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Abstract 
 

The pancreas is a dual organ, performing endocrine and exocrine functions. The exocrine 

pancreas harbours duct, centroacinar and acinar cells in charge of production, secretion, and 

transport of digestive enzymes. Acinar cells are producing large amounts of proteins and 

account for the majority of all cells in the pancreas. The acinar cell pool is believed to be a 

population of equipotent cells, which are equal in form and function. However, by examining 

acinar cells on the single cell level, we find that acinar cells represent a heterogeneous pool of 

morphologically, functionally and molecularly distinct cells. 

Long-term, multicolour lineage tracing reveals the existence of previously neglected 

progenitor-like acinar cells with the ability to persistently generate acinar cells for at least one 

year. In a complementary in vitro approach, we find that only a subpopulation of acinar cells 

is able to form organoids, if in direct contact with a supporting acinar cell. We demonstrate 

that binuclear acinar cells are proliferation deficient and uncover their existence in the human 

pancreas. Chemically induced pancreatitis transiently activates a population of acinar cells, 

distinct from the proliferating acinar cells that maintain homeostasis. Furthermore, single cell 

mRNA sequencing of acinar cells confirms their functional heterogeneity on the molecular 

level. Altogether, our study transforms our understanding of the acinar cell compartment as a 

pool of equipotent secretory cells and provides a framework to further disentangle the cellular 

complexity within the exocrine pancreas in the future. 

 

 

  



Zusammenfassung 
 

Die Bauchspeicheldrüse ist ein Organ, welches endokrine und exokrine Funktionen erfüllt. 

Die exokrine Bauchspeicheldrüse besteht aus Duktzellen, zentroazinären Zellen und 

Azinuszellen, welche zusammen verantwortlich sind für die Produktion, Sekretion und den 

Transport von Verdauungsenzymen. Azinuszellen produzieren große Mengen an Proteinen 

und repräsentieren die Mehrzahl aller Zellen in der Bauchspeicheldrüse. Die Azinuszellen 

gelten als eine Population von einheitlichen Zellen, die in Form und Funktion identisch sind. 

In dieser Studie von Azinuszellen auf Einzelzellebene zeigen wir jedoch, dass Azinuszellen 

eine heterogene Zellpopulation darstellen, welche sich morphologisch, funktionell und 

molekular unterscheiden. 

Langzeituntersuchungen von Azinuszellen mittels multicolour lineage tracing offenbart die 

Existenz von bisher nicht bekannten, vorläuferzell-ähnlichen Azinuszellen. Diese 

Azinuszellen besitzen die Fähigkeit über lange Zeitspannen kontinuierlich neue Azinuszellen 

zu bilden. In einer komplementären in vitro Untersuchung fanden wir, dass nur eine 

Subpopulation von Azinuszellen in der Lage ist Organoide zu bilden, wenn direkter Zell-Zell 

Kontakt mit unterstützenden Azinuszellen besteht. Wir zeigen, dass zweikernige Azinuszellen 

ein Proliferationsdefizit aufweisen und demonstrieren erstmals ihre Existenz in der 

menschlichen Bauchspeicheldrüse. Chemisch induzierte Pankreatitis aktiviert vorübergehend 

eine Subpopulation von Azinuszellen, die sich von den Azinuszellen unterscheiden, welche in 

der intakten Bauchspeicheldrüse kontinuierlich proliferieren. Ferner bestätigt eine Einzelzell-

Sequenzierungsanalyse von mRNA aus Azinuszellen die funktionelle Heterogenität dieser 

Zellen auf molekularer Ebene. Zusammenfassend verändert diese Studie unser Verständnis 

von Azinuszellen als einheitliche Population bestehend aus identischen, sekretorischen 

Zellen. Des weiteren liefert diese Arbeit ein Grundgerüst, anhand dessen zukünftig die volle, 

zelluläre Komplexität der exokrinen Bauchspeicheldrüse entschlüsselt werden kann. 
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1 Introduction 

 

 

1.1 The diversity of cell types 

 

Life on earth evolved in form of single celled organisms (Alberts et al., 2014). In the course 

of time the unicellular organisms evolved into multicellular organisms – so-called metazoans 

(Fig. 1a,b) (Alberts et al., 2014). Although multicellularity is usually considered to be a 

eukaryotic feature, prokaryotes like cyanobacteria or myxobacteria formed cellular aggregates 

consisting of multiple cell types (Knoll, 2011). Genomic analysis suggests that the unicellular 

choanoflagellates are most closely related to metazoans (Carr et al., 2008). Choanoflagellates 

were shown to have tyrosine kinases and the closely related Minestera harbour components 

related to cell adhesion such as integrin-beta and cadherin (Manning et al., 2008; Shalchian-

Tabrizi et al., 2008). The evolution of molecular prerequisites for metazoan development at 

the unicellular stage opened the path to the development of multicellular organisms. This 

raises the question for the trigger of metazoan evolution. One hypothesis is that cellular 

aggregation is protecting the organism from phagotrophic prey (King, 2004). Evidence for 

this hypothesis was provided by a prey-predator experiment involving the unicellular alga 

Chlorella vulgaris (Boraas et al., 1998). Co-culturing the algae with phagotrophic predators 

selected for formation of a multicellular Chlorella vulgaris population (Boraas et al., 1998). 

Another possible explanation for the evolution of multicellularity is given by the example of 

flagellation constraint (King, 2004). The microtubule organizing centre (MTOC) represents 

the cellular machinery for both, cellular/flagellar motility as well as mitosis (King, 2004). As 

a result the two functions are mutually exclusive and no flagellated or ciliated animal cell 

seems to be able to divide (Buss, 1987). Thus, it was proposed that multicellular organisms 

might have a selective advantage by dividing these two functions into distinct cell types 

within the same organism (Buss, 1983).  

This example of “division of labour” illustrates the evolutionary benefit of multicellularity 

and the increase in cell type diversity among metazoans. In addition to this segregation of 

function to sister cells, the divergence of function has been proposed to be another driver of 

multicellularity (Arendt, 2008). In this model both sister cells retain the function, but in a 

modified form. A prime example for this divergence is the evolution of rods and cones. Both 

cell types retained the ability to sense light, however at different wavelengths (Arendt, 2008). 

A third mechanism that was proposed to drive the diversity of cell types was the acquisition 
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of new function through a mechanism called gene co-option (Arendt, 2008). This mechanism 

is exemplified by the evolution of drosophila wings. The drosophila common ancestor wings 

were unspotted and the drosophila wing epithelial cells gained pigmentation (Prud'homme et 

al., 2006). 

The cellular diversity is at the heart of every multicellular organism. Yet, the 

definition of a cell type - although representing the basic building block of multicellular life - 

is surprisingly ill defined up to this day (Trapnell, 2015). Historically, most novel cell types 

have been defined on the basis of morphological differences. In the late 19th century the 

Spanish anatomist Santiago Ramon y Cajal improved a silver staining called “Golgi´s 

method” to decipher the complexity of the central nervous system (CNS) (Cajal et al., 1899). 

Investigations using this method revealed the morphological complexity of cells within the 

nervous system and subsequently led to the notion that the CNS was composed of individual, 

anatomically and functionally distinct cells (Fig. 1c) (Cajal et al., 1899). The concept that 

built on this idea became known as the neuron doctrine (Bullock et al., 2005). Another classic 

example for using morphological features to unravel new cell types was the discovery of 

dendritic cells by Steinman and Cohn (Steinman and Cohn, 1973). Upon isolation of cells 

from murine peripheral lymphoid organs a large, adherent cell population was noticed 

(Fig. 1d) (Steinman and Cohn, 1973). The cytoplasm was arranged in pseudopods containing 

phase-dense granules and a large, contorted nucleus, which was clearly distinct from other 

cell types isolated from lymphoid organs such as phagocytes, granulocytes, and lymphocytes 

(Steinman and Cohn, 1973). In a series of follow-up studies detailed sub-cellular 

characteristics, functional properties in vitro and in vivo, surface markers and tissue 

distribution were carefully characterized (Steinman and Cohn, 1974; Steinman et al., 1975; 

1979; 1974). The discovery of dendritic cells as antigen-presenting cells opened the door to 

understand basic mechanisms of adaptive immunity. Previous to this work it remained a 

mystery how lymphocytes are activated upon antigen presence given that the addition of the 

sole antigen was not enough to stimulate proliferation of lymphocytes (Katsnelson, 2006). 

The example of dendritic cell discovery illustrates the use of morphological features to 

distinguish new cell types. However, functionally distinct cells might be hidden within 

morphologically similar cellular populations. The discovery of stem cells in the adult mouse 

provides a paradigm example of how new cell types can be identified by function. 
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Figure 1. Evolution of cell type diversity. (a) From (King, 2004). Choanoflagellates represent the 
last common ancestor between metazoa and unicellular organisms. (b) From (King, 2004). Evolution 
of unicellular flagellates towards multicellularity (c) From (Meyer et al., 1999). Drawings of neuronal 
subtypes by Retzius, Cajal and Meyer. (d) From (Steinman and Cohn, 1974). Phase contrast images 
of isolated dendritic cells. 
 

 

1.2 Discovery of somatic stem cells 

 

More complex multicellular organisms compartmentalize different cell types into organs. 

During the lifetime of an organism cells have to be replaced as a result of injury or due to 

day-to-day deterioration (Alberts et al., 2014). The replacement of lost cells is accomplished 

by somatic stem cells. Stem cells are defined by functional features such as their ability to 

self-renew and their ability to differentiate into multiple lineages (multipotency) in place of 

morphological characteristics (Fig. 2a) (Weissman, 2000). 

In an initial attempt to study the radiation sensitivity of bone marrow cells the physicist James 

Till together with the haematologist Ernest McCulloch demonstrated, for the first time, the 

existence of multipotent stem cells in adult mice (BECKER et al., 1963). It was noted that 

transplantation of hematopoietic cells from the bone marrow into sub-lethally radiated mice 

was linearly related to the appearance of nodules on the spleen consisting of erythrocytes, 

granulocytes and megakaryocytes (Till and McCulloch, 1961). The authors subsequently 

a b

c d
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demonstrated that a single cell is capable of forming nodules on the spleen of recipient mice 

containing several cell types by taking advantage of radiation induced chromosomal 

abnormalities which “barcode” the cellular progeny (BECKER et al., 1963). The study 

therefore provided the first experimental evidence for multipotency of single, adult, murine 

cells. The cells derived from spleen colonies were shown to be colony-forming themselves 

demonstrating that in addition to multipotency these cells were also capable of self-renewal 

(Siminovitch and McCULLOCH, 1963). In the following years the hematopoietic stem cell 

(HSC) system became the most thoroughly studied somatic stem cell system in higher 

organisms (Wilson et al., 2009). Technical advances related to the development of 

monoclonal antibodies and flow cytometry based cell-sorting approaches enabled the 

purification and characterization of hematopoietic stem cells based on surface markers 

(Spangrude et al., 1988). Once able to isolate these cells, transplantation assays were 

established, leading to numerous discoveries including the identification of phenotypically 

distinct HSC populations with long-term repopulating capacity (Morrison and Weissman, 

1994). Subsequent studies unravelled the lineage hierarchy of HSCs from long-term over 

short-term HSC, all the way towards the mature cell types within the blood (Weissman, 

2000). 

Decades of research have consequently led to the discovery of stem cells in many organs of 

the mammalian body by taking advantage of numerous methodical advances (Fig. 2b) 

(Snippert and Clevers, 2011). The technique that remained the gold standard in mammals for 

many years was stem cell transplantation into recipient mice because it directly tested the self-

renewal and multipotency of the transplanted cells (Snippert et al., 2013). Besides the above-

mentioned example of HSC discovery, transplantation into fat pads of recipient mice led to 

the identification of mammary gland stem cells (Shackleton et al., 2006; Stingl et al., 2006). 

These studies demonstrated for the first time that a single epithelial stem cell was able to 

reconstitute the entire mammary tree upon transplantation (Shackleton et al., 2006; Stingl et 

al., 2006). An important feature of the mammary stem cells was their high proliferative 

activity (Stingl et al., 2006). Interestingly however, high mitotic activity is not a feature of 

stem cells per se. Stem cells in the skin were identified by their slow-cycling properties as 

demonstrated by label-retention assays (Cotsarelis et al., 1990; Tumbar et al., 2004). Upon 

transplantation these cells were able to give rise to all lineages of the hair follicle sebaceous 

gland and interfollicular epidermis (Morris et al., 2004).  

A major disadvantage of transplantation assays is that the stem cells are removed from their 

natural, cellular environment. In contrast, genetic lineage tracing enables researchers to 
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permanently label cells in their native environment. This label will be stably inherited by each 

daughter cell (Kretzschmar and Watt, 2012). The most common way to genetically label 

specific cell types in mammals in by the use of the Cre-loxP system (Sauer and Henderson, 

1988). In this system the Cre recombinase is expressed under a cell- or tissue-specific 

promotor and removes a transcriptional roadblock enabling the permanent expression of a 

reporter enzyme or fluorophore (Kretzschmar and Watt, 2012). With this tool at hand, 

stemness features like multipotency and self-renewal can be tested directly in situ. The power 

of lineage tracing is exemplified by the discovery of stem cells in the small intestine (Barker 

et al., 2007). Wnt signalling has been demonstrated to be indispensable for stem cells 

maintenance of the adult small intestine (Korinek et al., 1998). Barker and colleagues thus 

hypothesized that a Wnt target gene, like Lgr5, would provide a faithful marker for intestinal 

stem cells (Barker et al., 2007). By using an inducible Cre recombinase under the promoter of 

Lgr5 it was demonstrated that Lgr5+ cells are self-renewing, multipotent stem cells in the 

intestine and colon (Barker et al., 2007). 

A refined way of using lineage tracing has been developed by tracking cells on the clonal 

level. By carefully titrating down the amount of labelled cells one can trace the clonal 

expansion of single cells. One of the first study that took advantage of this approach traced 

single progenitors of the murine epidermis over time (Clayton et al., 2007). Analysis of the 

clone-size distribution over time suggested that all epidermal progenitors are equally capable 

of generating progeny and whether these cells do so or not was stochastically determined 

(Clayton et al., 2007). This finding laid the basis for a new model of homeostasis maintenance 

in which stem cells and committed progenitors are not hierarchically organized (Fig. 2c). 

Rather than that, homeostasis was maintained by a single type of equipotent progenitors 

which are stochastically activated (Klein and Simons, 2011b). A similar mechanism of tissue 

maintenance was proposed for other tissues (Doupé et al., 2012; 2010; Klein et al., 2010). 

Another elegant way to perform lineage tracing of single cells was enabled by the 

introduction of multicolour reporters (Kretzschmar and Watt, 2012). This system barcodes 

single cells with different colours upon Cre recombination (Livet et al., 2007). Thus, in 

contrast to conventional lineage tracing in which the fate of a cell population can be traced, 

multicolour lineage tracing enables the discrimination between single cells among the 

population of interest. The potential of this approach was demonstrated in studies of the small 

intestine. As described above lineage tracing revealed that the Lgr5+ population represents the 

stem cells of the small intestine (Barker et al., 2007). However, it was not known whether all 

Lgr5+ cells were multipotent, self-renewing stem cells and whether all Lgr5+ cells contributed 
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equally to homeostasis. By taking advantage of a multicolour system it was possible to label 

each Lgr5+ stem cells randomly with one of four colours as a result of Cre recombination 

(Snippert et al., 2010). Tracing single Lgr5+ cells confirmed multipotency and self-renewing 

capability on the clonal level (Snippert et al., 2010). Surprisingly, multicolour lineage tracing 

of revealed that competition dynamics among Lgr5+ stem cells leading to monoclonality of 

intestinal crypts though a mechanisms called “neutral drift dynamics” (Snippert et al., 2010). 

Thus, lineage tracing is not only a powerful tool to discover stem cells in a non-manipulated 

system, it further permits the tracing of single (stem) cells within a population.  

An alternative method for probing stem cell features is provided by in vitro culture. In vitro 

assays are conducted in an artificial environment and thus possibly lack crucial signals 

provided by the in vivo setting. Yet, cell culture assays have remained an important 

technological asset to stem cell studies for many years (Snippert et al., 2013). Besides obvious 

advantages such as cost-effectiveness, in vitro assays are less labour intensive and allow rapid 

and direct manipulation of the cell type of interest. Furthermore, many in vitro studies 

facilitated the identification of stem cells in certain tissues and instigated our current 

understanding of stem cell properties. This is exemplified by the hallmark study by Barrandon 

& Green (Barrandon and Green, 1987). Based on the proliferative capacity of keratinocytes in 

vitro three clonal cell types were defined (Barrandon and Green, 1987). Among these cell 

types so called “holoclones” displayed the greatest proliferative potential and were proposed 

to be the stem cells (Barrandon and Green, 1987). Subsequently, these cells were molecularly 

characterized and isolated from human tissue based on the expression of β1 integrins which 

opened the door for more detailed studies of human epidermal stem cells (Jones and Watt, 

1993).  

Despite the success of in vitro expansion and characterization of epidermal stem cells, no 

long-term culture system was available for many other stem cell systems (Sato and Clevers, 

2013). Recently, a three-dimensional cell culture system was developed in which stem cells 

can be cultured in matrigel, a laminin-rich basement membrane composition isolated from 

mouse sarcoma (Hughes et al.). Using this system single Lgr5+ stem cells isolated from the 

small intestine where shown to grow into three-dimensional structures, referred to as 

“organoids”, which resemble the crypt-like organization found in vivo (Sato et al., 2009). 

Interestingly, of all cells isolated from the small intestine, only stem cells were able to form 

organoids (Sato et al., 2009). Thus, the ability to form organoids seems to be stem cell-

specific trait, which has been confirmed in several murine and human tissues (Sasai, 2013). In 

a follow-up study Sato and colleagues demonstrated that direct contact of Lgr5+ stem cells 
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with the secretory paneth cells drastically facilitated organoid formation (Sato et al., 2010). 

This finding is explained by secretion of essential niche factors by paneth cells which was 

confirmed in vivo (Sato et al., 2010). Thus, the organoid formation assay does not only serve 

as a means to identify stem cells from various organs but also define the respective stem cell 

niche. 

Despite all above-mentioned technical advances for stem cell identification, it remains 

controversial whether all adult organs harbour stem-/progenitor cells (Wagers and Weissman, 

2004). One organ for which the existence of adult stem cells was extensively debated is the 

pancreas (Kong et al., 2011; Stanger and Hebrok, 2013; Ziv et al., 2013). 

 

 
 

 

1.3 Pancreatic cell types and their specification 

 

The murine pancreas starts to develop at embryonic day E8.5 (Zaret and Grompe, 2008). A 

particularity of pancreatic development is that the organ initiates from two distinct positions 

Long-term 
renewal capacity

Limited 
renewal capacity

No 
renewal capacity

a b

c Figure 2. Tissue maintenance by somatic stem cells. 
(a) Modified from (Beck and Blanpain, 2013). Concept of 
cellular hierarchy in tissues harbouring somatic stem cells. 
(b) From (Beck and Blanpain, 2013). Functional assays for 
testing stem cell properties. (c) From (Horsley, 2012). Two 
contrasting mechanisms of tissue maintenance: The hierar-
chical model the self-renewing capacity is limited with each 
differentiation step. The equivalent/equipotent progenitor 
model considers all progenityors to be equal in their self-
renewing capacity with activation and differentiation 
processes being solely stochastic.
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of the endoderm (Puri and Hebrok, 2010). Cells from the dorsal and ventral part of the 

definitive endoderm start budding into the surrounding mesenchyme (Fig. 3a) (Zaret and 

Grompe, 2008). At E11.5 rotation of the gut leads to the fusion of the ventral and dorsal 

pancreas and the organ further expands as a whole into the mesenchyme until all adult cell 

types are specified at E15.5 (Puri and Hebrok, 2010).  

