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Summary 

Breast cancer is a heterogeneous disease, and various subtypes have been defined at the level 

of gene expression and epigenetic modifications, such as DNA methylation. Epigenetic 

alterations are attractive candidates for the development of novel biomarkers or as targets for 

new therapeutic approaches. Mouse models allow monitoring of tumor development from early 

time points of initiation to final stages of tumorigenesis, but are often poorly characterized with 

respect to alterations of the epigenetic landscape. Therefore, the aim of this thesis was to 

generated genome-wide profiles of DNA methylation and histone modifications for the 

C3(1)SV40TAg (C3(1)) mouse model of basal-like breast cancer and to investigate the 

epigenetic regulation of long noncoding RNAs.  

Using a genome-wide screen with Methyl CpG Immunoprecipitation followed by next generation 

sequencing, we identified several thousand regions with recurrent methylation alterations at 

different stages of C3(1) tumorigenesis. Differentially methylated genes pointed towards a 

luminal progenitor as tumor cell of origin in the C3(1) model, and we confirmed a link between 

DNA methylation and gene expression for five of these genes. Comparisons at the level of 

promoter methylation revealed general similarity of the C3(1) methylome to human breast 

cancer. 

Generation of a chromatin map of the C3(1) model from four histone modifications (H3K4me3, 

H3K4me1, H3K27ac, H3K27me3) allowed an integrative investigation of methylation changes at 

breast tissue-specific enhancer regions. We linked tissue-specific alterations of chromatin states 

in combination with DNA methylation to changes in the expression of genes with importance for 

mammary gland development and breast cancer. These results unveiled a potential involvement 

of transcription factors Etv4 (ETS variant 4) and Runx1 (runt related transcription factor 1) in 

C3(1) tumorigenesis that might help to understand tumor development in basal-like breast 

cancer. 

An emerging theme in epigenetic research is the capacity of long noncoding RNAs (lncRNAs) to 

modulate gene expression by recruitment of gene-silencing or activating complexes. Since 

regulation of lncRNAs expression is poorly characterized, we investigated DNA methylation 

changes during carcinogenesis at lncRNA promoters and their influence on neighboring protein-

coding genes. Exemplarily, we demonstrated coordinated overexpression of Esrp2 (Epithelial 

splicing regulatory protein 2) and the lncRNA Esrp2-as (Esrp2-antisense) in C3(1) tumors that 

was inversely correlated with DNA methylation levels. Knockdown and overexpression of the 

transcripts did not provide evidence for reciprocal regulation of transcript expression. In contrast, 

luciferase reporter assays suggested that co-expression of both transcripts is controlled by 

differential methylation at a common enhancer region. These results are of clinical relevance as 

high levels of ESRP2 expression in human breast cancer are linked to unfavorable prognosis. 
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Zusammenfassung 

Brustkrebs ist eine heterogene Erkrankung und basierend auf Unterschieden in der 

Genexpression oder von epigenetischen Modifikationen, wie zum Beispiel von DNA 

Methylierung, wurden verschiedene Subtypen definiert. Epigenetische Veränderungen sind 

attraktive Kandidaten für die Entwicklung neuer Biomarker oder neuer Ansätze zur gezielten 

Krebstherapie. Der Einsatz von Mausmodellen ermöglicht es dabei, die gesamte Tumor-

entwicklung von Beginn an, bis zu den finalen Stadien zu beobachten. Allerdings sind 

Mausmodelle in Bezug auf epigenetische Veränderungen bisher unzureichend charakterisiert. 

Deshalb war es das Ziel dieser Arbeit, genomweite Profile für Veränderungen der DNA 

Methylierung und von Histonmodifikationen im C3(1)SV40TAg (C3(1)) Modell für basalen 

Brustkrebs zu erstellen, sowie die epigenetische Regulation von langen nicht-kodierenden RNAs 

zu untersuchen. 

Mithilfe von Methyl-CpG-Immunpräzipitation gefolgt von Sequenzierung der angereicherten 

Fragmente haben wir genomweit mehrere tausend Regionen identifiziert, deren DNA 

Methylierung sich über verschiedene Stadien der C3(1) Tumorentwicklung konsistent verändert 

hat. Die von differenzieller Methylierung betroffenen Gene ließen darauf schließen, dass eine 

Population von luminalen Vorläuferzellen den Ausgangspunkt der Tumorentstehung im C3(1) 

Modell darstellen könnte. Bei fünf von diesen Genen konnten wir eine Verbindung zwischen DNA 

Methylierung und Genexpression bestätigen. Der Vergleich der Promoter Methylierung ergab 

außerdem, dass eine generelle Ähnlichkeit zwischen dem C3(1) Methylom und dem von 

humanem Brustkrebs besteht. 

Um eine Karte der Chromatinlandschaft zu erstellen, wurden vier Histonmodifikationen 

(H3K4me3, H3K4me1, H3K27ac, H3K27me3) auf genomweiter Ebene analysiert. Dies erlaubte 

die integrative Untersuchung von Veränderungen in der Methylierung an 

brustgewebsspezifischen Enhancer-Regionen. Dabei fanden wir einen Zusammenhang 

zwischen Genexpression und gewebstypischen epigenetischen Veränderungen, insbesondere 

bei Genen, die eine Rolle bei der Entwicklung der Brust und von Brustkrebs spielen. Ebenso 

konnte ein potenzieller Einfluss der Transkriptionsfaktoren Etv4 (engl. ETS variant 4) und Runx1 

(engl. Runt related transcription factor 1) für die C3(1) Tumorigenese identifiziert werden. Diese 

Ergebnisse könnten dabei helfen die Tumorentstehung in basalem Brustkrebs besser zu 

verstehen.  

