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1. Introduction 

General intelligence (g) - the common variance shared by different measures of 

cognitive ability - is a captivating psychological construct with a high predictive validity for 

educational attainment, job performance (Schmidt & Hunter, 2004), development of expertise 

(Wai, 2014), general health (Der, Batty & Deary, 2009), longevity (Deary, 2008), and well-

being (Pesta, McDaniel, & Bertsch, 2010). Therefore, it is hardly surprising that many 

popular definitions of intelligence emphasize its role in achieving positive life outcomes 

through overcoming problems or changing the environment by reasoning. In their 1995 

report, the Board of Scientific Affairs of the APA defined intelligence as "[the] ability to 

understand complex ideas, to adapt effectively to the environment, to learn from experience, 

to engage in various forms of reasoning, to overcome obstacles by taking thought" (Neisser et 

al., 1996, p. 77). Similarly, Robert Sternberg described intelligence as "a mental activity 

directed toward purposive adaptation to, selection, and shaping of real-world environments 

relevant to one's life" (Sternberg, 1985), and David Wechsler understood intelligence as "the 

aggregate or global capacity of the individual to act purposefully, to think rationally, and to 

deal effectively with his environment" (Wechsler, 1944, p. 3). Because general intelligence is 

such a powerful predictor of life outcomes, identifying which cognitive, neurophysiological, 

and genetic factors give rise to individual differences in intelligence – especially in g – is of 

great relevance to different areas of applied research. 

 The emergence of g in any cognitive test battery raises one of the greatest theoretical 

challenges in the identification of processes underlying individual differences in intelligence. 

Heterogeneous measures of cognitive abilities typically share 40-50 percent of their variance. 

Moreover, g factors from different cognitive test batteries are nearly perfectly correlated 

(Johnson, Nijenhuis, & Bouchard, 2008). Both the emergence of g and its great invariance 

across test batteries suggest that there may be some domain-wide process or property 

underlying individual differences in cognitive abilities (Spearman, 1923). Mental speed is one 

often proposed candidate property of information processing affecting different cognitive 

abilities that may underlie individual differences in general intelligence (Jensen, 2006). 

2. Mental speed 

 In the 19th century, Frans C. Donders was the first researcher to conduct experimental 

research on the speed of information processing by systematically varying the complexity of 

response time tasks and analyzing the subsequent change in response times (RTs). He was 

particularly interested in inserting additional processing demands into simple response time 
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tasks and measuring the subsequent increase in response times. This would allow him to 

identify the time required for the inserted mental process by subtracting the response times in 

the original paradigm from the response times in the more complex paradigm (Donders, 

1868/1969). This subtraction method became very popular, because it would allow the 

measurement of the speed of specific cognitive processes if the assumption that additional 

processing demands can be inserted into a simple response time paradigm without affecting 

any other processes were true. Hence, even today many response time tasks are based on this 

assumption and allow the calculation of difference scores to identify the speed of specific 

processes.  

 Ever since, response times have become increasingly popular in psychology and the 

chronological measurement of cognitive processes has fueled much of the early physiological 

research (Cattell, 1886; Wundt, 1908-1911). The first studies on individual differences in RTs 

were conducted by Francis Galton, who collected behavioral and physiological data from 

more than 10,000 participants and (among many other enquiries) analyzed whether group 

differences in demographic variables predicted individual differences in RTs (Galton, 1908). 

Galton assumed that individual differences in mental abilities could be predicted by response 

times to external stimuli. However, the low reliability of response time measurements and the 

lack of more sophisticated statistical methods at the turn of the century prevented him and 

subsequent researchers such as Clark Wissler from finding any meaningful associations 

between RTs and other variables (Galton, 1908; Spearman, 1904; Wissler, 1901). 

Nevertheless, two later studies in the first half of the 20th century already reported small 

correlations between RTs and intelligence tests (Peak & Boring, 1926; Roth, 1964).  

 More recent research on mental speed has overcome these problems by using 

standardized response time devices, computerized chronometric measurements, and higher 

trial numbers to increase the reliability of measurements. Typical response time tasks are very 

simple and have only marginal cognitive requirements, so that individual differences in 

strategy use have little or no impact on response times. In a recent review of 172 studies 

published between 1955 and 2005, Sheppard and Vernon (2008) reported an average 

correlation of r = -.24 between different measures of mental speed and mental abilities. 

Although the moderate size of this correlation does not warrant any claim that mental speed 

may be the sole cognitive basis of general intelligence, it indicates that more intelligent 

individuals tend to have a consistently higher speed of information processing.  
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 Despite the large number of studies on the relationship between mental abilities and 

mental speed, only few attempts have been made to systematically define mental speed. Most 

studies use the operational definition (if any) that any measurement of response times 

measures mental speed. In a recent call for papers for an upcoming special issue on “Mental 

Speed and Response Times in Cognitive Tests” in the Journal of Intelligence, Oliver Wilhelm 

described mental speed “[…] as a construct label” that “[…] is also known under the labels 

‘processing speed’, ‘elementary cognitive speed’, ‘clerical speed’, etc.”. He added that mental 

speed “[…] was also used as a tool to express mental work, for example time required per 

correct response or number of correct responses per time unit” (Wilhelm, 2015). This very 

broad definition of mental speed subsumes many different chronometric measures from 

elementary cognitive speed (response times in extremely easy response time paradigms) over 

clerical speed (the speed in which someone can perform repetitive tasks typically encountered 

in clerical occupations, e.g. typing speed or the speed at which papers can be filed) to speeded 

testing (the number of correct responses per time unit in a test of any complexity).  

A narrower definition was proposed by Arthur Jensen who defined mental speed “[as] 

the actual time taken to process information of different types and degrees of complexity” 

(Jensen, 2006, p. ix). For the purpose of this doctoral thesis, I will extend this definition by 

adding that mental speed is “the actual time taken to process information of different types 

and degrees of complexity” (Jensen, 2006, p. ix) goal-directedly. I decided to extend Jensen’s 

definition, because in most studies analyzing the relationship between mental abilities and 

mental speed, mental speed is measured as the speed of goal-oriented information processing 

culminating in some kind of decision. Hence, this definition emphasizes that mental speed 

constitutes not only of the speed of information encoding and retrieval from short- and long-

term memory systems, but also of the speed of goal-directed information processing and 

decision making. 

 The small number of existing definitions of mental speed is only one symptom of a 

serious theoretical issue: Because the one thing all studies on mental speed have in common is 

that response times are used as variables in some multivariate context, there has never been 

any conceptual discussion about what the construct actually encompasses. If mental speed 

was simply used as a synonym for response times in the context of individual differences, the 

scope of the construct would be incredibly limited. Even worse, mental speed could never be 

located in a nomological network including other psychological constructs, because it would 

lack correspondence rules between the theoretical construct and its measurement as the two 

would be identical (Cronbach & Meehl, 1955). As elaborated by McCorquodale and Meehl 
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(1948), a theoretical construct has to contain a surplus meaning going beyond its 

measurement and involving processes that are not directly observable.  

 In order to overcome this conceptual problem, establish a theoretical conceptualization 

of mental speed, and allow its localization in a nomological network, I suggest three steps. In 

a first step, the measurement of mental speed has to be expanded beyond the measurement of 

response times using state-of-the-art psychological and physiological methods, allowing 

statements and inferences about mental speed without referring to response times as its only 

empirical operationalization. In a second step, an internal nomological network of mental 

speed has to be established, in which the relationships between different operationalizations of 

mental speed and between mental speed measured in different paradigms can be located. In a 

third step, mental speed has to be located in a larger nomological network including other 

psychological constructs such as intelligence and executive functions, and theoretical and 

empirical linkages between the constructs have to be specified.  

2.1 The measurement of mental speed 

 In individual differences research, mental speed is typically measured as response 

times in so-called elementary cognitive tasks (ECTs). These ECTs are tasks with very low 

cognitive demands that maximize the empirical control of task complexity and minimize 

unwanted sources of variance in individual differences. Many of them consist of several 

conditions with increasing complexity that follow the logic of Donders’ subtraction method 

and thus allow calculating difference scores between conditions to identify the speed of 

specific cognitive processes.  

One very popular example of such ECTs is the Hick paradigm, which is a single and 

choice response time task with stimuli and corresponding buttons arranged in a semi-circle. 

Because the information processing demands in this paradigm increase linearly with the 

logarithm of choice alternatives (Hick, 1952), individual response times can be regressed on 

them and the resulting individual slope parameters can be used as estimates for the individual 

“rate of gain of information” (Roth, 1964). Similarly, increases in response times due to 

increases in short-term or long-term memory demands in ECTs can be used to estimate the 

speed of short- or long-term memory access by calculating difference or slope parameters 

across conditions (Hunt, 1983; Sternberg, 1969).  

If difference and slope parameters in ECTs allowed measuring the speed of specific 

cognitive processes, correlations between these parameters and mental abilities would allow 

disentangling the unspecific response time-intelligence association into different associations 
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component, the drift, and the strength of this systematic component is called the drift rate (v), 

which is one of four parameters estimated in the basic diffusion model. The other parameter 

suited to identify which cognitive processes differ between ECT conditions is the non-

decision time (t0), which is the time taken for cognitive processes unrelated to decision 

making, such as encoding, memory retrieval, and motor reaction time. If ECT conditions 

differed in only a single cognitive process, condition differences should be reflected in 

changes in only one of the parameters. If both drift rate and non-decision time changed across 

conditions, demands would increase for different cognitive processes simultaneously, and 

difference and slope parameters would not validly isolate the speed of specific cognitive 

processes.  

 The same logic applies to the decomposition of the stream of electrophysiological 

information processing by means of the event-related potentials (ERP), which allows the 

identification of functionally distinct electrophysiological components (e.g., the N100 or 

P300) between stimulus onset and response. Each ERP component used here is defined by its 

polarity in comparison to the pre-stimulus baseline activity, its latency (here after stimulus 

onset), and its topography. Moreover, a large body of experimental research sheds light on 

which experimental manipulations elicit and affect specific ERP components, allowing a 

functional interpretation of ERP components. Again, if the assumption that ECT conditions 

differ in only a single cognitive process were true, condition differences should be reflected in 

changes in only one ERP component. 

 To test the validity of this assumption, 40 participants between 18 and 75 years from 

different educational and occupational backgrounds performed three ECTs – the Hick task, 

the Sternberg memory scanning task, and the Posner letter matching task (for a detailed 

description of these tasks see Manuscript 1, p. 2 and pp. 4-6) – while their EEG was recorded. 

In each of these tasks it is assumed that conditions differ only in the addition of a specific 

cognitive process. In the Sternberg memory scanning task, for example, participants were 

presented a memory set consisting of one, three, or five numbers and had to decide whether a 

subsequently presented probe stimulus was part of the memory set. Because the only demands 

supposed to increase across conditions are the demands on short-term memory search and 

retrieval, the slope of the regression of response times on memory set size is supposed to 

reflect the speed of short-term memory access (Sternberg, 1969).  

Response times increased with increasing information processing-demands across task 

conditions, ω² = .64 - .71, which is consistent with previous research (Hick, 1952; Sternberg, 
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1969; Posner & Mitchell, 1967). As predicted by the subtraction assumption of ECTs, in the 

Hick task condition differences were only reflected by changes in the non-decision 

component (probably reflecting increasing encoding or motor response demands), ω² = .60, 

but not by changes in the drift rate, ω² = .03. In the Posner letter matching task condition 

differences were only reflected by changes in the drift rate (reflecting the increasing difficulty 

of information accumulation), ω² = .48, but not in the non-decision component, ω² = .04. In 

the Sternberg memory scanning task, however, we observed both decreasing drift rate, 

ω² = .91, and increasing non-decision component parameters, ω² = .48, with increasing 

memory load, which should not occur under the subtraction assumption. This finding suggests 

that both encoding as well as information accumulation demands increase as a function of 

task demands in the Sternberg memory scanning task. 

 Moreover, the ERP analysis provided evidence against this assumption for all three 

ECTs, because increasing task demands were reflected in amplitude changes in several ERP 

components in each of the three tasks. In the Hick task, we found that P200 amplitudes were 

greater in the 1 bit than in the 2 bit condition, ω² = .41, and that N200 amplitudes were greater 

in the 2 bit than in the 1 bit condition, ω² = .42. These effects were greatest at central and 

central parietal electrode sites. We observed no main effect of condition on P300 amplitudes, 

ω² = .00, but a two-way interaction between condition and caudality, ω² = .25, indicated that 

P300 amplitudes were greater in the 1 bit than in the 2 bit condition at central electrode sites, 

ω² = .09, and tended to be smaller at frontal electrode sites, ω² = .07. These three ERP 

components reflect different specific cognitive processes. While not much is known about the 

cognitive correlates of the posterior P200 (Luck, 2005), the posterior N200 component has 

been associated attention (Folstein & Van Petten, 2008), and the P300 component has been 

associated with context-updating (Donchin, 1981; Polich, 2007) and context-closure 

(Verleger, 1988). Hence, condition differences in the Hick paradigm differ at least both in 

attentional and in updating demands. 

In the Sternberg memory scanning task, we observed that N300 amplitudes increased, 

ω² = .40, and that P300 amplitudes decreased, ω² = .36, with increasing memory set size. No 

effect of condition was found for earlier ERP components such as the N150 and P200, all ω²s 

< .06. The N300 component has been associated with spatial, structural, and categorical 

incongruences of visual stimuli (Demiral, Malcolm, & Henderson, 2012; Hamm, Johnson, & 

Kirk, 2002). 
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In the Posner letter matching task, N140 and N300 amplitudes were greater in the 

name identity than in the physical identity condition at frontal electrode sites, ω² = .05 – .13. 

In addition, P210 amplitudes were greater in the physical identity than in the name identity 

condition at frontal electrode sites, ω² = .16, and P300 amplitudes were greater in the physical 

identity than in the name identity condition at central electrode sites, ω² = .05. The N150 has 

been discussed in the context of early lexical encoding (Spironelli & Angrilli, 2009), while 

the anterior P200 has been associated with short-term memory processing (Dunn, Dunn, 

Languis, & Andrews, 1998) and the detection of simple target stimuli (Luck & Hillyard, 

1994). Thus, the physical and name identity conditions differ in the amplitude of at least four 

ERP components associated with distinct cognitive processes. 

Parts of our electrophysiological results are consistent with previous research in which 

condition differences in several ERP components (P200, P390) were reported for a 2- and 4-

choice response time task (Falkenstein, Hohnsbein, and Hoormann, 1994), and with studies in 

which increasing the memory set size in the Sternberg memory scanning paradigm also led to 

decreasing P300 amplitudes (Brookhuis, Mulder, Mulder, & Gloerich, 1983; Ford, Roth, 

Mohs, Hopkins, & Kopell, 1979; Gomer, Spicuzza, & O'Donnell, 1976; Houlihan, Stelmack, 

& Campbell, 1998; Pelosi et al.,1992). However, our analyses went beyond previous studies 

because we parameterized the whole stream of information processing with several ERP 

components, whereas most previous studies focused only on one or two components (often 

the P300).  

 Taken together, these results indicate that ECT conditions differ in several neuro-

cognitive parameters and that slope and difference parameters are no valid estimates for the 

speed of a specific cognitive process. On the one hand this is worrying, because measuring the 

speed of specific cognitive processes is necessary to assess the relationship between different 

kinds of processing speed. Moreover, variance in behavioral response times consists of 

individual differences in mental speed and of individual differences in motor speed, which 

could be easily separated by means of slope and intercept parameters if the subtraction 

method was valid. On the other hand, more sophisticated methods such as mathematical 

modeling and event-related potentials allowing the decomposition of cognitive processes 

involved in response time tasks are readily available. These methods provide estimates for the 

speed of these specific processes so that the relationship between them can be assessed. 

Finally, using the latency of ERP components as a measure of mental speed provide an 

alternative operationalization of mental speed that expands its measurement beyond response 

times. 
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 Both diffusion models and the EEG provide exciting new opportunities to identify the 

speed of cognitive processes. The EEG has seen decades of use in research on individual 

differences and has been successfully applied in the context of dispositional mood and 

personality (e.g., Fink, Grabner, Neuper, & Neubauer, 2005; Hagemann et al. 1999), 

dispositional approach/avoidance behavior (e.g., Hewig, Hagemann, Seifert, Naumann, & 

Bartussek, 2006), mental abilities (e.g. Grabner, Fink, Stipacek, Neuper, & Neubauer, 2004; 

McGarry-Roberts, Stelmack, & Campbell, 1992), and creativity (Fink, Graif, & Neubauer, 

2009). In comparison, the diffusion model has only recently been applied in individual 

differences research. 

3. Individual differences in diffusion model parameters 

 The diffusion model has only recently seen a huge rise in popularity, because in the 

last years several software solutions have been published that allow fitting the diffusion model 

and estimating model parameters without extensive programming knowledge (Voss & Voss, 

2007; Vandekerckhove & Tuerlinckx, 2007, 2008; Wagenmakers, van der Maas, & Grasman, 

2007). Therefore, there have not yet been many applications of the diffusion model in 

research on individual differences, although it has already been applied to gain a better 

understanding of individual differences in attention (Nunez, Srinivasan, & Vandekerckhove, 

2015), in impulsivity (e.g., Stahl et al., 2014), in mental abilities (e.g., Ratcliff, Thapar & 

McKoon, 2010, 2011; Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007), in numeracy 

(Ratcliff, Thompson, and McKoon, 2015), and in word recognition (Yap, Balota, Sibley, & 

Ratcliff, 2012). These first findings in these studies are very promising and encourage using 

the diffusion model in individual differences research. 

3.1 The relationship between drift rate and intelligence (Manuscript 1) 

 The relationship between drift rate and general intelligence is of great theoretical 

interest, because the drift rate – i.e., the strength and direction of the systematic influence on 

the diffusion process – is often seen as the ability parameter of the diffusion model, whereas 

the other model parameters describe decision preferences and decision cautiousness 

(Vandekerckhove, 2015). Hence, it allows estimating the speed of information accumulation 

without the contaminating variance of sensory processing or motor response speed, both of 

which are captured in the non-decision time parameter.  

 Schmiedek et al. (2007) reported a correlation of r = .79 between a latent reasoning 

ability factor and a latent drift rate factor from eight response time tasks (including verbal, 

numerical, and spatial tasks) in a student sample. Ratcliff et al. (2010) analyzed the 
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relationship between the vocabulary and matrix reasoning subtests of the Wechsler 

intelligence test and a latent drift rate factor from a numerosity discrimination, recognition 

memory, and lexical decision response time task for three age groups (college age, 60-74 

years old, 75-90 years old). Correlations ranged from r = .60 to .90 for the vocabulary subtest, 

and from r = .36 to .85 for the matrix reasoning subtest. In a further analysis of response time 

data from an item and associative recognition task in this sample, Ratcliff et al. (2011) 

reported manifest correlations ranging from r = .18 to .67 between the matrix reasoning 

subtest and drift rates, and correlations ranging from r = .28 to .68 between the verbal subtest 

and drift rates. We also observed a correlation of r = .50 between a drift rate factor from three 

response time tasks (Hick task, Sternberg memory scanning task, Posner letter matching task) 

and intelligence (Manuscript 1). Taken together, these first results are very promising and 

encourage using the diffusion model to study the relationship between mental speed and 

mental abilities.  

3.2 The role of model fit in experimental vs. multivariate research questions 

Nevertheless, the use of diffusion models in individual differences research is still at 

its early stages. The majority of studies in which the diffusion model is applied are concerned 

with questions of model comparison in experimental paradigms: Just as we did in Manuscript 

1, diffusion model parameters can be compared across experimental conditions in order to 

identify which cognitive processes differ between conditions, which is extremely useful to 

infer the cognitive processes responsible for changes in response time and accuracies resulting 

from an experimental manipulation. Not only can the estimated parameters be compared 

across conditions and tested for significance, but the model fit of a diffusion model with all 

parameters fixed across conditions can be compared to the model fit of a model with some 

parameters allowed to vary between conditions. If the model fit of the second model (e.g., 

with two separate drift rates estimated for the two conditions) is better than the model fit of 

the first one (e.g., with a common drift rate estimated for the two conditions), it can be 

inferred that the experimental manipulation in this paradigm affects a specific part of the 

diffusion process (e.g., the ease of information accumulation).  

Model fit indices are used to decide which of several alternative models describes the 

empirical data best. They typically weigh the discrepancy between the empirical and predicted 

data against the complexity of the model, rewarding the parsimony of a model by adding a 

penalty for the number of model parameters. One popular fit index is the Akaike Information 

Criterion (AIC; Akaike, 1973), which is based on information theory and asymptotically 
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estimates how much information is lost by one model in comparison to another. Another 

popular fit index is the Bayes Information Criterion (BIC; Schwarz, 1978), which is despite 

its name not derived from information theory, but from Bayesian statistics, and rewards 

parsimonious models more strongly than the AIC. Both the AIC und the BIC, however, do not 

provide any information about the absolute model fit, i.e. they only help to decide which of 

two or more models described the empirical data best, but not if any of these models 

described the data well.  

As long as one is interested in questions of model comparison an evaluation of 

absolute model fit is not necessarily needed, because the question which model accounts for 

the empirical data best is the very question one is interested in. When model parameters are 

instead to be used in further analyses (e.g., in correlational analyses in individual differences 

research), it is important to know that individual model parameter values are meaningful in 

the sense that the model provides a valid description of the empirical data. Otherwise, 

correlations between model parameters and other ability measures may be underestimated if 

there is a high degree of noise in the model parameter values, which is likely if some 

participants’ model parameters have no predictive validity for their observed response time 

distributions. Therefore, these cases have to be identified prior to further analyses by some 

kind of model fit evaluation criterion with cut-off values for acceptable absolute model fit.  

3.3 Statistical tests of model fit 

The most straight-forward evaluation of model fit is a statistical test of model 

significance. Model fit is acceptable if the null hypothesis that the empirical and the predicted 

response time distributions do not diverge cannot be rejected. The p-value associated with the 

test statistic indicates how likely it is to obtain the test statistic (or a more extreme value of 

this test statistic) if the H0 is true. p-values smaller than a certain threshold (e.g., p < .05) 

indicate that the model does not explain the data well, whereas p-values larger than .05 are 

supposed to indicate that model fit is acceptable. 

However, there a two major limitations to this approach. First, the test power of the 

test statistic increases with increasing trial numbers. As all models are only parsimonious 

approximations to complex cognitive processes, model predictions will always differ from the 

observed data. Therefore, the test statistic is always going to be significant when trial numbers 

are large even though the model predictions deviate only negligibly from the observed data 

(Cohen, 1994).  
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Second, a p-value larger than .05 does not necessarily indicate that the model accounts 

for the data well. Accepting a model implies accepting the null hypothesis with an unknown 

error probability, as the probability of the observed data given that the H1 is true is unknown. 

If the statistical power of the test was known, this probability could be computed. However, 

an estimation of the statistical power is usually not feasible as there are no conventions for the 

sizes of diffusion model parameters independent of experimental tasks (such as standardized 

values for small and large drift rates). Thus, a model might be accepted just because the 

statistical power is too small to detect a significant deviation from the observed data. 

Moreover, accepting models with p-values larger than .05 may suggest that any model above 

this threshold accounts for the data equally well, which is obviously not the case. 

3.4 Using the root mean square error of approximation to evaluate the goodness 

of fit of diffusion models (Manuscript 2) 

 Because existing fit indices such as the AIC and BIC only quantify relative model fit, 

and because statistical tests such as the χ² test are not suited to evaluate goodness of fit due to 

their dependency on trial numbers and test power, an absolute index of model fit – a 

goodness-of-fit (GOF) index – is needed. Such as GOF index should quantify the degree of 

deviation from perfect model fit and that be largely independent of trial numbers. 

The root mean square error of approximation (RMSEA; Steiger & Lind, 1980) is one 

of the most popular GOF indices used in structural equation modeling (SEM; Jackson, 

Gillaspy, and Purc-Stephenson, 2009). It is based on the noncentrality parameter of the χ² 

distribution. As described in more detail in Manuscript 2, the noncentrality parameter of the χ² 

distribution can also be calculated in the diffusion model framework when the model is fitted 

to empirical data using the χ² statistic as a minimization criterion. The RMSEA is relatively 

independent of sample size, rewards parsimonious models, has a minimum value of 0 against 

which the deviation of any specific model from perfect fit can be compared, and it allows 

calculating confidence intervals around the point estimate of the RMSEA and conducting 

power analyses (see Browne & Cudeck, 1993; MacCallum, Browne, & Sugawara, 1996). 

Because these properties would also be very desirable for a GOF index used in the diffusion 

model framework, we evaluated how well the RMSEA performs as a decision criterion in the 

evaluation of goodness-of-fit in comparison to the χ² criterion (Manuscript 2).  

In two simulation studies we showed that the RMSEA is superior to the χ² criterion at 

evaluating goodness of fit in the diffusion model. For this purpose, we simulated data from 

the diffusion model and manipulated different factors in these simulations, such as the number 
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of model parameters in the generating model, the number of trials, the degree of noise or 

outlier contamination added to the data, and the number of estimated model parameters. 

Subsequently, we assessed how many correct models were rejected by the two 

decision criteria and how rejection rates were influenced by these different factors. Rejection 

rates based on the χ² criterion increased with increasing trial numbers irrespective of model fit 

when there was some degree of noise (Study 1) or contamination (Study 2) in the response 

time data, whereas rejection rates based on the RMSEA were largely invariant with regard to 

trial numbers. This result is consistent with previous simulation studies that assessed RMSEA 

performance in the SEM framework, where the RMSEA has been shown to be relatively 

unaffected by sample size (e.g., Chen, Curran, Bollen, Kirby, & Paxton, 2008).  

Moreover, RMSEA values for well-fitting models were comparable to values typically 

observed for well-fitting models in the SEM framework. Only when the number of trials was 

very small (i.e., 100 trials in total or 50 trials per condition) there was a larger spread in the 

distribution of RMSEA values than expected for a well-fitting model. Hence, the cut-off value 

at which only 5% of the models were incorrectly rejected was much larger than the cut-off 

value of .05 typically considered indicating good fit in structural equation modeling (Browne 

& Cudeck, 1993; MacCallum et al., 1996). This tendency to underestimate the goodness of fit 

when the number of trials was small is consistent with previous simulation studies in 

structural equation modeling that have shown that the RMSEA rejects too many models when 

both the degrees of freedom and the sample size are small (Chen et al., 2008; Curran, Bollen, 

Chen, Paxton, & Kirby, 2003; Kenny, Kaniskan, & McCoach, 2014). 

Although the RMSEA is supposed to rewards parsimonious models, it did not succeed 

in rewarding them sufficiently when evaluating absolute model fit in Study 1. Models in 

which variability parameters of diffusion model parameters were estimated (e.g., the 

variability of the drift rate or of the non-decision components) always provided a better fit for 

the data as indexed by the RMSEA than models without variability parameters – even when 

the generating model did not include these parameters. This preference for models with inter-

trial variabilities may lead to a spurious acceptance of models, as some of our simulations 

suggested that models with inter-trial variabilities can even account for data heavily 

contaminated with random noise. However, this may not reflect a fault of the RMSEA, but 

may rather reflect the greater flexibility of models with estimated inter-trial variabilities in 

comparison with models in which these variabilities are fixed to zero. Future studies will have 
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to explore whether the estimation of the other model parameters is more biased or more 

precise when measurement error is captured by inter-trial variability parameters. 

Because the RMSEA may underestimate the goodness of fit in diffusion models with 

small trial numbers, we only considered simulations with trial numbers ≥ 500 when 

recommending cut-off values for the identification of badly-fitting models. In addition, we 

suggested different cut-off values for model with and without estimated inter-trial 

variabilities. Cut-off values were derived by identifying the RMSEA value at which only 5% 

of the correct models were incorrectly rejected. Based on our simulation results, we suggested 

that RMSEA values of ≤ 0.08 indicate acceptable model fit when inter-trial variabilities are 

estimated, and that RMSEA values of ≤ 0.08 indicate acceptable model fit when inter-trial 

variabilities are fixed to zero. Overall, we suggested that RMSEA values ≤ 0.05 indicate good 

model fit regardless of whether inter-trial variabilities are estimated. 

Taken together, these simulation results support the idea that the RMSEA can be used 

to evaluate the goodness of fit in the diffusion model framework unless trial numbers are very 

small. It is superior to the χ² statistic in its empirical independency from trial numbers and 

could supplement other means of evaluating model fit such as graphical tests as a more 

objective measure. The cut-off values for specific instantiations of the model we suggested in 

Manuscript 2 can be immediately used in subsequent applications of the diffusion model in 

individual differences research. Thus, individuals’ response time data that cannot be 

accounted for by the diffusion model can be removed from further multivariate analyses in 

order to ensure that all model parameters in these analyses are valid estimates of cognitive 

processes. Thus, establishing the RMSEA as a way to evaluate goodness of fit in the diffusion 

model is an important step towards extending the measurement of mental speed in individual 

differences research beyond the measurement of mean response times.  

4. The nomological network of mental speed: Factor structure and stability 

 After introducing different measurement methods of mental speed, I will now outline 

an internal nomological network of mental speed, in which the relationships between different 

operationalizations of mental speed and between mental speed measured in different 

paradigms can be located. Moreover, I will discuss the stability of mental speed in the light of 

its potential role in explaining individual differences in general intelligence. 

 4.1 The factor structure of mental speed 

 Summarizing previous research on the factor structure of mental speed is cumbersome 

due to a great heterogeneity in participant samples, experimental paradigms, number of 
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variables derived from these paradigms (response times, decision times, motor times, 

difference parameters, etc.), and analysis plans. Carroll (1993) commented about his 

reanalysis of 39 data sets of response time tasks that “[…] the available evidence is not 

sufficient to permit drawing any solid conclusions about the structure of reaction time 

variables” (p. 6). Over two decades of research later, a meta-analysis or even a systematic 

review of the factor structure of response times is no more feasible than in Carroll’s time. 

Nevertheless, a positive manifold seems to emerge in the majority of studies reporting 

correlations between different response time measures, sometimes in addition to group factors 

that have not yet been identified in a systematic review of the literature because of the great 

heterogeneity across different studies (Jensen, 2006). Moreover, whenever decision times 

(i.e., response times reflecting the speed of information processing) and movement times (i.e., 

psychomotor response times) are experimentally separated (e.g., with a home button-setup), 

they tend to load on two orthogonal factors (Carroll, 1993), suggesting that unrelated 

properties of the cognitive system are responsible for individual differences in the respective 

response times.  

 Table 1 summarizes eleven studies in which correlations between different measures 

of mental speed (e.g., decision times and movement times) and/or between response times in 

different tasks were reported. I conducted principal component analyses (PCAs) based on the 

reported correlation matrices if PCAs were not already reported in the original studies. On N-

weighted average, the first principal component accounted for 52.1 % (SD = 15.9 %) of the 

total variances, suggesting that a general mental speed gives rise to inter-individual 

differences in a variety of response time tasks. This large general mental speed factor is very 

reminiscent of g, which typically explains about 40-50 % of the variance in mental abilities 

tests (Mackintosh, 2011). It is unclear whether general mental speed shares other 

characteristics of g such as its high temporal stability (Larsen, Hartmann, & Nyborg, 2008) 

and its functional invariance (Johnson et al., 2008). 

 Table 1 also illustrates the great heterogeneity in participant samples and response 

time paradigms used in previous research. The amount of variance explained by the first 

principal component tends to be higher when only response, decision, and/or inspection times 

are entered into the analysis (Hale & Jensen, 1994; Kyllonen, 1985; Levine, Preddy, & 

Thorndike,1987; McGarry-Roberts et al., 1992; Miller & Vernon, 1996; Neubauer, Spinath, 

Riemann, Borkenau, & Angleitner, 2000), and tends to be lower when movement times are 

included in the correlation (Kranzler & Jensen, 1991; O’Connor & Burns, 2003; Roberts & 

Stankov, 1999), which is consistent with Carroll’s analysis who reported that response time 
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and movement times loaded on two orthogonal factors (Carroll, 1993). When movement 

times were removed from the correlation matrices of the three studies, the percent of variance 

explained by the first principal component increased on average by 10.9 % from 22.9 % - 41.5 

% to 35.6 - 43.7 %. 

There are a couple of other interesting trends evident in these eleven studies. Both 

Levine et al. (1987) and Neubauer and Bucik (1996) manipulated the content material of their 

chronometric tasks (verbal, numerical, and figural/spatial) and did not find support for a 

hierarchical structure of mental speed with content-related first-order factors. Comparing the 

factor structure of the two studies involving children (Levine et al., 1987; Miller & Vernon, 

1996) to the factor studies of the other studies may provide preliminary evidence for a 

factorial invariance of mental speed across the age span at least into middle adulthood, 

although more research is clearly needed. 

 Overall, the factor structures of three of the four the student samples (Kranzler & 

Jensen, 1991; O’Connor & Burns, 2003; Roberts & Stankov, 1999) seem more complex than 

the factor structures of the more heterogeneous samples, suggesting that the factor structure of 

mental speed may change depending on the sample’s cognitive abilities (but see Hale & 

Jansen, 1994).  

There are no systematic investigations of the factor structure of other measures of 

mental speed, but in some studies correlations between diffusion model parameters or ERP 

latencies were reported. A structural equation model with a latent drift rate, non-decision 

time, and boundary separation factor that allowed for correlations between these latent factors 

provided an acceptable fit for data from a battery of choice response time tasks (Schmiedek et 

al., 2007). Nunez et al. (2015) found that including a common drift rate factor for each 

participant improved the predictive validity of a hierarchical Bayesian diffusion model in 

different conditions of a perceptual decision making task. All in all, research on the 

correlation of drift rates across different response time paradigms suggests that a common 

drift rate factor may underlie individual differences in drift rate across different paradigms.  

