 0 otherwise.

〈a,b〉 := a>b =
∑n

i=1 aibi Scalar product of two vectors a and b.

‖x‖p := p
√∑n

i=1 |xi|p p-norm of a vector x, p ≥ 1, p ∈ R.

‖x‖0 := {i : xi 6= 0} Number of nonzero elements in x.

‖x‖1 :=
∑n

i=1 |xi| Manhattan norm.

‖x‖2 :=
√
x2

1 + · · ·+ x2
n Euclidean norm.

‖x‖∞ := max |x2
1|, . . . , |x2

n| Infinity norm.

A :=

a11 · · · a1n
...

...
am1 · · · amn

 Matrix, A ∈ Rm×n, m, n ∈ N, aij ∈ R, ∀i, j.
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List of Tables

diag(a) :=


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

 Diagonal matrix.

BΛ The submatrix of B formed by the rows
indexed by the set Λ.

BΛ The submatrix of B formed by the columns
indexed by the set Λ.

N (B) Denotes the nullspace of B.

η(i) Denotes the neighbourhood of vertex i.

⊗ Kronecker product.

R+ Set of all nonnegative real numbers.

R++ Set of all strictly positive real numbers.

Sλ(x) =


x+ λ, x < −λ;

0, −λ < x < λ;

x− λ, λ < x.

Soft thresholding operator.

F1,1
L (Rn) Class of real continuously differentiable convex

functions with Lipschitz continuous gradient L.

F0(Rn) Class of proper, closed, convex functions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Industry thrives. Product demand increases daily and detail, accuracy and speed
are the main sought-after words in the current market. Whether we talk about
material science, medical applications, seismology, astrophysics or archaeology,
tomography plays an important role. Although its use in these areas are rather
recent, except in the medical field, the method is becoming increasingly popular
due to its non-invasive properties.

As a general definition, tomography is an imaging modality that acquires cross-
sections of an object, through means of various penetrating waves that interact
with the media comprising the object:

1. ultrasound tomography - sound waves;

2. optical coherence tomography - light waves;

3. computed tomography - X-rays;

4. single photon emission computed tomography - γ-rays;

5. magnetic resonance imaging - radio frequency waves;

6. positron emission tomography - positron-emitting tracer;

7. hydraulic tomography - fluid flow.

This thesis focuses its work in the field of Computed Tomography.
Because media differ in densities, recorded images may have either a clear dis-

play of the object (regions are sharp, perfectly contoured, no ambiguities) or can
be damaged by artefacts (beam hardening, metal, ringing or motion artefacts),
thus diminishing their practical usefulness. The absorption coefficients that are
in a one to one connection with densities of each media, i.e. the amount of energy
that can be absorbed from the incoming wave, are the quantities that need to be
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1.1. MOTIVATION

retrieved from already existing tomographic measurements. The process of re-
covering these absorption coefficients is a highly ill-posed linear inverse problem.

Ill-posedness of the problem stems from i) the limited number of projections
that can be taken and/or ii) the low range of angles from which the object can be
viewed from. These limitations may occur either because of strict requirements
on the structural behaviour of the object that need to be met, either by the
fact that there simply is not enough space or financial possibilities to create the
”perfect” setup.

From a mathematical point of view, these short-comings can be tackled by:
i) restricting the space of solutions ( [4, 5] ) and ii) adding a regularizer to the
objective function, based on some additional a-priori knowledge ( [116, 114, 73,
102, 105, 106] ).

Solutions that are currently implemented on the market employ continuous
reconstruction methods, which have the deficit of requiring a high amount of
data in order to deliver plausible results. Common approach in signal recovery
is to sample the continuous signal at a given rate and then try to reconstruct
it from its discrete measurements. Up to a recent time, the only guarantees to
assure perfect signal reconstruction was by using the Shannon-Nyquist sampling
theorem, which states that given a perfectly band limited signal with a bandwidth
f , it is possible to accurately reconstruct it by acquiring samples at discrete times
, as long as the sampling rate is greater or equal than twice the frequency of the
signal, i.e. 2f . This however, leads to a huge amount of data to be acquired and
for signals with a very high bandwidth, proper signal processing turns out to be
expensive, due to storage and computation requirements.

Recently, a new paradigm of signal sampling has emerged, named Compressive
Sensing (CS) [20, 16, 35]. It relies on the low complexity property of the signals,
e.g. they are sparse, possibly after transformation to a suitable basis, like e.g.
wavelets, and it is seen as an attractive alternative to handling high bandwidth
signals, compared to the Shannon-Nyquist procedure. Research done in this area
[21] tried to relate the number of measurements to the signals’ sparsity, such that
accurate reconstruction can be achieved. However, assumptions on the sensor’s
properties are quite strong and the theory behind Compressive Sensing seems not
to be suitable for practical applications, such as it is the case in this thesis.

Motivated by industrial applications concerning non-destructive quality inspec-
tion testing, e.g. [23, 58], we focus on the reconstruction of compound solid bodies
in 2 and 3 dimensions, where the underlying assumption is that they are piecewise
constant. That is, we look into the problem of reconstructing discrete signals with
a sparse range, comprising more than two but not too many gray levels, in the
area of Computed Tomography, keeping a close relation to Compressive Sensing
theory. Our objective is to relate the required number of measurements per ob-
ject complexity, given that standard CS assumptions do not hold and to establish
sampling rates that enable perfect reconstruction of signals.

2



CHAPTER 1. INTRODUCTION

1.2 Related Work

Recent work illustrates that the focus of corresponding research in compressed
sensing (CS) is shifting - in contrast to discrete tomography [63] - from a worst-
case analysis [56] towards an average-case analysis [79, 80, 64]. As for many
other difficult combinatorial problems, the probabilistic approach is a plausible,
and often the only possible way, to make well-founded statements that go beyond
idealistic mathematical assumptions and that are also relevant for real-world ap-
plications. Theoretical recovery guarantees, expressed as thresholds on the critical
parameters, relate the solution sparsity to the solution degrees of freedom and to
the number of measurements.

In the work of Donoho and Tanner [40], a thorough analysis is performed -
under the aforementioned strong assumptions on the sensor - to determine the
universality of these thresholds, presented as phase transitions, with regard to
different optimization problems occurring in data and signal processing. Among
cases considered for analysis, lies also the problem of reconstructing a signal x
from its random Fourier coefficients. In effect, they construct the phase transition
by solving numerous instances of the `1 minimization problem on x, subject to
equality constraints. Moreover, they tie the connection between these phase
transitions and applications in combinatorial geometry, as the face counts of
a convex polytope are in strong connection with the probability of accurately
reconstructing a sparse vector, by solving a linear program (LP). For more work
on the subject of sparse solution recovery by solving underdetermined systems
of linear equations using LPs with random polytopes, we refer the reader to the
papers [39, 41, 36].

Another perspective of phase transitions in convex programs is given by Amelunxen
et. al. [1]. They solve the same minimization problem, `1 applied to the signal,
directly, and relate the optimality conditions of the convex program to the notion
of statistical dimension of descent cones, using Gaussian sensing matrices.

In discrete tomography, however, images to be reconstructed are sampled along
lines. Thus, sampling patterns are quite different from random and non-adaptive
measurements that are favourable from the viewpoint of Compressed Sensing. In
[94], it has been showed that structured sampling patterns as used in commer-
cial computed tomography (CT) scanners do not satisfy the CS conditions, like
the nullspace property and the restricted isometry property (RIP), that guaran-
tee accurate recovery of sparse (or compressible) signals. In fact, these recovery
conditions predict a quite poor worst-case performance of tomographic measure-
ments, due to the high nullspace sparsity of a tomographic projection matrix A.
Moreover, the gap between available worst-case recovery results of CS [42] and
worst-case results from tomographic projections in [94] is dramatic.

In [96, 95], an average-case relation between image sparsity and sufficient num-
ber of measurements for recovery was presented, and it was also showed that the
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transition from non-recovery to recovery is sharp for specific sparse images. The
analysis is based on the non-negativity of the coefficient matrix and of the signal
itself and utilizes new mathematical tools from CS via expander graphs.

In Jorgensen et.al. [69], empirical findings on an average-case relation between
image sparsity and the adequate number of measurements in a fan-beam CT
setting are reported. The analysis is performed on images that are ”sparse” in the
image domain and is based on solving a series of `1 minimization problems subject
to equality constraints, for varying sparsity levels. Results are presented as phase
transitions, revealing a fine crossing between recoverable and non-recoverable
images.

Empirical evidence for the recovery of piecewise constant functions from few
tomographic measurements was already observed in [105, 62, 68]. The first theo-
retical guarantees that have been obtained for recovery from noiseless samples of
images with exactly sparse gradients via total variation minimization, date back
to the beginnings of CS [21, 20]. However, the measurements considered were in-
complete Fourier samples, and images were not sampled along lines in the spatial
domain, but along few radial lines in the frequency domain. Such measurements
ensembles are known to have good CS properties as opposed to the CT setup, and
are almost isometric on sparse signals for a sufficient number of samples. As a
result, recovery is stable in such scenarios. Stable recovery of the image gradient
from incomplete Fourier samples was shown in [93], while Needell [91] showed
that stable image reconstruction via total variation minimization is possible also
beyond the Fourier setup, provided the measurement ensemble satisfies the RIP
condition.

1.3 Contribution

Earlier work done in the field of tomography and compressive sensing have focused
on signal reconstruction based on `1 minimization problems, considering only
signal sparsity priors. The focus of our work relies on objects which have a
sparse gradient representation. This led to the development of currently presented
routines and the theoretical analysis of tomographic image reconstruction based
on total variation and gradient sparsity priors. The main contributions of the
thesis are:

• Theoretical bounds on the required number of measurements necessary for
accurate signal reconstruction, by adopting the cosparse analysis model and
relying on the viewpoint that measurement matrices in tomography can be
modelled as adjacency matrices of expander graphs.

• Phase transitions for Total Variation in Compressive Sensing.
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CHAPTER 1. INTRODUCTION

• Two algorithmic approaches to accurately recover a signal from undersam-
pled data, using duality theory and anisotropic total variation minimization
subject to linear and non-negativity constraints. We consider additional
perturbations (entropic, quadratic) to the primal objective function, in or-
der to obtain an unconstrained and differentiable dual problem, that is
easier to solve.

• Model the tomographic problem as a graphical model, considering image
pixels as unary terms and pixel neighborhood as pairwise terms, and solve
it using duality, by an iterative method (L-BFGS) and Graph Cuts.

• The concept of splitting the reconstruction problem according to projection
and gradient directions. This led to the development of the approach men-
tioned in Sect. 5. No requirement on the number of gray levels is required,
the method is highly parallelizable and it involves solving smaller easier
problems such as least squares and proximal operators.

1.4 Outline

Chapter 2 summarizes important aspects on convex analysis, compressed
sensing and graphical models, to sustain the mathematics involved in the up-
coming chapters. Likewise, introductory notions about Computed Tomography
are mentioned in the second part of this chapter. They range from the physics
behind the acquisition process, up to existing methodologies in recostructing to-
mographic signals, from a continuous and discrete point of view.

In Chapter 3 we start with a short presentation of the imaging set-up consid-
ered in all work encountered in this thesis (unless stated otherwise) and further
in, we employ the concept of signal cosparsity together with notions of expander
graphs to derive lower bounds on the required number of measurements for sig-
nal reconstruction, using total variation, linear programming and non-negativity
priors.

Chapter 4 addresses the problem of tomographic signal reconstruction by
considering perturbed (entropic, quadratic) linear programs, in such a way that
the dual becomes unconstrained and differentiable, thus easing the mathematical
problem to be solved. These approaches are suitable for large-scale optimization
problems, where the stand-alone solvers such as MOSEK or CPLEX fail, due
to the high-dimensionality of the signal. Moreover, in Sect. 4.3 we conduct an
experiment meant to compare well-known algorithms used in practice for solving
linear constrained problems with the routines we developed up to this point in the
thesis. We conclude in Sect. 4.4 with a routine that looks to blend a continuous
approach and a discrete minimization step, in order to handle large data volumes.
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Lastly, Chapter 5 considers a splitting approach of the tomographic problem.
Disentangling the projection and gradient directions as mentioned in the paper
of [110] and using `1 minimization, we obtain a convex objective function which
is known to have a global optimum. In effect, we end up solving smaller problems
(least squares, proximity operators) that can be easily parallelizable.

We conclude in Chapter 6 with a final discussion.
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CHAPTER 2

BACKGROUND

The content of this chapter oversees mathematical definitions and concepts of
convex theory, compressive sensing, graph theory, as well as fundamental notions
regarding computed tomography and imaging sensors, thus offering the reader
elementary tools and notions to ease the comprehension of the present thesis.

2.1 Mathematical Background

2.1.1 Convex Analysis and Programming

In every mathematical research domain, there is a high possibility to encounter
an optimization problem, where one wants to find the optimum solution of his
model. By expressing the objective function in terms of convex functions, the
minimization problem is simplified due to the property of convex functions that
the local optimum is actually the global optimum of the objective function. The
notion of convexity in terms of sets is illustrated in Fig. 2.1 and Fig. 2.2.

Figure 2.1: Convex sets

That is, considering any 2 points belonging to the set, every other point lying
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2.1. MATHEMATICAL BACKGROUND

on the segment that connects these end points have to lie in the same set. Note
that this is valid even for non-closed sets.

Figure 2.2: Non-convex sets

Definition 1 (Convex set). A subset C of Rn is said to be convex if

(1− λ)x+ λy ∈ C,

whenever x, y ∈ C and 0 ≤ λ ≤ 1.

Convexity is kept under addition, scaling and intersection [12]. We mention a
few well known examples of convex sets:

• the (n− 1)− dimensional simplex generated by {e1, ..., en} , known also as
the probability simplex

∆n = {x ∈ Rn : x ≥ 0, 〈1, x〉 = 1},

with ei the canonical unit vectors.

• half-spaces, H = {x : a>x ≤ b}. They divide the entire space in two
parts. The boundary of a half-space is a hyperplane, H = {x : a>x = b},
where a ∈ Rn, a 6= 0, b ∈ R.

• hyperslabs, S = {x : |a>x − b| ≤ ε}, for a given tolerance ε ≥ 0 and
a ∈ Rn, a 6= 0, b ∈ R.

• polyhedra, P = {x : a>i x ≤ bi, i = 1, . . . ,m}, where ai ∈ R
n, bi ∈ R, i =

1, . . . ,m. A polyhedron could also be written in terms of intersecting half-
spaces:

P = ∩mi=1Hi, Hi = {x : a>i x ≤ bi, i = 1, . . . ,m}.
In this work, we will make use of a special case of a polyhedron, namely
affine subspaces

x : Ax = b.

8



CHAPTER 2. BACKGROUND

• ellipsoids, ‖Ax− b‖2 ≤ ε.

Definition 2 (Convex hull). Given any subset C of Rn, the intersection of all
convex sets containing C, is called the convex hull of C.

2.1.1.1 Convex Functions

Let R := [−∞,∞] be the extended real line with the arithmetic

a+∞ =∞+ a =∞ for −∞ < a ≤ ∞,
a−∞ = −∞+ a = −∞ for −∞ ≤ a <∞,
a∞ =∞a =∞, a(−∞) = (∞)a = −∞, for 0 < a ≤ ∞,
a∞ =∞a = −∞, a(−∞) = (−∞)a =∞ for −∞ ≤ a < a,

0∞ =∞0 = 0 = 0(−∞) = (−∞)0, −(−∞) =∞,
inf ∅ = +∞, sup ∅ = −∞.

Then, functions f : Rn → R are called extended real-valued functions.

Definition 3 (Effective domain). The set

dom f = {x ∈ X : f(x) <∞} (2.1)

is the effective domain of f .

Definition 4 (Convex function). A function f defined on X, is called convex if
for any x, y ∈ X and any 0 ≤ λ ≤ 1 such that λx+ (1− λ)y ∈ X, we have

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀ x, y ∈ dom f.

Definition 5 (Strictly convex functions). A function f is called strictly convex
if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

whenever x 6= y.

The properties of convex sets also apply to convex functions. We further men-
tion:

• Adding a linear function: If fi are convex functions, then g(x) =
∑

i αifi(x)
is convex, with αi a scalar;

• Pointwise maximum: If fi are convex, then g(x) = max
i

fi(x) is also convex;

Definition 6 (Lower-semicontinuous functions). A function f : C → R is lower-
semicontinuous if and only if for every real number λ, the set

{x ∈ C : f(x) ≤ λ}

is closed.

9
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Definition 7 (Proper functions). A function f : C → R is called proper if it
takes nowhere the value −∞ and is not identical to +∞.

There exist several connections between convex sets and convex functions. The
simplest associates with each set X ∈ Rn the indicator function δX(·) of X, where

δX(x) =

{
0, if x ∈ X,
+∞, if x /∈ X.

By adding indicator functions to objective functions, we are able to enforce con-
straints on the analyzed problem,

inf
x∈X

f(x) = inf
x∈Rn
{f(x) + δX(x)}.

Throughout this thesis, we will make extensive use of the support function
σX(·) of a set X, defined by:

σX(y) = sup
x∈X
〈y, x〉,

where ”sup ” denotes the supremum of the inner product 〈y, x〉, as x ranges over
X. If the set X is the probability simplex, ∆n ⊂ R

n, then for every y ∈ Rn and
x ∈ ∆n

σ∆n(y) = sup
x∈∆n

〈y, x〉 = sup
x∈∆n

n∑
i=1

〈yi, xi〉 = vecmax(y)
n∑
i=1

xi = vecmax(y). (2.2)

Definition 8 (First order differentiability). If f : X → R is differentiable, then
f is convex if and only if

f(y) ≥ f(x) + 〈y − x,∇f(x)〉, ∀ x, y ∈ dom f.

In other words, a lower bound on the convex function is given by the first order
Taylor approximation.

Definition 9 (Second order differentiability). If f is twice differentiable, then f
is convex if and only if its Hessian is positive semi-definite. That is:

∇2f(x) � 0, ∀ x ∈ dom f.

One common way to check if the matrix is positive semi-definite is to consider
the eigenvalues of the matrix. If all are non-negative, the condition is satisfied.
Likewise, for twice differentiable strictly convex functions, the Hessian matrix is
positive definite, if ∇2f(x) � 0.

Definition 10 (LIpschitz gradient function). We say that a smooth convex func-
tion f is continuously differentiable with Lipschitz continuous gradient L if the
following inequality holds:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀ x, y ∈ Rn,

and we denote it by f ∈ F1,1
L (Rn).
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2.1.1.2 Subgradients and Conjugates

For a function f : Rn → R, in order to establish if a point x ∈ dom f is a local
minimum or maximum, the first derivative test is performed, i.e.∇f(x) = 0. This
is possible if and only if the function is smooth (continuously differentiable). But
what happends if the function is non-smooth? In this case, the generalization of
the gradient comes into place, namely the subgradient.

Definition 11 (Subgradient). A vector g ∈ Rn is a subgradient of f : Rn → R
at x ∈ dom f if

f(y) ≥ f(x) + 〈g, y − x〉, ∀ y ∈ dom f.

The collection of all subgradients defines the subdifferential and is denoted by

∂f(x) = {g ∈ Rn|f(y) ≥ f(x) + 〈g, y − x〉}. (2.3)

x0

x

y f(x)

g2

g1

Figure 2.3: Different subgradients g1, g2 of the function f .

Properties of subgradients:

1. The subdifferential set ∂f(x) is closed and convex.

2. ∂f(x) can be empty, a singleton or a set with infinitely many elements.

3. If f is convex and differentiable, then {∇f(x)} = ∂f(x).

Next, we introduce the notion of conjugate functions, as it is closely related to
the notion of subgradients and to the concept of duality, that will be presented
in the following lines.

Definition 12 (Conjugate function). The conjugate of a function f : Rn →
[−∞,+∞] is defined as:

f ∗(p) := sup
x∈Rn
{〈p, x〉 − f(x)}. (2.4)

11
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Note that f ∗ is convex and lower-semicontinuous (lsc), because it is the supremum
of the family of affine continuous functions (〈·, x〉 − f(x))x∈X . If f is a lsc, proper
convex function, then f ∗ is also lsc, proper convex and the following holds:

(f ∗)∗ = f.

x

y f(x)〈p, x〉

−f ∗(p)

Figure 2.4: Graphical illustration of the conjugate function.

Definition 13 (Preimage). Let f : A→ B be a map between sets A and B with
Y ⊆ B. We call the preimage of Y under f to be the set of all elements of A
that map to elements in Y under f . Thus

f−1(Y ) = {a ∈ A | f(a) ∈ Y }.

Proposition 1 (Inversion rule of subgradients [99]). For any proper, lower-
semicontinuous, convex function f , one has ∂f ∗ = (∂f)−1 and ∂f = (∂f ∗)−1.

Note: f−1 in Prop. (1) denotes the preimage of a function, in the sense that

y ∈ ∂f(x) ⇔ x ∈ ∂f ∗(y),

and not the inverse of a function.

For indicator functions, the conjugate is nothing else than the support function:

δ∗C(p) = sup
x∈Rn
{〈p, x〉 − δC(x)} = sup

x∈C
〈p, x〉 = σC(p). (2.5)
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2.1.1.3 Fenchel Duality

The subject of duality is frequently used in the context of convex minimization.
Being able to express a problem in its dual form, offers the user several benefits:

- the dual program is always convex, even if the primal is not;

- the number of constraints in the primal problem equals the number of vari-
ables in the dual problem. Consequently, the dual problem may have less
number of variables than the primal problem.