Ein Thema von zunehmender Bedeutung für die epigenetische Forschung ist die Fähigkeit 

langer nicht-kodierender RNAs (lncRNAs), aktivierende oder hemmende Komplexe an die DNA 

zu rekrutieren, um dadurch die Genexpression zu regulieren. Da die Regulation der Expression 

für lncRNAs schlecht charakterisiert ist, haben wir krebsspezifische Veränderungen in der 

Methylierung von lncRNA Promotoren untersucht und wie diese benachbarte protein-kodierende 

Gene beeinflussen. In diesem Zusammenhang bestätigten wir exemplarisch die koordinierte 
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Überexpression von Esrp2 (engl. Epithelial splicing regulators protein2) und der lncRNA Esrp2-

as (engl. Esrp2-antisense) in C3(1) Tumoren. Expressionslevel waren dabei invers korreliert mit 

DNA Methylierung. Knockout sowie gezielte Überexpression der Transkripte erbrachten keine 

Hinweise für eine wechselseitige Regulation der Expression. Dagegen konnten Untersuchungen 

mit Luciferasereportern die Hypothese stützten, dass die Ko-Expression beider Transkripte durch 

differenzielle Methylierung einer gemeinsamen Enhancer-Region kontrolliert wird. Diese 

Ergebnisse haben auch klinische Relevanz, da hohe Expression von ESRP2 in humanem 

Brustkrebs mit einer ungünstigen Prognose assoziiert ist.  
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1. Introduction 

1.1 Epigenetics 

Despite the genome being the blueprint for living cells, the DNA sequence is not the only 

feature to pass on information to the next generation of cells. An additional level of regulation 

is encoded by epigenetic traits, with the term ‘epigenetics’ being based on the Greek word 

‘epi’, meaning ‘upon’, ‘above’, ‘over’ -genetics. Therefore, epigenetics is defined as heritable 

changes that influence which particular genes are expressed at a specific time, but are not 

encoded by the sequence of nucleotides [1]. With respect to the different levels of gene 

regulation, three main mechanisms are considered, namely DNA methylation, 

posttranslational histone modifications and the influence of noncoding RNAs. 

 

1.1.1 DNA methylation  

DNA methylation was the first epigenetic mark to be discovered and occurs at cytosines 

(5methylcytosine, 5mC) mainly in the context of CpG dinucleotides. The distribution of CpGs 

is not evenly spread through the genome, but accumulates in regions of high CpG density, 

so called CpG islands (CGIs) [2] (Figure 1-1). The regions that flank the CGIs are defined as 

shores and extend about 0.2-2kb up- and downstream of the CGIs [3]. While CGIs in the 

promoter of genes are generally unmethylated in normal cells, thus allowing expression of 

the respective gene, hypermethylation of promoter CGIs in cancer leads to gene silencing 

[4]. In contrast, CpGs located in genic or intergenic regions that also include repetitive 

sequences, are generally methylated in normal cells, but are targeted by global 

hypomethylation during carcinogenesis [4]. This was associated with genomic instability in 

cancer [4]. Variable methylation at CGI shores was also described to influence gene 

expression levels, in particular tissue-specific expression [3], while methylation in exonic 

regions was linked to splicing of RNA rather than overall transcript levels [5, 6]. In addition, a 

regulatory role of DNA methylation can be exerted by more distal elements, namely 

enhancers, which are less CpG dense than the CGIs and are highly tissue-specific in their 

function [7].  

The exact mechanism how DNA methylation regulates gene expression is not well 

understood, but in many cases, DNA methylation is thought to decrease gene expression by 

blocking the binding of transcription factors such as for n-MYC or YY-1 [8, 9]. Whether the 

absence of 5mC is then the cause or the consequence of transcription factor binding is still 

debated. Some cases are described where DNA methylation ameliorates binding of proteins, 
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such as for CEBPA [10] or even is required for DNA binding, as known for methyl-CpG 

binding domain (MBD) proteins, such as MECP2 or MBD1-4 [11].  

 

 

Figure 1-1 Schematic representation of the distribution of methylated and unmethylated CpGs 
in the genomic context.  Influence of DNA methylation on gene expression in normal cells A) and 
the effects of deregulated DNA methylation in cancer cells B). White circle: unmethylated CpG; Black 
circle: methylated CpG. Scheme taken from [2]. 

 

1.1.1.1 Establishment of DNA methylation patterns 

There are three main enzymes responsible for establishing DNA methylation, the 

maintenance DNA methyltransferase 1 (DNMT1), which binds preferentially to 

hemimethylated DNA during the replication process [12] and the de novo methylating 

enzymes DNMT3A and DNMT3B [13]. Knockout of DNMT1 and DNMT3A/3B in mice results 

in embryonic or postnatal lethality, which further underlines the importance of these enzymes 

and of correct methylation patterns for mammalian development [13, 14]. The mechanism for 

active demethylation is still more debated, but involves a step of hydroxylation to 5-

hydroxymethylcytosine (5hmC) catalyzed by the ten-eleven translocation (TET) dioxygenase 

enzymes (TET1-3), followed by further oxidation to 5-formyl-(5fC) and 5-carboxyl-cytosine 

(5caC) [15-17]. By means of the base excision mismatch repair machinery, the thymine DNA 

glycosylase (TDG) then removes the modified cytidine base leaving an abasic site that is 

substituted for an unmodified cytosine [17] (Figure 1-2). In addition, the existence of a 

decarboxylase enzyme is postulated, which could directly remove the carboxyl residue and 
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restore the unmodified cytosine, though experimental data is still inconclusive in this context 

[18].  