There is even less research on the factor structure of ERP latencies in typical mental 

speed paradigms. McGarry-Roberts et al. (1992) reported correlations between P300 latencies 

in different response time tasks that ranged from r = -.04 to r = .63, and that were best 

described by a two-factorial solution (eigenvalues: 2.46, 1.32, 0.85, 0.71, 0.42, 0.24) in my 

reanalysis of their data. However, these two factors cannot easily be interpreted due to 

significant cross-loading from two of the six tasks, and the small sample size of only 30
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Table 1 

Summary of eleven studies in which correlations between different measures of mental speed (e.g., decision times and movement times) and/or 

between response times in different tasks were reported 

Study Sample Chronometric tasks Measures Variance explained by 
first principal component 

Burns & Nettelbeck (2003) n = 90  
general population 
(54% males, Mage = 
26.6, SDage = 6.7) 

Three IT-like paradigms (alphanumeric task, 
classical IT paradigm on a computer screen, 
classical IT paradigm on a LED screen), OMO 

Alphanumeric 
SOA, IT 
(monitor), IT 
(LED), OMO-
DT, OMO-MT 

41.6 % 1) 
[2.08, 0.90, 0.78, 0.65, 0.59]

 
 

 
(43.9 % when MTs are 
removed) 
[1.76, 0.88, 0.77, 0.59] 

Hale & Jansen (1994) n = 40 
undergraduates 

Line-length discrimination, CRT, letter 
classification, visual search, mental rotation, 
abstract matching, mental paper-folding 

RT 64.6 % 
[4.52, 0.87, 0.47, 0.36, …] 

Kranzler & Jensen (1991) n = 101  
students 
(49% males, Mage = 
20.3, SDage = 1.8) 

Hick, OMO, visual search, memory search, 
Posner letter matching, IT 

DT, DTSD, MT, 
MTSD 3) 

22.9 % 1) 

[6.64, 5.28, 2,40, 1.85, …] 
 

(35.6 % when MTs are 
removed) 
[5.34, 1.54, 1.33, 1.15, …] 

Kyllonen (1985) n = 178  
Airforce trainees 

SRTs (left hand, right hand), CRTs (L vs. D, 
even vs. odd, positive vs. negative, vowel vs. 
consonant), categorization (words, letters), 
sequential matching (words, letters), 
simultaneous matching (words, letters) 

RT 56.5 % 2) 

[3.40, 0.96, 0.64, 0.44, …] 

Levine, Preddy, & 
Thorndike (1987) 

n = 300  
children (1/3 4th, 
7th, 10th grade each) 

CRTs (verbal-perceptual, verbal-semantic, 
quantitative-perceptual, quantitative-symbolic, 
spatial-single figure, spatial-complex figures) 

DT 62.3 % 1) 
[3.74, 0.63, 0.59, 0.44, …] 

McGarry-Roberts, 
Stelmack, & Campbell 
(1992) 

n = 30 
women 
(age 18 to 25) 

SRT, CRT, Sternberg memory scanning, 
Posner letter matching (physical similarity, 
semantic similarity, category matching) 

DT 75.3 % 1) 
[4.52, 0.90, 0.26, 0.14, …] 

Miller & Vernon (1996) n = 109  
children 
(55% males, Mage = 
5.5, SDage = 0.9) 

CRTs (shape, color, size, number, arrow 
direction), shape string test, color string test, 
matching test 

RT 64.8 % 
[5.22, 0.74, 0.68, 0.52, …] 

1)
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Study Sample Chronometric tasks Measures Variance explained by 
first principal component 

Neubauer & Bucik (1996) n = 120  
general population 
(53% males, Mage = 
28.33, SDage = 7.94) 

Coding, Sternberg memory scanning, Posner 
letter matching (all tasks were presented as 
time-restricted pen-and-paper versions with 
verbal, numerical, and figural content) 

Number of 
correctly solved 
items 

46.7 % 
[11.2, 2.17, 1.39, 1.24, …]  

Neubauer, Spinath, 
Riemann, Angleitner, & 
Borkenau (2000) 

n = 600 
general population 
(22% males, Mage = 
34.3, SDage = 13.0) 

Sternberg memory scanning (one, three, five 
digits), Posner letter matching (physical 
identity, name identity) 

RT 58.4% 
[no correlation matrix or 
eigenvalues reported] 

O’Connor & Burns (2003) n = 102 
students and well-
educated general 
population 
(33% males, Mage = 
22.0, SDage = 5.9) 

Perceptual speed tasks (digit symbol, mental 
rotation, cross out), IT, CRT (Jensen box), 
OMO, Triplet Numbers Test, Swaps Test  

RT, DT, MT 32.6 % 1) 

[5.87, 3.45, 2.10, 1.33, …]
  

 

(40.1 % when MTs are 
removed) 
[5.62, 2.40, 1.34, 0.97] 

Roberts & Stankov (1999) n = 179 
students and 
general population 
(39% males, Mage = 
12.58, SDage = 6.18) 

Fitt’s movement, joystick reaction, SRT, 
tachistoscopic CRT, complex CRT 
(sequentially lit lights in Jensen box), binary 
reaction task (arbitrary decision rule associated 
with lights in Jensen box), single card-sorting, 
multitask card-sorting (simultaneous word-
classification), single word-classification, 
multitask word-classification (simultaneous 
card-sorting) 

DT, MT 31.5% 1) 

[5.67, 2.54, 1.75, 1.37, …] 

 

(43.7 % when MTs are 
removed) 
[3.93, 1.60, 0.91, 0.81, …] 

Note. IT = inspection time; OMO = odd-man-out; SRT = simple reaction time; CRT = choice reaction time; SOA = stimulus onset asynchrony; RT = reaction time; DT = 
decision time (i.e., when experimentally separated from the motor response via a home button-design); MT = movement time. For more details about the chronometric tasks 
please refer to the original studies. Squared brackets in the last column show the first four eigenvalues of the principal component analysis. 
1) Data were reanalyzed based on the correlation matrices reported in the original studies.  
2) Data were reanalyzed based on the first-order factor correlation matrix reported in Carroll (1993), because correlation matrices of the RT variables were not available in the 
original study.  
3) Additionally reported slope and intercept measures were removed from this analysis, because a) they provide no valid estimates of information processing speed (see 
Manuscript 1), and b) including them causes the correlation matrix to not be positive definite due to the linear dependency between variables. 
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women warrants further research before firm conclusions can be drawn. Response times and 

ERP latencies were virtually unrelated in their study with the exception of a correlation of 

r = .39 in the choice response time paradigm. On an intraindividual level, shorter single trial 

P300 latencies have been repeatedly been shown to predict faster response times (Holm, 

Ranta-aho, Sallinen, Karjalainen, & Müller, 2006; Kutas, McCarthy, & Donchin, 1997). 

Clearly more research on the association between the latencies of different ERP components 

in response time tasks is needed. 

4.2 The stability of mental speed 

Because g is highly stable over time (Carroll, 1993; Larsen et al., 2008), any candidate 

cognitive process underlying individual differences in g should show a similar temporal 

relative stability. Manifest measures of response times and ERP components may, however, 

be strongly affected by situational factors such as motivation, familiarity with the testing 

environment, or fatigue. Hence, the amount of variance with a high temporal stability that is 

associated with general intelligence may be relatively small in comparison to the amount of 

variance that is affected by situational factors and that may or may not be related to general 

intelligence. Consequently, correlations based on single measurements of mental speed may 

underestimate the relationship between mental speed and mental abilities. 

Previous research suggests a good temporal stability of response times and diffusion 

model parameters over the period of one to two weeks (Clayson & Larson, 2013; Jensen, 

2006; Lerche & Voss, submitted; Yap, Balota, Sibley, & Ratcliff, 2012) unless difference or 

slope parameters are estimated (Roznowski & Smith, 1993). Studies on age effects on mental 

speed have focused on Brinley plots, in which the response times of older adults are plotted 

against the response times of younger adults, typically resulting in a slope larger than one and 

a negative intercept (e.g., Brinley, 1965; Fisk & Fisher, 1994; Myerson & Hale, 1993). Recent 

research has shown that this finding is not indicative of a general slowing of information 

processing in older adults, but that it can be explained by a discrepancy in the relative 

variance in response times across conditions for the two age groups (Ratcliff, Spieler, 

McKoon, 2000). Although these results shed some light on the processes underlying age-

related cognitive slowing, they provide no information about the relative stability of mental 

speed, which has not yet been assessed in systematic longitudinal studies.  

There are also only few studies on the temporal stability of ERP latencies. Cassidy, 

Robertson, & O’Connell (2012) found that four-week test-retest correlations varied 

substantially across ERP components with higher (r > .62) correlations reported for the P1, 
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LST theory is an expansion of classical test theory that takes into account that any 

measurement is always affected by situational factors. In short, LST theory proposes that the 

variance of a variable Yij can be decomposed into the variance of the trait T, the variance of a 

state residual SRi, the variance of a method residual Mj, and the variance of an unsystematic 

error residual εij. As illustrated in Figure 3, the stability of a measurement can then be 

evaluated by comparing the proportion of occasion-specific variances σ²(SR1) and σ²(SR2) 

with the shared trait variance σ²(T) across the two measurement occasions in relation to the 

total variance σ²(Yij). Thus, LST theory allows estimating how large the amount of variance 

with a high trans-situational consistency that may be associated with general intelligence is in 

comparison to the amount of variance that is affected by situational factors and that may or 

may not be related to general intelligence.  

4.3 The psychometric properties and factor structure of mental speed in the 

latent-state-trait framework (Manuscript 3) 

In order to analyze the factor structure and stability of mental speed – measured as 

response times and ERP latencies –, we recruited 134 participants between 18 and 60 years 

from different educational and occupational backgrounds and measured response times and 

ERP latencies in three response time tasks at two measurement occasions that were 

approximately eight months apart. About four months after the first laboratory session, we 

measured general intelligence and personality traits in a diagnostic assessment. The response 

time and ERP latency data from 122 participants who completed at least the first laboratory 

and the diagnostic assessment were entered separately into structural equation models that 

were an extension of LST theory (for details, see the method section of Manuscript 3).  

For the response time data, a LST model with a common trait T, a state residual SRi 

for each of the two measurement occasions, and a hierarchical method factor Mj for each of 

the three experimental paradigms provided a good fit, χ²(133) = 265.81, p <.001, CFI = .95, 

RMSEA = .09. The fact that response times measured in different paradigms loaded onto a 

broad general mental speed factor that explained the greatest amount of variance in manifest 

RT measurements is consistent with previous studies summarized in Table 1 supporting the 

idea of a broad general processing speed factor. It should be noted that although the response 

time paradigms in this study were simple ECTs, the method factors Mj were significant and 

except for the Posner letter matching paradigm far from negligible in their size, indicating that 

there are additional modality- or at least task-specific processing speed factors beyond general 

mental speed, which is consistent with previous studies reporting multi-factorial models of 
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mental speed (e.g., O'Connor & Burns, 2003; Roberts & Stankov, 1999). Moreover, the factor 

structure might even be more complex when a broader range of response time tasks is 

included in the analysis. 

 The variance of the state residual SR1 was not significant, whereas the variance of SR2 

was significant, but very small in comparison to the common trait variance, indicating that the 

influence of situational factors on response times is generally negligible. This result is 

consistent with previous studies reporting good stabilities of response time data (Clayson & 

Larson, 2013; Jensen, 2006; Lerche & Voss, submitted; Yap et al., 2012). 

For the ERP latency data, we compared a general mental speed LST model with a 

common trait T to a specific mental speed LST model with two common traits, Tealier latencies 

and Tlater latencies, that loaded onto earlier (P100, N100) and later (P200, N200, P300) ERP 

components in the stream of information processing. The specific mental speed model 

provided a better fit than the general mental speed model, Δ AIC = 177.9. This result is 

consistent with previous research showing that P300 latencies are correlated across different 

response time paradigms (McGarry-Roberts et al., 1992). However, our results extend this 

finding to other ERP components that covary across tasks. We found two separate common 

traits that loaded onto earlier and later latencies, respectively, which is reminiscent of the 

scientifically outdated distinction between exogenous and endogenous ERP components. This 

result suggests that individuals who are faster in higher-order information processing are not 

necessarily also faster at the onset of information processing.  

All state residuals except for the state residual of earlier latencies and of the N200 

latency at the second laboratory session were not significant, suggesting that situational 

influences on ERP latencies were rather small. This is consistent with previous research 

reporting moderate (Fabiani et al., 1987; Cassidy et al., 2012) and even high (Brunner et al., 

2013; Williams et al., 2009) test-retest correlations for the latency of several ERP 

components, but does not replicate the great heterogeneity in test-retest correlations reported 

previously (Cassidy et al., 2012).  

Despite a comparable temporal stability, ERP latencies had lower consistencies and 

reliabilities than response times. This suggests that different ERP components measured in the 

same task and the same ERP component measured across different tasks only share a small 

amount of variance. Hence, reliably assessing the neural speed of higher-order information 

processing requires multiple measurements of ERP latencies in different tasks. 
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Taken together, among these two measures of mental speed, ERP latencies seem to 

have a more complex factor structure in ECTs than response times. Situational influences are 

not likely to have a great influence on either measure, which leads to the conclusion that both 

measures of mental speed have a high temporal stability. The reliability of ERP latencies, 

however, is substantially lower than the reliability of response times, indicating that the 

relationship between ERP latencies and general intelligence may be underestimated unless 

corrected for unreliability or estimated as a latent correlation.  

5. The relationship between mental speed and general intelligence   

In a review of 172 studies on the relationship between response times and mental 

abilities, Sheppard and Vernon (2008) reported an average correlation of r = -.24 between the 

two measures. Previous research has largely supported the notion that correlations between 

response times in the Hick paradigm and other single and choice response time tasks increase 

linearly as a function of choice alternatives (Jensen, 2006), increasing from r = -.22 to -.44 

(Sheppard & Vernon, 2008). Similarly, the association between response times in letter and 

category matching tasks increases as a function of the g-loading of tasks (Jensen, 2006). In 

memory scanning paradigms, however, no relationship between the size of the memory set 

and the resulting correlation between mental abilities and response times is apparent with 

correlations ranging from r = -.25 to -.45 (Sheppard & Vernon, 2008). In general, correlations 

between composite measures of mental speed and mental abilities tend to be higher than the 

correlations of single response time measures. Canonical correlations between different test 

batteries of response time tasks and general intelligence ranged from C = .55 to .72 (Kranzler 

& Jensen, 1991; Miller & Vernon, 1996; Saccuzzo, Larson, & Rimland, 1986). This suggests 

that it is the general mental speed factor and not specific facets of mental speed that is 

associated with general intelligence.  

The association between ERP latencies and mental abilities is notably weaker and 

more inconsistent. Schulter and Neubauer (2005) reviewed ten studies with a total sample size 

of 1,183 participants reporting negative, and twelve studies with a total sample size of 1,219 

participants reporting non-significant correlations between ERP latencies and mental abilities. 

The most consistent results are found for the latency of the P300 component, which has been 

interpreted in terms of stimulus evaluation and categorization (Callaway, 1983; McCarthy & 

Donchin, 1981), context-updating (Donchin, 1981; Polich, 2007), and context-closure 

(Verleger, 1988). Moreover, somewhat consistent results have also been reported for the 

latency of the mismatch negativity (MMN), which is evoked by sudden deviations from 
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regular auditory stimulations (Näätänen, Tervaniemi, Sussman, Paavilainen, & Winkler, 

2001). More intelligent individuals tend to have shorter P300 and MMN latencies than less 

intelligent individuals (Bazana & Stelmack, 2002; Beauchamp & Stelmack, 2006; McGarry-

Roberts et al., 1992; Russo, De Pascalis, Varriale, & Barratt, 2008; Troche, Indermühle, 

Leuthold, & Rammsayer, 2015).  

Considering the results of the LST analysis in Manuscript 3, it is not surprising that the 

most consistent results are found for the P300, which was the only ERP latency with 

reliabilities consistently exceeding .60 in all paradigms and at both laboratory sessions. Thus, 

correlations between other ERP latencies and mental abilities may only be found when ERP 

latencies are aggregated over different measurements due to their low reliabilities. Moreover, 

even the weak correlations between P300 latencies and mental abilities are likely 

underestimated due to the mediocre reliability of P300 latencies and will probably increase 

when P300 latencies are aggregated or modeled hierarchically across different measurements. 

5.1 Explaining the relationship between mental speed and mental abilities  

Several theories of the relationship between mental speed and mental abilities have 

been suggested that can be organized into two broad categories. The first set of theories 

proposes that chronometric and psychometric measures are correlated because more 

intelligent individuals have an advantage in some brain-wide property. One candidate 

property is myelination, as a denser myelin layer may facilitate the speed of impulse 

propagation along the axon through saltatory conduction (Fields et al., 2014; Yakovlev & 

Lecours, 1967; Wake, Lee, & Fields, 2011). White matter microstructure has been associated 

with inhibition (Liston et al., 2006) and working memory capacity (Vertergaard et al., 2011). 

In addition, processing speed has been shown to mediate the relationship between white 

matter microstructure and reasoning in children (Ferrer et al., 2013), and between white 

matter tract integrity and general intelligence in adults (Penke et al., 2012). Moreover, 

previous research supports the notion that white matter tract integrity is a brain-wide property 

(Penke et al., 2010). Thus, individual differences in myelination and white matter tract 

integrity may influence the speed of neural propagation and information processing, and may 

thus give rise to individual differences in intelligence (Miller, 1994; Penke et al., 2012).  

Another candidate brain-wide property proposed by Jensen (2006) is the speed of 

neural oscillations. Neural oscillation theory proposes that the level of excitatory potential 

oscillates synchronously among a large number of neurons and that an external stimulus is 

processed faster and more efficiently when it occurs at the peak than at the trough of the sine 
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wave. Faster oscillations thus lead to more excitatory phases per time interval, which results 

in less time elapsed until a stimulus occurring at the trough of the oscillatory wave can be 

processed, leading to faster information processing and subsequently faster and less variable 

response times. Jensen proposes that the rate of neural oscillations underlies individual 

differences in general intelligence, because faster information processing (resulting from a 

higher rate of oscillations) allows the processing of more information without having to 

temporarily store this information in and then retrieve short-term memory. Thus, information 

loss is less likely, as less information has to be stored in short-term memory, where it may get 

lost as a consequence of rapid decay.  

Evaluating evidence in favor of the neural oscillation theory is difficult, as the theory 

is very unspecific in its description of which neurons are supposed to oscillate in synchrony 

and how this oscillation might be quantified. Jensen (2006) discusses different neural 

oscillations such as the alpha and beta rhythm, but justifies the theory in terms of single cell 

activity. Thus, a clear-cut empirical test of the theory is very difficult. A recent meta-analysis 

of 24 studies supported the notion that intelligent individuals have faster and less variable 

response times, although SDs of response times were not more strongly related to intelligence 

than mean response times as predicted by neural oscillation theory (Doebler & Scheffler, 

2015). On a neurophysiological level, individual alpha frequency (i.e., the individual peak 

frequency in the alpha band ranging from 8 to 13 Hz) exhibits trait-like characteristics 

(Grandy et al., 2013b) and is associated with working memory capacity (Clark et al., 2004) 

and intelligence (Anokin & Vogel, 1996; Grandy et al., 2013a). Due to the low specifity of 

the neural oscillation hypothesis, however, it is unclear whether individual alpha frequency is 

a valid operationalization of the speed of neural oscillations, or whether only single cell 

recordings would provide an adequate measurement. 

The second set of theories proposes that chronometric and psychometric measures are 

correlated because more intelligent individuals show advantages in some specific process or 

property of the information-processing system. Likely candidates are executive functions such 

as shifting, inhibition, updating, selective attention, and attentional control. Previous research 

found that higher intelligence was moderately related to updating (Benedek, Jauk, Sommer, 

Arendasy, & Neubauer, 2014; Wongupparaj, Kumari, & Morros, 2015) and inhibition 

(Wongupparaj et al., 2015), but not to shifting (Benedek et al., 2014; Wongupparaj et al., 

2015). Moreover, attentional control (measured as task-unrelated thoughts) has been shown to 

be associated with response times (McVay & Kane, 2012), working memory capacity 

(McVay & Kane, 2012; Mrazek et al., 2012) and intelligence (Mrazek et al., 2012). In 
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addition, both response time variability and general intelligence have been related to the 

activity of the default-mode network (Basten, Stelzel, & Fiebach, 2013; Kelly, Uddin, 

Biswak, Castellanos, & Milham, 2008; Weissman, Roberts, Visscher, & Woldorff, 2006), 

which underlies task-unrelated thoughts such as mind wandering, autobiographical planning 

and daydreaming and which has to be de-activated during stimulus processing to allow a 

reallocation of resources to task-relevant brain networks (McKiernan, Kaufman, Kucera-

Thompson, & Binder, 2003). Taken together, each of these theoretical frameworks suggests 

that executive functions or attentional control act as a common cause influencing both mental 

speed and mental abilities.  

Another candidate specific process often discussed in the context of the relationship 

between mental speed and mental abilities is working memory. As illustrated in the context of 

the neural oscillation hypothesis above, a faster speed of information processing implies that 

more items can be processed in working memory before they have to be stored in short-term 

memory. More importantly, the number of items that can be held in short-term memory 

simultaneously is limited and single items may be forgotten once their trace activation falls 

under a critical threshold (Barrouillet, Bernardin, & Camos, 2004; Burgess & Hitch, 2006; 

Page & Norris, 1998). The time-based resource sharing model proposes that attention can be 

either deployed to task-relevant processing or to the refreshing of memory traces (Barrouillet 

et al., 2004). A higher mental speed during task-relevant processing results in less time spent 

on task-relevant processing and thus more time available for memory refreshing, resulting in 

less time-based forgetting. In addition, higher mental speed may also allow a faster and more 

efficient refreshing of memory traces during the time the attentional system deploys to 

refreshing. Previous research has shown that an interaction between individual differences in 

mental speed and memory span loaded more strongly on a factor of biological intelligence 

than either of the two measures (rmentalspeed = .85, rmemoryspan = .49, rinteraction = .92), although the 

difference in factors loadings between mental speed and its interaction with memory span was 

not great (Kline, Draycott, & McAndrew, 1994). Moreover, there is evidence that 

developmental changes in working memory capacity are mediated by developmental changes 

in mental speed, and that developmental changes in fluid intelligence are in turn mediated by 

changes in working memory capacity and mental speed (Fry & Hale, 1996). It should be 

noted, however, that the theory of trace decay in short-term memory is not undisputed 

(Jonides et al., 2008; Oberauer & Lewandowsky, 2014).  

All in all, these theories are very prominent examples of two sets of distinct theories 

that propose that either some brain-wide property or some specific process underlies the 
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relationship between mental abilities and mental speed. A direct empirical test of these two 

sets of theories can be achieved by means of event-related potentials. 

5.2 Do more intelligent individuals have advantages in the capacity of some 

brain-wide property or in the speed of specific processes? (Manuscript 3) 

In order to test the plausibility of these two sets of hypotheses, we added a hierarchical 

model of general intelligence to the LST model of ERP latencies in Manuscript 3. The 

resulting structural equation model thus consisted a) of a LST model with two broad common 

traits for earlier and later latencies, respectively, and specific common traits for the P200 and 

P300 latency (other specific traits were not significant), and b) of a hierarchical model of 

general intelligence with g loading on the Berlin intelligence structure test (BIS; Jäger, Süß, & 

Beauducel, 1997) and Raven’s Advanced Progressive Matrices (APM; Raven, Court, & 

Raven, 1994).  

General intelligence was positively correlated with the common trait for earlier 

latencies, r = .33, p <.001, and negatively correlated with the common trait for later latencies, 

r = -.89, p <. 001. These results support the view that more intelligent individuals show a 

higher mental speed at specific, but not at all stages of information processing. Hence, they 

contradict theories proposing that mental speed and mental abilities are related because more 

intelligent individuals have advantages in some brain-wide property. Instead, more intelligent 

individuals showed faster neurophysiological mental speed only in ERP latencies that are 

generally associated with higher-order processing and showed slower mental speed in ERP 

latencies occurring early in the stream of information processing. 

To be more specific, it is the fact that P300 latencies showed the greatest association 

with general intelligence that supports both specific theories on the relationship between 

mental speed and mental abilities outlined above. Faster P300 latencies are thought to reflect a 

more efficient inhibition of task-irrelevant processes that facilitates the updating of temporal-

parietal memory storage processes by attentional and working memory processes (Polich, 

2007). Thus, the context-updating interpretation of the P300 allows explaining the 

relationship between mental speed and mental abilities both in terms of underlying individual 

differences in executive functions and in terms of a more efficient time-based resource 

sharing or memory trace refreshing in working memory. 

ERP latency traits were not correlated with specific intelligence tests beyond their 

association with g and were not related to specific subscales of the BIS such as processing 

speed. This result is consistent with previous research showing the mental speed measured as 
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response times shows the greatest associations with general intelligence and not with specific 

first- or second-order factors of intelligence (Jensen, 2006). However, the same result was not 

obtained for response times in Manuscript 3, because both general intelligence and the 

processing speed component of the BIS were related to the common response speed trait, but 

response speed was still more strongly related to general intelligence, r = .43, p < .001, than to 

the processing speed component of the BIS, r = .24, p = .005. 

5.3 A tentative cognitive model of individual differences in general intelligence 

Based on these results, I propose a tentative cognitive model of mental speed, 

attentional control, and working memory that may explain individual differences in general 

intelligence (see Figure 4). The model is an extension of the time-based resource-sharing 

model (Barrouillet et al., 2004), which regards attention as a bottleneck in working memory 

processes. According to the time-based resource-sharing model, attention can be either 

deployed to task-relevant processing or to the refreshing of memory traces, and hence both 

processing stages can only occur sequentially, never in parallel. The black rectangles in 

Figure 4 represent time spent on task-relevant processing, which includes all stages of 

information processing from encoding over information accumulation and manipulation to 

decision making, but also meta-cognitive processes such as strategy planning, goal setting, 

and goal monitoring. Note that the inclusion of a random-walk process of information 

accumulation in the black squares in Figure 4 only serves to illustrate that information 

accumulation is an important part of task-relevant processing, but does not imply that this is 

the only process occurring during task-relevant processing. Moreover, task-relevant 

processing is a very generic term that can be applied to any kind of task requiring multiple 

processing steps (represented as multiple black boxes) from complex response time tasks over 

working memory task to intelligence test items. The white rectangles in Figure 4 represent the 

time that is available to refresh decaying memory traces between processing steps. Lines in 

the white rectangles represent distinct memory traces that can be refreshed during the 

available time. Because attention is assumed to be a domain-general process that can only be 

deployed to one cognitive process at a time, the working memory system oscillates between 

stages of information processing and memory refreshing. 

I propose that individual differences in two components of the extended model – 

attentional control and mental speed – are related to individual differences in general 

intelligence. First, more intelligent individuals are thought to possess greater attentional 

control, which subsequently reduces task-unrelated thoughts and minimizes the effects of 
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more accurate task-relevant processing. Faster task-relevant processing (represented as the 

narrower black rectangles for more intelligent individuals in Figure 4B) allows more time 

spent on the refreshing of memory traces (reflected by broader white rectangles in Figure 4B) 

before the onset of the next processing step for more intelligent individuals. Moreover, a 

greater mental speed is also going to increase the number of memory traces that can be 

refreshed during the time attention is deployed to the refreshing of short-term memory 

(represented by a higher density of lines in the white rectangles). The model thus predicts that 

more intelligent individuals can spend more time refreshing memory traces more efficiently, 

arriving later at the point of working memory breakdown.  

Note that the model assumes that any time between task-relevant processing steps is 

spent on memory refreshing, which does therefore imply that more intelligent individuals do 

not spend overall less time on the task. This assumption is consistent with previous results 

showing that the correlation between item response times and reasoning ability is close to 

zero (Kyllonen, 1985) or even positive (Klein Entnik, Fox, & van der Linden, 2009; Klein 

Entnik, Kuhn, Hornke, & Fox, 2009) in reasoning tests and disappears with increasing item 

difficulty in intelligence tests (Goldhammer, Naumann, & Greiff, 2015). 

Obviously, this tentative model has to be subjected to empirical tests before any 

statements about its validity can be made. Such empirical tests might either consist of 

multivariate analyses of mental speed, attentional control, and working memory parameters 

estimated based on the mathematical implementation of the time-based resource-sharing 

model (Oberauer & Lewandowsky, 2011), or of an evaluation of the predictive validity of a 

computational implementation of the extended model. Alternatively, targeted experimental or 

pharmacological manipulations might be employed to assess the influence of attentional 

control and mental speed on model parameters.  

6. Summary and Conclusion 

The aim of the present work was to overcome problems associated with the theoretical 

conceptualization and measurement of mental speed in individual differences research. This 

aim was pursued by first expanding the measurement of mental speed beyond response times, 

second establishing a nomological network of mental speed by investigating its factor 

structure across different paradigms and different operationalizations, and third locating it in a 

larger nomological network including other cognitive abilities.  

For this purpose, I showed that the measurement of mental speed can be expanded 

with the help of diffusion models and event-related potentials. In particular, I showed that 
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difference and slope parameters in elementary cognitive tasks are not suited to identify the 

speed of specific cognitive processes and that this goal can be better achieved by means of 

diffusion modeling and ERP analysis. Because difficulties in the evaluation absolute of model 

fit are one of the greatest hindrances to the proliferation of diffusion models in individual 

differences research, I demonstrated how the RMSEA may be used to evaluate absolute 

model fit and to subsequently identify individuals whose data cannot be properly accounted 

for by the diffusion model. 

In a second step, I investigated the factor structure and the psychometric properties of 

mental speed on a behavioral and neurophysiological level. On the behavioral level, there was 

evidence for a strong general mental speed factor that accounted for 53 - 71 percent of the 

variance in single response time measurements. On the neurophysiological, I found evidence 

for two uncorrelated mental speed factors – one general factor for latencies earlier and one 

general factor for latencies later in the stream of information processing. Moreover, structural 

equation modeling also revealed specific trait factors for P200 and P300 latencies. Situational 

influences such as fatigue or motivation on measurements were negligible on both 

measurement levels. 

In a third step, I started to locate mental speed in a larger nomological network by 

exploring its relationship with general intelligence. Structural equation modeling revealed that 

on a behavioral level, general intelligence was associated with generally faster response times, 

whereas on a neurophysiological level, general intelligence was differentially related to earlier 

and later ERP latencies and was most strongly associated with ERP latencies reflecting the 

speed of higher-order processing. Taken together, ERP latencies explained about 85 percent 

of the variance in general intelligence, whereas response times explained only 19 percent. 

This result suggests that ERP latencies may provide a purer measurement of mental speed as 

"the actual time taken to process information of different types and degrees of complexity” 

(Jensen, 2006, p. ix) goal-directedly and that response times may be contaminated by 

additional processes such as motor planning and execution that are largely unrelated to 

general intelligence. Finally, I proposed a tentative cognitive model explaining the 

relationship between mental speed and mental abilities based on individual differences in 

attentional control and working memory processes. 

All in all, these findings show that mental speed is an intriguing concept that is crucial 

to explaining individual differences in mental abilities. What is remarkable about these results 

is that neurophysiological mental speed explained 90 percent of the variance in general 
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intelligence. This suggests that ERP latencies could be used for the individual assessment of 

intelligence in participants not willing or capable to complete intelligence tests, if they could 

be determined with a higher reliability. Moreover, these results further strengthen the position 

that any process model of general intelligence has to account for the central role of mental 

speed in mental abilities. 
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Abstract 

It is unclear whether different elementary cognitive tasks (ECTs) are associated with 

intelligence because these tasks tap the same basic cognitive process (suggesting a single  

mental  speed  factor)  or  different  ones  (suggesting  several  mental  speed  factors), as it is 

not known which specific cognitive processes are measured in ECTs and because the factor 

structure of these processes is unknown. To address these questions, 40 participants (50% 

males) between 18 and 75 years drawn from a community sample completed the Hick 

paradigm, the Sternberg memory scanning paradigm, and the Posner letter matching paradigm 

while an EEG was recorded. We applied a diffusion model approach to the response-time 

data, which allows the mathematical decomposition of different cognitive parameters 

involved in speeded binary decisions. Behavioral and electrophysiological results indicated 

that ECT conditions varied in different neuro-cognitive components of information 

processing. Further analyses revealed that all speed and latency variables had substantial 

loadings on a second-order general factor marked by general intelligence, and that the 

association between ERP latencies and general intelligence was mediated by reaction times. 

These results suggest that there is a general neuro-cognitive speed factor across different tasks 

and different levels of measurement that is associated with general intelligence. 
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Decomposing the Relationship between Mental Speed and Mental Abilities 

After several decades of research, there is ample evidence of a moderate, but very 

consistent association between measures of intelligence and measures of mental speed. In a 

recent review of 172 studies, Sheppard and Vernon (2008) reported an average correlation of 

r = -.24 between different measures of intelligence and a variety of mental speed measures. 

This evidence indicates that more intelligent individuals have a higher speed of information 

processing. It is not yet known, however, if this association is driven by a general mental 

speed factor across different cognitive functions (e.g., information uptake, short-term 

memory, lexical access) or if there are several mental speed factors that are specific for 

cognitive functions and that are independently associated with general intelligence. 

The aim of the present study was to address this question and to provide a rationale for 

a more refined analysis of the relationship between mental abilities and mental speed that may 

allow for a better understanding of the neuro-cognitive processes driving this association. 

The study of mental speed 

 Almost all studies on the relationship between mental abilities and mental speed 

employ so-called elementary cognitive tasks (ECTs) when measuring reaction times (for a 

notable exception using pencil-and-paper tests see Neubauer & Knorr, 1998). These ECTs are 

tasks with very low cognitive demands that maximize the empirical control of task complexity 

and minimize unwanted sources of variance in individual differences. Because ECTs put only 

marginal cognitive requirements on participants, individual differences in strategy use and in 

previous experience with specific elements of the task are less likely to influence the 

association between RTs and intelligence than in more complex decision-making problems. 

Several of the often-used ECTs follow an idea in tradition of Donder’s subtraction method 

(Donders, 1969): The subtraction method presumes that when two reaction time tasks differ 
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only in the number of stimulus or response alternatives while every other detail of the task 

remains the same across conditions, the difference between RTs is an indicator of a purely 

mental processing speed. Following this logic, difference parameters are often the 

theoretically most interesting variables in ECT research. There are several paradigms in which 

this idea is pursued.  

In the simple and choice reaction time task based on the Hick paradigm (Hick, 1952), 

participants are presented between one and ten response buttons arranged in a semi-circle 

around a single home button and have to react when the light next to one of the response 

buttons is switched on. Because Hick showed that there is a linear relationship between the 

amount of information that has to be processed and reaction times (Hick, 1952), individual 

intercept and slope parameters can be computed when regressing RTs on the logarithm of 

stimulus-response alternatives. This way, individual slope parameters can be used as estimates 

for the “rate of gain of information” (Roth, 1964), which are theoretically (though seldom 

statistically) independent of motoric movement time, and can be correlated with measures of 

mental abilities. Another application of the general idea of the subtraction method can be 

found in the Sternberg memory scanning task (Sternberg, 1969). In this task, participants see 

memory sets of different sizes and are then asked if a single probe item was part of the 

previously presented memory set. Because RTs again increase linearly with memory set size, 

the slope parameter of the regression of RTs on memory set size can be used as an indicator 

of individual speed of short-term memory search. A similar idea is applied in the letter 

matching paradigm (Posner & Mitchell, 1967) where participants have to decide whether two 

letters are the same in accordance with their physical identity or in accordance with their 

name. The difference of RTs between these conditions is an estimate for the speed of lexical 

access (Hunt, 1983), because of the additionally required access to long-term memory in the 

name identity condition.  
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Associations between mental speed and mental abilities 

Correlations between RTs of ECTs and mental abilities are moderate, but consistent. 

