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Abstract:

Ein offenes Problem in den Grundlagen der Quantenstatistik ist die fehlende Rechtfer-

tigung für die Verwendung von statistischen Ensembles mit schmalen Energieverteilungen

wie das kanonische oder mikrokanonische Ensemble.

In dieser Doktorarbeit lösen wir dieses Problem, indem wir ein Stabilitätskriterium für

quanten-statistische Ensembles einführen, die makroskopische Systeme beschreiben. Wir

bezeichnen ein Ensemble als “stabil”, wenn eine kleine Anzahl an lokalen Messungen die

Wahrscheinlichkeitsverteilung der Gesamtenergie des Systems nicht signifikant modifizieren

kann. Wir wenden dieses Kriterium an Gittern von Spins-12 an und zeigen dabei, dass

das kanonische Ensemle fast stabil ist, wohingegen statistische Ensembles mit einer viel

breiteren Energieverteilung nicht stabil sind.

Wir testen die analytischen Abschätzungen numerisch, indem wir die Stabilität von

quanten-statistischen Ensembles für generische wechselwirkende Spin-Systeme untersuchen.

Obwohl die Effekte der endlichen Ausdehnung im Zusammenhang mit lokalen Messungen

recht ausgeprägt sind für mikroskopische Systeme, die numerisch untersucht werden kön-

nen, sind die Ergebinsse der numerischen Untersuchungen konsistent mit den analytischen

Ergebnissen.

Zum Schluss führen wir ein Maß für die Makroskopizität von Quantensuperpositionen

ein. Wir bezeichnen eine Quantensuperposition als makroskopisch, falls eine lokale Mes-

sung eine signifikante Veränderung der Dichtematrizen einer makroskpischen Anzahl der

Untersysteme nach sich zieht.

Abstract:

An open problem in the foundations of quantum statistical physics is the missing justifi-

cation for using statistical ensembles with narrow energy distributions such as the canonical

or microcanonical ensembles.

In this thesis, we resolve this problem by introducing a stability criterion for quantum

statistical ensembles describing macroscopic systems. An ensemble is called “stable” when a

small number of local measurements cannot significantly modify the probability distribution

of the total energy of the system. We apply this criterion to lattices of spins-12 , thereby

showing that the canonical ensemble is nearly stable, whereas statistical ensembles with

much broader energy distributions are not stable.

We test the analytical estimates numerically by investigating the stability of quantum

statistical ensembles for generic interacting spin systems. Although the finite-size effects

with respect to local measurements are rather pronounced for the microscopic system sizes

available in numerical simulations, the results of the numerical studies are consistent with

the analytical results.

Finally, we introduce a macroscopicity measure for quantum superpositions. A quantum

superposition is called macroscopic if one local measurement can induce a significant change

of a macroscopic number of the subsystems’ density matrices.
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Chapter 1

Introduction

The notion of temperature is rather intuitive. The difference between a hot cup of tea and

a piece of ice is familiar to us since childhood. It seems, as a matter of course, that it is

always possible to compare two physical bodies of our everyday world and find out which

one is warmer and which one is colder. It also comes as no surprise that, in this way, all

physical bodies can be put into an order starting with coldest and ending with the hottest

objects. In fact, the same order can be characterised by assigning to each object a value

which we call temperature. We denote the temperature by the symbol 𝑇 . An instrument

for measuring the temperature is called the thermometer.

First attempts to build thermometers reach back to Galileo Galilei around 1592 (prob-

ably even earlier). Back in these days, Galileo actually built a thermoscope which is a

gas

water

Figure 1.1: A schematic pic-

ture of the thermoscope pro-

posed by Galileo Galilei

thermometer without a temperature scale. Such a device can

only indicate changes in the temperature. As illustrated in

Fig. 1.1, it consisted of a glass pipe filled with water. On the

top of this pipe, a gas vessel was attached. When the tem-

perature varies, the gas inside the vessel changes its volume

and, in this way, controls the level of the water in the pipe.

First genuine thermometers were introduced in the 18-th cen-

tury among others by Ole Rømer (1701), Daniel Fahrenheit

(1714) and Anders Celsius (1742)1. They were made out of

more suitable materials and were devised with a useful tem-

perature scale2.

With the onset of thermodynamics in the first half of

the nineteenth century, relations between temperature and

other thermodynamic quantities like volume, pressure and

heat were established. This development was intimately con-

nected with the industrial revolution, where the primary goal

was to make industrial machines more efficient. For exam-

1Originally, Celsius defined his temperature scale in reversed order. The temperature of 100°C corre-
sponded to the freezing point of water and 0°C to the boiling point of water. Only later in 1745, this
temperature scale was reversed by Carl Linnaeus. It is this corrected temperature scale that we use today.

2Today, suitable thermometers are available for a vast number of different experimental settings. A
recent work [36] shows that a thermometer can be even made of a single atom.
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Chapter 1. Introduction

ple, the work of Sadi Carnot on the today well-known Carnot-cycle was mostly driven by

the intention to improve the efficiency of the steam machine. The further development of

thermodynamics is connected with many other famous names like James Maxwell, Ludwig

Boltzmann, Rudolf Clausius and Willard Gibbs.

During the further scientific development, the theory of classical statistical mechan-

ics emerged, which establishes the relation between macroscopic thermodynamic quantities

and microscopic degrees of freedom of the system. Hereby, one makes the assumption that

the microscopic dynamics is governed by classical equations of motion. Today, one im-

portant subject of research is the dynamical foundation of classical statistical mechanics.

This includes, in particular, the relaxation dynamics of non-equilibrium states to thermal

equilibrium. This relaxation process is called thermalisation. In order to give an intuitive

example, imagine that we intensively shake a system which previously was at thermal equi-

librium corresponding to some temperature. Immediately after the shaking, the system is

typically out of equilibrium but we expect the system to reach thermal equilibrium later

again; possibly with another temperature. Important questions in this respect are: Un-

der which conditions does a system thermalise and what are the relevant time scales? In

addition, the role of chaos for thermalisation is not fully clarified.

After the introduction of quantum mechanics at the beginning of the 20th century, at-

tempts to lay down the foundations of quantum statistical mechanics proved to be problem-

atic, as already noticed by Erwin Schrödinger himself [77]. In particular, the superposition

principle of quantum mechanics constitutes an apparent obstacle for the thermalisation of

non-equilibrium quantum states as will be explained in the following. In this respect, the

foundations of the statistical physics for classical systems is in a somewhat better shape

than for quantum systems.

A classical isolated system always has a fixed value of the total energy. In contrast,

a quantum isolated system can be in a superposition of energy eigenstates. A priori, the

energy eigenstates as well as superpositions thereof are on the same footing which means

that there are no general rules preferring or prohibiting any of the above possibilities.

However, a macroscopic quantum system thermalises only if its state is a superposition

of energy eigenstates from a small energy window [27, 29, 68, 84, 16, 85, 71]. In the

opposite case, when the isolated quantum system is described by a superposition of energy

eigenstates with significantly different energies, the system does not thermalise, e.g. [19].

At the same time, the Gibbs distribution, which describes a system in thermal equilibrium,

works extremely well for predicting experimental outcomes under everyday conditions. The

following question arises: Why don’t macroscopic quantum systems typically exhibit a broad

occupation of energy eigenstates and, hence, non-thermal behaviour?

In the present thesis, we make a proposal for the solution of the above still unsolved

problem. This proposal rests upon the concept of stability of quantum statistical ensembles.

We argue that quantum statistical ensembles describing stationary states of macroscopic

systems must be stable with respect to a small number of any local measurements. We

show that broad energy distributions are unstable: Even if initially realised, they would

become significantly narrower within an extremely small time interval. Hence, broad energy

2



1.1. Current knowledge and an unsolved problem

distributions can be disregarded for all practical calculations. This justifies the narrow

energy window assumption for the energy distribution of macroscopic quantum systems.

Therefore, macroscopic quantum systems typically thermalise.

This chapter is organised as follows. After a short overview of the foundations of equi-

librium statistical physics for classical and quantum systems, we first precisely formulate

the problem addressed in the present thesis. Later, we give an overview of the topics which

are related to our proposal and present the novel concept of stability of quantum statistical

ensembles. Finally, we provide a preview of our results together with an outline of the

thesis.

1.1 Current knowledge and an unsolved problem

1.1.1 Foundations of classical statistical physics of equilibria

The microcanonical ensemble

Let us consider a completely isolated classical system with the Hamilton function ℋ(p,q),

where p and q are generalised momenta and coordinates of the constituents of the system.

The momenta p and coordinates q span the 𝑛-dimensional phase-space. The total energy 𝐸

of an isolated classical system always has a fixed value 𝐸 = 𝐸0. Therefore, the phase-space

dynamics of this system, which is governed by the Hamilton’s equations 𝑑p
𝑑𝑡 = −𝜕ℋ(p,q)

𝜕q and
𝑑q
𝑑𝑡 = +𝜕ℋ(p,q)

𝜕p , is confined to the (𝑛− 1)-dimensional hypersurface ℋ(p,q) = 𝐸0, which is

called the energy shell.

The system’s dynamics on the energy shell exhibits ergodic behaviour for typical inter-

acting many-body systems. This implies that a typical phase space trajectory explores the

complete energy shell. Therefore, we make the usual assumption that the probability to find

the system in a fixed region of the energy shell is proportional to the (𝑛 − 1)-dimensional

volume of that region. This assumption is known as the ergodic hypothesis.

Given the above assumption, the phase-space distribution is given by

𝜌mc(p,q) =
1

Ω[𝐸0]
𝛿[ℋ(p,q)− 𝐸0], (1.1)

where Ω[𝐸0] =
∫︀
𝛿[ℋ(p,q) − 𝐸0]𝑑p𝑑q is the phase-space volume of the energy shell. The

corresponding probability distribution of the total energy is

𝑔mc(𝐸) = 𝛿[𝐸 − 𝐸0]. (1.2)

The distribution 𝑔mc(𝐸) is called the microcanonical energy distribution and the statistical

ensemble described by 𝑔mc(𝐸) is called the microcanonical ensemble.

Derivation of the Gibbs distribution

Now, we divide the total system into a small subsystem and the rest, which we call heat

bath. This is illustrated in Fig. 1.2. We assume that the subsystem and the heat bath

exchange energy but do not exchange particles. The following question arises: What is the

3



Chapter 1. Introduction

energy distribution of the small subsystem provided that the total system is described by the

microcanonical ensemble? For the subsequent analysis, we choose the following notations:

p1 and q1 refer to particles of the subsystem, while p2 and q2 refer to particles of the heat

bath.

The energy of the total system can be written as a sum of three terms

ℋ(p,q) = ℋ1(p1,q1) +ℋ2(p2,q2) +𝑊 (p1,q1,p2,q2), (1.3)

where ℋ1(p1,q1) and ℋ2(p2,q2) are the Hamilton functions for the subsystem and the heat

bath, respectively, and 𝑊 (p1,q1,p2,q2) is the interaction term. Usually, the interaction

term can be neglected provided a short-range interaction between the individual particles.

The reason is that, for a short-range interaction, 𝑊 (p1,q1,p2,q2) grows normally with the

surface of the subsystem, while ℋ1(p1,q1) grows with the volume of the subsystem. If we

assume that the subsystem is not too small such that 𝑊 (p1,q1,p2,q2) can be neglected,

this leads to

ℋ(p,q) ≈ ℋ1(p1,q1) +ℋ2(p2,q2). (1.4)

Now, we calculate the phase-space distribution for the subsystem 𝜌sub(p1,q1). It is

given by the integral of 𝜌mc(p,q) over the degrees of freedom of the heat bath

𝜌sub(p1,q1) =

∫︁
𝜌mc(p,q) 𝑑p2𝑑q2 (1.5)

≈ 1

Ω[𝐸0]

∫︁
𝛿[ℋ1(p1,q1)−ℋ2(p2,q2)− 𝐸0] 𝑑p2𝑑q2 (1.6)

=
Ω2[𝐸0 −ℋ1(p1,q1)]

Ω[𝐸0]
, (1.7)

where Ω2[𝐸0−ℋ1(p1,q1)] ≡
∫︀
𝛿[ℋ1(p1,q1)−ℋ2(p2,q2)−𝐸0] 𝑑p2𝑑q2 is a multi-dimensional

integral. It is worth noticing that the dependence of 𝜌sub(p1,q1) on p1 and q1 enters the

right-hand side in the above expression only through ℋ1(p1,q1). Therefore, 𝜌sub(p1,q1) is

the same for all configurations of p1 and q1 satisfying ℋ1(p1,q1) = 𝐸 for some 𝐸.

According to the definition, Ω2[𝐸0 −ℋ1(p1,q1)] is a multi-dimensional integral, where

the number of integrals is twice the number of particles in the subsystem. If we now

vary ℋ1(p1,q1), each of the one-dimensional integrals contributing to Ω2[𝐸0 −ℋ1(p1,q1)]

becomes slightly modified. Therefore, the overall dependence of 𝜌sub(p1,q1) on ℋ1(p1,q1)

heat bath

subsystem

total system

Figure 1.2: The total system is divided into a small subsystem and the heat bath.
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1.1. Current knowledge and an unsolved problem

can, to a good accuracy, be approximated by an exponential function

𝜌sub(p1,q1) ≈
1

𝑍
𝑒−

ℋ1(p1,q1)
𝑇 , (1.8)

where 𝑍 =
∫︀
𝜌sub(p1,q1) 𝑑p1𝑑q1 is the normalisation factor, 𝑘𝐵 = 1 and temperature 𝑇 is

defined as
1

𝑇
≡ 𝑑

𝑑𝐸
ln[Ω2(𝐸)]. (1.9)

The derivative on the right-hand side of Eq. (1.9) is evaluated at the average energy

𝐸av ≡
∫︀
ℋ1(p1,q1)𝜌sub(p1,q1) 𝑑p1𝑑q1. The phase-space distribution in Eq. (1.8) is the

Gibbs distribution.

Since 𝜌sub(p1,q1) is constant on each energy shell ℋ1(p1,q1) = 𝐸, the corresponding

energy distribution reads

𝑔can(𝐸) =
1

𝑍can
𝑒−𝛽𝐸𝜈(𝐸), (1.10)

where 𝛽 ≡ 1
𝑇 is the inverse temperature, 𝜈(𝐸) ≡ 𝑑

𝑑𝐸

∫︀
ℋ1(p1,q1)≤𝐸 𝑑p1𝑑q1 and

𝑍can =
∫︀∞
−∞ 𝑒−𝛽𝐸𝜈(𝐸)𝑑𝐸 is the canonical partition function. The function 𝜈(𝐸) normally

grows nearly exponentially with energy 𝐸 and, therefore, 𝑔can(𝐸) typically has a Gaussian

shape as illustrated in Fig. 1.3. In the following, we refer to the probability distribution of

the energy 𝑔can(𝐸) also as the Gibbs distribution.

The statistical ensemble corresponding to 𝑔can(𝐸) is called the canonical ensemble. More

precisely, the canonical ensemble is defined as the set of all possible states whose average

behaviour is describable by the Gibbs distribution.

Width of the energy distribution for the canonical ensemble

Now, we obtain the width of 𝑔can(𝐸). Let us rewrite Eq. (1.10) as

𝑔can(𝐸) =
1

𝑍can
𝑒−𝛽𝐸+𝑆(𝐸), (1.11)

E
Eav

wg

gcan(E)

Figure 1.3: A sketch of 𝑔can(𝐸) which is typically of Gaussian shape. We denote the average
energy by 𝐸av and the width of the energy distribution by 𝑤𝑔. Formal definitions of 𝐸av

and 𝑤𝑔 are given in the next section.
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Chapter 1. Introduction

where 𝑆(𝐸) ≡ ln[𝜈(𝐸)] is the entropy. As mentioned above, the distribution 𝑔can(𝐸) can

be approximated by the Gaussian function

𝑔can(𝐸) ∼= exp

(︂
−(𝐸 − 𝐸av)

2

2𝑤2
𝑔

)︂
. (1.12)

In order to obtain the width 𝑤𝑔, we expand the exponent in Eq. (1.11) at 𝐸av up to the

second order, which leads to

𝑤𝑔 =

√︃
− 1

𝑑2𝑆(𝐸av)
𝑑𝐸2

= 𝑇 (𝐸av)

√︃
𝑑𝐸(𝑇 )

𝑑𝑇

⃒⃒⃒⃒
𝑇 (𝐸av)

= 𝑇 (𝐸av)
√︀
𝐶𝑉 (𝑇 (𝐸av)), (1.13)

where 𝐶𝑉 (𝑇 ) ≡ 𝑑𝐸(𝑇 )
𝑑𝑇 is the total specific heat of the system. Typically, 𝐶𝑉 ∼ 𝑁𝑠 and

𝐸av −𝐸min ∼ 𝑁𝑠 for a fixed temperature, where 𝐸min is the minimal energy of the system.

Therefore, 𝑤𝑔

𝐸av−𝐸min
∼ 1√

𝑁𝑠
, which means that 𝑔can(𝐸) is sharply peaked for macroscopic

systems.

1.1.2 Foundations of quantum statistical physics

The microcanonical ensemble

Let us now turn to quantum statistical physics. The microcanonical energy distribution for

quantum systems is defined in analogy to the definition for classical systems in Eq. (1.2).

The probability 𝑝mc(𝐸) for occupying an individual energy eigenstate with energy 𝐸 is

𝑝mc(𝐸) ≡
{︃
𝑐𝑜𝑛𝑠𝑡. 𝐸 ∈ [𝐸0 −Δ, 𝐸0 +Δ]

0 else,
(1.14)

where 2Δ ≪ 𝐸 is the width of the narrow energy window.

The statistical ensemble described by 𝑝mc(𝐸) is called the conventional microcanonical

ensemble for quantum systems. The corresponding probability distribution of the total

energy is

𝑔mc(𝐸) = 𝑝mc(𝐸)𝜈(𝐸), (1.15)

where 𝜈(𝐸) is the density of states defined as

𝜈(𝐸) ≡
∑︁
𝑖

𝛿[𝐸 − 𝐸𝑖]. (1.16)

The sum in the above expression extends over all energy eigenvalues 𝐸𝑖. For macroscopic

quantum systems, the energy eigenvalues 𝐸𝑖 are exponentially dense such that we consider

𝜈(𝐸) as a continuous function in the following. Therefore, 𝑔mc(𝐸) can also be considered

as a continuous function.

For later purposes, we also define the average energy of 𝑔(𝐸)

𝐸av ≡
∫︁
𝐸 𝑔(𝐸) 𝑑𝐸, (1.17)

6



1.1. Current knowledge and an unsolved problem

and the width of 𝑔(𝐸)

𝑤𝑔 ≡
√︃∫︁

(𝐸 − 𝐸av)2𝑔(𝐸) 𝑑𝐸. (1.18)

The Gibbs distribution for quantum systems

The probability distribution of energy corresponding to the canonical ensemble for quantum

systems is defined in analogy to the definition for classical systems in Eq. (1.10) as

𝑔can(𝐸) =
1

𝑍can
𝑒−𝛽𝐸𝜈(𝐸), (1.19)

where the canonical partition function is now given by 𝑍can = Tr[𝑒−𝛽ℋ] and ℋ is the

Hamiltonian of the system. In analogy to the classical case, the width 𝑤𝑔 of 𝑔can(𝐸) is

given in Eq. (1.13). Therefore, the Gibbs distribution for quantum systems 𝑔can(𝐸) in

Eq. (1.19) is also sharply peaked and it is typically of Gaussian shape.

Similar to the above considerations for classical systems, the Gibbs distribution for

quantum systems can be derived for subsystems of a large isolated quantum system provided

that the large system is described by a microcanonical ensemble, see for example [29]. For

this derivation, the large isolated quantum system is described by an incoherent mixture of

energy eigenstates with a non-zero occupation probability according to the microcanonical

condition.

Quantum thermalisation

So far, we described the conventional quantum statistical physics of equilibrium. The

Gibbs distribution, for example, describes quantum systems in thermal equilibrium at some

temperature 𝑇 . Suppose now that we bring a macroscopic system out of equilibrium, for

example, by perturbing it or quenching a system’s parameter [94]. The usual expectation

is that the system is going to relax to thermal equilibrium within a short time interval.

The following questions now arise: What are the necessary and sufficient conditions for the

wave function in order the quantum system to relax? The answers to these questions are

the subject of ongoing research. In the following, we describe recent developments in this

research field.

Given an isolated quantum system 𝒜, how do we define thermal equilibrium in such a

case? It is noteworthy that this setting is different from the one described above, where

the system in thermal equilibrium was implied to be a subsystem of a larger system. An

isolated quantum system 𝒜 described by the density matrix 𝜌𝒜 is said to be in thermal

equilibrium if the reduced density matrix 𝜌𝒮 of any small subsystem 𝒮 is consistent with

the Gibbs density matrix 𝜌𝒜can for the large system 𝒜

𝜌𝒜can =
1

𝑍can
𝑒−𝛽ℋ, (1.20)

where 𝑍can = Tr
[︀
𝑒−𝛽ℋ]︀ is the canonical partition function and ℋ is the Hamiltonian of the

system 𝒜. In the above definition, “consistent” means that, for any local operator 𝒪 acting

7



Chapter 1. Introduction

on the subsystem 𝒮, the following relation is satisfied

⟨𝒪⟩ = Tr𝒮
[︀
𝒪𝜌𝒮

]︀
≈ Tr

[︀
𝒪𝜌𝒜can

]︀
, (1.21)

where Tr𝒮 denotes the partial trace over the degrees of freedom of the system 𝒮. It is worth
stressing that the relation (1.21) must hold for any local operator 𝒪. This definition implies

that the system 𝒜 acts like its own heat bath (compare the Figures 1.4 and 1.2).

In general, there are two aspects about quantum thermalisation: (i) the initial quantum

state of the system 𝒜 and (ii) the internal dynamics of the system. While the initial

quantum state is normally given from outside the system, the dynamics are provided by

the internal Hamiltonian of the system. In this thesis, we focus on the first aspect which

deals with the initial state. However, in order to make the introduction complete, we now

present an overview of the current knowledge on the dynamic aspect of thermalisation. Two

important results have been obtained in this direction. In the following, we discuss them

separately.

The first important result is the property of canonical typicality. Canonical typicality

means that, for the overwhelming majority of superpositions of energy eigenstates with

energies from a narrow energy window, a system thermalises in the thermodynamic limit,

where the size of the system goes to infinity while the energy per particle remains fixed.

More explicitly, for any wave function of the total system 𝒜

|𝜓⟩ =
∑︁

𝑐𝑛|𝐸𝑛⟩, (1.22)

where the energy eigenstates |𝐸𝑛⟩ are taken from a small energy window 𝐸𝑛 ∈ [𝐸−Δ, 𝐸+Δ],

the reduced density matrix of any small subsystem 𝒮 satisfies Eq. (1.21). Above, we require

that Δ satisfies Δ
𝐸−𝐸min

≪ 1, where 𝐸min is the minimal energy of the system. The actual

dynamics, which is responsible for the thermalisation, is given by the dephasing of the

individual energy eigenstates in Eq. (1.22). This means that the quantum amplitudes 𝑐𝑛
acquire quasi-random phases such that the interference terms between the different energy

eigenstates can be neglected. It is worth stressing that canonical typicality implies that the

system thermalises for pure quantum states. In particular, the average over different pure

states is not necessary.

Important contributions to canonical typicality were made by J. Gemmer, M. Michel,

G. Mahler [27, 26], by S. Goldstein, J. L. Leibowitz, R. Tumulka, N. Zanghi [29], and by S.

Popescu, A. J. Short, A. Winter [68].

A

S

total system

subsystem

Figure 1.4: Illustration of the total system 𝒜 and the small subsystem 𝒮.
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1.1. Current knowledge and an unsolved problem

The second important result in the context of quantum thermalisation is known as the

eigenstate thermalisation hypothesis3. According to this hypothesis, the system 𝒜 is in

thermal equilibrium if it is described by an individual energy eigenstate

|𝜓⟩ = |𝐸𝑛⟩. (1.23)

This is an extreme example for the conventional microcanonical ensemble. In contrast to

the superposition considered for the quantum typicality, here, the thermalisation occurs on

the level of individual energy eigenstates.

Empirically, the eigenstate thermalisation hypothesis applies to quantum chaotic sys-

tems. A quantum system is called chaotic if the corresponding classical system exhibits

chaotic behaviour. Further, quantum chaotic systems are known to exhibit the Wigner-

Dyson statistics for the spacing between quantum energy levels [66] which is also known

as energy level repulsion. However, there is no fully consistent approach to quantum chaos

until now.

The same role that ergodicity played for classical equilibration is now taken over by

the fact that each energy eigenstate |𝐸𝑛⟩ is given by a large superposition of different

local configurations for the subsystems. In this way, each energy eigenstate incorporates

averaging over the classical energy shell, cf. Sec. 1.1.1.

In the context of the eigenstate thermalisation hypothesis, important contributions were

made by A. J. Shnirelman [84], J. M. Deutsch [16], M. Srednicki [85], and M. Rigol, V.

Dunjko and M. Olshanii [71].

Questions about the thermalisation of quantum systems recently became the subject

of particular interest due to experimental advances in isolating quantum systems [91, 75,

40]. In particular, the increasing ability to coherently control systems parameters (as for

example the interaction strength, confinement potential or particle number) allows for the

experimental investigation of the thermalisation dynamics, see for example [15]. A popular

approach in this context is the investigation of the relaxation after a quench [94]. A quench is

a sudden change of some parameter of the system such that the system being in equilibrium

before the quench is brought out of equilibrium because of the quench.

1.1.3 Unsolved problem: width of the energy distribution

A typical isolated macroscopic quantum system is generally expected to thermalise under

the action of its internal dynamics for the overwhelming majority of initial non-equilibrium

states appearing in nature or created in a laboratory [13, 47, 28, 27, 29, 68, 70, 4, 67]. As

mentioned earlier, thermalisation implies that the density matrix of any small subsystem

within the large system approaches a form consistent with the canonical Gibbs density

matrix (canonical ensemble) for the large system.

A necessary condition for an isolated many-particle quantum system to thermalise is a

sufficiently narrow initial probability distribution of its total energy, as is, for example, the

case for the conventional microcanonical ensemble defined in Eq. (1.14). However, since

3Although this hypothesis is generally expected to be true, there are no analytical results to the best of
our knowledge. So far, this hypothesis has been confirmed only by numerical simulations.
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quantum systems can be in a superposition of different energy eigenstates, the initial states

characterised by a narrow distribution of total energy constitute a rather special case. In

fact, narrow energy distribution are not necessarily the most probable ones, as we will see in

Sec. 1.1.4. In addition, a total-energy distribution remains constant with time. If a quantum

state of an isolated system does not satisfy the condition for thermalisation related to a

narrow energy distribution, it will never satisfy that condition and, therefore, it will never

thermalise. It is this possibility of superpositions which poses an additional problem for

the foundations of quantum statistical physics as compared to the foundations of classical

statistical physics.

Let us formulate the above considerations more precisely. Suppose that the initial wave

function of the total system is

|𝜓(0)⟩ =
∑︁
𝑛

𝑐𝑛(0)|𝐸𝑛⟩, (1.24)

where |𝐸𝑛⟩ is the total-energy eigenstate with energy 𝐸𝑛. The above sum extends over

all energy eigenstates. The occupation probability of |𝐸𝑛⟩ is |𝑐𝑛(0)|2. This occupation

probability is a constant of motion, i.e., |𝑐𝑛(𝑡)|2 = |𝑐𝑛(0)|2. To show this, we rewrite |𝜓(0)⟩
at a later time 𝑡

|𝜓(𝑡)⟩ =
∑︁
𝑛

𝑐𝑛(𝑡)|𝐸𝑛⟩, (1.25)

where 𝑐𝑛(𝑡) = 𝑐𝑛(0) 𝑒
−𝑖𝐻𝑡. This leads to |𝑐𝑛(𝑡)|2 = |𝑐𝑛(0)|2.

As explained above, isolated quantum systems with a broad initial distribution of the

total energy do not thermalise. An example here is a quantum superposition of states with

two different temperatures [19]

|𝜑𝛽1𝛽2⟩ ∼=
√︂

1

𝑍1

∑︁
𝑖

𝑒−
1
2
𝛽1𝐸𝑖 |𝐸𝑖⟩+

√︂
1

𝑍2

∑︁
𝑖

𝑒−
1
2
𝛽2𝐸𝑖 |𝐸𝑖⟩, (1.26)

where 𝛽1 and 𝛽2 are inverse temperatures (𝛽1 ̸= 𝛽2), and 𝑍1 and 𝑍2 are the corresponding

canonical partition functions. Given such a superposition, the corresponding probability

distribution of the total energy 𝑔(𝐸) entails two peaks as illustrated in Fig. 1.5. What is

important here is that a superposition of states with two or more different temperatures

as in Eq. (1.26) cannot be described by a state corresponding to a single temperature.

In general, even more complex situations may occur which can lead, for example, to the

superstatistics [7], the non-extensive statistics [90] or the generalised Gibbs ensembles [38,

39, 72].

Given that the Gibbs distribution works extremely well for predicting experimental

outcomes under everyday conditions, the description of isolated quantum systems by the

conventional microcanonical ensemble appears empirically justified. However, a thorough

theoretical justification for choosing the conventional microcanonical ensemble remains elu-

sive. In this thesis, we propose a justification for choosing narrow energy distributions.

Why don’t the initial non-equilibrium quantum states of macroscopic systems normally

exhibit the broad participation of energy eigenstates and hence non-Gibbs statistics for
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g0(E)

E

Figure 1.5: A sketch of 𝑔(𝐸) corresponding to the coherent superposition of two states
corresponding to different temperatures in Eq. (1.26).

small subsystems?

A priori, it is not clear why the definition of the microcanonical ensemble for classi-

cal systems is to be transferred to the quantum domain as in Eq. (1.14). An alternative

definition for the microcanonical ensemble for quantum system is known as “quantum micro-

canonical” (QMC) ensemble [93, 12, 1, 21, 19, 61]. The definition of the QMC ensemble

fixes the average energy 𝐸av but allows any superpositions of the energy eigenstates. As

explained in the next subsection, if a macroscopic isolated quantum system is described

by the QMC ensemble, it was shown [19, 22, 23, 20] that non-Gibbs equilibrium emerges

for small subsystems. Therefore, narrow energy distributions are not necessarily the most

probable ones.

1.1.4 Quantum micro-canonical (QMC) ensemble

In Sec. 1.1.2, we introduced the conventional microcanonical ensemble for quantum systems.

In this section, we describe an alternative definition of the microcanonical ensemble which is

known as the QMC ensemble. By doing this, we also show that the probability distributions

of the total energy 𝑔(𝐸) which are as narrow as those corresponding to the conventional

microcanonical ensemble 𝑔mc(𝐸) in Eq. (1.15) are not necessarily the most probable ones.

The QMC ensemble is defined as follows: We fix the average energy 𝐸av without fur-

ther restricting the participating eigenstates. This ensemble is fully characterised by the

following three constraints

𝑁∑︁
𝑖=1

𝑝𝑖 = 1, (1.27)

𝑝𝑖 ≥ 0, (1.28)
𝑁∑︁
𝑖=1

𝐸𝑖𝑝𝑖 = 𝐸av, (1.29)

where 𝑝𝑖 = |𝑐𝑖|2 is the probability for occupying the eigenstate |𝐸𝑖⟩ and 𝑁 is the dimension

of the Hilbert space. The first two constraints are the usual constraints of the quantum-

mechanical description, whereas the last relation fixes the average energy. It is noteworthy

that the sums in the above expressions are not restricted to any energy interval as for the

definition of the conventional microcanonical ensemble.

