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Abstract

Background: Pain can be one of the most severe symptoms associated with multiple sclerosis (MS) and develops
with varying levels and time courses. MS-related pain is difficult to treat, since very little is known about the
mechanisms underlying its development. Animal models of experimental autoimmune encephalomyelitis (EAE)
mimic many aspects of MS and are well-suited to study underlying pathophysiological mechanisms. Yet, to date
very little is known about the sensory abnormalities in different EAE models. We therefore aimed to thoroughly
characterize pain behavior of the hindpaw in SJL and C57BL/6 mice immunized with PLP139-151 peptide or MOG35-55

peptide respectively. Moreover, we studied the activity of pain-related molecules and plasticity-related genes in the
spinal cord and investigated functional changes in the peripheral nerves using electrophysiology.

Methods: We analyzed thermal and mechanical sensitivity of the hindpaw in both EAE models during the whole
disease course. Qualitative and quantitative immunohistochemical analysis of pain-related molecules and
plasticity-related genes was performed on spinal cord sections at different timepoints during the disease course.
Moreover, we investigated functional changes in the peripheral nerves using electrophysiology.

Results: Mice in both EAE models developed thermal hyperalgesia during the chronic phase of the disease.
However, whereas SJL mice developed marked mechanical allodynia over the chronic phase of the disease, C57BL/
6 mice developed only minor mechanical allodynia over the onset and peak phase of the disease. Interestingly, the
magnitude of glial changes in the spinal cord was stronger in SJL mice than in C57BL/6 mice and their time course
matched the temporal profile of mechanical hypersensitivity.

Conclusions: Diverse EAE models bearing genetic, clinical and histopathological heterogeneity, show different
profiles of sensory and pathological changes and thereby enable studying the mechanistic basis and the diversity
of changes in pain perception that are associated with distinct types of MS.

Background
Multiple sclerosis (MS) is one of the most common
neurological diseases mostly affecting young adults. It is
an incurable, chronic inflammatory, progressive neuroin-
flammatory and neurodegenerative disease with a still
unclear etiology. Among others, pain is one of the critical
MS symptoms. While research on pain in MS is per-
formed with increasing frequency, the literature remains
ambiguous to date. Many studies are based on question-
naires and the reports on pain prevalence in MS patients

vary from 29% [1] up to 86% [2]. Some studies report no
difference in the frequency of pain in MS patients com-
pared to the background population, but report a higher
intensity and impact of pain on daily life in MS patients
[3]. It has been reported that 32% of patients indicate
pain among the most severe symptoms of MS [4], and
12% of various pain syndromes are even classified as the
worst symptom of the MS itself [5]. Symptoms of neuro-
pathic pain, including mechanical or cold allodynia as
well as thermal and mechanical hyperalgesia have been
described [6-9]. Chronic pain in MS severely reduces the
quality of the patient’s life and therefore deserves detailed
analysis. So far, not much is known about the mechan-
isms underlying MS-related pain and its treatment
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remains difficult. Therefore, there is a major and unmet
need for basic research on molecular mechanisms under-
lying the development and chronicity of pain in MS.
Various animal models mimicking the disease have

been used for decades, the most prevalent being experi-
mental autoimmune encephalomyelitis (EAE), which
closely resembles MS [10]. The use of diverse immuno-
genic peptides against central nervous system (CNS)
components in the EAE model enables simulation of di-
verse types of MS (for example, relapsing-remitting, pro-
gressive, etcetera). A major difference between MS and
EAE is that whereas MS is a spontaneous disease, EAE
has to be artificially induced using strong immune adju-
vants. Only particular combinations of antigen and ro-
dent strain can elucidate EAE [11,12], leading to specific
disease profiles [11-14]. Moreover, EAE is studied mainly
in inbred strains; hence, the genetic heterogeneity which
is critical in the MS populations is only reflected when
different models of EAE are studied in parallel [11].
Pain hypersensitivity of the hindpaw has been previ-

ously reported in mouse EAE models [15-18]. However,
a comprehensive temporal analysis and comparison
thereof in different models representing different sub-
types of MS has been missing so far. In this study, we
sought to comprehensively analyze nociceptive sensitiv-
ity during the whole disease course in two different EAE
mouse models, namely SJL mice immunized with
PLP139-151 peptide and C57BL/6 mice immunized with
MOG35-55 peptide. Moreover, we performed detailed
immunohistochemical analyses to address pathophysio-
logical changes that are potentially linked to differences
in pain behavior between the two models, and we per-
formed electrophysiological measurements on peripheral
nerve terminals. Our results showed that distinct EAE
models are associated with specific profiles and temporal
courses of changes in pain sensitivity as well as particu-
lar patterns of neurochemical changes in the spinal cord.