During embryonic development multipotent progenitors have been shown to drive pancreatic 

organogenesis (Gu et al., 2002; Zhou et al., 2007). Pancreatic cells expressing the 

transcription factor Pdx-1 were shown to harbour multipotent progenitors which give rise to 

all pancreatic cell types (Gu et al., 2002). As the developing pancreas starts to branch and 

become morphologically more complex, Cpa-1-expressing multipotent progenitors are 

localized at the distal tip of the branching pancreas (Fig. 3a) (Zhou et al., 2007). From E12.5 

on, these pancreatic progenitors lose their multipotency and become lineage restricted (Gu et 

al., 2002). The specification of the pancreatic cell types during development requires a large 

number of spatially and temporally controlled signalling pathway such as FGF-, Notch- and 

Hh signalling and have extensively reviewed elsewhere (Puri and Hebrok, 2010). 

The adult pancreas can be functionally divided in two main units: The endocrine pancreas, 

that is, the Islets of Langerhans, regulating hormonal homeostasis in the animal and the 

exocrine pancreas, which is responsible for secreting digestive enzymes into the intestinal 

tract (Fig. 3b). The cell types defining the exocrine compartment are the digestive enzyme-

producing acinar cells that are structurally connected to duct cells, which line the secretory 

channel for the enzymes (Fig. 3b). The centroacinar cells represent the third exocrine cell 

type, their function, however, remains the most enigmatic of all exocrine cells (Cleveland et 

al., 2012). Endocrine cells of the pancreas comprise α, β and δ cells, which produce and 

secrete hormones such as glucagon, insulin and somatostatin (Fig. 3b).  

Arguably the best-studied cell type of the adult pancreas is the endocrine β cell. β cells 

express and secrete insulin upon food intake in order to reduce the blood glucose 

concentration (Alberts et al., 2014). In a pathological condition called Type 1 Diabetes, β 

cells get attacked by the host´s immune system and lost over time (Alberts et al., 2014). Thus, 

the endocrine research community has put extensive effort in finding ways to replace the lost 

β cells. The idea that endogenous, adult stem cells, once activated, might replace the lost β 

cells has efforts to find multipotent stem cells in the adult pancreas. The first evidence for the 

potential existence of pancreatic stem cells was provided by the isolation and in vitro culture 

of clonogenic cells from the adult pancreas (Rovira et al., 2010; Seaberg et al., 2004; Smukler 

et al., 2011). Nestin-expressing cells in pancreatic islets and ducts were shown to be 
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multipotent in vitro (Seaberg et al., 2004; Zulewski et al., 2001). Similarly, ALDH1-

expressing centroacinar cells were able to differentiate into exocrine and endocrine cells 

arguing for multipotent capacity in vitro (Rovira et al., 2010). More recently, organoid 

formation assays demonstrated the ability of duct cells to form endocrine and acinar 

organoids (Jin et al., 2013). In a similar study, Lgr5+ duct cells were shown to generate 

organoids with unlimited in vitro expansion capacity and the ability to give rise to duct and 

endocrine cells (Huch et al., 2013a). These results indicated that adult pancreatic cells possess 

the capacity to give rise to multiple cell types, albeit only in vitro. Whether some adult 

pancreatic cells are truly multipotent in their natural environment had to be demonstrated by 

lineage tracing experiments. Given the large interest from the diabetes research field, the 

laboratory of Douglas Melton tried to settle the debate by rigorously testing whether β cells 

would be generated by a multipotent, undifferentiated stem cell (Dor et al., 2004). In this 

study, the researcher genetically labelled β cells of young mice and chased the islet turnover 

over the course of one year (Dor et al., 2004). If the majority of newly generated β cells 

would be generated by undifferentiated stem cells (which does not express insulin) then the 

genetic label of the islets should dilute out over time. The authors demonstrated that the 

proportion of labelled β cells stayed constant over time, indicating that the majority of β cells 

are generated by pre-existing β cells (Dor et al., 2004). Similarly, it was also demonstrated 

that in the adult pancreas, acinar cells only give rise to acinar cells and thus, are unlikely to 

harbour multipotent cells (Desai et al., 2007). Further, Sox9-expressing duct cells only give 

rise to duct cells in the adult animal (Kopp et al., 2011). Collectively, these studies led to the 

prevalent perception that multipotency is lost during development and that the adult pancreas 

does not contain multipotent stem cells as classically defined and found in other adult organs 

(McCulloch and Till, 2005). Despite this notion, a few lineage-tracing studies seemed to 

detect multipotent subpopulations in the adult organ leading to controversy in the field (Kong 

et al., 2011; Stanger and Hebrok, 2013; Ziv et al., 2013). One example was given by tracing 

of Sox9+ cells in the liver, intestine and pancreas. The authors found that, in contrast to 

another study published shortly after, Sox9 expressing pancreatic duct cells give rise to acinar 

cells (Furuyama et al., 2011; Kopp et al., 2011). 

Regardless of the controversy about multipotency under homeostatic conditions, there is a 

large body of evidence for the loss of lineage restriction under non-homeostatic conditions 

(Puri and Hebrok, 2010; Puri et al., 2015). Similar to other tissues, relatively little genetic 

manipulation of pancreatic cells types leads to cell type conversion. For instance elevated 

Hedgehog signalling as a result of expressing an active form of the transcription factor GLI2 
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leads to β cell dedifferentiation assessed by expression of markers expressed in the 

developing pancreas (Landsman et al., 2011). Similarly, loss of the E3 ubiquitin ligase 

substrate recognition component Fbw7 leads to transdifferentiation of duct cells into α, β and 

δ cells (Sancho et al., 2014). By now it has been demonstrated that genetic reprogramming 

takes little genetic manipulations for cells from most tissues (Xu et al., 2016).  

The pancreas however, seems to display a remarkable degree of cellular plasticity in several 

injury paradigms even in the absence of genetic manipulations (Puri and Hebrok, 2010; Puri 

et al., 2015). Acinar cells transiently convert into duct-like cells, a process termed acinar-to-

ductal metaplasia, as demonstrated for several different injury models (Jensen et al., 2005; 

Morris et al., 2010; Puri et al., 2015). Upon injury acinar cells start to express embryonic 

markers indicating a dedifferentiation upon injury (Pan et al., 2013). It has been speculated 

that this dedifferentiation step might be prerequisite for regeneration of the pancreas (Jensen 

et al., 2005). Building on this concept, it was proposed that the adult pancreas might harbour 

so-called facultative stem cells (Kong et al., 2011; Yanger and Stanger, 2011). The term 

facultative stem cells describes cells which act as terminally differentiated somatic cells under 

homeostatic conditions while transforming into stem cells under conditions such as injury 

(Yanger and Stanger, 2011). However, the lack of solid data supporting this hypothesis leads 

to scepticism in the field as to whether this concept applies to the adult pancreas (Kopp et al., 

2016). Besides acinar-to-ductal metaplasia, acinar cells have also been shown to give rise to 

β-like cells after transient treatment with the cytokines EGF and CNTF (Baeyens et al., 2013). 

Researchers are currently trying to exploit the plasticity of adult acinar cells for acinar-to-β 

cell reprogramming efforts as an attempt to cure type I diabetes (Li et al., 2014; Zhou et al., 

2008).  

Aside from the cumulative evidence for acinar plasticity, the endocrine cells of the pancreas 

also display marked disengagement from lineage restriction. Under conditions of extreme β 

cell loss α and δ cells convert into insulin producing β cells (Chera et al., 2014; Thorel et al., 

2010). Further, in multiple diabetes mouse models β cells were shown to be lost as a result of 

dedifferentiation as opposed to cell death as previously believed (Talchai et al., 2012). Thus, 

the interconversion among endocrine cells indicates that marked plasticity during injury might 

be a general feature of cells from the adult pancreas.  
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Figure 3. Cell types of the developing and adult pancreas. (a) From (Puri et al., 2015). 
Specification of cell types in the developing pancreas. (b) Modified from (Kopp et al., 2016). Left 
panel: Cell types of the adult pancreas. Right panel: No lineage plasticity among acinar, duct and β-
cells in the adult pancreas under homeostatic conditions.  
 

 

1.4 Pancreatic cancer 

 

Recent year´s research has established a link between cellular plasticity and susceptibility to 

tumour formation for many types of cancer (Roy and Hebrok, 2015). The above-described 

evidence for plasticity among cell types of the adult pancreas thus potentially renders 

endocrine and exocrine cells highly susceptible for development of pancreatic cancer. 

Pancreatic tumours can arise from endocrine or exocrine cells. Pancreatic endocrine tumours 

represent a rare form of pancreatic malignancies and can be further classified depending on 

which endocrine cell type it arises from (Babu et al., 2013). The most common type of 

pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), originates from the exocrine 

pancreas (Roy and Hebrok, 2015). One hallmark of PDAC is it´s poor prognosis for patients 

diagnosed with this disease, with an overall 5-year survival rate of under 5% (Hidalgo, 2010). 

It has been extensively investigated which cell type within the exocrine pancreas is the cell 

type of origin for PDAC. The ductal morphology and marker expression of the tumour cells, 

hence the name ductal adenocarcinoma, suggested that the cell of origin of PDAC is a duct 

cell (Roy and Hebrok, 2015). The most commonly found mutation in PDAC patients, a K-Ras 

point mutation, was subsequently introduced in murine duct cells hoping to create a mouse 

model for PDAC (Brembeck et al., 2003). Surprisingly, this model did not efficiently induce 

PDAC (Brembeck et al., 2003). In contrast, many groups found that introducing a K-Ras 

mutation in acinar cells led to very efficient development of tumour precursor lesion called 

pancreatic intraepithelial neoplasia (PanIN) and PDAC (Carrière et al., 2007; Guerra et al., 

2011; 2007; Habbe et al., 2008; La O et al., 2008). A recent study aimed to directly compare 

the tumour initiating capacity of acinar and duct cells by introducing the oncogenic K-Ras 

mutation in the respective cell types (Kopp et al., 2012). This study demonstrated that, acinar 

α-cells
β-cells
δ-cells

a b
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cells are clearly more susceptible to oncogenic transformation while duct and centroacinar 

cells are surprisingly refractory (Kopp et al., 2012). Thus, according to the data accumulated 

from mouse model studies, acinar cells likely represent the cell of origin for PDAC (Fig 4a). 

The degree of susceptibility however, seems to depend on state of the acinar cell. It was 

shown that oncogenic K-Ras mutations in embryonic or early postnatal acinar cells render 

these cells more prone to tumour formation as compared to adult introduction of the same 

mutation in adult acinar cells (Guerra et al., 2007). Additionally, it was demonstrated that 

inflammation increases the susceptibility of adult acinar cells to oncogenic transformation 

(Carrière et al., 2011; Guerra et al., 2007). 

Another interesting observation made by Guerra and colleagues was that although the authors 

introduced the K-Ras mutation in a large number of acinar cells, many cells seem to be 

resistant to oncogenic transformation and appeared unaffected (Guerra et al., 2007). This 

notion led to the hypothesis that the adult pancreas might harbour subpopulation of cells 

which might be more or less susceptible to tumour initiation (Fig. 4b) (Roy and Hebrok, 

2015). In fact mouse models for many different types of cancer demonstrated that in order to 

efficiently generate tumours the oncogenic mutation needs to be introduced in the stem-

/progenitor cells of the respective tissues (Visvader, 2011). Whether acinar cells represent a 

heterogeneous pool of cells that contains stem-/progenitor-like cells is currently not known.  

 
Figure 4. Acinar cells represent the cell of origin for pancreatic ductal adenocarcinoma 
(PDAC). (a) Modified from (Morris et al., 2010). Acinar-to-ductal metaplasia during pancreatic 
tumour initiation. (b) Modified from (Kopp et al., 2016). Potential acinar heterogeneity underlying 
varying susceptibility of acinar cells to tumour initiation.  
!
! !

Acinar cell heterogeneity ?a b
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2 Materials & Methods 
 
2.1 Materials 
 
2.1.1 Chemicals & Reagents 
 
 

Reagent 
 

 

Manufacturer 
2-mercaptoethanol Sigma-Aldrich 
Acetone Sigma-Aldrich 
Agencourt Ampure XP beads Beckman Coulter 
B27 Serum-Free Supplement Gibco 
Betaine (BioUltra ≥99.0%) Sigma-Aldrich 
Bovine serum albumin (BSA) Sigma-Aldrich 
Cerulein Sigma-Aldrich 
Dithiothreitol (DTT) Invitrogen 
DNA-OFF  Takara Bio 
Eosin solution Merck 
Ethanol Sigma-Aldrich 
Fluoromount G eBioscience 
Guanidine-HCl Sigma-Aldrich 
Hoechst 33342 Biotrend 
Hydrochloric acid (HCl) VWR 
Matrigel BD Biosciences 
Magnesium chloride (MgCl2; anhydrous) Sigma-Aldrich 
Mayer’s hemalum Merck 
N-2 Supplement Gibco 
OCT compound Sakura 
Paraformaldehyd (Roti®-Histofix) Carl Roth 
Penicillin-Streptomycin Gibco 
RNaseZap  Ambion 
Sucrose Sigma-Aldrich 
Tamoxifen Sigma-Aldrich 
Triton-X 100 Sigma-Aldrich 
Tween-20 Sigma-Aldrich 
Xylene Sigma-Aldrich 
 
 
2.1.2 Buffers & Media 
 
 

Buffer / Medium 
 

 

Composition 
Acinar cell isolation buffers  

C solution 4% BSA in PBS 
D solution 1mg/ml collagenase, 0.25% BSA in PBS 
I solution 0.1% BSA in PBS 
R solution 1% BSA in PBS 

Acinar cell medium 1:1 Dulbecco’s Modified Eagle’s Medium - 
high glucose & Ham's F-12 Nutrient Mix – 
GlutaMAX, 2% (vol/vol) B27 Serum-Free 
Supplement, 1% (vol/vol) N-2 Supplement, 
20ng/ml rHu EGF, 20ng/mL human FGF-2, 
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1% Penicillin-Streptomycin (100 units/ml) 
Acinar Lysis Buffer for single cell RNA-seq 6M Guanidine-HCl and 0.1% (vol/vol) 

Triton X-100 
Dehydration Buffer PBS containing 30% Sucrose 
FACS Buffer PBS containing 10% FCS 
Hank's Balanced Salt Solution (HBSS) Purchased from Life Technologies 
PBS 160 g/l NaCl, 23 g/l Na2HPO4, 28.84 g/l 

NaH2PO4, 4 g/l KCl, 4 g/l KH2PO4 in H2O. 
Adjust pH to 7.4 with HCl 

Wash/Block Buffer  5% Horse Serum, 0.5% BSA, 0.2% Tween-
20 in PBS 

 
 
2.1.3 Kits 
 
 

Kit 
 

 

Manufacturer 
 

Agilent high-sensitivity DNA kit  Agilent Technologies 
DeadEnd™ Fluorometric TUNEL System Promega 
EdU click-iT kit Life Technologies 
KAPA HiFi HotStart ReadyMix % KAPA Biosystems 
Nextera XT 24-index kit Illumina 
Nextera XT DNA sample preparation kit  Illumina 
Power SYBR® Green PCR Master Mix Life Technologies 
Superscript III First Strand Synthesis 
SuperMix  

Invitrogen 

TruSeq dual-index sequencing primer kit for 
single-read runs 

Illumina 

 
 
2.1.4 Recombinant Proteins 
 
 

Proteins / Enzymes 
 

 

Manufacturer 
 

Collagenase Type CLS IV Biochrom 
rHu EGF Promokine 
human FGF-2 ReliaTech 
Superscript II reverse transcriptase Invitrogen 
Recombinant RNase inhibitor Clontech 
 
 
2.1.5 Antibodies 
 
 

Antibody 
 

 

Dilution 
 

 

Clone / Manufacturer 
 

Rabbit anti-α-Amylase 1:200 #A8273 / Sigma-Aldrich 
Rat anti-Cytokeratin 19 1:100 Troma III, Hybridoma Bank, 

Iowa University 
Rat anti-E-cadherin 1:1000 #13-1900 / Invitrogen 
Mouse anti-Insulin 1:200 #I2018 / Sigma-Aldrich 
Mouse anti-Ki67 1:100 #556003 / BD Bioscience 
Rabbit anti-phospho-Histone 1:500 #06-570 / Millipore 
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H3 
Mouse anti-OP18 (A-4) – 
STMN1 

1:200 #sc-48362 / Santa Cruz 
Biotechnology 

Chicken anti-GFP 1:1000 #1020 / Aves 
 
 
2.1.6 Oligonucleotides 
 
 

Oligonucleotide 
 

 

Sequence 
 

 

Manufacturer 
 

Amy2a_fw 
(Amylase) 

5´-TGCAGGTCTCTCCACCCAATGAAA-3´, 
 

Eurofins MWG 
Operon 

Amy2a_rev 
(Amylase) 

5´-TGCACCTTGTCACCATGTCTCTGA-3´ Eurofins MWG 
Operon 

Bhlha15_fw 
(Mist1) 

5´-AATAAGGAGGGTGAGTGGTTGGCA-3´ Eurofins MWG 
Operon 

Bhlha15_rev 
(Mist1) 

5´-AAGGAAGAGGCCAAGGACAAGTGA-
3´ 

Eurofins MWG 
Operon 

Cela1_fw 
(Elastase) 

5´-AATGTCATTGCCTCCAACTGAGCG-3´ Eurofins MWG 
Operon 

Cela1_fw 
(Elastase) 

5´-ATTAGACAAGTGCTCGGCCACTGA-3´ Eurofins MWG 
Operon 

ERCC Spike-In 
RNAs 

See manufacturers instructions Ambion 

Hnf1b_fw 5´-ACAATCCCAGCAATCTCAGAA-3´ Eurofins MWG 
Operon 

Hnf1b_rev 5´-GCTGCTAGCCACACTGTTAATGA-3’ Eurofins MWG 
Operon 

ISPCR oligo 5’-AAGCAGTGGTATCAACGCAGAGT-3’ Eurofins MWG 
Operon 

Krt19_fw 
(Cytokeratin 19) 

5´-TCCCAGCTCAGCATGAAAGCT-3´ Eurofins MWG 
Operon 

Krt19_rev 
(Cytokeratin 19) 

5´-AAAACCGCTGATCAGCTCTG-3’ Eurofins MWG 
Operon 

Oligo-dT30VN 5’–AAGCAGTGGTATCAACGC 
AGAGTACT30VN-3’ 

Eurofins MWG 
Operon 

Ptf1a_fw 5´-TGCGCTTGGCCATAGGCTACATTA-3’ Eurofins MWG 
Operon 

Ptf1a_rev 5´-AGATGATAACCTTCTGGGCCTGGT-3’ Eurofins MWG 
Operon 

Sox9_fw 5´-CAAGACTCTGGGCAAGCTCTG-3´ Eurofins MWG 
Operon 

Sox9_rev 5´-TCCGCTTGTCCGTTCTTCAC-3´ Eurofins MWG 
Operon 

Template 
Switching Oligo 
(TSO) 

5’-AAGCAGTGGTATCAA 
CGCAGAGTACATrGrG+G-3’ 
rG = riboguanosines, +G = LNA-modified 
guanosine 

Eurogentec 
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2.1.7 Laboratory Equipment 
 
 

Equipment / Software  
 

 

Manufacturer 
 

ABO 7500 Fast Real-Time PCR System 
Cycler 

Applied- Biosystem 

Adobe Illustrator CS V15.0.0 Adobe 
Adobe Photoshop CS5 Extended V12.0 Adobe 
Agilent 2100 Bioanalyzer Agilent 
Cell strainer (70µm) BD Bioscience 
FACSCanto II Flow Cytometer BD Bioscience 
Fiji doi:10.1038/nmeth.2019 
Flaming/Brown Micropipette Puller P-87 Sutter Instrument Co. 
Illumina HiSeq2000 sequencer Illumina 
Integrative Genome Viewer Broad Institute 
Lab-Tek chamber slides IBDI 
Leica CM 1950 Cryomicrotome  Leica 
R studio RStudio, Inc. 
TCS SP5 confocal microscope Leica 
Zeiss Cell Observer Zeiss 
 
2.1.8 Mouse Strains 
 
 

Mouse Strain  
 

 

Origin 
 

C57BL/6N Charles River Laboratories 
B6(D2)-Tg(CAG-Brainbow1.0)2Eggn/J kindly provided by Dr. Kevin Eggan 
B6.Cg-Tg(Nes-cre/Esr1)GSc kindly provided by Dr. Günther Schütz 
B6-Gt(ROSA)26Sortm3Sia kindly provided by Dr. Jan Ellenberg 
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2.2 Methods 

 

2.2.1 Tissue Preparation for Rainbow2 Imaging 

In order to induce rainbow2 colours adult rainbow2 mice were intraperitonally injected with 

100µl of 10mg/ml Tamoxifen (Sigma-Aldrich) twice daily for 5 consecutive days. At given 

time points the mice were perfused with HBSS (room temperature) following 4% ice cold 

PFA. The pancreas was extracted, adipose tissue carefully removed, and the pancreas was 

post-fixed for 15 min in 4% PFA on ice. Afterwards the pancreas was transferred to 30% 

sucrose in PBS and incubated at 4°C until the tissue settled on the bottom of the vessel. The 

pancreas was embedded in OCT compound (Sakura) and stored at -20 overnight. Tissue 

sectioning was performed using a Leica CM 1950 Cryomicrotome (Leica) with the 

cryochamber and specimen head at -20°C. Section thickness for time points 1, 7 28, 84 dpi 

was 20µm and for time point 365 dpi 50µm. Four consecutive sections were collected on each 

glass slides, mounted with Fluoromount G (eBioscience) and directly imaged at a Leica TCS 

SP5 confocal microscope (Leica). 