Given that a macroscopic system with a non-degenerate ground state is described by the

11
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QMC ensemble, the probability for occupying individual energy eigenstates is given by [19]

⟨𝑝1⟩ ≈ 𝐸av

𝐸min
(1.30)

⟨𝑝𝑘⟩ =
1

𝑁
(︁
1 + 𝐸𝑘−𝐸av

𝐸av−𝐸min

)︁ , (1.31)

where ⟨𝑝1⟩ is the average occupation probability for the ground state, ⟨𝑝𝑘⟩ with 𝑘 ≥ 2

corresponds to higher energy eigenstates, and 𝑁 is again the dimension of the Hilbert

space. The occupation probability ⟨𝑝𝑘⟩ as a function of the energy 𝐸𝑘 decays slowly with the

energy which is in contrast to the definition of the conventional microcanonical ensemble in

Eq. (1.14). The energy distribution in Eqs. (1.30) and (1.31) is a broad energy distribution.

The energy distribution 𝑔(𝐸) thus has a form of two distinct peaks, cf. Fig. 1.5. This

implies that narrow energy distributions are not necessarily the most probable ones.

Given that the total system is described by the QMC ensemble, one obtains non-Gibbs

statistics for small subsystems [19]. The diagonal elements of the subsystem’s reduced

density matrix written in the energy basis are given by [19]

⟨𝜌1⟩ =
𝐸av

𝐸min
+

1

𝑁1

(︂
1− 𝐸av

𝐸min

)︂
(1.32)

⟨𝜌𝛼⟩ =
1

𝑁1

(︂
1− 𝐸av

𝐸min

)︂
, (1.33)

where ⟨𝜌1⟩ corresponds to the lowest subsystem energy state, ⟨𝜌𝛼⟩ with 𝛼 ≥ 2 corresponds

to higher energy states and 𝑁1 is the number of states of the subsystem. In fact, the energy

distribution for subsystems is a sum of two Gibbs distributions with the temperatures 𝑇 = 0

and 𝑇 = ∞. In the case 𝑇 = 0, only the lowest energy state is occupied, and, in the case

𝑇 = ∞, all states have equal probability of occupation.

1.2 Concept of stability of quantum statistical ensembles

In this thesis, we address the unsolved problem of why the description of isolated macro-

scopic quantum systems by narrow total-energy distributions is justified. Hereby, macro-

scopic means that the total number of particles or microscopic subsystems is 𝑁𝑠 ∼ 1023.

Macroscopic systems cannot be completely isolated under any realistic circumstances

and, therefore, inevitably interact with the environment. This can be, for example, the

interaction with an accidentally passing photon. Such an interaction with the environment

corresponds to a decoherence process as will be explained in the next section. The de-

coherence theory, which describes the effects of the interactions with the environment, is

concerned with predicting the average effect. In contrast, the individual realisations occur-

ring in nature and laboratory cannot be accounted for by this description of the average

effects. Since we want to consider concrete realisations, we introduce ideal local measure-

ments described by projective operators. Hereby, local means localised in the physical

three-dimensional space.

12



1.2. Concept of stability of quantum statistical ensembles

Due to the random nature of the interactions with the environment, we assume the

measurements to occur randomly in space and time. Moreover, the Hilbert space basis, in

which the measurements occur, is also random for each individual measurement.

Although the measurements are local, the outcomes of these measurements can be cor-

related with the total energy of the total system. At first sight, this seems to contradict the

fact that the energy eigenstates of generic many-body systems are typically given by large

superpositions of different local configurations for the subsystems. Therefore, the total en-

ergy of the system cannot be fully discriminated by measuring local observables. However,

local measurements can induce modifications of the occupation of the total-energy eigen-

states because one local configuration can be more likely for one energy than for another.

Let us consider a simple example of an ideal gas in one dimension consisting of identical

particles. For a moment, we assume that the system is described by the canonical ensemble

with the inverse temperature 𝛽. In this case, the probability distribution of the velocity for

each particle is given by the so-called Maxwell distribution

𝑔(𝑣) ∼= 𝑒−𝛽𝑚𝑣2

2 , (1.34)

where 𝑣 is the velocity and 𝑚 is the mass of the particle. This distribution is illustrated in

Fig. 1.6 for different values of 𝛽.

Now, let us assume that the system is in a superposition state of two inverse temperatures

𝛽1 and 𝛽2 with equal probability, cf. Eq. (1.26). Depending on the temperature, 𝑔(𝑣) has a

different shape. For the sake of the argument, let us assume that 𝛽1 = 𝛽blue and 𝛽2 = 𝛽green

in Fig. 1.6. Now, suppose that the velocity of a single particle is accidentally measured

and that the measurement outcome is 𝑣m = 10. This outcome favours the case with 𝛽green
because the probability of this outcome for 𝛽blue is practically zero. The post-measurement

probability of the Gibbs distribution with 𝛽green is larger than that for 𝛽blue. Therefore,

0 2 4 6 8 10 12
v

0.2

0.4

0.6

0.8

g(v)

Figure 1.6: Probability distribution 𝑔(𝑣) of the velocity for the one-dimensional ideal gas
in Eq. (1.34). The distribution 𝑔(𝑣) is shown for different values of the temperature. The
relations for the inverse temperatures are 𝛽blue > 𝛽orange > 𝛽green, where the index denotes
the colour of the corresponding curve.
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g0(E)

E

g(E)

E

g(E)

E

Figure 1.7: Sketch of the narrowing effect of local measurements with respect to an initial
broad 𝑔(𝐸) consisting of two peaks. Either left peak or the right peak becomes completely
suppressed after multiple measurements. Since the width of the individual peaks is much
smaller than the distance between the peaks, this effectively corresponds to a narrowing of
𝑔(𝐸).

this measurement would modify the probabilities for different 𝛽.

Let us also consider another measurement outcome, for example 𝑣m = 1. In such a

case, the first measurement would not lead to a significant change of the probabilities since,

in both cases 𝛽1 = 𝛽blue and 𝛽2 = 𝛽green, the velocity 𝑣m = 1 has non-zero probability.

However, if the subsequent measurements also yield 𝑣m ≈ 1, this would indicate that the

system is in the state corresponding to 𝛽blue.

From an information-theoretic viewpoint, the outcomes of local measurements constitute

a source of partial information about the total energy of the system. Each local measurement

whose outcome is correlated with the total energy thus leads to a better estimate of the total

energy and, in turn, to a narrower probability distribution of the total energy [5]. Coming

back to the example of two temperatures in Sec. 1.1.3, this narrowing of the probability

distribution of the total energy corresponds to the suppression of one peak as indicated in

Fig. 1.7.

We have seen that local measurements can indeed lead to a significant modification of

𝑔(𝐸). This result naturally leads to the notion of stability of quantum statistical ensembles

with respect to local measurements. For macroscopic systems, the local measurements are

expected to occur very frequently. Therefore, only stable ensembles are realisable in nature

and laboratory. The unstable ensembles can be disregarded for their lifetime being usually

unmeasurably short as we will see below.

1.2.1 Relation to quantum decoherence and quantum measurements

A part of the endeavour of explaining the quantum-to-classical transition is the quantum

decoherence theory [41, 42, 99, 37, 64]. In essence, quantum decoherence is the suppres-

sion of observable coherences in a given system of interest due to the interaction with the

environmental degrees of freedom. If we consider the density matrix of the system in a suit-
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1.2. Concept of stability of quantum statistical ensembles

able basis, its off-diagonal elements, which quantify the coherence in the system, become

suppressed. Hence, decoherence leads to a nearly diagonal reduced density matrix of the

system, where nearly diagonal means that only matrix elements close to the diagonal can

be non zero. Effectively, such a density matrix resembles a classical mixture of quantum

systems being in different states. Therefore, measurements of observables of the system

normally do not exhibit quantum interference.

Let us now consider a simple toy model consisting of a spatially delocalised dust grain

described by the state

|𝜓⟩ = 1√
2

[︀
|𝐺𝑥1⟩+ |𝐺𝑥2⟩

]︀
, (1.35)

where |𝐺𝑥1⟩ is a state corresponding to a spatially localised dust grain around a space

point 𝑥1, and likewise |𝐺𝑥2⟩. For simplicity, we assume a Gaussian shape of these states,

cf. Fig. 1.8. Further, we assume that |𝑥1 − 𝑥2| is sufficiently large such that the overlap

between the states is negligible, i.e., ⟨𝐺𝑥1 |𝐺𝑥2⟩ ≈ 0.

Now, let us imagine that a photon passes accidentally the region at 𝑥1 as illustrated in

Fig. 1.8. For the photon, there are two possibilities: either the photon passes this region

unaffected or it becomes scattered. Each case corresponds to the position measurement of

the dust grain: a scattered photon indicates that the dust grain is at 𝑥1 and, otherwise, the

dust grain is at 𝑥24.

In order to illustrate the decoherence effect, we denote the scattered state of the photon

as |𝑠⟩ and, in the case it passes unaffected, the state is |𝑝⟩. The interaction with the photon

can thus be described as

1√
2

[︀
|𝐺𝑥1⟩+ |𝐺𝑥2⟩

]︀
|before⟩ → 1√

2

[︀
|𝐺𝑥1⟩|𝑠⟩+ |𝐺𝑥2⟩|𝑝⟩

]︀
, (1.36)

where |before⟩ is the state of the photon before the interaction5.

The change of the reduced density matrix of the dust grain as a consequence of the

4We assume that the dust grain is opaque such that the photon cannot fly through the dust grain
5An implicit assumption that we make here is that the dust grain is sufficiently heavy such that the

interaction with a single photon does not significantly change its state, for example the recoil of the dust
grain can be neglected.

xx1 x2

photon

Figure 1.8: A sketch of the setting. Indicated are the spatial probability distributions of
the dust grain (red) and the photon (green).
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interaction reads analogously to Eq. (1.36)

1

2

[︀
|𝐺𝑥1⟩+ |𝐺𝑥2⟩

]︀[︀
⟨𝐺𝑥1 |+ ⟨𝐺𝑥2 |

]︀
=

(︃
1
2

1
2

1
2

1
2

)︃
→
(︃

1
2 0

0 1
2

)︃
=

1

2

[︀
|𝐺𝑥1⟩⟨𝐺𝑥1 |+ |𝐺𝑥2⟩⟨𝐺𝑥2 |

]︀
.

(1.37)

As anticipated, the off-diagonal elements vanished6.

Above, the photon discriminates the states of the dust grain with different spatial dis-

tributions. In general, the interaction could lead to the same process in another basis. In

Eq. (1.36), we would obtain on the right-hand site 1√
2

[︀
|𝑎1⟩|𝑠⟩+ |𝑎2⟩|𝑝⟩

]︀
, where |𝑎1⟩ and |𝑎2⟩

are some states. In such a case, the off-diagonal elements of the reduced density matrix of

the dust grain vanish in the basis corresponding to |𝑎1⟩ and |𝑎2⟩ but not in the basis |𝐺𝑥1⟩
and |𝐺𝑥2⟩. The basis which diagonalises the density matrix is called the preferred basis [42].

The interaction with environment selects out of the infinitely many possible bases a pre-

ferred one. This process in known as environmentally induced selection, or einselection [99].

If the Hamiltonian of the system is local which means that the interaction extends only over

a few neighbouring particles, the preferred basis is typically a local basis, where the local

basis states can be written as product states of local quantities.

The quantum decoherence theory describes the average situation. In the above toy

model, the density matrix on the right hand site of Eq. (1.37) is averaged over the situations

with the scattered and not scattered photon. Therefore, the nearly diagonal density matrix

describes the result of many repeated realisations. In this thesis, however, we are interested

in individual realisations rather than on the average situation. In each individual case, the

photon is either scattered or it is not scattered. In order to consider the single realisations,

we introduce projective measurements. Coming back to the above toy model again, we

consider the cases of the scattered and not scattered photon individually by projecting the

state of the dust grain either on |𝐺𝑥1⟩ or on |𝐺𝑥2⟩.

1.2.2 Instability as a macroscopicity measure for quantum superpositions

In a later chapter of this thesis, we will rethink the concept of stability and formulate a

macroscopicity measure for quantum superpositions of macroscopically distinct states which

can be interpreted as a measure of instability of individual quantum superpositions. In this

section, we introduce the notion of macroscopicity and put it into a general context of

ongoing research.

Until today, there was not any clear evidence that quantum mechanics breaks down at

any physical scale. In order to advance the forefront of research, the current agenda is to

extend the parameter range, where effects of quantum mechanics have been observed exper-

imentally. One of the directions of research is to observe superpositions of macroscopically

distinct states.

Different experiments have been devised so far in order to test quantum mechanics on

ever increasing scales. They encompass

6In the above toy model, the off-diagonal elements become zero after the interaction with a single environ-
mental particle. Typically, this happens only after many successive interactions because the environmental
particles cannot fully discriminate between different states of the system.
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� Matter-wave double-slit interference experiments with neutrons [56, 98], atoms [63,

44, 83, 31, 14], Bose-Einstein condensates [2], Buckey-balls [3] and other big organic

molecules [33, 37].

� Preparation of superposition states of counter-propagating currents in a supercon-

ducting SQUID loop [24, 35, 48].

� Opto-mechanical entanglement between macroscopic mechanical devices like oscillat-

ing membranes or levitating nano-spheres and photons [59, 73].

In order to assess the degree of macroscopicity that was achieved in the experiments,

one needs a well-defined measure of macroscopicity. On the basis of such a measure, one

could also decide on the future experimental investigations [54].

Although the notion of macroscopicity appears intuitive, its precise formulation turns

out to be rather involved. As an example, the states describing a living and a dead cat

are clearly macroscopically distinct states. However, when it comes to introducing a formal

measure of macroscopicity, it is not clear how to tackle the problem. In particular, it remains

unclear which mathematical objects should be used for the definition of the macroscopicity

in order to obtain a universally applicable measure. For example, the overlap ⟨𝜓𝐿|𝜓𝐷⟩
between the state |𝜓𝐿⟩ describing a living cat and |𝜓𝐷⟩ describing a dead cat is not a

suitable measure of macroscopicity. The reason is that the overlap already vanishes when

a few molecules of the cat occupy orthogonal states but the rest of the cat is the same in

both cases.

Different proposals have been made so far for the measure of macroscopicity. They

include proposals based on the information-theoretic framework using quantum Fisher in-

formation [25], the observable consequences of a minimal extension of quantum mechan-

ics [62], the ability to discriminate the superposed states by classical detectors [81, 80] and

others [53, 17, 8, 49, 58, 52, 95, 96]. However, the above proposals are applicable only to

specific systems, for example to spin systems, to mechanical systems or systems of pho-

tons. Therefore, it is difficult to compare the different proposals. A definitive answer to the

question of a proper measure of macroscopicity for the superpositions of macroscopically

distinct states remains elusive.

1.3 Brief summary of results and the structure of the thesis

In Chapter 2, we first provide a precise formulation of the stability criterion on the basis of

which the statistical ensembles are to be called stable or unstable. For spins-12 , we analyti-

cally derive a relation which describes the modifications of the probability distribution due

to local measurements. We show that the basic effect of measurements is the narrowing of

the energy distributions. Therefore, ensembles with broad energy distributions are unsta-

ble. For spins in a magnetic field and for the Ising model, the modification mentioned above

amounts to “cutting” the probability distribution of the total energy by a linear function.

We also show that similar results apply to general interacting spin systems.
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We consider two shapes for the probability distributions, namely a distribution consist-

ing of two narrow peaks and a distribution of a Gaussian shape. In the former case, the

measurements induce the suppression of one of the peaks, as shown in Fig. 1.7. For the

Gaussian distribution, the measurements narrow the Gaussian, cf. Fig. 1.9.

Further, we show that lifetimes of broad ensembles are unmeasurably short. In contrast,

the statistical ensembles, whose energy distributions have a width comparable to that of

the canonical Gibbs distribution, are nearly stable in the absolute sense. This means that

the narrowing effect of measurements described above compensates the broadening effect of

measurements which is due to the off-diagonal elements of the projection operators when

written in the total-energy basis.

In Chapter 3, we present the results of the numerical investigation of interacting spin

systems. We simulate numerically one-dimensional lattices with up to 𝑁𝑠 = 24 spins. Due

to the limitation of numerical investigations to microscopic system sizes, these investigations

cannot be applied to the systems considered in Chapter 2. However, we show that the results

of the numerical calculations are in qualitative agreement with the analytical results.

First, we explicitly show that the finite-size effects with respect to the local measure-

ments is rather pronounced for computationally accessible systems. These finite-size effects

become smaller with increasing system size. However, even for the largest spin systems

available for numerical investigations 𝑁𝑠 = 24, these effects are still non-negligible. Fur-

ther, we consider the effect of measurements on a two-peak 𝑔(𝐸) on the basis of the stability

measure. For the two-peak 𝑔(𝐸), it is possible to suppress the finite-size effects such that

the narrowing effect can be investigated thoroughly.

In Chapter 4, we introduce a measure of macroscopicity for quantum superpositions.

This measure is based on the notion of instability of individual quantum states with respect

to one local measurement. This macroscopicity measure quantifies the change of the reduced

density matrices of small subsystems due to the local measurement. A quantum state is

called unstable if a local measurement significantly changes a macroscopic number of density

matrices of small subsystems. We apply the measure of macroscopicity to lattices of spins-12
and explicitly derive an expression for the measure of macroscopicity which is based on spin

polarisations and spin-spin correlations. In the end, we present two examples.

E

Figure 1.9: Illustration of the narrowing effect of local measurements for a broad Gaussian
distribution of total energy.

18



1.4. Conventions and notations

In Chapter 5, we summarise the results of the thesis.

The second chapter of this thesis is based on the following article:

� Stability of Quantum Statistical Ensembles with Respect to Local Measurements,

W. Hahn and B. V. Fine, arXiv:1601.06402

During the PhD time, the author of this thesis also contributed to the following article:

� Improvement of the Finite Basis Set for the Solution of the Two-Centre Dirac Equation

in Cassini Coordinates,

W. Hahn, A. N. Artemyev and A. Surzhykov, preprint

Further, the author of this thesis contributed to the following article:

� Non-Entangling Channels for Multiple Collisions of Quantum Wave Packets,

W. Hahn and B. V. Fine, Phys. Rev. A 85, 032713 (2012)

1.4 Conventions and notations

Throughout this thesis, we use the following conventions unless explicitly specified other-

wise:

� 𝑘𝐵 = 1,

� ~ = 1.

Further, the symbols are used with the following meaning:

� “≡” denotes a definition,

� “∼” denotes the order of magnitude,

� “∼=” denotes proportionality,

� “.” denotes “smaller or approximately the same value”.
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Chapter 2

Stability of Quantum Statistical

Ensembles with Respect to Local

Measurements

In this Chapter, we give a precise formulation of our stability criterion for quantum statis-

tical ensembles which is suitable for a broad variety of many-particle systems. Our primary

focus is on the macroscopic quantum systems, where the number of microscopic subsystems

is 𝑁𝑠 ∼ 1023. After formulating and discussing the stability criterion, we apply the criterion

to lattices of spins-12 .

Let us start with a few general considerations. A statistical ensemble is defined by the

probability 𝑝(𝐸) of occupying a state with total energy 𝐸. In classical physics, a system is

fully characterised by the momenta and the coordinates of all constituents of the system.

In quantum physics, a system is fully characterised by a density matrix. In the quantum-

mechanical formalism of density matrices, 𝑝(𝐸) equals the diagonal elements of the system’s

density matrix expressed in the total-energy basis.

Given the density of energy eigenstates 𝜈(𝐸), the probability distribution of the total

energy is

𝑔(𝐸) = 𝑝(𝐸)𝜈(𝐸). (2.1)

We define the average energy 𝐸av of 𝑔(𝐸) as

𝐸av ≡
∫︁ ∞

−∞
𝐸 𝑔(𝐸)𝑑𝐸 (2.2)

and the variance 𝑤2
𝑔 of 𝑔(𝐸) as

𝑤2
𝑔 ≡

∫︁ ∞

−∞
(𝐸 − 𝐸av)

2 𝑔(𝐸)𝑑𝐸. (2.3)

In this thesis, we primarily focus on broad probability distribution 𝑔(𝐸). We call 𝑔(𝐸)

broad, when
𝑤𝑔

𝐸av − 𝐸min
∼ 1, (2.4)
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Measurements

where 𝐸min is the ground state energy of the system. As an example, a canonical ensemble

with a positive temperature 𝑇 is narrow from the above perspective because, in this case, [20]

𝑤𝑔

𝐸av − 𝐸min
∼ 1√

𝑁𝑠
≪ 1, (2.5)

where 𝑁𝑠 ∼ 1023. This relation is obtained in Sec. 1.1.1.

As discussed in the previous chapter, the description of isolated quantum systems by

narrow 𝑔(𝐸) is only poorly justified. Broad 𝑔(𝐸) typically do not thermalise and, hence,

exhibit non-equilibrium statistics for subsystems. In order to resolve this discrepancy, we

formulate a stability criterion.

2.1 Stability criterion

Accidental measurements of microscopic particles in a macroscopic system cannot be ex-

cluded under any foreseeable natural or experimental conditions. We, therefore, introduce

the following stability criterion: A physically realisable quantum statistical ensemble de-

scribing a stationary state of a macroscopic system must be stable with respect to a small

number of any arbitrarily chosen local measurements within the system. The measurement

is called “local” if the measured quantity is localised in the three-dimensional physical space.

The number of measurements 𝑛 is called small, if 𝑛 ≪ √
𝑁𝑠, where 𝑁𝑠 is the number of

particles or microscopic subsystems in the system. The ensemble is called stable if

Δ𝐺(𝑛) ≡
∫︁ +∞

−∞
|𝑔𝑛(𝐸)− 𝑔0(𝐸)| 𝑑𝐸 ≪ 1, (2.6)

where 𝑔0(𝐸) and 𝑔𝑛(𝐸) are the probability distributions of the total energy before and after

the measurements, respectively.

In this thesis, we mainly focus on “strong instability”, which we define as the case when

less than ten measurements lead to Δ𝐺 & 0.1 independent of 𝑁𝑠.

Let us also stress that the stability measure (2.6) is not unique. Both, the stability

measure Δ𝐺(𝑛), could be defined in alternative ways without changing qualitatively the

general concept of stability of quantum statistical ensembles. In fact, we introduce al-

ternative stability measures in Chapter 3 and apply them to the results of our numerical

investigations.

The above criterion can also be used to determine the lifetime of unconventional quan-

tum ensembles in experiments with non-macroscopic isolated quantum clusters which be-

come increasingly available these days. Hereby, examples are experiments with trapped

ions [75], matter-wave experiments [33], NV-centres [40], few-fermion systems [91] and ex-

periments with bose-gas [89, 45].

2.2 Qualitative discussion

In order to investigate the stability of quantum statistical ensembles, we study the evolution

of the stability measure Δ𝐺(𝑛) with the number of measurements 𝑛. The stability measure
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Δ𝐺(𝑛) quantifies the difference between the energy distribution after 𝑛measurements 𝑔𝑛(𝐸)

and the initial energy distribution 𝑔0(𝐸). Therefore, in order to understand the evolution

of Δ𝐺(𝑛), we focus on how the measurements modify 𝑔(𝐸) in general. Below, we will

learn that the main effects of the local measurements on 𝑔(𝐸) are the narrowing and the

broadening of 𝑔(𝐸). This is why we will often refer to the variance 𝑤2
𝑔 of 𝑔(𝐸) when studying

the stability of 𝑔(𝐸).

Qualitatively, measurements can lead to both narrowing and broadening of 𝑔(𝐸). The

broadening effect of a single measurement is due to the off-diagonal elements of the pro-

jection operator describing the measurement in the basis of the total-energy eigenstates.

The narrowing effect originates from correlations between the total energy of the system

and the measurement outcomes. It can be understood as follows: Broad probability distri-

butions 𝑔(𝐸) can be represented as a mixture of microcanonical (or canonical) ensembles

corresponding to different temperatures 𝑇 (𝐸), which, in turn, imply different probability

distributions of local variables. When a given measurement outcome is much more likely

for one represented temperature than for another, the post-measurement distribution can

be significantly narrower than the initial one.

In terms of the energy scales, the increase of the variance 𝑤2
𝑔 due to the off-diagonal ele-

ments of a local projection operator should normally be of the order of 𝜖21, cf. Appendix A.1,

where 𝜖1 is an appropriately chosen single-particle energy. At the same time, the decrease

of 𝑤2
𝑔 for broad 𝑔(𝐸) can easily be of the order 𝜖21𝑁

2
𝑠 , i.e. much larger. Since we focus

primarily on broad 𝑔(𝐸), we neglect the broadening effect of the measurements unless ex-

plicitly specified otherwise. We further limit our derivations to 𝑔(𝐸) satisfying inequality⃒⃒⃒
𝑑𝑔(𝐸)
𝑑𝐸

⃒⃒⃒
. 𝑔(𝐸)

𝑤can
, where 𝑤can is the width of the energy distribution corresponding to the

canonical ensemble with the same average energy as that of 𝑔(𝐸), cf. Appendix A.3.

Random measurements typically lead to the change of 𝐸av associated with heating, cf.

Appendix A.1. In the case of the canonical ensemble,
√
𝑁𝑠 measurements may easily lead

to the increase of 𝐸av by the value of the order of 𝑤𝑔, which would mean Δ𝐺 ∼ 1. The

condition 𝑛 ≪ √
𝑁𝑠 allows us to neglect the heating for not too low 𝐸av. Technically,

heating can be dealt for macroscopic systems with by introducing a coarse-graining of the

energy axis, cf. Appendix A.2.

2.3 Local measurements

In our analysis, we assume that the local measurements occur naturally. An example here is

a passing photon which becomes entangled with the system and, later, accidentally becomes

measured. While such a process corresponds to an indirect measurement of the system [11,

9], in this thesis, we simplify the analysis by assuming random instantaneous projective

measurements of individual particles in the system [55, 6, 32, 30, 43]. We particularly focus

on local measurements because the interactions involved in the measurement process are

typically local. In the following, we assume that only one particle of the system interacts

with the environmental particle for simplicity.

Let us now elaborate in detail on why we can describe the interaction with the en-
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vironment by assuming projective measurements. An interaction of the system’s particle

with the environmental particle describes a decoherence event [41, 42, 99, 54, 97, 76], cf.

Sec. 1.2.1. The density matrix 𝜌S of the system S after the interaction is obtained from

the joint density matrix 𝜌SP by tracing over the degrees of freedom of the environmental

particle P: 𝜌S = TrP
[︁
𝜌SP

]︁
. The trace operation in turn corresponds to the average over all

possible measurement outcomes for the particle

𝜌S = TrP
[︁
𝜌SP

]︁
=

∑︁
𝑛

⟨𝑛|𝜌SP|𝑛⟩ (2.7)

=
∑︁
𝑛

⟨𝑛|𝒫𝑛𝜌SP𝒫𝑛|𝑛⟩ (2.8)

=
∑︁
𝑛

⟨𝑛|
(︃

𝒫𝑛𝜌SP𝒫𝑛

Tr
[︁
𝒫𝑛𝜌SP𝒫𝑛

]︁)︃|𝑛⟩ Tr[︁𝒫𝑛𝜌SP𝒫𝑛

]︁
(2.9)

=
∑︁
𝑛

⟨𝑛|𝜌SP,𝑛|𝑛⟩ 𝑝(𝑛), (2.10)

where |𝑛⟩ is a basis of the Hilbert space corresponding to the given environmental parti-

cle, 𝒫𝑛 = |𝑛⟩⟨𝑛| is the projection operator on the state |𝑛⟩, 𝑝(𝑛) ≡ Tr
[︁
𝒫𝑛𝜌SP𝒫𝑛

]︁
is the

probability1 for measuring the particle in the state |𝑛⟩ and

𝜌SP,𝑛 ≡ 𝒫𝑛𝜌SP𝒫𝑛

Tr
[︁
𝒫𝑛𝜌SP𝒫𝑛

]︁ (2.11)

is the joint density matrix of the system and the particle which is measured2 in state |𝑛⟩.

The density matrix 𝜌S in Eq. (2.10) is the incoherent weighted sum of reduced density

matrices corresponding to different measurement outcomes for the environmental particle.

Therefore, quantum decoherence, which leads to 𝜌S, describes the average behaviour of

repeated experiments. However, in each individual case in nature and the experiment, only

a single possibility becomes realised. Therefore, by introducing projective measurements,

we focus on the concrete realisations instead on the average behaviour.

After a measurement of the environmental particle, the state of the system is factorised

into the term describing the system and the term describing the environmental particle.

Therefore, we can disregard the term of the environmental particle for the subsequent

analysis. Moreover, a measurement of the environmental particle can be effectively described

as a measurement of the system’s particle it interacted with. This is why we consider local

measurements of the system’s particles in this thesis.

1In the sum of Eq. (2.9), we leave out the terms with vanishing probability 𝑝(𝑛) = Tr
[︁
𝒫𝑛𝜌SP𝒫𝑛

]︁
= 0.

2The density matrix in Eq. (2.11) can be referred to as “conditional density matrix” [79] because the
measurements of the particle are to be understood as effectively arising from the trace operation and are,
therefore, hypothetical.
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2.4 Formulation for lattices of spins-12

We consider a lattice of 𝑁𝑠 spins-12 and examine how multiple random local measurements

affect 𝑔(𝐸). We implement an individual local measurement by selecting a random spin at

a random time and then measuring its projection on a random axis. The measurements are

assumed to occur very rarely with constant average rate per spin 𝜏−1
m (𝜏m is much longer

than the characteristic time of microscopic dynamics). We label measurements by index

𝑛. Each measurement is characterised by the parameters {𝑚𝑛, 𝜗𝑛, 𝜙𝑛}, where 𝑚𝑛 labels

the lattice site of the measured spin and (𝜗𝑛, 𝜙𝑛) are the polar and azimuthal spherical

angles indicating the orientation of the spin after the measurement. The 𝑛-th measurement

is represented by the projection operator 𝒫𝑛.

2.4.1 Projective operator for a local measurement

Technically, the local projection operator 𝒫𝑛 is defined as

𝒫𝑛 = · · ·1𝑚𝑛−1 ⊗ [|𝜗𝑛𝜙𝑛⟩⟨𝜗𝑛𝜙𝑛|]𝑚𝑛
⊗ 1𝑚𝑛+1 · · · , (2.12)

where 1𝑖 is the unit matrix acting on the Hilbert space associated with spin 𝑖 and

|𝜗𝑛𝜙𝑛⟩ = cos

(︂
𝜗𝑛
2

)︂
|↑⟩+ sin

(︂
𝜗𝑛
2

)︂
𝑒𝑖𝜙𝑛 |↓⟩ (2.13)

is the quantum state of a spin polarised into the direction given by the spherical angles

{𝜗𝑛, 𝜙𝑛}. The operator [|𝜗𝑛𝜙𝑛⟩⟨𝜗𝑛𝜙𝑛|]𝑚𝑛
acts on the Hilbert space associated with lattice

site 𝑚𝑛. The operator 𝒫𝑛 is hermitian 𝒫†
𝑛 = 𝒫𝑛 and satisfies the relation of a projector

𝒫𝑛𝒫𝑛 = 𝒫𝑛. It is related to the spin operator 𝑆𝑛 as

𝒫𝑛 =
1

2
1+ 𝑆𝑛, (2.14)

where 𝑆𝑛 is the operator of the 𝑚𝑛-th spin projection on the axis pointing in the direction

{𝜗𝑛, 𝜙𝑛} [74]. Is satisfies the relation 𝑆𝑛|𝜗𝑛𝜙𝑛⟩ = 1
2 |𝜗𝑛𝜙𝑛⟩. The operator 𝑆𝑛 can be formally

obtained as

𝑆𝑛 = 𝒰(𝜗𝑛, 𝜙𝑛) 𝑆𝑚𝑛𝑧 𝒰†(𝜗𝑛, 𝜙𝑛), (2.15)

where 𝒰(𝜗𝑛, 𝜙𝑛) is the spin rotation operator for the spin at lattice site 𝑚𝑛, which rotates

the 𝑧-axis such that it points into the direction given by (𝜗𝑛, 𝜙𝑛) after rotation. The corre-

sponding eigenstates of 𝑆𝑛 are given by 𝒰(𝜗𝑛, 𝜙𝑛)|↑⟩ with eigenvalue +1
2 , and 𝒰(𝜗𝑛, 𝜙𝑛)|↓⟩

with eigenvalue −1
2 .

