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Abstract

The term Data Fusion refers to integrating knowledge from at least two independent

sources of information such that the result is more than merely the sum of all inputs.

In our project, the knowledge about a given specimen comprises its acquisitions from

optical 3D scans and Computed Tomography with a special focus on limited-angle arti-

facts. In industrial quality inspection those imaging techniques are commonly used for

non-destructive testing. Additional sources of information are digital descriptions for

manufacturing, or tactile measurements of the specimen. Hence, we have several repre-

sentations comprising the object as a whole, each with certain shortcomings and unique

insights. We strive for combining all their strengths and compensating their weaknesses

in order to create an enhanced representation of the acquired object. To achieve this,

the identification of correspondences in the representations is the first task. We extract a

subset with prominent exterior features from each input because all acquisitions include

these features. To this end, regional queries from random seeds on an enclosing hull are

employed. Subsequently, the relative orientation of the original data sets is calculated

based on their subsets, as those comprise the—potentially defective—areas of overlap.

We consider global features such as principal components and barycenters for the align-

ment, since in this specific case classical point-to-point comparisons are prone to error.

Our alignment scheme outperforms traditional approaches and can even be enhanced by

considering limited-angle artifacts in the reconstruction process of Computed Tomog-

raphy. An analysis of local gradients in the resulting volumetric representation allows

to distinguish between reliable observations and defects. Lastly, tactile measurements

are extremely accurate but lack a suitable 3D representation. Thus, we also present an

approach for converting them in a 3D surface suiting our work flow. As a result, the

respective inputs are now aligned with each other, indicate the quality of the included

information, and are in compatible format to be combined in a subsequent step. The

data fusion result permits more accurate metrological tasks and increases the precision

of detecting flaws in production or indications of wear-out. The final step of combining

the data sets is briefly presented here along with the resulting augmented representation,

but in its entirety and details subject to another PhD thesis within our joint project.
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Zusammenfassung

Der Begriff Data Fusion bezeichnet die Zusammenführung von Daten aus zwei oder

mehr unabhängigen Quellen. In ihrer Verbindung ergänzen sich die Daten statt sich

zu überlagern. In unserem Projekt werden hierbei die Aufnahmen eines Werkstücks

behandelt, wie sie ein optischer 3D-Scanner und ein Computertomograph generieren;

besonderes Augenmerk liegt bei letzterem auf limited-angle Artefakten. In der in-

dustriellen Qualitätskontrolle kommen beide bildgebende Verfahren im Rahmen der

zerstörungsfreien Werkstoffprüfung zum Einsatz. Zusätzlich existieren meist Konstruk-

tionsbeschreibungen wie z.B. CAD-Daten, oder es liegen taktile Messungen vor. Somit

stehen mehrere Beschreibungen des kompletten Objekts zur Verfügung, wobei darin

jeweils unterschiedliche Aspekte hervorgehoben oder vernachlässigt werden. Unser Ziel

besteht darin, den Mehrwert der einzelnen Eingaben zu bündeln und eine detailreichere

Gesamtrepräsentation des Werkstücks zu erstellen. Hierzu müssen lokale Übereinstim-

mungen in den Datensätzen identifiziert werden. Da markante äußere Merkmale in

allen Darstellungen gleichermaßen präsent sind, bietet sich deren Extraktion an. Es

eignen sich Distanzanfragen an das Objekt, von Zufallspunkten, die auf einer das Ob-

jekt umgebenden Hülle verteilt sind. Im Folgenden muss die räumliche Lage der Ob-

jektrepräsenationen zueinander geklärt werden, dies erfolgt auf Basis der – eventuell

fehlerbehafteten – Extraktionen. Eine Lagebestimmung mittels Hauptachsenanalyse

und Schwerpunkt liefert in unserem Ansatz deutlich bessere Ergnbinsse fehleranfällige

punktbasierter Verfahren. Zur Fehlerbestimmung computertomographisch erstellter Vol-

umendaten wird deren Gradientenfeld untersucht, um hiervon Aussagen über die lokale

Verlässlichkeit der Repräsentation abzuleiten. Ein Konvertierungsprozess der es ermög-

licht hochgenaue taktile Messungen in eine 3D-Repräsentation zu überführt und dadurch

für Data Fusion nutzbar macht, wird ebenfalls im Rahmen dieser Arbeit beschrieben.

Folglich liegen nun alle Datensätze in einheitlicher Form mit bekannter Orientierung und

Fehleranalyse vor. Sie können somit zusammengeführt werden, um präzisere Messungen

und Verschleißprüfungen zu ermöglichen. Die resultierende, detailiertere Darstellung

des Werkstücks wird vorgestellt, sowie die zur Zusammenführung entwickelte Methode.

Letztere ist jedoch Gegenstand einer anderen Doktorarbeit im Rahmen unseres Projekts.
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Chapter 1

Introduction and Problem

Statement

The following is a brief introduction about the scope of this work and the associated

project. The sources of input data, their peculiarities and relevance are highlighted as

well as the key problem in merging them into a single representation. The second chapter

presents several sample objects and their characteristics, introduces basic principles and

integrated components. Preliminary work and supporting algorithms are presented in

the third chapter. The main contributions and essential implementations are introduced

in chapter four and evaluated in chapter five. Finally chapter six discusses the results,

provides an outlook and starting points for future work.

1.1 Motivation

In the field of industrial quality inspection tactile measurements are more and more

superseded by non-destructive measurement methods. Approaches such as structured

light 3D scanners [SM92] or laser-based distance measurements generate highly accurate

representations of the test object’s surface. During this process an irregular triangular

mesh of the object’s surface with a spatial resolution up to ∼10µm is created. The

time needed to acquire this information varies between seconds and minutes but does

not provide interior structures. As an alternative method to discover interior damages

or indication of wear-out, Computed Tomography (CT) scans create volumetric data as

a digital representation of internal structures with a resolution of ∼75µm. The time

needed to complete a CT scan is significantly higher than its optical counterpart and

can take hours or days depending on size and density of specimen. All those models can

be matched against existing digital descriptions used during production such as CAD

1
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Figure 1.1: Real-world example for specimens in the industrial domain.

files. For non-destructive testing, Computed Tomography, as well as optical scans, are

commonly used for quality inspection of industrial parts.

A typical example of a real-world industrial object is shown in Figure 1.1. It has been

acquired via optical 3D imaging (Figure 1.2A) and Computed Tomography. Figure 1.2B

shows an isosurface at the interface of the objects’ material and the surrounding air.

Both imaging techniques have their own strengths and weaknesses. A prerequisite for

Data fusion is to align those representations, shown in Figure 1.3, which is in principle

feasible through standard approaches. Unfortunately, due to the characteristics of the

acquired data sets, alignment algorithms are prone to introduce errors, which we address

in the following.

(A) Mesh of optical scanMOpt (B) Isosurface mesh MCT

Figure 1.2: Industrial example of a cylinder cast from different acquisitions.
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We use the notation MCT for any isosurface mesh generated from CT data and the

notation MOpt for a surface acquired with an optical 3D scanner.

Figure 1.3: Super-imposed MOpt (red) and MCT (green).

1.1.1 Project ILATO

The ILATO project focuses on Improving Limited Angle computed Tomography by

Optical data integration in order to enhance image quality and shorten acquisition times

in X-ray based industrial quality inspection. Limited angle computed tomography is

indicated whenever specimen dimensions exceed cone beam limits or the object is im-

penetrable from certain angles. Thus, acquiring only a subset of a full circle CT scan

poses problems for reconstruction algorithms due to incomplete data which introduces

blurred edges and other artifacts. To support volumetric data reconstruction algorithm

a surface mesh of the object obtained via optical scanning acts as a mask defining bound-

aries of the reconstructed image. The registration of optically acquired surfaces with

data acquired from computed tomography is our current challenge. This work presents

our setup, the methods applied and discusses the problems arising from registration of

data sets created with considerably different imaging techniques.

1.1.2 Cooperation with Empa

The ILATO project—a joint so-called DACH project—is funded by Deutsche Forschungs-

gemeinschaft (DFG) under grant number BO 864/17-1 and by the Swiss National Sci-

ence Foundation (SNF) under grant 200021L 141311. It is carried out by the Interdis-

ciplinary Center for Scientific Computing (IWR) of Heidelberg University and Empa -
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Swiss Federal Laboratories for Materials Science and Technology. The task is to investi-

gate opportunities to speed up acquisition times in limited-angle computed tomography,

to optimize CT trajectories and to improve quality of volumetric representation. Empa1,

with a strong reputation in X-ray analysis and non-destructive testing, focuses on im-

proving reconstruction algorithms to incorporate prior knowledge. All CT equipment

is located in Dübendorf (Switzerland) and the related acquisitions, measurements and

analysis are carried out there. IWR2 and the associated Heidelberg Graduate School

of Mathematical and Computational Methods for the Sciences (HGS MathComp), with

competences in numerical geometry, and the processing of optically acquired data, pro-

vide such prior knowledge in form of surface scans aligned with the volumetric repre-

sentations. All optical acquisition systems are located in Heidelberg (Germany) and

the related measurements, comparisons and processing steps are performed. Through-

out the whole project, lively discussions and exchange happened in regular telephone

conferences, biannual meetings and several week-long research stays.

1.2 Input Data

All developed methods are tested against a variety of objects. Some are designed by

us to study certain artifacts and were manufactured under controlled conditions. This

provides us with exact knowledge of tolerance and accuracy during production. Others

objects are real-world examples of synthetic data.

1.2.1 Optical Data Acquisition

Optical acquisition systems typically apply fringe pattern projection (active) and stereo-

scopic scanning (passive). The field of view in which data points are acquired, is re-

stricted to the focal area of the camera system. Depth information per data point is

computed by triangulation via disparity in camera views and displacement of the pro-

jected pattern. Thus, any data point acquired by optical systems must be visible either

from both cameras or the projector and a camera (see Figure 1.4).

Stereoscopic Acquisition is a passive technique that typically uses two cameras with

same focal length that are mounted parallel to each other. Both cameras view the same

real-world point in a different location on the acquired 2D images. The projections of

a real-world point in the left and right camera image have a distance which is known

1Empa—Eidgenössische Materialprüfungs- und Forschungsanstalt
2IWR—Interdisziplinäres Zentrum für wissenschaftliches Rechnen
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as disparity. This can be used to calculate depth information, which is the distance

between the real-world point and the stereo vision system [Koc95].

(A) Scan 1 (B) Scan 2 (C) Scan 3 (D) Merge 1..3

Figure 1.4: Stereoscopic Acquisition.

Structured Light Scanners use fringe or Moiré projection and/or phase shift tech-

nology which is commonly referred as active scanning. Moiré patterns are a series of

non-random linear projections onto the surface of the object. Multiple captures of the

same pattern, slightly shifted, improve the measurement accuracy but increase acqui-

sition times [BBS10]. By projecting a regular pattern onto an object (Figure 1.5) and

recording several images, the resulting image depth information is obtained and a 3D

model can be constructed as point cloud. Further information about the continuity of

the surface is represented by connecting points and forming triangles.

(A) Pattern 1 (B) Pattern 2

Figure 1.5: Fringe pattern projected on specimen.

Limitations of optical scanning arise since optical surface scanners are unable to acquire

data points in narrow cavities or deep trenches. Also, the surface mesh MOpt cannot

reveal any interior structure or undercuts. Therefore, MOpt may have defects on the

captured surface, which manifest as holes in the mesh. Other holes are caused by

reflective, translucent or matte black surfaces that are very difficult to acquire due to

physical limitations in the optics.

Conditions for representability of object features in the resulting mesh can be formulated

as follows: Any vertex v in MOpt satisfies

MOpt = {v | ∃4(v, d1, d2) with (](v) > φ ∧ object )∩ (4(v, d1, d2) = ∅)} . (1.1)
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Figure 1.6: MOpt of a sample object from 1, 4 and 8 partial scans (left to right).
Narrow trenches and cavities are not captured. Surface: 117.89 cm2; vertices: ∼ 1.6

million.

This implies the condition of an unblocked view from cameras d1 and d2 to any point on

the object. The opening angle φ of the triangle4(v, d1, d2) depends on the specific setup

of the optical scanning system and describes the disparity angle of either one camera

and the projector in the active case, or both cameras in the passive case. Therefore,

the minimal opening angle of any cavity of the object defines which data points can be

acquired.

Optical 3D scanning augments a 2D image of a scene, acquired via visible light, with

depth information per pixel by disparity measurement. The surface data derived by

optical measurement typically consists of vertex-based data that includes geometric in-

formation, i.e., position, normal vectors, color, and to some extent also material informa-

tion, e.g., from diffraction. These so-called point clouds are provided with a connectivity

list to form a mesh, and most of the 3D-scanner software provides semi-automatic tools

to generate meshed surface models from multiple scans. Regardless of post-processing

steps it is a very detailed representation of the exterior features. But due to undercuts

or blocked view, interior structures and shaded regions are not preserved. Several single

acquisitions, each capturing a part of the total surface, need to be merged to obtain a

complete representation of the objects’ surface (Figure 1.6). For optical scans the accu-

racy depends on reflectiveness, texture and color of the material. Furthermore, merging

all partial acquisitions to the final representation introduces alignment errors [BBS10].

Typically, all processing steps from disparity measure for partial scans to assembling the

final mesh are encapsulated in the accompanying scanner software.
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1.2.2 X-ray based Data Acquisition

Cone beam X-ray Computed Tomography (CBCT) is a cross sectional imaging technique

derived from conventional X-ray imaging. X-rays emit from a point source, forming a

cone shape, and interact with the object under investigation. The interaction follows

the Beer-Lambert law according to which the transmission of the X-ray is related to the

line integral of the attenuation coefficients of the object along a ray. A planar detector

placed behind the specimen, perpendicular to the central ray, measures the intensity

of each ray. The resulting 2D image corresponds to a conventional X-ray image and is

referred to as a projection. In CBCT, a series of such projections are acquired while

the source and detector pair is moving along a predefined trajectory with respect to the

object, as in Figure 1.8. In a legacy CT, the trajectory is a full circle around the object

while the center of the circle lies in the object.

(A) Schematic of the CT geometry.

(B) Cone beam artifacts in red areas.

Figure 1.7: CT system arrangement and visualization of common defect.

With the projection images and a full circular trajectory, the attenuation coefficients in

the illuminated area which contains the whole object can be computed using reconstruc-

tion algorithms such as the Feldkamp–Davis–Kress (FDK) method [FDK84]. Since the

attenuation coefficients in the area are not homogeneous, the result is often represented
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as a 3D grid of voxels, which leads to a problem when trying to fuse data from optical

scanning represented as polygons. Either a Marching Cubes algorithm [LC87] or in our

case Volume Enclosing Surface Extraction Algorithm (VESTA) [Sch12] is applied to

generate a watertight surface, i.e., a mesh free of holes, MCT from the scalar data on

the dense voxel grid as reconstructed from the CT scans. This MCT is an isosurface

for a certain density value and usually represents the interface between object and sur-

rounding air. It segments the volumetric data set according to the given threshold in

areas below and above this density value.

(A) Example of projections along trajectory.

(B) Reconstruction from projections.

Figure 1.8: CT setup example for acquisition and reconstruction.

Limitations and artifacts of CT are related to Tuy’s sufficiency condition [Tuy81], which

suggests that only the attenuation coefficients in the circular trajectory plane can be
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exactly reconstructed. In the rest of the volume, cone beam artifacts arise due to the

uncertainty of the attenuation coefficients.

The surfaces that are parallel to the trajectory plane are blurred by this effect. This

leads to a reduced spatial resolution in y-direction which further causes segmentation

problems. As shown in Figure 1.7B, the boundary of the object (blue) is not properly

reconstructed within red areas.

Limited Angle Computed Tomography (LACT) scan uses a trajectory that is less

than a full circlem, thereby violating Tuy’s condition. The reconstruction from limited-

angle scans is an underdetermined problem which has non-unique solutions [Ram91].

LACT is used for specimens that are impenetrable from certain directions or substan-

tially deviate from circular symmetry. As this provides incomplete data for the recon-

struction algorithm, additional artifacts are introduced. In order to enhance the spatial

resolution and the contrast of CT images, complementary information, e.g., optical or

even tactile measurements, might contribute to all stages of a CT scan. As shown in Fig-

ure 1.9, a correct localization of attenuation coefficients in the volumetric representation

is not possible. The leaking or fading surface parts are a direct result of the improper

distribution of attenuated energy within the reconstruction volume.

Figure 1.9: LACT scans with trajectory indicated by blue arcs (left and right). MCT

from full angle CT (center, surface: 123.11 cm2; vertices: 118,398).

1.2.3 Computer Aided Design (CAD) Files

Manufacturing of industrial samples is often based on CAD descriptions. They pro-

vide the complete geometry information of the object under investigation as polygon

surfaces and can easily be transformed in triangular meshes (Figure 1.9). For quality

assessment and indication of wearout, the CAD files can be compared to results from

acquisitions of the specimen. Although, they do not provide the current state of the
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object—as, e.g., optical scans do—but the original design blueprint it was manufactured

from. Thus, interior structures are included, but manufacturing inaccuracies introduce

a new source of errors.

Figure 1.10: CAD of sample 1A (surface: 126.4 cm2; vertices: 464).

1.2.4 Tactile Measurements

Tactile measurements are performed manually, by a computer numerical control (CNC)

milling machine with specialized accessories or by a computer measuring machine (CMM).

Tactile measurements can provide ground truth for the expected outer dimensions of the

specimen. Similar to optical scans they usually are not able to reveal interior structures.

Furthermore, free form surfaces are impossible to acquire since their parametric form

is usually not recoverable from a few control points. The output consist of distance

measures between reference points in the case of manual measurements or CNC mea-

surements. Manual measurements with a caliper achieve an accuracy of 1 µm, while

the CNC mills used to produce our sample objects have an accuracy of 15-25 µm. The

output of CMM machines consists of parametric forms of cylinders and planes. For

cylindrical surfaces several measurement points at the cylinder wall are acquired, and

fitted to the parametric form of a cylinder. The result is a point on the rotation axis

of the fitted cylinder, a normal vector along the rotation axis, the diameter of the fit-

ted cylinder and a quality measure estimating the roundness of the cylinder, i.e., the

deviation of measurement points and the fitted cylinder. For planar surfaces, several

measurement points are acquired and fitted to a plane. The result comprises one point

on the plane, a normal vector perpendicular to the plane and a quality measure esti-

mating the flatness of the plane, i.e., the deviation of measurement points to the fitted

plane. Typical CMM output is presented in Appendix A and visualized in Figure 1.11.
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Figure 1.11: CMM visualization for sample object in Figure 1.8A.

1.3 Data Representation

The presented imaging techniques are fundamentally different and also the resulting

data differs. Optical scans gather surface information which is represented as mesh

while attenuation based measurements need to go through reconstruction before they

are available as volumetric data set.

1.3.1 Surface as Mesh

Surface models from optical acquisition emerge from a series of pairs of 2D images cap-

tured from arbitrary positions around the specimen. Each pixel in the 2D image which

can be tied to depth value is part of the data set. This happens either by identifying

a corresponding pixel in the affiliated 2D image (passive acquisition) or by observing

a known, projected pattern in the acquisition area (active case). The resulting repre-

sentation is referred as point cloud. To form a surface mesh of planar polygons, the

neighborhood relations or all points need to be resolved. The list of vertices with given

x, y, z coordinates is enriched by a connectivity list describing edges between two ver-

tices, triangles between three vertices or in general polygons formed by the referred

vertices. Thus, a mesh consists of a set of data points and their connectivity. Other

sources of surface meshes are parametric descriptions, e.g., in the case of CAD models,

which need to be discretized to obtain vertices and their connectivity on the parametric
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surface. Also volumetric representations usually provided as scalar field can be repre-

sented as surface mesh by identifying an interface by a given threshold and generating

the corresponding isosurface.

1.3.2 Volume as Scalar Field

Reconstructing a series of X-ray projections along a known trajectory to a volumetric

representation, typically in a three dimensional regular grid, is done by solving the in-

verse radon transformation [Rad17]. Each projection captures the attenuation of the

specimen from a certain direction. Reconstruction assigns the voxels in the reconstruc-

tion volume local density values to obtain a configuration which provokes the observed

attenuation measurements. The grid size corresponds to sensor pixels on the detector

and the distances between source and specimen or detector and specimen. Typically,

the resulting scalar field of densities, represented as grid, has identical spacing in x and

y direction, but might have another spacing in z direction, i.e., along the rotation axis.

1.4 The Complete Data Fusion Pipeline

Enabling the reconstruction algorithm to consider prior knowledge, is subject of another

PhD thesis within the ILATO project, carried out by Liu Yu at Empa in Dübendorf,

Switzerland. The next section presents a brief summary of the data fusion approach

to highlight the necessity of an accurate alignment and the benefits of including optical

data as prior information.