Methods
Animals and induction of experimental autoimmune
encephalomyelitis
Female SJL/J mice were purchased from Harlan Labora-
tories (Borchen, Germany) and C57BL/6 J mice were pur-
chased from Janvier (Le Genest Saint Isle, France). For the
induction of EAE, female mice at age eight weeks,
received subcutaneous injections in both flanks of either
50 μg MOG35-55 peptide or 100 μg PLP139-151 peptide
(synthesized at German Cancer Research Center; DKFZ,
Genomics and Proteomics Core Facilities, Peptide Synthe-
sis, Heidelberg, Germany) in PBS emulsified in an equal
volume of complete Freund's adjuvant (CFA) containing
Mycobacterium tuberculosis H37RA (Difco, Detroit, MI,
USA) at a final concentration of 0.5 mg/ml under Iso-
fluran anesthesia. Control mice were immunized with

ovalbumin (50 μg) in PBS/CFA. Two injections of pertus-
sis toxin (List Biological Laboratories Inc., Campbell, CA,
USA; 200 ng per mouse intraperitoneal) were given on the
day of immunization and 48 hours later. Animals were
weighed and scored for clinical signs of disease on a daily
basis. Disease severity was assessed using a scale ranging
from 0 to 10; scores were as follows [19]: 0 = normal;
1 = reduced tone of tail; 2 = limp tail, impaired righting;
3 = absent righting; 4 = gait ataxia; 5 =mild paraparesis of
hindlimbs; 6 =moderate paraparesis; 7 = severe paraparesis
or paraplegia; 8 = tetraparesis; 9 =moribund; 10=death. If
necessary, food was provided on the cage floor.

Behavioral nociceptive testing
All animal procedures including the EAE protocol under
section:`Animals and induction of experimental auto-
immune encephalomyelitis´ were conducted with the ap-
proval of the ethics commitee by the local governing body
(Regierungspräsidium Karlsruhe, Germany). All behavioral
measurements were done in awake, unrestrained, age-
matched female mice. All tests were performed in an ap-
propriate quiet room between 10 am and 4 pm.
Analysis of paw withdrawal latency in response to an

infrared beam (which generates a heat ramp) was done
as described in earlier publications [20,21] (for example,
Plantar test apparatus, Hargreaves' Method, Ugo Basile
Inc.). Mechanical sensitivity was tested in the same co-
hort of animals via manual application of calibrated von
Frey hair filaments (0.04 g to 1.4 g) to the plantar sur-
face of the hindpaw as described for earlier studies [20].
The hindpaw withdrawal latency upon heat stimulation
using the plantar test apparatus and the hindpaw re-
sponse to von Frey hair stimulation was assessed every
second to third day, alternately.

Locomotion and exploratory activity
General activity and novelty-induced explorative behavior
was measured by using an open field chamber (44 x 44
cm; Ugo Basile, Comerio, Italy) under normal lighting
conditions. A video tracking software (ANY-Maze, Ugo
Basile, Italy) was used to monitor the mice over ten min-
utes. The following parameters were analyzed: distance
travelled (horizontal activity), speed and immobility time.

Afferent recordings in skin-nerve preparation
An in vitro skin nerve preparation was used to study the
properties of mechanosensitive C fibers, two types of
Aβ-afferent (slowly adapting fibers (SA) and rapidly
adapting fibers (RA)), and Aδ-afferent fibers that innerv-
ate the skin of the hind paw. Experiments were per-
formed on the dissected skin of control mice and SJL-
EAE mice in the chronic phase of the disease. Animals
were killed by CO2 inhalation, and the saphenous nerve
was dissected with the skin of the dorsal hindpaw
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attached and mounted in an organ bath inside-up to ex-
pose the dermis. The preparation was perfused with an
oxygen-saturated modified synthetic interstitial fluid so-
lution containing (in mM) 123 NaCl, 3.5 KCl, 0.7
MgSO4, 1.5 NaH2PO3, 1.7 NaH2PO4, 2.0 CaCl2, 9.5 so-
dium gluconate, 5.5 glucose, 7.5 sucrose, and 10 HEPES
at a temperature of 32 ± 1°C and pH 7.4 ± 0.05. Fine fila-
ments were teased from the desheathed nerve, placed in
separate chamber, and placed on a recording electrode.
Nerve fibers were classified according to their conduc-

