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From Quenches to Critical Dynamics and Non-Equilibrium Steady States:
Universality in the Dynamics of Low-Dimensional Ultracold Bose Gases

In this thesis, we study numerically critical dynamics in the ultracold Bose gas in one and
two spatial dimensions. We concentrate on two specific setups, both amenable for ex-
perimental realisation: Hamiltonian parameter quenches in a two-component Bose gas
in one spatial dimension and a driven-dissipative single-component gas in two spatial
dimensions. The setups are chosen to excite critical dynamics, either via quenches close
to a quantum critical point or via nucleation of vortex defects. The goal is to identify crit-
ical scaling and universal scaling forms in the time evolution of the respective systems.
The analysis for the two-component Bose gas reveals that short-time quench dynamics
can be described by a universal crossover function, where the quench-induced energy
appears as the relevant energy scale. For the single-component gas, we find a new uni-
versal phase of time evolution, characterised by an anomalously slow phase ordering
process of vortex defects. We discuss our results in the light of concepts of prethermali-
sation, generalised Gibbs ensembles and non-thermal fixed points, for universal critical
phenomena far from thermal equilibrium.

Von Quenches zu
Kritischer Dynamik und Stationiren Nicht-Gleichgewichts-Zustinden:
Universalitit in der Dynamik niedrig-dimensionaler ultra-kalter Bose-Gas

In der vorliegenden Arbeit wird mit numerischen Mitteln kritische Dynamik in einem
ultra-kalten Bose-Gas in einer und zwei Raumdimensionen untersucht. Dabei werden
speziell zwei Varianten betrachtet, die beide besonders geeignet fiir eine Realisierung
im Experiment sind: zum einen das plétzliches Verstellen eines hamiltonschen Parame-
ters in einem zwei-komponentigen Bose-Gas in einer Raumdimension und zum anderen
ein einkomponentiges Gas mit Dissipation und externem Treiben. Durch Ansteuern ei-
nes quantenkritischen Punktes im ersten Fall und das Erzeugen von Quantenwirbeln im
zweiten Fall kann so kritische Dynamik explizit angeregt werden. Das Ziel der Unter-
suchung ist kritisches Skalieren und universelle Skalen-Formen in der Zeitentwicklung
der jeweiligen Systeme zu identifizieren. Die Analyse des zweikomponentigen Gases
zeigt, dass die Dynamik des Systems bereits fiir kurze Zeiten durch eine universelle
Crossover-Funktion beschrieben werden kann. Die relevante Energie-Skala lasst sich
dabei aus dem Parameter-Quench ableiten. Im Falle des einkomponentigen Gases wird
eine neue universelle Phase der Zeitentwicklung identifiziert. Diese weist einen ano-
mal langsamen Ordnungs-Prozess der Quantenwirbel auf. Die Ergebnisse werden in Be-
zug zu den Konzepten Prithermalisierung, verallgemeinerte Gibbssche Gesamtheiten
und nicht-thermische Fixpunkte in ihrer Bedeutung fiir universelle kritische Phanome-
ne fern des thermischen Gleichgewichts diskutiert.
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I Introduction

When thinking about the dynamics of quantum many-body systems, modern physics
faces, apart from a variety of practical questions, a virtually philosophical question. Com-
mon sense dictates that a sufficiently macroscopic system eventually reaches some kind of
equilibrium state. The most frequently encountered example for this in reality is thermo-
dynamic equilibrium. But, given an isolated many-body system, how can it evolve into a
steady state, as for example thermodynamic equilibrium, for almost all initial conditions?
This, to date not entirely solved, paradox arises as ‘isolated’ is tantamount to demand that
the system is subject to an energy-conserving Hamiltonian flow or unitary time evolution.
In turn, time-reversibility is implied which contradicts the time-translation invariance of
a stationary state.

Naturally, many efforts in the theory of dynamical complex systems nowadays evolve
around the wish to develop a deep comprehension of this paradox and to eventually com-
pletely resolve it. However, at this point, understanding the situation should not be con-
fused with the ability to compute or measure the time evolution of observables. ! When
it comes to many-body quantum systems, the complexity of the Hilbert space grows ex-
ponentially with the number of constituents. As an immediate consequence, not only the
computational demand increases exponentially with system size but also the amount of
information which has to be dealt with.

A promising way out of this misery, as it has always been for classical thermodynamics
since the invention of Gibbs ensembles, is to concentrate on few universal properties
instead of microscopic details. Doing so typically already requires to introduce effective
degrees of freedom which emergently cover solely the important aspects of the physical
behaviour but scale not as unfavourable with system size. The general understanding of
the process of thermalisation in an isolated system then is that it appears thermal after
a sufficiently long time when analysed in terms of those effective degrees of freedom. In
practice, this is naturally realised when, for example, studying only the experimentally
measurable observables or restricting computations to correlation functions of low order.

For specific observables of a quantum many-body system, the eigenstate thermalisation
scenario constitutes a more quantitative understanding of thermalisation in an isolated
quantum system [2-4]. If an observable O is considered subject to Hamiltonian time evo-
lution and for an arbitrary initial state, the eigenstate thermalisation scenario argues that
expectation values with respect to the initial state (O); are described by a microcanonical
classical statistical ensemble after sufficiently long time. For this to hold true, there are
conditions on the energy spectrum of the Hamiltonian and the matrix elements of O in
the energy eigenbasis, but the statement does not depend on the specific initial state.

IThe computer scientist John P. Boyd states that “understanding only logarithmically grows with the num-
ber of floating point operations” [1]
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Although it is widely believed that the great majority of isolated many body systems
does thermalise, counter examples have been found. Kinoshita et al. demonstrated in
[5] for the first time that, using trapped ultracold atoms, a situation can be engineered
where no sign of thermalisation can be measured in a quantum system. It was shown that
colliding atom clouds of a strongly interacting Bose gas in a one-dimensional geometry
oscillate without a sign of degradation for essentially the system’s lifetime. Here, the
eigenstate thermalisation scenario apparently fails.

The (partial or complete) absence of thermalisation in an isolated many-body system
is usually attributed to the property of integrability. Although the notion is not math-
ematically well defined in the context of quantum many-body systems [6], the general
idea is that an infinite number of dynamically conserved quantities constrain the time
evolution too strongly to allow thermalisation to a classical Gibbs ensemble. Practically,
this often involves the possibility to solve a system exactly by the Bethe-Ansatz or similar
techniques [7, 8]. The Kinoshita experiment, for example, is described by a Lieb-Liniger
model, which falls into the class of quantum integrable models [9, 10].

Even if integrability hinders thermalisation in isolated many-body systems, this does
not automatically imply that no statistically stationary state is reached. Rigol et al. have
put forward that relaxation to a non-thermal equilibrium state nevertheless can happen in
integrable quantum systems [11]. They succeeded to describe the late-time relaxed state
of one-dimensional hard-core Bosons in terms of a classical statistical ensemble, using
Jaynes’ long standing concept of generalised Gibbs ensembles [12, 13]. By including all
conserved quantities the integrable system provides in the statistical ensemble, instead
of just energy, late-time stationary expectation values of observables can again be ob-
tained from a canonical or microcanonical ensemble [11, 14]. Although it is not rigorously
proven that all integrable models relax to stationary states for which generalised Gibbs
ensembles can be constructed, it is widely believed to be the generic case [11, 15, 16].

The intriguing point in describing the non-equilibrium stationary state with a (gener-
alised) statistical ensemble is that this restores the notion of universality. The concept of
universality asserts that certain properties of a physical system are largely independent
of its details [17]. The general applicability of this concept, and the reasons behind its
emergence, have intrigued physicists for decades, and the research efforts culminated in
the development of renormalisation group theory [18-20]. A prime example are critical
phenomena in the vicinity of a continuous phase transition, where only the dimension-
ality of space and the order parameter, but not the microscopic details of interactions, are
relevant. This permits a unified description, valid close to the critical point, of systems
such diverse as superfluids and magnetic crystals. Scaling is closely related to universality,
and the two can be seen as twin concepts [17]. For example, universality at a continuous
phase transition manifests in the form of power laws in the vicinity of the critical point,
where the values of the corresponding exponents are universal quantities. Measuring
such scaling laws therefore provides a way for experimentally verifying universality, and
for extracting the numerical values of critical exponents and critical amplitude ratios that
characterise the different universality classes.

Universality classes have been extremely successful in classifying and characterising
equilibrium states of matter. For example, there are different types of order in a magnetic
material separated by a second-order phase transition at which the relevant physical prop-



erties become independent of the microscopic details of the system. This constitutes uni-
versality and allows to characterise an extensive range of different phenomena in terms
of just a few classes governed by the same critical properties. Those manifest themselves
typically in terms of scaling laws and symmetries and allow putting phenomena as differ-
ent as opalescent water under high pressure, protein diffusion in cell membranes [21] and
early-universe inflationary dynamics [22, 23] on the same structural footings. Typically,
scaling is observed in thermal equilibrium or in relaxation dynamics close to equilibrium
[24-29].

The ubiquitous presence of universal states in thermal equilibrium provokes the ques-
tion if already the time evolution towards, but still far from, these universal states demon-
strates likewise universal properties or critical scaling. And if so, a pressing follow-up
question is if universal dynamic evolution can be grouped again in universality classes,
either by systematically extending the existing Halperin-Hohenberg classes [30] or defin-
ing a completely new classification system. While recently the scaling hypothesis has
been extended to far-from-equilibrium dynamics [27, 31-33], a comprehensive under-
standing of these questions is far from being achieved and currently subject to intense
research.

A first step into the direction of classifying universality far from equilibrium is pro-
vided by the concept of prethermalisation [34, 35]. The idea thereby is that many-body
systems generically, i. e. apart from the special class of exactly integrable ones, relax in
three stages towards thermal equilibrium. In a first fast stage, coherences between modes
with different eigenfrequencies simply dephase, without scattering. After dephasing, the
system enters a stage in which details of the initial state are mainly lost. There, bulk
quantities such as kinetic energy and pressure appear stationary at their final value in
thermal equilibrium, describable by a thermal equation of state [35], or by some effective
temperature. The prethermalised observables thereby depend on conserved quantities,
such as energy or particle number, coming from the initial state but not on any details. In
this sense, the prethermalisation plateau is universal. Eventually, the system will relax to
a full thermal state, meaning that occupation numbers are described by a Bose-Einstein
or Fermi-Dirac distribution but the time scale on which this happens can be arbitrarily
long. In the context of weakly non-integrable systems, it is typically found that this type
of three-staged relaxational dynamics happens [36-42], where the prethermalised plateau
is typically describable in terms of the generalised Gibbs ensemble of the corresponding
integrable model. In [43] prethermalisation was directly observed in the relative phase
dynamics of a Bose gas, after splitting it in two halves.

In a context similar to prethermalisation, the concept of non-thermal fixed points has
been proposed [44], which includes the time evolution itself in the picture of universality.
The idea is, somewhat similar to prethermalisation, that the time evolution of correlation
functions out of equilibrium in a many-body system is drawn to a universal attractor, in
the sense of a renormalisation group fixed point [45]. In this scenario, the time evolu-
tion of an isolated system can be initialised with a large class of initial states but would
nevertheless be drawn to a universal state, defined by the properties of the fixed point.
In particular, universal scaling laws in momentum space distribution functions [45, 46]
are expected together with universal scaling laws for the progress in time [47]. The latter
implies that the universal state progresses algebraically slow in time. Thus, although an
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isolated system does not become stationary in an universal out-of-equilibrium state and
will eventually be attracted by the thermal fixed point, it can, depending on the critical
exponents for the temporal scaling, spend an arbitrarily long time in the universal non-
thermal state.

Due to this generic formulation, which is as well open to a more rigorous formula-
tion in terms of non-perturbative renormalisation group methods [48, 49], it can en-
compass a variety of typical dynamical critical phenomena, (wave-)turbulence [50, 51],
superfluid or quantum turbulence [52, 53], and relaxation dynamics such as coarsening
and phase-ordering kinetics [54] following the creation of defects and nonlinear patterns.
To date, non-thermal fixed point behaviour has been found numerically within the far-
from-equilibrium evolution of many example systems, where they often are observed
together with structure formation. Examples include ultracold Bose gases [55-60], early
universe inflation [61], (non-)abelian gauge theories [62, 63], and classical turbulence [48].
See [64] for a review. Recently, non-thermal fixed points have been even demonstrated
within the dynamics of holographically constructed superfluids [65], coming from the
realm of gauge/gravity dualities for condensed matter [66-68]. The diverse applicability
to very different systems implies that one may be able to use non-thermal fixed points
to define universality classes for out-of-equilibrium time evolution [69]. In recent years,
experimental techniques in the field of ultracold atomic gases tremendously advanced.
It is nowadays possible to put many theoretical concepts for the way to thermalisation
in isolated many-body systems to a practical test in clean and controlled quantum gas
experiments [5, 27, 28, 43, 70-81]. It is therefore important to understand concepts like
generalised Gibbs ensembles, pre-thermalisation, and non-thermal fixed points, which are
typically proposed in the context of simple theoretical models, in more realistic setups,
as realised in ultracold atom experiments. In this thesis, we study numerically critical
dynamics, in a broad sense, in the ultracold Bose gas in the semi-classical regime [82-84].
We concentrate on two specific setups which are both within reach of current experimen-
tal capabilities.

The major part of this thesis will be concerned with a two-component (pseudo spin-1/2)?
Bose gas in one spatial dimension, where experiments have already been able to observe
critical scaling in far-from-equilibrium dynamics [73]. In the second part, we study dy-
namics in a single-component Bose gas in two spatial dimension. Here, we also relax the
condition of isolation in favour of controlled external driving, to explore the connections
between quasi-stationary states in isolated systems and true non-equilibrium stationary
states.

The first part of this work thematises an isolated Bose gas with two linearly and non-
linearly coupled components in one spatial dimension. This so-called spinor gas possesses
a rich structure of phase transitions in its equilibrium phase diagram [85, 86]. This ren-
ders it ideal to study the relation between universal scaling in equilibrium and dynamical
scaling in the time evolution ensuing a so-called parameter quench. Quenches provide
a simple and efficient way to set off strong dynamics far from equilibrium, for theory
and experiment alike. An equilibrium state is thereby prepared for a specific value of a
Hamiltonian tuning parameter and thereafter the tuning parameter is suddenly switched

2We use the term ‘spinor gas’ for simplicity instead of ‘pseudo spin-1/2 gas’ throughout this work.



close to a critical value, possibly even changing to a different sector in the phase diagram.

In chapter II, we introduce the model for the two-component Bose gas in detail and give
an overview over its properties concerning the equilibrium phase diagram. In particular,
we discuss in what sense the two-component Bose gas resembles an effective model for
spins, in terms of which we discuss the dynamic behaviour in the following.

As a first example for quench dynamics, we discuss in chapter II dynamic structure
formation in the spinor gas. This constitutes also a brief detour to a two-dimensional
system. In [60] we have demonstrated that structure formation is intimately connected to
non-thermal fixed points in the two-component Bose gas. Here, we show, following [87],
that the Hamiltonian tuning parameter controls the type of realised fixed point scaling,
as it controls what types of spin structures form.

The subsequent chapters discussing the spinor gas are devoted to dynamics for quenches
close to a critical point of a second order phase transition in one spatial dimension, with-
out crossing it. With that, we study the effects of strong non-linear fluctuations, but
without pattern formation, on dynamical critical scaling.

In chapter III, we derive in detail quench dynamics within Bogoliubov—-de Gennes ap-
proximation for the spinor Bose gas. We introduce the concept of a parameter quench in
terms of number states of Bogoliubov quasi-particles. With this we highlight the similar-
ity to the formulation of quenches in the Ising spin chain [88]. Furthermore, we show how
the equilibrium meanfield scaling behaviour can be identified within Bogoliubov quench
dynamics and propose, based on this, a guide to analyse scaling in quench dynamics be-
yond Bogoliubov theory.

As the Bogoliubov quasi-particle picture for the spinor gas constitutes naturally an
integrable system, we apply in chapter III the concept of generalised Gibbs ensembles to
the spinor Bose gas. As a main result, we find that the ensemble is dominated by the
conservation of quasi-particles with zero momentum. This means that it is possible to
define for our dynamical setup a single effective temperature. We explain this effective
temperature in terms of energy scales connected to the quench itself, not to the details of
the initial state.

In chapter IV, we describe the experimental results from [73] which motivated our
numerical studies of the one-dimensional spinor gas. The experiment observes static and
dynamic meanfield scaling in pseudo-spin correlation functions for quenches in the spinor
gas. By comparison to simulations we show that the experiment is not far away from
measuring critical dynamics beyond the linear regime describable by Bogoliubov theory.

In chapter V, we present a thorough numerical study of quench dynamics in the one-
dimensional spinor Bose gas. We employ a semi-classical simulation technique, the Trun-
cated Wigner Method [83, 84], to go beyond the linear approximation. We determine nu-
merically Ginzburg-like criteria, bounds in time and distance to the critical point, where
interaction effects become important for the quench in the spinor gas. We find that, be-
yond the linear regime, meanfield scaling behaviour within quench dynamics is changed
into crossover-like behaviour, reminiscent of thermal crossover behaviour in spin chains
[89].

In chapter VI, we therefore review results on quenches in the Ising chain in a transverse
field [90-92], which shares not only similarities in its behaviour but also structural sym-
metries in the Hamiltonian with the spinor Bose gas. The Ising model in a transverse field
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is also an important example for the application of generalised Gibbs ensembles [90-95].
Spin correlations in the Ising model for quench dynamics behave effectively thermal very
close to the critical point but are, in general, not describable by an effective temperature.

In light of these findings, we analyse in chapter VI quench dynamics of the spin correla-
tion length in the spinor Bose gas, as a coarse grained (bulk) measure for correlations. The
spinor gas does not reach a stationary or pre-thermalised state on numerically accessible
time scales. We find as main result that, nevertheless, the correlation length in the spinor
gas displays a crossover towards the critical point which follows the form of the thermal
universal crossover function of the transverse-field Ising model [89]. We demonstrate
that the Bogoliubov effective temperature of the spinor gas sets the temperature in the
crossover function. This means that the relevant scale from the Bogoliubov generalised
Gibbs ensemble remains a relevant scale beyond the linear regime. The effective temper-
ature scale influences the correlation length before the dynamic evolution has reached a
stationary state.

In the last part of chapter VI, concentrating on occupation number distribution of the
single components, we demonstrate that the post-quench dynamics in the spinor gas
shows signs of self-similar time evolution from this point of view. We identify a uni-
versal function, describing the time evolution, for the occupation number distribution
which insensitive to the distance from the critical point.

In the second part of this thesis, we switch gears to a one-component Bose gas in two
spatial dimensions, which has been used extensively as classical setting to study quantum
turbulence [52, 53] and non-thermal fixed points [47, 55-57, 59]. In this case, we open the
system to a thermal and a non-thermal environment, to study numerically how critical,
self-similar time evolution reacts to driving and dissipation. In particular, the goal is to
investigate if the structure of non-thermal fixed points in the Bose gas is in one-to-one cor-
respondence with non-equilibrium steady states in presence of non-equilibrium driving
and dissipation. This is especially interesting for experiments with exciton—polariton con-
densates [96-98], which are naturally strongly coupled to a non-thermal driving source.

In chapter VII, we start with investigating a new (as compared to [47, 55-57, 59]) class
of initial states to set off dynamics in the Bose gas. Using regular lattices of vortices as
initial state, we discover a new non-thermal fixed point in the Bose gas, which comes
with an anomalously slow self-similar time evolution of occupation spectra. By coupling
this kind of initial conditions to a thermal bath, we furthermore show that the previously
discovered non-anomalous non-thermal fixed point [47, 59] is tightly connected to phase
ordering kinetics from vortex diffusion [54, 99]. We clarify the connection between phase
ordering kinetics and the fixed point structure in the Bose gas further. With this we
map the anomalous critical exponent, defining our newly discovered fixed point, to an
anomalously high dynamical critical exponent z = 5 of the ordering process. Based on
our results and in light of findings for vortex glass phases in superconductors [100-104],
we put forward that the anomalous fixed point in the Bose gas signals a glass-like phase
of the vortex distribution.

In chapter VIII, we couple the Bose gas to non-thermal driving and dissipation, to probe
the structure of true non-equilibrium steady states. We find that the Bose gas hosts two
classes of stationary states, one which contains vortex ensembles and one which does not.
We demonstrate that scaling properties of distribution functions in the vortex-less steady



state can be understood in terms of the Kardar—Parisi-Zhang universality class [105-108].
In particular, we find indications that the vortex-less steady state is connected to a fixed
line in the Kardar-Parisi-Zhang equation, to which the vortex-less Bose gas effectively
maps [48, 109, 110]. For the second, vortex-containing class of non-equilibrium steady
states in the Bose gas, we demonstrate that scaling properties of distribution functions can
fully be understood in terms of the vortex ensemble. Stationary occupation numbers for
different realisations of the driving can be rescaled to a universal function, using moments
of the vortex distribution as scale. With this scaling collapse and the form of the emerging
universal function, we find strong numerical evidence that the vortex-containing steady
state is in one-to-one correspondence with the anomalous non-thermal fixed point.






II Phenomenology of the
Two-Component Bose Gas

The two-component Bose gas offers a rich phenomenology of phase transitions, render-
ing it the ideal model system to study dynamic critical phenomena. Apart from being
subject to the standard Bose condensation, the phasespace structure of the ground state
can contain first and second-order phase transitions where the degree of miscibility of
the two components serves as order parameter. In addition, those transitions are con-
nected to Hamiltonian tuning parameters which allows the transfer of theoretical studies
of quench scenarios to experimental setups, due to the high amount of parameter control
for typical Bose gas experiments. In recent years, the virtues of the two-component Bose
gas as wildcard system for phase transitions have been exploited to study phenomena
as different as turbulence in binary fluids, see for example [111, 112], the proliferation
of topological defects, see for example [113-115] and phase transitions in spin systems,
cf. [116]. In previous works, we have characterised the structure of non-thermal fixed
points within the two-component Bose gas, cf. [60, 87, 117].

In this chapter, we introduce the general model for the two-component Bose gas and
the language of pseudo-spins, which we make use of extensively in subsequent chapters.
Thereafter, we discuss the structure of the equilibrium phase diagram and, in particular,
how to obtain critical couplings and critical scaling exponents in meanfield approxima-
tion. Furthermore, we explain the method of semi-classical simulations we employ for the
numerical treatment of the spinor gas, to simulate the dynamics evolution of the spinor
Bose gas beyond meanfield theory.

As a first example for quench dynamics, we discuss in the second part of this chapter
briefly dynamic structure formation in the spinor gas. We introduce the building blocks
of structure formation, i.e. topological defects, in the spinor Bose gas and discuss their
nucleation on basis of dynamical instabilities. Finally, we present a numerical study of
the spinor gas in two-spatial dimensions [87], which highlights the way from structure
formation to non-equilibrium critical scaling.

I1.1 The Model

The microscopic Hamiltonian for two interacting Bose fields ®;, j € {T,l}, in d spatial
dimensions, with a linear coupling J and a zero-point detuning & is H = Hy + Hep| + Hint,
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with the quadratic and quartic parts given by

R
Hy=)Y fddx@j[—Q—VQ—kV(x)]i)j, (IL1a)
= m
Hept =~ [ ddx[ j(@h, + h.c.) + cs(cIﬂchT — ol l)] : (IL1b)
1
Hine = 5 > gy [ dx T, 00, (IL1c)
Lji="T1

Here, m is the atomic mass which we assume equal for both species. For an actual exper-
imental setup, this corresponds to realising the different species with different hyperfine
levels of one atomic species. A trapping potential V(x) is of relevance for the experimen-
tal realisation and will be discussed below. The internal symmetries of the Hamiltonian
are dictated by the relations among the linear couplings, J and §, and the non-linear cou-
plings, g11, g1 and g1;. The possible transitions from a miscible to an immiscible state are
controlled by the inter-species couplings, J and gj2. Thus, in this work we mainly con-
centrate on the situation where g11 = g;| = gand § = 0. We will discuss the relevance of
our results for a realistic experimental situation, where g1 # g|| and where the detuning
¢ is usually finite for various technical reasons. For J = 0, § = 0, and equal intra-species
couplings g1 = g, |, a non-vanishing cross-coupling, g7, # g, leads to a deviation from a
fully U(1) x SU(2)-symmetric theory. Adding the linear coupling, J # 0, leaves a residual
Zo symmetry, which is broken if § # 0 or gy # 9.

Note that, in the context of cold atom experiments, the linear coupling term propor-
tional to J in Hep in Eq. I1.1b is usually interpreted as Rabi coupling and includes an ad-
ditional factor 1/2 in the definition, ] — Q2 = 2J. In particular, in experiments [73, 118]
to which we compare our results, the linear coupling 2 relates to the notion used in this
work by 2 = 2]. Throughout this work we stick to the Josephson form of the linear cou-
pling, as introduced in Eq. II.1b, if not stated otherwise, since this is a more commonly
encountered definition in theory literature, for example [113, 116, 119].

In the case that mode occupation numbers are large as compared to 1, the Bose field
operators can be replaced by classical complex fields, ®; — ¢;, and then expressed in
terms of phases and densities, ¢; = \/n_jei 9 . Using the language of the phase-density
representation, it is particularly convenient to split the degrees of freedom in internal
ones and hydrodynamic ones, for example with the definitions

" _anLnl
=T
s Mo
nT+nl
eiZHTiel,
g:=g+gy =9g(l+a), (IL.2)

where we have also introduced the dimensionless ratio o between the inter- and intra-
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species coupling,

o= (IL3)

9

The hydrodynamic degrees of freedom are indexed with ‘+’ and are subject to the overall
U(1) symmetry. In later discussions they will be referred to as degrees of freedom from
the symmetric sector of the model. The remaining symmetries connect to the internal
degrees of freedom, indexed with ‘-’, and can be cast into a language of classical spins, as
discussed below. From the Hamiltonian given by Eq. (IL.1) together with the definitions
in Eq. (I.2) the microscopic action! in phase—density representation can be obtained,

S = [ dtd?x { —ny 8,64 —S.8,6_]

1 [0end 1 8,82
2m

2ny  2(1-S2)

1
— T 0,67 + 0,67 + 25.0,0,.0x6_]

2m 2
1+ g—_SE] +26n,S, +2Jny A1 —52cos (0_) + 2;m+} ,
9+

(IL4)

2
—g+ny

where the external potential, V(x), has been replaced by a general chemical potential, ,
which can include V. Note that we set 7 = 1 for the remainder of this work. In the form
of Eq. (IL4) the hierarchy of symmetries and how they are controlled by the coupling
constants is made explicit. The global U(1) symmetry of 64 phase rotations is always
present. A finite value of J lifts a symmetry connected to rotations of 6_. A finite value
of g_ lifts a symmetry connected to rotations of the spin axis, as can be seen from the term
oc S? in Eq. (IL4), but leaves a residual Z x Z symmetry. One of this residual discrete
symmetries is a spin-flip symmetry, _ — —0_ and S* — —S%, and can be lifted with
a finite value for §. The other discrete Z, symmetry is given by a discrete shift of the
relative phase angle 6_ — 6_ + & together with ] — —J. If all internal coupling constants
vanish, the symmetries are enhanced to form a full SU(2) symmetry, connected to a full
rotation symmetry of the spin on a Bloch sphere.

I1.1.1 Spin-fluid representation of the two-component Bose gas

The model for two coupled Bose gases, defined in Eq. (IL.1), with equal atomic masses
can be interpreted to describe one gas of atoms in two spin states, as can be already in-
ferred from the transformation to Eq. (IL.4). This system can be viewed as a coherent spin
fluid, as each volume element of it carries angular momentum proportional to the local
density 2n, of atoms, generalising the concept of classical relativistic spin fluids [120].
Such a fluid is not to be mixed up with the disordered state of a spin liquid, occurring,
e. g, in lattices giving rise to frustrated moments. The separation of the model into spin

IWe use the standard Legendre transformation for the Lagrangian density of a non-relativistic scalar field,
L= [d% 3§ (0,0, - ;0,9)) - H

11
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degrees of freedom and hydrodynamic ones can be clarified even further by use of nor-
malised Schwinger angular momenta S, = (2n)* i @E()‘ij@j with a € {x,y,z}. The
Pauli matrices o, form a representation of the SU(2) spin algebra. In the phase-density
representation, we obtain

Sx = n_f \/nynjcos6_, (I.5a)
Sy = n;l \nngsin6_, (I.5b)
S, = (2ny) Hny —ny), (IL5¢)
where the classical spin vector is normalised to |S| = 1. The relations from Eq. (IL5)

show that the remaining spin degrees of freedom which are not apparent in Eq. (I.4) are
mainly determined by the relative phase angle, 6_ . In terms of the Bloch sphere picture,
it determines the direction the coherent spin points to on the equator of the sphere at
a point in space. When transformed completely to the spin language, the microscopic
Hamiltonian reads, for g1y = g1 = g,

H_fddx{41

mny

n
(6xn+)2 + ﬁ |axs|2 + 2n4 (mvsz - /J)
+-g+n§_4—g_nis§-2]n+sx-25n+sz}. (IL6)

Details on the calculation can be found in [121] and have been discussed at length in [117].
From a hydrodynamic point of view it is useful to define an effective velocity field for the
fluid [121], ver = (nro7 + nyoy)/(2n4), in terms of the velocities v; = 9, 0;/m of the
spin components. It evaluates to

Sz (Sy0xSx — Sx0xSy)
1-82

1
Vet = — |04 + (IL7)

2m

The Hamiltonian Eq. (IL.6) expresses the energy of the two-component Bose gas as that
of a coherent spin field S(x) carried by a fluid with density 2n. and current j = niv.g.
The current is a conserved quantity if J = § = 0. For a fluid at rest, i.e. n ~ const and
0504+ = 0, the spin system assumes the form of a nonlinear sigma model [121] or XXX-
type Heisenberg chain with single-ion anisotropy ~ S? in a transverse and/or longitudinal
magnetic field [122], with an additional chiral-field term o lveg] 2.

The effective velocity field constitutes a rather complex coupling structure, for the spin
sector itself and between the hydrodynamic degrees of freedom and the spin sector. First
of all, the term |veg|? in the Hamiltonian Eq. (IL6) gives only a relevant contribution to
the total energy, beyond simple hydrodynamic kinetic energy o |0, 6. |2, if the spin field
is sufficiently polarised. If S, ~ 0, one finds from Eq.(IL.7) that veg =~ 0x60+. For this
reason, in first order perturbation theory around a z-spin unpolarised meanfield there is
no coupling between spin sector and hydrodynamic sector. We discuss this point in more
detail in the next chapter IIL

Expanding the contribution to the energy from the effective velocity field one finds, in

12
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particular, terms of the form

lvel? = Z {Ai0x0y - 0xSi + B; |0xSi1?} + COx S - 0xSy + ..., (IL8)

i=x,y

where all pre-factors A;, B;,C are proportional to S, /(1 — S2). The terms multiplied by
Aj; in Eq. (IL.8) couple the fluid velocity field dx to spin fluctuations on the equator of the
Bloch sphere. Therewith, spin fluctuations in x- and y-spin direction are energetically
suppressed if their spatial gradient is directed parallel to the fluid’s flow. The terms mul-
tiplied by B; and C in Eq. (IL.8) constitute additional self-couplings of the spin field. They
lead to a coupling between the direction of spatial changes in the spin field and the intrin-
sic spin direction. The B;-terms weight the energy contribution from the spin gradients
in x- and y-direction with the local spin polarisation. The C-term in Eq. (I.8) introduces
an additional energy contribution from the local spatial overlap between gradients of spin
fields in different directions, in contrast to the standard spin gradient term oc 10, S|? in
the Hamiltonian (c¢f. Eq. (IL.6)).

II.1.2 Structure of the Phase Diagram

The two-component Bose gas, as defined by the model given in Eq. (IL.1), hosts two dis-
tinctly different groundstates at zero temperature depending on the Hamiltonian parame-
ters g_ and J, together with phase transitions connecting them. The order parameter, with
respect which the phase diagram (see Fig. II.1) can be formulated, is constituted by the
magnetisation (polarisation) m = (S;) of the spin field S,. To deal with the Z; symmetry
properly, the order parameter is formally defined as

m = lim lim % [,d% (S (x)) . (IL.9)
The groundstate phase diagram, spanned by the tuning parameters J and a = g1,/9g, is
then divided into regions where the magnetisation is zero (phase Il and II in Fig. IL.1)
and regions where the magnetisation is finite (phase I and I in Fig. IL.1). In the language
of the two components, zero magnetisation corresponds to a state with the two compo-
nents locally mixed, such that ny ~ n| everywhere, whereas a finite magnetisation is
achieved if one component constitutes the majority in macroscopic patches. Therefore,
the corresponding phase transitions are usually referred to as miscible-immiscible phase
transitions. In this section, we discuss the equilibrium phase diagram, and the nature of
the respective transitions, at zero temperature within meanfield theory.

First, we concentrate on the case without linear couplings (i. e. transition along the
a-axis in Fig. I1.1). The homogeneous? Bose gas of two linearly uncoupled components,
defined by Eq. (IL.1) with J] = § = 0, possesses two distinct ground states depending on
the choice a [85, 86, 123]. In the immiscible regime, @ > 1, the term o ¢g_S2 in Eq. (IL6)
gives a negative contribution to the total energy for all possible spin configurations. As
the value of the z-projection of the coherent spin vector is bounded by |S,| < 1, the

2We assume the absence of external sources and potentials, specifically Vext(x) = 0 throughout the re-
mainder of this work

13
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II %o o* I

oD J (gny)

Figure II.1: Ground state phase diagram on the spin sector for the case § = 0
and g1y = g, . Phase is characterised by a finite magnetisation m = (S;) # 0,
corresponding to demixed Bose gas components. Phase II, including the whole
grey shaded area for @ < 1, is characterised by vanishing magnetisation m =
0. The phase transition is of second order across the dashed lines, which are
defined by |J(a)| = niyg(a — 1) and of first order along the line ] = 0 across
the point (J,&) = (0,1). From right to left, i. e. I, I to I, II, the properties of the
magnetisation stay as described before but the x projection of the spin vector
changes direction from - = 0 to 0_ = 7. From the point of view of the ground
state this can be absorbed in a reflection of the coordinate system and, thus, does
not mark an additional phase transition. Note that the depicted critical lines refer
to the meanfield values for the critical couplings.

energy in the spin sector is minimised by configurations with S,;(x) =~ 1 or S,(x) =
—1. Consequently, one has for the magnetisation |m| = 1. Spontaneous breaking of the
discrete Zs symmetry under S, — —S, leads, in a non-equilibrium or thermal system,
to the formation of domains in the z-projection of the spin. In a description based on
classical fields they appear as oppositely signed patches of the spin density field S, with
S, =~ £1, similar to the ferromagnetic phase of the classical Heisenberg model [124, 125].

On the contrary, in the miscible regime for /] = § = 0, a < 1, spin configurations with
S.(x) = 0 are preferred energetically, which leads to a groundstate on the spin sector with
magnetisation m = 0, within meanfield calculations. As the ground state order parameter
(S;) jumps discontinuously form m = 0 to |m| = 1 as a crosses 1, the transition is of
first order. In addition, in both phases, there is an unbroken residual U(1) symmetry
for the spin being free to move on the equator of the Bloch sphere. This symmetry is
the major determining factum for the spectrum of topological defects. The connected
massless excitations of the relative phase have important consequences on the possible
phase-ordering kinetic processes in the system, see for example [115, 126]. For the phase
transition in equilibrium, due to this remaining U(1) symmetry, the Mermin-Wagner
theorem implies that no equilibrium long-range order can build up in the thermodynamic
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limit in d < 2 spatial dimensions.

A finite linear coupling J changes the picture, as it constitutes a second relevant tuning
parameter. The linear coupling term (i. e. the term o« J in Eq. (IL.6)) induces a local mixing
of |])- and |T)-species. If the energy scale for this process, provided by J exceeds, the
energy scale —g_n_+ for the repulsive demixing (in the region a > 1 in Fig. II.1), the the
spinor Bose gas is rendered miscible again.

Analysing the free energy for the groundstate shows indeed that a second type of phase
transition exists if « > 1. On the meanfield level in the homogeneous system, one simply
has to minimise the energy functional with respect to S, assuming a spatially constant
spin vector on the Bloch sphere. Analysing the energy functional Eq. (I.6), after dropping
all terms containing spatial derivatives, shows that the equator-projection of spin vector
needs to point along the x-direction, if J is taken positive. The remaining part of the
energy functional can be minimised by the choice

0 ifJ>-g-nyg,

(S.) = (IL.10)

2
+ 1—(_g{n+) if ] <—-g-ng,
implying (Sx) = 1 or (Sy) = J/(—g-n4) by virtue of the normalisation. A detailed
analysis of the extrema of the energy functional shows that a bifurcation happens at the
point ] = J. = —g_ny. If ] > J., the magnetisation m = 0 constitutes the stable energy
minimum, which turns into an energy maximum at J = J.. Simultaneously, the former
minimum m = 0 forks into two new minima m # 0 for J < J, which are connected by a
global spin flip. For the groundstate, the system will spontaneously choose one sign and
develops a magnetisation which is continuous in J, cf. Eq. (IL.10). Consequently, one finds
a second-order phase transition in the groundstate at meanfield level, controlled by the
tuning parameter J, which is connected to a spontaneously broken Zs symmetry.

On the meanfield level, the magnetisation scales as
1/2
m~e¢e'’“, (I.11)

at the critical point, where the reduced tuning parameter is not contributed by the temper-
ature but the linear coupling, € = (J— J.)/J.. It can be shown that the phase structure for
the ground state persists if thermal and quantum fluctuations are included in the analysis,
see for example [85, 86].

A summary of the ground state phase diagram for § = 01is depicted in Fig. IL.1, using the
meanfield values for the critical couplings to locate the lines of phase transitions. We point
out that the linear coupling can be chosen negative or even to have a non-trivial phase. In
this case the coordinate system for the spin degrees of freedom can be rotated such that
the x direction of the spin projection matches the phase of the coupling. Nevertheless, if
the initial state defines a direction in spin space dynamical instabilities can be triggered
quenching from the left to the right side in the phase diagram Fig. II.1, as we discuss in
Sect. IL.4. Similarly, although the ground state is generically mixed for ¢ < 1, dynamical
instabilities can be employed to achieve a transient demixed state.

15
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IL.2 Critical Scaling in Equilibrium

We continue to consider the case & > 1 at finite J > 0, as a main part of this work will be
concerned with universal dynamics taking place in this part of the phase diagram. There-
fore, we discuss the equilibrium properties of the miscible-immiscible quantum phase
transition controlled by J in more detail in this section.

II.2.1 Scaling Forms

In the vicinity of the phase transition at J. = njg_ at zero temperature, correlations
show scaling behaviour with respect to the relative distance ¢ = (J — J.)/J. to the critical
point. Equilibrium renormalisation-group theory predicts a universal scaling form for the
correlation function of (dimensionless) spin degrees of freedom near a critical point, see
for example [127],

x|

G(r) = c&d=2tm e, (?) (IL12)

where 7 is the so-called anomalous dimension, a scaling exponent which determines the
non-trivial part of the scaling behaviour of the correlation function itself at the critical
point. The function ¥, (x) is universal, i. e. determined only by the universality class the
considered transition lies in and only depending on dimensionless ratios of physical pa-
rameters. The index + indicates that the function can be different in the symmetry-broken
or unbroken phase. In any case, it fulfils the asymptotic behaviour

De*for x — oo,

_ II.13
Dx~Horx — 0, ( )

with D, D, and C in Eq. (I.12) being non-universal constants. The length ¢ in Eq. (IL.12)
is the correlation length due to the long-range asymptotic behaviour of ¥ and, typically,
follows a scaling law near criticality of the form

E=le|™, (IL.14)

defining the critical exponent v. The logic of the scaling hypothesis holds for a quantum
phase transition at zero temperature and a classical phase transition alike, identifying
the control parameter with the corresponding Hamiltonian parameter. The crucial differ-
ence, however, is the dimensionality d which has to be inserted in the expressions. For a
quantum phase transition, d needs to be by one higher as compared to a classical thermal
transition in the same universality class [128].

I1.2.2 Meanfield Scaling in the Spinor Bose Gas

The mean-field prediction for v for the spin sector of our model can be derived within
semi-classical Landau theory as follows. Neglecting fluctuations of the total density ny
and phase 0, the Hamiltonian (I.6) can be written in terms of Euler angle representation
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of the spin, Sy = cos© cos0_, Sy = cosOsinf_, and S, = sin6_, as

H= [ d% {Z—; [(0x0-)% + (6x0)?]

—2Jny cos® cosbO- —nJ. sin® @} , (I.15)

with —7/2 < © < 7/2, -7 < 6_ < 7, and 6_ and O being mutually dual variables. We
have, for the time being, set § = p = 0. For J. = 0, this model bears an O(2) symmetry
around the S, axis and undergoes a quantum phase transition in the Kosterlitz-Thouless
class [129]. Choosing J. > 0, the energy density exhibits the possibility of spontaneous
Z> symmetry breaking at ¢ = 0 which becomes apparent by expanding around © = 0,
- =0,

7_{pot =nyJe|—2(e+ 1)+ £©% + % ot + 0(66) . (IL.16)

While for ¢ > 0 there is only one minimum at © = 0, the ground state can assume, for
-2 < ¢ < 0, different values ©g = arccos (1 + ¢). Hence, while the potential remains
symmetric under © — —0, the ground state is two-fold degenerate with respect to the
spin orientations

2
(Sz) = t4/lel(2—e]) = £4[1 - (i) , (IL.17)
Je
and the Z5 symmetry is spontaneously broken. The expectation value (©) or, equivalently,
m = (S,), is the order parameter of the transition.
The inverse coherence length squared is proportional to the ‘mass’ parameter in the
potential Eq. (IL.16), i.e. the second derivative of Hp,; with respect to © at the value of
the order parameter. In mean-field approximation, it follows from the Eq. (I.16) that

2o { £ for ¢ > 0 (symmetric phase), (IL18)

le] (2 —|e]) for =2 < ¢ < 0 (symmetry-broken phase) .

Together with Eq. (I1.14), this shows that, in both phases, v = 1/2. Naturally, to meanfield
order this result is independent of the dimensionality.

Within the same level of approximation the whole correlation function could be ob-
tained from Eq. (I.15) together with Eq.(IL.16). To do so, the inverse propagator for ©
can be read off when H,,; is taken into account up to second order in © and the kinetic
part of H is transformed to momentum space. Inverting the expression and evaluating it
in position space yields essentially Eq. (Il.13). At meanfield level, the expression for the
correlation function can not be refined beyond the asymptotic form which is part of the
scaling hypothesis. This implies also that the anomalous dimension is 7 = 0.

To obtain values for the static critical scaling exponents beyond the meanfield predic-
tions lies not in the scope of this work. A good starting point would certainly be the
fourth-order approximation of the potential of the Eq. (Il.16). As it reassembles a stan-
dard real scalar field theory with ¢* potential, it might be possible to apply results from
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Wilson-Fisher renormalisation group theory (see e. g. [130]). However, one needs to be
careful with this approach, since the full potential in Eq. (I.15) resums the field © in an
infinite series, possibly introducing marginally relevant operators that are not considered
through Eq. (IL.16). Moreover, in Eq. (I.15) the effects of a coupling to the symmetric sector
are not included beyond zero order. To address this problems, a thorough renormalisation
group analysis needs to be carried out for the full model.

II.3 Topological Defects

On the level of solutions for the classical fields, the two-component Bose gas, as defined
via the Hamiltonian Eq. (I.1), hosts a variety of energy minimising field configurations
with a non-trivial spatial profile, such as domain walls in the spin, spin textures (e. g.
skyrmions, see for example [125]), or vortices. These so-called topological defects share
the feature of constituting a tremendously stable, highly localised, and non-dipersive in-
homogeneity in the classical fields, which can be treated as a particle-like object. There-
fore, the presence of topological defects has the potential to tremendously influence the
dynamics of the two-component Bose gas in the semi-classical regime. In general, theories
for dynamical critical phenomena, such as the theory of phase ordering kinetics [54, 99]
and the Kibble-Zurek mechanism [131, 132] often solely focus on those objects.

In this section, after introducing the general idea of topological solutions, we derive the
spatial profile for a domain wall in the z-spin in the linearly coupled immiscible regime of
the spinor Bose gas. Thereafter, we discuss on phenomenological grounds point defects, in
particular vortices and spin textures, which play an important role in structure formation
processes in the spinor Bose gas in two spatial dimensions. The goal of this section is
to provide an overview over the building blocks of structure formation, which exist in
our system and typically come together with dynamical instabilities (see Sect. I1.4). We
discuss dynamical structure formation in the spinor gas in Sect. IL6.

II.3.1 Relevance of Topological Solutions

The groundstate of a system which is modelled by a Galilei-invariant action is in gen-
eral expected to share the full Galilei symmetry, in particular translation and rotation
invariance. However, if the groundstate exhibits a degeneracy, meaning that the energy
functional allows for a manifold of possible groundstates, it turns out that energetically
low lying states can exist which break Galilei symmetry. At meanfield level the ground-
state manifold is given by all field configurations which lie in a minimum of the potential
energy. Depending on the properties of this manifold, stationary solutions to the classical
field equations, i. e. local minima of the action, may be present which interpolate between
different groundstates, the latter being realised on the boundaries of the system. These
field configurations then necessarily form localised features, so-called defects, breaking
translation or rotation invariance. If such boundary conditions are imposed the corre-
sponding field configuration can not be continuously deformed into a pure groundstate
solution. Thus, although defect solutions correspond only to local minima of the energy
or action respectively, their decay to a global minimum can be prevented by boundary
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conditions. With respect to this they are termed topological defects. As a direct con-
sequence, topological defects are extraordinarily insensitive to perturbations and decay
only on very large time scales [133], even under realistic experimental conditions.
Beyond meanfield level topological defects are known to serve as energetically favourable

excitations for thermal or non-equilibrium quantum systems. Even for trivial boundary
conditions fluctuations can locally form defect solutions which behave then as quasi-
particles, due to their stability, and dominate the thermodynamic or dynamic properties
of the system. For example, it has been demonstrated that the nucleation of vortices or
solitons in an out-of-equilibrium one-component Bose gas can slow down the evolution
towards thermal equilibrium tremendously, thereby increasing the long-range order in
the system [58, 59]. The two-component system allows for an even larger class of topo-
logical defects, due to an enlarged groundstate manifold. In the following, we discuss
two important types of defect solutions which can be found in different sectors, either
hydrodynamic or spin, of the model Eq. (IL.6).

I1.3.2 Domain Walls

In the immiscible regime, @« > 1 and J < J;, we have shown that there are two solutions
for the z-projection of the spin which minimise the microscopic energy on the spin sector,
(S y) = V1= (J/Je)? or(S:)(y) = =1 = (J/J.)? (see Sect. 11.1.2). While the full quan-
tum groundstate will consist of a quantum superposition of the two states, a correspond-
ing classical statistical ensemble of fields will always contain a classical mixture of both
states. Nevertheless, signatures of the two-fold degeneracy of the groundstate can man-
ifest themselves also through the classical equations of motion. The consequence is the
existence of truly static solutions to the equations of motion which interpolate smoothly
between the two energy minima. These so-called domain walls fall into the class of topo-
logical solitons and can be viewed as the classical analogue for quantum tunneling of
states between the two degenerate groundstates.

In this section, we derive the functional form of a single domain wall in the classical spin
field, in one spatial dimension. To do so, we utilise the so-called Bogomol’nyi trick [134]
which is a quite common approach for finding energy-minimising solutions to classical
equations of motion. We also comment on the generalisation of the domain wall solution
to higher dimensions.

We start from the expression Eq. (IL.6) for the classical energy, where we set - = 0 and
add a constant,

2
0yS
H=n, [dy Mﬂcﬁ—si)—y (1-52)¢. (IL19)
4m (1-82)
As we search for a solution which still minimises the energy in a certain way, 6- = 0

is enforced if J # 0. If J = 0, the the effective velocity term in Eq. (I.6) energetically
prevents a non-constant 6_ in one spatial dimension. In higher dimension, however, the
spin can have a chiral component, i. e. a spatially changing angle 0_, as the z-projection
changes along the wall. The strategy now is to identify a lower bound for the energy
in the form of Eq. (Il.19) which simultaneously is a purely topological term, a so-called
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II Phenomenology of the Two-Component Bose Gas

Bogomol’nyi-Prasad—Sommerfield bound [135-137].

First, write the integrand of Eq. (I.19) as a quadratic term plus a total derivative by
completing the square with respect to (6ySz)2 to obtain,

2

0yS: + &7 (1 - 82) [] /1_7 - 1]

4m (1 - 82)

H:n+fdy

0yS: J

—ny [ dy2g!
Am ]c \[ 1- Sg

where another constant is added to the energy and the spin healing length

& = (\[-4mg-n )™ = (VdmJ) ™", (IL.21)

is introduced. Since the first term on the right hand side of the expression Eq. (I.20) is
positive definite, the second term constitutes a lower bound. Furthermore, the second
term in the expression Eq. (I.20) can be reformulated as integral over a total derivative,

~1, (IL.20)

ny . J .
H > —2E§S 1 f dy 9, [Z arcsin S, — SZ] = Qy - (I1.22)

Therefore, being the integral over a total derivative, the value of Qy in Eq. (I1.22) is solely
determined by boundary conditions.

If the spin field S, is forced to lie in different minima of the energy functional at the

boundaries, for example
Szly—)¢oo == 1\ 1- (]/]C)2 s (H'Z?’)

the value of the topological charge Qy, can not be changed by continuous deformations
of the profile. Therefore, the value of Q,, also can not be changed by Hamiltonian time
evolution. As an immediate consequence, any solution for the spin field which saturates
the bound in Eq. (Il.22), meaning that it minimises the energy on the topological sector
with charge Qy, is static.

A solution to the first-order differential equation

aySz + 'fs_l (1 - Sz) ; -1{ = 0, (H.24)

JeyJ1-82

together with boundary conditions given in Eq. (I.23), defines the z-spin profile of the
domain wall. It minimises the energy at a non-zero value of the topological charge Qx,
due to Eq. (I1.20) and Eq. (I.22), while continuously interpolating between the two minima
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1.3 Topological Defects

of the energy. Separation of variables yields the inverse of the domain wall solution,

-1

y—yo == [ 7ds; 1 &7 (1-52) S
]c\[l_sg
JySy

= +&y |artanh (S} y) + artanh (IL.25)

]c \/ 1- S;NQ

where we have introduced the definition y = 1/+4/1 - (J/J.)? in the second line. In
general, the expression Eq. (I.25) needs to be inverted numerically to obtain the domain
wall profile S}

For small linear couplings, J/J. < 1, the second term on the right-hand side in Eq. (II.25)
can be dropped and the wall profile can be obtained,

1 _
Sy = —tanh (iw) , (I1.26)
Y &sy
(SK,S‘yV) T \/1 — y~2 tanh? (i%) (cosO_,sin0_)" (IL.27)
S

Note that the solution is exact if ] = 0. The arbitrary sign in Eq. (I.26) originates in
the possibility for the wall to be charged negatively or positively. From the approximate
solution given in Eq. (I1.26) one finds that the domain wall profile is sharpest for J = 0
and is ‘melted’ by the presences of the linear coupling.