- the primal-dual formulation often results in efficient splitting optimization
schemes, whose solutions can be reached by solving a series of smaller and
easier subproblems. Such formulations are known to lead to methods that
are highly parallelizable, thus increasing efficiency when problem sizes are
very large.

Fenchel Duality of Convex Problems

We give the definition of duality in terms of Legendre-Fenchel conjugates.

Theorem 2.1.1 ([99]). Let f : Rn → R, g : Rm → R and A ∈ Rm×n. Consider
the two problems

inf
x∈Rn

ϕ(x), ϕ(x) = 〈c, x〉+ f(x) + g(b− Ax), (2.6a)

sup
y∈Rm

ψ(y), ψ(y) = 〈b, y〉 − g∗(y)− f ∗(A>y − c) . (2.6b)

where the functions f and g are proper, lower-semicontinuous (lsc) and convex.
Suppose that

b ∈ int(A dom f + dom g), (2.7a)

c ∈ int(A> dom g∗ − dom f ∗) . (2.7b)

Then the optimal solutions x, y are determined by

0 ∈ c+ ∂f(x)− A>∂g(b− Ax), 0 ∈ b− ∂g∗(y)− A∂f ∗(A>y − c) (2.8a)

and connected through

y ∈ ∂g(b− Ax), x ∈ ∂f ∗(A>y − c), (2.9a)

A>y − c ∈ ∂f(x), b− Ax ∈ ∂g∗(y) . (2.9b)

In optimization, the primal objective is always lower bounded by the dual
objective. If ϕ(x), ψ(y) would be the optimal value of the primal, respectively
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the dual problem, then the following inequality holds ψ(y) ≤ ϕ(x); also called
weak duality. The difference ϕ(x) − ψ(y) is referred to as the duality gap. The
notion of strong duality occurs when ϕ(x) = ψ(y) and the conditions (2.7) hold.
It is desirable that all primal-dual problems have the strong duality property,
because in such cases one can often solve the dual problem in a simpler way and
recover the primal solution from (2.9).

For a more detailed reference of duality notions, we point the reader to the well
known book of [99].

2.1.1.4 Convex Programs with Linear Constraints

We consider the following special case of convex optimization:

min
x

f(x) s.t. Ax = b, x ≥ 0, (2.10)

where the function f(x) : Rn → R is convex, proper and lsc.
In order to take cases of noisy data into account, the following relaxed formu-

lation of constraints is appropriate:

min
x

f(x) s.t. ‖Ax− b‖2 ≤ ε, x ≥ 0. (2.11)

Likewise, an alternative form can be analysed, by introducing a regularization
parameter λ

min
x

f(x) + λ‖Ax− b‖2
2 s.t. x ≥ 0. (2.12)

In theory, there will always exist a pair (ε, λ) such that (2.11) ⇔ (2.12).
By using regularizers, one replaces the initial ill-posed problem with a ”better”

conditioned problem, that is able to return an approximate solution which in
addition of being continuously, it depends on the given data, and in this sense, is
robust.

We describe next few algorithms that can be applied to the problems (2.10),
(2.11), or (2.12).

Fast Iterative Soft-Thresholding Algorithm (FISTA)

Introduced by Beck and Teboulle [7], FISTA is an extension of Iterative Soft-
Thresholding Algorithm (ISTA) [28, 33, 52, 59], that belongs to the class of
first order methods, i.e. it relies only on function and gradient evaluations. The
algorithm considers the minimization problem of a sum of two convex functions

min
x
f(x) + g(x), g ∈ F1,1

L (Rn), f ∈ F0(Rn) (2.13)

with f a possibly nonsmooth, but ”simple” function, in the sense that one can
compute its proximal mapping in closed form, which is defined as

Proxλf (x) = argminy∈Rn
1

2
‖x− y‖2 + λf(y),
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for any λ > 0. In this work, we consider f to be the anisotropic total-variation,
i.e. f(x) = ‖∇x‖1, with ∇ the gradient operator:

∇ =

(
∂1 ⊗ I2

I1 ⊗ ∂2

)
∈ Rp×n.

⊗ denotes the Kronecker product, Ii, i = 1, 2, are identity matrices with appro-
priate dimensions and ∂i denotes the one-dimensional discrete derivative operator

∂ : Rm → R
m−1, ∂i,j =


−1, i = j,

+1, j = i+ 1,

0, otherwise.

For solving (2.13), one can apply the Forward-Backward splitting algorithm
[81], whose procedure is to update the iterates by computing

xk = Proxλf (xk −
1

L
∇g(xk)), with λ ∈

(
0,

2

L

)
, k = 0, 1, 2, . . . ; x0 ∈ Rn,

or the Over-relaxed Forward-Backward splitting, that introduces an additional
relaxation parameter −1 < µ < 1 to average the current iterate

xk = Proxλf (zk −
1

L
∇g(zk))

zk+1 = xk + µ(xk − xk−1).

A specific feature of FISTA is the possibility to adaptively update the relaxation
parameters µk, which tend to the limit µk → 1, as k → ∞ and the introduction
of an extrapolation point zk. The entire procedure is given in Alg. 1.

Algorithm 1 FISTA algorithm

1: z1 = x0 ∈ Rn, t1 = 1, L− Lipschitz constant.
2: for k ≥ 1 do
3: xk = Proxλf (zk − 1

L
∇g(zk))

4: tk+1 =
1+
√

1+4t2k
2

and µk+1 = tk−1
tk+1

5: zk+1 = xk + µk+1(xk − xk−1)
6: end for

For this scheme, one cannot prove convergence of the iterates, but one can
prove that it reaches an optimal convergence rate of the iterates, namely

f(xk) + g(xk)− f(x∗)− g(x∗) = O(1/k2),

while the convergence rate for the usual Forward-Backward splitting is only
O(1/k), with k representing the number of iterations in the algorithm. This
routine can be applied to problems of type (2.12).
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Douglas - Rachford (DR)

The foundations of the Douglas-Rachford method lay in the field of differential
equations [43]. Brought into attention a few years later by the work of Lions
and Mercier [81], the algorithm proved to be suitable for a broader spectra of
applications, different from the initial ones. Since then, numerous variations of
the DR approach have been developed, among which we sketch below the most
known, ADMM (alternating direction method of multipliers) [13].

Algorithm 2 Douglas-Rachford algorithm

1: z0 ∈ Rn, λ > 0
2: for k ≥ 1 do
3: xk = Proxλg(zk) = argminx∈Rn

1
2λ
‖x− zk‖2 + g(x),

4: vk = Proxλf (2xk − zk) = argminv∈Rn
1

2λ
‖v − (2xk − zk)‖2 + f(v),

5: zk+1 = zk + vk − xk
6: end for

The approach given in Alg. 2, considers the problem of minimizing the sum of
two functions

min
x∈Rn

f(x) + g(x), f, g ∈ F0(Rn). (2.14)

The convergence rate of this algorithm is known to be O(1/k), as proved in the
work of He and Yuan [61], with k being the iteration counter.

Alternating Direction Method of Multipliers (ADMM)

Closely related to the Douglas - Rachford algorithm, ADMM solves problems of
the type

min f(x) + g(z) s.t. Ax+Bz = c, with f, g ∈ F0(Rn). (2.15)

Compared to what has been presented up to now, the variable over which op-
timization is being performed is split in two parts x and z, with the objective
function separable across the splitting. In addition, conditions on the functions
f, g are not very restrictive, e.g. are allowed to be non-differentiable, thus cov-
ering a large number of optimization problems. ADMM iteratively solves (2.15),
via the following procedure:

Algorithm 3 ADMM [13] algorithm

x0 ∈ Rn, z0 ∈ Rm, u ∈ Rn, ρ > 0
for k ≥ 1 do
xk+1 = arg minx

(
f(x) + ρ

2
‖Ax+Bzk − c+ uk‖2

2

)
zk+1 = arg minz

(
g(z) + ρ

2
‖Axk+1 +Bz − c+ uk‖2

2

)
uk+1 = uk + Axk+1 +Bzk+1 − c,

end for
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with u the scaled dual variable of the augmented Lagrangian of problem (2.15).
Although it has been reported that ADMM converges slowly to a solution with
high accuracy, often it is the case that modest accuracy suffices and this has been
empirically proven to happen in a few tens of iterations. Moreover, the algorithm
is bound to converge even though inexact minimizations are performed in the
x, z updates. All these characteristics make ADMM very appealing to large-
scale applications where a balance between accuracy and computational load is
desired. For a more detailed description of this approach, we refer the reader to
the tutorial of Boyd and Vandenberghe [13].

Primal-Dual Algorithm [29]

This algorithm is a slight (but clever) modification of the method of Polyak
developed in the 60s. It tackles the problem of minimizing the sum of two convex,
possibly non-smooth functions, from a primal-dual perspective. The general form
of the primal minimization reads

min
x
f(Kx) + g(x),

and its corresponding dual maximization

max
y
−(f ∗(y) + g∗(−K>y),

where the operator K may not be a square matrix. Moreover, the two functions
f, g need to be chosen such that their proximal operators can easily be computed.

One advantage of this approach, given in Alg. 4, over the ones presented earlier,
lies in the robust convergence guarantees.

Algorithm 4 Chambolle-Pock primal-dual algorithm

1: L = ‖K‖2, τ = σ = 1
L
, θ = 1, k = 0, x0 = x0 = 0;

2: yk+1 = Proxσ(f ∗)(yk + σKxk),
3: xk+1 = Proxτ (g)(xk − τK>yn+1),
4: xk+1 = xk+1 + θ(xk+1 − xk),
5: k = k + 1,

Later, in Sect. 4.3 we will give a comparison between these methods and our
approaches.

2.1.2 Compressed Sensing

Reconstruction routines of current sensing devices rely on the well-known Shannon-
Nyquist sampling theorem. The assertion of this theorem has been the prevailing
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principle in electrical and optical engineering. It states that a signal can be per-
fectly reconstructed if the sampling rate is higher than twice the highest frequency
content of the signal in its Fourier transform.

In the last decade, however, a new sensing approach has been advocated to give
remarkable results, being able to accurately reconstruct a signal from a highly
incomplete number of linear and non-adaptive measurements. It is known as
Compressive Sampling or Compressed Sensing (CS).

2.1.2.1 Compressed Sensing

The general assumption behind Compressed Sensing (CS) is that a signal can
be sparsely represented (i.e. having a small number of non-zero coefficients) in
a general basis (e.g. wavelets) or that it belongs to a distinct class of functions
(e.g. piecewise constant functions). A similar relation underlies lossy compression
techniques used in JPEG, JPEG2000. Compression routines require beforehand
a lengthy and costly procedure to acquire full information of a signal, which in
the end, is almost entirely discarded in the compression stage, thus resulting in
a sparse measured signal.

In a nutshell, what CS wants to achieve is to sample and compress a signal at
the same time. Unlike JPEG or JPEG2000, however, in CS information is not
lost by ”squeezing” the signal, leaving the user the possibility to return to the
original sample from its compressed version. The non-trivial part of the problem
is how to know beforehand the signal locations where to sample.

What is beneficial in CS is its practicality, in the sense that efficient algorithms
can be employed to perform reconstruction, using convex optimization routines
and even greedy algorithms. In order to recover a signal x ∈ Rm, one of the basic
optimization problems that CS applies is

x = argmin
x

‖x‖0 s.t. Ax = b, (2.16)

where the linear system of equations is underdetermined, with the compressive
sampled signal given by the vector b. However, due to its combinatorial nature,
solving (2.16) is in general NP-hard. Therefore, a common approach is to relax
the objective function to the `1 norm, that is known to promote sparsity and to
be convex:

x = argmin
x

‖x‖1 s.t. Ax = b. (2.17)

Perfect reconstructions as minimizers have been shown to exist only for suitable
matrices A, that fit into the theoretical optimal bounds. Such matrices should
have high spark, also known as complete rank, high nullspace property order, and
a high RIP order with a relatively small RIP constant.

Before we go further and detail these properties, let us formally introduce the
notion of sparsity in the context of Compressive Sensing.
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Definition 2.1.1 (Sparsity). A signal x ∈ R
n is said to be k-sparse if it has k

non-zero entries:
k = ‖x‖0 := ‖{i : xi 6= 0}‖. (2.18)

Definition 2.1.2 (Spark, [44]). Let A ∈ R
m×n be an arbitrary matrix. Then

the spark of A denoted by spark(A) is the minimal number of linearly dependent
columns of A.

Proposition 2.1.2 ([38]). Any k-sparse solution x of a linear system Ax = b is
unique if ‖x‖0 = k < spark(A)/2.

With A being underdetermined in tomography applications, the nullspace of
A also plays a particular role in the analysis of uniqueness of the minimization
problem (2.17). The related so-called nullspace property (NSP) is defined as
follows.

Definition 2.1.3 (Nullspace property). Let A ∈ R
m×n be an arbitrary matrix.

Then A has the nullspace property (NSP) of order k if, for all v ∈ N (A) \ {0}
and for all index sets |S| ≤ k, ‖vS‖1 <

1
2
‖v‖1.

Proposition 2.1.3 ([54]). Any k-sparse solution x of a linear system Ax = b is
the unique solution of (2.17), if A satisfies the nullspace property of order k.

Proposition 2.1.4 ([95, 115, 75]). Every k-sparse nonnegative vector x is the
unique positive solution of Ax = Ax if and only if every nonzero nullspace vector
has at least k + 1 negative (and positive) entries.

The Restricted Isometry Property (RIP) defined next, characterizes matrices
which are well conditioned when operating on sparse vectors. This is probably
the most popular CS condition since it also enables stable recovery.

Definition 2.1.4. A matrix A is said to have the Restricted Isometry Property
RIPδ,k if, for any k-sparse vector x, the relation

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 , δ ∈ (0, 1) (2.19)

holds.

This property implies that every submatrix (Ai1 , . . . , Aik) formed by keeping
at most k-columns of A has nonzero singular values bounded from above by 1 + δ
and from below by 1 − δ. In particular, (2.19) implies that a matrix A cannot
satisfy RIPδ,k, if k ≥ spark(A).

Proposition 2.1.5 ([17], Thm. 1.1). Candès has shown that if A ∈ RIPδ,2k with
δ <
√

2− 1, then all k-sparse solutions x of (2.17) are unique.

19



2.1. MATHEMATICAL BACKGROUND

In [17, Thm. 1.2], the RIP condition also implies stable recovery even in case
of observation errors.

Proposition 2.1.6 ([17], Thm. 1.2). When measurements are corrupted with
noise

b = Ax+ ν,

where ν is an unknown noise term, recovery of x is usually performed by

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε, (2.20)

with ε an upper bound on the size of ν. Provided that the observation error is
small enough, ‖ν‖2 ≤ ε, and A ∈ RIPδ,2k with δ <

√
2 − 1, then the solution x

of (2.20) obeys

‖x− x‖2 ≤ C0k
− 1

2‖x− (x)k‖2 + C1ε,

where C0 and C1 are explicit constants depending on δ, and (x)k is the vector x
with all but the k-largest entries set to zero.

Moreover, it has been known since from the beginning in the field of compressed
sensing that random matrices, like Gaussian and Bernoulli matrices with i.i.d.
sampled entries, satisfy well the theoretical requirements for perfect recovery.
Specifically, given a random entry type matrix A ∈ R

m×n , there is a high-
probability to reconstruct all k-sparse vectors x, from b = Ax, provided that

m ≥ Ck ln(n/k), (2.21)

where C > 0 is a constant. This condition on the number m of measurements
required for perfect recovery, reveals a lower bound that essentially depends on
the sparsity k of the analysed signal x, while the size of the signal n has only a
mild logarithmic influence.

We have given a brief review of Compressed Sensing along with its properties
and recovery conditions. What is to be retained from these lines, is that sparsity
of the problem plays an important role in the reconstruction process and convex
optimization routines can be efficiently employed to model the problem at hand.

2.1.2.2 Sparsity versus Cosparsity

The content of this section relies on the papers of [87] and [71].
The problem of signal recovery from an incomplete set of measurements has

been long researched in the image and signal processing communities, with the
help of the compressed sensing theory. The assumption lying at the base of this
theory is that the signal is sparse, i.e. it has very few non-zero coefficients. The
set of indices i, form the support of the signal x. One example of such a signal
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would be x = [1, 0, 0, 2, 0, 3, 0, 0, 9, 0, 0]. This is a 4−sparse vector. Many signals
that arise in practice are sparse with respect to a basis or dictionary. That is

x = Dz, z ∈ Rd, (2.22)

where z is k−sparse and D ∈ R
q×d, d ≥ q is an overcomplete matrix whose

columns form the dictionary. In this case, one solves the following optimization
problem

z̃ = argmin
z

‖z‖1 s.t. ADz = b. (2.23)

This approach is referred to as the synthesis model. Commonly, the dictionary
is chosen to be an orthogonal matrix D ∈ R

n×n, so as to obtain sparsity with
respect to an orthonormal basis. Other choices are also possible, such as wavelets
(see Fig. 2.5), etc.

Figure 2.5: Synthesis model. Two-dimensional Haar wavelet of ”Hand” with hor-
izontal, vertical and diagonal (detail) coefficients. Notice the higher
sparsity level in the detail coefficients (the images on the lower right
corner of each scale). Black represents 0 and white represents a value
different than 0. The darker the image is (more black), the more
sparse it is.

An alternative viewpoint to this model is to consider cosparse signals. That is,
for a possibly overcomplete analysis operator Ω ∈ Rp×n, with p ≥ n, the quantity
‖Ωx‖0 is small. This is referred to as the analysis model [45]. Instead of (2.23),
the optimization problem reads

argmin
x

‖Ωx‖1 s.t. Ax = b, with Ω ∈ Rp×n, A ∈ Rm×n, b ∈ Rm, (2.24)

which is able to return a good estimate depending on how ”cosparse” x is. Cospar-
sity of a signal is defined as

` = p− ‖Ωx‖0, (2.25)
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i.e. the interest lies in the number of zeros the analysed vector ‖Ωx‖0 contains.
Typical examples of analysis operators are the finite difference operators, shift
invariant wavelet transform, etc.

Figure 2.6: Visualization of the analysis model. The analysis operator is taken to
be the forward difference operator in the X and Y direction, stacked
together, named ΩDIF . Applied to a signal of interest, which is dense,
i.e. # of nonzeros is 31 in this example, it returns a cosparse signal,
having an increased # of zeros, see right side of the illustration.

Definition 2.1.5 (Cosupport). Similarly to sparse signals, we introduce the no-
tion of cosupport of x with respect to Ω ∈ Rp×n

Λ := {r ∈ [p] : (Ωx)r = 0}, |Λ| = `. (2.26)

With the cosupport, i.e. the index set of the zero entries in Ωx, one is able to
define a corresponding subspace of `−cosparse signals:

∪
Λ⊂[p] : |Λ|=`

WΛ,

where WΛ = span (ωj, j ∈ Λ)⊥, with ωj being the rows of the matrix Ω. For the
specific case of square and invertible dictionaries, it has been shown that the two
models, synthesis and analysis, are equivalent , i.e. D = Ω−1, [87].

2.1.2.3 Theoretical Recovery Guarantees

In most applications, properties such as RIP, see Def. 2.1.4, do not hold. We
introduce the notion of bipartite graphs and lossless expanders in the fol-
lowing. Looking at the problem from this perspective, offers the user alternative
criteria for reconstructing sparse vectors from a small number of measurements.
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Expander Graphs

Expander graphs are a certain family of graphs that are at the same time sparse
(looking at the ratio between the number of edges and the number of vertices) and
highly connected. In this work, expander graphs will be used in connection with
bipartite graphs, that represent the incidence geometry of tomographic imaging
later on.

Definition 14 (Bipartite graph). A bipartite graph G = (L ∪ R,E) is a graph
comprised of two disjoint sets of vertices L and R, where edges E ⊆ L× R only
correspond to pairs (l,r) of left nodes l ∈ L and right nodes r ∈ R.

Definition 15 (Degree of a vertex). Given a graph, G = (L ∪ R,E), the degree
of a vertex v ∈ L ∪R is the number of incident edges, i.e.

deg(v) = |{u ∈ L ∪R : (v, u) ∈ E}|

Definition 16 (d−regular graph). We call a graph to be d− left regular if and
only if all vertices in L have the same degree d. A right-regular graph is defined
analogously.

1

2

3

4

5

1

2

3

4

L

R

Figure 2.7: Example of a left regular bipartite graph with left degree 2.

Let us define the set of right vertices connected to the set J , i.e. the neighbour-
hood of the set J , to be

η(J) = {i ∈ R : there is a j ∈ J ⊆ L with (j, i) ∈ E}.

We are now ready to introduce the notion of lossless expanders.
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Definition 17 (Lossless expanders [54], Def. 13.1). Given a set J ⊂ L of left
vertices, a left regular bipartite graph with left degree d is called (s, d, θ)− lossless
expander, if it satisfies the expansion property

|η(J)| ≥ (1− θ)d|J |, (2.27)

for all sets J of left vertices such that |J | ≤ s. The smallest θ ≥ 0 for which the
expansion property holds is called the s-th restricted expansion constant and is
denoted by θs.