 

 

Figure 1-2 Cycle of DNA methylation and 
demethylation.  Enzymes involved in this cycle 
include DNA methyltransferase (DNMT), TET 
dioxygenases (TET) and thymine DNA 
glycosylase (TDG). Demethylation of 5mC 
involves several oxidation steps via 5hmC, 5fC, 
and 5caC. Modified from [18] 

 

1.1.1.2 DNA methylation in cancer 

Many studies in different types of cancers provided evidence for aberrant methylation in 

specific genes, which are silenced by hypermethylation in CGI promoters, such as for 

CDKN2A (cyclin dependent kinase inhibitor 2a), MLH1 (mutL homolog 1), BRCA1 (breast 

cancer associated 1), and VHL (von Hippel-Lindau tumor suppressor) [19]. The identification 

of such events suggests that several candidates hold promise as potential biomarkers, e.g. 

for early diagnosis (GSTP1 (glutathione S-transferase pi 1) in prostate cancer), prognosis 

(DAPK1 (death associated protein kinase 1) in brain cancers), or to predict response to 

therapy (MGMT (O-6-methylguanine-DNA methyltransferase) in gliomas) [19]. Since 

overexpression of DNMTs is a frequent event in many cancers, such as in lung, breast, 

stomach, or colon cancer [20], and also mutations were detected in hematological cancers 

and other diseases [21], the inhibition of these enzymes is considered as an attractive 

therapeutic approach. The DNMT inhibitor Decitabine (Dac, 5-aza-2’-deoxycytidine) is a 

cytidine analogue, which is incorporated into newly synthesized DNA, where it covalently 

binds DNMTs and leads to the depletion of the methyltransferase [20]. Loss of the enzyme 

prevents the methylation of the DNA during cell division, thus preventing the establishment 

of methylation patterns by passive demethylation. Dac treatment already received FDA-

approval for use in the treatment of myelodysplastic syndrome (MDS) and acute myeloid 

leukemia (AML) [20]. 
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1.1.2 Histone modifications  

Another level of epigenetic regulation is encoded by posttranslational modifications of 

proteins that support the organization of the genome into sets of transcriptional active 

chromatin (euchromatin) and inactive chromatin (heterochromatin) [22]. The responsible 

proteins are called histones and form a nucleosome consisting of an octamer of each two 

H2A, H2B, H3 and H4 histone molecules together with 147bp of DNA wrapped around the 

octamer [23]. The histone tails that protrude from the nucleosome can be modified at specific 

amino acids, mainly lysines (K) and arginines (R), and carry many different modifications 

such as phosphorylation, methylation, acetylation, ubiquitinylation, sumoylation, or ADP-

ribosylation (reviewed in [22]). The deposition of these marks is a tightly controlled process, 

which applies the interaction of enzymes that either place or remove specific residues at the 

histone tails. In this process, histone acetyl transferases (HATs) catalyze the deposition of 

acetyl modifications to histone tails from acetyl CoA, and histone deactylases (HDACs) 

remove them. Since lysines can be methylated to a varying degree from mono- (me1), over 

di- (me2) to trimethylation (me3), sometimes more than one enzyme is required to catalyze 

the different steps. For example, while EZH2 (Enhancer of zest homolog 2) methylates 

H3K27 up to the trimethylated state, SET7/9 (SET domain containing lysine 

methyltransferase 7/9) only catalyzes the formation of H3K4me1, and further methylation to 

H3K4me3 requires activity of the MLL (Mixed lineage leukemia)-family of methyltransferases 

[22, 24, 25]. At some histone tail positions different marks were observed, such as 

methylation or acetylation at H3K27 or H3K9, and for others only one type of modification 

was described so far, for example phosphorylation of histone 3 at serine 10 (H3S10) [24] 

(Figure 1-3).  
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Figure 1-3 Selected positions for histone modifications on the tail of histone H3. 

 

Depending on their particular function specific modifications are found at different genomic 

locations. The respective genomic sites were determined by chromatin immunoprecipitation 

followed by next generation sequencing (ChIP-seq) and in this context the modifications of 

the H3 tail were intensely studied. H3K4me1 is found at enhancers and H3K4me3 is a mark 

for active transcription found mostly at transcription start sites (TSS) [26, 27]. H3K27ac is 

another active mark, which is found both at enhancers and promoters [28, 29], and 

H3K36me3 covers the complete length of transcribed genes [26]. In contrast, H3K27me3 is 

a repressive mark found genome-wide in regions of heterochromatin. When found in 

combination with H3K4me3, it marks bivalent promoters that are in a poised state. This is 

characteristic for embryonic stem cells to maintain a pluripotency status [30]. Since some 

modifications are capable to influence the deposition of other marks on the same or on 

neighboring nucleosomes, this crosstalk between modifications reveals an additional level of 

complexity for regulation [24]. 