tion velocities, von Frey thresholds, and firing properties.
Electrical stimulation of the nerve fiber was employed to
calculate conduction velocities of individual nerve fibers.
Fibers which conducted <1 m/s, fibers conducting be-
tween 1 to 10 m/s, and the fibers conducting with the
velocity >10 m/s were considered to be unmyelinated C-
fibers, myelinated Aδ-fibers and thickly myelinated low
threshold mechanoceptors (RA and SA), respectively.
The threshold for each unit was tested using calibrated
von Frey filaments; the thinnest filament that elicited
three action potentials in the time of approximately 2
seconds of pressing the filament on the units was taken
as a threshold.
Once the receptive field was identified using the glass

rod, a computer-controlled linear stepping motor
(Nanomotor Kleindiek Nanotechnik, Reutlingen, Ger-
many) was used to apply standardized mechanical stim-
uli. Each fiber was tested with a series of displacement
mechanical stimuli ranging from 6 to 384 μm for both
control and EAE animals. Electrophysiological data were
collected with a Powerlab 4.0 system (ADInstruments,
Spechbach, Germany) and analyzed off-line with the
spike histogram extension of the software.

Immunohistochemistry
Mice were perfused with 0.1 M phosphate buffer saline
and 4% paraformaldehyde (PFA). Spinal cords were

isolated and post-fixed for up to 16 hours in 4% PFA.
Free-floating vibratome sections (50 μm) were processed
for immunofluorescence protocol. Sections were incu-
bated for 30 minutes at 80°C in prewarmed 10 mM so-
dium citrate buffer (pH 8) for antigen retrieval [22] and
processed according to standard immunofluorescence
protocol. The following antibodies were used: rabbit poly-
clonal anti-CGRP (Product ID : 24112; 1:200; ImmunoStar
Inc., Hudson, WI, USA), Streptavidin-conjugated Isolectin
B4 (1:100; Vector laboratories, Burlingame, CA, USA),
rabbit polyclonal Iba-1 (Product ID : 019–19741; 1:500;
Wako, Richmond, VA, USA), mouse polyclonal anti-
GFAP (Product ID : 73–240; 1:200; NeuroMab, Antibodies
Incorporated, Davis, CA, USA), mouse monoclonal NeuN
(Product ID : MAB377; 1:200; Millipore, Billerica, MA,
USA), rabbit polyclonal anti-Fox3 (Product ID : MCA-
1B7; 1:500; EnCor Biotechnology, Gainsville, FL, USA).

Illustrations and densitometry
Fluorescence images were obtained using a laser scan-
ning confocal microscope (Leica TCS AOBS, Bensheim,
Germany). For quantitative measurement of microglia
and astrocytes, images were obtained in a confocal series
over a thickness of 50 μm using the same laser intensity
in all images. The fluorescence signal intensity in per
unit area was measured densitometrically using NIH
ImageJ software (National Institutes of Health, Bethesda,
Maryland, USA) Data were averaged from four areas per
section and two sections per mouse in groups of at least
four animals in three independent experiments.

Statistics
If not indicated differently, all data are presented as
mean ± standard error of the mean (S.E.M.). For com-
parisons of multiple groups, analysis of variance
(ANOVA) for random measures was performed followed
by post-hoc Bonferroni’s test, and for the comparison of
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Figure 1 Mean clinical disease courses and bodyweight. Female SJL mice (n = 9) were immunized with PLP139-151 peptide (A) and female
C57BL6 mice (n = 7) were immunized with MOG35-55 peptide in CFA. (B) Control mice (n = 6 respectively) were immunized with ovalbumin in
CFA. CFA, complete Freund's adjuvant.
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Figure 2 Analysis of nociceptive sensitivity in SJL mice immunized with PLP139-151 peptide, C57 mice immunized with MOG35-55