 

 

2.2.2 Confocal Analysis of Rainbow2 Pancreas Sections 

 

Images were acquired as XYZ stacks at a 1024 x 1024 pixel resolution. Z planes of images 

were quantified separately. For representation maximum projection of z planes was used. For 

fluorophore excitation the following settings were used: dTomato (helium–neon laser 561nm; 

1mW, emitted photons collected between 572nm and 686nm), Cerulean (argon multiline laser 

458nm, 100mW, emitted photons collected between 464nm and 504nm), eYFP (argon 

multiline laser 514nm, 100mW, emitted photons collected between 522nm and 576nm). 

Tunable spectral PMTs were used as detectors. Clones were discriminated by colour 

composition and clone size was determined by counting of nuclei within a clone.  

 

 

2.2.3 Acinar Cell Isolation and Culture 

 

Mice were perfused with 20ml HBSS (Gibco), the pancreas was extracted and adipose tissue 

removed. Four solutions were prepared, including D solution: 1mg/ml Collagenase Type CLS 

IV supplemented with 0.25% BSA (Sigma-Aldrich), R solution: 1% BSA dissolved in PBS, C 
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solution: 4% BSA in PBS and I solution: 0.1% BSA in PBS. The tissue was chopped into 

small pieces and incubated in 10ml of D solution at 37°C for 30 minutes. The digestion 

product was filtered through a 70μm cell strainer (Islets of Langerhans were thereby 

removed). 10ml of R solution was pipetted on the cell strainer. A quarter of the filtered cell 

suspension was gently transferred on top of 6ml C solution to achieve layer separation of the 

liquids. Acini were spun down at 50g for 2 minutes and washed with C solution and I solution 

successively. Purified acini were treated with 2ml Accutase (Sigma-Aldrich) for 5min to 

acquire acinar cell suspension containing single cells and clusters of acinar cells. 

Single acinar cells or acinar doublets isolated from H2B-mcherry mice were handpicked using 

a heat pulled glass capillaries (bevelled at 30°C with an inner diameter of appr. 75-100 μm) 

and transferred to 20µl of Matrigel, which was kept unpolymerized on ice. Cell viability and 

correct cell number were assessed immediately afterwards by fluorescence microscopy. 

For 500 acinar cell experiments the mixture was pipetted as drops in selected cell culture 

plates or dishes and incubated at 37°C for 20 minutes before the addition of culture medium. 

The cells were cultured 11 days and imaged on day 0-4 as well as on day 6 and 11. 

The medium used to culture pancreatic cells was composed of a 1:1 mixture of Dulbecco’s 

Modified Eagle’s Medium - high glucose (Sigma-Aldrich) and Ham's F-12 Nutrient Mix - 

GlutaMAX (Gibco), with the supplementary of 2% (vol/vol) B27 Serum-Free Supplement 

(Gibco), 1% (vol/vol) N-2 Supplement (Gibco), 20ng/ml rHu EGF (Promokine), 20ng/mL 

human FGF-2 (ReliaTech) and 1% Penicillin-Streptomycin (100 units/ml, Gibco). Cells were 

cultured at 37 ℃ and the medium was refreshed every third day. Organoid imaging was 

conducted using a Zeiss Cell Observer (Zeiss). 

 

 

2.2.4 Flow Cytometry 

 

For flow cytometry analysis the cells were isolated as described above and resuspended in 

2ml pancreatic cell medium. The cells were fixed with 1% PFA for 10min at room 

temperature and permeabilized with 0.1% Triton-X 100 in PBS. After a single washing step 

with ice cold FACS Buffer (PBS containing 10% FCS (Biochrom) primary antibodies were 

diluted in ice cold FACS Buffer and incubated for 1 hour at 4°C. After the incubation cells 

were washed twice. Secondary antibodies were diluted in ice cold FACS Buffer and cells 

were incubated for 30min at 4°C. Next cells were washed twice and resuspended in the FACS 

Buffer for flow cytometry analysis using a FACSCanto II Flow Cytometer (BD Bioscience).  
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Following antibodies were used: Amylase (Rabbit anti-α-Amylase, 1:200, Sigma-Aldrich 

#A8273), CK19 (Rat anti-Cytokeratin 19, 1:100, Troma III, Hybridoma Bank, Iowa 

University). 

 

 

2.2.5 Immunoflourescence Stainings 

 

For immunohistochemical analysis the mice were perfused with HBSS and 4% PFA 

pancreatic tissue was post-fixed for 2 hours at 4°C. Afterwards the pancreas was transferred 

to 30% sucrose in PBS and incubated at 4°C until the tissue settled on the bottom of the 

vessel. The tissue was embedded in OCT compound (Sakura) and cut into 20µm sections. For 

stainings of organoids the acinar cells were cultured in Matrigel on Lab-Tek chamber slides 

(IBDI) and at given timepoints fixed with 1% PFA at 4°C for 10min in the chambers. After a 

single washing step with PBS the cells were stained as described for tissue sections. 

The sections were incubated in PBS at room temperature until OCT surrounding the sections 

was washed away. The tissue was incubated with 0.1% Triton-X 100 (Sigma-Aldrich) in PBS 

for 30min. For blocking the sections were incubated with Wash/Block Buffer containing 5% 

Serum (Biochrom), 0.5% BSA, 0.2% Tween-20 (Sigma-Aldrich) in PBS. The primary 

antibodies were diluted in Wash/Block Buffer and incubated over night at 4°C. On the next 

day the primary antibody was washed away 3x 5min using Wash/Block Buffer. The 

secondary antibody was diluted in Wash/Block Buffer with Hoechst 33342 (Biotrend 1:3000) 

and incubated for 1 hour at room temperature. Next the secondary antibody was washed away 

3x 5min using Wash/Block Buffer and the tissue was mounted with Fluoromount G. TUNEL 

staining was done according to manufacturer’s protocol (Promega). Following antibodies 

were used: Amylase (Rabbit anti-α-Amylase, 1:200, Sigma-Aldrich #A8273), CK19 (Rat 

anti-Cytokeratin 19, 1:100, Troma III, Hybridoma Bank, Iowa University), E-cadherin (Rat 

anti-E-cadherin, 1:1000, Invitrogen #13-1900), Insulin (Mouse anti-Insulin, 1:200, Sigma-

Aldrich #I2018), Ki67 (Mouse anti-Ki67, 1:100, BD Bioscience #556003), pH3 (Rabbit anti-

phospho-Histone H3, 1:500, Millipore #06-570), STMN1 (Mouse anti-OP18 (A-4), 1:200, 

Santa Cruz Biotechnology #sc-48362), YFP (Chicken anti-GFP, 1:1000, Aves #1020 – cross-

reactive with YFP) 
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2.2.6 Hematoxylin and Eosin staining 

 

Cryosection specimens of the pancreas were fixed in acetone for 2 mins and air dried for 5 

seconds. The slides were then incubated in Hematoxylin solution (Mayer’s hemalum from 

Merck, 1:1 diluted with tap water) for 90 seconds and dipped in 1% HCl (concentrated HCl 

diluted in 70% ethanol) for 30 seconds. With running tap water, excessive Hematoxylin was 

washed. After a single dip in Eosin solution (Merck, 1% Eosin dissolved in tap water with 2 

drops of acetic acid per 50ml solution), slides were rapidly washed under running tap water 

until water turned clear. To remove excessive Eosin, slides were washed with 100% ethanol 

for at least 40 times. Clearing in xylene for 15 seconds was necessary before mounting the 

slides with mounting medium. 

 

 

2.2.7 Quantitative Real-Time PCR 

 

Reverse transcription reaction was performed using the Superscript III First Strand Synthesis 

SuperMix from Invitrogen according to the manufacturer’s instructions. Quantitative real-

time PCR was performed with Power SYBR® Green PCR Master Mix according to the 

manufacturer´s protocol in a 96 well plate with a ABO 7500 Fast Real-Time PCR System 

Cycler (Applied- Biosystem). Relative levels of gene expression were quantified, using the 2-

∆∆CT method.  

 

 

2.2.8 Cerulein Treatment 

 

Accute pancreatits was induced as previously described(Carrière et al., 2011). Briefly, adult 

mice were intraperitoneally injected with Cerulein (Sigma-Aldrich) in PBS (50µg/Kg of body 

weight) hourly for seven hours on two consecutive days. The last injection on day two was 

defined as time point 0 and mice were sacrificed 28 days later. 
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2.2.9 Image analysis 

 

Cells from images of recombined NesCreERT2 rainbow2 mice were segmented using a 

modified version of the Fiji segmentation from (Cervero et al., 2013). For each segmented 

cell the RGB values and pixel coordinates were recorded. Next, the RGB values were 

converted to HSV colour space. For each image obtained from a given microscopy session a 

cell in which the Cre recombinase didn’t recombine (which only expresses dTomato) was 

used for normalization of HSV values. Next, we clustered the segmented cells based on the 

similarity of its HSV values. In order to discover the number of colours in a bottom up 

fashion we decided to utilize a clustering algorithm that doesn´t require a priori determination 

of the number of clusters. For this purpose we decided to use affinity propagation clustering 

(Frey and Dueck, 2007). The affinity propagation clustering algorithm defines a certain 

amount of colours (clusters) as well as an example cell for this colour (exemplars) 

autonomously. However, in contrast to e.g. the k-means clustering algorithm this algorithm 

simultaneously considers all cells to be potential exemplars for clusters. Thus, it doesn´t 

require initially randomly defined exemplars which the result is quite sensitive to (Frey and 

Dueck, 2007). The number of clusters the algorithm detects depends on input preference 

values (q-values). Depending on the q-values we got a colour range from 14-108 clusters. 

Next, we aimed to find out which cluster number most likely represents the true amount of 

colours. For this purpose we supervised the clustering. We examined the exemplars of each 

cluster by eye and clustered them according to their similarity. Although the number of 

clusters linearly increases as a function of the q- values, our manual analysis showed that the 

number of supervised clusters saturates. We therefore considered the supervised cluster 

number at q = 0.5 to be closest to the true amount of colours we detect in our setup since an 

even higher q-value will be very unlike to provide more colours in the supervised clustering 

analysis.  

 

 

2.2.10 Clone fusion probability estimation 

 

In order to get an estimate of how likely the probability of clone fusion is we determined the 

x-y coordinates of 573 segmented cells in which the Cre recombinase induced a rainbow2 

color. Since cells with overrepresented colors will have higher fusion probability, the clone-

fusion probability had to be considered for each color separately. We determined the largest 
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diameter of the biggest clone of each color group at one year after labeling. Next, we analyzed 

how frequently cells with the same color were within this distance at 1 DPI. For any analyzed 

picture the ration between the maximum number of potentially fused clones and the total 

number of fused clones determines the clone fusion probability. 

 

 

2.2.11 Single cell RNA seq 

 

Single cell RNA seq library preparation protocol was based on the SMART seq2 protocol 

(Picelli et al., 2014) with following modifications: 

Acinar cells were isolated as described in the section “Acinar Cell Isolation and Culture” and 

resuspended in DPBS without Ca2+ and Mg2+ (PAN-Biotech). Cells were collected in a 

volume of 0.5µl and transferred to a reaction tube containing 4µl of 6M Guanidine-HCl 

(Sigma-Aldrich) and 0.1% (vol/vol) Triton X-100 (Sigma-Aldrich). The tube was 

immediately transferred into liquid nitrogen and kept there for the duration of cell collection. 

Next, 2.2x RNA SPRI beads (Beckman Coulter) was added directly to the lysis buffer and 

incubated for 5 min at room temperature. The beads were washed twice with 70% Ethanol. 

Air-dried beads were resuspended in a solution containing 2µl H20, 1 µl oligo-dT primer and 

1µl dNTP mix (primer and nucleotides used as in (Picelli et al., 2014)). 24 cells contained 

ERCC Spike-In RNAs (1:10 000 – Mix2, Ambion) Mix in addition to primer and nucleotides. 

Beads were incubated for 3 min at 72°C and reverse transcription and PCR (19 cycles) were 

performed as described (Picelli et al., 2014). PCR product was cleaned up using 0.8x DNA 

SPRI beads (Beckman Coulter) and air dried beads were resuspended in 15µl H2O. Quality of 

cDNA library was assessed for each cell on a high sensitivity DNA Bioanalyzer chip. 

Subsequent steps (tagmentation, amplification, multiplexing) were done as previously 

described (Llorens-Bobadilla et al., 2015). DKFZ Genomics and Proteomics Core Facility 

conducted sequencing on an Illumina HiSeq2000 sequencer (paired-end 100bp).  

 

 

2.2.12 Single-cell RNA-seq data analysis  

 

In total, we did single-cell RNA-seq on 108 acinar cells. Dr. Sheng Zhao performed data 

analysis. The following steps are described by him:  

Read trimming and mapping: 
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Quality of raw reads was checked by FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Before alignment, adapter 

sequences in raw reads were trimmed by Btrim64 (http://graphics.med.yale.edu/trim)(Kong, 

2011). Trimmed reads were mapped to mouse genome (ENSEMBL Release 80) using 

STAR_2.4.2a.  Genome mapping results were visualized by using Integrative Genome 

Viewer (www.broadinstitute.org/igv/). 

RNA-seq data quality metrics: 

RNA-seq data quality metrics of each cell, including total reads, transcriptome mapped reads 

and transcriptome mapped rate was calculated by picard-tools-1.123 

(https://broadinstitute.github.io/picard/). 

Gene Expression Matrices: 

Gene expression matrices were generated as previously described (Llorens-Bobadilla et al., 

2015; Shalek et al., 2013; 2014) with slight modifications. Briefly, expression level of each 

gene was quantified in unites by transcript per million (TPM) using RSEM 1.2.21 (Li and 

Dewey, 2011) with bowtie2-2.2.6 using default parameters. To compare expression levels of 

different genes across samples, we performed an additional TMM (trimmed mean of M-

values) normalization on TPM using Trinity (Haas et al., 2013) (http://trinityRNA-

seq.github.io/) based on edgeR (Robinson and Oshlack, 2010) (abbreviated TMM-TPM). The 

purpose of this normalization is to account for differences in total cellular RNA production 

across all cells. 

Validation Single-cell RNA-seq data using ERCC spike-in controls, technical replicates and 

population RNA-seq data: 

We assessed the quality of single-cell RNA-seq data by comparing the results with known 

quantities of 92 ERCC spike-in RNA transcripts. Briefly, 92 ERCC spike-in RNA transcripts 

were randomly add to 19 single cells when preparing library. Expression levels of 92 ERCC 

spike-in controls in these 19 cells were quantified in units of TPM by RSEM.  

Principal component analysis (PCA): 

We developed custom R scripts based on FactoMineR library (http://factominer.free.fr/) 

performing PCA analysis on gene expression matrices. PCA analysis was performed on cells 

passed quality control using all genes expressed in more than two cells and with a variance in 

log2 (TMM-TPM) across all single cells greater than 0.5. In total, 4, 628 genes in 108 cells 

were used. Subsequently, genes with the highest correlation coefficient with one of the first 

three or four principal components were identified using dimdesc function in FactoMineR. 
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Hierarchical clustering was performed on cells and on the genes identified by PCA using 

Euclidean distance or correlation metric. 

GO analysis: 

Gene ontology analysis was done using the DAVID database (v6.7) (Dennis et al., 2003) 
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3 Results 

 

 

3.1 Characterization of multicolour lineage tracing tools in the adult pancreas 

 

The aim of this project was to decipher the functional heterogeneity among adult acinar cells 

with respect to their capacity to proliferate and produce new acinar cells. We hypothesized 

two scenarios: a) all acinar cells have the capacity to divide or b) only a small subset of acinar 

cells retains proliferative capacity. In order to distinguish between the two scenarios we had 

to label individual acinar cells and trace their progeny over time. For this purpose we used 

multicolour lineage tracing based on the Cre/LoxP system (Livet et al., 2007; Tabansky et al., 

2013). This approach labels cells with different colours, which are inherited by the daughter 

cells. The size of acinar cell clones sharing the same colour indicates whether and to which 

extent the labelled acinar cell (and its progeny) divided. In order to label acinar cells in the 

pancreas, we chose an inducible Cre line under the Nestin regulatory elements (NesCreERT2), 

which has been previously demonstrated to label acinar cells (Carrière et al., 2011). Two of 

the most prominent multicolour lineage tracing reporter are the confetti mouse (Snippert et 

al., 2010) and the rainbow2 mouse (Tabansky et al., 2013). We crossed the NesCreERT2 mice 

with both multicolour reporters to test whether the systems works in the adult pancreas. We 

observed faithful labelling of pancreatic cells with multiple colours after injection of 

tamoxifen for both reporter lines (Fig. 5a,b). The confetti mouse line labelled pancreatic cells 

with 4 colours whereas the rainbow2 line offered a much greater variety of colours (Fig. 