The arguments from above can also be generalised to higher spatial dimensions. Then
the wall solution, Eq. (I.25), is also valid but the kink in S, can occur along any direc-
tion and the defect extends to the whole transverse d — 1 dimensional hyperplane. The
higher dimensional configurations allow in addition for a local movement of the defect
brane [115, 137], in directions perpendicular to the brane. Since defect configurations
posses high stability, due to energetic and topological reasons, perturbations typically re-
sult in transverse vibrations of the defect brane which travel as low-momentum waves
along the domain boundaries. This is equivalent to Kelvin waves on vortex lines in liquid
helium [138, 139].

The simple domain wall we derived here is only one out of many possibilities for topo-
logical solitons. In the immiscible regime there exist multi-domain solutions. In the dilute
limit, when the domain-wall separation is much larger than their extent, multi-domain
solutions can be obtained simply by subsequent multiplication of the single-domain so-
lution. For vanishing linear coupling also exact multi-domain solutions are known, being
described by Jacobi elliptic functions [140, 141].

In the miscible regime in one spatial dimension, the Gross-Pitaevskii soliton solution
is possible, as well as it is always possible to put Gross-Pitaevskii solitons in the total
phase, 0. At finite linear coupling in the miscible regime, the effective potential of the
spin sector resembles in structure the sine-Gordon model, as can be seen from Eq. (II.15).
Thus, sine-Gordon soliton solutions in the relative phase are of relevance in this case
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II Phenomenology of the Two-Component Bose Gas

which has been even demonstrated experimentally [142].

I1.3.3 Vortices and Spin Textures

If the Bose gas is considered in two spatial dimensions, domains walls, as discussed in
Sect. I1.3.2, naturally extend to one-dimensional objects, i.e. defect lines. There exists
another important class of topological defects in the Bose gas in two dimensions, the
vortex-like defects, where the defect core is zero dimensional again. The simplest ex-
ample for these objects is given by the Gross-Pitaevskii vortex solution (see for exam-
ple [143]). Despite of being a stationary solution to the one-component Gross—Pitaevskii
equation, its topological nature is connected to the U(1) degeneracy of the groundstate.
Thus, also for the two-component gas stable vortices can form in each component, as
long as every component is individually subject to a global U(1) symmetry. This means
that the Gross-Pitaevskii vortex is of importance at zero linear coupling. In addition, for
energetic reasons, the spinor gas needs to be placed in the miscible phase for vortices to
be favourable in individual components. Apart from that, they can always form in the
symmetric sector, in the overall condensate density and phase n; and 0...

In this section, we first discuss properties of the Gross—Pitaevskii vortex, as it can be
found in the single-component Bose gas. The influence of vortex ensembles on the dy-
namics of the single-component Bose gas in two spatial dimensions will be an integral part
of the considerations in chapter VII and in chapter VIII. Thereafter, we discuss vortex-like
defects in the spinor gas and how they generalise, in particular, to the immiscible regime
where they appear as spin textures.

The Gross-Pitaevskii Vortex

For the discussion of the vortex solution we assume @ = 0 and d = 2 in the model given
in Eq. (IL.1) and the vortex to exist in one of the components. The density, nj(x), needs to
assume a constant value as r = |x| — oo in order to keep the potential energy finite but
the phase is not affected by this argument. Therefore, it can be chosen to wind around
the boundary at spatial infinity with an integer number of windings, 01(r = c0,¢) = we,
where ¢ is the polar angle. This solution for the phase, extended to the whole space, leads
to a divergence of the velocity field,
w
vi(r,@) = Vo, = syl (I1.28)
and consequently to a divergence of the kinetic energy density for r — 0. Therefore,
the vortex solution requires a defect in the density, ny(r) — 0 asr — 0, leading to a
non-trivial vortex core where the density drops. An approximate solution for the vortex
density profile, satisfying the stationary Gross—Pitaevskii equation for w = +1 asymp-
totically, i. e. in the limits r — oo and r — 0 is given by
ny(r) = L\ L— , (I1.29)

2, [2+ 5
&

22



1.3 Topological Defects

see for example [124, 143].
A conserved topological charge for the vortex solution can be defined in terms of the

winding number,
1

Qv:gfcvaT:%fdngva:Wv (IL.30)
where the integration contour C has to enclose the vortex core. As for the domain walls
and solitons before, an arbitrary number of elementary vortex solutions can be multiplied
to yield a multi-vortex solution. The result is approximately stationary, apart from move-
ment of the defects themselves, if the defect separation is much larger than the extent of
the defect core. An especially important role play neutral ensembles of elementary vor-
tices in d = 2, as they can be treated as a dilute gas of charged particles. These turn out
to interact via a Coulomb-type (in 2d) force [144],

Fio ~ w1w2;er s (I.31)

where r is the distance between a pair of vortices with winding numbers w; and wy. Based
on this treatment of defects as particles, the theory of the Berezinskii-Kosterlitz—Thouless
transition in the two-dimensional Bose gas can be formulated solely in terms of the defect
picture, see for example [145, 146].

Since w can be positive or negative, depending on the vortex circulation, a dynami-
cal creation of vortices in a system with trivial boundary conditions is possible, as they
can always be nucleated as vortex—anti-vortex pairs. The result of a dynamic generation
mechanism for vortices is therefore typically a dilute neutral vortex gas. As the energy of
a vortex defect increases with the winding number, vortex gases which are dynamically
generated from instabilities consist usually of elementary vortices, with winding number
w = +1.

Vortices in the Spinor Bose Gas

For 0 < a < 1, in the miscible regime of the spinor Bose gas, a vortex in one component
can exist in the bulk of the second component. Then one has n; following the defect profile
given in Eq. (IL.29), together with n| = %2 in the core region of ny (or vice versa). Although
the potential energy in the core is enlarged by the presence of the second component, the
configuration is still energetically favourable for ¢ < 1 and topologically protected, with
01 having a non-zero winding number w.

In the immiscible regime of the spinor Bose gas, @ > 1, the core of a vortex in one
component fills with the other component, leading to an energetically beneficial S, po-
larisation in the core. For the defect structure to have a finite energy, the asymptotic form
of the density profile of the filling component needs to behave as ng; = ng for r — 0 and
ngn = 0 for r — oo, where r is the distance form the defect core. Therefore, the defects live
in domains where the filling component is the minority and can dissolve upon entering
the neighbouring domains. The energy of the defect is thereby released into vibrational
modes of the domain borders.

As the density of the filling component is finite in the core, its phase can not carry
any angular momentum. Thus, together with the non-trivial phase winding in the other
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II Phenomenology of the Two-Component Bose Gas

component’s phase 01, the defect has the quantised phase winding of a regular vortex,
without the defect in the total density. The structure of this defect from the perspective
of spin degrees of freedom resembles in some aspects® the skyrmion spin texture in the
non-linear sigma model [121, 147].

Skyrmions are known exact topological solutions of the O(3)-symmetric non-linear
sigma model with a spin profile given by [147]

2 _ 4 2
5= LA (IL.32)
r2 4 482
T 4 0-\ ( 6-\\"
(Sx,Sy) = W (cos (i%),sm (iﬁ)) . (IL.33)

The spin profile of the filled vortex in the immiscible regime (i. e. at a finite & > 1) shows
slight deviations from the exact analytic form of the skyrmion solution but demonstrates
the same qualitative behaviour. Note that the filled vortex has a non-trivial phase wind-
ing of the total phase, 6, = +w/(27)0. Therefore, the effective velocity field, Eq. (IL.7),
evaluates to

1
Veff = i—[l + Sz]eg . (I1.34)
4rr

, which is regular for r — 0. This allows for a defect-less structure from the perspective
of the total density. The conserved topological charge of the skyrmion in the non-linear
sigma model in two spatial dimensions can be reformulated in terms of the effective ve-
locity [121],

1
Q=5 d*x V X vegr, (IL35)

similar to Q,, given in Eq. (I.30). However, in the immiscible regime, at a finite & > 1,
not Qs acts as the conserved topological charge but Q,, in each component individually.

As before, multiple skyrmion solutions can be combined, with each other and with
domain walls, to yield more complex structures of topological defects in the immiscible
regime. In particular, the dynamic evolution of the defect structures allows for interaction
between domain walls and skyrmions. A strongly curved wall can ‘close’ to form a point
defect while a point defect can be absorbed by a wall (see for example [117]).

I1.3.4 Stability of Topological Defects

We close this section with a remark on the stability of the discussed topological solutions
under the dynamical evolution of the two-component Bose gas. None of the topological
defects, we discussed for the spinor Bose gas in Sect. I1.3.2 and Sect. I1.3.3, is an exact topo-
logical solution of the full model for the two-component gas. Rather, the structures are
truly topologically protected only on certain sectors of the model, under the assumption
that the sector decouples from the other sectors. However, in practice it turns out that the
defect solutions are locally stable and do only dissolve via interactions with other defects.

3The filled vortex in the immiscible regime has a non-trivial phase winding of 6.y while the total phase is no
degree of freedom of the non-linear sigma model. In addition, as elaborated in [121], the analytic form
of the spin density profiles may differ. However, one usually refers to the filled vortex as ‘skyrmion’.
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1.4 Dynamical Instabilities

Furthermore, they constitute local spatial variations in a field configuration which keep
the energy minimal. Therefore, they are prone to be generated by dynamical instabilities
(see Sect. I1.4).

We focus on computational domains with spatially periodic boundary conditions. Thus,
apart from periodicity of the field configurations, we do not impose any non-trivial topo-
logical boundary conditions and, hence, the total topological charge Q,, (Eq. (I1.22)), O,
(Eq- (IL.30)), or Qs (Eq. (I.35)) is zero. Using dynamical instabilities, as described in Sect. I1.4,
initially homogeneous field configurations are strongly perturbed locally and typically
undergo a subsequent local nucleation of topological defects. This is possible, despite con-
servation of topological charge, since all discussed defects can have a negative or positive
local charge. Consequently, our boundary conditions only enforce that defects are al-
ways generated in defect—anti-defect pairs (for point defects) or that higher-dimensional
defect boundaries are closed. The dynamics following the nucleation of defects is then
constrained by the total charge being zero. Defects can move but can not dissolve under
local perturbations. To do so, interactions between defects of opposite local topological
charge are required, such as the mutual annihilation of a vortex—anti-vortex pair.

II.4 Dynamical Instabilities

Studying the dynamics of phase transitions in isolated systems, as we do for the remainder
of this work, requires mechanisms which act effectively as a driving source within uni-
tary time evolution. It turns out that classical instabilities, as typically found in pattern
formation processes of hydrodynamic systems, are efficient in achieving that goal.

In this section, we first line out how instabilities in the classical equations of motion can,
in general, be employed to set off far-from-equilibrium dynamics. Thereafter, we discuss
in detail two types of instabilities in the spinor Bose gas which generate spin patterns, i. e.
spin domains. One type is triggered by parametrically crossing the miscible-immiscible
transition and nucleates stable domain walls (see Sect. I.3.2). The second type is triggered
by special choices of initial states within the miscible phase and leads to transient patterns
in the spin. Both types of instability are put to practical use in Sect. IL6.

I1.4.1 Instabilities as Driving Mechanism

In the context of many-body quantum systems, instabilities of the underlying classical
fields are ubiquitously known for sourcing universal dynamics, in situations as different
as preheating in the early universe [61, 148, 149], turbulence in gauge fields [62, 63], or
the expanding quark-gluon plasma [69, 150]. For spinor Bose-Einstein condensates, there
is a zoo of so-called modulational instabilities known and frequently exploited in theory
and experiment, as they produce modulations in the spin densities which then usually
develop into domains, see for example [123, 151-154].

In addition, there are also hydrodynamic instabilities known which lead to the forma-
tion of hydrodynamic turbulence in the long run. Prominent examples are the thermal
counter-flow instabilities [155] in superfluid helium and its analogue in multi-component
superfluids, the so-called counter-superflow instabilities [111, 156—158].
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II Phenomenology of the Two-Component Bose Gas

Viewed as a driving mechanism, classical dynamical instabilities typically function all
in a similar way. Linearised about a state from the class of dynamically unstable states, the
equations of motion reveal unstable modes. These modes, typically localised in a narrow
region of momentum space, grow exponentially fast under the action of the liearised
equations of motion.

The exponential growth stops when higher order mechanisms, i. e. scattering mecha-
nisms, become relevant and start to deplete the highly occupied unstable modes, filling
neighbouring modes. The non-linear evolution thereafter depends on the system and is
usually strongly influenced by conserved quantities. Nevertheless, the unstable modes
act as sources for quasi-particles, localised in momentum space, after an initial phase of
fast growth.

The subsequent non-linear evolution potentially reflects the universal dynamic prop-
erties of the system irrespective of the instability which has set it off. Furthermore, the
picture is applicable even in an isolated system. There, the initial growth of unstable
modes may come with a massive redistribution of conserved quantities but is subject to
the conservation laws of the equations of motion.

I1.4.2 The Immiscible Regime

On the spin sector of the two-component Bose gas, there are two types of dynamical in-
stabilities, one connected to an unstable preparation of the z-spin and the other connected
to an unstable preparation of the relative phase 0_. Let the initial state of the spin density
field be prepared as a groundstate in one sector (i. e. region I or I in Fig. IL.1) of the phase
diagram and let the Hamiltonian lie in the other, by choice of J or a. As a consequence, the
spin configuration will change exponentially fast towards, even on meanfield level, as the
initial state is energetically maximally unfavourable. This statement can be made more
qualitative by analysing the excitation spectrum within the linearised classical equations
of motion. We do so in the following, for the case that the initial state is miscible and the
Hamiltonian is parametrcially in the immiscible phase.

A Bogoliubov analysis of the homogeneously mixed system ({(S,) = 0) gives, for a;; =
ay| = 0, two decoupled excitation branches [151]

ot (k,a) = 2], \/(a + 1) (a—1)"1k% 4+ x4,

w_(k,e) = 2], \/E(E + 1)+ (2e + 1)k2 4+ x4 (I1.36)

of density and spin waves, respectively, where k% = k2 /[4m]J.], and ¢ = (J — J.)/J. is the
relative proximity to the critical coupling J.. For « > 1 and -1 < ¢ < 0, which places
the Hamiltonian in the immiscible regime (region I in Fig. IL.1), the spin-wave frequency
w-_ is imaginary for modes with momenta x < k. = V/—¢. These modes therefore be-
come unstable, meaning that they grow exponentially instead of oscillating with their
eigenfrequency. This results in spin excitations with growing amplitude [123] and leads
to a macroscopic spatial modulation of the z spin field, indicating a demixing of the two
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components. Thereby, the fastest growing, i. e. most unstable, mode
K2 = KJ% = max{-¢—1/2,0}, (I1.37)

sets the spatial scale of the modulation. Due to the full non-linearity of the two-component
Gross-Pitaevskii model, eventually domains form in the z-spin out of the modulations,
separated by domain walls of the form discussed in Sect. I1.3.2.

In contrast, if the Hamiltonian lies in the miscible region, e. g. ¢ > 0 in Eq. (IL.36), the
spin-wave modes acquire a gap w_(k = 0) = 2+/J(J - J) = A(e) = 2J.e(e +1) in
their excitation spectrum together with w_(k)? > 0, such that the mixed state remains
stable [151, 159]. The disappearance of the gap at ¢ = 0 defines the critical line in Fig. I.1
and is a hallmark of a second-order (quantum) phase transition in the a-J plane. The time
evolution of the linearised spin modes, when not crossing the transition, is discussed in
detail in chapter IIL

I1.4.3 The miscible regime

The second type of dynamical instability in the spin sector is related to the spin projection
onto the equator of the Bloch sphere, characterised by the relative phase 0_. The logic,
on the other hand, remains the same. If the relative phase? of the initial state is not
the relative phase of the groundstate of the Hamiltonian, an instability can be triggered.
An important difference here is that the primary instability generates phase excitations.
Modulations of the z-spin are subsequently generated, partially by non-linear processes,
without necessarily leading to stable domains.

An example, we will utilise for dynamical pattern formation in the miscible regime
in Sect. IL.6, is the counter-superflow instability. It exists in the miscible regime, @ < 1
and J = 0, destabilising the homogeneously mixed state (S,) = 0 for certain parameter
choices. When the initial state is prepared such that the two components move with
uniform but different velocity,

¢j = njei VTmgnov;x s (H.38)

with v; = const, a Bogoliubov analysis of this field configuration reveals unstable modes
in the linear excitation spectrum for a high enough relative velocity. The linear excitation
spectrum is found to be [112]

2
Wei(K) 14, 2 15, Lia o) 2,2 o a2
gz = gk R gke? (Zk +k )k”v, +kla? (IL.39)
where v, = |v1—v | and k) = |k-(v1—v})|/v,. This excitation spectrum has a window of

momenta in the kj-k plane, defined by the inequality relation (see [112] and in particular

4Note that 6_ here assumes a physical meaning, despite being a phase angle, since it is a phase difference
and as such in principle measurable via interference
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Fig. 1 therein)

1 1 1
\/1k4+k4(1—0{) < §k||l}r < \/1k4+k4(1—a’>, (H40)

where the imaginary part of @ is non-zero, All linear excitation modes are, therefore,
stable if the relative velocity is smaller than a critical value

v <2Vl -a=v,, (IL41)

and unstable modes exist if v, > v..

Once triggered, the instability leads to a momentum exchange between the superfluid
flows of the two components, causing the decay of the uniform counter-superflow [112].
Interpreted from a purely hydrodynamic point of view, the instability provides a friction-
like mechanism for the relative motion. In [111, 112] it has been demonstrated numer-
ically that initial state surpassing that threshold can develop into quantum turbulence
in two-component Bose gases and, similarly, in [156, 157] for spin-1 gases, producing
solitonic excitations and vortices.

I1.5 Simulation Method and Numerical Procedures

A major part of this work will be concerned with solving the model Eq. (I.1) for the two-
component Bose gas numerically, with respect to dynamics of correlation functions. We
will employ semi-classical simulation techniques and, in particular for the two-component
Bose gas, the Truncated Wigner method [83, 84] to reach beyond meanfield or linear ap-
proximations. In this section, we introduce the concept and explain how observables are
computed within the Truncated Wigner approximation. Thereafter, we discuss properties
of correlation functions of the pseudo-spin fields (Eq. (IL.2)) out of equilibrium, which will
be the observables we concentrate on throughout the first part of this work. In particu-
lar, we explain how dynamic correlation lengths from spin correlation functions will be
retrieved.

II.5.1 Truncated Wigner Method

An integral part of this work is concerned with the dynamics of the two-component Bose
gas far from equilibrium and beyond the meanfield or the linearised theory. Simulta-
neously, we are interested in critical phenomena and scaling behaviour which can be
expected to be dominated by large occupation numbers of infrared momentum modes.
Restricting the Bose gas to the semi-classical, highly degenerate regime, we employ the
Truncated Wigner approach [83, 84] as simulation method to for studying the full non-
linear dynamics of the two-component Bose gas. In this section, we outline the approach.
Additional details on the employed algorithms and code can be found in Appendix B. We
put the method to practical use in the next section Sect. IL6 (for the spinor gas in 2d). The
results presented in chapter V and chapter VI are obtained from Truncated Wigner simu-
lations of the 1d Bose gas. For the results presented in chapters VII and chapters VIII we
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employ additionally a generalisation, the method of the stochastically projected Gross—
Pitaevskii equation [160-162], which is explained at the beginning of chapter VIL

Semi-Classical Simulations

In the low momentum region, where particle occupation numbers are typically high for
a Bose gas in the semi-classical regime, the Wigner function W(ép, ¢;), which describes
the statistical nature of the fields, is approximately positive. Thus, it can be treated as
classical probability distribution. Its time evolution, if quantum fluctuations are small,
is given by a classical Liouville equation [84]. As a result, the dynamics of these modes
can be represented by an (classical statistical) ensemble of field trajectories which are
propagated according to the classical equations of motion. The classical equations of
motion, as derived from Eq. (IL.1) for the fundamental Bose fields ¢T,-, $;, read

i0rgr = [Ho +g (o1 + @lps?) | ¢1+ 274, , (IL42a)
i0:p, = [Ho+ g (Ipu)” + a|1*) | ¢1 + 2J¢1. (IL.42b)

where Hy = -V?/(2m) + V(x).

The Truncated Wigner method then consists of the following steps. One chooses an
initial state which can be described in terms of a positive-definite Wigner distribution
W(gb?, #;)lt=0. From this initial Wigner distribution, initial classical field configurations
$;(t = 0,x) can be sampled with Monte Carlo methods (in our case, direct sampling
suffices). The samples are then propagated according to Eq. (IL.42) to a time ¢, ¢;(t =
0,x) — ¢;(t,x). Observables are finally computed from averages over the classical en-
semble of fields,

1 N
©O) =+ zl: Oalgh(t.x)). (IL43)

The applicability of the Truncated Wigner method depends vitally on the desired ini-
tial state, as the Wigner function for this state needs W((ﬁ}, $i)li=o to be known in ad-
vance. A simple choice, we will employ, is to start in a zero-temperature state of the
non-interacting, uncoupled system. The Wigner function then factorises in Wigner func-
tions for the individual momentum modes and each momentum mode is described by a
Gaussian Wigner function. Initial field configurations in momentum space ¢Jl.(k, fo) can
then be sampled from the Gaussian distributions via direct sampling. The advantage here
is that quantum fluctuations are included in the initial state, as they lead to a positive-
definite Wigner distribution for a non-interacting zero-temperature state.

For the simulations presented in this work we choose V' = 0. We solve the set of partial
differential equations Eq. (I.42) numerically efficient and with high accuracy using spec-
tral methods (see for example [1]). Details of the algorithms we use, their implementation,
and the hardware we employ can be found in Appendix B.
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Observables in the Spinor Bose gas

Typically, we sample an ensemble of initial states at zero spin temperature, showing
ground-state Gaussian fluctuations around a fully S, -polarised configuration. Other than
in experiment we assume all couplings to vanish initially, such that the sampling process
can be carried out using the Wigner function of the free Hamiltonian. In our simula-
tions, the linear coupling J is suddenly quenched, at time t = 0, from a large positive
value to positive values close to the critical value J., while simultaneously switching on
the non-linear couplings from zero to finite positive values. The ensembles of initial field
configurations we use are described in detail when needed in the subsequent chapters.

A typical observable will be the time-dependent equal-time spin-spin correlation func-
tion G, (y,t;¢) = (S,(y)S.(0))(t,¢), from which in particular the spin correlation length
&(t,¢) can be inferred (see Sect. I1.5.2). In practice, the occupation spectrum (S, (—k)S,(k))
of the corresponding operator is computed first. Within the truncated Wigner approxima-
tion, this can be efficiently achieved by computing the spatial Fourier transforms of the re-
alisations of field configurations S, (k,t) and then averaging the quantity S, (—k,t)S,(k,t)
over the ensemble of initial field configurations. Thus, when discussing numerical results
in the following chapters, the average ( . ) is to be seen as a statistical average approxi-
mating the quantum expectation value within the truncated Wigner framework.

I1.5.2 Correlation Length out of Equilibrium

It turns out that a practical definition of a correlation length out of thermal equilibrium
bears ambiguities. In general, the correlation length should reflect the length scale of
the spatial decay of the correlation function, the latter being a generally well defined
observable. Away from critical points, it is expected that spatial correlations of an order
parameter field between to points decay exponentially fast as the distance r between the
points increases, i.e. G(r) ~ e”"/¢ as r — co. This is expected to be equally true at any
instance in time out of equilibrium and would serve as unambiguous definition of the
correlation length &. In thermal equilibrium close to critical points, typically one finds in
addition that G(r) ~ r~! as r — 0. Both conditions together enforce a monotonic decay
of the correlation function as r increases. In this case, & can be determined from data by
means of fitting an exponential function.

Out of equilibrium, on the other hand, one has to allow for an additional, possibly uni-
versal, function which multiplies the exponential decay, G(r,t) ~ K(r,t) e”’/¢. In general,
the function K can oscillate heavily in time and space. Examples for that behaviour can
be found in subsequent chapters and Fig. IL.2. Depending on the exact functional form
of K it is from a practical point of view problematic to directly determine the correlation
length, i. e. the long range characteristics, by means of a fit. In the following, we discuss
our operative solution to this problem.

In the case of a spin-spin correlation function one has to deal not only with spa-
tial oscillations of the correlation function. Given the equal-time correlation function,
G(r,t) = (5%(0,t)S?(r,t)), as obtainable directly from simulation, we define a normalised
correlation function® by G(r,t) = G(r,t)/lim,_o G(r,t).

>We reserve the symbol G for the normalised spin correlation functions (or structure factors) of the spinor
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Figure I1.2: Example for a z-Spin correlation function as determined from sim-
ulation (cf. chapter V). The function is normalised as described in the main text
of section Sect. I1.5.2, where red data points correspond to direct simulation data
and blue data points to the correlation function after applying a filter to the struc-
ture factor G(k), as described in the main text. Note that the filter introduces a
coarse-graining of the correlation function. The dashed black line represents a
fit of a decaying exponential function to the short-distance (0 to 10) decay of the
numerical correlation function. The solid black line shows a decaying exponen-
tial function where the decay length has been obtained by applying Eq. (I11.29)
to the filtered numerical correlation function

For any attempts of fitting an exponential decay to it, one faces the problem that the
functions oscillates in addition to a decaying envelope and can become negative, due to
anti-correlations in the spin, cf Fig. I1.2. Ad hoc, a possible solution is to restrict the range
in distance to which an exponential decay is fitted to small distances. Then, the decay
dominates possible oscillations and, in addition, the range can be adapted to positive val-
ues of the correlation function. An example for a z-Spin correlation function, as obtained
from simulations in chapter V, is shown in Fig. IL.2, together with an exponential function
fitted to its short-range decay (dashed line). This method for determining the correlation
length is unambiguously applicable but, on the other hand, sensitive to short-range char-
acteristics. In particular, one needs to rely on the short-range decay being proportional
to the true long-range decay, which might not be true close to critical points.

Instead of fitting, a correlation length can also be defined by integrating over the func-

gas, while the symbol G is used for the unnormalised ones. In chapter VI, we also discuss correlators of
the Ising model, for which the symbol C will be reserved exclusively.
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II Phenomenology of the Two-Component Bose Gas

tion, if the correlation function is normalised beforehand,

E(t) = [, drG(t.r). (I.44)

The quantity carries naturally the dimension of a length in one spatial dimension, as G
is by definition dimensionless, and is equal to what we defined before if G(r) is a pure
exponential function. In higher dimensions, the definition can be equally applied to the
angular averaged correlation function. The definition of xi in Eq. (II.29) reproduces the
expected correlation length for the thermal asymptotic behaviour but can be applied with-
out any prior knowledge of the oscillatory part of the correlation function. Specifically,
if the oscillations are not too large in amplitude they will average out.

The practical application of Eq.(II1.29) to numerical data comes with a few caveats
which we want to comment on. Firstly, on a finite computational grid, the limit lim, o G(r)
is not necessarily reflected by just evaluating the lattice data at r = 0 since the lattice nat-
urally regularises expressions near the cut-offs A = a and L, where a is the lattice constant
and L = Na the system size. In addition, the stochastic simulation methods we work with
introduce a certain level of noisy background through the initial conditions. In the ther-
modynamic limit this gives a Dirac delta function at » = 0 in the correlation function, i. e.
an unphysical divergence which has to be properly renormalised. On the lattice, this will
be reflected by a discontinuous jump of the correlation function at » = 0. Both problems,
which arise from the regularisation at r = 0, can be circumvented by extrapolating the
lattice data from G(r = a) to obtain the limit lim,_,o G(r) and essentially ignoring the
data point G(r = 0). Whenever simulation data for correlation functions and lengths are
shown in the remainder of this work, we chose the described approach for the evaluation
of the numerical data.

A second caveat arises from the finite infrared cut-off of the lattice, i.e. the system
size L. Although we make sure that the correlation function has enough room to decay
to zero, given a certain parameter setting, by simply choosing L large enough it is the
noise in the initial state which can cause a weak divergence of Eq. (II1.29). For any finite
ensemble of initial conditions a certain average level € of noise will always present in
the correlation function, even when the physical part is already way smaller than ma-
chine precision could resolve. When normalising the numerical data for G(r), in order
to apply Eq. (IIL.29), this unphysical background noise level gets amplified and spoils the
integral. Thus, we apply a filter to the normalised numerical correlation function. The
healing length or the critical linear coupling provides natural momentum scales, separat-
ing long-range physical behaviour from microscopic features. Such a scale k* can be used
to define a filter in momentum space, by cutting away all modes k > k* in the structure
factor G(k) = F T {G(r)} of the correlation function, before calculating the integral in
Eq. (II1.29). Note that the filter is applied to the simulation data for G(k) after the simu-
lation. The ultra-violet cut-offs kyy of our simulations are typically between kyy = 2k*
and kyy = 10k*. This is important, as momentum modes k > k* can serve as effective
thermal bath for the infrared modes in the case of energy conserving simulations.

We show an example for the operational use of Eq. (IIL.29) as definition for the corre-
lation length in Fig. II.2. Here, we show numerically computed, normalised correlation
functions (unfiltered, red data points and correspondingly filtered, blue data points) and
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the corresponding exponential functions e’/¢, where xi is computed from Eq. (IIL.29) (see
solid black line). We point out that there are isolated cases where the computed corre-
lation length undershoots, i. e. where the determined exponential function decays faster
than the envelope of the oscillations. This happens mainly where the oscillating prefactor
is exceptionally dominant. However, for generic situations, the determined exponential
function rather interpolates through the oscillations.

I.6 Dynamic Pattern Formation in the Spinor Bose Gas

A major part of this work is concerned with dynamics of the spinor Bose gas within
the miscible (paramagnetic) regime of the two-component Bose gas. The type of far-
from-equilibrium dynamics for the spinor gas we study in subsequent chapters will be
dominated by strong spin fluctuations but will not lead to a dominant formation of spin
patterns.

In this section, in contrast, we briefly discuss the situation when pattern formation
dominates the dynamical evolution. In [60, 87], we have connected the formation of tran-
sient spin structures and spin defects with the appearance of non-thermal fixed points
within the far-from-equilibrium dynamics in the spinor Bose gas. The idea is to probe the
structure of the phase diagram far from equilibrium, with triggering dynamical instabil-
ities in specific parts of the phase diagram (see Sect. I1.4). The early stage of dynamics
will be dominated by pattern formation and defect nucleation, connected to the specific
instability triggered. The actual interest, however, is if thereafter stage of time evolution
follows, in which the correlation function have universal properties.

In [60, 87], we find that the dynamic evolution after exciting strong pattern forming
dynamics in the spinor gas typically turns universal. This is signalled by power laws in
spin structure factors and occupation spectra together with a critically slowdown of the
time evolution. In this section, we give an overview over our findings for universal dy-
namics in the spinor gas from pattern formation and the connection to the concept of
non-thermal fixed points, following® [87]. The goal thereby is to complement the pic-
ture for dynamics far from equilibrium in the spinor gas, which we will discuss from the
paramagnetic side in the rest of this work.

I1.6.1 Pattern Formation from Instabilities

At J = 0, our model Eq. (I1.6) has only one relevant Hamiltonian tuning parameter on the
spin sector which is & (Eq. (IL.3)). As discussed in Sect. II.1.2, with that tuning parameter a
first-order phase transition from S,-ordered to S,-disordered is addressed. Consequently
and in contrast to the situation for a finite linear coupling, the value of the order parameter
(S;) in equilibrium does not depend on the quench parameter «. Additionally, the spin
projection of the equator on the Bloch sphere is U(1) degenerate which implies that it does
not order in equilibrium due to the Mermin-Wagner theorem. With these properties of

SFor the publication of [87], I provided the numerical data, carried out the data analysis and contributed to
the interpretation of the results and the text of the manuscript.
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Figure I1.3: Three snapshots (columns) of the evolving two-component Bose gas
for three different values of the coupling ratio « (rows). In each case we show
the spatial distribution of density imbalance S, as well as the momentum distri-
bution n(k) as a function of the radial momentum k of particles in the gas. Tick
labels for the spectra graphs are the same as in Fig. Il.4. Until #; the dynamics
is characterised by the instability and isotropisation of density fluctuations. At
tnTep = 10 11, one observes the development of different power laws in the mo-
mentum distributions. They remain metastable for a long time beyond t; = 100 #
and reveal different non-thermal fixed points. The change of powerlawsata = 1
indicates a dynamical phase transition. Figure adapted from [87].

the transition it is considerably easier to disentangle universal properties originating in
the out-of-equilibrium situation and those from the equilibrium phase transition.

The system hosts skyrmions and topological domain walls in the immiscible phase and
Gross—Pitaevskii vortices in the miscible phase (see Sect. I1.3). Large-scale correlations in
the system are universal in the sense that they are fixed by the type of defect, but are com-
pletely insensitive to the specific positions and velocities of the defects. Distinguishable
types of defects are hosted for different values of the tuning parameter «, for energetical
reasons as outlined in (see Sect. I1.3). Hence, the dynamics can be tuned to a transition
between different metastable non-equilibrium ordered states.

The two-component Bose systems we consider are described by the Hamiltonian Eq. (I1.1)
at vanishing linear coupling (7 = 1)

H= %V@ Ve, + §<¢§¢j>2 —g(1 - a)fip1 gl . (IL45)

The considered systems allow for good experimental control and have been studied in-
tensely [113, 118, 163, 164]. In experiment, a can be varied by means of a Feshbach reso-
nance. As discussed in the previous sections, two different ground states exist depending
on the value of the parameter . Here, we make use of a to change the properties of
the system in the yet unexplored region of non-equilibrium quasi-stationary states. A
focus is set on long-lived states with non- or quasi-topological defects including domain
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transition

Occupation number n(k)

Figure I1.4: Decomposition of correlation functions of the two-component Bose
gas in the three different non-equilibrium ordered states parametrised by the
coupling ratio @. Shown are the z-spin occupation spectrum n?, the sum of x-
and y-spin occupation spectrum n;? and the incompressible component n; at
time tnypp. For details of the decomposition procedure see [60]. Figure adapted
from [87].

walls [86, 163], single-species vortices, and skyrmions [121] in the coupled system (see
Sect. IL.3).

Since the dynamics we are interested in exclusively affects the low-momentum, strongly
populated field modes, we employ the Truncated Wigner method for simulations which
yields, within numerical accuracy, exact results for the time-evolving observables. Details
can be found in the next section Sect. I.5.1. In order to discuss the contribution of the
different (quasi-)topological configurations in detail, we make use of the spin representa-
tion of the two-species fluid, as explained in Sect. II.1.1. The effective spin field S, (x) (see
Eq. (II.2)) is an essential observable for the detection of domain walls. Furthermore, we
make use of a hydrodynamic decomposition of the superfluid flow which allows for the
detection of vortex contributions to the occupation spectra [165, 166]. For details on nu-
merical parameters and decomposition methods we refer the reader to the supplementary
material of [87].

In Fig. I1.3, we unravel the time evolution of the two-component Bose gas comprehen-
sively in different phases (choices of «), form initial pattern formation to a universal late
stage. The parameters of our simulation are chosen such that the final states are close to
the ground state of the system. To clarify the type of non-equilibrium order during the in-
termediate stages of the evolution, we show the imbalance between the two components
S, as well as the angular-averaged momentum distribution

n(k.t) = [ dQ(gh(k)r(k)) + ($1(k)$y (k) (IL46)

for three characteristic times. The initial time, ¢;, marks the stage of an isotropic mo-
mentum distribution which is overpopulated within an intermediate range of momenta,
as compared to the ensuing equilibrium distribution. It is marked by a strong fall-off at
large momenta. In our driving scheme this state is reached in the wake of an instability.
For the immiscible case, @ > 1, we use the modulational instability in which small low-
momentum fluctuations in the polarisation are amplified to macroscopic spin domains.
In the miscible regime, < 1, we invoke a counter-superflow instability [111, 112] by
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choosing oppositely directed flow vectors for the two field components. Above the crit-
ical relative velocity, momentum exchange between the two fluids causes the superflow
to decay and spin domains to form. The mechanisms have been discussed in the previous
section Sect. IL.4. Subsequently, overpopulation at intermediate momenta is encountered
for all values of the parameter . Its microscopic origin is seen in the coloured distribu-
tions of the density imbalance S, in Fig. I1.3 which show strong fluctuations and the onset
of domain formation. We estimate #; ~ 10/wj, with wy being the energy of the fastest
growing unstable mode. Note that the dynamics up to ¢ is different for different a and
involves for example isotropisation in case of & < 0, see the supplement of [87]. The
further dynamical evolution of overpopulated states involves particle transport towards
small momenta and energy transport towards high momenta [55, 56]. In Fig. IL.3 this is
best observed by comparing the high momentum tails of the momentum distributions at
t and tytrp. Particle transport towards low momenta eventually fills the zero-mode (not
seen), a process most important in the miscible regime « = 0.8. The key insight gained
from the spectra concerns the development of infrared power laws in the momentum
distribution n(k) ~ k=% at tytep =~ 10?/w;. These power laws depend on the external
parameter a: { ~3.5fora > 1,{ ~3fora =1and { ~ 4 for < 1. Also, the pattern of
imbalance fluctuations in the system depends on the interaction strength.

We highlight the most striking observations at late times before we carry on develop-
ing a detailed understanding of the relation between the dominant fluctuations and the
observed power laws. In the immiscible regime the system consists of few large domains
with additional inclusions of small point-like domains. As compared to the initial time,
domains have considerably grown. A special situation is encountered at the transition
point, @ = 1, where domain-like structures persist to extremely long times. This is re-
markable since in this regime domains are not energetically favourable as compared to
overlapping particle densities. For « = 0.8, imbalance fluctuations have decayed up to
few small areas of strong imbalance. Let us finally look at the largest computed time
tr~ 103 /wr. For a > 1, two domains of equal size remain, which reflects the immiscibil-
ity in the ground state. The small-scale domain-fluctuations have considerably reduced
in number. At the transition point, we observe the persistence of domain-like structures
which we attribute to a diverging time scale 7 of domain decay as « — 1 from below,
see the supplement of [87]. For @ < 1, small long-lived imbalance fluctuations remain,
whereas the background tends to become very smooth, S, = 0.

I1.6.2 Universal Scaling Laws and Defects

Finally, we investigate the microscopic origin of the scaling found in the momentum dis-
tributions. The bimodal power laws in these distributions are signatures of the system
having approached a non-thermal fixed point [44-46]. At long times they become more
pronounced in all three cases (compare the occupation spectra in the three columns in
Fig. IL3). In [60], the corresponding time evolution of the occupation spectra in the uni-
versal stage has been analysed in more detail (see Fig. 2, Fig. 6, and Fig. 10 in Ref. [60]).
The occupation spectra demonstrate a typical shift towards the infrared momentum re-
gion together with a slowing down of the dynamic evolution.

In Fig. 114, the result of a decomposition of the momentum distribution according to

36



II.6 Dynamic Pattern Formation in the Spinor Bose Gas

spin and fluid degrees of freedom at ¢ = #ypp is presented (see also the supplementary
material of [87]). We show spin-spin correlation functions as well as correlations in the
incompressible velocity as a function of momentum. In the following, we show that it is
possible to explain and understand the scaling properties of the total momentum distri-
bution (shown in Fig. II.3) based on the decomposition, depicted in Fig. IL.4. With this,
one can understand the scaling laws in the occupation spectrum in terms of mixtures of
defect power laws (Porod tails [167, 168]).

In the immiscible regime, see Fig. I1.4 (left), the main contribution to the spectrum in the
infrared region is provided by the incompressible component n;, corresponding to flow
orientations transverse to the direction in which the flow velocity varies. Although we
are dealing with a multi-component gas, this feature is similar to superfluid turbulent flow
in a single-component Bose gas. Thereby the incompressible spectrum shows n; ~ k™
scaling over approximately one decade which is generated by coherent vortical flows w;
around topological defects [55, 56, 60, 87]. The cores of these vortex-like structures can
be seen in the spin imbalance, see Fig. IL.3, since they are filled with particles of the other
species and thus are of the skyrmion type. They are created during the merging process
of domains and, persisting due to their topological nature, give the main contribution to
the incompressible component spectrum. However, spin excitations n? overtake in an
intermediate momentum region, showing a scaling of n? ~ k3. Looking more closely,
one observes that the scaling behaviour terminates in the infrared at a scale 7 /Lp given
by the mean domain size Lp, while the cut-off in the ultra-violet at 7 /&; is set by the
width of the domain walls, i. e., the spin healing length & = 1/+/2m]J.. Since the two
contributions n? and n; are of comparable magnitude within an intermediate momentum
range, the sum of all contributions, giving the full spectrum n(k), appears to follow the
power law n(k) ~ k=3 in the infrared, as discussed above.

The situation on the other side of the transition can also be clarified. When « falls
below 1 domains are energetically suppressed. Thus, vortices dominate the non-thermal
fixed point and induce the characteristic scaling n ~ n; ~ k™4, see Fig. IL.4 (right). Here, it
is also visible in the scaling of relative phase fluctuations n; ’, which is related to constant
particle densities on scales larger than & as compared to the skyrmionic case above.

The picture changes dramatically on the transition point, « = 1. As shown in Fig. I1.4
(middle), vortical flow is much less important in this regime. The momentum distribution
is dominated by spin fluctuations scaling as n ~ n? ~ ny” ~ k=3. We attribute this feature
to the enhanced symmetry in the Hamiltonian and the resulting increased dimension-
ality of the groundstate manifold for @ = 1, which removes the topological protection
of vortices. The stability of domain walls at the transition point takes over but is non-
topological in nature. Instead, conservation laws restrict the decay of this particular type
of defect [169]. This argument can be made even more transparent by studying the crit-
ical dynamics at the transition from a < 1 towards @ = 1, where two non-equilibrium
ordered states meet each other, vortices and domains [87].

I1.6.3 Conclusion

We conclude that it is possible to establish the notion of a dynamical phase between differ-
ent far-from-equilibrium ordered states in a two-component Bose gas. The whole situa-
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Figure IL.5: Illustration of the dynamical evolution, with a focus on the possible
transition between far-from-equilibrium transient states. The set in the bottom
left corner represents an ensemble of out-of-equilibrium initial states. Amongst
these, a subset subjected to a dynamical instability is marked in white. It is cho-
sen such that for all values of the the ratio « of inter- to intra-species couplings
the system belongs to the unstable subset. Subsequently, the time evolution of
the closed system leads to non- and quasi-topological defect formation. The type
of defects created determines the scaling in the low-momentum regime of the
particle spectrum of the gas. Our results reveal three different types of scaling
behaviour corresponding to three types of defect configurations, and a dynam-
ical phase transition between the far-from-equilibrium universal states. Figure
adapted from [87].

tion is summarised in Fig. IL5. Beyond that, the underlying concept of (non-)topological
defects determining bulk features of correlation functions in far-from-equilibrium situa-
tions is very general. In the spinor Bose gas, a change of a Hamiltonian parameter address-
ing different equilibrium phases is required to tune between far-from-equilibrium ordered
states. We point out the possibility of a universal duality between decaying defects and
inverse particle cascades. This requires the generation of (quasi-)topological configura-
tions far from thermal equilibrium and their slow decay, going together with an increase
of coherence and defect separation [59]. Under these conditions, an inverse particle cas-
cade is generated, and the associated power laws can be found from the scaling properties
of the respective single defect. A variety of (quasi-)topological excitations are known to
exist in multi-component fields [133, 169], examples are monopoles in gauge fields [170]
and exotic magnets [171], as well as skyrmions in Bose-Einstein condensates [121, 172]
and liquid crystals [173]. New interesting features that are readily accessible in experi-
ment are expected for ultracold spinor gases [74, 157, 174-176]. The transition between
different types of transient non-equilibrium order can be controlled by changing the sym-
metry properties of the Hamiltonian and thus topology and local conservation laws of the
system. This offers interesting prospects for far-from-equilibrium dynamical phase tran-
sitions in very different areas of physics.
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For a Bose gas deep in the semi-classical regime, Bogoliubov theory is typically a good
starting point to compute dynamic or thermodynamic properties. The basic idea thereby
is to chose a state, which can be described by a classical field to a good degree, and in-
troduce small fluctuations around this meanfield. The fluctuations can then be treated as
quantum (quasi-)particles, as they are assumed to be non-interacting due to their small-
ness. In the basis of non-interacting quasi-particles, observables, such as correlation func-
tions, can be computed easily, either in thermal equilibrium or fully time-dependent. For
an introduction to Bogoliubov theory for the one-component Bose gas we refer the reader
to [143, 177].

In this chapter, we discuss an implementation of Bogoliubov theory for the spinor Bose
gas as defined by the model Eq. (I.1), with emphasis on the spin sector. First, we demon-
strate how to linearise and, thereafter, diagonalise the model Eq. (Il.1). As a next step,
we introduce the concept of a parameter quench, using the diagonal basis of Bogoliubov
quasi-particles. In this context, we discuss the class of initial states which we also use
in the numerical implementation in subsequent chapters. Finally, we apply the quench
concept to derive the post-quench time evolution of spin correlation functions, within the
linearised theory, for quenches in the paramagnetic regime.

The intention of the first part of this chapter is two-fold. We derive several semi-analytic
expressions, for example for the spin correlation function, which approximate the quench
dynamics in the spinor Bose gas. These expressions will serve as gauge to compare the
numerical results in the subsequent chapters to. They provide specifically expectations
for the behaviour of the interacting system at early times and far away from the critical
point.

The second intention is to identify scaling laws, the hallmark of critical behaviour, for
post-quench observables within Bogoliubov theory. In particular, we pinpoint where the
static meanfield critical exponents v = 1/2 and n = 0 (see Sect. II.2) appear in time-
dependent Bogoliubov correlation functions. Additionally, we show that the post-quench
time-evolution of the equal-time spin correlation function reveals the dynamical critical
exponent z. The value of z depends on the closeness of the quench to the critical point
and is found to be z = 1 for close and z = 2 far away from the critical point. As a main
result of this analysis, we find that the post-quench equal-time correlation function (or
rather the power spectrum) of the z-spin follows a scaling form, with scaling exponents
as described above, within Bogoliubov dynamics. We find two realisations of the scaling
form, one for quenches close to the critical point and one far from the critical.

The knowledge where to expect meanfield scaling behaviour within the post-quench
time evolution of an observable, will allow us in the context of simulations, firstly, to
decide when deviations due to interactions set in and, secondly, to analyse the deviations
for anomalous contributions to the scaling exponent. In this sense, we propose to use
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Bogoliubov theory as a roadmap for finding critical behaviour out of equilibrium.

In the second part of this chapter, we introduce the concept of generalised Gibbs ensem-
ble and apply it to the Bogoliubov formulation for the spin sector of the Bose gas. With
this, we are able to characterise and classify the introduced initial states in terms of mode-
dependent temperatures. As a main result, we find that the relevant initial states can be
characterised to a large extent by a single relevant energy scale, an effective temperature.
The energy introduced by the quench provides this scale.

III.1 Bogoliubov Transformation for Spins

In this section, we present an implementation of the Bogoliubov diagonalisation for the
spinor Bose gas. Since the goal is to obtain correlation functions for the pseudo-spin
field, we away adopt the point of view of the semi-classical approximation, in which the
Bose gas is described in terms of classical phase and density fields. This led to the lan-
guage of pseudo-spins in the first place (see Sect. I.1.1 and Eq. (IL5)). Therefore, we start
from the semi-classical Lagrangian given in Eq.(Il.4). We proceed as follows: first the
Lagrangian Eq. (IL4) is approximated to quadratic order in the classical phase and density
fields. Thereafter, the linearised fields are re-quantised and a quasi-particle operator basis
is introduce, which diagonalises the quadratic Lagrangian. Finally, we discuss the quasi-
particle excitation spectrum, from which, in particular, the meanfield critical coupling J.
of the phase transition (see Sect. I1.1.2) can be deduced.

III.1.1 Linearisation of the Spinor Bose Gas

For now, we choose to linearise around a groundstate in the paramagnetic phase and
anticipate that there will be a finite constant density in the symmetric sector, as we place
the system in the quasi-condensed regime. Therefore, based on Eq. (I.2), we define

ni(y,t) = no + oni(y.t),

Sn_(y,
Selynt) = 20
0.(y,t) = 80+(y,t). (IL.1)

where the d-preceded fields are taken to be ‘small’ for the linearisisation procedure. The
constant part of the z-spin is zero, as this defines the groundstate in the paramagnetic
phase. Any constant offsets of the phase in the symmetric sector can be gauged to zero.
Finally, we choose the groundstate we linearise around to have a spin pointing into the
direction of the transverse field. Thus, 6_, which represents the spin orientation on the
equator of the Bloch sphere, has no constant part either.

Inserting the definitions of Eq. (II.1) in Eq. (IL.4) yields the following action, when only
terms are retained which are at most quadratic in §-variables,

Se = [ dtdy {-no[8;604 + 2(gno — 2] — p)Sny]} + Sy + S- (II1.2)
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with
(8 én )2

Sy = [ dtdy { -6ny 8,60, — Zm—nz + :—; (3,00.)°| ~g.om2 | (IIL.3a)
(0y5n,)2

S_ = [ dedy { -6n_0,60_ - + 2 (9,06-)"] - (g_ + i) Sn2 - Jng86

4dmng 4m no

(I11.3b)

Keeping the action up to quadratic order in §-terms, implies linear classical equations of
motion for the fluctuations. Up to the first term in Eq. (III.2), terms of first order in § or
constants vanish due to the ansatz for the fields in given Eq. (IIL.1). It is a consequence
of the meanfields fulfilling the classical equation of motions. The first term in Eq. (II.2)
constitutes a condition on the chemical potential u for the groundstate. A choice of y =
npg+ — J renders the action purely quadratic in §. The remaining linear term, —ngd,80+
is a total time derivative and can be dropped.