1.4.1 Prerequisites

Improvements in spatial representation and new metrology tasks are expected from data

fusion ofMOpt andMCT. A prerequisite is of course an acquisition of the specimen by

both imaging techniques. For the CT acquisition, this includes an initial reconstruction

from acquired projections. The reconstruction assigns each cell within the reconstruction

volume an attenuation value to approximate the local density of the specimen within

the region of this cell, resulting is a 3D scalar field of densities. The reconstruction

concludes the standard CT workflow. Optical scanning provides the triangle meshMOpt

by merging all partial acquisitions of the objects’ surface. To convert the CT scalar field

in a comparable representation, a density threshold for the isosurface MCT needs to

be determined and the isosurface extraction performed. This process is described in

Section 3.2.2.
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1.4.2 Alignment & Mask Generation

An alignment of optical acquisition MOpt and isosurface MCT is computed, providing

a 4x4 affine transformation matrix T , as described in Sections 4.2 and 4.1. Fusing both

data sets requires the generation of a mask fromMOpt to provide clipping information to

a subsequent reconstruction of the original projections from CT acquisition. This mask,

aligned to MCT via T , formulates constraints on the distribution of attenuated energy

within the reconstruction volume. A second reconstruction—we call it “augmented

reconstruction”—incorporates the mask as prior knowledge to prevent distribution of

attenuated energy in regions clearly marked as air during optical acquisition. Such

clipping information is either formulated per ray, i.e., in each projection for each line

from the X-ray source to each sensor pixel, or per cell within the reconstruction volume.

A ray based mask requires—or at least benefits—from a preprocessing step forMOpt, in

which small fragments are removed and holes filled to generate a watertight model. The

geometry of the CT setup and the exact location of each pixel and the source are known

from the trajectory file, defining the CT acquisition procedure. On the one hand, such

a mask is computationally expensive since, depending on the CT resolution, billions of

raycasts need to be performed. On the other hand, the intersection of each CT ray with

MOpt yields the locations of all intersections along the ray and in addition information

about whether the mesh was entered or exited at the specific location. Thus, the ray-

based mask implicitly answers the question in which direction clipping is performed. It

constrains distribution of attenuated energy outside the mask, a description is given in

Section 4.5.1.

A volumetric mask provides clipping information per cell and is computed from the

intersection of each triangle of MOpt with the reconstruction volume. Dimensions, grid

size, stepping and spacing of this volume are known from the initial reconstruction, as

the alignment T is provided. Each cell intersected by a triangle is tagged in the mask

and in case hole-filling was applied to MOpt, the information if the cell is intersected

by an artificial patch or real data is also included. During an augmented reconstruction

this mask permit distribution of attenuated energy within the boundaries of the mask;

a description is given in Section 4.5.2.

1.4.3 Data Fusion

As overview and to present the complete process, the following is a brief summary of our

data fusion method published by Liu et al. [LBS+16], which integrates optical surface

scans with CT projections. A prerequisite to the presented method is a successful

alignment and the computation of a volumetric mask.
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In an industrial cone beam CT scanner, the relative position of the source to the flat-

panel detector is fixed, therefore the geometry of one projection can be uniquely defined

by the source position s(sx, sy, sz), and the normal vector of the detector ns(nx, ny, nz).

The set T = {(s, ns)}, of the projection geometry vector is defined as the scanning

trajectory. The projection operator A maps from the object vector space x, to the

detector vector space y, using a scanning trajectory.

Ax = y (1.2)

In case of scanning with limited-angle circular trajectory, the projector operator contains

a nontrivial null space. Let xnull denote the null space,

Axnull = 0. (1.3)

Therefore, the linear system has a non-unique solution x + xnull, which translates to

possible volumetric artifacts in the reconstruction result.

For industrial applications it is save to assume that the image is sparse under some

transformation, as most of the industrial parts consist of a limited number of piece-wise

constant materials. Here, we formulate the reconstruction problem in the compressed

sensing framework:

x = argmin
x
‖ψ(x)‖1 , s.t. AΦx = yΦ with scanning angle [−Φ,Φ] (1.4)

where ψ is some sparsifying operator transforming the image to sparse representations.

The pre-aligned mesh representing the optical surface scanning result is discretized into

the reconstruction grid to generate vector B, which contains all voxels that intersect

with the mesh as information about the reconstruction boundary. B represents the

prior knowledge based on the aligned meshMOpt after generating the volumetric mask.

x = argmin
x

∥∥DBψ(x) + αDBψ(x)
∥∥

1
, s.t. AΦx = yΦ (1.5)

where DB = diag{Bi}, DB = diag{1−Bi} and α ∈ [0, 1).

We use the gradient operator as the sparsifying operator ψ and update Equation (1.4)

such that the gradient calculated at the boundaries tagged in B are preserved because

they have a smaller weight α in the cost function.
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(A) MOpt (B) MCT (C) Overlap (D) Result

Figure 1.12: Fusion inputs from optical scan and CT, their overlap and the resulting
data set.

After transforming the unconstrained optimization to a constrained optimization prob-

lem, the reconstruction result is calculated by minimizing the cost function:

x̂ = argmin
x

∥∥AΦx− yΦ
∥∥2

2
+ c

∥∥DBψ(x) + αDBψ(x)
∥∥

1
(1.6)

where the first term is the data fidelity term. In the second term, c controls the smooth-

ing strength and α the weight of the optical constraints. To search for the minimizer x̂,

we use the Alternating Direction Method of Multipliers [BPC+].

1.4.4 Fusion Result

Clearly, an enhancement in object representation was achieved from CT input (Fig-

ure 1.12B) to fusion output (Figure 1.12D). The exterior object boundary provided as

mask, computed from the optical scan in Figure 1.12A, enables a segmentation of the

reconstruction volume and corrected blurring artifacts. The superposition of both in-

put data sets in Figure 1.12C visualizes the defective areas. Given then fact that both

acquisitions describe the very same object, their regional distinctions are remarkable.

This also emphasizes the necessity for highly accurate alignment which takes typical CT

artifacts into account. The three drilling holes in the top section of Figure 1.12D are

exemplary for the achieved improvements. Neither one of the input data sets provide

the correct representation of drilling hole bottoms. Yet, the combination of penaliz-

ing energy distribution outside the boundaries of MOpt and ensuring smooth gradients

within the scalar field permit their correct reconstruction.
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1.5 Key Problem

The data fusion task requires a very accurate alignment of these object representations

from fundamentally disparate imaging techniques. The problem arises from the imbal-

ance of represented information and difference in spatial resolution. For full-angle CT

data and accompanying optical scan data of the very same object, inaccuracies in align-

ment do occur [BMK14] as shown in Figure 1.13. Due to the corresponding artifacts,

limited-angle data presents an even greater challenge. An accurate alignment is not

feasible as long as internal structures contribute to the alignment error. A higher degree

of accuracy can be achieved if only essential data points contribute to the alignment

error. Consequently, aiming for the preservation of relevant parts and the omission of

incomparable regions, we need an efficient data reduction. In our setup, a mesh MOpt

has a very high resolution up to ∼10 µm, but lacks all data from internal structures.

IsosurfacesMCT from volumetric data sets contain, in contrast, all interior and exterior

structures, but generally have a lower accuracy of only ∼75 µm. So, for each data point

on the exterior surface from CT, we have several data points describing the very same

surface in the optical scan. However, the interior surface contained in CT data is not

represented in optical data at all.

Figure 1.13: Elongation and blurring comparison.

The exterior surface of an object, in our context, includes all surface parts visible from

the outside. According to Equation (1.1), MOpt is only a fraction of the complete

exterior surface, which in turn is a fraction of all the data included in MCT. MOpt

andMCT provide different representations of the identical object, and to find a suitable

alignment, we definitely have to take those differences into account.

Similar to acquisitions of the sample object in Figure 1.13 and the mismatches between

both representations, the same observation can be made for the industrial cylinder part

in Figure 1.2. Slight elongations and mismatch in scale hamper an accurate alignment,

as shown in the cross-section in Figure 1.14.
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(A) Cross-section of
MCT with wireframe
behind the cutting plane.

(B) Cross-sections of
aligned meshes

(C) Zoom to blue
box in (b)

Figure 1.14: Mismatch between MCT (green) and MOpt (red).

On the one hand, it is worth mentioning that both examples ofMCT andMOpt contain

artifacts and none of these data sets is assumed to be the more trustworthy or correct

representation. On the other hand, both CT data sets are acquired with a full angle

trajectory and therefore free of LACT artifacts which would of course increase the devia-

tion. Thus, to achieve a proper alignment we will omit all vertices which only contribute

to error. Areas without a suitable counterpart in the other mesh need to be neglected.





Chapter 2

Basic Principles and Sample Data

This chapter briefly explains details and characteristics of the single acquisition methods,

mainly with focus on flaws and artifacts. In the following, established algorithms, 3rd

party data formats, libraries and tools are presented and a description of all sample

objects within this work is provided.

2.1 Volumetric Reconstruction from 2D Projections

Reconstruction algorithms can be divided in two groups, analytical reconstruction and

iterative reconstruction. They serve the same goal of identifying a density value config-

uration within the reconstruction volume, responsible for the observed measurements,

but follow different approaches. Also, each method allows for a different set of filters

and correction methods or error detections. The aspect of introducing prior knowledge

in form of a mask and also to apply regularization motivated the works on an analytical

reconstruction algorithm within the context of the ILATO project.

2.1.1 Iterative Reconstruction

The principle of iterative algorithms is to find a solution by successive estimates. The

current estimate and the projections it is based on are compared to all measured pro-

jections. The current estimate is then modified according the result of the comparison,

thereby creating a new estimate [Bru02]. In the so-called Algebraic Reconstruction

Technique (ART), projections are discretized, yielding a huge linear system of equa-

tions. Statistical reconstruction methods take into account the random nature of the

measurements; they are based on the minimization of the distance between the measured

19
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data and the estimations given by a statistical model. Iterative reconstruction is com-

putationally expensive compared to analytical approach and tends to provide increased

resolution. The drawback is that each iteration amplifies noise.

2.1.2 Analytical Reconstruction

This technique is based on the concept of backprojection. The accumulation of the

ray-sums of all the rays that pass through any voxel in the reconstruction volume is pro-

cessed. In practice this consists of two steps: At first, sinograms are run back through

the image to obtain a rough approximation to the original. Since this causes some

blurring in other parts of the reconstructed image the second step is to apply a deconvo-

lution filter or ramp filter per projection to mitigate the blurring effects. Systems differ

in choice of applied filter and order of steps but in general follow this idea. Analytical

methods have the advantage to be fast and deliver good quality results under standard

scanning conditions [ML07]. To enhance filtered backprojection approach a mask defin-

ing boundaries of the object can be included in reconstruction algorithm. This is called

weighted filtered backprojection.

2.2 Defects in Data Representation

All imaging techniques produce output with artifacts, which either are false negatives

or false positives. A false negative is the absence of data which is expected to be repre-

sented in the output. To compensate this and to enable further processing, the missing

information is either added via data fusion or the defective region is corrected by adding

synthetic data in a best-effort approach. False positives describe the presence of data

which has no correspondence to the real-world object. These artifacts have to be de-

tected and possibly deleted. The correct representation of real-world data points in

generated output is called true positive. And the correct absence of data in the repre-

sentation, e.g., no data points in regions, where no structures are to capture, is called

true negative. It is important to notice that the interpretation of these terms some-

times differs according to the context. For surface data such as optical scans, absence of

acquired data results in absence of represented data. For transmission-based measure-

ments the absence of data can also be interpreted as absence of observing attenuation,

e.g., caused by defective sensor pixels. In the resulting volumetric representation this is

responsible for falsely high density values in some voxels. So in a CT workflow, depend-

ing on the chosen representation, false negatives in projections result in false positives

after reconstruction.
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2.2.1 False Data in MOpt

False negatives in optical scanning are very common and usually referred to as a hole.

False positive are extremely rare and show up as surface fragments above the true

surface. They only occur for highly reflective materials. In this case the fringe pattern

is projected on one surface part, and its reflection captured from a different surface

part. Or in general the mirroring of a surface part is falsely selected for disparity

measurement. For the same reason, small surface fragments are identified as holes

since both are enclosed by a mesh boundary. Determining if the current boundary

encloses a hole or a small fragment is usually accomplished by calculating the surface

area near the boundary, i.e., triangles without three adjacent triangles. If applying a

region growth algorithm to one boundary vertex accumulates an area larger than a given

threshold, before all triangles within the boundary are selected, the boundary is assumed

to represent a hole. Likewise, boundaries that enclose triangles with a total area below

a given threshold are assumed to represent small fragments which usually are deleted.

In addition to defects related to the acquisition of data, the process of merging all single

acquisitions to a final representation also introduces errors. The surface parts are aligned

based on their overlap—usually by manually selecting tie points—and depending on the

geometry of the object small errors can occur. An a priori estimation of accumulated

errors through the whole workflow is not possible [BBS10]. Our a posteriori analysis of

multiple measurements for a single specimen are listed in Appendix E.

2.2.2 False Data in MCT

For CT a variety of sources can introduce artifacts. This brief summary of common

flaws [BF12, Hut02] is given to highlight the width of the spectrum of potential defects.

As for optical acquisitions, this work does not study the contribution of single artifact

sources. Our focus on limited-angle artifacts is justified by the given usecase and the

possibility to correct those defects by providing prior information, yet this is not the

only—and depending on the setup not the most prominent—source of artifacts.

Noise occurs due to statistical error of low photon counts. They result in random thin

streaks in MCT. False photon counts are also caused by reflections or photons emitted

by the walls of the CT chamber after long exposure. The effects of noise are increased

during iterative reconstruction. Artifacts introduced by noise are so common that to

synthetic data usually so-called Poisson noise is added to mimic the characteristics of a

real acquisition.

Beam Hardening describes the effect of low energy X-ray photons being attenuated

before high energy photons. Thus, attenuation does not follow exponential decay. This
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leads to misinterpretations of projection data during reconstruction since the algorithm

assumes exponential decay. As a result attenuation values along the ray appear lower

than they are in reality, the further the ray traveled in dense material. This effect

is only seen in polychromatic x-ray, not with a monochromatic x-ray setup. In other

words, sources that guarantee to only emit photons with exactly the same energy do not

suffer from beam hardening. For homogenous materials characteristic cupping artifacts

are attributed to beam hardening. The effect is widely studied and well known, yet

there seems to be no suitable detection or prevention mechanism available. Best effort

correction attempts apply fitting of a polynomial on the relation between the logarithm

of the transmission and the path length in the (homogeneous) material in order to

adjust the transmission values. The effect of beam hardening is substantially reduced

by a strong filtration of the source spectrum, e.g., by introducing Tungsten foils or blocks

between source and specimen to achieve almost monochromatic beam characteristics.

Scatter causes more photons to be detected than expected. This results in dark streaks

along the lines of greatest attenuation. The sensor areas behind dense material should

not gather energy and therefore are most sensitive to falsely distributed photons. Like

Noise, this is a statistical effect caused by miscounts, but in contrast to it, the geometry

of the specimen influences the effects of Scatter.

Limited-Angle Artifacts occur in LACT scans and represent an under determined

system for reconstruction as explained in Section 1.2.2. Since it does not cover a full

circular trajectory, the lack of projections from certain angles does not permit to resolve

all surface configurations. Optical scans resolve data points on surfaces parts orthogo-

nal to the line of view, but never on surface parts parallel to it. For CT it is the other

way round, interfaces between materials, e.g., aluminum and surrounding air, parallel

to the central ray are resolved best. If full attenuation is measured in one pixel and zero

attenuation in a neighboring pixel the maximum of information is collected for recon-

structing the specimens volumetric representation. Two neighboring pixels collecting

identical attenuation values—as it is the case for interfaces orthogonal the the central

ray—do not provide any meaningful information. Thus, the lack of projections from

certain angles usually implies the lack of segmentation information and therefore only

permit a vague distinction between material interfaces after reconstruction. This re-

sults in leaking or blurring of material borders in volumetric representation and creates

inconclusive isosurface parts in MCT as shown in Figure 2.1.

Ring artifacts can be observed as concentric circles after reconstruction and usually

originate from a miscalibration of CT setup. If position or inclination of the rotation

stage, carrying and moving the specimen, are not accurately specified, all projections

are processed with a slight offset. This results in rings around the rotation axis and
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Figure 2.1: Effect of trajectory on reconstruction and subsequently on isosurface
extraction.

may also be caused by very heavy specimens physically bending the mechanics of the

rotation stage. No matter wether it is caused by miscalibration or by exceeding the

payload, either objectively or virtually the rotation stage performs a wobbling motion

instead of a rotation.

2.3 Quality Measure for Alignment

Any kind of manipulation needs a suitable verification to ensure the correct execution.

Metrics and measurements to determine the correctness of a given alignment or at least

allowing to assess and rank two different alignments are presented in the following.

2.3.1 Mean Square Error

The Mean Square Error (MSE) between two point sets P and S measures the average

squared distance between neighboring point pairs ui ∈ S and vi ∈ P.

MSE =
1

n

n∑
i=0

(ui − vi)2, ui ∈ S, vi ∈ P, i = min(|S|, |P |) (2.1)

As for sets of different sizes no set of unique pairs between a sample from one set and its

neighbor in the other set covers the sum of all samples in both sets, the MSE evaluation

is a directed measure. Thus, MSE(S,P) yields a different result than MSE(P,S). In

addition, outliers have a mayor impact since error distances are squared. To address the

latter, the Root Mean Square Error (RMSE) or Root Mean Square Deviation can be

computed as

RMSE(S,P) =
√

MSE(S,P). (2.2)
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This quadratic mean is a common measure of the imperfection of the fit or alignment.

The lower the result of RMSE(S,P), the more data points from S are in close proximity

to P.

2.3.2 Hausdorff Distance

The Hausdorff distance computes the largest error distance between two sets of points.

It can be used as a similarity measure for registration [ZHW05] or validation [KGA+10].

As it is based on the Euclidean norm it is dimension-independent. Other norms like,

e.g., Manhattan distance are also possible but less common. The result is always equal

or greater zero while equality is only reached if the compared sets are identical.

Let p be a point of R3 and S a triangulated 2-dimensional surface embedded in R3. The

distance δ from p to S is defined as

δ(p,S) = inf
q∈S
||p− q|| (2.3)

where ||.|| corresponds to the Euclidean norm and q is a point of S—not necessarily a

vertex in S. Depending on the implementations q can be located in one of the triangle

surfaces instead of being a corner point of any triangle.

Now, let S1 and S2 be two 2-dimensional surfaces embedded in R3 and p1 a point

belonging to S1. Equation (2.3) allows to define a surface-to-surface relative distance

∆(S1,S2) as

∆(S1,S2) = sup
p1∈S1

δ(p1,S2) (2.4)

This distance is relative as it is not symmetrical, i.e., ∆(S1,S2) 6= ∆(S2,S1). Finally,

the Hausdorff distance d between two surfaces S1,S2 is defined as the maximum of the

two relative distances:

d(S1,S2) = max {∆(S1,S2),∆(S2,S1)} (2.5)

In contrast to RMSE, the Hausdorff distance is the largest of all the distances from a

point in one set to the closest point in the other set, not averaged over multiple error

distances. It is a necessity that RMSE is computed while calculating the Hausdorff

distance.

For the intersecting ellipsoids in Figure 2.2B the distance measures in each vertex

were mapped to a color ramp. The values range from blue—which refers to minimal

distance—over yellow to red, while red refers to the largest error distance measured.
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(A) ∆(Circle, Square) as example for di-
rected measure.

(B) Hausdorff error distances for visual-
izing mesh deviation or alignment error.

Figure 2.2: Minimal Hausdorff example and coloring based on error distances.

The intersecting boxes also feature a mapping from measured error distances to a color

range—in this case green is set to correspond with zero error. Measuring the Hausdorff

distance based on vertex to surface instead on vertex to vertex, allows to take the sur-

face orientation into consideration and—considering the normal vectors—might result

in negative error distances to indicate that the vertex is actually behind the surface. As

the Hausdorff distance is a directed measure, in both cases—ellipsoids and boxes—each

of the intersecting meshes was processed, and the calculate error values mapped to a

color range.

2.4 Data Set Analysis

To grasp the global features of a data set and quantify attributes of the represented

object we need to determine, e.g., surface area, volume or barycenter. Furthermore,

they might support decision making on orientation and expansion or characterize the

data set as being roughly cuboid or rather spheroidal.

2.4.1 Surface Area

Surface Area Calculation follows “Herons formula”. Let a, b, c be the lengths of the sides

of a triangle. The area is given by:

A =
√
p(p− a)(p− b)(p− c) (2.6)
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2.4.2 Box Volume

The volume V of a box is calculated as V = whl where width w, height h and length l

in this case correspond to the extents of the enclosed vertices. The corner points of the

box around a subset of all data or the whole data set are in the simple case defined by

the smallest and largest coordinates in xyz direction.

pmin = (min(x),min(y),min(z)), pmax = (max(x),max(y),max(z)) (2.7)

corresponds to corner points from all permutations of min and max for xyz coordinates

and yields the volume of a so-called axis aligned bounding box.

2.4.3 Center of Gravity

Calculating th Center of Gravity v̄ from all vertices v in the data set P is done by

averaging all position vectors

v̄ =
1

n

n−1∑
i=0

vi, n = |P|, vi ∈ P. (2.8)

Data: Eigenvectors from E, point CoG
Result: Octant CoGs 1..8
set CoGq = (0,0,0) for q ∈ (1..8);
set nrCoGq = 0 for q ∈ (1..8);
for vi ∈ P do

q = getOctant(vi);
CoGq /= vi;
nrCoGq++;

end
for i ∈ (1..8) do

CoGq += nrCoGq;
end

Algorithm 1: OctaCoG update

2.4.4 Dimensionality Reduction

Principal Component Analysis (PCA) identifies the major axes of a data set as linearly

independent components, i.e., the first component indicates the direction of largest vari-

ance. Succeeding components indicate the largest variance within the expansion, under

the constraint that they are linearly independent of all components with higher variance.