Definition 18 (Existence of Lossless Expanders, [54], Th.13.6). For 0 < ε < 1/2,
the proportion of (s, d, θ)−lossless expanders among all left d−regular bipartite
graphs with |L| = N left vertices and |R| = m right vertices exceeds 1−ε provided
that

d =
⌈1

θ
ln

(
eN

εs

)⌉
and m ≥ cθs ln

(
eN

εs

)
, (2.28)

where cθ is a constant depending only on θ.

Moreover, the adjacency matrix of such bipartite graphs offers robust results
when applied to sparse recovery `1−minimization problems, such as basis pursuit.
The following theorem backs up the ones just stated.

Theorem 2.1.7 ([54], Th 13.10). Suppose that A ∈ {0, 1}m×N is the adjacency
matrix of a left d-regular bipartite graph satisfying

θ2s <
1

6
.

For x ∈ CN and e ∈ Cm with ‖e‖1 ≤ η, if y = Ax+ e, then a solution x̃ of

min
z∈CN

‖z‖1 s.t. ‖Az − y‖1 ≤ η

approximates the vector x with `1-error

‖x− x̃‖1 ≤
2(1− 2θ)

(1− 6θ)
σs(x)1 +

4

(1− 6θ)d
η.

Definition 19 (Adjacency matrix, [54], Def. 13.9). The adjacency matrix of a
bipartite graph G = (L ∪R,E) is the m×N matrix A with entries

A(i,j) =

{
1, if (i, j) ∈ E
0, otherwise.
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The corresponding adjacency matrix for the bipartite graph in Fig. 2.7 is

A =


1 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 0 1 0 1

 .
The connection between tomography and the adjacency matrix of expander

graphs is attributed to the incidence relation of the image pixels with incoming
rays. If the i-th ray intersects the j-th pixel, then the Aij entry will be valued
1, 0 otherwise. In correspondence, the number of rows and columns in matrix
A stand for the number of rays and pixels used in modelling the acquisition
process. Letting the measurement matrix A have such a sparse structure, makes
it easy for storage purposes and allows more accurate computations, having less
drawbacks when it comes to precision in calculations. More on tomography and
the acquisition process, can be read in Sect. 2.2.3.

An in-depth analysis on uniqueness of recovery of non-negative signals using
expander graphs related to the context of compressive sensing have been reported
by Petra et. al. [95], Xu and Hassibi [117] and Wang et. al. [115]. Interpreting the
problem from the viewpoint of bipartite expander graphs, one is able to determine
relations bounding the required number of measurements m with respect to the
size n of the signal, necessary to obtain a unique non-negative solution to the
analysed system of equations.

The work in [95] inspects appropriate bounds for exact reconstruction of sparse
signals, with application in tomography, where the measurement matrix is known
to be badly scaled and does not fulfil the assumptions needed to apply compressed
sensing theory.

The paper of Wang [115], focused on general expander matrices, i.e. whose
entries are not restricted to binary values, and looked into the matter of finding
a unique non-negative solution to underdetermined linear systems, by relating
the support of the sparse signal to its dimension, through a constant ratio. We
report next the corresponding result of Wang et. al.

Theorem 2.1.8 (Th.4, [115]). For an adjacency matrix A of an (s, θ) expander
with left degrees in the range [dl, du], if sθ > (

√
5−1)/2 ≈ 0.618, then for any non-

negative k-sparse vector x0 with k ≤ s/(1 + θρ)N, the set {x|Ax = Ax0, x ≥ 0}
is ta singleton.

The quantities dl, du represent the minimum, respectively the maximum of the
left degrees, with ρ defined as ρ = dl/du, 0 < ρ ≤ 1.

Continuing on the idea of structured representations, we turn our attention to
a widely known field in machine learning, called graphical models.
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2.1.3 Graphical Models and Segmentation

The task of segmenting an image into meaningful parts has been long researched
and yet, no unified approach has shown to give satisfactory results for a wide
range of images. Graphical models, through their ability to handle uncertainty
by use of probability theory and to handle large complex problems with the
help of graph theory, have become an important framework in the field of image
processing.

They solve energy functions of the type

E(f) =
∑
v∈V

Dv(fv) +
∑
p,q∈E

Vp,q(fp, fq), (2.29)

where the first term, called unary term can be interpreted as a fidelity or distance
measure to the observed data f and the second term, the pairwise term, as a
regularization or smoothness term. By representing image pixels as vertices in
a graph, it is possible to partition an image into foreground and background by
making a ”cut” through the graph (binary labelling case).

In the upcoming lines, we give a brief introduction in the terminology used in
graph theory in Sect. 2.1.3.1, followed by a concise presentation of how graphical
models can be applied to labelling problems, in Sect. 2.1.3.2.

2.1.3.1 Elements of Graph Theory

A graph G is an ordered pair G = (V,E) consisting of a nonempty set V (G) of
vertices and a set E(G) ⊂ V ×V of edges, that is disjoint from V (G). For n = |V |

vertices, there is a number of m = |E| ≤
(
n
2

)
edges.

v0 v1

v2

v3

v4

v5

v1

v2 v3

0.80.5
0.7

Figure 2.8: Left: Undirected graph with 6 vertices and 5 edges. Right: Weighted
directed graph.

Commonly, two types of graphs are being used in practice: undirected and
directed graphs. In the former type, no distinction is made between edges
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(v3, v5) and (v5, v3), for example (see Fig. 2.8 left). Vertices v3, v5 ∈ V are called
neighbouring vertices. The set of all neighbouring vertices of a given vertex i,
is denoted by η(i).

In a directed graph, however, each edge from the set E(G) has an associated
direction (see Fig. 2.8 right). It is also possible to distinguish these edges not only
by their direction, but also by the weights associated to them, in which case the
graph is called a weighted directed graph and we denote it as Gw = (V,E,wc).

Let V ′ be a nonempty subset of V . The subgraph of G whose vertex set is V ′

and whose edge set is the set of those edges of G that have both ends in V ′ is
called the subgraph of G induced by V ′ and is denoted by G [V ′]. We say that
G [V ′] is an induced subgraph of G.

In a simple graph, a walk W is determined by the sequence of its vertices. If
the edges of the walk are distinct, and the same is true for its vertices, then W
is called a path.

Definition 20 (Connected vertices). Two vertices u and v of G are said to be
connected if there is a (u, v)- path in G.

Definition 21 (Connected graph). A graph is connected if there is a path between
every pair of its vertices.

Definition 22 (Connected component). A connected subgraph G [V ′] is referred
to as a connected component .

Figure 2.9: Example of graphs with three connected components.

We will make use of the notion of connected components later on, in Sect. 3.3.2,
where we derive theoretical bounds for uniqueness of the solution of our recon-
struction problem.
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2.1.3.2 Graph-Cuts

Initially introduced by Kolmogorov and Boykov [14] in the field of computer
vision, graph-cuts have proven to be an efficient method to perform image la-
belling, object detection or tracking. They are approximation algorithms that
have shown to find the global optimum of an energy function in polynomial time,
for a restricted class of energy functions of binary variables, see Def. 24.

In graph theory, networks are specific graphs, as detailed below. Considering a
directed graph G = (Ṽ , Ẽ), the image pixels correspond to the set Ṽ of nodes and
the directed edges Ẽ to the neighbourhood used when describing the coherence
between neighbouring pixels, either 4 - or 8 - connected neighbourhood. Set Ṽ is
enlarged with two extra nodes, the source s and sink t, V = Ṽ ∪{s, t}. Common
approach is to represent the object by the s node and the background by the
t node. Likewise, the edge set Ẽ is increased by the presence of these two nodes
accordingly; E := {Ẽ ∪ {(s, i), (i, t)|i ∈ Ṽ }. Edges connecting neighbouring
pixels with terminal nodes s and t are called t-links, while edges connecting
only neighbouring image pixels are known as n-links. Moreover, a non-negative
weight or a cost wc is applied to each edge in the graph.

Definition 23 (Network). We call a directed weighted graph G = (V,E,wc),
containing the terminal nodes s and t, with each edge having assigned a cost
wc(i, j) : E → R

+, a network. We denote this by N = (G, s, t).

For binary labelling problems which can be expressed as max-flow problems,
graph-cuts represent an efficient algorithm . If the energy function comprises
of binary variables and it is submodular, then the instance can be solved using
graph-cuts [76].

Definition 24 (Submodularity). We call a binary function of the form (2.29)
submodular , if the following condition holds for every Vp,q term:

Vp,q(0, 0) + Vp,q(1, 1) ≤ Vp,q(0, 1) + Vp,q(1, 0).

When referring to a cut, we will refer to a subset of edges Ec ⊂ E. Each cut will
have a different cost, defined by the sum of the weights on the edges of Ec:

cost(Ec) =
∑
e∈Ec

wc.

By performing a cut, the graph will be divided in two disjoint sets s and t, which
contain all nodes connected to the source and sink, respectively. Fig. 2.10 gives
a visual interpretation of such a cut.

Now, the question is how to find the best cut that minimizes a defined cost.
This is known as the s-t min-cut problem.
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s

t

Figure 2.10: Left:example of a cut of a 3× 3 image. Right: resulting segmented
image given the cut on the left side.

Definition 25 (s-t min-cut problem). Let N = (G, s, t) be a network with a
weighted directed graph G(V,E,wc).
An s-t cut C = (S, T ) is a partition of V with s ∈ S, t ∈ T, S ∪ T = V and
S ∩ T = ∅.
The cut set Ec of an s-t cut C is the set Ec := {(i, j) ∈ E|i ∈ S, j ∈ T} =
(S × T ) ∩ E with all outgoing edges from S.
The min-cut problem is finding the s-t cut Ec with minimum cost, cost(Ec),
among all possible s-t cuts, i.e.

min
Ec

cost(Ec).

The min-cut problem is closely related to the max-flow problem, the two being
dual to each other [53].

α−Expansion

Closely related to graph-cuts is the α-expansion algorithm. It iteratively solves
problems, by reducing a multi-valued variable optimization problem to a simpler,
binary variable one. It is a move making method, in the sense that it allows for
a large number of pixels to change their labels to a new label value α. Finding
the optimal multi-labelling of an image can be solved, if the associated energy
function is submodular and if the pairwise term of (2.29) fulfils 3 constraints:

• V (α, β) = 0⇔ α = β or V (α, β) 6= 0⇔ α 6= β

• V (α, β) = V (β, α) ≥ 0

• V (α, β) ≤ V (α, γ) + V (γ, β).
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If the pairwise term only meets the first two constraints, then it is called a semi-
metric term. If all three are satisfied, the term is a metric. α - expansion can
be used only when the pairwise term is a metric term. If this is the case, then
Boykov et. al. [15] showed that it is able to find a locally optimal solution at a
known factor of the global minimum:

2c = 2max
p,q∈E

maxα 6=βV (α, β)

minα 6=βV (α, β)
.

This factor, c, given as the ratio between the maximum and the minimum of the
pairwise term V , implies that the local minimum found by α - expansion will be
at most double the global minimum E∗.

Algorithm 5 α-expansion

1: Begin with arbitrary labelling f .
2: Define a test variable change = false.
3: for each label α ∈ L do
4: Find f̂ = argmin

f ′∈S(f,α)

E(f ′);

5: if E(f̂) < E(f) then
6: f = f ′;
7: change = true;
8: end if
9: end for

10: If change = true, go to 2.
11: Return f .

where S(f, α), represents the set of all possible labellings within one α - ex-
pansion of f .

The overall idea of α - expansion is to start with an initial arbitrary labelling.
At the first iteration, one instance of graph cuts is performed, so as to arrive at
the labelling that best minimizes the energy function. If the energy is lower than
the current labelling, then this becomes the current labelling. When energy is no
longer decreased, then the algorithm stops and returns the last known labelling f ,
that represents a local optimum. Alg. 5 summarizes as pseudocode this procedure.

2.2 Computed Tomography

Computed Tomography (CT) is a method of acquiring and processing cross-
sectional images (”slices”) in order to visualize the inner parts of spatial bodies
without damaging their overall structure. For a ”light-weight” interpretation of
CT, one can consider the studied object to consist of a finite number of such
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slices, each comprised of a predefined number of elements. For 3D cases, the
notion of ”volume elements” (or voxels) will be used, while for 2D cases, we will
refer to ”pixel elements”. Each of these elements hold a particular information
(gray value, absorption coefficient, etc.), that is stored in a digital image matrix
(in the rest of this thesis, we name this matrix the ”projection” or ”measurement”
matrix). In principle, a slice through an object can be obtained at any random
orientation, as shown in Fig. 2.11 [72].

Figure 2.11: Cross-section through an object in the x-y plane. The slice has a
thickness of s and each voxel is ∆x, ∆y in size.

Every newly computed slice is considered to bring additional information about
the object, thus the ideal set-up would consist of an increased number of these
cross-sections. However, in numerous fields there are limitations to acquiring
image data from a large number of angles (due to low exposure times to radia-
tion allowed, the cost of the equipment involve), e.g. astronomic measurements
of planets, seismic data, industrial quality inspection, etc. Reason for which, the
amount of information available is diminished and the reconstruction suffers from
artefacts. The area of research that focuses on the recovery of functions from few
tomographic projections is called Discrete tomography. Feasibility of this severely
ill-posed problem rests upon assumptions that: i) restrict the degrees of freedom
of functions to be reconstructed and ii) these functions can only attain values from
a finite set. Such problems are more suitable to be solved using iterative recon-
struction algorithms, as it is possible to incorporate a-priori knowledge in order
to better model the object that is studied. In recent period, Discrete tomography
has shown potential for large-scale applications in various areas [97, 57] which also
stimulates theoretical research. As advocated in [94], considering the problem of
discrete tomography from the broader viewpoint of compressive sensing [2, 22]
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enables to consider more general scenarios and to employ additional methods for
investigating theoretical and practical aspects of discrete tomography. While the
set of measurements (tomographic projections) is still “discrete” as opposed to
the “continuous” theory of established tomographic settings [89], functions to be
reconstructed are required to be compressible: a sparse representation exists such
that few measurements of any function of some admissible class capture the de-
grees of freedom and enable recovery. Establishing corresponding sampling rates
in connection with a given sparse representation and a model of the imaging sen-
sor constitutes the main problem of mathematical research, which we deal with
from Ch. 3 onwards. Before we dive into more theoretical aspects, we give in this
chapter a short introduction into tomography, regarding the acquisition process
in Sect. 2.2.1.1 and available imaging modalities in Sect. 2.2.1.2. In Sect. 2.2.2, a
few words about two main algorithms (one continuous, Filtered Back-Projection,
and one discrete, Algebraic Reconstruction Technique) that lay at the foundation
of current reconstruction methods, are given. Continuing on the note of discrete
reconstruction techniques, we outline in Sect. 2.2.3 several advances done in this
area, from the 80’s until recently, in 2014, with approaches varying from iterative
methods, to heuristics and even statistical methods to solve different tomography
problems. The chapter concludes in Sect. 2.2.4 with an overview of tomography
in industry, a place where it is becoming more and more attractive due to its
non-invasive properties.

2.2.1 Established CT

2.2.1.1 Physics of CT

The CT acquisition process provides the user with data collected from different
media, composing or surrounding the targeted area. Each of these media have
particular physical properties that influence, in a positive or negative manner,
the data to be processed.

For instance, a material having a high atomic number will possess a large
attenuation coefficient, as well as for high density objects, due to their porous
nature. Mathematically, intensity attenuation of an X-ray beam passing through
an object, can be expressed according to the Beer-Lambert law:

It = I0 exp(−
N∑
i=1

µi∆x), (2.30)

where I0 represents the incident X-ray intensity, It, the outgoing X-ray intensity
at a given time t, µi stands for the linear attenuation coefficient corresponding
to each material and ∆x gives the thickness of the material.
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Figure 2.12: Exponential decrease of the
X-ray intensity when pass-
ing through an object con-
sisting of different media.

This formulation implies that X-
ray intensities have an exponential de-
crease rate according to the material
thickness ∆x and the linear absorption
coefficient µ, as shown in Fig. 2.12.
Physically, there are 2 type of absorp-
tion processes that can take place: the
photoelectric effect and the Compton
effect. A few words about these phys-
ical effects are in order.

Compton effect occurs when an in-
cident photon hits the electron of an
atom, dispersing it in a chaotic, ran-
domized manner, resulting in scattered
photons that do not provide any use-
ful diagnostic information. Moreover,
they are dangerous for the surrounding
media as they contain a high amount of
their original energy, leading to irradi-
ations. This phenomenon, the Comp-
ton effect, is likely to happen when
high energy photons are used in the
diagnostic process.

Photoelectric effect on the other
hand, relates to the emission of elec-
trons from the surface of an object, as
a response to the incident light. The higher the intensity of the incoming light,
the more energy the electrons will have, when being emitted from the objects’
surface. The chance of this type of interaction to occur, instead of the Compton
effect, is high when the energy of the incoming photons is close to the energy
binding the electron to the nucleus.

As a remark, elements with a higher atomic number have an increased chance
of experiencing the photoelectric effect, at higher photon energies, whereas the
adverse occurs in the Compton effect. That is, a high count of low atomic number
elements are bound to respond to the incoming photons. Such subtleties play an
important role in computed tomography.

In an ideal world, where one would be allowed to employ high radiation doses,
have non-limited number of sensors, no movement and no scattering, then the CT
images would be able to mirror the reality, exactly. However, any slight change
in the ideal case, leads to unwanted artefacts, that burden the diagnosis process,

1http://posterng.netkey.at/esr/viewing/index.php?module=viewing_poster&task=

viewsection&pi=107494&ti=329481&searchkey=
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a) Photoelectric effect b) Compton effect

Figure 2.13: Two absorption processes 1that are responsible of introducing noise
in the data, during the acquisition process.

may it be from a medical point of view, or from a quality inspection routine.
The most common artefacts encountered in industrial computed tomography are
beam hardening (lower energy rays have an increased rate of being attenuated
than higher energy rays), metal artefact, ring artefact (parts of the detector
elements in a CT scanner are wrongly calibrated or defected) and image noise.

We introduced the physical aspect behind the acquisition process and how this
is affected in practice. Next, we present the known possible configurations to
acquire CT images, with regard to position of the sources and detectors, as well
as the possible degrees of freedom involved, i.e. rotation or translation.

2.2.1.2 Imaging Modalities

Since the first appearance of CT scanners, scanning geometries have improved
significantly in their process of acquiring X-ray data for image reconstruction.
All these variations are classified according to the generation they belong to. Up
to now, there are four known generations:

1. first generation used the same number of sources and detectors, that were
placed opposite to each other and had a mechanically translate-rotate mo-
tion (see Fig. 2.14a);

2. the second generation of CT scanners used a small number of fan beams
with multiple detectors, allowing multiple projections to be measured at the
same time and still comprising of the mechanical movement of the source
and detectors (see Fig. 2.14b);

3. third generation introduced the rotate-rotate motion of the sources and de-
tectors. The geometry was the same as in Fig. 2.14b, the second generation,
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a) First Generation. b) Second Generation.

Figure 2.14: Acquisition geometry for first and second type generation of CT
scanners.

but the advantage was that the sources and detectors rotated as one item,
around the object (see Fig. 2.15a);

4. and the fourth generation of scanners comprised of a fixed ring of detectors
surrounding the object. The beam source was the only moving part, at
an angle, which activated certain detectors at a given scanning time (see
Fig. 2.15b).

This thesis focuses on the simplest case of parallel beam geometries, as in the
first generation of scanners, unless stated otherwise.

2.2.2 Discretization and Basic Recovery Schemes

In the course of this section, we present a number of reconstruction techniques,
one that is highly used in practice (FBP) and others (ART methods) which
provide the basis of more sophisticated techniques, presented and discussed in
the remaining sections of this thesis. The content is merely intended to give the
reader a flavour of what is used in different scenarios. Of course other techniques
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a) Third Generation. b) Fourth Generation.

Figure 2.15: Acquisition geometry for third and fourth type generation of CT
scanners.

are also investigated in the literature, but we restrict ourselves to what is relevant
with respect to this thesis, i.e. discrete reconstruction methods.

2.2.2.1 Filtered Back-Projection

As part of the group of analytical reconstruction methods, filtered backprojection
(FBP) is the most common algorithm currently implemented in practical appli-
cations. It returns satisfactory results, however, it has the drawback of requiring
a high amount of data and it is highly unreliable when it comes to modelling
artefacts in the reconstruction process.

We give the underlying mathematics behind FBP using a parallel beam setup.
Mathematically, the acquisition process in X-ray tomography is closely related to
the Radon transform (sinogram) of an object. Let us first define the object to be
f : R2 → R. Making use of the δ function, its Radon transform is

R(ρ,θ)(f(x, y)) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − ρ)dxdy.

This expression can be interpreted as being the line integral along a tomography
beam, at a given orientation θ and minimal distance ρ from the origin.
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x

y

ρ

θ

Figure 2.16: The Radon transform of each line in the parallel beam setup at a
given angle θ and distance ρ yields the projection of f at orientation
θ.

This transformation, in connection with the Fourier transform, lies at the foun-
dation of the projection-slice theorem.

The Fourier transform of a two dimensional signal is expressed as

F(ρx, ρy) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) exp−2πi(xρx+yρy) dxdy.

Theorem 2.2.1 (Projection-slice theorem). Given a function f(x, y) : R2 → R,
by performing the Fourier transform of the 2D signal, its value along a measure-
ment line at a given angle θ is equal to the 1D Fourier transform of the sinogram
acquired at angle θ.