Remarkably, the remaining two terms in Eq. (IIl.2), S and S, can be seen as the sum
of two independent quadratic actions, one for the symmetric sector (the fields 60 and
dn, ) and one for the asymmetric sector (the fields §0_ and dn_). This means that the spin
dynamics decouples on the Bogoliubov level from the dynamics of the symmetric sec-
tor. The action for the symmetric sector S thereby resembles the Tomonaga-Luttinger
liquid description of a one-component Bose gas. In the following, we make use of the
fact that the spin sector can be treated independently within the linearised picture while
everything which happens on the symmetric sector reflects the physics of an ordinary
one-component Bose gas.

I11.1.2 Bogoliubov Diagonalisation

The next step is to diagonalise the action S_, given in Eq. (III.3b), introducing a new basis
b}, by as a linear combination of the old basis, §_(y), §6n_(y). Since the spin part of the
action, Eq. (II1.3b), also resembles in structure a Luttinger liquid the necessary Bogoliubov
transformation can be obtained by an educated guess,

on-(y) = | 57 D¢ fubi — e b (IL42)
k

1 eiyk eiyk .
S0_(y) = by + —b' TIL4b
() ‘/ZHOL; b+t =, (ILL4b)

which is shown to diagonalise the action S_ in the following. Note that the transformation
given in Eq. (II1.4) switches to a description in terms of plane waves with momenta k, as
the spatial derivative in S_ is diagonal in momentum space.

Before going on, we re-quantise the phase and density fluctuation fields by interpreting
86_(y), 66n_(y) and likewise b} and by as quantum operators for bosonic fields. The
operators by and b}, should correspond to annihilation and creation operators for bosonic
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quasi-particle excitations and, therefore, fulfil the commutator algebra,

[be(8). ()] = 8, 8(¢ — 1),
be(2).by ()] = [B(2). B ()] = 0. (m.s)

The classical phase and density fluctuation fields are conjugate degrees of freedom, as can
be seen from the action S_. Hence, the corresponding canonical commutation relations
for the phase and density field operators are

[60_(y,t),0n_(y'.t")] = i6(y —y') 6(t - '),
[60-(y,1),80-(y',t")] = [6n_(y,t),0n-(y',t")] = 0. (IIL6)

The Bogoliubov transformation given in Eq. (IIL.4) is tailored to preserve the commutator
structures on both sides, i.e. Eq.(IIl.6) and Eq. (IIL.5), provided that the function fi is
real-valued and symmetric in k.

Finally, we determine the expression for f; which renders the action S_ diagonal in
the quasi-particle basis. The action for the spin sector, S_, given in Eq. (IIL3b), can be
reformulated to

= [ dtdy {—— [6n_8,;80_ — 3,6n_66_] - 2—5n _A%6n_ - 059_32 50_} , (IIL7)
no
where we have symmetrised the first term by means of partial integration and defined
the operators A% = —83/2m + 2npg- + 2J and B? = —6;/2m + 2] . Then, inserting the
mode expansion given in Eq. (II1.4) into S_, in the form of Eq. (IIL.7), yields

Sy Z{% [y~ hc] —Aif’f bk + bt~ 0 - (o)

BL 2 L 2
_E bl + b+ b -+ (b1) ]} . (IIL.8)

The operators A? and B? are expressed in momentum space simply by —83 — k2.

The diagonal form of S_, in which each Bogoliubov momentum mode forms a harmonic
oscillator, can now be achieved by setting fk2 = By /Ag. This yields automatically the
Bogoliubov quasi-particle dispersion (the excitation spectrum), w_(k) = Ay B .

Hence, as a result of the Bogoliubov transformation Eq. (Ill.4) with mode expansion

coefficients
2 6k + 2_]
- , 1.9
fx \/ek+2nog_+2] (tL9)

the action S_ becomes diagonal,

= [dt Z {% [blbk - h.c.] — w_(k) [b};bk%]} ; (II.10)
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The Bogoliubov eigenfrequencies read

w-(k) = (e + 2nog- + 2J) (ex +2J). (IL11)

with ex = k%/2m.

The same procedure works for the symmetric sector as well and the corresponding
expressions can be obtained by simply setting g — g+ and J — 0 (as thismaps S_ — S,
cf. Eq.(IlL.3a) and Eq. (IIL.3b)). In particular, with g~ — ¢4 and J — 0 in Eq. (IIL.11) one
finds the quasi-particle excitation spectrum w (k) for the linearised symmetric sector,

wi (k) = fex(ex + 2nog4+) . (II.12)

The form of w4 (k) resembles the standard Bogoliubov excitation spectrum, obtained for
the ordinary one-component Bose gas, see for example [143]

I11.1.3 The Bogoliubov Quasi-Particles

Before we go on with discussing dynamics within the Bogoliubov picture, we discuss
important aspects of the quasi particle basis. Specifically, we show that the meanfield
critical point of the miscible—immiscible phase transition in the spin sector (see Sect. I1.1.2)
can also be determined via the Bogoliubov excitation spectrum. Thereafter, we derive the
relation between the occupation spectrum of quasi-particles and the correlation functions

of the spin fluctuation fields (§0_(y) and dn_(y)).

The Excitation Spectrum

Comparing the the quasi-particle excitation spectrum on both sectors, w- (Eq. (IIL.11)) to
w4+ (Eq. (IIL.12)), one finds that for the form of w_ (see Fig. III.1 for examples) the interplay
between two couplings, J and g_, is relevant. Note that we assume J > 0 in the following
and for the remainder of this work.

In the fully miscible regime, @ < 1, one has g- = g(1—a) > 0, and as a consequence w_
is real-valued for all momenta and values of J > 0. Importantly, the excitation spectrum
w_(k) has a gap in this regime, meaning that limy_,o w_(k) > 0, if J > 0. Explicitly, one

finds
Ilii% w_(k) =A=24J(nog-+17). (II1.13)

If, in contrast, the inter-species scattering strength exceeds the intra-species scattering
strength (¢ > 1) g_ is negative. Consequently, one finds that w_ can acquire a complex
value, depending on the strength of the linear coupling. The critical value of the linear
coupling for this to happen is

Je = —nog- =nog(1—a), (IIL.14)

as the first factor under the square root in Eq. (IIL.11) can become negative if J < J.
In the paramagnetic regime, where J > J., the spectrum w_(k) is real-valued for all
modes but is, in contrast to the standard gap-less Bogoliubov dispersion, dominated by

43



IIT Bogoliubov Theory as a Roadmap
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Figure II1.1: The figure shows the Bogoliubov dispersion relation of the spin
sector, w_ (see Eq.(III.11)), (coloured curves) for four characteristic cases. As
discussed in the main text, we show the dispersion deep in the paramagnetic
phase, J > J. (blue), for the ferromagnetic phase, J. > J > J./2, (red), for the
domain-building ferromagnetic phase, J < J./2, and at the critical point (green),
where the gap vanishes. In comparison, the black curve depicts the Bogoliubov
dispersion relation for the symmetric sector, wi (k) (see Eq. (II1.12)) for a ratio of
scattering lengths g7 /g = 1.2.

a flat part for very low momenta, cf Fig. III.1. If a large distance to the critical point is
chosen a linear regime, where w_(k) ~ k!, can be almost completely avoided. Conse-
quently, one can expect that the phenomenology for the dynamics in the infrared here is
dominated rather by the gap than a ‘lightcone’.

In the ferromagnetic case J < J, the excitation spectrum acquires imaginary values
(or w? < 0 equivalently) for infrared momenta €; < |2] — J.| (see Fig. IIL.1). In particular,
the gap in Eq. (IIl.13) turns imaginary but is finite |A| > 0. The Bogoliubov modes with
imaginary frequencies will have a exponentially fast changing amplitude in their time
evolution, instead of an oscillating phase. This is a clear sign of an instability and, hence,
the dynamic manifestation of a phase transition. Since the gap vanishes at ] = J. =
—g_ng but stays finite else, the spin excitation spectrum «w_ reveals the second-order phase
transition (in meanfield approximation), we have discussed in Sect. II.1.2 and Sect. IL.2. On
this level of Bogoliubov approximation, we find the same value for the critical coupling
Je = —g-np as via the analysis of the meanfield free energy (see Sect. II.1.2)

In the case J < J, one can in addition distinguish two cases. Firstly, if J. > J > J./2,
the maximum of |w_| is precisely the gap, meaning that the zero mode of the quasi-particle
operators will grow fastest in amplitude and so does the related zero mode of spin exci-
tations. Thus, the system chooses a z-spin direction and and builds up a fully polarised

44



IMI.1 Bogoliubov Transformation for Spins

state. In the second case, J < J./2 the most unstable mode is located at a finite momen-
tum, kpax = +/2m(Je — 2J), which leads the quasi-particle and z-spin amplitude to grow
fastest at a characteristic momentum. The induced characteristic scale, & =~ 1/kmax »
marks the size of z-spin domains which will be nucleated by the instability.

In Fig. 1.1 we show in addition the dispersion relation for the symmetric sector, w (k)
(see Eq. (II.12)). One finds that the two dispersion relations only can have a crossing in
the regime J > J.. Since one can expect this crossing to morph into an avoided crossing
beyond Bogoliubov approximation, a coupling of the symmetric sector to the spin sector
is expected to occur first at the crossing point. The momentum mode for which both
excitation spectra w_(k) and w, (k)cross in Bogoliubov theory is’

Keross = om— I =J) (IL.15)
g+no—2J+ J

The Quasi-Particle Basis

To analyse the physical meaning of the quasi-particle basis, the Bogoliubov transfor-
mation from Eq.(II.4) needs to be inverted. A suitable combination of Eq. (IIl.4a) and
Eq. (IIL4D), after inversion of the Fourier transformation, yields

_ et oen (y) i \/E }
be = [ dy{ 1—m R 4 ety 5L fi60_(y) ¢ (IIL.16)

where b}, is given by the Hermitian conjugate of Eq. (II.16). To obtain the expression, we
have used that the mode function f is real-valued and symmetric in k. This shows that
the quasi-particle operators by and b}, describe a coherent superposition of spin excita-
tion modes in z spin direction, S,(k) = dn_(k)/no, and spin excitation modes in y spin
direction, S, (k) = 56_(k). The momentum mode expansion of the spin fluctuation fields
(or operators) are defined as

1
VL

with S;(~k) = S (k) due the spin fields being real-valued.

The inverse transformation Eq. (IIL.16) shows also, that the Bogoliubov mode function
fi controls the weight between both spin directions in the superposition?. If f = 1 for a
mode k, a quasi-particle excitation creates spin excitations in both spin directions in equal
superposition. This happens, in particular, for ultra-violet modes €, > J in Eq. (IIL.9), for
which limy o fx = 1holds. The same is true for the case of strong linear coupling J > J,
as one has then lim;_,« fi = 1, for all momentum modes.

In contrast, in the infrared limit k — 0 one finds lim_,q ka = /J/(J = J). Therefore,

8Si(k) = — [ dye ' ¥ksi(y), (I1.17)

LA closer look reveals that, actually, the crossing disappears if J/J. > a/(a — 1), since then the condition
((u% = wi) lkerose D128 110 real-valued solution.
2We restrict the discussion to g— < 0 and J > —npg-, the paramagnetic regime, such that f;. from Eq. (IIL.9)

is real-valued
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one has fx > 1 for J > J; for in the infrared momentum region, with growing fi as J
moves closer to the critical value. This means that, close to the critical point and for in-
frared momenta €, < 2], excitations of the relative phase dominate in the superposition
Eq. (II.16) for quasi-particle excitations.

Quasi-Particle Occupation Number

For the discussion of the Bogoliubov time evolution of spin observables in the subsequent
sections, it is convenient to compute two expressions for the occupation number operator
of Bogoliubov quasi-particles, ng(k) = bjbk, beforehand. In particular, it is helpful to
compute ng(k) in terms of the spin fluctuation field operators 66_(y) and dn_(y) and to
compute the relation between ng (k) at two different linear couplings. The latter will also
provide a convenient language for introducing the notion of quenches in the Bogoliubov
framework.

The relation between the quasi-particle occupation ng (k) and spin fluctuation operators
can be right away found using the inverse Bogoliubov transformation Eq. (II1.16), which
yields

e—ik(y=v) dn_(y)on_(y’)
noL ka

1 1 ’ —i —y) ’
bib, + 5= 5[ dy dy { + ek y’fof,fw(y)w(y )} .

(IT.18)

The ‘1/2’ on the left-hand side is an immediate consequence of treating spin fluctuations
and quasi-particles in a quantised manner, as explained in the context of the commutation
relations Eq. (IIL.5) and Eq. (II.6). In practice, the expression Eq. (II1.18) will be useful in
terms of quantum averages. Both sides can be averaged over with respect to any ensemble
or density matrix and will yield a relation between the mean quasi-particle occupation and
the spin-spin correlation functions.

To find an expression for ng(k)|j=j in terms of the Bogoliubov basis at a different
linear coupling J = J;, we first show how the Bogoliubov basis itself transforms® under
a change of the linear coupling. Let b}< be the quasi-particle annihilation operator at
coupling J = J; and, likewise, bi at J = J. Starting with Eq. (IIL.16) for b’ , one can exploit
that the spin fluctuation operators §0_(y) and n_(y) do not change their meaning when
changing the value of J. Therefore, Eq. (Ill.4a) and Eq. (IIL4b), written in terms of the new
operator basis bt, diagonalise the action S_ (see Eq. (II.3b)) at the linear coupling J = J.
Combining Eq. (IIL.16) at J = J; with Eq. (IIL.4) at J = J; results in

i f
by = ubf +vb! ], (II1.19)

3This transformation is equally helpful to introduce the notion of quenches. The index convention i’ for
‘initial” and ‘f” for ‘final’ is chosen for that reason to match the naming convention in subsequent chapters
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with ug and vy given by
02 2
(fk) B (fk)
21
2 A 2
(f) + (K)
2fifx
and |uy|? — |vk|? = 1, with f,;f = fklj=J, (see Eq. (IIL9)).

The transformation is conveniently expressed in terms of pseudo-rapidities 5y, which
are defined via sinh(ny) = vk and cosh(#y). From Eq. (II1.20) one finds

UV =

’

up = : (II1.20)

mie(ho Jr) = log [f(k) /2f" (k)] (1L.21)
With that, the transformation can be expressed as
(b, 6T = M (b, bT)T, (IL.22)
where the matrix M, with
_ [coshng  sinhn
My = (sinh Nk coshne/”’ (I.23)

and nr = ni(Ji, J), is an element of the symplectic group (see for example [178]). The
inverse transformation M;l is simply found by exchanging ni(Ji,J) — —-nx(JiuJr) =
nx(Jg, J;) in Eq. (IIL.23).

With the relation in Eq. (II1.22), the quasi-particle number operator ng(k) at linear cou-
plings Jf can be finally expressed in terms of b}( and bj,ic,

1 . 1 iy igi . i i Fipti
bszz + 3= (smh2 Nk + 5) (b;; by + bjkb‘_k + 1) — sinh 5 cosh n (b‘_kb}c + b_kb;z ) ,

(IIL.24)

where the pseudo-rapidities n = nx (Ji, Jf) are given in Eq. (IIL.21).

III.2 Quench Dynamics within the Gaussian Theory

Having obtained a description of the linearised spin sector in Sect. III.1 in terms of a
standard quadratic field theory (i. e. the formulation of the action S_ Eq. (II1.10) in terms
of Bogoliubov operators), we are now in the position of discussing dynamics within that
theory. Specifically, in the remainder of this chapter we study dynamics after a sudden
change of the linear coupling J within the paramagnetic regime J > J..

In this section, we first discuss the implementation of such a sudden parameter quench
within the framework of Bogoliubov theory, we have introduced in Sect. III.1. Thereafter,
the post-quench time evolution of the spin correlation structure factor (S, (k,t)S, (k,t2))
is computed within Bogoliubov theory, building on the diagonalisation framework from
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the last section. We do so, first, for a general pre-quench state and discuss afterwards
possible choices for the pre-quench state, together with their physical interpretation.
In the last part of this section, an expression for the equal-time spin structure factor
(S;(k,t)S;(k,t)) is obtained, for the same quench scenario we study numerically beyond
Bogoliubov theory in the subsequent chapters.

III.2.1 Sudden Quenches in the Linear Coupling

The notion of a sudden parameter quench of the linear coupling J we adopt in this work
is the following. First, one prepares a state |{2); which is well defined in terms of the
Bogoliubov basis b}( at linear coupling J; > J.. A natural choice, which we mainly study in
the subsequent chapters, is the vacuum of all quasi-particles operators b}, |£2); = ®|0)x
with bg|0)r = 0. Thereafter, one computes the time evolution of the Bogoliubov operators
with respect to a different value of the linear coupling Jr in the action S_. Expectation
values for observables are then taken with respect to [{2);.

For the operators b£ and bz fat a fixed value Jr > J. for the linear coupling, the the time
evolution can be given right away, as the operators form a simple harmonic oscillator at
each mode in the action Eq. (IIL.10) at J = J;. The solution to the Heisenberg equations of
motion is

bE(t) = b (t = 0) - e (kI) ¢

Tf Tf iw_(k
bii(t) = bl (t =0) eI (II1.25)
as they agree with the solutions to the classical equations of motion for a quadratic action

of the form Eq. (II.10).

The quench is then implemented by a sequence of transformations. First, map bi (t=0)
and b;z f(t = 0) in Eq.(IIL.25) to b}( and b; f. For this purpose use the transformation,
defined in Eq. (II1.22), via matrix M. Second, evolve the b£ in time by multiplying a simple
phase, according to Eq. (II1.25). And third, express the observable in question at time ¢ in
terms of Bogoliubov operators bli(t) and b;; f(t). To compute actual expectation values
after the last step, and depending on the complexity of the observable, one might need
to employ Wick’s theorem. A simple application for the procedure is the post-quench
occupation of Bogoliubov quasi-particles. The time evolution given in Eq. (III.25) implies
that the occupation number operator at Ji, ng(t,k) has no time dependence, ng(k,t) =
ng(k) = bz fb£ |t=0. The post-quench occupation is then determined via Eq. (II1.24) applied
to [2)i,

Qg (K)12); = sinh® i (i Jo) (II1.26)

with nx (Ji, J) given in Eq. (II1.21).

Due to its stationarity with respect to the time evolution after the quench, ;(Q2|ng (k)|2);
constitutes a conserved number for every mode k, which is solely determined by the
initial state. Based on this property, the concept of generalised Gibbs ensembles can be
applied, as we discuss together with consequences thereof for the post-quench dynamics
in Sect. IIL.4.
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I11.2.2 Time Evolution of the Spin Correlation Function

In this section, we focus on the correlation function of the z-spin fluctuations S, (¢,pz) =
Sn_(t,y)/ng + O(5?) and derive its time dependence after the quench (along the lines of
Sect. 1I1.2.1). Specifically, we compute the two-time correlation function

1
gzz(tl,tz,y) = <Sz(t1,0)sz(t2,y)> = ?<5n_(t1,0)n_(t2,y)> R (11.27)
0

for quenches in the paramagnetic regime (as discussed in Sect. II1.2.1) within Bogoliubov
theory. In this section, we derive a general expression for G,,(t1,t2,y) in terms of initial
spin fluctuations, i.e. without specifying the initial state completely. In the following
section, Sect. I11.2.3, we discuss possible initial states separately and finally combine both
in Sect. IIL.3.

A sequence of transformations from the spin to the quasi-particle basis and back, as
lined out in Sect. I1.2.1, yields the time evolution of spin fluctuation operators, Sn_(t,y)
and 80_(t,y). Specifically, use Eq. (IIL.4) for operators at time ¢ and the quasi-particle
operators at | = J, bi. Then insert the time evolution of the quasi-particle operators at J¢
(from Eq. (II.25)) and, finally, apply the inverse transformation Eq. (IIL.16) at time t = 0.
The sequence yields for dn_(t,y)

n

dn_(t,y) = Tof Z (cos (0-1)S2(k)ls=0 + no fZ sin (w_t)Sy(k)ltzo) etvk | (1.28)
k

and likewise for the operator 66_(t,y)

80_(t,y) = \/LZ Z (— sin (w_t)% + cos (a)_t)SyIt:g> etvk, (II1.29)
k k

where we have used that Sj(k) = Si(—k). Recall Eq. (II.25) for the mode expansion of
fluctuation fields.

We point out that Eq. (II1.28) and Eq. (II.29) do not contain any reference to an initial
value for the linear coupling, or form of initial state in general, yet. Before we go on,
we specify to a class of initial states. We assume an initial state where only the initial
spin-spin correlations (§,(k)§.(=k))|;=o # 0 and (Sy(k)S,(—k))|;—0 # 0O are non-zero.
All other spin-spin combinations are taken to vanish with respect to the initial state. We
discuss possible realisations of this class of initial states in terms of the quasi-particle basis
b}( in the next section, Sect. II1.2.3.

Finally, the spin-spin correlation function for the spin in z-direction, (S, (¢1,0) S, (t2,y)),
can be obtained, since S, = dn_/ng + O(5%). With Eq. (I.28) evaluated at times #; and
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ty we find

<Sz(0> tl) Sz(y’ t2)> = sz(y,T,S) =
— S (S R)S:(=k) |, [c0s (@-(k.J)s) + cos (260 (k. JT)]

2Lk

+(Sy(k)Sy (k) |, _ i (J)* [cos (- (k. J)s) = cos (20 (k. J)T)] } €¥¥,  (11130)

where we have introduced central and relative time, T = (#; + t2)/2 and s = (#; —
to) respectively. The excitation spectrum w_ and the mode function f; are defined in
Eq. (IlL.11) and Eq. (T1IL.9).

The time evolution for (§6(t1,0)80(t2,y)) can now be obtained easily using the operator
relation Sy (t,k) = 8;S.(t,k)/fZ®-). An expression similar to Eq. (II.30) emerges. Note
that (60(0)80(y)) represents the connected correlation function for the spin in y-direction
in Bogoliubov theory, as S, = §6_ + O(&?). Since phase and density fluctuations are
conjugate to each other both correlation functions are expected to contain the same in-
formation content concerning dynamics. However, beyond Bogoliubov theory it can be
helpful to compute both observables, although they are still conjugate degrees of free-
dom, to evaluate expression Eq. (III.18). This can be used to either check how close to the
linear regime the system evolves.

II1.2.3 Initial states

In the ideal case of a sudden quench the characteristics of the quench hides in the choice
of the initial spin correlation functions. The previous section, Sect. I11.2.2, led us to an
expression for the z-spin correlation function after a quench (Eq. (II.30)), which depends
on the choice of the initial fluctuations of spins. Recall that, at the beginning of Sect. IIL.1,
we needed to chose a meanfield, (S;) = (S;) = 0 and (S,) = 1, to linearise the action.
Since the Bogoliubov theory describes fluctuations around this meanfield (cf. Eq. (IIL.1)),
the choice the meanfield constitutes a second important part of defining the pre-quench
state. In our case, the choice of the meanfield pins the quench to start in the paramagnetic
regime.

In practice, our choice of the initial fluctuations is motivated by the truncated Wigner
formalism for the two-component Bose gas which leads in turn to coherent and squeezed
spin states. In this section we want to discuss a more theoretical point of view which
alludes to the treatment of the transverse field Ising model.

We introduce two specific realisations of the initial spin fluctuations, needed as input
for Eq. (II.30), in this section and give an interpretation in terms of initial quasi-particle
occupations. The first class of initial states, we discuss, is defined by the vacuum of initial
quasi-particle operators b}< and leads to states of minimal uncertainty in the spin picture.
The second class of initial states is defined by thermal occupations of initial quasi-particle
modes.

“Note that there is an overlap in notation here with temperature and scale factors, which we will also denote
with T and s. However, which definition to apply will be clear from the context or otherwise explicitly
stated.
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Initial Fluctuations with Minimal Uncertainty

Given a certain initial linear coupling, J; , one can demand that the initial data corresponds
to a vacuum state for the initial quasi-particle modes, |[€2); = ®¢|0); with b |0)r = 0. As
this sets {Q|bLbr|Q); = 0 for all modes k on the left-hand side of Eq. (II1.18) a straight-
forward choice in terms of the spin degrees of freedom which satisfies this demand is, for
example,

1 i -y no
(On(0)8n-(y))le—o = 7 zk] RIS

1o i 1
(80(0)80(y))li—o = — » e kY) .
OB T

The state defined by Eq. (IIL.31) belongs to the class of states where the individual modes
have minimal uncertainty,

(IL.31)

(I8n_(k)I*) - 16-6(k)|*) = 1/4, (II1.32)

with 8n_(k) = noS. (k) + O(8?) and §6_(k) = S, (k) + O(5?).

Now, the quench primarily amounts to mapping this initial data via a Bogoliubov trans-
formation to a new quasi-particle occupation at linear coupling J;. We have discussed the
mapping in detail in the first section of this chapter. One finds directly from Eq. (II1.24)

1 1R, Kk

KU1 + = = = | A= .
: 2 4 fk2|]f fk2|]1

(IIL.33)

We point out that the post-quench quasi-particle occupation numbers, H{Qbib| i,
are conserved under the subsequent time evolution within Bogoliubov theory. See also
Sect.I11.2.1. We will discuss implications thereof in the last section of this chapter, Sect. IIL4.

With the help of Eq. (IIL.19) one can find a straight-forward characterisation of the post-
quench state. The equation connects the pre-quench quasi-particle operators with the
post-quench operators via a standard Bogoliubov transformation. The same reasoning
holds for the pre-quench vacuum state. In terms of the post-quench vacuum, it can be
expressed as

1Q); = Z exp (— tanh(n;)bt b 1) 0)_k ® |0} . (IIL34)
k

which can be seen by acting with the right-hand side of equation Eq. (II.19) on it. This
shows that the post-quench state is a two-mode squeezed vacuum state [178] and essen-
tially is composed of coherent pairs of quasi-particles with moving with opposite mo-
menta.

Thermal Initial Fluctuations

There exists another class of initial states which have a straight forward theoretical in-
terpretation. One can choose the pre-quench quasi-particle occupation to be thermally
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distributed at a certain finite temperature T, i.e. {(Qun|bibr|Qum)i = Fge(w-,T). For the
distribution Fgg, either the full Bose-Einstein distribution can be used or it can be approxi-
mated by a Rayleigh—Jeans distribution, Fgg ~ T/w_. A possible application of such states
is to study temperature quenches instead of quenches in the Hamiltonian parameter J or
even combine both quench types. In Sect. IIL.4 we will use thermal states of fluctuations
to compare the minimal uncertainty states to and as means to classify them in terms of
effective temperatures.

To initialise the quench with thermally occupied initial Bogoliubov modes, the set of
initial data from Eq. (III.31) has to be slightly modified,

1 . o n
(n-(0)6n-(yDlimo = 7 . &0 2Fasly +1) 215

L k
_ 1 ik(y-y') —1
(80(0)50(y)le=0 = 7 ;e (2Fgg|; + 1) T (IL.35)

to yield eventually a post-quench Bogoliubov quasi-particle occupation associated with a
finite pre-quench temperature,

(2Fgely;, + 1)
4

. 1
immwmmmm+§= (IIL36)

2 N 2
e f2

It should be clear that the situation, and specifically the search for scaling behaviour,
grows more complex the more phenomenology we add. Originally, the only energy scale
for the dynamic situation was set by the energy gap and, thus, determined by the post-
quench linear coupling Ji. In Eq.(IIL.31) we have introduced a second energy scale, Ji,
coming from the characterisation of the pre-quench distribution. The thermal distribu-
tion from Eq. (IIl.35) introduces a third energy scale, set by the temperature. In any case,
those scales set by initial fluctuations need to be taken into consideration when describing
observables in terms of scaling laws.

We illustrate the outcomes of Eq. (II1.36) and Eq. (II1.33) for several examples in Fig. II1.2.
In particular, it can be observed that the qualitative difference between finite-temperature
pre-quench states and zero-temperature are marginal. Both scales, T and J; relative to
Jr, control the number of ‘created’ quasi-particles for low momenta in the post-quench
distribution.

In contrast to the standard treatment of the transverse Ising model (we give brief intro-
duction at the beginning of chapter VI), here the spin system is only approximated by the
Bogoliubov modes. Consequently, the groundstates and thermal states we used to find
suitable pre-quench states are as well only of approximative nature. Per se, this is not a
problem as we seek to set off non-trivial dynamics. But, since we will use this initial states
also for the numerical treatment which reaches beyond the linear regime, it is necessary
to keep in mind the approximation.
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Figure III.2: The figure shows the post-quench quasi-particle occupation,
H{Qbibr| 71€2);, for several values of the initial linear coupling, J;. All examples
are computed for a quench to the final value J; = 1.1 (2];) of the linear coupling.
The black, blue, green, and red curves correspond to a zero-temperature initial
state while the orange curve is computed from initially Bose-Einstein distributed
quasi-particles, at a temperature T = 0.2 (2],).

III.3 The Quest for Criticality

So far, we have computed the Bogoliubov solutions for the spin dynamics for various
quench scenarios. In this section, we will analyse the structure of the obtained solutions
in terms of critical behaviour. We adopt the temporary convention of “critical behaviour”
equals “scaling laws” and, thus, we discuss in the following where scaling laws can be
identified within the Bogoliubov time evolution of the z-spin correlation function.

As we are dealing with a theory of meanfield type, we do not start the search for scal-
ing laws totally blank. As long as static critical exponents are concerned we can expect
meanfield scaling to be valid. For the spin system, which shows the symmetries of the
Ising universality class, one has the scaling of the correlation length ¢ = |¢[™" and the
scaling of the magnetic susceptibility y = |¢|7" . From the set of static scaling exponents,
those two are most conveniently found from the correlation function. In addition, the hy-
perscaling relation, (2 —n)v = y, which connects the two exponents v and y is of interest.
Within meanfield approximation, the three exponents are v =1/2,y = 1,andn = 0
(see Sect. I1.2).

For the dynamic exponent, z, the reasoning is more involved. If viewed within the
Halperin-Hohenberg classification [30], z defines the the scaling relation between time
and space for relaxational dynamics and can be read of from the dispersion relation, w ~
k*, at the critical point. If our model was purely of Ising class one would expect z = 1.
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We discuss below in what sense that is true within the linear theory. One should also
keep in mind that the spin sector is, beyond Bogoliubov theory, coupled to a conserved
U(1) field, which changes the dynamical class.

An additional level of complexity arises since we are not dealing with relaxational dy-
namics. We will study equal-time correlation functions as a function of the progressed
time after the quench. However, z is, in the first place, connected to the time difference
between the two correlated field operators. In this section, we clarify the role of the pro-
gressed post-quenched time in the scenario of criticality.

In this section, we analyse the equal-time z-spin correlation function G,,(t; = t,ty =
t,y) (see Eq.(IIl.27) and Eq. (II1.30)) and its Fourier transform G,,(t,k), i.e. the z-spin
structure factor. As the goal is to identify scaling behaviour, we want to avoid a sit-
uation of a multi-scale initial state and, thus, concentrate on a zero-temperature pre-
quench state with linear coupling J; — oo (see Sect. I11.2.3). From Eq. (IIL.31) we find,
with limj 0 fk|; — 1, the initial conditions for that case

(0n-(0)dn_(y)),—g = %5(11 -y'),

1
(60(0)60(y ;=0 = 2—%5(y -y, (IL.37)

and consequently, using Eq. (II.30), the z-spin equal-time correlation function

(5:(0) Sa(y))(t) = Lzlno 3 {1 + Lﬁ;ﬁ] sin2(e_ (k) t)} dkv  (mss)
k C

For the reminder of this chapter we substitute the post-quench coupling J; with the
distance of the meanfield critical coupling,

e = (Jr=Jo)/Je (I.39)

In addition, all dimensionful quantities, specifically time, space, momentum, and energy,
will be expressed in appropriate units of the meanfield critical coupling®, cf. Sect. B.1.

II1.3.1 Scaling Regimes

For various reasons critical behaviour over all scales should not be expected. This is espe-
cially true for the Bogoliubov theory at hand, as the various expressions we encountered
so far are square-roots of polynomials in ¢ and k. Thus, firstly we identify the relevant
scaling regimes from the dispersion relation.

Expressed in natural units it reads

w_(k,e) = \JAZ + c2k? + k4, (IIL.40)

where the gap is A = &(¢ + 1) and we introduced ¢ = V2¢+ 1. As can be directly

SFor convenience, we define the natural unit system via 2J. to eliminate various factors of 2 in the expres-
sions.
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inferred, the dispersion is not a homogeneous function of momentum but rather shows
three regimes in k: For k < ks = A/cs, the spectrum is gapped and quadratic, w_ =
A + c2k?/(2A). For kg < k? < c2 it is linear, w_ = ¢4k, and for k? 2 ¢2 it is quadratic
again, w_ ~ A + k2. Note that the spectrum in the deep infrared always starts quadratic,
unless the system is quenched directly to the critical point. Primarily, we are interested in

the long range behaviour of the correlation functions. Therefore, we restrict the analysis
2

to the momentum range k < 1 and neglect the term « k* in o
As can be seen from Eq. (IIL.40), the dispersion is not a homogeneous function of ¢
either. For the tuning parameter, two relevant regimes can be identified, ¢ > 1, such that

0? = Ve?1 2ek? and ¢ < 1, such that ") = Ve 1 k2. For the two approximative
(1) ()

dispersion relations w' ’ and "’ scaling forms can be deduced. We find that
o (se,s" k) = s*/? ne (e,k) , (IIL.41)
w? (se,s" k) = s! w? (e,k) , (II1.42)

(I1L.43)

if v = 1/2 is chosen for the rescaling of momenta and that only in this case the two
functions w12 are homogeneous in s.

The full scaling form of the dispersion relation, in presence of a energy scale, is ex-
pected to reflect the dynamical critical exponent. In particular, the scaling transformation
s7*Vw(se,s” k) should leave the dispersion unchanged. Indeed, we find with Eq. (IIL.41)

that ") is consistent with z = 1 and &> with z = 2. We point out that for the latter
situation the reasoning is also valid if we include the quartic power of k in «?.

The consistency with a non-relativistic dynamical exponent away from the critical
point is a remnant of the underlying non-relativistic bosonic field theory. The regime
in which we find the ‘relativistic’ dynamical exponent, z = 1, i.e. for ¢ < 1 and
k < 1, exhibits a peculiar dispersion relation equivalent to that of the transverse field
Ising model®. For the Ising model, it is a well known fact that a relativistic dynamical
behaviour emerges at the critical point, which is describable by a conformal field theory
(see for example [128]). We discuss similarities of quench dynamics in the spinor Bose
gas and the Ising chain in a transverse field in chapter VI

II1.3.2 Scaling Properties of the Correlator

The central object of our studies is the equal-time correlation function of the spin in
z-direction. Here, we discuss the properties of the specific realisation given in Eq. (II1.38)
in terms of scaling behaviour. As we have stated above, we have chosen an initial state
corresponding to J; — oo to eliminate the need to include a scale set by the initial state.
By virtue of an emergent effective temperature this will nevertheless be an issue, as we
discuss in Sect. IIL.4. But, for now, we adopt the point of view that J; — J. is the only
relevant energy scale.

5To be more precise, the dispersion relation w = /A2 + k2 is found in the continuum limit of the trans-
verse field Ising model see Sect. VI.1
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We proceed as follows. First, we discuss the scaling behaviour and resulting critical
exponents in the z-spin correlations, as they are reflected by the time evolution of the
magnetic susceptibility and the structure factor G,,(t,k). This can be done based on
analytic expressions, as can be read off from the right-hand side of Eq. (II.38). Thereafter,
we turn to scaling properties of the z-spin correlation function in real space G.,(t,y) and
of the corresponding correlation length. As the Fourier transform in Eq. (II1.38) can not
be evaluated in a closed form, we discuss an approximation for G, (t,y), obtained by the
method of stationary phases. Scaling behaviour in the time evolution of the correlation
length will be discussed based on a numerical evaluation of Eq. (IIL.38).

Scaling Properties of the Magnetic Susceptibility

We begin our analysis with the magnetic susceptibility, as it can be easily extracted from
z-spin structure factor,

x(et) = (Sa(=k) S:(K))(E)l— = Gaz(t.k = 0), (IIL44)

Before going on, there is a technical issue to be discussed. The initial state given in
Eq. (IIL.37) introduces an unregularised part to the correlation function, related to the
quantum vacuum state of the quasi-particles (see Sect. I11.2.3). On the left-hand side of
Eq. (II1.18) the additional ‘1/2’ particle is a direct consequence of the imposed quantisation
conditions for the Bogoliubov quasi-particles. In turn, it leads to an initial occupation of
spin modes (cf. Eq. (IIL.37) at ¢ = 0) which is constant over all modes. Consequently, the
initial correlation function consists of a §-distribution. As can be seen form Eq. (II1.38),
the §-distribution is a persistent term. Although it will grow less important over time it
makes the evaluation of Eq. (III.38) tedious. To overcome the problem, we define a regu-
larised spin structure factor,

(S2(0) Sz (y))(£)reg = (S2(0) Sz (y))(t) — 1/(2Lny), (IT1.45)

to study scaling features of all observables derived from the correlation function.

With Eq. (IIL.38) we find for the magnetic susceptibility

sin? (A(e) t)
2Ln0 &

x(et) = (IIL.46)
after regularisation of the structure factor, i.e. applying Eq. (II1.45) to Eq. (II.38). Since
the sine-function by itself is not at all a homogeneous function, the susceptibility has no
chance of being a homogeneous function of the tuning parameter at fixed time. Thus,
a scaling transformation needs to include the time direction as well. Note that the time
parameter here describes the time elapsed after the quench for both correlated operators
in Eq. (II.38). We refer to it as ‘central time’ to distinguish it from the time difference

within unequal-time correlation functions in the following.

Building on the discussion in the previous subsection, we can right away deduce the
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scaling form of y for the limiting cases ¢ < 1and ¢ > 1,
x(se,s7V7 1) = s y(et), (I11.47)

where a gap of either the form A = ¢ or A®) = +/¢ needs to be assumed. In both
cases the scaling exponent y = 1 can be identified if, as before, v = 1/2 and z = 1 or
z = 2. Using the Fisher hyperscaling relation we find from y = (2 — n)v, as expected for
a meanfield theory, an anomalous dimension of = 0.

Importantly, this discussion shows that the only way to achieve a consistent scaling
transformation within Bogoliubov theory is to rescale the central time with the dynam-
ical exponent z. This means that the post-quench time evolution reflects the dynamic
universality class, for our quench setup.

Scaling Properties of the Structure Factor

At this point, we have already determined a full set of scaling exponents. The analysis of
the scaling form of the dispersion w_ (see Eq. (IlL.41)) yielded v =1/2and z = 1 (¢ < 1)
or z = 2 (¢ > 1). These exponents lead to a consistent time-dependent scaling form for
the magnetic susceptibility Eq. (IIl.47). Simultaneously, one obtains the third exponent
n=0.

The analysis of the z-spin structure factor for a full scaling form in t, ¢ and k,
Gaz, reg(se,s" k,s77t) = s_(Qd_”)VQZZ, reg(&,k,1), (I11.48)

now constitutes rather a consistency condition. The regularised structure factor reads
(see Eq. (II1.38) with Eq. (IIL45))

1 .9
Gaz reg(t,k) = m sin” (w-(k,€)t) , (I11.49)
and, indeed, consistently fulfils the scaling form in Eq. (II1.48) with the set of scaling ex-
ponents from above.

The important aspect to learn here is why it does so. As can be seen from Eq. (IIL.49), the
structure factor is composed out of an oscillatory factor, carrying the time dependence,
and an amplitude. The amplitude o 1/(k? + ¢) constitutes an independent static condi-
tion on the scaling exponents v and 7, enforcing in particular independently v = 1/2.
Therefore, the full time-dependent scaling form in Eq. (II1.48) is only fulfilled because the
homogeneity in ¢ of the amplitude and the oscillation (the dispersion, specifically) fit to
each other.

As a byproduct, one learns that already the amplitudes contain valuable information
scaling properties, even if the full universal functions are hard to determine (for example
from numerical or experimental data).

Furthermore, we find that the amplitudes are clean homogeneous functions of the tun-
ing parameter ¢. The restriction to € 3> 1 or ¢ < 1, to be able to apply the scaling forms,
is only needed when the time dependence is to be included in the scaling transformation.
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Correlation Function in Stationary Phase Approximation

Finally, we want to discuss the correlation length and the real-space correlation func-
tion. Although Bogoliubov theory allows deriving an expression for the z-spin correla-
tion function (see Eq. (II1.38)), it is not possible to evaluate it in closed form in real space
(i. e. as function of y).

Nevertheless, approximations can be derived if the Fourier series is turned into an
Fourier integral, 1/L Y, — 1/(27) f dk which is justified in the thermodynamic limit. A
straight-forward way to solve the Fourier integral is to employ the method of stationary
phases’.

To apply the method, first, the squared sine function needs to be expressed in terms
of exponential functions, sin?(wt) = — (eiQ“’t + emi20t ) /4 4+ 1/2. The constant part
together with the amplitude of the squared sine function can be integrated right away,
since the amplitude has the form of a unnormalised Cauchy-Lorentz distribution. From
this one finds that the resulting correlation function is structurally of the form

ei ky

1, . .
~ -Velyl X g~ 20t 20t &
Gz (ty) = e Vel [ Zdk o (e29f 4 e720) oL (I1.50)

8ng Ve

and it remains to approximate the oscillating part.

The strategy here is to combine the Fourier exponentials in with the remaining expo-
nentials in the integrand of Eq. (II1.50) and apply the stationary phase approximation. The
structure of the integrand then is 7 (k)e!®(*%)  where the phase is given by

O (k,t) = £20_(k)t + ky . (IIL.51)

The main contribution to the integral is generated by the saddle-points ky, where the
condition® 8;®(k, )|k, = 0 is fulfilled. Therefore, one can approximate ¥ (k) by its value
at the saddle point, F (k) ~ F (ko) and ®(k) with its second-order Taylor approximation
around ko in the integral in Eq. (II.50).

Combining all ingredients and evaluating the remaining integral with Fresnel’s formula
yields

1 1 1 T
~ - Ve lyl

221, Y) = - F (k ((I) ko,t) — —) R 111.52
G ( y) 8ngp \/Ee 4nO ( 0) 271'8]%@(1“,/(0) €08 ( 0 ) 4 ( )

where F (k) = 1/(k* + ¢), ®(t,k) = 20_t + ky, and 8;(t,k) are to be evaluated at ko,
the momentum which renders the phase stationary. Since @ is within this approximation
respected up to second order only, it is reasonable to use a second-order approximation

"The credit for this idea goes to Isabelle Bouchoule (unpublished notes).
81f no real-valued solution exists the stationary phase approximation can not be employed.
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also for w_ to compute ko. Here, we choose’ w_ =~ A + c¢2k?/(2A) and find with that

Ay
ko = ——2, 11153
0= "o (II1.53a)
Ay2

O(t,kg) = 2At + 4_521‘ , (II1.53Db)
2c2t

92 (t,ko) = 2 , (IIL53c)
4ctt?

F (ko) & (IIL.53d)

- A2y2 4 4ectt?”

Recall that A = 4/e(e + 1) and ¢s = V2¢ + 1, contributing the e-dependence in the set
of expressions Eq. (II1.53).

In Fig. IIL.3 a comparison between the numerical evaluation of Eq. (II.38) and the di-
rect evaluation of its approximation, Eq. (IIL.52), is shown. The oscillatory features are in
general captured well by the approximation if ¢ > 1, since this is the regime where the
small-k quadratic behaviour dominates the dispersion. Independently of ¢, the logic of
the stationary phase approximation is better applicable the larger y is as compared to ct.
Fig. IL.3 confirms that, even when the spatial oscillations are not reproduced well any
more for ¢ < 1, the long-range decay of correlations is still reflected accurately by the
approximation Eq. (IIL.52).

Combining the respective expression from Eq. (II.53) to form the amplitude A(t,y,¢)
in front of the cosine in Eq. (II1.52) leads to

1 1 1 cit? A
A(t,y,e) = —F (k _ = — S , 1I1.54
(t.5.) 4ng (ko) 2n62®(t,k0) no A2y? + 4ectt? \ 2mct ( )

The amplitude decays in space algebraically, A(t,y,e) ~ y2 if y > cst and therefore
constitutes no clear second characteristic scale for the spatial decay. Nevertheless, as
long as the magnitude of A(t,y,¢) is comparable in size to 1/ /¢, the oscillatory part in
Eq. (IIL.52) will effectively contribute to the decay scale.

Concerning its time dependence, the amplitude of the oscillatory term in Eq. (II1.52) is
found to be proportional to 1/ v/t for ¢st > y and, thus, suggests that the oscillations
are suppressed algebraically in time. This is a consequence of dephasing quasi-particle
modes and leads to a quasi-stationary spin correlator for t — oo, despite the fact that the
quasi-particle mode occupation never changes in time. Note that the stationary phase
approximation might over estimate the effect as the approximation itself relies on the de-
phasing of modes. But even if not, the suppression of the amplitude only with the square
root of time makes the effect problematic to find on relevant time scales in experiment or
simulations.

% Another possible choice would be w— = A + ¢sk + k2, which shifts the regime of validity of the approxi-
mation. In particular, the result can only be evaluated within a pseudo-lightcone, cst > y.
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Figure II1.3: The figure shows a comparison between the numerical evaluation
(solid coloured lines) of the spin correlation function, Eq. (II1.38), and the direct
evaluation of its approximation (dashed coloured lines), Eq. (IIL.52), at various
distances to the critical point. The correlators have been normalised such that
(52(0) Sz(y))regly=0 = 1. In addition, the decay length &, has been determined
from the integral over the numerically evaluated correlators. The result is de-
picted via the corresponding exponential decays, e”1¥!/én _ (black solid lines).

Scaling Properties of the Correlation Length

The approximate expression for the spin correlation function we determined in Eq. (IIL.52)
consists of a time independent exponential decay and a temporally and spatially oscillat-
ing algebraic decay. To determine an expression for the time-dependent correlation length
from that is ambiguous, as the algebraic part has no proper scale.

The exponential part alone reflects a correlation length of ¢ = ¢~'/2 which follows the
expected scaling law but makes no statement about the time dependence. Thus, we follow
the approach outlined in Sect. I1.5.2 and compute the correlation length via the integral
over the normalised correlation function. As the zero mode of the spin spectrum already
gives the integral over the unnormalised correlation function, we are left with computing
the norm, i.e. to evaluate Eq.(IIL.38) at y = 0. We find that the numerical result for the
time dependent correlation function is described to a good degree by the square root of

the susceptibility,
Isin(At)]
E(te) = ————.
Ve

Consequently, similar to the magnetic susceptibility, we expect a scaling form &(s"#t, s¢)
s™1/2£ to be valid in the regimes ¢ < 1 and ¢ > 1 which allows to independently deter-
mine v = 1/2. In panel a of Fig. II1.4 we show that for ¢ < 0.1 the numerically determined

(IIL.55)
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correlation lengths as a function of time can be indeed collapsed to a single universal
curve, which follows the described sinusoidal form of Eq. (II1.55).

Again, it is the amplitude of the sinusoidal oscillations which carries information about
the exponent v. In panel b of Fig. IIl.4 we show independently the scaling of the amplitude
in several subsequent periods of the oscillations. The figure confirms that the amplitude

follows a scaling law
E(r) ~ e /2, (ITL.56)

fore 0.1, withz; = (i+ 1/2)n/A.

The figure also shows that the definition for the correlation length we employed pro-
duces a slight growth of the amplitude in time for early times which saturates for quickly
for longer times. Within Bogoliubov theory, this is most likely an artefact of our defini-
tion of the correlation length and the numerical evaluation of Eq. (II.38) as the underlying
quasi-particle occupation does not change.
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Figure II1.4: The figure demonstrates the (partial) scaling collapse of the cor-
relation length as a function of time and ¢, for the whole temporal dependence
(panel a), and at several characteristic times (panel b). In panel a, correlation
lengths as a function of time are depicted for various ¢, rescaled according
to the scaling transformation £ — ¢!/2£ and + — At (which captures both
scaling regimes simultaneously). The curves are evaluated for 30 logarithmic-
equidistant ¢ between 1 and 0.001. The figure shows that the scaling transfor-
mation collapses the curves to one universal curve once ¢ < 0.1. In panel b, the
correlation length is evaluated at 7; = n/A(i + 1/2) for each ¢, which corre-
sponds to the maxima of the correlation length in time. The figure verifies via
rescaling that the correlation lengths behaves like ¢ ~ ¢7/2 for ¢ < 1 with a
time dependent pre-factor.
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III.4 Generalised Gibbs Ensemble and Effective Temperature

Its has been subject to extensive theoretical research if and how isolated quantum sys-
tems reach a stationary state, preferentially a state which is describable by a Gibbs or a
generalised Gibbs ensemble [12]. If the latter can be proven for a system, it tremendously
simplifies the task of studying universal or critical properties of the stationary state, as
the theory of statistical ensembles is well understood. The question has drawn especially
high attention for so-called integrable quantum systems. Those posses a infinite number
of conserved local charges which heavily constrain the time evolution.

It has been put forward, first in [11], that integrable quantum systems do reach a gen-
eralised Gibbs state when subject to a sudden parameter quench, which can be ab initio
predicted from local charges in the initial state. Subsequently, this has been demonstrated
for various examples and the relaxation mechanisms have been extensively studied, pri-
marily for 1D spin chains [4, 32, 90, 91, 179-182]. For a system similar!® to ours, it has
been shown recently in experiment [72] that a generalised Gibbs ensemble describes the
post-quench stationary state which the system evolves to after a quench. It was further-
more reported, that it was sufficient to take only a small number of conserved charges
into account to form the generalised ensemble.

In this section, we first introduce the concept of generalised Gibbs ensembles more
detailed for the linearised spin system (described by the action S_ Eq.(III.3b)). In the
context of quench dynamics (see Sect. III.2), we have shown that the post-quench distri-
bution of Bogoliubov quasi-particles is conserved under the subsequent time evolution,
(see Sect. II1.2.1). In this section we discuss implications of that fact and how this leads
naturally to a generalised Gibbs ensemble.

To formulate the statement more precise, one finds that every Bogoliubov mode on its
own constitutes a conserved charge via 8t(b};bk lj0i = 0 for all k. We point out that these
charges are not local but it can be argued that momentum modes for a non-interacting!
integrable system are completely equivalent to the set of local charges [90]. Since our
system evolves under the constraint of an infinite number of conserved charges it is inte-
grable within Bogoliubov theory. Consequently, the spin system is a prime candidate for
the application of the theory of generalised Gibbs ensembles.

We will furthermore demonstrate that the form of the quench protocol (see Sect. I11.2.3),
we apply, generates an ensemble which mimics the simple thermal Gibbs ensemble at a
characteristic effective temperature. We derive the dependence of this effective temper-
ature on the initial (J = J;) and finial (J = J; < J;) linear coupling, starting the quench
in the Bogoliubov groundstate at J;. As a main result here, we find that the effective tem-
perature is set by the initial gap, Tog = A;/(4J;) for strong quenches J; < J; close to the
critical point Jr ~ 0. For weak quenches, J; ~ J;, the energy difference between final and
initial gap sets the effective temperature, Tog = (A; — Ag) /2.