5a,b). The reason for this discrepancy is the fact that the confetti construct is integrated only 

once in the ROSA26 locus (Snippert et al., 2010), whereas the rainbow2 construct is 

randomly integrated as a tandem of several constructs (Tabansky et al., 2013). Furthermore, 

the cells in the rainbow2 system express dTomato as a default colour without recombination 

of the Cre recombinase. This is – in contrast to the confetti line - due to the lack of a stop 

codon upstream of the rainbow2 cassette (Tabansky et al., 2013). Our goal was to label acinar 

cells on a clonal level so that we could distinguish one cell from another. We therefore chose 

to use the rainbow2 line for all subsequent experiments. The large variety of colours 

decreases the chance of two neighbouring acinar cells being labelled with the same colour and 

is thus more suitable for clonal analysis. Interestingly, we observed that the nuclei of cells 

labelled with the rainbow2 construct displayed strong autofluorescence (Fig. 5c). We took 
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advantage of the notion and determined the size of all acinar clones by estimating the number 

of nuclei in each clone. 

With these mouse lines at hand we wondered whether we could also perform clonal analysis 

of pancreatic tumour cells. Previously, it has been demonstrated that expression of mutated K-

Ras (KrasG12D) in the pancreas leads to formation of precursor lesions for pancreatic ductal 

adenocarcinoma (Hingorani et al., 2003). The induction of these so-called pancreatic 

intraepithelial neoplasia (PanIN) lesions can be further accelerated by induction of 

pancreatitis (Carrière et al., 2011; Guerra et al., 2007). We tested whether we could induce 

PanIN lesions by crossing the NesCreERT2 rainbow2 mice with mice expressing KrasG12D 

while additionally inducing pancreatitis (Fig. 5d). We observed PanIN lesions in all mice 

tested 8 weeks after induction of pancreatitis (Fig. 5d). Curiously, none of the PanIN lesions 

were labelled with rainbow2 colours, which impeded clonal analysis of neoplastic cells (data 

not shown). We speculate that epigenetic changes as a result of oncogenic transformation 

might have silenced the rainbow2 construct. 

 

 
Figure 5. Evaluation of multicolour lineage tracing constructs and NesCreERT2 
recombination in the adult pancreas. (a) NesCreERT2 mice crossed with CAG-Confetti mice (upper 
panel) revealed acinar specific expression of confetti colours (lower panel). (b) NesCreERT2 mice were 
crossed with CAG-Rainbow2 mice (upper panel) to obtain acinar specific rainbow2 expression (lower 
panel). (c) Hoechst 33342 counterstaining indicates nuclear identity of bright subcellular structure 
upon rainbow2 expression (arrowheads). Scale bar = 25µm. (d) NesCreERT2 mice crossed with 
KrasG12D mutant mice induces early neoplastic lesions in the adult pancreas. 
 

Next, we aimed to determine the number of colours offered by the rainbow2 line in our setup. 

It has been described that the rainbow2 construct labels embryonic cells with 21 distinct 

colours (Tabansky et al., 2013). This spectral variety is, however, not universal for all tissues 

since we detected only few colours in the adult brain (data not shown). We computationally 

segmented 2420 acinar cell from pictures obtained from NesCreERT2 rainbow2 mice. The 
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acinar cells were clustered according to the similarity of their colours by the affinity 

propagation (AP) clustering algorithm (Frey and Dueck, 2007)(Methods – Image analysis). 

The number of clusters that the algorithm detects linearly increased with the stringency (q 

value) of the algorithm (Fig. 6a). We estimated which q-value reflects the true amount of 

colours that we can distinguish by supervising the AP clustering (Methods – Image analysis). 

Supervision of the clustering revealed that number of clusters saturates with increasing q-

value (Fig. 6a). We determined a maximum of 17 distinct colours (Fig. 6b). Recently, it has 

been demonstrated that the confetti reporter line has a bias for certain colours (Lescroart et al., 

2014). Therefore, we had to determine whether the 17 detected colours are equally 

represented in our system. Among the 2420 analysed cells we detected 77% expressing the 

“Group1” default colour red (Fig. 6b,c). This indicates that the Cre recombinase was either 

only expressed in a subset of acinar cells or recombined very inefficiently. Analysis of the 

other colour groups indicated that the colours are not equally represented (Fig. 6d). This 

finding is important with respect to subsequent consideration of clonality. Thus, the unequal 

representation of colours seems to be a general issue for multicolour lineage tracing.  
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Figure 6. Characterization of rainbow2 colour spectrum in the adult pancreas. (a) Estimation 
of the number of rainbow2 colours by affinity propagation (AP) clustering and supervised AP 
clustering analysis. (b) Computational image segmentation of 2420 cells was conducted to determine 
the number of colours (17) using the rainbow2 system in the adult pancreas. Pictures of segmented 
cells are representative examples. (c) Quantification of recombination efficiency of the NesCreERT2 
rainbow2 system in the adult pancreas. The segmentation algorithm randomly selected 2430 acinar 
cells. Based on the supervised clustering, cells were divided into non-recombined cells that 
exclusively expressed dTomato (Group 1 – 1857 cells) and recombined cells (Group 2-17 – 573 
cells). 
 

 

3.2 Identification of proliferative acinar subpopulation in vivo 

 

The results thus far demonstrate that the NesCreERT2 rainbow2 line can be used for clonal 

analysis of pancreatic acinar cells. Therefore, we investigated the proliferative potential of 

single acinar cells over time in a pulse-chase experiment. We injected tamoxifen to induce the 

rainbow2 colours and sacrificed the animals at the indicated time points (Fig. 7). At the first 

day post injection (DPI) of tamoxifen we primarily found acinar clones with one or two nuclei 

per clone (Fig. 7). The surprisingly large number of two-nuclei clones is unlikely due to 

proliferation in such a short time frame given the quiescent nature of the organ (Magami et 
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al., 1990). Rather, these cells represent a pool of binuclear acinar cells that have previously 

been described in rats (Oates and Morgan, 1986; P S Oates, 1989). In the three subsequent 

time points (7 DPI, 28 DPI, 84 DPI) the number of acinar cells with two nuclei steadily 

increased (Fig 7).  

 

 
Figure 7. Multicolour lineage tracing of adult acinar cells reveals clonal heterogeneity. 
Quantitative analysis of the clone size distribution (fraction of clones with a certain number of nuclei) 
at the given time points after induction of the rainbow2 system. For 1 DPI n = 885 clones from 3 mice; 
7 DPI n = 1185 clones from 5 mice, 28 DPI n = 681 clones from 3 mice, 84 DPI n = 274 clones from 3 
mice were analysed. Scale bars = 50µm. Data represent mean ± SD. 
 

This indicates a potential transition from a mono- to a binuclear acinar cell state. Interestingly, 

a subset of acinar cells produced clones of larger size over time as indicated by the tail of the 

distribution from 28 DPI on (Fig. 7). 

This finding suggested that only a small subset of acinar cells exhibits proliferative capacity. 

Another possible explanation for the obtained clone size distribution was that some acinar 

cells stochastically proliferate more than others. This was previously observed for progenitor 

cells in mouse tail epidermis (Clayton et al., 2007). In this system, all cells are equipotent and 

thus all have the capacity to divide. Subsequently, with time all cells start to form large 

clusters of clones. If this was also the case for the acinar cells, the peak of the distribution 

should shift towards larger clones after long periods of time as it was observed for epidermis 

progenitor cells (Clayton et al., 2007). We therefore induced the rainbow2 colours and chased 

the cells for one year. Upon microscopic examination of the pancreas we observed that the 

majority of the cells did not proliferate even after one year of chase (Fig. 8a). The clone size 

distribution after one year of chase looked similar compared to shorter chase periods (Fig. 
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8b). Interestingly, we observed clones of acinar cells of exceptional large size (Fig. 8a,b). 

This suggests that only a small subset of acinar cells continuously gave rise to new cells in the 

course of the observed time. We found large clones of different colours and no sign of 

morphological abnormalities after the one-year chase (Fig. 8c). This argues against 

cytotoxicity of certain fluorophore combinations. 

One concern, however, was that the large clones might arise from two (or more) cells that 

were initially labelled with the same colour and in close proximity. Infrequent division of 

these cells might lead to a so-called “clone-fusion” event. This would contradict our 

interpretation of the data claiming that the large clones arise from a distinct acinar 

subpopulation. We showed that the 17 colours of the rainbow2 system are not equally 

represented in the tissue (Fig. 8d). Thus, the clone-fusion likelihood had to be considered for 

each colour separately because cells labelled with overrepresented colours are more likely to 

be in close proximity. In order to get a quantitative estimate of how likely clone-fusion for 

each colour was, we measured the diameter of the largest clone from each colour at 365 DPI 

and tested how many times we find cells of the respective colour within this particular 

distance at one day after induction of the colours (Fig. 8d - scheme). We found large clones 

from the majority of all observed colours (Fig. 8e– red arrows). We compared the relative 

number of cell pairs within this distance (or a shorter distance) with the number of cells that 

are further apart from each other. This estimate indicated that for most colours there is a 

relatively low clone-fusion probability (Fig. 8e). Importantly, for some of the large clones 

(Colour Group 6, 11, 15) the clone-fusion probability was 0. This indicates that these large 

clones arose with very high likelihood from a single cell. This observation serves as a proof of 

principle that a single acinar cell can proliferate continuously within one year and thus give 

rise to the large clones and resemble progenitor cells from other tissues.  
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Figure 8. Clonal tracing reveals acinar subpopulation with long-term proliferative capacity. 
(a) Acinar cells are traced for a one-year period post rainbow2 induction. Representative example of 
rainbow2 labelled acinar cells one-year post label induction. Dashed circles indicate Islets of 
Langerhans. Scale bar = 50μm. (b) Quantitative analysis of clones traced for one year following label 
induction (n = 1283 clones from 5 mice). Data represent mean ± SD. (c) Representative examples of 
large clones arising independent of fluorophore expression. Images were acquired at 365 DPI. H&E 
staining of pancreas sections at 365 DPI indicates no morphological abnormalities. Scale bar = 50µm. 
(d) Relative abundance of cells with a distinct colour among recombined acinar cells (Group 2-17). (e) 
Schematic Representation of the determination of the clone fusion distance. (f) Relative clone fusion 
probability for acinar cells of a distinct colour. Red arrows denote colours for which large clones of 
acinar cells (<3 nuclei) were present. 
 

Another hypothesis challenging our interpretation of the data was that we could not fully 

exclude the possibility that the large clones we observed at 365 DPI were a result of stochastic 

mitotic events of a uniform cell population. We addressed this question by mathematic 

modelling. For this purpose Monte Carlo simulation based on the Gillespie algorithm 

(Gillespie, 1976) was used to simulate clone size distributions after stochastic proliferation of 

a uniform cell population. After testing a variety of parameters, a good fit of the experimental 

data was not possible under the assumption that acinar cells are a uniform cell population 

(data by U. Kummer et al. – not shown).  
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Since we found a subpopulation of progenitor-like cells we wanted to test whether this 

subpopulation also gives rise to other pancreatic cell types. We stained pancreatic tissue from 

rainbow2 mice for YFP, in order to detect cells in which the NesCreERT2 line recombined. 

Co-staining of YFP with Insulin, CK19 and E-cadherin revealed that the NesCreERT2 line 

labels exclusively acinar cells (Fig. 9a). Further, after tracing acinar cells for 365 days we did 

not find YFP+ cells within Islets of Langerhans or ducts (Fig. 9b). These results indicate that 

acinar cells are a unipotent, lineage restricted entity. This finding is in line with previous 

findings of acinar cells that have been traced for shorter chase periods (Desai et al., 2007). 

 

 
Figure 9. NesCreERT2 recombination and analysis of Nestin-derived progeny. (a) Pancreatic 
sections of rainbow2 mice 1 DPI stained for YFP. Anti-YFP antibody detects all rainbow-induced 
clones. Anti-Cytokeratin 19 (CK19) and anti-Insulin staining was conducted to indicate duct cells and 
Islets of Langerhans. Anti-E-cadherin staining was used to identify centroacinar cells by morphology. 
(n = 391 cells from 2 mice) Scale bars = 50µm. (b) Pancreatic sections of rainbow2 mice 365 DPI 
stained for YFP, Cytokeratin 19 (CK19) and Insulin (Ins). Scale bars = 200µm (left panel) and 100µm 
(right panel). 
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3.3 Clonal dynamics of acinar cells upon injury 

 

The data acquired thus far suggested that an acinar subpopulation retains proliferative 

capacity in order to compensate for dying acinar cells during homeostasis. In the healthy 

pancreas the turnover has been described to be very low (Magami et al., 1990). In contrast, 

cell death and replacement after injury is markedly increased (Fukuda et al., 2011; Nagashio 

et al., 2004). Thus, we wanted to test, whether the proliferative acinar subpopulation also 

compensates for injury-induced cell death. An alternative scenario would be that acinar cells 

outside the pool of the proliferative subpopulation would gain the ability to enter the cell 

cycle in order to compensate for the loss of acinar cells upon injury. In order to distinguish 

between these two scenarios, we induced the rainbow2 colours in adult mice followed by a 

chemically induced acute pancreatitis as previously described (Carrière et al., 2011). If the 

proliferative acinar subpopulation would compensate for acinar cell death we would expect to 

find larger clones at a given time point as compared to the naive condition (Fig. 10a – right 

scenario). If, on the other hand, other acinar cells start to proliferate we would expect to 

observe larger average clone sizes (Fig. 10a – left scenario). We chose 28 DPI as the time 

point for tissue analysis since this is the first time point where we reliably detect large clones 

derived from the proliferative subpopulation (Fig. 10).  

Compared to acinar cells from naive animals, the injury-induced clonal expansion led to an 

increase in average clones size (Fig. 10b,c). Specifically, we observed an increase in three and 

five cell clones at 28 DPI (Fig. 10c). No increase in maximal clone size was observed 

indicating that the injury induces a proliferative response, which is not restricted to small 

acinar subpopulations (Fig. 10a – left scenario). Furthermore, there was no change in two-

nuclei clones as a result of the injury (Fig. 10c). Given that the majority of the two-nuclei 

clones represent binuclear acinar cells (Fig. 7) this result suggests that binuclear cells are not 

able to respond to the injury by proliferation. 

This data raises the question whether the acinar cells that started to proliferate will continue to 

do so through time and essentially convert into the acinar cell type that retains proliferative 

capacity. Another possibility is that the injury-induced proliferation is only of transient nature. 

We aimed to distinguish between these two scenarios by repeating the previous experiment 

while analysing the tissue at 365 DPI instead of 28 DPI. If the injury response is not transient 

then we expect to find more large clones at 365 DPI in comparison to the homeostatic 

situation. Analysing the pancreas of rainbow2 mice at 365 DPI revealed that the clone size 

distributions of the injured and naïve groups are almost identical (Fig. 10d). We neither 
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observed an increased number of large clones, which would be reflected at the tail of the 

distribution, nor an increase regarding the average clone size. These experiments demonstrate 

that injury induces a transient proliferative response of acinar cells.  

 

 
Figure 10. Injury transiently activates a broad range of acinar cells. (a) Experimental Design 
and schematic illustration of potential changes of clone size distribution upon injury. Squares 
represent clonal clusters of acinar cells. Hypothesized outcome scenarios are clone size expansion of 
many previously dormant clones (left matrix) versus clone size expansion of few clones which are 
actively proliferating under homeostatic conditions (right matrix). Pancreatic tissue was analysed 28 
and 365 days post injection. (b) Representative illustration of clonal distribution 28 days after 
rainbow2 induction. Scale bar = 50μm (c, d) Quantification of clone size distribution from naive and 
injured mice. For 28 DPI n = 1307 clones from 3 injured mice; 365 DPI n = 2805 from 3 injured mice. 
Data represent mean ± SD. Insets: Average clone size comparison between naïve and injured animals. 
Log2 of clone sizes were calculated to obtain normal clone size distribution. Average clone size data 
are presented as mean ± SEM; *p < 0.05. 
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3.4 Proliferative capacity of acinar cells in vitro 

 

Stem and progenitor cells of various organs have been described to have the capacity to form 

organoids under 3D culture conditions (Sasai, 2013). Considering that the acinar 

subpopulation that we discovered resembles lineage-restricted progenitors, we hypothesized 

that some acinar cells would form organoids. In order to carefully characterise the organoid 

formation capacity of individual acinar cells in vitro we purified acinar cells from adult mice 

in which the Histone H2B is genetically tagged to a mcherry fluorophore. With this tool at 

hand, we could microscopically track the number of nuclei at any time during organoid 

formation. When we plated acinar cells in matrigel at a density of 500 cells per well we 

detected a subpopulation of acinar cells that was able to form organoids, mirroring the 

functional heterogeneity we observed in vivo (Fig. 11a).  
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Figure 11. An acinar subpopulation forms organoids in vitro. (a) Representative image of 
spontaneously formed organoids 0 - 6 days after isolation of adult pancreatic cells. 500 cells isolated 
from H2B-mcherry mice were plated in matrigel and the rate of divisions from single cells, doublets or 
triplets at day 0 was followed over a period of 11 days. Representative pictures of mitotic events of 
single cells (top row), doublets (middle row) and triplets (bottom row) are shown. Quantification of 
number of mcherry+ nuclei is plotted on the right of the respective row. Scale bars = 500μm 
(overview) and 50µm (close up). N = 1899 cell clusters from 3 mice. (b) Representative image of 
handpicked acinar doublets isolated from H2B-mcherrry mice that were cultured for 11 days and 
quantified on the last day. Scale bars = 50μm. (c) Quantification of handpicked acinar doublets 
undergoing a single mitotic event or multiple mitotic events (n = 682 doublets derived from 4 mice). 
(d) Quantification of proliferation capacity of binuclear acinar cells from (a). Data acquired in 
collaboration with Isabelle Everlien. Data in part presented in her master thesis. 
 

Single acinar cells were infrequently able to undergo a single mitotic event but were not able 

to further proliferate and form organoids (Fig. 11a). In contrast, multiple mitotic events were 

observed in mononuclear acinar doublets 6.70 ± 4.61%, triplets 9.72 ± 3.67% and clusters 

12.14 ± 5.08% of acinar cells (Fig. 11a). Hence, at least two cells in contact are required to 

initiate organoid formation accompanied by more than one mitotic event. Interestingly, we 

observed 2 modes of proliferation in doublets and triplets. Acinar doublets/triplets were able 

to either undergo only a single mitotic event (and subsequently stop to proliferate) or 
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continuously proliferate and give rise to organoids (Fig. 11a). These results suggest that the 

proliferative acinar subpopulation might contain cells capable of limited and unlimited 

proliferative capacity. Thus, the proliferative acinar subpopulation might represent a 

heterogeneous pool of cells in itself. 

The organoid formation assay suggests that acinar cells need at least one supporting cell in 

order to form organoids and proliferate. To test whether cell-cell contact between acinar cells 

is not only necessary but also sufficient to form organoids, we handpicked a total of 682 

acinar doublets from 4 mice and cultured them as single doublets. Among the acinar doublets 

4.53 ±1.55% were able to form organoids and proliferate considerably (Fig. 11b,c). Similarly, 

to clusters of acinar cells within a cell suspension we again observed two modes of 

proliferation in which acinar cells underwent a single or multiple mitotic events (Fig. 11c). 

This finding is reminiscent of studies of the small intestine where Lgr5+ stem cells need short-

range niche signals from paneth cells to form organoids (Sato et al., 2010), possibly indicating 

that acinar cells receive signals from specific niche-like acinar cells. 