 

1.1.2.1 Characterization of chromatin states  

The diversity of different histone marks suggests that functional implications might be 

translated not only by one specific, but by several different modifications or a combination 

thereof. Based on the number of different marks that are known, multiple combinations are 

possible in theory, but only specific combinations might actually occur in living cells and even 

fewer might have a distinct functional meaning [31]. For example, H3K4me3 marks active 

promoters when co-occurring with H3K27ac [28], but represents a poised promoter together 

with the H3K27me3 mark [30]. The two marks for H3K27 are mutually exclusive [28]. Thus, it 

is necessary to characterize the combination of different histone marks and to define the 
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specific biological role of chromatin states to crack the ‘histone code’ [32, 33]. Several 

studies defined such chromatin states according to patterns of histone modifications and 

applied different approaches to develop models ranging from 4 to 51 different states, 

depending on the nature and number of the studied marks [31, 34-36]. Ernst and Kellis used 

a multivariate hidden Markov model (HMM) to define 15 states according to the occurrence 

of nine histone modifications determined by ChIP-seq in nine cell types and defined 

functional categories such as promoters, enhancers or polycomb-repressed regions [35]. 

The publicly available ChromHMM algorithm annotates each genomic region with a specific 

state for different cell types and was used by several studies including the ENCODE 

(Encyclopedia of DNA elements) consortium [37-40]. Irrespective of the approach used for 

the definition of different states, the real challenge is their functional characterization. This 

challenge is faced by increasing number of studies in this area [32].  

 

1.1.2.2 Histone modifications in cancer 

In contrast to DNA methylation, alterations in histone modifications during cancer 

development with respect to their genomic locations and affected genes are not well 

investigated. Fraga et al. discovered that many cancer cell lines and also tumors have 

reduced levels of acetylation at K16 and trimethylation at K20 for histone H4, in particular at 

repetitive sequences [41]. Other evidence for changes of histone modifications in cancer is 

provided rather indirectly, as several of the histone modifying enzymes were found to be 

differentially expressed in various cancers [24]. The methyltransferase EZH2 is located in 

the multi protein polycomb repressor complex 2 (PRC2) and is frequently overexpressed, but 

can also be downregulated in tumors, suggesting a role either as an oncogene or a tumor 

suppressor [42]. Several other members of the PRC2 also harbor mutations or structural 

aberrations in cancer that cause disrupted patters of H3K27me3. Furthermore, several of the 

18 HDAC proteins known in humans were shown to be overexpressed in cancers, such as in 

gastric, pancreatic, lung and colon cancer [43]. Thus, HDAC inhibitors are attractive 

candidates as anticancer drugs. Vorinostat and romidepsin already received FDA approval 

for rare cutaneous T cell lymphoma and other hematological diseases, while other inhibitors 

that target histone modifying enzymes are still tested for their applicability in the clinics [19]. 
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1.1.3 Noncoding RNAs 

The third major mechanism of epigenetic regulation for gene expression is contributed by 

noncoding RNAs, meaning RNAs, which are not translated into proteins. There are two main 

categories of noncoding RNAs, which are defined by their length into small and long 

noncoding RNAs (lncRNA).  

1.1.3.1 MicroRNAs 

Among the small RNAs the microRNAs (miRNAs) are best characterized with respect to 

their function. Mature miRNAs with a length of ≈22 nucleotides bind to the 3’ UTR of 

mRNAs, thereby marking the bound transcripts for degradation or inhibiting translation into 

proteins. Similar to mRNAs, miRNA expression is deregulated in cancer and deregulation 

can be controlled by DNA methylation [44].  

1.1.3.2 Long noncoding RNAs (LncRNAs) 

lncRNAs can range from 200bp to several kb or even longer and have not been assigned 

into functional subgroups yet. The role of lncRNAs can range from transcriptional regulation 

to formation of structural scaffolds, as well as involvement in various cellular processes from 

apoptosis to differentiation. Studies of both developmental processes and diseases revealed 

that deregulated expression of lncRNAs can influence expression or stability of protein-

coding RNAs [45, 46]. With respect to specificity, lncRNAs have been shown to control 

expression of genes in a localized, gene specific fashion, e.g. the repression of cell cycle 

regulator p21 by the lncRNA FAL1 (focally amplified lncRNA on chromosome 1) [47], as well 

as by targeting large chromosomal regions, e.g. X-chromosome inactivation by XIST (X 

inactive specific transcript) (reviewed in [48]). LncRNAs further act as host genes encoding 

micro RNAs [49], or as a decoy for miRNAs, thus preventing miRNA binding to protein-

coding RNAs [50]. Several studies have demonstrated that lncRNAs influence DNA 

methylation or the chromatin landscape by interacting with modifiers of epigenetic marks, 

thereby recruiting these modifiers to specific DNA loci and resulting in gene silencing or 

activation [47, 51-56].  

The identification and functional evaluation of lncRNAs has become an area of substantial 

scientific interest. Screening strategies include the analysis of differential expression using 

lncRNA specific microarrays, or tiling arrays that cover genomic regions of interest, such as 

the Hox cluster, for de novo identification of lncRNAs [57, 58]. In addition, chromatin marks 

for active transcription (H3K4me3, H3K36me3) were combined with tiling microarray 
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analysis to locate novel lncRNAs [59]. Nowadays, RNA-seq allows the detection of lncRNAs 

at a genome-wide unbiased scale [57, 58]. 

 

1.2 Breast cancer  

Breast cancer was the most frequent cancer in women worldwide in 2012 with 1.7 Million 

newly diagnosed cases and more than 520.000 deaths [60]. Despite the common name, 

breast cancer is a heterogeneous disease consisting of different subtypes requiring the use 

of different classification criteria, which include histology, hormone receptor status or 

molecular gene expression profiles [61]. The heterogeneity of breast cancer subtypes is 

partly attributable to the development and organization of the breast with respect to its 

different cell types. The two main structures in the breast are the terminal lobular units and 

the ducts that connect them. Both structures are lined in the lumen by a single epithelial 

layer of luminal cells, which are coated by a layer of basal or myoepithelial cells (Figure 1-4). 