In the 3D case, up to three major axes can be identified which in turn represents an

orthogonal basis.
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PCA can be computed as the eigendecomposition of the sample covariance matrix A

A =
1

n

n−1∑
i=0

(vi − v̄)(vi − v̄)t, vi ∈ P. (2.9)

Thus, A = EDEt provides eigenvalues λj as diagonal entries in D and orthonormal

eigenvectors ej , j ∈ 1, 2, 3 as columns of E. This represents principal components in

direction ej with ordering given by the magnitude of the jth eigenvalue.

Data: P
Result: PCA and CoG
A3,n = Zeros(3,n);
for vi ∈ P, i ∈ (0..n− 1) do

A.row(i) = vi ;
CoG += vi;

end
CoG /= n;
A.rowwise() - CoG;
E = A.eigenvectors().sorted();

Algorithm 2: PCA and CoG

A similar method and generalization of the eigendecomposition is singular value decom-

position (SVD). It also provides an orthogonal transform that decorrelates the variables

and keeps those with the largest variance. Compared to PCA, SVD is known to be

numerically more stable [KL80]. Assuming the same centered m × n data matrix P as

in Equation (2.9), where A = PP T the SVD of P is calculated as

P = UΣV T (2.10)

with a unitary m×m matrix U , a non-negative m×n diagonal matrix Σ and a unitary

n × n matrix V . Decomposition provides P~v = σ~u and P ∗~u = σ~v where vectors ~u and

~v are called left-singular and right-singular vectors for σ, respectively.

In analogy to the covariance matrix A = PP T = EDET from PCA, the similarity of

both approaches can be seen with

PP T = (UΣV T )(UΣV T )T = (UΣV T )(V ΣUT ) = UΣ2UT (2.11)

since V is an orthogonal matrix V TV = I. Thus, the square roots of the eigenvalues of A

correspond to the singular values of P and eigenvectors in E correspond to left-singular

vectors u.
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2.4.5 Local Linearity

To calculate the local linearity [RL15], we compute the three eigenvalues λi of the PCA

of the point set in 3D space

l =
max (λi)∑

(λi)
, i ∈ 1..n. (2.12)

For the n dimensional case, l is in the range of 1
n ≤ l ≤ 1. The unit vectors are uniformly

distributed for l = 1
n , i.e., all eigenvalues are equal. Likewise, l = 1 indicates that all

vertices of the point cloud are collinear, thus all but one eigenvalues are zero since all

points contribute exclusively to the first principal component. In the 3D case, a linearity

measure of l = 1
3 corresponds to uniformly distributed points on a sphere.

2.5 Example Data

Our research aims at improving the understanding of the intrinsic resolution limits of

CT, allowing maximum spatial resolution and contrast with a minimum of artifacts.

To enable the comparison of meshes generated from volumetric data and meshes gen-

erated from optical scans several sample objects have been selected. Some have been

designed by us and produced at Empa, others are real-world samples in mint condition

or with wear traces. Our students finished the task of scanning those sample objects

with Breuckmann scanners SmartScan 3D SM2069-HE5 and SmartScan 3D SM152712-

HEC8LW featuring 5 MP and 8 MP cameras and offering a resolution of 18µm and

20µm at IWR.

2.5.1 ILATO Samples

We designed test objects to provoke and evaluate typical artifacts related to the imaging

techniques. The resulting representations, the amount of data points and the captured

surfac are shown in Figure 2.3 for the optical measurement system and in Figure 1.9 for

processing in a CT workflow. The objects are made from aluminum blocks with brushed

surface finish, and were manufactured in different sizes. The dimensions of the presented

object are 8x4x2 cm, elongations of the long edge to 12,16 and 20 cm were applied for

the other objects. They feature drilling holes in front and side, milled trenches of

different size in the front and one screw thread applied to the center drilling hold on the

front. Two identical sets of four samples each were manufactured at Empa according

to CAD specifications and labeled 1A..4A and 1B..4B. For all samples we performed
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optical 3D scan at IWR, CT scans at Empa, manual measurements via Caliper by IWR

Feinwerkstatt, and in addition the B set was measured via CMM machine by Empa.

Our smallest sample 1B ILATO sample 2A

3B—wedge shaped due to flaws in production

The largest sample 4A

Figure 2.3: ILATO samples from optical scanning.

As indicated in Figure 2.4 we experimented with different coatings to resolve issues

with highly reflective surfaces, namely developer spray from photography domain and

Cyclododecan spray from the conservator domain. Although both were able to effectively

reduce the reflectiveness or the surface, the thickness of the additional coating layer

rendered the scan result useless. Also, the advertised effect of evaporation without

residue could not be observed.

2.5.2 An Industrial Real-World Object

We also processed industrial real-world objects to demonstrate practicability and to

further evaluate our method. It is—not disclosed for public presentation due to an
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Figure 2.4: ILATO sample 2B with freshly applied coating (top) and residue after
evaporation (bottom).

NDA—included in the results Section 5.2 as “industrial object”. As an alternative

specimen featuring double walled asymmetric machinery parts, the synthetic data set

called “wing model” was created and evaluated.

2.5.3 Wing Model

Synthetic Data of a hollow object is presented in Figure 2.5. The surface model of a

wing has no interior structures—as an optical scanner would capture it. To reflect the

characteristics of real acquisitions, the original CAD sample was subdivided [CC78] to

increase the number of vertices and a random displacement was added as noise. This

serves as mesh MOpt from optical scanning.

In Figure 2.6 the same wing model has a downscaled version nested as inner structure

to serve as lined sample, as double-walled specimen are very common in real world

applications. To create MCT, the vertex count was again reduced—after nesting the
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Table 2.1: Measurements for ILATO samples.

Sample W H L Surface (cm2) Vertices

1A60 40.20 20.72 80.13 116.0 1666236
1A 40.28 20.33 80.15 117.9 281812
1B 40.02 20.63 80.01 145.6 355635
2A 40.52 21.00 120.05 154.2 413894
2B 40.14 20.41 120.07 155.7 327752
3A 40.06 20.05 160.30 198.5 418383
3B 40.20 20.84 160.08 200.3 436105
4A 40.16 21.04 200.13 237.6 502275
4B 40.33 20.58 200.19 241.2 498702

Figure 2.5: MOpt of synthetic wing data with detailed surface but no interior struc-
tures. surface: 303 cm2; vertices: 19,298.

Figure 2.6: MCT of synthetic wing data with full coverage but lower level of detail.
surface: 579 cm2; vertices: 28,187.

interior structures—via quadric-edge collapse based mesh decimation, as typically a CT

acquisition has lower resolution than a comparable optical scan.
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2.5.4 Cylinder Cast

As presented in Section 1.1, this is a real-world object (Figure 2.7) from the industrial

domain. It poses a challenge to optical acquisition and CT alike. Since complex interior

structures include many undercuts, the surface in mesh MOpt from optical scanning

only comprises only a fraction of the CT result. On the one hand, embossments of

serial numbers and logos are filigree surface structures well-preserved in optical scans

but easily blurred or smoothed in CT data sets. On the other hand, screw threads

interior structures are correctly represented only in the isosurface extracted fromMCT.

The cylinder cast object is made from aluminum and measures 18.3x11.9x10.9cm. MCT

comprises 1491cm2 mesh surface in a 423cm3 volume with 1,352,529 vertices whileMOpt

covers a surface of 1047.5cm2 with 9,519,090 vertices.

(A) Isosurface mesh MCT (B) Mesh of optical scan MOpt

Figure 2.7: Industrial example of a cylinder cast as acquired by CT and optical scan.

2.5.5 Steel Sample

Certain artifacts in CT scanning only occur for very dense materials—or at least are more

prominent there. We present a cast iron sample which measures 234.9x105.4x120.0cm,

MOpt comprises 1183cm2 mesh surface in a 881cm3 volume with 788560 vertices. Several

processing steps were performed, each contributing a different surface texture. The

surface is rough and matte as typical for cast products in original surface parts. Polished

surfaces in the processed outlets are highly reflective (Figure 2.8D) and grinding marks—

presumably caused by dismantling the sample with a metal saw—feature filigree streaks

(Figure 2.8C).
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Curved side with embossments Opposing side of sample

Bottom with saw marks Polished inlet

Figure 2.8: Cast iron sample with 1184 cm2 surface in a volume of 879.5 cm3 repre-
sented by 788560 vertices.

2.5.6 Primitives for Testing Purposes

Several primitives were generated to evaluate algorithms and highlight results of opera-

tions such as computing the enclosing ellipsoid, the Minimum Bounding Boxes or a space

partitioning. Furthermore, information obtained from trajectory files or similar is indi-

cated. Super-Ellipsoid [Bar81] also served as random sample object featuring random

configurations of convex/concave synthetic test data.

Capsule Sphere Cube Super-

Ellipsoid

Icosahe-

dron

Figure 2.9: Primitives for testing purposes.
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2.6 3rd Party Libraries and Formats

The successful implementation of concepts and algorithms presented within this work

benefited from a variety of excellent open-source projects. They provide fundamental

building blocks, such as versatile data structures, efficient algebra systems, numerical

solvers and proper visualization as reliable well documented libraries and are presented

in the following.

2.6.1 Data Structure

The mesh structure all operations are performed on is a half-edge data structure provided

by OpenMesh [BSBK02], which also handles most of the I/O and data conversion in

writing and reading the meshes from and to disk. OpenMesh implements a half-edge

data structure, also known as doubly-connected edge list. For an embedding of polytopes

in 3D, each vertex is stored with coordinates and other attributes such as color or normal

vector. In addition, the connections to previous and next vertices are stored as links and

referred as half-edges. Per vertex, an arbitrary number of connected vertices are stored

by their outgoing half-edge, optionally also all incoming half-edges, i.e., references from

other vertices to a single vertex can be stored. Besides edges and vertices, the data

structure also holds faces. In general these are polytopes and in the case of surface

meshes more commonly quads or triangles. Faces are implicitly defined by a closed

cycle of connected half-edges, circling the face clockwise with respect to the normal

vector of the face, i.e., the front side. As two adjacent faces contribute one half-edge

each to their connecting edge, the opposing half-edges form a full edge.

The data structure provides iterators and circulators to exploit to connectivity infor-

mation. Hence, one can iterate over all vertices, edges, half-edges and faces in a mesh.

Circulators over all vertices of a face, all half-edges around one face or all faces around

one vertex are provided, which are calles one-ring-circulator. Furthermore, the outgoing

half-edges of a given vertex in clockwise or counter-clockwise order or combinations of

the aforementioned connections can be traversed.

2.6.2 Linear Algebra

For linear algebra, vector and matrix operations the Eigen Lib [GJ+10] is employed.

This also includes geometrical transformations and numerical solvers, e.g., for eigende-

composition as in PCA and SVD.
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• Each vertex references an outgoing halfedge that starts at this vertex (1).

• Each face references one of the halfedges bounding it (2).

• Each halfedge provides a handle to

– the vertex it points to (3),

– the face it belongs to (4)

– the next halfedge inside the face (ordered counter-clockwise) (5),

– the opposite halfedge (6),

– (optionally: the previous halfedge in the face (7)).

Table 2.2: OpenMesh documentation of half-edge data structure.

2.6.3 Data Types

To extend the support of data types, mesh formats and to enable the loading of volu-

metric data, additional modules have been implemented. OpenMesh already supports

common formats such as the obj format developed by Wavefront Technologies, STere-

oLithography or Standard Tessellation Language as stl format, the Polygon File Format

or the Stanford Triangle Format as ply file and and off files for the Object file for-

mat. To benefit from existing implementations such as GigaMesh and the related MSII

analysis (see Section 3.4), an importer for mat files storing the resulting feature vectors

were implemented. Being able to import mpl MeshLab project files including the stored

transformations and chosen perspectives per mesh has proven to be very convenient. By

far more important is the interface to load CT geometry files.

Figure 2.10: Visualized projections

They contain the geometric properties of the CT machinery such as pixel size, spacing

and layout of the detector. Furthermore, the distances between source and detector

and the center of the rotation stage are contained, the rotation axis around which the

rotation stage turns the object. Also the trajectory is stored along with the geometric

properties, describing the perspectives of all projections the CT performs. As visualized

in Figure 2.10, small tetrahedrons indicate source positions along—in this example—a

so-called Circle-Line-Circle (CLC) trajectory. The semi-transparent pyramid represents
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the cone beam of a single projection from source (tetrahedron) to detector (bottom of

pyramid). The geometry file is essential for operating the CT machine, and also for

the subsequent reconstruction. An overview on the CT setup is given in Section 1.2.2,

the reconstruction step is described in Section 2.1 and the geometry file as basis for

generating a mask as prior knowledge to an enhanced reconstruction is explained in

Section 4.5.1.

As for surface meshes, a variety of data formats exist to describe volumetric data sets.

The most simple case is storing the 2D representation of a single layer of the recon-

structed volume raw file. Several of those files or slices cat be stacked according to

manually specified parameters like width and height of slice, pixel spacing, endianess

and data type. After loading a series of raw files, each density value is represented as

property of one voxel in volumetric representation—or vertex when represented as point

cloud. The resulting structure forms a homogenous 3D grid according to width and

height of each slice and total number of slices. An example of loading a the upper third

of all stacked raw slices of the Cylinder Cast object is given in Figure 2.11, the color

are mapped according to density per vertex using a standard hot-to-cold color ramp1.

(A) Scalar field with vertices colored by
density

(B) Upper 3rd of slices (ony vertices above
threshold)

Figure 2.11: Volumetric data loaded from raw slices.

A more common format for volumetric data is mhd, a MetaImage from MetaIO im-

plementation (Figure 2.12) within the Insight Segmentation and Registration Toolkit

(ITK) by Kitware which also provides an implementation of an alignment algorithm as

1Color ramp: http://paulbourke.net/texture_colour/colourspace/

http://paulbourke.net/texture_colour/colourspace/
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presented in Section 3.5.2. Internally mhd relies on the raw file data type for represen-

tation but accompanies this with a meta file containing all information about cell size,

dimensions, spacing and enclosed formats.

Figure 2.12: Object with different densities from MHD.





Chapter 3

Related Work

The following chapter describes existing concepts that were adopted in our project or

included in the evaluation of own methods. This comprises post-processing steps to

provide watertight surfaces from optical acquisitions, strategies to extract a mesh surface

from volumetric data, alignment algorithms and intersection tests.

3.1 Holes and Fragments

As optical scans are not able to capture interior structures and also might not acquire all

exterior surface parts, the defective areas have to be assessed and eventually corrected.

The most prominent defects are holes and fragments.

3.1.1 Finding Holes in a Mesh

In the half-edge data structure, introduced in Section 2.6.1, each partial edge is rep-

resented as an oriented half-edge circling the corresponding face clockwise. Thus, an

edge between two faces consists of two half-edges with opposite direction. A boundary

is considered to be a single half-edge without a corresponding opposing half-edge. This

indicates the presence of a face lacking a neighboring face as illustrated in Figure 3.1A.

To identify such boundaries as a cycle of connected half-edges, Algorithm 3 is employed.

Border vertices can be identified in the data structure as being connected to border

edges. Until any border vertex vi is assigned to a closed cycle, the border half-edges

connected to v are followed to neighboring border vertices vj . Vertices already known

to be part of a cycle are neglected; identifying the start vertex as next vertex indicates

a closed cycle.

39
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(A) Border edges (B) Borders of holes and patches

Figure 3.1: Indication of half-edges without opposing half-edge.

Data: M
Result: allClosedCycles
allClosedCycles={};
for vi ∈ verticiesAtBorder do

if vi ∈ allClosedCycles then
skip this iteration;

end
while current cycle not closed do

for vj ∈ outgoingBorderHalfedges(vi) do
if vjisknownincurrentcycle then

skip this iteration;
end
Add vj to current cycle;
if vj identical with first vertex in current cycle then

add current cycle to allClosedCycles;
break loop;

end

end
if currentcyclewasnotappended then

break loop;
end
vi = vj ;

end

end

Algorithm 3: Finding closed cycles of half-edges in M

3.1.2 Closing Holes

Two approaches to close holes are implemented. The first—a subdivision patch as

depicted in green in Figure 3.2—is preferred since its patches are from triangles of

similar shape and size. Also the produced patches respect the local curvature in the

vicinity of each border vertex. The latter—a triangle fan patch shown in red—provides

a fall-back solution for very large cycles or border cycles that deviate to a large extent

from a circular shape.
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Figure 3.2: Example mesh (center) with border vertices indicated in red. Correspond-
ing Triangle fan patch (left) with barycenter (yellow) and Subdivision patch (right).

Subdivision Patches provide a surface fragment resulting from recursively applying a

refinement step to an existing surface part, which is called subdivision [Lie03]. According

to a given set of rules the triangles of the existing surface part are successively split

into smaller primitives, to replace the original surface part during each iteration. The

subdivision patch not only considers the border vertices of a given hole in M, but also

the normal direction and average edge length of each border vertex. The result, provided

as list of all new vertices and their connectivity, is a smooth surface part for the irregular

triangle meshM. This approach works well for border cycles not largely deviating from

circular shape but is computationally expensive for border cycles of several hundred

edges. And as this approach does not provide intermediate results, the whole border

cycle is either covered by the resulting patch, or no patch is provided at all. Figure 3.3

shows a subdivision patch applied to the right drilling hole from Figure 3.1B.

Figure 3.3: Partially acquired screw thread closed with subdivision patch.

The Triangle Fan Patch Algorithm 4 provides a very robust and fast solution to

close a given hole inM, indicated by its n border vertices. It generates n triangles from

any two border vertices vi and vj that share a common border edge and the common

barycenter bc of the whole cycle. The resulting surface part—in contrast to Subdivision

patches—does not estimate the local curvature in the border region and most likely does

not correspond at all to the missing surface part. In this approach all triangles have one

edge defined by one arbitrarily small border edge and the opposing vertex defined by

the barycenter bc. Thus, all triangles share one single vertex bc and tend to have a very

unfavorable edge length ratio. For these almost-degenerate triangles, the processing is
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prone to being numerically unstable. Due to intersections with existing surface parts in

M, the patch might not be fully applicable.

Figure 3.4: Partially acquired screw thread closed with triangle fan patch.

Intended as fallback solution when the subdivision patche construction fails, this is ac-

ceptable. As an advantage, the triangle fan patch can be partially applied and it provides

solutions for border cycles of arbitrary length. Partial application refers to leaving out

triangles intersecting existing surface parts. The resulting holes from applying a partial

patch can be closed in consecutive runs. Figure 3.4 shows a triangle fan patch applied

to the left drilling hole from Figure 3.1B. Note that all triangles of the patch intersect

in a single point, the barycenter of the border cycle.

Data: closedCycle
Result: fanPatch
fanPatch={};
bc=barycenter(closedCycle);
vtmp=last known vertex in closedCycle;
for vi ∈ closedCycle do

add triangle (bc, vi, vtmp) to fanPatch;
vtmp=vi;

end

Algorithm 4: Composing triangle fan patch from closed cycle of vertices.

3.1.3 Stencil Selection & Region Growth

Figure 3.1B depicts all half-edges without opposing half-edge in red. They either revolve

around a hole in their center or circle the boundary of a small fragment. The distinction

between fragment and hole cannot be made from the data structure itself, but needs to

take certain aspects of the local neighborhood into consideration. For example whether

a connected set of faces with a surrounding border is considered a fragment or whether

missing faces manifest as a hole, is a subjective perception and only depends on the

relation of face surface and boundary length.

A possible solution to distinguish hole from fragment is the application of a region growth

algorithm with a certain threshold to any of the seed vertices. Region growth describes

a selection scheme where connectivity or proximity are considered in order to compose
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(A) Eucledian distance (B) Geodesic distance (C) Edge trail

Figure 3.5: Distance measures from a in blue triangle to v in red triangle.

a subset of all available data. From a given start or seed vertex s, all components are

selected which either are located in a given distance d or are reachable via a set of

connected edges. The distance measures from the seed vertex s to any selected vertex

v either consider the Euclidean distance −→sv, as in Figure 3.5A, or the geodesic distance,

as in Figure 3.5B. For the latter, an intermediate point q denotes the intersection of

the adjacent edge and the projection of −→sv onto the connecting surface. Thus, the

geodesic distance of s and v is |−→sq +−→qv| and follows the intrinsic geometry between s

and v. This is computationally expensive and introduces many new intermediate points

which usually neither correspond to vertices inM, nor reoccur for multiple independent

distance measures. The summation of existing edges in M on the path from s to v as

shown in Figure 3.5C, is a good trade off between simple Euclidean measurements and

geodesic ones.

Region growth based on Euclidean distance and based on edge sum have been imple-

mented. The concatenation of existing edges was also chosen over the correct topological

measure via geodesic distance since it does not need a second processing step to identify

traversed triangles and associated edges in M.

Data: Mesh M, seed vertex s, distance maxLength
Result: patch P with vertices connected to s in distance ≤ maxLength
growthEuclidean (v,d,P)

for edge e ∈ edgeConnectedTo(currentSeed) do
vertex v = toVertex(e);
distance d = getDist(v,currentSeed);
if P.contains(v) then

if d ≤ maxLength then
P.add(v);
growthEuclidean(v,maxLength− d,P)

end

end

end

Algorithm 5: Recursive region growth with euclidean distance measure.

So for distinguishing holes from fragments, a threshold is set as targetted surface area,

and the resulting selection is checked if the target was met. Starting at a vertex of a

border cycle, the patch either stops growing because the threshold is reached, meaning
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that the border belongs to a sufficiently large surface part. Or if all connected compo-

nents to the border vertex were included in the patch before the threshold was reached,

the patch is considered to represent a small fragment and usually deleted.