Jensen (1987) reviewed 26 studies with a total N of 2317 participants that investigated the 

relationship between different parameters of the Hick paradigm and mental abilities tests. He 

reported a multiple R² of .25 in a regression of IQ scores on different parameters derived from 

the Hick paradigm. In a review of ten studies using Sternberg’s memory scanning task and 

psychometric intelligence tests, Neubauer (1997) reported a mean correlation of r = -.27 

between mean RT and intelligence test scores. He also reviewed ten studies correlating RTs in 

the Posner letter matching task and mental abilities test scores and computed mean N-

weighted correlations ranging between r = -.23 and -.33 for different parameters of the 

paradigm. In a recent review, Jensen (2006) reported canonical correlations ranging from C = 

.55 to .72 between different measures of mental abilities and of mental speed. It should be 

noted that correlations including the difference measures and slope parameters are usually 

substantially lower (Jensen, 1998; Neubauer, 1997). Taken together, these results suggest that 

there is a consistent negative association between mental speed and mental abilities in the way 

that more intelligent individuals have a higher speed of information processing. 

Cognitive processes in elementary cognitive tasks 

 The general idea that ECTs measure specific cognitive processes like speed of short-

term memory access or information processing speed is appealing, because correlations 

between difference and slope parameters in ECTs and general intelligence would then be 

informative about the association between specific cognitive processes and general 

intelligence. This general idea should, however, be treated with caution. Although ECTs 

already have rather low task complexities, each ECT still requires several cognitive processes 

such as attention, perception, encoding, representation in working memory, decision making, 

and response preparation. Moreover, it can be argued that ECT conditions might differ in the 
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demands they put on several cognitive processes simultaneously, so that difference and slope 

parameters might not only be indicators of a specific cognitive process, but might also include 

variance of other cognitive processes that differ between conditions. This would violate one 

of the assumptions of the subtraction method proposed by Donders (1969) and question the 

validity of difference and slope parameters. Because this often-implicated premise has to our 

knowledge never been tested empirically, the first aim of the present study was to investigate 

whether conditions in three ECTs differ only in one or in several cognitive processes. 

 Because not much is empirically known about which specific cognitive processes 

contribute to the distribution of reaction times in ECTs, even less is known about the origins 

of inter-individual differences in these RTs. One important question is whether these different 

tasks are related to general intelligence because they tap the same basic property of the 

cognitive system, or whether these tasks tap different cognitive system parameters. Many 

researchers tend to conclude from these findings that there is indeed one basic property at 

work, which is mental speed. According to this view, greater mental speed facilitates a better 

cognitive performance. Despite the great theoretical relevance of this concept, only few 

studies provided data that may help to answer the question whether there is one general factor 

of mental speed. Most studies include only one or two elementary cognitive tasks and are not 

focused on a systematic study of the factor structure itself. There are a few studies that report 

correlation matrices or factor analyses of ECTs that favor the hypothesis of a large general 

mental speed factor explaining more than 40% of variance (Burns & Nettelbeck, 2003; Hale 

& Jansen, 1994; Neubauer & Bucik, 1996; Neubauer, Spinath, Riemann, Borkenau, & 

Angleitner, 2000), while other studies, which employ not only classical ECTs but a more 

diverse range of information-processing tasks, report multi-factorial models of mental speed 

(O’Connor & Burns, 2003; Roberts & Stankov, 1999). Clearly these inconsistent results 

require further systematic study of the factor structure of mental speed, although the 

preliminary findings may suggest that there is a general mental speed factor, probably in 
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addition to more task-specific speed factors. The second aim of the present study was to 

address this question by decomposing the information-processing components in three ECTs 

and testing whether a single general mental speed factor emerges in a factor analysis of 

different speed measures across the three tasks. 

As long as we do not have enough knowledge about the factor structure of ECTs, we 

cannot know which cognitive processes might be responsible for individual differences in 

RTs. Therefore, we do not know whether more intelligent individuals have a generally faster 

speed of information processing or whether they differ in very specific facets of mental speed 

from less intelligent individuals. The behavioral data do not inform us which of these 

processes differ between individuals of different cognitive ability. The third aim of the present 

study was to address this problem using methods that allow the decomposition of the stream 

of information processing during reaction time tasks and to analyze the association between 

individual differences in these distinct information processing components and mental 

abilities.    

Decomposing the stream of information processing in ECTs 

In the present study, we used two methods to decompose the stream of information 

processing in ECTs: The first method is the diffusion model, which decomposes the stream of 

information-processing and decision making in RT tasks into distinct components based on 

RT distributions (Ratcliff, 1978). Another method that decomposes the stream of neuro-

cognitive information processing are electrophysiological measures, namely event-related 

potentials (ERPs), which allow to identify functionally distinct components in different time 

windows between the stimulus onset and the response execution. While diffusion models have 

only recently been applied in mental abilities research, ERPs are already used to a great 

extent. 
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Diffusion models are random walk-models used in the context of speeded binary 

decisions and provide a framework for analyzing the whole distribution of reaction time data 

(for recent reviews, see Ratcliff & McKoon, 2008, Wagenmakers, 2009; Voss, Nagler, & 

Lerche, 2013). They allow the identification of cognitive parameters by fitting predicted 

reaction time-distributions to empiric reaction time-distributions (Voss, Rothermund, & Voss, 

2004). Diffusion models in their most basic form identify four distinct parameters: The first 

parameter, drift rate (v), describes the strength of the systematic influence on the diffusion 

process with larger drift rates causing shorter reaction times and smaller amounts of errors. 

This parameter is most akin to the idea of ‘speed of information processing’ mentioned 

earlier, as it indicates the amount of information gathered per time unit. The second 

parameter, boundary separation (a), is a measure for the distance between decision 

thresholds, i.e., an indicator for the conservatism of the decision criterion. The third 

parameter, starting value (z), indicates whether a person is biased towards one of two decision 

thresholds. If z is closer to one threshold than the other, this threshold is reached more often 

due to random fluctuations, resulting in more and faster decisions associated with this 

threshold. The last parameter, response-time constant (t0), encompasses processes unrelated to 

decision making, mainly stimulus encoding and response execution. 

There are only a very small number of studies in which diffusion models were applied 

in intelligence research. In a study by Schmiedek, Oberauer, Wilhelm, Süß, and Wittmann 

(2007), university students had to complete several reasoning tasks and choice reaction tasks. 

They showed that a latent drift rate factor correlated positively with a latent reasoning ability 

factor (r = .79), whereas they reported a smaller negative association between a latent 

boundary separation factor (r = -.48) and reasoning ability. Ratcliff, Thapar, and McKoon 

(2010) asked participants in three different age groups (18-25, 60-74, 75-90 years) to 

complete different categorization tasks. They reported correlations ranging from r = .36 to .90 

for the three age groups between a latent drift rate factor and intelligence, whereas they found 
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no consistent association between other diffusion model parameters and intelligence. They 

found similar results in another study, where participants’ drift rate in recognition tasks was 

the only diffusion model parameter consistently correlated with intelligence, r = .47 to .67 

(Ratcliff, Thapar, & McKoon, 2011). Although these preliminary results are promising, it 

should be noted that none of these studies used ECTs that are normally used in intelligence 

research. 

Another method suited to decompose cognitive components in the stream of 

information processing is the ERP. The ERP methodology allows identifying functionally 

distinct electrophysiological components (e.g. the N200 or P300) that might be affected 

differently by condition differences in ECTs. Moreover, according to the mental speed 

hypothesis, the latencies of ERP components should be negatively correlated with 

intelligence. 

There are several electrophysiological studies that correlated ERP parameters with 

intelligence. In their review of 23 of these studies (N > 2400), Schulter and Neubauer (2005) 

concluded that there are no consistent associations between ERP latencies and intelligence. It 

should, however, be noted that most of these studies employed standard ERP paradigms such 

as the oddball paradigm and that behavioral data from these tasks is uncorrelated with 

intelligence. There are only a few studies in which classical ECTs were combined with ERP 

methodology. Houlihan, Stelmack, and Campbell (1998) and Pelosi et al. (1992) computed 

ERPs to probe stimuli in the Sternberg memory scanning tasks and found both weak and 

mostly insignificant associations between ERP latencies and intelligence test scores. 

McGarry-Roberts, Stelmack, and Campbell (1992) computed a factor analysis of P300 

latencies recorded during six reaction time tasks including the Sternberg memory scanning 

task. They correlated this P300 factor with a general intelligence factor and reported a 

correlation of r = -.36 between these factors. All in all, these studies suggest that there may be 
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a weak negative association between ERP latencies and mental abilities, but further studies 

are needed before any final conclusions can be drawn. 

The present study 

The goal of the present study was to decompose the information-processing 

components in three different ECTs (Hick paradigm, Sternberg memory scanning task, Posner 

letter matching task) by applying diffusion models to reaction time distributions and by 

monitoring the neuro-cognitive correlates of information processing with EEG methodology. 

We pursued three aims: First, we wanted to investigate whether differences between ECT 

conditions represent one or multiple cognitive processes, as the general idea of ECT implies 

that these differences represent a single process within each task. Contrary to this idea, we 

expected ECT conditions to represent a range of different processes such as attention, 

perception, encoding, representation in working memory, decision making, and response 

preparation, i.e. we anticipated that these tasks differ in several behavioral and 

electrophysiological parameters simultaneously. Our second aim was to investigate the factor 

structure of mental speed. We expected to identify a single general mental speed factor across 

all behavioral and electrophysiological measures and all tasks in addition to more specific 

factors. Our third aim was to investigate the association between mental speed and mental 

abilities across the different measures and tasks. We expected a) that a general mental speed 

factor is significantly associated with general intelligence, and b) that the association between 

ERP latencies and mental abilities is mediated by reaction times. This mediation model is 

based on the methodological framework of Baron and Kelley (1986), who suggested that 

mediation models are causal models. A proposed mediator variable Z mediates the 

relationship between an independent variable X and an outcome variable Y only if the 

independent variable has a causal effect on the mediator variable that in turn has a causal 

effect on the outcome variable (Baron & Kenny, 1986, p. 1176). While the mediation model 
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allows for some part of the causal influence to take the direct path from the independent 

variable to the outcome variable (X->Y), it presumes that a substantial part of the causal 

influence is exerted through the indirect effect via the proposed mediator (X->Y->Z). In all 

ECTs of the present study, a stimulus has first to be processed visually and then relayed to 

frontal areas associated with executive functions and decision making before a motor 

response reflecting this decision can be initiated. Thus, there is a stream of processing that has 

some temporal order, with neuro-cognitive events taking place before behavioral events 

occur. Therefore, we expected that ERP latencies exert the majority of their influence on 

general intelligence indirectly through the proposed mediator reaction times. 

Method 

Participants 

 We recruited a sample of N = 40 participants (20 females, 20 males) between 18 and 

75 years old (M = 47.4, SD = 15.6) from different educational and occupational backgrounds 

via local newspaper advertisement. All participants had normal or corrected to normal vision 

and no history of mental illness. They received 10€ as payment for their participation and 

could indicate whether they wanted to be informed about their personal results. 

Measures 

 Elementary cognitive tasks 

 Hick paradigm. In order to control for visual attention effects, response bias effects, 

and top-down strategies associated with the classical Jensen apparatus and the use of a home 

button (Longstreth, 1984) and in order to ensure compatibility of this paradigm with EEG 

measurements, we adopted the modified Hick paradigm developed by Neubauer, Bauer, and 

Höller (1992). This modified paradigm is presented on a computer screen and does not 

employ a home button. Participants’ middle and index fingers rested on four keys of a 
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modified keyboard, on which all other keys irrelevant to the task were removed. Those keys 

were positioned directly underneath the squares relevant for the task, thus increasing stimulus-

response compatibility as much as possible. Participants were instructed to always keep their 

fingers on the keys during the whole task. In the 2 bit condition, four squares arranged in a 

row with a fixation cross in their middle were shown on the screen for a time period varying 

between 1000 and 1500 ms. After this period, a cross appeared in one of the four squares and 

participants had to press the corresponding response-key. The screen remained unchanged for 

1000 ms following the response, as we wanted to record post-decisional neuronal processes. 

After this time period, an ITI varying between 1000 and 1500ms was presented, followed by 

the next trial. 

We implemented two 1 bit conditions: One condition (comparability low: 1 bitCL) 

adopted from Neubauer et al. (1992) and a second one (comparability high: 1 bitCH) designed 

to maximize stimulus comparability with the 2 bit condition. At the beginning of each trial in 

the 1 bitCL condition, only two squares appeared on the screen with a fixation cross in the 

middle of the screen. These two squares appeared pseudo-randomly in two of the four 

locations used in the 2 bit condition. As in the 2 bit condition, a cross appeared in one of the 

two squares after 1000 to 1500 ms and participants had to press the corresponding key. In the 

1 bitCH condition, however, all four squares were presented on the screen, but participants 

were instructed to only pay attention to two of them, because the cross could only appear in 

one of these two squares. There were four blocks with 20 items each instructing participants 

to pay attention to the left/right/middle/outer two squares. We implemented this additional 1 

bit condition because it shared all stimulus features with the 2 bit condition and only differed 

from this condition in the instruction participants were given. This is a necessary prerequisite 

for ruling out confounds in the interpretation of ERP effects, because small changes in 

physical stimulus features can result in sizeable changes in ERP amplitudes. For an overview 

over the different conditions, see Figure 1. 
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 Participants were instructed to respond as quickly and accurately as possible. The 

order of conditions was the same for all participants. First they completed the 2 bit condition, 

then the 1 bitCL condition followed by 1 bitCH condition. Each condition consisted of a 

learning phase with ten sample items and direct feedback, followed by 80 test items. 

Participants made short breaks between blocks. There were two fixed sequences of the 

location of squares and crosses that were balanced across participants.  

Sternberg memory scanning task. Participants were shown digits between 0 and 9 on 

a computer screen. There were three blocks of ten sample items each with feedback and 80 

test items with a memory set size of 1, 3, and 5 digits. Each trial began with a fixation cross 

varying between 1000 and 1500 ms. Digits were presented sequentially for 1000ms with a 

blank screen of 400 to 600 ms between single digits. After the last digit of the memory set 

was presented, a black screen with a question mark was shown for 1800 to 2200 ms, followed 

by a probe item showing a single digit. Participants had to press one of two keys with their 

index fingers indicating whether the digit was part of the memory set seen immediately 

before. The probe item remained on screen for 1000 ms after the reaction was made and the 

intertrial interval was 1000 to 1500 ms. See Figure 1 for illustration. 

All participants began with set size one and then progressed to set sizes three and five. 

They were given the option to make short breaks between blocks. There were two versions of 

stimulus material counterbalanced across participants. The probe item was previously 

presented in the memory set in 50% of the trials. The position of keys indicating whether the 

probe item was part of the memory set was counterbalanced across participants. 

Posner letter matching task. After a fixation cross lasting between 1000 and 1500 ms, 

two letters were presented in the middle of the screen and participants had to decide whether 

this pair was identical or not by pressing the corresponding key. In the physical identity 

condition, participants were instructed to judge letters as identical only if they were identical 
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in physical characteristics (thus, “AA” would be identical, while “Aa” or “AB” would be 

judged as different). In the name identity condition, participants were instructed to judge the 

name identity of stimuli (thus, “AA” and “Aa” would be judged as identical, while “AB” 

would not be). Afterwards, the pair of letters remained on the screen for 1000 ms and was 

followed by an ITI varying between 1000 and 1500 ms. See Figure 1 for illustration. 

The two conditions were separated into blocks of 10 sample items with feedback and 

200 test items each. All participants began with the physical identity condition and made a 

short break between blocks. There were two versions of stimulus material assorted to 

participants depending on their number. We used the upper- and lowercase letters A, B, F, H, 

and Q as stimulus material. The pair of letters was identical in 50% of the trials. The position 

of keys indicating whether the pair was identical was counterbalanced across participants. 

---------------------------------------------------------------------------------------------------- 

Please insert Figure 1 about here 

---------------------------------------------------------------------------------------------------- 

Intelligence tests 

Fluid intelligence. We used a self-programmed computerized version of Raven’s 

Advanced Progressive Matrices (APM; Raven, Court, & Raven, 1994) to measure fluid 

intelligence. In this computer adapted version of the APM, one item was presented at a time 

with its eight possible alternatives and participants had to indicate their solution with a mouse 

click. They were able to go back and forth between the different items at any time with the 

exception that they could not go back to Item set I once they had started working on Item Set 

II. According to the test manual, the APM raw test score was computed as the number of 

correctly solved items and used in all further analyses. Cronbach’s alpha was α = .82. 
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 Crystallized intelligence. We constructed a short version of the knowledge test from 

the German Intelligenz-Struktur-Test 2000-R (IST 2000-R; Liepmann, Beauducel, Brocke, & 

Amthauer, 2001) as an indicator of crystallized intelligence. The knowledge test of the IST 

2000-R consists of several knowledge questions tapping different fields of knowledge like 

“What does π (pi) mean?”, “In which street is the New Yorker stock exchange?”, or “What 

does the octane index indicate?”. To create a short version, we chose the 20 items with the 

highest loadings on crystallized intelligence, although we lost some diversity in the content of 

test items. The knowledge test was administered according to the manual and the number of 

correctly solved items was used as the test score for all further analyses. We did not compute 

IQ scores because we had no normative data of our abbreviated version. Cronbach’s alpha 

was α = .65. 

Procedure 

 Participants read and signed an informed consent. They were seated on a comfortable 

chair in a dimly lit EEG cabin in front of a computer screen. All participants completed the 

three ECTs in the same order with small breaks between the tasks: Hick paradigm, Sternberg 

memory scanning task, and Posner letter matching task. ECTs were followed by a short break, 

after which participants completed the APM and the knowledge test based on the IST 2000-R. 

Information about demographic variables was gathered at the end of the session. 

EEG recording 

The EEG was recorded with nine Ag-AgCl electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, 

P4) that were positioned according to the international 10-20 system. We used the aFz 

electrode as the ground electrode. Electrodes were initially referenced to Cz and later re-

referenced to linked mastoids (TP9, TP10). To correct for ocular artifacts, we recorded the 

electrooculogram (EOG) bipolarly with two electrodes positioned above and below the right 
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eye and two electrodes positioned at the outer canthi of the eyes. All electrode impedances 

were kept below 5kΩ. The EEG was recorded continuously with a sampling rate of 2500 Hz 

(band-pass 0.1-100 Hz). We applied an offline low-pass filter of 16 Hz for the determination 

of average activity within time windows and low-pass filters of 12 Hz (early ERPs) and 8 Hz 

(late ERPs) for latency detection.  

Data analysis 

 Response times 

 Trials with extremely fast RTs (< 200 ms for the Hick paradigm and < 300 ms for the 

Sternberg memory scanning and the Posner letter matching task) or extremely slow RTs (> 

3000 ms) were removed. We used the fast-dm program developed by Voss and Voss (2007) to 

fit diffusion models to RT distributions, which is free software that utilizes the Kolmogorov-

Smirnov test statistic to estimate model parameters. The parameter z for mean starting point 

was set equal to a/2, presuming that participants had no response bias towards the correct or 

incorrect alternative. We computed separate diffusion models for each condition of the three 

ECTs in which the parameters a, v, t0, and st0 were allowed to vary freely. For correlational 

analyses, we averaged the respective parameters across all conditions for each ECT. Thus, we 

computed an average drift and an average response-time constant for each of the three ECTs 

in order to reduce the number of variables entered into the subsequent factor analysis while 

increasing their reliability. Intertrial-variability parameters of the diffusion model (sv, sz) were 

fixed to 0 to keep the model parsimonious with the exception of st0, because it led to a notable 

improvement of model fit. 

To assess how well diffusion models fit the individual-level data, we conducted 

Monte-Carlo simulations and simulated 1000 data sets from the diffusion model that matched 

the characteristics of the empirical data (i.e., simulated parameter values were based on 



The relationship between mental speed and mental abilities A1 – 17 
 

empirical parameters values, and the number of trials and conditions was equivalent to the 

tasks used in the present study). We then re-analyzed the simulated data sets with the 

diffusion model and used the 5% quantile of the distribution of fit-values in each ECT 

condition as the critical value to assess individual model fit in the empirical models.  

 EEG parameters 

We calculated ERPs time-locked to the onset of probe items in all tasks, using the 

preceding 200 ms as baseline and including an interval from 200 ms before stimulus onset 

until 1000 ms afterward. Ocular artifacts were corrected using the regression procedure of 

Gratton, Coles, and Donchin (1983). Epochs with amplitudes exceeding ±70 µV, with 

amplitude changes exceeding 100 µV within 100 ms, or with lower activity than 0.5 µV were 

discarded as artifacts. We identified ERP components by visual inspection of the grand 

average waveforms (figure 3-5) for the three ECTs and computed mean EEG activity in the 

following time windows: In the Hick paradigm, we computed the P200 (175-215 ms), the 

N200 (210-240 ms), and the P300 (360-420 ms). In the Sternberg memory scanning 

paradigm, we computed the N150 (115-160 ms), the P200 (200-245 ms), the N300 (300-360 

ms), and the P300 (400-600 ms). In the Posner letter matching paradigm, we computed the 

N140 (115-155 ms), the P210 (190-235 ms), the N300 (240-365 ms), and the P300 (465-580 

ms). For ERP latencies, we inspected participants’ individual averaged waveforms at all nine 

electrode positions for peaks during the time windows described above and used these peak 

latencies as individual latency measures. For correlational analyses, we inspected grand 

average waveforms and determined at which electrode position each ERP component was 

greatest and used the corresponding electrode position for all further analyses. We used the 

same electrode position for each ERP component for all participants. 
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 Statistical analyses  

 In order to characterize ECTs in terms of information processing components, we ran 

repeated measures ANOVAs with the factor condition separately for median RTs, drift rates, 

and response-time constants for each ECT. In the following analyses on average EEG activity, 

we ran an omnibus repeated-measures ANOVA for each ECT with four within-subject 

factors: ERP component (with three levels for the Hick paradigm: P200, N200, P300; four 

levels for the Sternberg memory scanning task: N150, P200, N300, P300; with four levels for 

the Posner letter matching task: N140, P210, N300, P300), condition (with two levels for the 

Hick paradigm: 1 bit vs. 2 bit; three levels for the Sternberg memory scanning task: set size 1, 

set size 3, set size 5; two levels for the Posner letter matching task: PI vs. NI), caudality (with 

three levels for all tasks: frontal, central, parietal), and laterality (with three levels for all 

tasks: left, central, right) in order to test if condition effects differed between time windows. 

We then ran follow-up repeated measures ANOVAs for each ECT with the three within-

subject factors condition, caudality, and laterality to test for condition differences in specific 

ERP components in each ECT. For these analyses, we dropped the fourth factor ERP 

component that was included in the omnibus ANOVAs, because we wanted to test for 

condition differences in specific time frames. 

 For factor analyses, we first computed principal component analyses (PCA) a) for 

intelligence test scores and b) for each of six time-domain variables across the three ECTs 

(Table 8 shows a list of variables). We included only time-domain variables that were 

available and comparable in at least two different ECTs, which led to the exclusion of slower 

ERP components because their time windows were not comparable across ECTs. Next, we 

computed individual factor scores of the first principal component of these seven PCAs that 

yielded individual factor scores for RT, v, t0, and three ERP latencies. A hierarchical PCA was 

then run on the correlation matrix of these factor scores and the number of factors was 
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determined by the scree plot (Cattell, 1966) and the parallel analysis criterion (Horn, 1965). 

Because of their intercorrelations, factors were rotated obliquely. 

 Finally, we ran mediation analyses to test whether the relationship between ERP 

latencies on intelligence test scores was mediated by reaction times and used the bootstrap 

procedure to test for indirect effect (Preacher & Hayes, 2004). 

 We repeated all correlational analyses controlling for age because of the 

heterogeneous sample. Since age had no influence on the pattern of results, we did not include 

these analyses in this report.  

Results 

Descriptive data 

The median RT in the Hick paradigm was M = 447.22 (SD = 91.62) and the mean 

accuracy was M = 0.98 (SD = .01). In the Sternberg memory scanning paradigm, the median 

RT was M = 736.78 (SD = 133.17) and the mean accuracy was M = 0.96 (SD = .02). The 

median RT in the Posner letter matching task was M = 663.41 (SD = 104.89) and the mean 

accuracy was M = 0.98 (SD = .01). Please consult Table 1 for the descriptive data of the 

different ECT conditions. The mean score of correctly solved APM items was M = 24.55 (SD 

= 5.09), which corresponds to a mean IQ of M = 91.68 (SD = 14.6). IQ scores were normally 

distributed (skew = 0.16, kurtosis = -0.24) and ranged from 78 to 123 IQ points. The mean 

score of correctly solved knowledge test items was M = 15.49 (SD = 2.72). No corresponding 

IQ score could be computed, because we only used an abbreviated version of the full IST 

2000-R knowledge test. Knowledge test scores were also normally distributed (skew = -0.17, 

kurtosis = -0.49). 
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---------------------------------------------------------------------------------------------------- 

Please insert Table 1 about here 

---------------------------------------------------------------------------------------------------- 

Descriptive statistics for the diffusion model parameters are shown in Table 1. Model 

fits were satisfactory for all three ECTs. In the Hick paradigm, 5% of the models in the 1 bit 

condition and 2.5% of the models in the 2 bit condition had p-values smaller than the critical 

p-values of pcrit = .794 and .843, respectively. In the set size 1 condition of the Sternberg 

memory scanning paradigm, there were no models with p-values below the critical value of 

pcrit = .834, while 2.5% and 7.5% of the models in the set size 3 and in the set size 5 condition 

had p-values smaller than pcrit = .839  and pcrit = .836. Model fits were slightly worse in the 

Posner letter matching paradigm with 10% of the models falling short of the critical p-value 

pcrit = .833 in the physical identity condition and 5% of the models falling short of the critical 

p-value pcrit = .824 in the name identity condition. We kept the models with bad model fits in 

our analyses, because excluding these models did not change the pattern of results. 

Characterization of ECTs in terms of neuro-cognitive processing 

One aim of this study was to identify neuro-cognitive parameters differing between 

conditions of the three ECTs. The main purpose of the analyses reported in this section was to 

test whether there are specific RT and ERP parameters that differ between conditions or 

whether we have to assume that ECT conditions differ in several steps in the course of neuro-

cognitive information processing.  

RT characterization and diffusion model results of ECTs 

As expected, median RTs increased with increasing task difficulty in all ECTs (Figure 

2). In the Hick paradigm, median RTs were significantly larger in the 2 bit than in the 1 bitCH 
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condition, F(1,38) = 92.73, p < .001, ω² = .71. In the 1 bitCL condition, however, median RTs 

were significantly larger than in the 2 bit condition, F(1,38) = 4.62, p = .038, ω² = .09, which 

was unexpected as less information (only two alternatives) had to be processed in the 1 bitCL 

than in the 2 bit condition (four alternatives). As we did not know which cognitive processes 

were responsible for this unexpected increase in RTs, we dropped the 1 bitCL condition from 

all further analyses and renamed the “1 bitCH” condition to “1 bit” condition for the remainder 

of this report.  When we analyzed the effects of condition on drift rates and response-time 

constants separately, we observed no change in drift rates with increasing number of stimulus 

alternatives, F(1,38) = 2.02, p = .163, ω² = .03, but an increase in response-time constants, 

F(1,38) = 58.62, p < .001, ω² = .60.  

In the Sternberg memory scanning paradigm, RTs increased with set size, F(2,78) = 

113.17, p < .001, ω² = .74, ε = .68, in a strictly linear way, F(1,39) = 133.53, p < .001, ω² = 

.77, for the linear trend of effect size. As expected, drift rates decreased with memory set size, 

F(2,76) = 18.47, p < .001, ω² = .31, ε = .91, also following a linear pattern, F(1,38) = 31.16, p 

< .001, ω² = .44. t0 also differed between conditions, F(2,76) = 35.57, p < .001, ω² = .48, ε = 

.82, and increased linearly with memory set size, F(1,38) = 46.76, p < .001, ω² = .55. 

In the Posner letter matching paradigm, median RTs were higher in the name identity 

than in the physical identity condition, F(1,38) = 70.36, p < .001, ω² = .64. When v and t0 

were compared between conditions, we found that drift rates decreased in the NI condition, 

F(1,38) = 35.76, p < .001, ω² = .48, and that there was no significant difference in response-

time constants between conditions, F(1,38) = 2.64, p = .112, ω² = .04. Overall, these results 

indicated that there was substantial variation between tasks in which diffusion model 

parameters varied significantly between ECT conditions. Only in the Sternberg memory 

scanning paradigm did different conditions differ not only in their information processing 

demands, but also in their sensomotoric difficulties. 
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---------------------------------------------------------------------------------------------------- 

Please insert Figure 2 about here 

---------------------------------------------------------------------------------------------------- 

ERP characterization of ECTs 

In order to investigate whether electrophysiological activity differed between 

conditions within each of the three ECTs, we compared average activity and peak latencies 

across different time windows in the course of information processing. Our main aim was not 

to identify specific processes differing between conditions, but to test if ECT conditions 

differed in only one or several electrophysiological components. We only reported main effect 

and interactions including the factor ECT condition, as we were only interested in condition 

effects on ERP; additional topographical information on the ERP components can be found in 

the tables detailing the complete ANOVA results in the supplementary material. 

In the Hick paradigm, we compared mean activity and peak latencies between 

conditions in three different time windows. First, we computed an omnibus ANOVA with the 

four within-subject factors ERP component (P200: 175-215 ms, N200: 210-240 ms, P300: 

360-420 ms), condition (1 bit vs. 2 bit), caudality (frontal, central, parietal), and laterality 

(left, central, right) to test whether condition effects differed between time windows. For 

mean activity, we observed a significant interaction between component and condition, 

F(2,70) = 20.26, ε = .71, p < .001, ω² = .55, as well as significant three-way interactions 

between ERP component, condition and caudality, F(4,140) = 5.12, ε = .39, p = .014, ω² = 

.11, and between ERP component, condition and laterality, F(4,140) = 3.16, ε = .53, p = .045, 

ω² = .06. For ERP latencies we observed a significant interaction between ERP component 

and caudality, F(4,140) = 3.96, ε = .64, p = .032, ω² = .08, and a significant three-way 
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interaction between ERP component, condition and caudality, F(4,140) = 8.96, ε = .56, p < 

.001, ω² = .18. See Figure 3 for the ERPs elicited by stimuli in the Hick paradigm. 

---------------------------------------------------------------------------------------------------- 

Please insert Table 2 and 3 about here 

---------------------------------------------------------------------------------------------------- 

In a next step, we compared mean activity and ERP latencies between conditions in 

each of the three different time windows. Please see Table 2 for detailed results of the main 

effects and interactions including the factor condition on ERP amplitudes and Table 3 for 

detailed results on ERP peak latencies. We found a significant difference in mean P200 and 

N200 activity with amplitudes being greater in the 1 bit than in the 2 bit condition for the 

P200, ω² = .41, and with amplitudes being greater in the 2 bit than in the 1 bit condition for 

the N200, ω² = .42. The significant interactions between condition and caudality, ω² = .25, and 

between condition and laterality, ω² = .22 and .30, indicated a specific topography of this 

effect. In particular, condition differences were largest at central and central parietal electrode 

sites for both ERP components. Moreover, P200 latencies were shorter in the 2 bit than in the 

1 bit condition, ω² = .27, but the significant interaction between condition and caudality, ω² = 

.17, suggested that this was mostly the case for frontal electrode sites, as P200 latencies were 

slightly shorter in the 1 bit than in the 2 bit condition at parietal electrode sites, F(1,35) =  

4.26, p = .046, ω² = .09. Furthermore, we found significant interactions between condition and 

caudality, ω² = .11, between condition and laterality, ω² = .08, and between condition, 

caudality and laterality, ω² = .11, for the N200 peak latencies. These interactions indicated 

that N200 latencies were shorter in the 2 bit condition than in the 1 bit condition at Fz and F4, 

F(1,35) = 6.78, p = .013, ω² = .14, and marginally larger in the 2 bit than in the 1 bit condition 

at Cz and Pz, F(1,35) = 3.14, p = .085, ω² = .06.  
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We observed no main effect of condition on average activity in the P300 component, 

ω² = .00. The significant interactions (see Table 2c)) between condition and caudality, ω² = 

.25, and between condition and laterality, ω² = .13, indicated that amplitudes in the 1 bit were 

greater than in the 2 bit condition at central electrode sites, F(1,35) = 4.36, p = .044, ω² = .09, 

and tended to be smaller at frontal electrode sites in comparison to the 2 bit condition,  

F(1,35) = 3.58, p = .067, ω² = .07. Moreover, condition effects could only be observed at 

central and left electrode sites. For P300 latencies we found a pattern of results that again 

indicated that P300 were marginally shorter in the 2 bit than in the 1 bit condition at frontal 

electrode sites, F(1,35) = 3.44, p = .072,  ω² = .07, and shorter in the 1 bit than in the 2 bit 

condition at parietal electrode sites, F(1,35) = 5.20, p = .029,  ω² = .11. It should be noted that 

mean RTs in both condition were close to the P300 time window (391 and 467 ms) and might 

therefore account for condition effects in terms of differently timed response preparation 

processes.  

Together, the topography effects described for the mean activity in each ERP time 

window and the significant interactions of the omnibus analysis suggested that conditions in 

the Hick paradigm differ in several electrophysiological components of information 

processing. For ERP latencies, however, there seemed to be a caudality-specific pattern of 

results that is consistent across all ERP components and that suggests that condition 

differences in ERP latencies are not specific for ERP components.  

---------------------------------------------------------------------------------------------------- 

Please insert Figure 3 about here 

---------------------------------------------------------------------------------------------------- 

In the Sternberg memory scanning task, we compared mean activity and ERP latencies 

between conditions in four different time windows. First, we computed another omnibus 
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analysis following the previously described logic with the four within-subject factors ERP 

component (N150: 115-160 ms, P200: 200-245 ms, N300: 300-360 ms, P300: 400-600 ms), 

condition (set size 1, set size 3, set size 5), caudality (frontal, central, parietal), and laterality 

(left, central, right) to test whether condition effects differed between time windows. We 

observed a significant interaction between ERP component and condition on average activity, 

F(6,228) = 8.52, ε = .59, p < .001, ω² = .17, as well as significant three-way interactions 

between ERP component, condition, and caudality, F(12,456) = 18.92, ε = .36, p < .001, ω² = 

.32, and between ERP component, condition, and laterality, F(12,456) = 3.79, ε = .23, p = 

.015, ω² = .07. For ERP latencies, we observed a significant main effect of condition, F(2,76) 

= 8.87, ε = .91, p = .001, ω² = .17, and a significant interaction between condition and ERP 

component, F(6,228) = 4.52, ε = .37, p = .011, ω² = .08. See Figure 4 for the ERPs elicited by 

stimuli in the Sternberg memory scanning paradigm. 