The basement membrane separates these cells from the surrounding tissue, and is not 

penetrated by cells of premalignant or early malignant stages such as mammary 

intraepithelial neoplasia (MIN) or ductal carcinoma in situ (DCIS) (Figure 1-4). This feature 

distinguishes DCIS from invasive carcinomas that cross this barrier into surrounding tissue 

and further into the blood stream to form distant metastases in other organs like the lung, 

brain, liver or bone [61].  

 

 
Figure 1-4 Schematic representation of 
breast duct and lobular composition and 
deregulated proliferation during breast 
cancer progression.  Figure modified from 

[62]. 
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The histological classification of the two main categories of breast cancer is defined by the 

location of occurrence in either the ductal or the breast lobular unit as invasive ductal 

carcinoma, not otherwise specified (IDC NOS) or invasive lobular carcinoma (ILC). These 

subtypes represent about 75% and 10% of breast cancer cases followed by a number of 

special, rather rare types, such as inflammatory, tubular, mucinous or medullary carcinoma 

[61]. Especially for the IDC NOS and ILC cases the histological classification alone contains 

only limited value to estimate risk of recurrence or to predict the response to different 

adjuvant therapies due to the high degree of heterogeneity within the groups. In order to 

address this issue, immunohistochemical analysis of mainly three receptors, namely 

estrogen receptor (ER), progesterone receptor (PR), and human epidermal receptor 2 

(HER2) is applied. ER positive tumors are dependent on hormone signals mainly from 

estrogen and thus, patients often benefit from treatment with selective estrogen receptor 

antagonists like tamoxifen or fulvestrant that block ER signaling [63]. PR staining is mainly 

concordant with ER and provides only little, if any additional benefit to predict response to 

anti-estrogen treatment [64]. HER2 detection is a surrogate for aggressive tumors that were 

originally linked to bad prognosis. However, since the effects of HER2 caused by 

overexpression or amplification can be targeted by HER2-specific blocking antibodies such 

as trastuzumab, survival rates for these patients improved [64]. Tumors that are negative for 

all three markers are defined as triple negative breast cancer (TNBC) and are found in 

patients with the worst prognosis, mostly due to a lack of targeted therapy options [61].  

A further category for classification was introduced by means of gene expression profiling, 

which extended the set of three marker genes to several hundreds of genes. Perou et al. 

[65] were the first to identify clusters of molecular subtypes, which were confirmed for their 

robustness by several studies and cohorts over the years [65-67]. Specific clusters of genes 

that distinguished the tumor samples displayed enrichment in ‘gene signatures’ 

characteristic for specific cell types like immune cells, adipose/normal cells, breast luminal 

epithelial or breast basal cells, and ultimately suggested corresponding names for the tumor 

subgroups. The number of genes required for this gene expression-based assignment was 

reduced from several hundred to a set of 50 distinguishing genes (Prediction Analysis of 

Microarray, Pam50), which can be analyzed by RT-qPCR, microarray or more recently by 

next generation sequencing [64]. The assignment to subtypes resulted in subclassification of 

breast cancer into luminal A and B, HER2-enriched, and basal-like subgroups, which are 

sometimes supplemented by a normal-like category. The existence of the last group is 

debated, as this assignment might reflect contamination with normal nonmalignant cells. 

Luminal A and luminal B contain mainly ER/PR double positive tumors, although luminal B 

can stain positive for HER2 and more frequently demonstrates higher proliferation signature 
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and worse prognosis than luminal A. Classification according to a HER2-enriched molecular 

profile is largely concordant with the immunohistochemical biomarker, especially for ER 

negative cases [64]. Although the terms TNBC and basal-like breast cancer are often used 

interchangeably, between 15 -45 % of basal-like tumors express ER or HER2, thus are not 

TNBC by definition. Around 15% of TNBC display a molecular subtype other than basal [68]. 

This degree of heterogeneity also complicates the identification of targeted therapy options 

for basal-like as well as triple negative breast cancer patients and will probably require 

further subdivision into better characterized subgroups using additional classifiers such as 

chromosomal aberrations or genetic mutations. For example, breast cancer patients with 

BRCA1 germline mutations often display gene expression patterns similar to the basal-like 

subtype, maybe representing such a subgroup [69]. Common characteristics of basal-like 

breast cancer include frequent TP53 mutations, genomic instability, and inactivation of the 

RB1 (Retinoblastoma 1) pathway [68, 70].  

 

1.3 Epigenetics and breast cancer 

1.3.1 DNA methylation in breast cancer 

Similar to other cancer types, aberrations in epigenetic patterns are also frequently identified 

in breast cancer. This suggests additional possibilities to define breast cancer subgroups for 

prognosis and therapy options. Early evidence for aberrant DNA methylation was supplied 

by candidate gene-based studies, which found hypermethylation of CDKN2A, RASSF1 (ras 

association domain family member 1), ESR1 (estrogen receptor 1), RARβ (retinoic acid 

receptor beta), CDH1 (cadherin 1), or BRCA1 (reviewed in [71]). Some of these genes 

actually showed potential as biomarkers (reviewed in [72]) and helped to characterize 

molecular mechanisms in tumors. For example, breast tumors with hypermethylated BRCA1 

were phenotypically similar to BRCA1-mutated tumors, arguing for a functional analogy of 

hypermethylation and mutation in this gene [73]. Furthermore, treatment of ER negative 

breast cancer cells with DNMT and HDAC inhibitors resulted in reexpression of 

epigenetically silenced ESR1 and restored sensitivity to antiestrogen therapy [74, 75]. 