Of course this approach can be applied to any vertex in the mesh, if one wants to select

connected components of a given size. We refer to this as Stencil selection. The expected

output is that neighborhood relations and connectivity within the patch are preserved

and that the growth region is expanded equidistantly from the seed vertex. Thus, the

growth follows a circular or a spherical shape as shown in Figure 3.6, instead of randomly

selecting any connected triangle until the given threshold is reached.

(A) Selected patch of mesh depicted in red.

(B) Patch with highlighted edges that
form a tree

(C) Patch with highlighted edges as full
subgraph

Figure 3.6: Several stencil selection patches with blue seed vertex in the center and
red growth area around it.

Figure 3.6C shows the result of recursively circulating the one-ring-neighborhood around

the borders or the current patch. For each added vertex, all its connected vertices are

tested if they are within the distance as defined by the threshold. In this case they

become the newly added vertices and their neighborhood is circulated. This approach

provides—besides all vertices in the patch—the complete subgraph of edges in mesh

M which correspond the the selected surface part as all traversed edges are added.
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Algorithm 5 describes the implementation of this variant, which is much faster than

computing the edge-tree shown in Figure 3.6B.

Data: Mesh M, seed vertex s, distance maxLength
Result: patch P with vertices connected to s in distance ≤ maxLength, edge set E
growthEdgeSum (v,d,P,E )

for edge e ∈ edgeConnectedTo(currentSeed) do
vertex v = toVertex(e);
distance d = getDist(v,originalSeed);
if P.contains(e) then

if d ≤ maxLength then
E .add(e);
P.add(v);
growthEdgeSum(v,maxLength,P,E)

end

end

end

Algorithm 6: Recursive region growth with edge summation as distance measure.

For the edge-tree, no valid edge in the one-ring-neighborhood is added. Instead each

recursion updates a map of already included edges and allows only those to be added,

which contribute a new vertex to the patch. While the distance measure in Algorithm 5

compares the distance from the original seed vertex s to the newly added vertex v, the

distance measure via edge summation reduces the threshold with each recursion by the

length of the last edge and therefore respects local topology. The implementation of

region growth via edge summation is listed as Algorithm 6. The difference in distance

measures is especially noticed near elongated gaps or trenches in the mesh, as seen in

Figure 3.7. For Euclidean measure, the growth expands across the gap if only a single

edge allows circumventing it within the radius of the patch. For edge summation, the

distance to circumvent the gap is taken into account and not all vertices within the radius

of s are selected. Thus, the selection with Euclidean distance preserves circular shape in

(A) Triangles
Euclidean

(B) Vertices
Euclidean

(C) Triangles
EdgeSum

(D) Vertices
EdgeSum

Figure 3.7: Stencil selection with seed vertex labelled in green and growth area indi-
cated in blue on an orange 2D surface.

Figure 3.7A (or spherical in 3D) where each vertex v is at max in distance d of the seed

vertex s and has a known path connecting s and v within the patch. The selection via

edge summation also has roughly circular shape, as shown in Figure 3.7C, but each vertex
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v has a known path of length ≤ d within the patch to the seed vertex s. Of course an

alternative solution to obtain a similar result is to implement Dijkstra’s algorithm [Dij59]

for finding the shortest paths starting from s to all vertices v. This would require the

identification of a suitable subgraph since applying Dijkstra to M just to analyze a

5mm patch in a 1500cm2 surface requires considerable extra effort. Furthermore, our

main motivation for geodesic region growth as presented in Section F.5.2 would have

implied hundreds of thousands of Stencil selections but turned out to be a dead end.

Also, the applications small particle identification and border trimming as presented in

Section 3.2.5 are already work sufficiently well with Euclidean region growth.

3.2 Isosurface Extraction

In general, an isosurface is the pre-image of a given threshold in a volume data set. It

serves as boundary or segmentation to separate those components where values satisfy

the threshold criteria from the rest. In our context, isosurfaces describe the interface

between two density regions in the volumetric presentation from CT reconstruction.

Usually the threshold is set such that is separates material from air since all our samples

are made from homogenous material. At least in theory the scalar field should only

contain values corresponding to air and values corresponding to the specimen. In prac-

tice this is not the case since the CT does not provide infinite resolution and therefore

some voxels in the reconstruction volume contain material and air alike. Also, support

material, the rotation stage, deposits and residue are included in the acquisition. Fur-

thermore, all kinds of defects and artifacts may alter the represented attenuation values

from the real values.

3.2.1 Marching Cubes

The Marching Cubes algorithm (MC) [LC87] triangulates a scalar field. A cube in

the case of 3D scalar fields (or a square in 2D case) is shifted over the volume under

investigation. The size of the cube commonly matches the grid size such that any corner

corresponds to the center of a voxel in the reconstruction volume. According to the

density values on all corners of the cube a template for triangulation of the respective

area is applied. The template is chosen based on the state of the corner, which is

defined by the given threshold. For the 2D case, if all corners are below the threshold,

this corresponds to template (0) in Figure 3.8A, and if all are above this corresponds to

template (15). Each template represents a surface configuration corresponding to the

observations on the corners of the square.
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In principle, the cube or square moves through the scalar field and locally applies the

appropriate template to generate local surface fragments. This provides a closed surface

after all positions have been triangulated. As the density values are discrete, the location

matching the threshold between two scalar values is interpolated and the coordinates of

the applied triangles adjusted to seamlessly adjoin to a watertight surface. Eventually

several unconnected surface parts are generated, but each surface part represents a

watertight mesh, i.e., a manifold of lower dimensionality than the processed field.

Many implementations of the marching cubes algorithm exist, also variants such as

marching tetrahedra or marching diamonds. They mainly differ in choice of templates,

the treatment of special cases or the ability to evaluate multiple locations in parallel.

(A) 16 templates for 2D (B) 3D templates (plus empty)

Figure 3.8: Marching Cubes templates.

The marching cubes approach is very intuitive and great to explain the concept of iso-

surface generation. Yet, for a practically applicable algorithm the special case treatment

and variety of templates makes it a very demanding implementation. For the 2D case

16 templates were listed. For the 3D case 28 = 256 templates exist which due to rota-

tion or inversion can be reduced to the 15 effectively distinguishable patterns as shown

in Figure 3.8B. Special cases and further considerations require again to add certain

patterns, e.g., to be applied at the external borders of the scalar field, so common MC

implementations rely on 27 templates.

3.2.2 Volume-Enclosing Surface Extraction

Volume-Enclosing Surface Extraction (VESTA) [Sch12] presents an alternative approach

to Marching Cubes algorithms. In short, this is isosurface identification without tem-

plates or 2x2x2 voxel comparison.
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Figure 3.9: Cells with a density value above threshold in grey and with lower density
in white.

The VESTA approach—in the simpler 2D case, shown in Figure 3.9—assigns active

and inactive cells as shown in example (a) of Figure 3.9. If adjacent cells have same

configuration, e.g., both are inactive or both are active, no action is taken. If they

have different configuration, the joint border is marked as a directed edge, such that

the active cell is on the left side of the border in direction of the edge. In the next

step those vectors are connected to paths, as in (c), which in 2D is trivial. If in one

intersection more than two edges meet, then there exist multiple solutions to form cycles

as in (d). Disambiguation for those Points Of Ambiguity (POA) is either achieved by

separating the intersecting paths as in (e) or by joining them as in (f). In general all

adjacent vectors with a 90◦ turn are replaced by connecting their centers such that two

45◦ turn provide smoother edges. The separation or union of cells at POAs is referred

to as operating in disconnected mode or connected mode.

The VESTA algorithm triangulates a 3D scalar field of density values in a similar fashion.

As an additional step, the calculating appropriate Face Center Points (FCP) needs to

be performed. Those represent the same interpolation step as for the Marching Cubes

approach and mark the approximate location the threshold between two voxel centers.

Following this, cycles are formed following a simple set of rules and finally the cycles

are triangulated. This approach does not rely on templates since they are implicitly

generated during creation and triangulation of the cycles. Also the treatment of POAs—

which refers to special cases in MC—is intuitive and allows for further customization.

In 3D, the FCP identification and the forming of directed edges are separate steps. The

cubes in Figure 3.10 represent the voxels of the scalar field and simplified FCPs are

denoted by the black dots. The movement pattern can be roughly described as take
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a left but depends on the orientation of the cell side it is applied to as illustrated in

Figure 3.10A. The complete cycle of five directed edges is shown in Figure 3.10C.

(A) Directions -
take a left

(B) Face Center Point be-
tween voxel centers

(C) Cycle from
directed edges

Figure 3.10: Vesta - 3D

3.2.3 Triangulation

Starting from original FCP the remaining directions need to be processed. All resulting

cycles are shown in Figure 3.11A including each resulting triangulation. During the

forming of cycles the information about which direction was already processed is stored

for each FCP. If all directions for all FCP were processed the triangulation is finished as

shown in Figure 3.11B.

(A) All cycles at FCP (B) Resulting surface parts

Figure 3.11: Vesta cycles (left) and resulting triangulation (right).

3.2.4 (Dis)connected Mode

In contrast to MC, special cases are handled by a simple set of rules for the treatment

of POAs. A configuration of three voxels is shown in Figure 3.12 with an ambiguous

case in the bottom row where two FCPs are valid targets.

Both solutions in the bottom row of Figure 3.12 are valid and called connected mode or

disconnected mode. The preferred strategy can be applied by default to all POAs or an

evaluation of density values in the surrounding is made for case-by-case decisions. The

resulting surface for a similar case is shown in Figure 3.13.
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(A) both inactive (B) rear active (C) both active

(D) front active (disconnected) (E) front active (connected)

Figure 3.12: Starting from FCP f seletion of next FCP x, y or z based on status
(red=inactive) of next voxels. Standard cases on top row, ambiguous case in bottom

row.

(A) Connected mode (B) Disconnected
mode

Figure 3.13: Resulting surface for connected and disconnected mode for an identical
voxel configuration.

To decide between disconnected mode (a) and connected mode (b) the average value of

FCPs surrounding the POA is compared to the threshold.

3.2.5 Border Trimming

Applying isosurface extraction to volumetric representations requires setting a suitable

threshold, which can easily achieved by identifying the appropriate interface in the his-

togram. As described in Section 2.2.2 various sources of artifacts contribute defects to

the volumetric data and therefore to the extracted isosurface. An example of recon-

structed artifacts is shown in Figure 3.14. The tiny fragments that occur at the outer

borders of the reconstruction volume are present in all volumetric data sets presented in

Section 2.5.1. They can be removed either by clipping a thin layer from each side of the

volume, which is referred as border trimming or by applying a region growth algorithm

as in Section 3.1.3 to crop the largest connected component. While border trimming

can always be applied but rarely removes all particles, cropping the largest fragment is

not suitable for all cases. A successful removal of all small particles as in Figure 3.14B
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does not work for isosurfaces that contain multiple small components, which obviously

belong to the object or isosurfaces in which the largest component represents the rota-

tion stage or support material. Both is the case in Figure 3.14C which prohibits region

growth and rather requires a more sophisticated treatment like introducing a second

density threshold, e.g., to neglect air and steel while preserving voxels that correspond

to aluminum.

(A) Full volume (B) Trimmed border (C) LACT volume

Figure 3.14: Isosurfaces before and after post-processing.

3.3 Strategies for Estimating the

Outer Dimensions of an Object

Many approaches are known to estimate the outer dimensions of the mesh representation

of an object; we present them according to the level of detail they provide. All of them

have been implemented and the relevant ones are investigated in Section 5.1.4.

3.3.1 Axis-Aligned Bounding Box

The axis-aligned bounding box (AABB), the simplest estimation of object dimensions,

is computed from component wise comparison of all vertex coordinates. The two points

pmin and pmax defining the enclosing cuboid are calculated as

pmin = (min(x),min(y),min(z)), pmax = (max(x),max(y),max(z)) (3.1)

In the 2D case, the resulting axis-aligned box has the corner vertices (min(x),min(y)),

(min(x),max(y)), (max(x),min(y)) and (max(x),max(y)).
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3.3.2 Minimum Volume Bounding Box

The Minimal Volume Bounding Box (MVBB) algorithm [HP01] calculates the exact

diameter of a point set. All points—or a subset—are ordered in a fair-split tree. From

the two vertices responsible for the largest extent and their location the tree structure,

an arbitrarily oriented box can be computed. The accuracy or tightness of the resulting

MVBB depends on the size of the subset.

3.3.3 Convex Hull

The Convex Hull (CH) is the smallest convex set of vertices of an object that contains the

object itself. It is an even better estimation of the object’s dimensions than MVEE and

usually is the basis of calculating MVEE, since it reduces the problem size drastically.

However, it lacks a parametric form (Figure 3.15B).

3.3.4 Minimum Volume Enclosing Ellipsoid

The Minimal Volume Enclosing Ellipsoid (MVEE) is an oriented ellipsoid with nine

degrees of freedom, i.e., xyz-position of the center, orientation of the three perpendic-

ular axes and the three radii along these axes. The implementation based on Todd et

al. [TY07] computes a parametric form of an enclosing primitive around the object. If

the object is not already known to be roughly cuboid, this presents a better estimation

of the dimensions in the general case (Figure 3.15A). As the computation optimizes the

parameters such that volume and outlier distance are minimal, the convex hull is com-

puted beforehand. Of course calculating the enclosed volume is trivial, but checking for

each vertex in M if it is outside the ellipsoid is very costly. Reducing M to the more

relevant set MCH decreases processing speed drasticly [Mos05].

3.3.5 Alpha Shapes

Alpha Shapes (AS) define a shape around the object, but this shape does not need to be

convex. So far, it is the best approximation of the object’s dimensions and commonly

compared to shrink-wrapping or gift-wrapping an object. The Delaunay triangulation

of all object vertices [Joe91] provides a basis to compute the α-complex [EM94] and

in turn the α-shape as shown in Figure 3.15C. Depending on the chosen α-value, the

surface varies, i.e., the value defines how tight MAS approximates the input mesh. We

choose α such that the tightest hull that still produces a single connected component
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is computed. Any deviation results in MAS either loosely fitting the input mesh, or

containing several unconnected surface parts.

(A) MVEE (B) Convex Hull (C) Alpha Shape

Figure 3.15: Different hulls around MOpt.

3.4 Curvature Analysis via Multi-Scale Integral Invariants

Drift errors in alignments were presented in Section 1.5 and an approach for mitigating

them is introduced in Section 4.1. For the purpose of evaluating that approach, we need

to analyze the curvature of different samples and shapes. A suitable method to do so,

is an analysis based on Multi-Scale Integral Invariants. An algorithm implementing this

concept was developed by our colleague Hubert Mara [Mar12].

Multi-Scale Integral Invariants (MSII) are computed from the intersection of the surface

M and a set of n isocentric spheres with different radii, i.e., scales. The analysis is

performed for each vertex v of the mesh, i.e., while each v defines the center of the

nested spheres. The largest sphere S0 has a radius r0 depending on the size of the

desired features. For the nested spheres S1, . . . , Sn−1 the radii are equidistantly chosen

such that radius rx of each sphere equals rx = r0 − x r0
n .

50% → flat 75% → concave 25% → convex

Figure 3.16: Sphere volume below surface and implication.

A 16D feature vector Fv holding the results per sphere is computed per vertex v ∈ M.

The output of these computations are in the range
]
0, 4

3πr
3
[

for the analysis based on
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enclosed volume and ]0,+∞[ for the analysis based on enclosed surface. After normal-

ization for each radius, the feature vector contains entries in the range ]0,+∞[ for the

enclosed surface and ]0, 1[ for the enclosed volume. MSII provides invariant curvature

information on various scales, i.e., it provides robust results for different resolution lev-

els of the mesh. Therefore, it is highly suitable for analyzing the very same object

represented asMCT in lower resolution andMOpt in higher resolution while computing

comparable feature vectors as shown in Figures 3.18A and 3.18C.

55%→ concave 75%→ concave Fv = {75%, 75%, 75%, 74%, 72%}

Figure 3.17: Intersection of surface with small, large and nested spheres.

In our case, n = 16 spheres are computed, which is heuristically a good trade-off between

accuracy and performance. Two variants are implemented for the analysis, computing

either (a) the fraction of the volume of Sx and the enclosed volume as intersection of

Sx and the volume below the intersected surface area of the mesh, or (b) the fraction of

the surface of a disc with the radius rx and the surface area of the intersection of mesh

and sphere.

(A) MSII for
MOpt

(B) Histogram
for MOpt

(C) MSII for
MCT

(D) Histogram
for MCT

Figure 3.18: Curvature visualized via Euclidean distance of MSII feature vectors.
Histograms list MSII score per vertex with a high fraction of scores near zero indicating

flat regions.

The evaluation of surface extraction methods uses the MSII analysis based on intersected

volume since it is closer related to Gaussian curvature and conveniently provides results

in the range ]0, 1[. The intersected surface parts estimate mean curvature and provide

results in a range not suitable for our analysis in Section 5.1.
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3.5 Alignment Algorithms

A common problem when working with data acquired from different sources or during

independent acquisitions is to establish a relation between them. The partial acquisitions

from optical scans as described in Section 1.2.1 for example do not contain the infor-

mation how the single surface fragments need to be joined to form the full scan result.

In general, alignment algorithms solve the problem of finding a suitable change of basis

in the given vector space. Related to 3D data, the transformation from one Cartesian

coordinate system to another is provided. The acquisition system denotes measurements

according to a Cartesian coordinate system relative to the camera position. Altering the

camera position or the specimen orientation then requires the computation for the corre-

sponding coordinate transformation which is represented as a 4x4 affine transformation

matrix—or in short referred as the transformation. This transformation is what align-

ment algorithms provide by point-to-point comparisons between the respective meshes.

3.5.1 RANSAC

RANdom Sample And Consensus (RANSAC) schemes generate various hypotheses and

verify or falsify those hypotheses based on random sample surveys. The RANSAC con-

cept is not limited to alignment algorithms and can be applied to a variety of fields. For

our case the implementation follows Winkelbach et al. [WMW06] and associates certain

properties to a given pair of points from one mesh. Those properties are supposed to

characterize the relation of both points. Identifying a pair of points with similar prop-

erties in a different mesh, serves as basis for a hypothesis. Thus, the hypothesis is that

the pairs correspond to each other. Testing the hypothesis is provided by computing a

transformation matrix from one pair to the other. Evaluation of this test is achieved

by applying the resulting matrix to a random set of points from the first mesh and

measuring the distance from their new location to the destination mesh. Proximity to

the destination mesh indicates a good hypothesis, large distances suggest rejection and

motivate the generation of a new hypothesis. Point pairs are selected randomly within

a mesh and after every chosen pair—including computation of the properties—all prop-

erties ever evaluated in the other mesh are checked for correspondence. This cycle of

selecting points, computing properties and checking for correspondence is continued in

an alternating manner until a hypothesis can be formulated and continues after a hy-

potheses was rejected. The acceptance of a hypothesis ends this cycle as a transformation

could be validated and is considered to be correct. Also exceeding a given maximum of

allowed cycles might end the algorithm in which case the best known, yet no sufficient

transformation is returned.
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To give an example, let us assume we want to align meshMOpt and isosurfaceMCT. We

select a vertex pair (o1, o2) ∈ MOpt. A 4D-vector pOpt characterizes those vertices by

their properties. The properties are computed from the vector −−→o1o2, the normal vector

n1 of vertex o1, and n2 of vertex o2. The four components of pOpt = prop(o1, o2) are:

1. the length ||−−→o1o2||,

2. the rotation angle between n1 and n2 around −−→o1o2,

3. the inclination angle between −−→o1o2 and n1 around −−→o1o2 × n1,

4. the inclination angle between −−→o1o2 and n2 around −−→o1o2 × n2.

For each iteration a vertex pair (o1, o2) ∈MOpt is selected, pOpt = prop(o1, o2) searched

in all previously processed pCT. If no match is found, a new iteration starts with ran-

domly selecting a vertex pair (c1, c2) ∈ MCT, searching pCT = prop(c1, c2) in all previ-

ously processed pOpt and continues alternatingly. If the current property vector matches

any previously computed vector from the other mesh, a transformation is computed.

The resulting transformation T from MOpt to MCT can be computed by centering

MOpt in o1 andMCT in c1 before rotating both such that the normal or the first point

is at (1, 0, 0) and the second point of the pair is on the y-axes. Then the transformation

matrix T is

T = TOptT
−1
CT. (3.2)

3.5.2 Iterative Closest Point

Alignment of meshes representing complete surfaces or surface fragments can be achieved

by Iterative Closest Point (ICP) algorithms. This method continuously adjusts a rota-

tion and a translation such that the root mean square error (RMSE) distance between

point clouds is minimized [BM92]. The approach converges to a given threshold of largest

acceptable error distance or breaks after a number of maximal iterations. However, it

might converge in an erroneous local minimum, especially for noisy data. To ensure that

the solution found by the ICP algorithm is a global minimum, a simulated annealing

algorithm can be applied [PEK+01]. As a special case, ICP can solve certain alignments

in a single iteration. This usually holds for perfect matches, e.g., identical meshes, or for

incorporating prior knowledge to narrow down the solution space [NDF14]. Our imple-

mentation of the ICP algorithm is from ITK1 [YAL+02] framework with a Levenberg-

Marquardt solver to register the meshes fully automatically. A more common scenario is

1ITK - Insight Segmentation and Registration Toolkit - www.itk.org

www.itk.org
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to provide an initial setup by manually selecting tie points as user interface interaction,

e.g., in MeshLab2 [CCC+08].