Importantly, while examining binuclear acinar cells we discovered that binuclear cells did not 

undergo mitosis, independent of their association with other binuclear cells as doublets or 

triplets (Fig 11d). This result underscores the finding that binuclear cells are proliferation-

deficient as also suggested by the fact that two-nuclei clones do not display proliferative 

response upon injury in vivo (Fig. 10c).  

It was previously demonstrated that pancreatic duct cells are able to form organoids in 3D 

culture conditions (Huch et al., 2013a). Therefore, we aimed to investigate whether duct cell 

contaminations might be the source of the organoids we observe. First, we stained freshly 

isolated acinar cells for the duct marker CK19 and analysed the cells by flow cytometry. The 

analysis of 10.000 events showed that all cells express the acinar marker Amylase (Fig. 12a). 

Furthermore, we could not detect a single CK19+ cell strongly suggesting that our isolation 

protocol ensures high purity (Fig. 12a). Interestingly, we found a population of cells (12%) 

that expressed acinar and duct markers (Fig. 12a). This finding is likely due to the fact that 

acinar cells undergo acinar-to-ductal metaplasia (ADM) during the organoid formation 

(unpublished data by Xiaokang Lun).  
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Figure 12. Characterisation of acinar purity after isolation. (a) Flow cytometry analysis of 
pancreatic cells directly after isolation confirms high purity of acinar cells. Acinar cells were purified 
by differential centrifugation and stained for CK19 and Amylase to detect duct and acinar cells, 
respectively. (b) Immunofluorescence staining of Amylase and CK19 confirming acinar and ductal 
identity after cell isolation. Scale bar = 10µm. (c) Measurements of acinar and ductal cell diameter 
after isolation. (d) Quantification of the cell diameter of all cells that gave rise to organoids in Fig. 
2b,c. 1-4 denote biological replicates.  
 

To further assure that pancreatic organoids arose from acinar cells, we took advantage of the 

significant size difference between acinar and duct cells (Fig. 12b). The diameter of acinar 

cells is approximately 3-fold larger as compared to duct cells (Fig. 12c). Next, we revisited 

the experiment in which we handpicked acinar doublets that formed organoids (Fig. 12b). We 

measured the diameter of all cells that gave rise to organoids at day 0. The size range of all 

analysed cells was between 20 and 30 µm excluding ductal origin of organoids (Fig. 12d). 

Furthermore, we can exclude contamination of other cell types in this experiment since we 

used H2B-mcherry mice. Any living cell potentially contaminating our culture would have 

been detected due to the fluorescence of the nuclei.  
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3.5 Characterisation of binuclear acinar cells 

 

We found that binuclear acinar cells display marked deficiency in proliferation (Fig. 10 & 

11). Therefore, we aimed at characterizing binuclear acinar cells. The existence of binuclear 

cells in the pancreas of rats has been described in 1968 (D S Longnecker, 1968). 

Quantification of mono- and binuclear cells revealed that the pancreas of adult rats contained 

64% binuclear cells (Oates and Morgan, 1986). We stained tissue of adult murine pancreas for 

E-cadherin in order to mark cell borders of acinar cells (Fig. 13a). We determined that the 

pancreas of an adult mouse contains 44±1% binuclear acinar cells (Fig. 13a). Next, we 

quantified the number of mono- and binuclear acinar cells, which stained positive for the 

proliferation marker pH3. Under homeostatic conditions the proliferation rate of acinar cells 

is too low for feasible characterization by immunohistochemistry (Magami et al., 1990). Thus, 

we increased the proliferation rate by chemically inducing pancreatitis by Cerulein injection 

as previously described (Carrière et al., 2011). We observed that the majority of proliferating 

cells were mononuclear, while no difference regarding cells death was detected (Fig. 13b,c). 

Similarly, we did not observe proliferation of binuclear cells in vitro despite the high 

concentration of mitogens in culture (Fig. 11d). It is possible that the pH3 positive binuclear 

cells that we observed in vivo could represent mononuclear acinar cells that just completed 

telophase and therefore still stain positive for pH3. Another possibility is that a fraction of 

binuclear cells start to enter cell cycle in response to injury. 
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Figure 13. Analysis of proliferation and cell death of mono- and binuclear acinar cells. (a) 
Representative images of pancreas sections stained for E-cadherin and counterstained for Hoechst 
33342. Numbers of mono- and binuclear acinar cells were quantified (Right panel). Data represent 
mean ± SD for 560 cells from 2 mice. Scale bar = 50µm. (b,c) Quantification of proliferating and 
dying mono- and binuclear acinar cells was assessed by phospho-Histone H3 (pH3) and TUNEL 
staining 3 days post injury. Data represent mean ± SD for 172 pH3+ and 72 TUNEL+ cells from 2 
mice. 
 

Even though binuclear cells have been reported to exist in rats (D S Longnecker, 1968) it has 
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human pancreatic tissue sections, which did not show any pathological abnormalities for E-

cadherin to determine the nuclei number of human acinar cells. We found binuclear acinar 

cells in each of the 15 observed tissue samples (Fig. 14). Thus, we demonstrated that the adult 

human pancreas contains binuclear acinar cells and expose human acinar as a 

morphologically heterogeneous entity.  

 

 
Figure 14. The adult human pancreas contains binuclear acinar cells. (a) E-cadherin staining of 
paraffin-embedded human pancreatic sections reveals binuclear acinar cells. Haematoxylin was used 
for nuclear counterstaining. Scale bar = 50µm. (b) Magnification of insets from (a). Staining was 
performed by the Institute of Pathology, University of Heidelberg 
 

 

3.6 Development of library preparation protocol for single acinar cell RNA-seq 

 

The data acquired thus far strongly suggested that acinar cells are not a pool of homogenous 

cells but contain (at least) one subpopulation. This subpopulation, albeit being 

morphologically indistinguishable from other acinar cells, displays long-term proliferative 

capacity similar to progenitor cells from other tissues. We hypothesized that the functional 

difference of this subpopulation would be reflected on the molecular level. In order to test this 

hypothesis, we aimed to perform single cell RNA sequencing of randomly selected acinar 

cells. This unbiased, bottom-up approach should reveal the molecular basis of acinar 

subpopulations if this pool of cells is as heterogeneous as our previous experiments suggest. 

There are a number of protocols for RNA sequencing of single cells that have recently been 

established (Saliba et al., 2014). Our laboratory established the SMART-Seq2 protocol for 

library preparation and sequencing of mRNA from single neural stem cells (Llorens-

Bobadilla et al., 2015). This protocol is based on two major steps: a) reverse transcription of 

mRNA and cDNA amplification and b) adaptor ligation through Tn5 tagmentation and library 

amplification. The first step starts by cell lysis using hypotonic lysis buffer containing 

E-CadherinHaematoxylin
a b
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oligodT primers and free dNTPs (Fig. 15a). After annealing of the primer, the addition of the 

Moloney murine leukemia virus (M-MLV) reverse transcriptase permits cDNA synthesis in 

the same reaction tube where the cell was lysed. This approach avoids the purification of 

RNA, which frequently leads to loss of RNA as well as RNA degradation (Picelli et al., 

2014). The M-MLV reverse transcriptase inherently adds 2-5 untemplated nucleotides 

(mostly cytosines) to the 3´ end of the cDNA (Schmidt and Mueller, 1999). This feature 

grants a template switch, which offers high coverage of the RNA 5´ end and subsequently 

full-length coverage across the transcript (Fig. 15). After cDNA amplification by PCR, the 

quality of the cDNA library can be tested via capillary electrophoresis using a 2100 Agilent 

Bioanalyzer (Fig. 15b,c). Successful cDNA library preparation results in an average library 

size of 1.5 - 2 kb (Fig. 15b). In contrast, library preparation from degraded RNA is 

characterized by a shift towards shorter fragments resulting in a broader peak distribution 

(Fig. 15d). 

 

 
Figure 15. cDNA library preparation using SMART-Seq2. (a) Schematic representation of the 
cDNA preparation. (b,c) Representative Bioanalyzer profiles of cDNA libraries upon successful 
preamplification (a) and RNA degradation before cDNA preparation (c). Figures were obtained from 
Picelli et al., 2014.  
 

Library preparation from single acinar cells using standard conditions led to cDNA libraries 

of very small size and low concentration (Fig. 16a-c – “normal cond.”). The shift towards 

smaller fragments indicated degradation of the input material. RNA isolation from the 

pancreas is classically considered to be very challenging due to the high RNAse content of the 

tissue (Chirgwin et al., 1979). The RNAses are produced in vast amounts by acinar cells in 

order to digest the nucleic acids within the diet (Barnard, 1969).  

a b

c
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Figure 16. Protocol development for cDNA library preparation from single acinar cells. (a) 
Representative Bioanalyzer profiles of cDNA libraries obtained from single acinar cells under varying 
cell lysis conditions. (b) Average size of cDNA library length obtained under conditions described in 
(a). (c) cDNA yield produced under conditions described in (a). 
 

We hypothesized that acinar derived RNAses would rapidly degrade mRNA prior to reverse 

transcription. Although the lysis buffer contains RNAse inhibitors, the extensive amount of 

RNAses will likely exceed the inhibitor concentration. In order to hold RNA degradation 

upon lysis, we transferred the reaction tube to liquid nitrogen directly after the cell lysis until 

we proceeded with cDNA synthesis. Although this increased the average cDNA length and 

yield, the broad peak distribution suggested persistent RNA degradation impeding full-length 

cDNA synthesis (Fig. 16a-c – “N2”). The secondary structure of RNAses strongly depends on 

disulfide bridges (Klink et al.). We therefore supplemented our lysis buffer with either 

dithiothreitol (DTT) or β-mercaptoethanol (2ME) to reduce the disulfide bonds. The addition 

of either reducing agent resulted in slightly higher average library size and consistently higher 

cDNA yield as compared to previous buffer compositions (Fig. 16a-c – “DTT” / “2ME”). 

However, the peak of the library distribution was at ~150bp indicating substantial RNA 

degradation (Fig. 16a). Next, we tried to target the pH dependent catalytic activity of 

ribonucleases. The enzyme activity of RNAse A has a pH optimum at ~7.4, which is 

declining at alkaline and acidic conditions (Findlay et al., 1962). In contrast, the cDNA 

synthesis using M-MLV reverse transcriptase is performed at a pH of 8.3 (Kotewicz, 1988). 
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Since the protocol does not involve purification steps between cell lysis and reverse 

transcription, we hypothesized that shifting the pH to 8.3 at the point of cell lysis would 

substantially hamper RNAse activity, but not affect reverse transcription. In contrast to all 

previous conditions the cDNA libraries obtained through pH shift of the lysis buffer 

demonstrate a peak at long fragments for a number of libraries (Fig. 16a – “pH8.3”). 

Although this indicates successful library preparation, the cDNA length and yield varied 

considerably from sample to sample (Fig. 16b,c). Thus, pH optimization might be a more 

attractive, low-cost approach for cDNA synthesis from tissues other than the pancreas. 

Previously, RNA isolation from large amounts of pancreatic tissues has been successful by 

making use of chaotropic agents (Chirgwin et al., 1979). In this approach, RNA degradation 

was prevented by lysing the cells using high concentration of guanidine hydrochloride 

(Chirgwin et al., 1979). Chaotropic agents such as guanidine hydrochloride or urea lead to 

denaturation of proteins (Chirgwin et al., 1979). Subsequently, RNA could be isolated by 

phenol chlorophorm extraction (Chomczynski and Sacchi, 1987). Although promising, this 

approach was not directly applicable to our low input protocol because an essential 

component of the protocol was the avoidance of purification steps before cDNA amplification 

(Picelli et al., 2014). A lysis buffer containing high concentrations of guanidine hydrochloride 

would also denature all enzymes subsequently added for reverse transcription and 

amplification. To circumvent this problem, we combined the chaotropic protein denaturation 

with solid-phase reversible immobilization (SPRI) technology (Fig. 17).  

 

 
Figure 17. cDNA library preparation protocol for single acinar cells. Schematic representation 
of the step-by-step protocol for cDNA library production from single acinar cells. Grey circles 
represent SPRI beads. 
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We prepared a buffer containing 6M guanidine hydrochloride and 0.2% Triton X-100 to lyse 

the cells and denature the released proteins. We added reducing agents to the lysis buffer as a 

result of the small but consistent enhancement in cDNA yield and length that we observed 

(Fig. 16a-c – “DTT” / “2ME”). After cell lysis we directly transferred the reaction tube into 

liquid nitrogen for the time of cell collection. Next, we added SPRI beads to the lysate. SPRI 

beads are carboxyl-coated magnetic particles, which are dissolved in polyethylene glycol 

(PEG) (Hawkins et al., 1994). Application of high PEG concentrations leads to the 

precipitation of RNA and DNA onto the carboxylated beads at nearly 100% efficiency 

(Hawkins et al., 1994). Subsequent washing steps remove the guanidine hydrochloride 

containing lysis buffer as well as acinar cell derived RNAses. It should be noted that PEG 

could also be used for protein precipitation (Lis, 1980). However, efficient protein 

precipitation onto carboxylated beads requires acetonitrile treatment (Hughes et al., 2014). 

Therefore, PEG precipitation of RNAses might be not sufficient for degradation of RNA. 

After the final washing steps, the elution step was avoided to trap RNA on the beads for 

cDNA synthesis as previously described (Shalek et al., 2013). The protocol led to highly 

increased average cDNA length and yield with very limited sample-to-sample variablilty (Fig. 

16a-c “GuaHCl + 2ME”). We observed indistinguishable results by using dithiothreitol 

instead of β-mercaptoethanol (data not shown). This data strongly indicated successful and 

robust cDNA library preparation from single acinar cells.  

In order to test the quality of the cDNA libraries on a global scale we sequenced libraries 

from 108 single acinar cells. We obtained 5.4 million total reads on average of which 77.9% 

mapped to the transcriptome (Fig. 18a,b). The number of reads we recovered as well as the 

mapping rate are both similar to previously published results indicating high quality of the 

sequenced libraries (Llorens-Bobadilla et al., 2015; Treutlein et al., 2014). To test linear 

amplification of our transcripts we spiked in a mixture of 92 polyadenlyated transcripts of 

known quantity as recommended by the External RNA Controls Consortium (ERCC) into the 

lysate of 19 cells. We then correlated the known abundance of the transcripts with the 

transcript levels (log2(TPM)) detected by sequencing (Fig. 18c). None of the 19 tested 

libraries displayed a Pearson correlation lower then r = 0.9 indicating linear amplification of 

cDNA by our protocol (Fig. 18d). The SMART-seq2 protocol starts cDNA synthesis at the 

3´end by priming at the poly(A) tail (Fig. 15a) (Picelli et al., 2014). Therefore, it is possible 

that some libraries display a 3´ bias if, for instance, the RNA would be partially degraded. We 

tested the coverage of the sequencing reads along the transcripts and found no 3´ bias for any 

of the sequenced libraries (Fig. 18e). All sequenced cells expressed extremely high levels of 
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digestive enzymes ensuring that all sequenced libraries are derived from acinar cells (Fig. 

18f). These data demonstrated that we were able to obtain high quality sequencing data from 

single acinar cells. Since we used a NesCreERT2 mouse line for lineage tracing of acinar cells 

we wanted to test how many acinar cells showed detectable levels of Nestin. Among the pool 

of cells that we profiled we detected (TPM > 1) Nestin in 22% of all acinar cells (Fig. 18g). 

This result is in excellent agreement with the recombination efficiency of our Cre line in the 

pancreas, which we determined to be 23% (Fig. 6c). Thus, the number of cells that recombine 

in our lineage tracing setup is likely limited by the expression of Nestin among acinar cells 

rather than recombination efficiency of the NesCreERT2 line.  

 

 
Figure 18. Quality control of acinar single cell sequencing data (a) Total number of reads 
obtained for each cell. (b) Rate of reads mapping to exons of genes. (c) Representative example (Cell 
#95) displaying correlation between ERCC RNA abundance and detection by sequencing. (d) Pearson 
correlation of 19 cells containing ERCC spike-ins. (e) Representative example (Cell #98) of 
normalized 3´ and 5´ coverage of sequenced reads along the transcripts. (f) Expression values of 
selected digestive enzymes expressed in acinar cells. (g) Expression values of Nestin in all sequenced 
cells. 
 

 

3.7 Molecular heterogeneity of acinar cells 

 

With the data at hand, we aimed to discover whether the acinar cells represent a molecularly 

heterogeneous entity. We compared the similarity of all sequenced transcriptomes by 
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comparing the Euclidian distance in the gene expression matrix. We found that the majority 

of the 108 sequenced acinar cells are very similar on the transcriptome level (Fig. 19a).  

 

 
Figure 19. Single cell sequencing reveals molecularly distinct acinar subpopulations. (a) Heat 
map indicating 108 single-cell transcriptome similarities measured by the Euclidean distance of the 
gene expression matrix. (b) Magnification of heat map inset. (c) Principle component analysis of 
single-cell transcriptomes of 108 acinar cells. (d) One-dimensional PCA of 108 acinar cells. Each 
point corresponds to one cell, the colour on each cell corresponds the scaled expression value of the 
respective gene in each single cell and the position of each point corresponds the coordinate value of 
each cell on selected component from PCA. (e) Expression values of Amylase (Amy2a3) and Elastase 
(Cela1) for Cell #40, Cell #31 and the average (±SD) of all acinar cells. TPM = transcript per million. 
(f) GO category of genes highly expressed in Cell #31 and Cell #40. 
 

Within the pool of the cells that we sequenced we found two cells that displayed a distinct 

transcriptional profile by hierarchical clustering (Fig. 19a inset, 19b). These cells (Cell #40 

and Cell #31) were also confirmed to be distinct by principle component analysis (Fig. 19c). 

This analysis showed that the outlier population differed from the other profiled cells mainly 

by genes within the principle component 1 (PC1), which comprises 4,17% of the 

transcriptome (Fig. 19c). We then reduced the dimensionality of the components to one 

dimension (PC1) and revealed that the two outlier cells express high levels of genes involved 

in chromatin remodelling (H2afz, Hmgn2), microtubule maintenance (Stmn1, Tuba1b) and 

proliferation (Birc5) (Fig. 19d). Given the difference between the outlier cells and the other 

acinar cells, we wondered whether the outlier cells represent a cross-contamination from 
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another cell type. To test this, we evaluated the expression levels of two acinar marker genes: 

Amylase and Elastase. We found that both outlier cells expressed levels of these markers that 

are comparable to the average of all other acinar cells (Fig. 19e). We conclude that the outlier 

cells are acinar cells, since no other cell in the mammalian body expresses such high levels of 

digestive enzymes (Logsdon and Ji, 2013). Next, we performed gene ontology (GO) analysis 

of genes, which are highly expressed in the outlier cells. We found that the three most 

significant categories were related to proliferation. Furthermore, GO category analysis 

revealed that the genes highly expressed in the outlier population are related to binding of 

DNA and proteins and thus localized in the nucleus (Fig. 19f). 

These results suggest that acinar cells harbour a molecularly distinct subpopulation with the 

feature of cell cycle activity. This is in accordance with our finding of proliferative 

heterogeneity as illustrated by the lineage tracing experiments. Since we found only two cells 

with this molecular profile, we aimed to find a marker for this subpopulation in order to 

validate the existence in vivo. We filtered out all genes, which are differentially expressed 

between Cell #40 / Cell #31 and all other profiled acinar cells. Next, we plotted the most 

differentially expressed genes of both outlier cells against each other to find common markers 

(Fig. 20a). Among the most highly differentially expressed genes in both cells was Stmn1. 