101 [72] the authors study quenches in a two-component Bose gas in 1d, but with gr; = 0 and for a
decoupling quench, J#0 - J =0

UThere is a subtlety for integrable systems which are not mappable to non-interacting systems. To construct
a the generalised Gibbs ensemble there it is necessary to include more than just local charges [182]
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III.4.1 Generalised Gibbs Ensemble for the Spin System

We start by analysing the post-quench Bogoliubov particle distribution for the initial con-
dition Eq. (II1.37), we used in the last section,

+ 1 kK2 +e+1 k2 + & 1
k,Jp) = «QIbT bty = = S 1I1.57
ny (k.Jp) = i(QUb] 'bE 1) 4(\/ T +\/k2+£f+1 5 (IIL.57)

Recall, that this post-quench occupation was obtained by placing the spin system initially
in the Bogoliubov groundstate of S_ at J; — oo. As in the last section, we use the natural
unit system, defined by the energy scale 2J. (see Sect. B.1). In particular, er; = (Jri—Je)/Je-

If every mode occupation is to be considered for the description of the system in terms
of a generalised Gibbs ensemble every, every value ng(k) requires a temperature, T(k),
to serve as a Lagrange multiplier. The generalised partition function for our bosonic Bo-
goliubov theory reads

1
ZGGE = l_[ —_—, (I11.58)

_ oMk
kle

where the factors Ay are to be chosen such that the ensemble produces the desired occu-
pation,
np(k) = _ZééEaAkZGGE (I11.59)

In turn, by comparison with an ordinary Gibbs ensemble the factors Ay can be identified
with a mode-dependent temperature,

A = (k) /T(k) . (IIL60)

This can be seen in analogy to a constant temperature T(k) = const which would pro-
duce a ordinary Gibbs ensemble. Combining both ingredients, one finds for the mode
temperatures

_ w_(k) .
log (1 + ngl(k))

It remains to calculate the spin two-point correlation functions which emerge from the
ensemble Eq. (IIL.58). Note that, for our non-interacting Bogoliubov approximation, it is
sufficient to study one- and two-point functions as there are no higher-order cumulants.
But, in principle, the ansatz Eq. (IIL.58) for the ensemble would allow to deduce all corre-
lation functions also in the interacting case, if one can solve for the mode temperatures.

T(k)

(IL61)

With the expressions from the previous sections, we have already the means to deduce
the two-point correlators. Take Eq. (II.18) at J = J; and insert the ansatz

]. i a7 nO
(6n-(0)dn-(y))oce = I ; e KUY (2Fqq + 1)fk2|]f?’

1
2 b
2”Ofk |z

1 ) ,
(80(0)86(y))loc = 7 ; e K) (2F e + 1) (IIL.62)
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where Fggg can be any Bogoliubov occupation spectrum. One obtains i(leZ fb£|Q>i =
Foge. Turning the argument around, if one sets the Bogoliubov mode occupation numbers
to ng(k) = Fggg the corresponding spin correlation functions are given by Eq. (IIL62).

Formally, Fggg can be written in terms of a Bose-FEinstein distribution, where the
constant temperature is to be replaced by the mode temperatures T(k) from Eq. (IIL.61),
Fsoe = Fge(w-(k,Jf),T(k)). In practice, we need just to set Fsgg = n; with n; given in
Eq. (II1.57).

Before analysing the structure of the mode temperatures and, therewith, the structure
of the generalised Gibbs state compared to an ordinary thermal Gibbs state, we provide a
qualitative overview of what to expect. When looking at the dynamic spin structure factor
G.:(t,k), i.e. the expression within the curly brackets in Eq. (II1.38) (or the regularised
version Eq.(IIL.49)), it is obvious that the spectrum shows no sign of decay towards a
stationary state. This is expected, as there is no scattering between modes which could
provide a relaxation mechanism. On the other hand, it is believed that only observables
which are local in position space should relax to a Gibbs state [15].

The stationary-phase approximation we found with expression Eq. (III.52) for the two-
point correlation function in fact supports a stationary state since the oscillatory part de-
cays in time. The decay mechanism for the local observable in the non-interacting theory
is solely provided by dephasing of momentum modes, which justified the application of
the stationary phase approximation in the first place. Asa consequence, the correlator has
no mathematically well-defined limit for t — oo and the amplitude of the oscillatory part
in Eq. (II1.52) decays algebraically slow, with (S,(0)S,(y)) =~ const — Acos(® — 7 /4)/ Vt.

However, a time average at late times yields a stationary state where the correlator is
of the form

e~ Velyl

Vi
In particular, the correlation length depends only on ¢, via the meanfield scaling law.

The evaluation of the full generalised Gibbs prediction for the corresponding correlator,
starting from the occupation Eq. (II1.57), has to be done numerically.

(82(0)S2(¥)) 100 ~ (IIL.63)

Anticipating the result of the next section, one can nevertheless provide qualitative
arguments for the spin correlation functions in the generalised Gibbs state (Eq. (II1.62)).
We assume that the mode temperatures depend only weakly on momentum, such that
they are effectively constant in the infrared region. Furthermore, for a sufficiently small
¢ the gap is sufficiently small to satisfy A/T < 1 for any finite temperature. Thus, the
Rayleigh—Jeans limit for the Bose-Einstein distribution will lead to a good estimate.

Combining this with Eq. (IIL.38) results, after regularisation, in a spin occupation of the
form (S, (~k)S,(k)) ~ T/(k? + &) which leads again to a spin correlation function of the

fOrm Eq. (III.63),
z z — .

except that the pre-factor is now temperature dependent. However, the dependence on
the spatial separation |y| and, in particular, the correlation length itself matches with the
stationary limit from Eq. (II1.63). In the next section, we show that the mode temperatures
have a universal (¢ independent) asymptotic limit for strong quenches. In this case, the

(IIL64)
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spin correlation function G, (t,y), as derived from the generalised Gibbs ensemble would
fully match the stationary limit from Eq. (II.63) (provided that there is only one effective
temperature relevant).

In summary, within the approximations which can be calculated analytically, we find
that (S;(0)S:(y))i—e = ¢(S:(0)S.(y))cce if the normed correlation function is consid-

ered. In particular this means for the correlation length that &g = &0 = gf_ 1 ? Inthe
non-interacting theory, however, a truly stationary state is only approached in an alge-
braically slow manner. The stationary state contains, as expected, the meanfield scaling
law of the underlying phase transition for the correlation length, which is not altered by
a finite, possibly effective, temperature.

II1.4.2 Effective Temperature

Even if the mode temperatures have no influence on the scaling laws or the criticality of
the phase transition in the non-interacting spin system, they will play a crucial role when
non-linearities are turned on. Thus, it is instructive to analyse the structure of mode
temperatures which our quench protocol generates. We evaluate Eq. (II.61) for T'(k) for a
quench where J' = co (i e. with n;(k) from Eq. (IIL.57)) and Jf is close to the critical value.

Once again resorting to the Rayleigh-Jeans limit, i.e. expanding the logarithm for
n; > 1, yields T(k) = w_(k)ni(k). With Eq. (II.57) one finds the mode temperatures for
our setup,

1 1
T(ker) = (k2 +e— (ke + 5)) . (ITL65)

As we have discussed in Sect. I11.3.1, as long as the quench does not hit the critical point,
i. e. as long as there remains a finite gap in the spectrum, the dispersion is quadratic in k
for k < 1. The mode temperature Eq. (II.65) inherits this feature. In particular, expanding
T(k,é&f) to quadratic order in k results in

C2 &
T(k,ef) ~ % (1 - %(2)) (kK = Aep)) (IL66)

where A(e) = /e(e +1) and ¢s = V2e + 1.

Consequently, for an infrared region which is determined by the gap via k < VA the
mode temperatures can be considered constant. As the post-quench occupation number
of quasi-particles drops fast to zero for k > 1, ¢f. Fig. II1.2, the spin dynamics is mainly
determined by those infrared modes and, thus, by the constant infrared mode tempera-
ture.

Moreover, the gap scales as A ~ +/e for small . As a consequence, even for small
e, i.e. strong quenches, the infrared momentum region k < VA depends only weakly
on ¢, such that the quasi-particle occupation there is to a good degree described by one
effective temperature,

Test(er) = % (Ef — yJe(es+ 1) + 1/2) . (IL.67)

Examples for the mode temperature functions at different distances to the critical point,
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in comparison to the the respective post-quench quasi-particle occupation are shown in
Fig. IIL5 (upper panel). This result implies that the generalised Gibbs state the system
evolves to is, in fact, very close to a ordinary thermal Gibbs state at an effective temper-
ature, given byEq. (I.67), set by the quench. We emphasise that this is not equivalent
to a system which relaxes to a thermal state. What actually happens is that ‘by chance’
the non-equilibrium stationary states disguises as thermal state, when local observables
are considered. This seems to be a rather generic outcome for strong bulk quenches in
integrable systems and has also been reported in, e. g. [32, 183]. From the point of view
of the magnetic susceptibility in Bogoliubov theory, for example, our system looks never
thermal, except for isolated points in time, and certainly never reaches a stationary value.

The mode temperatures, T (k), one finds from the generalised Gibbs approach constitute
a quantitative characterisation of the scales inherent in the chosen pre-quench state. For
an integrable theory, there are infinitely many of those scales which furthermore do not
loose their relevance due to conservation. To obtain universal behaviour for, at least some,
observables within the generalised Gibbs scenario, most of the conserved quantities need
to be irrelevant or dominated by a few.

Beyond Bogoliubov theory the spin system profits form being not integrable. Our
discussion of the Bogoliubov mode temperatures shows how the notion of universal-
ity can be realised even within the linearised time evolution. The presence of a finite
gap leads to a plateau in the occupation numbers for the modes within the gap region
(k < VA). Outside the gap region, the occupation numbers are too small to constitute
relevant scales although being conserved. Hence, the infrared limit of the mode tempera-
tures, Teg = limy_,o T(k), remains as a scale to characterise the initial state. As this scale
mimics an ordinary finite temperature, the scaling hypothesis remains valid if the effec-
tive temperature is included in the scaling forms. In particular, one finds from Eq. (II.67)
that the effective temperature scales as Tef ~ ¢ ! for large distances to the critical point
and asymptotically reaches the universal constant T = 1/4 for & < 1/4 (and J; — o),
cf. also Fig. IIL.5 (lower panel).

Before discussing how the effective temperature generalises to the case of arbitrary
strong quenches, we pause a moment to analyse its origin further. As the phenomenon is
intimately linked to the generation of quasi-particles, it needs to be clarified, first, how the
quench produces quasi-particles at all and, second, why the resulting mode temperatures
are approximately constant in the infrared.

For that reason, we start by introducing an alternative interpretation for the initial
state. If the initial state Eq. (IIL.37) is inserted into Eq. (II.19) one finds that it represents a
Bogoliubov vacuum state for J/J. — o0. We have previously taken the point of view that
the state Bogoliubov groundstate |{2);, which corresponds to Eq. (IIL.37), is a groundstate
at infinitely strong linear coupling. Actually, it is completely equivalent to view it as a
Bogoliubov vacuum state for any finite linear coupling if J. = 0.

To go on, we compare the energy spectrum of the Bogoliubov quasi-particles

8(k) = w_(k,e) ((b);bk) + %) : (IIL68)
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before and after the quench. The pre-quench state is a vacuum of the pre-quench quasi-
particle operators, such that one finds for the initial energy spectrum &; = wi(k)/2 =
w-(k)|j.=0/2, to be constituted by the pre-quench vacuum energy. To get a finite energy
spectrum for the pre-quench state, assume now J. = 0 and J = J, to get &; = € /2 + Jr.
This is equivalent to J; — oo at finite J.

The quench, in this picture, is described now of setting J. to a finite value at fixed J = J;.
One finds for the spectrum of total energy after the quench, (including the post-quench
vacuum energy) with Eq. (IIL.68), inserting w¢(k) = w-(k,Jf) and ng(k) from Eq. (IIL.57),

1 J J
Eilk) = (e +J) - 5 =& - 5 : (IIL.69)
This shows that the post-quench energy spectrum is shifted down by a momentum inde-
pendent energy, & = &; — J./2. The quench, therefore, drains the pre-quench Bogoliubov

vacuum energy, cf- Fig. IIL6.

The total post-quench energy spectrum, contains also a contribution from vacuum en-
ergy. If there is a finite excess energy between E¢(k) and the post-quench vacuum energy
for a mode k, the excess energy is converted to quasi-particles for this mode. Associat-
ing this excess energy with a temperature T(k) = &¢ — w_(k, J§) /2, yields together with
Eq. (II1.69)

o_(k.Jp) _ o-(K)=0-o-(kJ) J

T(k,er) = E — 5 = 5 5 " (II1.70)

The resulting expression is equal to T(k,¢f) from Eq. (IIL65). The form of T(k,éf) from
Eq. (II1.70) shows that the difference between pre- and post-quench quasi-particle disper-
sion is important for the mode dependence.

Energetically, quasi-particle creation is possible because the quench-induced energy
loss is a universal, mode-independent constant, which can be seen as follows. Creation of
quasi-particles happens where T (k, &) > 0 in Eq. (IIL.70). The pre-quench dispersion com-
bines with the constant energy loss —J. /2 to the fixed infrared limit Jf— J./2 in Eq. (I.70)
as k — 0. The post-quench dispersion can be made arbitrarily small by the quench in the
infrared region k — 0. Therefore, there is always a region of momenta with T(k, &) > 0
(see Fig. I11.6). The maximal possible effective temperature T = J./2 also originates in
this.

The second important ingredient is that the post-quench dispersion w_(k, J) is not only
shifted down but also changed in shape, as compared to w_(k)|;,=o. Otherwise, the total
post-quench energy is always devoured by the post-quench vacuum energy, leaving no
space for quasi-particle excitations, as we explain as follows The initial dispersion goes
together with unsqueezed Bogoliubov modes, i. e. the mode function is identically one,
fx = 1. If the dispersion were just lowered by the quench, the mode function would not
change and, consequently, the nature of the modes would not change. As the initial state
is a vacuum state the final state would be also a vacuum state in this hypothetical situation.
It is only the quench induced squeezing of the infrared modes (i. e. for k < v4mJ.) which
allows for a finite excess energy in the infrared part of the energy spectrum. From the
picture of dispersion relations, this means that the ~ k? particle-part of the dispersion is
not changed by the quench while the set-in of the ~ k quasi-particle part is shifted, see
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the green solid line in Fig. II.6 in comparison to the black solid line.

Finally, it remains to be explained why the mode temperatures are constant in the in-
frared. This is simply a consequence of the finite gap which extends up to the momentum
scale k = /4mJ. in the initial dispersion and remains finite in the post-quench dispersion.
As the form of the mode temperature function is determined by the difference between
the two, see Eq. (II1.70), this is enough to ensure a infrared plateau in the mode temper-
ature function together with a finite infrared limit. The weak dependence of the plateau
on the final gap is caused by the squeezing and is, as we have argued, unavoidable for the
phenomenon of quasi-particle generation out of a vacuum state.

69



III

Bogoliubov Theory as a Roadmap

70

]_05-—'—'*'1-"&_'_'.""'% T

[ | — é‘—

-5 L =
10 F| = & =10.001
1073 1072 1071 1 10
10 momentum k
= i T T

mode temperature/occupation

s -
-
[ bl .

1071 F

%' — off

1072 f= = clbo
0.01

-~

Figure IIL.5: The figure shows the generalised Gibbs mode temperatures
(solid lines, in units of 2J.) and the post-quench occupation of Bogoliubov
modes (dashed lines). The upper panel depicts the mode temperature T(k,¢r)
(Eq. (I.65)) and the post-quench occupation of quasi-particles (kfbi) as a func-
tion of momentum at ¢ = {10,1,0.001}, concentrating on the infrared part of
the spectrum, k < v4mJ.. Note that the mode temperatures are to a good de-
gree of approximation constant in this region and decay quadratically for higher
momenta. The scale where quadratic behaviour sets in scales weakly with the
distance to the critical point (see main text). The lower panel depicts the respec-
tive infrared limits as a function of distance to the critical point. The effective
temperature reaches asymptotically the value Teg = J./2
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Figure II1.6: The figure illustrates the energetic configuration before and after
the quench at the example of a quench to ¢ = 0.001, which leads to a thermal
post-quench quasi-particle occupation. The infrared parts of the pre-quench en-
ergy spectrum (dashed black line), &;, which is identical to the pre-quench vac-
uum energy spectrum, the post-quench energy spectrum (solid black line), &;,
the post-quench vacuum energy spectrum (solid green line), and, finally, the re-
sulting mode temperatures (solid blue line). Details are discussed in the main
text.
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II1.4.3 Tuning the Effective Temperature

For the discussion of scaling laws we have deliberately chosen J; — oo. Following the
previous reasoning, this ties the effective temperature solely to the post-quench distance
from the critical point. On the other hand, in this way the effective temperature unavoid-
ably changes with ¢f such that observables, as a function of &, can not be studied at a fixed
effective temperature and compared to finite-temperature results. In this section, we ex-
tend concept of the effective temperature to the case of a finite pre-quench coupling J;.
In this way, one obtains a knob to tune the temperature, to vary it at a fixed post-quench
distance to the critical point.

In Sect. I11.2.3 we have discussed initial states |[{2); which are a Bogoliubov ground-
state for the action S_ at finite pre-quench linear coupling, ] = J; < oco. The initial spin
correlation functions, corresponding to |{2);, are given in Eq. (IIL.31).

We identified this type of initial state as part of a class of initial states where spin fluctu-
ations have minimal uncertainty, (6n_(—k)dn_(k))}50(-k)86(k)y = 1/4 for all momen-
tum modes k (see also Eq. (IIL.32)). The individual spin operator variances are modified
with a mode dependent factor, either enhancing or diminishing the individual variances.
Such a modification is commonly understood as squeezing [178]. In particular, Eq. (IIL.31)
generates a mode dependent squeezing profile with the following asymptotic properties.
For k > 1, one has (dn_(—k)dn_(k)) = no/2 and (66(—-k)50(k)) = 1/(2n¢). The squeez-
ing profile mainly affects the infrared region, k < 1 where the density variance is en-
hanced by an additional factor of J;/(Ji — J.) and the phase variance is diminished by the
inverse factor.

The squeezing of infrared spin fluctuation modes influences strongly the post-quench
occupation of Bogoliubov quasi-particles and with it the effective temperature, as we de-
rive in the following. Qualitatively, it is clear that for Jr = J; no quasi-particles are created
at all and, consequently, T(k) = 0 and T = 0. Thus, one expects that smaller values of J;,
for which the initial state is prepared, lowers the effective temperature for a given quench
to Jr.

To derive the effective temperature quantitatively we start, as before, from the post-
quench occupation of Bogoliubov modes, ng(k, &5, &) = i(leZ’befJQ)i. Here we assume
that b, |Q2); = O for all k, where b, is the Bogoliubov basis diagonalising S- (Eq. (IIL.3b))
at a finite Ji. In Sect. II1.2.3 we derived the initial spin fluctuation correlation functions,
given in Eq. (IIL31), corresponding to |{2);. Using Eq. (IIl.18) for the occupation number
operator at Jr and inserting the initial spin correlation functions from Eq. (II.31) yields

low-(k,&) [k2+e k> +eg+1 1
koeer) = © — - .71
i (k. &, &) 4 w_(k,e) [ k2 + & + k24641 2 ( )

The pre- and post-quench distance to the critical point are defined as eef = (Jor — Jo)/Jes-
We discuss all expressions in the following in the natural unit system (see Sect. B.1). To
represent ng(k, &, &) more conveniently we made use of the relations f? = w_/(k®+¢) =
(k2 + e+ 1)/w_ (see Eq.(II1.11) and Eq. (ITL.9)).

From the expression Eq.(IIL.71) one finds, in particular, that the ratio between pre-
and post-quench excitation spectrum mainly controls the occupation of quasi-particles if
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& = &, since the term in square brackets then is approximately constant in k. Examples
for ng(k, &, &) for several finite ¢; at fixed &g = 0.001 are shown in Fig. II1.7 (dashed lines).
The figure shows, as expected, that the number of created quasi-particles in the infrared
momentum region continuously gets less when & approaches ¢.

The mode temperatures, required to describe ng(k, ¢, ¢f) as a generalised Gibbs ensem-
ble, can be derived right away in the Rayleigh-Jeans approximation (see previous section
Sect. I11.4.2). With T(k, &, ) ~ w_(k,ér)np(k, &, &) one obtains

K246 K2+eg+1] 1
- —w_(k,ef). 11172
k2—|—£i k2+£i—|—1 20) ( €f) ( )

1
T(k, €i9€f) = Za)_(k’gi)

For & — oo, the expression for T (k, ¢, &) is equal to our result for T (k, ) (Eq. (IIL.65)) from
the previous section. The leading-order divergence w_(k,¢;) ~ ¢ for & — oo is cancelled
by the term in square brackets in Eq. (IIl.72). In the other limit ¢ =~ ¢, one finds from
Eq. (II.72) that the mode temperatures are approximately set by the difference between
the pre- and post-quench excitation frequencies, T (k, &, &) =~ (w-(k,&) — w_(k,&))/2.

Examples for the form of T(k, ;, &) in comparison to T (k, &) (i. e. at &g — co) are shown
in Fig. II.7 (solid lines). We find that T(k,¢f) constitutes the maximal reachable mode
temperatures. Lowering ¢; lowers the mode temperatures as a whole. Simultaneously, the
plateau region in T (k, &, &) in the infrared moves towards lower momenta when & =~ ¢.
The effect is, however, rather weak. Lowering ¢ three orders of magnitudes shifts the
plateau just by roughly one order of magnitude down in magnitude and to the infrared
in k. Therefore, we find that the mode temperatures are dominated by a single effective
temperature Teg (e, ¢r) = T(k, &, &) lk—so for a wide range of finite pre-quench distances
to the critical point.

The effective temperature itself is easily found from Eq. (II.72) and conveniently ex-
pressed in terms of the pre-quench gap A; = +/&(& + 1) and and the post-quench gap
A¢ = y/er(er + 1) in the Bogoliubov excitation spectra. We find with Eq. (II.72)

1 £ g+ 1 1
Teq(einer) = T(k,ei,0) [k—0 = — A L—f gif+ 1] - - A¢. (I1.73)

4 2

In the form of Eq. (II.73) for the effective temperature, several interesting limits can be
read off conveniently. For quenches close to the critical point, & =~ 0, we determined in
Sectteffinf that the effective temperature is dominated by the constant value Tog = 1/4.
From Eq. (II.73) we find that this generalises to

A A
Teftlem0 = m =1 (1.74)
where the second equality is an approximation for & < 1. Thus, for quenches close
to criticality, the pre-quench gap determines the effective temperature. If the quench is
strong, in addition (i. e. > 1), the effective temperature is universally set by T = 1/4,
as this is the leading-order asymptotic behaviour of Eq. (II1.74) for & — co.

For strong quenches in general (i.e. > 1 and 1 < & < i.e.), the effective temperature

is approximately (i. e. leading-order in i. e. — co) given by Tg(¢r) (Eq. (IIL67)).
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On the other hand, for weak quenches ¢ = &, one finds from Eq. (II1.74) that the differ-
ence between the pre- and the post-quench gap determines the effective temperature
Aj — Ag

Terr (&1, 65) = 5 (IIL.75)

This completes our understanding of the emergence of the effective temperature in terms
of relevant energy scales from the quench.

As a last remark we comment on the practical relevance of the possibility to tune Te
via &. Following our qualitative discussion in Sect. II.4.1 it is within Bogoliubov theory
not expected that the spin correlation length (in the stationary state) changes with the
effective temperature. Therefore, the correlation length will also not change with ¢;, as
long as the Gibbs ensemble at temperature T is a good approximation for the generalised
Gibbs stationary state.

Nevertheless, the effective temperature has strong influence on quench dynamics of
bulk quantities (such as the correlation length) beyond the linearised regime, as we will
discuss in chapter VI. Within that context, we will find that the effective temperature

determines the scale where the Bogoliubov scaling & = ¢, 1/2 turns into a crossover. In a
certain sense, the scale set by the effective temperature determines up to which distance to
the critical point Bogoliubov theory is valid. Therefore, a second independently adjustable
parameter is helpful for controlling scaling regimes and testing scaling hypotheses beyond
Bogoliubov theory.

III.5 Summary

In this chapter, we have discuss an implementation of Bogoliubov theory for the spinor
Bose gas as defined by the model Eq. (IL.1). Based on a description in terms of relative
and absolute phase and density fields for the Bose gas Eq. (I1.4), we found that spin and
absolute degrees of freedom decouple on the Bogoliubov level. Thereafter, we diago-
nalised the quadratic spin action S_ Eq. (II.3) and derived the corresponding Bogoliubov
quasi-particle basis. From this procedure we obtained, most importantly for subsequent
chapters, the Bogoliubov excitation spectrum of quasi-particles w_(k,¢) Eq. (IIL.11).

The quasi-particle basis allowed us in Sect. IIl.2 to methodically define the quench
within Bogoliubov theory and derive the post-quench time evolution of the full z-spin
two-time correlation function Eq. (IIL30). Thereafter we discussed possible initial states
from which to quench and their physical interpretation. In particular important for sub-
sequent chapters will be the class of initial states defined by Eq. (IIL.31), where the quench
starts in a groundstate of the Bogoliubov quasi-particle basis b}c which diagonalises the
spin action for a specific value of the linear coupling J;.

For this quench scenario, we analysed in Sect. IIL.3 the scaling behaviour within the
dynamic evolution of the z-spin structure factor and correlation function. We find that
the structure factor follows a full scaling form including the post-quench time dependence
Gzz, reg(s€,8" k,s7V7 t) = s_(Qd_”)VQZZ, reg(€,k,t), if concentrating to either small & < 1
or large ¢ > 1 distance to the critical point. The scaling form is fulfilled for the static
meanfield scaling exponents v = 1/2 and n = 0 and the dynamical critical exponent
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Figure IIL.7: The figure shows the generalised Gibbs mode temperatures (solid
lines, in units of 2J.) and the post-quench occupation of Bogoliubov modes
(dashed lines). The initial state is prepared as a Bogoliubov groundstate at a
finite pre-quench distance to the critical point ¢. The post-quench distance is
chosen & = 0.001 for all curves. The upper panel depicts the mode temperature
T(k, &, &) (Eq. (II1.72)) and the post-quench occupation of quasi-particles <b£b£>
as a function of momentum at ¢ = {10,1,0.001}, concentrating on the infrared
part of the spectrum, k < +/4mJ.. The black solid and dashed curve in the up-
per panel corresponds to the red curves in Fig. IIL.5. The lower panel depicts the
respective infrared limits, T(k = 0,¢,¢f) and (b(f)bg), as a function of distance
to the critical point. A finite pre-quench linear coupling decreases the effective
temperature and the mode temperatures as a whole.

z = 1(g < 1)orz = 2 (¢ > 1). These exponents do not need to be determined
by full rescaling of the structure factor but can be obtained from independent rescaling
amplitudes and oscillation frequencies of individual modes in the structure factor. We
use this knowledge in subsequent chapters to analyse the results from full simulation for
the structure factor for the scaling predictions and determine deviations from meanfield
scaling.
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In the last section Sect. II1.4 we applied the concept of generalised Gibbs ensembles [11-
14] to the Bogoliubov formulation of the spin sector, which is naturally an integrable
theory. As main result in this chapter, we derived that the generalised Gibbs ensemble,
required to describe the post-quench occupation of Bogoliubov modes, can be replaced
by a regular Gibbs ensemble. If concentrating on infrared modes k < 1, which is the
important momentum region for critical behaviour, a Bose-Einstein distribution at a sin-
gle, mode-independent temperature describes the post-quench quasi-particle occupation.
This means that the employed quench protocol erases details of the pre-quench state, such
that only one relevant scale, the effective temperature T (¢r, & ) Eq. (IIL73) is left. The scale
is a consequence of the quench itself, together with spectral properties of the system, as
it is set by the pre-quench excitation gap Teg = A;/4 for strong quenches A < A;.

We have argued that correlations in the generalised Gibbs stationary state of the Bo-
goliubov theory are insensitive to the temperature and always follow the scaling law

&~ sf_l/ ?, Nevertheless, we will discuss in chapter VI that the effective temperature has
strong influence on quench dynamics of bulk quantities (such as the correlation length)
beyond the linearised regime. Within that context, we will find that the effective temper-

1/

. . . -1/2 .
ature determines the scale where the Bogoliubov scaling § = ¢, '~ turns into a crossover.
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IV Comparison to the Experiment

Multi-component quantum gases, of bosonic or fermionic nature, offer a vast playground
for theory and experiment alike. Especially in the world of alkaline atom species, where
reaching quantum degeneracy is a long-known art since the groundbreaking works by
Cornell, Wieman [184] and Ketterle [185] , multi-component gases are nowadays often
used to mimic completely different systems from the condensed matter or even high-
energy physics realm. As they allow for in situ imaging of densities, an important ap-
plication for example is spin pattern formation and dynamic spin mixing(see [74, 152,
164, 174, 175, 186—191] for a collection of experiments in that context). For being clean
and controllable multi-level systems multi-component condensates of alkaline atoms as
well often employed in the context of quantum information and spin entanglement ex-
periments,see for example [192-198]. And, for all those properties, multi-component al-
kaline gases have been proposed as construction kit for simulators of non-abelian gauge
theories [199-201].

In the subsequent chapters V and VI, we present simulations for quench dynamics in
the two-component Bose gas in one spatial dimension. A substantial part of the moti-
vation for the numerical work we carried out for precisely that system comes from the
experiments presented in Refs. [118, 202] by the Oberthaler group. In this chapter, we re-
view the recent experimental results on quenches in the 1d spinor Bose gas from Ref. [73].
As main result, we! find in Ref. [73] that the current experimental realisation lies within
the Bogoliubov scaling regime but is at the verge of going beyond the Bogoliubov regime.

The purpose of this chapter is to motivate why to study quenches in the spinor Bose
gas, instead of theoretically simpler models. In contrast to, for example, the Ising chain or
a O(N)-symmetric field theory which are typically effective descriptions, the model we
use, defined by Eq. (Il.1), directly reflects the experiment. For the spinor gas, the experi-
ment has a similar control over interaction parameters as the simulation. For observables,
the experiment is able to measure realisations of the spin density field in situ, such that,
in principle, all equal-time correlations functions of the spin fields can be retrieved as
ensemble averages. Therefore, apart from practical issues, the spinor Bose gas allows
comparing simulation and experiment of the same quench dynamics directly.

IV.1 Experimental Realisation

In the experiment in Ref. [73], the two-component gas is prepared in a quasi-condensate,
where the atoms are in two hyperfine states, which we denote as |[|) = |F = 2,mp =
—1)and |T) = |F = 1,mr = 1). The system is described by the model Hamiltonian

IFor Ref. [73], I contributed to the theoretical analysis and the interpretation of the experimental data and
provided data from direct numerical simulation.
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Figure IV.1: Details of the experimental system. (a) Phase diagram, distin-
guishing miscible and immiscible phases of the elongated degenerate Bose gas
of rubidium atoms in F = 2 (blue) and F = 1 (red) hyperfine states. The state of
the system is controlled by linear coupling of the levels, with Rabi frequency (2,
and by tuning the collisional interaction between atoms in the hyperfine states,
quantified by the relative strength & = a7/ y/array] of inter- and intra-species
scattering lengths (experimentally fixed to @ ~ 1.23). A quantum phase tran-
sition occurs at Q. = ngg(a — 1), with 1D atom density ng and intra-species
coupling constant g. (b) The system is initially prepared far in the miscible
regime, and then ) quenched close to 2. After different evolution times the
two species are absorption imaged. Snapshots of the patterns emerging on ei-
ther side of the transition are shown, with corresponding normalised density
imbalance (n1(y) — ny(y))/no and density correlation functions between spa-
tially separated points y and y’. The correlations on the miscible side exhibit
decay on a characteristic length scale, while oscillations on the immiscible side
reflect domain formation as seen in the density. Figure adapted from [73]

Eq.(IL.1). The collisional interaction between atoms in these states is tuned by use of
an inter-species Feshbach resonance [195, 203] such that the system is in the immiscible
regime, as discussed in Sect. II.1.2. The situation is illustrated in Fig. IV.1a (cf. also Fig. IL.1).

Specifically, the interspecies scattering length aq| is chosen larger than the intraspecies

scattering lengths a;t and aj;. In the experiment, the ratio « (see Eq.(IL.3)) is set to
a = apy/+/array; = 1.23. De-mixing of such kind has already been observed experi-
mentally [74, 75, 118] and studied theoretically [87, 113, 119, 191, 196, 204] Varying the
strength of linear Rabi coupling? 2 = 2] between the two atomic species allows tuning
across the quantum phase transition between the immiscible and miscible regimes. Note

%In the experimental context, it is more common to formulate the linear coupling term in Eq. (IL.1) in terms
of 2 = 2], as it is realised by a Rabi coupling. Theoretically on the other hand, it is a Josephson-type
coupling term. We will discuss the experiment in terms of the Rabi coupling €2 but the relation 2 = 2]

78

can be assumed at any point for any plot or expression.



IV.1 Experimental Realisation

that we use 2 = 2] for the linear coupling in this chapter and present data in physical
units (and not in natural units).

The experiment studies, the dynamics after a sudden change, i. e. quench, of the linear
coupling, observing the time evolution of the spatially resolved density patterns of the
two components nq(y) and n|(y) along the extended axis of the trap, on either side of
the miscible-immiscible transition (Fig. IV.1b). Due to the repulsive interactions between
the individual components, the local atomic density p(y) = n1(y) + ny(y) is to a very
good approximation constant, such that only the density difference n;(y) — ny(y) fluctu-
ates. Consequently, the gas can be considered as a homogeneously distributed, coupled
collective spin ensemble, characterised by a continuous angular-momentum field S(y)
(Fig. IV.2a).

The longitudinal extension of the cloud of ~ 200 um allows exploring the miscible
regime where the expected length scales are of the order of a few microns, as well as
the immiscible side, with expected domain sizes of a few tens of microns. As the densi-
ties of the individual components can be measured, the z-component S,(y) = [n1(y) —
n;(y)]/p(y) (see also Eq. (IL.2)) of the ‘Schwinger spin’ normalised to the total density can
be obtained from the density differences. Finally, the equal-time spin correlation function

G2z (y,y',t) = (S2(y)S=(y' s, (IV.1)

between different points y,y’ can be determined from the density patterns. Examples of
realisations of the density fields, the S,-spin field and the obtained correlation function
Eq. (IV.1) are depicted in panel Fig. IV.1b. In particular, the lower part of Fig. IV.1b displays
spin domains which have formed after a quench across the critical point.

Initial state in the Experiment

Before we turn to results on scaling behaviour, we describe the initial state in the experi-
ment. Both hyperfine-modes j =T and | are initially occupied equally with zero relative
phase, i. e. the system is fully polarised along the positive spin x-axis. In this state, the
spin degrees of freedom can, to a good approximation, be considered in the zero-spin-
temperature groundstate while the symmetric sector is equilibrated at a temperature on
the order of T =~ 30 nK.

The spin, pointing initially into the negative z-direction, as only the |T) state is pop-
ulated, is rotated into the x-direction, i.e. to (©,0-) = (0,0), with a 7 /2-pulse in the
linear coupling at high coupling strength 2 > (.. The initial superposition of |]) and
|T) states can be, to a good approximation, considered being prepared at infinite linear
coupling strength. As a consequence, the initial spin and relative phase fluctuations can
be considered to be Gaussian and delta-correlated in space,

Goz(y:y'3t = 0) = (Sx(¥)Sx(y"))o = (2n0)'S(y - v/)
=(0-(y)0-(y')o = Gyy(y,y";t =0). (IV.2)

We have used this initial state (see also Sect. III.2.3) for computing quench dynamics and
scaling behaviour within Bogoliubov theory (see Sect. IIL.3 and Eq. (IIL.37)). These cor-
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IV Comparison to the Experiment

relations determine the quasiparticle occupation numbers which form the diagonal ele-
ments of the density matrix in the quasi-particle basis and represent the conserved quan-
tities during the ensuing evolution, as long as the system stays in the linear regime, see
Sect. I11.4.

After this preparation procedure, the Rabi coupling strength is quenched close to the
critical coupling strength, with distances in the range ¢ =~ {0.1... 1}, on a time scale much
faster than the pre- or post-quench gap period.

Details on the Experimental Procedure

To understand the relation to the simulations from subsequent chapters better, we pro-
vide details on experimental parameters and employed procedures in the following, cf.
also [73]. The condensate is prepared with N ~ 4 x 10* Rubidium-87 atoms in the
IT) =IF = 1,mp = 1) hyperfine state of the 55,/ hyperfine manifold, in an elongated
optical trapping potential with (wy,w,) = 27 X (1.9,128) Hz. The resulting density in
the trap centre is therefore n;p ~ 230 um~!. The trapping potential is harmonic to a
good degree of approximation, V(r) = mwng /2 +mw?|r,|?/2. The Feshbach resonance
between |T) and ||) = |F = 2,mp = —1) at 9.10G is used to tune the inter-species
scattering length to a1 = 120 agopn, at 9.08 G while the intra-species scattering lengths
are fixed, (ar,ay)) = (95,100) apohy- At this magnetic field, the bare system is immis-
cible. By applying resonant two-photon linear coupling, the system can be rendered
miscible. The phase transition occurs at a critical Rabi frequency 2. = 2J.. In mean-
field and uniform-gas approximation, it is given by ). = —2n,gs; ~ 27 X T0Hz where
gs = hw, (ayy+ay—2ayr) is the effective 1D coupling of the spin degrees of freedom, and
2n4 the 1d density of the whole gas. Note that g; is the generalisation of g_ if g1 # g.
After the initial preparation of all atoms in |T), a 7/2 pulse of combined microwave and
radio frequency magnetic fields with a Rabi frequency ) ~ 27 x 340 Hz, creates an equal
superposition of |T) and |]). Subsequently, the phase of the radio frequency is switched
by 7/2 (37 /2 for € < —1), and (2 is quenched to a final value above or below the critical
value €)..

After the following evolution time, the two components are sequentially detected using
in-situ absorption imaging at 9.08 G. Due to the proximity of the Feshbach resonance,
atoms are lost with a 1/e lifetime of ~ 30 ms, and the density decreases with time. The
resulting change of {2, was compensated by dynamically adjusting the Rabi frequency (2
during the evolution time. When discussing the results all given values for (2 will refer
to the initial value. Other effects of atom loss such as the change in the spin healing
length & remain. To ensure resonance of the two-photon coupling, the independently
determined AC Zeeman shift, resulting from the detuning of 200 kHz to the intermediate
|F = 2,mp = 0) state, is compensated by adjusting the frequency of the radio frequency
driving § (c¢f. Eq.(IL1)). The average of the density dependent meanfield shift oc (gy —
g11)2n4 is compensated in the same way. However, we point out that this compensation
mechanism works based on the meanfield approximation and effects of gyy # g;; might
become relevant again if the results are compared to beyond-meanfield predictions.

In the analysis of the in-situ images the centre of the cloud is selected to reduce effects
of cloud inhomogeneity and position. Images with an integrated population imbalance
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IV.2 Time Evolution of Correlations

INy — Ny|/(N7 + N;) > 0.2 are not taken into account, as well as images with large
imaging noise. The longitudinal extension of ~ 200 ym allows to explore the miscible
regime, where the length scales are of the order of a few microns, as well as the length
scales of a few tens of microns on the immiscible side. The transverse extension of the
atomic cloud is & 2 ym (while the chemical potential is ¢ ~ 27 X 300 Hz) and is compa-
rable to the spin healing length &(Q) = 7/ \m(2gsn+ + 7Q) = Jh/mQce for |e| ~ 1.
Thus the system close to quantum criticality is effectively one-dimensional for the spin
degree of freedom. The experimental data is analysed with respect to the linear density
profiles ny | (y) of each component from which the spin profile S, (y) and its longitudinal
correlations G, (y,y’,t) = (S;(y)S;(y’)): between different points y,y” along the axis of
the trap are computed, and averaged over ~ 20 experimental realisations. As observables
from the experiment are computed within the approximately homogeneous trap centre,
results from our simulations or Bogoliubov theory alike can be compared by means of the
physical value of the critical coupling in the trap centre, {2, =~ 27 X 70 Hz. This allows
to convert the J.-based unit system, we employed so far for calculations, back to physical
values.

In [73] it has been shown, by comparing the described experiment with Bogoliubov
theory and our non-perturbative results from simulation (these will be discussed in detail
in chapter V and chapter VI), that the experiment is still in the meanfield regime but right
at the brink for its smallest reachable distances from the critical point. It is also argue that
spatial resolution and reachable hold times are already sufficient to witness critical dy-
namics beyond the meanfield approximation, despite atom loss and trap-generated spatial
inhomogeneity, if smaller distances to the critical point can be stabilised.

IV.2 Time Evolution of Correlations

The experiment studies quenches in €2 to the miscible as well as to the immiscible regime,
starting in the miscible regime as described above, and measures the post-quench cor-
relation function G, (y,t) and corresponding correlation length &(¢). The goal is finally
to determine scaling behaviour of those quantities (as we have done within Bogoliubov
theory in Sect. II.3). In this section, we briefly show the time evolution of correlations
for quenches on the miscible side, as measured in the experiment. We have discussed the
prediction from Bogoliubov theory for the corresponding case in Sect. III.2.

The long-wavelength dynamics of the effective spin fluid is under the conditions of the
experiment described, to a good approximation, by a translationally invariant nonlinear
XXX-type Heisenberg Hamiltonian density (see also Eq. (IL6) with Q = 2))

H = [10,81° /4 + QS — Q52 /2| no /2. (IV.3)

The correlations G, (y, t; ¢) developing on the miscible side (¢ > 0) are shown in Fig. IV.2b,
in comparison with homogeneous Bogoliubov-de Gennes theory predictions.

The Bogoliubov expression for G..(y,t;¢) is, in principal, given by the expression
Eq. (IIL.38) we have also derived in Sect. II1.3. To compare to the experiment, however,
there are additional effects included (see also the supplementary materials in [73]). The
Bogoliubov expression is averaged over the density inhomogeneity in the trap. To do

81



IV Comparison to the Experiment

(a) =2 4
=1 i ——————r ]
— y position y
z
b x (c
( )1.0 T T T ( ) 2.5 T IT
t=2ms ¢ =017
0.5 B
0.0 saesvsegyeswe
? 1.0 T
Ko} t=5ms
ﬁ 0.5 1
> 0.0 vwyweeeve
Y
-~ 10 T T T
0.5l t=28ms |
0.0 L L &b ok
0 5 10 15
y —y' (um) time (ms)

Figure IV.2: Time evolution of correlations after quench to the miscible side
of the quantum phase transition. (a) Two-component gas as a coupled collec-
tive spin ensemble. The spatially resolved density difference between F = 1 and
F = 2 allows the extraction of the local z-component of the collective spin vec-
tor S(y). (b) Measured spin correlation function G,,(y,y’,t) = (J.(y)J.(y’)): at
three different times after a quench to ¢ = Q/Q. — 1 = 0.17, showing build-up
of spatial correlations. Solid black lines show Bogoliubov-de Gennes mean-field
predictions. (c) Time-evolution of the correlation length £(t; ¢), for three differ-
ent ¢, deduced by fitting an exponential to the extracted correlation data. The
Bogoliubov evolution (solid lines) recovers the initial near-linear rise of £, with
slope given by the speed of (spin-wave) sound, and captures the maximum cor-
relation length at a characteristic time depending on ¢. The predicted oscillatory
behaviour is experimentally observed for larger ¢, while the maximum correla-
tion length reached at short times is robustly detected in all cases. Dashed lines
serve as a guide to the eye, marking the predicted first maxima. For the scaling
analysis of the data, the correlation lengths are compared at a fixed time, see
Fig. IV.3. Figure adapted from [73]

so, one replaces the homogeneous density ng in Eq. (II1.38) with the trap density profile
np — n(y) and averages the resulting function over n(y). Additionally, the resulting Bo-
goliubov correlation function is convoluted with the optical point spread function of the
imaging system.

Fitting an exponential to the observed correlation functions, a correlation length £(¢; ¢)
is extracted. The post-quench time evolution of £(¢; ¢) shows near-linear growth after the
initial quench (see Fig. IV.2c). The Bogoliubov prediction for £(¢; ¢), which is extracted
in the same way from the adapted Bogoliubov correlation functions, (solid lines) qualita-
tively reproduces this rise as well as the oscillations seen for larger ¢. The damping of the
oscillations seen at smaller ¢ is attributed to effects of the transverse trapping potential.
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IV.3  Scaling Behaviour of Correlations

Thus, Bogoliubov theory describes the quench dynamics on the miscible side to a good
degree, including the full correlation functions (see Fig. IV.2b), up to the first maximum in
the correlation. Thereafter, most likely effects from the trap lead to deviations, not (alone)
interaction effects [73].

IV.3 Scaling Behaviour of Correlations

Up to the first maximum in correlation, it is therefore reasonable to test for the meanfield
scaling predictions for the z-spin correlations (see Sect. II.3). Using the theoretically
expected exponent of 0.5 for rescaling the measured correlation functions at a fixed time
(t = 12 ms) they all fall on a universal curve (see Fig. IV.3a, upper panels).

The maximum correlation length for different ¢ is then extracted, within the first 12 ms
after the quench, where this observable is still weakly affected by the atom loss or effects
of the trapping. Extracting characteristic length scales, as described in Sect. IV.2, scaling
according to the meanfield prediction

E(trerie) ~ 7", (IV.4)

is found (see lower panels of Fig. IV.3a).

The exponent extracted from a linear fit of £ on a double-log scale is v = 0.51 + 0.06
(Fig. IV.3a, lower right panel). The scaling exponent furthermore found to be robust.
Varying the range of the exponential fit of the correlation functions or the reference time
tret < 12 ms after the initial linear rise does not affect the scaling exponent v.

Although the dynamic evolution was not recorded for quenches to the immiscible
regime, scaling behaviour is analysed after a hold time. As the quenches reach deep into
the immiscible regime ¢ < —1/2, a dynamical instability is triggered which nucleates do-
mains in the z-spin (see Sect. I1.4). The domains come with a characteristic size Ly, which
provides an equivalent to the correlation length in the immiscible regime.

In Fig. IV.3a (lower left panel) the measurements of L4(¢) for quenches in the immisci-
ble regime are shown. The domain size is determined after a hold time sufficiently long
for domains having fully grown. From a fit the scaling exponent of v = 0.51 + 0.04
(Fig. IV.3a, lower left panel) is found, with Lq(¢) ~ ¢7V. It meets the prediction from Bo-
goliubov theory (see Sect. 1.4 and Eq. (I.37)), when identifying the domain size with the
most unstable mode via Lg ~ 1/kp,.

As aresult, in both, the miscible and immiscible regimes, the experimental observations
displays self similarity under rescaling y — ¢"y with v = 1/2, with correlations following
different universal functions.

Since for quenches in the miscible regime the full time evolution of correlation func-
tions has been measured, a dynamical critical exponent can be determined. To obtain
the dynamical exponent z, the observed time dependence of the correlation functions are
analysed.

A characteristic time scale can be defined when focusing on the point of time 7 where
&(t) levels off after the initial linear rise (Fig. IV.3b, upper panel). To find 7 from data,
crossing point of two independent linear fits to the short and long-time behaviour is de-
termined. The resulting dependence of 7 (¢) is compared, on a double-log scale to a power
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Figure IV.3: Spatial and temporal scaling of the spin-spin correlations. (a) Spa-
tial correlations after quenches to different proximities ¢ from the critical point
(colour-coded), on the immiscible (left panels, at ¢ = 39 ms) and miscible side
(right, t = 12 ms). Top row: The correlation functions, under a rescalingy — ye"
of the distance dependence with mean-field exponent v = 1/2, fall on a universal
curve. Bottom row: e-dependence (double-log scale) of the characteristic length
scales deduced from the correlation functions. The straight lines reveal values
for the critical exponent v = 0.51(4) on the immiscible and v = 0.51(6) on the
miscible side of the transition. (b) Temporal scaling of the spin-spin correlations.
The characteristic time 7 for different ¢ is obtained as the intersection point of
the linear fits to the initial rise of £(¢) (grey symbols for ¢ = 0.1) and to the be-
haviour after ¢ deviates from this rise. The procedure of determining the inter-
section is exemplarily shown in the upper panel for ¢ = 0.23. In the lower panel
we compare the extracted 7(¢) to a mean-field scaling with vz = 1/2 (dashed
line) and to the Bogoliubov prediction 7 ~ 1/A, with gap A(e) = Q¢ +/e(e + 1),
also applicable at larger ¢ > 1 (solid line). Figure adapted from [73].

law with exponent vz = 1/2 (see Fig. IV.3b, lower panel, dashed line), from Bogoliubov
prediction (cf: Sect. IIL.3). The deviation of the data from this power law for large ¢ can be
understood within Bogoliubov theory which predicts £(t; ¢) = (2mQce)~'/2| sin(A(e)t)]
The time t; . of the first maximum (solid line in Fig. IV.3b, lower panel), related to the
characteristic time 7, is inversely proportional to the gap, i. e, zero-momentum-mode fre-

quency A(e) = Q. +Je(e + 1).

IV.4 Outlook

On either side of ¢ = 0, the miscible and the immiscible, z-spin correlations as measured

from experiment display scaling behaviour. The critical exponents extracted from exper-

imental data are thereby consistent with Bogoliubov-de Gennes mean-field predictions.
To reveal the limitations of mean-field theory and study the effects due to the excita-
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Figure IV.4: (Color online) Scaling analysis at short times after the quench. Cor-
relation length &(t; ¢) on the miscible side of the transition, at the time of the
first maximum of & after the quench. The solid black line marks the Bogoliubov
prediction &gog = +/71/(2mf2c¢) also shown in Fig. IV.3a. Closer to the critical
point, the open coloured symbols show results of semi-classical simulations of
the quench dynamics. In the experimental range (¢ 2 0.1) simulation data and
Bogoliubov mean-field prediction and experimental data (black filled symbols)
agree. For ¢ < 0.1, the simulations demonstrate a deviation from the mean-field
power law and saturation for ¢ — 0. Figure adapted from [73]

tion of total-density fluctuations, we have performed for [73] semi-classical simulations
(see Sect. I1.5.1). We discuss the numerical results in detail in the subsequent chapters V
and VI. Before going on, we give an outlook of what to expect with respect to the scaling
behaviour of the experimentally determined correlation length.