3.6 Providing Prior Knowledge to CT Reconstruction

In order to compute a mask, i.e., provide prior knowledge to the CT reconstruction

algorithm, the information contained in the optical mesh MOpt needs to be converted

in a suitable format. This either happens via Raycasting, by intersecting the aligned

MOpt with each single ray as it occurs during CT acquisition or by intersecting all voxels

in the reconstruction volume with the triangles in MOpt. Intersection tests answer the

question if two given primitives such as two lines in 2D or a line and a plane in 3D

overlap. Furthermore, the exact location of intersection or extent of overlap can be

provided. Several of those tests are performed to generate a mask.

The Ray-based Mask as the name suggests, involves a lot of intersection tests with

rays. Any CT setup has a specific configuration file holding all geometry information

such as distances between photon source, sensor array and rotation axis. It lists the

elevation of the rotation stage, the direction, inclination and possible offsets of all com-

ponents. In short, it provides a full specification of the machinery and in addition the

trajectory as a sequence of all single projections is described. Given an alignment of

MOpt to MCT, the projection positions in the trajectory can be associated with both

meshes and it is feasible to repeat the CT scan procedure virtually withMOpt as speci-

men. Each ray as it occurs in the real CT scan is reiterated as a virtual intersection of a

line from the source to any of the pixels on the detector plane, and in turn every single

projection along the trajectory is processed. In addition to the reconstruction from real

projections, distance measurements from virtual intersections describe at which position

in the reconstruction volume the object—according to optical scans—begins and where

it ends. This information is the prior knowledge a subsequent reconstruction can lever-

age to avoid errors and misinterpretations of the projection data which led to artifacts

in the original reconstruction.

3.6.1 Ray versus AABB Test

Axis Aligned Bounding Box intersections are faster to calculate than all exact ray-vs-

triangle intersections. The SLAB Method [KK86] efficiently answers the question as to

whether a given ray intersects with an axis-aligned box. “Slabs” in this context refer to

the space between two parallel planes. Since the AABB of MOpt is known, this allows

2MeshLab - http://www.meshlab.org

http://www.meshlab.org


Chapter 3. Related Work 58

to reject all rays not passing this test as they cannot intersect with the object inside

the AABB. The SLAB method considers projections of the 3D intersection problem on

the xy, xz and yz planes. So each projection can be treated as three 2D problems and

the test checks whether it is possible to fully clip the ray in each of these planes by

the four lines representing the AABB min/max extent in this plane. If this succeeds,

the 3D ray misses the AABB. Else it needs to be further evaluated since it potentially

interacts withMOpt. The 2D example in Figure 3.19 shows a 2D scenario with one ray

intersecting and one ray passing the box.

Figure 3.19: SLAB method

3.6.2 Barycentric Coordinates

If the previous test suggests that a given ray might intersect MOpt, each triangle in

the mesh needs to be evaluated. A common approach is to solve the problem with

barycentric coordinates where two edges of the triangle serve as coordinate system. In

Figure 3.20 edges u = AB and v = AC serve as coordinate system. Any point in the

triangle can be expressed as a linear combination of both vectors. In fact any point in

the triangle plane can be described, but only points inside the triangle area that satisfy

u ≥ 0, v ≥ 0, u+ v ≤ 1.

Barycentric coordinates are widely used in intersection tests since they provide accurate

calculation of intersection points within the triangle. They also allow for precomputation

and reuse of coordinate axes and determining the direction of the hit by the signed

determinant during coordinate transfer to Cartesian coordinates.

3.6.3 Plücker Coordinates

Determining if a ray intersects a triangle without locating the exact penetration point

can be achieved via edge wise relative orientation check. Plücker coordinates [TH99]

describe each edge—or half-edge—of a triangle and the intersecting ray as a 6D vector.
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(A) (u + v ≤ 1 && u ≥ 0
&& v ≥ 0)

(B) (u + v ≤ 1 && u ≥ 0
&& v ≥ 0)

(C) (u + v ≤ 1 && u ≥ 0
&& v ≥ 0)

Figure 3.20: Intersection test with barycentric coordinates. Edges AB and AC serve
as the coordinate system for the triangle 4(ABC). Red condition fails intersection

test.

So, given two points P = (Px, Py, Pz) and Q = (Qx, Qy, Qz) on a line L. Line L from

Q to P is expressed in Plücker Coordinates as the pair L = {P −Q,P ×Q} = {U, V }.
For two lines L1 = {U1, V1} and L2 = {U2, V2} the sign of the expression side(L1, L2) =

U1 · V2 + U2 · V1 determines relative orientation. In Figure 3.21 the relations of the

side(L1, L2) are shown.

side(a, b) < 0
clockwise

side(a, b) = 0
intersection

side(a, b) > 0
counter clockwise

For line b side(1, 2) 6=
side(1, 3)

Figure 3.21: Intersection conditions for Plücker coordinates.

Since U and V can be precomputed and stored per edge efficient intersection tests using

two to three dot products can be performed. As soon as two dot products return different

signs the test fails and does not require further evaluation.

3.6.4 Hardware Accelerated Intersection Tests

All the above concepts for computing intersections have been widely studied and suc-

cessfully implemented and improved by Möller-Trumbore [MT05], Wald [WPS+03],

Badoul [Bad90], Shevtsov [SSKN07], Kensler-Shirley [KS06] and Herout/Have [HH10].

The latter leaverage the “Streaming SIMD Extensions 4” (SSE4) instruction set for

calculations and combine advances in reordering the evaluations and precomputing of

four dot products and an inverse determinant. Figure 3.22 depicts the SSE4 specialized



Chapter 3. Related Work 60

variant described by halfplanes N1 an N2 in addition to the triangle plane N as

~N1 =
~AC × ~N

~|N |
2 , d1 = − ~N1 ·A and ~N2 =

~N × ~AB

~|N |
2 , d2 = − ~N2 ·A (3.3)

The barycentric coordinates of the intersection point are

P = O + t ~D, u = ~N1, ·P + d1 v = ~N2 · P + d2 (3.4)

Figure 3.22: Triangle planes for SSE4 processing of intersections.

The Volumetric Mask follows a different approach than the ray-based mask. It

provides similar information but is much easier to compute. The configuration file of

the CT setup is not needed, instead all parameters can be extracted from the volumetric

representation. AsMOpt is aligned toMCT, the same alignment holds for the volumetric

presentation, and therefore the reconstruction volume for which dimensions and spacing

are known. Intersecting all voxels of the reconstruction volume with the triangles in

MOpt tags them as boundary voxels. For a subsequent reconstruction the constraint

based on MOpt is that attenuation values outside tagged areas must not exceed the

density of air. Of course this approach can take into account that MOpt might have

been post-processed to provide a watertight mesh. Therefore, the mask can also contain

which voxels are tagged by measured triangles and which are tagged by artificial patches.

3.6.5 AABB versus Triangle Test

Algorithms to evaluate box-vs-triangle intersection tests[AM05] usually assume an AABB

as box. To generate such for any triangle is trivial, also to expand it to the spacing of

the volumetric representation. If the box containing the triangle now fits exactly one

voxel, no test needs to be performed since the voxel can directly be tagged. In case the



Chapter 3. Related Work 61

AABB spans over several voxels, each voxel needs to be tested for intersection with the

triangle.





Chapter 4

Developed Methods and

Implementations

This chapter explains the concepts and methods developed in the context of this work.

The main focus is on solving the alignment problem as stated in Section 1.5 since tradi-

tional schemes as in Section 3.5 do not provide a suitable solution. Mitigation of their

alignment errors can be achieved by reducing the input meshes to the corresponding

(exterior) surface parts. The following introduces RanCEAF - Random Convex-Edge

Affine Features extraction as proposed method to achieve this. An evaluation against

the methods presented in Section 3.3 is provided in the next chapter. Furthermore, the

alignment scheme OctaCog, tailored for processing those surface subsets and omitting

the errors of traditional schemes, is presented.

In principal, the data fusion of optical scans and Computed Tomography can be de-

scribed as providing prior knowledge to the CT reconstruction algorithm. Artifacts

occur during reconstruction from distributing attenuated energy outside the object it-

self, which we call “false positives”. The measurement from optical scanning permits

segmentation of the reconstruction volume such that the volume between object and

optical acquisition system is considered air and communicated to the reconstruction al-

gorithm as “true negative”. Provided the alignment of both imaging systems is accurate,

this enhances the reconstruction result by suppressing those artifacts. Of course the op-

posite holds if the alignment is flawed. In this case distribution of attenuated energy

within the object would be restricted and distribution outside the object permitted.

Thus, a proper alignment of both data sets is crucial for data fusion.

63
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4.1 Random Convex-Edge Affine Feature

Random Convex-Edge Affine Feature (RanCEAF) selection of surface points is per-

formed via nearest neighbor search. The seeds of those queries are randomly distributed

on an enclosing ellipsoid around the mesh M as described in Section 3.3.4. Thus, the

seeds are guaranteed to be above the mesh itself and unrelated to the resolution of the

underlying mesh.

4.1.1 Regional Queries

Nearest neighbor searches (NNS) can be efficiently carried out by a suitable data struc-

ture, e.g., a k-d tree storing all vertices of the mesh under investigation. The seed vertex

s of our query is above the exterior surface and the nearest neighbor v is chosen as:

v ∈M s.t. ‖v − s‖2 = min
p∈M

(‖p− s‖2) . (4.1)

Thus, v is the one vertex from the mesh, which is closest to the seed vertex s, and it is

also ensured that v is not below the exterior surface.

4.1.2 Randomized Seed Distribution

A randomized distribution for seeds s is generated via spherical coordinates θ and φ. A

Mersenne Twister [MN98] pseudo-random generator of 32-bit numbers with a state size

of 19937 bits is employed to provide a uniform distribution of u, v ∈ [0, 1], with

θ = 2πu and φ = cos−1 (2v − 1) . (4.2)

In combination with a given radius r, the relation of spherical coordinates and Cartesian

coordinates is established. In case of r = 1, the distribution contains points on a unit

sphere such that any small area on the sphere is expected to hold the same number of

points.2 Let MVEE be described by its center cMVEE, perpendicular axes a1, a2, a3, and

the respective radii r1, r2, r3, which are derived from an eigenvalue decomposition to get

a parametric form [TY07]. The xyz-coordinates of a point q′ = (q′x, q
′
y, q
′
z) are based on

θ and φ as follows:

q′x = r1 sin (θ) cos (φ) , q′y = r2 sin (θ) sin (φ) , q′z = r3 cos (θ) . (4.3)

2Eric W. Weisstein, MathWorld: http://mathworld.wolfram.com/SpherePointPicking.html

http://mathworld.wolfram.com/SpherePointPicking.html
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This formulation respects the radii of the ellipsoid but not its orientation and location,

all points q′ in Equation (4.3) are located on an axis-aligned ellipsoid centered at the

origin of the Cartesian coordinate system. A transformation t given by a 4×4 matrix At

is computed from a rotation to axes a1, a2, a3 and the translation to the center cMVEE

of the MVEE. Thus, after applying Equation (4.3), any point q′ is transformed by At to

its final position q on the surface of the MVEE around M.

(A) Elevation of
q to s

(B) NNS from seeds s
(red)

(C) NNS from seed s′

(green)

Figure 4.1: NNS without and with shifted seed vertices (2D example).

4.1.3 Random Points on Hull

For RanCEAF approach, a random distribution of seed vertices across the whole surface

of the ellipsoid is computed. For simplicity, random unit vectors are generated in the

origin and transformed to the surface of the ellipsoid. The transformation is according

to length and direction of the principal axes of the ellipsoid and its center.

4.1.4 Random Points on a Unit Sphere

For the random distribution of unit vectors several methods [Mar72], [Mul59], [Coo57]

have been evaluated. The implemented method generates a uniform real distribution of

double precision values in the range (0.0, 1.0) via a Mersenne Twister. We chose u and

v to be random variates on this interval for calculating spherical coordinates

φ = 2πu and θ = cos−1(2v − 1). (4.4)

Conversion from spherical coordinates to Cartesian coordinates of point p = (x, y, z) on

the unit sphere follows as usual

x = sin(θ) cos(φ), y = sin(θ) sin(φ), z = cos(θ). (4.5)
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The randomness of the generated unit vectors is analyzed via local linearity measure l

of the resulting point cloud. Local linearity, as presented in Section 2.4.5, measures how

well the points are distributed on the sphere. In contrast to choosing u, v ∈ (0, 1), as

suggested in literature, we included the boundaries since this yields better local linearity

measures. For a detailed evaluation of boundaries, see Section B.

4.1.5 Symmetrical Distribution of Seed Vertices

In combination with OctaCoG alignment, presented in the next Section, the RanCEAF

subsets must obey certain rules to preserve symmetry. The presented generation of

seed vertices ensures uniform distribution, but this only holds if the number of seeds is

sufficiently large. To avoid introducing any imbalance or misrepresentation, an OctaCoG

specific RanCEAF implementation preserves the center of gravity and the symmetry of

octant barycenters during seed generation. For each generated point (px, py, pz) on

the unit sphere, seven additional vertices are added in the other octants as reflections

across all coordinate axes: (px, py, pz), (−px, py, pz), (−px,−py, pz), (−px,−py,−pz),
(px,−py,−pz), (px, py,−pz), (−px, py,−pz), (px,−py, pz).

(A) seeds on unit sphere (B) asymmetric seeds (C) correct distribution

Figure 4.2: Seeds from unit sphere on ellipsoid(B). Principal axis for seed distribution
corrected to preserve symmetry(C).

This is suitable to ensure symmetry between octants on the unit sphere, but it is not

preserved on the ellipsoid after applying transformation T to all p. For this, the coordi-

nate axes of the ellipsoid and the unit sphere need to be aligned, such that the largest

ellipsoid axis matches the y axis of the unit sphere. The additional transformation is

applied to all generated and reflected points p before the transformation T is applied.

As U holds the affine part of T , the alignment can be computed, e.g., if λ2 is the largest

eigenvalue, as follows

T ′ = TT−1
rot , with Trot = U


λ1 0 0

0 λ2 0

0 0 λ3




1 0 0

0 0 1

0 1 0

 . (4.6)
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The resulting seeds s on the ellipsoid E preserve symmetry between the octants.

4.1.6 Mapping Seed Vertices on an Ellipsoid

Given a suitable set of vertices v on a unit sphere S, the transformation to the surface

of the ellipsoid E is calculated from matrix A ∈ R3x3 and ellipsoid center c as provided

by the Khachiyan algorithm [TY07]

∀v ∈ E : (v − c)′A(v − c) = 1 (4.7)

We compute the LLT Cholesky decomposition of the symmetric, positive definite matrix

A such that A = LL∗ = U∗U , where L is a lower triangular matrix and U is an upper

triangular matrix. The affine transformation from v ∈ E to y ∈ S is given by

y = U(v − c) (4.8)

Thus, the desired transformation T from the unit sphere, centered in the origin, to

the surface of the ellipsoid, with center c, consists of a rotation according to U and a

translation according to c

T =


1 0 0 cx

0 1 0 cy

0 0 1 cz

0 0 0 1

U−1. (4.9)

Seed vertices s ∈ E for RanCEAF are generated from randomized points on the unit

sphere and mapped on the surface of an ellipsoid enclosing the object under investigation

via s = Tp. Elevation of seed vertices s is achieved by multiplication of A with a scaling

factor e ≥ 1, Aelevated = eAMVEE.

4.1.7 The Exterior Surface

Locally convex regions in the underlying mesh serve as attractors for NNS if they repre-

sent a protruding structure on the exterior surface. To expand their scope in answering

NNS queries, each generated point q on the MVEE is shifted for simplicity by a factor

e = 2, such that its distance to cMVEE is doubled. This finally represents the seed lo-

cation s as shown in Figure 4.1B. The last step is necessary to prevent local maxima of

the mesh, contributing to the CH and defining the size of the MVEE, from only being
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selected by an NNS query in case the randomized seed vertex s is identical to this ex-

treme point of M. Any factor e > 1 is sufficient, since the chosen value only effects the

initial query, and is already compensated after the first seed-shift operation.

4.1.8 Expanding the Selection

Seed-shift operations allow for the extraction of larger surface parts, gradually relaxing

the constraints on proximity to the MVEE and therefore the original seed vertex s. As

shown in Figure 4.1C, subsequent NNS with shifted seed vertices s′ allow for bypassing

the most prominent and most protruding structures and expanding the selected exterior

surface parts. In this case any seed vertex s is shifted towards the center cMVEE by the

distance ‖v − s‖2, which equals the distance to its nearest neighbor as it was returned

from the initial query. It is still not possible to penetrate the exterior surface since

the only vertex p ∈ M which can be reached from s by shifting it to position s′ is v

itself—and therefore a vertex on the exterior surface. The benefit of this operation is,

that less prominent but still salient, locally convex regions on the exterior surface can

be added to the extracted subset.

(A) start (B) first p (C) 1st shift (D) 2nd shift

Figure 4.3: Seed-Shift example for single s and multiple shifts.

4.1.9 The Resulting Subset

The attributes of the extracted data are that both reduced meshes

• only contain those parts visible from the outside, i.e., the exterior surface,

• exclude narrow cavities and covered regions behind obstacles,

• include samples distributed over the whole object, preferably from salient regions,

• only contain measurement results, and no smoothing, collapsing or averaging.
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With this Random Convex-Edge Affine Feature (RanCEAF) selection, we present an

approach to extract almost the same meaningful subset from each of the meshes MOpt

and MCT as a pre-processing step to allow for efficient and robust alignment.

4.2 Alignment via OctaCoG

As the root cause of the observed alignment errors lies in point-to-point comparisons

with inadequate comparison partners, our RanCEAF method is suitable solution to con-

vert them to adequate partners. Still, point-to-point comparisons are not the preferred

approach as data sets from optical scanning and Computed Tomography differ in reso-

lution, coverage, topology and geometry. The second method we propose is OctaCog as

alignment scheme not based on point-to-point comparisons, but on global features such

as splitting the data set in octants and operating on their respective Center of Gravity

(CoG).

4.2.1 Approach

A surface reduction to exterior features via RanCEAF is provided, preserving the better

part of the mesh from optical scanningMOpt and stripping all interior structures of the

mesh MCT from the CT isosurface extraction. Intended for the compensation of ICP

drift errors, this reduces both meshes to point clouds POPT and PCT representing similar

surface parts. Instead of employing ICP to find a suitable alignment of both data sets,

we can leverage the fact that both representations are from the very same object. Thus,

they have similar geometric measures and corresponding analysis yields similar output

in both cases.

The analysis we apply in order to directly find a suitable transformation are principal

component analysis (PCA) and the computation of the barycenter, which in the case

of a three dimensional body is called Center of Gravity (CoG). The name OctaCoG

refers to segmenting the point cloud in eight octants according to PCA and computing

an alignment based on their CoGs, as in Figure 4.4.

4.2.2 Center of Gravity

We compute the barycenter as presented in Section 2.4.3. As object, resolution and

coverage are identical, we also assume comparable v̄ results for both point clouds.
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Figure 4.4: Surface subsets PCT of isosurfaces presented in Figure 1.9. Coloring
indicates vertex assignment to octants. Right-hand figure features OctaCoG shape and

PCA axes.

4.2.3 Principal Component Analysis

A PCA analysis as presented in Section 2.4.4 of each point cloud POPT and PCT provides

PCA axis ej , j ∈ (1, 2, 3). We will segment both point clouds by the three planes each

two of the eigenvectors define.

4.2.4 Combining Octants and CoG

As for the calculation of the CoG, the computed PCA axes are at least similar for

the two point clouds, but a direct alignment based on those is fragile and ambiguous.

Slight deviations within the point cloud have a direct impact on CoG and PCA axes

computation. Given the fact that the subsets are influenced by randomly generated seed

vertices, artifacts and measurement uncertainty, a robust and reproducible alignment

by PCA axes cannot be expected. To overcome the sensitivity against slightly differing

point clouds, the computation of alignment parameters needs to be averaged.

Furthermore the disambiguation of a PCA based alignment can only be achieved by a

trail and error approach. The three linear independent eigenvectors ej are suitable to

serve as a Cartesian coordinate system for the respective point cloud. But they are not

a unique solution of the PCA analysis. In fact every scaling, except to zero, of each

vector represents a similarly valid Cartesian coordinate system for the point cloud with
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Figure 4.5: RanCEAF subsets POPT (top, 3168 vertices) and PCT (bottom, 5006
vertices) of synthetic data with blue OctaCoG shape and PCA axes.

eventually inverted axes. For any given alignment of two sets of PCA axes, originating

from the respective representations of both objects, three alternative alignment config-

urations exist. To explain this ambiguity, we assume two sets of PCA axes denoted

as A⊥B⊥C defined by vectors ~a,~b,~c and axes K⊥L⊥M , defined as ~k,~l, ~m. Both sets

of axes are ordered by the corresponding λ values and the axes are pairwise parallel

with A‖K and B‖L and C‖M . Besides the given alignment, inverting each two vectors

produces similarly valid alignments based on the same PCA outputs. For −~a,−~b,~c and

−~a,~b,−~c and ~a,−~b,−~c the resulting axes ABC are still pairwise parallel to KLM and

fulfill the constraint that components match according to magnitude.