These candidate-based approaches with only few target genes were recently extended to a 

more genome-wide level. Several studies screened breast cancer samples for DNA 

methylation patterns, mainly using microarrays that cover CpG islands and promoter regions 

[76]. The identified methylation patterns were capable to distinguish breast cancer 

subgroups and in particular discriminated ER positive vs ER negative cases [77]. 

Furthermore, it was possible to reconstruct the molecular subtypes employing DNA 
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methylation patterns, at least for luminal A and B and basal-like subtypes [78]. Further 

studies even detected subclusters within the original subtypes [77].  

The basal-like breast cancer samples often displayed a distinctly different methylation 

pattern form the other subtypes. This difference was later confirmed by data generated from 

‘The Cancer Genome Atlas ‘(TCGA) Network, which detected basal-like breast cancer to be 

hypomethylated, while a cluster of mainly luminal B tumors was characterized by 

hypermethylation [70].  

 

1.3.2 Histone modifications in breast cancer 

The role of altered histone modification patterns for the transcription of specific genes is less 

well examined in breast cancer. Nevertheless, treatment with HDAC inhibitors increased 

expression of ESR1 and other silenced genes, which suggests a role of chromatin marks in 

the regulation of gene expression [76]. In particular, histone modifiers like HDACs or EZH2 

displayed differential expression in breast cancer, but the consequences of expression 

differences for both types of enzymes were described with variable implications for 

prognosis [76, 79]. In breast cancer, PRC2 targets are frequently hypermethylated, 

especially at CGI promoters. This process of ‘epigenetic switching’ occurs in different types 

of cancers and describes the change from polycomb- to methylation-mediated gene 

silencing, as this change of epigenetic marks does not influence gene expression [80, 81]. 

 

1.3.3 Noncoding RNAs in breast cancer 

Expression levels for various noncoding RNAs are deregulated in breast cancer. Recent 

studies identified miRNAs with both oncogenic (miRNA-21, miRNA-155) and tumor 

suppressor function (miRNA-200, miRNA-126 or miRNA-335) respective of their target gene 

[82]. Prediction of lncRNA function and prediction of their target genes is not possible for 

most examples and requires individual examination for each lncRNA candidate. 

Nevertheless, lncRNAs with oncongenic and tumor suppressive functions in breast cancer 

have been discovered. HOTAIR (HOX transcript antisense RNA) and MALAT1 (metastasis 

associated lung adenocarcinoma transcript 1) were described as oncogenic lncRNAs, 

whereas MEG3 (maternally expressed 3) and GAS5 (growth arrest specific 5) have tumor 

suppressive functions [83]. Only recently a study confirmed differential expression of 

lncRNAs to be distinctive for individual breast cancer subgroups similar to mRNA expression 

profiles [84].  
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1.4 C3(1) SV40T mouse model of basal-like breast cancer 

In the C3(1)SV40T (C3(1)) transgenic mouse model of breast cancer, tumorigenesis is 

induced by the simian virus 40 early region under the control of the rat prostatic steroid 

binding protein, which directs transgene expression to the mammary epithelial cells [85, 86]. 

In particular, the large T antigen (SV40T) of the SV40 early region exhibits cell transforming 

potential, mainly due to its binding to the cell cycle regulators p53 and Rb1 (depicted in 

Figure 1-5) (reviewed in [87, 88]). 

 

 

Figure 1-5 Influence on cell cycle regulation by Simian Virus 40 large T 
antigen (SV40T).  p53 induces cyclin dependent kinase inhibitors p21 and p27 to 
initiate cell cycle arrest. Cyclin dependent kinases (Cdks) in complex with cyclins 
phosphorylate Rb1, thereby releasing E2f transcription factors to drive G1/S-Phase 
progression. SV40T binds to p53 and Rb1 to induce cell cycle progression. Figure 

modified from [85]. 

 

Transcription factor p53 induces cell cycle arrest or apoptosis upon stress by inducing the 

cyclin dependent kinase inhibitors p21 and p27. SV40T disrupts p53 binding to DNA and 

prevents apoptosis [87, 88]. During normal cell cycle progression Rb1 binds E2f transcription 

factors, which are released by Rb1 phosphorylation to induce transcription of E2f dependent 

genes during cell cycle progression. SV40T binding to Rb1 has an equivalent effect to 

phosphorylation by complexes of cyclins and cyclin dependent kinases, thus releasing E2f. 
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SV40T further interacts with other proteins like the transcriptional coactivator complex 

CBP/p300 and the ubiquitin ligase Cul7, which might aid in the transformation process [87, 

88]. The deregulation of these cell cycle checkpoints results in abnormal proliferation and 

produces full invasive carcinomas in 100% of virgin female C3(1) mice [85]. In contrast to 

other transgenic breast cancer models driven by the mouse mammary tumor virus (MMTV) 

specific long terminal repeat or whey acidic protein (WAP), the C3(1) promoter region is not 

sensitive to estrogen exposure [89], thus obliterating the need for pregnancy or hormone 

treatment to induce tumors. Instead, tumors arise spontaneously and several stages were 

observed that histologically resemble human mammary intraepithelial neoplasia (MIN, 

≈8 weeks), ductal carcinoma in situ (DCIS, ≈12 weeks) and finally progress to the stage of 

invasive carcinomas at around 16 weeks of age [85]. Gene expression analysis grouped the 

C3(1) mouse model together with samples of the basal-like subtype of human breast cancer 

[90]. This was supported by Deeb et al., who analyzed C3(1) mice together with other 

SV40T driven cancer models to define an intrinsic T-antigen signature and described a 

similar gene expression signature in human breast cancers of the basal-like and luminal B 

subtype [91]. Profiling for miRNA expression confirmed clustering of C3(1) tumors together 

with other genetically modified mouse models of the basal-like breast cancer subtype [92]. 