We define a correlation length & in terms of the zero-momentum limit of the Fourier
transform of the normalised spin-spin autocorrelation function, &(t,¢) = G,.(k,t;¢) =
f dy exp{—-iky}G..(y,t; ¢) (see also Sect. IL.5.2). As for the experiment, we analyse the
correlation length obtained from full simulation at its first maximum in the miscible
regime, & (¢) = max{(t,e) for € > 0, as a function of ¢ (see Fig. [V.4).

For ¢ > 0.1, we find very good agreement of the computed correlation length at the first
maximum (blue points in Fig. IV.4) with meanfield scaling (solid black line) and experi-
mental data (black points, see also Fig. IV.3a). The numerical data shows that, for ¢ < 0.05,
the extracted correlation length scale at the first maximum deviates from a simple mean-
field power law and saturates to a finite value at vanishing ¢. This e-dependence of &
shows crossover behaviour reminiscent of an equilibrium one-dimensional Ising model
[89].
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IV Comparison to the Experiment

As one of the main results of this work, we quantify this relation between the crossover
in the spinor Bose gas for quench dynamics in terms of an effective temperature and the
universal crossover Ising crossover functions in chapter VI. The purpose of this chapter is
to show that the experiment is not far away from actually measuring the crossover. The
experimental data stops at ¢ ~ 0.1, as it was in the realisation used in [73] not possible to
stabilise a smaller distance to the critical point against atom losses. It seems realistic to
overcome this problem?®, for example, by using other states in the hyperfine manifold of
87Rubidium and to, finally, explore the crossover regime with an improved version of the
experimental setup.

3Personal communication with the other authors of [73]
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V Paramagnetic Quench Dynamics
Beyond the Linear Regime

In this and the following chapter VI, we present a thorough numerical analysis of the
dynamical response of the two-component Bose gas when quenched into the vicinity of
the quantum critical point J.. Thereby, we concentrate on real-time dynamics of spin
correlation functions after a quench in one spatial dimension, since this is the situation
which is directly accessible by experiments (cf. chapter IV and [73]).

Phase transitions in one spatial dimensions usually come with a catch. In 1d, fluctua-
tions always destroy true long-range order, in the sense of a diverging correlation length.
Consequently, critical scaling is not expected in (classical) one dimensional systems. On
the other hand, in the realm of quantum physics it turns out that not only the fluctuations
in spatial directions are important. For equilibrium physics, the time direction has the ex-
act same meaning as any spatial direction, increasing effectively the dimensions for the
phase transition. This can be easily seen when an euclidean path integral formalism is
applied (see for example [127] or [128] for an introduction to quantum phase transitions).
In the field-theoretical description of a spatially one-dimensional quantum system, the
temperature T constitutes a second euclidean dimension with finite extent ~ 1/T. Thus,
at zero temperature one is back at the classical system in the thermodynamic limit in
two-spatial dimensions, including critical scaling.

The phase transition in the quantum Ising chain in a transverse field [89, 205] pro-
vides expectations for the influence of non-zero temperature on critical scaling. Scaling
behaviour with exponents from the Ising universality class in 2d appears in observables
for larger distances to the critical point. But, at any non-zero temperature, close to the
critical point observables such as the correlation length stay analytic (do not diverge).
This implies deviation from critical scaling in favour of a crossover, which appears when
temperature is on the order of the excitation gap. We discuss the transverse-field Ising
model and its relevance for the spinor gas in more detail in the next chapter VL.

In this chapter, we analyse when, in time and distance to the critical point, the full
semi-classical simulation (see Sect. I.5.1) of the spinor Bose gas starts to deviate from
the Bogoliubov behaviour, presented in chapter III. In particular, we are concerned with
the question what happens to the meanfield scaling predictions (see Sect. IIL.3.2) for the
structure factor beyond Bogoliubov theory. Therefore, we concentrate on the scenario of
a sudden parameter quench in J on the paramagnetic side, as introduced in Sect. IIL.2. and
analyse the system mainly in terms of observables which are directly accessible by the
experiment [73].

Naturally, one expects to find a regime in time and distance to the critical point where
the Bogoliubov results of chapter III are valid, in particular the predictions for G,,(t,k)
(see Sect. I11.2). In particular, we find that meanfield scaling stops being valid for quenches
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to distances to the critical point smaller than & < 0.1. For smaller distances, scaling be-
haviour is replaced by a crossover-like behaviour, similar to the expectations for a thermal
system in one spatial dimension.

In this chapter, we concentrate on identifying the deviations of the full simulation from
Bogoliubov theory from the point of view of observables in momentum space. The next
chapter VI is dedicated to the question if the quench dynamics of position space cor-
relations can nevertheless be formulated in terms of universal functions. To answer it
we will use the similarity of our model to the transverse-field Ising chain and exploit its
analytically computable universal scaling functions.

In both chapters (this and VI), we present simulation results obtained from applying
the Truncated Wigner method [83, 84], discussed in Sect. IL5.1, to the full model for two-
component Bose gas (Eq.(IL.1)). Additional details on the simulations are described in
Appendix B and, in particular, numerical parameters are described in detail in Sect. B.3.
Figures are presented in natural units of 2], (see Sect. B.1).

V.1 Sampling of the Initial State

Before we present and discuss the results from semi-classical simulations, we discuss the
sampling procedure of the initial state. The final goal is to implement a parameter quench
in J, as discussed in Sect. II1.2, with a well defined (in terms of spin fluctuations) initial
state. As the time evolution itself in the semi-classical approximation is simply generated
by the classical equations of motions, the post-quench coupling, J;, can be directly set in
the equations Eq. (IL.42). The quench scenario is then defined by the choice of the initial
spin fluctuations. Apart from the fact that the Wigner function of the initial state needs
to be known in advance, an additional complication is thereby that we need to sample
fluctuations in the fundamental fields ¢;(k, 1), gzﬁj(k, to) (see Sect. IL5.1). Therefore, the
initial fluctuations in the spin fields can not be set directly.

We proceed as follows. First, we discuss how we sample in practice the fundamental
classical fields ¢;(k, 1), gbj(k, to), to initialise the simulations from a well defined initial
state in the language of Wigner functions. Thereafter, we derive to which initial state
for the spin fluctuations this maps. Finally, we summarise the quench setup which is
implemented in simulation. Essentially, the initial state which is sampled in the numerical
simulations corresponds to the groundstate of the spin sector at J] = J; — oo, including
quantum fluctuations.

Initial State in the Fundamental Field Picture

The quality of the truncated Wigner approximation depends to a high degree on the sam-
pled initial Wigner distribution. In general, it is beneficial if the exact analytic form of the
distribution is known which is for example the case for the non-interacting homogeneous
Bose gas at zero temperature.

Here, we take advantage of that fact and choose to sample the initial field configurations
for each component independently from the Wigner distribution of a non-interacting
zero-temperature gas. Expanding the field in the momentum basis it implies that the non-
zero momentum modes have to be seeded with complex numbers drawn from a complex
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Gaussian probability distribution. The zero mode needs to be filled deterministically with
the remaining particles, reassembling the condensate. The initial field realisations for
each component are therefore given by

$i(k) = VNS0 + k0 » (V.1)

where c; are Gaussian random numbers with {c;) = 0 and (c}ick) = 0.5. The determinis-
tic part AV; is to be chosen such that )} (¢} (k)¢;(k)) = Nj. The standard deviation of the
ck leads to half a particle per non-zero momentum mode on average which is the classical
statistical representation of the quantum vacuum at zero temperature.

The subsequent time evolution of the fields is computed with the classical equations of
motion Eq. (Il.42) at non-zero linear and non-linear coupling constants. Thus, from the
point of view of the two-component Bose gas, all couplings g1, g;, g1, and J are quenched
instantaneously to a non-zero value, where ‘instantaneously’ here means on the time scale
of the numerical temporal resolution.

Initial State in the Spin Picture

It is equally important how the above described initial field distribution is represented in
the spin picture. When the distribution is transformed from the Fourier mode expansion
to position space, the Gaussian distributed non-zero modes are incoherently added to the
zero mode. This results in a complex Gaussian' distribution for the fields, at every site of
the position-space grid, with a non-zero mean, {(¢;(y)) = +/no — 1/2, and variance 1/2.

The density and phase fields do, strictly speaking, not follow a Gaussian distribution.
However, for high mean densities ng > 1 a Gaussian distribution is a good approximation
for both fields. One finds then the mean of the density field distribution, being equal to
the second moment of the complex field distribution, (n;(y)) = no, and a variance for the
density field distribution of An;(y) = no.

Under the assumption of high mean densities, the z-projection of the spin field can also
be taken to be Gaussian distributed at every grid point, as one has then approximately
S; = (ny —ny)/(ny + ny) = (ny — ny)/2ng. By virtue of Gaussian error propagation, the
variance of the z spin distribution is consequently AS,(y) = [Anq(y) + Any(y)]/4n? =
1 / 2n0.

Similar considerations for the condensate density field, n. = (ny 4+ n})/2, lead to a
variance of Any (y) = ng/2. The means are (S;(y)) = 0 for the spin field and {(n(y)) =
np for the condensate field, respectively. The position-space distribution of the phase
fields has a well defined mean and variance due to the deterministic phase of the zero
mode. Otherwise, the phase fields would be uniformly distributed.

For high mean density, the phase fields of the individual components are approximately

determined by 6; = sin (Im¢;/ /¢i¢) ~ Im¢;/+/ng. Within that approximation the
phase fields can be considered to be distributed according to a Gaussian at every point of
the grid, since the imaginary part of the complex field is so, too. Thus, the variances are

UIf (y) is the mean and ¢? the variance the complex normal distribution we refer to is of the form

PIE (). 6w)] = Ty 757 e {072 [(0) - 6(w)] °}
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Ab;(y) = Alm¢;/ng = 1/4ny.

As the two phase fields are statistically independent, naturally, their symmetric and
anti-symmetric combination is, within the approximation ng > 1, as well Gaussian dis-
tributed with zero mean values, (6_(y)) = (0+(y)). The variances are again obtained by
means of Gaussian error propagation, A0_(y) = A4 (y) = 1/2ny. Note that the distri-
bution of 6_ is connected to the distribution of the spin fields on the equator of the Bloch
sphere.

For small fluctuations of S, and 6_, which is the case for the initial conditions we

describe here, the spin projection in y direction, S, = /(1 —S%)sin6_, is to lowest
non-trivial order approximated by S, ~ 0_. Therefore, the variances are directly equal,
AS,(y) = AO_(y), to quadratic order in the fluctuating fields (cf. also chapter III). At
the same level of approximation, the x projection of the spin needs to be assumed non-
fluctuating, (Sx(y)) = 1 and AS,(y) = 0, as the linearised mapping between relative
phase and density and spin does not take the curvature of the Bloch sphere into account.

Quench Setup in the Simulations

The initial state, in terms the Wigner distribution for the uncoupled system at zero tem-
perature, is defined as a product of probability distributions which are completely local in
momentum or position space. Consequently, the local variances determine the connected
second order correlation functions via Gx (y—y’) = AX §(y—y’). Due to the Gaussianity
of the field distribution, correlation functions of higher order have no non-zero connected
contribution.

From the perspective of the spin sector, the initial state appears as follows. The mean
field configuration is given by (S;(y)) = (Sy(y)) = 0 and (S.(y)) = 1, resembling the
configuration for which we carried out the Bogoliubov transformation in chapter III. The
initial two-point correlation functions in the spin sector read

(5:(0)3: () = 5,000 - ).

(O-(4)6-(y')) = 5,00~ ¥). v2)
In Sect. IIL.3 we have used this particular state to set off the Bogoliubov dynamics and
have also argued that this state is the Bogoliubov groundstate? for ] — co. Here, we have
found that the state emerges quite naturally when choosing two uncoupled Bose gases at
zero temperature as initial state. Thus, as far as it concerns the spin sector, it is equivalent
to either suddenly switch on g;| and J for two uncoupled gases or prepare a superposition
at J = oo and then change J to a finite value.
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Figure V.1: Time evolution of the magnetic susceptibility y(t) (Eq.(V.3)) after
a deep quench to the meanfield distance & from the critical point. Data points
correspond to simulation data, where averages have been taken over N' = 8192
realisations and parameters from Table B.2 have been used. Solid lines show
the corresponding Bogoliubov predictions from Eq. (II.46) at corresponding ¢.
Note the logarithmic y-axis. In this and in all following figures numerical data
is plotted in natural units, defined in terms of 2], (see Sect. B.1).

V.2 Quench Dynamics of the Susceptibility

We start the discussion of our numerical results by comparing the data from the non-
perturbative dynamics drawn from the simulation to the Bogoliubov dynamics (see Sect. II1.2)
for the magnetic susceptibility.

Throughout this chapter and the next VI, we work with the following numerical pa-
rameters if not stated otherwise. The system is resolved with 214 Fourier modes, where
the ultra-violet cut-off is set at kyy = 11+/2mnyg and the infrared cut-off at kg =
0.003 v/2mn_g. Ensemble averages as required by the Truncated Wigner method (see
Sect. I1.5.1) are taken over N' = 8192 realisations. We keep the inter- to intra-species
ratio of the coupling strengths at the value &« = g7 /g = 1.23 (see Eq. (IL.1)) as it is the
case in the experimental setup of [73]. The numerical realisation of the quench, as we
described it in the previous section, also resembles the situation in that experiment.

On general grounds, it is expected that any form of fluctuations, quantum, thermal,
or classical-statistical, grow more influential as the system is parametrically tuned to the
critical coupling. In turn, one should expect the Bogoliubov analysis to be valid close to
& =~ 1. For a similar reason, the system can be expected to stay in the linear regime for

2 As the system is effectively linear for ] — oo, the Bogoliubov groundstate actually equals the true ground-
state
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early times, t << 1/A. We set the stage for that with the magnetic susceptibility, as it is a
comparatively simple observable but allows already identifying the important effects of
the non-linearities. The quantity is extracted from the infrared limit of the numerically
computed spin occupation spectrum (see also Eq. (II1.44) and Sect. I11.3.2),

X(t) = ]lli% gzz(t’k) . (V3)

Examples for the time evolution of y(t) after a quench to & as computed from direct
numerical simulation are shown in Fig. V.1 (coloured data points). As compared to the
Bogoliubov prediction Eq. (II1.46), which is also shown in Fig. V.1, one finds that Eq. (IIL.46)
describes the data for & > 1 and for t < 7/2A¢ to a good degree. Recall, that the gap
A in the post-quench dispersion sets the oscillation frequency in y(t) in the Bogoliubov
time evolution (see Eq. (IIL.46)). On the other hand, we find that the oscillation period,
which should be set by the spectral gap, quickly detunes from the Bogoliubov prediction
as ¢r decreases. In the next section, we will find that this detuning can be mapped to a
time-independent change of the oscillation frequency.

The amplitude of the susceptibility undershoots the Bogoliubov scaling prediction y ~
& ! (see discussion in Sect. I1.3.2) as & decreases. Although it is not yet a dominating
effect on the timescale we show in Fig. V.1, the amplitude is not a static quantity any
more but decays towards a stationary value for & close to the critical point.

Scaling of the Susceptibility

We analyse the time evolution of the amplitude and its scaling behaviour further in Fig. V.2.
As determined from Bogoliubov theory, the amplitude should display scaling behaviour,

x(Tiser) ~ & v, allowing to disentangle spatial and temporal rescaling. Here, we
therefore analyse the times 7; where y(7;,¢r) = maxy(t, &) has a local maximum, but do
so for subsequent maxima. At each 7; one can individually test the scaling prediction in
¢r and simultaneously analyse the effects from the decay in time (see Fig. V.1).

For ¢ ~ 1 in Fig. V.2, the amplitude of the susceptibility follows indeed the meanfield
scaling prediction, ymax ~ & L. Closer to the meanfield critical point, however, the be-
haviour deviates from a power law. In fact, the susceptibility seems to saturate towards a
finite value at the critical point rather than to diverge.

This comes not unexpected for a interacting theory in one spatial dimension, as crit-
ical scaling is typically destroyed by fluctuations. In the full simulation, the non-linear
interactions are quenched (suddenly switched on), amplifying the energy contained in
the small initial fluctuations of high-momentum mode occupations. These fluctuations
can be expected to have similar consequences for scaling behaviour as finite-temperature
fluctuations.

In Fig. V.2, we find that the amplitudes y(z;, &) decay in time close to the critical point
& — 0. In the scaling region & > 0.1, the amplitudes are time independent, as predicted
by Bogoliubov theory. The inset in Fig. V.2 shows the decay of the saturation plateau
in time beyond the first four maxima for small &. In particular, the saturation plateau
for small distances to the critical point decays exponentially in time (note logarithmic
scale) within the first 10 oscillation maxima. The decay then seems to slow down before
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Figure V.2: The maximal magnetic susceptibility at the first four consecutive
maxima (cf. Fig. V.1) is shown as a function of distance to the meanfield criti-
cal point. Note the double-logarithmic scale. The same dataset is shown as in
Fig. V.1, with a largely extended number values for ¢. The scaling with & follows
the Bogoliubov prediction for ¢ =~ 1. Thereafter the amplitude of the suscepti-
bility deviates from a power-law behaviour and seemingly saturates as &g — 0.
The saturation plateau additionally decays in time, i. e. for small &. Inset: Decay
of the plateau as a function of time. Note the logarithmic y-axis. The decaying
envelope of the susceptibility is depicted for five different values of & within the
plateau region. For & = 0.004 the whole functional dependence is shown in
addition (blue line). The decay proceeds initially exponential and slows down
thereafter.

reaching a stationary value. Note that the simulation data we show in Fig. V.2 are at the
limit concerning the total simulation time with the parameters of Table B.2. Thereafter,
recurrence effects on the finite periodic simulation domain set in, leading to a revival of
the amplitude of the susceptibility.

Frequency Shift in the Susceptibility

We turn back to the temporal behaviour of the magnetic susceptibility, as shown in Fig. V.1.
In Bogoliubov theory, the oscillations are a direct consequence of the finite spectral gap
and its value sets the oscillation period (cf. Eq.(IIL46)). Assuming that interactions let
this dependency intact but change the value of the gap itself, a shift of the gap can be
computed from simulation data and analysed for scaling behaviour in .

The simulation data used for Fig. V.1 allows us to extract the time 7; at which the max-
imal susceptibility is achieved, y(7;)) = Xmaxi, Without knowing the exact properties of
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Figure V.3: The figure shows the spectral gap Ag(), which is numerically deter-
mined from the oscillation period of the magnetic susceptibility (see discussion
in the main text), as a function of the distance to the meanfield critical point .
The same data set is analysed as in Fig. V.1 and Fig. V.2. Coloured data points
represent the shifted gap as determined from the first four subsequent maxima
of y(t). Within numerical errors, there is no dependence on the maximal times
7;. The solid black line represents the Bogoliubov prediction Eq. (I1.43) for the
gap, evaluated with respect to the distance & to the meanfield critical coupling
Je- The dashed black line represents the same function evaluated with respect to
the distance & to a shifted critical coupling aJ. (see Eq. (V.6)). The shift is deter-
mined by a fit which yields a = 0.989 + 0.0005. The inset shows the maximal
magnetic susceptibility at the first four maxima (coloured points, same colour
code as in main figure), equivalent to Fig. V.2, with respect to the shifted dis-
tance #;, together with the scaling prediction ymax ~ hef~! (solid black line in
inset).

the decaying envelope of the oscillations. As y(t) ~ sin(At)? by assumption, one finds
the shifted spectral gap from numerical data

A 1
Af = (1 + 5) JTTi_l . (V4)

with i € Ny.

The result of this analysis for the simulation data presented in Fig. V.1 and Fig. V.2 is
shown in Fig. V.3, where Ay is extracted from several successive maxima of the suscep-
tibility. We find that the quantity we extract from the oscillation period is independent
from the analysed maximum. This strengthens the assumption that the sin? form of oscil-
lations for susceptibility is still given beyond Bogoliubov theory, with one ¢-dependent
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but time-independent period.

The oscillation period, however, acquires a strong shift as compared to the Bogoliubov
prediction, as was already qualitatively visible from Fig. V.1. The numerically extracted
values Af(ff) from Fig. V.3 allow us to quantify that further. The shift leads to higher
values of the gap as the distance to the meanfield critical point decreases (cf. coloured
data points and solid black line in Fig. V.3). In particular, the shifted gap Af(ff) bends
away from the Bogoliubov scaling behaviour Ag(ef) ~ Efl /2 for & < 0.1. If the oscillation
period of the susceptibility indeed reflects the effective, i. e. by fluctuations renormalised,
spectral gap, it is expected that it keeps a non-zero value when crossing the transition in
one spatial dimension.

The behaviour of the numerically extracted shifted gap in Fig. V.3, on the other hand,
can also be consistent with a static shift of the location of the critical point with respect to
the Bogoliubov prediction. In particular, it can be tested if the shift in the gap is described
by a shift in the distance from the critical point

Af(ff) = Jé&(&+1), (V.5)

if the Bogoliubov functions are kept.
Assume that the zero-temperature critical point is actually located at J. = aj. =
—ag_ng. Then & and & are connected via

P A S (V.6)
Je a

Numerically, one can ask the question if there is a shift parameter a such that the Bo-
goliubov prediction at &, i.e. Eq.(V.5), describes the numerically extracted value for
Ay. For the simulation data presented in Fig. V.3 this is possible, with a shift parameter
a = 0.989 + 0.0005. Thus, we find that the assumption Af(é‘f) from Eq. (V.5) consistently
describes the data in Fig. V.3 with Eq.(V.6) and a = 0.989 + 0.0005. This would imply
that the shifted gap is zero for quenches to Jf = aJ. and oscillations in y(t¢) vanish there.
However, from currently available data it can not be decided if this description in terms
of a shifted critical point remains valid when going to smaller values of ¢ < 0.0002.

The inset in Fig. V.3 shows that re-evaluating the data for y(z;,¢) with respect to &
does not fully explain the behaviour of the magnetic susceptibility in terms of the Bogoli-
ubov scaling. In the inset of Fig. V.3 the scaling of the maximal magnetic susceptibility
is analysed with respect to &. We find that, although the effect is not as dominant as in
Fig. V.2, the amplitude of the magnetic susceptibility turns away from the scaling predic-
tion, towards a finite value also at & = (. This implies that there a renormalisation effects
beyond a static shift of the critical point alone.

V.3 The Quasi-Particle Excitation Spectrum

Our results so far suggest that the influence of non-linear interactions in our setup can
be grouped in two parts, which can be analysed separately. The rather obvious part con-
sists of a modification of quasi-particle properties, i. e. the dispersion relation w_ and the
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mode function fi. A change of the latter can capture deviations in the amplitude of mode
occupations. The second part concerns the stability of the quasi-particles. The decay we
have identified for the susceptibility most likely originates in a change of quasi-particle
mode occupations over time, which can be generated through quasi-particle scattering, a
finite life time, or quasi-particle creation through coupling to the symmetric sector.

In this section, we analyse the change of spectral properties of the Bogoliubov quasi-
particles when subject to interactions. In doing so, we rely on the assumption that observ-
ables still evolve close to the functional dependencies deduced from Bogoliubov theory.
Similar to the approach of perturbative Wilsonian renormalisation group (see for exam-
ple [127]), we rather quantify the consequences of interactions of Bogoliubov particles by
shifts of parameters, i. e. the spectral gap, the speed of sound, and the dynamical exponent
z.

So far we have extracted information on the excitation spectrum purely by relying on
Bogoliubov functions and using only the zero mode of the full spin-spin correlation func-
tion. We point out that the approach from the last section is in particular feasible for
experimental setups, as only knowledge about equal-time correlation function of the spin
in one direction is required. The results raise the question how the whole quasi-particle
excitation spectrum w_(k,t), beyond the gapped momentum region, changes under in-
teractions. To answer it, we use a different approach to calculate the mode energies.
Although it is in principle possible to determine oscillation periods from non-zero mo-
mentum modes of the correlation function, its impractical from a numerical point of view.
Furthermore, a scheme which requires less input from Bogoliubov theory is advantageous
for a consistency check.

Ideally, one would compute spectral functions for the spin degrees of freedom to, first,
confirm the existence of quasi-particles and, second, compute their energy spectrum. The
classical-statistical approach requires then to compute Poisson brackets of the spin fields
which in turn implies to compute functional derivatives. It is questionable if this can be
done in a numerically stable way and is in any case an unfeasibly demanding numerical
procedure.

Instead, assuming that there are dominant quasi-particle excitations present in the in-
teracting system, information on their energy spectrum can also be retrieved from the
two-time correlation functions. In [206] for example, it is argued for relativistic O(N)
models that a two-time derivative of the form

ok = 2nduf k) : (V.7)
F(tl,tz,k) t1=ta=t
returns the squared modulus of the dispersion relation w(k) for the order parameter field
P(t,k), if F(t1,ta,k) = ({¢(t1,k), ¢ (t2,k)})/2 is the statistical two-point correlation func-
tion at times #; and ¢o.

We can apply a similar reasoning here for the spin fields, when correcting for the
different relation between fields and conjugate momenta. For the Bogoliubov opera-
tors of the spin fields we have shown that 8;6n(t) = nofZw-(k)860k(t) and similarly
8,801 (1) = w_(k)8ni(t)/(nof??) (see Eq. (II1.30) and subsequent text). Thus, for the two-
time correlation function of the z-spin field and its conjugate field one finds within Bo-
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goliubov dynamics

cog(k)f,éL (0(t1,k)0(t2,k))

w2
04,0, (0(t1,k)0(t2,k)) = }(k) (S,(t1,k)S,(t2,k)) . (V.8)

4
k

atlatQ <Sz(t1,k>sz(t2,k)>

This implies that the denominator in Eq. (V.7) is to be replaced by the correlation func-
tion of the conjugate momenta. But even then, Eq.(V.7) would not fall back on to the
Bogoliubov spin dispersion relation but rather yield one half-axis of the squeezing ellipse
of mode k. Therefore, we combine the two-time derivatives in the form of Eq. (V.7) of
the two-time correlation functions of both spin fields to obtain the dispersion relation
independently

atlatQGZZ(tl’ t2ak)at18t2G99(t17 t2ak)
G2z (t1,t2,k)Goo(t1,12,k) h=ty

Wt (k,t) = (V.9)
with central time t = (#; + t2)/2. This quantity falls back on to the Bogoliubov spin
dispersion w_(k) if the correlation functions evolve close to the Bogoliubov prediction,
without requiring any prior knowledge.

The expression Eq.(V.9) can be computed independently from the statistical fields S,
and 0 obtained from simulation and yields a time dependent quasi-particle dispersion re-
lation at any instance in total time T. Additionally, as it is computed from time derivatives
at time T, the two-time correlation functions need to be known only close to the central
line t; = t5. This is not only advantageous for a numerical treatment but also for mea-
surements from experiment. If a procedure can be implemented which non-destructively
retrieves subsequent spin density profiles, it will be certainly more feasible to do this for
small time differences and only a few subsequent time steps. The expressions Eq. (V.9)
and Eq. (V.7) can phenomenologically be viewed as locating the maximum of the statisti-
cal correlation functions in the coordinate space of relative time s = t; —t2 and momentum
k and then attributing a frequency o to the relative time s. This will inevitably fail if there
is no dominant quasi-particle branch present. In any case, there is no statement about the
stability or lifetime of the quasi-particles retrievable.

For the remainder of this section, we put Eq. (V.9) to practical application for our quench
setup in the spinor Bose gas. To calculate the expression for w-(k,t) in practice, the
two-time derivatives in Eq. (V.9) are approximated by discrete central derivatives,

atlatzF(tla t2)|t1=t2:T -
F(T+hT+h) —F(T+hT-h) —F(T—hT+h)+FT-hT-h)
4h ’

(V.10)

where h is the timestep of the simulation. Thus, in addition to the equal-time correlation
function at central time ¢ only the off-diagonal elements of the correlation functions at
t + h need to be evaluated.

For the computing w_(k,t) in the following from our simulation, we choose param-
eters for the simulation from Table B.3. Due to the involvement of unequal-time cor-
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Figure V.4: Upper panel: Dispersion relation &_(¢f, k) as directly determined
from simulation via the two-time derivative of unequal-time spin correlation
functions (see Eq. (V.9)) for quenches to the distance & from the meanfield critical
point (as given in the legend). Coloured data point correspond to the temporally
averaged (over central time) dispersion @_(¢g,k) (see Eq.(V.11) and main text).
Black lines next to the coloured data points correspond to the evaluation of the
Bogoliubov dispersion (Eq. (II1.11)) at a shifted distance &. The shift is determined
from the gap as discussed in the context of Fig. V.3 (see main text). Lower panel:
The function wﬁt(k, ¢,z), given in Eq. (V.12), is fitted to the data for &_ (e, k) to fit
a speed of sound ¢ and a dynamical exponent z as a function of & (see main text).
The result is displayed in the lower panel. The gap in the dispersion is determined
independently (see main text). For reasons of visibility we display in the upper
panel five example curves out of the full data set consisting of 30 values for & (as
displayed the lower panel). Numerical parameters given in Table B.3 have been
used.
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relation functions, the observable is more sensitive to noise as compared to equal-time
structure factors. To compensate for that, it is advantageous to divert a larger fraction of
the momentum-space computational grid to the infrared region k < 1. Additionally, we
average the numerically determined w_(k,t) over several successive central times .

In practice, it turns out that w_(k,t) is only weakly time-dependent. Within the win-
dow for ¢ and central time from Fig. V.3 there was no change in time t of w_(k,t) de-
terminable within the numerical accuracy. This is consistent with Fig. V.3, where also
no time independence of the numerically determined gap was found within the first four
oscillations.

Therefore, in the following we present data for the temporally averaged dispersion

functions .
- (&K, t;
O (erk) =) kil (Ejfv ) : (V.11)

4
are shown for different distances to the meanfield critical point. We choose N' = 100
linear equidistant times ¢; between t = 0 and t = 74, the fourth oscillation maximum of
the corresponding susceptibility y(eg,74), cf. Fig. V.1.

We find in Fig. V.4 that the numerical dispersion functions follow qualitatively the gen-
eral Bogoliubov form. This means that they start gapped, limy_,g @_ (g, k) > 0. Thereafter
a momentum region follows where &_ (e, k) ~ k* with z < 2. Finally the dispersion re-
lations turn towards the free-particle form, &_(k) ~ k2, beyond the infrared momentum
region k > 1.

Consistently with the results from Fig. V.3, a quantitative analysis of the numerical data
for &_ (e, k) yields that the gap acquires a shift as compared to the Bogoliubov prediction,
@_(er,k — 0) > A(ef). As has been discussed for Fig. V.3, one can adopt the point of view
that the Bogoliubov functions are usable as skeletons, where the parameters gap, speed
of sound, and distance to the critical point can shift.

Also here, the simplest scenario is to assume a shift of ¢¢ — & and check that for
consistency. The black lines in Fig. V.4 close to the coloured data points for o_ (e, k)
represent this consistency check. First, the effective gap parameter Ay is determined as
described with Fig. V.3 and then converted to an effective distance & via Af = Vér(g+1).

This is inserted in the Bogoliubov dispersion function and displayed as the black lines

in Fig. V4. They therefore show the function w_- = \/ A2(&) + c2(&)k? + k%, where

cs(&) = V2é + 1. We find that the effective gap parameter is consistently described over
the whole range of tested ¢ whereas the parameter describing the speed of sound is not.
In the momentum region of the linear part in the dispersion function, a clear deviation
between numerical data and the Bogoliubov dispersion w_ (&, k) function, evaluated at &,
is found.

We find that it is possible to fit the simulation data for &_(eg, k) in Fig. V.4 if two addi-
tional free parameters are allowed for in the Bogoliubov dispersion function,

™ (k.c.2) = \JA2(é) + 22 4 k1. (V.12)

In the lower part of Fig. V.4, the result for fitting an effective speed of sound parameter
¢ and dynamical exponent z to the whole dataset for &_(ef, k) is shown. From that we
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Figure V.5: Examples for the post-quench time evolution of the z-spin structure
factor G,.(k,t) for two different distance to the critical point & = 0.5 (upper
panel) and & = 0.05 (lower panel). Coloured data points correspond to data
from simulation at different times (see legend). Coloured solid lines show the
correspondingly evaluated Bogoliubov structure factor Eq. (II1.49). Simulation
parameters from Table B.2.

find that not only c starts to differ from c(é) as &g — 0 but also the dynamical exponent
changes.

Both fit parameters seem to reach a common limit value for ¢f — 0. However, from the
currently available data set it is not clear if the values for z and c truly reach a limit or
further decrease. It is a realistic scenario that one of the parameters further decreases and
reaches 0, meaning that the dispersion would renormalise under interactions to a gapped
free-particle dispersion. If both parameters stay non-zero, it is most likely a coincidence
that ¢/cB9C ~ z for & ~ 0.001, as the two parameters have different physical mean-
ing. To interpret these results further, analytic predictions beyond Bogoliubov theory are
required.

V.4 Dynamics of the Structure Factor

With the magnetic susceptibility y(t), we have already analysed the quench dynamics
and scaling properties of the infrared part of the z-spin structure factor (see Eq. (V.3)). In
this section, we complete the analysis by discussing the post-quench dynamics of the full
structure factor G, (k,t).

In the upper panel of Fig. V.5 we show the time evolution of the spin structure factor
G- (t,k) after a quench to & = 0.1 for early times, as obtained from full simulations.
In general, the Bogoliubov form for the spin structure factor, i. e. expression Eq. (II1.49),
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Figure V.6: The figure shows, exemplary for two values of ¢, the deviation
between full simulation and the Bogoliubov prediction for the z-spin spec-
trum in the whole time-momentum plane. The quantity R = |G,,(k,t) —
GB46(k,1)|/G.2(k,t) is depicted in colour projection, where the upper panel is
computed at a meanfield value of & = 0.05 and the lower panel at & = 0.005.
The same dataset is used for this figure as for Fig. V.2 and Fig. V.1. The depicted
momentum range is restricted to a region where a significant relative deviation
is visible. We find a distinctively large peak of deviation R at momentum k =~ 0.2,
starting to appear at time ¢ =~ 20. This feature is independent of the value of .
This deviation is possibly caused by a non-linear dynamical instability of mo-
mentum modes in this region, which is not present in the Bogoliubov theory.
Simulation parameters from Table B.2

describes the data from simulation to a good degree (compare coloured solid lines and
coloured data points in the upper panel of Fig. V.5). As can be also seen from the compar-
ison, shifts from interactions affect the deep infrared part of the spin occupation spectrum
first. The temporal oscillation frequency of the plateau in the spectrum from simulation
at k < +/¢ is already slightly detuned from the Bogoliubov spectrum. A second domi-
nant discrepancy between Bogoliubov theory and full simulation in the spin occupation
spectrum is the development of a large peak structure around the scale k = +/¢;. This
happens already for very early times, when the plateau is still described by Bogoliubov
theory.

In the lower panel of Fig. V.5 we show for comparison the time evolution for the spin
occupation spectrum G (¢, k) after a quench to & = 0.01 for similarly early times. Here,
we find that oscillation frequencies of all modes in the infrared k < 1 are already strongly
detuned as compared to Bogoliubov theory. The peak structure at k = 0.2 is also visible
and has not shifted due to the changed .
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For both distanced to the critical point in Fig. V.5, spatial and temporal oscillation
patterns in the spin occupation spectrum match between Bogoliubov theory and full sim-
ulation for high momentum modes k > 1. This means that interactions do not affect the
free-particle modes in the high momentum region. This is consistent with the numerically
computed excitation spectra (see Fig. V.4).

Finally, we illustrate the difference between Bogoliubov theory and direct numerical
simulation for the entire z-spin occupation spectrum for examples of ¢. To do so, the
relative difference between the z-spin spectrum from Bogoliubov theory, G246 (k,t) (cf.
Eq. (II1.49)), and from full simulation, G,,(k,t), is computed. In Fig. V.6 the relative differ-
ence defined via R = |G,.(k,t) — GP3(k,t)|/G..(k.t) is shown, where we use again
the distance from the meanfield critical point as basis for the comparison. The results
are shown for two values of &, one near the end of scaling region of y and one near the
beginning of the plateau region.

As can be seen in Fig. V.6, the deviations from the linear theory we identified for the
susceptibility extend into the whole infrared region of the occupation spectrum. The
oscillatory structure is inherited from the oscillations of occupation modes. Interaction
effects thus mainly lead to a detuning between Bogoliubov and actual mode frequencies
in the deep infrared region of the spectrum. This comes with a difference in the oscillation
amplitude of infrared modes the closer the system is quenched to the critical point.

The structure of R in the full time-momentum plane reveals an additional interaction
effect which is apparently quench-independent. As can be seen from Fig. V.6, there is
a significant relative deviation R at momentum k = (.2 appearing at time ¢t = 20, in-
dependently of the quench parameter. However, the effect is less dominant for strong
quenches as compared to the strong deviations in the deep infrared region (c¢f. lower
panel in Fig. V.6). The independence of the related time and momentum scales of & rules
out that the effect is due to an interaction between quasi-particles of the symmetric and
spin sector. If such an interaction was present at a perturbative level, the related momen-
tum scale would be the momentum where w_(k) and w4 (k) cross, which depends on the
quench.

V.5 Summary

In this chapter, we investigated quench dynamics in the spinor gas numerically, be means
of semi-classical simulations (see Sect. I.5.1). Our particular interest was to extend the
knowledge about scaling behaviour within the post-quench dynamics evolution beyond
the meanfield predictions (cf. Sect. II.3). We initialise the dynamics with the Bogoliubov
groundstate at J; — oo and show in Sect. V.1 that this state is naturally described by a
classical statistical ensemble of fields with Gaussian fluctuations, in the language of the
fundamental fields. This allowed us to formulate the quantum state in terms of Wigner
functions, which is in turn an important requirement to approximate the quantum system
with the Truncated Wigner method [83, 84].

By analysing the dynamics and scaling of the magnetic susceptibility (Sect. V.2), we
found that scaling behaviour, in time and distance to the critical point, stops generically
for distances to the critical point smaller than ¢ < 0.1. Here, it turns out that, instead
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V.5 Summary

of a change from meanfield exponents to different critical exponents, scaling behaviour
simply does not appear to describe the observables closer to the critical point. On a phe-
nomenological level, this is understandable as the quench magnifies the energy contribu-
tion from initial fluctuations. These tend, similar to temperature fluctuations, to destroy
critical behaviour in one spatial dimension.

We used in Sect. V.2 the oscillatory structure of the magnetic susceptibility to extract
information on the excitation gap, as the magnetic susceptibility reflects the zero mode
and, with it, a large infrared plateau in the structure factor (see Sect. V.4). We found that
the numerically determined gap displays a deviation from Bogoliubov scaling. We find
that this deviation can be mapped to a static shift in the critical point &g — &, which
describes the numerically determined gap consistently but not the scaling deviation of
the amplitude of the magnetic susceptibility.

In Sect. V.2 we proposed a method to compute numerically the whole excitation spec-
trum of (spin-) quasi-particle modes from two-time spin correlation functions (see Eq. (V.9)).
With this we corroborated the findings for the shifted gap from oscillations in the mag-
netic susceptibility. At the same time, the numerically determined excitation spectrum
revealed further parameter shifts. In particular, we find that the dynamic critical expo-
nent z and the speed of sound c shift towards smaller values as compared to the Bogoli-
ubov prediction. This constitutes an interesting starting point for analytic studies using
a renormalisation group approach, possibly along the lines of [183, 207, 208]

Our method to extract the excitation spectrum is especially feasible for an experimental
implementation. If non-destructive measurements can be implemented for an experimen-
tal setup (as for example in [209]) to retrieve the spin fields, the unequal-time correlation
functions for Eq. (V.9) can be evaluated as we did numerically. The fact that only a small
number of unequal time correlators with small difference in time is required is advanta-
geous for experiment and simulation alike.
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VI Crossover Behaviour in Quench
Dynamics

The results for the interacting spinor Bose gas in one spatial dimension from the previous
chapter V show that spin observables avoid critical divergences when quenched towards
the phase transition. Qualitatively, this is expected for a phase transition in 1d when
classical fluctuations are introduced into the system. In Sect. IIl.4 we argued that the
energy distribution the quench produces initially can be characterised by a single effective
temperature, since it resembles a thermal energy distribution for infrared quasi-particle
momentum modes. In this chapter, we discuss the question if this effective temperature
can be identified from the point of view of correlations beyond the Bogoliubov regime
and held responsible for the deviation from critical scaling in the spin observables.

For this question to be addressed, a model for the spin sector is required for which
analytic statements on its thermal behaviour beyond the linearised theory can be made.
For the full model described by Eq.(IL1) there are currently no analytic solutions be-
yond Bogoliubov theory available, neither for quench dynamics nor for thermal equi-
librium. There have been similar but simpler models studied with effective action and
renormalisation group techniques for quench dynamics, for example within Luttinger
liquids [210, 211] and relativistic O(N) models [183, 207, 208]. Although the methods
seem adaptable to our model, a direct comparison to these results is difficult as it is not
clear how to map the fully interacting spinor Bose gas (in the form of Eq. (II.1) or Eq. (I.4))
or the non-linear restriction to the spin sector (see Eq. (I1.15)) to them.

Instead, we concentrate here on fundamental models for quantum spin chains. In par-
ticular, the spin sector of our model shares its structure with the Ising chain in a transverse
field. As explained in Sect. II.1.2, anisotropies break the full rotational symmetry in spin
space such that only a discrete Z, symmetry remains!. An energetic competition be-
tween two spin direction leads to spontaneous breaking of this symmetry, generating the
phase transition. On a more quantitative level, in [116] it has been demonstrated that the
the miscible—immiscible transition in the two-component Bose gas in the Mott insulating
phase falls into the static universality class of the transverse field Ising model. As there
exist additionally analytic solutions for a variety of observables, for the dynamic as well
as the thermal transverse-field Ising model, it provides a good starting point to compare
and contrast the behaviour of the spinor Bose gas with.

In this chapter, we first introduce the relevant aspects of the transverse-field Ising
model, in particular its properties in thermal equilibrium following [89, 128]. Second,
we briefly discuss results [91, 92, 212] on quenches in the paramagnetic phase in the Ising
model. In particular, we calculate the post-quench dynamics of the correlation length

1 Actually, a discrete Z2 X Zy symmetry remains. But, since one requires a simultaneous sign change in the
external field J (see Sect. I1.1.2), the relevant Z9 symmetry is S; — —S;
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and specifically the approach to the stationary state. We will demonstrate that the post-
quench stationary state is reached extremely fast (for finite spin chains). We will further-
more argue that the correlation length in the stationary state follows a thermal crossover,
as function of the post-quench gap, although the occupation of quasi-particles is not ther-
mal. The way the integrable and exactly solvable Ising model approaches the stationary
state after a quench will provide a point of comparison for our analysis of the spinor Bose
gas.

The main part of this chapter is concerned with the behaviour of correlations after a
quench in the spinor Bose gas. We analyse our simulation results for the same quench
setup as in chapter V with respect to the equal-time z-spin correlation function (in posi-
tion space) and corresponding correlation length. As highlighted throughout the previous
chapters, we find that the correlations are not described by the generalised Gibbs ensem-
ble from Bogoliubov theory beyond a specific energy scale, as far es it concerns scaling
behaviour. Nevertheless, we will demonstrate that the effective temperature derived from
the generalised Gibbs ensemble (see Sect. II.4) provides the energy scale where the devi-
ation from Bogoliubov scaling takes place.

As a main result, we find from this analysis that the deviation of the correlation length
from Bogoliubov scaling is describable by the finite temperature crossover function of the
transverse Ising chain. Specifically, we find that the maximal correlation length during
early times of the post-quench time evolution follows a Ising crossover function, when
the anomalous dimension is adapted in time.

VI.1 The Quantum Ising Chain in a Transverse Field

The Hamiltonian of the one-dimensional quantum Ising model in a transverse field is

given by
N N
H(h)=-] ) o¥oX, —h > of, (VL1)
n=1 n=1

describing a chain of N spin-1/2 degrees of freedom with periodic boundary conditions?.

The parameter h € R denotes an external magnetic field in z direction, and J > 0 is the
strength of a ferromagnetic exchange coupling in x direction. Without loss of generality
we set /] = 1, which fixes the energy scale. At zero temperature in the thermodynamic
limit the model has quantum phase transitions at |h| = he, separating a ferromagnetic
phase at |h| < 1 from paramagnetic phases at |h| > 1, where (o) is the order parameter
of the transition.

VI.1.1 Exact Diagonalisation of the Ising Chain

The Hamiltonian Eq. (VI.1) can be mapped onto non-interacting fermions, and eigenvalues
and eigenstates can be computed analytically [88]. We briefly outline the procedure here
and refer the reader to [91, 128, 212] for details. The fist step is to map the spin operators

2For simplicity we assume N to be even. See [212] for N odd and details on the difference between even
and odd.
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VL1 The Quantum Ising Chain in a Transverse Field

I

o; via a Jordan-Wigner transformation [213] to one species of, i. e. spin-less, fermions c;,

o =1—20c;,

of =— 1_[ (1 - 2c§-cj) (ci + CT,) . (VL.2)

i<j

The Jordan-Wigner transform thereby maps the fermion anti-commutator algebra, {c;, ¢}
= 0ij, {ci,cj} = 0, and {d,, CJ}} = 0 to the spin commutator algebra, [0{1,0}’] = 215”'6#‘,/10';1.
Inserting Eq. (V1.2) into the spin Hamiltonian Eq. (VL.1) yields a quadratic Hamiltonian in
Cj,

H(h) = - Z (CIzCn+1 + cTn_ch + Cpaicn — 2hchen + h) , (VL3)

n

which requires still diagonalisation. This can be achieved by a simultaneous Bogoliubov
and Fourier transform, in a similar way we have already discussed for the linearised spin
sector S_ of the spinor gas in Sect. III.1 (cf. Eq. (IIL.3) and Eq. (IIL.4)). Introducing Bogoli-
ubov fermions yy at lattice momenta k = 27j/N with j € [-(N —1)/2,(N - 1)/2] and a
the lattice constant, one defines

vi = \/LN zj: o-iki (ukcj - ivkcfj) . (VL4)

The Bogoliubov transformation here needs to be unitary to conserve the fermion anti-
commutator relations, in contrast to Sect. III.1, and therefore u,% + vz = 1. Inverting
Eq. (VL4) and inserting it into Eq. (VL.3) yields a diagonal Hamiltonian for non-interacting
fermions, .

H(h) = Zkl €k (ylyk - 5) , (VL5)
together with Bogoliubov mode functions ur = cos (nx/2) and vy = sin(nx/2). The
Bogoliubov angle 7y then needs to fulfil the relation

sin (k)

h—cos(k)’ (VL6)

tan (nx) =

to obtain the diagonal Hamiltonian Eq. (VL5). Together with Eq. (V1.6) one finds a bounded
single-fermion excitation spectrum

& = 21+ h? —2hcos (k). (VL7)

As this spectrum is bounded from below with €, > ¢9 = A = 2|1 — k|, the groundstate is
the state with zero occupancy of Bogoliubov fermions.

The lattice Hamiltonian Eq. (V1.3) can also be extrapolated to the continuum (scaling)
limit, by introducing a lattice constant a in fermion operators ¥(a - i) = c¢;/Va. After
the diagonalisation, the limit a — 0 and N — oo can be evaluated under the condition
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aN = const. In particular, the fermion spectrum Eq. (V1.7) extrapolates to [128]

e(k) = VA2 + k2, (VL8)

where A = 2(1 — h). The constant ¢ appears through the continuum limit replacing the
hopping energy constant J via ¢ = 2]a, since the hopping energy J needs to diverge if
a — 0. From Eq.(V18) one finds that there is a finite spectral gap, e(k — 0) = 2|A]|,
in the continuum limit at zero temperature, which vanishes only at h = h, = 1. This
indicates that there is a second order phase transition in the model at A = 1. A more
rigorous argument is provided via the groundstate energy in the limit N — oo, which has
non-analytic point at A = 1 [88]. In contrast, the free energy of the model is analytic at
any finite temperature [88], meaning that the phase transition exists only at zero temper-
ature. Nevertheless, it has been demonstrated in [89] that observables follow universal
behaviour also at finite temperature, as a direct consequence of the zero-temperature crit-
ical point.

VI.1.2 Finite Temperature Properties

In principle, in the basis of Bogoliubov fermions y; any observable can be retrieved with-
out much effort. In particular, the thermal properties are set, as the occupation of Bogoli-
ubov modes are given in terms of the Fermi-Dirac distribution. The time evolution can be
solved for on the operator level. The actual problem is to invert the sequence of mappings
to go back to the spin operators and finally obtain correlation functions of Ising spins.

Going back to the original fermion basis, c;, follows the same logic as we have dis-
cussed for the conversion between Bogoliubov quasi-particles and Bose gas pseudo spin
in Sect. II.13. Since the ¢; and yy are related by a linear and local transformation this can
be done on the level of operators.

In contrast, the non-local Jordan-Wigner transformation is typically inverted directly
for specific spin correlation functions. The two-point spin correlation function C**(¢) =
(on 0, o), for example, which we will discuss here, is expressible in form of a Toeplitz de-
terminants [88]. The on the lattice, the components of the related Toeplitz matrix can
be obtained as analytic expressions, for thermal system [88] and likewise for sudden
quenches [91]. This allows to retrieve observables on finite lattices by means of direct
computation with efficient numerical linear algebra routines.

For example, for a quench from kg to h and an infinite chain, calculating the dynamics
of equal-time correlations C**(£) = (o0 4 ¢) between sites that are a distance ¢ apart
can be reduced to computing the determinant of an £ X £ matrix [91]. In the next section,
we present calculations for quenches in finite discrete chains from [212], where also the
required analytic expressions for the Toeplitz determinants can be found.

As key feature of the transverse field Ising chain, for various observables, and in par-
ticular the spin-spin correlation function C**(¢) = (o, o ¢)» closed analytic expressions
can be obtained in the scaling or thermodynamic limit. For quench dynamics, this has
been achieved in [91, 92], as we discuss in the next section, while finite temperature cor-
relation functions in the scaling limit have been derived in [89].

3Despite that the transformation here is unitary instead of symplectic, there is literally no difference.

108
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The equal time spin-spin correlation function, which we are interested in, can be given
in the full temperature-A plane,

r—00

lim C¥(r) = ZT"G;(A/T) exp (—|r|§FI(A/:r)) , (VL)

where Z is a non-universal renormalisation factor and 7 is the anomalous dimension,
which is n = 1/4 for the Ising chain. The limit on the right-hand side of Eq.(VL9) is
to be understood as the leading-order behaviour of C**(r) as r — co. Note that for the
expressions in the following, we use the gap parameter A = 2(1 — h) including the sign.
In accordance with common literature, e. g. [128], A < 0 indicates the paramagnetic side
of the zero-temperature phase transition while A > 0 signals the ferromagnetic side.