peptide and corresponding control mice. (A, B) time-course of withdrawal latency to radiant heat in (A) SJL-EAE mice (left column, red
symbols) and (B) C57-EAE mice (right column, black symbols). (C-H) Comparison of response frequency to von Frey hair filament stimulation.
Response frequency toward the application of 0.07 g von Frey hair filament in (C) SJL-EAE and (D) C57-EAE mice, 0.4 g von Frey hair filaments in
(E) SJL-EAE and (F) C57-EAE mice, and 1.0 g von Frey hair filament in (G) SJL-EAE and (H) C57-EAE mice. SJL-EAE mice developed major
mechanical allodynia in the chronic phase whereas C57-EAE mice showed minor allodynia in the onset and peak phase. n = 6 mice/ group,
*P<0.05 as compared to all control groups, †as compared to basal values within a group, ANOVA, post hoc Bonferroni’s test. All data points
represent mean ± SEM. EAE, experimental autoimmune encephalomyelitis.
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two groups Student’s t-Test was used to determine sta-
tistically significant differences. A value of P <0.05 was
considered to be statistically significant.

Results
Disease progression, pain and locomotion
We actively immunized female mice from the SJL and
C57BL/6 strains with either the PLP139-151 peptide or the
MOG35-55 peptide (referred to henceforth as SJL-EAE or
C57-EAE mice, respectively). Control mice underwent
the same immunization protocol using ovalbumin. SJL-
EAE mice showed a typical relapsing-remitting disease
pattern, whereas C57-EAE mice developed chronic EAE.
After immunization, SJL-EAE mice displayed the first
signs of disease onset with tail weakness on day 10 and
reached a peak in motor deficit functions at day 12
(Figure 1A), whereas C57-EAE mice showed the first
symptoms at day 11 and a maximal disease score at day
17 (Figure 1B). As usually seen, EAE mice lost 1 to 2 g of
body weight immediately preceding the onset of the dis-
ease (Figure 1). The degree of the EAE in the chronic
phase was comparable over both models, as indicated by
a similar disease score (Figure 1).
In addition to monitoring clinical disease symptoms

on a daily basis over 44 days (SJL-EAE mice) or 52 days
(C57-EAE mice), we investigated nociceptive thresholds
in response to heat and mechanical stimuli. We found
that the response latency towards heat stimuli dropped
significantly in SJL-EAE and C57-EAE mice following
immunization as compared to basal response latencies
(Figure 2A,B). Mice in both EAE models developed sig-
nificant thermal hyperalgesia in the chronic phase of the
disease (Figure 2A,B; Table 1). Thus, the time course of
thermal hyperalgesia was not different across the two
models.
We applied mechanical pressure via von Frey hair

filaments (0.04 g to 1.4 g force) to the plantar surface
of the hindpaws. The application of low magnitude of
forces (von Frey filaments of forces between 0.04 g to
0.07 g), which do not normally evoke nociceptive with-
drawal in control mice, elicited withdrawal in SJL-EAE
mice in the chronic phase of the disease starting from
day 36 onwards and lasting over the whole period of in-
vestigation (data with 0.07 g force are shown in
Figure 2C). The same stimulus also elicited withdrawal
behavior in C57-EAE mice but in a different temporal
time frame: in the onset and peak phase of the disease
(Figure 2D). The application of more intense forces to
the plantar surface of the paw (von Frey hair filaments
between 0.16 g to 0.6 g), that normally evoke mild
nociceptive withdrawal in control mice, resulted in a
significant increase in withdrawal response frequency in
SJL-EAE mice in the chronic phase of the disease, start-
ing from day 28 after immunization and continuing

over the whole observation period (data with 0.4 g
force are shown in Figure 2E), whereas the withdrawal
behavior of C57-EAE mice did not differ from control
mice (Figure 2F). Moreover, we found that mechanical
allodynia correlated with the clinical scores. SJL-EAE
mice with higher clinical scores (score 5 to 6) showed a
more pronounced mechanical allodynia than EAE mice
with moderate symptoms (score 3 to 4) (Figure 3).
Interestingly, the paw withdrawal response frequency
towards the application of von Frey filaments of stron-
ger force (1 g or 1.4 g) was comparable between either
SJL-EAE mice and control mice (data with 1.0 g force
are shown in Figure 2G) or C57-EAE mice and controls
(Figure 2H). This shows that SJL-EAE mice develop
nociceptive mechanical allodynia in the chronic phase
of the disease. The differences in the behavioral pheno-
types are summarized in Table 1.
Intrigued by the marked mechanical hypersensitivity