As an example, for 𝜙𝑛 = 0 and arbitrary 𝜗𝑛, 𝒰(𝜗𝑛, 𝜙𝑛) = exp (−𝑖𝜗𝑛𝑆𝑦). This leads to

𝑆𝑛 = cos (𝜗𝑛)𝑆𝑚𝑛𝑧 + sin (𝜗𝑛)𝑆𝑚𝑛𝑥, (2.16)
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and the corresponding eigenstates of 𝑆𝑛 are

|𝜗𝑛0⟩ = cos

(︂
𝜗𝑛
2

)︂
|↑⟩𝑧 + sin

(︂
𝜗𝑛
2

)︂
|↓⟩𝑧, (2.17)

|𝜗𝑛0⟩ = cos

(︂
𝜗𝑛
2

)︂
|↑⟩𝑧 − sin

(︂
𝜗𝑛
2

)︂
|↓⟩𝑧, (2.18)

where |𝜗𝑛0⟩ and |𝜗𝑛0⟩ are defined such that 𝑆𝑛|𝜗𝑛0⟩ = 1
2 |𝜗𝑛0⟩ and 𝑆𝑛|𝜗𝑛0⟩ = −1

2 |𝜗𝑛0⟩.
In principle, the stability criterion introduced above also allows for a broader definition

of local measurements. Any arbitrary measurements of observables which can be written

as a sum of local observables can also be admitted for the stability measure Δ𝐺(𝑛).

2.4.2 Modification of the energy distribution due to measurements

We denote the initial density matrix of the total system as 𝜌0 and the initial 𝑔(𝐸) as

𝑔0(𝐸). The same two quantities after 𝑛 measurements are denoted as 𝜌𝑛 and 𝑔𝑛(𝐸). The

transformation from 𝜌𝑛−1 to 𝜌𝑛 reads

𝜌𝑛 =
𝒫𝑛𝑒

−𝑖ℋ(𝑡𝑛−𝑡𝑛−1)𝜌𝑛−1𝑒
𝑖ℋ(𝑡𝑛−𝑡𝑛−1)𝒫†

𝑛

Tr
[︁
𝒫𝑛𝑒−𝑖ℋ(𝑡𝑛−𝑡𝑛−1)𝜌𝑛−1𝑒𝑖ℋ(𝑡𝑛−𝑡𝑛−1)𝒫†

𝑛

]︁ , (2.19)

where 𝑡𝑛 is the time of the 𝑛-th measurement. Although 𝒫𝑛 is hermitian, we keep the

notation 𝒫†
𝑛 for a moment for the sake of clarity. Based on the relation (2.19), one obtain

𝑔𝑛(𝐸) =
1

𝐵

[︁
𝒫†
1𝑒

𝑖ℋ(𝑡2−𝑡1)𝒫†
2 · · · 𝒫†

𝑛𝒫𝑛 · · · 𝒫2𝑒
−𝑖ℋ(𝑡2−𝑡1)𝒫1

]︁
diag

(𝐸) 𝑔0(𝐸), (2.20)

where [· · · ]diag(𝐸) denotes the diagonal elements of the operator in the energy basis averaged

over suitably chosen energy bins3. It is important to notice that Eq. (2.20) is a relation

between 𝑔𝑛(𝐸) and 𝑔0(𝐸) which is local in energy. We present the derivation of Eq. (2.20)

in Appendix A.3.

For long 𝜏m, the effect of individual measurements in Eq. (2.20) normally factorises,

which leads to

𝑔𝑛(𝐸) =
1

𝐵𝑛
[𝒫𝑛]diag(𝐸) 𝑔𝑛−1(𝐸), (2.21)

where 𝐵𝑛 is the normalisation factor, and, according to Eq. (2.14),

[𝒫𝑛]diag(𝐸) =
1

2
+ [𝑆𝑛]diag(𝐸). (2.22)

The action of each measurement thus consists of multiplying of 𝑔(𝐸) by [𝒫𝑛]diag(𝐸) and

then renormalising the result.

The derivation of Eq. (2.21) goes as follows. For a long time delay between measurements

𝜏m, the system typically loses the memory of the previous measurements locally by the time

a new measurement occurs [57]. Here, we use the concept of memory loss in the sense

that, for all practical purposes, the density matrix before the next measurement can be

3For details, see Appendix A.2.
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approximated as being diagonal in the energy basis. This allows us to treat measurements

iteratively by using the same approximation as the one that led to Eq. (2.20), namely, we

replace 𝑔0(𝐸) by 𝑔𝑛−1(𝐸) and 𝒪 by 𝒫𝑛 thereby obtaining

𝑔𝑛(𝐸) =
1

𝐵𝑛

[︁
𝒫†
𝑛𝒫𝑛

]︁
diag

(𝐸) 𝑔𝑛−1(𝐸) =
1

𝐵𝑛
[𝒫𝑛]diag(𝐸) 𝑔𝑛−1(𝐸), (2.23)

which is the same as Eq. (2.21)4. Above, we used 𝒫†
𝑛 = 𝒫𝑛 and 𝒫𝑛𝒫𝑛 = 𝒫𝑛. This concludes

our derivation.

Applying relation (2.21) iteratively 𝑛 times, we obtain

𝑔𝑛(𝐸) =
𝑛∏︁

𝑖=1

1

𝐵𝑖
[𝒫𝑖]diag(𝐸)𝑔0(𝐸). (2.24)

Finally, for the stability measure (2.6) averaged over all possible outcomes of 𝑛 measure-

ments, we obtain

Δ𝐺(𝑛)=

∫︁ ⃒⃒⃒⃒ 𝑛∏︁
𝑖=1

1

𝐵𝑖
[𝒫𝑖]diag(𝐸)− 1

⃒⃒⃒⃒
𝑔0(𝐸)𝑑𝐸, (2.25)

where the bar denotes the result of averaging.

The average in Eq. (2.25) is to be taken over all free parameters. For each measurement,

there are four parameters: a pair of spherical angles {𝜗𝑛, 𝜙𝑛} for the measurement outcome,

the lattice site 𝑚𝑛 and the measurement time 𝑡𝑛. Therefore, Δ𝐺(𝑛) is, in principle, to be

averaged over 4𝑛 parameters.

2.4.3 Relation to the Bayes’ theorem

Before applying the above results to lattices of spins-12 , let us focus on the relations in

Eq. (2.20) and Eq. (2.23) which describe the modifications of 𝑔(𝐸) due to measurements.

In this section, we argue that these relations are intimately connected with the Bayes’

theorem known from statistics. First, we recapitulate the Bayes’ theorem which is usually

stated as

𝑃 (𝐴|𝐵) =
1

𝑃 (𝐵)
𝑃 (𝐵|𝐴)𝑃 (𝐴), (2.26)

where 𝐴 and 𝐵 denote probabilistic events, 𝑃 (𝐴) and 𝑃 (𝐵) are the probabilities of the

individual events, 𝑃 (𝐴|𝐵) is the conditional probability for observing event 𝐴 provided

event 𝐵 occurred and likewise for 𝑃 (𝐵|𝐴). An example here is the process of throwing a

dice and individual events in this context can be 𝐴: “throw a 5” and 𝐵: “throw an odd

number”.
4In practice, Eq. (2.23) is valid as long as the delay between measurements 𝜏m is much longer than

the characteristic time scales of system’s microscopic dynamics. These characteristic time scales are, for
example, of the order of 1

𝐻𝑧
for Hamiltonian (2.27), or of the order of 1

𝐽
for interacting spin systems, where 𝐽

is the typical coupling constant in Hamiltonian (2.42). There may be anomalous situations, when the above
limit is not realisable. An example is the Ising model defined by 𝐽𝑥 = 𝐽𝑦 = 0 in Hamiltonian (2.42). In this
case, a single-spin measurement is not correlated with the total energy of the system, while the measurement
of two neighbouring spins is correlated, and, at the same time, the system has anomalously many local
integrals of motion (𝑧-components of spins). As a result, the expression (2.20) for the measurement of a
pair of neighbouring spins cannot be approximated by the result of two successive applications of Eq. (2.23)
no matter how long the delay between the two measurements is.
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The formulation of the Bayes’ theorem in Eq. (2.26) resembles the Eq. (2.20) and

Eq. (2.23). For simplicity, we focus on Eq. (2.23) in the following and establish the re-

lations between the individual objects in Eq. (2.23) and Eq. (2.26). The events 𝐴 and

𝐵 correspond to 𝐴: “measuring energy 𝐸” and 𝐵: “measuring the outcome described by

the projector 𝒫𝑛”. Therefore, in Eq. (2.23), 𝑔𝑛(𝐸) can be interpreted as the conditional

probability distribution of energy given the 𝑛-th measurement outcome. The bin average

[𝒫𝑛]diag(𝐸) in turn is the conditional probability for the measurement outcome described

by the projector 𝒫𝑛 given the microcanonical energy distribution at energy 𝐸. The normal-

isation coefficient 𝐵𝑛 is the total probability for obtaining the above measurement outcome

and 𝑔𝑛−1(𝐸) is probability distribution of energy corresponding to 𝑃 (𝐴) in Eq. (2.26).

The discussion is to emphasise the correlations between the total energy 𝐸 and the

measurement outcomes 𝒫𝑛. As a result of this correlation, the cutting function [𝒫𝑛]diag(𝐸)

is not a constant function. Applying the cutting function to 𝑔(𝐸), therefore, modifies 𝑔(𝐸)

and induces narrowing in this way.

2.5 Specific examples of lattices of spins-12

In this section, we apply the general formulation for spins-12 to non-interacting spins in a

magnetic field and to spin systems with nearest-neighbour interaction.

2.5.1 Spins in magnetic field

Let us now turn to the specific example of non-interacting spins in a uniform magnetic field

𝐻𝑧 with Hamiltonian

ℋ = −𝐻𝑧

∑︁
𝑖

𝑆𝑖𝑧, (2.27)

where 𝑆𝑖𝑥, 𝑆𝑖𝑦 and 𝑆𝑖𝑧 are spin operators on the 𝑖-th lattice site.

In this case, the outcome of a single spin measurement normally correlates with the

total energy of the system and, therefore, leads to a significant narrowing of 𝑔(𝐸) governed

by Eq. (2.21). A calculation based on Eq. (2.22) gives

[𝒫𝑛]diag(𝐸) =
1

2
− cos(𝜗𝑛)

𝐸

𝐸max − 𝐸min
, (2.28)

where 𝐸max = 𝐻𝑧𝑁𝑠
2 is the highest energy eigenstate and 𝐸min = −𝐻𝑧𝑁𝑠

2 is the lowest energy

eigenstate.

The expression (2.28) can either be obtained by the following consideration or by an

explicit calculation presented in Appendix A.1. Since the Hamiltonian ℋ in Eq. (2.27) is

diagonal in the product basis of individual spin states | ↑⟩𝑧 and | ↓⟩𝑧, we obtain for the

expectation value of the 𝑧-polarisation of spin 𝑛

⟨𝑆𝑛𝑧⟩ =
⟨(𝑆𝑧)tot⟩
𝑁𝑠

= − 𝐸

𝑁𝑠𝐻𝑧
= − 𝐸

𝐸max − 𝐸min
, (2.29)
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where ⟨(𝑆𝑧)tot⟩ ≡
∑︀

𝑛⟨𝑆𝑛𝑧⟩. With ⟨𝑆𝑛⟩ = ⟨𝑆𝑛𝑧⟩ cos(𝜗𝑛), this yields

[𝑆𝑛]diag (𝐸) = − cos(𝜗𝑛)
𝐸

𝐸max − 𝐸min
. (2.30)

Substituting this result into Eq. (2.14) gives Eq. (2.28). This concludes our derivation.

The expression (2.28) together with Eq. (2.21) thus yields

𝑔𝑛(𝐸) =
1

𝐵𝑛

(︂
1

2
− cos(𝜗𝑛)

𝐸

𝐸max − 𝐸min

)︂
𝑔𝑛−1(𝐸). (2.31)

The action of this transformation consists of “cutting” 𝑔𝑛−1(𝐸) by function

[𝒫𝑛]diag(𝐸) and then renormalising the result. This “cutting” normally makes 𝑔𝑛(𝐸) nar-

rower than 𝑔𝑛−1(𝐸). The outcome of the next measurement can, in principle, lead to the

opposite effect, but it is more probable that it will lead to further narrowing because the

probability of subsequent measurement outcomes is determined by the narrower 𝑔𝑛(𝐸).

After many iterations, the drastic narrowing of 𝑔(𝐸) becomes overwhelmingly probable.

Figure 2.1 schematically illustrates the effect of a sequence of transformations (2.21)

applied to an initial two-peak distribution which we approximate by

𝑔0(𝐸) ≈ 1

2
[𝛿(𝐸 − 𝐸1) + 𝛿(𝐸 − 𝐸2)], (2.32)

where 𝛿(...) is Dirac delta-function. This approximation is valid as long as the width of

each individual peak is much smaller than the distance between the peaks 𝐸2 −𝐸1. In this

case, one of the two peaks dominates 𝑔𝑛(𝐸) for 𝑛→ ∞.

Figure 2.2 presents computed Δ𝐺(𝑛) for the above 𝑔0(𝐸). In each case, we obtain

Δ𝐺(𝑛) > 0.1 after nine measurements independently of the number of spins in the system,

which implies “strong instability”. In Fig. 2.2, we also show an analytical approximation,

namely,

Δ𝐺(𝑛) ≈
√︀

1− 𝑒−𝜆𝑛, (2.33)

where

𝜆 ∼= 𝑢2(𝐸2 − 𝐸1)
2 (2.34)

and

𝑢 ≡
⃒⃒⃒⃒
𝑑 [𝒫𝑛]diag(𝐸)

𝑑𝐸

⃒⃒⃒⃒
∼ 1

𝐸max − 𝐸min
. (2.35)

The derivation of this approximation is given in Appendix A.4. In Fig. 2.2, all three curves

have been plotted with the same value for the parameter 𝜅 such that 𝜆 = 0.3
(︁

𝐸1−𝐸2
𝐸max−𝐸min

)︁2
.

As an example for the narrowing of a general broad 𝑔(𝐸), we sketch the effect of a

sequence of transformations (2.21) in Fig. 2.3.

Let us also consider the initial Gaussian distribution

𝑔0(𝐸) ∼= exp

[︃
−(𝐸 − 𝐸0)

2

2𝑤2
𝑔,0

]︃
(2.36)

defined by parameters 𝐸0 and 𝑤𝑔,0, where 𝑤𝑔,0 ≪ 𝐸max − 𝐸min. After 𝑛 measurements,
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Figure 2.1: (Colour online) Schematic representation of the evolution of a two-peak energy
distribution 𝑔𝑛(𝐸) (solid red lines) governed by Eq. (2.21): 𝑔0(𝐸) = 1/2[𝛿(𝐸 − 𝐸1) +
𝛿(𝐸 − 𝐸2)]; 𝑔1(𝐸) ∼= [𝒫1]diag(𝐸) 𝑔0(𝐸); 𝑔2(𝐸) ∼= [𝒫2]diag(𝐸) 𝑔1(𝐸). Here [𝒫1]diag(𝐸) and
[𝒫2]diag(𝐸) (dashed blue lines) correspond to two single-spin measurements with respective
outcomes 𝜗1 = 𝜋 and 𝜗2 = 𝜋 substituted in Eq. (2.28).

Figure 2.2: (Colour online) Averaged ensemble stability measure Δ𝐺(𝑛) as a function of the
number of measurements 𝑛 for a two-peak initial distribution 𝑔𝑛(𝐸). Points represent exact
numerically computed results. Lines correspond to the approximated expression Δ𝐺(𝑛) ≈√
1− 𝑒−𝜆𝑛 with 𝜆 = 0.3 (𝐸1−𝐸2)2

(𝐸max−𝐸min)2
. Different colours represent different pairs of values for

(𝐸1,𝐸2): blue (circles) (−0.9,0.9), yellow (squares) (−0.9,0.0), green (rhombi) (−0.9,−0.6)
in units where 𝐸min=−1 and 𝐸max=1.
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Figure 2.3: (Colour online) Schematic representation of the evolution of a broad 𝑔𝑛(𝐸)
(solid red lines) governed by Eq. (2.21). Here [𝒫𝑖]diag(𝐸) (dashed blue lines) correspond to
single-spin measurements with given outcomes substituted in Eq. (2.28).

31



Chapter 2. Stability of Quantum Statistical Ensembles with Respect to Local

Measurements

𝑔𝑛(𝐸) remains approximately Gaussian with the width 𝑤𝑔,𝑛 following the relation[︂
1

𝑤2
𝑔,𝑛

]︂
=

1

𝑤2
𝑔,0

+ 𝑢2𝑛, (2.37)

cf. Appendix A.5. This relation leads to Δ𝐺(𝑛) ∼ 1 when 1
𝑤2

𝑔,𝑛
∼ 2

𝑤2
𝑔,0
, which corresponds

to the number of measurements 𝑛𝑐𝑟 ∼ 1
𝑤2

𝑔,0𝑢
2 . According to our criterion, the border case

for the ensemble stability corresponds to 𝑛𝑐𝑟 ∼ √
𝑁𝑠, which implies that the ensemble is

unstable for

𝑤𝑔,0 ≫
𝐸max − 𝐸min

4
√
𝑁𝑠

. (2.38)

An ensemble with 𝑤𝑔,0 . (𝐸max − 𝐸min)/
4
√
𝑁𝑠 may still become narrower due to measure-

ments, but the criterion calls it “stable”, because the narrowing is relatively slow.

We finally note that, for 𝑤𝑔,0 ∼ 𝜖1
√
𝑁𝑠, where 𝜖1 ≡ 𝐸max−𝐸min

𝑁𝑠
is the characteristic

single-spin energy, the decrease of the variance as a result of one measurement is

𝑤2
𝑔,1 − 𝑤2

𝑔,0 ≈ 𝑤4
𝑔,0𝑢

2 ∼ 𝜖21, (2.39)

which is of the same order of magnitude as the increase of 𝑤2
𝑔 due to the broadening effect

mentioned earlier. Therefore, it is reasonable to expect that, for some

𝑤𝑔,0 ∼ 𝜖1
√︀
𝑁𝑠, (2.40)

the narrowing effect would compensate the broadening effect, and hence such an ensemble

is absolutely stable with respect to measurements. Remarkably, this 𝑤𝑔,0 is of the order of

the width of the canonical ensemble [60, 46] for 𝑇 & 𝜖1. In Fig. 2.4, we provide an overview

of the different regimes of stability or instability of a Gaussian 𝑔(𝐸) as a function of the

width 𝑤𝑔.

Given that the system is measured on average once per time 𝜏m
𝑁𝑠

, the above estimates

for 𝜆 and for 𝑛𝑐𝑟 imply that the characteristic time for gaining Δ𝐺 ∼ 1 is

𝜏1 ∼ 𝜏m
𝜖21𝑁𝑠

𝑤2
𝑔

. (2.41)

wg ∼ 0 wg ∼ wcan
wg ∼

Emax−Emin
4
√
Ns

wg ∼ Emax − Emin

ensembles may

but they are called stable
become narrower

unstable

absolute stability

become broader
ensembles may

but they are
called stable

Figure 2.4: Illustration of the stability and instability of quantum statistical ensembles with
a Gaussian energy distribution depending on the value of the width 𝑤𝑔. The horizontal axis
is the logarithm of 𝑤𝑔.
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For a macroscopic system, 𝜏1 is extremely short unless 𝑤𝑔 ≤ 𝜖1
√
𝑁𝑠.

2.5.2 Systems of interacting spins

Now, we turn to a lattice of interacting spins-12 . We consider the following general Hamil-

tonian with nearest-neighbour interaction

ℋ = −
∑︁
𝑖<𝑗

𝐽𝑥𝑆𝑖𝑥𝑆𝑗𝑥 + 𝐽𝑦𝑆𝑖𝑦𝑆𝑗𝑦 + 𝐽𝑧𝑆𝑖𝑧𝑆𝑗𝑧, (2.42)

where 𝐽𝑥, 𝐽𝑦 and 𝐽𝑧 are the coupling constants. In contrast to the previous case of spins in

a magnetic field in Eq. (2.27), the outcome of a single measurement here is not correlated

with the total energy of the system and, hence, does not induce narrowing of 𝑔(𝐸). At least

two accidental measurements sufficiently close in space and time are required for this. The

reason is that the energy 𝐸 now depends on the relative orientation of spins but not on the

orientation of each spin relative to an external magnetic field.

Let us now consider two such measurements 𝑛 and 𝑛− 1 at times 𝑡𝑛 > 𝑡𝑛−1. The same

treatment that led to Eq. (2.21) now gives

𝑔𝑛(𝐸) =
1

𝐵𝑛

[︁
𝒜†

𝑛,𝑛−1𝒜𝑛,𝑛−1

]︁
diag

(𝐸) 𝑔𝑛−2(𝐸), (2.43)

where 𝒜𝑛,𝑛−1 = 𝒫𝑛𝑒
−𝑖ℋ(𝑡𝑛−𝑡𝑛−1)𝒫𝑛−1. Substituting Eq. (2.14), we obtain[︁

𝒜†
𝑛,𝑛−1𝒜𝑛,𝑛−1

]︁
diag

(𝐸) =
1

4
− 1

2

[︁{︀
𝑆𝑛(𝑡𝑛), 𝑆𝑛−1(𝑡𝑛−1)

}︀]︁
diag

(𝐸)

+
[︁
𝑆𝑛−1(𝑡𝑛−1)𝑆𝑛(𝑡𝑛)𝑆𝑛−1(𝑡𝑛−1)

]︁
diag

(𝐸), (2.44)

where
{︀
𝑆𝑛(𝑡𝑛), 𝑆𝑛−1(𝑡𝑛−1)

}︀
≡ 𝑆𝑛(𝑡𝑛)𝑆𝑛−1(𝑡𝑛−1) + 𝑆𝑛−1(𝑡𝑛−1)𝑆𝑛(𝑡𝑛) is anti-commutator of

spin operators.

The derivation of Eq. (2.44) goes as follows. Substituting𝒜𝑛,𝑛−1 = 𝒫𝑛𝑒
−𝑖ℋ(𝑡𝑛−𝑡𝑛−1)𝒫𝑛−1

into the function
[︁
𝒜†

𝑛,𝑛−1𝒜𝑛,𝑛−1

]︁
diag

(𝐸) in Eq. (2.43), we first obtain

[︁
𝒜†

𝑛,𝑛−1𝒜𝑛,𝑛−1

]︁
diag

(𝐸) =
[︁
𝒫†
𝑛−1(0)𝒫†

𝑛(𝑡𝑛 − 𝑡𝑛−1)𝒫𝑛(𝑡𝑛 − 𝑡𝑛−1)𝒫𝑛−1(0)
]︁
diag

(𝐸)

=
[︁
𝒫𝑛−1(0)𝒫𝑛(𝑡𝑛 − 𝑡𝑛−1)𝒫𝑛−1(0)

]︁
diag

(𝐸). (2.45)

Further, substituting the relation 𝒫𝑛 = 1
21 + 𝑆𝑛 in Eq. (2.45) leads to Eq. (2.44) if

[𝑆𝑛]diag(𝐸) = 0. This concludes our derivation.

Once the spin projections measured in the (𝑛− 1)-th and 𝑛-th measurements are speci-

fied and the value of energy 𝐸 is fixed, the last two terms on the right-hand side of Eq. (2.44)

can be considered as spin correlation functions associated with the corresponding micro-

canonical ensemble5. This relation is formulated more precisely below. The two terms

5For the usual definition of the correlation function, the product of individual spins expectation values is
subtracted from the spin-spin expectation value. Therefore, the usual spin correlation function is governed
by the fluctuations of the spin-spin expectation value around its mean value. In Eq. (2.44), we call solely the
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depend on the time delay and the distance between the two measurements. We characterise

the overall behaviour of the above two terms by correlation time 𝜏corr(𝐸) and correlation

length 𝜉(𝐸). This behaviour is, in principle, accessible experimentally.

The three-spin term in Eq. (2.44) should typically be significantly smaller than the two-

spin term. First, the three-spin term is smaller than the two-spin term by a factor of 1
2 due

to the definition of the spin operator 𝑆𝑖𝑥 = 1
2𝜎𝑖𝑥, where 𝜎𝑖𝑥 is a Pauli matrix. Further, for

the time delay 𝑡𝑛− 𝑡𝑛−1 = 0, the three-spin term vanishes if 𝑚𝑛−1 ̸= 𝑚𝑛, which means that

different spins were measured.

Relation to conventional spin correlation functions

The expressions

[{𝑆𝑛(𝑡𝑛 − 𝑡𝑛−1), 𝑆𝑛−1(0)}]diag(𝐸) (2.46)

and

[𝑆𝑛−1(0)𝑆𝑛(𝑡𝑛 − 𝑡𝑛−1)𝑆𝑛−1(0)]diag(𝐸) (2.47)

on the right-hand side of Eq. (2.44) mean the microcanonical average for the energy bin

corresponding to energy 𝐸. Therefore, these expressions can be related to the conventional

equilibrium spin correlation function at temperature 𝑇 corresponding to the average energy

𝐸av = 𝐸 (the relation 𝑇 (𝐸av) is defined in Sec. 1.1.1). We use canonical typicality, which

means that arbitrary quantum superpositions chosen from a narrow energy interval typically

lead to same expectation values. Therefore, the expectation value for the bin corresponding

to energy 𝐸 equals the expectation value for the microcanonical ensemble corresponding to

temperature 𝑇 (𝐸).

To give an example, let us assume that the outcome of the 1st measurement is

𝜗1 = 0, 𝜙1 = 0 (spin 1 points into the positive 𝑧-direction) and the outcome of the

2-nd measurement is 𝜗2 = 𝜋
2 , 𝜙2 = 0 (spin 2 points into the positive 𝑥-direction). For

the two-spin term, we then obtain6[︁
{𝑆2(𝑡2 − 𝑡1), 𝑆1(0)}

]︁
diag

(𝐸) = ⟨{𝑆𝑥(𝑟⃗2 − 𝑟⃗1, 𝑡2 − 𝑡1), 𝑆𝑧(0)}⟩𝑇 (𝐸) , (2.49)

where 𝑟⃗𝑛 is the position of the 𝑛-th measured spin.

It is also noteworthy that conventional spin correlation functions are accessible experi-

mentally, possibly by means of the fluctuation-dissipation theorem [50].

spin-spin expectation value as the spin correlation function. For this correlation function, the fluctuations
of the spin-spin expectation value play a minor role.

6These correlation functions are not to be confused with those, where the product of individual expec-
tation values for the individual operators is subtracted as for example

⟨𝛿𝑆𝑥𝛿𝑆𝑧⟩ = ⟨𝑆𝑥𝑆𝑧⟩ − ⟨𝑆𝑥⟩ ⟨𝑆𝑧⟩ , (2.48)

where 𝛿𝑆𝑥 ≡ 𝑆𝑥−⟨𝑆𝑥⟩. Such correlation functions are primarily useful for studying the fluctuation properties
of the given operators which play a minor role for our treatment.
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Characteristic time required to gain Δ𝐺 ∼ 1

Now, we estimate the characteristic time 𝜏2 required to gain Δ𝐺 ∼ 1. We make the

assumption justified by the final result that 𝜏2 ≪ 𝜏corr(𝐸) for all energies 𝐸. Therefore, we

set the time delay in Eq. (2.44) effectively to zero. The value of 𝜏2 is strongly influenced

by the presence of magnetic order within the range of energies covered by 𝑔0(𝐸). If all or

a significant part of 𝑔0(𝐸) is within the magnetically ordered phase, where 𝜉(𝐸) is infinite,

then each measurement correlates with all previous ones. The overall situation resembles

the case of Hamiltonian (2.27), with external magnetic field substituted by the local field

created by the ordered neighbours of each spin. In such a case, 𝜏2 ∼ 𝜏1 given by Eq. (2.41).

In the paramagnetic (non-ordered) phase, 𝜉(𝐸) is finite. For the estimate of 𝜏2, let us

assume that 𝜉(𝐸) is equal to the nearest-neighbour distance. In this case, Eq. (2.44) implies

that sufficiently many accidental measurements of the pairs of nearby spins must occur to

make Δ𝐺 ∼ 1, which makes 𝜏2 significantly longer than for the ordered phase. Specifically,

we obtain in Sec. A.6 that

𝜏2 ∼ 𝜏1
√︀
𝑁𝑠 ≫ 𝜏1. (2.50)

This estimate, together with Eq. (2.41) implies that, for 𝑤𝑔 ∼ 𝐸max−𝐸min, 𝜏2 ∼= 𝜏m√
𝑁𝑠

, which

is still very short. However, since 𝑛 ∼ √
𝑁𝑠 measurements are required to gain Δ𝐺 ∼ 1,

our criterion defines the ensemble as stable with respect to single-spin measurements. This,

however, does not mean the overall stability: measurements of the total spin of nearest

neighbours, which are also admitted by our stability criterion as “local”, would easily lead

to

𝜏2 ≪
𝜏m√
𝑁𝑠

(2.51)

and 𝑛≪ √
𝑁𝑠 thus rendering the ensemble unstable.

We additionally note here that applying an external magnetic field to the paramagnetic

phase would drastically shorten 𝜏2, because, in this case, single-spin measurements described

by Eq. (2.28) would cause a much faster ensemble narrowing.

Ising model

In order to further illustrate the above considerations, we study the Ising model, which is

a special case of the Hamiltonian in Eq. (2.42) with 𝐽𝑥 = 0 and 𝐽𝑦 = 0

ℋIsing = −
∑︁
𝑖<𝑗

𝐽𝑧𝑆𝑖𝑧𝑆𝑗𝑧. (2.52)

The application of the above general results to the Ising model is rather problematic because

of the many integrals of motion associated with the 𝑧-component of each spin. This can be

readily realised by checking the relation

[ℋIsing, 𝑆𝑙𝑧] = 0, (2.53)

for each spin at lattice site 𝑙. The consequence is that the total effect of 𝑛 measurements

in Eq. (2.20) cannot be decomposed into effects of measurements of individual spin-pairs as
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Measurements

in Eq. (2.43).

Nevertheless, we shall assume in this section that the total effect of measurements is

describable by the effects of spin-pair measurements and that only measurements of nearest

neighbours correlate with total energy. This may be a good assumption particularly in the

high-temperature limit. Further, we assume that the three-spin term in Eq. (2.44) can be

neglected. In this case, Eq. (2.44) results in[︁
𝒜†

𝑛,𝑛−1𝒜𝑛,𝑛−1

]︁
diag

(𝐸) =
1

4
− 1

2
cos(𝜗𝑛) cos(𝜗𝑛−1)

𝐸

𝐸max − 𝐸min
, (2.54)

where 𝐸max = 𝐽𝑧𝑁𝑠
4 and 𝐸min = −𝐽𝑧𝑁𝑠

4 . The application of the expression in Eq. (2.54)

leads to the same kind of narrowing of 𝑔(𝐸) as Eq. (2.28).