Most importantly, the correlation function in Eq. (V1.9) is set in terms of two universal
functions, Gy(s) and F(s), for which only the dimensionless ratio A/T is required as
input. Both functions are analytic for all s and expressions for the functional dependence
on s are known. The function F(s) describes the universal crossover of the correlation
length,

4 T _ (A
= ZFI (T) ; (VL.10)
and
4 o [,2 2
Fi(s) = Is|©(-s) — il fo dy log tanh yTH . (VIL.11)
T

The integral appearing in Eq. (VI.11) needs to be evaluated numerically in general. How-
ever, at s = 0 one finds analytically F;(0) = 7 and with that the correlation length at
vanishing gap,

c

i = (VL12)

anT

At vanishing temperature and vanishing gap the exponential decay of the correlation
function Eq. (V1.9) turns into an algebraic decay, C**(r) ~ (r/c)™". This goes together
with the divergence &, — o0 as T — 0 and is a sign of the quantum critical point at
T=0and A =0.

VI.2 Quench Dynamics and Stationary States in the Ising
chain

In this section, we? discuss sudden quenches within the paramagnetic phase of the Ising
chain in a transverse magnetic field. Here, the possibility to express the Ising Hamiltonian
in a diagonal form (see Sect. V1.1.1) allows implementing sudden quenches and calculating
the time evolution of observables in a analytically exact way. Here, we consider as initial
state a paramagnetic groundstate of the Ising Hamiltonian for a transverse field h = h; > 1
(see Eq. (VL.1)). The quench then is simply implemented by evolving a observable in time

“This section partially contains results from the Master’s thesis [212]. I co-advised the project and con-
tributed to the interpretation of the results. For computing observables of the finite Ising chain, a code
package was used written by the author of [212] in the course of his work.
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Figure VI.1: Equal-time spin correlation function C**(¢,¢) (see Eq.(V1.14)) for
quenches within the paramagnetic phase of the transverse field Ising chain, as a
function of the spin—spin distance ¢ for different times t after the quench. The
correlation functions are computed for a discrete spin system with N = 200
spins and for a quench to a transverse field hf = 1.1 (left panel) and hy = 1.001

(right panel), starting with the groundstate at a finite high transverse field h; =
1000 in both cases.



V1.2 Quench Dynamics and Stationary States in the Ising chain

with the Ising Hamiltonian at a different (the post-quench) transverse field h = he > 1,
still in the paramagnetic phase,

8,0(t) = [0,H(hy)] . (VL13)

Expectation values of the observable are analysed with respect to the pre-quench density
matrix, i. e., for our case, with respect to the groundstate of H(h;).

We point out that the logic the implementation of the quench follows for the Ising
model is in complete analogy to the quench within the Bogoliubov theory for the spinor
gas (see Sect. II1.2). The complication for the Ising model (rendering the Ising spins non-
linearly ‘interacting’) lies in the non-local map between fermions and spin operators
(Eq. (VL2)).

To match the quench setup for the Ising chain to the quench setup in the spinor Bose
gas which we implement in simulations (see chapter V), we chose® h; — 0. In this case,
the pre-quench groundstate is a fully z-polarised state. As in the spinor Bose gas, for the
quench, transverse fields hf = & + 1 close to the critical point A, = 1 with & < 1 are
analysed in this section.

For finite spin chains, it is possible to express correlation functions and, in particular,
the equal-time spin correlation function

C¥(t,0) = (of (t)o (1)) » (VI.14)

1

in terms of Toeplitz determinants (see for example [88]), which allows for an efficient
calculation.

In this section, we analyse the post-quench time evolution of the equal-time correlation
function C**(t,¢), as obtained for finite spin chains, and compare to analytic expressions
in the thermodynamic limit and scaling limit, which have been found in [91, 92]. We find
that the post-quench spin correlation function and, specifically, correlation lengths de-
rived from it reach a non-equilibrium stationary state (corroborating the results from [91,
92]). We demonstrate that a stationary state is reached even for small system sizes within
short time periods of post-quench evolution. If a bulk measure such as the correlation
length is considered, this stationary state appears thermal for quenches close to the crit-
ical point, at a temperature universally set by the quench. See also [212].

VI.2.1 Quench dynamics

For quenches to & > 0 in the transverse Ising chain, i. e., within the paramagnetic phase
and into the close vicinity of the quantum critical point, the correlation function C**(t,¢)
(see Eq.(VI.14)) shows overdamped dynamics as can be seen from the right panel in
Fig. VI.1. At least for those distances ¢ where C** is large enough to be detected ex-
perimentally, correlations approach their stationary value already on a time scale of the
order of 1/], where J is the spin coupling in the Ising chain (see Eq.(VI.1)) which we
set to J = 1 in practice. This finding comes as a surprise, as theoretical arguments (in a
slightly different context) indicate that full stationarity is reached only at times several

SFor finite spin chains, we evaluate numerical expressions at b; = 1000 > h¢
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orders longer, and even up to 1020 /] [91, 92].

For quenches that end further away from the quantum critical point, like the one in
the left panel of Fig. VI.1 for ef = 0.1, oscillations are superimposed on the build-up
of correlations. Relaxation time scales are somewhat longer in that case, in the range
of a few or even tens of 1/], but the short-distance decay of the C** again reaches its
stationary values at a time of the order of 1/].

The rapid convergence to stationarity can be explained by considering the (suitably
improved [212]) analytic expressions for C**(t,€) conjectured in [91, 92], which are rig-
orously valid only at late times ¢ and large distances ¢ (in the sense of leading-order
asymptotic behaviour). Based on the results of [91, 92] the author of [212] puts forward
the expression

x dk K(k,he, by
C¥(1,€) ~ E(hg,i)e 0/ + Y4k [ dk—é)) sin (2t (he) — k€)
T wk f

X exp (foﬂ% log|1 — 2ngp(k, he, hi)|[€ + ©(€ — 2v(k, he)t) (2v(k, he)t —1)]]  (VL.15)

for the analytic form of the spin correlation function in the thermodynamic limit. In
Eq. (VL.15), wi (k) is the post-quench energy spectrum of Bogoliubov fermions, wi (hf) =
€kln; (see Eq.(VL7)), and the function K(k,hg, h;) is set in terms of the post-quench oc-
cupation of Bogoliubov fermions, ngp(k,hg,hy), via K = K?/(1 + K?). The function
v(k,hf) = Orwi(hs) describes the group velocities of Bogoliubov fermion modes. The
constant E is, for our case h; > h¢ > 1, independent of time and space given by [92]

he(hy — be) (/B2 =1

(hf + hi)(hfhi - 1) ’

E(hg,hy) = (VL16)

The correlation function from Eq. (VL.15) is composed similar to the Bogoliubov form
of the corresponding spinor Bose gas correlation function (see Eq. (IIL52)). It consists out
of a time-independent decaying exponential, which defines the short distance behaviour
and a sinusoidal term which oscillates in time and space. The amplitude in front of the
oscillation term in Eq. (VI.15) is multiplied by a second exponential function which consti-
tutes a second characteristic length scale [91]. It was shown [91, 212] that the oscillating
term in Eq. (V1.15) dominates outside a lightcone, ¢ > maxy(v(k,hs))t. Inside the light-
cone, the static first term dominates with a characteristic decay scale &;. This implies also
that the oscillating term vanishes asymptotically, leaving the first term C¥*(¢,£) ~ e~¢/%1
as stationary limit.

From the evaluation of the discrete spin chain (see also [212]) we find that the spin cor-
relation function in the Ising model approaches at short distances £ < {(t), the long-time
behaviour C**(t,€) ~ exp(—{/&;) to a very good approximation, cf. Fig. V1.2, panels (a)
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and (b). Here,
&1 =0 (he— 1) © (b — 1) logmin { ks, b1}

1 n
- — f log |1 — 2ngp(k)| dk, (VI1.17)
2 Y 7

defines the long-time inverse correlation length, where © denotes the Heaviside step func-
tion and

L+ hehy + (2= 1) (12— 1)
= he + by

The mode occupation numbers of the Bogoliubov fermions after the quench from h; > 1
to hy > 1 are defined as

(VL18)

nBF(k; he, hl) = 1/2 - Q[hihf +1- (hl + hf) cos(k)][a)BF(k; hf)wBF(k; hi)]_l R (VIL.19)

with mode frequencies wgr(k; h) = €klp, given by the post-quench fermion energy spec-
trum (see Eq. (VL.7)), cf Ref. [91, 92].

Furthermore, the analytic expression for the correlation function, given in Eq. (VL.15),
yields

&t = —% [ log|1 - 2nge(k)| dk., (V1.20)

for the fall-off scale of the correlations beyond {(t), [C¥*(t,£ > ((t))| ~ exp(—€/&).
The amplitude of the oscillatory term in Eq. (VI.15) decays in space on this characteristic
scale.

In the limit h¢ — oo, the correlation lengths simplify to

& = log(2hy), (VI.21)
" = log(2hg) — ©(h¢ — 1) arcosh (hy) . (V1.22)

The scale ¢, dividing the two regimes, increases logarithmically in time, {(t) ~ (3&1/2)
log(t/ty), in accordance with (40) in [92, 212].

VI.2.2 Correlation lengths

We extract the correlation lengths & o from the data in Fig. VL1 by fitting exponential
functions to the short- and long-distance decay of C**, as obtained for a finite spin chain
(N = 200 spins). The time-dependence of & is shown, for various ¢, in Fig. V1.2 (right
inset), where stationarity is observed around times ¢t = 4 for small ¢, and only at later
times for larger . At t =~ 40 the correlation length has reached its stationary regime for
all ¢ considered. In Fig. VL.2 (right) the correlation length £(¢ = 40) is shown as a function
of the quench parameter & (red points). The &-dependence of £ (¢t = 40) confirms the
analytic expression (V1.17) shown as a blue line.

Since the lower critical dimension of the model is 2, the correlation length, in equilib-
rium, does not diverge at the critical magnetic field h = 1 and for non-zero temperatures.
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Figure VI1.2: Longitudinal spin correlation functions and correlation length after
a quench on the paramagnetic side of the phase transition close to the critical
point in the transverse field Ising model. (a) Correlation function |[C** ()| at
two different times t after the quench from hy — coto &g = hf—1 = 0.1
Note the logarithmic scale. Data points correspond to a finite spin chain (N =
200). Solid lines correspond to a evaluation of |[C**(£)| in the thermodynamic
limit Eq. (VL.15). (b) Same correlation function after a quench to & = 0.001. (c)
Inset: Time evolution of the correlation length &; of the short-distance fall-off
of |C**(¢)| ~ exp(—€/&1) defined in Eq. (VL.17), for the finite spin chain (N =
200 spins) and three different quenches. Main graph: The resulting correlation
length & (40/J; &) as a function of the final & (red points), in comparison with
the analytical expression &;(t — oo;¢&) = [log(2 + 2¢)]7! (blue line) in the
thermodynamic limit. The green line shows the asymptotic correlation length
&(t — ocoj¢r). The black dashed line shows for comparison &y, (T, &) (in the
thermodynamic limit,see Eq. (V1.23)) at temperature T =~ 1.58, chosen to match
Erateg=0.
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Figure VL.3: Main graph: Asymptotic post-quench correlation lengths &; 2(t —
co; Af) (blue and green lines, respectively) after a quench from A; = 1 in com-
parison with the thermal correlation length &y, (in the scaling limit Eq. (V1.10)),
for the same ¢ and a temperature T; = 2A; /7 ensuring that it saturates at the
same value as the post-quench lengths, &7_on,/,(0) = &,2(t — 00;0). The in-
set shows that within a scaling window of small A¢/A; <« 1 the same linear
corrections apply to & and &,.

The same qualitative crossover behaviour is seen here. For comparison, we show the
dependence of the equilibrium correlation length &y, on h, defined by

Exl(he) = © (he—1)2(he— 1) — (27)™" [ dklog[l — 2n (k; he)] , (V1.23)

with Bogoliubov fermion distribution ny,(k; he) = {exp|wgr(k; he)/T] + 1}~ [89], for a
temperature T =~ 1.58 which is chosen such as to give the same saturation value at h = 1
(dashed line in Fig. VL.2). The thermal correlation length given in Eq. (V1.23) is evaluated
in the thermodynamic limit (N — oo) while the form for &y in Eq. (VI.10) constitutes the
scaling limit.

Note that, other than &y, (hf), the correlation length & (he; t — o0) = 1/ log(2hy) decays
logarithmically for h¢ > 1. The reason for these discrepancies is that for any initial & and
final &, the post-quench spectrum rather defines a generalized Gibbs ensemble [90-92]
and hence cannot lead to the full thermal crossover behaviour of &y. Nevertheless, a
temperature can be found to match the crossover behaviour of &y (er, T) and & (¢, ;) for
quenches close to the critical point & =~ 0.
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VI.2.3 Continuum and scaling limits

In view of the comparison with the continuous Bose gas (in the following section), we
consider the transverse field Ising chain in the continuum limit, assuming the spins to
reside on a lattice with spacing a and taking the lattice spacing to zero. Keeping the
speed of sound ¢ = 2Ja and the post-quench gap energy A¢ = 2|hs — J| finite, im-
plies that J diverges as a~! and the scaling limit must be taken, with 1 = h¢/J — 17
as A — 1 = A¢/2] = al¢/c — 0. The fermion frequencies reduce to wpp(k,Af) =
JAZ + (ck)? = AjVe? + k2, where we now define ¢ = Ag/Aj and k = ck/A;. The
mode occupations after a quench from A; to Ay in this scaling limit read ngp(k; Af, A;) =
{1 - [e&; + x?]/|wpr(k,e)wpr(k, A;)]} /2. Clearly, A; (or Af) now takes over the role to
set the scale in units of which all quantities can be expressed. Inserting the above and

2Jlog(h1) = VAfA; into Egs. (VL.17) and (VL.20), the post-quench correlation lengths
result as (cf. [91], Eq. (271))

§ _ 2C@(A1—Af) T C@(Af—Ai)
FTUAF A Ai+c/é

& = 2c (VAr— A (V1.24)

Hence, at Af = 0, one has & = 2¢/A;, and this to coincide with the thermal critical
length scale &y, (Af = 0) = 4c¢/(xT) [89] requires a temperature Ty = 2A; /7 which only
depends on the initial-state gap scale. Fig. VI.2d shows the crossover-behaviour of the
post-quench correlation lengths & 2(Ayf, A;) as well as the thermal length &y, (Af) [89]
as functions of Ay, with the temperature set to T;. We find, that all three length scales
fall of as (A¢/A;)~! for Ag > A; but that there is a factor of two difference between the
post-quench and the thermal lengths, respectively. In the scaling window near the critical
point, 0 < Ag < Aj, both, deviations of ;! and &, from the critical value A;/(2c) are,
to linear order equal to Ag/(2c), see the inset of Fig. VI1.2d, while only the thermal one
receives additional corrections in even powers of A¢ [89].

VIL.3 Crossover in the Spinor Bose Gas

For the remainder of this chapter, we turn back to quench dynamics in the two-component
Bose gas. In the previous chapter V, we have already presented results from full simula-
tion for quenches of h = J/J. close to the critical coupling, staying on the z-unpolarised
side of the transition. As pre-quench state a ground state in the spin sector at infinitely
high linear coupling, h; = J;/J. = oo, was chosen. Therefore, the quench setup in chap-
ter V for the spinor gas is the same as we discussed for the transverse Ising chain in the
previous section VI.2.

In this section, we present results on the dynamics of correlation functions and corre-
lation lengths, as obtained from the simulations also presented in chapter V. In particular,
the quench we implement for the Bose gas thereby starts in the (non-interacting) ground-
state at high linear coupling J = J; — oo. The simulation data we present in this section
is obtained with numerical parameters as given in Table B.2.
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With this, we are in the position to discuss similarities and differences between the
Bose gases’ pseudo-spin dynamics and the dynamics of actual spins in the transverse
Ising chain from the point of view of local observables. As our main result from this
comparison, we find that the behaviour of the spin correlation length of the Bose gas
beyond Bogoliubov theory can be explained in terms of the transverse Ising chain’s uni-
versal crossover function (see Eq. (VI.10) and Eq. (VL.11)). The scale which takes the role
of temperature is universally set by the quench. It turns out to be set by the effective
temperature from the generalised Gibbs ensemble for the Bogoliubov spin modes (see
Sect. I11.4).

VI.3.1 Dynamics of Correlations

Before presenting calculations for the Bose gas, a technical remark is in order. When
comparing the model for the Ising chain from Eq.(VI.1) and the spin description of the
Bose gas from Eq. (IL.6), one finds the transverse field pointing in different directions in
spin space, in x-direction for the Bose gas and in z-direction for the Ising chain.

This difference is superficial, insofar it is due to a different choice of the quantisation
axis in spin space, and does not change physical properties. In both models a rotation
around the y spin axis could be performed, 60* — ¢* and ¢* — —¢”*, to match the
definitions. In accordance with common literature on both sides we use both models as
given in Eq. (IL.6) and Eq. (VIL.1).

Then, of course, different correlation functions need to be compared to be on equal
physical footing. As we have analysed the correlation function C** of the Z; symmetry-
breaking order parameter field in the transverse Ising chain in Sect. V1.2 we need to anal-
yse the z-spin two point correlation function

S%(t,0)S5%(t,

G (1) SLOS ()
(5%(t,0)%)

for the Bose gas. Note that G** in Eq. (VI1.25) has to be normalised® ‘by hand’ to G**(r —

0) = 1, since it is derived from a continuous spin density field, whereas the calculations
of the discrete spin correlation C** in Sect. V1.2 do not require additional normalisation.

(VL.25)

We point out that, even within the same model, spin correlation functions in different
spin directions can thermalise on very different time scales, see for example [32]. There-
fore, out of equilibrium it is vital to compare the spin correlation functions with same
physical meaning in the two models.

VIL.3.2 Details of the Spin Correlation Function

Typical examples for the time evolution of the z spin correlation function G** of the Bose
gas are shown in Fig. VI.4. Similar to Fig. VI.1 we concentrate on early times, meaning
within the first two oscillation periods of the magnetic susceptibility (cf. Fig. V.1), and

%We reserve the symbol G for the normalised spin correlation functions (or structure factors) of the spinor
gas, while the symbol G is used for the unnormalised ones. As before, we denote with the symbol C spin
correlation functions of the transverse Ising chain.
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Figure VL4: Examples for the equal-time spin correlation function G**(¢,r)
(see Eq. (V1.25)) after a quench in the Bose gas. The left panel depicts a quench
from h; — oo to a large post-quench distance to the meanfield critical point
& = 0.5 while the right panel depicts a quench to a small distance & = 0.05,
in both cases with hf = (1 + &). Both panels show simulation data (coloured
symbols) for early times (see legends) together with the Bogoliubov prediction
(coloured solid lines), as given in Eq. (II1.38), for the corresponding times (same
colour as symbols) and post-quench distances to the meanfield critical point.
For that, the Fourier transform in Eq. (IIL.38) is evaluated numerically on the
simulation’s momentum space grid. In both panels, a small window is shown, to
concentrate on short distance properties. The full system size in the simulations
(see parameters in Table B.2) is L = 1293 in natural units (see Sect. B.1)

compare the evolution for two different post-quenches distances to the meanfield critical
point.

The equal-time correlation functions follow the general structure of being composed
out of a short-ranged decay for small distances r, overlaid with spatial oscillations. To set
the general behaviour into context, we compare the simulation data for G**(¢,r) (coloured
symbols in Fig. VI1.4) with the corresponding evaluation of the Bogoliubov equal-time cor-
relation functions (coloured lines in Fig. V1.4). To do so, the expression Eq. (II1.38) is eval-
uated on the simulation’s momentum space grid at corresponding times and meanfield
distances from the critical point.

From the comparison in Fig. V1.4, we find that Bogoliubov dynamics is a good descrip-
tion only for very early times at comparatively large distance & = 0.5. Then, the Bogoli-
ubov correlation functions capture the structure of the simulation data in detail, i. e. the
decay together with matching period and amplitude of spatial oscillations, (cf. blue and
green data points and lines in left panel of Fig. VI1.4).
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The decay of the correlation function on small scales, on the other hand, is described
well by Bogoliubov theory for all times and both values of ¢ shown in Fig. VI.4. Thus,
as time progresses or distance to the critical point decreases, large-scale properties of
the correlation function are strongly changed by interactions as compared to Bogoliubov
theory. The short-ranged decay is described by Bogoliubov theory in a larger window of
time and distance to the critical point.

Similar to the behaviour of the corresponding correlation function in the transverse
field Ising chain C**(t,¢) (cf. Fig. VL.1), the decay on small scales r of G**(t,r) is found
to be nearly static. However, there is not such a clear separation between a small-scale
decay and a long-distance decay as we found for C**(t,¢) in Fig. VL1.

The difference can be understood as follows. As we have discussed in Sect. V1.2, the
turning point between the long-range and the short-range exponential decay of C**
moves towards larger spatial scales in time, therewith growing the extend of the static
short-distance exponential decay, C**(¢,£) ~ exp (—{/&). If a fixed window in ¢ is anal-
ysed, as in Fig. VL1, the oscillatory part of C** moves out of this window, leaving back
the static exponential decay of the generalised Gibbs state.

The behaviour of the spin correlation function in the Bose gas is already different when
it is considered within the Bogoliubov regime, where a relaxation towards a stationary
generalised Gibbs state takes place. As discussed in Sect. IIL.3.2, the correlation function
G(t,r) within Bogoliubov theory is schematically given by a static exponential decay plus
a spatially oscillating function,

11
G*(t,r) ~ e84 Vi cos (fb(gf, t,r) — %) . (VL.26)

Note that, for the sake of the argument, we focus in Eq.(V1.26) on the leading-order
asymptotic behaviour of G(t,r) in time and space, found from Bogoliubov theory and
stationary phase approximation. The full expression can be found in Eq. (II1.52) together
with Eq. (II1.53).

The crucial difference to C** in the Ising chain (¢f. Eq. (V1.15)) is that the time dependent
part in Eq. (V1.26) does not contain a second characteristic decay length, such as & in
C**. The oscillatory part of the correlation length in the spinor gas at fixed time ¢ decays
only algebraically in space and is, therefore, at any finite time present on all scales. As
a consequence, the oscillatory part decays as a whole in time o 1/ v/t instead of moving
out of the spatial window. At sufficiently large times an approximately static correlation

function G**(t,r) ~ e”"/& with & = & 12 would be expected. We turn back to this

question when analysing the correlation lengths.

From Fig. V1.4 we find that the general form for G(t,r), as given Eq.(VL26), is not
changed fundamentally by interactions. In particular, also beyond Bogoliubov theory
there is no exponentially fast decay of the oscillatory part found, neither in time or space.
It can be seen that (spatial) oscillation frequencies and amplitudes get shifted as compared
to Bogoliubov theory. This is expected to affect mainly the long-distance properties of the
spatial decay of correlations at fixed time ¢.
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Figure VL.5: Time evolution of the long-distance spin correlation length &(¢)
(see Eq. (V1.27)) of the spinor Bose gas as a function of post-quench time. The cor-
relation length £(t), as computed from numerical simulation (coloured symbols),
is shown for five different values (see legend) of the distance & to the meanfield
critical point. The time axis is rescaled with the time 7; = 7/(2A(¢f)) at which
the first maximum of the magnetic susceptibility was determined in Sect. V.3
(see Fig. V.3 and discussion in main text). The solid blue and green line represent
the long-distance correlation length, as obtained evaluating Eq. (V1.27) with the
Bogoliubov correlation functions for corresponding &. The maximum correla-
tion length within Bogoliubov theory scales with & ~ +/ef whereas the maximal
correlation length from simulation saturates. For reasons of visibility, we plot
the Bogoliubov lines therefore only for the two smallest values of ¢.

VI.3.3 Long-Distance Correlation Length

To analyse the time dependence of spin correlations in the Bose gas further and, in ad-
dition, for smaller distances to the critical point, we turn to the correlation length as
observable. Since there is no clear separation between a short-distance decay and second
characteristic scale for the spatial decay of oscillations in G**(t,r), we use the integral

E(t) = [, drG¥(tr). (VL.27)

as a bulk measure for the decaying spin correlations. Note that the total system size
for our simulations is L = 1293 (1/ v/4mJ.) which is much larger than the characteristic
decay of correlation functions. Finite size effects from the spatial integral in the definition
Eq. (VL.27) can be neglected.

The length scale £(t) in Eq. (V1.27) reflects the overall-decay of the correlation function,
including the oscillatory part, as it averages over neighbouring negative and positive re-
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Figure V1.6: Time evolution of the long-distance spin correlation length &(¢)
(see Eq. (V1.27)) in the spinor Bose gas after a quench from h; — oo to distance &
from the meanfield critical point in the whole time-¢¢ plane. Note the logarithmic
scale for the ef axis. The value of £(¢) is encoded in the colour projection. Fig. VL5
displays slices at fixed values of e.

gions. From Eq.(V1.27), one finds that the long distance correlation length is equal to
the zero mode of the normalised structure factor, £(¢t) = G**(t,k = 0)/2. With that,
the quantity is similar to the magnetic susceptibility, we defined as the zero mode of the
unnormalised structure factor y(t) = G**(t,k = 0). Nevertheless, the inclusion of the
normalisation factor will lead to different behaviour, as it is time- and &-dependent on its
own. In the Bogoliubov scaling regime one expects { ~ 4/ due to the Fisher hyperscaling
relation.

If G**(t,r) is dominated by a decay of the form G%*(t,r) ~ e~'/¢, the definition of &
in Eq.(V1.27) yields the scale of the exponential decay, £(t) — &;. See Sect. IL.5.2 for
further discussion. Thus, if a stationary state is approached in time with a dominating
exponential decay of correlations, one expects £(t) — & for t — co.

As discussed in Sect. I1.5.2, the computation of £(t) includes in practice also a coarse-
graining procedure, to reduce artificial influence of noise from high momentum modes.
Note that the length scale £(t) defined in Eq.(V1.27) can turn negative for strong anti-
correlations (i. e. high negative values) at the first oscillation minimum in G**(¢,r), for
example for the red curves in both panels of Fig. V1.4.

Examples of the post-quench time evolution of £(t) from Eq. (V1.27) for various dis-
tances to the meanfield critical point on the paramagnetic side in the spinor Bose gas are
shown in Fig. VL5 (coloured symbols). An overview over the time evolution of ¢(¢) in the
whole time-¢f plane is provided in Fig. V1.6, where a colour projection encodes the value
of the correlation length.
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The long-distance correlation length initially grows in time, reaches a first dominant
maximum, and thereafter oscillates. We find that the oscillation maxima of the long-
distance correlation length from simulation decay, even for large distances to the critical
point & = 0.5 (in contrast to y(t) where the decay appears only for smaller distances, cf.
Fig. V.1).

The temporal structure of the oscillations follows the same pattern as for the magnetic
susceptibility in Fig. V.1. To demonstrate this, the time axis in Fig. VL5 is rescaled with
the time of the first maximum of the magnetic susceptibility. We use the numerically de-
termined value 71 = 7/(2A(é)) (see Sect. V.3, together with Fig. V.3). Upon expressing
time in units of 7; for the respective distance to the critical point, the oscillation maxima
and minima in the correlation length &(t) fall approximately onto each other for the first
two periods and then detune again. Thus, the oscillation period of £(t) is close to the
frequency set by the (shifted) gap. As &(t) receives contributions from higher k modes
in the structure factor G,z (via the normalisation of the correlation function), it is under-
standable that oscillations in &(¢) reflect not purely the gap frequency.

In contrast to the correlation length &), defined in Eq. (V1.17), in the Ising model (cf.
inset ¢ in Fig. V1.2), the damping of the oscillations of the correlation length in the Bose
gas is much less pronounced. In fact, within times accessible to simulations and for the
distances to the critical point we find in Fig. VL5 the system does not reach the stationary
state, whereas the oscillations are essentially over-damped in the Ising model for & < 1.

From the fact that the minima in £(t) grow in time while the maxima decay for small
distances to the critical point (e > 0.05 in Fig. VL5 or Fig. VL6) the existence of plateau
in £(¢) for times much later times can be deduced.

However, the four maxima and minima for the relevant small values of & do neither al-
low to extrapolate the data, to obtain a value for the correlation length at this plateau, nor
is it possible to decide of the plateau is approached algebraically or exponentially in time.
For this reason we analyse the maxima of the correlation length for scaling behaviour in
the following, instead of a stationary plateau as for the Ising model in Fig. V1.2.

For the distances to the meanfield critical point & = 0.5 and & = 0.05, for which the
correlation functions are displayed in Fig. V1.4, the time evolution of the long-distance cor-
relation length &(¢) as obtained from the Bogoliubov correlation functions is also shown
in Fig. VL5 (see blue and green solid lines in comparison to data points of same colour).

We find that the decay of the oscillations in £(t) obtained from full simulation is a pure
non-linear effect, when the long-distance correlation length is regarded. Although the
oscillation period matches for ¢¢ = 0.5 and approximately matches for & = 0.05, the
long-distance correlation length in Bogoliubov theory shows no sign of approaching a
stationary plateau.

In light of the asymptotic form of the Bogoliubov correlation function Eq.(VI.26) a
comment is in order here. Due to this form, one expects the Bogoliubov correlation length
to decay at some point in time (although algebraically slow). But one needs to take into
account that the algebraic decay of the oscillatory term in Eq. (VI1.26) is obtained within
the continuum limit, where complete dephasing of quasi-particle modes is possible (cf.
also Eq. (II1.52) and the corresponding discussion).

The Bogoliubov correlation functions and lengths displayed in Fig. V1.7 and Fig. VL5,
however, are evaluated on a discrete momentum- and position-space grid with discrete
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mode frequencies w_(k;). Therefore, quasi-particle modes do not dephase completely
and oscillations in the correlation function do not completely decay. As the integral in
Eq. (V1.27) always integrates over the whole position-space region, the maximum in &(t)
does not change much over time and clearly does not visibly decay. It seems even to
rise slightly initially. In turn, this shows that the decay of the correlation length in full
simulation (which lives on the same finite lattice) is an effect beyond simple dephasing.

VI1.3.4 Effective Temperature Crossover

To characterise the scaling behaviour hidden in the post-quench time evolution of the
long-distance correlation length further, without knowing the stationary plateau, we
analyse the values £(7;) = max(£(t)) of the correlation length at successive maxima
as a function of the distance to the critical point. We demonstrated, in Sect. II1.3.2 and
Fig. 1114, that successive maxima of the long-distance correlation length in Bogoliubov
theory follow the scaling relation

E(n) = a(r)e; 2, (V1.28)
with a slowly varying, time-dependent pre-factor a(z;). However, the results presented in
chapter V, in particular, the scaling behaviour of the magnetic susceptibility (see Fig. V.2)
already let expect that £(7;) deviates from the power law behaviour of the Bogoliubov
prediction in Eq. (VL.28).

The results for the maximal long-distance spin correlation length for quenches in the
spinor Bose gas from h; — oo to a distance ¢ to the meanfield critical point on the para-
magnetic side, as obtained from simulation, are shown in Fig. VL.7. For this, the maximal
values & = & of é(t; ), as displayed in Fig. V1.6, are determined directly numerically,
instead of relying on the times 7; = (i + 1/2)7/A(€é) of maximal magnetic susceptibility
(cf> Sect. V.3).

As expected, we find in Fig. V1.7 that the maximal long-distance correlation length
turns away from the Bogoliubov scaling prediction already at the first maximum &; for
& < 0.1 (compare black solid line and blue coloured symbols in Fig. VL.7). Instead, the
correlation length saturates and turns towards a finite value as & — 0.

As already found from Fig. VL5 and Fig. VL6, the maximal values of the long-distance
correlation length additionally decreases in time for all & < 1. From Fig. V1.7 it is appar-
ent, that the decay of the maximal correlation length proceeds faster closer to the critical
point. This means that the maximal correlation lengths &;(¢f) can not simply be rescaled
to a universal curve by introducing a 7;-dependent pre-factor, &;(er) = Z;&(es).

The behaviour of the post-quench correlation length £(¢) at its successive maxima &; (&)
as a function of the quench parameter, as shown in Fig. VL7, is very similar to the be-
haviour of the Ising model’s correlation length at a finite temperature (see Eq. (VI.10) and
black line in Fig. V1.3). In the following, we argue that this similarity can be turned into a
quantitative description for the crossover of &;(ef). In Fig. V1.7, we demonstrate that it is
possible to fit the crossover of &;(¢f) with the Ising model’s finite temperature crossover
function &y, (&r, T) (coloured solid lines in Fig. V1.7) from Eq. (VL.10). To do so, three key
steps are required, as follows.
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Figure VI.7: Maximal long-distance spin correlation lengths & = &(r;) in the
spinor Bose gas as a function of the post-quench distance ¢ to the meanfield
critical point. Different colours refer to different successive maxima, the first
(blue), second (green), third (violet), and fourth (red), attained after the quench.
Coloured data points represent the numerically extracted maximal values of
&(t,€), the data for which is shown in Fig. VI.6. The solid black line shows
the scaling prediction computed from equilibrium Bogoliubov theory, £ ~ ¢ v 2,
for comparison. Coloured solid lines represent an evaluation of the expression
Eq. (VI.10) for &y,, the finite temperature correlation length in the Ising chain. The
expression Eq. (VL.10) for &y, is evaluated with gap A(¢r) and speed of sound c(¢f)
from the Bogoliubov spin dispersion of the Bose gas. The temperature is set by
the effective temperature (see Eq. (V1.29)) which determines the post-quench oc-
cupation of Bogoliubov spin quasi-particles (see Sect. II1.4). Additionally, for the
different maxima the anomalous dimension appearing in Eq. (V1.10) is adapted
as a fit parameter, together with an overall constant Z;, to correct for the decay
of &(1;) for &g — 1. Obtained values 5; (error from fit is +0.025;) and Z; (error
from fit is £0.02Z;) are given in the legend. The dashed line shows &y, at 4 and
Z, at a constant temperature T = 1/4. We find that the &-dependent profile of
Tes (&) is vital for being able to fit the numerical data with &y,. See the main text
for further discussion.

First, Eq. (VI.10) for xiy, requires properties of the quasi-particle dispersion as input, the
excitation gap A and the speed of sound c;. It is reasonable that these properties need to
be adapted to the dispersion w_(k, &) (Eq. (II.11)) of the quasi-particles describing the spin
sector of the Bose gas. Thus, for the coloured lines in Fig. V1.7 we insert the Bogoliubov
expression, A = A(er) = 2+/ep(er+ 1) and ¢ = cs(&r) = +/2(2¢r + 1) for the evaluation
of Eq. (VL.10). This means in particular, that the Bogoliubov speed of sound produces an
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additional er-dependence as compared to the Ising model.

The second step concerns the temperature scale which enters, in particular, the univer-
sal scaling function F in ratio to the gap. The ratio A/T in F(A/T) locates where the
correlation length actually bends away from a pure scaling form and thus determines the
crossover feature. As discussed in Sect. III.4, within Bogoliubov theory for the spin sector,
the initial state we utilise here can be reduced to a single scale T.g(ér) in the infrared mo-
mentum region. Adapting the post-quench occupation of Bogoliubov modes to a thermal
occupation for momenta k < 1, one is able to map the scale from the initial state to a
er-dependent effective temperature (see Sect. I11.4.2 and Eq. (I1L.67)),

Tefr(ef) = % (Ef — (e + 1) + 1/2) . (VL.29)

We insert this expression as temperature in the expression Eq. (V1.10) for the crossover
of the correlation length to evaluate it for the coloured solid lines in Fig. VI.7. This demon-
strates that the energy scale T has an influence beyond defining a generalised Gibbs
state in the Bogoliubov approximation. It determines the energy scale, and with that the
distance to the critical point, where interaction effects set in.

Equally important, we find that a constant temperature does not suffice to describe the
crossover of &;(¢&f) in the region & € [0.1,0.001]. An example is given with the dashed
yellow line in Fig. V1.7, which is &y, at fixed temperature T = 1/4. Recall that this is the
limiting maximal effective temperature for ¢¢ — 0 (see Sect. II1.4.2). We emphasise that,
although not shown, attempts to fit a constant effective temperature in &, (Eq. (V1.10)) to
describe the data for ;(&f) over the whole ¢-region fail.

In the third step, one needs to compensate for the change of the long-distance correla-
tion length &;(&f) in time. The maximal values of the post-quench correlation length decay
in time, see Fig. V1.7 or Fig. V1.5, which is not captured naturally by the finite temperature
crossover function from Eq. (VL.10).

It is reasonable that one needs to allow for a non-universal, possibly time-dependent,
constant (in the spirit of a renormalisation constants) in the comparison between Ising
model and Bose gas correlation length, i.e. &y (er) — Z(7;)&m(er) = xi;(ef). This overall
constant can be used to compensate the decay of the correlation length in the Bogoliubov
scaling regime for ef — 1.

However, as can be seen from Fig. V1.7 and argued before, for &f — 0, the decay of the
correlation length (i. e. the shift downwards) is stronger than for &g — 1. Therefore, the
limit lim;_,q F (see Eq. (VI.12)) needs to be different for different maxima, as compared to
the thermal Ising crossover function. A change of this limit can be attained by assuming
a different anomalous dimension n — n; entering the expression Eq. (VI.10) for &y, see
also Eq. (VI.12).

To achieve the four different coloured lines in Fig. VL.7, the overall constant Z; is fixed
from the limit lim,,_,1 &;. The anomalous dimension 7; is then determined by a fit of

&i(er) = Zim (1. Ter, A(e), cs(er)) (VI1.30)

to the data points of the maximal correlation length &;(ef). We point out, that the form of
the crossover (the ¢-dependence in &;) is set by a priori knowledge. It is determined by
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inserting the er-dependent effective temperature together with the Bogoliubov gap and
the Bogoliubov speed of sound into the Ising crossover function.

From this procedure, we find that the values for 7; are considerably smaller than the
anomalous dimension of the Ising model, n; < 1/4 (see legend in Fig. V1.7). It is, at this
point unclear, if the 5; assume the meaning of a dynamical anomalous dimension (in the
sense of critical exponents) for the spin sector of spinor Bose gas. One can take the point
of view, that the appearance of n; in Eq.(VL.30) constitutes a second non-universal fit
parameter, which is required since the Bose gas is at the maxima displayed in Fig. VL7
still far away from a stationary plateau. Then, the progression of the values of 1; (see
values for 7; in the legend of Fig. V1.7) towards n = 1/4, the anomalous dimension of the
Ising model, suggests that the stationary state in the Bose gas indeed would be described
by the thermal crossover function of the Ising model.

In summary, we find that the maximal long-distance correlation length can be described
by the universal crossover function for the thermal correlation length of the Ising model,
see Eq. (V1.30). This requires to introduce two time-dependent parameters, n; and Z;. This
however is a consequence of studying a very early stage in the post-quench time evolu-
tion. The main result is that the e-dependence of the (maximal) correlation lengths &;(¢f)
is set by the universal crossover function of the Ising model. For this one needs to eval-
uate the crossover function with the Bogoliubov quasi-particle dispersion of the spinor
gas, and, intriguingly, the effective temperature T.g(¢f) (including its full ei-dependence)
found from the generalised Gibbs ensemble describing the Bogoliubov quasi-particles.

VI.4 Self-Similar Evolution within Quench Dynamics

Finally, we turn to the question if a quench in the spinor Bose gas within the paramagnetic
regime hosts self-similar time evolution of occupation spectra. In particular, if time itself
acts as an additional critical tuning parameter after the quench one expects a general
scaling form

G (s_l/'gt,sk,scg) = s_“/ﬁg (t,k,¢) , (VL31)

for a equal-time correlation function to hold. For our quench setup, the scaling form can
include ¢, & or even more scales of the initial state (generically represented by s°¢ in
Eq. (VL31)). Such a scaling form allows to eliminate the explicit dependence of G on one
of the variables, as the scaling form holds for arbitrary values of s. For example, choose
s = (t/twt)? such that ts1/F = t..¢ and insert on both side of expression Eq. (VL31) to
get

G (t.k.e5) = t*G (trers (t/tret) Pk, (1 / trep) P (V1.32)

This essentially means that, via the scaling form Eq.(VL31), the spectrum at any time
t is connected to the spectrum at an arbitrary reference time t,r. Thus, the full time
dependence is generated by rescaling a universal function.

In Sect. I11.3 we found that the spin structure factor G,, fulfils a scaling form Eq. (V1.31)
if e > 1 or ¢ <« 1. In chapter V, we found that this scaling behaviour is destroyed when
quenching to values ¢ < 1.

In this section, we show that there are nevertheless occupation spectra for specific or-
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Figure VI.8: Examples for the post-quench time evolution of the symmetric oc-
cupation spectrum G, 1 (k,t) (upper panel) and the anti-symmetric occupation
spectrum G—_(k,t) (lower panel), see Eq.(VL.33). Coloured data points corre-
spond to data from simulation at different times (see legend) for a quench to a
distance & = 0.1 from the critical point. Coloured solid lines are plotted as guide
for the eye. Simulation parameters from Table B.3.

der parameter fields in the spinor Bose gas, which fulfil a time-dependent scaling form
Eq. (VL.31) for quenches close to the critical point. This is especially important, as be-
haviour of the structure factor or occupation spectrum following Eq. (V1.32) is typically
taken as a signal for critical dynamics. In particular, concrete realisation of Eq. (V1.32)
with ¢ = 0 are found in the context of phase ordering kinetics (see [54] for a review)
and have been put forward as a signature of non-thermal fixed points in the context of
transport phenomena [47]. This will be addressed in more detail in chapter VIL

In this section, we analyse occupation number spectra of the fundamental Bose fields
®;(k,t) (see Eq.(IL1)) for scaling forms. It is convenient to define the combinations
Yo = Py + & (see Appendix A for a corresponding representation of the full spinor
gas Eq. (IL.1)). Then, the observables of interest read

Ges(k,t) = (WL (k) (.t)
(®1(k,)01(k, 1)) + (@] (K, 1)@y (k. 1)) + 2Re(®@] (k, 1) D (K, 1)) (VI33)

which are combinations of the occupation spectra of the single components (@; (k,t)®;(k,t))
with the overlap spectrum <<I>$(k, )P (k,t)).
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Figure VI.9: Rescaled symmetric occupation spectrum ¢t *G, . (k,t) as a
function of rescaled momentum t#k, to demonstrate the scaling collapse of
t7*G4+(k,t) according to the scaling form Eq.(V1.32). Upper panel: Scaling
collapse with ¢ = 2 and § = 1 at fixed ¢ = 0.1 (see unscaled data in Fig. V1.8),
where five exemplary times (see legend) are shown at logarithmically equidistant
times. Lower panel: rescaled symmetric occupation spectrum t_¢ G (k, ter) as

function of tr’i (& at reference time t,ef = 141.264 (cf: orange curve in upper panel)
for several distances to the critical point ¢ (see legend). Coloured data points
correspond to simulation data and coloured solid lines are plotted as guide for
the eye. Note that the reference time t,.¢ is ¢r-independent, rendering the scaling
collapse quench independent. Simulation parameters from Table B.3.

Occupation spectra of Fundamental Fields

Examples for the time evolution of G, 1 (k,t) and the corresponding spectrum are shown
in Fig. VI.8. We show the post-quench time evolution for our standard quench scenario
(as employed in Sect. VL.3) to & = 0.1 for early times. The numerical parameters are given
in Table B.3, which are chosen to resolve mainly the momentum region k € [0,1].

We find that G__ (k, t) (lower panel in Fig. VL.8) displays a behaviour very similar to the
time evolution of the z-spin structure factor G,,(k,t) (c¢f. Fig. V.5). This is not surprising,
as _ is a antisymmetric combination similar to the z-spin field. In particular, G__(k,t)
has a heavily oscillating plateau in the infrared momentum region. The scale, at which
this plateau goes over into a decay in k, is fixed for fixed ¢ Likewise, the amplitude of
the temporal oscillation of the plateau does not change at fixed &;.

The behaviour of the spectrum G, (k, t) (upper panel in Fig. VL8) is drastically differ-
ent. We find that G ; (k, t) is in general several orders of magnitudes larger than G__(k, ).
According to Eq. (V1.33), this means that the real part of the overlap occupation spectrum

128



VL4 Self-Similar Evolution within Quench Dynamics

is on the order of the occupation spectra of the single components. The symmetric spec-
trum G ¢ (k,t) displays also a plateau for infrared momenta. But in contrast to G__(k, 1)
this plateau in G 1 (k,t) does not oscillate in time. It grows in time towards higher oc-
cupation numbers and simultaneously moves further towards k = 0 in time. This shifts
the whole occupation spectrum upwards and towards the infrared.

Universal Scaling Forms

The type of time dependence described above is typical for cascades and for scaling forms
according to Eq. (V1.32). To analyse this further, we test the scaling prediction Eq. (V1.32)
by plotting the rescaled symmetric occupation spectrum t~*G | (k,t) as a function of
rescaled momentum tPk. The result is shown in Fig. VL.9. In the upper panel, we depict
the result after rescaling the same data for the symmetric occupation spectrum as is shown
unscaled in Fig. V1.8 (upper panel), i. e. at fixed ¢¢ = 0.1. Note that the times are at which
G4+ (k,t) is evaluated are different and, in particular, extend to a bigger range of times at
logarithmically equidistant steps.

We find that, at fixed ¢, the spectrum G 1 (k, t) can be collapsed to a single curve, apart
from a high momentum tail. The scaling form in Eq. (V1.32) holds if

o=~ 2
p=1. (VL34)

In the lower panel of Fig. VI.9 we analyse the ¢-dependence of the scaling form. We
compute the rescaled occupation spectrum at a reference time for different quenches, i. e.
different values of &. As a reference time we choose t,.f = 141.264, which is the latest
time displayed in the upper panel. From this, we find that there is no dependence on
¢ in the scaling form, meaning ¢ = 0 in Eq. (VL.32). This means that the post-quench
time evolution of the symmetric occupation spectrum G (k,t) can be generated from a
universal function Gy 1 (k) via a scaling transformation Eq. (V1.32) and exponents a = 2,
B =1, and ¢ = 0. In particular, the universal function is does not depend on the quench.
We emphasise that we have tested this for all available reference times and did not find
any dependence of « and f on ¢ either.

The universal curve G4 1 (k) decays after the plateau in the infrared algebraically, ap-
proximately with a power law G, (k) ~ k=2 (see black lines Fig. V1.9). The power law
stops at a scale k;, which moves in time to the infrared following a power law itself,
k) ~ t77 (due to the scaling form Eq.(VL32)). This means that the spectrum evolves
algebraically (critically) slow in time.

Fig. V1.9 shows that oscillations in k are superimposed on the decay of the spectrum
G4+ (k) for k > kj. Tt is peculiar that the oscillations in k are consistently rescaled by the
scaling transformation Eq. (V1.32) and collapsed to a single curve. This implies that there
is a second k-space scale (the period of the oscillations) which is not quench dependent.
To clarify this, a further analytic analysis of the origin of the scaling form is required.

Finally, we comment on the values of the exponents « and f§ Eq.(V1.34), which are
realised in the scaling form. For our concrete realisation of the spinor Bose gas, there are
currently no analytic predictions available, due to the structure of couplings. However,
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the critical dynamical evolution of the symmetric occupation spectrum G (k,t) seems
rather insensitive the quench (i. e. details of the coupling structure).

For O(N)-symmetric field theories, however, there exist predictions and it seems rea-
sonable to compare to them. In particular, in [47] out-of-equilibrium dynamics for O(N)-
symmetric field theories is studied with effective Boltzmann transport equations and two-
particle irreducible effective action techniques. The authors find possible realisations of
scaling forms for the statistical correlation function together with predictions for & and
B. The realisations depend on the type of local transport (particle or energy) assumed and
if the theory is relativistic (see Eq. 91 and Eq, 92 in [47]) or non-relativistic (see Eq. 81 and
Eq, 82 in [47]).

Assuming now, that the calculations for a O(N)-symmetric theory are applicable to
the symmetric occupation spectrum’ G, 1 (k,t), we find that there is only one scenario
from [47] consistent with the numerical values of & and f Eq. (V1.34). One needs to assume
local energy transport in a relativistic theory, which comes with exponents

d+z
a=—
2-n-z
1
f=——7- (VL35)
2-n-z

This yields, « = 2 and = 1, i. e. the values required for the scaling collapse of G 1 (k, 1)
in Fig. V1.9, with z = 1 and for zero anomalous exponent n = 0. This would imply that the
critical dynamical evolution of G (k,t) in Fig. VL9, together with the temporal scaling
collapse, is connected to a local transport of energy towards the infrared. An analytic
analysis of the correlation function G | within a non-perturbative approximation of our
model Eq. (IL.1) is required to clarify this further.

VL5 Summary

In this chapter, we argued that the Ising model in a transverse Field is the best starting
point to compare the non-linear quench dynamics of the spinor gas to. The results from
[116] show that the static universality class of the Ising phase transition applies at least
in one regime (the Mott insulating regime) of the full phase diagram of the spinor gas.

Consequently, we reviewed recent results [90-92, 212] on quenches within the param-
agnetic phase of the transverse Ising chain. The quench protocol, starting in the ground-
state of the quasi-particle basis at one parameter value and computing the Hamiltonian
time evolution with a different parameter, is thereby the same as we implement for the
spinor gas (see Sect. V.1).

The situation for the Ising model is as follows. As the post-quench stationary state
of the Ising model is fully described by a generalised Gibbs ensemble [90-95] and, thus,
correlation functions quickly relax to this stationary state. We find that this is even the
case for small finite spin chains within a view periods of the characteristic gap frequency.

7G4 (k,t) is the equal-time contribution to the statistical correlation function ({4 (k, 1)yt (k,t2)}) of
the symmetric field ¢ .
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The spin correlation length follows a crossover function towards the critical point. In
the scaling limit and close to the critical point (leading and next-to-leading order in the
gap ratio A¢/A;), the crossover function can be matched to the thermal crossover func-
tion (Eq. (VL.30), [89]), if a effective temperature T, = 2A; /7 is chosen (see Sect. V1.2.3).
However, this effective temperature is rather a characteristic scale for the bulk energy
and derives not naturally from the quasi-particle occupation numbers. As a direct con-
sequence it describes not the full crossover function in the steady state, when going to
larger distances to the critical point.

The situation in spinor Bose gas is superficially similar, but comes with a number of
striking differences when details are considered. First, we find that the correlation lengths
or functions approach a steady state on much longer time scales (in units of gap periods)
for similar distances to the critical point &. This can be understood, as the parameter &
simply does not need to be comparable on a ‘value by value’ basis. Even if renormalisation
effects are not taken into account for the Bose gas (cf. Sect. V.3), the gaps in both models
already scales differently with &;.