---------------------------------------------------------------------------------------------------- 

Please insert Table 4 and 5 about here 

---------------------------------------------------------------------------------------------------- 

Please see Table 4 for detailed results of the ANOVAs on the average activity for the 

specific time windows and Table 5 for the detailed results on peak latencies. We found no 

significant main effects or interactions including condition on the amplitudes or peak latencies 

of the N150 and P200 component, all Fs < 3.15, all ps > .065, all ω²s < .06 (see Table 4 and 

Table 5 a) and b)).  

We observed a significant main effect of condition on average N300 activity,  ω² = 

.26, with greater amplitudes in the set size 3 and set size 5 conditions than in the set size 1 

condition, F(1,38) = 26.31, p < .001, ω² = .40, and no difference between amplitudes in the 

more difficult conditions, F < 1. Moreover, a significant interaction between condition and 
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caudality indicated a specific topography of this effect, ω² = .15. The condition effects were 

greatest at central and parietal electrode sites. We also observed a significant interaction 

between condition and caudality for N300 peak latencies, ω² = .06, indicating that N300 

latencies became longer with increasing memory set size at central and parietal electrodes, 

F(2,76) = 5.07, ε = .97, p = .009, ω² = 10. 

Next, we compared conditions and electrode sites for P300 activity. We observed a 

main effect of condition, ω² = .36, that indicated that P300 amplitudes decreased linearly with 

increasing memory set size, F(1,38) = 30.84, p < .001, ω² = .44. There was also a significant 

interaction between condition and caudality, ω² = .31, as P300 amplitudes only increased at 

central,  F(2,76) = 15.85, ε = .92, p < .001, ω² = .28, and parietal electrode sites with 

increasing memory set size,  F(2,76) = 49.44, ε = .90, p < .001, ω² = .56, but not at frontal 

electrode sites,  F(2,76) < 1, ε = .80, p = .856, ω² = .00. Moreover, P300 peak latencies 

became longer with increasing memory set size. 

The results of these analyses indicated that conditions differ systematically in average 

activity and suggest together with the specific topographic interactions for each ERP that the 

neural processing of probe items in different memory set sizes differs in more than one 

electrophysiological component.  

---------------------------------------------------------------------------------------------------- 

Please insert Figure 4 about here 

---------------------------------------------------------------------------------------------------- 

In the Posner letter matching paradigm, we compared mean activity and ERP 

latencies between conditions in four different time windows. Again, we first computed an 

omnibus ANOVA with the four within-subject factors ERP component (N140: 115-155 ms, 

P210: 190-235 ms, N300: 240-365 ms, P300: 465-580 ms), condition (PI vs. NI), caudality 
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(frontal, central, parietal), and laterality (left, central, right) to test if condition effects differed 

between ERPs. The effect of the interaction between ERP component and condition on 

average activity was marginally significant, F(3,99) = 3.36, ε = .36, p = .072, ω² = .06. We 

also observed a significant three-way interaction between ERP component, condition and 

caudality, F(6,198) = 5.05, ε = .36, p < .01, ω² = .11, and a marginally significant three-way 

interaction between ERP component, condition and laterality, F(6,198) = 2.55, ε = .44, p = 

.068, ω² = .04. There was no significant main effect or interaction including condition on ERP 

peak latencies. See Figure 5 for the ERPs elicited by stimuli in the Posner letter matching 

paradigm. 

---------------------------------------------------------------------------------------------------- 

Please insert Table 6 and 7 about here 

---------------------------------------------------------------------------------------------------- 

Next, we computed several ANOVAs for the different time windows in the Posner 

letter matching paradigm. Please see Table 6 and Table 7 for all main effects and interactions 

including the factor condition. There were no significant main effects of condition on ERP 

amplitudes, all ω²s < .05, but several interactions between condition and caudality and 

condition and laterality. Condition differences were most pronounced at frontal electrode sites 

for the N140, P210 and N300 component. These interactions were not further unraveled, as 

follow-up tests of condition differences at frontal electrode sites yielded no significant effects, 

all Fs < 1.2, all ps > .282, all ω² = .00. For the P300 component, we observed a specific 

topography of condition effects that indicated that P300 amplitudes were greater in the PI than 

in the NI condition and that this effect was greatest at central electrode sites, ω² = .07. 

Moreover, the significant three-way interaction suggested that condition differences were 
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greatest at Cz, ω² = .05. As in the overall analyses, there were no main effects or interactions 

including condition on any of the ERP peak latencies. 

Again, the topography differences between condition differences in ERPs and the 

significant interactions in the omnibus analysis indicated that the PI and NI condition differ in 

more than one ERP component. These differences were only manifest in average activity, but 

not in peak latencies. 

---------------------------------------------------------------------------------------------------- 

Please insert Figure 5 about here 

---------------------------------------------------------------------------------------------------- 

Factor structure of mental speed 

In the next step, we analyzed the factor structure of mental speed and its relation to 

general intelligence. In order to investigate the factor structure of mental speed, we computed 

six principal component analyses separately for the six time-domain variables (RT, v, t0, P100 

latency, N150 latency, P200 latency) across the three ECTs. We then computed individual 

component scores of the first principal component for all participants to generate six new 

variables that capture the greatest amount of variance in each set of time-domain variables 

across ECTs. We repeated this procedure for intelligence test scores and extracted a general 

intelligence factor. Table 8 shows the variables entered into each PCA and the amount of 

variance explained by the respective first principal component. We then entered these seven 

component score variables into further analyses to explore the factor structure of mental 

speed. Correlations between these seven component scores are shown in Table 9. If the factor 

structure of mental speed is unitary, all component score variables should load onto one 

mental speed variable that should have a great eigenvalue and explain a substantial amount of 

variance in speed and latency parameters.  
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---------------------------------------------------------------------------------------------------- 

Please insert Table 8 and Table 9 about here 

---------------------------------------------------------------------------------------------------- 

To explore this idea, we conducted a hierarchical PCA of the six time-domain 

component scores and identified two components explaining 76% of variance based on the 

scree plot (Cattell, 1966) and the parallel analysis criterion (Horn, 1965). These two 

components had eigenvalues of 3.32 and 1.21. Component loadings after an oblique rotation 

of the two factors are shown in Table 10. All ERP latencies loaded strongly onto the first 

rotated component that was also loaded by drift rates. All behavioral time domain component 

scores loaded more strongly on the second component that was marked by RT component 

scores. Because greater (i.e., slower) ERP latencies were associated with greater component 

scores in the first component, we reversed the polarity of the first component so that greater 

component scores indicated smaller (i.e., faster) ERP latencies. Subsequently, we labeled the 

two components ‘processing speed’ and ‘behavioral speed’, respectively. The two 

components were correlated, r = .36. 

---------------------------------------------------------------------------------------------------- 

Please insert Table 10 about here 

---------------------------------------------------------------------------------------------------- 

 We extracted individual component scores for these two hierarchical components and 

computed a hierarchical second-order PCA of these two components and the intelligence 

component scores. Correlations between the three variables were r = .54, p < .001 (g and 

processing speed), r = .52, p = .001 (g and behavioral speed), and r = .36, p = .028 

(processing and behavioral speed). The PCA of these correlates yielded a single second-order 
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component based on the scree plot (Cattell, 1966) and the parallel analysis criterion (Horn, 

1965) with an eigenvalue of 1.98 onto which all hierarchical first-order components loaded 

(see Table 11 for factor loadings). This component explained 66% of variance in first-order 

factor scores. g component scores had the greatest loadings on this component, followed by 

neural and behavioral speed with highly similar loadings. 

---------------------------------------------------------------------------------------------------- 

Please insert Table 11 about here 

---------------------------------------------------------------------------------------------------- 

In the last step, we computed correlations between the two speed components and 

APM and knowledge test scores to investigate whether correlations were greater for gf or gc. 

Correlations were generally greater for gf than for gc: Correlations between APM scores and 

speed components ranged from r = .53 to .54, while correlations between knowledge test 

scores and speed components ranged from r = .35 to .39. 

The effects of latencies on g are mediated by RTs 

 Next, we analyzed if reaction times mediate the relationship between ERP latencies 

and intelligence test scores. For all mediation analyses, we used the component scores we 

computed in the PCA.  

As Figure 6 illustrates, the relationship between ERP latencies and intelligence was 

mediated by reaction times. A bootstrap analysis with m = 5000 resamples yielded a 

significant indirect effect of P100 latencies through RTs on intelligence test scores, CI 95% (-

0.44, -0.01). We found that RTs also partially mediated the effect of N150 latencies on 

intelligence test scores. We observed a significant indirect effect when we computed a 

bootstrap analysis with m = 5000 resamples, CI 95% (-0.41, -0.02). Lastly, we tested if RTs 
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also mediated the effect of P200 latencies on g. Again, the bootstrap analysis with m = 5000 

resamples indicated a significant indirect effect, CI 95% (-0.43, -0.04).  

---------------------------------------------------------------------------------------------------- 

Please insert Figure 6 about here 

---------------------------------------------------------------------------------------------------- 

Discussion 

 The present study sheds light on the neuro-cognitive processes of mental speed. The 

results indicate that so-called elementary cognitive tasks (ECTs) are not as elementary as 

presumed but that they tap several functionally different neuro-cognitive processes. As 

expected, we found that there is no unitary construct of mental speed, but that there are 

several distinct speeded processes involved in elementary cognitive tasks. Moreover, our 

results show that an increase in the difficulty and complexity of these ECTs affects several of 

these processes simultaneously. If we consider, for example, our results for the Sternberg 

memory scanning paradigm, we see that conditions in this task differed in several behavioral 

and electrophysiological parameters. As expected, diffusion model analyses revealed that drift 

rates decreased and response-time constants increased with increasing memory set size, which 

indicates that conditions differ both in the speed of decision making (reflected in the changes 

in the v parameter) and in the speed of encoding, memory access, and/or in the speed of 

movement times (reflected in the changes in the t0 parameter). Moreover, changes in memory 

set size also had an effect on several ERP components in the stream of information 

processing, namely the N300 component, which is associated with spatial, structural and 

categorical incongruences of visual stimuli (Demiral, Malcolm, & Henderson, 2012; Hamm, 

Johnson, & Kirk, 2002), and the P300 component, which is associated with stimulus 

evaluation and categorization and is known to be sensitive to stimulus probability, subjective 
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uncertainty and resource allocation (Luck, 2005). All in all, we can conclude that the 

traditional difference and slope measures of ECTs do not only capture variance from a single 

cognitive process, but that they reflect a multitude of different processes.  

 Condition differences in ERP amplitudes and latencies were mostly consistent with 

previous research on these tasks, although there are only few studies with comparable designs. 

In the Hick paradigm, we observed significantly greater P200 amplitudes for the 1 bit than for 

the 2 bit condition, which is consistent with the results reported by Falkenstein, Hohnsbein, 

and Hoormann (1994) who analyzed ERPs in 2- and 4-choice RT tasks and found that P200 

amplitudes were greater in the 2-choice than in 4-choice condition. Moreover, they reported 

that P390 amplitudes were greater in the 2-choice than in the 4-choice condition for all 

electrode sites, while we found this effect only at central electrode sites and observed a 

reversed effect at frontal electrode sites. McGarry-Roberts, Stelmack, and Campbell (1992) 

reported greater P300 amplitudes in a choice reaction time task than in a simple reaction time 

task, which may indicate that the more complex RT task resulted in greater P300 amplitudes. 

As McGarry-Roberts et al. (1992) only used a 2-choice CRT and no 4-choice CRT and only 

entered the Pz electrode into the statistical analyses, their results are not directly comparable 

to our results that showed a very specific topography. In the present study, we found an effect 

of choice alternatives on P300 latencies with a specific topography in the way that P300 

latencies were larger for the 2 bit than for the 1 bit condition at parietal electrode sites, while 

this effect was reversed at frontal electrode sites. Falkenstein et al. (1994) found a similar 

effect with a very specific topography as the P390 component peaked later in the 4-choice 

than in the 2-choice task at Pz, and McGarry-Roberts et al. (1992) also reported longer P300 

latencies for the CRT task in comparison to the SRT task at Pz. There was also a latency shift 

in the N200 peak reported by Falkenstein et al. (1994), but it did not display the specific 

topography effects of the present study. 
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 In the Sternberg memory scanning paradigm, we found that P300 amplitudes decreased 

and P300 latencies increased with increasing memory set size which is consistent with the 

majority of the studies analyzing the electrophysiological activity in this paradigm 

(Brookhuis, Mulder, Mulder, & Gloerich, 1983; Ford, Roth, Mohs, Hopkins, & Kopell, 1979; 

Gomer, Spicuzza, & O'Donnell, 1979; Houlihan et al., 1998; Pelosi, Hayward, & Blumhardt, 

1998), although some studies found no difference in P300 latencies across conditions (Pelosi, 

Hally, Slade, Hayward, Barrett, & Blumhardt, 1992) or substantial interindividual differences 

in condition effects on P300 latencies (Pelosi, Hayward, & Blumhardt, 1995). 

 To our knowledge, there are no previous EEG-studies specifically aimed at 

analyzing the Posner letter matching paradigm. McGarry-Roberts et al. (1992) used a 

comparable paired-stimuli task, in which two words were presented subsequently and 

participants had to decide whether the target stimulus was a) physically or b) semantically the 

same (i.e., a synonym) as the prior presented first stimulus. Please note that the experimental 

setup (presenting subsequent instead of parallel stimuli) as well as the stimulus material 

(words instead of letters) and the depth of semantic processing (word meaning instead of 

letter identification) varied substantially from the present study. Still, the authors reported 

greater P300 amplitudes to the target stimulus for the physical similarity task than for the 

semantic similarity task, which is consistent with the result of the present study as we also 

found greater P300 amplitudes in the physical identity condition than in the name identity 

condition. McGarry-Roberts et al. (1992) also reported longer P300 latencies in the semantic 

similarity task than in the physical similarity task, while we found no latency shift in the data. 

This discrepancy may be due to a multitude of reasons as their paradigms varied substantially 

from ours. 

 Nearly all of these studies analyzed a smaller number of time windows and fewer ERP 

components than the present study and generally focused on one or two major components 

(often the P300). Therefore, it is not possible to relate our results for all time windows to 
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previous research, as the stream of information processing during ECTs has not yet been 

analyzed electrophysiologically in such detail. Moreover, in several of these previous studies 

only very few electrodes were used, often only the midline electrodes (Fz, Cz, Pz), making it 

difficult to compare condition effects with a specific topography to these studies, as in many 

of the previous studies condition effects were only analyzed at one electrode (e.g., Pz for the 

P300 component) and the topographic characteristics of condition effects were not 

considered.  

Furthermore, we could show that a single broad general mental speed factor is 

substantially associated with general intelligence, because a second order factor analysis of 

two more specific speed factors and general intelligence yielded a single broad factor marked 

by general intelligence. Thus our results indicate that although there are several functionally 

distinct processes involved in ECTs, it is the common time-domain variance shared by all 

these components that is associated with general intelligence. This does not imply that more 

specific speed components do not share unique variance with intelligence, but it does imply 

that the association between mental speed and mental abilities could in most part be due to a 

single shared source of variance. This result is consistent with the few studies that reported 

associations between RTs in different elementary cognitive tasks (Burns & Nettelbeck, 2003; 

Hale & Jansen, 1994; Neubauer & Bucik, 1996; Neubauer et al., 2000). In his reanalysis of 

the reaction time data reported by Kranzler and Jensen (1991), Carroll (1991) also found a 

broad general factor in addition to narrower task-specific factors with substantial variable 

loadings reflecting decision time (in contrast to an orthogonal factor of movement time). In our 

study, movement times (captured in the t0 parameter) did not span a distinct factor, but loaded 

onto the behavioral speed factor that showed substantial loadings on the second-order mental 

speed factor. One difference between the movement speed factor in Carroll's (1991) 

reanalysis and movement speed measured as t0 might be that t0 does not only capture 

movement speed, but also stimulus encoding and memory-related processes (Ratcliff & 
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McKoon, 2008), which might be more closely related to a general mental speed factor. Taken 

together, our findings suggest that there is indeed a single broad mental speed factor across 

different tasks and across both behavioral and electrophysiological measurements, a general 

factor that is significantly associated with general intelligence.  

 The associations between RTs, ERP latencies and general intelligence in this study are 

substantially greater than the initially quoted average correlation of r = -.24 between RTs and 

mental abilities in Sheppard’s and Vernon’s (2008) review or the weak negative associations 

between ERP latencies and intelligence reported in the literature (Houlihan et al., 1998; 

McGarry-Roberts, Stelmack, & Campbell, 1992; Pelosi et al., 1992; Schulter & Neubauer, 

2005). There may be two reasons why the magnitude of the associations in the present study 

is greater than in the literature: Jensen (2006) argued that characteristics of the participant 

sample may affect the size of the association between RTs and mental abilities. We 

deliberately recruited a heterogeneous community sample to avoid any restriction in the 

variance of the cognitive variables, because a lack of variation in one or more variables may 

decrease the co-variation between variables. Moreover, the number of trials used in the three 

paradigms was higher than most trial numbers in the literature, which may have increased the 

reliability of the ERP latencies that are known to sometimes have low to moderate reliabilities 

even when the number of trials is relatively large (Cassidy, Robertson, & O’Connell, 2012). 

What is intriguing about our findings is that the association between ERP latencies and 

mental abilities was mediated by reaction times. This mediation supports the hypothesis that 

individual differences in psychophysiological information processing speed are manifested in 

behavioral reaction times and may in this way contribute to individual difference in general 

intelligence. In other words, individual differences in the onset of early ERP components such 

as the P100 or P200, which are components that occur nearly immediately after stimulus 

presentation in the chronometry of neurocognitive information-processing, predict individual 
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difference in reaction times that occur about half a second later. This result suggests that 

higher speed of neurocognitive information-processing may contribute to advantages in the 

speed of cognitive information-processing, decision, and memory processes. These 

advantages in the speed of different cognitive processes may then enhance performance on 

psychometric intelligence tests and explain the association between early ERP latencies and 

mental abilities.  

Limitations 

 Some limitations have to be considered before strong conclusions may be drawn. First, 

the sample size with N = 40 participants is rather large for an electrophysiological study, but it 

is too small for complex multivariate analyses such as multiple regression and structural 

equation modeling. Moreover, the stability of the factor structure we extracted has to be 

replicated in further studies before drawing any final conclusions, although our results are 

generally consistent with earlier studies on the factor structure of RTs in elementary cognitive 

tasks.  

 Second, it is unclear if ERP latencies and diffusion model parameters show enough 

stability over measurement occasions to qualify as trait-like variables. There are no systematic 

studies on the stability of diffusion model parameters except for one study that reported 

between-session stabilities of r ≥ .65 for drift rate and non-decision time parameters in a 

lexical decision task (Yap, Balota, Sibley, & Ratcliff, 2012). A first study on the temporal 

stability of ERP components reported strong test-retest correlations for ERP amplitudes 

ranging from r = .63 to .89 and varying test-retest correlations for ERP latencies ranging from 

r = .19 to .89 (Cassidy et al., 2012). Both measures can only explain inter-individual 

differences in intelligence if they show sufficient psychometric stability. 
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 Third, the RTs of the 1 bit condition we adopted from Neubauer et al. (1992) did not 

follow Hick’s law, but were instead significantly larger than the RTs in the 2 bit condition. 

We therefore did not include behavioral and electrophysiological data from this condition in 

further analyses. Still, this divergence from the data reported by Neubauer et al. (1992) is 

surprising. The standard deviation in this condition was twice as large as the standard 

deviations in the other conditions, which indicates a great increase in difficulty or complexity. 

Moreover, individual differences in the understanding of the rather complex instructions of 

the task or in the ability to adapt to position changes might have affected RTs to a great 

degree. It should be noted that the sample in the original study by Neubauer et al. (1992) 

consisted only of children (11 to 15 years old) who got feedback immediately after each trial. 

Therefore, either the age difference or the direct feedback might explain why no such 

phenomenon was reported in the original study.  A thorough validation of the modified 

paradigm with several control conditions would be needed to understand which cognitive 

processes are involved in the strangely behaving original 1 bit condition. 

Conclusion 

 The aim of the present study was to decompose the stream of information processing 

in elementary cognitive tasks in order to identify processes that might contribute to the 

association between mental abilities and mental speed. By combining diffusion model 

analysis with ERP methodology, we showed that ECT conditions differ in several neuro-

cognitive parameters. Therefore, we would not recommend the use of difference scores in 

further studies, not only because they suffer from severe psychometric problems such as low 

reliabilities (Jensen, 1998), but also because they do not seem to measure what they are 

supposed to. According to our results, difference parameters are likely to capture several 

different sources of variance and are probably not singling out specific cognitive processes 

such as the speed of information uptake. Instead, we propose using diffusion models and 
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electroencephalography in order to single out specific components of information processing 

for further analyses.  

 Future studies should include several measurement occasions to test whether a general 

mental speed factor qualifies as a trait-like variable. Only a factor that captures a certain 

amount of trait-like performance is suited to be considered as an explanation of general 

intelligence. Moreover, future studies should also include a broader battery of intelligence 

tests to investigate if mental speed is more strongly associated with general intelligence (as 

our data would suggest) or with specific mental abilities, which we could not test in the 

present study. 

Our study is one of the few studies that reported consistent negative correlations 

between ERP latencies and intelligence across different tasks and different time windows. In 

contrast to most other studies, we recruited a community sample in order to avoid restricted 

variance in the cognitive performance variables and their electrophysiological correlates. 

Moreover, each of our tasks had a large number of trials to increase the reliability of the 

notoriously unreliable ERP latencies. We could show that there is a general mental speed 

factor across different tasks and different measures of speed that is associated with general 

intelligence. Moreover, we found that the association between ERP latencies and intelligence 

is mediated by reaction times. These results illustrate the benefits of the application of 

diffusion models and ERPs in research on the chronometry of mental abilities. All in all, we 

found that more intelligent individuals do not only show faster behavioral reactions, but that 

they have a general advantage in all neuro-cognitive speed-related processes. 
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Table 1 

Median RTs, mean accuracies, mean drift rates and mean response-time constants for the different conditions in the three ECTs (SD in 

parentheses). 

 

 

 

 

 

 

 

 

 

 

 

                          

Note. 1 bitCL = 1 bit condition with low comparability; 1 bitCH = 1 bit condition with high comparability; PI = Physical Identity; NI = Name Identity; 

v = drift rate; t0 = response-time constant; a = boundary separation; st0 = intertrial-variability of the response-time constant.

ECT Condition Median RT Accuracy v t0 a st0 

Hick paradigm 1 bitCL 483 (172.41) .97 (.03) 3.53 (1.57) 0.31 (0.10) 1.47 (0.56) 0.13 (0.11) 

 1 bitCH 380 (73.59) 1.00 (.01) 5.26 (1.34) 0.30 (0.04) 1.18 (0.33) 0.11 (0.06) 

 2 bit 461  (98.73) .99 (.02) 4.89 (1.44) 0.37 (0.06) 1.17 (0.26) 0.15 (0.08) 

Sternberg memory 
scanning task 

Set size 1 599.25 (105.60) .96 (.03) 3.15 (0.81) 0.40 (0.08) 1.35 (0.35) 0.18 (0.13) 

 Set size 3 732.75 (146.69) .97 (.03) 2.86 (0.79) 0.51 (0.10) 1.54 (0.36) 0.21 (0.16) 

 Set size 5 851.25 (187.74) .96 (.03) 2.36 (0.72) 0.56 (0.13) 1.68 (0.41) 0.20 (0.14) 

Posner letter matching 
task 

PI 618 (96.44) .98 (.01) 3.98 (0.94) 0.46 (0.07) 1.37 (0.35) 0.13 (0.07) 

 NI 683.50 (120.78) .98 (.02) 3.03 (0.84) 0.47 (0.08) 1.64 (0.31) 0.15 (0.14) 
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Table 2 

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), 

caudality (frontal, central, parietal), and laterality (left, central, right) on a) P200 (175-215 

ms) amplitude, b) N200 (210-240 ms) amplitude, and c) P300 (360-420 ms) amplitude in the 

Hick paradigm. (n = 36) 

 

  

ERP component Variable df F p 

 

ε 
 

ω² 

a) P200 Condition  1,35 25.18 <.001 - .41 

 Condition x Caudality 2,70 12.40 <.001 .67 .25 

 Condition x Laterality 2,70 11.08 <.001 .90 .22 

 
Condition x Caudality 
x Laterality 

4,140 <1 .765 .66 .00 

b) N200 Condition  1,35 25.89 <.001 - .42 

 Condition x Caudality 2,70 27.79 <.001 .43 .25 

 Condition x Laterality 2,70 16.17 <.001 .82 .30 

 
Condition x Caudality 
x Laterality 

4,140 <1 .654 .72 .00 

c) P300 Condition 1,35 <1 .497 - .00 

 Condition x Caudality 2,70 12.90 <.001 .69 .25 

 Condition x Laterality 2,70 8.21 <.001 .71 .13 

 
Condition x Caudality 
x Laterality 

4,140 <1 .526 .59 .00 
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Table 3 

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), 

caudality (frontal, central, parietal), and laterality (left, central, right) on a) P200 (175-215 

ms) peak latencies, b) N200 (210-240 ms) peak latencies, and c) P300 (360-420 ms) peak 

latencies in the Hick paradigm. (n = 36) 

  

ERP component Variable df F p 

 

ε 
 

ω² 

a) P200 Condition  1,35 13.91 .001 - .27 

 Condition x Caudality 2,70 8.42 .003 .65 .17 

 Condition x Laterality 2,70 <1 .631 .93 .00 

 
Condition x Caudality 
x Laterality 

4,140 <1 .932 .69 .00 

b) N200 Condition  1,35 <1 .813 - .00 

 Condition x Caudality 2,70 5.35 .009 .90 .11 

 Condition x Laterality 2,70 3.84 .026 .82 .08 

 
Condition x Caudality 
x Laterality 

4,140 5.29 .002 .73 .11 

c) P300 Condition 1,35 <1 .759 - .00 

 Condition x Caudality 2,70 7.88 .004 .64 .16 

 Condition x Laterality 2,70 1.50 .233 .81 .01 

 
Condition x Caudality 
x Laterality 

4,140 <1 .40 .68 .00 
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Table 4 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on a) N150 

(115-160 ms) amplitude, b) P200 (200-245 ms) amplitude, c) N300 (300-360 ms) amplitude, 

and d) P300 (400-600 ms) amplitude in the Sternberg memory scanning paradigm. (n = 39) 

 

  

ERP component Variable df F p 

 

ε 
 

ω² 

a) N150 Condition  2,76 <1 .95 .66 .00 

 Condition x Caudality 4,152 2.08 .151 .32 .03 

 Condition x Laterality 4,152 <1 .813 .39 .00 

 
Condition x Caudality 
x Laterality 

8,304 1.04 .334 .16 .00 

b) P200 Condition  2,76 2.13 .134 .86 .03 

 Condition x Caudality 4,152 1.48 .235 .34 .01 

 Condition x Laterality 4,152 2.05 .149 .37 .03 

 
Condition x Caudality 
x Laterality 

8,304 1.19 .289 .15 .00 

c) N300 Condition 2,76 14.41 <.001 .93 .26 

 Condition x Caudality 4,152 7.46 .002 .42 .15 

 Condition x Laterality 4,152 <1 .595 .55 .00 

 
Condition x Caudality 
x Laterality 

8,304 1.20 .300 .19 .01 

d) P300 Condition  2,76 22.33 <.001 .93 .36 

 Condition x Caudality 4,152 18.32 <.001 .45 .31 

 Condition x Laterality 4,152 <1 .409 .49 .00 

 
Condition x Caudality 
x Laterality 

8,304 <1 .387 .23 .00 
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Table 5 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on a) N150 

(115-160 ms) peak latencies, b) P200 (200-245 ms) peak latencies, c) N300 (300-360 ms) 

peak latencies, and d) P300 (400-600 ms) peak latencies in the Sternberg memory scanning 

paradigm. (n = 39) 

  

ERP component Variable df F p 

 

ε 
 

ω² 

a) N150 Condition  2,76 1.55 .22 .85 .01 

 Condition x Caudality 4,152 <1 .758 .72 .00 

 Condition x Laterality 4,152 <1 .695 .89 .00 

 
Condition x Caudality 
x Laterality 

8,304 1.12 .351 .60 .00 

b) P200 Condition  2,76 <1 .433 .80 .00 

 Condition x Caudality 4,152 <1 .485 .51 .00 

 Condition x Laterality 4,152 <1 .782 .70 .00 

 
Condition x Caudality 
x Laterality 

8,304 <1 .578 .57 .00 

c) N300 Condition 2,76 2.01 .143 .96 .03 

 Condition x Caudality 4,152 3.37 .019 .78 .06 

 Condition x Laterality 4,152 2.43 .064 .81 .04 

 
Condition x Caudality 
x Laterality 

8,304 1.69 .123 .76 .02 

d) P300 Condition  2,76 6.43 .005 .82 .13 

 Condition x Caudality 4,152 1.84 .139 .82 .02 

 Condition x Laterality 4,152 2.06 .100 .85 .03 

 
Condition x Caudality 
x Laterality 

8,304 <1 .767 .76 .00 
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Table 6 

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on a) 

N140 (115-155 ms) amplitude, b) P210 (190-235 ms) amplitude, c) N300 (240-365 ms) 

amplitude, and d) P300 (465-580 ms) amplitude in the Posner letter matching paradigm. (n = 

35)  

ERP component Variable df F p 

 

ε 
 

ω² 

a) N140 Condition  1,33 <1 .712 - .00 

 Condition x Caudality 2,66 2.22 .139 .62 .04 

 Condition x Laterality 2,66 <1 .377 .95 .00 

 
Condition x Caudality 
x Laterality 

4,132 2.68 .045 .84 0.05 

b) P210 Condition  1,33 <1 .535 - .00 

 Condition x Caudality 2,66 7.37 .007 .58 .16 

 Condition x Laterality 2,66 <1 .480 .77 .00 

 
Condition x Caudality 
x Laterality 

4,132 2.04 .122 .67 .03 

c) N300 Condition 1,33 1.15 .292 - .00 

 Condition x Caudality 2,66 5.91 .015 .61 .13 

 Condition x Laterality 2,66 <1 .573 .69 .00 

 
Condition x Caudality 
x Laterality 

4,132 2.79 .043 .77 .05 

d) P300 Condition  1,33 2.53 .121 - .04 

 Condition x Caudality 2,66 <1 .424 .61 .00 

 Condition x Laterality 2,66 3.64 .038 .88 .07 

 
Condition x Caudality 
x Laterality 

4,132 2.84 .037 .83 .05 
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Table 7 

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on a) 

N140 (115-155 ms) peak latencies, b) P210 (190-235 ms) peak latencies, c) N300 (240-365 

ms) peak latencies, and d) P300 (465-580 ms) peak latencies in the Posner letter matching 

paradigm. (n = 35) 

ERP component Variable df F p 

 

ε 
 

ω² 

a) N140 Condition  1,33 <1 .580 - .00 

 Condition x Caudality 2,66 <1 .794 .61 .00 

 Condition x Laterality 2,66 1.07 .321 .61 .00 

 
Condition x Caudality 
x Laterality 

4,132 <1 .413 .62 .00 

b) P210 Condition  1,33 <1 .471 - .00 

 Condition x Caudality 2,66 3.14 .066 .75 .06 

 Condition x Laterality 2,66 2.69 .086 .84 .05 

 
Condition x Caudality 
x Laterality 

4,132 1.41 .243 .82 .01 

c) N300 Condition 1,33 1.17 .288 - .00 

 Condition x Caudality 2,66 <1 .629 .98 .00 

 Condition x Laterality 2,66 1.04 .356 .94 .00 

 
Condition x Caudality 
x Laterality 

4,132 1.87 .148 .65 .03 

d) P300 Condition  1,33 3.01 .092 - .06 

 Condition x Caudality 2,66 <1 .443 .73 .00 

 Condition x Laterality 2,66 <1 .614 .85 .00 

 
Condition x Caudality 
x Laterality 

4,132 <1 .832 .80 .00 
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Table 8 

Sources of entered variables for the six speed, latency, and intelligence variables and the 

amount of variance explained by the first principal components of each PCA. 

 

Variable name Source of entered variables % of variance explained  
by first principal component 

g APM, knowledge test 78% 

Median RT all ECTs and conditions 62% 

v all ECTs, estimated across conditions 42% 

t0 all ECTs, estimated across conditions 51% 

P100 latency Hick paradigm and Sternberg memory 
scanning task, all conditions 

37% 

N150 latency all ECTs and conditions 45% 

P200 latency Sternberg memory scanning and Posner 
letter matching task, all conditions 

69% 

Note. v = drift rate; t0 = response-time constant. 
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Table 9 

Product-moment correlations (rank correlation coefficients in parentheses) between the six 

mental speed component scores (RT, v, t0, P100 latency, N150 latency, P200 latency) and g.  

Note. v = drift rate; t0 = response-time constant. *p < .05. **p < .01. ***p < .001. 

  

ECT RT v t0 P100 N150 P200 g 

 

RT component scores 
 

1 
      

v component scores -.74***  
(-.79***) 
 

1      

t0 component scores .72*** 
(.65***) 

-.34* 
(-.37*) 

1     

P100  latency component 
scores 

.53** 
(.38**) 

-.38* 
(-.41*) 
 

.11 
(.02) 

1    

N150  latency component 
scores 

.50** 
(.35*) 
 

-.38* 
(-.32*) 
 

.19 
(.06) 

.54*** 
(.48**) 

1   

P200  latency component 
scores 

.46** 
(.40*) 
 

-.46** 
(-.44**) 

.18 
(.11) 

.25 
(.25) 

.80*** 
(.80***) 

1  

g -.55*** 
(-.56***) 

.50** 
(.56***) 

-.42* 
(-.38*) 

-.49** 
(-.44**) 

-.53** 
(-.50**) 

-.45** 
-(.45**) 

1 
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Table 10 

Component loadings for the principal component analysis with oblimin rotation of time-

domain component scores. 

 

 

 

 

 

 

 

Note. Because greater (i.e., slower) ERP latencies were associated with greater component 

scores in the first component, we reversed the polarity of the first component so that greater 

component scores indicated smaller (i.e., faster) ERP latencies  

 First-order component 

 1 2 

RT component scores -.29 -.83 

v  component scores .40 .55 

t0  component scores .20 -.94 

P100 latency  component scores -.59 -.20 

N150 latency  component scores -.96 .04 

P200 latency  component scores -.93 .10 
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Table 11 

Component loadings for the principal component analysis of the two hierarchical mental 

speed factors and g. 