4.2.5 Robustness without Loss of Sensitivity

The averaging in our approach, intended to mitigate the sensitivity of PCA to slight

deviations in P, also solves the disambiguation. We segment each point cloud in octants

along the PCA axes with the CoG as intersection point of PCA axes and origin of the

octants. Now the barycenter of each octant is computed from all points within these

boundaries. As shown in Figure 4.6 for the eight corner points of a cube, the resulting
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segmentation assigns each corner point to one octant. It is easy to see, that small

deviations in the corner points will alter the computed PCA axes, but their assignment

to octants is not effected by this. Given a larger number of vertices in the point cloud

under investigation, this implements the intended averaging. Although this reduces

the influence of noise, artifacts or randomness in RanCEAF sampling to the octant

assignment, each barycenter is still sensitive for small deviations in the input data. This

ensures, that the computed alignment respects local features instead of smoothing the

intrinsic differences in the measurement results.

Figure 4.6: PCA axes for eight corners of a cube (left) and resulting octants with
positive (p) or negative (n) sign.

A common nomenclature to address the eight segments of on octant is top-front-right as

ppp, top-back-right as npp, top-back-left as nnp, and so on. According to this nomen-

clature the PCA axes in Figure 4.6 (left) correspond to x-axis as blue component, y-axis

as green component and z-axis as red component.

4.2.6 Orientation based on OctaCog Shape

Disambiguation is achieved by computing an aligning based on the octant barycenters,

instead of the PCA axes. They can be represented as quadrilaterally-faced hexahedron

by connecting all barycenters from octants that share a common edge, which corresponds

to octants adjacent to each of the six half-axes of the PCA. It is important to notice

that in the general case, this shape is neither cubic, nor symmetric. Therefore, a unique

alignment exists no matter if the two input meshes have identical content, as being

from the same measurement device, or slightly different content, as being acquired via

different imaging techniques. Cubic shapes can only occur for highly symmetric input

data, but due to numerical limits are unlikely and usually produced by synthetic inputs.

Figure 4.5 shows the resulting shape for POPT of the synthetic data set from Figures 2.5
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and 2.6. The intersection point of the PCA axes denotes the CoG and the OctaCoG

shape is super imposed in blue. The coloring refers to the octant a vertex is assigned to.

4.2.7 Implementation

Given the surface subsets described in Section 4.1, all aspects of the presented approach

are implemented. For efficiency, we reorder the steps such, that the barycenter computed

for PCA in Algorithm 2 is reused in octant assignment in Algorithm 1.

Furthermore, in contrast to the described approach, octant assignment is not done after

transforming the mesh to align PCA axes to coordinate axes. This would mean to

multiply each point with a 4x4 transformation matrix, compare each coordinate per

point to zero, assign the point to an octant based on the signs (ppp, ppn, . . . , nnn)

and transform the result back according to the inverse of the original transformation.

Instead, we compute the distance of each point to three planes as defined by PCA

vectors, and assign octants based on positive or negative distance. Assignment based on

the Hesse normal form representation of segmentation planes is calculated from three

dot products per point and much faster to compute. The outcome of both methods is

identical.

4.2.8 Resulting Transformation

The alignment of two such shapes is computed by concatenating the shape edges in

x/y/z-direction separately. This includes the accumulated data of all points, as the cal-

culation is based on sector barycenters. We explicitly avoided to reflect small deviations

in the point cloud during segmentation, but of course those deviations need to be consid-

ered at some point, since we do not want to present two identical alignment matrices for

two similar, but not identical, sets of point clouds. The four edges connecting adjacent

sectors in x-direction—sectors on the left to their right hand neighbors, separated by

the blue plane in Figure 4.6—are ppn−−pnn, npn−−nnn, npp−−nnp, ppp−−pnp.
These edges connect the octant barycenters, their sum is denoted as ~ox and will serve us

as one component for alignment. Respectively, in y-direction and z-direction a similar

summation over vectors crossing the green and red plane are computed as ~oy and ~oz.The

transformation matrix is computed as concatenation of a translation and rotation. The

translation moves the CoG of one point cloud to the CoG of the other point cloud. For

rotation, we select the side of the OctaCoG shape with the largest surface and set the

corresponding ~o vector in direction of the opposing side as first component for alignment.

For the smallest of the remaining sides, the corresponding ~o vector from direction of the

opposing side is set as second component for alignment. The relation of surface area
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between the different planes of the OctaCoG shape has proven as reliable indicator for

disambiguation of object orientation [BLK16].

For alignment, we compute the transformation T matrix of each subset Pa and Pb such,

that we translate the subsets’ CoG to the origin and align the selected axes to the coor-

dinate axes. The final alignment matrix is a concatenation of Ta×Tb.inverse() and can

conveniently be formulated via quaternions. The evaluation of the OctaCog alignment

is presented in Section 5 and a detailed comparison table provided in Appendix D.

4.2.9 Key Contribution

OctaCoG takes prior knowledge about the representation into account and circumvents

to iteratively converge to a solution. As described in Section 3.5 point-to-point compar-

isons are not suitable to alignMOpt andMCT. Instead, the presented method operates

fully resolution independent and only considers global features. It allows for highly ac-

curate and fast alignment based on point clouds of the complete exterior surface. The

solution is found in O(n), without manual tie point identification or any other user

interaction.

4.3 CMM to Mesh

During the ILATO project several tactile measurements were performed to validate the

optical scans and CT acquisitions, yet a compatible representation to process those

results does not exist. With CMM to Mesh it is possible to generate meshMCMM from

corresponding measurements.

It is impossible to provide ground truth for our approach since all measurement tech-

niques and manufacturing processes have certain inaccuracies—and even those values

are questionable. The milling process to manufacture the samples lists an uncertainty

of 15 µm, yet some samples have a deviation of several mm from the CAD specification.

The optical scanner is calibrated to provide accuracy of 12 µm for high resolution optics,

yet we encounter deviations of 0.5 mm to reference measurements due to misalignments

in the merging process. CT, depending on the combination of source and sensor, also

claims to provide 10-15µm, which in practice is not reached due to miscalibrated voxel

sizes, improper alignment of rotation stage or the inability to segment support material

and specimen. In general, all those uncertainty values might very well hold for a single

drilling hole in the case of milling machines, a single acquisition in the case of optical

scans or a single projection in case of CT. For sure, they do not apply for manufacturing



Chapter 4. Developed Methods & Implementations 75

a whole object, the full surface mesh from optical scan or a volumetric reconstruction

from CT. As tactile measurements via Caliper or CMM only consist of independent

single acquisitions, their uncertainty of ∼ 1µm each holds and is consistent if compared

to each other. However, tactile measurements cannot describe free form surfaces, are

difficult to match against meshes, and more difficult to convert to mesh representations.

4.3.1 CMM Measurement Output

An example of converting CMM results—surface descriptions parametrized as cylinders

and planes—in a surface mesh is given in the following. To enable a comparison of meshes

from optical scan, CAD or volumetric data with the tactile measurement represented

as CMM, primitives are generated to suit the KNN query and allow for calculating the

Hausdorff distance or RMSE. Coordinates and normals are read from CMM output and

represented as planar objects and cylindrical objects. A comparison of CMM represen-

tation and surface mesh is shown in Figure 4.7. The presented visualization consists of

a square with fixed edge length depicting each planar measurement result from CMM

and the lateral area from cylinder measurements also with fixed height. The coloring of

squares corresponds to the measured deviation given as flatness and roundness in the

CMM results, the color scale is included in Figure 4.10.

(A) Sample 1A (B) CMM representation

Figure 4.7: Comparison of POPT and corresponding CMM primitives (central drilling
hole with screw thread not measured).
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4.3.2 Intersection Point of Three Planes

We want to adjust the surface parts from CMM in edge length and eventually shape

in order to form a watertight mesh. Thus, we need to intersect all planes and find a

sane configuration in which adjacent surfaces have plausible orientation and all CMM

results are included. As initial step, we generate a wireframe model depicting all possible

intersection points of each triplet of planes as shown in Figure 4.10. The three planes

intersect in one point if for their normal vectors holds n1(n2×n3) = 0. If this is not the

case at least two are parallel, coplanar or form a prismatic surface and in any case can

be neglected for our purpose. If the condition is matched, the intersection point x from

position vectors pi and associated normal vectors ni of planes Ai, i ∈ (1..3) is calculated

as

x = (|n1n2n3|)−1 [(p1n1) (n2 × n3) + (p2n2) (n1 × n3) + (p3n3) (n1 × n2)] . (4.10)

For each point x originating from the intersection of three planes, graph knots (red edges

in Figure 4.10) indicate all other points sharing two of the three planes and therefore

potential adjacent edges of x for forming the Jordan curve.

4.3.3 Finding Boundaries for Planes

A Jordan curve divides a plane in interior and exterior region. The requirements for

such a curve are that it (a) forms a closed cycle and (b) does not contain any self

intersections (Figure 4.8).

(A) Simple cycle (B) Cycle with self inter-
section

Figure 4.8: Graphical example of malformed cycle with faulty edges in red.

Each plane in the CMM data set has one correct Jordan curve representing its bound-

aries. Yet, several edge compositions from intersections with other planes can provide

this configuration. In order to limit the amount of redundant solutions, further restric-

tions have to be formulated. As shown in Figure 4.9 we want to exclude the reverse cycle

of each accepted edge sequence. Furthermore, containing edge pairs that have parallel

consecutive edges need to be neglected since a shorter cycle describing the same Jordan

curve must exist. In practice, it is also appropriate to demand the inclusion of the CMM

measurement point which defines the current plane to be circumnavigated by the edge

sequence, although theoretical examples exist to contradict this requirement.
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(A) reverse (B) parallel in
same direction

(C) parallel in op-
posite direction

Figure 4.9: Additional requirements for edge cycles forming the boundary of a plane.

We follow a greedy approach to generate all possible cycles within one plane. For each

vertex all valid edge sequences are formed by exploiting the neighborhood relations

stored from plane intersections and visualized in Figure 4.10A. After all paths starting

at the current vertex are found only those with matching end and start vertices, i.e., the

cycles, are kept. Also all cycles already known from previous vertices are deleted. Now

all conditions (Figures 4.8 and 4.9) are checked and the remaining cycles considered as

possible Jordan curve of the plane corresponding to the CMM measurement.

4.3.4 Selecting Final Set of Loops

A valid solution to transfer the CMM results in a mesh MCMM must include exactly

one cycle per CMM measurement as Jordan curve and provide a closed surface. We

implement this by maintaining a mandatory set of vertices, and an optional set of ver-

tices. A recursive function to identify a valid solution starts at one plane and processes

each cycle. For each processed cycle, the respective vertices are set as mandatory and

removed from set optional. Furthermore, the current plane is added to a set processed

planes. As each vertex in each plane originated from the intersection of three planes

and holds information to identify those, we refer to those planes as neighbors. Therefore

the function is executed for each neighboring plane not included in the set processed

planes and in turn processes all cycles which can be formed by including at least one

mandatory vertex and apart from that only optional vertices. As the function is suc-

cessively executed for the next neighbors, more planes are added to the processed set

and less vertices remain in the optional set. If a function is called with no neighbors left

to process, the function either returns all remaining valid cycles in the current plane or

indicates a failure. In case no cycles can be formed for the current plane, the function

also returns a failure status. A function receiving a failure state from any recursively

called function also returns failure. After all configurations have been evaluated the

valid solution is returned, identifying one specific Jordan curve per plane which in total

represent the watertight mesh MCMM.
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(A) Intersection edges for all CMM planes (black) and stacked

graphs depicting neighborhood relations of each vertex (red).

(B) ∼ 1000 result-

ing Jordan curves

stacked by plane

Figure 4.10: Results of intersection tests (left) and cycle creation (right).
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4.4 Gradient Assessment

The differences in data representation between MOpt and MCT are at least partially

caused by limited-angle CT artifacts as described in Section 2.2.2. Above methods would

both benefit from a proper localization of mentioned artifacts. Also the isosurface ex-

traction itself could provide more meaningful results. With Gradient Assessment [Kle16]

we present a method intended to tag the voxels in volumetric representation as being

reliable or LACT compromised. And to a certain degree this even allows to correct of

the volumetric data set itself.

The observation motivating the works on Gradient Assessment and shown in Figure 4.11

is that considerably small changes in the chosen threshold for isosurface extraction have a

tremendous effect on certain areas of the resulting mesh, e.g., the sides and drilling holes

in the current example, while other areas like front and back are preserved quite well.

Compared to the trajectory indicated in Figure 1.9 and as explained in Section 2.2.2

only those surface part of the specimen, parallel to the central ray of any projection do

not suffer from LACT artifacts. Clearly this is the case for the front in Figure 4.11 as

those areas of MCT remain unchanges while the specimen seems to grow in width for

decreasing thresholds. The effect can be explained by inspecting the scalar field from

(A) threshold 0.013 (B) threshold 0.010 (C) threshold 0.008

Figure 4.11: Influence of threshold variations on LACT artifacts in MCT.

which the isosurface is extracted.

4.4.1 Visualization of Limited-Angle Artifacts

A slice through the volumetric data set is presented in Figure 4.12 where (A) shows a

frontal view at the specimen. The grey values are fading out at the left and right side

with a smooth gradient. SubFig. (B) shows the lateral view depicting a comparably

sharp transition from dense material (white) to the surrounding air (black). The effect
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of LACT artifacts as faded and smoothed regions in the reconstructed scalar field is also

shown in SubFigure 4.12C on the example of a 2D cross phantom. The blue arc above

the phantom depicts the trajectory. Next to it, the resulting density distribution with

well preserved boundaries for surface parts perpendicular to the trajectory.

(A) Slice front view (B) Slice side view (C) Gradient example

Figure 4.12: LACT artifacts in slices of volumetric representation.

Thus, the robustness of the extracted surface against small changes in the chosen thresh-

old is not equal for all parts. In regions with a steep gradient in the volumetric repre-

sentation, robust surface parts are extracted. Smooth gradients result in volatile surface

parts, their location varies a lot even for small changes in the threshold. We want to

preserve the information which parts are reliable and which parts are volatile since re-

liable surface parts are excellent for alignment and also should be excluded from any

correction attempts.

(A) Slice superimposed on MCT (B) Slice with density as z component

Figure 4.13: Desity values in one slice of the scalar field superimposed on MCT.

A similar observation can be made on the extracted surface when visualizing a slice of

the scalar field along the coordinate axes. In Figure 4.13 one layer of voxels with fixed z
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coordinate is shown, the z component depicts the density value of the respective voxel.

It is easy to see that the top plane of the specimen located at a very steep gradient and

would not change position for slight variations of the threshold. The distorted side plane

of the specimen on the other hand is in a ramp shaped region of smoothly decreasing

density values which we identify as limited-angle artifacts. For a CT scan with full

circular trajectory, we would expect an area of elevated density with steep ridges at all

sides instead of a ramp.

4.4.2 Local Gradient

The analysis of surface reliability has to consider the gradients in the volumetric repre-

sentation. More specificity, we analyze the local gradients between neighboring voxels

along the coordinate axes. So for a given voxel v with coordinates (vx, vy, vz) in the re-

construction volume, we compute a gradient for the six neighboring cells (vx+1, vy, vz),

(vx−1, vy, vz), (vx, vy+1, vz), (vx, vy−1, vz), (vx, vy, vz+1), (vx, vy, vz−1).

4.4.3 Steepest Path

As the blurring effects in the volumetric representation cannot be observed be comparing

just two neighboring voxels, we establish a relation for voxels in greater proximity. The

concatenation of edges between neighboring voxel centers forms a path. Along a path all

edges are associated with the respective local gradient between the voxels they connect.

Although, their length corresponds to the voxel spacing, i.e., all edges in x direction have

identical length, as have all edges in y direction and all edges in z direction. To identify

areas with limited-angle artifacts we compute paths of steepest descent—according to

local gradient direction—in each voxel of the volumetric representation. Also the path of

steepest ascent are computed, providing a map for all voxels towards the global minimum

and global maximum of all density values in the scalar field. In synthetic data only two

values, i.e., the density of material and the density of void space, would occur. Real data

is noisy, e.g., as indicated by the tiny spikes in Figure 4.13B distant from the object,

thus we truncate the density range by applying percentiles.

4.4.4 Steepest Path with Interchange

For the steepest paths as shown in Figure 4.14A the descent most likely ends in a

local minimum instead of the global one. One the one hand the path length to a local

minimum approximately corresponds with the presence of LACT artifacts, on the other

hand we want to evaluate complete paths and therefore need to enable further descent.
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(A) Steepest paths
until local minimum

(B) Zoom to defectice
side plane in (A)

(C) Steepest paths
continued after local

minimum

Figure 4.14: Steepest path between voxel centers following local gradient. Only paths
attached to surface truncated to 20 edges.

If trapped in a local minimum, the obvious solution is to continue the path at the closest

voxel with lower density even if this voxel is several steps away. We refer to this as a

path interchanging in order to bypass local minima and continue its descent.

4.4.5 Corrections along each Path

Noisy data and discretization might be responsible for small deviations in the density

values which cause paths to be trapped in local minima. Greater fluctuations as espe-

cially observed in defective areas due to LACT atrifacts cannot be explained by noise

or scattering. In fact the alternations of maxima and minima along each path lack any

justification and therefore could be corrected such that the resulting scalar field does

not contain local minima in direct neighborhood of local maxima. The following Figure

depicts a path and this correction attempt. As the specimen described in Section 2.5.1

all are single components of homogenous material those fluctuations —especially around

the threshold for isosurface extraction—correspond to multiple penetrations of the ob-

jects surface. A path of steepest descent should exist in the given scalar field and the

interchanging mechanisms should only account for small defects. Also, each path should

cross the given threshold only once while ascending from the start voxel to the maximal

density and once during descent to the minimal density. Therefore, corrections on the

scalar field as shown in Figure 4.16 have a positive effect on the surface representation.
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Figure 4.15: Descending path with defective areas and intended correction attempt.

Alternating minima and maxima resulted in a very fragmented isosurface in Subfig. (A)

while the adjusted scalar field permits the extraction of a far more realistic isosurface

without fragmented object center.

Figure 4.16: Scalar field manipulation based on path monotony.

As a result, defective areas as shown in Figure 4.17 can be restored. The truncated

trajectory, only comprising a 60◦ segment does not allow to restore the correct surface

but the density distribution within the reconstruction volume now fits to the assumption

that a single component with homogenous materials is represented. Furthermore the

resulting paths connect each voxel with the global maximum and minimum of density

values, which allows for the coloring shown in Figure 4.17B depicting the total path

length to the respective extreme value.

4.5 Mask Generation

Two approaches for providing prior knowledge to reconstruction have been investigated.

On the one hand each ray—as measured in CT—can be segmented by comparing trajec-

tory information with aligned optical measurements. We refer to this as “Ray clipping”.

On the other hand, the reconstruction volume itself can be segmented in material and

air, to which we refer as “Volume clipping”.
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(A) ILATO sample before manipulation (B) Scalar field corrected for mono-
tonic paths

Figure 4.17: Manipulation of voxel densities to provide monotonic paths. Surface
color for path length from blue (short) to red (long).

4.5.1 Ray Clipping

To improve the reconstruction process we provide run length of the ray in material.

This information is obtained from applying ray casting techniques to the mesh from

optical scan as presented in Section 3.6. A prerequisite is to align the optical mesh to

the VESTA surface of the reconstructed scalar field.

Raycasting tests a given ray defined by an origin and an orientation against the mesh.

Our implementation returns the coordinates of any intersection along the ray, as well

as the direction of the intersection. Therefore, it is possible to distinguish entry and

exit events as intersection from front or back of triangle. The intersection check consists

of multiple steps starting with a test of every ray for intersection with the bounding

box around M via SLAB method explained in Section 3.6.1. The majority is usually

discarded during the first test, for the remaining rays each triangle inM has to be tested

for a potential hit via Plücker Coordinates (see Section 3.6.3). For identified all triangles

the exact intersection coordinate is calculated via Barycentric Coordinates as presented
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(A) trajectory and with sensor pixels and x-rax sources

(B) object with rays (C) rays in material

in Section 3.6.2. Optimized space partitioning structures can support those tests and

drastically reduce the run time. Also specialized hardware, e.g., GPUs, CPUs with SSE4

instruction set or AVX2 extensions, makes some of above pre-processing steps obsolete.

The Mask Format in this case lists each ray to each pixel in each projection with

its number of intersections followed by the respective distances. The projections occur

in the same order as in the trajectory file and pixels are iterated from top left by line

to bottom right. Negative distances indicate exit events while positive distances mark

penetrations from air to material. In case the intersected triangle does not origin from

the acquisition, but from a retrospectively added patch, the distance value is increased

by the source-sensor distances as indication.

4.5.2 Volume Clipping

The prior knowledge represented as volumetric mask of course assumes successful align-

ment. As explained in Section 3.6.4 this algorithm processes all triangles in the mesh

M and all voxels within the reconstruction volume V. For each triangle an axis aligned

bounding box is computed and expanded to match the voxel spacing of V. The provided
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information indicates if a given voxel in the reconstruction volume overlaps with surface

parts of M. In case the expanded box extents to several voxels, intersection test as in

Section 3.6.5 triangle versus box determine if the respective voxel is tagged within the

mask.

(A) input mesh (B) cells intersected
by mesh triangles

(C) cells intersected
by patches

The Mask Format in this case includes the spacing and step size of the intersected

volume.

340 670 340︸ ︷︷ ︸
(int) DIM

0.15 0.15 0.15︸ ︷︷ ︸
(float) SPACING

0 0 0 0 0 0 0 0 0 0 0 0 . . .︸ ︷︷ ︸
(char) status

In contrast to ray based masks, no distance measure is provided. Instead, we annotate

each voxel in the volume in the same order it is stored in file and assign a status to

distinguish between no intersection, intersection with mesh or intersection with patch.