Nevertheless, we demonstrated that it is possible to extract a meaningful correlation
length as function of the distance to the critical point, by concentrating on maximal values
of the correlation lengths (see Sect. V1.3.4). We find from this procedure that the maximal
long-distance correlation length follows a crossover function, which scales according to
the Bogoliubov prediction for large ¢ but saturates towards a finite value close to the
critical point.

As main result of this chapter, we find that this crossover can be described by the
universal crossover function for the thermal correlation length of the Ising model, see
Eq.(V1.30). This requires to introduce two parameters, 1; and Z;, which depend on the
maximum which is evaluated, to capture the overall decay of the correlation length. This
is necessary as we analyse a very early stage in the post-quench time evolution. The im-
portant point is that the ¢-dependence of the (maximal) correlation lengths &;(¢r) is set
by the universal thermal crossover function of the Ising model over the whole range of
¢r if the effective temperature Teg(er) Eq. (VI.29) is used in the universal function. But,
as we have determined in Sect. II.4, the effective temperature of the Bose derives natu-
rally from the generalised Gibbs ensemble for the post-quench Bogoliubov quasi-particle
occupation.

All together, this brings back the notion of universality to the post-quench behaviour of
the spinor Bose gas. If one corrects for the decay to an unknown steady-state, correlations
follow in the bulk (measured by the maximal long-distance correlation length) a universal
function which carries the & dependence only via ratios of energy scales. The energy
scales derive naturally, as one comes from the excitation gap after the quench and one
essentially from the pre-quench excitation gap (see Sect. IIL.4).

It is an equally striking observation, that one can measure the crossover behaviour
long before the spinor gas has reached a form of stationary state (be it equilibrium or
non-equilibrium). Due to the fact that the spinor Bose gas is not integrable for the fully
interacting dynamics but starts initially very close to the integrable theory, it is expected
to encounter the phenomenon of prethermalisation [34, 35], instead of relaxation to a
truly steady state [214].

In the context of prethermalisation out results for the spinor gas can be interpreted in
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the following way. The crossover in the bulk correlations appears after kinetic prethermal-
isation (in the language of [35]), meaning, after the Bogoliubov modes have sufficiently
dephased to let the energy stored in the infrared Bogoliubov occupation numbers define
an effective temperature. At the same instance, interactions between quasi-particle modes
become relevant, which let correlations evolve towards a prethermalisation plateau. If the
plateau is reached, the correlation function displays universal behaviour of the underlying
equilibrium universality class at a possibly different effective temperature.

In the last section Sect. V1.4, we have demonstrated that the Bose, gas viewed not in
the language of pseudo-spins but in terms of the actual quantum gas, displays critical
dynamics (critical scaling in time) after the quench insensitive to the distance to the critical
point. We have demonstrated that single-component occupation number distributions
evolve self-similar in time after the quench G, | (t,k) ~ t* f(tPk), with critical exponents
a = 2 and f = 1. This implies, in particular, a critical slow down in the post-quench
time evolution. In [47] this kind of behaviour has been put forward as criterion for the
presence of a non-thermal fixed point for the time evolution. In the light of these findings,
we have argued that the critical scaling in single-component occupation distributions of
the spinor gas can be attributed to a non-thermal fixed point which is connected to a (an
effectively) relativistic local energy transport. This is in particular interesting, as quenches
to the immiscible regime, or in general, quenches which provoke structure formation
(see Sect. IL.6), lead typically to fixed point behaviour in the context of inverse particle
cascades [60].
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Bose Gas

In the final part of this thesis we address the question if the Bose gas can host truly steady
states with a distinctly non-thermal signature!. So far, we have discussed non-thermal
fixed points in the isolated two-component Bose gas and identified them via non-thermal
scaling laws in power spectra and, in particular, via a critical slow-down of the time evo-
lution. The latter means that the state evolves arbitrarily slow in time, being in proximity
to a renormalisation group fixed point, but nevertheless do not become perfectly station-
ary. Since otherwise the thermalisation hypothesis would be violated, such a behaviour
lies within expectations for non-integrable isolated systems. Actually, for our findings for
the spinor Bose gas, the property ‘isolated’ is already a matter of the point of view one
wants to adopt. We have mainly analysed the spin sub-sector and ignored the symmetric
sector as it stays in its Gaussian state. However, the symmetric sector will act as a bath
for the spin degrees of freedom, rendering the effective dynamics on the spin sector non-
isolated. To make this explicit in an analytic treatment one would just have to integrate
out the symmetric degrees of freedom in a path integral formalism to obtain an effective
action [215] for the spin sector. The coupling between the ‘bath’ and the spin sector in
this scenario is self-consistent and, thus, hardly controllable from the outside. The same
is true for the statistics of fluctuations of the ‘bath’, although a thermal behaviour can be
considered unlikely.

In this and the following chapter, we open the single-component Bose gas in two spa-
tial dimensions to an external environment by explicitly introducing a stochastic bath
with which the Bose gas can interact. With that, the isolation is broken in a controlled
way which allows to engineer the fluctuation statistics of the bath. First, we introduce a
different method to probe the fixed point structure in the isolated one-component Bose
gas, using ensembles of topological defects in the initial state (see also [65]). With that
we reveal a new, strongly anomalous, non-thermal fixed point in the dynamics of the iso-
lated Bose gas. It comes with an anomalous slow evolution in time which tremendously
stabilises the non-thermal state, bringing it closer to a non-equilibrium steady state. In
the second part of this chapter, we expose the Bose gas to a thermal environment, within
the same setups which evolve close to a non-thermal fixed point when studied without
the thermal bath. The exposure to the thermal bath in this case will exceed the ‘parasiti-
cal’ coupling to environment which is usually encountered in experiments with alkaline
atoms. On the other hand, the coupling strength will still be ‘weak’ as compared for
example to the holographic treatment of the Bose gas from [65].

In the next chapter VIII, we utilise couplings to stochastic baths with strong non-

IFor simplicity and in accordance with common literature we speak of ‘non-equilibrium steady state (NESS)’
in the following
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thermal features. This allows to probe the structure of fixed points of the Bose gas from
outside, by trying to drive the system directly into different non-equilibrium steady states.
To do so, the stochastic properties of the fluctuations in the bath and the initial state which
is coupled to the bath serve both as tuning knobs. A priori, it is not clear if every fixed
point of the isolated Bose gas is in one-to-one correspondence with a non-equilibrium
steady state. As a major result, we succeed in identifying one non-thermal fixed point of
the isolated Bose gas which has a direct counterpart in form of a non-equilibrium steady
state. In addition, we identify a new class of steady states which are presumably con-
nected to the Kardar-Parisi-Zhang dynamic universality class.

VII.1 Stochastic dynamics of the Bose gas

In this section, we summarise the description of non-equilibrium dynamics of a driven-
dissipative ultra cold Bose gas by means of stochastic semi-classical field simulations. The
method constitutes a variation of the truncated Wigner-type semi-classical field simula-
tions we employed so far for the isolated Bose gas, where the sampling over a stochastic
initial field distribution is traded for a sampling over a time dependent stochastic driving
force. Introducing additionally dissipation via imaginary coupling constants allows to
capture, for example, the physics of a Bose gas in a thermal environment [160-162] or a
non-equilibrium situation as it occurs for exciton—polariton condensates [109, 216, 217].
After introducing the driven-dissipative Gross-Pitaevskii theory we recall its relation to
the hydrodynamic description involving a continuity equation for the density as well as
the Kardar-Parisi-Zhang equation for the condensate phase.

VIL.1.1 Driven-dissipative Gross-Pitaevskii equation

A two-dimensional dilute interacting Bose gas coupled to a particle bath and a driving
force field can be described by the stochastic driven-dissipative Gross-Pitaevskii equa-
tion [162]

i OHy
B ACONETAES

where H denotes the standard Gross-Pitaevskii Hamiltonian,

i (x,t)

+ {(x,t), (VIL1)

7 oY ool —u] ). (vIL2)
with particle mass m, real-valued part of the coupling constant g, expressed in two di-
mensions in terms of the s-wave scattering length a as g = —(4x/m)[In(uma®/4)]7},
with chemical potential . This describes the energy and particle-conserving part of the
dynamics and is the one-component analogue of what we have used so far. H4q accounts
for the dissipative part of the dynamics,

S = 1 - R ] V(x), viLy
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VII.1 Stochastic dynamics of the Bose gas

defined in terms of the diffusion constant v and the imaginary parts of the coupling, g4,
and chemical potential, y4. If the latter quantities are positive, gq > 0, pg > 0, the term
proportional to gq accounts for non-linear particle loss, while the linear term quantified
by pg describes a source of particles. In this chapter, we restrict our numerical study to
the case gg > 0, pg > 0.

The external force { is a stochastic complex quantity vanishing in the mean, ({'(x,t)) =
0. It represents a stochastic driving force, as for example generated by a laser which in-
coherently pumps an exciton-polariton condensate. Without loss of generality { can be
chosen to have Gaussian statistics. Here, we choose { uncorrelated in time but corre-
lated in a characteristic manner in space. We demand the power spectrum to follow a
generalised Cauchy distribution

% ’ }/ ’

((k.0)¢ (k1)) = m(s(t t'), (VIL4)
with a length scale A and the driving strength y. This sets the second-order correlation
function of { and defines the stochastic properties of the bath as we choose it Gaussian.
In our simulations, y is a constant in time and space. The setup generates in general a
strong non-equilibrium coupling to a non-thermal bath. However, a special choice of the
parameter set renders the setup thermal, along the lines of the idea of the stochastically
projected Gross—Pitaevskii equation [162]. The bath itself needs to follow white-noise
spatial correlations, achieved by v = 0, if it is not dynamically simulated on its own.
Furthermore, the complex coupling constants 1/2m+iv, g+igq, and u+ipq have to assume
the same phase in the complex plane to fulfil a detailed balance condition [109]. Then, the
classical-statistical fluctuation-dissipation theorem allows to deduce a temperature [162],

T = 2kga/y, (VIL5)

where & = g4/g = pa/p = 2mv is a constant set by the ratio between imaginary and real
part of the complex coupling constants.

VIIL.1.2 Hydrodynamic Description and Kardar-Parisi-Zhang Equation
A hydrodynamic formulation of the stochastic driven-dissipative Gross—Pitaevskii equa-
tion is found by again resorting to the phase-density parametrisation y = /nexplif] in

terms of the fluid density n and velocity field v = m~1V@. Inserting this parametrisation
in Eq. (VIL.2) and Eq. (VIL3) one finds n and 6 to obey

1 2 2
— (V)2 - V20 =
0,0+ 5 (V02 = W0 = U,
1
din+ —V (nv) =S. (VIL6)
m

These equations generalise the hydrodynamic equations equivalent to the conservative
Gross—Pitaevskii equation, introducing inhomogeneities and a dissipative term to the

135



VII Non-equilibrium Steady States in the Bose Gas

equation for 6,

1 Vn v Re(le™19)
U= N—=|+-Vn-VO+p-—gn-——-2,
am (\/z)ﬂ" Thognm—
\Y .
S=v+nv- (7’1) —2vn (VO)? = 2uan — 2gqn® + 2VnIm({e™). (VIL?)
n

Recall that we derived equations similar to Eq. (VIL6) for the hydrodynamic description of
the symmetric sector of the two-component Bose gas, where in that case U and S receive
contributions from the spin sector instead of the stochastic bath. The above coupled set
of non-linear Langevin equations can be simplified if the fluctuations of the density are
sub-dominant to the fluctuations of the phase which is generically the case at low mo-
menta in the degenerate regime. In this case, the equations decouple, with U playing the
role of the potential of a stochastic forcing f = m~!VU in the hydrodynamic equation for
the fluid velocity v = m~1V@, with noise correlator

U(w,k)U(0" k")) =8(w+ ") & (k+ k') u(w,k). (VIL38)

This describes particles being injected and removed as amplitude fluctuations, such that
the system reaches a state where they can be described by a (not necessarily thermal) dis-
tribution and feed energy to the phase fluctuations. As argued in [110, 217] and in [218]
the equation for the phase angle 0, Eq. (VIL6), reassembles the Kardar—Parisi-Zhang equa-
tion [105] if the density fluctuations can be considered sub-dominant. Then, U constitutes
a self-consistent and self-adjusting effective forcing term for the an effective Kardar-
Parisi-Zhang equation, which can be computed from the dynamics of the driven-dissi-
pative Bose gas. Results from [218] as well as the results we will present in this chapter
suggest that, to exploit the mapping to the Kardar-Parisi-Zhang equation for describing
the dynamics of the Bose gas, the Bose gas is additionally required to be free of phase
defects. This is understandable from a phenomenological point of view, as the Kardar-
Parisi-Zhang equation actually describes the height of surfaces and, thus, calculations do
not take topological sectors into account, whereas Eq. (VIL.6) describes a phase field which
can live in different distinct topological sectors. Calculations should only be compared if
the phase field is restricted to zero winding number. In a dynamical setup, correspond-
ingly the nucleation of local phase defects has to be excluded.

VII.2 An Anomalous Non-thermal Fixed Point

The cubic non-linearity in V0 in the Kardar—Parisi-Zhang Hamiltonian can lead to an
instability. For typical parameter choices, however, the Kardar-Parisi-Zhang equation
describes surface growth and smoothing [105], and a steady state is reached when the
driving and dissipation compensate each other. Shocks in the velocity field, correspond-
ing to cusps in the surface, develop and grow. The dynamics described by the stochastic
Gross—Pitaevskii equation, however, is in general different as the phase 9 lives on the com-
pact circle. Moreover, the Gross—Pitaevskii equation supports solitary wave solutions, in
particular (quasi) topological defects such as vortices, see Sect. II.3. Velocity shock waves
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VII.2 An Anomalous Non-thermal Fixed Point

created due to the non-linearity typically lead to the formation of such defects.

It was shown in [55-57] that the formation of turbulent ensembles of vortices can
be associated with the isolated system approaching a non-thermal fixed point [44-46]
where the time evolution is critically slowed down before the system eventually ther-
malises [47, 59]. Signatures of such turbulent behaviour and critical slowing down are
a characteristic scaling behaviour of correlation functions such as the angle-averaged
single-particle momentum spectrum

n(k,t) = [ dQ (@' (k,t)®(k,1)). (VILY)

It was shown [55-57] that typically, a, e. g., instability-induced overpopulation of mo-
menta at scales on the order of the inverse healing length k; = /2gnm, where n is the
bulk density of the gas, can subsequently drive the system to a non-thermal fixed point.
This happens because the particles in the overpopulated regime of momenta are being
transported in momentum space to modes with lower eigenenergy in self-similar fash-
ion, exhibiting scaling in space and time [47],

n(k,t) = (t/to)*n([t/to) k. to). (VIL10)

At the same time, energy conservation forces a few particles to be transported to higher
momentum modes, forming a direct wave-turbulent cascade and eventually a non-con-
densed thermalised fraction of the gas [55-57, 59]. In the long-wavelength regime of
particles scattered to lower momenta the momentum distribution was found to exhibit
characteristic scaling® n ~ k¢ in momentum space,

n(k,t) ~ k™, (VIL11)

in d = 2, cutoff in the infrared at a certain scale k; to ensure non-divergence of the over-
all particle density. More precisely, the scaling evolution Eq. (VIL.10) predicts that n(k,t)
forms a universal scaling function in the regime of momenta carrying the inverse trans-
port. The scaling exponents which characterise the self-similar evolution corresponding
to Eq. (VIL.11) have been found to be @ = 1 and = 1/2 [219]. This self-similar build-up
of momentum mode occupations in the infrared reflects a coarsening dynamics of the
ensemble of vortices interacting with background sound waves, leading to a dilution of
the vortex defects through mutual annihilation. Eventually, when the last defects have
disappeared, long-range order is established and phase coherence of the Bose condensed
particles is maximised. In the next section, we discuss how this picture, which is estab-
lished and numerically demonstrated at many examples for the isolated Bose gas, adapts
to the case of a coupling to thermal and non-thermal bath.

VIIL.2.1 Defect Configurations as Initial States

In the remainder of this section, we present numerical results on a to date unexplored
non-thermal fixed point in the non-relativistic isolated Bose gas which is tightly con-

2The symbol zeta will denote scaling exponent and stochastic force likewise, as both is the convention in
the respective literature. Which definition to apply will be clear from the context or clarified explicitly

137
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nected to highly correlated vortex ensembles. The numerical findings are obtained from
semi-classical truncated Wigner-type simulations for the isolated one-component Bose
gas in two spatial dimensions, in complete analogy to the techniques employed so far
for the two-component gas and in [59]. However, here we set off dynamics with com-
pletely different initial conditions. The parameters for the simulations presented in this
chapter are summarised in Table B.4. All imaginary parts of the couplings are set to zero.
Numerical data is presented in units set by appropriate powers of the healing length,
& = 1/+/2mng, throughout this and the following sections. We set i = kg = 1 and
m = 1/2 in the numerical treatment.

From a hydrodynamic point of view, it seems obvious that vortices need to build like-
sign clusters for the Bose gas to bear the energy spectrum or velocity statistics of classical
turbulence. On the other hand, in [59] it was found that the defects tend to arrange in
randomly distributed bound vortex—anti-vortex pairs, for the overpopulation scenario
and for periodic simulation domains. This state was identified responsible for the fixed
point properties explained above, in particular the scaling law in the occupation number
Eq. (VIL.11). There are indications [220] that vortex ensembles indeed cluster for a short
transient period in time on periodic domains, independently from their initial distribu-
tion. To obtain, however, a significant persistent effect, here, we place vortex clusters in
the initial conditions, similar to [65, 221]. To do so, homogeneous field configurations in-
cluding the 1/2 particle per mode of truncated Wigner noise are sampled and afterwards
vortices with winding number w = +6 are multiplied into the sampled configurations.
Their arrangement is chosen on a regular lattice with alternating signs of the winding
number, see panel a) in Fig. VIL.1. Due to the instability of non-elementary vortices this
configuration eventually decays. But, as it turns out, the decay process takes a substantial
amount of time in the isolated system. In a first stage, the non-elementary vortices de-
cay to tightly bound clusters of like-signed elementary vortices, see panel b) in Fig. VIL1.
The cluster configuration then screens the vortex—anti-vortex attraction, such that the
clusters resist further decay. Over time, the vortex configuration undergoes then a dilu-
tion process, cf. panels c) and d) in Fig. VIL.1, upon entering a self-similar universal stage
of time evolution. We discuss the universal character of the evolution when analysing
the time evolution of the occupation number (see Fig. VIL.3) which corresponds to the
dynamic process illustrated in Fig. VII.1. We compare the vortex lattice initial state to
a second class of vortex-containing initial field configurations. Elementary vortices, i. e.
with a winding number of w = %1, are placed into a noisy homogeneous background
field, where the positions are chosen uniformly random (cf. also [65]). Each realisation is
topologically neutral, i. e. contains as much vortices as anti-vortices, and the number of
initial vortices and anti-vortices is individually matched to the vortex lattice initial con-
dition. When calculating observables in the random vortex scenario, we average over
the truncated Wigner noise and the randomly chosen initial positions likewise. The ran-
dom vortex scenario is studied with the overpopulation scenario in mind. As discussed
in [59], properties such as the power law { = 4 in the occupation number emerge as a
consequence of dilute random vortex configurations.

That the universal stage within the evolution of the vortex lattice scenario is fundamen-
tally different from what has been found before from the overpopulation-scenario can be
seen on a phenomenological level from Fig. VIL2. Realisations of the hydrodynamic ve-
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Figure VIIL.1: Illustration of the vortex lattice configuration (panel a) and the
different stages of the decay thereof (panels b-d). Snapshots of the normed real-
space density |i/|?/n at different times of a single realisation are shown colour-
coded (from |¢/|?/n = 0 (dark-blue) to |/|?/n = 1.2 (orange)). Panel a) depicts
an initial vortex lattice configuration at t = 0 with 4x4 vortices of winding
number +6, placed with alternating signs in a checker-board manner. Panel b)
(t = 2746 £2) shows strongly clustered vortex configuration at a time during the
early, non-universal stage. Panels c) (t = 9155 £2) and d) (t = 82397 £2) show
configurations during the intermediate and late stage of universal time evolu-
tion. Simulation parameters are given in Table B.4

locity field v = V0 late during the self-similar stage of time evolution are computed for
both scenarios. We find that the vortex configuration is essentially clustered, although
strongly diluted, even beyond the simulation times displayed in Fig. VIL.1. As a direct con-
sequence, the hydrodynamic velocity field builds up a strongly coherent structure over
the whole simulation domain, see panel a) in Fig. VIL.2. In the other scenario (panel b in
Fig. VII.2), the vortex configuration consists of bound pairs, as reported also in [59] which
concentrate the hydrodynamic flux circularly around them.
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Figure VII.2: Realisations of vortex configuration in the universal stage of time
evolution are shown, together with the corresponding hydrodynamic velocity
field v by means of flow lines of the vector field. Black directed lines visualise the
direction of the velocity field and the line thickness is proportional to the mod-
ulus |ov|. The positions of vortices and anti-vortices are marked by blue crosses
and red dots, respectively. Both panels show a typical single-run realisation at
an late instance in time, well within the universal stage of time evolution close
to the fixed point. For the realisation in panel a), dynamics was initialised with a
regular vortex lattice which leads to vortex clusters and a strong coherent hydro-
dynamic flow. For comparison, panel b) shows the resulting configuration when
dynamics is instead initialised with an overpopulation of infrared momentum
modes, as has been studied in detail in [59].

VIL.2.2 Self-Similar Coarsening

The time evolution of the occupation number spectrum for the vortex lattice scenario,
shown in Fig. VIL.3, demonstrates the typical self-similar evolution, heralding the pres-
ence of a non-thermal fixed point. After an initial stage of time evolution, corresponding
to the stage where the non-elementary vortices decay, a power law builds up in an in-
frared momentum region of the occupation number which is cut at a scale k; deep in
the infrared. The scale moves algebraically in time towards lower momenta dragging the
occupation in the deep-infrared upwards, while the occupation in the scaling region gets
lower. The evolution signals the typical local particle transport towards the condensate
mode, together with a re-condensation process. The inset in Fig. VIL.3 demonstrates that
the time evolution of the occupation spectrum can indeed be rescaled to collapse to a
single curve, within numerical precision, according to Eq. (VIL.10). The scaling exponents
needed to do so are found by a fit to be

ayt, = 0.40 + 0.05,
Bvr = 0.20 £ 0.05. (VIL12)
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The remaining universal curve n(k) follows in the infrared a generalised Cauchy distri-
bution and, thus, contains a power law n(k) ~ k=¢. The exponent { is also determined by
fit, yielding

v =6.0+£0.3. (VIL13)

The scaling region in the spectrum can be interpreted as turbulent (inverse particle) cas-
cade in an inertial range, see for example [55-57, 59]. Adopting the same point of view,
we find here a power-law characterising the turbulent state which is substantially steeper
than what has been identified before for the Bose gas in two spatial dimensions. It exceeds
the exponent { = 4, which characterises the universal state attained within the overpop-
ulation scenario, and even the classical Kolmogorov-5/3 power-law (corresponding to
{ = 4.66 when translated to the occupation number spectrum). The time evolution of
the infrared cut-off scale, ky ~ t~#, signals a coarsening process. We discuss that further
in Sect. VIL.4, linking the coarsening process to the dilution of the defect ensemble and
phase ordering kinetics.

The scaling exponents « and f have been calculated analytically for relativistic and
non-relativistic scalar field theories in [47, 219] within a scheme based on effective quan-
tum Boltzmann equations, together with an effective scattering matrix obtained form
2-particle-irreducible effective action techniques (similar to [44-46]). For the non-relativistic
case under the assumption of local particle transport, [47, 219] predicts

[\
=X
=

p= , (VIL14)

[\
|
=

where d is the spatial dimension and 7 an anomalous scaling of the spectral function. As-
suming this to be applicable to our system, as was done for the overpopulation scenario
in [47, 219], yields a consistent answer if we attribute a strong anomalous scaling expo-
nent of n = —3 to the fixed point addressed by the vortex lattice scenario. In addition, our
values for @ and f are only consistent with the predictions from [219] if a particle cascade
is assumed, not with the case of an energy cascade. The value of the scaling exponent of
the universal curve, {, is not consistent with the calculations of [46] if our value of 5 is
inserted. However, the whole set of scaling exponents including { is consistent if a con-
jecture from [48] is taken into account. Comparing the Bose gas and Kardar-Parisi-Zhang
dynamics with renormalisation group methods, it was argued that the scaling exponent ¢
is composed from two contributions, { = {. — 7. One contribution, ¢, characterises com-
pressible turbulence generated by sound waves and the other captures the influence of
vortical hydrodynamic fluxes, directly identifiable with the anomalous exponent. In [222]
it was demonstrated that the compressible contribution to the occupation number spec-
trum for the vortex lattice scenario is sub-dominant but hosts an infrared scaling regime
with {. = 3. Adding our anomalous exponent, which we extracted with Eq. (VIL.14) from
our data in Fig. VIL3, we obtain { =~ 6 in accordance with our numerical result from
Fig. VIL3.

In Fig. VIL.4 we analyse the time evolution of the occupation spectrum obtained in the
random vortex scenario for self-similar coarsening, analogue to Fig. VIL.3. As before, there
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Figure VIIL.3: Particle occupation spectrum (coloured markers) at several times
(different colours as given in the legend) during the universal stage of time
evolution for the vortex lattice initial conditions. The spectrum evolves in
the typical self-similar way of a particle cascade (see main text for discus-
sion). The inset demonstrates the scaling collapse of the spectrum according
to n(t,k) = (t/to)"*n((t/to)Pk). The simulation data from the main plot is de-
picted (coloured points with the same colour-coding as in main figure), plotting
t~*n(k,t) on the y-axis versus rescaled momentum t’k on the x-axis. The used
exponents are determined by fit which yields « = 0.4 +0.05 and f = 0.2 +0.05.
The universal curve obtained from the scaling collapse (black line in the inset)
has a scaling region with scaling exponent { = 6.0 + 0.3, which was also de-
termined by a fit. For reasons of visibility we show five exemplary curves but
want to emphasise that the scaling collapse and fits are performed for the whole
dataset, consisting of spectra at 300 logarithmic equidistant times within the
universal stage of time evolution.

is a late stage of time evolution, t > 10%£2, in which the spectrum evolves in a universal
self-similar way (see upper panel in Fig. VII.4). The scaling exponents are found to be

ary = 1.0+ 0.02,
Brv = 0.5 +0.02. (VIL15)

which is again only consistent with local particle transport, when compared to the pre-
dictions from [47] (see Eq. (VIL.14)). The difference to what we found above is that for the
random vortex scenario the set of numerically determined exponents is consistent with
Eq. (VIL.14) for n = 0. In particular, the vanishing anomalous exponent leads to a much
faster turbulent re-condensation. In turn this means that the finite system spends consid-
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erably less time in the universal regime near the non-thermal fixed point, before thermal-
ising. In contrast, in the lower panel of Fig. VII.4 we find that even before the universal
stage the occupation spectrum in the random vortex scenario demonstrates self-similar
coarsening. Although the effect is less pronounced than in the universal stage, between
times t ~ 103£2 and t ~ 10*&2 the spectrum evolves approximately self-similar and can
be collapsed to a single curve. The exponents, in this transient stage, are consistent with
the anomalous exponents from Eq. (VIL.12), « = ayy, and f = fyi. In both stages in the
random vortex scenario the spatial scaling exponent { is considerably flatter than in the
vortex lattice scenario. We find { = 4 in the universal stage, consistent with [59]. The
scaling exponent { = 4 is expected for dilute ensemble of randomly distributed vortices
in d = 2, for geometrical reasons (see also Sect. VIL.4). In the intermediate stage, { is
close to { = 4 but clearly steeper, { ~ 4.5. The results provide strong evidence that there
are two non-thermal fixed points, a anomalous and a non-anomalous, which can act as
universal attractor for the dynamics in the one-component Bose gas. We will develop this
picture further in Sect. VIL4.

While the turbulent condensation process [55, 57, 59] described above is a consequence
of the particular non-equilibrium state and the closure of the system, turbulent transport
is generically possible also in continuously driven systems. In chapter VIII we study the
case that particles are fed into the system in a characteristic way, favoring low-k modes
over high-k ones and vice versa. At the same time, dissipation leads to particle and energy
loss, allowing for transport being induced between different momentum scales, and the
ensuing buildup of characteristic scaling laws. Scaling solutions of the driven-dissipative
Kardar-Parisi-Zhang equation have been studied in detail in the literature, both pertur-
batively [105, 106] and in non-perturbative approximations [48, 107, 108].
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Figure VII.4: Upper panel: Particle occupation spectrum (coloured markers) at
several times (different colours as given in the legend) during the universal stage
of time evolution for the random vortex initial conditions. The spectrum evolves
in the typical self-similar way of a particle cascade (see main text for discussion).
The inset demonstrates the scaling collapse of the spectrum, see Fig. VIL.3. The
simulation data from the main plot is depicted (coloured points with the same
colour-coding as in main figure), plotting t~*n(k, t) on the y-axis versus rescaled
momentum t#k on the x-axis. The used exponents are determined by fit which
yields ¢ = 1.0 £ 0.02 and f = 0.5 + 0.02. The universal curve obtained from
the scaling collapse (black line in the inset) has a scaling region with scaling
exponent { = 4.0+ 0.05, which was also determined by a fit. Lower panel: time
evolution, as in upper panel, of the occupation spectrum for intermediate times,
cf. red line in Fig. VIL5 from ¢t = 103£2 to 10*£2. Inset in lower panel: Scaling
collapse and universal curve, as in upper panel, for intermediate times. The fits
yield « = 0.4 £ 0.08, « = 0.2 £ 0.08, and { = 4.5 + 0.05.
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VIIL.3 Coupling to a Thermal Environment

To bridge the previous studies for the isolated system to the case of driven-dissipative sit-
uations, we start out by briefly addressing what happens if the fixed point scenarios are
coupled to a thermal environment. To do so, we choose Hy = aH in Eq. (VIL.1) otherwise
keeping the parameters from Table B.4, and set v = 0. The parameters y is adjusted to
yield a temperature T = 20&~2 (see Sect. VIL1.1 and Eq. (VIL5)) at @ = 0.5, i.e. ener-
getically on the order of the microscopic interaction energy. This places the system deep
in the quasi-ordered regime of the Berezinskii—Kosterlitz—Thouless transition® [223, 224]
in the 2d Bose gas. As a consequence, any vortex-containing state is expected to be of
transient nature.

VIIL.3.1 Evolution of the Vortex Ensemble

The number of vortex defects in the gas as a function of the time elapsed after coupling
the system to the thermal bath serves as a instructive measure to capture the state of
the system on its way to complete thermalisation. We use this quantity to compare the
behaviour of two different classes of initial conditions, the vortex lattice scenario and
random distributions of elementary vortices (see Sect. VIL.2.1), both classes isolated as
well as coupled to the bath. A comparison of the time evolution of the vortex ensemble
for the four cases is shown in Fig. VIL5. We find that, in any case, the average number of
vortices contained in the system decays and does so approximately algebraically,
Ny(t) ~ 72", (VIL16)
The main difference between the thermal and the isolated setups concerns the speed of
the decay. If the Bose gas is coupled to a thermal bath, the defect decay follows closely
the prediction of phase-ordering kinetics [54], especially if the initial vortex distribution
is completely random (cf. blue datapoints and blue solid line in Fig. VIL5). Bray predicts
in [225] for a field order parameter with two real-valued components in two-spatial di-
mensions a average defect spacing which evolves as L, (t) = 1/ Ny 2. (t/tologt/to) /3,
if no additional conserved quantities are present (see also Sect. VIL.4). If the initial vor-
tex distribution is not random but clustered, as illustrated in Fig. VIL.1, the behaviour
initially deviates from the phase-ordering prediction but falls into this class again after
details of initial state had time to decay. In both cases, the power-law decay of the vortex
number stops once the total number of vortices is of order one. This is a consequence of
the finite total number of vortices in our finite simulation box and therefore a finite-size
effect. The value of the scaling exponent ' = 0.5 in the stage of algebraic decay marks
a diffusive motion of the vortices on a thermal background, as argued in [65]. It suggests
that vortex—vortex and vortex—anti-vortex interaction effects are suppressed by thermal
fluctuations.
The decay of the random vortex distribution in an isolated gas (see red datapoints in
Fig. VIL5) corroborates that point. Once the thermal background is gone, Helmholtz mo-

3The Berezinskii-Kosterlitz—Thouless transition temperature evaluates to Tggr = 5742 with the param-
eters from Table B.4, using a meanfield approximation T = 7 /ng/2m [146]
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VII Non-equilibrium Steady States in the Bose Gas

tion of vortex pairs together with scattering of those pairs slows down the decay pro-
cess [59], yielding a smaller value of f’ < 0.5. Finally, we find that the decay of the vortex
lattice in the isolated gas proceeds slowest with f” = 0.2 and follows a pure power-law
after a non-universal initial stage. The stage of algebraic decay coincides with the univer-
sal stage of time evolution close to the non-thermal fixed point, as discussed in Sect. VIL.2.
In particular, one has = f, signalling that the power-law in the scaling form of the oc-
cupation spectrum (see Fig. VIL3) is cut off at the inverse inter-vortex spacing, as both,
the cut-off scale k; and 1/Ly, follow the same scaling law in the universal stage. For the
random vortex initial conditions (see red datapoints in Fig. VIL5), we find that there is an
intermediate stage from t ~ 103 £2 to t ~ 10 xi?, where a scaling law can be attributed
to the decay. The scaling exponent in this stage is approximately f’ ~ 0.2 which equals
within error bounds the corresponding value of f§ in the intermediate stage (cf. Fig. VIL4).
Beyond t ~ 10% £2 the red curve in Fig. VIL5 turns towards a scaling law with exponent
B’ = 0.5. This falls together with the change in the self-similar progression of the occupa-
tion spectrum we determined in Fig. VIL.4. Therefore, we find also from the point of view
of the vortex distribution that there is a crossing between two self-similar stages in the
time evolution of the random vortex initial conditions. In both stages, k; and L, follow
the same scaling law with f” = S. Note that for the overpopulation scenario in [59], a
change in the scaling exponent f’ from ' =~ 0.5 to a considerably smaller value (' be-
tween 0.15 and 0.2) has been observed but the corresponding values of f have not been
determined. On the other hand, in [219] the value § = 0.5 is determined in the overpop-
ulation scenario for the occupation spectrum but the corresponding vortex distributions
are not analysed.

VIL.3.2 Coarsening in Presence of a Thermal Bath

We complete the picture of the thermally coupled gas by studying the occupation num-
ber spectrum analogous to Sect. VIL.2.2. Examples of the occupation number during the
approach to the thermal state are shown in Fig. VIL6, where the times are mainly situ-
ated in the algebraic stage of the decay of the vortex ensemble (cf. Fig. VIL5). The final
thermal occupation number is expected to be distributed according to a Rayleigh—Jeans
distribution, n(k) = T/w(k), due to the semi-classical nature of the simulation method.
The occupation spectrum at the latest time in Fig. VIL5 is close to the thermal occupa-
tion, assuming a Bogoliubov dispersion for w(k), but has not yet converged totally. At
first sight, it seems that the self-similar evolution of the occupation spectrum is destroyed
by the presence of the thermal bath, although there is a steep power law in the infrared
momentum region present. However, this impression is created by the fact that the in-
frared cut-off scale of the power-law seems to be below the infrared cut-off of the sim-
ulation grid, k) < 1/L. Analysing the spectrum for a universal scaling form according
to Eq. (VIL.10) shows that the occupation spectrum evolves indeed self-similar, as long
as the steep infrared scaling law is present. As a consequence, the steep power law in
the infrared part of the spectrum does not decay towards a the thermal occupation but
shifts towards the deep-infrared momentum region, keeping the non-thermal scaling ex-
ponent { > 2. Once the vortex ensemble has decayed to a point where there is less than
one vortex pair on average the self-similar evolution is replaced by an evolution which
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Figure VIL5: Total number of vortices Ny, as a function of time for four differ-
ent setups, comparing two classes of initial conditions in the isolated gas with
the corresponding initial conditions subjected to a thermal bath at T = 20£2.
‘Lattice’ reveres to regular vortex lattices of non-elementary vortices (the same
as discussed in Sect. VIL.2. ‘Random’ refers to initially randomly placed elemen-
tary vortices). The vortex number is averaged over 20 realisations of: stochastic
driving { (lattice thermal, green markers), stochastic driving ¢ and initial vortex
positions (random thermal, blue markers), truncated Wigner noise (lattice iso-
lated, yellow markers), truncated Wigner noise and initial vortex position (ran-
dom isolated, blue markers). Parameters from Table B.4. The blue solid line is an
analytic prediction from phase ordering kinetics [225], see main text.

asymptotically approaches the thermal occupation. The inset in Fig. VIL.6 demonstrates
that a scaling collapse is possible, yielding the scaling exponents

o = 1.0 +0.05,
B = 0.5£0.05, (VIL17)

which are the same as for the non-anomalous non-thermal fixed point (see Eq. (VIL.15)).
The infrared power law in the universal scaling form has the value { = 4.0 £ 0.1, also
the same as identified in [59] for the non-anomalous fixed point. We point out that these
results for the self-similar evolution of the thermally coupled gas are the same for both
classes of initial conditions, the vortex lattice setup as well as the initially randomly dis-
tributed vortices. Therewith we find numerical evidence that the fixed point behaviour
which has been found for the isolated Bose gas is not completely destroyed by a thermal
environment. However, the transient nature of the non-thermal universal stage of time
evolution makes now the crucial difference. In the isolated case, vortex—anti-vortex in-
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Figure VIL.6: Particle occupation spectrum (coloured markers) at several times
(different colours as given in the legend) during the universal stage of time evo-
lution for the vortex lattice initial conditions, when subjected to a thermal bath
at T = 20£72. The spectrum evolves in a self-similar way as long as the steep
power-law in the infrared momentum region is present (see main text for dis-
cussion) and approaches a thermal Rayleigh-Jeans occupation thereafter T/w.
The solid black line gives correspondingly T /w with w(k) = w (k) the Bogoli-
ubov dispersion. The inset demonstrates the scaling collapse of the spectrum,
as was done Fig. VIL3. The used exponents are determined by fit which yields
a =1.0+£0.05and = 0.5+0.05. The universal curve obtained from the scaling
collapse has a scaling region with scaling exponent { = 4.0 = 0.1 (black line in
inset).

teractions and clustering effects where able to slow down the decay or even to change the
whole set of scaling exponents, substantially elongating the universal non-thermal stage.
In particular, three-body collisions between defects, happening when two vortex-anti-
vortex pairs meet, have been argued to be the dominant mechanism for slowing down
the vortex decay [59]. In the thermal case, the transient universal stage is bound to a
quickly decaying, because diffusively diluting, vortex ensemble.

VII.4 Non-thermal Fixed Points and Phase Ordering
Kinetics

Our findings allow establish a connection between non-thermal fixed points in the one-

component Bose and the theory of phase ordering kinetics. In particular, we can use the
results of this chapter to compare the temporal scaling form, i.e. Eq.(VIL10), at a non-
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thermal fixed point with the scaling forms obtained from topological defect properties,
as discussed in [225-228] (see [54] for a review). This is in particular helpful, as for de-
fect coarsening a more rigorous renormalisation group approach was developed, see for
example [229-231].

By means of power counting, a universal scaling form for the structure factor of a
defect-containing order-parameter field can be obtained. Assuming a defect ensemble
with a mean defect distance L in an order parameter field with n real-valued components,
Porod’s law [167, 168] (or rather a generalisation thereof to arbitrary n [227]) predicts a
scaling form for the structure factor

S(k) ~ L4/ (Lk)4+n (VIL18)

If concentrating on a momentum range between the inverse defect distance and an ultra-
violet cut-off from the internal defect structure, 1/L < k < 1/&, Eq. (VIL18) basically is
derived from the d dimensional Fourier transform of a d — n dimensional but otherwise
structure-less defect in the order parameter field.

Further arguments, based on classical dynamics* of the order parameter field [227] or
based on a renormalisation group approach [54, 229, 230], additionally allow to predict
temporal scaling properties for the defect scale, L(t) ~ t#'. The exponent f’ characterises
the speed of progression of the coarsening, which is influenced by conservation laws in
the order parameter field. For dynamics of the order parameter field which can be cast
into the form

SF[g]

(% + %) Dplk.t) = gr e (VIL19)
where F[¢] is the free energy for the order parameter field defining the model, the pa-
rameter p defines the nature of the conservation law. In particular, p = 0 addressed the
class of the purely dissipative model A from [30]. For dynamics in the form of Eq. (VIL.19)
together with models from the Halperin—-Hohenberg classification, Bray finds (see for ex-
ample [54] and figure 24 therein) f’ = 1/(2 + p) if n > 2, with logarithmic corrections
for n = 2 as we have used in Fig. VIL5.

Inserting the temporal scaling prediction in the spatial scaling form Eq. (VIL.18) results
in a scaling form for the structure factor,

tdb’

R~ T e

(VIL.20)

including a simple infrared cut-off in the scaling form. If this is to describe the same
self-similar evolution as has been predicted for the non-thermal fixed point, Eq. (VIL.10),
in [47] one needs to assume particle transport at the non-thermal fixed point to get a =
dp. In addition, the temporal evolution in the structure factor (which is the occupation
number spectrum for the Bose gas) needs to be governed by the average defect spacing,
to have f§ = p’. If both is true, the local transport process towards infrared momenta,
which is described by the non-thermal fixed point in the case of exponents Eq. (VIL.14),
is in one to one correspondence with coarsening (in a renormalisation group sense) of a

“The calculations assume O(N) models from the Halperin-Hohenberg classification [30]
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defect-containing order parameter field.

Turning back to our numerical results for the non-relativistic Bose gas in Fig. VIL6,
Fig. VIL.4, and Fig. VIL3 together with Fig. VIL5, we find that both non-thermal fixed
points, the non-anomalous and the anomalous fulfil the conditions @ = df and § = f’.
For the thermally coupled situation, we have determined ' = f ~ 0.5, « = df’ ~ 1.
These values are within Bray’s prediction, f* = 1/(n + p), if purely dissipative dynam-
ics (1 = 0) is assumed for the order parameter field. As has been argued in [99] this
is expected, if vortex—anti-vortex interaction is suppressed sufficiently, since the Bose
gas then is described by model A. Furthermore, this allows to attribute the two stages
of decay of the random vortex initial conditions to two different phases of coarsening.
Correspondingly, the transport process is dominated subsequently by both non-thermal
fixed point. In the first stage, high vortex densities and the absence of a thermal bath
produces the anomalous slow exponent f” = f ~ 0.2. In the second stage, a thermal
background provided by the high-momentum modes and low vortex density change the
exponent f/ = f towards its non-anomalous value, which is also identifiable with purely
dissipative dynamics.

The anomalous value for we found for f in Fig. VIL3, however, is not as unambigu-
ously explainable from phase ordering kinetics. Associating the self-similar evolution of
the spectrum with phase ordering kinetics and taking the predictions for f and §’ liter-
ally, the anomalous exponent we identified numerically, n ~ —3, then maps to an effective
conservation parameter y = 3. The renormalisation group approach for defect coarsen-
ing [54, 229, 230] allows for a more intuitive interpretation. An ansatz for the scaling
forms requires the introduction of a dynamical critical exponent z, defining a relation
between temporal and spatial scales of the renormalisation flow of the order parameter
field®. Naturally, the temporal scaling of L(t) provides that relation, such that

z=1/p, (VIL21)

where z defines the dynamic universality class of the the effective, defect-hosting order
parameter field. Thus, we find for the anomalous non-thermal fixed point in the Bose
gas an anomalous high value of the dynamical critical exponent, z ~ 5. In contrast, for
example, thermally diffusing vortices come with z = 2 and studies for thermal quenches
in the superfluid phase of the Bose gas in [99] find z = 1. In fact, such high values as
z = 5 for the dynamical exponent are not found within the models from the Halperin-
Hohenberg classification [30]. However, anomalous slow ordering is typically a charac-
teristic of glasses and glass phases for vortex ensembles have been proposed. In particular,
in type-II superconductors experimental evidence has been found for a transition from a
vortex lattice phase to a vortex glass phase [100, 101], supporting z ~ 5 in the glass phase.
Numerical studies [102] corroborate that findings and theoretical models for the vortex
glass phase in superconductors have been proposed [103, 104]. An epsilon expansion
(around d = 6), discussed in [104], yields a value z = 2(2 + €/6) to first order, which

> A priori z here relates to the defect-hosting order parameter field and dos not necessarily equal the dynam-
ical critical exponent considered for the calculations in [47] for the non-thermal fixed point. However, the
dependency on the microscopic dynamical critical exponent drop out for the particle-transport exponents
Eq. (VIL14)
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extrapolates to a dynamical exponent z = 5.33 ind = 2.

The origin of the the spatial scaling exponent { =~ 6 at the anomalous fixed point
supports the identification of the anomaly with glassy coarsening dynamics from a phe-
nomenological point of view. In the other studied cases, the thermal case and the isolated
random vortex scenario, the spatial scaling law { ~ 4 can be attributed to the generalised
Porod law Eq. (VIL.18). An explanation for the considerably higher value { ~ 6 is that
the geometrical scaling from a point defect is to be replaced by the scaling properties of
the vortex core. Based on our observations from Fig. VIL.2 it is reasonable as multiple
like-sign vortices are confined to clusters during the self-similar stage of time evolution.
The tail in the structure factor mostly relates to scales within the clusters. The self-similar
coarsening is then dominated by dynamics of defects in a dense like-sign cluster, where
dilution is hindered by screening effects. It is reasonable that the distribution then rather
evolves glassy instead of diluting diffusively.

VIL5 Summary

In the first part of this chapter, Sect. VIL.2, we have presented numerical evidence for
a new non-thermal fixed point in the one-component Bose gas with a distinctly differ-
ent set of scaling exponents, @ = 0.4 £ 0.05, § = 0.2 £ 0.05, and { = 6.0 £ 0.3, (see
Eq. (VIL.12) and Fig. VIL3). It coexists with the non-anomalous fixed point in the 2d Bose
gas with exponents, « = 1, f = 0.5 [219] and { = 4 [59] (see Eq. (VIL.15) and Fig. VIL.4),
previously reported on in the literature. We emphasise that this no contradiction to the
universality property one assigns to non-thermal fixed points, as we have also used a dis-
tinctly different class of initial conditions to let the system approach it. In fact, we have
demonstrated that it is possible to have the dynamic evolution be attracted by both fixed
points successively. Since the anomalous fixed point we identified seems closely con-
nected to non-trivial vortex clustering and macroscopic hydrodynamic fluxes, it seems
reasonable that present analytic calculations [44-47] can not fully reproduce the scaling
exponents, as they are not selective for topological structures or sectors. However, if in-
terpreted along the lines of [47] together with [218], a strong anomalous scaling exponent
of n = —3 can be consistently attributed to the fixed point. To our knowledge, this is the
first example for demonstrating anomalous scaling at a non-thermal fixed point.
Coupling the fixed point scenarios to a thermal bath in Sect. VIL3, at a temperature
below the Berezinskii-Kosterlitz-Thouless transition temperature, we demonstrated that
the self-similarity in the time evolution at a non-thermal fixed point is not destroyed by
thermal fluctuations. Rather, the defining scaling exponents are changed such that, firstly,
the critical slow-down is much less pronounced and, secondly, the self-similar evolution
falls consistently into the class of phase ordering kinetics [54]. The set of exponents
in the thermally coupled system was found @ = 1, # = 0.5 = p’, and { = 4 (see
Eq. (VIL.17) and Fig. VIL6), irrespective of the class of initial conditions. As a byproduct
we demonstrated also, that the fixed point behaviour in the Bose gas for both classes of
initial conditions, overpopulation and vortex lattices, is in one to one correspondence with
self-similar coarsening of the defect-hosting order parameter field. This allows to convert
the fixed point scaling exponent f to the dynamical critical exponent associated with the
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coarsening process, z = 1/f. With that we find a anomalous high dynamical exponent
z = ) for the coarsening dynamics at the anomalous fixed point. In light of findings for
vortex glass phases in type-II superconductors [100-104] we attribute the anomalous slow
coarsening in the Bose gas, we identified, to a glass-like phase of the vortex ensemble.

Our findings in Sect. VIL.3 also add to the notion of universality associated with the
dynamics at non-thermal fixed points, when interpreted in light of our results from [65]
for holographic superfluids. The model for a superfluid studied in [65] describes a rela-
tivistic superfluid coupled to a thermal bath in a specific strong-coupling limit. A priori
it has nothing in common with our system from Sect. VIL3, apart from being subject to a
thermal bath and being a superfluid. The latter is ensured in the model by constructing a
superfluid’s U(1)-symmetry. Nevertheless, in [65] a non-thermal fixed point is identified
with { = 4 and f’ = 0.5 which is insensitive to the difference between vortex clusters
and random vortex distributions in the initial state. The dynamics of the abstract strongly
coupled superfluid from [65] shares vital universal properties with the weakly thermally
coupled Bose gas from Sect. VIL3.
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VIII Scaling in the strongly
driven-dissipative 2D Bose gas

In this chapter, we! analyse numerically the dissipative ultra cold Bose gas in two spatial
dimensions, when subjected to strong stochastic driving forces. The stochastic properties
of the driving force Eq. (VIL4) allow us to tune strength (via y) and spatial coherence (via
A and mainly v) of the driving, such that we can methodically explore the structure of
non-equilibrium stationary states and their universal properties. At the same time, the
forcing term employed corresponds to a simple incoherent particle pump which should
be realisable in experiment, including our tuning parameters.

It turns out that our setup has two entirely different regimes, depending on the mag-
nitude of the initial condensate density ng = (lflﬁ)l k=0,+=0- Since ng acts as stiffness for
phase fluctuations, the magnitude controls the mechanism of vortex nucleation. If ng is
small compared to the condensate density in the steady state, ng, even small and totally
incoherent phase fluctuations can and will be wound into phase defects, which subse-
quently turn into full-grown vortices when the background density rises. On the other
hand, for a high initial condensate value, the energy costs for the build-up of a phase de-
fect in the background density should suppress vortex nucleation. Note that we sample
the driving force such that the coherence parameters A and v affect only the amplitude of
the stochastic forcing {. The phase correlations of {, on the other hand, are parameter-
independent. The phase of the stochastic forcing field is constituted by incoherent white
noise.