STMN1, also known as Oncoprotein 18 or Stathmin, is a highly conserved protein, which 

regulates microtubule dynamics (Cassimeris, 2002). Interestingly, STMN1 has recently been 

described to be a novel marker for early intermediate progenitor cells in the adult 

hippocampal subgranular zone (Shin et al., 2015). Furthermore, it was shown to be a marker 

for proliferating cells in a variety of tissues (Cassimeris, 2002). We took advantage of the 

Human Protein Atlas (Uhlen et al., 2015) to see whether STMN1 was expressed in the healthy 

human pancreas. Staining of human pancreatic sections for STMN1 (performed by the 

Human Protein Atlas) indicated strong expression of STMN1 in a subset of pancreatic cells 

(Fig. 20b). According to morphological features, the majority of these cells could be 

identified as acinar cells (Fig. 20b – inlet). We stained murine pancreatic tissue to test 

whether we could identify a STMN1+ acinar subpopulation. A subset of acinar cells expressed 

STMN1, validating the existence of an STMN1 subpopulation in vivo (Fig. 20c,d). Although 

we occasionally found STMN1+ acinar cells that expressed the proliferation marker pH3, the 

vast majority of STMN1+ cells did not stain positive for pH3 (Fig. 20c,d). This demonstrates 

that STMN1 is not expressed solely because the cell is actively cycling. Instead, this data is in 

line with previous findings illustrating that STMN1 is post-translationally regulated during 

the cell cycle (Cassimeris, 2002).  
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Figure 20. Description of a STMN1+ acinar subpopulation in the murine and human pancreas. 
(a) Log2 fold change of differentially expressed genes in Cell #40 and Cell #31 over average 
expression of all acinar cells. (b) STMN1 staining on human pancreatic section performed by the 
Human Protein Atlas (Uhlen et al., 2015). Picture was taken from 
http://www.proteinatlas.org/ENSG00000117632-STMN1/tissue/pancreas. (c,d) Immunofluorescence 
staining of STMN1, phospho-Histone H3 (pH3) and E-cadherin. Scale bars = 50µm. (g) Expression 
values of STMN1 and SOX9 for Cell #40, Cell #31. TPM = transcript per million. (f) 
Immunohistochemical analysis of STMN1 and SOX9 coexpression in acinar cells. Scale bar = 50µm. 
 

Sox9 has previously proposed to be a progenitor marker in the adult pancreas (Furuyama et 

al., 2011). We found that one of the STMN1 expressing outliers (Cell #40) expressed the 

highest Sox9 levels of all profiled acinar cells, whereas the other outlier cell (Cell #31) did not 

express Sox9 (Fig. 20e). We therefore stained for STMN1 and SOX9 to validate the existence 

of STMN1+/SOX9+ acinar cells. SOX9 expression was detected in a subset of STMN1+ cells 

(Fig. 20f). However, we also found STMN1+/SOX9- cells as predicted by the RNA 
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sequencing results (Fig. 20e,f). This result suggests that further heterogeneity might exist 

within the STMN1+ subpopulation. 

While examining the spatial distribution of STMN1+ acinar cells, we noticed that these cells 

are primarily found at the periphery of pancreatic lobes (Fig. 20d). Given the molecular 

profile of STMN1-expressing cells, we hypothesized that STMN1+ cells might give rise to the 

large clones, which we found in the lineage tracing experiments (Fig. 8). If this was the case, 

then we should find large clones at the periphery of the pancreatic lobes. Re-analysis of the 

images taken from the long-term tracing experiment uncovered that large clones were 

frequently found in the periphery of tissue lobes (Fig. 21a-c). Although not providing direct 

evidence, this result suggests that STMN1+ cells might be the source of long-term 

proliferating acinar cells. Performing clonal analysis of the STMN1+ subpopulation in the 

future will likely provide the most direct test of this hypothesis. 

 

 
Figure 21. Large clones and STMN1+ acinar cells are frequently located at the periphery of 
pancreatic lobes. (a-c) Peripheral locations of large clones obtained from 365 DPI multicolour 
lineage tracing. (d) Representative example of peripheral STMN1+ acinar cell location. Scale bars = 
50µm. 
 

Transcription factors play a crucial role in the determination of cellular fate and cellular 

identity (Alberts et al., 2014). To identify possible transcriptional heterogeneity among acinar 

cells, we restricted our analyses to transcription factors. Global sample-to-sample comparison 

revealed two populations of acinar cells (Fig. 22a). The two large clusters were mainly 

separated by early response genes like Jun, Fos and Egr1, the stress response genes Xbp-1 

and Atf3 as well as Klf6 (Fig. 22b – red boxes). Acinar lineage confined transcription factors 

such as Ptf1a and Bhlha15 were robustly expressed in all profiled acinar cells, confirming the 

acinar nature of the cells (Fig. 22b – green box). The size of the two main clusters roughly 

corresponds to the ratio of mono- and binuclear acinar cells that we determined (Fig. 22b & 

a b

c d STMN1 E-cadherin Hoechst
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13a). Therefore, we hypothesized that acinar subpopulations defined by transcription factors 

might represent mono- and binuclear acinar cells. In order to test this, we chose Fosb as a 

marker to distinguish between the two populations since the Fosb expression was closest to a 

binary expression pattern (Fig. 22c). Immunostaining of Fosb revealed expression in both, 

mononuclear as well as binuclear acinar cells (Fig. 22d). Exocytosis of secreted acinar 

proteins depends on the increase of intracellular Ca2+ (Yule, 2010). Ca2+ responsive 

transcription factors like Jun, Fos and Egr1 might therefore distinguish cells actively 

secreting from non-secreting acinar cells. Thus, the two transcription factor derived clusters 

might be of only transient nature.  

 

 
Figure 22. Analysis of transcription factor heterogeneity reveals two populations within 
acinar cells. (a) Sample-to-sample plot comparing similarity of transcription factor expression among 
acinar cells. (b) Analysis of transcription factors defining the two main acinar clusters. (c) Binary 
Fosb expression in the two acinar clusters. (d) Fosb expression analysis in mono- and binuclear acinar 
cells. 
!
! !
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4 Discussion 

 

 

The results obtained in the course of this dissertation indicate that the decade-old notion of 

acinar cells representing a single, homogenous pool of cells might be too simplistic. We find 

that murine and human acinar cells are morphologically different, with acinar cells being 

mono- or binuclear. Further, we demonstrate that binuclear acinar cells display a marked 

deficiency in proliferation, thus connecting the morphological discrepancy with a previously 

unknown functional difference. Although mononuclear acinar cells appear morphologically 

similar, we found major differences in their capacity to give rise to new acinar cells for long 

periods of time. On top of the morphological and functional differences we showed that 

acinar cells are also different on the molecular level as assessed by single cell RNA 

sequencing. In order to perform single cell sequencing from acinar cells we had to develop a 

modified version of the SMART-seq2 protocol which enables single cell RNA sequencing 

from cell types with high RNAse content. 

 

 

4.1 How many pancreatic cell types exist? 

 

 

4.1.1 Binuclear acinar cells 

 

In order to find out how many cell types exist in an organ, one has to consider how a cell type 

is defined. As already discussed in the introduction, the definition of a cell type is surprisingly 

ambiguous, even today (Trapnell, 2015). The cell types described in the adult pancreas have 

been determined by morphological differences (Langerhans, 1869). Since the form frequently 

determines a cell´s function, this has been the prevailing approach of cell type classification to 

date (Achim and Arendt, 2014). Although acinar cells are classified as a single cell type, 

morphological differences in the form of mono- and binuclear cells have been already 

described in rats in the 1960s (D S Longnecker, 1968). Whether the binuclear acinar cells are 

functionally different remaines unknown, which is likely the reason why these cells were not 

considered to be a distinct type of acinar cell. Binuclear cells have also recently been 

described in mammary epithelial cells from five different species (Rios et al., 2016). The 

authors speculate that the increase in binuclear mammary epithelial cells at lactation favours 
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milk production (Rios et al., 2016). At lactation the main function of alveolar epithelial cells 

of the mammary gland is the production of protein, lipids and carbohydrates for the offspring 

(Anderson et al., 2007). Thus, it is plausible that binuclear cells, given that both nuclei are 

transcriptionally active, are able to produce and secrete more molecules. Similarly, the main 

purpose of pancreatic acinar cells is to produce and secrete digestive enzymes (Cleveland et 

al., 2012). Rios and colleagues also noted that binuclear mammary epithelial cells are larger 

and speculate that this cytoplasmic extension corresponds to increase in endoplasmic 

reticulum occupancy (Rios et al., 2016). Although binuclear acinar cells of the pancreas also 

contain large amounts of endoplasmic reticulum, it is difficult to infer a causal relationship 

between the ploidy of the cell and the amount of organelles. Particularly, given that 

mononuclear acinar cells clearly also harbour large amounts of endoplasmic reticulum (D S 

Longnecker, 1968). In order to make statements regarding this issue, the ratios between cell 

size, ploidy and endoplasmic reticulum have to be accurately measured. It would be 

interesting to investigate how acinar cells and lactating mammary epithelial cells regulate the 

amount of endoplasmic reticulum in the cell. So far, it is not known how the amount of 

endoplasmic reticulum in a cell is regulated (Alberts et al., 2014). Comparing gene expression 

profiles among cell types with increased amounts of endoplasmic reticulum might therefore 

shed light into the elusive mechanism.  

As mentioned above, the diversity in morphology and subcellular anatomy of a cell type is 

often closely connected to the function it fulfils. Thus, the binuclear state might be 

functionally different from mononuclear cells. We found that binuclear acinar cells do not 

divide in vitro despite culture conditions, that promote proliferation (Fig. 11). Interestingly, 

the connection between the binuclear state and cell proliferation has been previously 

discussed in the field of heart development. The murine heart loses its regenerative potential 

within 7 days after birth (Porrello et al., 2011). The reason for the lack of regenerative 

potential is that cardiomyocytes become postmitotic after birth. This proliferation deficiency 

coincides with postnatal binucleation of cardiomyocytes (Walsh et al., 2010). Notably, the 

kinetics of early postnatal binucleation are similar between acinar cells and cardiomyocytes 

(Oates and Morgan, 1986; Walsh et al., 2010). Thus, it was speculated that binuclear cells 

represent a terminally differentiated form of cardiomyocytes (Porrello et al., 2011). This 

hypothesis is further supported by the fact that zebrafish cardiomyocytes are entirely 

mononuclear and retain their proliferative and regenerative capacity throughout their lives 

(Poss, 2007). The concept of terminal differentiation of binuclear cardiomyocytes was 

recently challenged by a study investigating the proliferation kinetics of cardiomyocytes 
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during development (Naqvi et al., 2014). The authors found a brief but intense burst in 

cardiomyocyte proliferation on postnatal day P15 which could not be explained by 

proliferation of mononuclear cells alone (Naqvi et al., 2014). Proliferation analysis of 

cardiomyocytes at P15 demonstrated that 90% of all cells in prophase were binuclear, as 

assessed by punctated aurora kinase B staining in the nucleus (Naqvi et al., 2014). The 

authors proposed a “2+1 cell cycle” model, in which binuclear cells which enter M phase give 

rise to two mononuclear- and one binuclear cell could explain the observed proliferation 

kinetics (Naqvi et al., 2014). The binuclear state might therefore not per se mark a cell as 

postmitotic. In the regenerating liver, aurora kinase B staining suggested that binuclear 

hepatocytes undergo cytokinesis to generate two mononuclear hepatocytes (Miyaoka et al., 

2012). Similarly, we found that a small subset of pH3+ binuclear cells upon injury, possibly 

suggesting similar mechanisms of activation during regeneration in the liver and pancreas 

(Fig. 13). Despite the role of proliferative potential of binuclear cells during early postnatal 

development in cardiomyocytes or during injury in the liver and pancreas, it is possible that 

these cells are proliferation deficient in the respective adult, healthy organ. Although our in 

vitro experiments support this notion, long-term label-retaining assays will be needed to 

provide in vivo evidence. Assuming the outcome would support our in vitro data, then 

binuclear acinar cells should be considered as a separate acinar subtype, given their 

morphologically and functionally distinct characteristics. 

 

 

4.1.2 Long-term proliferating acinar cells 

 

While it is relatively easy to discover novel cell types by morphological differences it is 

possible that cells which are similar in their appearance might have different functions. As 

mentioned in the introduction, hematopoietic stem cells were discovered by their potential to 

give rise to colonies harbouring several different cell types found in the blood (BECKER et 

al., 1963; Siminovitch and McCULLOCH, 1963). The main function of stem- and progenitor 

cells is to produce new cells in order to compensate for cell loss during the lifespan of an 

organism. Whether a cell (population) has this capacity or not might not necessarily be 

reflected by morphological differences. Yet, these cells are still considered to be a distinct cell 

type. Our data suggests that acinar cells harbour a subpopulation of acinar cell with the 

capacity to proliferate for long periods of time (Fig. 8). It is thus possible that the proliferating 

acinar subpopulation represents a “progenitor-like” population in the pancreas. If future 
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research confirms this interpretation, then this population should also be considered a distinct 

acinar subtype. Future experiments leading to a more detailed molecular characterization will 

be needed to fully exclude the possibility that our data might be explained by stochastic 

proliferation of a equipotent population as described for organs (Klein and Simons, 2011a). 

Interestingly, hematopoietic stem cells as well as the epidermal system were both first 

described solely based on their proliferative capacities (Barrandon and Green, 1987; 

BECKER et al., 1963). Subsequent studies identified markers for the prospective isolation 

and characterization of these stem cell populations (Jones and Watt, 1993; Spangrude et al., 

1988). Thus, clonal proliferation assays might be a promising tool for unbiased identification 

of stem- or progenitor cells in a variety of tissues. Cardiomyocytes of the mammalian heart 

represent a candidate population, which might harbour such hidden subpopulation. 

Cardiomyocytes, similar to acinar cells, are morphologically similar and only differ in their 

ploidy. By combining lineage tracing with multi-isotope imaging mass spectrometry, it was 

demonstrated that new cardiomyocytes are produced by pre-existing cardiomyocytes at a very 

low rate (Senyo et al., 2012). It is possible that this proliferative capacity is confined to a 

previously neglected cardiomyocyte subpopulation, which might be resolved by clonal 

analysis. 

During development, multipotent pancreatic progenitors reside at the tip of the epithelial 

branches and subsequently develop into acinar cells (Fig. 3) (Zhou et al., 2007). Adult acinar 

cells have therefore been suggested to be most closely related to the multipotent pancreatic 

progenitor during development (Puri et al., 2015). Interestingly, we also frequently find large 

clones to be located at the tip of pancreatic lobes (Fig. 21). This raises the interesting question 

whether it is possible that the proliferating acinar cells in the adult pancreas are remnants of 

embryonic development. An elegant study useing male-female chimera mice with subsequent 

fluorescence in situ hybridization (FISH) against the Y chromosome to determine the 

developmental clonality of different cell types (Swenson et al., 2009). The authors found large 

patches of Y-positive acinar cells surrounded by Y-negative cells (Swenson et al., 2009). This 

suggests that pancreatic development is driven by clonally dominant progenitors similar to 

heart development in zebrafish (D S Longnecker, 1968; Gupta and Poss, 2012). These patches 

are reminiscent of the large clones we found after long-term lineage tracing of acinar cells 

(Fig. 8). It is therefore possible that a subset of the clonally dominant progenitors, which drive 

pancreatic organogenesis, retain their proliferative capacity to become adult progenitors-like 

acinar cells. A similar mechanism was found in studies investigating the embryonic origin of 

adult neural stem cells (NSCs) in the subventricular zone (Fuentealba et al., 2015; Furutachi 
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et al., 2015; Porrello et al., 2011). Two studies independently discovered with the help of 

label retaining assays (Furutachi et al., 2015) and retroviral barcoding (Fuentealba et al., 

2015) that adult NSCs in the subventricular zone arise from embryonic progenitors that 

become quiescent between embryonic day (E) 13.5 and E15.5. In the course of the lifetime of 

a mouse these cells get reactivated to maintain homeostasis in the adult brain. It would be 

desirable to use similar approaches in the developing pancreas in order to determine whether a 

similar mechanism applies to the pancreas.  

 

 

4.1.3 Injury responsive acinar cells 

 

Pancreatitis, an inflammation of the pancreas, is the most common experimentally induced 

injury model (Lerch and Gorelick, 2013). As a result of the injury, a massive increase in 

proliferation of pancreatic cells compensates for the loss of cells (Fukuda et al., 2011; 

Nagashio et al., 2004; Porrello et al., 2011). We asked whether the progenitor-like acinar 

cells, which maintain homeostasis in naïve animals, are also the source of new cells upon 

injury. We found that injury induces transient proliferation of a pool of cells distinct from the 

progenitor-like population we discovered (Fig. 10). Given the transient nature of the response, 

it is possible that the proliferative response is unselective and thus not confined to a distinct 

subpopulation. One argument against this interpretation is that the proportion of 2-nuclei per 

clone did not change in response to injury (Fig. 10c). This population likely represents 

binuclear cells, which were less responsive to injury with regard to proliferation (Fig. 13b). 

Another interpretation of the data is that the acinar cell compartment contains a reservoir of 

acinar cells that only gets activated after injury. Stem cells in the hematopoietic system are 

divided into long-term and short-term stem cells (Poss, 2007; Weissman, 2000). It was shown 

that long-term hematopoietic stem cells are dormant but efficiently get activated by 

interferon-α (IFNα) upon injury to replenish lost cells (Essers et al., 2009; Naqvi et al., 2014; 

Wilson et al., 2008). A recent study suggests that a distinct population of quiescent, Dclk1-

expressing acinar cells get activated upon injury, analogue to the hematopoietic system 

(Naqvi et al., 2014; Westphalen et al., 2016). The authors demonstrate that Dclk1+ acinar cells 

make up the majority of responding acinar cells and that this subpopulation is more efficient 

in generating pancreatic tumour lesions (Naqvi et al., 2014; Westphalen et al., 2016). In the 

light of our data, this finding suggests that the acinar cell compartment harbours a 
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subpopulation of injury responsive acinar cells, which are distinct from the progenitor-like 

cells that proliferate under homeostatic conditions.  

 

 

4.2 What are the molecules underlying the acinar heterogeneity? 

 

 

4.2.1 The molecular role of STMN1 

 

Given the fact that we find a subpopulation of acinar cells with the capacity for long-term 

proliferation, we hypothesized that this subpopulation would be molecularly distinct. Thus, 

we performed single cell mRNA sequencing of acinar cells that were handpicked in an 

unbiased fashion. Based on transcriptome analysis, we found a small subpopulation of acinar 

cells that displayed a proliferative signature (Fig. 19). One of the differential expressed genes 

that was highly abundant in this acinar subpopulation was STMN1, suggesting that STMN1 

might represent a possible marker for this newly discovered acinar progenitor-like cells (Fig. 

20). 