P (ρ, θ) = F(ρ cos θ, ρ sin θ)

A known fact about the inverse Radon transform is that it has bad performance
with respect to noisy data; reason for which, in practice a more robust version is
implemented, that involves the use of a high-pass filter.

The base for the inverse Radon transform is given by the following identity:

f(x, y) = R̂ (q ∗ Rρ,θ(f(x, y))) ,

where q stands for a 1D filter, ∗ denotes convolution and R̂ is the backprojection
operator

R̂(f(x, y)) =

∫ π

0

(∫ ∞
−∞

q(ω)F(f(x, y)) exp2πiω(x cos θ+y sin θ) dω

)
(x cos θ+y sin θ)dθ.

Because the backprojection routine results in a blurred image, the most com-
mon approach to alleviate this behaviour is to use a high-pass filter. The standard
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choice is Ram-Lak, however it has the tendency to amplify noise contained in the
higher frequencies and thus, not improving the image quality by much. Other
typical choices of filters would be Shepp-Logan, Hann, Generalized Hamming,
cone filter, etc. In Horbert et. al.[108], the authors proposed a method in which
the filtering operator is connected to the interpolation model, in such a way that
it will result in only a single filtering operation. Results relate the fact that filter
optimization improves reconstruction and is especially useful when computational
speed is an important issue.

2.2.2.2 Algebraic Reconstruction Technique

Part of the iterative reconstruction algorithms, Algebraic Reconstruction Tech-
nique (ART) assumes that cross sections of the analysed object comprise of grids
of unknowns. As the name suggests, algebraic equations need to be solved, so
that the end result approximates well enough the measured projection data, i.e.

Ax = b, (2.31)

where A ∈ R
m×n is the sensing matrix that models the acquisition process and

x ∈ Rn is the discrete set of unknowns that need to be reconstructed, given the
set of measurements b ∈ Rm.

When dealing with noise or other acquisition artefacts (beam hardening, ring
artefacts, metal artefacts, motion), iterative methods have an advantage over
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analytical ones. The user is able to include a priori information about the object,
as constraints to the linear system, in order to improve the reconstruction.

Computing the Measurements b

As stated earlier, the object considered is imaged as a square grid, divided into
an n× n, or n× n× n array of pixels or voxels, for 2D and 3D case, respectively.
Each pixel/voxel in this grid, holds information about the material density of the
object. The problem at hand is to estimate the value of these densities x, from
a given set of measurements b. In synthetic experiments, these measurements b
are obtained from what is called in the literature, forward projection. We give 3
possibilities to model these measurements, all of which can be considered as ray-
driven approaches. That is, the measurements b are the result of the line-integral
over the analysed volume:

• where the line integral is computed as a weighted sum of pixel values that
have been crossed by the corresponding ray line. To each weight, the length
of the intersection of the ray Li with pixel xj is attributed (see Fig.2.17a).

• where the end result is obtained as a weighted sum of bilinear interpolations,
to compensate for deviations from the principal direction. When the main
direction of the ray is on the x-axis, i.e. the largest absolute value of the
following terms |x1−x2|, |y1− y2|, |z1− z2|, is |x1−x2|, then the weighting
factor is given by √

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

|x1 − x2|
.

• as the result of a trilinear interpolation and the integral represents the sum
at equally distance points along the projection ray.

Li

xj

a

Li Li

a) Length of intersection b) Bi-linear Interpolation c) Tri-linear Interpolation

Figure 2.17: Interpolation schemes used in modelling the acquired measurements.
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Method Pros Cons

Filtered
Backprojection

fast to compute modelling noise and
other artefacts are not easy
to do

direct formula for the in-
version process

much time to invest in
proper filtering techniques

Iterative
methods

easy physical modelling
of the object

prolonged computation
time

easy adaptation to differ-
ent imaging geometries

real-time reconstructions
for large problem instances
are much more difficult to
realize

decreased radiation dose entire measurement area
needs to be reconstructed

Table 2.1: Comparison of analytical vs. iterative reconstruction methods.

For details, please read [113]. The most encountered case is the one where the
line integral is calculated as a weighted sum, with weights given as the length of
intersection between a ray and a pixel.

At the end of this section, we point out in Table 2.1, the advantages and
disadvantages of the analytical methods vs. the iterative ones.

2.2.3 Discrete Tomography

2.2.3.1 Algebraic Reconstruction Technique

A widely known reconstruction method is the Kaczmarz method, firstly discov-
ered by the Polish mathematician Stefan Kaczmarz, and brought back in attention
in the area of image processing by Gabor Herman in the 1970s, from where it
received the name Algebraic Reconstruction Technique.

From a geometrical point of view, each equation of the linear system (2.31)
represents a hyperplane in the dimensional space of x. The unique solution is
found to be at the intersection of all these hyperplanes. More precisely, starting
with an initial guess, x(k,0), this is projected on the first hyperplane, resulting in
a new point x(k,1). This point is further projected on the next equation in the
system and so on.
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Mathematically, this can be expressed as:

xk0 → xk0 −
xk0
>
a1 − b1

a>1 a1

a1 = xk1,

xk1 → xk1 −
xk1
>
a2 − b2

a>2 a2

a2 = xk2,

xkI−1 → xkI−1 −
xkI−1

>
aI − bI

a>I aI
aI = x

(k+1)
0 , (2.32)

with ai the i−th row of A and x(k,1), x(k,2), . . . the first, second, etc., hyperplane
at iteration k.

After passing through all the equations (hyperplanes), the last projected point
is projected back onto the first equation and the process repeats until a unique
solution is found, at the intersection of all hyperplanes. This behaviour in turn,
exemplifies the fact that all ART type methods are iterative methods. They
are known to converge rapidly when analysed in the root-mean squared error
criterion, but the end result of the reconstruction suffers highly from salt and
pepper noise, as will be seen in Fig. 2.19. In the presence of noise, the system
Ax = b is likely to be inconsistent, and a more appropriate constraint then is
‖Ax− b‖ ≤ ε.

Few adaptations of the Kaczmarz method exist:

1. symmetric Kaczmarz, where the equations are available in 1, . . . ,m or-
der, then from m− 1 to 1, restarting from 2 to m and so on.

2. randomized Kaczmarz, where the hyperplane i on which to project is
randomly chosen from [m] hyperplanes, with a probability proportional to
‖ai‖2

2.

3. Simultaneous ART (SART), where in order to update the solution x,
a subset of ray sums belonging to a specific projection angle is taken into
consideration. This offers the method a computational advantage over the
traditional sequential ART method.

xk+1
j = xkj −

1∑m
i=1 |aij|

m∑
i=1

aij∑n
j=1 |aij|

(
aix

k − bi
)
, j = 1, . . . , n. (2.33)

An empirical study of the performance of these methods with respect to a
relaxation parameter is given by Kazemi et. al. [74]. By choosing larger values of
the relaxation parameter, ART methods have the tendency to converge faster, but
to reach a noisy reconstruction in the end, while a smaller value of the parameter
leads to smoother images, but the convergence rate is lowered significantly. Using
a heuristic to find the optimal parameter value for each of the Kaczmarz variants,
the authors concluded that a ”good” assessment of the relaxation parameter is
not related to the image size, nor to the type of used image.
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Figure 2.18: Algebraic reconstruction technique principle in 2D, for a 3×3 matrix
A.

2.2.3.2 Simultaneous Iterative Reconstruction Technique

In the SIRT methods, the approach is to simultaneously update the equations, no
matter the order of the hyperplanes, in order to correct for errors. Specifically,
it corrects all rows of the linear system using the current approximation and
then it averages the result over all corrections. Unlike ART, the resulting images
are smoother (see Fig. 2.20), but the time required for these methods to reach
convergence increases.

There are several algorithms which fall in this category, from which we mention:

1. the Cimmino method [24], in which the projection routine of the current
vector xk is done onto all hyperplanes, and the end result comes after an
averaging procedure, with equal weights, m, for each equation.

xk+1 = xk + λkA
>D(b− Axk),

where b = bi ∈ Rm and D = 1
m

diag
(

1
‖a1‖22

, 1
‖a2‖22

, . . . , 1
‖am‖22

)
.

2. the Landweber method [77], with the iterative step

xk+1 = xk + γA†(b− Axk), (2.34)
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where 0 < γ < 2/λmax, γ being a gain factor for influencing the convergence
rate and λmax representing the largest eigenvalue of the nonnegative matrix
A†A. When initialized with x = 0, the iterations converge to the minimum
norm least-squares solution.

3. DROP (Diagonal Relaxed Orthogonal Projections) [25], a modified version
of Cimmino’s method. Instead of using equal weights for each linear equa-
tion, the main idea is to divide the iterative step by the number of nonzero
elements in the column j, denoted hereafter by sj, of matrix A ∈ R

m×n

and use orthogonal projections onto the corresponding hyperplanes. The
update equation would read:

xk+1
j = xkj −

λk
sj

m∑
i=1

ai, x
k − bi
‖ai‖2

2

aij, for j = 1, 2, . . . , n.

The values of sj will be much smaller than m, improving the algorithms’
convergence speed.

4. CAV (Component Averaging), an extension of DROP, where each orthog-
onal projection is replaced by a generalized oblique projection. For more
details, we refer the reader to the paper of Censor et. al. [26].

2.2.3.3 (Soft) Discrete Algebraic Reconstruction Technique

Introduced as a fast heuristic algorithm, DART [6] serves in reconstructing bi-
nary images, by assuming object homogeneity, as prior knowledge. The algorithm
alternates between an iterative algebraic method (SIRT) for continuous tomogra-
phy to obtain an initial reconstruction and a segmentation step applied to a set
of boundary pixels, in order to constrain the image to the desired range of gray
values.

However, considering more complicated objects with several transitions (holes),
proved to be rather challenging. Moreover, the authors do not relate any objective
function to the idea behind this method and they show experiments displaying
the weakness of the method with regard to different noise levels .

To overcome this limitation, Bleichrodt et. al. [9] improved the method by
imposing soft constraints on pixel values, in order to permit the noise to spread
all over the image domain, not only on boundary areas.

2.2.3.4 Maximum a Posteriori X-ray Computed Tomography Using Graph
Cuts

Based on maximum a posteriori estimation, Maeda et. al. [83] handles the tomo-
graphic reconstruction problem from a statistical point of view. By supposing
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that the user already knows how many materials there are in the object, they are
able to use this information as a prior, leading to smooth solutions and allowing
the existence of objects that have a high attenuation coefficient, such as metal.
The objective function to be minimized is:

p(x, v|D) ∝ p(D|x) p(x|v)p(v)

⇒E(x, v) = − ln p(D|x)− ln p(x|v)− ln p(v),

where x is the tomographic image, v = {v1, v2, . . . , vJ} is the labelled version
of the tomographic image, J is the number of pixels and D denotes the set of
projections.
The proposed algorithm intends to optimize E(x, v) in an alternating fashion,
considering the scaled conjugate gradient method for the continuous minimization,
i.e. minimization wrt. to x, and graph cuts (see Sect. 2.1.3.2) for the discrete
minimization wrt. to v.

Results using this approach have shown to be effective under low number of
projections and the presence of metal artefacts.

2.2.4 Applications in Industry (Non-Destructive Testing)

Many industrial applications nowadays rely on CT methods to perform quality
inspection on manufactured parts. Automotive, aviation and motorcycle indus-
tries together with their suppliers show a keen interest in the developments that
can be achieved using this technique. The ability to see the inner structure of an
object in its natural functioning position without requiring destructive testing is
highly beneficial for companies, both from a financial and a time point of view.

Other non-destructive methods are also currently widely used, such as tactile or
optical methods. However, tactile methods have the disadvantage that they can
deform the object during measurements, while CT is a non-intrusive approach
and in contrast to optical methods, CT inspection does not suffer from surface
reflection. Moreover, these two approaches, tactile and optical testing, are only
used for surface testing. CT has the advantage that it can also look inside the
object, without performing any structural damage to it.

Failure analysis, assemblies inspection, investigations concerning material prop-
erties (porosity) or dimensional and geometrical measurements are a few applica-
tions that benefit from CT methods. The usual work flow of quality inspection is
to perform the CT scan (in 3D) of the object and then reference it to an already
existing CAD (computer aided design) model to detect irregularities.

2http://www.dgzfp.de/Portals/24/PDFs/BBonline/bb_67-CD/bb67_v08.pdf
3https://grabcad.com/library/diesel-motorcycle-engine/files/Renderings/

cylinderhead92mmChamb18Mar07.SLDPRT
4https://grabcad.com/library/diesel-motorcycle-engine/files/Renderings/

cylinderhead92mmChamb18Mar07.SLDPRT
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Moreover, in industry, unlike medicine, objects tend to be relatively simple and
to have a predefined geometry, which can be mathematically modelled to improve
the overall reconstruction process. One of the main objectives of industrial im-
age processing is to increase the autonomy of the machines up to independent
functioning. This is not possible, for example, in the medical field, where the
computer only has the role to assist the doctor in the treatment and diagnostic
phase of his patients.
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(a) Kaczmarz, SNR = 6.6610. (b) Symmetric Kaczmarz, SNR = 6.6751.

(c) Randomized Kaczmarz, SNR = 6.2396. (d) SART, SNR = 6.7066.

(e) Original image.

Figure 2.19: Behaviour of Algebraic Reconstruction Techniques (ART) for a to-
mographic problem of size 150 × 150, from 36 angles, equally dis-
tributed around a 180◦ angular range, with added random Gaussian
noise to the right hand side vector b. The algorithms ended when the
Normalized Cumulative Periodogram (NCP) criterion was fulfilled,
using parallel beam tomography setup.
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(a) Cimmino, SNR = 6.6813. (b) Landweber, SNR = 6.9919.

(c) CAV, SNR = 6.6803. (d) DROP, SNR = 6.6485.

(e) Original image.

Figure 2.20: Behaviour of Simultaneous Iterative Reconstruction Techniques
(SIRT) for a tomographic problem of size 150 × 150, from 36 an-
gles, equally distributed around a 180◦ angular range, with added
random Gaussian noise to the right hand side vector b.The algo-
rithms ended when the Normalized Cumulative Periodogram (NCP)
criterion was fulfilled, using parallel beam tomography setup.
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Figure 2.21: Motorcycle engine cylinder2: 3D visualisation of whole and cut to-
mogram

Figure 2.22: Motorcycle engine cylinder3: 3D CAD visualisation

Figure 2.23: Motorcycle engine cylinder4: Left: CAD visualization - X cross sec-
tion, Right: CAD visualization - Z cross section.
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CHAPTER 3

CORRECT RECOVERY AND PHASE
TRANSITIONS

In this chapter, we study unique recovery of cosparse signals from limited-angle
tomographic measurements of two- and three-dimensional domains. More pre-
cisely, of compound solid bodies as depicted in Fig. 3.1.

Figure 3.1: The left figure sketches the class of compound solid bodies considered
in this chapter for reconstruction from few tomographic projections.
These objects are similar to the 3D Shepp-Logan phantom (right) and
are composed of different materials in a homogeneous way, but with
unknown geometry. The gradient of the piecewise constant intensity
function is sparse.

We adopt the recently introduced cosparse analysis model from [87], that pro-
vides an alternative viewpoint to the classical synthesis model and is more suitable
to the problem class considered in this chapter. The current work applies and
extends the results from [87] to the 3D recovery problem from few tomographic
projections of three-dimensional images consisting of few homogeneous regions.
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We give a theoretical relation between the image cosparsity and sufficient sam-
pling, validate it empirically and conclude that TV-reconstructions of a class of
synthetic phantoms exhibit a well-defined recovery curve similar to the study in
[95, 96].

The content is structured as following: Section 3.1 characterizes the imaging
scenarios considered in this chapter and throughout this thesis, unless stated oth-
erwise, from the viewpoint of compressive sensing. We work out in more detail in
Section 3.2 that the required assumptions in [91] do not imply relevant recovery
guarantees for the discrete tomography set-ups considered here. In Section 3.3,
we adopt the cosparse analysis model [87] and generalize corresponding results to
the practically relevant three-dimensional case. Aspects of the linear program-
ming formulation used to solve problem (3.7), are examined in Section 3.4. A
comprehensive numerical study underpinning our results is reported in Section
3.5. We conclude in Section 3.6.

The signals which we will be handling, u(x), x ∈ Ω ⊂ R
d, d ∈ {2, 3} are

discretized as follows. Ω is assumed to be a rectangular cuboid covered by
a regular grid graph G = (V,E) of size |V | = n. Accordingly, we identify
V =

∏
i∈[d][ni]0 ⊂ Z

d, ni ∈ N. Thus, vertices v ∈ V are indexed by (i, j)> ∈ Z2

and (i, j, k)> ∈ Z
3 in the case d = 2 and d = 3, respectively, with ranges

i ∈ [n1]0, j ∈ [n2]0, k ∈ [n3]0, and

n = n1n2n3. (3.1)

As a result, discretization of u(x), x ∈ Ω, yields the vector u ∈ Rn, where we keep
the symbol u for simplicity.

Two vertices v1, v2 ∈ V are adjacent, i.e. form an edge e = (v1, v2) ∈ E, if
‖v1 − v2‖1 = 1. We also denote this by v1 ∼ v2.

Remark 3.0.1. Informally speaking, G corresponds to the regular pixel or voxel
grid in 2D and 3D, respectively.

Consider the one-dimensional discrete derivative operator

∂ : Rm → R
m−1, ∂i,j =


−1, i = j,

+1, j = i+ 1,

0, otherwise.

(3.2)

Forming corresponding operators ∂1, ∂2, ∂3 for each coordinate, conforming to the
ranges of i ∈ [n1]0, j ∈ [n2]0, k ∈ [n3]0, and n = n1n2n3, such that (i, j, k) ∈ V ,
we obtain the discrete gradient operator

∇ =

∂1 ⊗ I2 ⊗ I3

I1 ⊗ ∂2 ⊗ I3

I1 ⊗ I2 ⊗ ∂3

 ∈ Rp×n, (3.3)
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where ⊗ denotes the Kronecker product and Ii, i = 1, 2, 3, are identity matrices
with appropriate dimensions. The anisotropic discretized TV-measure is given
by

TV(u) := ‖∇u‖1. (3.4)

The key assumption made through out this chapter is that gradients of func-
tions to be reconstructed are sufficiently sparse.

As a consequence, if the linear system Au = b represents the tomographic imag-
ing set-up with given measurements b ∈ Rm, then the standard `1-minimization
approach

min ‖u‖1 s.t. Au = b, (3.5)

does not apply, because u itself is not sparse. We consider instead, the total
variation criterion

min
u

TV(u) s.t. Au = b, (3.6)

and its nonnegative counterpart

min
u

TV(u) s.t. Au = b, u ≥ 0, (3.7)

that in the continuous case returns the (d− 1)-dimensional Hausdorff measure of
discontinuities of indicator functions [120], with numerous applications in math-
ematical imaging [101]. This provides the natural sparse representation of the
class of functions considered here (cf. Fig. 3.1). Our objective in this chapter
is to establish sampling rates that enable the recovery of u as solution to the
optimization problem (3.6) or (3.7).

For industrial applications additionally motivating our work, we refer to e.g. [23,
58]. In this context, scenarios of limited-angle tomography are relevant to our work
as they enable minimization of acquisition time and related errors, affecting the
quality of projection measurements and in turn, object reconstruction.

3.1 Tomographic Sensing Matrices

Depending on the application, different scanning geometries are used in CT imag-
ing, as mentioned in Sect. 2.2.1.2. In the present work, we adopt a simple dis-
cretized model based on an image u(x), x ∈ Ω ⊂ R

d, d ∈ {2, 3}, that represents
the inhomogeneity of Ω and consists of an array of unknown densities uj, j ∈ [n].
The model comprises algebraic equations for these unknowns in terms of mea-
sured projection data. To set up these equations, the sensing device measures
line integrals of the object attenuation coefficient along X-rays Li, i ∈ [m], along
some known orientations. The i-th corresponding measurement obeys

bi :≈
∫
Li

u(x)dx ≈
n∑
j=1

uj

∫
Li

Bj(x)dx =
n∑
j=1

ujAij. (3.8)
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3.1. TOMOGRAPHIC SENSING MATRICES

The values Aij that form the measurement or projection matrix A, depend on the
choice of the basis function. We assume Bj are cube- or square-shaped uniform
basis functions, the classical voxel in 3D or pixel in 2D.

The main task studied in this chapter concerns estimation of the weights uj
from the recorded measurements bi and solving the noiseless setting Au = b.
The matrix A has dimensions (# rays =: m) × (# voxel/pixel =: n), where
m � n. Since the projection matrix encodes the incident relation between rays
and voxels/pixels, the projection matrix A will be sparse. Based on additional
assumptions on u, we will devise conditions for exact recovery of u from the
underdetermined linear system Au = b.

3.1.1 Imaging Set-Up

For simplicity, we will assume that Ω is a cube in 3D or a square in 2D and that
Ω = [0, d]3 is discretized into d3 voxels, while Ω = [0, d]2 is discretized into d2

pixels. We consider a parallel ray geometry and choose the projection angles such
that the intersection of each line with all adjacent cells is constant, thus yielding
binary projection matrices after scaling. This simplification is merely made in
order to obtain a structure in the projection matrix which allows to compute
relevant combinatorial measures. We stress however that other discretization
choices are possible and lead to similar results.

2D Case: 3, . . . , 8 Projection Directions

We set Ω = [0, d]2 and obtain the binary projection matrices according to (3.8)
from few projecting directions (three to eight), compare Fig. 3.2. We summarize
the used parameters in Table 3.1.