Chapter 5

Evaluation and Results

This Chapter presents evaluations of the methods developed for alignment and compares

them to established methods. The evaluation focuses on effectiveness and efficiency of

both approaches. The goal is to extract exterior surface parts as described in Section 1.5

to collect the maximum of corresponding measurement points from presumably LACT

artifact free regions and to compute an alignment based on them.

A brief summary of results originating from Gradient Assessment and CMM Conversion

is given in the following. Although, the former is still ongoing work and the latter lacks

comparison partners for a thorough evaluation. The discussion of results as well as

starting points for future work is given in the next chapter.

5.1 Surface Extraction Comparison

Exterior surface identification is expected to include salient regions visible from the

outside, i.e., from the perspective of an optical scanner. Internal structures and parts

of the mesh covered by obstacles shall not be included. In our context the salience of a

region is closely related with curvature. On the one hand, curved structures are always

more attractive for alignment than flat regions since they offer distinguishable features.

On the other hand, LACT artifacts are most prominent at surface parts not parallel

to any central beam in any projection. Thus, it is much more likely for curved regions

than for flat regions that any central ray corresponds to the tangent of the surface.

Therefore, curved regions, e.g., the rounded corners of inlets and outlets of the cylinder

cast object, are usually reliable surface parts and should be preferred over flat regions

for alignment. We measure curvature as salience via Multi-Scale Integral Invariants

(Section 3.4), determine the fraction of the total surface included in the extracted surface

and the salience of all vertices within this subset.

87
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5.1.1 Enclosing Primitives

Approaches like AABB and MVBB identify six vertices each which is not sufficient for

providing an alignment. Likewise, the MVEE is calculated from the set of vertices in

the CH, but defined by eight points. Thus, they only allow for an estimation of object

dimensions, but no identification of the exterior surface is performed.

5.1.2 Convex Hull

Convex Hull identifies the convex set of anyM including the extreme points as described

in Section 3.3, and allows for generatingMCH as shown in Figure 3.15B. ForMCT 1785

of 1.30 million vertices contribute to the CH, for MOpt these are 2903 of 4.81 million

vertices. Since the CH is not influenced by any parameter except the vertices of the

mesh itself and each mesh contains exactly one convex set, no alternative subset can

be identified. With the highest mean MSII value of all subsets and the absence of

vertices with a MSII value close to zero, the result as shown in Figure 5.1C is a sufficient

feature extraction. The CH never contains internal structures but contains only the

most prominent protruding structures. It is therefore not suitable to provide the basis

of an accurate alignment in general. Intuitively, it seems sufficient in the presented case,

but the applied ICP algorithm cannot compute a valid transformation.

(A) MCH of
MCT

(B) Identified
subset

(C) MSII distri-
bution

Figure 5.1: Convex Hull algorithm applied to MCT.

5.1.3 Alpha Shapes

Alpha shapes generate a surface MAS for MCT. As shown in Figure 5.2, AS does not

identify the exterior surface, since interior structures are covered byMAS and therefore

included in the resulting subset. The same holds for MAS of MOpt shown in Fig-

ure 3.15C. The mean MSII values in the subsets are in the region of the corresponding

original meshes (see Table 5.1) and the histogram in Figure 5.2C is dominated by MSII
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values close to zero which makes AS unsuitable for feature extraction. Experiments with

lower α-values did not improve the result.

(A) MAS of
MCT

(B) Identified
subset

(C) MSII distri-
bution

Figure 5.2: Alpha Shape algorithm applied to MCT.

5.1.4 Randon Convex-Edge Affine Features

RanCEAF subset ofMOpt (Figure 5.3A) for 50k seeds contains 7474 vertices of all 4.81

million vertices. The RanCEAF subset of MCT (Figure 5.3B) contains 5023 vertices of

all 1.30 million vertices. As the extracted surface parts in both cases represent less than

0.05% of the vertices p ∈ M, only the most prominent structures have been selected.

The number of (removed) duplicates within the selection indicates that a small fraction

of the exterior surface dominates the result by answering multiple NNS queries each.

Thus, for sample sizes larger that 50k seeds no drastic change in the extracted subset

is expected since we already over-sampled this subset by one order of magnitude. To

allow for scalable mesh reduction, shift-seed operations (Figure 4.1) provide sufficient

data for alignment. The mean MSII values provided in both subsets are second highest

after CH, which makes RanCEAF a suitable method for feature extraction. None of the

presented RanCEAF results include interior structures and only after the third seed-shift

operation MSII values close to zero dominate the histogram (Figures 5.4F and 5.5F).

For illustration purposes, Figures 5.3,5.4 and 5.5 show the extracted set of vertices and

their connected faces. Via region growth in each vertex of the subset, more faces can be

included to extract a larger portion of the exterior surface.

Seed-shift operations, as applied to MOpt in Figure 5.4, and to MCT in Figure 5.5

expand the regions from which exterior surface points are selected and still provide a

higher mean MSII value than the original meshes in Figure 3.18. As the percentage of

vertices with an MSII value ≥1.0 in Table 5.1 indicates, expanding the subset does not

over-represent regions with low MSII values. In our experiments, the best increase in

alignment accuracy was based on the output of the second seed-shift operation forMOpt

and MCT.
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(A) Result for MOpt (7.5k
vertices)

(B) Result for MCT (5k
vertices)

(C) MSII of vertices
in 5.3A

(D) MSII of vertices
in 5.3B

Figure 5.3: RanCEAF result for 50k seeds.

5.2 Alignment Comparison

The alignment of mesh-based object representations usually follows one of two princi-

ples, either continuously evaluating randomly generated transformations or iteratively

Vertices
(total)

Surface
area
(in cm2)

Surface
coverage
(in%)

Salient vertices
(in % with
MSII ≥ 1.0)

Mean salience
(in subset
via MSII)

CPU time
(in sec)

Mesh from optical scan Mopt 4813688 1042.9 69.19 12.47 0.444 –

Mesh from CT isosurface MCT 1303299 1507.3 100.00 4.94 0.349 –

Convex Hull MCH of Mopt 2903 0.5 0.04 67.30 1.343 35.8

Convex Hull MCH of MCT 1785 4.4 0.29 57.45 1.114 8.7

Alpha Shape MAS of Mopt 449773 16.6 1.10 13.41 0.464 551.9

Alpha Shape MAS of MCT 607004 593.7 39.39 1.17 0.326 135.5

RanCEAF subset of Mopt 7474 1.9 0.13 64.78 1.229 37.4

RanCEAF subset of MCT 5023 13.1 0.87 55.15 1.119 7.1

RanCEAF 1st seed-shift of Mopt 38527 25.6 1.70 29.66 0.714 76.8

RanCEAF 1st seed-shift of MCT 29802 90.7 6.02 23.87 0.643 14.1

RanCEAF 2nd seed-shift of Mopt 45954 40.2 2.67 17.42 0.497 116.3

RanCEAF 2nd seed-shift of MCT 39958 129.0 8.56 17.80 0.488 21.3

RanCEAF 3rd seed-shift of Mopt 47499 47.1 3.12 11.45 0.392 156.6

RanCEAF 3rd seed-shift of MCT 43671 144.9 9.61 16.29 0.410 28.1

Table 5.1: Objects shown in Figure 1.2 after applying evaluated approaches.
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(A) MOpt subset: 1st

seed-shift
(B) MOpt subset: 2nd

seed-shift
(C) MOpt subset: 3rd

seed-shift

(D) MSII of vertices
in 5.4A

(E) MSII of vertices
in 5.4B

(F) MSII of vertices
in 5.4C

Figure 5.4: RanCEAF with seed-shifts applied to MOpt.

converging to a solution. Whereas the former is implemented in our project, the latter

is applied via Meshlab1.

5.2.1 RANdom Sample And Consensus

This approach is very reliable and converges quickly to a suitable solution if both meshes

are from the same imaging technique or at least have similar spatial resolution. ForMOpt

and MCT this is generally not the case which either causes the absence of hypotheses

at all due to the lack of sufficiently similar c vectors and therefore no convergence. In

case the similarity condition and the verification threshold are relaxed, the approach

converges to alignments which are not accurate enough for our scenario. Thus, the

presented implementation of RANSAC is preferred to, e.g., align partial mesh represen-

tations, as an optical scanner provides them, to construct the complete scan result, but

is not suited for aligning MOpt and MCT.

1Software provided by: Visual Computing Lab, CNR-ISTI, Pisa, Italy: http://meshlab.

sourceforge.net/

http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/
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(A) MCT subset: 1st

seed-shift
(B) MCT subset: 2nd

seed-shift
(C) MCT subset: 3rd

seed-shift

(D) MSII of vertices
in 5.5A

(E) MSII of vertices
in 5.5B

(F) MSII of vertices
in 5.5C

Figure 5.5: RanCEAF with seed-shifts applied to MCT.

5.2.2 Iterative Closest Point

The approach works fine for data points generated from the same imaging technique and,

contrarily to RANSAC, does not seem to suffer from the difference in spatial resolution

forMOpt andMCT. On the downside, due to the imbalance of information as described

above, ICP tends to introduce a drift in the resulting transformation. This is caused

by the internal structures only represented in MCT and the attempt to minimize the

distance per vertex between the meshes. Since those vertices do not have a suitable

counterpart inMOpt the introduced drift can be seen as over-compensation. Figure 5.6

presents the offset as cross sections of both meshes.

5.2.3 Random Convex-Edge Affine Features for Alignment

We have shown that RanCEAF efficiently identifies the exterior surface of a given mesh.

Furthermore, it allows to over-represent convex areas since they serve as attractors for

regional queries from seeds on the enclosing ellipsoid. The protruding areas include

the local maxima of the object under investigation and the resulting subset of all data
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(A) Cross section of
MCT

(B) Cross sections of
aligned meshes

(C) Zoom to
blue box in (b)

Figure 5.6: ICP offset of cross sections from MCT (green) and from MOpt (red).

points is suitable for alignment. The presented approach does not—in contrast to AS—

introduce additional faces or require any further post-processing. The proposed method

provides a reliable surface reduction, which can be iteratively expanded by applying

multiple seed-shift operations. In general, the RanCEAF algorithm only relies on the

vertices of the mesh M and therefore can be applied to point clouds. Only for the

analysis based on MSII, faces are required in a pre-processing step and only for the sake

of evaluating our approach. The comparison of size and salience of extracted subsets, as

shown in Table 5.1, indicates that the subsets extracted by our method are sufficiently

large to serve as input for computing an alignment, and yet salient enough to grasp

the essential structures of the presented geometry. The inherent parallelism of our ap-

proach is easily exploited (in our evaluation on an Intel Xeon E7-4870 )and therefore not

corrected for comparison to single-threaded algorithms in Table 5.1. For the presented

object, the alignment of the complete meshes MOpt and MCT via the ICP algorithm

in Meshlab resulted in an RMSE of 2.736 mm. Computing the transformation matrix

based on the extracted surfaces of both meshes and applying the obtained transforma-

tion toMOpt andMCT, provided a RMSE of 2.722 mm. The increase in accuracy reads

as 0.5% or an RMSE reduction of 14 µm, which potentially affects the selection of cells

on the dense voxel grid as reconstructed from CT scans. Notice that there is no perfect

alignment for both meshes. Therefore, the RMSE cannot be zero and the real increase

in accuracy is higher than 0.5%.

5.2.4 Octants’ Center of Gravity Alignment

The presented alignment method OctaCoG, operating on RanCEAF surface subsets

of the respective meshes, is tested against ICP. Alignments were computed by both

algorithms from identical input data and the resulting transformation matrix applied

to the corresponding full meshes for RMSE measurement. In addition the full meshes

were aligned via ICP including RMSE measurement. All ICP runs initially require
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Table 5.2: Run time and RMSE of alignment approaches for optical scan and CT
scan. RMSE is measured for full meshes. “Correctness” is fraction of current versus

known best solution. Processing time is single threaded.

Name LACT sample LACT sample Sample Industrial Wing
Angular range (0◦..60◦) (120◦..180◦) (360◦) (360◦) (synth)

ICP
(meshes)

RMSE [mm] 0.747 1.251 0.289 1.935 0.155
run time [s] 14.520 23.840 10.350 57.860 0.340

correctness [%] 95.96 85.03 84.85 94.03 63.40

ICP
(subsets)

RMSE [mm] 0.737 1.274 0.315 1.917 0.115
run time [s] 0.530 0.270 0.450 0.720 0.140

correctness [%] 97.33 83.49 77.77 94.95 85.47

OctaCoG
(subsets)

RMSE [mm] 0.734 1.134 0.245 1.820 0.099
run time [s] 0.187 0.155 0.203 0.498 0.073

correctness [%] 97.74 93.77 100.0 100.0 100.0

user interaction for selecting appropriate reference points, this step is not necessary

for OctaCoG. For comparison, the computation time for each alignment is measured

as accumulated CPU cycles divided by CPU clock frequency. It corresponds to single

threaded processing on a Intel R© i7-4770 and is averaged over 100 runs. We would like

to point out, that OctaCoG is designed for parallel execution, and on multicore systems

results are provided in a fraction of the time given in Table 5.2.

LACT scans are indicated by denoting the respective angular range, while 360◦ corre-

sponds to a complete circular trajectory. OctaCoG run time includes PCA calculation,

assignment of vertices to octants, computation of barycenters and the comparison of

two OctaCoG shapes to find the final transformation. Besides time and RMSE, also the

fraction of current RMSE and known best solution per object is presented as “correct-

ness”. In the lack of ground truth for the alignment, we set the lowest RMSE value of

all methods as best result—although a better alignment with even lower RMSE might

exist. For limited angle trajectories, the known best RMSE results from applying the

correct 360◦ alignment, thus none of the approaches achieve 100%. The presented re-

sults in Table 5.2 show, that our approach is roughly twice as fast compared to subset

processing via ICP and yields a RMSE improvement of 15% in the case of the wing

model or full-angle scan of the sample object. RMSE is up to 8% better for aligning

LACT data and 5% for the industrial object.



Chapter 5. Evaluation & Results 95

5.3 CMM to Mesh Conversion

An example of successful conversion from CMM (in Figure 4.7B) results to a closed

surface is shown in Figure 5.7. For simplicity the current implementation neglects all

cylinders, in principle they do not change the combinatorics of the problem and can be

added at a later stage as rounded corners and drilling holes. In the current approach,

results for cylinders and the associated cylinder bottom plane are automatically removed.

Adding them in the final representation is of course intended to fully enable comparisons

to other acquisition results.

Figure 5.7: Resulting meshMCMM from measurement results (neglecting cylinders).
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5.4 Gradient Assessment Result

Isosurface areas robust against small changes in the threshold are located at steep lo-

cal gradients, respective paths descent quickly to low density values. Defective areas

with LACT artifacts correspond to paths slowly descending or ascending. This does

not permit a quantitative analysis, but is sufficient to indicate surface robustness to

an alignment algorithm or to determine more suitable thresholds for isosurface extrac-

tion. Applied to the sample in Figure 4.11, the corresponding coloring depicting surface

robustness by length of descending paths is shown in Figure 5.8.

Figure 5.8: Coloring indicating surface robustness by voxel distance from density at
surface to a density near the global minimum.



Chapter 6

Discussion, Conclusions and

Future Work

For each method, the question has to be answered if the presented approach is sufficient

and how it can be improved. An outlook for each approach and the project as a whole

is given to indicate further areas of application or potential continuations.

6.1 Random Convex-Edge Affine Features

Our RanCEAF approach extracts the exterior surface layer from meshes or point clouds

via nearest neighbor searches (NNS) [BLMK16]. This method is intended to mimic

the acquisition scheme of an optical scanner. Therefore, surface areas similar to those

an optical scanner can acquire are preserved during extraction. Interior surfaces as

represented in CT scans are neglected, and also data points in narrow cavities or on

exterior surfaces behind undercuts. Applied toMCT, the extracted point cloud PCT not

only lacks interior structures but also areas on the exterior surface which are unlikely to

be accessible for an optical scanner. To generate a surface subset, seed vertices s for NNS

queries are randomly distributed on an ellipsoid enclosing the data set. The proximity

search from seed vertices s then returns points p of the object representation. Since all

seeds are located sufficiently far from the object, it is guaranteed that identified vertices

p are located on the exterior surface. Protruding structures, or in general extreme points

of the mesh, are likely to dominate the result set by being nearest neighbor of multiple

seed vertices. To bypass those structures in order to identify more points p for the

extracted subset, so-called “seed-shift” operations are applied. They iteratively expand

the set P by shifting all seeds s towards the center of the ellipsoid by the distance

|sp| to their respective nearest neighbor—which restricts the penetration of the exterior
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surface. Subsequent NNS queries from shifted seeds identify further exterior vertices p.

The resulting RanCEAF extractions POPT and PCT as in Figures 4.4 and 4.5 enable a

ICP alignment with reduced errors or serve as input for our OctaCoG approach, yielding

a more accurate alignment in a fraction of the time.

6.1.1 Future Directions for RanCEAF

Although the described imbalance in information, contained in MOpt and MCT, could

be mitigated by the presented approach, the mismatch in resolution of both imaging

techniques still presents a challenge to alignment algorithms. In the further pursuit of

our work, our focus will be to investigate alignment schemes which do not rely on point

to point comparison for registration. Instead of performing seed-shift operations for all

seed vertices alike, adaptive application to selected seeds, based on the local geometry,

would reduce runtime and preserve more features. The fact that both representations

are known to describe the very same object and that they also both contain the object

as a whole, matches with the challenges within our joint project ILATO4. Especially for

dealing with artifacts from Limited-Angle CT, any data point irrelevant for alignment

has to be neglected since the registration based on the remaining exterior surface points

is already very difficult. For metrology applications and industrial quality inspections,

technical drawings of the specimen are available as CAD files. Registration of an optical

scan surface and CAD, which contains interior structures, can benefit from the presented

approach. Likewise, coordinate-measuring machines (CMM) provide highly accurate

tactile measurements of an object’s surface. Registering the CMM output with MCT

of this object can be enhanced by neglecting the interior structures of MCT. We will

pursue further investigations to estimate the minimal RMSE for the given alignment

depending on resolution and fidelity of the acquisition systems and to determine the

actual increase in accuracy our approach provides.

6.2 Alignment via OctaCoG

We have shown that the characteristic OctaCoG shape, each Octants’ Centers of Gravity,

per point cloud is unambiguous and permits fast and highly accurate alignment. Our

presented approach takes advantage of the fact that the data sets contain information

about the very same specimen and can be subsampled to a common representation.

It has already been shown, that the accuracy of classical approaches for aligning MOpt

andMCT suffer from the mentioned imbalance in resolution and contributing surfaces of

4http://www.iwr.uni-heidelberg.de/groups/ngg/ILATO/

http://www.iwr.uni-heidelberg.de/groups/ngg/ILATO/
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both representations. For RANSAC approaches, the difference in spatial resolution poses

a challenge in formulating transformation hypotheses in the first place. ICP approaches

can deal with the difference in resolution, but in the attempt to minimize the quadratic

error of vertex distances between the two meshes, tend to overcompensate for interior

structures. Especially for double walled specimen those are present in the CT output

and cause a misalignment which manifests as a drift. With RanCEAF we developed

an algorithm to extract a common subset of both representations as a point cloud of

the exterior surface. Solving the alignment of these subsets—which is a less complex

problem than solving it for the full data sets—yields a transformation which is also a valid

alignment of the original representations. The subset extraction was originally developed

to improve the alignment accuracy of ICP approaches in finding a valid transformation.

But under the assumption that we obtain complete scans of the very same object, we

can apply OctaCoG without the need of iteratively converging towards a transformation

matrix. We have shown, that based on the existing surface subsets, a highly accurate

alignment can be found in O(n). The applied method also allows for small differences

in scale of the respective representations, as they definitely occur for CT.

6.2.1 Future Directions for OctaCoG

In the continuation of this work, we will apply our approach to LiDAR data. In contrast

to our current use case, registration of scan segments and drift compensation does not

rely on a pre-processing step to generate suitable subsets. To improve the alignment of

LACT data with optical scans, we aim at including prior knowledge about artifact dis-

tribution in the isosurface, e.g., from Gradient Assessment,to reflect this in the OctaCoG

shape.

6.3 Gradient Assessment

The identification of reliable and LACT artifact compromised regions in the isosurface or

the volumetric representation is an ongoing project. The intermediate results presented

in Section 5.3 are based on local gradient computation and analyze the vicinity of each

voxel. Qualitative statements about the robustness of certain areas against changes in

the isosurface threshold are already possible and even corrections to the volumetric data

can be applied.



Chapter 6. Discussion, Conclusions & Outlook 100

6.3.1 Future Directions for Gradient Assessment

The concept of computing paths of steepest descent is very intuitive and obviously suit-

able to analyze the scalar field close to the isosurface. For a more general approach and

eventually considering multiple thresholds to identify the interface between material and

air, we will apply the Sobel operator. The current path computation only considers six

neighbors per voxel and in the resulting paths consecutive edges are either straight or

orthogonal. On the one hand, Sobel operators will permit adjacent edges with arbitrary

angles. On the other hand, we aim to compare gradients above the isosurface with gra-

dients below the isosurface to verify the plausibility of the selected threshold. The latter

case might also result in identifying the proper location of the isosurface by providing

an alternate set of Face Center Points as introduced in Section 3.2.2.