 G 

g  .87 

processing speed .80 

behavioral speed .77 

Note. Lowercase g designates general intelligence extracted from the PCA of APM and 

knowledge test scores, whereas uppercase G is the second-order component derived from 

speed and intelligence components.
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Figure 1. Stimulus material for the three ECTs. A: The three conditions of the modified Hick 

paradigm. 2-bit = 2-bit condition, 1-bitCL = 1-bit condition with low stimulus comparability to 

the 2-bit condition, 1-bitCH = 1-bit condition with high stimulus comparability to the 2-bit 

condition. B: Different memory set sizes in the Sternberg memory scanning task. Physical 

identity (PI) and name identity (NI) condition in the Posner letter matching task.
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Figure 2. Median RTs, mean drift rates, and mean response time-constants for the different conditions of the three ECTs. Error bars represent 

doubled standard errors.  
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Figure 3. Event-related potentials elicited by the onset of the cross in the 1 bit condition (solid lines) and 2 bit condition (broken lines) in the Hick 

paradigm. Electrodes are arrayed from most anterior (top) to most posterior (bottom) and from left to right. 
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Figure 4. Event-related potentials elicited by the onset of the memory probe for the different memory set sizes in the Sternberg letter matching task. 

Electrodes are arrayed from most anterior (top) to most posterior (bottom) and from left to right.    
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Figure 5.  Event-related potentials elicited by the onset of the letter pair in the PI condition (PI = physical identity; solid lines) and the NI condition 

(NI = name identity; broken lines) in the Posner letter matching task. Electrodes are arrayed from most anterior (top) to most posterior (bottom) and 

from left to right.   



The relationship between mental speed and mental abilities A1 – 62 

 

Figure 6. Standardized regression coefficients for the association between ERP latencies and 

general intelligence mediated by reaction times. The standardized regression coefficients 

between ERP latencies and general intelligence controlling for reaction times are in 

parantheses.  

* p < .05. ** p < .01. 
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Supplementary Information 

Table 12 

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), 

caudality (frontal, central, parietal), and laterality (left, central, right) on P200 (175-215 ms) 

activity in the Hick paradigm. (n = 36) 

  

Variable df F p 

 

ε 
 

ω² 

Condition  1,35 25.18 <.001 - .41 

Caudality  2,70 53.15 <.001 .60 .60 

Laterality 2,70 4.98 .012 .94 .10 

Condition x Caudality 2,70 12.40 <.001 .67 .25 

Condition x Laterality 2,70 11.08 <.001 .90 .22 

Caudality x Laterality 4,140 9.57 <.001 .72 .20 

Condition x Caudality 
x Laterality 

4,140 <1 .765 .66 .00 
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Table 13 

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), 

caudality (frontal, central, parietal), and laterality (left, central, right) on N200 (210-240 ms) 

activity in the Hick paradigm. (n = 36) 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  1,35 25.89 <.001 - .42 

Caudality  2,70 16.80 <.001 .61 .31 

Laterality 2,70 1.68 .197 .92 .02 

Condition x Caudality 2,70 27.79 <.001 .43 .25 

Condition x Laterality 2,70 16.17 <.001 .82 .30 

Caudality x Laterality 4,140 1.20 .313 .82 .00 

Condition x Caudality 
x Laterality 

4,140 <1 .654 .72 .00 
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Table 14 

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), 

caudality (frontal, central, parietal), and laterality (left, central, right) on P300 (360-420 ms) 

activity in the Hick paradigm. (n = 36) 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  1,35 <1 .497 - .00 

Caudality  2,70 18.08 <.001 .63 .33 

Laterality 2,70 19.51 <.001 .89 .35 

Condition x Caudality 2,70 12.90 <.001 .69 .25 

Condition x Laterality 2,70 8.21 <.001 .71 .13 

Caudality x Laterality 4,140 4.89 .004 .71 .10 

Condition x Caudality 
x Laterality 

4,140 <1 .526 .59 .00 
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Table 15 

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), 

caudality (frontal, central, parietal), and laterality (left, central, right) on P200 (175-215 ms) 

peak latencies in the Hick paradigm. (n = 36) 

Variable df F p 

 

ε 
 

ω² 

Condition  1,35 13.91 .001 - .27 

Caudality  2,70 1.26 .284 .78 .00 

Laterality 2,70 5.69 .008 .84 .12 

Condition x Caudality 2,70 8.42 .003 .65 .17 

Condition x Laterality 2,70 <1 .631 .93 .00 

Caudality x Laterality 4,140 3.68 .020 .63 .07 

Condition x Caudality 
x Laterality 

4,140 <1 .932 .69 .00 
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Table 16 

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), 

caudality (frontal, central, parietal), and laterality (left, central, right) on N200 (210-240 ms) 

peak latencies in the Hick paradigm. (n = 36) 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  1,35 <1 .813 - .00 

Caudality  2,70 22.99 <.001 .74 .39 

Laterality 2,70 16.25 .197 .99 .30 

Condition x Caudality 2,70 5.35 .009 .90 .11 

Condition x Laterality 2,70 3.84 .026 .82 .08 

Caudality x Laterality 4,140 5.64 .001 .89 .12 

Condition x Caudality 
x Laterality 

4,140 5.29 .002 .73 .11 
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Table 17 

Results of the ANOVA with the three within-subject factors condition (1 bit vs. 2 bit), 

caudality (frontal, central, parietal), and laterality (left, central, right) on P300 (360-420 ms) 

peak latencies in the Hick paradigm. (n = 36) 

 

 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  1,35 <1 .759 - .00 

Caudality  2,70 9.95 .001 .64 .20 

Laterality 2,70 1.75 .191 .75 .02 

Condition x Caudality 2,70 7.88 .004 .64 .16 

Condition x Laterality 2,70 1.50 .233 .81 .01 

Caudality x Laterality 4,140 <1 .44 .70 .00 

Condition x Caudality 
x Laterality 

4,140 <1 .40 .68 .00 



The relationship between mental speed and mental abilities A1 – 69 

Table 18 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on N150 (115-

160 ms) activity in the Sternberg memory scanning paradigm. (n = 39) 

 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  2,76 <1 .95 .66 .00 

Caudality  2,76 30.26 <.001 .59 .44 

Laterality 2,76 2.18 <.001 .89 .03 

Condition x Caudality 4,152 2.08 .151 .32 .03 

Condition x Laterality 4,152 <1 .813 .39 .00 

Caudality x Laterality 4,152 2.92 .032 .83 .05 

Condition x Caudality 
x Laterality 

8,304 1.04 .334 .16 .00 
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Table 19 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on P200 (200-

245 ms) activity in the Sternberg memory scanning paradigm. (n = 39) 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  2,76 2.13 .134 .86 .03 

Caudality  2,76 33.41 <.001 .62 .46 

Laterality 2,76 23.82 <.001 1.00 .38 

Condition x Caudality 4,152 1.48 .235 .34 .01 

Condition x Laterality 4,152 2.05 .149 .37 .03 

Caudality x Laterality 4,152 13.87 <.001 .84 .26 

Condition x Caudality 
x Laterality 

8,304 1.19 .289 .15 .00 
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Table 20 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on N300 (300-

360 ms) activity in the Sternberg memory scanning paradigm. (n = 39) 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  2,76 14.41 <.001 .93 .26 

Caudality  2,76 3.92 0.046 .61 .07 

Laterality 2,76 14.59 <.001 .87 .26 

Condition x Caudality 4,152 7.46 .002 .42 .15 

Condition x Laterality 4,152 <1 .595 .55 .00 

Caudality x Laterality 4,152 1.78 .163 .65 .02 

Condition x Caudality 
x Laterality 

8,304 1.20 .300 .19 .01 
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Table 21 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on P300 (400-

600 ms) activity in the Sternberg memory scanning paradigm. (n = 39) 

 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  2,76 22.33 <.001 .93 .36 

Caudality  2,76 <1 .584 .59 .00 

Laterality 2,76 18.32 <.001 .95 .31 

Condition x Caudality 4,152 18.32 <.001 .45 .31 

Condition x Laterality 4,152 <1 .409 .49 .00 

Caudality x Laterality 4,152 1.78 .137 .98 .02 

Condition x Caudality 
x Laterality 

8,304 <1 .387 .23 .00 
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Table 22 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on N150 (115-

160 ms) peak latencies in the Sternberg memory scanning paradigm. (n = 39) 

 

Variable df F p 

 

ε 
 

ω² 

Condition  2,76 1.55 .22 .85 .01 

Caudality  2,76 15.40 <.001 .65 .27 

Laterality 2,76 6.82 .004 .84 .13 

Condition x Caudality 4,152 <1 .758 .72 .00 

Condition x Laterality 4,152 <1 .695 .89 .00 

Caudality x Laterality 4,152 <1 .479 .75 .00 

Condition x Caudality 
x Laterality 

8,304 1.12 .351 .60 .00 



The relationship between mental speed and mental abilities A1 – 74 

Table 23 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on P200 (200-

245 ms) peak latencies in the Sternberg memory scanning paradigm. (n = 39) 

 

Variable df F p 

 

ε 
 

ω² 

Condition  2,76 <1 .433 .80 .00 

Caudality  2,76 12.21 <.001 .75 .23 

Laterality 2,76 10.96 <.001 .89 .21 

Condition x Caudality 4,152 <1 .485 .51 .00 

Condition x Laterality 4,152 <1 .782 .70 .00 

Caudality x Laterality 4,152 10.44 <.001 .82 .20 

Condition x Caudality 
x Laterality 

8,304 <1 .578 .57 .00 
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Table 24 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on N300 (300-

360 ms) peak latencies in the Sternberg memory scanning paradigm. (n = 39) 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  2,76 2.01 .143 .96 .03 

Caudality  2,76 9.05 .002 .67 .17 

Laterality 2,76 3.18 .058 .82 .05 

Condition x Caudality 4,152 3.37 .019 .78 .06 

Condition x Laterality 4,152 2.43 .064 .81 .04 

Caudality x Laterality 4,152 1.72 .162 .83 .02 

Condition x Caudality 
x Laterality 

8,304 1.69 .123 .76 .02 



The relationship between mental speed and mental abilities A1 – 76 

Table 25 

Results of the ANOVA with the three within-subject factors condition (set size 1, set size 3, set 

size 5), caudality (frontal, central, parietal), and laterality (left, central, right) on P300 (400-

600 ms) peak latencies in the Sternberg memory scanning paradigm. (n = 39) 

  

Variable df F p 

 

ε 
 

ω² 

Condition  2,76 6.43 .005 .82 .13 

Caudality  2,76 26.96 <.001 .80 .41 

Laterality 2,76 <1 .645 .85 .00 

Condition x Caudality 4,152 1.84 .139 .82 .02 

Condition x Laterality 4,152 2.06 .100 .85 .03 

Caudality x Laterality 4,152 2.11 .104 .75 .03 

Condition x Caudality 
x Laterality 

8,304 <1 .767 .76 .00 
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Table 26 

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on 

N140 (115-155 ms) activity in the Posner letter matching paradigm. (n = 35) 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  1,33 <1 .712 - .00 

Caudality  2,66 35.63 <.001 .54 .51 

Laterality 2,66 39.63 <.001 .76 .54 

Condition x Caudality 2,66 2.22 .139 .62 .04 

Condition x Laterality 2,66 <1 .377 .95 .00 

Caudality x Laterality 4,132 14.85 <.001 .78 .30 

Condition x Caudality 
x Laterality 

4,132 2.68 .045 .84 .05 
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Table 27 

 Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on 

P210 (190-235 ms) activity in the Posner letter matching paradigm. (n = 35) 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  1,33 <1 .535 - .00 

Caudality  2,66 16.96 <.001 .56 .33 

Laterality 2,66 6.81 .002 .97 .15 

Condition x Caudality 2,66 7.37 .007 .58 .16 

Condition x Laterality 2,66 <1 .480 .77 .00 

Caudality x Laterality 4,132 20.00 <.001 .68 .37 

Condition x Caudality 
x Laterality 

4,132 2.04 .122 .67 .03 
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Table 28 

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on 

N300 (240-365 ms) activity in the Posner letter matching paradigm. (n = 35) 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  1,33 1.15 .292 - .00 

Caudality  2,66 3.69 .052 .63 .08 

Laterality 2,66 11.07 <.001 .90 .23 

Condition x Caudality 2,66 5.91 .015 .61 .13 

Condition x Laterality 2,66 <1 .573 .69 .00 

Caudality x Laterality 4,132 5.91 .003 .54 .13 

Condition x Caudality 
x Laterality 

4,132 2.79 .043 .77 .05 
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Table 29 

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on 

P300 (465-580 ms) activity in the Posner letter matching paradigm. (n = 35) 

 

 

 

  

Variable df F p 

 

ε 
 

ω² 

Condition  1,33 2.53 .121 - .04 

Caudality  2,66 30.78 <.001 .59 .47 

Laterality 2,66 12.78 <.001 1.00 .26 

Condition x Caudality 2,66 <1 .424 .61 .00 

Condition x Laterality 2,66 3.64 0.38 .88 .07 

Caudality x Laterality 4,132 6.08 .001 .80 .13 

Condition x Caudality 
x Laterality 

4,132 2.84 .037 .83 .05 
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Table 30 

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on 

N140 (115-155 ms) peak latencies in the Posner letter matching paradigm. (n = 35) 

 

Variable df F p 

 

ε 
 

ω² 

Condition  1,33 <1 .580 - .00 

Caudality  2,66 4.18 .040 .61 .09 

Laterality 2,66 2.72 .088 .77 .05 

Condition x Caudality 2,66 <1 .794 .61 .00 

Condition x Laterality 2,66 1.07 .321 .61 .00 

Caudality x Laterality 4,132 <1 .467 .43 .00 

Condition x Caudality 
x Laterality 

4,132 <1 .413 .62 .00 
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Table 31 

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on 

P210 (190-235 ms) peak latencies in the Posner letter matching paradigm. (n = 35) 

Variable df F p 

 

ε 
 

ω² 

Condition  1,33 <1 .471 - .00 

Caudality  2,66 4.06 .044 .59 .09 

Laterality 2,66 12.92 <.001 .92 .05 

Condition x Caudality 2,66 3.14 .066 .75 .06 

Condition x Laterality 2,66 2.69 .086 .84 .05 

Caudality x Laterality 4,132 4.99 .007 .57 .11 

Condition x Caudality 
x Laterality 

4,132 1.41 .243 .82 .01 
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Table 32 

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on 

N300 (240-365 ms) peak latencies in the Posner letter matching paradigm. (n = 35) 

 

Variable df F p 

 

ε 
 

ω² 

Condition  1,33 1.17 .288 - .00 

Caudality  2,66 7.09 .005 .74 .16 

Laterality 2,66 <1 .616 .92 .00 

Condition x Caudality 2,66 <1 .629 .98 .00 

Condition x Laterality 2,66 1.04 .356 .94 .00 

Caudality x Laterality 4,132 <1 .630 .67 .00 

Condition x Caudality 
x Laterality 

4,132 1.87 .148 .65 .03 
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Table 33 

Results of the ANOVA with the three within-subject factors condition (Physical Identity vs. 

Name Identity), caudality (frontal, central, parietal), and laterality (left, central, right) on 

P300 (465-580 ms) peak latencies in the Posner letter matching paradigm. (n = 35) 

 

 

 

 

Variable df F p 

 

ε 
 

ω² 

Condition  1,33 3.01 .092 - .06 

Caudality  2,66 5.23 .014 .78 .11 

Laterality 2,66 6.05 .006 .89 .13 

Condition x Caudality 2,66 <1 .443 .73 .00 

Condition x Laterality 2,66 <1 .614 .85 .00 

Caudality x Laterality 4,132 <1 .936 .73 .00 

Condition x Caudality 
x Laterality 

4,132 <1 .832 .80 .00 
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Abstract 

The statistical evaluation of model fit is one of the greatest challenges in the application of 

diffusion modeling in research on individual differences. Relative model fit indices such as the 

AIC and BIC are often used for model comparison, but they provide no information about 

absolute model fit. Statistical and graphical tests can be used to identify individuals whose data 

cannot be accounted for by the diffusion model, but they become overly sensitive when trial 

numbers are large, and are subjective and time-consuming. We propose that the evaluation of 

model fit may be supplemented with the root mean square error of approximation (RMSEA; 

Steiger & Lind, 1980), which is one of the most popular goodness-of-fit indices in structural 

equation modeling. It is largely invariant to trial numbers, and allows identifying cases with poor 

model fit, calculating confidence intervals, and conducting power analyses. In two simulation 

studies, we evaluated whether the RMSEA correctly rejects badly-fitting models irrespective of 

trial numbers. Moreover, we evaluated how variation in the number of trials, the degree of 

measurement noise, the presence of contaminant outliers, and the number of estimated 

parameters affects RMSEA values. The RMSEA correctly distinguished between well- and 

badly-fitting models unless trial numbers were very small. Moreover, RMSEA values were in a 

value range expected from structural equation modeling. Finally, we computed cut-off values as 

heuristics for model acceptance or rejection. In a third simulation study we assessed how the 

RMSEA performs in model selection in comparison to the AIC and BIC. The RMSEA correctly 

identified the generating model in the majority of cases, but was outperformed by the AIC and 

BIC. All in all, we showed that the RMSEA can be of great value in the evaluation of absolute 

model fit, but that it should only be used in addition to other fit indices in model selection 

scenarios.  
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Evaluating the model fit of diffusion models with the root mean square error of 

approximation 

 

1. Introduction 

 In recent years, the diffusion model for binary responses (Ratcliff, 1978) has seen a huge 

rise of popularity in a wide area of research fields (Voss, Nagler, & Lerche, 2013). Within the 

diffusion model framework, response time distributions can be decomposed in terms of different 

parameters associated with specific cognitive processes. While traditionally researchers interested 

in mental chronometry drew inferences based on mean (and sometimes SDs of) response times 

and could therefore only infer whether response times differ between experimental conditions 

and/or individuals, they are now able to infer which processing components may be responsible 

for the observed response time differences. 

 The diffusion model has been successfully applied in the context of social cognitive 

research (e.g., Germar, Schlemmer, Krug, Voss, & Mojzisch, 2014; Klauer, Stahl, & Voss, 2011; 

Voss, Rothermund, & Brandstädter, 2008; Voss & Schwieren, 2015), prospective memory (e.g., 

Boywitt & Rummel, 2012), aging (e.g., McKoon & Ratcliff, 2013; Spaniol, Madden, & Voss, 

2006), individual differences (e.g., Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007; 

Schubert, Hagemann, Voss, Schankin, & Bergmann, 2015), and in many more areas of research. 

It is, however, not always a priori known whether the diffusion model is an adequate process 

model for the cognitive processes that resulted in a specific distribution of response times and 

response frequencies in an experimental paradigm. A necessary (but not sufficient) precondition 

for the interpretation of diffusion model results is the model fit, that is, the degree of match 

between predicted and observed response time data. Even if it is undisputed that a specific task is 

principally suited for diffusion modeling, researchers still have to make an informed decision 
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about the specific implementation of the model (e.g., the coding of responses or the number of 

estimated parameters). Therefore, it is crucial to evaluate how well the estimated model 

parameters can account for the actual accuracy and response time data, and to identify cases in 

which the diffusion model fails to describe the data. 

 Currently, there is no universally accepted gold standard for evaluating model fit in the 

diffusion model framework. Model fit indices such as the Akaike Information Criterion (AIC; 

Akaike, 1973) or the Bayes Information Criterion (BIC; Schwarz, 1978) are often used for model 

comparison and selection purposes, but they provide no information about absolute model fits. 

Therefore, in diffusion modeling these criteria only convey information about which of several 

models accounts for the empirical data best, but they do not help to decide whether the models 

should be accepted or rejected. Moreover, such relative fit indices do not allow identifying and 

possibly excluding individuals whose data cannot be accounted for within the diffusion model 

framework, as general suggestions when a model should be rejected cannot be given. In order to 

identify individuals with badly-fitting model parameters, different strategies are usually pursued. 

Statistical tests of model fit, such as the χ² test, are very common, but sensitivity of these tests is 

closely tied to the amount of data that is available. For small data sets this leads to a power 

problem as the test power may be too small to reject the model, and for larger data the test will 

become overly sensitive. Statistical tests are also biased in favor of more complex models, as a 

model with higher degrees of freedom that most often provides a better account for the data is not 

punished in comparison to a more parsimonious model. 

To overcome the problems associated with null-hypothesis testing of model fit, Clauset, 

Shalizi, and Newman (2009), and Voss, Nagler, and Lerche (2013) suggested simulating a large 

number of synthetic data sets based on the estimated model parameters and deriving critical p-
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values from these subsequently re-fitted data sets. The 5% or 10% quantile of the distribution of 

p-values can then be taken as a critical value for the evaluation of the empirical models. This 

method overcomes some of the problems associated with the statistical testing of model fits, but 

does not specifically consider trial numbers and the parsimony of a model. Moreover, models get 

accepted with an unknown error probability, as this procedure does not offer a method to estimate 

the statistical power of the test.  

Graphical methods provide an alternative approach to the evaluation of model fit. For this 

approach the deviation of the predicted response times from the empirical response times are 

displayed either individually, or for a complete sample (e.g., Schmitz and Voss, 2014; Voss, 

Rothermund, Gast, & Wentura, 2013). Decisions based on graphical tests are, however, 

subjective and may therefore lead to spurious conclusions (D’Agostino, 1986). Moreover, 

extensive graphical model tests for each individual can quickly become time-consuming in large 

samples.  

An ideal goodness-of-fit (GOF) index that can be used to identify data sets that the 

diffusion model is not able to account well for should have the properties of the very popular AIC 

and BIC (i.e., reward parsimonious models and not be strongly affected by variations in trial 

numbers), but would be an absolute measure of model fit, not a relative one. As such, it would 

presume that a perfectly fitting model has a fit value of zero and that a deviation from zero 

indicates how far the model deviates from perfect fit. Then, this deviation from perfect model fit 

could be compared across different models as well as between cases, and standards for acceptable 

model-fit could be defined. Moreover, conventions for cut-off values could be suggested 

indicating when a model should be rejected, and these cut-off values would be invariant across 
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different applications (and therefore, different trial numbers and different degrees of parsimony) 

of the model.  

Another field of research that has been concerned with the performance of GOF indices is 

structural equations modeling (SEM), which is a statistical technique for testing the structural 

relations within a multivariate data space. To maximize model fit, the discrepancy between the 

empirical covariance matrix of all measured variables and the covariance matrix implied by the 

model specifications gets minimized. As in diffusion modeling, this minimization process does 

not yield a GOF value that can reasonably be used to decide about model acceptance due to the 

same problems as listed above. Because participant numbers are typically very large in SEM 

studies (> 200 participants), model predictions often deviate significantly from the empirical data, 

although the model fit is actually quite good. Therefore, there have been several suggestions how 

to evaluate model fit in the SEM framework (see Jackson, Gillaspy, & Stephenson, 2009, for a 

review). Several of these GOF indices are not easily transferable to the diffusion model 

framework, because they compare the performance of the estimated model to a baseline model 

(in which all variables are presumed to be uncorrelated). Within the diffusion model framework, 

no such baseline model could be easily specified without further debatable assumptions, because 

it is entirely unclear which configuration of parameter values might reflect an appropriate 

baseline model. 

One very popular absolute GOF index, the root mean square error of approximation 

(RMSEA; Steiger & Lind, 1980), however, does not require the assumption of a baseline model, 

but is based on the noncentrality parameter of the χ² distribution. The RMSEA is relatively 

unaffected by variations in sample size and rewards parsimonious models. Moreover, as the 

RMSEA is an absolute fit index with a minimum of zero, conventions for cut-off values have 
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been suggested and are frequently used in the SEM framework. Because the RMSEA is based on 

the noncentrality parameter of the χ² distribution, it could be easily reported and used as an 

evaluation criterion in addition to the χ² statistic and its corresponding p-value in the context of 

diffusion modeling. In the present paper, we propose to use the RMSEA as an index of absolute 

model fit within the diffusion model framework and discuss its benefits in comparison to 

standard methods of model evaluation. 

1.1 The diffusion model  

The diffusion model makes the basic assumption that during a decision process with two 

alternatives, information is accumulated continuously until the diffusion process reaches one of 

two thresholds. Specifically, this information accumulation process consists of a constant 

systematic component, the drift, and normally distributed random noise. The basic diffusion 

model estimates four parameters from empirical response time distributions: The drift rate (v), 

which describes the strength and direction of the systematic influence on the diffusion process, 

the threshold separation (a), which maps the amount of information that is used for a decision, 

the starting point (z), which indicates possible biases towards one of the two decision thresholds, 

and the non-decision time (t0 or ter), which encompasses all processes unrelated to the decision 

such as encoding and motor reaction time. In the full diffusion model, inter-trial variabilities of 

drift (sv or η), starting point (sz), and non-decision time (st0) can be estimated, which increases 

model fit by accounting for different shapes of response time distributions for correct responses 

and errors (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002). 

Different optimization criteria are available to minimize the deviation of the predicted 

response latencies from the empirical data (Voss, Voss, & Lerche, 2015). Most commonly, 

optimization processes are based on the χ² statistic (e.g., Ratcliff & McKoon, 2008; Ratcliff & 
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Tuerlinckx, 2002; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). Separately for the upper 

and lower threshold, responses are grouped into six bins that are defined by the .1, .3, .5, .7, and 

.9 quantiles of the empirical RT distribution (Ratcliff & Tuerlinckx, 2002). Then the expected 

number of responses per bin under the predicted cumulative distribution function (CDF) is 

compared with the number of observed responses per bin i, and the resulting χ² statistic is 

minimized in iterative steps:  

 χ² =  ∑ ሺ��೚್ೞ೐ೝ�೐೏−��೛ೝ೐೏�೎೟೐೏ሻ2��೛ೝ೐೏�೎೟೐೏��=ଵ     (1) 

The greatest advantages of the χ² statistic as an optimization criterion are the high computation 

speed of the optimization algorithm and its robustness against outliers. One major disadvantage is 

that the χ² criterion yields biased parameter estimates if trial numbers are small (Lerche, Voss, & 

Nagler, submitted). Other optimization criteria that are not covered here are based on a maximum 

likelihood approach or on the Kolmogorov-Smirnov statistic and are more successful at fitting 

small trial numbers (for an overview of the different optimization criteria see Van Zandt, 2000; 

Voss, Nagler, & Lerche, 2013). 

1.2 The root mean square error of approximation 

 We propose to supplement the established approaches to assess the fit of the diffusion 

model with the root mean square error of approximation initially proposed by Steiger and Lind 

(1980) and later discussed in more detail and popularized by Browne and Cudeck (1993). 

Nowadays, it is one of the most frequently used goodness-of-fit measures in structural equation 

modeling (SEM). Jackson et al. (2009) recently reviewed 194 SEM studies published between 

1998 and 2006 and reported that the RMSEA was the second most popular goodness-of-fit index 

reported in 64.9% of the reviewed studies. The great popularity of the RMSEA is based on its 
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properties: First, simulation studies have shown that it is largely invariant with regard to sample 

size. Second, it rewards parsimonious models. Third, the RMSEA has a minimum of zero with 

suggested conventions for cut-off criteria for excellent, good and mediocre model fit (Hu & 

Bentler, 1999; MacCallum, Browne, & Sugawara, 1996). Fourth, a confidence interval around 

the point estimate of the RMSEA can be computed to assess the degree of uncertainty, which 

allows to hypothesis testing (Browne & Cudeck, 1993; MacCallum et al., 1996). Fifth, a power 

analysis can be conducted fairly easily to determine the trial number necessary for adequate 

power in these tests, (MacCallum et al., 1996). 

 The RMSEA is a goodness-of-fit measure based on the noncentrality parameter of the 

noncentral χ² distribution. The noncentrality parameter is defined as ߜ = χ² − ��, where the χ² 

statistic indicates the deviation of the model predictions from the observed data (see equation 1), 

and df are the degrees of freedom (�� = ʹ ∗ ܾ − ͳ − � with b response time bins and p free 

parameters). The RMSEA is then computed as the square root of the normalized noncentrality 

parameter per degree of freedom 

ߝ =  √max ሺδ,଴ሻ��ሺ�−ଵሻ ,     (2) 

where N is the number of trials (in the SEM framework, N is the number of participants). Smaller 

values indicate better model fit. If the χ² statistic is smaller than the model's degrees of freedom, ε 

is set to zero. 

 As is immediately evident from equation 2, both the nominator (due to a higher sensitivity 

to small deviations in model fit) and the denominator increase with increasing trial numbers. 

Moreover, liberal models are punished more strongly in comparison to more parsimonious 



The relationship between mental speed and mental abilities A2 – 10 
  

 

models because of the χ² to df ratio inherent to equation 2. Thus, the RMSEA tries to reward 

model parsimony.  

 1.2.1 Interpretation of the RMSEA  

 Values of ε smaller than .05 are typically considered to indicate good fit (Browne & 

Cudeck, 1993). Browne and Cudeck (1993) further recommended interpreting values ranging 

from .05 to .08 as fair model fit, and values greater than .10 as poor fit. MacCallum et al. (1996) 

suggested that values in the range from .08 to .10 indicate mediocre fit. These conventions for 

cut-off values are based on over 20 years of experience and simulations in the SEM framework. It 

is unclear whether the same cut-off values are appropriate within the diffusion model framework, 

as too many or too few models might be rejected when they are used as a decision criterion. 

Based on these cut-off values, specific hypothesis of fit can be tested such as the hypothesis of 

exact fit (i.e., H0: RMSEA = 0), or the hypothesis of close fit, (i.e., H0: RMSEA ≤ .05; see 

Browne & Cudeck, 1993; MacCallum et al., 1996). 

1.2.2 Absolute indices of model fit and model selection 

 Absolute indices of model fit such as the RMSEA quantify the discrepancy between 

perfect fit, i.e. no deviation between the predicted and the empirical response latencies, and the fit 

of a specific instantiation of a model. For this purpose, it is assumed that a perfectly fitting model 

has a χ² value that is not larger than the model’s degrees of freedom, resulting in a RMSEA value 

of zero for perfectly fitting models. This fixed minimum value allows identifying badly-fitting 

models that deviate too far from perfect model fit. At the same time it limits the severity with 

which model complexity can be penalized. Assuming that the generating model has a perfect fit 

with ߜ = Ͳ (i.e., a χ² value smaller than or equal to the model’s degrees of freedom), a nested 

model with additional model parameters also has a perfect fit. In this case, the nominator of the 
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RMSEA and as well as ε will be zero irrespective of model complexity. Consequently, the 

RMSEA is only able to penalize model complexity reasonably well when the difference between 

the χ² value and the degrees of freedom is substantially large. 

 When the RMSEA is used in to identify and subsequently exclude data sets for which the 

diffusion model does not provide a good account, this limitation may lead to an acceptance of 

over-parameterized models even though they should be rejected in favor of a more parsimonious 

model under considerations of parsimony. Nevertheless, the over-parameterized model is still a 

well-fitting model and model parameters can be interpreted and used for subsequent correlational 

analyses, although the reliability of these parameters may suffer due to the over-parameterization. 

However, if the RMSEA is used for model selection purposes, it may select the more complex 

model even when the generating model or the model with the best predictive validity has fewer 

model parameters. Moreover, it is also unclear whether the penalty for model complexity is 

sufficient for model selection even in cases where the χ² value exceeds the degrees of freedom. In 

a recent evaluation of model selection performance of different fit indices in the SEM framework, 

the RMSEA had the least success in identifying the generating model even at large sample sizes 

(Bollen, Harden, Ray, & Zavisca, 2014). Therefore, we anticipate that the RMSEA cannot keep 

up in model selection accuracy in the diffusion model framework with relative fit indices such as 

the AIC or BIC. Nevertheless, we believe that it can be a useful addition to other model 

evaluation procedures when the absolute goodness-of-fit has to be evaluated prior to further 

multivariate analyses of diffusion model parameters. 

 An alternative approach to the evaluation of model fit in model selection scenarios could 

be based on the likelihood ratio statistic �ଶሺܽ, ܾሻ =  −ʹ ln[�௔ሺ�, �௔ሻ/�௕ሺ�, �௕ሻ], with �௔ሺ�, �௔ሻ 

corresponding to the maximum likelihood of model a and �௕ሺ�, �௕ሻ corresponding to the 
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maximum likelihood of model b. Because the likelihood ratio statistic is χ² distributed (Wilks, 

1938), it can be subsequently used to calculate the noncentrality parameter of the χ² distribution 

and the RMSEA with degrees of freedom equal to the difference in estimated parameters. Model 

complexity would still be punished by a decrease in the nominator and by a smaller χ² to df ratio 

in equation 2. Larger RMSEA values would then reflect a better model fit for the nested in 

comparison to the less complex model. This approach has never been used in structural equation 

modeling. 

1.3 The present study 

 In order to evaluate how the RMSEA performs in the diffusion model framework 

compared to the SEM framework, we conducted three simulation studies. In the first two 

simulation studies we simulated data sets from diffusion models with different numbers of free 

parameters and varied the number of trials, the degree of measurement noise, the presence of 

contaminated trials, and the number of estimated parameters. We pursued three general aims in 

these two studies: First, we wanted to evaluate how the RMSEA behaves in comparison to 

statistical tests of model fit when trial numbers were varied. Specifically, we wanted to show that 

rejection decisions based on the RMSEA are largely invariant with regard to variation in trial 

numbers, whereas rejection rates based on the χ² statistic increase with increasing trial numbers. 

Second, we wanted to investigate whether RMSEA values for well-fitting models in the diffusion 

model framework were comparable to RMSEA values typically observed in structural equation 

modeling. Third, we wanted to establish cut-off values for acceptance and rejection decisions in 

the diffusion model framework. 

 In the third simulation study, we compared the RMSEA to the AIC and BIC in its ability 

to select the generating model from among other models. For this purpose, we simulated data sets 
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from diffusion models with two, one, or no parameters varying between conditions, and varied 

the number of estimated parameters varying between conditions to evaluate how often each fit 

index identified the generating model as the correct model from over- and under-parameterized 

alternatives.  