in the chronic phase of EAE in SJL mice, we questioned
whether their locomotor activity would be altered. Using
the open field test apparatus SJL-EAE mice did not dem-
onstrate any difference in horizontal activity when com-
pared to either the control mice or to their basal
behavior before the induction of EAE (Figure 4A). Add-
itional parameters, as movement speed (Figure 4B) or
immobility time (Figure 4C) were not different between
EAE and control animals in the chronic phase of the dis-
ease or as compared to basal behavior.

Table 1 Summary and overview of the main
characteristics of SJL PLP139-151 peptide immunized
mice and C57 MOG35-55 peptide immunized mice

Parameter SJL-PLP139-151 C57-MOG35-55

Thermal hyperalgesia

Onset + ∅

Peak + ∅

Chronic ++ +

Mechanical allodynia

Onset ∅ (+)

Peak ∅ (+)

Chronic ++ ∅

Microglia activation

Onset + +

Peak +++ ++

Chronic ++ +

Astrocyte activation

Onset + ++

Peak ++ ++

Chronic +++ ++

Behavioral and immunohistochemical characteristics indicate that SJL-EAE
mice develop much more pain and show stronger microglia and astrocyte
activation.
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Thus, SJL-EAE mice did not reveal aberrant behavioral
changes associated with EAE despite the presence of
nociceptive hypersensitivity to sensory stimuli.

Electrophysiological analyses of peripheral nerve activity
In order to characterize the firing properties of peripheral
afferents in the chronic phase of the disease, the skin
nerve preparation of the saphenous nerve was employed
on eight SJL-EAE mice and seven control mice in the
chronic phase of the disease (day 35 to 45) (Figure 5). Fir-
ing properties of four different fiber types innervating the
hindpaw were investigated in response to graded mechan-
ical stimuli, namely mechanosensitive C-fiber nociceptors,
Aδ mechanonociceptors, SA, and RA low-threshold Aβ
mechanoceptors, which were identified on the basis of
stimulation as well as conduction and firing properties.
Stimulus–response functions of C-fibers and Aδ mechan-
onociceptors from control and SJL-EAE mice demon-
strated no significant changes in the responsiveness to
mechanical stimulation (Figure 5A, 5B). Low-threshold
SA and RA Aβ fibers isolated from the SJL-EAE animals
showed a slight or even statistically significant increase in
responses to higher stimulus intensities. Additionally RA
and SA low-threshold Aβ fibers and non-myelinated C-
fibers (Figure 5E) showed a slight decrease in conduction
velocity. There were no changes in mechanical thresholds
of different afferent fibers (Figure 5F). So, the functional

properties of the nerve fibers in the chronic phase of the
EAE are unaltered and unlikely to contribute to the sen-
sory abnormalities.

Immunohistochemistry on the spinal cord
We investigated lumbar spinal cord section of SJL-EAE
mice and control immunized mice at different time
points during EAE for the expression of different pain-
or EAE-related markers. Because not only white matter
abnormalities but also grey matter abnormalities are a
basic phenomenon in EAE, we investigated the expres-
sion of various key marker proteins at 2 to 3 days after
immunization (‘pre’ time point), at disease onset, at peak
and in the chronic phase of the disease (day 35 to 45
after EAE induction).
We found a downregulation of NeuN expression

throughout the whole spinal cord at disease onset and in
the peak phase and an almost complete recovery of NeuN
immunogenicity in the chronic phase as compared to con-
trol mice (Figure 6A). Recently, NeuN has been identified
as the Fox-3 gene product [23]. Therefore, we performed
co-labeling of anti-NeuN with anti-Fox-3 antibody. Inter-
estingly, we did not find any difference in Fox-3 expres-
sion during the time course of the EAE (Figure 6B),
indicating no alteration in the amount of neuronal cells
during the time course of the EAE. The loss of NeuN
immunoreactivity might be accompanied with specific
changes in the EAE disease that lead to a change in NeuN
antigenicity, as has been reported in other conditions
[24,25].
Additionally we analyzed the patterning of the neuro-