Let us now briefly sketch the derivation of Eq. (2.54). For the nearest-neighbour Ising

model with Hamiltonian (2.52), the total energy of the system is a function of the number

of parallel and anti-parallel spin-pairs

⟨𝑆𝑛𝑧𝑆(𝑛−1)𝑧⟩ =
⟨
(︀
𝑆𝑧𝑆(𝑛−1)𝑧

)︀
tot

⟩
𝑁𝑠

= − 𝐸

𝑁𝑠𝐽𝑧
= −1

2

𝐸

𝐸max − 𝐸min
. (2.55)

With ⟨𝑆𝑛𝑆𝑛−1⟩ = ⟨𝑆𝑛−1𝑆𝑛⟩ = ⟨𝑆𝑛𝑧𝑆(𝑛−1)𝑧⟩ cos(𝜗𝑛) cos(𝜗𝑛−1), the nearest-neighbour spin

correlation function for the Ising model in the non-ordered (paramagnetic) phase reads

1

2

[︁
{𝑆𝑛(𝑡𝑛 − 𝑡𝑛−1), 𝑆𝑛−1(0)}

]︁
diag

(𝐸) =
1

2
cos(𝜗𝑛) cos(𝜗𝑛−1)

𝐸

𝐸max − 𝐸min
. (2.56)

Given Eq. (2.44), this leads to Eq. (2.54) when neglecting the three-spin term. This con-

cludes our derivation.

2.5.3 Interacting spins in a magnetic field

Now, we consider the effect of local measurements for a general spin lattice with a short-

range interaction in an external magnetic field. We expect in this case that a local measure-

ment, whose possible outcomes correlate with the total energy of the system, would have a

narrowing effect comparable to that of the single-spin measurement for Hamiltonian (2.27).

The effect is to be describable by Eq. (2.21) with the cutting functions [𝒫𝑛]diag(𝐸) expressed

in terms of appropriate projection operators. These functions are, in general, not linear in

𝐸, but ⃒⃒⃒⃒
𝑑 [𝒫𝑛]diag(𝐸)

𝑑𝐸

⃒⃒⃒⃒
∼ 1

𝜖1𝑁𝑠
, (2.57)

meaning that the estimate (2.41) for the ensemble-narrowing time and the argument for the

proximity of the canonical ensemble to the absolute stability threshold remain valid.

Let us for a moment also consider a more general spin Hamiltonian. We define the

𝑘-local spin Hamiltonian as

ℋ𝑘 =
∑︁
𝑖

ℋ𝑘,𝑖, (2.58)

where each operator ℋ𝑘,𝑖 involves 𝑘 spin operators. For example, the Hamiltonian (2.27) for
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a spins in an external magnetic field is a 1-local Hamiltonian, and the Hamiltonian (2.52)

for the Ising model is a 2-local Hamiltonian. Such 𝑘-local Hamiltonians are often used in

the quantum complexity theory.

For a spin system with a 𝑘-local Hamiltonian, the measurement outcomes of 𝑘 measure-

ments of single spins within a sufficient short time interval are normally correlated with the

total energy of the system. The measurement outcomes of less than 𝑘 measurements are,

in general, not correlated with the total energy of the system.

In the definition (2.58), the 𝑘 spin operators entering the terms ℋ𝑘,𝑖 are not constrained

to a spatially localised subsystem. For physical systems, though, the set of 𝑘 spin operators

for eachℋ𝑘,𝑖 is usually confined to small subsystems in the three-dimensional physical space.

Therefore, the measurement outcomes of 𝑘 measurements correlate with total energy when

the measured spins also lie within a small subsystem.

2.6 Discussion and summary of results

Before summarising, let us first make the following two remarks.

1. According to our stability criterion, ensembles with broad 𝑔(𝐸) are not stable. In par-

ticular, the QMC ensemble [19] introduced in Sec. 1.1.4 is not stable with respect to

local measurements, because it implies a broad 𝑔(𝐸). In particular, the energy distri-

bution for small subsystems has the form of two widely separated peaks corresponding

to 𝑇 = 0 and 𝑇 = ∞ respectively [19].

2. Experiments aiming at protecting unconventional statistical ensembles for finite spin

systems should avoid: (i) external magnetic fields, (ii) long-range order, (iii) local

constants of motion. Effectively, each of the above points increase the measurement

frequency and thereby decrease the lifetime of a statistical ensemble.

Let us now conclude by summarising the results of this chapter. First, we formulated a

stability criterion for statistical ensembles describing macroscopic systems which is suitable

for a broad range of many-body systems. An ensemble is called “stable” when a small

number of local measurements cannot significantly modify the probability distribution of

the total energy of the system. We applied this stability criterion to lattices of spins-12
and analytically derived relations which describe the effect of local measurements on the

probability distribution of the total energy 𝑔(𝐸). The results are somewhat non-intuitive

as, for example, that the cutting function [𝒫𝑛]diag(𝐸) for spins in a magnetic field is a linear

function of the total energy 𝐸.

Further, we have shown that even relatively rare local measurements impose strict con-

straints on quantum statistical ensembles. Quantum statistical ensembles characterised by

𝑔(𝐸) which is significantly broader than that of a canonical ensemble are unstable. In con-

trast, quantum statistical ensembles characterised by 𝑔(𝐸) having a width which is of the

same order as that of the Gibbs distribution are nearly stable in its absolute sense; namely,

for this width, the broadening effect and the narrowing effect compensate each other.
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The above results justify the use of statistical ensembles with narrow 𝑔(𝐸) for equilib-

rium description of macroscopic systems. Provided that a quantum system is prepared in

a quantum state corresponding to a broad 𝑔(𝐸), this quantum state will be modified in a

rather short time interval during which 𝑔(𝐸) becomes significantly narrower. Typically, the

lifetime of broad 𝑔(𝐸) is short to such extent that a narrow 𝑔(𝐸) can be assumed for all

practical calculations.

The analytical treatment of lattices of spins-12 presented in this chapter is based on

derivations which involve system-specific mathematical techniques such that the results

may be not applicable beyond spin lattices. However, the basic concept of the stability

of statistical ensembles can be applied to all physical systems in principle. Moreover, we

are confident that similar results as that described above may also be obtained for other

systems, for example systems with mechanical degrees of freedom.
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Chapter 3

Numerical Investigation of the

Stability of Quantum Statistical

Ensembles

In this chapter, we numerically investigate the stability of quantum statistical ensembles for

lattices of interacting spins-12 . The motivation for this study is to test the analytical results

of the previous chapter. There, we were able to derive a relation describing the modifications

of 𝑔(𝐸) due to local measurements for spins in a magnetic field and for the Ising model in

the high-temperature regime. We have also made estimates for general interacting systems

which are difficult to treat analytically. The aim of this chapter is, therefore, to simulate

interacting spins systems and to compare the numerical results with the expectations from

the analytical treatment.

In our numerical approach, we employ the property of quantum systems known as

quantum typicality1. Quantum typicality means that, for quantum systems of increasing

size, each wave function with a given energy distribution 𝑔(𝐸) behaves in an increasingly

typical manner. If we draw wave functions with a given 𝑔(𝐸) at random, the system

exhibits locally the same behaviour for almost all wave functions. Therefore, it seems

as if the properties of the system are governed by 𝑔(𝐸). This is why, we can identify

a randomly chosen wave function with its energy distribution 𝑔(𝐸). By repeating the

numerical simulation for different initial wave functions each of which corresponds to the

given 𝑔(𝐸), we obtain the stability of 𝑔(𝐸).

Before going into details, let us make a few remarks about the system sizes that are

available in numerical investigations on modern computers. The results of the previous

chapter were derived for macroscopic systems with the number of spins being 𝑁𝑠 ∼ 1023.

In numerical calculations, though, these system sizes are not accessible without resorting to

semi-classical or classical approximations. Since we do not make such approximations here,

we are limited to system sizes of 𝑁𝑠 . 24 which are microscopic.

The limitation to 𝑁𝑠 . 24 is due to the following reasons. The Hilbert space of 𝑁𝑠

1We already encountered a special case of quantum typicality, namely canonical typicality introduced in
Sec. 1.1.2.
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spins has the dimension 2𝑁𝑠 and, hence, the wave function of the system, when written

as a vector, has 2𝑁𝑠 complex entries or, equivalently, 2 · 2𝑁𝑠 real entries. A real entry in

double precision occupies 8 bytes (64 bits) of memory. Thus, for the storage of a single

wave function, 8 · 2 · 2𝑁𝑠 bytes are needed, which, for 𝑁𝑠 = 25, amounts to 512 MB and, for

𝑁𝑠 = 30, to 16 GB. It is noteworthy, hereby, that the wave function should be preferably

stored in the primary storage, not on the hard disk. Therefore, when it comes solely to

storing the wave function, we are limited to 𝑁𝑠 . 35 with modern computers. Moreover,

in order to manipulate this wave function, one needs much more storage. This leads to a

further limitation for the system sizes.

In principle, the above storage limitations can be circumvented by employing appropriate

numerical techniques. This includes, for example, the parallelisation of the algorithm and

the implementation of sparse matrices and vectors which we describe below. However,

even with the best computational architectures and algorithms available today, we are still

limited to microscopic system sizes.

In this chapter, we show that the numerical results are in a qualitative agreement with

the analytical expectations. This applies to all effects of local measurements analysed in

the previous chapter: the broadening, narrowing and the heating effects. In the following,

we first describe the methods that we use in our numerical approach and briefly discuss

the individual routines. Later, we investigate the finite-size effects and, finally, study the

stability of a two-peak 𝑔(𝐸).

3.1 Methods for the numerical calculations

One possible method to simulate quantum systems, is to diagonalise the Hamiltonian ma-

trix and, thereby, obtain the energy eigenstates and the energy eigenvalues. Then, after

expanding the initial wave function in the energy eigenbasis, the time evolution of the system

amounts to manipulating the phases of the quantum amplitudes. However, the diagonalisa-

tion of large matrices is a rather time consuming procedure. Therefore, the diagonalisation

method is limited to system sizes of 𝑁𝑠 . 20 on modern computer architectures. Since we

would like to reach still larger 𝑁𝑠, we use methods which do not rely on the diagonalisation.

Our algorithm consists of the following four main blocks:

1. Initialisation of the wave function with a given energy distribution 𝑔(𝐸),

2. Time evolution of the wave function and repeated local measurements,

3. Calculation of 𝑔(𝐸) from a given wave function,

4. Calculation of a stability measure.

In this section, we describe the necessary methods for the realisation of these blocks.

Before starting, we define the Ising basis which we will often refer to in the following.

The elements of this basis are the product states |𝜓⟩ = |↑⟩1|↑⟩2|↓⟩3|↑⟩4 · · · , where |↑⟩𝑖 and
| ↓⟩𝑖 are the eigenstates of the spin operator in the 𝑧-direction for the lattice site 𝑖. Below,

we simplify the notation by identifying |↑⟩1|↑⟩2|↓⟩3|↑4⟩ · · · = |↑↑↓↑⟩ · · · .
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3.1.1 Structure of the Hamiltonian matrix

We consider one-dimensional lattices of spins-12 with nearest-neighbour interaction. The

Hamiltonian is

ℋ = −
∑︁
𝑖<𝑗

[︁
𝐽𝑥
𝑖𝑗𝑆𝑖𝑥𝑆𝑗𝑥 + 𝐽𝑦

𝑖𝑗𝑆𝑖𝑦𝑆𝑗𝑦 + 𝐽𝑧
𝑖𝑗𝑆𝑖𝑧𝑆𝑗𝑧

]︁
−
∑︁
𝑗

𝐻𝑗𝑆𝑗𝑧, (3.1)

where 𝐽𝑥
𝑖𝑗 , 𝐽

𝑦
𝑖𝑗 and 𝐽𝑧

𝑖𝑗 are the coupling coefficients between sites 𝑖 and 𝑗, and 𝐻𝑗 is the

magnetic field into the 𝑧-direction at lattice site 𝑗. In principle, the spin lattice can be of

any dimension, but, in our simulations, we consider one dimensional lattices. We assume

that the results obtained do not depend essentially on the dimensionality of the lattice. For

simplicity, we always consider periodic boundary conditions.

The energy of the spin systems is bounded not only from below but also from above.

We denote the minimal energy, or the ground state energy, as 𝐸min and the maximal energy

as 𝐸max. The difference 𝐸max −𝐸min, we call the spectral width. Due to the existence of a

maximal energy, negative temperatures can be defined in analogy to the usual definition of

(positive) temperatures, cf. Eq. (3.6), [69, 10].

Block-diagonal form of the Hamiltonian

When working with large matrices, as for example the spin Hamiltonian matrix, a significant

advantage is if this matrix can be written in a block-diagonal form as indicated in Fig. 3.1.

In particular, the advantage of such a form is that the individual blocks can be dealt with

independently. Moreover, if we think of matrix manipulations in general, the number of

individual scalar multiplications approximately scales as 𝐷2, where 𝐷 is the dimension of

the matrix. If the matrix can be written in a block diagonal form with 𝑚 blocks of average

dimension 𝐷
𝑚 , then the number of individual scalar multiplications for matrix manipulations

approximately scales as 𝑚
(︀
𝐷
𝑚

)︀2
= 1

𝑚𝐷
2 instead of 𝐷2. Thus, the number of individual

scalar manipulations is reduced by the factor 1
𝑚 . Moreover, a block-diagonal form allows

for working with each individual block on different computers in parallel.

Now, we make a physically natural, yet very important choice that guarantees that ℋ

Figure 3.1: An illustration a matrix with block structure. The shaded area indicates non-
zero matrix elements.
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Figure 3.2: An illustration of a matrix with finer block structure than that in Fig. 3.1. The
shaded area indicates the non-zero matrix elements.

can be written in a block-diagonal form with 𝑁𝑠 blocks: We choose the Hamiltonian ℋ to

be translational invariant. The proof that translational invariance indeed leads to a block-

diagonal form is given in Appendix B.1. For the Hamiltonian in Eq. (3.1), translational

invariance means in particular

𝐽𝑥
𝑖𝑗 = 𝐽𝑥(𝑟⃗𝑖 − 𝑟⃗𝑗) (3.2)

𝐽𝑦
𝑖𝑗 = 𝐽𝑦(𝑟⃗𝑖 − 𝑟⃗𝑗) (3.3)

𝐽𝑧
𝑖𝑗 = 𝐽𝑧(𝑟⃗𝑖 − 𝑟⃗𝑗) (3.4)

𝐻𝑗 = 𝐻, (3.5)

where 𝑟⃗𝑖 is the position of the 𝑖-th lattice site. The transformation to a block diagonal form

corresponds to a change of the Hilbert-space basis.

Beside the translational invariance, the Hamiltonian ℋ in Eq. (3.1) also conserves the

quantity [𝑁↓ mod 2], where 𝑁↓ is the number of spins down in 𝑧-direction. 𝑁↓ is well

defined, for example, for the states of the Ising basis. If we choose an Ising state |𝜓o⟩ with
an odd number of spins down and |𝜓e⟩ with an even number of spins down, the corresponding
matrix element of ℋ is guaranteed to be ⟨𝜓e|ℋ|𝜓o⟩ = 0.

Since the conservation of [𝑁↓ mod 2] is compatible with the translational invariance,

this symmetry leads to a further splitting of each block into two smaller blocks as illustrated

in Fig. 3.2. In Appendix B.2, we show that ℋ in Eq. (3.1) indeed conserves the quantity

[𝑁↓ mod 2]. The translational invariance together with the conservation of [𝑁↓ mod 2]

leads to the splitting of the Hamiltonian ℋ into 2𝑁𝑠 blocks.

In principle, other symmetries of ℋ which are compatible with the two above would lead

to a further splitting into blocks as described above. Symmetries that are often encountered

in similar calculations are: the rotational symmetry, the spin-inversion symmetry and the

parity symmetry.

Sparsity of the Hamiltonian

Another feature of ℋ which is helpful in numerical investigations is the sparsity. The

overwhelming majority of matrix elements of ℋ in the Ising basis is 0. From the viewpoint
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of numerical calculations, sparsity of a matrix usually makes matrix manipulations faster

and one needs less storage2. In Appendix B.3, we show that ℋ is indeed sparse in the Ising

basis and that, furthermore, when ℋ is written in the basis that leads to the block structure,

each reduced block is also sparse. In addition, one needs to store either the upper or the

lower half of ℋ including the diagonal elements since the Hamiltonian matrix is Hermitian3.

3.1.2 Preparation of the initial energy distribution

Since we do not diagonalise the Hamiltonian, we are somewhat limited in the choice of the

initial energy distribution associated with the initial wave function. We prepare the Gibbs

distribution and any superpositions thereof by employing the so-called imaginary-time prop-

agation method. In principle, this method is based on following the relation between the

time evolution operator and the Boltzmann-Gibbs factor

𝑒−𝛽ℋ|𝜓⟩ = 𝑒−𝑖ℋ𝑡|𝜓⟩, (3.6)

where 𝑡 = −𝑖𝛽.
In practice, this corresponds to the following procedure. We first prepare the Gibbs

distribution in the infinite temperature limit by random sampling. Details of this sam-

pling are given in Appendix B.4. The infinite temperature limit corresponds to an equal

occupation probability for all energy eigenstates. Next, we apply the operator 𝑒−𝛽ℋ to the

corresponding wave function |𝜓⟩ by employing the relation (3.6), cf. [88]. In this way, we

reduce the preparation of the Gibbs distribution to the time evolution of the wave function

which we describe below.

We repeat our algorithm several times, where each time we initialise the wave function

with a given energy distribution anew. By averaging the outcomes of all repetitions, we

obtain result which do not depend on the particular realisation of the wave functions but

only on the given energy distribution. With increasing system sizes, we need to make less

repetitions in order to obtain good statistics. This is related to quantum typicality which

we introduced above and, in particular to canonical typicality introduced in Sec. 1.1.1.

3.1.3 Time evolution of the wave function

Given that the Hamiltonian is time-independent, the quantum-mechanical time-evolution

operator is

𝒰(Δ𝑡) = 𝑒−𝑖ℋΔ𝑡. (3.7)

Propagating the wave function |𝜓(𝑡)⟩ by the time step Δ𝑡, therefore, amounts to

|𝜓(𝑡+Δ𝑡)⟩ = 𝒰(Δ𝑡)|𝜓(𝑡)⟩. (3.8)

2In our numerical calculations, we used the numerical libraries GSL (GNU Scientific Library) and MKL
(Math Kernel Library) which have special routines for sparse matrices and sparse vectors.

3A high degree of sparseness of the Hamiltonian allows for an alternative approach with a minimal
demand for storage space, namely to build the Hamiltonian matrix each time anew without storing it.
However, this alternative approach is less storage consuming at the expense of the computation time.
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For a sufficiently small time step Δ𝑡, we can make a Taylor expansion of 𝒰(Δ𝑡) at Δ𝑡 = 0,

where the first terms provide a good approximation of 𝒰(Δ𝑡). We terminate the Taylor

expansion of 𝒰(Δ𝑡) after the fourth-order term and obtain

𝒰(Δ𝑡) ≈ 1− 𝑖ℋΔ𝑡− 1

2!
(ℋΔ𝑡)2 + 𝑖

1

3!
(ℋΔ𝑡)3 +

1

4!
(ℋΔ𝑡)4. (3.9)

This fourth-order Taylor expansion is equivalent to the so-called fourth-order Runge Kutta

method for solving linear differential equations with time-independent coefficients. Such an

equation is the Schrödinger equation with a time-independent Hamiltonian. Therefore, we

call the method using Eq. (3.9) the Runge-Kutta method in the following [86, 87].

It is the Runge-Kutta method which allows to avoid the diagonalisation of the Hamil-

tonian. According to Eq. (3.8), the time evolution of the wave function amounts to simple

matrix-vector multiplications. Indeed, only matrix-vector multiplications are involved be-

cause the higher-order terms of ℋ in Eq. (3.9) can be obtained by iteratively applying

ℋ to the wave function. Apart from that, the sparsity of the Hamiltonian makes these

matrix-vector multiplications fast and less storage consuming4.

Empirically, it was shown in [18] for a similar Hamiltonian that the Runge-Kutta method

is stable and accurate enough for Δ𝑡 ≤ 0,02

𝐽
, where 𝐽 ≡

√︁
𝐽2
𝑥 + 𝐽2

𝑦 + 𝐽2
𝑧 is the r.m.s.-average

of the coupling coefficients of the Hamiltonian. When applying the approximation (3.9)

repeatedly, the error is bound by |1 − ⟨𝜓rk(𝑡)|𝜓ex(𝑡)⟩| < 10−4 for 𝐽𝑡 ≤ 50 for interacting

spin systems with 𝑁𝑠 = 20, where |𝜓ex(𝑡)⟩ is the propagated wave function without any

approximations and |𝜓rk(𝑡)⟩ is calculated using the Runge-Kutta method.

The implementation of the local measurements amounts to matrix-vector multiplications

𝒫|𝜓⟩, where the projection operator 𝒫 can be readily obtained by using the expression in

Eq. (2.12). When written in the Ising basis, the matrix of the projection operator 𝒫 is also

sparse.

3.1.4 Retrieval of the final energy distribution

Given the wave function |𝜓(𝑡′)⟩, how to obtain the energy distribution of this wave function

without knowing the energy eigenstates |𝐸𝑛⟩? We use the method shown in [34], which is

based on the Fourier transform of the function 𝑓(𝑡) ≡ ⟨𝜓(𝑡 + 𝑡′)|𝜓(𝑡′)⟩. This function can

be written as

𝑓(𝑡) = ⟨𝜓(𝑡+ 𝑡′)|𝜓(𝑡′)⟩ =
∑︁
𝑗

|𝑐𝑗 |2𝑒−𝑖𝐸𝑗𝑡, (3.10)

where 𝑐𝑗 = ⟨𝐸𝑗 |𝜓(𝑡′)⟩ and 𝐸𝑗 are the energy eigenvalues. Now, calculating the Fourier

transform of 𝑓(𝑡) yields

𝐹 (𝜔) ≡
∫︁
𝑓(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡 ∼=

∑︁
𝑗

|𝑐𝑗 |2𝛿(𝜔 − 𝐸𝑗). (3.11)

4When dealing with multiple matrix-matrix and matrix-vector multiplications in high-dimensional vector
spaces, one needs to take care of the accumulating rounding error. In our algorithm, we made tests in order
to make sure that we can neglect this source of error.
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The left-hand site of this relation is proportional to the energy distribution corresponding

to the wave function |𝜓⟩. Thus, in order to obtain the energy distribution 𝑔(𝐸), 𝐹 (𝐸) must

be normalised to 1.

In numerical calculations, 𝑓(𝑡) is a discrete time series. Therefore, a discrete Fourier

transform must be applied to 𝑓(𝑡)5. Moreover, 𝑓(𝑡) is also finite which implies that the

result of the discrete Fourier transform is 𝐹 (𝜔) multiplied by the Fourier transform of the

window function. In order to achieve a good resolution for the energy distribution, we

multiply 𝑓(𝑡) by the Kaiser-Bessel function before applying the discrete Fourier transform.

In Appendix B.5, we present the Kaiser-Bessel function and provide further details for the

procedure of the discrete Fourier transform.

3.1.5 Parallelisation of the algorithm

An important computational technique which is indispensable for reaching system sizes

above 𝑁𝑠 ≈ 20 is parallelisation. This means that the total workload is distributed among

several working units (processor with a local storage). Each working unit then solves a

partial problem. A necessary requirement for an efficient parallelisation is that the total

problem is reducible to smaller subproblems such that the individual working units can

work mutually independent. If the working units often need to communicate between each

other, this makes the process significantly slower6.

The simulation of spin systems is suitable for parallelisation if the Hamiltonian can

be written in a block-diagonal form. In such a case, each processor works with its own

Hamiltonian block and operates with it on the wave function. In total, the following steps

described above can be made by the processors mainly in parallel: the initialisation of the

wave function, the propagation in time and the Fourier transform.

An exception hereby is the measurement process which, in general, does not respect

the block diagonal structure of the Hamiltonian. Broadly speaking, a measurement in-

duces transitions between individual blocks. This necessitates an extensive communication

between the working units and noticeably slows down the calculation.

3.2 Finite-size effects with respect to local measurements

In this section, we investigate the finite-size effects with respect to local measurements. This

investigation is particularly important because we expect the finite-size effects to be rather

pronounced for microscopic system sizes. Since only microscopic systems can be simulated

numerically, we need to asses the finite-size effects before investigating the more interesting

narrowing effect.

The finite-size effects manifest themselves in a pronounced heating and the broadening

of 𝑔(𝐸). For the macroscopic systems considered in the analytical treatment, we neglected

these effects. In order to contrast the microscopic systems and the macroscopic systems

5In our numerical calculations, we used the numerical library FFTW, which employs the Fast Fourier
Transform algorithm.

6In our numerical calculations, we used the OpenMPI library and the Intel MPI library.
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Chapter 3. Numerical Investigation of the Stability of Quantum Statistical Ensembles

treated analytically in Chapter 2, let us first recall the constraints that we imposed in our

analytical investigation and check their applicability to microscopic systems.

In the analytical investigations, we neglected the heating effect by requiring

𝑛≪
√︀
𝑁𝑠. (3.12)

For the largest system sizes available in our numerical calculations𝑁𝑠 = 24, though,
√
24 ≈ 5.

Therefore, the condition (3.12) is already not satisfied by the first measurement (𝑛 = 1).

Further, we considered 𝑔(𝐸) on a coarse-grained energy axis in Chapter 2. The corre-

sponding width of the energy bins Δe satisfies the two constraints given in Eq. (A.33) that

we repeat here for the sake of convenience

𝜖1 ≪ Δe ≪ 𝑇 (𝐸av)
√︀
𝐶𝑉 (𝐸av), (3.13)

where 𝜖1 is a suitably chosen one-particle energy and 𝑇 (𝐸av)
√︀
𝐶𝑉 (𝐸av) is the width of

the Gibbs distribution at temperature 𝑇 . For the system sizes available in numerical cal-

culations, the constraints in Eq. (3.13) cannot be satisfied by an appropriately chosen Δe

because the basic constraint 𝜖1 ≪ 𝑇 (𝐸av)
√︀
𝐶𝑉 (𝐸av) is already not satisfied. This means

that the results obtained in the previous chapter cannot be directly applied to the systems

investigated numerically.

The above results imply that we need to find new ways in order to suppress the finite-

size effects. Coarse-graining of the energy axis as well as requiring 𝑛≪ √
𝑁𝑠, does no work

for microscopic systems.

3.2.1 The heating effect

In order to study the heating effect, we consider the quantity7 𝐸av,𝑛−𝐸av,0

Δsw
as a function of 𝑛,

where 𝐸av,𝑛 is the average energy after 𝑛 measurements, 𝐸av,0 is the initial average energy

and Δsw ≡ 𝐸max − 𝐸min is the spectral width. The quantity 𝐸av,𝑛−𝐸av,0

Δsw
is, therefore, the

deviation of the average energy from its initial value on the scale of the spectral width. The

results are shown in Fig. 3.3.

In order to obtain the results shown in Fig. 3.3, we consider one-dimensional spin systems

of different sizes with nearest-neighbour interaction. The Hamiltonian is given in Eq. (3.1)

with the following parameters

𝐽𝑥 = 0.47 𝐽𝑦 = −0.37, 𝐽𝑧 = −0.79, 𝐻 = 0, (3.14)

which satisfy 𝐽2
𝑥 + 𝐽2

𝑦 + 𝐽2
𝑧 = 1. The initial state of the system is a wave function with a

Gibbs energy distribution of inverse temperature 𝛽 = 10. For the measurements, the spins

are chosen randomly and the measurement axes are also chosen randomly. The time delay

between the measurements is 1. The results shown are averaged over many iterations8.

7We do not need to consider the absolute value of energy difference |𝐸av,𝑛 − 𝐸av,0| because the heating
effect makes 𝐸av,𝑛 drift towards values corresponding to larger entropy. The opposite process is very unlikely.

8The results obtained are averaged over the following numbers of independent calculations 𝑁𝑠 = 16:
100, 𝑁𝑠 = 17: 100, 𝑁𝑠 = 18: 100, 𝑁𝑠 = 19: 100, 𝑁𝑠 = 20: 100, 𝑁𝑠 = 21: 87, 𝑁𝑠 = 22: 83, 𝑁𝑠 = 23: 45,
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Figure 3.3: The quantity 𝐸av,𝑛−𝐸av,0

Δsw
is shown for interacting spin systems of different system

sizes as indicated in the legend. The plotted values have been averaged over many iterations.
The points are connected by a line in order to guide the eye. See text for further details.
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𝑁𝑠 = 24: 19.
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The results in Fig. 3.3 show that the deviation of the average energy is significant. For

smaller system sizes (𝑁𝑠 = 16), the deviation after 9 measurements amounts to 𝐸av,14 −
𝐸av,0 ≈ 0.2Δsw. Especially important is that, for 𝑛 = 1, the deviation is approximately

𝐸av,1 − 𝐸av,0 ≈ 0.025Δsw for all system sizes which is significant as well. Although the

deviation of 𝐸av,𝑛 is slower for larger system sizes, it remains of the same order.

Let us now compare the results shown in the figure with the analytical estimates. In

Chapter 2, we showed that evolution of 𝐸av,𝑛 can be approximately described as 𝐸av,𝑛 ≈
𝐸av,𝑛−1+𝜖1, where 𝜖1 = Δsw

𝑁𝑠
is the single-spin energy. This leads to 𝐸av,1−𝐸av,0

Δsw
≈ 𝜖1

Δsw
= 1

𝑁𝑠
.

For the system sizes considered in the numerical calculations, 1
𝑁𝑠

≈ 0.06 for 𝑁𝑠 = 16 and
1
𝑁𝑠

≈ 0.04 for 𝑁𝑠 = 24. These values are of the same order as that in Fig. 3.3, where
𝐸av,1−𝐸av,0

Δsw
≈ 0.025 on average. Therefore, the numerical results are consistent with the

analytical estimates. In the macroscopic limit, the heating can be neglected as stated in

Chapter 2.

3.2.2 The broadening effect

Another manifestation of the finite-size effects is the broadening of 𝑔(𝐸). The broadening

occurs due to the off-diagonal elements of the measurement operators when written in the

energy basis. In Fig. 3.4, we show 𝑤𝑔,𝑛−𝑤𝑔,0

Δsw
as a function of 𝑛, where 𝑤𝑔,𝑛 is the width

of 𝑔(𝐸) after 𝑛 measurements. All parameters of the calculations are the same as that for

Fig. 3.3.

The results in Fig. 3.4 show that the broadening effect is rather pronounced. The

broadening shows a dependence on the parity of 𝑁𝑠. For even 𝑁𝑠, the broadening is less

pronounced than for comparable even 𝑁𝑠. However, the overall tendency is that the broad-

ening occurs slower for larger systems.

Let us also compare these results with the analytical estimates. Using the relation

𝑤2
𝑔,𝑛 ≈ 𝑤2

𝑔,𝑛−1 + 𝜖21 and neglecting the initial width, we obtain after the first measurement
𝑤𝑔,1−𝑤𝑔,0

Δsw
≈ 1

𝑁𝑠
which is on the average 0.05 as we have seen above. This result is in

agreement with the computed result which is about 0.02 on the average. In the macroscopic

limit, the broadening can be neglected as stated in Chapter 2.

In Appendix B.6, we illustrate examples of the finite-size effects.

3.2.3 Introduction of a two-peak energy distribution

The above results imply that we cannot neglect neither the heating nor the broadening

effect in our numerical simulations. Even after the first measurement, both effects turn

out to be rather pronounced. An important result, though, is that the finite-size effects

become smaller for an increasing 𝑁𝑠. In contrast, the narrowing effect is independent of

𝑁𝑠. Therefore, the narrowing effect dominates for larger system sizes, in particular for the

macroscopic systems.