In the first part of this chapter, we analyse the structure of non-equilibrium steady
states in the regime where the driving does not lead to the creation of vortices. We have
empirically determined that ng = 0.1n¢ as choice for the initial condensate prevents vor-
tex nucleation completely for the different setups of driving parameters we will discuss.
In a second part of this section, we allow for the generation of vortices through stochastic
driving. We will demonstrate that then the nucleation process, and in particular vortex
density and the timescale for the process, is controlled by the coherence parameters of
the forcing and by the dissipation strength. However, the late time properties, i. e., the
stationary state becomes independent thereof.

In this section, we present numerical results from simulations of the model Eq. (VIL.1)
with a setting as follows. The computational grid is rectangular with 1024 x 1024 lattice
points and periodic boundary conditions together with parameters from Table B.4. With

IThe numerical data presented here has partially been reported on and obtained in the course of the Master’s
thesis [220]. I co-advised the project, guided the numerical work, and provided the numerical code.
Figures which have been taken from [220] are marked accordingly. For all other figures, I analysed the
data anew or carried out new simulations. The interpretation of the results presented here extends the
work [220].
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that, the non-dissipative part of the system’s dynamics is determined by the same param-
eters as we have used in the previous chapter VIL The dissipative and stochastic parts
of the model, however, are now tuned to a explicitly non-thermal setting. As compared
to the setting of Sect. VIL3, this requires mutually different phases of all complex cou-
plings and will include different degrees of spatial coherence in the stochastic forcing.
For the two-point correlation function of the stochastic driving force (Eq. (VIL4)) we set
y = 0.01, A = 10&. Consequently, we focus on the steepness of the power-law tail,
set by v, as the main tuning parameter of the forcing characteristics. The deterministic
pumping term in Eq. (VIL3) (i. e. the term proportional to p4) together with the driving
strength y determines the magnitude of the condensate ny in the stationary state. We
choose pg = —gqnis together with g = 3052 particles per lattice cell. The magnitude of
the non-linear dissipation constant is set to gg = g/9, to be on the order of the scattering
coupling g. Therewith, we control the condensate in the stationary state in the absence
of stochastic driving. Since y < fiy, fif constitutes a good a priori approximation for ng,
while its true value can be determined from simulation. Note that, throughout this sec-
tion, all numerical data is presented in units of appropriate powers of the healing length,

& = 1/ +/2mgny, in the steady state.

VIII.1 Vortex-less Non-equilibrium Steady State

We start out by analysing the situation when vortex nucleation is strongly suppressed.
For that, an deterministic initial field configuration is set in the form of

$(x,t =0) = Vo, (VIIL1)

where ng = 0.17;. With this, the stochastic differential equation Eq. (VIL.1) is solved nu-
merically by solving the equation for 20 realisations of the stochastic driving force ¢.
Thereafter we calculate observables as ensemble averages (-) = (- ) over the the reali-
sations of the forcing. The initial condensate density is large enough to prevent efficiently
vortex formation but is still small enough to allow stochastic forcing to influence the time
evolution of the system in a non-perturbative manner.

After a short period of time evolution, subject to the driving, we find that the bulk den-
sity of the gas grows to a stationary value which we take as indication that the system
has reached a non-equilibrium stationary state. In this state, we analyse the radial parti-
cle occupation spectrum as before, see Eq. (VIL9), and in addition the radial spectrum of
hydrodynamic kinetic energy,

e(k) = [ d% (v(=k)v(k)); . (VIIL2)

The second type of spectrum provides a link between the Bose gas and the effective
Kardar-Parisi-Zhang equation, see Eq.(VIL6), in addition to the effective force corre-
lator u(w, k), Eq. (VIL8). For the latter, we concentrate on the equal-time angle-averaged
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forcing correlator,

dw

u(w,k) = [ du U (t,-k)U(t,k)); . (VIIL3)
JT

u(k) = [ d

VIII.1.1 Steady States in the Power Spectrum

Our results in the previous chapter allow to anticipate that one should especially search
for non-trivial power laws in the infrared region of the occupation spectrum. To obtain a
comprehensive view on the situation, we compute the infrared power law in the occupa-
tion number spectrum as a function of time for different choices of the forcing power-law
v. The result is shown in Fig. VIIL.1 for integer values of v between v = 0 and v = 8. The
widths of the coloured lines represent the statistical errors of the fit procedure and the
solid black lines show the fitted value of the infrared power law, see [220] for details. Note
that, in principle, also non-integer or negative values of v can be utilised. We restrict this
study to positive values of v. With this, the forcing term injects particles more dominantly
in the infrared momentum region without introducing much energy per particle.

As can be seen from Fig. VIIL1, the infrared power law in the occupation spectrum
quickly builds up, after a short period of non-universal time evolution, for the whole
range of driving power-laws. Beyond time ¢t ~ 3000 &2 a non-equilibrium steady state
is reached. The form of the occupation spectrum in the this steady state is shown in
Fig. VIIL.2. The power law which is attained in the infrared part of the occupation spec-
trum in the steady state is found to be dependent on the shape of the forcing term. From
this point of view, the identified scaling behaviour in the spectrum seems to be non-
universal, as the power law can be manufactured at will by just choosing a certain form
of driving. However, Fig. VIIL.1 as well as Fig. VIII.2 show also that the infrared power
law in the steady state does not simply equal the driving power law v but is steeper. The
inset in Fig. VIIL1 illustrates the dependence of the infrared power law on v. We find that
there is a universal, i. e. forcing independent, offset between the scaling exponents,

{i(v) —v=14. (VIIL4)

In contrast, the power law which forms in the ultra-violet tail of the occupation spectrum
does reassemble the driving power law, see Fig. VIIL.2. Therefore, we find that, even with-
out vortices, there is a non-trivial non-equilibrium steady state building up, where the
occupation spectrum follows a multi-modal scaling form. The scaling law which appears
in the infrared part of the spectrum is universal, if the ratio between occupation spectrum
and power spectrum of the stochastic driving is considered.

The universal character of the offset can be understood in terms of the effective forcing
U (see Eq. (VIL7)), linking the driven dissipative Gross—Pitaevskii model and the Kardar—
Parisi-Zhang equation. As discussed in Sect. VIL.1.2, without topological defects and for
negligible density fluctuations, the driven-dissipative Bose gas model can be mapped to
the driven Kardar-Parisi-Zhang equation. The mapping between the two models re-
lies on an effective forcing potential U, see Eq. (VIL6), which can be calculated from the
stochastic driving of the Bose gas together with the evolving order parameter field (¢, x).
Our simulations for the driven-dissipative Bose gas allow to calculate the time-dependent
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Figure VIII.1: The infrared scaling exponent { of the occupation spectrum as a
function of time t for different degrees of coherence v in the stochastic forcing.
The forcing is switched on starting from a finite low bulk density of the Bose
gas, to prevent vortex nucleation (see main text for details). A fitting procedure
is used to determine three characteristic regions in the occupation spectrum,
a deep-infrared, an infrared, and an ultra-violet region at every timestep, and
fits a scaling law n(k) ~ k7% to the infrared region. Thereby, it is assumed
that the spectrum is flat in the deep-infrared and follows the driving power-law
in the ultraviolet (see [220] for additional details). Coloured bands show the
uncertainty of the fit of { (different colours for different values of v) while the
black lines within show the value of {. The scaling exponent { of the spectrum
in the steady state turns out to be proportional to v but has a clearly visible
offset. The inset illustrates the linear dependence of the steady-state power-law
in the occupation spectrum (blue data points) on the power-law of the forcing
&(v) = v+ 1.4 (red solid line). All simulations are average over 20 realisations
of the stochastic forcing. Figure adapted from [220].

radial power spectrum u(t,k), see Eq.(VIIL3), of the effective forcing potential, using
Eq.(VIL7) on a single realisation. In Fig. VIIL3, the resulting power spectrum u(k) for
the steady state is shown for different values of v. We find that the effective Kardar-
Parisi-Zhang forcing follows a v-independent scaling law,

u(k) ~ k77, (VIIL5)

in an infrared region, where the value of the scaling exponent y ~ 1.4 reflects the univer-
sal offset we have determined above. Thus, our data suggests a relation

y=¢-v, (VIIL6)

between the scaling exponents of the effective forcing and the occupation spectrum. The
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Figure VIIIL.2: The occupation spectrum in vortex-free non-equilibrium steady
state shown for different power-laws v (different colours) in the stochastic forc-
ing. We show occupation spectra at t = 5000 &2 from the same dataset as has
been used for Fig. VIIL.1. Note that the y-axis is rescaled with the driving power-
law to highlight the steeper power-law building up in the infrared. The spectra
generally have three different momentum regions, to each of which a scaling law
is attributable. The in the deep-infrared the spectrum typically follows n(k) ~ k°
while it follows the driving power-law n(k) ~ kY in the ultra-violet. This is
employed as input for the fitting procedure to determine the infrared scaling
exponent ¢ in Fig. VIIL1.

momentum region where this is valid depends on the level of coherence in the driving
power spectrum of the Bose gas. For power law tails in the Bose gas power spectrum
steeper than v > 2 the effective power spectrum u(k) demonstrates the scaling form
clearly and falls on a universal curve. For less coherent stochastic driving forces in the
Bose gas, density excitations dominate in the expression for U and, with that, the power
spectrum u(k) [220]. In particular, it has been found in [220] that the term o 1/4m /nV -
(Vn/+/n) in U (see Eq.(VIL7)),is responsible for the non-universal flat tails in u(k) in
Fig. VIIL3.

VIIL.1.2 Scaling Laws in the Hydrodynamic Energy

Finally, we analyse the hydrodynamic character of the excitations in the Bose gas in the
vortex-less non-equilibrium steady state to make contact to superfluid turbulence. To do
so, we switch from the occupation number spectrum to the kinetic energy spectrum, as
defined in Eq. (VIIL.2). As a bridge between Bose gas and Kardar-Parisi-Zhang physics, we
use the hydrodynamic velocity field in the form v = +/nV0, as introduced by [165, 166].
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Figure VIIL.3: Radial power spectrum u(k) (see Eq.(VIIL7)) of the effective
Kardar-Parisi-Zhang forcing potential U (see Eq.(VIL7)), calculated in the
vortex-less steady state of the Bose gas for different driving power-laws v, cor-
responding to Fig. VIIL.2. The spectrum follows a scaling law in an infrared mo-
mentum region, u(k) ~ k™' with y = 1.4, where the scaling exponent reflects
the offset scaling exponent, y = ¢ — v, found in Fig. VIIL.2 and Fig. VIIL.1. The
extend of the infrared momentum region depends on the shape of the driving
power spectrum (see main text). Figure adapted from [220].

On the one side, the kinetic energy spectrum in the form of Eq. (VIIL.2) is then approxi-
mately equal to the kinetic energy spectrum of the Bose gas [165, 166], e(k) =~ k?n(k), if
gradients in the gas density are small. On the other side, under the same condition, the
relation e(k) ~ k?(6(—k)0(k)); approximately holds, linking the energy spectrum to the
phase field appearing in the effective Kardar-Parisi-Zhang equation. We furthermore em-
ploy a decomposition of the velocity field in a compressible and an incompressible compo-
nent, v = v.+wvj, with V-o; = 0 and Vxwo, = 0. Following [165, 166] this allows to divide
the hydrodynamic energy spectrum accordingly in a compressible and an incompressible
part €(k) i, by inserting the decomposed velocity fields in Eq. (VIIL.2). The resulting hy-
drodynamic kinetic energy spectra in the vortex-less steady state are shown in Fig. VIII.4
for high values of v > 2, where the effective forcing attains the v-independent scaling
form. First of all, we find that the compressible contribution to the spectrum dominates
by more than four orders of magnitude and reassembles closely the form of the occupation
spectrum. The additional scaling by a factor k? simply captures the difference between
kinetic energy and occupation number. This corroborates that non-topological, i. e. small
perturbative, excitations of the phase field are responsible for the universal properties of
the non-equilibrium steady state, including the scaling exponent { = v + 1.4. But the
decomposition reveals also that there is an incompressible part in the energy spectrum
building up in the steady state, which follows a scaling law with the same universal off-
set as the compressible part. The momentum region where the power law is attained in
the incompressible spectrum even extends far beyond the typical infrared region we have
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Figure VIIL.4: Hydrodynamic kinetic energy spectra in the vortex-less steady
state are shown for values of v = {4,6,8}. Note that the y-axis is rescaled with
a factor kV~2, to compensate for the forcing power law which builds up in the
ultra-violet (cf. Fig. VIIL.2). The additional factor k? originates in the difference
in physical dimensions between energy and occupation spectrum. Blue symbols
show the compressible part of the hydrodynamic kinetic energy, €.(k), while
red symbols show the incompressible, €;(k). The black solid line illustrates the
scaling law e(k) ~ k~1-4-v+2
Fig. VIIL.2.

. Time and simulation parameters correspond to

encountered in the other observables so far. This can be understood in the following way.
Even in the absence of vortices, the curl of the velocity field we use is non-zero, due to the
additional factor of v/n, VX v = V4/n x V0. This shows that the incompressible energy
spectrum in Fig. VIIL.4 also captures a contribution from phase fluctuations. However,
only those phase fluctuations contribute the gradients of which are disaligned with the
density gradients. This suggest that, to disentangle phase and density fluctuations in the
Bose gas for mapping it to the Kardar-Parisi-Zhang equation, one needs to project out
the transverse phase excitations V8, = ey, X V0. Integrating V8, then yields a phase
field with a clean scaling law in its power spectrum in the steady state. For the scaling
law, still the linear dependence {(v) = y + v holds. Thus, we find numerical evidence
that the structure of steady states is determined by a fixed line (rather than a fixed point)
of the underlying Kardar—Parisi-Zhang dynamics. Such structures, although in a differ-
ent context, have been identified in non-perturbative renormalisation group flows for the
driven Kardar—Parisi-Zhang equation in [218].
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Figure VIIL.5: Examples of vortex configurations in the non-equilibrium steady
state (a-c) for different values of v = {0, 4,8}, when vortex nucleation is allowed
for via initial conditions. For comparison, panel d) shows a realisation from a
thermally coupled situation, during the transient vortex-containing stage, from
the simulations discussed in Sect. VIL3. Single realisations of the phase 8 of
are depicted colour-coded (from blue —7 to red ) at simulation time ¢ = 500 &2,
which is well within the steady state for panels a)-d). Vortex defects are marked
with white symbols, dots for vortices and crosses for anti-vortices. Black solid
lines illustrate the normed hydrodynamic flow field v/|v| where v = /nV0.

VIIL.2 Vortex Nucleation from Stochastic Driving

The behaviour of the driven-dissipative Bose gas changes dramatically when the the dy-
namic evolution is initialised with an empty condensate mode, just putting half a particle
occupation on average in all non-zero momentum modes,

WYyk) =1/2. (VIIL7)
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The gas is then, initially, subject solely to the external drive, where the finite imaginary
part of the chemical potential enforces an exponentially fast build-up of a finite bulk den-
sity. In light of the initially negligible local gas density, large phase fluctuations can form,
without being imposed by the driving force, and eventually wind into local topological
phase defects. This provides a natural mechanism to produce random vortex configura-
tions in the gas. Examples thereof for different driving schemes are depicted in Fig. VIIL5.
The figure shows examples of field realisations in the attained non-equilibrium steady
state for three different values of the driving power law (panels a to c). The fourth panel
depicts, for comparison, a realisation from a thermally coupled situation during the tran-
sient vortex-containing stage, from the simulations discussed in Sect. VIL.3. The non-
equilibrium drive builds up vortex configurations which produce hydrodynamic velocity
fields with large-scale structures (see black lines in Fig. VIIL5), very similar to what we
have found in the vortex lattice scenario (cf. Sect. VIL.2 and Fig. VIL.2). In contrast, the hy-
drodynamic flow concentrates around vortex pairs in the thermally coupled system and
staggers in large areas in between the pairs.

We find that, under the condition of n; ~ 0, every driving scheme we utilised produces
vortex configurations with vortex quantisation w = =+1, together with highly coherent
hydrodynamic velocity fields. However, the time this process needs and the number of
vortices forming is dependent on the driving scheme. We assume a phase defect to be a
true vortex if a vortex core is identifiable within the gas bulk density. With this, we can
define a timescale for vortex creation, 7y, via the average bulk density

n(t) = % [ &x@lyy. (VIIL8)

Assuming that a minimum of n(¢) = 0.1n¢ average bulk density is required to identify
the vortex core, we define
n(r,) = 0.1ng, (VIIL.9)

and count the number of vortices NI at this instance in time. The behaviour of 7, and
the initial vortex density ni = N!/V as a function of the power law in the driving
force v we obtain is shown in Fig. VIIL6 (upper panel). Both quantities are in one-to-
one correspondence and demonstrate a crossover behaviour from small to high values
of v. On a qualitative level, the crossover behaviour for the initial vortex density can
be explained. If the vortex density is turned into a length scale, L, = (n})~'/2, we find
L~ 3.1& ~ 1/ \/ngd for the limit v = 0. In the other limiting case, v = 8, the
initial average defect distance is set by the infrared cut-off in the driving L}, ~ 10& ~ A
(cf. Eq.(VIL4)). Therefore, the initial vortex nucleation undergoes a crossover from a
dissipation-dominated process to forcing-dominated process, which is understandable
since the forcing becomes increasingly coherent at a scale set by A as v increases. When
the forcing has no inherent scale, i. e. at v = 0, on the other hand, vortices are created as
dense as possible. If two phase defects of opposite winding number are nucleated with a
separation closer than 1/ \/2mnggq, i. e. the characteristic scale of the non-linear dissipa-
tion, they simply decay instead of forming density defects. The lower panel in Fig. VIIL.6
shows that there is a linear dependence between the characteristic vortex formation time
tau, and the initial vortex density n! in the crossover regime. With this, we have iden-
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tified a reliable and easily realisable mechanism to engineer vortex distributions via the
choice of the driving scheme.
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Figure VIIL.6: Upper panel: the timescale for vortex creation 7, (blue circles,
left axis), defined via n(z,) = 0.1ng, and the corresponding density of initially
nucleated vortices, N (red triangles, right axis) is shown as a function of the
power-law v in the driving force. We find a crossover between a dissipation-
dominated nucleation of vortices and a forcing-dominated one. See main text
for details. Lower panel: initial vortex density as a function of the characteris-
tic vortex formation time. There is a linear dependence n! o 7, (see black line)
between the density and the timescale in the crossover region. Simulation data
from [220]

Not only the initial number of vortices but also their number as a function of time is
influenced by the forcing mechanism. The time evolution of the vortex density n(t) is
shown in Fig. VIIL.7 for several forcing power laws. There are apparently three possible
stages of the vortex time evolution, depending on the vortex density. For very high den-
sities, there is a fast non-universal decay at early times (cf. coloured symbols and grey
lines for v € [0,2] in Fig. VIIL7). This corresponds to the values of v where the nucleation
process is dissipation-dominated. This initial stage is followed by a slow universal stage
of decay, where the number of vortices reduces algebraically,

ny(t) ~ 701 (VIIL10)

Even then, the exponent of the power law decay is considerably weaker as has been iden-
tified in previous studies, in isolated Bose gases [55, 59] (see also Fig. VIL5), the thermally
coupled gas as discussed in Sect. VI3, or strongly-coupled dissipative systems [65]. We
point out that the decay in Fig. VIIL.7 is universal not only in the sense that the power law
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Figure VIIL.7: Vortex density ny(¢) (coloured lines) as a function of time for
different values of of the forcing power law v. Coloured symbols represent
integer values of v as given in the legend. Grey solid lines show the vor-
tex density, from simulation data, for additional non-integer values of v =
[1.5,1.75,1.8,1.85,1.9,2.1,2.2], demonstrating that the behaviour of the vortex
number is continuous in v (cf. also Fig. VIIL.6). The black solid line corresponds to
an, ~ k™% power law. For small to intermediate values of v, n(t) approaches
a universal curve, whereas there is no visible decay for the highest values of v
we have simulated. The crossover we have discussed in Fig. VIIL.6 manifests it-
self also here in the initial non-universal behaviour. If the nucleation of vortices
is dissipation-dominated there is extremely fast decay present. Simulation data
from [220]

is independent of v but in addition also the pre-factor is. Therefore, after non-universal de-
pendencies from the initial stage of evolution have damped out, all curves fall on one uni-
versal curve without additional re-scaling. For highly coherent driving forces (cf: v = 8
in Fig. VIIL.7), however, there is no decay of the vortex distribution observable, for times
accessible in the simulations. In this case, the nucleation process is dominated by the driv-
ing scale alone, such that the vortex configuration is created in a statistically stationary
state from the outset. We point out that vortices in our simulations always are created in
pairs and removed in pairs. The defect structure proves remarkably stable even against
strong external perturbations. Thus, a decay of the vortex distribution can only pro-
ceed via mutual annihilation of pairs and stops if the defects are pinned by the stochastic
forcing. The question remains, which we can not answer with our current numerical im-
plementation, if the decay for intermediate values of v in practice halts completely once
the vortex density is sufficiently low. But even if not, the decay is sufficiently weak to
deduce the existence of a non-equilibrium stationary state in this phase. In general, the
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Figure VIIL8: The infrared scaling exponent {(¢) of the occupation spectrum
in the vortex-containing non-equilibrium steady state as a function of time t¢.
Different coloured solid lines correspond to different values v of the forcing
power-law. The fitting procedure employed to determine the scaling exponent
is similar to that discussed in Fig. VIIL.1. The scaling exponent { of the spectrum
in the steady state converges nearly v-independent to a narrow band between
{ = 5.4 and { = 6. Corresponding occupation spectra in the steady state are
depicted in Fig. VIIL.9. Figure adapted from [220].

stochastic forcing tremendously stabilises the vortex-containing state of the Bose gas, as
it counteracts the Magnus force and the attractive force between vortex—anti-vortex pairs
likewise.

VIIL.3 Vortex Influence on the Non-equilibrium Steady State

The scaling properties of the non-equilibrium steady state change equally drastically, in
comparison to the case discussed in Sect. VIIL.1, when vortices are allowed to form out
of the stochastic driving process. We again anticipate the existence of a scaling law in
some infrared momentum region of the occupation spectrum and apply a similar fitting
procedure as discussed in Fig. VIIL1 to determine the time evolution {(¢) of the corre-
sponding scaling exponent. The result for different power laws in the driving force is
shown in Fig. VIIL.8. Here, it is the early stage of time evolution where the occupation
spectrum is shaped by the driving power law. This is of course expected, as one literally
computes the power spectrum of the driving force at early times with n(k), if the con-
densate mode is zero initially. But in contrast to the case of the vortex-free steady state,
the system here enters thereafter a steady state where the infrared scaling exponent in
the occupation number is drawn to a narrow band between { = 5.4 and { = 6. The
time window 10&2 < ¢t < 1002 in which this happens is consistent with the transition
from non-universal fast decay to the universal stage in the time evolution of the vortex
number, see Fig. VIIL7.
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Before we go on, we comment on the temporal limitation our simulation setup is subject
to. As can be seen from the curves for v = {0,1,2} in Fig. VIIL8, at times beyond t =~
2-103£? the infrared power law begins to steepen further. This originates in the periodic
boundary conditions of our simulation domain. At this point, the Bose gas has developed a
persistent superfluid current, under the influence of the driving force, flowing around one
of the circles of the torus of the simulation domain. In this state, the vortex configuration
is ordered into a regular lattice on the torus and the hydrodynamic velocity field v acquires
a constant direction and value, being subject to a quantised flux. Although this effect
constitutes a good starting point for investigating the influence of boundary conditions
on the structure of non-equilibrium steady states and non-thermal fixed points, we will
not pursue it further in this work and consider it as a limitation for the total simulation
time.

The (nearly) v-independent infrared power-law in the vortex-containing non-equilibrium
steady state, together with the coherent hydrodynamic velocity fields in this state (see
Fig. VIIL5), are reminiscent of our findings for the anomalous fixed point in the isolated
gas, see Sect. VIL.2. The functional form of the occupation number spectra in the steady
state, shown in Fig. VIIL.9, demonstrates also on a quantitative level the similarity of the
steady state here to the anomalous non-thermal fixed point, see for comparison Fig. VIL3.
The infrared and deep-infrared momentum region follows the typical form of a gener-
alised Cauchy distribution, we have also identified the scaling forms with in Fig. VIL3.
In the upper panel of Fig. VIIL.9, we show the spectrum determined from simulation
(coloured data points) together with corresponding fits (coloured lines) of the function

S(k)

a

= m , (VHIll)

to the infrared and deep-infrared momentum region k < 1/£. Note that the spectra n(k)
depicted Fig. VIIL.9 represent temporal averages over several times within the stationary
plateau in Fig. VIIL.9. In the lower panel of Fig. VIIL.9, the corresponding scaling exponents
{ is depicted, as determined from the fit of the function Eq.(VIIL.11) to the temporally
averaged spectrum n(k) in the steady state. The scaling exponent { undergoes a crossover
from { = 6 for less coherent driving to { = 5.4 for highly coherent driving, similar to
Fig. VIIL6. But, within numerical error bounds, the scaling exponents { (v) exceed Porod’s
scaling law, {(v) > 4, and approximately equal the scaling exponent attained near the
anomalous non-thermal fixed, { =~ 6 (cf. Fig. VIL.3).

The remaining v dependence of the spectrum in Fig. VIIL.9 can again be analysed for
a universal scaling form. An obvious v-dependent effect on the occupation spectrum
originates in different particle numbers Nf in the stationary state, as our definition of the
field ¢ and the occupation spectrum (see Eq. (VIL.9)) leads to

[ dk kng(k) = Ni. (VIIL12)

Since the particle number the system converges to in the steady state is not fixed by
our numerical procedure, we normalise the occupation spectrum to N¢(v), via n(k) —
n(k)/Nt. The upper panel in Fig. VIIL9 (which shows the normalised spectra) demon-
strates that there remains a v-dependent scale in the spectrum after normalisation to Np.
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Figure VIIIL.9: Upper panel: the occupation spectrum in vortex-containing non-
equilibrium steady state shown for different power laws v (different colours) in
the stochastic forcing. Note that the spectrum is normalised to the total number
of particles in the steady state Nf. Coloured datapoints show simulation data
n(k)/Ny, where a temporal average over n(k,t) at 50 logarithmic-equidistant
time steps within the steady steady state (cf t = 40&2 tot = 10° - &2 in
Fig. VIIL.8) is computed. The corresponding coloured lines represent fits of a gen-
eralised Cauchy distribution, (see Eq. (VIII.11)), to the infrared and deep-infrared
part k < 1/& of the occupation spectra. Lower panel: fit parameter {, as ob-
tained from fitting Eq. (VIIL.11) to the occupation spectra, as a function of v The
inset in the upper panel shows the scaling collapse of the normalised occupa-
tion spectrum according to Eq. (VIII.14), using the average vortex distance (see
Eq. (VIIL13)) in the steady state as scale v-dependent scale. The scaling form
contains a power law with { between 5.4 and 6. The inset shows a generalised
Cauchy distribution with { = 6 (black line).

Note that in chapter VII this was not an issue for scaling forms, as we did not compare
situations with differing total particle number.
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Turning back to the scaling hypothesis from Eq. (VIL18) in the context of phase ordering
kinetics (see discussion in Sect. VIL.4), the average defect distance in the steady state,

1
f=— (VIIL13)

v s
Vi

is expected to provide the relevant scale in the occupation spectrum, i.e. the structure
factor. We have already determined in Fig. VIIL.7 that the quantity L,(¢) is driving depen-
dent, even in the stationary state. The inset in the upper panel of Fig. VIIL9, demonstrates
that the normalised spectrum in the steady state can indeed be collapsed to a single curve
according to a scaling form o

1+ (Li(v)k)?

The length scale Lf can be determined independently from the data used for Fig. VIIL7.
We find that the collapse of the occupation spectrum to a universal curve is possible in the
infrared and deep-infrared momentum region, up to LL k < 10. If the spatial scaling region
in the occupation spectrum continues beyond that momentum scale is not unambiguously
clear from our data in Fig. VIIL9. The fits of the generalised Cauchy distribution in the
upper panel of Fig. VIIL9 indicate a v dependence of { (see lower panel for corresponding
values of {) in the scaling form. On the other hand, the scaling collapse rather indicates
that there is one universal curve up to the dissipation scale kg = 1/ 4/2mnggq ~ £/3. This
question can be clarified by extending the inertial range between driving scale 1/ (see
Eq. (VIL4)) and kq on a larger simulation grid.

(VIIL14)

Nevertheless, we find that the occupation spectrum in the vortex-containing non-equi-
librium steady state follows the universal scaling form Eq. (VIII.14). The universality here
can be made apparent when rescaling the occupation spectrum with the average de-
fect distance L. In an infrared momentum region below the dissipation scale kg, the
v-dependence is solely determined by the vortex scale Ly. In the same way, the time de-
pendence of the infrared part of the occupation spectra in Fig. VIL3 is encoded entirely
in the time dependence of the vortex scale Ly(t), as we have discussed in Sect. VIL4. To-
gether with the steep power law in the scaling form (see Fig. VIIL9), { between { = 6 and
{ = 5.4, we find therefore numerical evidence that the vortex-containing non-equilibrium
steady state is equivalent to the anomalous non-thermal fixed point, which determines
the universal evolution in the isolated Bose gas (see Sect. VIL2).

In addition, it has been shown in [220] that the occupation spectrum in the infrared
momentum region can be derived solely from the vortex positions, considering single
realisations and using the topological solution for the Gross—Pitaevskii vortex. This means
that, in contrast to Sect. VIIL.1, the universal aspects of the steady state here originate in
vortex-generated, incompressible hydrodynamic fluxes. It remains to be clarified and
quantified how the statistics of the driving force influences the vortex configuration in
the non-equilibrium steady state.
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VIII.4 Summary

In this chapter, we demonstrated in Sect. VIIL.1 that the driven-dissipative Bose gas hosts
non-equilibrium steady states with universal scaling laws even in the absence of vor-
tices. We presented evidence that that the universal properties of the vortex-less non-
equilibrium steady state are determined by an underlying fixed point structure of an effec-
tive Kardar-Parisi-Zhang equation. Provided that the stochastic forcing of the Bose gas
does not introduce density fluctuations on too small scales, the power spectrum of the
effective driving force attains a power-law scaling exponent y = 1.4. It is universal in the
sense that it is independent from the power-spectrum which drives the Bose gas, char-
acterised by a scaling exponent v. The corresponding scaling law in correlation spectra
of several order parameter fields, on the other hand, was found to consistently reflect a
linear dependence between the scaling exponents, { = y + v. This suggests that there is
actually a fixed line instead of a point from the underlying effective Kardar-Parisi-Zhang
equation responsible for the non-equilibrium steady state. Similar fixed point structures
in renormalisation group flows have been found from a non-perturbative renormalisation
group treatment [218], although the range of applicability does not extend to our value
fory.

Finally, we have demonstrated that stochastic driving stabilises vortex configurations
tremendously, turning them into non-equilibrium steady states. The corresponding hy-
drodynamic flow fields contain highly coherent structures. The occupation spectrum
in the vortex-containing non-equilibrium steady state was found to follow a driving-
independent scaling form, when computed in units of the average defect distance. Thus,
the defect ensemble provides the only relevant scale for the steady state. The defect en-
semble itself in the steady state was found to be controllable by the driving. The scaling
law in the scaling form of the steady state is characterised by a exponent { = 5.7 + 0.3,
exceeding the defect scaling exponent. This provides evidence that the vortex-containing
non-equilibrium steady state in the driven-dissipative Bose gas is deeply connected to the
anomalous non-thermal fixed point in the isolated Bose gas.
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IX Conclusion

In this work, we have studied dynamical critical behaviour in a two-component Bose gas
in one spatial dimension and a one-component Bose gas in two-spatial dimensions. As
a way to set off dynamics far from equilibrium we utilised sudden changes, quenches, in
couplings. For the pseudo spin-1/2 gas, which we studied completely isolated from envi-
ronment, the critical behaviour was provoked, since the quench parameter there was a
tuning parameter connected to an equilibrium phase transition. In the case of the single-
component gas, the quench consisted of a sudden coupling to a thermal environment or
a stochastic driving force, violating the thermal fluctuation dissipation relation. In ei-
ther case, we obtained dynamical critical behaviour in form of a critically slow approach
to non-equilibrium stationary states, without referencing a known equilibrium critical
point.

A common guiding principle throughout our investigations was the application, or the
test for, non-equilibrium scaling hypotheses. This means, as a direct extension of the
concept of universality in equilibrium [17], that distribution functions at quasi-stationary
states are assumed to be homogeneous in a scale s which rescales all dimensionful de-
pendencies of the distribution, including time or non-equilibrium driving forces, with
universal exponents. The key feature of this concept is, that it allows measuring critical
exponents or, testing for criticality in the first place, by testing distribution functions for a
scaling collapse, instead of fitting power-laws. This is especially helpful for experiments,
where accessible time and length scales do not always allow determining power-laws di-
rectly. A first step into the direction of experimentally measure scaling out of equilibrium
was taken in [73], which we also highlighted in chapter IV.

In chapters V and VI we applied the scaling hypothesis to the quench dynamics of the
spinor Bose gas in one spatial dimension. In chapter V we found that the scaling hypothe-
sis partially fails when tuning the system parametrically close to the critical point. This is
not surprising, as it would likewise for a thermally equilibrated system in one spatial di-
mension. However, we found numerical evidence that rescaling in the post-quench time
direction is restored when a shifted (renormalised) excitation gap is used as scale. In this
context, we also advised a way to determine numerically the full quasi-particle dispersion
spectrum, which led us to the conclusion that also speed of sound and dynamical critical
exponent begin to renormalise for quenches close to criticality. An application of renor-
malisation group ideas along the lines of [183, 207, 208] likely will lead to an analytic
understanding. However, we highlight that our method to compute the dispersion from
two-time correlation functions is amenable for implementation in quench experiments
similar to [73], if densities can be measured non-destructively (see for example [209]).

The failure of the full scaling hypothesis does actually not contradict universality in one
dimensional systems, as there exists the notion of universal crossovers. In this case, dis-
tribution functions are described in terms of non-homogeneous universal function, where
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still only ratios of dimensionful quantities enter. We applied this idea to the quench dy-
namics in the spinor gas in chapter VI, in light of the structural similarities between the
spinor gas and the Ising chain in a transverse field, for which crossover functions are an-
alytically known [89]. We find that, already in the early post-quench time evolution of
the spinor gas, correlations in the spinor gas follow the thermal Ising crossover function
when quenching to the critical point. The rescaling in time direction is important for this
observation, as this Ising-like behaviour becomes only apparent when comparing times
in units of the gap oscillation frequency (in practice, when analysing maximal correla-
tions). We furthermore demonstrated in this context that an effective temperature for
this early post-quench behaviour can be derived, which characterises the crossover func-
tion in ratio to the excitation gap long before a prethermalised stationary state is reached.
Thereby, the effective temperature can be derived a priori from a generalised Gibbs en-
semble describing Gaussian fluctuating modes in the spinor gas. Together with the decay
of oscillations in the spin correlations, we interpret this effectively thermal crossover be-
haviour at early times as a precursor of an actual prethermalisation plateau [35] in the
post-quench dynamics of the spinor gas.

Furthermore, we provided evidence that the quench in the spinor Bose gas triggers a
critical dynamic evolution in occupation distributions characterising the individual com-
ponents (instead of the pseudo-spin). We find that these distributions evolve self-similar
in time and that the time-dependence can be collapsed to a universal function without
reference to the post-quench distance to the critical point. In [47] this kind of behaviour
has been put forward as a criterion for the presence of a non-thermal fixed point in the
time evolution. In the light of these findings, we attribute the critical scaling in single-
component occupation distributions of the spinor gas to a non-thermal fixed point which
is connected to an effectively relativistic local energy transport.

In chapter VII, we investigated critical dynamical behaviour in the one-component Bose
gas in two spatial dimension, where we set off dynamics by locally ‘stirring’ (i. e. placing
vortices by hand) the gas. Using regular lattices of vortices (as they emerge for example
when rotating the gas cloud as a whole [232]) as initial state, we discovered a new non-
thermal fixed point in the Bose gas, which comes with an anomalously slow self-similar
time evolution of occupation spectra. We also demonstrated that the critical self-similar
evolution is not destroyed by a thermal environment and that, instead, the dynamical
critical exponent of the kinetic ordering process is changed to its smaller non-anomalous
value, such that the ordering process evolves much faster in time but still following a
power law. We clarified the connection between phase ordering kinetics [54, 99] and the
fixed point structure [47, 59] in the Bose gas. This allowed us to map the anomalous crit-
ical exponent, defining our newly discovered anomalous fixed point, to an anomalously
high dynamical critical exponent z = 5 of the ordering process. Based on our results
and in the light of findings for vortex glass phases in superconductors [100-104], we put
forward that the anomalous fixed point in the Bose gas signals a glass-like phase of the
vortex distribution.

In chapter VIII, we probed the structure of true non-equilibrium steady states in the
Bose gas by driving the gas externally. As a result from the non-equilibrium driving,
we obtained that non-equilibrium steady states with universal properties in the occupa-
tion distribution emerge, where we identified a vortex-less and vortex-containing class of
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steady states. As for the time evolution, also in this case the scaling hypothesis, which
needs here to include scales from the driving, allowed us to characterise the universal
features. We demonstrated that scaling properties of distribution functions in the vortex-
less steady state can be understood in terms of the Kardar-Parisi-Zhang universality class
[105-108]. In particular, we provided numerical evidence that the vortex-less steady state
is connected to a fixed line in the Kardar-Parisi-Zhang equation, to which the vortex-
less Bose gas effectively maps [48, 109, 110]. For the second, vortex-containing class of
non-equilibrium steady states in the Bose gas, we demonstrated that scaling properties
of distribution functions can fully be understood in terms of the vortex ensemble. Sta-
tionary occupation numbers for different realisation of the driving can be rescaled to a
universal function, using scales of the vortex distribution, specifically the mean defect
distance. From this we found a scaling collapse to be possible. With the form of the
emerging universal function and the vortex ensemble in the steady state itself, we find
strong numerical evidence that the vortex-containing steady state is in one-to-one cor-
respondence with the anomalous non-thermal fixed point appearing in the isolated time
evolution. This case would then constitute the first numerical demonstration of driving a
system directly into the non-thermal fixed point (as true stationary state) which acts as
partial attractor for the isolated dynamic evolution. The question if every non-thermal
fixed point has a non-equilibrium steady state as counterpart remains, however, open.

Every setup we studied and presented results on in this work, remarkably, realises more
than one concept of critical dynamics simultaneously or within the same context, prether-
malisation and a generalised Gibbs ensemble together with non-thermal fixed points,
non-thermal fixed points together with phase ordering kinetics, or together with non-
equilibrium stationary states from external driving. At the same time, all techniques we
employed to probe critical dynamics, in particular the ways how set off dynamics and
the observables to measure the response, are well realisable in experiments for ultracold
quantum gases. With this in mind, we believe that our results contribute to the under-
standing of universality classes far from equilibrium. Simultaneously, our work provides
a good starting point, for theory and experiment alike, to methodically deepen the un-
derstanding of non-equilibrium universality in the Bose gas.
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A Representations of the
Two-Component Bose Gas

Here, we summarise a number of useful representations of the two-component Bose gas,
which have not explicitly been introduced in the main text. We derive the actions for
them, based on the model for the two-component Bose gas in the language of funda-
mental fields Eq. (Il.1). We also give more details on the derivation of the phase-density
representation Eq. (IL.4) of the model Eq. (IL.1).

A.1 Dressed Field Basis

The action in phase—density representation Eq. (IL4) reveals a complex coupling structure
between the two phase—density sectors of the full system, already on the level of the mi-
croscopic action. It is even more troublesome that this coupling structure can not be stud-
ied on the level of the Bogoliubov approximation, since symmetric and anti-symmetric
Bogoliubov excitations completely decouple from each other. Hence, a field theoretic
treatment is needed in which a perturbation expansion of the relevant coupling terms
can be performed to the up to the first non-trivial order. It turns out that the phase—
density representation is particularly unsuited for this purpose and, thus, we turn back
to the description in terms of Bose fields.

It is helpful, also for this case, to transform the degrees of freedom to the symmetric—
anti-symmetric basis in a first step, . = (Y1 + 1)/ V2. As a result, the linear coupling
between the two fields in this so-called dressed-state basis vanishes in favour of addi-
tional mass terms, yielding

S = [ didy {% [viowy +y oy —he]
yl [%G%Jﬂz] Yy 4yl [%aj —]+u] s
=T (I 1y-12)°

T Lol PP g vl ] ) A

A.2 Hydrodynamic Representations

Starting from the polar representation of the fields, ¢; = +/p;e'?, and d¢; = €'%/9 \pi t+
ip;0¢; the action of the Gross-Pitaevskii model, see Eq. (IL.1), can be brought to the form
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(with dimensionless quantities)

1
S = [ dPxde | = pidugy - 5(VVEY VT + o1Vl

g
= 5(pip)* +9(1=a)pipa| (A.2)
in the classical limit. The variation with respect to the phases, 5‘3—% = 0, yields the
continuity equations. The variation with respect to the densities, g—ij = 0, yields the

remaining two classical equations of motion. Taking the gradient of these and using
%V(V)2 = v-Vv+vxVxvone arrives at the Euler equations for the velocities, v; = Vo;,

V2 \Vp1

0vi+vy-Vvy ==V |- SN +g(p1 +ap2)| , (A.3a)
V2 \/pg

0;vo + vy - Vvg = =V |- Wi +g(p2 + ap1) (A.3b)

Note that for this a perfectly irrotational flow (no vortices), V X v, has to be assumed.
In order to transform the classical action Eq. (A.2) into the spin—fluid representation we
use ¢ = %(@T +6,) and @2 = %(@T — 0,). Note that in addition from the definition
of the spin densities, see Eq. (IL.2), the identity [1 - (52)2] 00, = §*9SY — 3S*SY can be
computed. With this the dynamic (time derivative) part of Eq. (A.2) assumes the form

[(p1 + p2)0:O1 + (p1 = p2)0:6;]

N | =

—p10:91 — p20:p2 = —

1
= TPT (0,01 + 5%0,0,]
SZ

1
=g [0+ =T

5 (5%8,8Y — atsxsy)] . (A4)

The transformation of the static part of Eq. (A.2) is elaborated in Ref. [121]. Eventually,
the full classical action in spin—fluid representation is given by

z

T

s=f dedt{ -5 [at@r +

§*9,;5Y — atsxsy)}
1 9 PTocagca L 2
_ §|V1/_PT| - §VS VS? — §PT|Veff|
2 2
2
——+T(1—a)[1—(SZ)]}. (A.5)

The local constraint (S*)? + (SY)? + (S%)2 = 1 can be implemented by projecting the
normalised spin vector onto the complex plane, defining u = sf_—_;szy With the identities
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2 _ 1487 z _ lul*~1 — olbr —i i i
[ul* === © 5 = LA and du = "7 0|u| —iud0, the action Eq. (A.5) can be obtained

in the stereographically projected form

B I _PT i(d- lul*) (u*0,u — d,u*u)
S=[[d xdt{ 5 |:5t@T+ 5 W2 (LT 1)
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B Numerics

A major part of the results of this work have been obtained by means of numerical sim-
ulation. The employed semi-classical simulation techniques have been introduced in the
main text. Here, we give additional practical information, in particular on the employed
unit systems (referred to as ‘natural units’ in the main text) and on the algorithms with
which we solve the coupled and driven Gross—Pitaevskii equations.

B.1 Units and Dimensions

For the discussion of scaling behaviour in the context of critical phenomena it is conve-
nient to measure observables and their dependencies on time, space, coupling constants,
etc. in units of the critical coupling. This approach allows, for example, to determine the
engineering dimensions of observables, which determines their trivial scaling behaviour
due to their physical dimension, right away. One only needs to count the powers of the
critical coupling needed to express the operator in ‘critical’ units. As we will make fre-
quently use of that critical unit system in the following chapters, we discuss it for the spin
sector in this section. For the sake of clarity we restore powers of 7 in all expressions in
this section. In Sect. I.1.2 we have deduced an expression of the critical linear coupling in
terms of properties of the Bose gas. This defines a characteristic energy scale given by 7.
In practice, we insert an additional factor of 2 for convenience, such that energies will be
measured in units of 27in, |gy; — g| . The mean single-component density n is to be seen
as d-dimensional density as the physical dimensions of the coupling constants change ac-
cordingly. In one spatial dimension, for example, one finds gl.ljd = 2h2a?jd /(ma?) [233] if
the experimental system is effectively one dimensional with a transverse extent of a;, and
3d scattering lengths a?jd for the hyperfine states. In two spatial dimensions, an effective
2d scattering length can be computed if the system is tightly confined in the third direc-
tion, a?}f’l = 4a, (m/B)"/? exp {— \/Eal/a?jd} [234], where B ~ 0.915. It maps to the 2d
coupling constants via g?jd = —(47h?/m)[log {,um(a?jd)Q/él}}_1 .

Form the critical energy unit the rest of the unit system derives naturally using powers
of 7 and m. Most prominently, we measure time in units of (2J.)~!, momenta in units
of VdmJ./h, and lengths in units of 71/ V4mJ.. In the latter two expressions contain an-
other convenient factor of 2 such that the kinetic energy in critical units is simply the
momentum in critical units squared. Note that the unit of length is the analogue of the
condensate healing length on the spin sector. Thus, a similar helpful unit system for the
symmetric sector, despite not being related to a critical point, is obtained by replacing
g- with gy in all expressions above. A comprehensive overview is given in Table B.1.
Subsequently, numerical and analytic results will be discussed in terms of critical units, if
physical dimensions are not made explicit. In particular, observables and their dependen-
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Table B.1: Table of physical dimensions and their respective unit in terms of the
‘critical’ unit system. For observables from the spin sector g_ is to be inserted in
the expressions and a unit system in terms of the critical coupling J. = nyg-_ is
obtained therewith. If units are not made explicit in plots or for analytic expres-
sions in the remainder of this work we refer to the critical unit system. When
presenting results from the symmetric sector, a unit system with g inserted in
the expressions below will be convenient, in isolated cases. In that cases we will
state the units nevertheless explicitly.

energy time momentum length speed

2 lgel (2nylg) VAmmylgl/h h/NAmns gl hynrge/m

cies in plots are shown in those units if not stated otherwise. In this way, if a comparison
to a specific experiment is desired, one simply needs to calculate the expressions in Ta-
ble B.1 in terms of the coupling constants of the experiment and multiply the numeric
values of the observable in question with the respective unit.

B.2 Algorithms

The coupled Gross—Pitaevskii equations, Eq. (IL.42), can be efficiently numerically inte-
grated with the Spectral-Split-Step method. Since the algorithm is based on spatial Fourier
transformations instead of discrete derivatives it provides numerical stability and exact
conservation of particle number and energy. Let H;; = T;; + V;; with T = §; jV; and
Vir = g(161(x)1* + alga(x)1?), Voo = g(Ipa(x)I* + al$1(x)I?), Viz = Va1 = 0. Then one
integration step in time by At can be performed via

¢i(x,t + At) = e Hul g (x 1)
_ e—i(TijJrVij)Atqu(X, t)

= e T o Tl Tl 5 g (y 1) + O(AL), (B.1)

where the Baker—Campbell-Hausdorff formula is used for the last equality. Since the op-
erator V is diagonal in real space and the operator T is diagonal in Fourier space the
operator exponentials can be evaluated and the operators can be applied to the field vec-
tor by simple multiplication in the respective spaces. For this the field vector has to be
Fourier transformed successively, which can be numerically done very efficiently with
the Fast-Fourier-Transform algorithm. We implement the algorithm in C++, using
the £ftw3 library [235] for Fourier transformations and the Eigen library [236] for high-
performance linear algebra. We parallelise the numerical code for multicore architectures
with OpenMP [237]. We implement the described numerical procedure on a graphics pro-
cessing unit using NVIDIA’s CUDA toolkit and libraries, which allows for a highly paral-
lelised implementation [238].

The code which is employed in this thesis was developed by us, apart from the cited
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B.3 Simulation Parameters

Table B.2: One standard set of parameters for the simulation of quench dynam-
ics on the paramagnetic side in one spatial dimension. In particular, this set has
been used for the comparison between simulation and experiment.

L N a « g h
24 1.10% 1 1.23 0.00025 0.2

Table B.3: One standard set of parameters for the simulation of quench dynam-
ics on the paramagnetic side in one spatial dimension. As compared to Table B.2,
the resolved modes concentrate on the momentum region up to the critical mo-
mentum. We use it to obtain properties of the excitation spectrum and scaling
exponents from self-similar time evolution, as this set reduces noise from high-
energy free-particle modes

L N a «a g h
214 8.10% 1 1.23 0.002048 0.003

third-party libraries. It is originally based on the code developed in the course of [59]
but largely extends its applicability, in particular to driven-dissipative Gross—Pitaevskii
equations and coupled multi-component Gross—Pitaevskii equations. The code has not
been published but can be obtained upon personal communication and negotiation with
the author of this work.

B.3 Simulation Parameters

In this section we summarise the parameter sets we have used for the presented simulation
data. Specifically, we give the number of grid points or Fourier modes L, the number of
particles in one component N (N4 = N| = N), the lattice spacing a, and the non-linear
couplings g (91 = g, = ¢g) and g, = ag. Other parameters such as the linear coupling
or the sample size are to be retrieved from the figure captions. We point out, that we
use lattice momenta of the form k = 2/asin (7i/L), where i € [0,L — 1], such that the
ultra-violet cut-off is kyy = 2/a.

For the simulations of the two-component Bose in one spatial dimension we employ
two sets of parameters (referring to the model Eq. (I.1), a is the spatial lattice constant
and h the temporal). The first Table B.2 resolves a comparatively large part of momentum
modes beyond the critical momentum which ensures that the system is large enough not
to be influenced by finite size effects. The second set Table B.3 concentrates the resolu-
tion of modes to the momentum region up to the critical momentum. We use it to obtain
properties of the excitation spectrum and scaling exponents from self-similar time evolu-
tion, as this set reduces noise from high-energy free-particle modes. For both parameter
sets we average observables over N' = 8192 realisations of Truncated Wigner noise, see
Sect. IL.5.1.
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Table B.4: Standard set of parameters for the simulation of the one component
Bose gas in two spatial dimensions. The dissipation and driving parameters are
explained in the respective chapters in the main text.

LxL N a pu g h
1024 x 1024 3.2-10° 1 ng 3-10° 0.2

Finally, for all simulations of the one-component Bose gas in two spatial dimensions,
we use the set of parameters Table B.4 for the non-dissipative part of the Gross—Pitaevskii
equation (referring to Eq. (VIL.2)). The dissipation and driving parameters are explained
in the respective chapters in the main text. Here, averaging processes differ between the
different driving settings (thermal, non-thermal, placed vortex configurations) and are

explained in the respective sections of the main text.
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