The molecular role of STMN1 (also known as Oncoprotein 18, OP18 or Stathmin1) remained 

elusive until a landmark study in the 1990s discovered its microtubule-depolymerizing 

activity (Belmont and Mitchison, 1996; Naqvi et al., 2014). Expression analysis of STMN1 in 

several tissues from mice and humans revealed that STMN1 is ubiquitously expressed in 

almost any tissue tested (Bièche et al., 2003; Koppel et al.; Miyaoka et al., 2012). However, 

not all cells within these tissues expressed this protein, indicating an important role for 

STMN1 in only a subset of cells (BECKER et al., 1963; Bièche et al., 2003; Koppel et al.; 

Siminovitch and McCULLOCH, 1963). It was subsequently demonstrated that STMN1 

expression is restricted to the proliferating compartment of most tissues (Klein and Simons, 

2011a; Rowlands et al., 1995). Further, embryonic tissues expressed higher levels of STMN1 

as compared to the adult counterpart (Barrandon and Green, 1987; BECKER et al., 1963; 

Bièche et al., 2003; Chen et al., 2003; Koppel et al.). These findings suggest a role for 

STMN1 in cell proliferation. Overexpression of STMN1 increased the number of cells in 

G2/M transition of the cell cycle and consequently its downregulation locked cells in post-

metaphase stage of mitosis (Jones and Watt, 1993; Larsson et al., 1997; Mistry and Atweh, 

2001; Spangrude et al., 1988). In the following years, a large number of other studies 

confirmed STMN1´s role in cell cycle progression (Belletti and Baldassarre, 2011; Senyo et 
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al., 2012). Our data suggest that, similar to other tissues, STMN1 labels acinar cells with the 

capacity to proliferate. Thus, the question arises whether STMN1 is expressed in these cells 

solely as a consequence of being actively proliferating. If so, STMN1 would not be a stable 

marker for this progenitor-like population. Co-staining of the mitosis marker pH3 with 

STMN1 demonstrated that the vast majority of STMN1+ acinar cells are not actively cycling 

(Fig. 20). The expression of STMN1 might therefore be a prerequisite for cells to proliferate, 

which in turn raises the question how STMN1 itself is regulated. 

The regulation of STMN1 on the transcriptional level was suggested to be cell cycle 

dependent in cancer cells since a putative binding site for the transcription factor E2F was 

found (Melhem et al., 1991; Zhou et al., 2007). More direct evidence was provided by a 

microarray screen for genes regulated by E2F during mitosis (Ishida et al., 2001; Puri et al., 

2015). This study demonstrated that STMN1 was downstream of E2F in serum-stimulated 

fibroblasts (Ishida et al., 2001; Swenson et al., 2009). Furthermore, E2F dependent STMN1 

expression was confirmed in other cancer cell lines (Polager and Ginsberg, 2003; Polzin et al., 

2004; Swenson et al., 2009). Although these studies clearly demonstrate that the STMN1 

expression might be E2F-dependent, our data argues against a cell cycle-dependent STMN1 

expression (Fig. 10). In addition to that, we find expression of E2F1 in only one of the 

STMN1+ acinar cells (data not shown). This indicates that the expression of STMN1 might be 

differently regulated depending on the cell type. An example for tissue specific regulation of 

STMN1 transcription is provided by its negative regulation. It was shown that p53 is a 

transcriptional repressor of STMN1 in various cancer cell lines (Ahn et al., 1999; Johnsen et 

al., 2000; Murphy et al., 1999). In the hepatic cancer cells, however, the wild-type form of 

p53 does not influence the expression of STMN1 (Singer et al., 2007).  

Besides the transcriptional control of STMN1 a large body of data has been acquired 

regarding its post-translational regulation. STMN1 has four phosphorylation sites: S16, S25, 

S38, S63, each phosphorylated by a different kinase (Belletti and Baldassarre, 2011). The 

phosphorylation of these serins inhibits STMN1´s ability to destabilize microtubules (Belletti 

and Baldassarre, 2011). CDK1, the master regulator of M phase progression, phosphorylates 

S25 and S38, followed by phosphorylation of S16 and S63 by Aurora kinase B (Beretta et al., 

1993; Brattsand and Marklund, 1994; Larsson et al., 1997; Luo et al., 1994). These 

phosphorylation events are critical for mitotic spindle formation in order to separate sister 

chromatids (Beretta et al., 1993; Brattsand and Marklund, 1994; Luo et al., 1994). 

Furthermore, phosphorylation of S16 has also been demonstrated to facilitate T-helper cell 

differentiation and axon development in neurons (Tanaka et al., 2007; Watabe-Uchida et al., 
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2006). In the light of these findings it is tempting to speculate that STMN1 expression is 

required for acinar cells in order to be able to divide. The actual trigger leading to acinar cell 

mitosis might act on STMN1 on the post-translational level. Further experiments are needed 

to confirm this hypothesis. If this assumption holds true, STMN1 might be a faithful marker 

of progenitor-like acinar cells.  

 

 

4.2.2 The role of Sox9 in the developing and adult pancreas 

 

Single cell mRNA sequencing revealed that the STMN1 expressing subpopulation is 

heterogeneous with regards to the expression of Sox9 (Fig. 20). The transcription factor Sox9 

is labelling stem cells of various organs such as hair bulge, the intestine as well as the neural 

crest (Blache et al., 2004; Cheung and Briscoe, 2003; Vidal et al., 2005). Similarly, Sox9 is 

expressed in the earliest multipotent cells during pancreatic organogenesis (Kopp et al., 

2014). During the developmental transition towards tip-trunk morphology, Cpa-1+ tip cells are 

known to harbour multipotent progenitors, which drive organogenesis from E10.5 on (Zhou et 

al., 2007). Cells within the trunk region, however, have also been shown to harbour Sox9 

expressing multipotent stem cells during pancreatic development (Kopinke et al., 2011; Kopp 

et al., 2011). In embryonic stem cells of the pancreas, Sox9 directly regulates the expression 

of a transcriptional network for maintaining the stem cell identity and activates the expression 

of Neurogenin3, whereby it directs endocrine differentiation (Lynn et al., 2007). The 

importance of Sox9 for embryonic pancreatic stem cells is further supported by investigations 

regarding pancreatic development in Sox9 deficient mice (Seymour et al., 2007). Pancreas-

specific deletion of Sox9 resulted in severe pancreatic hypoplasia, indicating that the Sox9 

dependent transcriptional network is essential for development of the pancreas (Seymour et 

al., 2007).  

Given the data obtained from the developing pancreas Sox9 has been a promising candidate 

for potential adult pancreatic stem-/progenitor cells. A comprehensive lineage tracing study 

aimed to test this assumption by tracing the fate of Sox9+ cells in the adult liver, pancreas and 

intestine (Furuyama et al., 2011). The authors found that Sox9 expressing duct cells were able 

to give rise to acinar cells over time, suggesting that Sox9 expressing duct cells might serve as 

adult exocrine progenitor cells (Furuyama et al., 2011). Surprisingly, an independent attempt 

to determine the multi-lineage potential of Sox9+ duct cells revealed that Sox9-expressing 

cells of adult mice only gave rise to duct cells, contradicting the exocrine progenitor 
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hypothesis (Kopp et al., 2011). It has been speculated that differences in the strategies for the 

creation of the transgenic mice might explain the difference (Kopp et al., 2014). The 

investigators of one study created Sox9CreERT2 mice by targeting the endogenous gene 

(Furuyama et al., 2011), while the other study used an bacterial artificial chromosome (BAC) 

to deliver the transgene (Kopp et al., 2011). Thus, one of these strategies might more 

faithfully recapitulate the expression of the endogenous gene as compared to the other. 

Another possible explanation could be the different dosages of tamoxifen used in these 

studies (Kopp et al., 2014). This interpretation is particularly plausible in the light of the fact 

that Kopp and colleagues demonstrated labelling of acinar cells when higher dosages of 

tamoxifen were used (Kopp et al., 2011). Furuyama and colleagues used similarly high 

concentrations of tamoxifen (Furuyama et al., 2011). Thus, it is possible that a subpopulation 

of acinar cells express low levels of Sox9, which are only labelled when a high dosage of 

tamoxifen is used. However, high dosages of tamoxifen might also lead to unspecific 

recombination of the Cre recombinase (unpublished observation). Our data derived from 

single cell mRNA sequencing of acinar cells provided evidence for Sox9 expression of acinar 

cells, which we were able to confirm by immunohistochemistry (Fig. 20). Thus, our data 

offers an explanation for the controversy of Sox9 expression in the adult pancreas. It is 

therefore possible that the multi-lineage capacity of Sox9+ duct cells as demonstrated by 

Furuyama and colleagues might be a misinterpretation of labelling of Sox9+ acinar cells 

induced by high tamoxifen levels. This is further confirmed by the fact that lineage tracing of 

adult pancreatic duct cells with other duct specific CreERT2 lines do not display multi-lineage 

potential of duct cells (Kopinke et al., 2011; Solar et al., 2009). 

 

 

4.2.3 Transcription factor heterogeneity among acinar cells 

 

The transcription factor Sox9 is a typical example of how transcription factors control 

transcriptional networks and thus maintain cell identity. The power of these factors is 

demonstrated by recent years establishment and advances of iPS technology (Xu et al., 2016). 

As revealed by the Nobel prize winning proof of principle study, overexpression of four 

transcription factors, which became known as the Yamanaka factors, were sufficient to 

change a cell´s identity (Takahashi and Yamanaka, 2006). Since we were interested in 

determining the cellular heterogeneity among acinar cells, we aimed to uncover the 

transcription factor heterogeneity within the sequenced acinar cells. We discovered that the 
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profiled acinar cells separate into two main groups depending on which transcription factors 

are expressed (Fig. 22). The size of the clusters resembled the ratio between mono- and 

binuclear acinar cells in adult mice (Fig. 13). However, staining of Fosb, the most binary 

differentially expressed transcription factor, revealed that the clustering of transcription 

factors are not likely to reflect mono- and binuclear acinar cells (Fig. 22). Thus, the question 

arises which class of transcription factors separate these clusters. We found that the clusters 

were mainly separated by so-called early response genes such as Jun, Fos and Egr1 (Fig. 22 – 

red box). Previously, it was discovered that the expression of early response genes such as c-

Fos and c-Jun was increased in pancreatic acinar cells upon cholinergic stimulation (Turner et 

al., 2001). As described above, pancreatic acinar cells are secretory cells, responsible for 

producing and secreting large amounts of digestive proteins (Logsdon and Ji, 2013). The 

exocytosis of secretory granules is a controlled process. Secretion happens upon 

secretagogue-induced increase of intracellular Ca2+ concentration (Low et al., 2010; Yule, 

2010). The main secretagogues responsible for stimulus-dependent secretion of digestive 

enzymes are the neurotransmitter acetylcholine (Ach) and the peptide hormone 

cholecystokinin (CCK) (Petersen, 1992). Cholecystokinin stimulation has been shown to 

increase expression of Egr-1 and c-Jun in pancreatic acinar cells (Guo et al., 2012; Kaufmann 

et al., 2014). In the light of these findings it is likely that the acinar cell cluster that is 

separated by high levels of early response genes might be in the process of stimulus-mediated 

exocytosis. This would indicate that the clustering of transcription factors is not representing a 

stable acinar subpopulation, but rather a transient state of acinar cells. Similarly, expression 

analysis of several hundred single brainstem neurons displayed transcriptional heterogeneity 

which is reflected by diverse input responses based on the environmental experiences of the 

neurons (Park et al., 2014). 

Despite these findings it is surprising that binuclear cells could not be distinguished by our 

unbiased single cell mRNA sequencing approach, particularly given the fact that we find 

functional differences between mono- and binuclear acinar cells (Fig. 11). One possible 

explanation would be that the transcriptional difference between mono- and binuclear cells 

are below our level of detection. It was noted before that transcription factors are expressed at 

much lower levels as compared to secreted proteins such as hormones (Wen and Tang, 2015). 

Hence, more sensitive methods might be needed to detect potential transcription factors that 

might determine binuclear cell identity. 
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4.3 What is an adult stem cell? 

 

In the course of this study, we described an acinar subpopulation with the capacity to 

proliferate for long periods of time, resembling stem-/progenitor cells from other tissues. 

Hence, we termed these acinar cells “progenitor-like”. The classic definition of stem-

/progenitor cells dates back to the discovery of hematopoietic stem cells (BECKER et al., 

1963). Since then, hematopoietic stem cells have become the archetype of a hierarchically 

organized stem cell system, engraining our understanding of how to define a stem cell. The 

question then arises how the progenitor-like acinar cells fit into the framework of 

hierarchically organized stem cells. 

Recently, the provocative question arose whether our classically defined understanding of 

how stem cell systems maintain homeostasis is out-dated (Clevers, 2015). In the light of 

recent findings, arising from efforts to find stem cells in a multitude of adult tissues, it is 

possible that tissues might use different mechanisms to replace lost cells (Clevers, 2015).  

 

 

4.3.1 Multipotency and self-renewal of adult stem cells 

 

Hematopoietic stem cells are multipotent and have the ability to self-renew (Weissman, 

2000). Based on the example of the hematopoietic stem cell system, multipotency and self-

renewal have since served as dogmatic prerequisites for stem cells in adult tissues. However, 

examples from other organs, including recent findings from the hematopoietic system itself, 

challenge the concept that multipotency and long term self-renewal are two stringently 

coupled processes. With the help of a labour-intensive single-cell transplantation assay, a 

myeloid-restricted progenitor population with long-term repopulating activity was discovered 

(Yamamoto et al., 2013). This example demonstrates that long-term self-renewal might be a 

property, which stem cells share with certain cells lower in the hierarchy such as progenitor 

cells. In the adult liver, mature hepatocytes are terminally differentiated cells making up the 

majority of all cells in the liver (Alberts et al., 2014). Axin2 expressing pericentral 

hepatocytes were identified as a self-renewing subpopulation which maintains hepatocyte 

homeostasis (Wang et al., 2015). This study argues that the property of self-renewal might not 

just be restricted to stem-/progenitor cells, but possibly also apply to terminally differentiated 

cells. The properties of the progenitor-like acinar subpopulation that we identified closely 

resemble the self-renewing hepatocytes (Fig. 8). Thus, the liver and the pancreas might have 
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evolved similar mechanisms of maintaining homeostasis, which depend on the self-renewal 

capacity of fully differentiated cells. In support of this hypothesis, both organs do not harbour 

multipotent cells (Yanger et al., 2014). Hepatocytes and pancreatic acinar cells are very 

similar in their function as both cell types are producing und secreting large amounts of 

protein (Barnard, 1969; Grieninger and Granick, 1978). Another resemblance is the 

occurrence of binuclear cells in both cell types, indicating a relation between protein 

production and DNA content (Wang et al., 2015). Interestingly, Axin2 expressing hepatocytes 

were shown to be largely diploid. Together with the finding that binuclear acinar cells are 

proliferation deficient (Fig. 11) these results suggest that the binuclear state might render both 

cell types terminally differentiated with no self-renewal capacity (Wang et al., 2015). 

Multipotency, the second main property of stem cells, is frequently observed during 

development of organs as exemplified by Pdx1+ or Cpa-1+ multipotent stem cells in the 

developing pancreas (Gu et al., 2002; Zhou et al., 2007). Similarly, adult hematopoietic stem 

cells were shown to be multipotent early after their identification (BECKER et al., 1963). 

Hence, the stem cell community took advantage of genetic tools such as lineage tracing to 

directly test multipotency of several adult cell types in situ (Kretzschmar and Watt, 2012; 

Snippert and Clevers, 2011). Adult neural stem cells reside in two niches: the subventricular 

zone in the walls of the lateral ventricles and the in the subgranular layer of the dentate gyrus 

(Kriegstein and Alvarez-Buylla, 2009). Although stem cells in both niches were shown to be 

multipotent, the question remained, whether all cells within the stem cell populations were 

multipotent (Gage, 2000; Kriegstein and Alvarez-Buylla, 2009). If a population of unipotent 

cells were lineage traced, multiple cell types would be labelled. In this case, the traced 

individual cells might not be “truly” multipotent cells, as compared to the early hematopoietic 

stem cell studies which able to trace cells at the single cell level (BECKER et al., 1963). 

Recently, clonal analysis of neural stem cells aimed to address this issue in order to determine 

whether single neural stem cells in the respective niches are truly multipotent. With the help 

of a sparse genetic labelling approach, Bonaguidi and colleagues were able to trace the fate of 

single neural stem cells in the dentate gyrus (Bonaguidi et al., 2011). The results of the clonal 

analysis demonstrated self-renewal as well as multipotency on the single cell level (Bonaguidi 

et al., 2011). Interestingly, clonal analysis of neural stem cells in the second neurogenic niche 

revealed a bias in the fate specification towards deep granule neurons (Calzolari et al., 2015). 

This study indicates that the multipotency of neural stem cells in the subventricular zone on 

the population level is not fully recapitulated on the single cell level. The phenotypic 

heterogeneity of neural stem cells from the two niches is particularly surprising as recent 
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single cell sequencing studies have demonstrated that neural stem cells from both niches are 

similar on the transcriptome level (Llorens-Bobadilla et al., 2015; Shin et al., 2015). 

The above-discussed evidence argues that, despite the fact that many tissues harbour cells that 

are multipotent or have the ability to self-renew, few adult organs seem to contain cells that 

integrate both properties. 

 

 

4.3.2 Quiescence of adult stem cells 

 

The concept that tissue resident adult stem cells are quiescent is demonstrated in several 

tissues such as hair follicle or striated muscle (Brack and Rando, 2012; Jaks et al., 2010). The 

idea of quiescence of stem cells seems counterintuitive since the main purpose of a stem cell 

is to produce daughter cells to counter homeostatic or injury-induced cell loss (Clevers, 

2015). Further, many terminally differentiated cells are non-dividing, making quiescence a 

rather unspecific hallmark of stemness (Clevers, 2015). A rational for the quiescence of adult 

stem cells was provided by the hematopoietic system. The most quiescent stem cells, termed 

dormant stem cells, were shown to provide a silent reservoir, which gets reversibly activated 

upon injury (Wilson et al., 2008). The small intestine is a tissue with high cellular turnover, 

similar to the hematopoietic system. Yet, the Lgr5+ stem cells of the small intestine are 

constantly cycling and get stochastically activated (Barker et al., 2007; Snippert et al., 2010). 

Recently, Dclk1+ pancreatic cells were proposed to be quiescent progenitor cells which get 

activated in several injury models (Westphalen et al., 2016). It was speculated for many years 

that the pancreas and the liver might harbour facultative stem cells (Yanger and Stanger, 

2011). These cells were proposed to be terminally differentiated cells which dedifferentiate 

into stem cells upon injury (Yanger and Stanger, 2011). Dclk1+ pancreatic cells might be a 

first candidate for this elusive population. The authors convincingly demonstrate that Dclk1+ 

cells are necessary for the regeneration of the pancreas after injury (Westphalen et al., 2016). 

Yet, whether quiescence is a particular feature of these cells is questionable, since we show 

that ~ 90% of all acinar cells are quiescent (Fig. 8). However, our data demonstrate that injury 

activates a pool of pancreatic cells distinct from the progenitor-like acinar cells we discovered 

(Fig. 10). It is therefore tempting to speculate that the pool of acinar cells contains two 

progenitor populations: continuously proliferating progenitors, similar to intestinal stem cells, 

as well as a distinct dormant pool of injury-induced progenitors, resembling dormant 

hematopoietic stem cells. Our single cell mRNA sequencing results suggest that STMN1 
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might be a marker for the continuously proliferating progenitor-like acinar cells. With this 

marker at hand, future experiments can directly address whether two functionally distinct 

progenitor-like acinar cells exist.  

 

 

4.3.3 Coexistence of stem cell pools 

 

The above discussed question of coexisting quiescent and active acinar progenitor-like cells 

aimed to decipher acinar heterogeneity. Although the pancreas mainly consists of acinar cells, 

other cell types are also present in the pancreas, which might contain their own progenitor 

population. The notion of coexisting progenitors within the same organ is particularly 

interesting considering that multipotency is lost in the adult pancreas (Desai et al., 2007; Dor 

et al., 2004; Kopp et al., 2011). Thus, every tissue compartment needs to autonomously 

maintain homeostasis. 