In order to minimise the finite-size effects for the microscopic systems, we limit our

further numerical investigations to a two-peak 𝑔(𝐸). The width of individual peaks of

this 𝑔(𝐸) is smaller than the distance between the peaks. As long as the two peaks do

not overlap, we can distinguish between a two-peak 𝑔(𝐸) and a one-peak 𝑔(𝐸). Here, the
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3.3. Results of the numerical investigation for a two-peak energy distribution

evolution of Δ𝐺 is still strongly influenced by the heating and the broadening. Nevertheless,

one can at least observe qualitatively the disappearance of one of the two peaks, as expected

in the macroscopic limit.

In practice, we prepare such two-peak 𝑔(𝐸) by coherently superposing two wave func-

tions exhibiting the Gibbs energy distribution with two different temperatures. We choose

the inverse temperatures 𝛽1 = 10 and 𝛽2 = −10.

3.3 Results of the numerical investigation for a two-peak en-

ergy distribution

In this section, we present the results of our numerical investigations of the stability of a two-

peak 𝑔(𝐸). First, we give an example by explicitly showing the effect of 10 measurements

on a given wave function corresponding to a two-peak 𝑔(𝐸). Then, we investigate the

evolution of the stability measure Δ𝐺(𝑛) introduced in the previous chapter. Finally, we

discuss other possible measures of stability and study their evolution as a function of 𝑛.

3.3.1 Example: Evolution the energy distribution

Before studying the average evolution of the stability measures, let us focus on a particular

example. We show the individual 𝑔𝑛(𝐸) after each local measurement in order to illustrate

possible individual realisations. We choose the initial two-peak 𝑔(𝐸) by coherently su-

perposing two wave functions exhibiting the Gibbs energy distributions with temperatures

𝛽1 = +10 and 𝛽2 = −10.

The Figures 3.5, 3.6 and 3.7 show 𝑔𝑛(𝐸) after the individual measurements as indicated

in the figures. On the horizontal axis, the energy per spin is given, where the minimal and

maximal energies per spin approximately correspond to 𝐸min = −0.22 and 𝐸max = 0.28,

respectively. Dots which lie outside the energy interval [𝐸min, 𝐸max] can be ignored because

there are no states available or, equivalently, 𝜈(𝐸) = 0 in this region.

The parameters for the calculation are as follows. The Hamiltonian of the system with

nearest-neighbour interaction is given in Eq. (3.1) with the parameters given in Eq. (3.14).

Additionally, we switched on a small magnetic field along the 𝑧-direction 𝐻 = 0.05. We

measure 10 spins in pairs which means that the first and the second measured spins are

neighbours, the third and fourth spins are the same, and so forth. The time delays between

individual measurements were randomly chosen from the interval [0, 2]. For each measure-

ment, the measurement axis is the 𝑧-axis which is the direction of the largest coupling

coefficient. We chose to measure spin-pairs along the direction of the strongest interaction

in order to accelerate the narrowing effect of measurements and to keep the broadening and

heating as small as possible. In principle, a measurement of a spin-pair along the same axis

could also occur accidentally. However, we would need to wait many measurements in order

for such measurement configuration to occur accidentally. Therefore, the broadening and

heating would be rather pronounced. Aside from that, if we would measure along another

fixed axis, the same narrowing process would normally take place but the process would be

slower.
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Figure 3.5: The distribution 𝑔(𝐸) is shown after each single-spin measurement for an initial
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Details of the calculation are given in the text.
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Figure 3.6: Continuation of the figure on the previous page.
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Figure 3.7: Continuation of the figure on the previous page.
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Let us now have a closer look at the results in Fig. 3.5. The distribution 𝑔(𝐸) hardly

changes after the first measurement but, after the second measurement, 𝑔(𝐸) changes signif-

icantly. This is consistent with the qualitative understanding that, for interacting systems,

only the outcomes of spin-pair measurements are correlated with the total energy 𝐸. Con-

sequently, the narrowing effect of spin-pair measurements is much stronger than that of

single-spin measurements. In the figures, this is reflected by the fact that the modifica-

tions of 𝑔(𝐸) are stronger after measurements with an even number. Small modifications

of 𝑔(𝐸) after measurements with odd numbers are due to the small external magnetic field

(𝐻 = 0.05) and other possibly accidental weak correlations.

The outcome of the first spin-pair measurement favours energies which correspond to

the peak at higher energies (right peak)9. Therefore, the right peak acquires a larger

statistical weight than the left peak after 𝑛 = 2. In contrast, the outcome of the second

spin-pair measurement (𝑛 = 4) in Fig. 3.6, favours energies corresponding to the peak at

lower energies (left peak). This process, where the effect of the subsequent measurement is

opposite to the effect of the prior measurement, is possible in principle. However, such a

reversed process is less probable because the probabilities for the outcomes of subsequent

measurements are given by the post-measurement 𝑔(𝐸).

Finally, after the sixth individual measurement (𝑛 = 6), i.e, third spin-pair measurement

in Fig. 3.7, the left peak becomes completely suppressed. For later measurements, it is

rather improbable for the left peak to reappear again. In this sense, the effect of multiple

measurements is effectively irreversible. Therefore, the main effects that take place after

the third spin-pair measurement, are the heating and the broadening. These two processes

correspond to the finite-size effect investigated in the previous section.

Let us now check the consistency between numerical and analytical results. The variance

𝑤2
𝑔 increases due to the broadening effect approximately according to the relation 𝑤2

𝑔,𝑛 ≈
𝑤2
𝑔,0 + 𝑛𝜖21, cf. Sec. A.1. If we consider the energy distribution after the 10th measurement

and neglect the initial variance, we obtain 𝑤𝑔,10 ≈
√
10𝜖1 ≈ 3𝜖1. Assuming that 𝜖1 ≈ 1,

we obtain for the width 𝑤𝑔,10 ≈ 3 which leads to 𝑤𝑔,10

𝑁𝑠
= 3

20 ≈ 0.1. This approximately

corresponds to the width of the peak in the figure after the 10th measurement.

It is also noteworthy that the right peak exhibits a substructure which is a splitting of

the peak into two narrow ones. This structure is due to an energy gap of the spectrum for

the given Hamiltonian in Eq. (3.1) with the parameters in Eq. (3.14). The reason for this

energy gap is the small magnetic field, which lifts the near degeneracy between the high-

energy ferromagnetic states | ↑↑↑ · · · ⟩ and | ↓↓↓ · · · ⟩. As a result, the energy gap between

these states is of the order 𝐻𝑁𝑠 and the energy gap in units “energy per spin” is of the

order 𝐻. This estimate is consistent with the numerical results.

9The individual measurement outcomes were as follows: measurement 1: spin at site 3 is up, measurement
2: spin at site 4 is up, measurement 3: spin at site 1 is up, measurement 4: spin at site 2 is down,
measurement 5: spin at site 18 is up, measurement 6: spin at site 19 is up, measurement 7: spin at site 14
is up, measurement 8: spin at site 15 is up, measurement 9: spin at site 17 is up, measurement 10: spin at
site 18 is down.
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3.3.2 Evolution of the stability measure Δ𝐺(𝑛)

In this section, we investigate the stability of a two-peak 𝑔(𝐸) on the basis of the stability

measure Δ𝐺(𝑛) introduced in Eq. (2.6). In order to do this, we directly simulate interacting

spin systems of different sizes 16 ≤ 𝑁𝑠 ≤ 2410. The Hamiltonian is given in Eq. (3.1) with

the parameters in Eq. (3.14).

The initial wave function is again a coherent superposition of two states corresponding

to Gibbs energy distributions. The inverse temperatures are 𝛽1 = 10 and 𝛽2 = −10,

cf. Sec. 3.1.2. After the preparation of the wave function, we first calculate the initial

energy distribution 𝑔0(𝐸) and then measure spin-pairs. For the measurement procedure,

we randomly choose a spin pair and measure it with a random time delay chosen from the

time interval [0, 2]. After each measurement, we calculate the energy distribution 𝑔𝑛(𝐸)11.

The measurement axes were chosen randomly for each individual measurement. This

is different from the setting in the previous section, where the measurement axis was fixed

along the 𝑧-axis. The reason for this choice is that a random measurement axis better

resembles the process of random measurements mediated by environmental particles. The

correlation between the outcome of a spin-pair measurement and the total energy 𝐸 is

particularly strong, if the spin-pair is measured along the same axis. When choosing the

measurement axis randomly, such a measurement configuration may occur once per three

spin-pair measurements. Therefore, the two-peak 𝑔(𝐸) is not always reduced to a single-

peak 𝑔(𝐸). When averaging over many iterations, one should, therefore, keep in mind that,

for a fraction of iterations, the measurements lead to the suppression of one peak while, for

another fraction of iterations, both peaks survive until the last measurement12.

The evolution of Δ𝐺(𝑛) is shown in Figure 3.8. For the sake of convenience, we recall

its definition13

Δ𝐺(𝑛) ≡
∫︁ +∞

−∞
|𝑔𝑛(𝐸)− 𝑔0(𝐸)| 𝑑𝐸. (3.16)

Since the main effect of the measurements is the suppression of one peak of 𝑔0(𝐸), Δ𝐺(𝑛)

grows monotonically with 𝑛 in Fig. 3.8. The complete suppression of one peak without

any further modifications of 𝑔(𝐸) leads to Δ𝐺(𝑛) = 1. Therefore, Δ𝐺(𝑛) must satisfy

10In principle, we could extend our calculations to larger spin systems because, for 𝑁𝑠 = 24, we did not
reach the limitations due to the requirements for storage space. However, the time needed for gathering
enough statistics is rather long. For example, the time needed to build the Hamiltonian for 𝑁𝑠 = 24
approximately amounts to one hour, and the time for conducting 9 measurements including the calculation
of intermediate energy distributions amounts to 2,5 hours for our algorithm.

11For the calculation of 𝑔(𝐸), we generate a time series of 2048 steps, where each step corresponds to a
time interval of 0.025. Therefore, the total interval for the time propagation of the wave function is small
enough such that the error of the Runge-Kutta method remains negligible, cf. Sec. 3.1.4.

12In order to gather good statistics, we averaged the results shown in this section over many iterations.
The numbers of iterations are slightly different for different system sizes: 𝑁𝑠 = 16: 100 iterations, 𝑁𝑠 = 17:
100 iterations, 𝑁𝑠 = 18: 100 iterations, 𝑁𝑠 = 19: 98 iterations, 𝑁𝑠 = 20: 57 iterations, 𝑁𝑠 = 21: 122
iterations, 𝑁𝑠 = 22: 116 iterations, 𝑁𝑠 = 23: 63 iterations, 𝑁𝑠 = 24: 42 iterations.

13In our numerical investigations, we obtain the energy distribution on a discrete energy axis, cf. Eq. (3.11)
and Eq. (B.40), such that the integral in Eq. (3.16) turns into a sum over equally spaced energy values 𝐸𝑙

Δ𝐺(𝑛) =
∑︁
𝑙

|𝑔𝑛(𝐸𝑙)− 𝑔0(𝐸𝑙)| . (3.15)

This corresponds to a coarse-grained energy axis.
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Figure 3.8: Δ𝐺(𝑛) calculated for different system sizes as indicated in the legend. Individual
dots are connected by a line in order to guide the eye. For further information, see text.

Δ𝐺(𝑛) < 1, cf. Fig. 2.2. However, the calculated stability measure Δ𝐺(𝑛) in Fig. 3.8 seems

to converge to Δ𝐺(𝑛) = 2. This deviation from the anticipated behaviour is due to the

finite-size effects, in particular the heating effect which makes both peaks drift towards the

energy values corresponding to higher entropy. The particular value of 2 comes from the

fact that, if the initial 𝑔0(𝐸) and the final 𝑔𝑛(𝐸) have zero overlap, the stability measure

yields

Δ𝐺(𝑛) =
∑︁
𝑙

|𝑔𝑛(𝐸𝑙)− 𝑔0(𝐸𝑙)| =
∑︁
𝑙

(︁
𝑔𝑛(𝐸𝑙) + 𝑔0(𝐸𝑙)

)︁
= 2, (3.17)

due to the normalisation
∑︀

𝑙 𝑔𝑛(𝐸𝑙) = 1. If the shift of the average energy of the individual

peaks is of the order of the width of these peaks, the overlap can indeed become nearly

zero. Since heating occurs for each individual realisation, the averaged value Δ𝐺(𝑛) also

converges to 214.

Comparing results for different system sizes in Fig. 3.8, Δ𝐺(𝑛) grows slower for larger

system sizes. This again confirms that the dynamics in Fig. 3.8 is mostly driven by the

heating effect which is less pronounced for larger systems. If we were able to simulate even

larger spin systems numerically, Δ𝐺(𝑛) would grow even slower and, eventually, Δ𝐺(𝑛) not

become larger than 1.

Introduction of a two-bin energy axis

The results in Fig. 3.8 show that the finite-size effects contribute significantly to the evolu-

tion of Δ𝐺(𝑛). In an effort to identify a stability measure less sensitive to these effects, we

14When Δ𝐺(𝑛) approaches 2 in Fig. 3.8, the results for different system sizes seem to come closer to each
other. In this regime, the overlap of tails of 𝑔(𝐸) presumably governs the behaviour of Δ𝐺(𝑛), which seems
to exhibit a behaviour independent on the system size.
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Figure 3.9: An illustration of the coarse-graining of the total energy axis into two large
bins. As long as each peak is localised in one bin, the finite-size effects of the measurements
can be neglected.

introduce a radical coarse-graining of the energy axis. Namely, we divide the total energy

axis into two large energy bins as indicated in Fig. 3.9. These bins are defined such that

the peaks contribute to different bins. Such a choice makes the heating effect negligible as

long as each peak is localised in its own bin. This approach fails as soon as the peaks start

overlapping. It is worth stressing that this approach is not universally applicable to any

𝑔(𝐸) but is mainly restricted to two-peak 𝑔(𝐸), where the distance between the peaks is

much larger than the width of individual peaks.

The averaged stability measure Δ𝐺2(𝑛) obtained for the same setting as that for Fig. 3.8

but with two large energy bins is shown in Fig. 3.10. The increase of Δ𝐺2(𝑛) is much slower

now. Moreover, we observe a ladder structure until the fourth measurement which implies

that the modifications of Δ𝐺2(𝑛) are stronger after the spin-pair measurements. The reason

for this ladder structure is that, for interacting spin systems, the outcome of the spin-pair

measurements is correlated with the total energy 𝐸 as shown in Chapter 2. The change

of Δ𝐺2(𝑛) after the measurements with odd numbers are also non-zero because of other,

possibly accidental, correlations between measurement outcomes and the total energy 𝐸.

In contrast to Fig. 3.10, the ladder structure is completely washed out by the finite-size

effect in Fig. 3.8.

Let us now try to understand the results shown in Fig. 3.10. In order to do this, we

introduce the following notation

Δ𝐺(𝑛) =
∑︁
𝑙

|𝑔𝑛(𝐸𝑙)− 𝑔0(𝐸𝑙)| = |𝑝1,𝑛 − 𝑝1,0|+ |𝑝2,𝑛 − 𝑝2,0|, (3.18)

where 𝑝1,𝑛 is the statistical weight of the left peak after the 𝑛-th measurement and, likewise,

𝑝2,𝑛 for the right peak, cf. Fig. 3.9. Initially, 𝑝1,0 = 𝑝2,0 = 0, 5 and Δ𝐺2(0) = 0. Let

us now consider Δ𝐺2(9) in Fig. 3.10 after the ninth measurement, where Δ𝐺2(9) ≈ 0.5

approximately for all system sizes. For the statistical weights 𝑝1,𝑛 and 𝑝2,𝑛, this corresponds

on average to the two cases

either 𝑝1,9 ≈ 0.75 and 𝑝2,9 ≈ 0.25 (3.19)

or 𝑝1,9 ≈ 0.25 and 𝑝2,9 ≈ 0.75, (3.20)

which means that the statistical weight of the larger peak is three times larger than the

statistical weight of the smaller peak. However, this is to be understood only as the average

case. In fact, for some cases, the measurements induce a complete suppression of one

peak, i.e. either 𝑝1,𝑛 = 0 or 𝑝2,𝑛 = 0, whereas, for other cases, the initial balance remains

conserved, i.e. 𝑝1,𝑛 = 𝑝2,𝑛 = 0.5.
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Figure 3.10: Δ𝐺2(𝑛) calculated for different system sizes as indicated in the legend and a
coarse grained energy axis divided into two bins. Individual dots are connected by a line in
order to guide the eye. The vertical axis has a different scaling as compared to the previous
figure. For details of the calculations, see text.

Let us now cross check the assumption that, using the two-bin energy axis, the heating

effect can be neglected. In Fig. 3.11, we show 𝑔𝑛(𝐸) for the system size 𝑁𝑠 = 16. In this

example, the initial two-peak 𝑔(𝐸) is not reduced to a one-peak 𝑔(𝐸). The heating effect

is pronounced for this small system size to such extend that the two peaks start to overlap

approximately after the 6th measurement. At the same time, Fig. 3.12 shows a similar

example for the system size 𝑁𝑠 = 24. In this case, the measurements strongly suppress the

right peak. The heating effect is much less pronounced than that for 𝑁𝑠 = 16 such that the

two peaks to not start overlapping. To summarise, dividing the energy axis into two bins

makes the finite-size effect negligible for larger system sizes whereas, for smaller ones, the

peaks start to overlap during the measurements.

3.3.3 Other stability measures

Entropy of the energy distribution

The entropy entr(𝑛) of the energy distribution 𝑔𝑛(𝐸) is defined as

entr(𝑛) ≡ −
∑︁
𝑙

𝑔𝑛(𝐸𝑙) ln[𝑔𝑛(𝐸𝑙)], (3.21)

where the sum extends over all energy eigenvalues15. The entropy is zero for the narrow

peak 𝑔𝑛(𝐸𝑙) = 𝛿𝑙𝑘. For the two-peak distribution 𝑔𝑛(𝐸𝑙) =
1
2 (𝛿𝑙𝑘 + 𝛿𝑙𝑝), the entropy is ln(2).

15In our numerical simulations, we obtain 𝑔𝑛(𝐸) on a coarse-grained energy axis. Therefore, in practice,
the sum in Eq. (3.21) extends over the energy bins.
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Figure 3.11: Plot of the energy distribution 𝑔𝑛(𝐸) for the system size 𝑁𝑠 = 16 after 𝑛
measurements as indicated in the legend. The vertical solid line indicates the possible
partition into the two bins. At the border between the bins, 𝑔(𝐸) becomes non-zero.
Therefore, the finite-size effects are not negligible completely.
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Figure 3.12: Plot of the energy distribution 𝑔𝑛(𝐸) for the system size 𝑁𝑠 = 24 after 𝑛
measurements as indicated in the legend. The vertical solid line indicates the possible
partition into the two bins. In contrast to the case above, 𝑔(𝐸) remains zero at the border
between the bins.
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Therefore, if the measurements induce the suppression of one peak, this corresponds to a

decrease of the entropy by ln(2) ≈ 0.69. The maximal entropy, one obtains for a completely

flat distribution 𝑔(𝐸) = 𝑐𝑜𝑛𝑠𝑡..

In Fig. 3.13, we show the averaged entropy entr(𝑛) for different system sizes. In contrast

to the expectation that the narrowing effect of measurements decreases the entropy, the

entropy increases monotonically. This is again an impact of the finite-size effects of the

measurement. Since the value contributed by finite-size effects to the entropy is larger than

the contribution by the narrowing effect, the entropy increases.

Now, we introduce the same coarse-graining as for the stability measure Δ𝐺(𝑛). We

split the energy axis into two large bins and calculate the entropy anew. The result is shown

in Fig. 3.14. Now, the entropy decreases as anticipated. Moreover, its behaviour exhibits the

ladder structure due to the correlations between the outcome of the spin-pair measurements

and the total energy of the system. It is noteworthy that, for the new coarse-grained energy

axis, the initial value entr(0) = ln(2) is the same for all system sizes.

The results obtained indicate that the entropy as defined in Eq. (3.21) can be used as

a measure of stability. However, there are some disadvantages. One disadvantage is that

entropy is very sensitive to the shape of 𝑔(𝐸). Small variations of the shape of 𝑔(𝐸) can

induce large variations of the entropy. Further, entropy is prone to the finite-size effects.

These effects completely reverse the behaviour of entr(𝑛) from decreasing to increasing as

we have seen above. Moreover, the reduction of a two-peak 𝑔(𝐸) to a single-peak 𝑔(𝐸)

corresponds to a change of the entropy by ln(2). Especially for macroscopic quantum

systems, where the entropy of 𝑔(𝐸) can be significantly larger than ln(2), this term can

readily become negligible.

Kurtosis of the energy distribution

The next stability measure that we are going to consider is the kurtosis which is defined as

kurt(𝑛) ≡ 𝜇𝑔,𝑛
𝑤4
𝑔,𝑛

, (3.22)

where 𝜇𝑔,𝑛 is the fourth central moment of 𝑔𝑛(𝐸)

𝜇𝑔,𝑛 ≡
∑︁
𝑙

(𝐸𝑙 − 𝐸av,𝑛)
4 𝑔𝑛(𝐸𝑙). (3.23)

The kurtosis is a measure of the shape of 𝑔(𝐸). For a 𝑔(𝐸) with a Gaussian shape, we

obtain kurt(𝑛) = 3. For 𝑔(𝐸), which decay slower than a Gaussian function, kurt(𝑛) < 3.

An example hereby is a two-peaked 𝑔(𝐸), where kurt(𝑛) ≈ 1, cf. Appendix B.7. For 𝑔(𝐸),

which decay faster than a Gaussian function kurt(𝑛) > 3.

In Fig. 3.15, we show the results for the kurtosis. For all system sizes, initially kurt(0) ≈ 1

which corresponds to a broad 𝑔0(𝐸). With an increasing number of measurements, the

kurtosis grows which indicates the narrowing effect of measurements. The plotted figures

exhibit the ladder structure. This implies that the kurtosis is less prone to the finite-size

effects as compared to the previous measures of stability, where the ladder structure became
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Figure 3.13: Entropy of 𝑔(𝐸) as a function of the number of measurements 𝑛 for different
system sizes as indicated in the legend. For further explanations, see text.
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Figure 3.14: Entropy of 𝑔(𝐸) as a function of the number of measurements 𝑛 for different
system sizes as indicated in the legend. The entropy is calculated on the basis of two large
bins. For further explanations, see text.
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Figure 3.15: The averaged kurtosis kurt(𝑛) as a function of the number of measurements 𝑛
for different system sizes as indicated in the legend. For further explanations, see text.

visible only on the basis of the two-bin energy axis. In contrast, the results in Fig. 3.15 are

obtained without the introduction of the two larger energy bins.

An essential disadvantage of the kurtosis as a measure of stability is that it is very

sensitive to small variations on the tails of 𝑔(𝐸). Apparently insignificant variations of

𝑔(𝐸) can induce large variations of the kurtosis. Further, kurt(𝑛) grows without a limit for

narrow 𝑔(𝐸). Therefore, it is difficult to use kurtosis to compare the stability of different

distributions 𝑔(𝐸).

Deviation of the average energy from its initial value

Let us now investigate the deviation of the average energy 𝐸av,𝑛 as a measure of the modi-

fications of 𝑔(𝐸) due to the measurements. In order to quantify the deviation of 𝐸av,𝑛, we

define16

Δ𝐸av(𝑛) ≡
|𝐸av,𝑛 − 𝐸av,0|

𝑤𝑔,0
, (3.24)

where 𝑤𝑔,0 is the initial width of 𝑔(𝐸) and, approximately, the separation of the two peaks.

Initially, 𝐸av,0 is centred between the two peaks. If one of the peaks becomes suppressed due

to the measurements, the average energy 𝐸av,𝑛 jumps towards the remaining peak. There-

fore, a sudden jump of Δ𝐸av(𝑛) to Δ𝐸av(𝑛) ≈ 1
2 corresponds to the complete suppression

of one of the two peaks.

In Fig. 3.16, we show the results for Δ𝐸av(𝑛). We observe that the ladder structure

is rather pronounced. For larger values of 𝑛, Δ𝐸av(𝑛) seems to saturate at the value

16Here, we need to consider the absolute value of the energy difference |𝐸av,𝑛 − 𝐸av,0| because 𝐸av,𝑛 can
shift in both directions. This is in contrast to the investigation of the finite-size effects, where heating
induced a shift of 𝐸av,𝑛 into one direction only.
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Figure 3.16: Δ𝐸av(𝑛) is shown for different system sizes as indicated in the legend. For
further explanations, see text.
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3.4. Summary

Δ𝐸av(𝑛) ≈ 0.35. The reason is that two effects compensate each other for this value. On

the one hand, there are the finite-size effects decreasing Δ𝐸av(𝑛), and, on the other hand,

narrowing effect which forces Δ𝐸av(𝑛) to increase.

In total, Δ𝐸av(𝑛) turns out to be suitable as a measure of stability. However, for 𝑔(𝐸)

other than the two-peak 𝑔(𝐸), it is less suitable.

The width of the energy distribution

As the last proposal for the measure of stability, we consider the width 𝑤𝑔,𝑛 as a function

of 𝑛. The idea behind is that there are two characteristic widths of 𝑔(𝐸). There is the total

width 𝑤𝑔 of 𝑔(𝐸) corresponding to the separation of the peaks and there are the smaller

widths of the individual peaks. By monitoring 𝑤𝑔,𝑛, we can trace its value from the large

initial value corresponding to the separation of the peaks to the small values corresponding

to the width of a individual peaks.

The results are illustrated in Fig. 3.17, where the horizontal lines indicate the widths

of the individual peaks. The plot shows a decent decrease of 𝑤𝑔,𝑛. However, 𝑤𝑔,𝑛 does not

reach the width of the individual energy peaks. The reason is, on the one hand, that 𝑔(𝐸)

is not reduced to one peak in all cases and, on the other hand, the broadening effect of the

measurements. The finite-size effects again completely wash out the ladder structure.

The advantage of the width 𝑤𝑔,𝑛 as a measure of stability is that, in principle, it is

applicable to any 𝑔(𝐸). However, 𝑤𝑔,𝑛 is prone to the finite-size effects as explained above.

3.4 Summary

In this chapter, we numerically investigate the stability of a two-peak 𝑔(𝐸) for an interacting

spin system. First, we introduced the methods for the numerical investigation. Then, we

considered the finite-size effects with respect to the local measurements. We gave an example

for the narrowing effect of measurements by explicitly showing all intermediate 𝑔𝑛(𝐸) for

a given initial wave function. Finally, we studied the evolution of the stability measure

Δ𝐺(𝑛) and other stability measures that we proposed.

In general, the results of the numerical investigations exhibit qualitatively all effects

anticipated from the analytical treatment in Chapter 2, namely the narrowing effect, the

broadening effect and the heating effect. The results of the numerical investigations are

consistent with the analytical results. Further, the numerical investigations confirmed that

the finite size effects are rather pronounced for microscopic systems. In fact, these effects

dominate over the narrowing effect in some cases.

The study of the evolution of the different stability measures shows that it is, in general,

difficult to define suitable stability measures for microscopic systems. In view of the finite-

size effects with respect to local measurements, it is sometimes difficult to capture the

narrowing effect even for a two-peak 𝑔(𝐸). If we were to study the narrowing effect for

a general broad 𝑔(𝐸), it would be unclear how to separate the finite-size effects from the

qualitative trends present in the macroscopic limit.
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Chapter 4

Macroscopicity Measure for Quantum

Superpositions

Until today, the applicability limits of quantum mechanics remain unknown. Despite the

large number of conducted experiments, whose results are accurately described by quantum

mechanics, several parameter regimes have not been covered yet experimentally [54]. One

of these parameter regimes is the transition to the macroscopic limit. The objective hereby

is to prepare quantum superpositions of macroscopically distinct states. A famous thought

experiment was put forward by Erwin Schrödinger [78], where he proposed a setting aiming

at creating a quantum superposition of a living and a dead cat. Such a quantum superposi-

tion can be called macroscopic meaning a superposition of macroscopically distinguishable

quantum states.

In principle, quantum mechanics does not distinguish between the microscopic and the

macroscopic systems. In practice, quantum superpositions have been observed in uncount-

able experiments on the microscopic scale, [56, 98, 63, 44, 83, 31, 14], while the observation

of quantum superpositions of macroscopically distinct states remains elusive until today. In

general, the quantum-to-classical transition and, in particular, the absence of the quantum

interference on the scales of our everyday life are not well understood yet. Although the

absence of the quantum interference on the macroscopic scales can be explained by the

quantum decoherence theory, the observation of the quantum superposition of macroscopi-

cally distinct states is as such of fundamental interest. Aside from that, the difficulties to

reconcile the quantum theory and the theory of general relativity make the tests of quantum

mechanics at macroscopic scales even more compelling.

Although the notion of macroscopicity of quantum superpositions appears intuitive,

its precise definition is difficult to formulate. Coming back to the above example of the

Schrödinger’s cat, it is unclear whether the number of molecules matters that the cat is

made of or does the difference of the body temperature of the cat matter? If we were to

consider the overlap of the wave functions describing the living and the dead cat, this would

not constitute a proper measure of macroscopicity. The reason is that the overlap of two

states already vanishes if the two states differ locally. For example, if we would displace a

single hair of the cat, this would already lead to a state which is orthogonal to the previous
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one.

The research field in the context of the macroscopicity measure has recently gained

increased interest due to the experimental advances in cooling and isolating quantum sys-

tems of increasing size and complexity; see for example Refs. [65, 51, 92]. Many different

macroscopicity measures have been proposed during the last years. However, all of them

are system-specific, cf. Sec. 1.2.2. Given a measure of macroscopicity, which is applicable to

a broad variety of many-body systems, one could in principle compare the macroscopicity

reached in different experiments. Moreover, based on such a measure, decisions could be

made about future experiments for searching for the limits of quantum mechanics.

In this chapter, we introduce a measure of macroscopicity for quantum superpositions.

We call a quantum wave function1 a macroscopic quantum superposition, when a single

local measurement leads to a change of the density matrices of a macroscopic number of

subsystems within the same system. Hereby, local means localised in the physical three-

dimensional space, cf. Sec. 2.4.1. Local measurements can be, for example, measurements

of individual particles, measurements of a pair of particles and so forth. This measure of

macroscopicity can be understood as a measure of instability with respect to one local mea-

surement applied to a given quantum superposition. While, in the context of the stability

of quantum statistical ensembles, we considered the variation of the probability distribution

of the total energy 𝑔(𝐸) due to multiple measurements, for the measure of macroscopicity

of quantum superpositions, we consider the variation of the reduced density matrices of the

subsystems due to a single measurement2.

In order to understand why the above idea indeed gives rise to a notion of macroscopicity

of quantum superpositions, let us for a moment consider a local measurement of a macro-

scopic classical system. We expect that a measurement on a small part of a macroscopic

classical system does not affect remote subsystems of the same system. In nature, only the

properties of nearby parts of the measured subsystem can be affected such that the macro-

scopicity of macroscopic classical systems is negligible. In contrast, for quantum states,

even distant subsystems may be affected by a local measurement. An example hereby is

the superposition of the ferromagnetic ground states

|𝜓⟩ = 1√
2

(︁
|↑↑↑ · · · ⟩+ |↓↓↓ · · · ⟩

)︁
, (4.1)

where | ↑⟩ is the eigenstate of the spin operator corresponding to the 𝑧-component of the

spin with eigenvalue +1
2 . If we measure the polarisation of an arbitrary spin along the 𝑧-

axis, the state of all other spins changes according to the measurement outcome. Therefore,

the macroscopicity of this state is extremely high3.