2. Simulation Study 1 

The aim of the first simulation study was to evaluate how the RMSEA performs when 

response time data are simulated from the diffusion model. In particular, we wanted to compare 

rejection rates based on the RMSEA to rejection rates based on statistical tests of model fit in 

their dependency on trial numbers. For this purpose, we varied the number of parameters in the 

generator models and the number of trials. Moreover, we added different degrees of measurement 

noise to the response time data to evaluate how it affected the RMSEA. For this contamination 

scenario, we added normally distributed, random noise to reflect a variety of processes such as 

fatigue, motivation, technical problems, or disruptions that may lead to a general decrease in the 

signal-to-noise ratio in response times. We then re-fitted these data sets, varied the number of 

parameters in the estimated models, and computed the corresponding RMSEA values and χ² 

statistics. To pursue the three aims of the present study, we then a) compared rejection decisions 

based on the RMSEA to rejection decisions based on the χ² statistic, b) compared RMSEA values 

for well-fitting diffusion models to RMSEA values for well-fitting models in the SEM 

framework, and c) computed cut-off values indicating good model fit. For the data sets with only 

sampling noise, we expected RMSEA values to indicate good model fit (i.e., ε ≤ .05) regardless 

of trial numbers or the number of parameters in the estimated model. Moreover, we expected that 

estimated models with lower complexity do better when evaluated with the RMSEA than with 

the corresponding χ² statistic. We could not make clear predictions about the effect of trial 
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numbers on RMSEA values. RMSEA values should be less affected by increasing trial numbers 

than the χ² statistic, but the RMSEA is also known to reject models too often when both sample 

sizes and degrees of freedom are small (Hu & Bentler, 1999; Kenny, Kaniskan, & McCoach, 

2014). Moreover, when inter-trial variabilities were estimated, we expected the RMSEA to be 

only marginally affected when slight or moderate measurement random noise was added to the 

data, and to increase substantially when substantial measurement noise was added to the data, 

thus reflecting that the data generating process differed considerably from the diffusion model. 

When inter-trial variabilities were not estimated, we expected the RMSEA to be strongly affected 

by all levels of measurement noise.  

2.1 Method 

 2.1.1 Data simulation 

 We generated 10,000 random diffusion model parameter sets (v, a, z, t0, sv, sz, st0) from 

uniform distributions in the range of typically observed parameters values (see Table 1). For each 

of these parameter sets, we simulated three data sets of response times and accuracies with 

different numbers of trials (100; 500; 1000) using all seven diffusion model parameters (v, a, z, t0, 

sv, sz, st0) for the generating model. In addition, we repeated this simulation using only four 

diffusion model parameters (v, a, z, t0) for the generating model (the inter-trial variability 

parameters, sv, sz, st0, were fixed to zero). All data sets were simulated with the construct-samples 

routine from fast-dm, which samples random data sets from a multinomial distribution defined by 

the diffusion model (Voss & Voss, 2007; Voss, Voss, & Lerche, 2015). These are the data sets 

with only sampling noise. Note that the variation of trial numbers is also an indirect manipulation 

of sampling noise, as sampling noise is inversely related to trial numbers. 
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Subsequently, we added different degrees of measurement noise to the response times of 

each of these predicted data sets in the form of a normally distributed error variable with different 

standard deviations, noise ~ N(0, σn). We created slightly noisy data sets with σn = 0.05 

(seconds), moderately noisy data sets σn = 0.2, and substantially noisy data sets with σn = 0.4. For 

each of the three noise conditions, this normally distributed error variable was randomly sampled 

for each trial of the simulated data sets and added to the simulated response time in this trial, 

leaving response frequencies to the thresholds unaffected. All in all, we simulated 240,000 data 

sets of response times and accuracies.  

 2.1.2 Estimation of diffusion model parameters 

 Diffusion models were fitted to the data sets with fast-dm-30 (Voss & Voss, 2007; Voss, 

Voss, & Lerche, 2015). For each of the 240,000 data sets, we estimated a full seven-parameter 

model (v, a, z, t0, sv, sz, st0) and a four-parameter model (v, a, z, t0) in which the inter-trial 

variability parameters (sv, sz, st0) were fixed to zero. The χ² statistic was used as optimization 

criterion with responses for each decision threshold grouped into six bins that were defined by 

the .1, .3, .5, .7, and .9 quantiles of the empirical RT distribution. 

 2.1.3 Evaluation of the RMSEA 

 We computed corresponding RMSEA values for each minimized χ² value. Then, we 

evaluated how RMSEA values were affected by four factors: Number of trials (100 vs. 500 vs. 

1000), degree of measurement noise (no noise vs. slight vs. moderate noise vs. substantial noise), 

number of parameters in the generator model (four vs. seven), and number of estimated 

parameters (four vs. seven). We compared the number of rejected models when evaluating model 

fits with the RMSEA (rejection when ε > .10) to the number of rejected models when evaluating 
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model fits with the χ² statistic (rejection when p < .05). Moreover, we computed the average 

RMSEA and the number of well-fitting models (ε < .05) for each of these combinations.  

2.2 Results 

First, we compared how many models were rejected with the RMSEA as a goodness-of-

fit index (ε > .10) and with the χ² statistic (p < .05). Rejection rates for all models are shown in 

Figure 1. When no or slight measurement noise was added to the data and the seven parameter 

model was estimated, both decision criteria were largely invariant to increasing trial numbers and 

rejection rates were low. In comparison, when the four parameter model was estimated, rejection 

rates increased with increasing trial numbers for the χ² statistic, while the RMSEA was largely 

invariant to an increase in trial numbers above 500. Moreover, we observed a decrease in 

rejection rates based on the RMSEA from 100 to 500 and from 100 to 1,000 trials. There was no 

difference in rejection rates based on the RMSEA between 500 and 1,000 trials. 

 The difference in rejection rates between the two decision criterions increased with 

increasing measurement noise. When moderate and strong measurement noise was added to the 

data and the seven parameter model was estimated, we observed a huge increase in rejection rates 

based on the χ² statistic, whereas rejection rates based on the RMSEA were largely invariant 

against an increase in trial numbers. In comparison, when the four parameter model was 

estimated, we found high rejection rates that were relatively invariant to the number of trials for 

both statistics.  

 Taken together, we observed an interaction between the number of estimated parameters 

(four vs. seven), the degree of measurement noise, and the number of trials on the discrepancy 

between rejection rates based on the two statistics. Rejection rates based on the χ² statistic 

increased with increasing trial numbers only when no or slight measurement noise was added to 
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the data and the four parameter model was estimated, or when moderate or strong measurement 

noise was added to the data and the seven parameter model was estimated. In these cases the 

RMSEA was superior to the χ² statistic, because rejection rates based on the RMSEA did not 

increase with increasing trial numbers. In all other cases there were bottom or ceiling effects that 

prevented any discrepancy between the two criteria. 

 In the second step, we evaluated if average RMSEA values for well-fitting diffusion 

models are comparable in magnitude to well-fitting RMSEA values in the SEM framework. 

When no measurement noise was added to the data, average RMSEA values were ≤ 0.05 and the 

number of well-fitting models was great. Table 2 and Table 3 show the average RMSEA values, 

percentage of well-fitting models (ε < .05) and the percentage of poorly fitting models (ε >.10) 

for all models. As expected, models fitted best when the number of estimated parameters 

corresponded to the number of simulated parameters (average ε ≤ 0.02, 89.8% models with ε < 

0.05, 2.7% models with ε > 0.10). When only four parameters were estimated for data generated 

with the seven parameter model, fits deteriorated notably (average ε ≤ 0.05, 64.2% models with ε 

< 0.05, 18.4% models with ε > 0.10). In comparison, data generated with the four parameter 

model could be well described by the seven parameter model (average ε ≤ 0.02, 91.3% models 

with ε < 0.05, 1.7% models with ε > 0.10). 

When slight measurement noise was added to the RT distributions, RMSEA values were 

still in an acceptable range (average ε ≤ 0.08, 69.2% models with ε < 0.05, 17.2% models with ε 

> 0.10) for all models. When moderate or strong measurement noise was added to the RT 

distributions and seven parameters were estimated, RMSEA values were still acceptable for data 

generated from both models (average ε ≤ 0.08, 56.0% models with ε < 0.05, 21.0% models with ε 

> 0.10), but they were no longer indicating acceptable fit when four parameters were estimated 
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regardless of the generator model (0.13 ≤ average ε ≤ 0.19, 7.8% models with ε < 0.05, 84.5% 

models with ε > 0.10). 

All in all, as long as no large amounts of measurement noise were added to the data and 

an adequate model was fitted to the data, RMSEA values were low and comparable in magnitude 

to values typically observed for well-fitting models in the SEM framework.  

 In the third step, we computed critical cut-off values indicating good model fit by 

choosing the RMSEA value at which only 5% and 10% of the correct models were incorrectly 

rejected. For this purpose, we considered only the models with only sampling noise where the 

number of estimated parameters corresponded to the number of simulated parameters. As can be 

seen from Table 4 and from the full distribution of RMSEA values in the six correct models in 

Figure 2, cut-off values ranged from 0.04 to 0.13 for the four parameter model and from 0.03 to 

0.10 for the seven parameter model. 

2.3 Discussion 

In the first simulation study, we simulated data sets in the diffusion model framework and 

estimated the corresponding RMSEAs of the re-fitted models. First, we compared the rejection 

rates based on the RMSEA with the rejection rates based on a significant χ² statistic as a decision 

criterion in order to show that the χ² statistic is sometimes not an appropriate decision criterion as 

it is not invariant with regard to trial numbers and that rejection decisions improve by using the 

RMSEA instead. We observed that rejection decisions based on the χ² statistic varied with 

variation in trial numbers only when no or slight measurement noise was added to the data and 

the four parameter model was estimated, or when moderate or strong measurement noise was 

added to the data and the seven parameter model was estimated.  
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The dependency of the χ² statistic on trial numbers and the number of estimated parameter 

makes sense when we compare the absolute model fit for the two models: The seven parameter 

model accounts for the data extremely well and therefore the discrepancy between the empirical 

and the estimated RT distributions is so small that even when trial numbers are large there are 

only few models for which the empirical χ² value exceeds the critical χ² value. Because the 

majority of χ² values were very small, we did not observe an effect of increasing trial numbers on 

rejection rates in the conditions with no and little measurement noise; instead, we only observed 

this effect when moderate and substantial measurement noise was added to the data and the 

empirical χ² values were no longer very small. In contrast, the four parameter model is not as 

powerful as the seven parameter model when describing the data, and therefore we observed 

rejection rates dependent on the trial number already when little measurement noise was added to 

the data or when the data was generated by the seven parameter model (note that we also did not 

observe any dependency on trial numbers when the four parameter model was fitted to the data 

with only sampling noise generated by the same model). When the amount of measurement noise 

was too high to be accounted for in the four parameter model, we observed a ceiling effect with 

rejection rates close to 100% for both the RMSEA and the χ² statistic.  

All in all, the RMSEA can only play to its strength regarding its invariance to trial 

numbers when model fits are neither perfect nor terrible, because in the case of perfect or terrible 

model fit the χ² statistic is likely to accept or reject the majority of models regardless of trial 

numbers. We believe, however, that most real-life applications of the diffusion model are 

somewhere in between these two extremes, because models fitted to empirical data reach 

hopefully acceptable or good, but hardly perfect model fit. As long as model fit in empirical 

applications is only satisfactory but not perfect, the χ² value will increase with increasing trial 
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numbers, while the RMSEA allows for decisions independent of trial numbers and would thus be 

the better choice. 

Next, we compared the magnitude of RMSEA values for well-fitting models with 

typically observed RMSEA values in the SEM framework. When the number of estimated 

parameters corresponded to the number of simulated parameters and no or only very little 

measurement noise was added to the data, RMSEA values for all trial numbers were low and 

comparable to those typically observed for well-fitting models in the SEM framework, where 

values smaller than .05 are considered to indicate good fit (e.g., Browne & Cudeck, 1993; 

Steiger, 1989). 

Finally, we aimed to establish critical cut-off values indicating good model fit in the 

diffusion model framework. RMSEA values at which only 5% of the correct models were 

incorrectly rejected were all ≤ .06 for larger trial numbers, suggesting that a cut-off criterion of ε 

= .06 for good fit is appropriate in the diffusion model framework. This value is very close to the 

cut-off value of ε = .05 that is typically used in the SEM framework. When the trial number was 

small, the computed cut-off values were notably higher.  

This increase in RMSEA values for the models with only 100 trials may be due to two 

reasons: First, the χ² optimization criterion used for parameter estimation struggles to recover the 

correct parameter values when trial numbers are small (Voss et al., 2013; White, Ratcliff, Vasey, 

& McKoon, 2010). Due to the binning procedure, information about the RT distribution is 

aggregated and thus some information is inevitably lost, which is especially problematic if error 

rates are low. Because the CDF is compared with the number of observed responses per bin 

separately for the upper and the lower threshold, there will be only very few (if any) RTs in each 

bin of the error distribution. This leads to an inaccuracy in the identification of the empirical 
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quantiles and thus to a biased estimation of model parameters. Second, simulation studies in the 

SEM framework have shown that the RMSEA too often rejects models when both the degrees of 

freedom and the sample size are small (Chen, Curran, & Bollen, 2008; Curran; Bollen, Chen, 

Paxton, & Kirby, 2003; Kenny et al., 2014).  

One key characteristic of the RMSEA is that it considers model parsimony in the 

evaluation of model fit and rewards parsimonious models. Therefore, the four parameter model 

should fit better to data generated with the four parameter model than the less parsimonious seven 

parameter model. We did, however, not observe any difference in average RMSEA values 

regardless of which of the two models was fitted to the data generated with the four parameter 

model. Moreover, the percentage of accepted and rejected models differed only by a small 

amount. This result suggests that the RMSEA may not be able to punish the less parsimonious 

seven parameter model sufficiently. 

 In Study 1, we could show that RMSEA parameter values in the diffusion model 

framework are comparable to the parameter values typically observed in the SEM framework. 

Moreover, we showed that the RMSEA was invariant with regard to increasing trial numbers, 

while the χ² statistic sometimes tended to reject too many models when the trial number was 

high. Because all response time data in Study 1 was simulated from diffusion models, the data 

could be described well by the diffusion model even when some measurement noise was added. 

However, this measurement noise was added to assess how a general decrease in the signal-to-

noise ratio in response times affected the RMSEA, but it did not correspond to a specific process 

contamination scenario. Moreover, the simulation scenarios only included a single condition, but 

multiple condition scenarios are prevalent in the literature outside the area of individual 

differences research. In Study 2, we hence investigate how the RMSEA performs in more 
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realistic scenarios, e.g., when data are generated from multiple conditions and contaminations 

affecting the process model are added to the simulated data.  

3. Simulation Study 2 

The aim of the second simulation study was to evaluate how the RMSEA performs in 

more realistic scenarios. For this purpose, we simulated data sets from the diffusion model with 

no parameters, drift rate or boundary separation varying between conditions, reflecting specific 

experimental manipulations. Moreover, we simulated two process contamination scenarios 

reflecting random guessing and distraction. We then re-fitted these data sets and computed the 

corresponding RMSEA values and χ² statistics. As in Study 1, we a) compared rejection decisions 

based on the RMSEA to rejection decisions based on the χ² statistic, b) compared RMSEA values 

for well-fitting diffusion models to RMSEA values for well-fitting models in the SEM 

framework, and c) computed cut-off values indicating good model fit. We expected RMSEA 

values to behave similarly across single and multiple condition models, and to stay robust in the 

process contamination scenarios 

3.1 Method 

 3.1.1 Data simulation 

 For Study 2, we simulated data sets with two experimental conditions. We generated 

1,000 random diffusion model parameter sets (v, a, z, t0, sv, sz, st0) from uniform distributions in 

the range of typically observed parameters values (see Table 1) with none of these parameters 

varying between conditions. In addition, we simulated 1,000 random diffusion model parameter 

sets (v1~U(0,2), v2~U(2,4), a, z, t0, sv, sz, st0) with drift rate varying between two conditions, and 

1,000 random diffusion model parameter sets (v, a1~U(0.5,1.25), a2~U(1.25,2), z, t0, sv, sz, st0) 
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with boundary separation varying between two conditions. For each of these parameter sets, we 

simulated three data sets of response times and accuracies with different numbers of trials per 

condition (50; 250; 500). All data sets were simulated with the construct-samples routine from 

fast-dm by sampling random data sets from a multinomial distribution defined by the diffusion 

model. These are the uncontaminated data sets. 

 Next, we simulated two process contamination scenarios. For the fast guessing 

contamination, we randomly selected 5% of the trials in each uncontaminated data set and 

changed response frequencies so that each threshold was reached with a 50% probability. 

Moreover, we changed the response times of these trials to response times sampled from a 

uniform distribution in a range from 50 to 250 ms. For the distraction contamination, we 

randomly selected 5% of the trials in each uncontaminated data set and added a random delay 

that was uniformly distributed in a range from 10 to 2,000 ms. All in all, we simulated 27,000 

data sets of response times and accuracies. 

 3.1.2 Estimation of diffusion model parameters 

 Diffusion models were fitted to the data sets with fast-dm-30. For each of the 27,000 data 

sets, we fitted a diffusion model that had the same parameters as the data generating model of the 

uncontaminated data set. When a parameter varied between conditions in the generating model, a 

common diffusion model was estimated for the data from both conditions with the specific 

parameter allowed to vary between conditions. The χ² statistic was used as optimization criterion.  

 3.1.3 Evaluation of the RMSEA 

 We computed corresponding RMSEA values for each minimized χ² value. Then, we 

evaluated how RMSEA values were affected by four factors: Number of trials per condition (50 
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vs. 250 vs. 500), data contamination (uncontaminated vs. fast guessing vs. distraction), and 

parameters varying between conditions (none vs. drift rate vs. boundary separation).We 

compared the number of rejected models when evaluating model fits with the RMSEA (rejection 

when ε > .10) to the number of rejected models when evaluating model fits with the χ² statistic 

(rejection when p < .05). Moreover, we computed the average RMSEA and the number of well-

fitting models (ε < .05) for each of these combinations. Prior to calculating the average RMSEAs, 

we discarded any outlier RMSEA values > 1 to prevent a distortion of mean values. 

3.2 Results 

 First, we compared how many models were rejected with the RMSEA as a goodness-of-

fit index (ε > .10) and with the χ² statistic (p < .05). Rejection rates for all models are shown in 

Figure 3. For the uncontaminated data we found that rejection rates based on the χ² statistic 

tended to increase with increasing trial numbers per conditions. In comparison, rejection rates 

based on the RMSEA were close to zero even at larger trial numbers with a small peak (5.1% - 

6.4%) in rejection rates when there were only 50 trials per condition. This pattern was consistent 

across the single and multiple condition models. 

 When data were contaminated with fast guessing trials, rejection rates increased for both 

decision criteria. They increased more strongly for rejection decisions based on the χ² statistic 

than for the RMSEA, and they increased more strongly when a model parameter varied between 

conditions and when trial numbers per condition were larger. When data sets contaminated with 

distraction trials, we observed a small increase in rejection rates for the χ² statistic with larger 

trial numbers, whereas we observed no increase in rejection rates based on the RMSEA in 

comparison to the uncontaminated data. 
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In the second step, we evaluated if average RMSEA values for well-fitting diffusion 

models are comparable in magnitude to well-fitting RMSEA values in the SEM framework. For 

the uncontaminated data, average RMSEA values were ≤ 0.03 and the number of well-fitting 

models was high. Table 5 shows the average RMSEA values, percentage of well-fitting models (ε 

< .05) and the percentage of poorly fitting models (ε >.10) for all models. As expected, models 

fitted best when data were uncontaminated (average ε ≤ 0.02, 86.9% models with ε < 0.05, 2.6% 

models with ε > 0.10), but also when data were contaminated with distraction trials (average ε ≤ 

0.03, 81.6% models with ε < 0.05, 3.5% models with ε > 0.10). When data were contaminated 

with fast guessing trials, about half of the models were still identified as well-fitting (0.05 ≤ 

average ε ≤ 0.13, 41.6% models with ε < 0.05, 40.5% models with ε > 0.10) with slightly more 

badly-fitting models when a model parameter was estimated separately per condition. 

In the third step, we computed critical cut-off values indicating good model fit by 

choosing the RMSEA value at which only 5% and 10% of the correct models were incorrectly 

rejected (see Figure 4 for the whole distribution of RMSEA values). 5% cut-off values ranged 

from 0.03 to 0.11 for the uncontaminated data, from 0.23 to 0.31 for the data contaminated with 

fast guessing trials, and from 0.05 to 0.12 for the data contaminated with distraction trials as 

shown in Figure 4 and Table 6. Unexpectedly, cut-off values were slightly larger when boundary 

separation varied between conditions than when no parameter or drift rate varied between 

conditions. 

3.3 Discussion 

 In the second simulation study, we simulated data corresponding to several realistic 

scenarios, such as the experimental manipulation of diffusion model parameters and two different 

contamination scenarios. First, we evaluated how many models were rejected with the RMSEA 
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in comparison to the χ² statistic as a decision criterion. As in Study 1, the RMSEA was relatively 

invariant with regard to trial numbers, but it tended to reject too many models when the trial 

number was as low as 50 trials per condition. When the χ² statistic was used as a decision 

criterion, rejection rates again increased with increasing trial numbers per condition. This 

dependency on trial numbers was amplified when the data were contaminated with outliers. Thus, 

the results of Study 2 illustrate that the RMSEA is better suited to evaluate the goodness-of-fit 

than the χ² statistic if trial numbers are not extremely small. 

Estimating multiple conditions simultaneously had little effect on average RMSEA values 

and rejection rates. Overall, average RMSEA values were smaller than the critical value of .05 

typically considered indicating good fit (e.g., Browne & Cudeck, 1993; Steiger, 1989). The 

number of well-fitting models was surprisingly higher when one model parameter varied between 

conditions at 50 trials per condition than when no parameter varied between conditions. At higher 

trial numbers, the number of well-fitting models was similarly high when no parameter or when 

drift rate varied between conditions, and decreased slightly when boundary separation varied 

between conditions. This pattern of results also emerged for the suggested cut-off values, which 

were all smaller than or equal to .06 for larger trial numbers (≤ 0.12 for all trial numbers) when 

no parameter or drift rate varied between conditions, replicating the results regarding cut-off 

values in Study 1. When boundary separation varied between conditions, cut-off values were 

slightly higher (≤ 0.10 for larger trial numbers, ≤ 0.11 for all trial numbers). Overall, these results 

indicate that the RMSEA allows a stable evaluation of goodness-of-fit even when there is an 

experimental manipulation of model parameters and some model parameters are free to vary 

between conditions.  
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 The two contamination scenarios had different effects on the RMSEA: While the fast 

guessing contamination led to deterioration in fits and to an increase in rejection rates up to 

between 20 and 60 percent, we observed only marginal effects on model fits for the distraction 

contamination. Similarly, 5% cut-off values were far higher in the fast guessing contamination 

condition (≥ 0.18) than in any of the other conditions (≤ 0.12). There were no systematic 

interactions between the variation of parameters across conditions and the effects of 

contamination. All in all, these results highlight that long outlier response times due to distraction 

need not be specifically considered when evaluating the goodness-of-fit with the RMSEA, which 

is an important result, because slow outliers cannot be easily identified by typical outlier 

detection procedures as they can hardly be distinguished from the normal tail of the response time 

distribution (Ratcliff, 1993; Ratcliff & Tuerlinckx, 2002).Very fast, anticipatory response times 

that occur before the diffusion process is terminated, however, affect goodness-of-fit evaluations. 

Therefore, we recommend applying standard outlier detection techniques before evaluating 

model fit with the RMSEA, and adhering to the suggestions by Ratcliff and Tuerlinckx (2002) 

considering the elimination of fast outliers. 

 In Study 2, we could show that the RMSEA is suited to evaluate goodness-of-fit in the 

diffusion model framework when model parameters are manipulated experimentally. Moreover, 

we evaluated how different contamination scenarios influenced model evaluation. One aspect of 

model evaluation that we have not analyzed yet is how the RMSEA performs at model selection, 

i.e. at selecting the true model (or the one with the highest predictive validity) out of a set of 

alternate models. In Study 3, we will therefore compare model selection performance of the 

RMSEA to two very popular model fit indices, the AIC and the BIC. 
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4. Simulation Study 3 

 The aim of the third simulation study was to evaluate how the RMSEA performs in 

comparison to the AIC and BIC at model selection. For this purpose, we simulated data sets from 

the diffusion model with no parameters, or drift rate, boundary separation, or drift rate and 

boundary separation varying between conditions, reflecting specific experimental manipulations. 

We then fitted different diffusion models to these data sets that were either the generating model 

or under- or over-parameterized models. In order to compare the different indices in terms of 

model selection, we evaluated how often each index identified the generating model as the 

correct model. Because the RMSEA may not be able to reward parsimony sufficiently when the 

overall model fit is very high, we predicted that it would identify the true model less often than 

the AIC and BIC. 

4.1 Method 

 4.1.1 Data simulation 

 Data sets were simulated the same way as in Study 2 with the exception that no 

contamination scenarios were added. Moreover, we simulated additional 1,000 random diffusion 

model parameter sets (v1~U(0,2), v2 ~U(2,4), a1~U(0.5,1.25), a2~U(1.25,2), z, t0, sv, sz, st0) with 

drift rate and boundary separation varying between the two conditions and simulated 3,000 data 

sets of response times and accuracies with varying trial numbers per condition (100; 250; 500) 

from these. All in all, we simulated 12,000 data sets of response times and accuracies with no 

parameter, or drift rate, boundary separation, or drift rate and boundary separation varying 

between the two conditions, and either 50, 250, or 500 trials per condition. 

  



The relationship between mental speed and mental abilities A2 – 29 
  

 

 4.1.2 Estimation of diffusion model parameters 

 Diffusion models were fitted to the data sets with fast-dm-30. For each of the 12,000 data 

sets, we fitted four different diffusion models: One with no parameter varying between 

conditions, one with drift rate varying between conditions, one with boundary separation varying 

between conditions, and one with both drift and boundary separation varying between conditions. 

The maximum likelihood method was used as the optimization criterion.  

 4.1.3 Evaluation of model selection performance 

 We considered estimated models that had the same parameters as the corresponding 

generating model as correct models. We compared each correct estimated model to estimated 

models in which more (over-parameterized models) or less (under-parameterized models) 

parameters vary between conditions than in the correct model by calculating the likelihood ratio 

(please see Table 7 for an overview over the different model selection scenarios). We then 

calculated the AIC, BIC, and RMSEA based on the likelihood ratio to decide whether the more 

complex model provided a better model fit than the less complex one. If AIC or BIC values were 

larger than ten we took this as evidence that the more complex model provided a substantially 

better description for the data (Burnham & Anderson, 2002; Raftery, 1995). For the RMSEA, we 

used cut-off values dependent on trial numbers as suggested by Studies 1 and 2, i.e. ε > .10 for 50 

trials per condition, ε > .05 for 250 trials per condition, and ε > .03 for 500 trials per condition. 

Thus, we assessed the number of correct decisions (i.e., decisions for the model with parameters 

corresponding to the generating model) as a function of specific model parameter varying 

between conditions (none vs. drift rate vs. boundary separation vs. drift rate and boundary 

separation), misspecification (over-parameterized vs. under-parameterized), and trial numbers per 

condition (50 vs. 250 vs. 500). 
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4.2 Results 

 As shown in Figure 5, the general pattern of results was the same across all three fit 

indices. The correct model was identified as the best-fitting model in most cases irrespective of 

trial numbers per condition when the alternative model was over-parameterized, i.e. when more 

parameters were allowed to vary between conditions in the alternative than in the generating 

model. In contrast, when the correct model was compared to an under-parameterized alternative, 

all three fit indices only decided in favor of the correct model when trial numbers per condition 

were small, whereas they tended to decide in favor of the under-parameterized model when trial 

numbers got larger.  

 When the correct model was compared to over-parameterized alternatives, the RMSEA 

(on average: 85.2 %) identified fewer correct models than the AIC (on average: 97.6 %) and BIC 

(on average: 98.1 %). When the correct model was compared to under-parameterized alternatives, 

however, the RMSEA (on average: 38.6 %) identified more correct models than the AIC (on 

average: 19. 6%) and the BIC (on average: 16.1 %). 

4.3 Discussion 

 In Study 3, we evaluated how the RMSEA performs in comparison to the AIC and BIC at 

model comparison in different scenarios. Overall, all three fit indices preferred more 

parsimonious models regardless of trial numbers and model specifications. Only at small trial 

numbers (50 per condition, 100 in total) was the correct generating model with model parameters 

varying between conditions favored instead of a less complex, under-parameterized model. 

Because this result was consistent across all fit indices and did not differ for the AIC, which is 

independent of trial numbers, it suggests that this divergence at small trial numbers was likely 

due to the maximum likelihood optimization at the model fitting stage. 
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 Contrary to what we expected based on its performance at model selection in structural 

equation modeling (Bollen et al., 2014), the RMSEA performed relatively well at model 

selection. Our more favorable evaluation may be due to the fact that the we calculated it based on 

the likelihood ratio χ², whereas Bollen et al. (2014) calculated it separately for each model based 

on the asymptotically χ² distributed value of the discrepancy function and chose the model with 

the smallest RMSEA value as the best-fitting one. Therefore, the problems associated with using 

an absolute index of model fit with a fixed minimum value for model selection may not be 

relevant when this index is calculated based on the likelihood ratio χ², and thus becomes larger if 

the more complex model is better suited to describe the data in comparison to the less complex 

one. 

 Across all model selection cases and trial numbers, the RMSEA identified the correct 

model in 61.8 % of the cases, which is a higher success rate than either the AIC (58.6 %) or thee 

BIC (57.2 %) had. Nevertheless, although the RMSEA did unexpectedly well at model selection, 

it was always outperformed by the AIC and BIC when the correct model was compared to an 

over-parameterized alternative. Therefore, we would only suggest using it in addition to 

established fit indices for model selection, but not as a replacement for them. 

5. General Discussion 

 The statistical evaluation of model fit is one of the greatest challenges in the application 

of diffusion modeling in a wider context. While model comparison is straightforward thanks to 

several relative fit indices, the rejection of specific models or the exclusion of specific 

participants is more ambiguous.  

As we have shown in two simulation studies, the χ² statistic rejected more models with 

increasing trial numbers irrespective of model fit. In the first simulation study we found that 
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rejection rates based on the χ² statistic increased substantially with increasing trial numbers as 

soon as some measurement noise was added to the data. In the second simulation study we could 

show a comparable increase in rejection rates with increasing trial numbers when diffusion 

models where fitted to realistic response time data. Therefore, the χ² statistic is clearly not an 

ideal candidate for an objective evaluation of model fit due to its dependency on trial numbers. 

Thus, we suggest that instead of relying solely on graphical tests or on the χ² statistic for 

the evaluation of model fit, the evaluation of model fit should be supplemented with the RMSEA. 

The RMSEA is one of the most popular and most frequently used GOF indices in structural 

equation modeling. In two simulation studies we showed that the RMSEA can be applied 

successfully in the diffusion model framework and that the observed RMSEA values were 

comparable to the values typically observed in structural equation modeling for well-fitting 

models.  

Across both studies we found that acceptance and rejection decisions based on the 

RMSEA were largely invariant to trial numbers, which is one of the key benefits of the RMSEA 

as a GOF index in comparison to statistical tests of model fit. In particular, where the χ² statistic 

indicated an incorrect rejection of a large amount of well-fitting models when the trial number 

was large, we observed no such increase for the RMSEA. Moreover, model selection decisions in 

the third simulation study were also largely invariant with regard to trial numbers with the 

exception that decision accuracies decreased with increasing trial numbers when the correct 

model was a more complex model that was compared to under-parameterized alternatives. 

The second key property of the RMSEA is that it rewards parsimonious models. We did, 

however, not observe the RMSEA favoring the more parsimonious four parameter model over 

the seven parameter model in our first simulation study. This leads us to the conclusion that 
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whenever the inter-trial variability parameters are estimated, model fit increases to such a great 

degree that the RMSEA is not able to compensate for the loss in model parsimony. Because the 

RMSEA accounts for model parsimony by considering the degrees of freedom, a comparatively 

small loss of degrees of freedom in comparison to a large increase in absolute model fit must 

inevitably lead to an enhancement of model fit. Moreover, because the RMSEA is an absolute 

index of model fit with a fixed minimum value of zero, a model nested within the perfectly fitting 

generating model will also always have a perfect fit. Note that the observed improvement of 

model fit based on the intra-trial-variability parameters can also lead to a spurious acceptance of 

models. This is evident from the noise conditions in Study 1. When data was generated with a 

four parameter model, the seven parameter model was able to fit the data even if there was 

considerable measurement noise added to the data. Thus, the seven parameter model accounted 

well for these extremely noisy data according to the RMSEA, although the generating process for 

these data was no longer the diffusion model. It has to be tested in further studies whether the 

parameter estimation is biased if such measurement noise is mapped by the inter-trial variability 

parameters. 

In the third simulation study, we evaluated how the RMSEA performs at model selection 

when calculated based on the likelihood ratio of two nested models. In the majority of cases we 

observed that the RMSEA strongly favored the more parsimonious model over the nested 

alternative. Even when the generating model was the more complex model, the RMSEA often 

decided incorrectly in favor of the more parsimonious alternative one. This strong reward of 

parsimony was, however, not unique to the RMSEA: We observed the same preference for 

parsimonious models even more strongly for the AIC and BIC.  
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5.1 Conditions for a successful application of the RMSEA in the diffusion model framework 

 The results of the first two simulation studies suggest that the application of the RMSEA 

makes most sense when trial numbers are not extremely small. Both the χ² optimization criterion 

and the RMSEA itself are known to behave not optimally when trial numbers and the degrees of 

freedom are small (Chen et al., 2008; Bollen et al., 2003; Kenny et al., 2014, Voss et al., 2013, 

White et al., 2010). It is important to note that the degrees of freedom entering the computation of 

the RMSEA are often rather small in the diffusion model framework in comparison to the typical 

degrees of freedom resulting in the SEM framework. Because the degrees of freedom in 

structural equation modeling do not only depend on the specified model, but also on the number 

of sample moments, a multitrait-multimethod model may easily have over a hundred degrees of 

freedom (e.g., Marsh & Bailey, 1991), although latent growth curve or specific path models may 

have fewer degrees of freedom (e.g. Curran, 2000; Williams & Hazer, 1986). In comparison, 

degrees of freedom ranged from four in the first simulation study when no parameter varied 

between conditions and inter-trial variabilities were estimated to fourteen in the second 

simulation study when drift rate or boundary separation were allowed to vary between two 

conditions. In the first simulation study, the RMSEA tended to reject too many correct models 

when there were only 100 trials in each simulated data set. In comparison, when the trial number 

was ≥ 500, none of the correct models were rejected. Therefore we suggest that the RMSEA 

should only be used as a GOF index when the trial number is sufficiently high. In the case of 

small trial numbers, it might be a good idea to adapt the numbers of bins used for the 

computation of χ². For example, if there are fewer than twelve error trials, the calculation of χ² – 

and, thus, of the RMSEA – will become more stable if only one bin for all errors is used (Ratcliff 

& Childers, 2015). 
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 Moreover, the estimation of the RMSEA presupposes the estimation of the χ² statistic. 