Various studies have utilized the C3(1) mouse model to demonstrate chemopreventive 

efficacy of various compounds. These compounds included synthetic drugs like a 

combination treatment with an inhibitor of ornithine decarboxylase and a precursor steroid 

for androgens and estrogens (DFMO/DHEA), treatment with the anti-inflammatory agent 

bindarit, treatment with the retinoid X receptor inhibitor LGD1069 or the cyclooxygenase-2 

inhibitor celecoxib [93-96]. In addition, several natural compounds also showed 

chemopreventive potential, such as green tea and the flavonoids genistein and quercetin 

[97-99].  
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2. Aims 

Breast cancer is a heterogeneous disease and at least five molecular subtypes have been 

described, with variable implications for prognosis, metastasis risk and treatment options. 

Therapy options for breast cancer will be improved by identifying both new markers for early 

detection as well as novel targets for therapeutic approaches. The characterization of 

epigenetic modifications, such as DNA methylation, histone modifications or lncRNAs, can 

serve as an approach to identify potential candidates. Mouse models of cancer are 

instrumental in investigating epigenetic alterations during tumorigenesis. However, with the 

exception of microRNA expression, epigenetic patterns in mouse models of breast cancer 

are still poorly characterized and require further investigations.  

Consequently, the first aim of this thesis was to characterize the C3(1) mouse model of 

breast cancer at the level of DNA methylation. We planned to perform a genome-wide 

screen with MCIp-seq on age matched WT and C3(1) mammary glands and tumors from 

different age groups starting at the age of 8 weeks up to 24 weeks. We intended to validate 

differentially methylated candidate regions with the quantitative EpiTYPER MassARRAY and 

also to evaluate a link between DNA methylation and gene expression. We expected to 

clarify, whether DNA methylation differences between mammary glands and tumors in the 

mouse model were consistent with methylation changes in human breast cancer.  

The second aim was to extend the epigenetic characterization of the C3(1) model to the 

level of histone modifications. Generating ChIP-seq data for three active and one repressive 

histone mark, we wanted to establish a map of chromatin states in the C3(1) tumors. 

Overlapping these states with the DNA methylation data should help to characterize 

genomic regions beside known promoters, such as tissue-specific enhancer regions, and 

their role in regulating gene expression during tumorigenesis.  

The third aim was to investigate epigenetically regulated lncRNAs and evaluate their 

influence on neighboring protein-coding genes using one candidate pair of coding and 

noncoding RNA as an example. We planned to validate differential methylation and 

expression and to examine a potential interaction between the protein-coding and noncoding 

RNA as well as their regulation using functional assays. 
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3. Material & Methods 

3.1 Materials 

3.1.1 Instrumentation, chemicals, reagents 

Table 3-1 Instruments used in addition to standard laboratory instrumentation 

Instruments Manufacturer 

Agilent 2100 Bioanalyzer Agilent Technologies, Santa Clara, CA, USA 

LightCycler® 480 Roche Diagnostics, Mannheim, Germany 

MassARRAY Compact System Sequenom, San Diego, CA, USA 

MassARRAY Nanodispenser Sequenom, San Diego, CA, USA 

Mastercycler® ep gradient Eppendorf AG, Hamburg, Germany 

Mastercycler® pro 384 Eppendorf AG, Hamburg, Germany 

Nanodrop spectrophotometer (ND-1000) PeqLab, Erlangen, Germany 

Spectramax 250 microplate reader GMI Inc., Cold Spring, USA 

Qubit® 2.0 Fluorometer Invitrogen, Life Technologies, Darmstadt, Germany 

Covaris S220 sonicator  Covaris, Woburn, MA, USA 

SX‐8G IP‐Star® Automated System Diagenode, Liège, Belgium 

Tissue lyser Qiagen, Hilden, Germany 

Dismembrator S Sartorius, Göttingen, Germany  

Table 3-2 General chemicals and reagents 

Material Manufacturer 

100bp DNA ladder Fermentas, Life Technologies, Darmstadt, Germany 

Agencourt AMPure XP beads Beckman Coulter GmbH, Krefeld, Germany 

Ampicilin Sigma-Aldrich, Taufkirchen, Germany 

Bacto Agar BD Bioscience, San Jose, CA, USA 

Bacto Yeast extract BD Bioscience, San Jose, CA, USA 

Bactor Tryptone BD Bioscience, San Jose, CA, USA 

Blasticin S Sigma-Aldrich, Taufkirchen, Germany 

Calciumchloride (CaCl2) Merck, Darmstadt, Germany 

Coelenterazin (COE) Sigma-Aldrich, Taufkirchen, Germany 

Complete Protease inhibitor cocktail, 
EDTA free 

Roche Diagnostics, Mannheim, Germany 

Decitabine (5-aza-2'-deoxycytidine) Sigma-Aldrich, Taufkirchen, Germany 

Dharmafect transfection reagent 1 Invitrogen, Life Technologies, Darmstadt, Germany 