1While we primarily focus on the stability of pure quantum states described by a quantum wave function,
our approach is also applicable to mixed quantum states which describe incoherent mixtures of pure quantum
states.

2During the completion of this thesis, we became aware of the article [82] by Shimizu and Miyadera,
where the authors define the stability of quantum states with respect to local measurements. The definition
in [82] is, in principle, equivalent to our definition of macroscopicity. However, Shimizu and Miyadera do
not provide a stability measure. In contrast, we define a measure of macroscopicity which may become
important, for example, for a comparison of different experiments.

3The example above also highlights the difference between the measure of macroscopicity of quantum
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This chapter is organised as follows. First, we introduce the necessary objects for the

formulation of the measure of macroscopicity and, subsequently, formulate the macroscop-

icity measure which is suitable for broad variety of many-body systems. Later, we apply

this macroscopicity measure to lattices of spins-12 and also provide two explicit examples.

4.1 Preliminary considerations

We want to consider the overall effect of one local measurement on the subsystems of the

total system. In order to characterise this effect, first, we introduce the decomposition of

the total system into subsystems. Second, we quantify the effect on a given subsystem

by introducing a distance measure for the density matrices. The overall effect of the local

measurement is the sum of the changes of density matrices of the subsystems for a given

decomposition. In this section, we introduce the above quantities.

Decomposition of the total system

There are many different possibilities to decompose the system into subsystems, cf. Fig. 4.1.

In this thesis, we define the subsystems by dividing the physical three-dimensional space into

non-overlapping regions. On the one hand, we assume that the volume of these subsystems

is negligible with respect to the volume of the total system and, on the other hand, the

subsystems’ volume must be large enough such that not much less than one particle is

contained in each subsystem on the average.

Distance between density matrices

We introduce the distance between the density matrices 𝜌0 and 𝜌1

𝑑(𝜌0, 𝜌1) ≡
√︁
Tr
[︀
(𝜌0 − 𝜌1)(𝜌0 − 𝜌1)†

]︀
, (4.2)

states and the measure of stability of quantum statistical ensembles because both states | ↑↑↑ · · · ⟩ and
| ↓↓↓ · · · ⟩ correspond to the same energy for a ferromagnetic Hamiltonian. Yet, the superposition of these
states is unstable.

b

b

b b

b

b

b
b

b

b

b

b

Figure 4.1: Schematic representation of an example for the decomposition of the system into
subsystems. Dots indicate the particles of the system, and the blue dashed lines illustrate
the decomposition into subsystems.
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where the trace is to be taken over the degrees of freedom described by the density matrices.

This distance is a metric in the space of the density matrices and it satisfies useful relations.

For example, it is invariant under a basis transformation and also invariant under time

evolution. Further, the distance can take on values in the range 0 ≤ 𝑑(𝜌1,𝑚, 𝜌0,𝑚) ≤
√
2, cf.

Appendix C4.

4.2 Definition of the macroscopicity measure for quantum su-

perpositions

Let 𝜌0 be the density matrix describing the total system before the measurement and

𝜌1 the density matrix immediately after the measurement5. Suppose now that we fix a

decomposition of the total system into subsystems. We enumerate the subsystems and

denote the reduced density matrices of the 𝑚-th subsystem before the measurement by

𝜌0,𝑚 and after the measurement by 𝜌1,𝑚.

In order to quantify the impact of the local measurement on the total system, we intro-

duce

Δϒ ≡
∑︁
𝑚

𝑑(𝜌1,𝑚, 𝜌0,𝑚), (4.3)

which is the sum of the changes of all subsystems’ density matrices. Since the maximal

value of the distance is
√
2, the maximal value of Δϒ is

√
2𝑁 , where 𝑁 is the number of

subsystems. If Δϒ ∼ 𝑁 , this indicates a significant change of the density matrix for all

subsystems.

The quantity Δϒ depends on the chosen decomposition of the system into subsystems.

If we were to choose another decomposition, Δϒ could, in principle, vary significantly.

Definition: The measure of macroscopicity for quantum superpositions 𝑀 is defined as

𝑀 ≡ max
[︀
Δϒ

]︀
= max

[︃∑︁
𝑚

𝑑(𝜌1,𝑚, 𝜌0,𝑚)

]︃
, (4.4)

where max denotes

� the maximum over all possible decompositions of the total system into subsystems,

� the maximum over the measurement basis because 𝑀 is implied to be averaged over

the possible measurement outcomes in a given basis.

Let us now make a two remarks.

1. We call a quantum state a macroscopic superposition (or mixture) if 𝑀 ∼ 𝑁 .

2. The number of decompositions can become quite large especially for macroscopic sys-

tems. Therefore, finding a maximal value of Δϒ can become quite involved. However,

the precise value of𝑀 is less important than its estimate. Finding an estimate for the

4It is noteworthy that the upper and lower bounds of 𝑑(𝜌0, 𝜌1) are independent of the size of the system
described by the density matrices.

5This means that we disregard any time evolution after the measurement.
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maximum over all possible decompositions can be simplified in the following way. If

the properties of single particles change due to the measurement, the decomposition

into subsystems, where each subsystem contains one particle on the average, is likely

to give a good estimate for 𝑀 . Furthermore, if the properties of single particles do

not change, 𝑀 is likely to be found for subsystems containing two directly interacting

particles.

4.3 Formulation for lattices of spins-12

In this section, we apply the above measure of macroscopicity for quantum superpositions

𝑀 to lattices of spins-12 . In order to do this, we introduce a suitable parametrisation of the

spin density matrices and provide an expression for 𝑀 based on observable quantities.

4.3.1 Representation of the spin density matrix

Let us consider a single spin-12 . The density matrix 𝜌𝑗 of the spin at lattice site 𝑗 can be

written in the following form

𝜌𝑗 =
1

2

3∑︁
𝜇=0

𝑃𝑗𝜇𝜎𝑗𝜇, (4.5)

where 𝜎𝑗𝜇 is the 𝜇-th Pauli matrix6 acting on the Hilbert space corresponding to lattice site

𝑗7 and 𝑃𝑗𝜇 is the polarisation of the given spin in the direction 𝜇. The polarisation 𝑃𝑗𝜇 is

given by

𝑃𝑗𝜇 = Tr [𝜎𝑗𝜇𝜌𝑗 ] = 2⟨𝑆𝑗𝜇⟩, (4.6)

where 𝑆𝑖𝜇 = 1
2𝜎𝑖𝜇 is the corresponding spin operator. The parameters 𝑃𝑗𝜇 can take on

values from the interval [−1, 1]. Given that the density matrix of the total spin lattice is

𝜌, the above expression for 𝑃𝑗𝜇 can also be written as 𝑃𝑗𝜇 = Tr [𝜎𝑗𝜇𝜌], where the trace now

extends over the larger Hilbert space.

The analogous expressions for the density matrix of 2 spins at lattice sites 𝑗 and 𝑘 are

𝜌𝑗𝑘 =
1

4

3∑︁
𝜇,𝜈=0

𝑃𝑗𝑘𝜇𝜈 𝜎𝑗𝜇𝜎𝑘𝜈 , (4.7)

where

𝑃𝑗𝑘𝜇𝜈 = Tr
[︀
(𝜎𝑗𝜇𝜎𝑘𝜈) 𝜌𝑗𝑘

]︀
= 4⟨𝑆𝑗𝜇𝑆𝑘𝜈⟩. (4.8)

The parameters 𝑃𝑗𝑘𝜇𝜈 contain not only the polarisations of the individual spins but also

the spin-spin correlations. Density matrices of larger spin systems can be written in a form

analogous to the ones given in Eq. (4.5) and Eq. (4.7).

6The zeroth Pauli matrix is defined as the unit matrix.
7In the following, we use the convention, that the indices for the lattice sites are indicated by Latin

letters, while the indices for the spatial directions of the spin polarisations are indicated by Greek letters.
The latter run over the values 0,1,2,3.
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4.3.2 Macroscopicity measure for lattices of spins-1
2

Now, we calculate the measure of macroscopicity introduced in Eq. (4.4). We choose a

decomposition of the system such that there is one spin in each subsystem. Substituting

Eq. (4.5) into Eq. (4.2), we obtain

𝑑(𝜌1,𝑗 , 𝜌0,𝑗) =
1√
2

⎯⎸⎸⎷ 3∑︁
𝜇=0

(︁
𝑃1,𝑗𝜇 − 𝑃0,𝑗𝜇

)︁2
, (4.9)

where we used the following relation: 𝜎𝜇𝜎𝜈 = 𝛿𝜇𝜈𝜎0+ 𝑖𝜀𝜇𝜈𝜅𝜎𝜅. Hence, the distance between

two density matrices is given by the differences of their individual parameters 𝑃𝑗𝜇. The

derivation of Eq. (4.9) is given in the Appendix C.

Further, substituting the expression for the parameters 𝑃𝑗𝜇 in Eq. (4.6), we obtain

𝑑(𝜌1,𝑗 , 𝜌0,𝑗) =
√
2

⎯⎸⎸⎷ 3∑︁
𝜇=0

(︁
⟨𝑆𝑗𝜇⟩1 − ⟨𝑆𝑗𝜇⟩0

)︁2
, (4.10)

where ⟨𝑆𝑗𝜇⟩1 ≡ Tr
[︀
𝑆𝑗𝜇 𝜌1

]︀
is the expectation value of 𝑆𝑗𝜇 with respect to 𝜌1 and likewise

for ⟨𝑆𝑗𝜇⟩0. Finally, substituting the expression in Eq. (4.10) into the expression for 𝑀 , we

obtain

𝑀 =
√
2max

[︃∑︁
𝑗

⎯⎸⎸⎷ 3∑︁
𝜇=0

(︁
⟨𝑆𝑗𝜇⟩1 − ⟨𝑆𝑗𝜇⟩0

)︁2]︃
. (4.11)

The result is that the measure of macroscopicity 𝑀 is governed by the changes of the spin

expectation values of all spins and in all directions.

For a decomposition of the system into subsystems each of which consists of two spins,

we obtain along the lines to the above treatment

𝑑(𝜌1,𝑗𝑘, 𝜌0,𝑗𝑘) = 2

⎯⎸⎸⎷ 3∑︁
𝜇,𝜈=0

(︁
⟨𝑆𝑗𝜇𝑆𝑘𝜈⟩1 − ⟨𝑆𝑗𝜇𝑆𝑘𝜈⟩0

)︁2
, (4.12)

where ⟨𝑆𝑗𝜇𝑆𝑘𝜈⟩1 ≡ Tr
[︀
𝑆𝑗𝜇𝑆𝑘𝜈 𝜌1

]︀
and ⟨𝑆𝑗𝜇𝑆𝑘𝜈⟩0 ≡ Tr

[︀
𝑆𝑗𝜇𝑆𝑘𝜈 𝜌0

]︀
. For the measure of

macroscopicity 𝑀 , we obtain

𝑀 = 2max

⎡⎣∑︁
𝑗𝑘

⎯⎸⎸⎷ 3∑︁
𝜇,𝜈=0

(︁
⟨𝑆𝑗𝜇𝑆𝑘𝜈⟩1 − ⟨𝑆𝑗𝜇𝑆𝑘𝜈⟩0

)︁2⎤⎦ , (4.13)

where
∑︀

𝑗𝑘 indicates the sum over the spin-pairs corresponding to the given decomposition

of the system. This result is similar to the one given for the one-spin density matrices in

Eq. (4.11).
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4.4 Two examples for the macroscopicity measure

In this section, we apply the measure of macroscopicity 𝑀 to quantum states describing a

system of 𝑁𝑠 spins-12 .

� Greenberger-Horne-Zeilinger (GHZ) state

Let us consider the measure of macroscopicity of the GHZ-state which is defined as

|𝜓GHZ⟩ =
1√
2

[︁
|↑↑↑ · · · ⟩+ |↓↓↓ · · · ⟩

]︁
. (4.14)

This wave function describes a superposition of states, where all spins point either

in the positive 𝑧-direction | ↑↑↑ · · · ⟩ or in the negative 𝑧-direction | ↓↓↓ · · · ⟩. The

single-spin density matrix of each spin is

𝜌0,𝑗 =

(︃
1
2 0

0 1
2

)︃
, (4.15)

which leads to ⟨𝑆𝑗𝑥⟩0 = 0, ⟨𝑆𝑗𝑦⟩0 = 0 and ⟨𝑆𝑗𝑧⟩0 = 0.

Let us now assume that the state of an arbitrary spin after the measurement is

|𝜓(𝜗, 𝜙)⟩ = cos

(︂
𝜗

2

)︂
|↑⟩+ sin

(︂
𝜗

2

)︂
𝑒𝑖𝜙|↓⟩, (4.16)

where 𝜗 is the polar angle and 𝜙 the azimuthal angle of the spin polarisation. After

the measurement, the density matrix of each spin except for the measured spin 𝑗 is8

𝜌1,𝑗 =

(︃
cos2

(︀
𝜗
2

)︀
0

0 sin2
(︀
𝜗
2

)︀)︃ , (4.17)

which leads to ⟨𝑆𝑗𝑥⟩1 = 0, ⟨𝑆𝑗𝑦⟩1 = 0 and ⟨𝑆𝑗𝑧⟩1 = cos2
(︀
𝜗
2

)︀
− 1

2 . In follows that the

maximal change of the density matrix is given for the measurement along the 𝑧-axis.

Therefore, 𝑀 is maximal for measurement basis |↑⟩𝑧 and |↓⟩𝑧.

Employing the expression in Eq. (4.11), we obtain

𝑀 =
1√
2
𝑁𝑠, (4.18)

which is the maximal value for the measure of macroscopicity9. Therefore, the GHZ-

state describes a quantum superposition of macroscopically distinct states.

Induced symmetry breaking

The above example shows that a local measurement can induce a symmetry breaking.

The measurement along the 𝑧-axis leads to a macroscopic magnetisation of the total

8The density matrix of the measured spin, in general, has in addition non-vanishing off-diagonal elements.
9The factor 1√

2
comes from the particular definition of the distance measure 𝑑.
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system 𝑀𝑧 ≈ ⟨𝑆𝑙𝑧⟩1𝑁𝑠 = ±1
2𝑁𝑠, whereas the magnetisation was zero before the

measurement. Similar results can also be obtained for the anti-ferromagnetic state [43,

82].

� A product state

A quantum state of the following form

𝜓p = |↑⟩|↓⟩|↑⟩ · · · |↑⟩, (4.19)

we call a product state. For the measure of macroscopicity of any such a state, we

obtain

𝑀 . 1. (4.20)

The reason is that the individual spins are not correlated with each other for the

product states. This implies that the vast majority of subsystem’s density matrices

remains unchanged. The only density matrix that changes is the one of the measured

spin. Therefore, a product state does not describe a quantum superposition of macro-

scopically distinct states. In fact, the value in Eq. (4.20) is the minimal value for

𝑀 .
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Chapter 5

Summary and Conclusions

In this thesis, we resolve an outstanding issue of the foundation of quantum statistical

physics. Namely, we show that the use of quantum statistical ensembles with narrow energy

distributions for describing the equilibria of macroscopic quantum systems can be justified.

In Chapter 2, we formulate a stability criterion for statistical ensembles describing

macroscopic systems which is suitable for a broad range of many-body systems. An en-

semble is called “stable” when a small number of local measurements cannot significantly

modify the probability distribution of the total energy of the system. We apply this stabil-

ity criterion to lattices of spins-12 and analytically derive an expression which describes the

effect of local measurements on the probability distribution of the total energy 𝑔(𝐸).

Based on the results obtained for lattices of spins-12 , we show that even relatively rare

random local measurements impose strict constraints on quantum statistical ensembles.

Quantum statistical ensembles characterised by 𝑔(𝐸) which are significantly broader than

that of the canonical ensemble are unstable. The lifetime of such 𝑔(𝐸) is extremely short

such that narrow 𝑔(𝐸) can be assumed in all practical calculations. In contrast, ensembles

characterised by 𝑔(𝐸) with a width which is of the same order as that of the canonical

ensemble are nearly stable in the absolute sense. This means that the broadening effect and

the narrowing effect compensate each other for this width.

The above results justify the use of statistical ensembles with narrow 𝑔(𝐸) for the

equilibrium description of macroscopic systems, such as the canonical or microcanonical

ensembles.

The analytical treatment of lattices of spins-12 is based on derivations which are system

specific. Therefore, the results may be not directly applicable beyond spin lattices. However,

the basic concept of the stability of statistical ensembles is applicable to all many-body

systems in general. Moreover, we expect that similar results as that described above can

also be obtained for other systems.

In Chapter 3, we numerically test the analytical results obtained in Chapter 2. We

investigate the stability 𝑔(𝐸) by directly simulating interacting spin systems of different

sizes with up to 24 spins.

First, we consider the finite-size effects with respect to the local measurements. Since,

the finite-size effects are rather pronounced for microscopic systems, we limit our investiga-

tion to the two-peak 𝑔(𝐸) and study the evolution of the stability measure Δ𝐺(𝑛) as well
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as the evolution of other stability measures that we propose. The results of the numerical

investigations are consistent with the analytical results in Chapter 2.

In Chapter 4, we introduce a macroscopicity measure 𝑀 for quantum superpositions of

macroscopically distinct states. We call a quantum superposition macroscopic if one local

measurement induces significant modifications of the density matrices of a macroscopic

number of subsystems. This measure is based the notion of the instability of individual

quantum states with respect to one local measurement.

The definition of the macroscopicity measure 𝑀 is suitable for a broad variety of many-

body systems. We apply this measure to lattices of spins-12 and show that 𝑀 is governed

by the variations of the individual spin polarisations and the spin-spin correlations due

to the local measurement. In the end, we give two examples by explicitly calculating the

macroscopicity measure 𝑀 .

Based on all the above results, we obtain the following constraints for experiments aiming

at protecting unconventional statistical ensembles for finite spin systems. Such experiments

should avoid: (i) external magnetic fields, (ii) long-range order, (iii) local constants of

motion. Effectively, each of the above points increases the measurement frequency and

thereby decreases the lifetime of a statistical ensemble.

In this thesis, we formulate a general concept of stability of quantum statistical ensem-

bles. This concept is applicable to any physical system in principle. Further investigations

could include the application of the stability criterion for quantum statistical ensembles to

other physical systems, for example to systems with translational degrees of freedom.
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Appendix A

Derivations for Chapter 2

A.1 Derivations for spins in magnetic field

In this Appendix, we present a rigorous derivation of Eq. (2.28). We defined the energy

distribution 𝑔𝑛(𝐸) with respect to a coarse-grained energy axis. Here, we consider the

occupation of individual energy levels and introduce the probability distribution of total

energy 𝑓𝑛(𝐸) without any coarse-graining.

We consider𝑁𝑠 non-interacting spin in a uniform magnetic field𝐻𝑧 with the Hamiltonian

in Eq. (2.27). The smallest energy eigenvalue for this system is 𝐸min = −𝐻𝑧𝑁𝑠
2 and the

biggest energy eigenvalue is 𝐸max = 𝐻𝑧𝑁𝑠
2 . The eigenenergies are of the form

𝐸 = 𝐸min +𝐻𝑧𝑚, (A.1)

where 𝑚 is an integer 𝑚 ∈ [0, 𝑁𝑠]. 𝑚 is the number of spins pointing into the negative

𝑧-direction.

Now, let us consider the effect of the 𝑛-th measurement on the density matrix of the

total system

𝜌𝑛−1 =
∑︁
𝑖

𝑝(𝐸𝑖)|𝐸𝑖⟩⟨𝐸𝑖|. (A.2)

The energy distribution 𝑓𝑛(𝐸) after the 𝑛-th measurement reads

𝑓𝑛(𝐸) =
1

𝐵𝑛

𝑢(𝐸)∑︁
𝑘

⟨𝐸𝑘|𝒫𝑛𝜌𝑛−1𝒫𝑛|𝐸𝑘⟩ =
1

𝐵𝑛

𝑢(𝐸)∑︁
𝑘

∑︁
𝑖

𝑝(𝐸𝑖)|⟨𝐸𝑘|𝒫𝑛|𝐸𝑖⟩|2, (A.3)

where 𝑢(𝐸) is the subspace of the Hilbert space corresponding to the possibly degenerate

eigenvalue 𝐸. The sum over the index 𝑘 is, therefore, restricted to |𝐸𝑘⟩ ∈ 𝑢(𝐸).

For the given Hamiltonian, a measurement of a single spin described by the projection

operator 𝒫𝑛 can induce transitions from an energy level 𝐸 to two neighbouring energy levels

𝐸−𝐻𝑧 and 𝐸+𝐻𝑧. The sum over 𝑖 in Eq. (A.3) is, hence, limited to 𝐸𝑖 = 𝐸, 𝐸𝑖 = 𝐸−𝐻𝑧
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and 𝐸𝑖 = 𝐸 +𝐻𝑧

𝑓𝑛(𝐸) =
1

𝐵𝑛

𝑢(𝐸)∑︁
𝑘

[︃
𝑝(𝐸)

𝑢(𝐸)∑︁
𝑖

|⟨𝐸𝑘|𝒫𝑛|𝐸𝑖⟩|2 + 𝑝(𝐸 +𝐻𝑧)

𝑢(𝐸+𝐻𝑧)∑︁
𝑖

|⟨𝐸𝑘|𝒫𝑛|𝐸𝑖⟩|2 (A.4)

+𝑝(𝐸 −𝐻𝑧)

𝑢(𝐸−𝐻𝑧)∑︁
𝑖

|⟨𝐸𝑘|𝒫𝑛|𝐸𝑖⟩|2
]︃
.

With 𝑓(𝐸) = 𝑝(𝐸)𝜈(𝐸) and 𝜈(𝐸) = dim[𝑢(𝐸)], we obtain

𝑓𝑛(𝐸) =
1

𝐵𝑛

[︃
𝑓𝑛−1(𝐸)

∑︀𝑢(𝐸)
𝑘

∑︀𝑢(𝐸)
𝑖 |⟨𝐸𝑘|𝒫𝑛|𝐸𝑖⟩|2
dim[𝑢(𝐸)]

(A.5)

+𝑓𝑛−1(𝐸 +𝐻𝑧)

∑︀𝑢(𝐸)
𝑘

∑︀𝑢(𝐸+𝐻𝑧)
𝑖 |⟨𝐸𝑘|𝒫𝑛|𝐸𝑖⟩|2

dim[𝑢(𝐸 +𝐻𝑧)]

+𝑓𝑛−1(𝐸 −𝐻𝑧)

∑︀𝑢(𝐸)
𝑘

∑︀𝑢(𝐸−𝐻𝑧)
𝑖 |⟨𝐸𝑘|𝒫𝑛|𝐸𝑖⟩|2

dim[𝑢(𝐸 −𝐻𝑧)]

]︃
.

Substituting the expression for the projection operator given in Eq. (2.12) and using that,

for the given system,

dim[𝑢(𝐸)] =
𝑁𝑠!

𝑚!(𝑁𝑠 −𝑚)!
, (A.6)

where 𝑚 is defined by Eq. (A.1), the result reads1

𝑓𝑛(𝐸) =
1

𝐵𝑛

[︃(︂
cos4

(︂
𝜗𝑛
2

)︂
− 𝐸 − 𝐸min

𝐻𝑧𝑁𝑠
cos(𝜗𝑛)

)︂
𝑓𝑛−1(𝐸) (A.7)

+
1

4
sin2(𝜗𝑛)

𝐸 +𝐻𝑧 − 𝐸min

𝐻𝑧𝑁𝑠
𝑓𝑛−1(𝐸 +𝐻𝑧)

+
1

4
sin2(𝜗𝑛)

(︂
1− 𝐸 −𝐻𝑧 − 𝐸min

𝐻𝑧𝑁𝑠

)︂
𝑓𝑛−1(𝐸 −𝐻𝑧)

]︃
,

where

𝐵𝑛 =
1

2
+

(︂
1

2
− 𝐸av,𝑛−1 − 𝐸min

𝐻𝑧𝑁𝑠

)︂
cos(𝜗𝑛). (A.8)

When changing to the coarse-grained energy axis with a bin width ΔE ≫ 𝐻𝑧 and

correspondingly shifting from 𝑓𝑛(𝐸) to 𝑔𝑛(𝐸), we substitute 𝐸 ± 𝐻𝑧 → 𝐸 in the above

equation and obtain for 𝑔(𝐸)

𝑔𝑛(𝐸) =
1

𝐵𝑛

(︃
1

2
− 𝐸 − 1

2(𝐸max + 𝐸min)

𝐸max − 𝐸min
cos(𝜗𝑛)

)︃
𝑔𝑛−1(𝐸), (A.9)

where 𝐸max − 𝐸min = 𝐻𝑧𝑁𝑠. Since 𝐸max + 𝐸min = 0 for the Hamiltonian given, we arrive

at Eq. (2.28).

1The result depends only on the polar angle 𝜗𝑛 because of the axial symmetry of the problem.
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A.1.1 Evolution of the average energy

The average energy 𝐸av,𝑛 after the 𝑛-th measurement reads

𝐸av,𝑛 =
∑︁
𝐸

𝐸 𝑓𝑛(𝐸) (A.10)

= 𝐸av,𝑛−1 +
1

𝐵𝑛

[︂
1

4
𝐻𝑧 sin

2(𝜗𝑛)

(︂
1− 𝐸av,𝑛−1 − 𝐸min

𝐸av,𝑇=∞ − 𝐸min

)︂
− cos(𝜗𝑛)

𝐻𝑧𝑁𝑠
𝑤2
𝑔,𝑛−1

]︂
,(A.11)

where 𝑤2
𝑔,𝑛−1 is the variance of 𝑓𝑛−1(𝐸) before the 𝑛-th measurement and

𝐸av,𝑇=∞ ≡ 1

2
(𝐸max − 𝐸min) + 𝐸min =

1

2
𝐻𝑧𝑁𝑠 + 𝐸min (A.12)

is the average energy of the canonical ensemble at infinite temperature.

Now, we consider specific measurement outcomes.

𝜗 = 0 : 𝐸av,𝑛 = 𝐸av,𝑛−1 −
𝑤2
𝑔,𝑛−1

𝐸max − 𝐸av,𝑛−1
, (A.13)

𝜗 = 𝜋 : 𝐸av,𝑛 = 𝐸av,𝑛−1 +
𝑤2
𝑔,𝑛−1

𝐸av,𝑛−1 − 𝐸min
, (A.14)

𝜗 =
𝜋

2
: 𝐸av,𝑛 = 𝐸av,𝑛−1 +

𝐻𝑧

2

(︂
1− 𝐸av,𝑛−1 − 𝐸min

𝐸av,𝑇=∞ − 𝐸min

)︂
. (A.15)

If the measured spin is aligned parallel to the 𝑧-axis (𝜗 = 0, 𝜗 = 𝜋), 𝐸av increases for a

spin pointing into the negative 𝑧-direction and decreases in the opposite case. This is an

implication of the correlation between the measurement outcomes and the total energy. If

the measured spin is polarised in the 𝑥 − 𝑦 plane (𝜗 = 𝜋
2 ), the shift of the average energy

does not depend on the particular spin polarisation in the plane. Such a measurement

outcome induces a drift of 𝐸av towards the value in the infinite-temperature limit 𝐸av,𝑇=∞

(higher entropy) and corresponds to heating.

Averaging 𝐸av,𝑛 over all possible measurement outcomes, we obtain

𝐸av,𝑛 =

∫︁
𝑑𝜗𝑛 sin(𝜗𝑛) 𝐸av,𝑛 𝐵𝑛

= 𝐸av,𝑛−1 +
𝐻𝑧

3

(︂
1− 𝐸av,𝑛−1 − 𝐸min

𝐸av,𝑇=∞ − 𝐸min

)︂
. (A.16)

This means that the average behaviour of 𝐸av,𝑛 is governed by the heating effect.

A.1.2 Evolution of the variance of the energy distribution

Now, we calculate the variance 𝑤2
𝑔,𝑛 of 𝑔𝑛(𝐸) after the 𝑛-th measurement

𝑤2
𝑔,𝑛 ≡

∑︁
𝐸

(︁
𝐸 − 𝐸av,𝑛

)︁2
𝑓𝑛(𝐸). (A.17)
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First, we split the above expression into two terms and consider each term separately

𝑤2
𝑔,𝑛 =

∑︁
𝐸

(︁
𝐸 − 𝐸av,𝑛−1

)︁2
𝑓𝑛(𝐸)−

(︁
𝐸av,𝑛 − 𝐸av,𝑛−1

)︁2
. (A.18)

The first term yields

∑︁
𝐸

(︁
𝐸 − 𝐸av,𝑛−1

)︁2
𝑓𝑛(𝐸) (A.19)

= 𝑤2
𝑔,𝑛−1 +

1

𝐵𝑛

[︃
1

4
𝐻2

𝑧 sin
2(𝜗𝑛)

(︃
1−

𝑤2
𝑔,𝑛−1

𝑤2
𝑇=∞

)︃
− cos(𝜗𝑛)

𝐻𝑧𝑁𝑠
⟨𝐸3⟩𝑛−1

]︃
,

where ⟨𝐸3⟩𝑛−1 is the third central moment of the total-energy distribution 𝑓𝑛−1(𝐸). The

second term in Eq. (A.18) follows directly from Eq. (A.11) such that, in total, we obtain

𝑤2
𝑔,𝑛 = 𝑤2

𝑔,𝑛−1 +
1

𝐵𝑛

[︃
1

4
𝐻2

𝑧 sin
2(𝜗𝑛)

(︃
1−

𝑤2
𝑔,𝑛−1

𝑤2
𝑇=∞

)︃
− cos(𝜗𝑛)

𝐻𝑧𝑁𝑠
⟨𝐸3⟩𝑛−1

]︃
(A.20)

+
1

𝐵2
𝑛

[︂
1

4
𝐻𝑧 sin

2(𝜗𝑛)

(︂
1− 𝐸av,𝑛−1 − 𝐸min

𝐸av,𝑇=∞ − 𝐸min

)︂
− cos(𝜗𝑛)

𝐻𝑧𝑁𝑠
𝑤2
𝑔,𝑛−1

]︂2
.

Now, let us evaluate Eq. (A.20) for some specific measurement outcomes

𝜗𝑛 = 0 : 𝑤2
𝑔,𝑛 = 𝑤2

𝑔,𝑛−1 −
(︃

𝑤2
𝑔,𝑛−1

𝐸av,𝑛−1 − 𝐸min

)︃2

+
⟨𝐸3⟩𝑛−1

𝐸av,𝑛−1 − 𝐸min
, (A.21)

𝜗𝑛 = 𝜋 : 𝑤2
𝑔,𝑛 = 𝑤2

𝑔,𝑛−1 −
(︃

𝑤2
𝑔,𝑛−1

𝐸max − 𝐸av,𝑛−1

)︃2

− ⟨𝐸3⟩𝑛−1

𝐸av,𝑛−1 − 𝐸min
, (A.22)

𝜗𝑛 =
𝜋

2
: 𝑤2

𝑔,𝑛 = 𝑤2
𝑔,𝑛−1 +

1

2
𝐻2

𝑧

(︃
1−

𝑤2
𝑔,𝑛−1

𝑤2
𝑇=∞

)︃
− 1

4
𝐻2

𝑧

(︂
1− 𝐸av,𝑛−1 − 𝐸min

𝐸av,𝑇=∞ − 𝐸min

)︂2

.(A.23)

If we assume for simplicity that ⟨𝐸3⟩𝑛−1 = 0, a measurement outcome which correlates with

the total energy (𝜗𝑛 = 0 and 𝜗𝑛 = 𝜋) narrows the energy distribution 𝑤2
𝑔,𝑛 − 𝑤2

𝑔,𝑛−1 < 0.