Therefore, either the χ² statistic has to be used directly as an optimization criterion in the 

modeling process, or it has to be computed post-hoc after the modeling process if a different 

optimization criterion was used. In the latter case, the χ² statistic needs to be estimated as the 

deviation of the predicted from the observed response time distributions given the model 

parameters optimized by a different optimization criterion. 

5.2 Cut-off values  

 One aim of the present study was to determine appropriate cut-off values for the 

application of the RMSEA in the diffusion model framework. Cut-off values are always arbitrary 

and should only be treated as heuristics when evaluating model fit. We do, however, believe that 

they can also provide a valuable first orientation when deciding about the acceptance or rejection 

of a model. To recommend appropriate cut-off values, we considered only those simulation 

results where the trial number was ≥ 500 for the reasons explained above. Moreover, we decided 

to suggest different cut-off values for models with and without inter-trial variabilities due to the 

huge discrepancy in model fits. Based on the first and second simulation study, we suggest that 

RMSEA values ≤ 0.05 indicate good model fit for all kinds of models. For models without inter-

trial variabilities, we consider RMSEA values of ≤ 0.14 to indicate acceptable model fit. For 

models with inter-trial variabilities, we suggest that RMSEA values of ≤ 0.08 to indicate 

acceptable model fit. Again, we would like to stress that these cut-off values are only heuristics 

that need to be tested and refined in future applications of the RMSEA in the diffusion model 

framework. 
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5.3 Alternative approaches to the simultaneous analysis of psychometric and modeling data 

 There are already proposals for the solution of problems associated with the combined 

analysis of psychometric and modeling data, of which the problem of identifying individuals 

whose data are not adequately described by the diffusion model is only one problem of many. 

Vandekerckhove, Tuerlinckx, and Lee (2011) suggested a Bayesian hierarchical framework in 

which diffusion model parameters can be regressed on psychometric variables. Moreover, 

Vandekerckhove (2014) developed a Bayesian cognitive latent variable framework for the 

simultaneous latent analysis of behavioral and personality data that circumvents any problem of 

measurement or estimation errors by the simultaneous estimation procedure. Both psychometric 

modeling frameworks are very sophisticated and elegant, but they also require basic 

programming knowledge and some experience in Bayesian modeling in comparison to easy-to-

use existing software solutions such as EZ-diffusion model (Wagenmakers, van der Maas, & 

Grasman, 2007; Wagenmakers, van der Maas, Dolan, & Grasman, 2008; Grasman, 

Wagenmakers, & van der Maas, 2009), DMAT (Vandekerckhove & Tuerlinckx, 2007, 2008), and 

fast-dm (Voss & Voss, 2007; Voss, Voss, & Lerche, 2015). Therefore, we believe that a method 

of assessing individual model fit outside of a hierarchical Bayesian framework is of great value 

for researchers resorting to one of these existing software solutions. 

5.4 Conclusion 

 Given the recent rise in popularity of the diffusion model, and given its more frequent 

application in studies of individual differences (e.g., Ratcliff, Thapar & McKoon, 2010, 2011; 

Schmiedek et al., 2007), we believe that an objective criterion for the evaluation of goodness-of-

fit for individual participants may be useful for a wider audience. As we have shown in two 
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simulation studies, the χ² statistic is not suited as an absolute index of model fit, because it tends 

to reject all models regardless of actual model fit when the trial numbers are large.  

 Therefore, we suggest supplementing the evaluation of model fit with the RMSEA, which 

can be calculated easily from the χ² statistic and which offers several advantages over other 

methods: The RMSEA is not only largely invariant to trial numbers, but it also allows to identify 

cases with poor model fit, to calculate confidence intervals, and to conduct power analyses. For 

these reasons, it is one of the most popular goodness-of-fit indices used in structural equation 

modeling. We hope that our demonstrations of its successful application in the diffusion model 

framework will aid its further dissemination in the modeling community. 
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Table 1 

Value ranges for all diffusion model parameters used for data simulation 

parameter minimum maximum 

v -4.0 4.0 

a 0.5 2.0 

z 0.3 0.7 

t0 0.2 0.5 

sv 0.0 1.0 

sz 0.0 0.5 

st0 0.0 0.2 

Note: These values refer to a diffusion constant (intra-trial-variability) of s=1. 
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Table 2 

Average RMSEA values and percentage of good-fitting models (ε < .05) as a function of number of trials, degree of noise, and number of 
estimated parameters for the four parameter generator model. 

 100 trials 500 trials 1000 trials 

Noise 
 

No  Little  Moderate  Substantial  No  Little  Moderate  Substantial   No  Little  Moderate  Substantial   

Estimated model: 4 parameter model 

Mean  ε 0.02 0.05 0.13 0.19 0.01 0.06 0.15 0.18 0.01 0.06 0.15 0.18 

ε < .05 79.9% 68.0% 33.0% 13.5% 89.3% 53.1% 4.3% 0.0% 97.3% 50.1% 1.0% 0.0% 

ε > .10 10.7% 22.9% 55.1% 76.1% 0.2% 25.8% 80.3% 98.7% 0.0% 26.4% 85.3% 99.5% 

Estimated model: 7 parameter model 

Mean  ε 0.02 0.02 0.03 0.06 0.01 0.01 0.03 0.07 0.01 0.01 0.03 0.08 

ε < .05 78.5% 79.2% 70.9% 49.5% 95.8% 95.9% 82.0% 36.2% 99.5% 99.7% 86.6% 31.2% 

ε > .10 5.2% 5.1% 10.7% 29.7% 0.0% 0.0% 6.7% 35.4% 0.0% 0.0% 6.9% 36.7% 
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Table 3 

Average RMSEA values and percentages of good-fitting models (ε < .05) and bad-fitting models (ε > .10) as a function of number of 
trials, degree of noise, and number of estimated parameters for the seven parameter generator model. 

 100 trials 500 trials 1000 trials 

Noise No  Slight  Moderate  Substantial No  Slight  Moderate  Substantial   No  Slight  Moderate  Substantial   

 Estimated model: 4 parameter model 

Mean ε 0.04 0.06 0.15 0.19 0.05 0.08 0.16 0.18 0.05 0.08 0.16 0.18 

ε < .05 67.1% 
 

60.9% 30.7% 13.1% 61.7% 42.4% 2.7% 0.0% 63.8% 40.0% 0.5% 0.0% 

ε > .10 21.3% 29.2% 58.4% 76.8% 17.1% 34.3% 84.7% 98.9% 16.9% 33.9% 88.4% 99.6% 

 Estimated model: 7 parameter model 

Mean ε 0.02 0.02 0.04 0.07 0.01 0.02 0.03 0.08 0.01 0.01 0.03 0.08 

ε < .05 76.0% 76.6% 67.4% 46.4% 96.4% 95.6% 80.3% 29.6% 99.9% 99.6% 85.3% 27.1% 

ε > .10 5.4% 5.8% 12.6% 33.2% 0.0% 0.0% 7.8% 40.7% 0.0% 0.0% 7.7% 40.7% 
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Table 4 

Critical cut-off values at which only 5% or 10% of the correct models were incorrectly rejected. 

The number of estimated parameters corresponded to the number of simulated parameters. 

 100 trials 500 trials 1000 trials 

Four parameter model    

5% error rate 0.13 0.06 0.04 

10 % error rate 0.10 0.05 0.04 

Seven parameter model    

5% error rate 0.10 0.05 0.03 

10 % error rate 0.08 0.04 0.03 
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Table 5 

Average RMSEA values and percentages of good-fitting models (ε < .05) and bad-fitting models (ε > .10) as a function of number of 

trials per condition, data contamination, and number of parameters varying between conditions 

  

 50 trials 250 trials 500 trials 

Contamination 
 

none  fast guessing distraction none  fast guessing distraction none  fast guessing distraction 

No parameter varies between conditions 

Mean  ε 0.02 0.06 0.03 0.01 0.10 0.02 0.01 0.10 0.02 

ε < .05 75.6% 62.9% 76.2% 95.3% 39.7% 87.9% 99.8% 36.8% 94.4% 

ε > .10 5.5% 22.6% 6.4% 0.0% 39.2% 0.0% 0.0% 41.8% 0.0% 

v varies between conditions 

Mean  ε 0.01 0.05 0.02 0.02 0.13 0.03 0.02 0.12 0.03 

ε < .05 86.6% 68.3% 84.6% 91.3% 23.7% 79.9% 97.6% 25.9% 89.7% 

ε > .10 5.1% 22.7% 6.4% 0.0% 57.5% 0.0% 0.0% 29.3% 0.0% 

a varies between conditions 

Mean  ε 0.02 0.05 0.02 0.03 0.11 0.04 0.03 0.11 0.03 

ε < .05 85.3% 69.8% 81.4% 71.5% 25.3% 61.2% 78.8% 21.9% 78.8% 

ε > .10 6.4% 23.2% 9.1% 4.1% 50.4% 7.2% 2.3% 51.4% 2.3% 
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Table 6 

Critical cut-off values at which only 5% or 10% of the correct models were incorrectly rejected. 

 

  

 50 trials 250 trials 500 trials 

Contamination 
 

no  fast guessing distraction no  fast guessing distraction no  fast guessing distraction 

No parameter varies between conditions 

5 % error rate 0.10 0.29 0.11 0.05 0.30 0.06 0.03 0.29 0.05 

10 % error rate 0.08 0.18 0.09 0.04 0.23 0.05 0.03 0.24 0.05 

Drift rate varies between conditions 

5 % error rate 0.10 0.26 0.12 0.06 0.31 0.07 0.04 0.28 0.06 

10 % error rate 0.07 0.20 0.08 0.05 0.25 0.06 0.04 0.24 0.05 

Boundary separation varies between conditions 

5 % error rate 0.11 0.26 0.12 0.10 0.23 0.11 0.08 0.23 0.08 

10 % error rate 0.07 0.20 0.09 0.08 0.21 0.09 0.07 0.20 0.07 
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Table 7 

Overview over the different model selection scenarios. 

 Parameter varying between conditions in the estimated model 

Parameter varying between 

conditions in the generating 

model 

None Drift rate Boundary seperation Drift rate, boundary 
seperation 

None perfect fit overfit overfit overfit 

Drift rate underfit perfect fit misfit1) overfit 

Boundary seperation underfit misfit1) perfect fit overfit 

Drift rate, boundary seperation underfit underfit underfit perfect fit 
1) These models were not considered in this model selection study, as they are not nested versions of the perfectly fitting model and can 

thus not be compared based on the likelihood ratio. 
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Figure 4. Depicts the full distribution of RMSEA values. Green bars indicate mean RMSEA values and red bars indicate the cut-off value 

at which only 5% of the correct models were rejected. 
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Figure 5. Correct decisions for the generating models in percent with the RMSEA (ε > .10 for 50 trials per condition, ε > .05 for 250 trials 

per condition, and ε > .03 for 500 trials per condition), the AIC (AIC > 10), and the BIC (BIC > 10) as model selection criteria. “Overfit” 

refers to over-parameterized models that are compared to the correct model, and “underfit” refers to under-parameterized models that are 

compared to the correct model. The parameter in parentheses indicates which parameter was allowed to vary between conditions 
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Summary 

Individual differences in the speed of information processing give rise to individual differences in 

general intelligence. Reaction times and latencies of event-related potential have been shown to 

be moderately associated with intelligence. These associations have been explained either in 

terms of individual differences in some brain-wide property such as myelination, the speed of 

neural oscillations, or white-matter tract integrity, or in terms of individual differences in specific 

processes such as the signal-to-noise ratio in evidence accumulation, executive control, or the 

cholinergic system. Here we show that smarter individuals have a higher speed of higher-order 

information processing that explains about 80 percent of the variance in general intelligence. Our 

results do not support the notion that smarter individuals show advantages in some brain-wide 

property. Instead, they suggest that smarter individuals benefit from a more efficient transmission 

of information from frontal attention and working memory processes to temporal-parietal 

processes of memory storage.  



The relationship between mental speed and mental abilities A3 – 3 
 

General intelligence is little more than the speed of higher-order processing 

General intelligence (g) is the common variance shared by different measures of cognitive ability. 

It is a powerful predictor for success in a variety of life outcomes, such as educational attainment, 

job performance1, development of expertise2, general health3, longevity4, and well-being5. 

General intelligence typically accounts for 40-50% of the variance shared by different measures 

of cognitive ability, and g factors from different cognitive test batteries are substantially related6. 

This functional invariance suggests that there may be a single common process underlying 

individual differences in general intelligence that affects all kinds of cognitive ability tests7. 

 One likely candidate for a single neuro-cognitive property affecting a variety of cognitive 

abilities is the speed of information processing8. On a behavioral level, information-processing 

speed can be measured as reaction times (RTs), which show moderate, but consistent negative 

associations with intelligence8,9. Moreover, reaction times have been shown to mediate the 

relationship between brain-wide white matter tract integrity and general intelligence, suggesting a 

functional anatomical basis for fast and efficient information processing10. 

On a neurophysiological level, information-processing speed can be measured as the 

latency of event-related potentials (ERPs). ERPs allow decomposing the electrophysiological 

activity between stimulus onset and response into functionally distinct components. These ERP 

components are correlates of functionally distinct cognitive processes defined by their polarity, 

their latency, and their topography. A higher speed of information processing should be reflected 

in shorter ERP latencies (i.e., a shorter time interval between the onset of a stimulus and the 

maximum peak of the component). ERP components occurring early in the stream of 

information-processing reflect early stages of information processing, whereas later components 
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reflect higher-order processing. ERPs thus provide a means to identify which cognitive processes 

are faster in more intelligent individuals.  

Previous research has shown only weak and often inconsistent associations between ERP 

latencies and general intelligence11, but several studies found a moderate negative association 

between ERP latencies and intelligence12,13,14,15. Moreover, reaction times have been shown to 

mediate the association between ERP latencies and intelligence, suggesting a functional neuro-

cognitive basis for faster information processing that may give rise to individual differences in 

intelligence16.  

ERP latencies may tend to show smaller and more inconsistent associations with general 

intelligence than reaction times, because they may be more strongly influenced by situational 

factors unrelated to mental abilities. Previous research supported this view, suggesting a 

moderate temporal stability of reaction times17,18 and substantial variance in the stability of ERP 

latencies ranging from r = .19 to r = .8919. Hence, the variances of ERP latencies may reflect 

differences in the speed of information processing both as a brain property and as brain states, 

resulting in an underestimation of the association between information-processing speed and 

general intelligence on a neurophysiological level. 

The association between information-processing speed and general intelligence has been 

explained either in terms of individual differences in some brain-wide property such as 

myelination20, the speed of neural oscillations8, or white matter tract integrity12, or in terms of 

individual differences in specific processes such as the signal-to-noise ratio in evidence 

accumulation21,22, executive or attentional control23, or the cholinergic system24.  

Instead of asking which neuro-cognitive processes underlie the association between 

general intelligence and information-processing speed, we could also ask at which point in time 
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during information processing more intelligent individuals deviate from less intelligent 

individuals. If individual differences in some brain-wide property explained the relationship 

between information-processing speed and intelligence (general speed hypotheses), more 

intelligent individuals should show faster processing at all stages of information processing. If, 

however, specific cognitive or psychopharmacological processes explained this relationship 

(specific speed hypotheses), more intelligent individuals should show faster processing only at 

specific stages of information processing associated with these specific processes. We analyzed 

inter-individual differences in the latencies of ERP components to determine whether intelligence 

is associated with faster information processing at all or only at very specific stages of 

information processing. 

Factor structure and temporal stability of RS 

 Because measures of general intelligence are not affected by situational (occasion-

specific) factors and thus reflect a property of the person (plus measurement errors)25, it may be 

presumed that occasion-specific effects in time-domain measures act as nuisance variables or 

“noise” when analyzing the association between these measures and general intelligence. Thus, 

only the temporally stable (trait-like) portion of variance in reaction times can be considered as a 

property of the person that may explain individual differences in general intelligence. Not 

separating the temporally stable portion of variance from the occasion-specific portion of 

variance may have led to an underestimation of the relationship between chronometric variables 

and general intelligence in previous research. 

 We used a hierarchical extension of latent state-trait (LST) theory26 to identify the 

common and temporally stable trait variance of three reaction time tasks at two measurement 

occasions approximately eight months apart. Mean reaction speeds (RSs) for all conditions of the 
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three experimental tasks are shown in Supplementary Table 1 separately for the two measurement 

occasions. We specified a structural equation model with a common trait T, a state residual SRi 

for each of the two measurement occasions i, and a hierarchical method factor Mj for each of the 

three experimental tasks j as shown in the left part of Figure 1. The model provided an acceptable 

fit to the data, χ²(133) = 265.81, p <.001, CFI = .95, RMSEA = .09. Because the variances of the 

first state residual and of several method residuals were non-significant or negative, they were 

fixed to zero. These modifications did not impair model fit, χ²(137) = 283.26, p <.001, CFI = .94, 

RMSEA = .09.  See Supplementary Table 3 for details of model specifications and a complete 

overview of estimated model parameters. 

Based on this model, we calculated several LST parameters, namely the coefficient of 

reliability, consistency, occasion-specifity, and method-specify of the reaction speeds, which are 

shown in Table 1. The coefficient of reliability reflects the amount of variance accounted for by 

the hierarchical model, residual variances excluded, in each manifest variable. Reliabilities were 

high for all tasks and conditions, suggesting a great portion of systematic variance in each RS 

measurement and strong structural relations between variables. The coefficient of consistency 

reflects the amount of variance explained in each manifest variable by the shared variance of 

ERPs across tasks and laboratory sessions. Consistencies were greatest for the Posner letter 

matching task, but substantial for all tasks ranging from .53 to .76. The coefficient of occasion-

specifity reflects the amount of variance explained in each manifest variable by situational 

influences and influences of person-situation interactions in each manifest variable. Occasion 

specifities were negligible, which is consistent with previous work on the stability of reaction 

times17,18. The coefficient of method-specifity reflects the amount of variance explained in each 

manifest variable by task- and condition-specific factors. Method specifities were moderate, 
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ranging from .08 to .32, and highest for the SRT/CRT tasks and the Sternberg memory scanning 

task. 

The relationship between trait RS and g 

 Previous research has shown that correlations between composite measures of mental 

speed and mental abilities tend to be higher than the correlations of single reaction time 

measures27,28. Therefore, we assessed the correlation between the common reaction speed trait 

and general intelligence. For this purpose, we added a hierarchical model of general intelligence 

to the LST model and allowed the reaction speed trait to correlate with general intelligence (see 

Figure 1, Supplementary Table 3). This model provided a good fit to the data, χ²(253) = 480.32, 

p <.001, CFI = .92, RMSEA = .09. The latent correlation between general intelligence and 

general behavioral information processing speed was moderate, r = .43, p < .001.  

 This correlation is consistent with previous studies reporting correlations ranging from 

r = -.22 to -.45 between reaction times in these tasks and mental abilities9. Given the high 

temporal stability and great reliability of reaction times, it is not surprising that the latent 

correlation did not exceed the size of these correlations notably. 

Factor structure and temporal stability of ERP latencies 

To analyze whether more intelligent individuals show advantages in the speed of 

information processing at all stages of information processing, or specifically only at earlier or 

later stages, we compared two structural equation models of neurophysiological processing 

speed. Similar to the model for reaction speed, these models were LST models26 that allowed 

identifying the common and temporally stable trait variance of five ERP components across three 

experimental tasks and two measurement occasions. Grand-average waveforms of event-related 
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potentials averages across measurement occasions are presented in Figure 2 separately for more 

and less intelligent individuals and for each of the three tasks. 

The general processing speed model consisted of a hierarchical common trait T, a state 

residual SRi for each of the two measurement occasions i, and a method factor Mj for each of the 

three experimental tasks j. The specific processing speed model assumed two separate 

hierarchical common traits for earlier and later ERP latencies. ERP latencies, averaged across 

conditions, are shown in Supplementary Table 2 for each of the three experimental tasks and each 

of the two measurement occasions.  

The specific processing speed model provided a notably better account for the data, 

χ²(469) = 689.08, p <.001, CFI = .85, RMSEA = .06, AIC = 749.08, than the general processing 

speed model, χ²(472) = 880.95, p <.001, CFI = .73, RMSEA = .09, AIC = 926.95. Therefore, we 

used the specific processing speed model for all further analyses and fixed all non-significant 

variances in this model to zero as shown in the left part of Figure 2, which did not impair model 

fit significantly, χ²(481) = 719.22, p <.001, CFI = .84, RMSEA = .06. See Supplementary Table 4 

for details of model specifications and a complete overview of estimated model parameters for 

the specific processing speed model. 

As shown in Table 2, the reliability of ERP latencies was as low as expected with very 

low reliabilities for the earlier latencies and somewhat higher reliabilities for the later latencies. 

Consistencies (.11 to .14) and method specifities (.11 to .17) contributed about equally to the 

variance of the earlier ERP latencies, whereas consistencies were notably greater (.42 to .63) than 

method specificities (.08 to .09) for the later latencies. We observed relevant occasion specifity 

for earlier latencies at the second measurement occasion, whereas the influence of occasion 

specifity on later latencies was negligible.  
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The relationship between trait ERP latencies and g 

In order to compare the plausibility of general speed hypotheses with the plausibility of 

specific speed hypotheses, we determined whether intelligence is associated with faster 

information processing at all or only at very specific stages of information processing. For this 

purpose, we analyzed how the common traits for earlier and later latencies correlated with 

general intelligence. Our results concerning the psychometric properties of ERP latencies indicate 

that the low reliabilities and consistencies of ERP measurements may have led to an 

underestimation of the relationship between ERP latencies and general intelligence in previous 

studies11. Hence, the latent correlations between ERP latency traits and general intelligence 

should be greater than the typically observed moderate manifest correlations.  

For this purpose, we again added the hierarchical model of general intelligence to the 

structural model of ERP latencies and allowed the general ERP latency traits to correlate with 

general intelligence This model (see Figure 2, Supplementary Table 4) provided a good fit to the 

data, χ²(679) = 1048.84, p <.001, CFI = .83, RMSEA = .07. The common trait for earlier 

latencies was positively correlated with general intelligence, r = .33, p <.001, indicating that 

more intelligent individual tended to show later P100 and N100 peak amplitudes. Moreover, the 

common trait for later latencies was negatively correlated with general intelligence, r = -.89, 

p <.001, indicating that more intelligent individual showed earlier P200, N200, and P300 peak 

amplitudes. In particular, P300 latencies showed the highest standardized loadings on the 

common trait for later latencies. This suggests that P300 latencies showed the greatest association 

of all ERP latencies with general intelligence. Taken together, ERP latency traits explained 

90.10 % of the variance in general intelligence. 
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Discussion 

The current study investigated whether more intelligent individuals have advantages in 

the speed of information processing at all stages of information processing, or only at specific 

earlier or later stages as reflected in the latency of specific ERP components. General intelligence 

was weakly associated with longer latencies of earlier ERP components (i.e., P100 and N100), 

and strongly associated with shorter latencies of later ERP components (i.e., P200, N200, and 

P300). This result suggests that smarter individuals do not have a general, but a very specific 

advantage in the speed of higher-order information processing.  

Our results contradict popular theories proposing that individual differences in some 

brain-wide property explain the relationship between processing speed and general 

intelligence8,10,20. Instead, they suggest that more intelligent individuals process information 

faster specifically because of faster higher-order processing. The greatest association between 

ERP latencies and general intelligence was found for the P300, which is consistent with previous 

studies reporting an association between mental abilities and the visual or auditory P30012-14. 

According to the context-updating interpretation of the P30029, this association may reflect a 

faster inhibition of extraneous processes that facilitates the transmission of information from 

frontal attention and working memory processes to temporal-parietal processes of memory 

storage30. This interpretation is consistent with previous research showing that individual 

differences in inhibition and updating are related to general intelligence31.  

The latent composite measures of neurophysiological information-processing speed 

explained 90 percent of the variance in general intelligence in the present study. This association 

exceeds the weak negative correlations between ERP latencies and mental abilities reported in 

previous studies notably11 and demonstrates the benefits of latent variable modeling. Contrary to 

our expectations, neurophysiological processing speed was not more strongly influenced by 
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situational factors than behavioral processing speed. Instead, ERP latencies had lower 

consistencies than reaction speeds, indicating that the covariance between different ERP 

components and tasks is relatively low and that measuring neurophysiological processing speed 

reliably requires multiple measurements. Hence, it is not surprising that the P300 is the only one 

of the measured ERP components for which associations with general intelligence have been 

repeatedly reported12-14, as P300 latencies had the highest reliabilities and showed the greatest 

association with general intelligence of all ERP latencies in the present study.  

It is intriguing that latent measures of neurophysiological information-processing speed 

showed greater associations with general intelligence than latent measures of behavioral 

processing speed. These findings contrast with reports in the related literature in which 

behavioral processing speed was more strongly and more consistently associated with mental 

abilities than neurophysiological processing speed. Our results make it clear that measures of 

neurophysiological processing speed contain a great amount of task- and component-specific 

variance, and that once this unique variance has been accounted for, neurophysiological 

processing speed explains a great amount of variance in general intelligence. In fact, our results 

suggest that ERP latencies may provide a more precise measurement of information-processing 

speed, whereas reaction speeds may be contaminated by other response-related processes such as 

motor preparation and execution.  

One feature of the present study that limits the conclusions that can be drawn about the 

association between the speed of information processing and general intelligence is that we used 

only very simple reaction time tasks. These so-called elementary cognitive tasks are cognitively 

undemanding to minimize the unwanted influence of individual differences in strategy use and 

previous experience with specific elements of these tasks on reaction times32. Whether 



The relationship between mental speed and mental abilities A3 – 12 
 

cognitively more demanding reaction time tasks such as working memory tasks or information-

processing speed paradigms not requiring a motor response such as the inspection time task 

would yield comparable results is an open question. 

 Taken together, our results illustrate that the speed of information processing is a crucial 

component of general intelligence. Given that general intelligence was only associated with a 

higher speed in the peak latency of ERP components occurring later in the stream of information 

processing, and given that the latencies of these later components explained 80% of the variance 

in general intelligence, we conclude that general intelligence is little more than the speed of 

higher-order processing.  
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Methods 

Participants 

Sample size was determined based on the hypothesis of close fit (H0: ε ≤ 0.05, 

H1: ε ≥ 0.08) for the structural equation model with the fewest degrees of freedom (df = 133), an 

alpha error of α = .05, and a power of 1 – β = .8033. The resulting minimum sample size was 

N = 109. More participants were recruited to increase power and the stability of model estimates. 

We recruited a sample of N = 134 participants (81 females, 53 males) between 18 and 60 

years old (M = 37.1, SD = 13.8) from different educational and occupational backgrounds via 

local newspaper advertisement, announcements on social media platforms, and distribution of 

flyers in Heidelberg. Of these, N = 122 participants completed the second measurement occasion 

and N = 114 participants completed the third measurement occasion. We only included the N = 

122 participants that showed up for at least the first two measurement occasions in the following 

analyses. This sample consisted of 72 women and 50 men with a mean age of M = 36.7 (SD = 

13.6). A sample size of N = 122 participants corresponded to a power of 1 – β = .86 for a 

structural equation model with 133 degrees of freedom. 

 All participants had normal or corrected to normal vision and no history of mental illness. 

At the first laboratory session, participants signed an informed consent. They received 100€ and 

feedback about their personal results as a reward for their participation. The study was approved 

by the ethics committee of the faculty of behavioral and cultural studies, Heidelberg. 
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Measures 

Reaction time tasks 

Single and choice reaction time task. We used a single and choice reaction time task with 

three conditions (one, two, and four alternatives) based on the computer-adapted Hick task16. 

Each trial began with the presentation of four white squares in a row on a black screen and a 

white fixation cross in the middle of the squares that was shown for 1000-1500 ms. Next, the 

fixation cross disappeared and a larger cross appeared in one of the four squares. Participants had 

to press the corresponding response key as fast as possible. After their response, the screen 

remained unchanged for 1000 ms to allow the recording of post-decisional neuronal processes. 

The intertrial interval (ITI) consisted of a black screen and lasted between 1000-1500 ms. During 

the whole task, participants’ middle and index fingers rested on four keys directly underneath the 

squares to increase stimulus-response compatibility. All keys irrelevant to the tasks had been 

removed from the modified keyboard. 

 Each of the three conditions consisted of ten practice trials with immediate feedback 

followed by 200 test trials without feedback. The order of conditions was counterbalanced across 

participants. In the single reaction time (SRT) task, participants always knew exactly where the 

cross would appear. There were four blocks of 50 trials each with a counterbalanced order across 

participants, in which participants had to pay attention to only one of the four squares. In the two-

choice reaction time (2CRT) task, participants knew in which two squares the cross could appear. 

There were four blocks of 50 trials each with a counterbalanced order across participants, in 

which participants had to pay attention only to the left/right/middle/outer two squares. In the 

four-choice reaction time (4CRT) task, participants were given no indication where the cross will 

appear. 
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Sternberg memory scanning task. Participants were shown memory sets consisting of 

digits between 0 and 9, and they had to indicate whether an immediately afterwards presented 

probe stimulus was part of the previously presented memory set. We administered three different 

experimental conditions (set size one, three, and five) in an order counterbalanced across 

participants. Each of the three conditions consisted of ten practice trials with immediate feedback 

followed by 100 test trials without feedback. 

 At the beginning of each trial, a white fixation cross was shown in the middle of a black 

screen for 1000-1500 ms. Digits were presented sequentially for 1000 ms with a blank screen 

shown for 400-600 ms between each digit. A black screen with a white question mark was shown 

for 1800-2200 ms after the last digit was presented, followed by a black screen showing the probe 

stimulus. Participants had to press one of two keys with their index fingers to indicate whether 

the digit was part of the memory set, which was the case in 50% of the trials. The position of 

keys was counterbalanced across participants. After their response, the screen remained 

unchanged for 1000 ms, followed by an ITI of 1000-1500 ms. 
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 Posner letter matching task. Participants were shown two letters and had to decide 

whether they were identical. In the physical identity (PI) condition, participants were instructed to 

identify letters as identical only if their physical characteristics were identical (i.e., “QQ” would 

be identical, whereas “Qq” or “QA” would be different). In the name identity (NI) condition, they 

were instructed to identify letters as identical if their names were identical (i.e., both “QQ” and 

“Qq” would be identical, whereas “QA” would still be different). Both conditions consisted of 10 

practice trials with immediate feedback and 300 test trials without feedback. At the first 

measurement occasion, the PI condition was administered first to all participants, whereas at the 

second measurement occasion the NI condition was administered first to all participants. 

 Each trial began with a white fixation cross shown on a black screen for 1000-1500 ms, 

followed by a pair of white letters presented in the middle of the screen. Participants had to press 

one of two keys with their index fingers to indicate whether the letters were identical, which was 

the case in 50% of the trials. Again, the position of keys was counterbalanced across participants. 

After the response, the screen remained unchanged for 1000 ms, followed by an ITI that 

consisted of a black screen and lasted 1000-1500 ms. 

Intelligence tests 

Advances Progressive Matrices (APM). We used a computer adapted version of Raven’s 

Advanced Progressive Matrices34 to measure participants’ general intelligence with a power test. 

The APM has been previously shown to be the best single indicator of g35. Participants’ 

performance was determined as the number of correctly solved items of the second set, as 

suggested by the test manual. Moreover, we performed an odd-even split of the test items in the 

second set and used the number of correctly solved items in the odd and even trials as two 
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indicators of latent APM performance. We then transformed these raw test sores to z-scores for 

further analyses. 

The number of correctly solved items in the APM was M = 23.43 (SD = 6.71), which 

corresponds to an IQ of M = 98.80 (SD = 15.68). The number of correctly solved items in the 

even trials was Meven = 12.23 (SD = 3.51), and in the odd trials Modd = 11.20 (SD = 3.52). Data 

from two participants was lost due to technical reasons. 

Berlin intelligence structure test (BIS). We administered the complete Berlin intelligence 

structure test (BIS)36 in groups of up to four participants. The BIS is based on the bimodal Berlin 

intelligence structure model37, which distinguishes between four operation-related (processing 

speed, memory, creativity, processing capacity) and three content-related (verbal, numerical, 

figural) components of general intelligence. The test consists of a total of 45 tasks with each task 

being a combination of one operation-related component with one content-related component of 

intelligence. According to the manual, participants’ scores for all seven components were 

computed by aggregating the normalized z-scores of all tasks related to the respective operation 

and content components. We then transformed these scores to z-scores for further analyses. We 

did not compute IQ scores based on BIS results, because there is no adult normative sample with 

an appropriate age range available. 
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The mean score of the processing speed component was M = 98.00 (SD = 7.10), the mean 

score of the memory component was M = 99.40 (SD = 6.51), the mean score of the creativity 

component was M = 98.02 (SD = 6.14), the mean score of the processing capacity component 

was M = 101.7 (SD = 7.99), the mean score of the verbal component was M = 102.40 (SD = 

6.93), the mean score of the numerical component was M = 98.27 (SD = 6.79), and the mean 

score of the figural component was M = 97.69 (SD = 6.52). Note that these are not IQ scores, but 

mean scores. 

Procedure 

 The three measurement occasions were approximately four months apart. At the first and 

third measurement occasion, we administered the SRT and CRT task, the Sternberg memory 

scanning task, and the Posner letter matching task in the same order for all participants while an 

EEG was recorded. Participants were seated in a sound-attenuated, dimly lit EEG cabin. At the 

beginning of the third measurement occasion, we additionally recorded 12 minutes of resting 

state EEG, which will not be reported here. Each session took approximately 3 hours. At the 

second measurement occasion participants completed the BIS, a personality questionnaire not 

reported here, the APM, and a questionnaire about demographic data. This session took 

approximately 3.5 hours. 

EEG recording 

 The EEG was recorded with 32 equidistant Ag–AgCl electrodes. We used the aFz 

electrode as the ground electrode. Electrodes were initially referenced to Cz and offline re-

referenced to an average reference. To correct for ocular artifacts, we recorded the 

electrooculogram (EOG) bipolarly with two electrodes positioned above and below the left eye 

and two electrodes positioned at the outer canthi of the eyes. All electrode impedances were kept 
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below 5 kΩ. The EEG signal was recorded continuously with a sampling rate of 1000 Hz (band-

pass 0.1–100 Hz), and filtered offline with a low-pass filter of 16 Hz. 

Data analysis 

Data preprocessing 

Reaction time data. For intraindividual outlier detection in RTs, we discarded any RTs 

faster than 100 ms or slower than 3000 ms. In a second step, we discarded any trials with 

incorrect responses or with logarithmized RTs exceeding ± 3 SDs of the mean of each condition. 