6.4 CMM to Mesh Conversion

CMM measurements have proven to be an excellent tool for bridging the gap between

tactile measurements and image acquisition techniques. Their superior accuracy offered

an unbiased view on flaws during specimen production and the measurement errors of

CT and optical scans. The tedious conversion of a mesh representation in a set of

individual distance measures is overcome by instead converting the CMM measurement

in a mesh. This permits to apply standard approaches like Hausdorff distance or RMSE

computation to evaluate deviations.

6.4.1 Future Directions for CMM conversion

The presented result is final except for the inclusion of cylindricity measures to represent

drilling holes and rounded corners. The essential properties of of the measurement are

preserved in the resulting meshMCMM and the coloring corresponds to deviations from

planar or cylindrical shape. The same deviations are also stored in each point of the

mesh.

6.5 Outlook for the ILATO Project as a Whole

The presented approach was developed with industrial quality inspection in mind. Of

course other fields of work also facilitate multiple imaging techniques and therefore can

benefit from our solution. Projects reconstructing internal building structure from Wifi

attenuation measurements [Mon09] combine this measurement with prior knowledge.
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They provide blueprints of the internal building structure or the known exterior sur-

face of the building under investigation to enhance the resulting representation. For

sure this approach fits our profile. Other projects in the non-destructive testing do-

main combine ultrasound imaging and surface information to discover cracks in concrete

blocks or pipes. Agin, this is a possible usecase for our methods. Any combination of

transmission-based measurement and distance-based measurement potentially benefits

from the presented methods.

6.5.1 Incorporate more Knowledge from CT Acquisition

Reconstruction algorithms struggle to solve underdetermined systems as they occur for

limit-angle CT. Yet, the resulting scalar field does not convey any uncertainty or er-

ror measures and cannot be easily distinguished from a reconstruction result from full

angular trajectory. The local measurement errors and distortions identified during re-

construction would allow to work with another set of attributes similar to the local

robustness value from Gradient Assessment.

6.5.2 Incorporate more Knowledge from Optical Acquisition

Introducing clipping information in volumetric representation or per projection is one

way to express the absence of material in certain areas of the data set as indicated by

optical scans. Since these scans also have defects like partially missing surface informa-

tion due to reflections, matte black coloring or other harsh conditions the clipping is

incomplete. Closing the resulting holes as discussed in Section 3.1.1 always introduces

unvalidated information with cannot directly be used to generate masks. If we could ex-

ploit the equivalent of a trajectory description for optical scans, the overlapping camera

views could help to identify more air around the surface acquired by the optical scan-

ning system. This information is provided in our Breuckman setup but currently cannot

be exported. The knowledge of the exact camera position for each partial scan would

provide new means of assessing the merged representation MOpt in terms of visibility

of surface features and more important the absence of those.

6.6 Discarted Approaches

Failed attempts to compute an alignment solely based on PCA, MVBB and intersection

comparisons in an early stage of the project are documented in Appendix F. Although
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those approaches were discarded, they motivated the works on RanCEAF and OctaCog,

presented in Section 4, and shall therefore be included in this thesis.

An evaluation between RANSAC and ICP led to the implementation of a new way to

formulate hypotheses—not based on point pairs and their property vector as in Sec-

tion 3.5.1, but small surface patches of similar area. The presented Stencil selection was

intended to select those patches, the comparison of two patches would serve as basis

for hypothesis as currently two point-pairs and their 4D property verctor. Non-Uniform

Rational B-Splines should provide parametric forms as NURBS surface which are to be

characterized by a similar property vector. For more details, see Appendix F.



Appendix A

CMM Measurements

Fitting planes and cylinders to the respective measurement points in the CMM protocol

(Table A.1 ) results in measurement summary in Table A.2. The naming convention for

planes and cylinders is provided in Figure A.1.

Figure A.1: Labeling of cylinders and planes as reference for CMM measurement.
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Table A.1: Excerpt of CMM scan protocol

MEAS THEO DEV UT LT OOT

Sample 1B
========
Coorinate system established
========= ======= =======

Inspection
# 5 PLANE Ref. Sys 1
X -0.0015
Y 20.1744
Z -5.9025
CX 1
CY -0.00019
CZ -0.000404
FLATNES 0.0046

Inspection
# 6 PLANE Ref. Sys 1
X -6.1279
Y 20.8282
Z 0.0002
CX -0.000088
CY -0.000007
CZ 1
FLATNES 0.0006

Inspection
# 7 PLANE Ref. Sys 1
X -11.9863
Y 19.1587
Z -3.7132
CX -1
CY 0.000562
CZ -0.000009
FLATNES 0.0027

Inspection
# 8 PLANE Ref. Sys 1
X -15.0728
Y 20.2732
Z -7.9994
CX -0.000194
CY -0.000026
CZ 1
FLATNES 0.0009

Inspection
# 9 PLANE Ref. Sys 1
X -17.9859
Y 19.8042
Z -5.6183
CX 0.999999
CY -0.000542
CZ 0.001263
FLATNES 0.0012

Inspection
# 10 PLANE Ref. Sys 1
X -25.4378
Y 20.5211
Z -0.0013
CX 0.000004
CY 0.000032
CZ 1
FLATNES 0.002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inspection
# 35 CYLINDER Ref. Sys 1
X -39.9488
Y 36.1708
Z -14.0021
CX 0
CY 1
CZ 0
DM 6.0004
CYLINTY 0.0074

Inspection
# 36 PLANE Ref. Sys 1
X -42.138
Y 19.8438
Z -19.9777
CX 0.000365
CY 0.000645
CZ -1
FLATNES 0.0034

======== ======== ======== ==== x000C
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Table A.2: CMM output for sample 1B

ID # X Y Z CX CY CZ FLATNES

E01 12 -0.001 20.089 -5.660 1.000000 -0.000214 -0.000369 0.007
E02 13 -5.605 17.943 0.001 -0.000167 -0.000045 1.000000 0.001
E03 14 -11.987 19.378 -3.581 -1.000000 0.000560 -0.000412 0.001
E04 15 -14.824 19.518 -7.999 0.000101 0.000011 1.000000 0.001
E05 16 -17.985 20.008 -5.448 0.999999 -0.000561 0.000941 0.003
E06 17 -25.907 20.164 -0.001 -0.000037 -0.000015 1.000000 0.000
E07 18 -29.979 19.296 -3.436 -1.000000 0.000585 0.000698 0.003
E08 19 -40.222 19.797 -7.997 0.000141 0.000062 1.000000 0.003
E09 20 -49.981 20.037 -5.390 1.000000 -0.000534 -0.000272 0.001
E10 21 -66.071 19.590 0.001 -0.000006 0.000024 1.000000 0.000
E11 22 -79.915 19.209 -5.567 -0.999995 -0.001226 0.002808 0.016
E13 23 -64.887 9.988 -8.002 0.002536 -0.004807 0.999985 0.020
E14 24 -64.510 20.311 -7.992 0.006275 0.007413 0.999953 0.011
E15 25 -64.867 30.025 -8.004 -0.004774 0.001010 0.999988 0.018
E21 30 -43.846 -0.005 -8.604 -0.000030 -1.000000 0.000113 0.004
E22 31 -40.044 7.991 -14.027 -0.006869 -0.999965 -0.004815 0.018
E24 33 -34.006 39.970 -8.965 0.000298 1.000000 0.000381 0.011
E25 34 -39.991 31.981 -14.253 0.003481 0.999847 -0.017164 0.008
E27 36 -42.138 19.844 -19.978 0.000365 0.000645 -1.000000 0.003

X Y Z CX CY CZ DM CYLINTY
Z17 26 -21.982 20.901 -3.997 0.000000 1.000000 0.000000 7.988 0.019
Z18 27 -53.986 19.921 -4.003 0.000000 1.000000 0.000000 8.007 0.017
Z19 28 -64.978 10.006 -3.493 0.000000 0.000000 1.000000 6.005 0.002
Z20 29 -64.975 30.002 -3.616 0.000000 0.000000 1.000000 6.007 0.005
Z23 32 -40.028 4.162 -14.013 0.000000 1.000000 0.000000 6.006 0.009
Z26 35 -39.949 36.171 -14.002 0.000000 1.000000 0.000000 6.000 0.007





Appendix B

Random Point on Sphere

Evaluation

Random vertices on unit sphere according to Equation (4.4) and corresponding local

linearity measure l according to Equation (2.12). Radomized u and v with (intuitively

correct) ranges u ∈ (0..1) and v ∈ [0..1) result in mean linearity l̄ =
∑

l
n = 0.000539808

over n = 50 runs with 1.000.000 vertices per sphere (see Listing B.2). The better local

linerity of l̄ = 0.000504256 is achived in boundaries u ∈ (0..1) and v ∈ (0..1).

In the 3D case, a perfectly uniform distribution of normal vectors results in three iden-

tical eigenvalues λi = 1
3 from PCA. The following output lists the difference to the idea

results and read as

l − 1
3 with λ1 − 1

3 / λ2 − 1
3 / λ3 − 1

3

and for ideal runs should print

0.0 with 0.0 / 0.0 / 0.0
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0.000458761 with −0.000542214/8.30109 e−05/0.00045854
0.000598077 with −0.000404531/−0.000194917/0.000597389
0.000551782 with −0.000656291/0.000103655/0.000551354
0.000304746 with −0.000572415/0.000267023/0.000304423
0.000805091 with −0.000695703/−0.000109909/0.00080483
0.000619941 with −0.000476353/−0.000143696/0.000619886
0.000431677 with −0.000482464/5.0545 e−05/0.000431555
0.000607387 with −0.00105757/0.000449649/0.00060712
0.000518047 with −0.000501038/−1.72582e−05/0.000517922
0.000799118 with −0.000605226/−0.00019459/0.000798767
0.000472661 with −0.000317667/−0.000155163/0.000472576
0.000235037 with −0.000179021/−5.66046e−05/0.000234743
0.000502147 with −0.00033572/−0.000166717/0.000502002
0.000713865 with −0.000675613/−3.83235e−05/0.00071383
0.00060367 with −0.000750414/0.000146409/0.000603502
0.000819154 with −0.00071337/−0.000106795/0.000818647
0.000989334 with −0.000659632/−0.000331271/0.000988546
0.000278509 with −0.000466782/0.000187573/0.000278158
0.000489871 with −0.000528692/3.84999 e−05/0.00048971
0.000569621 with −0.000576072/6.29552 e−06/0.000569543
0.00050766 with −0.000638862/0.000131031/0.000507574
0.000450431 with −0.000477186/2.48024 e−05/0.000449453
0.000371255 with −0.000393737/2.20649 e−05/0.000371046
0.000755066 with −0.000712088/−4.46658e−05/0.000754219
0.000414773 with −0.00041018/−5.41628e−06/0.00041436
0.000626126 with −0.000467613/−0.000158904/0.00062593
0.000480621 with −0.000705528/0.000224593/0.000480463
0.000770888 with −0.000517685/−0.000253505/0.000770736
0.000668518 with −0.00114299/0.000474257/0.000668414
0.000290702 with −0.000466913/0.000175965/0.000290578
0.000652803 with −0.000746113/9.15125 e−05/0.000651902
0.00024101 with −0.000386991/0.000145214/0.000240627
0.000336418 with −0.000538518/0.000201528/0.000336131
0.000384608 with −0.000678202/0.000292828/0.000384224
0.000520965 with −0.000376511/−0.000144601/0.000520892
0.000781222 with −0.000588006/−0.000193432/0.000781115
0.000832879 with −0.000789385/−4.46337e−05/0.000832308
0.00014448 with −0.000161967/1.64748 e−05/0.000143974
0.000450853 with −0.000375449/−7.57781e−05/0.000450665
0.000418244 with −0.000294891/−0.000124158/0.000417841
0.000526346 with −0.000575338/4.88705 e−05/0.000526285
0.000375242 with −0.00048863/0.000113309/0.000375202
0.000487441 with −0.000247097/−0.000240803/0.000487211
0.000600018 with −0.000399138/−0.000201503/0.000599706
0.000594602 with −0.000514461/−8.02784e−05/0.000594534
0.001059 with −0.000810314/−0.000249688/0.0010585
0.000150074 with −0.000199001/4.87131 e−05/0.000149967
0.000193623 with −0.000154133/−4.04911e−05/0.000193122
0.00059235 with −0.000509171/−8.44866e−05/0.000591695
0.000943705 with −0.000807893/−0.000136199/0.00094351

l i n e a r i t y /n : 0.000539808

Listing B.1: u ∈ (0..1) and v ∈ [0..1).
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0.000439513 with −0.00049265/5.20013 e−05/0.000438944
0.000514412 with −0.000528082/1.34861 e−05/0.00051432
0.000293239 with −0.000270009/−2.4632e−05/0.000292537
0.000387827 with −0.000433474/4.45945 e−05/0.0003873
0.000273935 with −0.000201955/−7.22947e−05/0.000273777
0.000541038 with −0.000467375/−7.38837e−05/0.000540928
0.00038476 with −0.000597899/0.000212369/0.000384374
0.000329248 with −0.000250951/−7.91096e−05/0.000328841
0.000346733 with −0.000297767/−4.907e−05/0.000346681
0.000233959 with −0.000185221/−4.95941e−05/0.000233531
0.000448863 with −0.000561717/0.000112673/0.000448773
0.000829833 with −0.000860197/2.97736 e−05/0.000829538
0.000252637 with −0.000352863/9.99807 e−05/0.000252514
0.000171735 with −0.000294219/0.000122266/0.000171626
0.000862343 with −0.000996443/0.000133604/0.000862094
0.000458057 with −0.000401382/−5.73683e−05/0.00045771
0.000286778 with −0.000249302/−3.79934e−05/0.000286518
0.000208657 with −0.000269235/6.02604 e−05/0.000208497
0.000650525 with −0.000504547/−0.000146117/0.000650455
0.00065042 with −0.000473106/−0.000177361/0.000650396
0.000360621 with −0.00056194/0.000201148/0.000360536
0.000791153 with −0.000877396/8.59261 e−05/0.000790993
0.000313664 with −0.000268015/−4.68234e−05/0.000313076
0.00068947 with −0.000854142/0.000164126/0.000689196
0.00039815 with −0.000290845/−0.000108165/0.000397719
0.000943449 with −0.000653696/−0.000290328/0.000943161
0.000501634 with −0.000284141/−0.000218514/0.000501123
0.000975335 with −0.00101009/3.16631 e−05/0.000973781
0.000434933 with −0.000278377/−0.00015765/0.000434385
0.000351531 with −0.000494183/0.000141733/0.000351072
0.000741022 with −0.000669069/−7.38043e−05/0.000740093
0.00046394 with −0.000399173/−6.52391e−05/0.000463704
0.000467051 with −0.000374514/−9.35374e−05/0.00046655
0.000598356 with −0.00082334/0.000224675/0.000598201
0.00039791 with −0.000413518/1.49748 e−05/0.000397593
0.000294534 with −0.000276016/−1.9973e−05/0.000293805
0.000744112 with −0.00057448/−0.000170055/0.0007439
0.000998561 with −0.00062941/−0.0003694/0.000998436
0.000464268 with −0.000422747/−4.25096e−05/0.000463773
0.000377639 with −0.000459633/8.15645 e−05/0.000377424
0.000816495 with −0.00105251/0.000235843/0.000816409
0.00042689 with −0.000420825/−7.66787e−06/0.000426087
0.000523346 with −0.000446412/−7.71574e−05/0.000523234
0.000642073 with −0.00053341/−0.000109528/0.000641639
0.000368266 with −0.000397281/2.88405 e−05/0.000368179
0.000480201 with −0.000381177/−9.98808e−05/0.000479772
0.000554925 with −0.000574747/1.95142 e−05/0.00055477
0.000393521 with −0.000461835/6.71256 e−05/0.000392925
0.000777933 with −0.000534822/−0.000243467/0.000777754
0.000357316 with −0.000420914/6.34484 e−05/0.00035724

l i n e a t r i y /n : 0.000504256

Listing B.2: u ∈ (0..1) and v ∈ (0..1).





Appendix C

RanCEAF Run-time Comparison

The following tables hold all measurement results for evaluating the performance RanCEAF

subset extraction. An excerpt is shown in Section 5.2.3.
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Table C.1: Objects shown in Figure 1.2 after applying evaluated approaches on an
Intel Xeon E7-4870.



Appendix D

OctaCoG Evaluation

The following tables hold all measurement results for evaluating OctaCoG performance.

An excerpt is shown in Section 5.2.4.
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Table D.1: Run time and RMSE of alignment approaches for optical scan and CT
scan. RMSE is measured for full meshes. “Correctness” is fraction of current versus

known best solution. Processing time is single threaded.
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Table D.2: Conclusions from Table D.1.
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Appendix E

Measurement Comparison

Figure E.1: Measurement comparison for applying all approaches to ILATO sample
1B.

Figure E.2: Probing positions for manual tactile measurements via Caliper.
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Appendix F

Discontinued Approaches

F.1 Smooth Mesh

Shifts each vertex in the barycenter of its one ring neighborhood. is applied iteratively

until mesh is sufficiently smooth. Also implements parametrization to sphere [GGS03]

by normalizing each position vector before each iteration. In case of parametrization

to sphere, iterations continue until all face normals point outside. Since this approach

requires all position vectors to have length one, a simple check is to sum position vector

and normal vector for each face and check if resulting length is greater or equal one.

F.1.1 Assessment of Randomness with a 2D Manifold

Parametrization in unit sphere as workaround. Random of seeds around object is shown

in Figure F.2A. Randomness of selection assessed as mapping of selected subset from

(A) handBeforSmooth (B) handAfterSmooth

Figure F.1: Effect of smoothing algorithm.
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specimen as in Figure F.2D to corresponding unit sphere as in Figure F.2A.

(A) bunnyPoints (B) bunny2sphere

(C) bunnyPlusPoints (D) points

Figure F.2: Bunny parametrization to sphere.

For a closed surface such as the bunny, the parametrization to sphere is achieved by

alternatingly setting all position vectors to unit length and apply a smoothing iteration.

F.2 Pre-Alignment based on global features

(pre)Alignment:

• compute convex hull for volumetric model and surface model

• align meshes along ellipsoid axis and compute MVBB

• align meshes along MVBB axis

• scale models and adjust center

• extract thin layer of mesh with touches MVBB

• compare cut layer volumes to flip axis if necessary
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(A) prealigned meshes (B) screw thread in
front

(C) screw thread in
bottom

Figure F.3: Meshes MCT and MCT prealigned based on surface parts intersecting
with MBB.

F.3 Alignment based on MVBB and outer Surface Layers

The following test is based in the prealigned data as shown in Section F.3. To improve

alignment accuracy the surface parts close to the MVBB are extracted for each mesh.

Those intersections are referred to as cut layer in the following since they only comprise

a flat layer or triangles.

F.3.1 AluCylinderCutLayers

Intersection with shrinked MVBB, processed per MVBB side

(A) minBbCutFaces (B) 3D full00 (C) CT par-
tial00

Figure F.4: MBB intersections from cylinder cast for alignment test

F.4 RANSAC versus ICP

Comparison of established alignment algorithms challenged with identical problem of

aligning highly rotation symmetric shape
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F.4.1 Alignment Comparison

Two almost symmetric patterns were extracted from CT mesh and optical mesh. The

task was to align them properly. RANSAC produced solutions comparably fast although

not all of them were as good as the one shown below (∼33% success rate). ICP had

a ∼5% success rate in solving the alignment task by considerably higher computation

time.

RANSAC shows good convergence and results. Mesh resolution is a critical factor since

the presented metric (relV ec) only works if similar - almost identical - point pairs are

present. Furthermore, high resolution meshes require more iterations which increases

hash table size. In theory it is possible for them to grow almost indefinitely.

• largest cut layer of mesh and minimal bounding box as input

• as cuts are not perfect similar structures slightly differ

• in this test ICP is easily caught in local minima

Figure F.5: bounding box cuts

(A) input 3D (B) input CT (C) result ICP (D) result
RANSAC
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F.5 NURBS Surface Patches for Hypothesis Generation

F.5.1 Random Surface Point Selection

RANSAC scheme relies on randomly chosen points but not all choices are equally good.

To improve the hypothesis generation rate (relV ec hits in hash tables) we need to restrict

the points to choose from to a meaningful subset of all vertices in the mesh.

• Mesh from CT covers more surface than mesh from 3D scan

• Matches only occur if counter pair is present in other mesh

• Thus, only exterior vertices are relevant to RANSAC

Figure F.6: interior surface

F.5.2 NURBS & Region Growth

To overcome dependency of similar resolution, we describe small portions of the mesh in

parametric form. Instead of selecting a pair of points and computing their characteristic

vector, we select one point and apply region growth to select a small patch. A description

of this path as non rational uniform b-spline should provide basis for a similarity search

in analogy to comparison of characteristic vectors. Unable to reduce the knot vector

count related resolution of the underlying patch, this is still not resolution independent.

We want to replace RANSACs 4D relation vector relV ec as metric for point pair simi-

larity. A resolution independent mathematical definition of a small subset of the mesh

surface is desired. The intention is to have a surface patch as introduced in “stencil

selection” as control points for a Non-uniform rational B-spline (NURBS) surface.

• stencil patches replace the concept of point pairs
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• NURBS replace the concept of relV ec

• similarity of two NURBS then indicates similarity of associated patches and there-

fore a hypothesis

• verification remains as distance measure after transformation of random points

• ... and unfortunately this seems not to work.

Figure F.7: NURBS surface
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