# proj. dir. m n projection angles
3 4d− 1 d2 0◦, 90◦, 45◦

4 6d− 2 d2 0◦, 90◦,∓45◦

5 7d+ bd
2
c − 2 d2 0◦, 90◦,∓45◦, arctan(2)

6 8d+ 2bd
2
c − 2 d2 0◦, 90◦,∓45◦,∓ arctan(2)

7 9d+ 3bd
2
c − 2 d2 0◦, 90◦,∓45◦,∓ arctan(2), arctan(0.5)

8 10d+ 4bd
2
c − 2 d2 0◦, 90◦,∓45◦,∓ arctan(2),∓ arctan(0.5)

Table 3.1: Dimensions of projection matrices in 2D.

3D Case: 3 or 4 Projection Directions

We consider the imaging set-up depicted by Fig. 3.3 and Fig. 3.4. The projection
angles were chosen again such that the intersection of each ray with all adjacent
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Figure 3.2: Eight different projecting directions along with projecting rays for
90◦, 0◦, ∓45◦, ∓ arctan(2), and ∓ arctan(0.5) (from left to right, top
to bottom). Note that the intersection segments for each projection
ray with all adjacent pixel are equal. As a consequence, we obtain
after appropriate scaling, binary projection matrices. Each sensor
resolution varies with the projection angle, however. The illustration
above depicts Ω = [0, d]2 with d = 6.

voxels is constant. After appropriate scaling the resulting measurement matrices
are binary as well.

Figure 3.3: Imaging set-up for three orthogonal projections corresponding to each
shaded plane of the cube. From left to right: Cell centers projected
along each direction are shown as dots for the case d = 5. The cube
Ω = [0, d]3 is discretized into d3 cells and projected along 3 · d2 rays.
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Figure 3.4: Imaging set-up for four projecting directions corresponding to the im-
age planes shown as two pairs in the left and center panel respectively.
Right panel: Voxel centers projected onto the first image plane are
shown as dots for the case d = 5. The cube Ω = [0, d]3 is discretized
into d3 voxel and projected along 4 · d(2d− 1) rays.

It has been shown in [30] that binary matrices cannot satisfy RIPδ,k unless the
numbers of rows is Ω(k2).

Theorem 3.1.1. [30, Thm. 1] Let A ∈ R
m×n be any 0/1-matrix that satisfies

RIPδ,k. Then

m ≥ min

{(
1− δ
1 + δ

)2

k2,
1− δ
1 + δ

n

}
.

Taking into account that there exists spark(A)-columns in A which are linearly
dependent, we obtain, together with m� n, the following result.

Corollary 3.1.2. Let δ ∈ (0, 1). A necessary condition for A to satisfy the RIPδ,k
for all k-sparse vectors is that

k ≤ min

{
1 + δ

1− δ
m

1
2 , spark(A)− 1

}
.

3.1.2 Application to Considered Scenarios

For our particular matrices A defined in Sect. 3.1.1 we obtain, along the lines
of [94, Prop. 3.2], that spark(A) is a constant for all dimensions d with m < n,
while the number of measurements obeys O(dd−1), d ∈ {2, 3}. Compare also
Fig. 3.5, left. However, we cannot be sure that A possesses the RIP√2−1,σ, with
σ = spark(A) − 1, unless we compute the singular values of all submatrices
containing σ or less columns of A.

From the viewpoint of CS, the poor properties of A rest upon the small spark
of A. In order to increase the maximal number of columns such that all column
collections of size k (or less) are linearly independent, we can add to the entries
of A small random numbers. Due to the fact that rank(A) almost equals m
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in all considered situations, the probability that k-arbitrary columns are linearly
independent slowly decreases from 1, when k < spark(A), to 0, when k > rank(A).
The perturbed matrix Ã is computed by uniformly perturbing the non-zero entries
Aij > 0 to obtain Ãij ∈ [Aij − ε, Aij + ε], and by normalizing subsequently all
column vectors of Ã. In practice, such perturbations can be implemented by
discretizing the image by different basis functions or choose their locations on an
irregular grid.

As illustrated by Figure 3.1, considering functions u(x) with sparse gradients
and the corresponding optimization criterion TV(u) for recovery (3.6), we may
boost recovery performance in severely undersampled tomographic scenarios, de-
spite the poor properties of measurement matrices A.

3.2 Sparsity and TV-Based Reconstruction

It has been well known empirically that solving the problem

min ‖∇u‖1 s.t. ‖Au− b‖2 ≤ ε (3.9)

can provide high-quality and stable image recovery. Until the recent work [91],
however, it had been an open problem to offer provable theoretical guarantees,
beyond incomplete Fourier measurements [21, 20]. The gradient operator ∇ is
not an orthonormal basis or a tight frame, thus neither the standard theory of
CS nor the theoretical extensions in [18] concerning the analysis model apply to
(3.9), even for images with truly sparse gradient ∇u.

The recent work [91, 90] proves that stable recovery is possible via the convex
program (3.9) and considers a general matrix A which is incoherent with the
multidimensional Haar wavelet transform and satisfies a RIP condition. The
Haar wavelet transform provides a sparsifying basis for 2D and 3D images and is
closely related to the discrete gradient operator. In the remainder of this section,
we denote the discrete multidimensional Haar wavelet transform by H and refer
the reader to the definition of [90, p. 6]. The following theorem summarizes the
main results of [91, Thm. 5, Thm. 6], and [90] and specializes them to the case of
anisotropic TV (3.4) as considered in the present chapter, see also the remarks
following [91, Thm. 6] and [90, Main Thm.].

Theorem 3.2.1. Let d = 2N be a power of two and n = dd, d ∈ {2, 3}. Further,
let H be the discrete multidimensional Haar transform, and let A ∈ R

m×n such
that AH−1 satisfies RIPδ,5k with δ < 1

3
. Then for any u ∈ Rn with b = Au + ν

and ‖ν‖2 ≤ ε, the solution u of (3.9) satisfies the gradient error bound

‖∇u−∇u‖1 ≤ ‖∇u− (∇u)k‖1 +
√
kε,

and the signal error bound

‖u− u‖2 ≤ log
(n
k

) ‖∇u− (∇u)k‖1√
k

+ ε.
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Note that recovery is exact when ∇u is exactly k-sparse and ‖ν‖2 = 0.

The RIP assumption on AH−1 = AH> implies that N (A) cannot contain any
signals admitting a k-sparse wavelet expansion, apart from the zero vector, since
‖Av‖2 = ‖AH−1Hv‖2 ≈ (1 ± δ)‖Hv‖2 = (1 ± δ)‖v‖2, with the last equality
holding because H>H = I.

There exist sensing matrices A ∈ R
m×n which satisfy the above conditions,

e.g. RIP1/3,k, where k can be as large as O(m/ log(m/n)). This class includes
matrices with i.i.d. standard Gaussian or ±1 entries, random submatrices of the
Fourier transform and other orthogonal matrices.

Figure 3.5: The sparsest nullspace vector uN ∈ N (A)\{0} is shown on the left as
a 16× 16 image, for matrices A from Section 3.1.1 with 6,7 or 8 pro-
jecting directions, where d = 16, compare Table 3.1. Gray indicates
components with value 0, white the value 1 and black the value −1.
Projections along all rays depicted in Fig. 3.2 sum up to zero. This
shows that spark(A) = 16 and the matrix has a NSP of order 7. These
numbers do not change with the problem’s size for any d ≥ 16. The
image on the right depicts the bivariate Haar-transformed nullspace
basis vector HuN , which has 32 nonzero elements.

In our scenario, however, due to the low RIP order of the tomographic pro-
jection matrix A, for any image dimension d, the RIP order of AH−1 does not
improve significantly. To illustrate this point, let us consider further the bivariate
discrete Haar transform H and a sparse nullspace vector uN with ‖uN‖0 = 16,
depicted in Fig. 3.5, left panel, of the 2D projection matrix A from 6, 7 or 8
projections. Then 0 = ‖AuN‖2 = ‖AH−1HuN‖2 holds with ‖HuN‖0 = 32, see
Fig. 3.5, right. Thus, the matrix AH−1 cannot satisfy RIP of an order larger than
32− 1, and this holds for any d ≥ 16. Consequently, suppose it does accordingly
satisfy RIP1/3,31, then Thm. 3.2.1 would imply exact recovery of any image with
a 6-sparse image gradient. Unfortunately, such an extremely low sparsity is of
limited use for practical applications.
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3.3 Cosparsity and TV-Based Reconstruction

In this section we derive bounds for the number m of measurements, depending
on the cosparsity of the vector u , that should be reconstructed, with respect to
the analysis operator B. This requires to estimate the dimension of the subspace
of `−cosparse vectors. We relate this problem to the isoperimetric problem on
grid graphs studied by [10]. In this more general way, we reproduce the estimate
proved differently in [87] for the 2D case and additionally provide an estimate for
the 3D case. For comparison and completion, we mention the uniqueness results
from [82, 87].

3.3.1 Basic Uniqueness Results

This section collects some results from [87] that were derived based on [82].

Proposition 3.3.1 (Uniqueness with known cosupport). Let A ∈ R
m×n and

B ∈ Rp×n be given measurement and analysis operators and assume the rows of
the matrix ( AB ) are linearly independent. Then, if the cosupport Λ ⊂ [p] of the
`-cosparse vector u ∈ Rn is known, the condition

max
|Λ|≥`

dimWΛ ≤ m (3.10)

is necessary and sufficient for recovery of every such vector from the measure-
ments b = Au.

We remind the reader that the quantityWΛ stands for the subspace of `−cosparse
signals:

∪
Λ⊂[p] : |Λ|=`

WΛ,

where WΛ = span (ωj, j ∈ Λ)⊥, with ωj being the rows of the matrix Ω.
Proposition 3.3.1 says that if the dimension of the subspaceWΛ increases, then

more measurements are needed for recovery of `-cosparse vectors u ∈ WΛ. The
dimension dimWΛ increases for decreasing `.

Proposition 3.3.2 (Uniqueness with unknown cosupport). Let A ∈ R
m×n and

B ∈ Rp×n be given measurement and analysis operators, and assume the rows of
the matrix ( AB ) are linearly independent. Then a necessary condition for unique-
ness of a `-cosparse solution u to the measurement equations Au = b is

κ̃B(`) ≤ m, κ̃B(`) := max
{

dim(WΛ1 +WΛ2) : |Λi| ≥ `, i = 1, 2
}
, (3.11)

whereas a sufficient such condition is

max
|Λ|≥`

dimWΛ ≤
m

2
, (3.12)
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Roughly speaking, lack of knowledge of Λ implies the need of twice the number
of measurements for unique recovery.

Remark 3.3.1. Both propositions assume the rows of A and B are independent.
This is neither the case for typical sensor matrices A used in discrete tomography
nor in the specific case B = ∇ considered next.

Denoting κB(`) := max|Λ|≥` dimWΛ, we will show in our experiments, that the
estimates of κB(`) = κ∇(`) derived in Sect. 3.3.2 correctly display the relation-
ship between the basic parameters involved, up to some scale factor discussed in
Sect. 3.5.

3.3.2 Application to the Analysis Operator ∇
In order to apply the results of Sect. 3.3.1, the function κB(`) has to be evaluated,
or estimated, in the case B = ∇.

For a given cosupport Λ ⊂ E, define the set of vertices covered by Λ,

V (Λ) = {v ∈ V : v ∈ e for some e ∈ Λ}, (3.13)

and denote the number of connected components of V (Λ) by |V (Λ)|∼. Due to
definition (3.3) of the analysis operator ∇ and (2.26), each component (∇Λu)i
corresponds to an edge e = (v1, v2) with u(v1) = u(v2). Therefore, following
the reasoning in [87], u ∈ WΛ = N (∇Λ) if and only if u is constant on each
connected component of V (Λ). Hence dimWΛ equals the size of the remaining
vertices |V \ V (Λ)| plus the degree of freedom for each connected component,

dimWΛ = |V | − |V (Λ)|+ |V (Λ)|∼. (3.14)

Now, in view of κB(`) := max|Λ|≥` dimWΛ, consider some Λ with |Λ| = ` and the
problem

max
Λ: |Λ|=`

dimWΛ = |V | − min
Λ: |Λ|=`

(|V (Λ)| − |V (Λ)|∼). (3.15)

Clearly, the minimal value of the last term is |V (Λ)|∼ = 1. It will turn out below
that this value is attained for extremal sets Λ and that the maximum in κB(`) is
achieved for |Λ| = `.

We therefore temporarily ignore the last term and focus on the second term.
The problem is to minimize over all subsets Λ ⊂ E of cardinality |Λ| = ` the
number |V (Λ)| of vertices covered by Λ. We establish this relationship by consid-
ering instead the problem of maximizing the set Λ over all sets S := V (Λ) ⊆ V
of fixed cardinality s = |S(Λ)|. This problem was studied in [10] for regular grid
graphs G = (V,E) with vertex set V = [q]d0 with equal dimension along each
coordinate, in terms of the problem

max
S : |S|=s

|Inte(S)|, (3.16)
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Figure 3.6: From left to right, top to bottom: Edge sets Λ corresponding to the
subsets S = V (Λ) ⊆ V = [q]d0, q = 5, d = 2, of cube-ordered vertices
of cardinalities s = |S| = 1, 2, . . . , |V |. According to Thm. 3.3.4, these
sets belong to the maximizers of |Λ| among all subsets V (Λ) ⊆ V with
fixed s = |V (Λ)|.

where Inte(S) denotes the edge interior of a set S ⊂ V (G),

Inte(S) := {(v1, v2) ∈ E : v1, v2 ∈ S}, (3.17)

which equals Inte(S) = Λ for our definition S = V (Λ).

Theorem 3.3.3 ([10, Thm. 13]). Let S be a subset of [q]d0, with s = |S|, q ≥
3, d ≥ 2. Then

|Inte(S)| ≤ max
{
ds(1− s−1/d), dqd(1− 1/q)

(
1− (1− s/qd)1−1/d

)}
. (3.18)

Some sets S = V (Λ) ⊆ V corresponding to maximal sets Λ = Inte(S) are also
determined in [10]. The following corresponding assertion is based on the cube
order or vertices v ∈ V = [q]d0 (identified with grid vectors v = (v1, . . . , vd)

>):
v ≺ v′ ⇔ w(v) < w(v′), where w(v) =

∑
i∈[d] 2i+dvi . See Figure 3.6 for an

illustration.

Theorem 3.3.4 ([10, Thm. 15]). Let S ′ ⊂ V = [q]d, and let S be the set of the
first s = |S ′| vertices in the cube order on V . Then |Inte(S

′)| ≤ |Inte(S)|.

Thm. 3.3.4 says (cf. Fig. 3.6) that singly connected mimimal sets V (Λ) in (3.15)
are achieved, that is |V (Λ)|∼ = 1. Furthermore, these sets {Λ}|Λ|≥` are nested.
Hence the maximum in κB(`) is achieved for |Λ| = `.

A closer inspection of the two terms defining the upper bound (3.18) shows
that the first term of the r.h.s. is larger if s ≥ dd = 4 in the 2D case d = 2,
respectively, if s ≥ dd = 27 in the 3D case d = 3. The corresponding values of the
bound are |Inte(S)| ≤ 4 and |Inte(S)| ≤ 54, respectively. As a consequence, we
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Figure 3.7: The bounds (3.20a) and (3.20b) shown in the left and right panel re-
spectively, as dashed lines, for d = 10, as a function of `. The solid
lines show empirical expected values of κ∇(`) computed by averaging
over 100 analysis matrices BΛ for each value ` = |Λ|. The gap to the
upper bound simply shows that the extremal sets discussed in con-
nection with Theorem 3.3.4 are not observed in random experiments.
For example, it is quite unlikely that random cosupports Λ are singly
connected.

consider the practically relevant first term. Setting ` = |Inte(S)| = |V (Λ)| and
solving the equality for s (due to Thm. 3.3.4) yields

s =
1

2
(1 + `+

√
1 + 2`) (d = 2) (3.19a)

s =
1

3

(
21/3 1 + 2`

t(`)
+
(
1 + `+

1

21/3
t(`)
))

(d = 3) (3.19b)

t(`) =
(

2 + 6`+ 3`2 +
√

(4 + 9`)`3
)1/3

(3.19c)

≥ 1

3

(
1 + `+ (3`2)1/3 + 2(`/3)1/3

)
+O(`−1/3). (3.19d)

Inserting s, or simpler terms lower bounding s, for |V (Λ)| in (3.15) and putting
all conclusions together, yields for κB(`) and B = ∇:

Lemma 3.3.5. Let G = (V,E) be a regular grid graph with V = [q]d0, n = |V | =
q3. Then

∀` > 4, κ∇(`) ≤ n− 1

2
(`+
√

1 + 2`) +
1

2
, (d = 2), (3.20a)

∀` > 54, κ∇(`) ≤ n− 1

3

(
`+

3
√

3`2 + 2
3

√
`

3

)
+

2

3
, (d = 3). (3.20b)

Figure 3.7 illustrates these bounds.

Remark 3.3.2. Up to the constant 1 under the square root, the bound (3.20a)
for the 2D case equals the bound derived in a different way in [87]. We provided
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the bounds (3.20) based on general results in [10] that apply to grid graphs in
any dimension d ≥ 2.

We conclude this section by applying Propositions 3.3.1 and 3.3.2.

Corollary 3.3.6. Under the assumptions of Propositions 3.3.1 and 3.3.2, a `-
cosparse solution u to the measurement equations Au = b will be unique if the
number of measurements satisfies

m ≥ n− 1

2

(
`+
√

2`+ 1− 1
)

(d = 2), (3.21a)

m ≥ n− 1

3

(
`+

3
√

3`2 + 2
3

√
`

3
− 2
)

(d = 3) (3.21b)

in case the cosupport Λ is known, and

m ≥ 2n− (`+
√

2`+ 1− 1) (d = 2), (3.22a)

m ≥ 2n− 2

3

(
`+

3
√

3`2 + 2
3

√
`

3
− 2
)

(d = 3) (3.22b)

in case the cosupport Λ is unknown.

The above derived bounds on the required image cosparsity guarantees unique-
ness in case of known or unknown cosupport, and imply that recovery can be
carried out via

min
u
‖Bu‖0 s.t. Au = b, BΛu = 0, (3.23)

when the cosupport is known, or via

min
u
‖Bu‖0 s.t. Au = b, (3.24)

when the cosupport is unknown. In Sect. 3.5, we compare these relationships
to numerical results involving convex relaxations of (3.23) and (3.24), studied in
Sect. 3.4.

3.4 Recovery by Linear Programming

In this section, uniqueness of the optimum u solving problem (3.7) is studied.
The resulting condition is necessary and sufficient for unique recovery u = u∗ of
any `-cosparse vector u∗ that satisfies Au∗ = b and has cosupport Λ, |Λ| = `,
with respect to the analysis operator B = ∇.

We turn problem (3.7) into a standard linear programming formulation. Defin-
ing

M :=

(
B −I I
A 0 0

)
, q :=

(
0
b

)
(3.25)
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and the polyhedral set

P := {w ∈ Rn+2p : Mw = q, w ≥ 0}, w :=

(
u
v

)
=

 u
v1

v2

 , (3.26)

problem (3.7) equals the linear program (LP)

min
w∈P
〈c, w〉 = min

(u,v1,v2)∈P
〈1, v1 + v2〉, c =

0
1

1

 . (3.27)

Let w = (u, v) = (u, v1, v2) solve (3.27). We assume throughout

ui > 0, i ∈ [n] (3.28)

which is not restrictive with respect to applications (u may e.g. represent strictly
positive material densities). Based on w, we define the corresponding index sets

J := {i ∈ [dim(w)] : vi = 0}, J := {i ∈ [dim(v)] : vi = 0}, wJ = vJ , ∀w =

(
u
v

)
.

(3.29)

Theorem 3.4.1 ([84, Thm. 2(iii)]). Let w be a solution of the linear program
(3.27). The following statements are equivalent:

(i) w is unique.

(ii) There exists no w satisfying

Mw = 0, wJ ≥ 0, 〈c, w〉 ≤ 0, w 6= 0. (3.30)

We turn Theorem (3.4.1) into a nullspace condition w.r.t. the sensor matrix A,
for the unique solvability of problems (3.27) and (3.7). This condition is stated
as Corollary 3.4.3 below, after a preparatory Lemma.

Lemma 3.4.2. Let w be a solution of the LP (3.27). Then the cardinality of the
index set J defined by (3.29) is

|J | = 2`+ k = p+ `, |J c| = 2p− |J | = k, k := p− `. (3.31)

Proof. The minimal objective function value (3.27) is
∑

i∈[p] v
1
i +v2

i with all sum-

mands being non-negative. Since Bu = v1 − v2, (Bu)Λ = 0 and optimality of v
imply v1

Λ = v2
Λ = 0, which contributes 2|Λ| = 2` indices to J . Furthermore, if

(Bu)i = v1
i − v2

i < 0, then optimality of v implies v1
i = 0, v2

i > 0 and vice versa if
(Bu)i > 0. Hence Λc supports |Λc| = p− ` = k vanishing components of v.
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Corollary 3.4.3. Let w = (u, v1, v2) be a solution of the linear program (3.27)
with corresponding index sets J, J given by (3.29), and with component u that
solves problem (3.7) and has cosupport Λ with respect to B. Then w resp. u are
unique if and only if

∀w =

(
u
v

)
, v =

(
v1

v2

)
s.t. u ∈ N (A) \ {0} and Bu = v1 − v2 (3.32)

the condition

‖(Bu)Λ‖1 >
〈
(Bu)Λc , sign(Bu)Λc

〉
(3.33)

holds. Furthermore, any unknown `-cosparse vector u∗ with Au∗ = b can be
uniquely recovered as solution u = u∗ to (3.7) if and only if, for all vectors u
conforming to (3.32), the condition

‖(Bu)Λ‖1 > sup
Λ⊂[p] : |Λ|=`

sup
u∈WΛ

〈
(Bu)Λc , sign(Bu)Λc

〉
(3.34)

holds.