On the contrary, the measurement outcome corresponding to heating (𝜗𝑛 = 𝜋/2) drives the

variance to 𝑤2
𝑇=∞.

Now, we average 𝑤2
𝑔,𝑛 over all possible measurement outcomes2

𝑤2
𝑔,𝑛 =

∫︁
𝑑𝜗𝑛 sin(𝜗𝑛) 𝑤

2
𝑔,𝑛 𝐵𝑛 (A.24)

= 𝑤2
𝑔,𝑛−1 +

1

3
𝐻2

𝑧

(︃
1−

𝑤2
𝑔,𝑛−1

𝑤2
𝑇=∞

)︃
(A.25)

−1

4
𝐻2

𝑧

⎡⎣(︃𝑤2
𝑔,𝑛−1

𝑤2
𝑇=∞

)︃2

𝑘1(𝑥) +
𝑤2
𝑔,𝑛−1

𝑤2
𝑇=∞

𝑘2(𝑥) + 𝑘3(𝑥)

⎤⎦ ,

2It is worth noticing that, unlike for 𝐸av,𝑛, the behaviour of 𝑤2
𝑔,𝑛 in Eq. (A.25) shows both effects, that

of heating (second term in Eq. (A.25)), and that of narrowing (third term in Eq. (A.25)).
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where

𝑘1(𝑥) =

⃒⃒⃒⃒
𝑥− artanh(𝑥)

𝑥3

⃒⃒⃒⃒
(A.26)

𝑘2(𝑥) =

⃒⃒⃒⃒
⃒𝑥
(︀
4
3𝑥

2 − 2
)︀
− 2(𝑥2 − 1) artanh(𝑥)

𝑥3

⃒⃒⃒⃒
⃒ (A.27)

𝑘3(𝑥) =

⃒⃒⃒⃒
⃒𝑥
(︀
5
3𝑥

2 − 1
)︀
+ (𝑥2 − 1)2 artanh(𝑥)

𝑥3

⃒⃒⃒⃒
⃒ , (A.28)

and 𝑥 =
𝐸av,𝑛−1−𝐸min

𝐸av,𝑇=∞−𝐸min
− 1 with 𝑥 ∈ [−1,+1]. 𝑥 = −1 corresponds to 𝐸av,𝑛−1 = 𝐸min and

𝑥 = 1 to 𝐸av,𝑛−1 = 𝐸max. The functions 𝑘2(𝑥) and 𝑘3(𝑥) are finite for all values of 𝑥, but

𝑘1(𝑥) diverges for 𝑥→ ±1. Taking into account that the variance 𝑤2
𝑔,𝑛−1 vanishes in these

limits renders this divergence negligible.

The important term which determines the change of the variance 𝑤2
𝑔,𝑛 − 𝑤2

𝑔,𝑛−1 is thus

𝑤2
𝑔,𝑛−1/𝑤

2
𝑇=∞. If 𝑤2

𝑔,𝑛−1/𝑤
2
𝑇=∞ ≪ 1 corresponding to a narrow 𝑓(𝐸), then, according to

Eq. (A.25), 𝑤2
𝑔,𝑛 − 𝑤2

𝑔,𝑛−1 ∼ 1. However, for a broad 𝑓(𝐸), the ratio 𝑤2
𝑔,𝑛−1/𝑤

2
𝑇=∞ can

easily be of order 𝑁𝑠 leading to a significant narrowing.

A.1.3 Stable variance and its relation to the canonical ensemble

Requiring 𝑤2
𝑔,𝑛 − 𝑤2

𝑔,𝑛−1 = 0 in Eq. (A.25), we obtain

0 = −4

3

(︃
1−

𝑤2
𝑔,𝑛−1

𝑤2
𝑇=∞

)︃
+

(︃
𝑤2
𝑔,𝑛−1

𝑤2
𝑇=∞

)︃2

𝑘1(𝑥) +
𝑤2
𝑔,𝑛−1

𝑤2
𝑇=∞

𝑘2(𝑥) + 𝑘3(𝑥). (A.29)

The solution is

[︀
𝑤2
𝑔

]︀
stab

(𝑥) =
𝑤2
𝑇=∞
𝑘1(𝑥)

(︂
𝑘2(𝑥) +

4

3

)︂⎛⎝−1

2
+

⎯⎸⎸⎷1

4
+ 𝑘1(𝑥)

4
3 − 𝑘3(𝑥)(︀
𝑘2(𝑥) +

4
3

)︀2
⎞⎠ . (A.30)

Figure A.1 shows
[𝑤2

𝑔]stab(𝑥)
𝑤2

𝑇=∞
as a function of 𝑥. It is worth mentioning, hereby, that the

stable variance
[︀
𝑤2
𝑔

]︀
stab

(𝑥) does not vanish at 𝑥 = ±1 but remains finite.

For the canonical ensemble, the relation between 𝑥 and the variance can be obtained by

approximating the density of states using Stirlings formula and expanding the exponential

until the second order

𝑤2
can(𝑥)

∼= 𝑤2
𝑇=∞(1− 𝑥2). (A.31)

The relation between the canonical variance 𝑤2
can(𝑥) and the stable variance

[︀
𝑤2
𝑔

]︀
stab

(𝑥) is

shown in Fig. A.2. For the particular case 𝑥 = 0, we obtain

[︀
𝑤2
𝑔

]︀
stab

(0) = (
√
8− 2)𝑤2

𝑇=∞ ≈ 0, 8 𝑤2
𝑇=∞ = 0, 8 𝑤2

can(0). (A.32)
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A.2 Coarse-graining of the energy axis

For a canonical ensemble, heating means that 𝐸av drifts towards the values corresponding

to higher entropy 𝑆(𝐸av), i.e., 𝐸av increases for positive temperatures and decreases for

negative ones. For positive temperatures 𝑇 , the increase of 𝐸av due to one measurement is

of the order of one-particle energy 𝜖1.

Our definition of 𝑔(𝐸) implies averaging over energy bins whose width Δe satisfies the

following inequalities

𝜖1 ≪ Δe ≪ 𝑇 (𝐸av)
√︀
𝐶𝑉 (𝐸av). (A.33)

In the case of negative temperatures, |𝑇 (𝐸av)| should be used instead.

The left inequality makes Δe larger than the energy range 𝜖1 connected by typical off-

diagonal single-particle elements. This allows us to neglect the energy drift (heating) and

also approximate the relation between 𝑔𝑛−1(𝐸) and 𝑔𝑛(𝐸) as being local in energy. The

right inequality in Eq. (A.33) assures that the energy eigenstates within each bin correspond

to approximately the same local density matrices.

Typically, Δe can be found such that both inequalities in (A.33) are satisfied for the

whole energy range except for extremely low temperatures. We, however, assume that this

energy interval makes a negligible contribution to 𝑔(𝐸), i.e., the integral of 𝑔(𝐸) over this

energy interval is much smaller than 1.

Until now, we have considered the effect of a single measurement. Let us here for a

moment consider the limit 𝑛 ≪ √
𝑁𝑠. After 𝑛 measurements, the drift of 𝐸av can be of

the order 𝜖1𝑛, cf. Appendix A.1. For 𝑛 ≪ √
𝑁𝑠, the maximal drift is much smaller than

𝜖1
√
𝑁𝑠. This condition is the same as the right inequality of Eq. (A.33) since 𝑇 (𝐸av) ∼ 𝜖1.

We require however that, even in the limit of 𝑛 ≪ √
𝑁𝑠, the drift of 𝐸av remains smaller

than Δe.

The broadening effect mentioned above can also be neglected on the same coarse-grained

energy axis because the increase of the variance is 𝑤2
𝑔
∼= 𝑛. Therefore, for 𝑛 ≪ √

𝑁𝑠, the

increase of the width 𝑤𝑔 is smaller than 4
√
𝑁𝑠𝜖1.

Another possibility to deal with the heating effect is to introduce a detailed balance

condition for the interaction between the system and the environment. According to this

condition, the individual probabilities of measurement outcomes were to be modified such

that, on average, 𝐸av remains close to its initial value.

In principle, a detailed balance condition implies that the environment, which triggers

the local measurements, is set to the same average energy. From this viewpoint, completely

random measurements correspond to an environment in the infinite temperature limit.

A.3 Derivation of the general form of the cutting function

The transformation from 𝜌𝑛−1 to 𝜌𝑛 given in Eq. (2.19) can be iterated to obtain the

transformation from 𝜌0 to 𝜌𝑛

(𝜌𝑛)𝑘𝑙 =
1

𝐵
⟨𝐸𝑘|𝒪𝜌0𝒪†|𝐸𝑙⟩, (A.34)
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where |𝐸𝑖⟩ is the energy eigenstate of the total system, (𝜌𝑛)𝑘𝑙 = ⟨𝐸𝑘|𝜌𝑛|𝐸𝑙⟩, 𝐵 is the

normalisation factor, and

𝒪 = 𝒫𝑛𝑒
−𝑖ℋ(𝑡𝑛−𝑡𝑛−1)𝒫𝑛−1 · · · 𝒫2𝑒

−𝑖ℋ(𝑡2−𝑡1)𝒫1𝑒
−𝑖ℋ𝑡1 . (A.35)

In principle, the initial density matrix 𝜌0 describes the ensemble of systems each of which

is described by a quantum wave function with a given energy distribution 𝑔0(𝐸). Such a

density matrix is diagonal 𝜌0 =
∑︀

𝑖(𝜌0)𝑖𝑖|𝐸𝑖⟩⟨𝐸𝑖|. In practice, however, each density matrix

𝜌0 corresponding to an individual pure quantum state with a given 𝑔0(𝐸) for a generic

quantum system typically leads to the same results as the above 𝜌0 due to quantum typi-

cality. In such a case, the off-diagonal elements of 𝜌0 can be neglected given the dephasing

between different energy eigenstates over each time interval 𝑡𝑛 − 𝑡𝑛−1.

We are interested in the total-energy distribution and, therefore, focus on (𝜌𝑛)𝑘𝑘 (the

diagonal elements of the density matrix)

(𝜌𝑛)𝑘𝑘 =
1

𝐵
⟨𝐸𝑘|𝒪

(︃∑︁
𝑖

(𝜌0)𝑖𝑖|𝐸𝑖⟩⟨𝐸𝑖|
)︃
𝒪†|𝐸𝑘⟩ (A.36)

=
1

𝐵
(𝜌0)𝑘𝑘⟨𝐸𝑘|𝒪|𝐸𝑘⟩⟨𝐸𝑘|𝒪†|𝐸𝑘⟩+

1

𝐵
⟨𝐸𝑘|𝒪

⎛⎝∑︁
𝑖,𝑖 ̸=𝑘

(𝜌0)𝑖𝑖|𝐸𝑖⟩⟨𝐸𝑖|

⎞⎠𝒪†|𝐸𝑘⟩,(A.37)

where, in the last step, we divided the sum into two parts. Using |𝐸𝑘⟩⟨𝐸𝑘| = 1−∑︀𝑖,𝑖 ̸=𝑘 |𝐸𝑖⟩⟨𝐸𝑖|,
we further rewrite Eq. (A.37) as

(𝜌𝑛)𝑘𝑘 =
1

𝐵
(𝜌0)𝑘𝑘⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩ (A.38)

− 1

𝐵

∑︁
𝑖,𝑖 ̸=𝑘

(𝜌0)𝑘𝑘⟨𝐸𝑘|𝒪†|𝐸𝑖⟩⟨𝐸𝑖|𝒪|𝐸𝑘⟩+
1

𝐵

∑︁
𝑖,𝑖 ̸=𝑘

(𝜌0)𝑖𝑖⟨𝐸𝑖|𝒪†|𝐸𝑘⟩⟨𝐸𝑘|𝒪|𝐸𝑖⟩.

Now, we introduce the coarse-graining of the energy axis which means that we divide the

energy axis into bins of width Δe introduced in Sec. A.2. The probability distribution 𝑔𝑛(𝐸)

is defined in terms of these bins as follows

𝑔𝑛(𝐸) =
1

Δe

bin(𝐸)∑︁
𝑘

(𝜌𝑛)𝑘𝑘, (A.39)

where the sum is taken over all energy eigenstates within the given bin. Substituting
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Eq. (A.38) into Eq. (A.39), we obtain

𝑔𝑛(𝐸) =
1

Δe𝐵

bin(𝐸)∑︁
𝑘

(𝜌0)𝑘𝑘⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩ (A.40)

− 1

Δe𝐵

bin(𝐸)∑︁
𝑘

∑︁
𝑖,𝑖 ̸=𝑘

(𝜌0)𝑘𝑘⟨𝐸𝑘|𝒪†|𝐸𝑖⟩⟨𝐸𝑖|𝒪|𝐸𝑘⟩

+
1

Δe𝐵

bin(𝐸)∑︁
𝑘

∑︁
𝑖,𝑖 ̸=𝑘

(𝜌0)𝑖𝑖⟨𝐸𝑖|𝒪†|𝐸𝑘⟩⟨𝐸𝑘|𝒪|𝐸𝑖⟩,

where
∑︀

[without bin(𝐸)] denotes a sum which is not restricted to the bin.

Now, we show that the first term in Eq. (A.40) makes the main contribution to 𝑔𝑛(𝐸),

while the last two terms in Eq. (A.40) mainly compensate each other. To show this,

we split each unrestricted sum into two sums, where one sum extends over the energy

eigenstates within the bin, while the other one extends over the energy eigenstates out-

side the bin. The latter sum is to be denoted as
∑︀bin(𝐸). We also use the relation

⟨𝐸𝑘|𝒪†|𝐸𝑖⟩⟨𝐸𝑖|𝒪|𝐸𝑘⟩ = |⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2. Hence, we obtain for the last two terms in Eq. (A.40)

− 1

Δe𝐵

⎡⎣bin(𝐸)∑︁
𝑘

bin(𝐸)∑︁
𝑖,𝑖 ̸=𝑘

(𝜌0)𝑘𝑘|⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2 +
bin(𝐸)∑︁

𝑘

bin(𝐸)∑︁
𝑖

(𝜌0)𝑘𝑘|⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2

−
bin(𝐸)∑︁

𝑘

bin(𝐸)∑︁
𝑖,𝑖 ̸=𝑘

(𝜌0)𝑖𝑖|⟨𝐸𝑘|𝒪|𝐸𝑖⟩|2 −
bin(𝐸)∑︁

𝑘

bin(𝐸)∑︁
𝑖

(𝜌0)𝑖𝑖|⟨𝐸𝑘|𝒪|𝐸𝑖⟩|2
⎤⎦ . (A.41)

Now, the two terms in Eq. (A.41) where both sums are restricted to bin(𝐸) cancel each

other. This can be readily seen after exchanging the summation indices 𝑖 and 𝑘 in one of

these two terms. The remaining terms in Eq. (A.40) can be further rewritten as

𝑔𝑛(𝐸) =
1

Δe𝐵

bin(𝐸)∑︁
𝑘

(𝜌0)𝑘𝑘⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩ (A.42)

− 1

Δe𝐵

bin(𝐸)∑︁
𝑘

(𝜌0)𝑘𝑘

⎛⎝bin(𝐸)∑︁
𝑖

|⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2
⎞⎠

+
1

Δe𝐵

bin(𝐸)∑︁
𝑖

(𝜌0)𝑖𝑖

⎛⎝bin(𝐸)∑︁
𝑘

|⟨𝐸𝑘|𝒪|𝐸𝑖⟩|2
⎞⎠ .

The last two terms of Eq. (A.42) contain off-diagonal elements |⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2 corresponding

to transitions between energy bins, because 𝐸𝑘 and 𝐸𝑖 lie in different bins. Let us denote

the characteristic energy range |𝐸𝑘 − 𝐸𝑖| of the off-diagonal elements ⟨𝐸𝑘|𝒪|𝐸𝑖⟩ as Δ𝒪.

This range is limited by the condition

Δ𝒪 ∼ 𝜖1𝑛≪ Δe. (A.43)
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∆O

bin(E)

∆O ∆O ∆O

bin(E)bin(E)

∆e

X− X− X+ X+
E

Figure A.3: (Colour online) Schematic representation of the energy intervals bin(𝐸), bin(𝐸),
𝑋−, 𝑋−, 𝑋+ and 𝑋+, introduced in the text. The characteristic size of the intervals Δe

and Δ𝒪 are indicated above.

Therefore, only small energy intervals of length Δ𝒪 near the boundaries between the bins

contribute to the sums. As shown in Fig. A.3, we label these energy intervals as 𝑋−, 𝑋−,

𝑋+ and 𝑋+. With such notations, Eq. (A.42) can be rewritten as

𝑔𝑛(𝐸) =
1

Δe𝐵

bin(𝐸)∑︁
𝑘

(𝜌0)𝑘𝑘⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩ (A.44)

− 1

Δe𝐵

⎡⎣𝑋−∑︁
𝑘

(𝜌0)𝑘𝑘

⎛⎝𝑋−∑︁
𝑖

|⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2
⎞⎠+

𝑋+∑︁
𝑘

(𝜌0)𝑘𝑘

⎛⎝𝑋+∑︁
𝑖

|⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2
⎞⎠⎤⎦

+
1

Δe𝐵

⎡⎣𝑋−∑︁
𝑖

(𝜌0)𝑖𝑖

⎛⎝𝑋−∑︁
𝑘

|⟨𝐸𝑘|𝒪|𝐸𝑖⟩|2
⎞⎠+

𝑋+∑︁
𝑖

(𝜌0)𝑖𝑖

⎛⎝𝑋+∑︁
𝑘

|⟨𝐸𝑘|𝒪|𝐸𝑖⟩|2
⎞⎠⎤⎦ .

Now, we show that the last four terms in Eq. (A.44) can be neglected in comparison

with the first one, provided 𝑔0(𝐸) does not change too fast. Specifically, we impose the

condition ⃒⃒⃒⃒
𝑑𝑔0(𝐸)

𝑑𝐸

⃒⃒⃒⃒
.
𝑔0(𝐸)

𝑤can
≪ 𝑔0(𝐸)

Δe
, (A.45)

where 𝑤can = 𝑇 (𝐸av)
√︀
𝐶𝑉 (𝐸av) is the width of the energy distribution corresponding to

the canonical ensemble with the same initial average energy as that of 𝑔0(𝐸). The condition

in Eq. (A.45) must be satisfied within the energy interval, where 𝑔0(𝐸) is large enough to

make a non-negligible contribution to the normalisation integral
∫︀∞
−∞ 𝑔0(𝐸)𝑑𝐸 = 1.

In the first term of Eq. (A.44), we expect that, even if (𝜌0)𝑘𝑘 and ⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩ fluctuate
with respect to their bin-averaged values, they do it in an uncorrelated way. According to

Eq. (A.39), the bin-averaged value of (𝜌0)𝑘𝑘 is Δe𝑔0(𝐸)/𝑁bin(𝐸), where 𝑁bin(𝐸) is the

number of states within the bin. We define the bin-average of ⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩ as

[︁
𝒪†𝒪

]︁
diag

(𝐸) ≡ 1

𝑁bin(𝐸)

bin(𝐸)∑︁
𝑘

⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩. (A.46)

Given the right inequalities in Eqs. (A.39) and (A.45), both bin-averages change very weakly
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over the bin size Δe. Therefore, we can approximate the entire first term in Eq. (A.44) as

1

Δe𝐵

bin(𝐸)∑︁
𝑘

(𝜌0)𝑘𝑘⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩ ≈
1

𝐵

[︁
𝒪†𝒪

]︁
diag

(𝐸) 𝑔0(𝐸). (A.47)

Each of the remaining four terms in Eq. (A.44) has comparable values. Let us estimate the

first of them. We use the following inequality

𝑋−∑︁
𝑖

|⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2 ≤
∑︁
𝑖

|⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2 = ⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩, (A.48)

where, as before, the second sum extends over all energy eigenstates of the system. Employ-

ing this inequality together with the assumptions used for deriving Eq. (A.47), we obtain

1

Δe𝐵

𝑋−∑︁
𝑘

(𝜌0)𝑘𝑘

⎛⎝𝑋−∑︁
𝑖

|⟨𝐸𝑖|𝒪|𝐸𝑘⟩|2
⎞⎠ ≤ 1

Δe𝐵

𝑋−∑︁
𝑘

(𝜌0)𝑘𝑘⟨𝐸𝑘|𝒪†𝒪|𝐸𝑘⟩

≈ 1

Δe𝐵

𝑋−∑︁
𝑘

(𝜌0)𝑘𝑘

[︁
𝒪†𝒪

]︁
diag

(𝐸) ≈ 1

𝐵

[︁
𝒪†𝒪

]︁
diag

(𝐸)
Δ𝒪
Δe

𝑔0(𝐸). (A.49)

Since Δ𝒪
Δe

≪ 1, Eqs. (A.44), (A.47) and (A.49) imply that

𝑔𝑛(𝐸) ≈ 1

𝐵

[︁
𝒪†𝒪

]︁
diag

(𝐸) 𝑔0(𝐸), (A.50)

which is the same as Eq. (2.20).

A.4 Analytical approximation for Δ𝐺(𝑛)

In this Section, we derive the analytical approximation for Δ𝐺(𝑛) used in Fig. 2.2. From

relation (2.21), we obtain

𝑔𝑛(𝐸) =

𝑛∏︁
𝑖=1

1

𝐵𝑖
[𝒫𝑖]diag(𝐸) 𝑔0(𝐸). (A.51)

The substitution of this expression into Eq. (2.6) leads to

Δ𝐺(𝑛) =

∫︁ +∞

−∞

⃒⃒⃒ 𝑛∏︁
𝑖=1

1

𝐵𝑖
[𝒫𝑖]diag(𝐸)− 1

⃒⃒⃒
𝑔0(𝐸)𝑑𝐸, (A.52)

which, after averaging, gives Eq. (2.25).

For the initial distribution 𝑔0(𝐸) = 1
2 [𝛿(𝐸 − 𝐸1) + 𝛿(𝐸 − 𝐸2)], Eq. (A.51) leads to

𝑔𝑛(𝐸) = 𝑝1𝛿(𝐸 − 𝐸1) + 𝑝2𝛿(𝐸 − 𝐸2) with some probabilities 𝑝1 and 𝑝2 (𝑝1 + 𝑝2 = 1). We

further note that for 𝑛→ ∞, either 𝑝1 → 0 or 𝑝2 → 0, such that Δ𝐺(𝑛) = |𝑝1 − 𝑝2| → 1.
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In order to find an approximate expression for Δ𝐺(𝑛), let us first observe that

Δ𝐺2(𝑛) ≈ [Δ𝐺(𝑛)−Δ𝐺(𝑛− 1)]2 +Δ𝐺2(𝑛− 1), (A.53)

because Δ𝐺(𝑛)−Δ𝐺(𝑛− 1) ≈ 0. Therefore, we make the ansatz Δ𝐺2(𝑛) =
∑︀𝑛

𝑖=1 𝛾
2
𝑖 ,

where 𝛾𝑖 = Δ𝐺(𝑖) − Δ𝐺(𝑖 − 1). The individual summands 𝛾2𝑖 must become smaller as

Δ𝐺2(𝑛) approaches 1. Therefore, we make the rough approximation 𝛾2𝑖
∼= 1 − Δ𝐺2(𝑛),

which, in the continuum limit for 𝑛, leads to the differential equation

𝑑Δ𝐺2(𝑛)

𝑑𝑛
= 𝜆[1−Δ𝐺2(𝑛)], (A.54)

where 𝜆 is some constant. Assuming that Δ𝐺2(𝑛) ≈ Δ𝐺
2
(𝑛), we obtain

Δ𝐺(𝑛) ≈
√︀
1− 𝑒−𝜆𝑛. (A.55)

We further adopt an approximation

𝜆 = 𝜅 𝑢2 (𝐸1 − 𝐸2)
2 , (A.56)

where 𝑢 = | [𝒫𝑛]
′
diag (𝐸av)|. 𝜅 is a fitting parameter. The expression in Eq. (A.56) can

be justified by the following considerations. The parameter 𝜆 must be equal to 0, when

𝐸1 = 𝐸2. Also, 𝜆 must remain invariant under a sign-change of 𝐸1 − 𝐸2. Therefore,

the lowest-order term allowed in an analytical expansion of 𝜆 around 0 is proportional to

(𝐸1 − 𝐸2)
2. Assuming that the value of 𝜆 is only controlled by 𝑢 and 𝐸1−𝐸2, we conclude

that 𝑢 must also enter quadratically in order for 𝜆 to be dimensionless.

The above approximation can be further supported by a more detailed calculation of

Δ𝐺(𝑛) in which case the expression for Δ𝐺(𝑛) in Eq. (A.52) is to be averaged over all

possible measurement outcomes. For this average, Δ𝐺(𝑛) must be weighed by the proba-

bility for a given set of 𝑛 measurement outcomes, which equals the normalisation coefficient∏︀𝑛
𝑖=1𝑁𝑖 =

∫︀ ∏︀𝑛
𝑖=1 [𝒫𝑖]diag(𝐸) 𝑔0(𝐸)𝑑𝐸. Let us now make a simplifying assumption that

the spin measurements are only done along the 𝑧-direction. Consequently, there are two

possible measurement outcomes: positive (𝜗𝑛 = 0) and negative (𝜗𝑛 = 𝜋). According to

Eq. (2.30), the projection operator is thus [𝒫𝑖]diag(𝐸) = 1
2 ± 𝐸

𝐸max−𝐸min
. After averaging

over these two possibilities for each measurement, we obtain

Δ𝐺(𝑛) =
1

2

𝑛∑︁
𝑘=0

|𝐷𝑛𝑝1(𝑘)−𝐷𝑛𝑝2(𝑘)| , (A.57)

where 𝐷𝑛𝑝(𝑘) =
(︀
𝑛
𝑘

)︀
𝑝𝑘(1− 𝑝)𝑛−𝑘 is the binomial distribution and 𝑝𝑖 = 1

2 − 𝐸𝑖
𝐸max−𝐸min

. The

value of Δ𝐺(𝑛) is governed by the overlap as function of 𝑘 between the two binomial distri-

butions 𝐷𝑛𝑝1(𝑘) and 𝐷𝑛𝑝2(𝑘). With an increasing 𝑛, this overlap decreases approximately

exponentially which is consistent with the asymptotic behaviour of Δ𝐺(𝑛) that follows from

Eq. (A.55) for large 𝑛.

Let us now consider a large 𝑛 and approximate the binomial distribution 𝐷𝑛𝑝(𝑘) in
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Eq. (A.57) by the Gaussian distribution 𝐺𝑛𝑝(𝑘). The expression in Eq. (A.57) in the

integral form reads

Δ𝐺(𝑛) ≈ 1

2

∫︁ ∞

−∞
|𝐺𝑛𝑝1(𝑘)−𝐺𝑛𝑝2(𝑘)| 𝑑𝑘. (A.58)

For a large 𝑛, the overlap of the two distributions 𝐺𝑛𝑝1(𝑘) and 𝐺𝑛𝑝2(𝑘) is typically governed

by the small tails. Therefore, we make the following approximation

Δ𝐺(𝑛) ≈ 1

2

[︂∫︁ 𝑘0

−∞
𝐺𝑛𝑝1(𝑘)𝑑𝑘 +

∫︁ ∞

𝑘0

𝐺𝑛𝑝2(𝑘)𝑑𝑘

]︂
(A.59)

= 1− 1

2

[︂∫︁ ∞

𝑘0

𝐺𝑛𝑝1(𝑘)𝑑𝑘 +

∫︁ 𝑘0

−∞
𝐺𝑛𝑝2(𝑘)(𝑘)𝑑𝑘

]︂
, (A.60)

where 𝑘0 is defined by 𝐺𝑛𝑝1(𝑘0) = 𝐺𝑛𝑝2(𝑘0). The two remaining integrals above extend over

the tails of the Gaussian distribution. For these integrals, we linearise the exponent round

𝑘0 and obtain in the leading order for 𝑛

Δ𝐺(𝑛) ≈ 1− 𝑐 · 𝑒−𝑛𝜆, (A.61)

where 𝜆 ≡ 1
2Σ2

(︁
𝐸1−𝐸2

𝐸max−𝐸min

)︁2
, Σ ≡

√︀
𝑝1(1− 𝑝1) +

√︀
𝑝2(1− 𝑝2) and 𝑐 is some constant.

The asymptotic formula for Δ𝐺(𝑛) at large 𝑛 in Eq. (A.61), therefore, exhibits the same

functional form as that in Eq. (A.55).

A.5 Narrowing of a Gaussian probability distribution

For a Gaussian distribution

𝑔𝑛−1(𝐸) ∼ exp

[︃
−(𝐸 − 𝐸av)

2

2𝑤2
𝑔,𝑛−1

]︃
(A.62)

with the variance 𝑤2
𝑔,𝑛−1 ≪ (𝐸max−𝐸min)

2, the “cutting” by the linear function [𝒫𝑛]diag (𝐸)

can be expressed as

𝑔𝑛(𝐸) ∼ [𝒫𝑛]diag (𝐸) 𝑒
− (𝐸−𝐸av)

2

2𝑤2
𝑔,𝑛−1 = 𝑒

ln([𝒫𝑛]diag(𝐸))− (𝐸−𝐸av)
2

2𝑤2
𝑔,𝑛−1 . (A.63)

It changes the width according to the relation

1

𝑤2
𝑔,𝑛

− 1

𝑤2
𝑔,𝑛−1

=

(︃
[𝒫𝑛]

′
diag (𝐸av)

[𝒫𝑛]diag (𝐸av)

)︃2

, (A.64)

where [𝒫𝑛]
′
diag (𝐸av) is the derivative 𝑑 [𝒫𝑛]diag (𝐸av)/𝑑𝐸av. From Eq. (A.64), we obtain

[︂
1

𝑤2
𝑔,𝑛

]︂
≈ 1

𝑤2
𝑔,0

+ 𝑢2 𝑛, (A.65)

where 𝑢 = | [𝒫𝑛]
′
diag (𝐸av)|, and we use [𝒫𝑛]diag (𝐸av) ∼ 1.
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Chapter A. Derivations for Chapter 2

A.6 Estimate for the characteristic time 𝜏2

We assume that only outcomes of measurements of nearest neighbours are correlated with

the total energy of the system. Since 𝜏2 ≪ 𝜏corr, each 𝑛-th measurement can, in principle,

become correlated with any previous measurement. The probability for the second mea-

surement not to become correlated with the first one is 𝑃2 = 1 − 𝑁NN

𝑁𝑠
, where 𝑁NN is the

number of nearest neighbours. Correspondingly, the probability for the 𝑛-th measurement

not to become correlated with any previous one is 𝑃𝑛 = 1 − (𝑛 − 1)𝑁NN

𝑁𝑠
for 𝑛 ≪ 𝑁𝑠. The

probability that, among 𝑛 measurements, there is no correlated pair, is

𝑃 (𝑛) =
𝑛∏︁

𝑘=1

𝑃𝑛 =
𝑛∏︁

𝑘=1

(︂
1− (𝑘 − 1)

𝑁NN

𝑁𝑠

)︂
≈ exp

(︃
−𝑁NN

𝑁𝑠

𝑛∑︁
𝑘=1

𝑘

)︃
≈ 𝑒−𝑛2 𝑁NN

𝑁𝑠 (A.66)

for 1 ≪ 𝑛 ≪ 𝑁𝑠. Using the relation 𝑛 = 𝑁𝑠𝑡/𝜏𝑚, we finally obtain the probability that,

after time 𝑡, no correlated pair of measurements occurs,

𝑃 (𝑡) ≈ 𝑒
−𝑁NN𝑁𝑠

𝑡2

𝜏2𝑚 . (A.67)

Accordingly, 1 − 𝑃 (𝑡) is the probability that at least one correlated pair of measurements

occurred. The characteristic time, thus, is

𝜏2 ≈
1√
𝑁NN

𝜏𝑚√
𝑁𝑠

. (A.68)

Since
√
𝑁𝑠 is still large, 𝜏2 is certainly much smaller than any reasonable correlation time

𝜏corr. This is a consistency check of our initial assumption 𝜏2 ≪ 𝜏corr.
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Appendix B

Derivations for Chapter 3

B.1 Block structure of a translational invariant Hamiltonian

In this section, we show that a translational invariant Hamiltonian ℋ can be written in a

block diagonal form. We consider 𝑁𝑠 spins-12 arranged on a ring. For lattices of higher

dimension, the calculations go along the lines. The translational invariance means that

[ℋ,ℛ] = 0, where ℛ is the displacement operator which moves all spins by one site simul-

taneously, cf. Fig. B.1,

ℛ|𝑛1, 𝑛2, 𝑛3, ..., 𝑛𝑁𝑠⟩ = |𝑛2, 𝑛3, ..., 𝑛𝑁𝑠 , 𝑛1⟩, (B.1)

where the notation |𝑎, 𝑏, 𝑐, ...⟩ implies that the spin at lattice site one is in the state |𝑎⟩, the
spin at lattice site two is in the state |𝑏⟩ and so forth.