peptide calcitonin gene-regulated peptide (CGRP) and the
nonpeptidergic isolectin B4 (IB4). Although there was no
difference in the density of CGRP-immunoreactive fibers
in the spinal dorsal horn in SJL-EAE mice or control mice
during the time course of the EAE (Figure 7A), we
observed an increase in IB4-positive signals throughout
the whole spinal cord at the onset of the disease
(Figure 7B). We registered maximal increase in IB4 ex-
pression at the peak stage of the disease, which decreased
in the chronic phase (Figure 7B). Because IB4 selectively
binds activated microglia cells [26], our results indicate a
strong activation of microglia in SJL-EAE mice at disease
onset and at peak phase of the disease. Co-labeling studies
with anti-GFAP, a marker for astrocytes and anti-Iba1, a
marker for microglia cells, confirmed the expression of
IB4 specifically in microglia.
As glia cells play an important role in EAE we investi-

gated the time course of astrocyte and microglia activity
in the spinal cord of SJL-EAE and control mice. Immu-
nohistochemistry with anti-GFAP antibody showed an
increase in GFAP-positive cells at disease onset in the
spinal dorsal horn (Figure 8A). The number of GFAP
positive cells further increased in the peak and chronic
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phase of the disease, and cells became activated as seen
by their morphological changes (Figure 8A). Similarly,
using the microglia specific anti-Iba1 antibody, we saw
an induction of microglia cells at disease onset and in the
chronic phase of the disease and activation of microglia,
which was evident by morphological changes (Figure 8B).
Because microglia and astrocyte activation plays an

important role in pain, we compared the time course of
microglia and astrocyte activation in SJL-EAE and C57-
EAE animals in more detail. Interestingly, we found a
comparable activation of microglia as shown with anti-
Iba1 antibody in the dorsal horn of the spinal cord dur-
ing the onset phase in SJL-EAE and C57-EAE mice
(Figure 9A), but to a lesser extent in C57-EAE mice as
compared to SJL-EAE mice in the peak phase as well as
in the chronic phase of the disease (Figure 9A).
To quantify the amount of microglia cells in the

chronic phase of the disease, we measured the fluores-
cence intensity in lamina I and II of the spinal dorsal
horn and found a significantly higher fluorescence inten-
sity for Iba1 in SJL-EAE mice as compared to C57-EAE
mice (see Figure 9C for example, Figure 9E for quantifi-
cation). Additionally we compared the expression profile
of astrocytes by using an anti-GFAP antibody. We found
a stronger activation of astrocytes in C57-EAE as com-
pared to SJL-EAE mice in the onset phase of the disease
(Figure 9B). Interestingly, there was an accumulation of
GFAP-positive cells in the superficial spinal dorsal horn
of SJL-EAE mice in the chronic phase of the disease as
compared to C57-EAE mice (Figure 9B). Quantification
of the GFAP fluorescence intensity in the spinal dorsal
horn revealed a significantly stronger activation of astro-
cytes in SJL-EAE mice as compared to C57-EAE mice in
the chronic phase of the disease (see Figure 9D for ex-
ample, Figure 9F for quantification).
The differences of microglia and astrocyte activation

in the spinal dorsal horn between the two EAE models
are summarized in Table 1.

Discussion
Clinically significant pain is a severe and debilitating
symptom associated with MS, however, to date we are
far beyond understanding the mechanisms underlying
MS-related pain. Animal models mimicking diverse
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aspects of the disease have been used for decades to
study pathological features of the disease and more re-
cently to investigate behavioral changes with respect to
pain hypersensitivity.
Chronic pain symptoms in MS are very complex and

diverse and could even be indirectly related to MS
(reviewed in [27,28]). Pain symptoms, the number of
pain sites, and their severity vary among the patients
and are often unrelated to the duration of MS [29]. Pain
has been reported at the onset of the disease [4] or even