Remark 3.4.1. Condition (3.33) corresponds up to a magnitude | · | operation
applied to the right-hand side to the statement of [87, Thm. 7]. The authors
do not present an explicit proof, but mention in [87, App. A] that the result
follows by combining a strictly local minimum condition with convexity of the
optimization problem for recovery.

Our subsequent explicit proof elaborates basic LP-theory due to [84] and Thm. 3.4.1.

Proof of Corollary 3.4.3. Theorem (3.4.1) asserts that w is unique if and only
if for every w ∈ N (M) \ {0} with wJ ≥ 0 the condition 〈c, w〉 > 0 holds. In
view of the definition (3.25) of M , vectors w ∈ N (M) \ {0} are determined by
(3.32). Condition (3.32) excludes vectors 0 6= w = (0, v1, v2) ∈ N (M) because
then v1 = v2 and wJ ≥ 0 implies exclusion of those w by 〈c, w〉 ≤ 0 in (3.30).

It remains to turn the condition (3.30) into a condition for vectors u given by
vectors w = (u, v1, v2) satisfying (3.32). To this end, we focus on such vectors w
with wJ ≥ 0 that minimize 〈c, w〉. We have wJ = vJ by (3.29), and the proof of
Lemma 3.4.2 shows that vJ ≥ 0 decomposes into

• 2` conditions v1
Λ, v

2
Λ ≥ 0 leading to the choice{

v1
i = (Bu)i ≥ 0, v2

i = 0, if (Bu)i ≥ 0,

v1
i = 0, v2

i = −(Bu)i ≥ 0, if (Bu)i ≤ 0,
i ∈ Λ (3.35)

minimizing 〈c, w〉;
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• k conditions supported by Λc of the form: either v1
i ≥ 0 or v2

i ≥ 0 depending
on (Bu)i > 0 or (Bu)i < 0, i ∈ Λc. In order to minimize 〈c, w〉, this leads
to the choice

v1
i = 0, v2

i = −(Bu)i ≤ 0, if (Bu)i ≥ 0, (Bu)i > 0,

v1
i = 0, v2

i = (Bu)i ≥ 0, if (Bu)i ≤ 0, (Bu)i > 0,

v1
i = (Bu)i ≥ 0, v2

i = 0, if (Bu)i ≥ 0, (Bu)i < 0,

v1
i = (Bu)i ≤ 0, v2

i = 0, if (Bu)i ≤ 0, (Bu)i < 0,

i ∈ Λc.

(3.36)

By (3.27), 〈c, w〉 = 〈1, v1 + v2〉 = 〈1, (v1 + v2)Λ〉 + 〈1, (v1 + v2)Λc〉, and (3.35)
shows that 〈1, (v1+v2)Λ〉 = ‖(Bu)Λ‖1 whereas (3.36) shows that 〈1, (v1+v2)Λc〉 =
〈(Bu)Λc ,− sign(Bu)Λc〉. Thus 〈c, w〉 ≤ 0 ⇔ ‖(Bu)Λ‖1−〈(Bu)Λc , sign(Bu)Λc〉 ≤
0, and non-existence of such w means 〈c, w〉 > 0 for every such w, which equals
(3.32) and (3.33).

Finally, generalizing condition (3.33) to all vectors u∗ ∈ WΛ and all possible
cosupports Λ leads to (3.34).

Conditions (3.33) and (3.34) clearly indicate the direct influence of cosparsity
on the recovery performance: If ` = |Λ| increases, then these conditions will more
likely hold.

On the other hand, these results are mainly theoretical since numerically check-
ing (3.34) is infeasible. This motivates the comprehensive experimental assess-
ment of recovery properties reported in Sect. 3.5.

3.5 Numerical Experiments

In this section, we relate the previously derived bounds on the required image
cosparsity that guarantees uniqueness in case of known or unknown cosupport Λ
to numerical experiments.

3.5.1 Set-Up

This section describes how we generate 2D or 3D images for a given cosparsity `
and how we acquire measurements.

Test Images

Recall from Sect. 2.1.2.2, that the sparsity of the image gradient is denoted by k
and the cosparsity by `,

k = ‖Bu‖0 = |supp(Bu)|, B ∈ Rp×n, (3.37a)

` = p− ‖Bu‖0 = p− k, (3.37b)

64
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Λ := {r ∈ [p] : (Bu)r = 0} denotes the cosupport of the input image u with
respect to the analysis operator B, and Λc = [p] \ Λ denotes the complement of
the set Λ.

Using the parametrization

ρ :=
k

n
(3.38)

with

k := p− ` and n =

{
d2 in 2D

d3 in 3D
, p =

{
2d(d− 1) in 2D

3d2(d− 1) in 3D
,

(3.39)

we generated random 2D and 3D images composed of randomly located ellipsoids
with random radii along the coordinate axes. Fig. 3.8 and 3.9 depict a small
sample of these images for illustration and provide the parameter ranges.

Figure 3.8: Random images with varying cosparsity ` = p − k, parametrized by
ρ (3.38). For each dimension d = 80 · · · 180, random images were
generated for ρ = 0.005 · · · 0.22. The figure shows a sample image for
a subset of increasing values of ρ and d = 120.

Tomographic Projections

Images in 2D are undersampled by the projection matrices from Sect. 3.1.1, with
parameters listed in Table 3.1. In 3D we consider the two projection matrices
from Sect. 3.1.1, see Fig. 3.3 and Fig. 3.4. We also consider a perturbation
of each A. Each perturbed matrix Ã has the same sparsity structure as A, but
random entries drawn from the standard uniform distribution on the open interval
(0.9, 1.1).
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Figure 3.9: Random images with varying cosparsity ` = p − k, parametrized by
ρ (3.38). For dimension d = 31, random images were generated for
ρ = 0.0032 · · · 1.01. The figure shows a sample image for five different
values of ρ, each plotted from three different viewpoints.

3.5.2 Optimization

To recover a `-cosparse test image u, we solve the LP relaxation (3.27) of (3.24),
where we take into account the nonnegativity of u. The relaxation is obtained
from (3.7) by considering two additional variables v1 and v2 which represent the
positive and negative part of Bu. In cases where we assume that Λ is known, we
add the constraint BΛu = 0 and solve the LP with the same objective as (3.27),
but with the polyhedral feasible set defined by

M :=

BΛc −IΛc IΛc

BΛ 0 0
A 0 0

 and q :=

0
0
b

 . (3.40)
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The resulting LPs were solved with the help of a standard LP solver 1. The
reconstruction is considered successful if the solution u of the above described
LPs is within a small distance from the original `-cosparse u generating the data,
and ‖u− u‖2 ≤ εn holds, with ε = 10−6 in 2D and ε = 10−8 in 3D.

3.5.3 Phase Transitions

Phase transitions display the empirical probability of exact recovery over the
space of parameters that characterize the problem (cf. [41]). Our parametrization
relates to the design of the projection matrices A ∈ Rm×n. Because both m and
n depend on d, we choose d as an oversampling parameter, analogously to the
undersampling parameter ρ = m

n
used in [41].

We analyze the influence of the image cosparsity, or equivalently of the image
gradient sparsity, on the recovery via (3.27) or (3.40). We assess empirical bounds
in relation with the theoretically required sparsity that guarantees exact recovery,
described as an empirical phase transition of ρ depending on d. This phase
transition ρ(d) indicates the necessary relative sparsity ρ to recover a `-cosparse
image with overwhelming probability by convex programming.

For each d ∈ {80, 90, . . . , 170, 180} and for each relative sparsity ρ, we gen-
erated 70 images for the 2D case and 50 images for the 3D case, as illustrated
in Sect. 3.5.1, together with corresponding measurements. This in turn gave us
d, n,m and k, defining a point (d, ρ) ∈ [0, 1]2. This range was discretized into cells
so as to accumulate in a (d, ρ) cell a 1 if the corresponding experiment was suc-
cessful (exact recovery) and 0 otherwise. In 2D, we performed 10 or 30 such runs
for each (d, ρ) pair, for unknown or known cosupport respectively. The success
rate of image reconstruction is displayed by gray values: black ↔ 0% recovery
rate, white↔ 100% recovery rate. In 3D, we analyzed the behavior for two image
sizes, d = 31 and d = 41. The same reasoning as in the 2D case was applied,
except that now instead of performing one test with 10 experiments, we ran 6
tests with 30 experiments each, in both cases of unknown and known cosupport.
We show the mean value averaged over all 6 tests.

Recovery of 2D Images

The results are shown in Fig. 3.10 and Fig. 3.11. The empirical transitions agree
with the analytically derived thresholds up to a scaling factor α. The values of α
are listed in Table 3.2. The accordingly rescaled curves are shown as dotted lines
in the plots.

All plots display a phase transition and thus exhibit regions where exact image
reconstruction has probability equal or close to one.

1MOSEK http://mosek.com/
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α-values in 2D
d Cosupport Measurements 3P 4P 5P 6P

80 . . . 180
Known

unperturbed 0.9120 - - -
perturbed - - - -

Unknown
unperturbed 1.0026 1.0029 1.0034 0.9970
perturbed 1.0056 1.0051 1.0019 1.0039

Table 3.2: The scaling factors of the theoretical curves (3.21a) and (3.22a) for
known and unknown cosupport respectively.

Recovery of 3D Images

The results are shown in Fig. 3.12 and Fig. 3.13 for d = 31 and d = 41, and
summarized in Fig. 3.14. The empirical phase transitions differ again from the
analytically derived thresholds 3.21b and 3.22b only by a scaling factor α. These
values are listed as Table 3.3. The rescaled curves are shown as dotted lines in
the plots. Fig. 3.14 also relates the critical sparsity of the gradient to the critical
sparsity estimated in [95, 96], which in turn implies exact recovery via (3.5).

α-values in 3D
# proj. dir. Cosupport Measurements d = 31 d = 41

3
Known

unperturbed 0.9005 0.9109
perturbed 0.8542 0.8760

Unknown
unperturbed 1.0818 1.0634
perturbed 1.0262 1.0226

4
Known

unperturbed 0.9988 0.9937
perturbed 0.8519 0.8868

Unknown
unperturbed 1.3185 1.223
perturbed 1.1247 1.0909

Table 3.3: The scaling factors of the theoretical curves (3.21b) and (3.22b) for
known and unknown cosupport respectively.

3.5.4 Discussion

Several observations are in order.

• Perturbation of projection matrices brings no significant advantage in the
practically relevant case of unknown co-support. The empirical transitions
will remain the same for perturbed and unperturbed matrices. This is very
different to the `1-minimization problem (3.5), where perturbation boosts
the recovery performance significantly as shown in [95].
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• In the case of known co-support, when BΛu = 0 is added as additional con-
straint, unperturbed matrices perform better. We notice that the empirical
phase transition is below the red curve, and deduce that linear dependencies
might be beneficial when the co-support is known.

• When increasing the number of projecting directions (4,5,6 or more) the dif-
ferences between estimated (dashed) and theoretical (continuous line) phase
transition become smaller (clearly visible for unknown co-support results).
This might be due to the fact that linear dependencies between the columns
(and rows) of A become “rare”, and the assumptions of Propositions 3.3.1
and 3.3.2 are more likely to be satisfied.

• In 3D the difference between empirical phase transitions for 3 and 4 pro-
jecting directions is very small, i.e. relative phase transitions are almost
equal. This is different to the 2D case above. We currently do not have an
explanation for this phenomenon.

• The log-log plot in Figure 3.14 shows that phase transitions in 3D exhibit
a power law behavior, similar to the theoretical phase transitions for `1-
recovery from [95], [96]. Moreover, the plot also shows the scaling exponent
of the green and red curves is higher, which results in significantly higher
sparsity levels of the image gradient then image sparsity which allow exact
recovery for big volumes and large d.

3.6 Conclusion

We studied the cosparsity model in order to theoretically investigate conditions
for unique signal recovery from severely undersampled linear systems, that in-
volve measurement matrices whose properties fall far short of the assumptions
commonly made in the compressed sensing literature. Extensive numerical exper-
iments revealed a high accuracy of the theoretical predictions, up to a scale factor
caused by slight violations in practice of our mathematical assumptions. Unique
recovery can be accomplished by linear programming that in principle copes with
large problem sizes. The signal class covered by the cosparsity model seems broad
enough to cover relevant industrial applications of non-standard tomography, like
contactless quality inspection.
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Figure 3.10: Phase transitions for the unperturbed matrix A, 2D case, 3, 4, 5 and
6 projecting directions (top to bottom), with unknown (left column)
and known (right column) cosupport. The continuous green and red
lines depict the theoretical curves (3.22a) and (3.21a) respectively.
The dashed lines correspond to the empirical threshold, which are
all scaled versions of (3.22a) (left column) or (3.21a) (right column)
with scaling factors α summarized in Table. 3.2.70
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Figure 3.11: Phase transitions for the perturbed matrix Ã, 2D case, 3, 4, 5 and 6
projections (top to bottom), with unknown (left column) and known
(right column) cosupport. The continuous green and red lines depict
the theoretical curves (3.22a) and (3.21a) respectively. The dashed
lines correspond to the empirical threshold, which are all scaled ver-
sions of (3.22a) (left column) or (3.21a) (right column) with scaling
factors α listed in Table. 3.2.71
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Figure 3.12: Empirical probability (6× 30 trials) of exact recovery by total vari-
ation minimization (3.7) via the unperturbed (blue line) and per-
turbed (black line) matrices from Section 3.1.1, Fig. 3.3 and Fig.
3.4, for 3 (top row) and 4 (bottom row) projecting directions, re-
spectively, and d = 31. The left column shows the decay of the
recovery probability when the cosupport is unknown using both per-
turbed and unperturbed projecting matrices, while the right one,
shows results for known cosupport. The continuous vertical lines
stand for the theoretical thresholds for known (3.21b) (red) and un-
known (3.22b) (green) cosupport, while the dotted red and green
vertical lines stand for the empirically estimated threshold for known
and unknown cosupport but for unperturbed matrices only. The de-
viation of the empirical thresholds from the theoretical curves for
known cosupport (3.21b) and unknown cosupport (3.22b) was es-
timated through least-squares fit and is summarized in Table 3.3,
along with results for the perturbed matrices.
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Figure 3.13: Empirical probability (6× 30 trials) of exact recovery by total vari-
ation minimization (3.7) via the unperturbed (blue line) and per-
turbed (black line) matrices from Section 3.1.1, Fig. 3.3 and Fig.
3.4, for 3 (top row) and 4 (bottom row) projecting directions respec-
tively. Hereby d = 41. The significance of each curve is identically
to the one in Fig. 3.12. Scaling factors are summarized in Table 3.3.
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Figure 3.14: Log-log plot of phase transitions in 3D for the unperturbed matrix A
(top), and perturbed matrix Ã (bottom) for 3 (◦-marked curves) and
4 projecting directions (O-marked curves). The continuous green
and red lines depict the theoretical curves (3.22b) and (3.21b) re-
spectively. The dashed lines correspond to the empirical thresholds,
which are all scaled versions of (3.22b) or (3.21b) with scaling factors
summarized in Table. 3.3. The blue (stands for 3 projecting direc-
tions) and black (stands for 4 projecting directions) curves show the
relative critical sparsity such that k random points are recovered ex-
actly by (3.5). These are the theoretical phase transition `1-recovery
from [95], [96]. The vertical lines correspond to d = 31 and d = 41,
compare with Fig. 3.12 and Fig. 3.13.
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CHAPTER 4

RECOVERY ALGORITHMS:
PERTURBED DUAL APPROACH

In the previous chapter, we were able to predict the number of measurements
required for the unique reconstruction of a class of cosparse dense 2D and 3D
signals in severely undersampled scenarios by convex programming. These results
extend established `1− related theory based on cosparsity of the signal itself to
novel scenarios not covered so far, including tomographic projections of 3D solid
bodies composed of few different materials. As a consequence, the large-scale
optimization task based on total-variation minimization subject to tomographic
projection constraints is considerably more complex than basic `1− programming
for sparse regularization.

This chapter looks closer into large-scale optimization routines, by analysing
different perturbation schemes of the objective function (4.2). The problems are
solved using efficient methodologies from unconstrained optimization with regard
to dual programs.

We give a brief overview of the following lines: in Sect. 4.1 we introduce our
problem with the help of linear programming theory. Sect. 4.2 develops on the
problem tackled in Sect. 4.1, by perturbing (4.5) with an entropy term and later
on, with a quadratic perturbation term. Using notions of duality, we are able to
find a global optimum solution to our problems. Following a similar perturbation
principle, adding a quadratic term to the objective function (4.2), we solve the
corresponding optimization problem in a continuous - discrete alternating man-
ner, in Sect. 4.4. For the continuous case, we consider duality principles to obtain
an end solution, while for the discrete minimization step we rely on graph-cuts
to obtain a segmented image. An empirical comparison between algorithms that
are most favourably used to solve problems of the type (4.2), already introduced
in Sect. 2.1.1.4 , and the routines mentioned in this chapter and Chapter 3 is
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given in Sect. 4.3. Lastly, we give an overview of the take home messages of this
chapter in Sect. 4.5.

4.1 TV-Recovery by Linear Programming

We consider the discretized TV-term

TV(u) := ‖Bu‖1, B :=

∂1 ⊗ I ⊗ I
I ⊗ ∂2 ⊗ I
I ⊗ I ⊗ ∂3

 ∈ Rp×n , (4.1)

an additional nonnegative constraint on image u and express Bu = z. Thus, (3.6)
becomes

min
u,z
‖z‖1 s.t. Bu = z, Au = b, u ≥ 0 . (4.2)

4.1.1 Primal Linear Program and its Dual

By splitting the variable z in its positive v1 := max{0, z} and negative part
v2 := −min{0, z} we convert problem (4.2) into a linear program in normal
form. With

M :=

(
B −I I
A 0 0

)
, q :=

(
0
b

)
, (4.3)

and the polyhedral set

P := {y ∈ Rn+2p : Mx = q, x ≥ 0}, x :=

 u
v1

v2

 , (4.4)

problem (4.2) becomes the linear program (P )

(P ) min
x∈P
〈c, x〉 = min

(u,v1,v2)∈P
〈1, v1 + v2〉, c =

0
1

1

 . (4.5)

We further assume that P 6= ∅, i.e. a feasible solution always exists. Due
to c ≥ 0, the linear objective in (P ) is bounded on P . Thus (P ) always has
a solution under the feasibility assumption. In view of basic linear programing
theory, compare [99, 11.43], the dual program also has a solution. The dual
program (D) reads

(D) min
y
−〈q, y〉, M>y ≤ c .
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With

y =

(
y0

yb

)
, M> =

B> A>

−I 0
I 0

 , M>y =

B>y0 + A>yb
−y0

y0

 , (4.6)

this reads

min
y0,yb
−〈b, yb〉 s.t. B>y0 + A>yb ≤ 0, −1 ≤ y0 ≤ 1 . (4.7)

Moreover, both primal and dual solutions (x, y) will satisfy the following opti-
mality conditions

0 ≤ c−M>y ⊥ x ≥ 0 , (4.8)

Mx = q . (4.9)

4.1.2 Uniqueness of Primal LP

A classical argument for replacing ‖·‖0 by ‖·‖1 and solving for (4.2) is uniqueness
of the minimal `1 (thus LP) solution. Let x = (u, v) = (u, v1, v2) be `-cosparse
and solve (4.5). We assume throughout

ui > 0, i ∈ [n] . (4.10)

Based on x, we define the corresponding support set

J := {i ∈ [dim(x)] : xi 6= 0} = supp(x), J := J c = [dim(x)] \ J . (4.11)

Denoting k := p− ` the cardinality of the index sets J and J is

|J | = 2`+ k = p+ `, |J | = n+ 2p− |J | = n+ k , (4.12)

compare [34, Lem. 5.3]. This shows that x ∈ Rn+2p is a (n+ k)-sparse vector.

Theorem 4.1.1 ([84, Thm. 2(iii)]). Let x be a solution of the linear program
(4.5). The following statements are equivalent:

(i) x is unique.

(ii) There exists no x satisfying

Mx = 0, xJ ≥ 0, 〈c, x〉 ≤ 0, x 6= 0 . (4.13)

Theorem (4.1.1) can be turned into a nullspace condition w.r.t. the sensor
matrix A, for the unique solvability of problems (4.5) and (4.2).