Since ℋ and ℛ commute, the elements of the Hamiltonian matrix written in the eigen-

basis of ℛ are zero for states corresponding to two different eigenvalues of ℛ. This means

that the Hamiltonian matrix can be written in a block-diagonal form, where each block

corresponds to a different eigenvalue of ℛ.

Let us now obtain the eigenstates and eigenvalues of the operator ℛ. A displacement

by one lattice site done 𝑁𝑠 times on a ring is equivalent to no displacement at all which

implies

ℛ𝑁𝑠 = 1. (B.2)

Figure B.1: Schematic representation of the action of the displacement operator ℛ. Black
arrows represent spins, red arrows indicate the displacement.
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Chapter B. Derivations for Chapter 3

Therefore, the eigenvalues of the displacement operator ℛ must be of the following form

𝑒𝑖𝜆𝑘 for 𝑘 ∈ {0, 1, ..., 𝑁𝑠 − 1}, (B.3)

where 𝜆𝑘 ≡ 2𝜋
𝑁𝑠
𝑘. The eigenfunctions of ℛ with the eigenvalue 𝑒𝑖𝜆𝑘 are1

|𝜓𝑘⟩ ≡
𝑁𝑠−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑛
|𝜓⟩, (B.4)

where |𝜓⟩ is an arbitrary wave function. We are going to prove this now. For the sake of

concreteness, we assume that |𝜓⟩ is an Ising state. Applying the operator ℛ to |𝜓𝑘⟩, we
obtain

ℛ|𝜓𝑘⟩ = ℛ
[︃
𝑁𝑠−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑛
|𝜓⟩
]︃

=

𝑁𝑠−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘

)︁𝑛 (︁
ℛ
)︁𝑛+1

|𝜓⟩ (B.5)

= 𝑒𝑖𝜆𝑘

[︃
𝑁𝑠−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑛+1
|𝜓⟩
]︃

(B.6)

= 𝑒𝑖𝜆𝑘

[︃
𝑁𝑠∑︁
𝑛=1

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑛
|𝜓⟩
]︃

(B.7)

= 𝑒𝑖𝜆𝑘

[︃
𝑁𝑠−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑛
|𝜓⟩
]︃
= 𝑒𝑖𝜆𝑘 |𝜓𝑘⟩, (B.8)

where, in the step to Eq. (B.8), we substituted Eq. (B.2) and used 𝑒𝜆𝑘𝑁𝑠 = 1.

What we left aside so far is the possible internal translational symmetry of the state |𝜓⟩
in Eq. (B.4), i.e., ℛ𝑙|𝜓⟩ = |𝜓⟩ with 𝑙 < 𝑁𝑠. Such an internal symmetry can lead in certain

cases to |𝜓𝑘⟩ = 0, as for example in the case |𝜓⟩ = |↑↓↑↓↑↓⟩ with 𝑁𝑠 = 6 (𝑙 = 2) and 𝑘 = 1.

This implies that a state |𝜓⟩ with internal symmetry must not be used for the definition of

|𝜓𝑘⟩ for all values of 𝑘. In order to derive the conditions for the allowed values of 𝑘, let us

assume that 𝑙 is the smallest integer with the property ℛ𝑙|𝜓⟩ = |𝜓⟩. We define 𝑁 ′ ≡ 𝑁𝑠
𝑙

and obtain

|𝜓𝑘⟩ =

𝑁𝑠−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑛
|𝜓⟩ =

𝑙−1∑︁
𝑚=0

𝑁 ′−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑙𝑛+𝑚
|𝜓⟩ (B.9)

=

𝑙−1∑︁
𝑚=0

𝑁 ′−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘

)︁𝑙𝑛+𝑚
ℛ𝑚|𝜓⟩ (B.10)

=

[︃
𝑁 ′−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘

)︁𝑙𝑛]︃ 𝑙−1∑︁
𝑚=0

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑚
|𝜓⟩. (B.11)

1The wave functions in Eq. (B.4) are not normalised.
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B.2. An additional symmetry of the Hamiltonian

We obtain |𝜓𝑘⟩ = 0 if the first term in Eq. (B.11) vanishes

𝑁 ′−1∑︁
𝑛=0

(︁
𝑒−𝑖𝜆𝑘

)︁𝑙𝑛
=

𝑁 ′−1∑︁
𝑛=0

exp

(︂
−𝑖 2𝜋
𝑁𝑠

𝑘𝑙

)︂𝑛

=

⎧⎪⎨⎪⎩
𝑁𝑠

𝑙
if

𝑘𝑙

𝑁𝑠
∈ N0

0 else.
(B.12)

Therefore, the allowed values of 𝑘 for a state with an internal tranlational symmetry 𝑙 are

those satisfying
𝑘𝑙

𝑁𝑠
∈ N0. (B.13)

For the sake of completeness, let us show that the states |𝜓𝑘⟩ are orthogonal

⟨𝜓𝑘|𝜓𝑘′⟩ = ⟨𝜓|
[︃
𝑁𝑠

𝑙

𝑙−1∑︁
𝑛′=0

(︁
𝑒𝜆𝑘ℛ†

)︁𝑛′ 𝑁𝑠

𝑙

𝑙−1∑︁
𝑛=0

(︁
𝑒−𝜆𝑘′ℛ

)︁𝑛]︃
|𝜓⟩ (B.14)

=
𝑁2

𝑠

𝑙2

𝑙−1∑︁
𝑛=0

𝑒
𝑖 2𝜋

𝑁2
𝑠
𝑛(𝑘−𝑘′)

=
𝑁2

𝑠

𝑙2
𝑙 𝛿𝑘,𝑘′ =

𝑁2
𝑠

𝑙
𝛿𝑘,𝑘′ . (B.15)

Therefore, the propely normalised eigenstates of ℛ are

|𝜓𝑘⟩ ≡
1√
𝑙

𝑙−1∑︁
𝑛=0

(︁
𝑒−𝜆𝑘ℛ

)︁𝑛
|𝜓⟩, (B.16)

where 𝑙 is the smallest integer satisfying ℛ𝑙|𝜓⟩ = |𝜓⟩. In the following, we refer to the

states (B.16) as the translational invariant basis and indicate it with the subscript 𝑘.

To summarise, in order to obtain the translational invariant basis |𝜓𝑘⟩, one should go

through all Ising states |𝜓⟩ and apply the transformation described by Eq. (B.4) for the

allowed values of 𝑘 as shown in Eq. (B.13). If two states |𝜓⟩ and |𝜑⟩ are related to each

other by |𝜓⟩ = ℛ𝑛|𝜑⟩ with some integer 𝑛, then |𝜓𝑘⟩ = |𝜑𝑘⟩.

B.2 An additional symmetry of the Hamiltonian

In this section, we show that the Hamiltonian

ℋ = −
∑︁
𝑖<𝑗

[︁
𝐽𝑥
𝑖𝑗𝑆𝑖𝑥𝑆𝑗𝑥 + 𝐽𝑦

𝑖𝑗𝑆𝑖𝑦𝑆𝑗𝑦 + 𝐽𝑧
𝑖𝑗𝑆𝑖𝑧𝑆𝑗𝑧

]︁
−
∑︁
𝑗

𝐻𝑗𝑆𝑗𝑧, (B.17)

conserves the quantity

[𝑁↓ mod 2], (B.18)

where 𝑁↓ is the number of spins down in 𝑧-direction. In order to do this, we consider an

arbitrary Ising state |𝜓⟩ which has either an odd or an even number of spins down.

Suppose now that we act with the Hamiltonian on this state ℋ|𝜓⟩. What is the effect of

each individual term of the Hamiltonian ℋ in Eq. (B.17)? For last two terms of ℋ, which

contain only the operator 𝑆𝑧 for the 𝑧-components of the spin, each Ising state |𝜓⟩ is an
eigenstate. For the effect of the first two terms of the Hamiltonian in Eq. (B.17), let us

91



Chapter B. Derivations for Chapter 3

recall that the operators 𝑆𝑥 and 𝑆𝑦 flip the 𝑧-projection of the spin, i.e.,

𝑆𝑥|↑⟩ = +
1

2
|↓⟩, 𝑆𝑥|↓⟩ = +

1

2
|↑⟩, (B.19)

𝑆𝑦|↑⟩ = +
1

2
|↓⟩, 𝑆𝑦|↓⟩ = −1

2
|↑⟩. (B.20)

Since ℋ is quadratic in 𝑆𝑥 and 𝑆𝑦, ℋ|𝜓⟩ contains admixtures of states where the 𝑧-

projections of two spins are flipped with respect to |𝜓⟩. Therefore, [𝑁↓ mod 2] in Eq. (B.18)

remains unchanged for ℋ|𝜓⟩. This also implies that [𝑁↓ mod 2] remains unchanged with

time.

It is also important to notice that each state of the translational invariant basis in

Eq. (B.16) has a well-defined number of spins down. Therefore, the translational symmetry

and the symmetry with respect to the conservation of [𝑁↓ mod 2] are mutually compatible.

B.3 Sparsity of the Hamiltonian

In this section, we first show that the matrix of the Hamiltonian in Eq. (B.17), which

describes spins with nearest-neighbour interaction, is sparse in the Ising basis. Later, we

show that the Hamiltonian is also sparse in the block-diagonal form.

Let us apply the Hamiltonian (B.17) to an Ising state |𝜓⟩ and count the Ising states |𝜑⟩
with non-zero overlap ⟨𝜑|ℋ|𝜓⟩. First, there is the diagonal element |𝜑⟩ = |𝜓⟩ due to the

last two terms of ℋ in Eq. (B.17). Second, the number of off-diagonal elements |𝜑⟩ ≠ |𝜓⟩ is
𝑁𝑠 because there are 𝑁𝑠 different terms of ℋ which are not diagonal in the Ising basis. In

total, we obtain 𝑁𝑠 + 1 states |𝜑⟩ with ⟨𝜑|ℋ|𝜓⟩ ≠ 0. The fraction of the non-zero elements

is extremely small
(𝑁𝑠 + 1)2𝑁𝑠

(2𝑁𝑠)2
=
𝑁𝑠 + 1

2𝑁𝑠
≪ 1. (B.21)

For example, 𝑁𝑠+1
2𝑁𝑠

≈ 2 · 10−5 for a system of 𝑁𝑠 = 20 spins.

If the interaction is not restricted to the nearest neighbours, the number of non-zero

elements of the Hamiltonian matrix is (𝑟𝑁𝑠 +1)2𝑁𝑠 , where 𝑟 is the range of the interaction

in terms of the number of neighbours it extends over. For any value of 𝑟, the Hamiltonian

matrix is sparse.

Let us now consider the one-dimensional nearest-neighbour Hamiltonian (B.17) in the

translational invariant basis and focus on one block on the diagonal corresponding to the

eigenvalue 𝑒𝑖𝜆𝑘 . In analogy to the calculation above, we again determine the number of

non-zero elements by counting the states |𝜑𝑘⟩ such that ⟨𝜑𝑘|ℋ|𝜓𝑘⟩ ≠ 0 for a given |𝜓𝑘⟩.

Since the translational invariant states |𝜑𝑘⟩ are eigenstates of the 𝑧-𝑧 term of the Hamil-

tonian, the diagonal element is ⟨𝜓𝑘|ℋ|𝜓𝑘⟩ ̸= 0 in general. Now, let us consider the off-

diagonal elements due to the first two terms of the Hamiltonian (B.17). For this sake, we
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rewrite the first two terms of the Hamiltonian using the displacement operator ℛ

−
𝑁𝑠∑︁
𝑛=1

[︀
𝐽𝑥𝑆𝑛𝑥𝑆(𝑛+1)𝑥 + 𝐽𝑦𝑆𝑛𝑦𝑆(𝑛+1)𝑦

]︀
= −

𝑁𝑠∑︁
𝑛=1

[︁
𝐽𝑥ℛ𝑛𝑆1𝑥𝑆2𝑥(ℛ†)𝑛 + 𝐽𝑦ℛ𝑛𝑆1𝑦𝑆2𝑦(ℛ†)𝑛

]︁
,

(B.22)

where the adjoint operator ℛ† acts as a displacement operator in the opposite direction.

For the sake of clarity, let us for a moment focus only on the interaction in 𝑥-direction. We

obtain

−𝐽𝑥
𝑁𝑠∑︁
𝑛=1

𝑆𝑛𝑥𝑆(𝑛+1)𝑥|𝜓𝑘⟩ = −𝐽𝑥
𝑁𝑠∑︁
𝑛=1

ℛ𝑛𝑆1𝑥𝑆2𝑥(ℛ†)𝑛
1√
𝑙

𝑙−1∑︁
𝑚=0

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑚
|𝜓⟩ (B.23)

= −𝐽𝑥
𝑁𝑠∑︁
𝑛=1

ℛ𝑛𝑆1𝑥𝑆2𝑥
1√
𝑙

𝑙−1∑︁
𝑚=0

𝑒−𝑖𝜆𝑘𝑚ℛ𝑚−𝑛|𝜓⟩ (B.24)

= −𝐽𝑥
𝑁𝑠∑︁
𝑛=1

ℛ𝑛𝑆1𝑥𝑆2𝑥
1√
𝑙

𝑙−1∑︁
𝑚′=0

𝑒−𝑖𝜆𝑘(𝑚
′+𝑛)ℛ𝑚′ |𝜓⟩ (B.25)

= −𝐽𝑥
𝑁𝑠∑︁
𝑛=1

𝑒−𝑖𝜆𝑘𝑛ℛ𝑛𝑆1𝑥𝑆2𝑥
1√
𝑙

𝑙−1∑︁
𝑚′=0

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑚′

|𝜓⟩(B.26)

= −𝐽𝑥
𝑁𝑠∑︁
𝑛=1

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑛
𝑆1𝑥𝑆2𝑥|𝜓𝑘⟩, (B.27)

where, in Eq. (B.25), 𝑚′ = 𝑚 − 𝑛. The state |𝜓𝑘⟩ is a translational invariant basis vector

being a superposition of 𝑙 ≤ 𝑁𝑠 vectors of the Ising basis. The operator 𝑆1𝑥𝑆2𝑥 acts on each

of the 𝑙 Ising states such that the resulting state 𝑆1𝑥𝑆2𝑥|𝜓𝑘⟩ in not translational invariant.

Instead, it is a superposition of some 𝑙 Ising states |𝜓′
𝑖⟩. Taking into account the 𝑦-𝑦 term

of the Hamiltonian and repeating the steps of Eqs. (B.23)-(B.27), we obtain

−
𝑁𝑠∑︁
𝑛=1

[︀
𝐽𝑥𝑆𝑛𝑥𝑆(𝑛+1)𝑥 + 𝐽𝑦𝑆𝑛𝑦𝑆(𝑛+1)𝑦

]︀
|𝜓𝑘⟩ =

𝑁𝑠∑︁
𝑛=1

(︁
𝑒−𝑖𝜆𝑘ℛ

)︁𝑛 𝑙−1∑︁
𝑖=0

𝑐𝑖|𝜓′
𝑖⟩ =

𝑙−1∑︁
𝑖=0

𝑐𝑖|𝜓′
𝑖,𝑘⟩,

(B.28)

where |𝜓′
𝑖,𝑘⟩ are translational invariant basis vectors and 𝑐𝑖 are some coefficients . On the

right-hand side of Eq. (B.28), there is a superposition of 𝑙 ≤ 𝑁𝑠 translational invariant basis

vectors. Therefore, there are 𝑙 + 1 states |𝜑𝑘⟩ such that ⟨𝜑𝑘|ℋ|𝜓𝑘⟩ ≠ 0 in total.

B.4 Sampling of a wave function corresponding to the infinite

temperature limit

If we randomly draw the wave functions from the Hilbert space without any constraints,

the corresponding energy distributions can, to a good accuracy, be approximated by 𝑔∞(𝐸)

for the overwhelming majority of wave functions, where

𝑔∞(𝐸) = 𝑝
∑︁
𝑖

𝛿(𝐸 − 𝐸𝑖), (B.29)
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is the energy distribution corresponding to the infinite temperature limit. The reason is

the property quantum typicality. The random wave functions typically exhibit behaviour

which is similar to the behaviour for the infinite-temperature limit.

In the numerical calculations, we need to randomly sample the individual 𝑝𝑖 such that

we obtain a typical wave function subject only to the constraint∑︁
𝑖

𝑝𝑖 = 1. (B.30)

What is the probability distribution 𝑃 (𝑝) for the individual occupation probabilities 𝑝 cor-

responding to a typical wave function? Suppose, we fix an arbitrary state 𝑘 with occupation

probability 𝑝𝑘 and rewrite the above constraint as

1− 𝑝𝑘 =
∑︁
𝑖 ̸=𝑘

𝑝𝑖. (B.31)

This relation describes a 2𝑁𝑠 − 1 dimensional sphere with radius
√
1− 𝑝𝑘 for the variables

√
𝑝𝑖. The probability distribution 𝑃 (𝑝𝑘) for the arbitrarily chosen state 𝑘, therefore, scales

as the volume of that sphere

𝑃 (𝑝𝑘) ∼=
(2𝜋)(2

𝑁𝑠−2)/2
√︀
1− |𝑐𝑝|2

2𝑁𝑠−2

(𝑛/2− 1)!
∼= (1− 𝑝𝑘)

2𝑁𝑠−2 ≈ 𝑒−Λ𝑝𝑘 , (B.32)

where Λ ≡ 2𝑁𝑠−2 is a large number. In total, if the occupation probabilities 𝑝𝑘 are dis-

tributed according to 𝑃 (𝑝𝑘) in Eq. (B.32), we obtain a typical wave function which exhibits

behaviour similar to the infinite-temperature limit.

Suppose now that only one random-number generator is available for the numerical

calculations. This random-number generator delivers random numbers 𝑦 in the interval

[0, 1] with a flat probability distribution 𝑃𝑦(𝑦) = 1. The question now is how to obtain

𝑃 (𝑝) in Eq. (B.32) using the above random-number generator. The solution is to consider

𝑃 (𝑝)𝑑𝑝 = 𝑃𝑦(𝑦)𝑑𝑦 = 𝑑𝑦, (B.33)

which leads to
𝑑𝑦(𝑝)

𝑑𝑝
= 𝑃 (𝑝) =

1

Λ
𝑒−Λ𝑝. (B.34)

The solution is

𝑦(𝑝) = −𝑒−Λ𝑝 + 𝑦0 (B.35)

and, therefore,

𝑝(𝑦) ∼= − log(𝑦0 − 𝑦). (B.36)

From the constraint 0 ≤ 𝑝 ≤ 1 follows that 𝑦0 = 1.

In total, the algorithm for obtaining a typical wave function is given by the following

scheme

1. Draw a number 𝑦𝑖 from the interval [0, 1] at random.
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2. Set 𝑝𝑖 = − log(𝑦𝑖).

3. Normalise the coefficients 𝑝𝑖 according to Eq. (B.30).

4. Set the quantum-mechanical amplitudes according to 𝑐𝑖 =
√
𝑝𝑖𝑒

𝜑𝑖 with a random

phase 𝜑𝑖.

B.5 Discrete Fourier transformation

In order to obtain the energy distribution 𝑔(𝐸) of a wave function |𝜓⟩, we calculate the

power spectrum of a time series by applying the discrete Fourier transform. The procedure

consists of the following steps:

1. We calculate the discrete time series 𝑋(𝑘) of length 𝑁 with an appropriately chosen

time step Δ𝑡

𝑋(𝑘) ≡ 𝑓(Δ𝑡 𝑘) = ⟨𝜓(Δ𝑡 𝑘)|𝜓(0)⟩. (B.37)

2. We multiply 𝑋(𝑘) by the Kaiser-Bessel function

𝒦(𝑘) ≡
𝐼0

(︃
𝜋𝛼

√︂
1−

(︁
2𝑘

𝑁−1 − 1
)︁2)︃

𝐼0(𝜋𝛼)
, (B.38)

where 𝐼0 is the zeroth-order modified Bessel function of the first kind, and 𝛼 is a non-

negative real number which determines the shape of the window. In our calculations,

we use 𝛼 = 3.

3. We obtain the Fourier coefficients 𝑌 (𝜔𝑙) with 𝜔 = 2𝜋
𝑁 𝑙, where 𝑙 is an integer in the

interval [0, 𝑁 − 1],

𝑌 (𝜔𝑙) ≡
∑︁
𝑘

[𝑋(𝑘)𝒦(𝑘)] 𝑒𝑖𝜔𝑙𝑘. (B.39)

In practice, we use the Fast-Fourier-Transform (FFT) algorithm for the efficient com-

putation of the discrete Fourier transform.

4. Finally, we compute the energy distribution by

𝑔(𝜔𝑙) ∼= |𝑌 (𝜔𝑙)|2, (B.40)

and normalise 𝑔(𝜔𝑙).

The typical shape of the time series 𝑋(𝑘) is the following: 𝑋(𝑘) has a peak at 𝑡 = 0

because of ⟨𝜓(0)|𝜓(0)⟩ = 1, and otherwise 𝑋(𝑘) fluctuates around the value 0 with a small

amplitude. When applying the above scheme, we obtain good results when the point 𝑡 = 0

is in the middle of the time series and not at the beginning. In practice, this means that

𝑋(𝑘) must be computed 𝑁
2 steps backwards in time and, likewise, 𝑁

2 steps forward in time.

In this way, the peak at 𝑡 = 0 is not cut away by the Kaiser-Bessel window in contrast to

the case when 𝑡 = 0 is the starting point of 𝑋(𝑘). This is illustrated in Fig. B.2.
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Figure B.2: Illustration of the time series 𝑋(𝑘) and the Kaiser-Bessel window 𝒦(𝑘). The
initial point 𝑡 = 0 is at 𝑁

2 . If it were at 𝑁 = 0, it would be cut away by the window function
𝒦(𝑘).

B.6 Examples for the finite-size effects

In this section, we give explicit examples for the finite-size effects of local measurements.

We plot 𝑔𝑛(𝐸) for different 𝑛 for the system sizes 𝑁𝑠 = 16, 𝑁𝑠 = 20 and 𝑁𝑠 = 24 in

Figs. B.3, B.4 and B.5, respectively. The Hamiltonian and the initial conditions are the

same as those in Sec. 3.2.

Both the heating effect and the broadening effects are clearly visible in the figures.
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Figure B.3: The energy distribution 𝑔𝑛(𝐸) is shown for different 𝑛. The system size is
𝑁𝑠 = 16. The points have been connected by lines in order to guide the eye. For further
information, see text.
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Figure B.4: The energy distribution 𝑔𝑛(𝐸) is shown for different 𝑛. The system size is
𝑁𝑠 = 20. The points have been connected by lines in order to guide the eye. For further
information, see text.
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Figure B.5: The energy distribution 𝑔𝑛(𝐸) is shown for different 𝑛. The system size is
𝑁𝑠 = 24. The points have been connected by lines in order to guide the eye. For further
information, see text.
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Moreover, the finite-size effects become less pronounced for increasing system sizes. For

further information, we refer the reader to Sec. 3.2.

B.7 Kurtosis of a two-peak energy distribution

In this section, we derive the kurtosis defined in Eq. (3.22) for the two-peak distribution

illustrated in Fig. B.6

𝑓(𝑥) =
1

2

[︁
𝐺𝑎(𝑥) +𝐺−𝑎(𝑥)

]︁
, (B.41)

where 𝐺𝑎(𝑥) is a normalised Gaussian function centred around 𝑎

𝐺𝑎(𝑥) =
1√
2𝜋𝜎

𝑒−
(𝑥−𝑎)2

2𝜎2 . (B.42)

The first moment of this function is∫︁ ∞

−∞
𝐺𝑎(𝑥)𝑥𝑑𝑥 = 𝑎, (B.43)

the second central moment is ∫︁ ∞

−∞
𝐺𝑎(𝑥)(𝑥− 𝑎)2𝑑𝑥 = 𝜎2, (B.44)

and the fourth central moment is∫︁ ∞

−∞
𝐺𝑎(𝑥)(𝑥− 𝑎)4𝑑𝑥 = 3𝜎4. (B.45)

With these results, we obtain that the first moment of the function 𝑓(𝑥) vanishes∫︁ ∞

−∞
𝑓(𝑥)𝑥𝑑𝑥 = 0. (B.46)

x
−a a

σ σ

f(x)

0

Figure B.6: Illustration of the function 𝑓(𝑥) given in Eq. (B.41)
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The second central moment of 𝑓(𝑥) is∫︁ ∞

−∞
𝑓(𝑥)𝑥2𝑑𝑥 = 𝜎2 + 𝑎2, (B.47)

and the fourth central moment is∫︁ ∞

−∞
𝑓(𝑥)𝑥4𝑑𝑥 = 3𝜎4 + 6𝜎2𝑎2 + 𝑎4. (B.48)

Combining these results, we obtain for the kurtosis of 𝑓(𝑥)

kurt[𝑓(𝑥)] = 3− 2𝑎4

(𝜎2 + 𝑎2)2
. (B.49)

If the distance between the two Gaussians in Fig. B.6 is much larger than their width, i.e.,

𝑎≫ 𝜎, we obtain kurt[𝑓(𝑥)] = 1. The kurtosis grows if the distance decreases such that, for

𝑎 ≈ 𝜎, we obtain kurt[𝑓(𝑥)] = 2.5. If we set 𝑎 = 0, which corresponds to a single Gaussian

function, we obtain kurt[𝑓(𝑥)] = 3.
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Appendix C

Derivations for Chapter 4

C.1 Distance between two-spin density matrices

In this section, we first prove the inequalities 0 ≤ 𝑑(𝜌1, 𝜌0) ≤
√
2 and, later, derive an

expression similar to Eq. (4.9). For the sake of convenience, we repeat here the definition

of the distance

𝑑(𝜌1, 𝜌0) ≡
√︁
Tr
[︀
(𝜌1 − 𝜌0)2

]︀
, (C.1)

cf. Eq. (4.2). The inequality 0 ≤ 𝑑(𝜌1, 𝜌0) can be readily shown by diagonalising the

Hermitian operator 𝜌1 − 𝜌0 and then considering (𝜌1 − 𝜌0)
2. The diagonal elements of this

operator are non-negative. Therefore, we obtain 0 ≤ 𝑑(𝜌1, 𝜌0).

In order to show the inequality 𝑑(𝜌1, 𝜌0) ≤
√
2, let us rewrite the expression for the

distance

𝑑(𝜌1, 𝜌0) =
√︁
Tr
[︀
𝜌21
]︀
+ Tr

[︀
𝜌20
]︀
− 2Tr

[︀
𝜌0𝜌1

]︀
. (C.2)

The diagonal elements of a density matrix are non-negative. This leads to Tr
[︀
𝜌0𝜌1

]︀
≥ 0.

Therefore, we obtain

𝑑(𝜌1, 𝜌0) =
√︁
Tr
[︀
𝜌21
]︀
+ Tr

[︀
𝜌20
]︀
− 2Tr

[︀
𝜌0𝜌1

]︀
(C.3)

≤
√︁
Tr
[︀
𝜌21
]︀
+ Tr

[︀
𝜌20
]︀

(C.4)

≤
√
2, (C.5)

where, in the last step, we used Tr
[︀
𝜌21
]︀
≤ Tr

[︀
𝜌1
]︀
= 1.

Now, we derive an expression for the distance between two density matrices. We consider

two-spin density matrices. The derivation of Eq. (4.9) goes along the lines. Using Eq. (4.7),

we can write

𝜌1 − 𝜌0 =
1

4

∑︁
𝜇,𝜈∈{0,1,2,3}

(︁
𝑃1,𝜇𝜈 − 𝑃0,𝜇𝜈

)︁
𝜎𝜇 ⊗ 𝜎𝜈 , (C.6)

where we omitted the indices for the lattice sites for simplicity. For the expression inside

the trace in Eq. (C.1), we obtain

(𝜌1 − 𝜌0)
2 =

1

42

∑︁
𝜇,𝜈∈{0,1,2,3}

∑︁
𝜅,𝜆∈{0,1,2,3}

(︁
𝑃1,𝜇𝜈 − 𝑃0,𝜇𝜈

)︁(︁
𝑃1,𝜅𝜆 − 𝑃0,𝜅𝜆

)︁
𝜎𝜇𝜎𝜅 ⊗ 𝜎𝜈𝜎𝜆 (C.7)
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The product of the Pauli-matrices in the above expression can be rewritten using

𝜎𝜇𝜎𝜈 = 𝛿𝜇𝜈𝜎0 + 𝑖𝜀𝜇𝜈𝜅𝜎𝜅. For the distance, we obtain

𝑑(𝜌1, 𝜌0) =

⎯⎸⎸⎸⎷Tr

⎡⎣ 1

42

∑︁
𝜇,𝜈∈{0,1,2,3}

(︁
𝑃1,𝜇𝜈 − 𝑃0,𝜇𝜈

)︁2
𝜎0 ⊗ 𝜎0

⎤⎦ (C.8)

=
1

2

⎯⎸⎸⎷ ∑︁
𝜇,𝜈∈{0,1,2,3}

(︁
𝑃1,𝜇𝜈 − 𝑃0,𝜇𝜈

)︁2
, (C.9)

where we used Tr [𝜎0 ⊗ 𝜎0] = 4. This concludes the derivation.

Let us now briefly consider two limiting cases. If 𝜌1 = 𝜌0 which implies 𝑃1,𝜇𝜈 = 𝑃0,𝜇𝜈 ,

this clearly leads to

𝑑(𝜌1, 𝜌0) = 0 (C.10)

which is the minimal value of the distance. The distance reaches its maximal value

𝑑(𝜌1, 𝜌0) =
√
2 when 𝜌1 and 𝜌0 describe two mutually excluding situations. An exam-

ple of such a situation is when 𝜌0 describes two spins pointing into the positive 𝑥-direction

which corresponds to

𝑃0,𝑥𝑥 = 1 (C.11)

𝑃0,𝑥0 = 1 (C.12)

𝑃0,0𝑥 = 1 (C.13)

and the other parameters are zero. Suppose that the density matrix 𝜌1 describes two spins,

where one spins still point into the positive 𝑥-direction whereas the other spin now points

into the negative 𝑥-direction. This case corresponds to

𝑃0,𝑥𝑥 = −1 (C.14)

𝑃0,𝑥0 = 1 (C.15)

𝑃0,0𝑥 = −1 (C.16)

and the other parameters are zero. The distance is

𝑑(𝜌1, 𝜌0) =
1

2

√︂(︁
𝑃1,𝑥𝑥 − 𝑃0,𝑥𝑥

)︁2
+
(︁
𝑃1,0𝑥 − 𝑃0,0𝑥

)︁2
=

1

2

√
8 =

√
2. (C.17)
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