An example for cell types, which independently maintain homeostasis, is given by the adult 

mammary gland. Although transplantation experiments suggested the existence of multipotent 

mammary stem cells, lineage tracing experiments demonstrated that basal and luminal cells 

are not multipotent when traced in situ (Shackleton et al., 2006; Stingl et al., 2006; Van 

Keymeulen et al., 2011). Similar results were obtained by fate mapping experiments of the 

adult prostate and sweat glands (Lu et al., 2012; Ousset et al., 2012). These studies elucidate a 

concept of tissue homeostasis in a unipotent fashion for several adult organs. Yet, it is not 

clear if homeostasis is maintained by stochastic proliferation of all cells, or only a small 

subset of e.g. basal or luminal cells. By clonal analysis of adult acinar cells we were able to 

show that only a small subset of acinar cells maintains homeostasis of the acinar cell 

compartment (Fig. 8, 11). Brennand and colleagues aimed to uncover whether such a 

subpopulation also exists among endocrine β-cells using a label retaining assay (Brennand et 

al., 2007). The authors found that all β-cells contribute equally to growth and maintenance 

(Brennand et al., 2007). This result is particularly surprising in light of our finding showing 

that there is clear heterogeneity among acinar cells with regard to how many of these cells 

contribute to growth and homeostasis in the adult animal (Fig. 8). These findings indicate that 

two distinct mechanisms for maintenance of homeostasis can coexist within the same organ. It 

would be interesting for future studies to investigate which mechanism the other cell types in 

the pancreas use to maintain homeostasis. Furthermore, it would be interesting to investigate 
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whether β-cells might be equally susceptible to tumour formation given their equal capacity 

to proliferate. 

 

 

4.4 Organs in a dish – what can we learn from 3D cultures? 

 

 

4.4.1 Advantages of organoid cultures 

 

Adult stem-/progenitor cells from varies organs, once cultured in three dimensional 

hydrogels, can form miniature versions of the respective organs which were termed organoids 

(Sasai, 2013). We hypothesized that progenitor-like acinar cells would also form organoids in 

3D cultures. Thus, we aimed to use organoid formation as a surrogate for identification of 

progenitor-like acinar cells. We found a subpopulation of acinar cells, which form organoids, 

once in direct cell-cell contact with supporting acinar cells, and simultaneously undergo 

acinar-to-ductal metaplasia (Fig. 11).  

Organoid assays provide a useful addition to the assays for stem cell research. For a long 

time, the only stem cell that could be propagated in vitro was the epidermal stem cell 

(Barrandon and Green, 1987). The development of organoid assays opened the door to long-

term in vitro cultures for stem cells from a large variety of organs such as intestine (Sato et 

al., 2009), stomach (Barker et al., 2010), lung (Lee et al., 2014), liver (Huch et al., 2013b), 

salivary gland (Lalitha S Y Nanduri, 2014), tongue (Hisha et al., 2013) and many more. In 

addition to that, and in contrast to the 2D cultures of epidermal stem cells, the organoid assay 

provides means for studying mechanisms of tissue morphogenesis. The cultures recapitulate 

many features of organ morphogenesis as stem cells interact with their progeny in order to 

form organoids. This is impressively demonstrated by organoid formation of optic cups and 

cerebral organoids (Eiraku et al., 2011; Lancaster et al., 2013). 

Another advantage of the organoid assay is that it could, in combination with iPS technology, 

in principle be performed for all human organs for which iPS protocols are available. 

Morphogenesis is almost exclusively studied in model organism, but signals that are 

important for organ formation might differ between species. An example is given by 

organoids derived from adult human liver cells, which, in contrast to mouse liver organoids, 

need inhibition of TGF-β signalling for long-term culture (Huch and Koo, 2015). Moreover, 

adult stem cells in mammalian organs were mainly studied in mice. The organoid formation 
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assay might provide a fast and cost-effective way of identifying stem cells in human tissue. 

Although we find organoid-forming acinar cells, supporting our discovery of progenitor-like 

acinar cells in vivo, we have no indication whether this organoid forming acinar population 

exists in the human pancreas. It would therefore be interesting to perform the organoid assay 

using human acinar cells. Similar to studies of organ formation, many diseases are studied 

using mouse models, which, despite individual achievements, frequently fall short of 

predicting human disease response (Shanks et al., 2009). Pancreatic ductal adenocarcinoma  

(PDAC) is a very good example for this problem. Several years of extensive studies on mouse 

models of PDAC has increased our understanding of the disease, but completely failed to 

improve treatment efficacy (Hwang et al., 2015; Perez-Mancera et al., 2012). Recent efforts to 

model PDAC using organoid assays might provide more faithful recapitulation of the disease 

(Boj et al., 2015; Huang et al., 2015). Yet, these organoid models for PDAC will need to be 

improved in order to mimic micro environmental signals which were shown to be critical for 

modelling therapeutic response of PDAC (Olive et al., 2009). Furthermore, this assay could 

directly test whether the progenitor-like acinar population that we find might be the cell-of-

origin for human PDAC.  

 

 

4.4.2 Using organoids to define stem cell niches 

 

Adult stem cells receive signals from cells, which are frequently in close proximity and 

orchestrate their differentiation or maintain their stemness (Fuchs et al., 2004). The 

microenvironment that controls the fate of stem cells is called “stem cell niche” (Fuchs et al., 

2004). The importance of the niche signals for stem cells is illustrated by the fate 

determination of embryonic stem cells as a function of the environmental signals. Embryonic 

stem cells, once transplanted into an adult mouse, form tumours that contain multiple cell 

types (Przyborski, 2005). This result illustrates the pluripotency of embryonic stem cells and 

their transplantation was subsequently used as a reliable readout for true pluripotency 

(Takahashi and Yamanaka, 2006). However, the uncontrolled differentiation into multiple 

cells was not an inert attribute of embryonic stem cells upon isolation. This was demonstrated 

by a study in which embryonic stem cells were transplanted into blastocytes, providing the 

native niche of embryonic stem cells (Mintz and Illmensee, 1975). The chimeric blastocyst 

developed into a normal, healthy organism and therefore demonstrates the importance of 

specially and temporally controlled signals for stem cells (Mintz and Illmensee, 1975).  
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Adult stem cells of the small intestine reside at the bottom of anatomically well-defined 

regions termed crypts (Barker et al., 2007). The confinement of their location and their lack of 

migratory capacity argues that the niche signals for stem cell might come from neighbouring 

cells close by. In fact, it was believed that subepithelial myofibroblasts provide a cellular 

niche for epithelial stem cells, given their anatomical location (Sato et al., 2009). This idea 

was refuted by a set of elegant studies demonstrating that paneth cells are the niche cells 

(Farin et al., 2016; Sato et al., 2009; 2010; van Es et al., 2012). The authors of these studies 

used the organoid formation assay as a readout for the stem cells capacity to form organ-like 

structures in vitro (Sato et al., 2009). Lgr5+ cells share a large part of their surface contact area 

with paneth cells at the bottom of the crypt (Sato et al., 2010). Thus, incomplete digestion 

upon stem cell isolation led to clusters of cells recapitulating the physiological cellular 

interaction in the organ (Sato et al., 2010). The authors developed a FACS strategy to sort 

“doublets” of stem cells and paneth cells and demonstrated drastically increased efficiency in 

organoid formation (Sato et al., 2010). Our finding that acinar cells only grow organoids once 

in direct cell-cell contact to a supporting acinar cell closely resembles these finding (Fig. 11). 

It is therefore possible that the acinar cell compartment does not only harbour a subpopulation 

of progenitor-like acinar cells but also a subpopulation of acinar cells that acts as a niche cell. 

At first sight it seems surprising that acinar cells provide the niche for its own cell type, 

considering that many stem cell driven organs demonstrate that cell types other than the stem-

/progenitor provide the niche signals for adult stem cells (Fuchs et al., 2004). However, our 

data en bloc suggests that the acinar cell compartment consists of many (sub)cell types and 

the existence of a niche-like cell might support this concept. 

If niche signals from supporting acinar cells control the proliferation of progenitor-like acinar 

cells the most obvious question is: What is the molecular identity of the niche signals? At this 

point, this remains an open question. Further experiments elucidating the signalling pathways 

that activate progenitor-like acinar cells might provide a clue on which ligands to look for. 

We find that direct cell-cell contact is necessary to induce proliferation, indicating that short-

range signals promote organoid formation similar to the recently described mechanism for 

intestinal stem cells niches (Farin et al., 2016). Identification of candidate molecules will be 

the most straightforward way to directly test what are the signals that progenitor-like acinar 

cells depend on. The acinar cells that are the source of these signals could subsequently be 

identified and further characterized in vivo. Furthermore, the identification of the elusive 

niche factors would prove the existence of niche-like acinar cells. Although our data is very 

reminiscent of the data that led to the identification of the intestinal stem cell niche, we have 
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not isolated and characterised niche like acinar cells yet and thus had no means to manipulate 

them. Further experiments are needed to exclude the possibility that the proliferative capacity 

of progenitor-like acinar cells is completely inert trade. 

Overall, the discovery of the intestinal stem cells niche in combination with our data 

regarding niche-like acinar cell suggest that the organoid assay is a valuable tool for 

discovering stem-/progenitor niches in other systems. This is particularly important for tissues 

in which the niche is not as clearly anatomically defined as for the small intestine. On the 

other hand, the progenitor-like acinar cell might reside in a previously neglected anatomically 

defined structure. Although stem cells in the mammalian brain were known to reside in the 

subventricular zone, it was not until recently that it was demonstrated that the stem cells 

reside in “pinwheel-like” structures (Mirzadeh et al., 2008). The adult pancreas might harbour 

similar, not yet identified microanatomial structures where progenitors reside, and advances 

in three-dimensional, whole-tissue imaging approach might facilitate their identification. 

 

 

4.5 What is the acinar cell of origin for pancreatic ductal adenocarcinoma (PDAC)? 

 

 

As described in the introduction (1.4 Pancreatic cancer), mouse models for pancreatic cancer 

demonstrated that acinar cells most likely represent the cell of origin for PDAC. Our data 

suggests that acinar cells are a heterogeneous population that consists of several sub-cell 

types. This raises the question whether these subpopulations differ in their susceptibility to 

tumour initiation and, if so, which of the acinar subtypes is most vulnerable. 

 

 

4.5.1 From tissue turnover to tumorigenesis 

 

Cancer is frequently diagnosed in patients at a late stage, which, in addition to the resulting 

poor prognosis, provides little information about the early events during tumour formation. 

Elegant studies from the 1960s analysed genetic abnormalities to retrospectively infer tumour 

cell clonality of chronic myelogenous leukaemia (BAIKIE et al., 1960). The authors 

demonstrated that dividing leukaemia cells shared the same genetic abnormalities, suggesting 

clonal origin of the tumour (BAIKIE et al., 1960). Although these studies, and subsequently 

several others, demonstrated that most cancers arise from a single cell, it remained unknown, 
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which cell within an organ is the root of the disease. The laboratory of John Dick discovered 

the first leukaemia initiating cell, and further provided evidence that leukaemia cells are 

hierarchically organized (Bonnet and Dick, 1997; Lapidot et al., 1994). The leukaemia 

initiating cell showed an immunophenotype, which closely resembled normal hematopoietic 

stem cells, suggesting that hematopoietic stem cells might be the cell of origin for acute 

myeloid leukaemia (Wang and Dick, 2005). Subsequently, genetic mouse models enabled 

researchers to directly test how susceptible different cell types within the blood or other 

organs are towards malignant transformation. For many tissues, introducing oncogenic 

mutation in stem- or progenitor cells was necessary in order to efficiently generate tumours 

(Visvader, 2011). These studies argue that stem-/progenitor cells likely represent the cell of 

origin for many cancers.  

The applicability of this concept to the pancreas was long questioned, as the adult pancreas 

does not harbour multipotent stem cells (Kopp et al., 2016). More recently, it was 

hypothesized that the susceptibility for malignant transformation might depend on the most 

rudimentary feature of stem- and progenitor cells: the ability to renew the organ (or parts of it) 

for long periods of time (Kong et al., 2011). The progenitor-like acinar cells that we 

discovered might therefore represent a suitable candidate for the acinar cell of origin for 

PDAC. Although this acinar subpopulation is not multipotent, it is able to renew and produce 

new acinar cells for at least one year (Fig. 8, 9). Proliferation has been suggested to induce 

carcinogenesis through a mechanism involving homologous recombination mediated genetic 

rearrangement (Bishop and Schiestl, 2001). In fact it has been shown that murine pancreatic 

tissue accumulates recombinant cells with age and ageing has been recognized as a critical 

risk factor for pancreatic cancer (Li et al., 2004; Wiktor-Brown et al., 2006). It is therefore 

possible that progenitor-like acinar cells might acquire mutations as a consequence of their 

continuous proliferation in the course of time. 

Our single cell mRNA sequencing results suggest that STMN1 might be a marker for the 

progenitor-like acinar cells that we discovered in our lineage tracing experiments (Fig. 20). 

STMN1 is also known as Oncoprotein 18 (Op18) after it was shown to be highly 

overexpressed in acute leukaemia cells (Hanash et al., 1988). STMN1 expression has since 

been determined in a large number of cancer samples (Belletti and Baldassarre, 2011). 

STMN1 was overexpressed in most, if not all analysed samples, despite the large variety of 

samples from different tumours (Belletti and Baldassarre, 2011). Furthermore, high 

expression levels of STMN1 was associated with poor survival and increased metastasis in a 

large number of cancers (Belletti and Baldassarre, 2011) including PDAC (Li et al., 2015). 



! 71!

These findings resemble the above-described phenotypic similarity of leukaemia initiating 

cells and hematopoietic stem cells. Yet, it is not possible to say whether the expression of 

STMN1 in pancreatic (as well as other) tumour cells mirrors the tumour cell´s origin or 

whether STMN1 was transiently upregulated. Although a  similar mechanistic relationship 

has been previously established between the STMN1 and cell cycle activity, we did not find 

STMN1 expression as a consequence of mitosis, potentially arguing against transiently 

regulated expression of STMN1 in the pancreas (Cassimeris, 2002)(Fig. 20). Nevertheless, 

further experiments will be necessary to resolve this issue. In addition to STMN1´s role in cell 

cycle progression, a large body of evidence links STMN1 to migratory capacity of several cell 

types. High expression of STMN1 was observed at the invasive fronts of several cancers such 

as gastric cancer, colorectal cancer, non-small cell lung carcinoma and glioblastoma (Belletti 

and Baldassarre, 2011). The migration of non-cancer cells such as Drosophila ovary border 

cells and neurons were demonstrated to be STMN1-dependent (Borghese et al., 2006). It is 

conceivable that STMN1 might be a marker for metastasis initiating cells, given the cell´s 

dependence on STMN1. Yet, the idea that STMN1+ pancreatic cells represent tumour-

/metastasis-initiating cells needs experimental confirmation and remains purely speculative at 

this point. 

Alternatively, the fact that injury increases the proliferative burden of acinar cells suggests the 

possibility that a pool of acinar cells distinct from STMN1+ cells becomes susceptible to 

malignant transformation. This is particularly important in light of the fact that pancreatitis is 

another risk factor for pancreatic cancer (Hidalgo, 2010; Li et al., 2004). A recently 

discovered subpopulation of Dclk1 expressing acinar cells was shown to regenerate the 

pancreas after experimentally induced injury (Westphalen et al., 2016). Interestingly, this 

population was demonstrated to be particularly susceptible to tumour initiation upon 

pancreatic injury (Westphalen et al., 2016). According to our data, this population is likely to 

be distinct from the progenitor-like acinar cells that we discovered (Fig. 10). It will be 

interesting to directly compare the tumour initiating capacity of Dclk1+ and STMN1+ cells 

under different conditions, similar to the comparison of acinar and duct cell tumour 

susceptibility (Kopp et al., 2012). Such studies would help to further unravel which among 

the acinar subpopulations is most likely to be the true acinar cell of origin for PDAC. 
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4.5.2 The role of polyploid cells in tumour initiation 

 

Our data suggests that binuclear acinar cells are proliferation deficient (Fig. 11, 13). The idea 

that these cells might be at the heart of pancreatic tumour formation seems therefore 

counterintuitive. However, a large body of literature suggests that tetraploid cells are 

genetically unstable and tumourigenic (Davoli and de Lange, 2011; 2012; Fujiwara et al., 

2005; Ganem et al., 2007). Genome instability is described to underlie all hallmarks of cancer 

(Hanahan and Weinberg, 2011). So the question arises whether (and how) binuclear acinar 

cells might be able to escape their cell cycle arrest and start to proliferate uncontrollably as a 

result of their mutational burden.  

In the 1960s a study addressing the effect of a group of fungal metabolic derivatives called 

cytochalasins on mammalian cells discovered that these molecules inhibited cytokinesis of 

dividing fibroblasts (CARTER, 1967). Interestingly, these cells display reduced mitotic rates 

and subsequent studies showed that p53 mediates cell cycle arrest in tetraploid cells 

(Andreassen et al., 2001; Kuffer et al., 2013). Recently, an RNAi screen identified the Hippo 

pathway kinase LATS2 as a regulator of tetraploid-induced G1 arrest in fibroblasts by 

stabilizing p53 (Ganem et al., 2014). Inactivating mutations of the tumour suppressor p53 are 

present in more than 50% of all PDACs and mouse models demonstrated that loss of p53 is 

necessary for progression of early lesion to aggressive, metastatic tumours (Bardeesy and 

DePinho, 2002; Guerra et al., 2007). It is therefore possible that p53 mutation erase the 

roadblock for binuclear acinar cell proliferation. Further support for this model is provided by 

the fact that tetraploid mammary epithelial cells isolated from p53-/- mice gave rise to 

malignant mammary epithelial cancers in contrast to diploid cells (Fujiwara et al., 2005, 

Nature). 

It needs to be determined whether the molecular mechanism controlling cell cycle arrest in 

acinar cells is also p53 dependent. In contrast to fibroblasts or mutated cells, cultured normal 

hepatocytes show high levels of p53 independent of the ploidy, which does not hinder 

progression through S phase (Guidotti et al., 2003, JBC). This result argues that different 

mechanisms might govern tetraploid mediated cell cycle arrest in different cell types. Another 

potential argument against binuclear acinar cells as the source for PDAC is the fact that the 

pancreas is most prone to PDAC formation during pancreatic development (Guerra et al., 

2007). Mouse models demonstrated that introduction of KrasG12D mutation before postnatal 

day P10 resulted in 100% PDAC incidence, as compared to 12% when the mutation was 

introduced after P10 (Guerra et al., 2007). However, in rodents between 5-17 days of age 95% 
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of all acinar cells are mononuclear (Oates and Morgan, 1986). Although the latter study was 

performed in rats and has yet to be confirmed in mice, the close evolutionary relationship 

between the species argues that similar kinetics might be observed in mice. A similarly high 

proportion of mononuclear acinar cells in the early postnatal murine pancreas would indicate, 

that mononuclear acinar cells might be more susceptible to malignant transformation. 

Whether binuclear acinar are potential cells of origin for PDAC or if their proliferation 

deficiency mirrors the resistance to tumour formation observed in neurons or cardiomyocytes 

remains to be tested. Since binuclear cells also exist in human pancreatic tissue (Fig. 14), 

mouse models addressing this issue would be important in order to facilitate our 

understanding of human PDAC formation.  

! !
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