77



4.2. RECOVERY BY PERTURBED LINEAR PROGRAMMING

Proposition 4.1.2 ([34, Cor. 5.3]). Let x = (u, v1, v2) be a solution of the linear
program (4.5) with component u that has cosupport Λ with respect to B. Then x,
resp. u, are unique if and only if

∀ x =

(
u
v

)
, v =

(
v1

v2

)
s.t. u ∈ N (A) \ {0} and Bu = v1 − v2 (4.14)

the condition
‖(Bu)Λ‖1 >

〈
(Bu)Λc , sign(Bu)Λc

〉
(4.15)

holds. Furthermore, any unknown `-cosparse vector u∗, with Au∗ = b, can be
uniquely recovered as solution u = u∗ to (4.2) if and only if, for all vectors u
conforming to (4.14), the condition

‖(Bu)Λ‖1 > sup
Λ⊂[p] : |Λ|=`

sup
u∈N (BΛ)

〈
(Bu)Λc , sign(Bu)Λc

〉
(4.16)

holds.

Remark 4.1.1. Conditions (4.15) and (4.16) clearly indicate the direct influ-
ence of cosparsity on the recovery performance: if ` = |Λ| increases, then these
conditions will more likely hold. On the other hand, these results are mainly the-
oretical since numerically checking (4.16) is infeasible. However, we will assume
that uniqueness of (4.2) is given, provided that the cosparsity ` of the unique
solution u satisfies the conditions in (3.22a) and (3.22b). This assumption is
motivated by the comprehensive experimental assessment of recovery properties
reported in Chapter 3, Sect. 3.5.

Remark 4.1.2. We note that, besides the condition for uniqueness from Thm. (4.1.1),
a LP solution is unique if there is a unique feasible point. For high cosparsity
levels `, this seems to be often the case.

Let x be a (possibly unique) primal solution of (P ) and y a dual solution. In
view of (4.11) and (4.8) we have

(c−M>y)i = 0, ∀i ∈ J . (4.17)

We note that non-degeneracy of the primal-dual pair (x, y) implies uniqueness of
the dual variable y.

4.2 Recovery by Perturbed Linear Programming

4.2.1 Entropic Perturbation and Exponential Penalty.

In various approaches to solving large-scale linear programs, one regularizes the
problem by adding to the linear cost function a separable nonlinear function
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multiplied by a small positive parameter. Popular choices of this nonlinear func-
tion include the quadratic function, the logarithm function, and the negative
〈x, log(x)〉-entropy function. Our main motivation in following this trend is that
by adding a strictly convex and separable perturbation function, the dual problem
will become unconstrained and differentiable. Consider

(Pε) min〈c, x〉+ ε〈x, log x− 1〉 s.t. Mx = q, x ≥ 0 . (4.18)

The perturbation approach by the entropy function was studied by Fang et al.
[49, 50] and, from a dual exponential penalty view, by Cominetti et al. [32].

The Unconstrained Dual. We write (Pε) (4.18) in the form (2.6a)

minϕ(x), ϕ(x) := 〈c, x〉+ ε〈x, log x− 1〉+ δRn+(x)︸ ︷︷ ︸
:=f(x)

+δ0(q −Mx) . (4.19)

With g := δ0, we get g∗ ≡ 0, since δ∗C ≡ σC and thus

g∗(y) = δ∗0(y) = σ0(y) = sup
z=0
〈y, z〉 = 0, ∀y ∈ Rn

holds. On the other hand, we have f ∗(y) = ε〈1, e yε 〉. Now (2.6b) gives immedi-
ately the dual problem

supψ(y), ψ(y) := 〈q, y〉 − ε〈1, e
M>y−c

ε 〉 . (4.20)

We note that ψ is unconstrained and twice differentiable with

∇ψ(y) = q −Me
M>y−c

ε and (4.21a)

∇2ψ(y) = −1

ε
M diag e

M>y−c
ε M> . (4.21b)

Moreover, −∇2ψ � 0 for all y, with e
M>y−c

ε ∈ R(M) = N (M)⊥, in view of
(4.21b). Note that if ψ has a solution then it is unique and the strictly feasible
set must be nonempty, see (4.21a), thus rintP = {x : Mx = q, x > 0} 6= ∅ ⇔
q ∈M(Rn++). Further we can rewrite (4.20) in more detailed form in view of (4.6)

(Dε) min
y0,yb
−〈b, yb〉+ ε〈1n, e

B>y0+A>yb
ε 〉+ ε〈1p, e

−y0−1p
ε 〉+ ε〈1p, e

y0−1p
ε 〉 . (4.22)

Connecting Primal and Dual Variables. With dom g = 0, dom g∗ = R
n,

dom f ∗ = R
n and dom f = R

n
+, the assumptions (2.7) become q ∈ intM(Rn+) =

M(intRn+) = M(Rn++), compare [99, Prop. 2.44], and c ∈ intRn = R
n. Thus,

under the assumption of a strictly feasible set, we have no duality gap. Moreover
both problems (4.19) and (4.20) have a solution.
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Theorem 4.2.1. Denote by xε and yε a solution of (Pε) and (Dε) respectively.
Then the following statements are equivalent:

(a) q ∈M(Rn++), thus the strictly feasible set is nonempty.

(b) The duality gap is zero ψ(yε) = ϕ(xε) .

(c) Solutions xε and yε of (Pε) and (Dε) exist and are connected through

xε = e
M>yε−c

ε . (4.23)

Proof. (a) ⇒ (b): holds due duality. On the other hand, (b) implies solvability
of ψ and thus (a), as noted after Eq. (4.21b). (a) ⇒ (c): The assumptions of
Thm. (2.1.1) hold. Now ∂f ∗(y) = {∇f ∗(y)} = {e yε } and the r.h.s. of (2.9a) gives
(c). Now, (c) implies Mxε = q and thus (a).

The following result shows that for ε → 0 and under the nonempty strictly
feasible set assumption, xε given by (4.23) approaches the least-entropy solution
of (P ), if yε is a solution of (Dε). The proof follows along the lines of [112, Prop.
1].

Theorem 4.2.2. Denote the solution set of (4.5) by S. Assume S 6= ∅ and
rintP 6= ∅. Then, for any sequence of positive scalars (εk) tending to zero and any
sequence of vectors (xεk), converging to some x∗ , we have x∗ ∈ argminx∈S〈x, log x−
1〉. If S is a singleton, denoted by x, then xεk → x.

Partial Perturbation. In the case of a unique and sparse feasible point x the
assumption q ∈M(Rn++) does not hold. With J = supp(x) the primal reads

min〈c, x〉+ ε〈xJ , log xJ − 1J〉 s.t. Mx = q, xJc = 0, x ≥ 0,

and the dual becomes

max
y
〈q, y〉 − ε〈1, e

(M>)Jy−cJ
ε 〉 .

However, the solution support J is unknown. Using (4.17), one can show that an
approximative solution yε of (Dε), i.e. ‖∇ψ(yε)‖ ≤ τε, with τε > 0 small, can be
used to construct xε according to (4.23), such that xε → x .

Exponential Penalty Method. We discussed above how problem (Pε) tends
to (P ) as ε → 0. Likewise, (Dε) tends to (D). This was shown by Cominetti et
al. [32, Prop. 3.1]. The authors noticed that the problem (Dε) is a exponential
penalty formulation of (D), compare (4.6) and (4.22).

They also investigated the asymptotic behavior of the trajectory yε and its
relation with the solution set of (D). They proved the trajectory yε is approxi-
matively a straight line directed towards the center of the optimal face of (D),
namely yε = y∗ + εd∗ + η(ε), where y∗ is a particular solution of (D). Moreover,

the error η(ε) goes to zero exponentially fast, i.e. at the speed of e
−µ
ε for some

µ > 0. See the proof of [32, Prop. 3.2].
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4.2.2 Quadratic Perturbation

In this section we consider a quadratic perturbation of

min
z,u
‖z‖1 s.t. Au = b, Bu = z, (4.24)

with B = ∇.

We denote by M :=

(
A 0
B −I

)
, q :=

(
b
0

)
and x :=

(
u
z

)
. With a finite

perturbation parameter λ > 0 the quadratic perturbation (4.24) written in the
form of (2.6a) is

minϕ(x), ϕ(x) := λ‖z‖1 +
1

2
‖z‖2

2 +
1

2
‖u‖2

2︸ ︷︷ ︸
:=f(u,z)

+ δ0︸︷︷︸
:=g

(q −Mx) . (4.25)

With

f(u, z) = f1(u) + f2(z), f1(u) =
1

2
‖u‖2

2, f2(z) = λ‖z‖1 +
1

2
‖z‖2,

using f ∗ = f ∗1 + f ∗2 and

f ∗1 (y) =
1

2
‖y‖2, f ∗2 (y) =

1

2
‖Sλ(y)‖2,

the dual (2.6b) becomes

minψ(y), ψ(y) := −〈q, y〉+
1

2
‖A>yb +B>y0‖2

2 +
1

2
‖Sλ(−y0)‖2

2, (4.26)

where we denote y =

(
yb
y0

)
. Using the subgradient inversion formula ∇f ∗2 =

(∂f2)−1 we get ∇f ∗2 (y) = Sλ(y), with Sλ(y) denoting the soft-thresholding oper-
ator, in view of

∂if2(z) =

{
λ sign(zi) + zi, zi 6= 0,

[−λ, λ], zi = 0.
(4.27)

Thus, the dual (4.26) is differentiable with

∇ψ(y) = −q +M

(
A>yb +B>y0

Sλ(−y0)

)
.

Assuming a feasible solution exists to (4.24), both primal (4.25) and dual (4.26)
problems have a solution, the duality gap is zero and the primal and dual solution
pair (xλ, yλ) are connected through

xλ =

(
A>yλb +B>yλ0
Sλ(−yλ0 )

)
.
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The advantage of this formulation is that due to the differentiability and strong
convexity of f the perturbation is finite. This means that there is a large, but
finite, λ > 0 such that solving (4.25) one obtains for all λ ≥ λ a solution of (4.24)
by solving (4.25), e.g. via (4.26), compare [51, 55]. However, this perturbation
parameter λ depends on the unknown solution xλ.

4.2.3 Numerical Experiments

We illustrate the performance of our perturbation approach compared to the
LP solver MOSEK, in noisy and non-noisy environments, for 2D and 3D cases.
We implemented the entropic and quadratic approach and solved the perturbed
dual formulations by a conventional unconstrained optimization approach, the
Limited Memory BFGS algorithm, see [11], which scales to large problem sizes.
In all experiments, the perturbation parameters were kept fixed to ε = 1/50 (see
Fig. 4.3 for a justification) and λ = 0.85. We allowed a maximum number of
1500 iterations and stopped when the norm of the gradient of the perturbed dual
function satisfies ‖∇ψ(yk)‖ ≤ 10−4.
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Figure 4.1: Phase transitions for the 2D case, 4 cameras (top row) and 6 cameras
(bottom row), computed for the noiseless case with MOSEK (left
column), our approach (middle column) and our approach for the
noisy case (right column). The green solid line corresponds to the
theoretical curve (3.22a).

The first performance test was done on 2D d × d images of randomly located
ellipsoids with random radii along the coordinate axes. See Fig. 4.2 (right) for
two sample images. The relative cosparsity is denoted by ρ := `

n
. Parameters p
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Figure 4.2: Comparison between the quadratic perturbation approach (left two
columns) and entropic perturbation approach (right two columns) for
two relative cosparsity levels. Two 80 × 80 images, are projected
along 6 directions. For both ρ = `/d2 = 1.7786 (top row) and ρ =
`/d2 = 1.8586 (bottom row) reconstruction should in theory be exact.
Result (left column) and rounded result (second left column) of the
quadratic perturbation approach for α = 1. Results for the entropic
perturbation approach (right two columns) with ε = 1/50. Here the
rounded result exactly equals the original image (right column).
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Figure 4.3: Experimental finite perturbation property of the entropic approach.
Here ε = 1/50 is a reasonable value since the reconstruction error
varies insignificantly (left). The histograms of (u − u∗) for ε = 1/50
(middle) and ε = 1/120 (right) are highly similar.

and n vary for two- and three-dimensional images as

n =

{
d2 in 2D

d3 in 3D
, p =

{
2d(d− 1) in 2D

3d2(d− 1) in 3D
. (4.28)
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Figure 4.4: Phase transitions for the 3D case, 3 cameras (top left) and 4 cameras
(top right) and random example of perfectly reconstructed images
d = 31 (bottom). The average performance of MOSEK (blue line) for
the noiseless case, and the entropic approach in the noiseless (red line)
and noisy (magenta line) case for ε = 1/50 as a variation of relative
cosparsity. The green solid line corresponds to the theoretical curve
(3.22b). Measurements were corrupted by Poisson noise of SNR =
50db.

Our parametrization relates to the design of the projection matrices A ∈ Rm×n,
see Sect. 3.1 for details.

The phase transitions in Fig. 4.1 display the empirical probability of exact
recovery over the space of parameters that characterize the problem. Here we
performed 90 tests for each (ρ, d) parameter combination.

We analysed the influence of the image cosparsity, also for 3D images, see
Fig. 4.4. In 3D, for each problem instance defined by a (ρ, d)-point, we generated
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Figure 4.5: Slices through the 3D volume of an original Shepp-Logan image (left)
and the reconstructed image from 7 noisy projecting directions via the
entropic perturbation approach, satisfying ‖u − u∗‖∞ < 0.5 (right).
This shows that the approach is also stable for low noise levels as
opposed to MOSEK. Measurements were corrupted by Poisson noise
of SNR = 50db.
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Figure 4.6: Comparison between computation times of the proposed approach
and MOSEK.

60 random images. In both 2D and 3D, we declared a random test as successful
if ‖u − u∗‖∞ < 0.5, which leads to perfect reconstruction after rounding. Both
Fig. 4.1 and Fig. 4.4 display a phase transition and exhibit regions where exact
image reconstruction has probability equal or close to one and closely match the
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solid green line in the plots, which stands for the theoretical curve (3.22a). In the
noisy case, projection data was corrupted by Poisson noise of SNR = 50db. The
perturbation parameter has been set as in the noiseless case, i.e. ε = 1/50 and
λ = 0.85. MOSEK however was unable to solve the given problem, stating that
either the primal or the dual might be infeasible. Thus our perturbation approach
is also stable to low noise levels as opposed to MOSEK. Moreover the proposed
algorithm scales much better with the problem size and is significantly more
efficient for large problem sizes that are relevant to applications. In particular,
problems sizes can be handled where MOSEK stalls, see Fig. 4.6. Finally, we
underline that the entropic perturbation approach performs significantly better
than quadratic perturbation as shown in Fig. 4.2.

4.3 Algorithm Comparisons

The role of this section is to compare the behaviour of FISTA, Douglas-Rachford
(DR) and Chambolle-Pock (CP) algorithms with the methods we developed in
Chapter 3 and 4. As test image, we will use the Shepp-Logan phantom of dimen-
sions 50 × 50, known to be the standard image used for testing algorithms in-
tended for ill-posed tomographic reconstructions problems. The three algorithms
CP, DR and FISTA are run each for 1500 iterations, after which the result is
shown. Through Fig. 4.7 we show that this choice of number of iterations is suf-
ficient enough, considering the outcome of the residual at each iteration. For the
other algorithms, we used the same parameters as stated in the corresponding
sections where they were presented. For the entropic and quadratic perturbation
the output is shown after rounding. For rounding, we increased the image scale
multiplying the algorithm output by 10. Next, we rounded and then divided this
result by 10, to come back to the initial scale, i.e. [0, 1].

In Table 4.1 we summarize the functions considered for FISTA, DR, CP, while
in Table 4.2 we present the output of each routine, applying the 8 camera pro-
jection matrix mentioned in Sect. 3.1.

Alg. f(x) g(x) Extra remarks
FISTA ‖∇x‖1 ‖Ax− b‖2

2 λ = 1e− 05
DR δC(x) ‖∇x‖1 C = {x : Ax = b}, λ = 5e− 03

CP 1
2
‖Ax− b‖2

2 + λ‖∇x‖1 0 K =

(
A
∇

)
, λ = 1e− 01.

Table 4.1: Summary of the functions used in algorithms presented in Sect. 2.1.1.4.

A few comments are in order, concerning the remarks column. For the Douglas-
Rachford algorithm, parameter λ is used in the computation of the Total Variation
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Figure 4.7: Graphical illustration of the residual along the computation lines of
the Douglas-Rachford, FISTA and Chambolle-Pock algorithms.

proximal operator and the formation of the matrix K in the implementation of
the Chambolle-Pock primal-dual algorithm is well documented in [104], Alg. 4.
We also report that our implementation of the CP primal-dual routine is based
on the paper of [104].
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Algorithm Reconstruction ‖Orig− Rec‖2 Time (sec.)

FISTA 4.8951 29.6091

Douglas Rachford 4.6924 85.0362

Chambolle Pock 3.3487 25.4830

Mosek 1.2874 1.03

Entropy 1.3820 13.38
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Quadratic 5.6040 3.7131

Table 4.2: Output of implemented algorithms. First column depicts the end result
of the reconstruction algorithm. Second column contains the values for
the L2 norm difference between the original and the reconstructed im-
age, while in the third column we give the computation times required
for each method.

4.4 Continuous / Discrete Interplay

We take upon the idea of Maeda et. al. [83] as the underlying basis of the approach
we will present next. A brief review of its contents has already been given in
Sect. 2.2.3.4. Our interest hereafter lies in solving problem (4.2) for large-scale
problems, i.e. 3D images, by a continuous and discrete alternating minimization
technique, similarly to [83].

4.4.1 Continuous minimization

We remind the reader the energy function that is minimized in [83], in an alter-
nating manner:

E(u, v) = − ln p(D|u)− ln p(u|v)− ln p(v).

For the continuous case, [83] considers

û = argminu E(u, v̂)

= argminu − ln p(D|u)− ln p(u|v), (4.29)

and solves the minimization problem with respect to u, by using the scaled conju-
gate gradient method. A very popular approach in solving Maximum-Likelihood
problems is expectation - maximization (EM). Its preference over other methods
lay in its theoretical and practical properties. Numerous implementations of EM
can be found in the literature, either as a stand along routine, or in connection
with Total Variation minimization, or variations, among which we mention: [78],
[92], [118], Ordered Subset Expectation Maximization (OSEM) [46].

However, based on our recent results in Sect. 4.2.3, Fig. 4.1, where perturbation
showed an improvement in the number of accurately reconstructed images, and
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4.4. CONTINUOUS / DISCRETE INTERPLAY

because we want to solve problems of the form (4.2) in a deterministic way, we
aim at solving a perturbed quadratic penalty instace of (4.2):

min
u
‖∇u‖1 +

α

2
‖u− v‖2

2 s.t. Au = b, u ≥ 0, (4.30)

which is equivalent to

min
z,u
‖z‖1 +

α

2
‖u‖2

2 − 〈αv, u〉 s.t Au = b, ∇u = z, u ≥ 0. (4.31)

α > 0 is a regularizing parameter that enforces the solution to the discrete op-
timization problem ”v” to closely fit the solution of the continuous optimization
problem ”u” and ∇ is the discrete gradient operator.

Denoting M :=

(
A 0
∇ −I

)
, q :=

(
b
0

)
and x :=

(
u
z

)
, we consider the quadratic

perturbation of (4.31) wrt. to z by finite, but large, perturbation parameter
λ > 0. We write (4.31) in the Fenchel duality form (see Sect. 2.1.1.3) and obtain

minϕ(x), ϕ(x) := 〈c, x〉+ λ‖z‖1 +
1

2
‖z‖2

2 +
αλ

2
‖u‖2

2 + δRn+(u)︸ ︷︷ ︸
:=f(u,z)

+ δ0(q −Mx)︸ ︷︷ ︸
:=g

.

(4.32)

With c =
(
−αλv>, 0

)> ∈ Rn+p and

f(u, z) = f1(u) + f2(z), f1(u) =
αλ

2
‖u‖2

2 + δ
Rn

+
(u), f2(z) = λ‖z‖1 +

1

2
‖z‖2

2

using f ∗ = f ∗1 + f ∗2 and

f ∗1 (y) =
1

2αλ
‖max(0, y)‖2

2, f ∗2 (y) =
1

2
‖Sλ(y)‖2

2 ,

the dual becomes

minψ(y), ψ(y) := −〈q, y〉+ 1

2αλ
‖max(0, A>yb+∇>y0+αλv)‖2

2+
1

2
‖Sλ(−y0)‖2

2,

(4.33)

where we denote y =

(
yb
y0

)
.

In view of the fact that the conjugate of the function f2, i.e. f ∗2 is continu-
ously differentiable, we can make use of the property of subgradient inversion
(Prop. (1)), ∇f ∗2 = (∂f2)−1. This leads to ∇f ∗2 (y) = Sλ(y) in view of

∂if2(z) =

{
λsign(zi) + zi, zi 6= 0,

[−λ, λ] , zi = 0.
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On the other hand, ∇f ∗1 (y) = 1
αλ

max(0, y). Thus, the dual is differentiable
with

∇ψ(y) = −q +M

(
1
αλ

max(0, A>yb +∇>y0 + αλv)
Sλ(−y0)

)
.

Assuming a feasible solution exists to (4.31), both primal (4.32) and dual (4.33)
problems have a solution, the duality gap is zero and the primal and dual solution
pair (xλ, yλ) are connected through

xλ =

(
1
αλ

max(0, A>yb +∇>y0 + αλv)
Sλ(−y0)

)
.

4.4.2 Discrete minimization

We follow the steps taken in Maeda et. al. [83] and use α-expansion (see Sect.
2.1.3.2) to solve the corresponding optimization problem.