Subsequently, we calculated the mean RT for each condition and calculated inverted RTs as 

reaction speeds (RS). We then transformed these reaction speeds to z-scores for further analyses. 

Electrophysiological data. We calculated ERPs separately for each ECT and each 

condition. ERPs were time-locked to the stimulus onset in the SRT, CRT and letter matching 

task, whereas they were time-locked to the onset of the probe in the memory scanning task. 

Epochs were 1200 ms long including a baseline of 200 ms before stimulus onset. We corrected 

ocular artifacts using a regression procedure38. Epochs with amplitudes exceeding ± 70 μV, with 

amplitude changes exceeding 100 μV within 100 ms, or with activity lower than 0.5 μV were 

discarded as artifacts. 

We determined the P100 peak latency at occipital electrodes contralateral to the position 

of the cross in the SRT and CRT task, and at the occipital electrode over midline for the 

Sternberg memory scanning task and the Posner letter matching task because stimuli in these 

tasks were presented centered. We determined the N100 peak latency at the frontal electrode over 

midline, the P200 peak latency at fronto-central electrode over midline, and the N200 and P300 

latency at the parietal electrode over midline. Peak latencies were determined separately for each 
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condition of the three experimental tasks. Subsequently, we discarded any peak latencies 

exceeding ± 3 SDs of the mean peak latency of each condition. Finally, peak latencies were 

averaged across conditions of each experimental task and z-standardized for further analyses. 

Statistical analysis 

Prior to multivariate analyses, we calculated the Malahanobis distance to identify and 

subsequently exclude multivariate outliers. In the multivariate data space of reaction speeds and 

intelligence test scores, one participant was identified as a multivariate outlier (DM = 57.78, 

p < .001) and excluded from further analyses, whereas no participant was identified as an outlier 

in the multivariate data space of ERP latencies and intelligence test scores. Data files are 

provided in the Supplementary Information file datafiles.rar. 

Moreover, all manifest variables were inspected for univariate normal distribution, which 

is a prerequisite of multivariate normal distribution. Statistical tests of skewness and kurtosis 

indicated that the distribution of APM variables and of a few ERP latencies deviated from normal 

distribution (p < .001). Subsequent visual inspections revealed that these deviations were rather 

small and below threshold values of skewness = 2 and of kurtosis = 7. Because neither skewness 

nor kurtosis exceeded these threshold values, we followed recommendations to not use 

assumption-free estimates in structural equation models39. 

We used structural equation modeling to assess the associations between reaction speeds, 

ERP latencies, and general intelligence. All models were fitted with the full information 

maximum likelihood algorithm implemented in AMOS40. Because some variables deviated 

slightly from normal distribution, we repeated all analysis with the bootstrap procedure 

implemented in AMOS40. As bootstrapped results did not deviate notably from non-bootstrapped 
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results except for small deviations in the size of standard errors, we report only the non-

bootstrapped results.  

Within the framework of structural equation modeling, we built latent state-trait (LST) 

models with hierarchical traits and hierarchical method factors to achieve a virtually error-free 

measurement of trait reaction speeds and ERP latencies. LST theory is an expansion of classical 

test theory that takes into account that any measurement is always affected by situational 

factors26. In short, LST theory proposes that the variance of an observed variable Yij can be 

decomposed into the variance of the latent trait T, the variance of a latent state residual SRi, the 

variance of a latent method residual Mj, and the variance of a latent unsystematic error residual 

εij.  

First, we fitted a structural equation model with a common trait T, a state residual SRi for 

each of the two measurement occasions, and a hierarchical method factor Mj for each of the three 

experimental tasks to the reaction speed data (for details of the model specifications see 

Supplementary Table 3). Subsequently, we fitted two different structural equation models to the 

electrophysiological data to compare the model fit of a general processing speed-model to the 

model fit of a specific processing speed-model. In both models, each ERP latency (P100, N100, 

P200, N200, P300) was modeled hierarchically as the covariance of latencies of one ERP 

component across the three experimental tasks at one measurement occasion (e.g., the latent P100 

variable at measurement occasion i was defined by the covariances between the P100 latencies in 

the Hick, Sternberg, and Posner task at this measurement occasion). In addition, we included 

specific traits for each of the five ERP component latencies. Intercepts in all models were fixed to 

zero (for details of the model specifications see Supplementary Table 4). 
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The general processing speed-model consisted of a common trait T, a state residual SRi 

for each of the two measurement occasions, a method factor Mj for each of the three experimental 

tasks, and five specific traits for the five ERP components. The specific processing speed-model 

consisted of two separate common traits, Tealier latencies and Tlater latencies, a state residual SRi for each 

of the two measurement occasions and each of the two traits, a method factor Mj for earlier and 

later ERP latencies of each of the three experimental tasks, and five specific traits for the five 

ERP components. We evaluated goodness-of-fit based on the comparative fit index (CFI)41 and 

the root mean square error of approximation (RMSEA)42 and compared model fit of the two 

models with the Akaike Information Criterion (AIC)43. The statistical significance of model 

parameters was assessed with the two-sided critical ratio test. 

Moreover, we fitted a hierarchical measurement model of general intelligence with a 

common g-factor and two lower-order factors defined by the covariances in BIS and APM scores, 

respectively. We did not model general intelligence with LST theory, because previous 

applications of LST theory to multiple measurements of intelligence have shown that the state 

residuals were zero25. Again, we evaluated goodness-of-fit with the CFI and the RMSEA. 

In a second step, we computed latent-state parameters of the behavioral and 

electrophysiological data based on the best-fitting LST model. For each manifest variable Yij 

measured with method j and at measurement occasion i, we computed coefficients of consistency, 

occasion-specifity, measurement-specifity, and reliability44. For the LST model of reaction 

speeds, the coefficient of trait-specifity was computed as σ²(T)/σ²(Yij) and reflects the proportion 

of variance of the manifest variable Yij that can be accounted for by individual differences in the 

latent trait T. The coefficient of occasion-specifity was computed as σ²(SRi)/σ²(Yij) and reflects 

the proportion of variance that is due to situational effects SRi. Similarly, the coefficient of 
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method-specifity was computed as σ²(Mj + Ck)/σ²(Yij) and reflects the proportion of variance that 

can be accounted for by a specific experimental task Mj and its conditions Ck. Taken together, 

these different sources of systematic variation contribute to the reliability of a manifest variable 

Yij, i.e. to the proportion of variance explained by the specified model. Thus, the reliability 

coefficient can be computed as [σ²(T) + σ²(SRi) + σ²(Mj+ Ck)]/ σ²(Yij).  

For the LST model of ERP latencies, the coefficient of trait-specifity was computed as 

σ²(Tk + Tl)/σ²(Yij) and reflects the proportion of variance of the manifest variable Yij hat can be 

accounted for by individual differences in the general trait Tk and by the specific trait Tl. The 

coefficient of occasion-specifity was computed as described above. The coefficient of method-

specifity was computed as σ²(Mj)/σ²(Yij) and reflects the proportion of variance that can be 

accounted for by the shared variance of earlier and later latencies in a specific experimental task 

Mj. Finally, the coefficient of reliability was computed as [σ²(Tk + Tl) + σ²(SRi) + σ²(Mj)]/ σ²(Yij). 

In a third step, we combined the behavioral and the best-fitting neurophysiological 

structural equation model with the measurement model of general intelligence to study the 

structural relations between a) behavioral processing speed and general intelligence, and b) 

neurophysiological processing speed and general intelligence.  
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Table 1 

Latent-state-trait theory parameters of reaction speed variables.  

 

Note. SRT = single choice reaction time task; CRT2/4 = choice reaction time task with two/four 

alternatives.   

 Consistency Occasion-
Specifity 

Method-
Specifity 

Reliability 

 Session Session Session Session 

 1 2 1 2 1 2 1 2 

SRT/CRT tasks         

SRT  .60 .54 0 .10 .30 .27 .90 .91 

CRT2  .60 .54 0 .10 .30 .27 .90 .91 

CRT4 .65 .59 0 .11 .24 .21 .89 .91 

Sternberg task         

Set size 1 .71 .64 0 .11 .16 .15 .88 .89 

Set size 3 .68 .61 0 .11 .21 .19 .89 .90 

Set size 5 .58 .53 0 .09 .32 .29 .90 .91 

Posner task         

Physical Identity .76 .68 0 .12 .10 .08 .87 .89 

Name Identity .74 .66 0 .12 .13 .12 .88 .89 
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Table 2 

Latent-state-trait theory parameters of ERP latencies. 

 

Note. SRT/CRT = single and choice reaction time task. 

 Consistency Occasion-
Specifity 

Method-
Specifity 

Reliability 

 Session Session Session Session 

 1 2 1 2 1 2 1 2 

SRT/CRT tasks         

P100  .14 .11 0 .17 .14 .12 .28 .40 

N100  .14 .11 0 .17 .14 .12 .28 .40 

P200 .51 .51 0 0 .08 .08 .59 .59 

N200 .42 .48 .12 0 .08 .09 .62 .56 

P300 .57 .57 0 0 .09 .09 .66 .66 

Sternberg task         

P100  .13 .11 0 .16 .17 .14 .30 .42 

N100  .13 .11 0 .16 .17 .14 .30 .42 

P200 .55 .55 0 0 0 0 .55 .55 

N200 .46 .46 .13 0 0 0 .58 .46 

P300 .63 .63 0 0 0 0 .63 .63 

Posner task         

P100  .14 .11 0 .17 .13 .11 .27 .39 

N100  .14 .11 0 .17 .13 .11 .27 .39 

P200 .55 .55 0 0 0 0 .55 .55 

N200 .46 .46 .13 0 0 0 .58 .46 

P300 .63 .63 0 0 0 0 .63 .63 
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Figure 2. Grand averages of event-related potentials as measured at frontal, fronto-central, 

central, parietal, and occipital electrodes over midline, separately for more and less 

intelligent individuals and experimental tasks. ERPs were elicited by the stimulus onset and 

averaged across measurement occasions and conditions for each experimental task. High and low 

IQ groups were created based on a median split of the BIS total score. N = 122.  
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method factor Mj for earlier and later ERP latencies of each of the three experimental tasks. The 

model provided a good fit to the data, χ²(679) = 1048.84, p <.001, CFI = .83, RMSEA = .07. All 

factors loadings are fixed to one; if not, standardized regression weights are shown next to paths. 

Error residuals are not shown. Non-significant residuals (p ≥ .05) are grayed out. SRT/CRT = 

single/choice reaction time task; S = Sternberg letter matching task; P = Posner letter matching 

task; PC = processing capacity; PS = processing speed; M = memory; C = creativity. Indices i at 

states ERPi and state residuals SRi indicate the measurement occasion. N = 122.  
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Supplementary Information 

Table 1 

Mean RTs (SD in parentheses) for all conditions of the three experimental tasks.  

 

Note. SRT = single choice reaction time task; CRT2/4 = choice reaction time task with two/four 

alternatives.   

 Session 1 Session 2 

 Accuracies RTs Accuracies RTs 

SRT/CRT tasks     

SRT  1.00 (.01) 315.51 (53.01) 1.00 (.00) 317.20 (80.45) 

CRT2  .99 (.01) 382.79 (58.02) 1.00 (.01) 381.27 (61.01) 

CRT4 .99 (.01) 477.22 (82.64) .98 (.02) 467.31 (85.7) 

Sternberg task     

Set size 1 .97 (.02) 590.96 
(115.67) 

.98 (.02) 584.02 
(135.64) 

Set size 3 .97 (.02) 728.46 
(167.21) 

.98 (.03) 706.61 
(176.81) 

Set size 5 .97 (.03) 890.03 
(240.74) 

.95 (.09) 850.98 
(223.18) 

Posner task     

Physical Identity .98 (.02) 617.79 (93.93) .98 (.02) 605.19 
(102.41) 

Name Identity .98 (.02) 699.50 
(113.02) 

.97 (.02) 704.38 
(126.36) 
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Table 2 

Mean ERP latencies (SD in parentheses) averaged across conditions of each of the three 

experimental tasks.  

Note. SRT/CRT = single and choice reaction time task. 

  

 P100 N100 P200 N200 P300 

 Session 1 
 

SRT/CRT  92.28 (23.52) 131.11 (14.88) 211.54 (32.82) 206.15 (27.71) 330.67 (44.26) 

Sternberg  98.10 (27.83) 129.70 (27.02) 234.08 (34.48) 251.11 (42.05) 374.35 (74.76) 

Posner  91.35 (37.39) 129.05 (25.71) 222.26 (33.74) 247.87 (36.80) 414.97 (86.45) 

  
Session 2 

 

SRT/CRT  104.21 (18.81) 128.11 (15.95) 208.44 (33.77) 210.38 (29.62) 324.40 (42.04) 

Sternberg  94.82 (19.37) 132.53 (17.28) 230.35 (28.19) 248.48 (43.74) 382.39 (81.13) 

Posner  124.78 (23.76) 140.76 (11.06) 218.16 (25.27) 240.02 (44.65) 377.74 (75.09) 
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Table 3 

Model specifications: Structural equation model of reaction times and general intelligence. 

Unstandardied regression weights 

 

   Estimate S.E. C.R. P Label 
        
RT_S1 <--- mentalSpeed 1.000     

RT_S2 <--- mentalSpeed 1.000     

SRT <--- Hick 1.129 .156 7.222 *** par_3 
CRT2 <--- Hick 1.414 .152 9.313 *** par_4 
CRT4 <--- Hick 1.000     

S1 <--- Sternberg .345 .110 3.141 .002 par_5 
S3 <--- Sternberg .868 .098 8.835 *** par_6 
S5 <--- Sternberg 1.000     

PI <--- Posner 1.000     

NI <--- Posner 1.000     

BIS <--- g 1.000     

APM <--- g 1.000     

SRT_RT_S1 <--- RT_S1 1.000     

CRT2_RT_S1 <--- RT_S1 1.000     

CRT4_RT_S1 <--- RT_S1 1.000     

S1_RT_S1 <--- RT_S1 1.000     

S3_RT_S1 <--- RT_S1 1.000     

S5_RT_S1 <--- RT_S1 1.000     

PI_RT_S1 <--- RT_S1 1.000     

NI_RT_S1 <--- RT_S1 1.000     

SRT_RT_S2 <--- RT_S2 1.000     

CRT2_RT_S2 <--- RT_S2 1.000     

CRT4_RT_S2 <--- RT_S2 1.000     

S1_RT_S2 <--- RT_S2 1.000     

S3_RT_S2 <--- RT_S2 1.000     

S5_RT_S2 <--- RT_S2 1.000     

PI_RT_S2 <--- RT_S2 1.000     

NI_RT_S2 <--- RT_S2 1.000     

SRT_RT_S1 <--- SRT 1.000     

SRT_RT_S2 <--- SRT 1.000     

CRT2_RT_S1 <--- CRT2 1.000     

CRT2_RT_S2 <--- CRT2 1.000     

CRT4_RT_S1 <--- CRT4 1.000     

CRT4_RT_S2 <--- CRT4 1.000     

S1_RT_S1 <--- S1 1.000     

S1_RT_S2 <--- S1 1.000     

S3_RT_S1 <--- S3 1.000     

S3_RT_S2 <--- S3 1.000     
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S5_RT_S1 <--- S5 1.000     

S5_RT_S2 <--- S5 1.000     

PI_RT_S1 <--- PI 1.000     

PI_RT_S2 <--- PI 1.000     

NI_RT_S1 <--- NI 1.000     

NI_RT_S2 <--- NI 1.000     

C_Mean <--- BIS .506 .063 7.965 *** par_7 
M_Mean <--- BIS .589 .063 9.274 *** par_8 
PS_Mean <--- BIS .612 .063 9.644 *** par_9 
PC_Mean <--- BIS 1.000     

APModd <--- APM 1.000     

APMeven <--- APM 1.000     

        

Standardized regression weights 

 

   Estimate 
RT_S1 <--- mentalSpeed 1.000 
RT_S2 <--- mentalSpeed .921 
SRT <--- CRTSRT .791 
CRT2 <--- CRTSRT 1.000 
CRT4 <--- CRTSRT .828 
S1 <--- Sternberg .452 
S3 <--- Sternberg 1.000 
S5 <--- Sternberg .866 
PI <--- Posner 1.000 
NI <--- Posner .837 
BIS <--- g 1.000 
APM <--- g .795 
SRT_RT_S1 <--- RT_S1 .772 
CRT2_RT_S1 <--- RT_S1 .774 
CRT4_RT_S1 <--- RT_S1 .807 
S1_RT_S1 <--- RT_S1 .846 
S3_RT_S1 <--- RT_S1 .826 
S5_RT_S1 <--- RT_S1 .768 
PI_RT_S1 <--- RT_S1 .880 
NI_RT_S1 <--- RT_S1 .862 
SRT_RT_S2 <--- RT_S2 .797 
CRT2_RT_S2 <--- RT_S2 .799 
CRT4_RT_S2 <--- RT_S2 .830 
S1_RT_S2 <--- RT_S2 .865 
S3_RT_S2 <--- RT_S2 .847 
S5_RT_S2 <--- RT_S2 .794 
PI_RT_S2 <--- RT_S2 .895 
NI_RT_S2 <--- RT_S2 .879 
SRT_RT_S1 <--- SRT .553 
SRT_RT_S2 <--- SRT .525 
CRT2_RT_S1 <--- CRT2 .549 
CRT2_RT_S2 <--- CRT2 .521 
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CRT4_RT_S1 <--- CRT4 .489 
CRT4_RT_S2 <--- CRT4 .463 
S1_RT_S1 <--- S1 .406 
S1_RT_S2 <--- S1 .382 
S3_RT_S1 <--- S3 .451 
S3_RT_S2 <--- S3 .426 
S5_RT_S1 <--- S5 .558 
S5_RT_S2 <--- S5 .530 
PI_RT_S1 <--- PI .311 
PI_RT_S2 <--- PI .292 
NI_RT_S1 <--- NI .365 
NI_RT_S2 <--- NI .343 
C_Mean <--- BIS .588 
M_Mean <--- BIS .646 
PS_Mean <--- BIS .661 
PC_Mean <--- BIS 1.000 
APModd <--- APM .875 
APMeven <--- APM .875 
    

Covariances 

 

   Estimate S.E. C.R. P Label 
g <--> mentalSpeed .228 .055 4.133 *** par_10 
        

Correlations 

 

   Estimate 
    
g <--> mentalSpeed .425 
 

Variances 

 

 Estimate S.E. C.R. P Label 
      
mentalSpeed .662 .093 7.102 *** par_11 
CRTSRT .166 .044 3.809 *** par_12 
Sternberg .262 .064 4.071 *** par_13 
Posner .083 .028 2.988 .003 par_14 
g .433 .056 7.746 *** par_15 
SR1 .000     

R_1b .000     

R_S3 .000     

R_PI .000     

RBIS .000     

SR2 .119 .020 6.056 *** par_16 
R_0b .127 .028 4.476 *** par_17 
R_2b .076 .021 3.575 *** par_18 
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R_S1 .121 .028 4.358 *** par_19 
R_S5 .087 .029 2.992 .003 par_20 
R_NI .036 .018 1.963 .050 par_21 
RAPM .253 .047 5.374 *** par_22 
e1 .110 .005 20.112 *** a 
e2 .110 .005 20.112 *** a 
e3 .110 .005 20.112 *** a 
e4 .110 .005 20.112 *** a 
e5 .110 .005 20.112 *** a 
e6 .110 .005 20.112 *** a 
e7 .110 .005 20.112 *** a 
e8 .110 .005 20.112 *** a 
e9 .110 .005 20.112 *** a 
e10 .110 .005 20.112 *** a 
e11 .110 .005 20.112 *** a 
e12 .110 .005 20.112 *** a 
e13 .110 .005 20.112 *** a 
e14 .110 .005 20.112 *** a 
e15 .110 .005 20.112 *** a 
e16 .110 .005 20.112 *** a 
e20 .210 .014 15.460 *** b 
e19 .210 .014 15.460 *** b 
e18 .210 .014 15.460 *** b 
e17 .000     

e22 .210 .014 15.460 *** b 
e21 .210 .014 15.460 *** b 

Note. SRT = single choice reaction time task; CRT2/4 = choice reaction time task with two/four 

alternatives; S1_RT = RT in the set size one condition of the memory scanning task; S3_RT = 

RT in the set size three condition of the memory scanning task; S5_RT = RT in the set size five 

condition of the memory scanning task; PI = physical identity; NI = name identity SR = state 

residual; S1 = first laboratory session; S2 = second laboratory session. 

*** p < .001  
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Table 4 

Model specifications: Structural equation model of ERP latencies and general intelligence. 

Unstandardized regression weights 

 

   Estimate S.E. C.R. P Label 

        
earlierERPs_S1 <--- earlierERPs 1.000     

earlierERPs_S2 <--- earlierERPs 1.000     

laterERPs_S1 <--- laterERPs 1.000     

laterERPs_S2 <--- laterERPs 1.000     

P1_S1 <--- earlierERPs_S1 1.000     

N1_S1 <--- earlierERPs_S1 1.000     

P1_S2 <--- earlierERPs_S2 1.000     

N1_S2 <--- earlierERPs_S2 1.000     

P2_S2 <--- laterERPs_S2 1.000     

N2_S2 <--- laterERPs_S2 1.000     

P3_S2 <--- laterERPs_S2 1.000     

P2_S1 <--- laterERPs_S1 1.000     

N2_S1 <--- laterERPs_S1 1.000     

P3_S1 <--- laterERPs_S1 1.000     

P2_S1 <--- P2 1.000     

P2_S2 <--- P2 1.000     

P3_S1 <--- P3 1.000     

P3_S2 <--- P3 1.000     

P1_S1 <--- P1 1.000     

P1_S2 <--- P1 1.000     

N2_S1 <--- N2 1.000     

N2_S2 <--- N2 1.000     

N1_S1 <--- N1 1.000     

N1_S2 <--- N1 1.000     

BIS <--- g 1.000     

APM <--- g 1.000     

SRTCRT_P1_S1 <--- P1_S1 1.000     

S_P1_S1 <--- P1_S1 1.000     

P_P1_S1 <--- P1_S1 1.000     

SRTCRT_N1_S1 <--- N1_S1 1.000     

S_N1_S1 <--- N1_S1 1.000     

P_N1_S1 <--- N1_S1 1.000     

SRTCRT_P2_S1 <--- P2_S1 1.000     

S_P2_S1 <--- P2_S1 1.000     

P_P2_S1 <--- P2_S1 1.000     

SRTCRT_N2_S1 <--- N2_S1 1.000     

S_N2_S1 <--- N2_S1 1.000     

P_N2_S1 <--- N2_S1 1.000     
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SRTCRT_P3_S1 <--- P3_S1 1.000     

S_P3_S1 <--- P3_S1 1.000     

P_P3_S1 <--- P3_S1 1.000     

SRTCRT_P1_S2 <--- P1_S2 1.000     

S_P1_S2 <--- P1_S2 1.000     

P_P1_S2 <--- P1_S2 1.000     

SRTCRT_N1_S2 <--- N1_S2 1.000     

S_N1_S2 <--- N1_S2 1.000     

P_N1_S2 <--- N1_S2 1.000     

SRTCRT_P2_S2 <--- P2_S2 1.000     

S_P2_S2 <--- P2_S2 1.000     

P_P2_S2 <--- P2_S2 1.000     

SRTCRT_N2_S2 <--- N2_S2 1.000     

S_N2_S2 <--- N2_S2 1.000     

P_N2_S2 <--- N2_S2 1.000     

SRTCRT_P3_S2 <--- P3_S2 1.000     

S_P3_S2 <--- P3_S2 1.000     

P_P3_S2 <--- P3_S2 1.000     

SRTCRT_P1_S1 <--- SRTCRT_earlier 1.000     

SRTCRT_N1_S1 <--- SRTCRT_earlier 1.000     

SRTCRT_P1_S2 <--- SRTCRT_earlier 1.000     

SRTCRT_N1_S2 <--- SRTCRT_earlier 1.000     

S_P1_S1 <--- Sternberg_earlier 1.000     

S_N1_S1 <--- Sternberg_earlier 1.000     

S_P1_S2 <--- Sternberg_earlier 1.000     

S_N1_S2 <--- Sternberg_earlier 1.000     

P_P1_S1 <--- Posner_earlier 1.000     

P_N1_S1 <--- Posner_earlier 1.000     

P_P1_S2 <--- Posner_earlier 1.000     

P_N1_S2 <--- Posner_earlier 1.000     

SRTCRT_P2_S1 <--- SRTCRT_later 1.000     

SRTCRT_N2_S1 <--- SRTCRT_later 1.000     

SRTCRT_P3_S1 <--- SRTCRT_later 1.000     

SRTCRT_P2_S2 <--- SRTCRT_later 1.000     

SRTCRT_N2_S2 <--- SRTCRT_later 1.000     

SRTCRT_P3_S2 <--- SRTCRT_later 1.000     

S_P2_S1 <--- Sternberg_later 1.000     

S_N2_S1 <--- Sternberg_later 1.000     

S_P3_S1 <--- Sternberg_later 1.000     

S_P2_S2 <--- Sternberg_later 1.000     

S_N2_S2 <--- Sternberg_later 1.000     

S_P3_S2 <--- Sternberg_later 1.000     

P_P2_S1 <--- Posner_later 1.000     

P_N2_S1 <--- Posner_later 1.000     

P_P3_S1 <--- Posner_later 1.000     

P_P2_S2 <--- Posner_later 1.000     

P_N2_S2 <--- Posner_later 1.000     

P_P3_S2 <--- Posner_later 1.000     
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C_Mean <--- BIS .584 .066 8.820 *** par_5 
M_Mean <--- BIS .686 .068 10.150 *** par_6 
PS_Mean <--- BIS .701 .068 10.346 *** par_7 
PC_Mean <--- BIS 1.000     

APModd <--- APM 1.000     

APMeven <--- APM 1.000     

        

Standardied regression weights 

 

   
Estimate 

 

earlierERPs_S1 <--- earlierERPs 1.000 

earlierERPs_S2 <--- earlierERPs .669 
laterERPs_S1 <--- laterERPs 1.000 
laterERPs_S2 <--- laterERPs 1.000 
P1_S1 <--- earlierERPs_S1 1.000 
N1_S1 <--- earlierERPs_S1 1.000 
P1_S2 <--- earlierERPs_S2 1.000 
N1_S2 <--- earlierERPs_S2 1.000 
P2_S2 <--- laterERPs_S2 .860 
N2_S2 <--- laterERPs_S2 .871 
P3_S2 <--- laterERPs_S2 .923 
P2_S1 <--- laterERPs_S1 .860 
N2_S1 <--- laterERPs_S1 .778 
P3_S1 <--- laterERPs_S1 .923 
P2_S1 <--- P2 .510 
P2_S2 <--- P2 .510 
P3_S1 <--- P3 .384 
P3_S2 <--- P3 .384 
N2_S1 <--- N2 .439 
N2_S2 <--- N2 .491 
BIS <--- g 1.000 
APM <--- g .774 
SRTCRT_P1_S1 <--- P1_S1 .371 
S_P1_S1 <--- P1_S1 .362 
P_P1_S1 <--- P1_S1 .372 
SRTCRT_N1_S1 <--- N1_S1 .371 
S_N1_S1 <--- N1_S1 .362 
P_N1_S1 <--- N1_S1 .372 
SRTCRT_P2_S1 <--- P2_S1 .724 
S_P2_S1 <--- P2_S1 .754 
P_P2_S1 <--- P2_S1 .754 
SRTCRT_N2_S1 <--- N2_S1 .757 
S_N2_S1 <--- N2_S1 .786 
P_N2_S1 <--- N2_S1 .786 
SRTCRT_P3_S1 <--- P3_S1 .748 
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S_P3_S1 <--- P3_S1 .787 
P_P3_S1 <--- P3_S1 .787 
SRTCRT_P1_S2 <--- P1_S2 .512 
S_P1_S2 <--- P1_S2 .501 
P_P1_S2 <--- P1_S2 .513 
SRTCRT_N1_S2 <--- N1_S2 .512 
S_N1_S2 <--- N1_S2 .501 
P_N1_S2 <--- N1_S2 .513 
SRTCRT_P2_S2 <--- P2_S2 .724 
S_P2_S2 <--- P2_S2 .754 
P_P2_S2 <--- P2_S2 .754 
SRTCRT_N2_S2 <--- N2_S2 .719 
S_N2_S2 <--- N2_S2 .750 
P_N2_S2 <--- N2_S2 .750 
SRTCRT_P3_S2 <--- P3_S2 .748 
S_P3_S2 <--- P3_S2 .787 
P_P3_S2 <--- P3_S2 .787 
SRTCRT_P1_S1 <--- SRTCRT_earlier .362 
SRTCRT_N1_S1 <--- SRTCRT_earlier .362 
SRTCRT_P1_S2 <--- SRTCRT_earlier .334 
SRTCRT_N1_S2 <--- SRTCRT_earlier .334 
S_P1_S1 <--- Sternberg_earlier .416 
S_N1_S1 <--- Sternberg_earlier .416 
S_P1_S2 <--- Sternberg_earlier .386 
S_N1_S2 <--- Sternberg_earlier .386 
P_P1_S1 <--- Posner_earlier .355 
P_N1_S1 <--- Posner_earlier .355 
P_P1_S2 <--- Posner_earlier .328 
P_N1_S2 <--- Posner_earlier .328 
SRTCRT_P2_S1 <--- SRTCRT_later .282 
SRTCRT_N2_S1 <--- SRTCRT_later .267 
SRTCRT_P3_S1 <--- SRTCRT_later .313 
SRTCRT_P2_S2 <--- SRTCRT_later .282 
SRTCRT_N2_S2 <--- SRTCRT_later .284 
SRTCRT_P3_S2 <--- SRTCRT_later .313 
C_Mean <--- BIS .660 
M_Mean <--- BIS .718 
PS_Mean <--- BIS .726 
PC_Mean <--- BIS .937 
APModd <--- APM .889 
APMeven <--- APM .889 

    

Covariances 

 

   Estimate S.E. C.R. P Label 

        
g <--> laterERPs -.393 .057 -6.907 *** par_8 
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g <--> earlierERPs .076 .020 3.833 *** par_9 

        

 
       

       

Correlations 

    

   Estimate 

    

g <--> laterERPs -.894 

g <--> earlierERPs .334 

    

Variances 
      

 Estimate S.E. C.R. P Label 

      
Sternberg_later .000     

Posner_later .000     

P1 .000     

N1 .000     

earlierERPs .124 .034 3.689 *** par_10 
laterERPs .462 .069 6.670 *** par_11 
SRTCRT_earlier .118 .048 2.478 .013 par_12 
Sternberg_earlier .163 .053 3.069 .002 par_13 
Posner_earlier .113 .048 2.365 .018 par_14 
SRTCRT_later .095 .026 3.682 *** par_15 
P2 .162 .039 4.196 *** par_16 
P3 .080 .027 2.989 .003 par_17 
N2 .147 .041 3.548 *** par_18 
g .417 .059 7.063 *** par_19 
SR_earlier_S1 .000     

SR_later_S1 .000     

SR_later_S2 .000     

SR_earlier_S2 .152 .044 3.433 *** par_20 
R_P1S1 .000     

R_N1S1 .000     

R_P2S1 .000     

R_P3S1 .000     

R_P1S2 .000     

R_N1S2 .000     

R_P2S2 .000     

R_N2S2 .000     

R_P3S2 .000     

RBIS .000     

R_N2S1 .154 .056 2.751 .006 par_21 
RAPM .278 .052 5.310 *** par_22 
e1 .659 .031 21.497 *** a 
e2 .659 .031 21.497 *** a 
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e3 .659 .031 21.497 *** a 
e4 .659 .031 21.497 *** a 
e5 .659 .031 21.497 *** a 
e6 .659 .031 21.497 *** a 
e7 .472 .022 21.941 *** b 
e8 .472 .022 21.941 *** b 
e9 .472 .022 21.941 *** b 
e10 .472 .022 21.941 *** b 
e11 .472 .022 21.941 *** b 
e12 .472 .022 21.941 *** b 
e13 .333 .021 16.119 *** c 
e14 .333 .021 16.119 *** c 
e15 .333 .021 16.119 *** c 
e16 .659 .031 21.497 *** a 
e17 .659 .031 21.497 *** a 
e18 .659 .031 21.497 *** a 
e19 .659 .031 21.497 *** a 
e20 .659 .031 21.497 *** a 
e21 .659 .031 21.497 *** a 
e22 .472 .022 21.941 *** b 
e23 .472 .022 21.941 *** b 
e24 .472 .022 21.941 *** b 
e25 .472 .022 21.941 *** b 
e26 .472 .022 21.941 *** b 
e27 .472 .022 21.941 *** b 
e28 .333 .021 16.119 *** c 
e29 .333 .021 16.119 *** c 
e30 .333 .021 16.119 *** c 
e34 .185 .013 14.688 *** d 
e33 .185 .013 14.688 *** d 
e32 .185 .013 14.688 *** d 
e36 .185 .013 14.688 *** d 
e35 .185 .013 14.688 *** d 
e31 .058 .016 3.745 *** par_23 

Note. SRTCRT = single and choice reaction time task; S = Sternberg memory scanning task; P = 

Posner letter matching task; SR = state residual; S1 = first laboratory session; S2 = second 

laboratory session. 

*** p < .001 



The relationship between mental speed and mental abilities A4 – 1 
 

 

Erklärung gemäß § 8 Abs. (1) c) und d) der Promotionsordnung 
der Fakultät für Verhaltens- und Empirische Kulturwissenschaften 

 
Promotionsausschuss der Fakultät für Verhaltens- und Empirische Kulturwissenschaften 
der Ruprecht-Karls-Universität Heidelberg 
 
 
Erklärung gemäß § 8 (1) c) der Promotionsordnung der Universität Heidelberg 
für die Fakultät für Verhaltens- und Empirische Kulturwissenschaften 
 
Ich erkläre, dass ich die vorgelegte Dissertation selbstständig angefertigt, nur die angegebenen 
Hilfsmittel benutzt und die Zitate gekennzeichnet habe. 
 
 
Erklärung gemäß § 8 (1) d) der Promotionsordnung der Universität Heidelberg  
für die Fakultät für Verhaltens- und Empirische Kulturwissenschaften 
 
Ich erkläre, dass ich die vorgelegte Dissertation in dieser oder einer anderen Form nicht 
anderweitig als Prüfungsarbeit verwendet oder einer anderen Fakultät als Dissertation vorgelegt 
habe. 
 
 
 
Vorname Nachname ________________________________________ 
 
 
Datum, Unterschrift _______________________________________ 
 

 