as an initial symptom of MS [30]. Pain syndromes are
described as increasing with the age of patients and the
disease progression [2,4,31], but in most MS studies
chronic pain was found to have no significant correl-
ation to age, disease duration or disease course [29,32-
37]. Taking this into account, the use of animal models
to study MS-related chronic pain syndromes is very lim-
ited. We aimed to investigate the sensory properties of
the hindpaws as readout for hyperalgesia and allodynia,
which constitute one component of MS-related pain
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Here, we provide a thorough investigation of nocicep-
tive sensitivity of the hindpaw in two different mouse
EAE models over a complete time course of the disease.
Additionally, we provide substantiated underlying
mechanistical analysis with detailed immunohistochem-
ical data. We found that SJL mice immunized with
PLP139-151 peptide and C57 mice immunized with
MOG35-55 peptide clearly showed thermal hyperalgesia,
whereas only SJL-EAE mice developed marked mechan-
ical allodynia in the chronic phase of the disease. C57-
EAE mice developed mechanical allodynia exclusively
towards very low-intensity stimuli during disease onset
and peak phase. Our findings are in line with a study
from Aicher et al. [15] who showed thermal hyperalgesia
in SJL-PLP139-151 EAE mice in the chronic phase of the
disease [15]; however, this was found on the tail and
forepaw of the mice. Additionally Olechowski et al. [16]
and Rodrigues et al. [17] reported hindpaw mechanical
allodynia and hypernociception before and around the
onset phase of EAE in C57-MOG35-55 mice [16,17]. Our
findings are supported from these studies and clearly
demonstrate differences in the sensory properties be-
tween the two commonly used EAE models. The use of

the same behavioral tests over a long-lasting investiga-
tion period under similar conditions enabled us to dir-
ectly compare the sensory profile of both EAE models.
Pain in MS patients is very diverse and one EAE

model cannot mirror the heterogeneity of the disease
[11] research perspective should therefore be focused to-
wards the understanding that one EAE -pain model is
not sufficient to study MS-related pain. Moreover, de-
pending on the immunization peptides used and their
representation in peripheral nervous system [38], periph-
eral pain may also add to the mechanism of increased
pain in neuroinflammation, especially in models of auto-
immune neuritis [39,40].
We found a strong activation of glia cells in the

spinal dorsal horn in SJL-EAE and C57-EAE mice.
This glia activation occured to a different magnitude
and over a different time course in both models, that
matched the temporal profile of nociceptive hypersen-
sitivity. It is known that microglia and astrocytes are
critical players in the effector phase of EAE and MS
[41,42] because there is a marked activation of glia
cells in both the spinal cord and brain over the course
of the disease [43,44]. We hypothesize that the time
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course and extent of microglia and astrocyte activation
in SJL-EAE mice as compared to C57-EAE mice and
the subsequent release of diverse signaling molecules
constitute the marked differences in the development
and maintenance of chronic pain. This theory is sup-
ported from a study of Olechowski et al. [16], suggest-
ing inflammation and reactive gliosis as key mediators
of allodynia in C57-MOG35-55 EAE mice [16].

Activated glia cells not only undergo phenotypic
changes, which are characterized by altered morph-
ology, but also release a large variety of different sig-
naling molecules, including inflammatory cytokines
and chemokines [45-50], which are strongly implicated
in pain facilitation [51-55].
There is a large variety of molecules and mediators,

and thus, diverse signaling scenarios are possible.
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Temporally regulated key signaling mediators that pos-
sibly account for the development and maintenance of
chronic pain in EAE include regulated glial factors such
as those that comprise the chemokine monocyte chemo-
attractant protein-1 (MCP-1), which is released from glia
cells and can attract various cell types involved in in-
flammation and also pain. Previous studies have demon-
strated the expression of MCP-1 in the CNS of patients
with MS [56-58] or EAE mice [59]. Additionally, the
MCP-1 receptor CCR2 has been shown to be critical for
the induction of EAE [60]. Accumulating evidence indi-
cates that MCP-1 plays a critical role in chronic pain fa-
cilitation via CCR2 receptors [61-64]. Spinal MCP-1 can
lead to neuropathic pain behavior [65,66] and induces to
the phosphorylation of the mitogen-activated protein
kinase (MAPK) extracellular regulated kinase (ERK) [65]
in the spinal cord. In addition, Shin et al. [67] found a

significant increase of different MAPK (phosphorylated
ERK, c-jun N-terminal kinase (JNK) and p38) in the rat
spinal cord at the peak stage of EAE [67]. The activation
of ERK is known to play an important role in central
sensitization [68], and JNK has been shown to be per-
sistently activated in spinal cord astrocytes after nerve
injury [69,70]. Moreover MCP-1 has been shown to
amplify excitatory glutamatergic currents [65] and inhi-
bits GABA-induced currents [71]. Thus, MCP-1 is
strongly involved in mechanisms of chronic pain.
Another example is matrix metalloproteinases