As we are interested in the discrete optimization part, we report this as being:

v̂ = argminv E(û, v)

= − ln p(u|v)︸ ︷︷ ︸
fidelity

− ln p(v)︸ ︷︷ ︸
regularization

, (4.34)

where u is the tomographic image, v = {v1, v2, . . . , vJ} is the labelled version
of the tomographic image and J is the number of pixels. Each pixel j (j =
1, 2, . . . , J) is represented by hidden variables vj = [vj1, vj2, . . . , vjk, . . . , vjK ] with
K being the number of material classes. The convention is to have a material
coding such that when a pixel is marked to belong to a certain k class, the
other classes are set to 0. Moreover, p(u|v) is the conditional prior, reflecting the
probability of a CT image to occur, given a fixed labelling of the material classes
and p(v) is the class prior, that plays the role of a regularization term.

In order to use α-expansion to minimize (4.34), we should be able to express
our minimizing function in the form of (2.29), with local functions indexed by a
graph G = (V,E) :

E(v) =
∑
i∈V

Di(vi, ui) +
∑

(i,j)∈E

Vi,j(vi, vj). (4.35)

The nodes in the V set correspond to pixels in the CT image and the set E of
edges stands for the neighborhood system used to represent directly interacting
variables. Work in this section was jointly made with Matthias Zisler. The
following derivations are also found in his master thesis [121].
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We begin the transformation towards the α-expansion formulation by writing
explicitly the content of each term in equation (4.34):

E(v) := − ln p(u|v)− ln p(v)

= − ln

(
J∏
j=1

p(uj|vj)

)
− ln

(
1

Z
e−H(v)

)

= −
J∑
j=1

ln p(uj|vj) + ln(Z) +H(v).

Using the definitions of p(uj|vj) and H(v) from [83], Sect. 2.2 and Sect. 2.3, we
are left with

E(v) = −
J∑
j=1

ln
K∏
k=1

N (uj|νk, r2
k)
vjk −

K∑
k=1

Jselfk

J∑
j=1

vjk + J interk

J∑
j=1

∑
i∈η(j)

vikvjk

+ ln(Z)

= −
J∑
j=1

K∑
k=1

(
lnN (uj|νk, r2

k) + Jselfk

)
vjk −

J∑
j=1

∑
i∈η(j)

K∑
k=1

J interk vikvjk + ln(Z)

= −
∑
j∈V

K∑
k=1

(
lnN (uj|νk, r2

k) + Jselfk

)
vjk −

∑
(i,j)∈E

K∑
k=1

J interk vikvjk + ln(Z),

where the iteration over each pixel j and their adjacent neighboring pixels η(j)
can be expressed as iterating over all E edges in the system. The termN (·|νk, r2

k),
stands for the normal Gaussian distribution, with mean νk and variance rk. Ex-
plicitly, it takes the form

lnN (uj|νk, r2
k) = ln

(
1√

2πrk
e
− 1

2

(
uj−νk
rk

))
= ln(

√
2πrk)−

1

2

(
uj − νk
rk

)2

.

Now, we can write the above result in the form of (4.35):

E(v) =
∑
j∈V

K∑
k=1

(
ln(
√

2πrk) +
1

2

(
uj − νk
rk

)2

− Jselfk

)
vjk︸ ︷︷ ︸

:=Dj(vj ,uj)

+

+
∑

(i,j)∈E

K∑
k=1

−J interk vikvjk︸ ︷︷ ︸
:=Vi,j(vi,vj)

+ ln(Z)︸ ︷︷ ︸
ct

,
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with ln(Z) a term that can be neglected, as it is just a constant when minimizing
over v. At this time, we can formally state the unary and pairwise terms, as

Dj(vj, uj) :=
K∑
k=1

(
ln(
√

2πrk) +
1

2

(
uj − νk
rk

)2

− Jselfk

)
vjk

Vi,j(vi, vj) :=
K∑
k=1

−J interk vikvjk.

Usually, in graph cut algorithms the unary term can be arbitrary, however the
pairwise term must hold submodularity condition to enable the application of a
maximum-flow solver as subroutine,

Vi,j(α, α) + Vi,j(β, γ) ≤ Vi,j(α, γ) + Vi,j(β, α), ∀ α, β, γ ∈ L (4.36)

with labelling L :=
{
l ∈ {0, 1}K |

K∑
k=1

lk = 1
}
.

The submodularity condition (4.36) always stands if J interk is assumed to be
greater or equal to 0:

α = β → −J interk + 0 ≤ 0− J interk (4.37)

α = γ → −J interk + 0 ≤ −J interk + 0 (4.38)

β = γ → −J interkα − J interkβ ≤ 0 + 0 (4.39)

α = β = γ → −J interk − J interk ≤ −J interk − J interk . (4.40)

4.4.3 Numerical Experiments

For implementation of our tests, we used 3D measurement matrices from the
AirTools1 toolbox, as it allowed us a more degree of freedom regarding the choice
of projecting angles. We generated random angle scenarios, determined by their
x, y, z positions in space.
For determining the optimal solution of the continuous problem, we used L-
BFGS2, which we let run for 1500 iterations. An obvious question would be why
1500 or not more or less. We need to mention that we used the number of intera-
tions in connection with another termination criteria, ‖∇ψ(yk)‖ ≤ 10−5, however
this never occured in practice. And after extensive empirical trials, the mentioned
number of iterations seemed appropriate for an optimal balance between compu-
tation time and quality of the reconstruction. Moreover, the reconstruction need
not be perfect, as the following step of discrete minimization would reinforce ob-
ject properties, ”steering” thus the reconstruction towards the optimum value.
During all test runs, we used α = 18, λ = 5.
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Name Gray val. Image size rk Jinter Jself # of detectors # of proj.
Cube 2 203 1.2e− 04 47 1 8 6
Cube 4 203 1.2e− 04 47 1 8 4
Piston 2 643 1.2e− 04 10 1 25 9

Shepp-Logan 5 253 1.2e− 04 30 1 12 7

Table 4.3: Parameters used for the discrete optimization routine, that enable ac-
curate reconstruction.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

Layer 19 Layer 20

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

Layer 19 Layer 20

Figure 4.8: Left: Cross-sections of the original 3D cube with 2 gray levels. L2

norm of original image is l2 = 54.1110. Right: Reconstruction with
parameters mentioned in Table 4.3 to which we mention the L2 norm
of the algorithm output, # of iterations and time required for re-
construction: L2 = 54.1110 (equal to the original), 9 iterations and
181 sec.

For the discrete problem, the number of detectors and the regularisation factor
Jinter of each material is set constant, varying only on the image to be recon-
structed, as shown in Table 4.3. The relative proportion Jself is constant over all
images and is set to be 1, as we want each material to have equal chance of being
reconstructed.

The alternating approach ends when the L1-norm of the difference between the
original image and the output of the discrete minimization problem is less than

1http://www2.compute.dtu.dk/ pcha/AIRtools/
2http://www.di.ens.fr/ mschmidt/Software/minFunc.html
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1e− 03.
During the experimental phase, we noticed that the end result of the recon-

struction is in a one to one correspondence with the number of detectors used in
the acquisition process, as well as with the orientation of the cameras. The higher
the number of available detectors, the lower the required number of projection
angles, given a certain limit, because it is obvious that one cannot reconstruct an
image from only one view, for example. Likewise, a stagnation step in conver-
gence is bound to occur at some camera orientation configurations. We currently
have no explanation for this phenomenon. In this case, when the L1 error of the
difference between the original image and the reconstructed image does not en-
counter any new change for the next couple of 5 iterations, we restart the process
with a new camera orientation setting.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

Layer 19 Layer 20

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

Layer 19 Layer 20

Figure 4.9: Left: Cross-sections of the 3D cube with 4 gray levels. L2 norm of
this image is l2 = 27.8089. Right: Reconstruction with parameters
mentioned in Table 4.3 to which we mention the L2 norm of the
algorithm output, # of iterations and time required for reconstruction:
L2 = 27.8089 (equal to original), 3 iterations and 117 sec.

4.5 Conclusion

We presented three algorithmic approaches: entropic perturbation, quadratic per-
turbation, quadratic perturbation with continuous / discrete interplay to solve
perturbed non-negatively constrained linear programs that arise in tomographic
reconstruction problems of the form (4.2). While the perturbation enables to
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Figure 4.10: Left: Bottom view of the 3D piston with 2 gray levels. L2 norm
of this image is l2 = 149.1141. Center and Right: Tilted and
side view of the piston reconstructed with parameters mentioned in
Table 4.3 to which we mention the L2 norm of the algorithm output,
# of iterations and time required for reconstruction: L2 = 149.1141
(equal to the original), 4 iterations and 2024.82 sec.

Figure 4.11: Left: Cross-section of the Shepp Logan phantom with 5 gray lev-
els. L2 norm of this image is l2 = 24.07. Right: Reconstruction
with parameters mentioned in Table 4.3 to which we mention the L2

norm of the algorithm output, # of iterations and time required for
reconstruction is l2 = 24.0393, 2 iterations and 165.68 sec.

apply efficient sparse numerics, it does not compromise reconstruction accuracy.
This is a significant step in view of the big data volumes of industrial scenarios.
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Moreover, we gave a brief comparison between widely known convex optimization
routines and the approaches developed in this thesis. This chapter concludes with
an alternating continuous / discrete minimization routine, which scales well with
large problem sizes and higher number of gray levels, as seen in the empirical
tests we have conducted.
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CHAPTER 5

NEARLY ISOTROPIC PRIORS AND
PROBLEM SPLITTING

In Chapters 3 and 4, we considered the problem of reconstructing images that have
a sparse image gradient and indicate conditions on the number of measurements
required for unique recovery. Empirically, in such cases, it also coincides with
the solution to the corresponding convex optimisation problem. However, only
horizontal and vertical differences were taken into account (TV-seminorm). Here
we propose a different analysis operator, that better exploits the geometry of
signal transitions and penalizes jumps along arbitrary (projecting) directions.
While uniqueness conditions are subject to current research, we present below a
dedicated numerical splitting scheme, along with few preliminary results.

5.1 Approach

We consider the constrained minimization problem

min γ
S∑
s=1

ωs‖∇dsus‖1 +

p∑
i=1

‖Adivdi−bdi‖2
2 s.t.



ur − ut = 0;

vi − us = 0;

i = 1, . . . , p;

(∀) 1 ≤ r < t ≤ S;

(∀) 1 ≤ s ≤ S.

(5.1)

with projection directions di, i ∈ [p], associated weights ωs ≥ 0, regularisation
parameter γ > 0 and S the number of derivative directions. The projection and
derivative directions need not be identical nor equal in their number. For example,
one might use 9 projection directions and only 4 derivative directions to analyse
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the system. However, it might be the case that one angle from the projection
direction is also an angle that is used for the derivative direction. Summing
along directions di yields a corresponding block Adi in the projection matrix A.
∇ds , s ∈ [S] are linear operators approximating the directional derivative along ds.
We detail the case of positive weights ωs = 1, for arbitrary numbers of derivative
and projection directions and we replace the projection directions di by indices i
for ease of writing.

The constraints imposed on the objective function state that the split variables
used in the derivative directions should resemble each other and correspondingly,
to the considered projection directions. The result of the optimization problem
leads to identical images ui, vj.

A similar problem to the one we are analysing is presented in [110], which
considers the Potts model instead of the `1 minimization. The authors show
convergence of their method, however proving global optimality of the solution is
an open problem. With our approach, we have the guarantees that the objective
function is convex, thus a global solution is bound to exist.

We begin analysing our problem by forming the augmented Lagrangian with
multipliers λi,s, ρr,t and prox-parameters µ, ν:

L =γ
S∑
s=1

(
ωs‖∇dsus‖1 +

p∑
i=1

〈λi,s, vi − us〉+
µ

2

p∑
i=1

‖vi − us‖2
2

)
+

+

p∑
i=1

‖Aivi − bi‖2
2 + 〈ρr,t, ur − ut〉+

ν

2
‖ur − ut‖2

2.

Writing it in a more convenient form, we have

L =γ
S∑
s=1

(
ωs‖∇dsus‖1 +

µ

2

p∑
i=1

‖vi − us +
λi,s
µ
‖2

2 −
µ

2

p∑
i=1

‖λi,s
µ
‖2

2

)
+

+

p∑
i=1

‖Aivi − bi‖2
2 +

ν

2

∑
1≤r<t≤S

(
‖ur − ut +

ρr,t
ν
‖2

2 − ‖
ρr,t
ν
‖2

2

)
.

In the following lines, we introduce a lemma from [110] that will ease the
minimization of the Lagrangian with respect to the split variables u1, u2, . . . and
the projection v1, v2, . . . .

Lemma 5.1.1 ([110], Lemma 2.1). For a, b1, . . . , bN ∈ R and x1, . . . , xN > 0, we
have that ∑

i

xi(a− bi)2 =

(∑
i

xi

)(
a−

∑
i bixi∑
i xi

)2

+ C

where C ∈ R is a constant that does not depend on a.
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Proof. We calculate∑
i

xi(a− bi)2 = a2(
∑
i

xi)− 2a(
∑
i

bixi) +
∑
i

b2
ixi

= (
∑
i

xi)

(
a2 − 2a

∑
i bixi∑
i xi

+

∑
i b

2
ixi∑
i xi

)

= (
∑
i

xi)

(
a2 − 2a

∑
i bixi∑
i xi

+

(∑
i bixi∑
i xi

)2

−
(∑

i bixi∑
i xi

)2

−
∑

i b
2
ixi∑
i xi

)

= (
∑
i

xi)

((
a−

∑
i bixi∑
i xi

)2

−
(∑

i bixi∑
i xi

)2

−
∑

i b
2
ixi∑
i xi

)

The result depicts the ones stated in the lemma, as the last two terms are
independent of a.

Using Lemma 5.1.1, the restricted form of the augmented Lagrangian reads:

L =γ
S∑
s=1

(
ωs‖∇dsus‖1 +

µ

2

p∑
i=1

‖vi − us +
λi,s
µ
‖2

2

)
+

+
ν

2

∑
1≤r<t≤S

‖ur − ut +
ρr,t
ν
‖2

2 +

p∑
i=1

‖Aivi − bi‖2
2. (5.2)

For solving the Lagrangian (5.2) we apply ADMM, briefly presented in Sect.
2.1.1.4

5.1.1 Minimizing gradient directions

We consider the minimization of the restricted augmented Lagrangian (5.2) with
respect to the split variables us:

argminusL = argminusγωs‖∇dsus‖1+

+
µ

2

p∑
i=1

‖vi − us +
λi,s
µ
‖2

2 +
ν

2

∑
1≤r<s

‖ur − us +
ρr,s
ν
‖2

2 +
ν

2

∑
s<t≤S

‖us − ut +
ρs,t
ν
‖2

2.

Making use of Lemma 5.1.1, the minimization now reads

argminusL = argminus
2αγs

pµk + νk(S − 1)
‖∇dsus‖1 + ‖us − ws‖2

2,

where ws =
µk
∑p
i=1 vi+

∑p
i=1 λi+

∑
1≤r<s(νkur+ρr,s)+

∑
s<t≤S(νkut−ρs,t)

pµk+νk(S−1)
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5.1.2 Minimizing projection directions

We now turn our attention to the minimization of the restricted augmented La-
grangian (5.2) with respect to the projection blocks vi:

argminviL = argminvi

p∑
i=1

‖Aivi − bi‖2
2 +

S∑
s=1

p∑
i=1

(
µ

2
‖vi − us +

λis
µ
‖2

2

)
. (5.3)

Using Lemma 5.1.1, this reads:

argminvi‖Aivi − bi‖
2
2 +

µS

2
‖vi −

1

S

S∑
s=1

(us −
λi,s
µ

)‖2
2.

Lastly, we update the Lagrangian parameters by a gradient descent approach:

λk+1
i,s = λki,s + µk(v

k+1
i − uk+1

s );

ρk+1
r,t = ρkr,t + νk(u

k+1
r − uk+1

t ),∀ 1 ≤ r < t ≤ S.

All of the above are summarized in Alg. 6.

Algorithm 6 ADMM with proximal operator splitting

Require: νk = 0, µk = 10−6kτ , τ = 2.01, ui, λi,s, v = 0, i ∈ [p] , k = iteration
counter
Minimize for each gradient direction {1}
uk+1

1 = argminu1

2αγ1

pµk+νk(S−1)
‖∇d1u1‖1 + ‖u1 − wk1‖2

2

...
uk+1
S = argminuS

2αγS
pµk+νk(S−1)

‖∇dSuS‖1 + ‖uS − wkS‖2
2

Minimize for each projection direction{2}
vk+1

1 = argminv1
‖A1v1 − b1‖2

2 + µkS
2
‖v1 − 1

S

∑S
s=1(us − λ1,s

µk
)‖2

2

...
vk+1
p = argminvp‖Apvp − bp‖2

2 + µkS
2
‖vp − 1

S

∑S
s=1(us − λp,s

µk
)‖2

2

Update Lagrangian parameters
λk+1
i,s = λki,s + µk(v

k+1
i − uk+1

s ), i = 1, 2, · · · , p; s = 1, 2, · · · , S
ρk+1 = ρk + νk(u

k+1
i − uk+1

j ), ∀ 1 ≤ i < j ≤ S.

where ws =
µk
∑p
i=1 vi+

∑p
i=1 λi+

∑
1≤r<s(νkur+ρr,s)+

∑
s<t≤S(νkut−ρs,t)

pµk+νk(S−1)
.
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5.2 Numerical Experiments

We tested our approach on two synthethic 50 × 50 images and the well known
Shepp-Logan phantom image, of the same size. The gradient direction minimiza-
tion problems u1, . . . , us , s = 1, . . . , S, are solved by using 1D TV proximal
operators. We rely on the work introduced in Barbero et. al. [3], where they
present a new approach of computing 1D proximal operators, referred to as ”Taut
String” method (Fig. 5.1), whereas for the projection direction case, a series of

Figure 5.1: Illustration of taut-string method. The principle behind it is to de-
termine the minimum length polyline (taut-string) crossing a tube
of height λ with center the cumulative sum r and with fixed points
(s0, sn). The blue line in the picture above represents the taut string
solution. For more details, we refer the reader to [3].

simple unconstrained least squares problems solved using L-BFGS1, returns the
end result.

Conveniently enough, the recovery algorithm scales up to large problem sizes
and can be adequately implemented on various architectures, i.e. parallelized, due
to its iterative nature.

1http://www.di.ens.fr/ mschmidt/Software/minFunc.html
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5.2. NUMERICAL EXPERIMENTS

Figure 5.2: Structure aware regularization: First row: Reconstructed images
from 4 projections using only horizontal and vertical directional
derivatives, see image top right. Second row: Reconstruction from 4
projections using directional derivatives along diagonals orientated at
45◦ and −45◦, see image bottom right. Our general analysis operator
penalises jumps along all p projection directions. Third row: Shepp
Logan reconstructed from 10 equiangular projections chosen over a
360 degrees range, using vertical and diagonal gradient directions.
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CHAPTER 6

CONCLUSION

Work comprised in this thesis hopes to have improved and shed a new perspective
over the problem of image reconstruction from reduced sparse tomographic data
in industrial applications. By entailing gradient priors subject to non-negativity
constraints we raised the difficulty of the problem at hand (e.g. compared to
typical `1 minimization, basis pursuit), but on the other side we are closer in
detailing specific object properties.

By making use of cosparsity, an alternative viewpoint to the notion of sparsity,
and modelling the tomographic acquisition matrix with properties of expander
graphs, we were able to devise in Chapter 3 theoretical bounds relating objects’
cosparsity and number of measurements required for accurate reconstruction of
objects in 2D and 3D. We backed-up our theoretical results with extensive em-
pirical tests, through the display of phase transitions obtained from solving the
total variation problem subject to equality and non-negativity constraints as a
linear program with the help of the commercially available software, MOSEK.
These bounds represent a novelty point in our work and in this research domain.

A closer look in solving large-scale problems, volumes, was given in Chapter 4.
We approached the reconstruction problem via entropic and quadratic perturba-
tions of the linear program studied in Chapter 3 and notions of functional duality
from convex analysis. Conclusive for this section is that perturbation brings ad-
ditional information to the reconstruction problem, although the main drawback
lies in the dependency of parameters, that need to be fine tuned. This is an open
problem that still needs to be addressed. Along the lines of perturbation, we
turned our view towards a continuous / discrete approach where we incorporate
quantization levels. That is, in every step we refine the continuous reconstruction
by an instance of graph cuts, representing the discrete minimization step, where
we know beforehand the number of materials we have to reconstruct. Graph
cuts has shown to be reliable and to return promising results in a multitude of
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applications regarding image segmentation.
Lastly, in Chapter 5 we briefly exploited the spatial structure of sparsity. Con-

sidering the gradient and projection directions individually and not as a conglom-
erate, we have illustrated that this approach brings along extra image information
if taken into consideration as ”stand-alone” minimization problems.

Tomographic image reconstruction is still a vast research field and by no means,
did the content of this thesis solve one specific problem entirely. There are still
open problems that need to be addressed, among which we mention:

• Clarify quantitatively the scale factor mentioned in Chapter 3 and its ori-
gins.

• Conduct a probabilistic analysis as in the work of [95]), for the present sce-
narios. The expectation is that the refinement of a probabilistic version of
the cosparsity model, in connection with distributions of cosupports learned
from relevant collections of signals, may have an impact both theoretically
and practically beyond aspects of limited-angle tomography.

• Deviation bounds for the average case analysis regarding the `0/`1 equiva-
lence of the analysis model, are still lacking.

• Devise approaches that are robust against high levels of noise.
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