(MMPs), which are known to be largely implicated in
MS and EAE progression [72,73]. A variety of MMPs are
upregulated in the spinal cord of EAE mice, among
which are MMP-2, MMP-7, MMP-8 and MMP-9 [74-
76]. Dong et al. [77] recently reported concordant ele-
vated expression of MMP-2 and MMP-9 to a different
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The expression of Iba1 increased significantly over time in SJL-EAE mice in the spinal dorsal horn. Scale bars represent 100 μm in panel A and B.
EAE, experimental autoimmune encephalomyelitis.

Lu et al. Journal of Neuroinflammation 2012, 9:233 Page 11 of 15
http://www.jneuroinflammation.com/content/9/1/233



extent in different EAE models [77]. Moreover, MMP-9
plays an important role in neuropathic pain conditions
[78,79] as well as in MS [80-83]. Additionally, the ad-
ministration of MMP inhibitors or genetical ablation of
MMPs reduces the disease severity in different EAE
murine models [84-87].
To further support our theory, another mechanistical

possibility might be via proinflammatory cytokines (for
example, IL-1beta, IL-6 and TNFalpha), which have been
shown to lead to the phosphorylation of CREB [79].
CREB is essential for the maintenance of long-term plas-
ticity in dorsal horn neurons [79] and thereby plays an
essential role in pain sensitization [79,88-90]. Kim et al.
suggests that increased phosphorylation of CREB in sen-
sory neurons in the dorsal horns might be involved in
the generation of neuropathic pain in EAE [91]. Taken
together, there are various signaling pathways arising
from activated glia cells which may thereby contribute
to pain in EAE and possibly also to MS.
Given that neuro-immune interactions play a critical

role in other pain states and given that peripheral im-
mune function is also changed in MS patients [7] it is
possible that peripheral neuro-immune interactions con-
tribute to MS-induced pain. In order to clarify potential

changes in the peripheral nervous system in SJL-EAE
mice, we investigated the electrophysiological properties
of peripheral afferent fibers in EAE mice using the skin
nerve preparation. EAE is known to cause central de-
myelination, but there is weak evidence for a peripheral
component to the disease [92,93]. In case of a peripheral
demyelination one would expect a decrease in velocity
of the signal transduction of myelinated Aβ and Aδ
fibers. Pender et al. observed an impaired response to
noxious mechanical stimuli potentially associated with a
demyelination-induced conduction block in the small
diameter myelinated afferent (Aδ) fibers in the dorsal
root ganglia (DRGs) of rabbits or rats with EAE [94-96].
We observed a slight decrease in conduction velocity in
myelinated Aβ mechanonociceptors but the observed
changes in the peripheral afferents are very mild, indicat-
ing only minor peripheral contribution to the disease
phenotype which might arise from a different mechan-
ism than possible peripheral demyelination processes.
In summary we show clear differences in pain behavior

between different EAE mouse models, which may reflect
the heterogeneity in human MS. Moreover the observed
differences in glia cell activation most likely contribute
to the different pain behavior. This study suggests that
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microglia and astrocytes represent a good target to in-
vestigate pain mechanisms in different EAE mouse mod-
els. Future studies would be necessary to elucidate
differences in downstream signaling cascades in the dif-
ferent EAE models.

Conclusions
In summary we show clear differences in pain behavior
between different EAE mouse models, which may reflect
the heterogeneity in human MS. Moreover the observed
differences in glia cell activation most likely contribute
to the different pain behavior. This study suggests that
microglia and astrocytes represent a good target to in-
vestigate pain mechanisms in different EAE mouse mod-
els. Future studies would be necessary to elucidate
differences in downstream signaling cascades in the dif-
ferent EAE models.
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