Diamag protein A coated paramagnetic 
beads 

Diagenode, Liège, Belgium 

Dimethylsulfoxide (DMSO) Merck, Darmstadt, Germany 

D-Luciferin Biosynth AG, Staad, Switzerland 

DMEM/F12 Gibco, LifeTechnologies, Darmstadt, Germany 

Dulbecco's modified Eagle Medium 
(DMEM) 

Gibco, LifeTechnologies, Darmstadt, Germany 

Ethidiumbromide Sigma-Aldrich, Taufkirchen, Germany 

Ethylene diamine tetraacetic acid (EDTA) Sigma-Aldrich, Taufkirchen, Germany 

Fetal bovine serum (FCS) Biochrome, Berlin, Germany 

Formaldehyde, methanol free (16%)  ThermoScientific,  Darmstadt, Germany 
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Material (Table 3-2 continued) Manufacturer 

Gene Ruler DNA ladder mix Fermentas, Life Technologies, Darmstadt, Germany 

GenJet (Ver.II-LnCAP) SignaGen Laboratories, Rockville, MD, USA 

Glutamine Gibco, LifeTechnologies, Darmstadt, Germany 

Glycine (1.25M) Diagenode, Liège, Belgium 

Hank's balanced salt solution (HBSS) Gibco, LifeTechnologies, Darmstadt, Germany 

Linear polyethylenimine(PEI) (MW25000) Alfa Aesar, Karlsruhe, Germany 

Loading Dye (6x) Fermentas, Life Technologies, Darmstadt, Germany 

Locked nucleic acid  (LNA) Gapmers Exiqon, Vedbaek, Denmark 

Magnesium sulfate (MgSO4) Sigma-Aldrich, Taufkirchen, Germany 

Magnesiumchloride (MgCl2) Sigma-Aldrich, Taufkirchen, Germany 

Nonidet P-40 (NP-40) Sigma-Aldrich, Taufkirchen, Germany 

Oxalic acid Sigma-Aldrich, Taufkirchen, Germany 

Phenylacetic acid Carl Roth, Karlsruhe, Germany 

Phenylmethylsulfonylfluoride (PMSF) Sigma-Aldrich, Taufkirchen, Germany 

Phosphate buffered  saline (PBS) Gibco, LifeTechnologies, Darmstadt, Germany 

Potassium chloride (KCl) Sigma-Aldrich, Taufkirchen, Germany 

Sodium chloride (NaCl) Sigma-Aldrich, Taufkirchen, Germany 

Sodium deoxycholate Sigma-Aldrich, Taufkirchen, Germany 

Sodium dodecyl sulfate (SDS) Carl Roth, Karlsruhe, Germany 

TransIT-LT1 Mirus Bio LLC, Madison, WI, USA 

Tris-HCl Sigma-Aldrich, Taufkirchen, Germany 

Triton X-100 Sigma-Aldrich, Taufkirchen, Germany 

Trypsin EDTA (0.02%) Gibco, LifeTechnologies, Darmstadt, Germany 

β-mercaptoethanol Applichem, Darmstadt, Germany 

Table 3-3 Enzymes and reaction buffers 

Material Manufacturer 

10x PCR Buffer Qiagen, Hilden, Germany 

5x first strand synthesis buffer Invitrogen, Life Technologies, Darmstadt, Germany 

Collagenase A Roche Diagnostics, Mannheim, Germany 

dNTPs (dATP, dTTP, dCTP, dGTP) Fermentas, Life Technologies, Darmstadt, Germany 

HotstarTaq DNA polymerase Kit Qiagen, Hilden, Germany 

Hyaluronidase type I-S Sigma-Aldrich, Taufkirchen, Germany 

Immolase Buffer Bioline, Luckenwalde, Germany 

Immolase DNA Polymerase Bioline, Luckenwalde, Germany 

M.SssI methyltransferase Fermentas, Life Technologies, Darmstadt, Germany 

MNase (300U/µl) Fermentas, Life Technologies, Darmstadt, Germany 

Phusion buffer GC Fermentas, Life Technologies, Darmstadt, Germany 

Phusion polymerase Fermentas, Life Technologies, Darmstadt, Germany 

Proteinase K Qiagen, Hilden , Germany 

Recombinant restriction enzymes: 
HindIII-HF, KpnI-HF, NheI-HF, SalI-HF, 
XhoI 

New England Biolabs, Ipswich, USA 

SuperScript II reverse transcriptase Invitrogen, Life Technologies, Darmstadt, Germany 

T4 DNA Ligase Fermentas, Life Technologies, Darmstadt, Germany 

T4 DNA Ligase Buffer Fermentas, Life Technologies, Darmstadt, Germany 

Universal Probe library and master Roche Diagnostics, Mannheim, Germany 

Yellow Sub
TM

 DNA loading dye Geneo Bioproducts, Hamburg Germany 
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Table 3-4 Kits 

Kit name Manufacturer 

DNeasy Blood & Tissue kit Qiagen, Hilden, Germany 

AllPrep DNA & RNA miniprep kit Qiagen, Hilden, Germany 

RNeasy Miniprep Kit Qiagen, Hilden, Germany 

Qiaquick Gel extraction kit Qiagen, Hilden, Germany 

MinElute PCR purification kit Qiagen, Hilden, Germany 

REPLI‐g mini kit Qiagen, Hilden, Germany 

Quantitect SYBR Green Qiagen, Hilden, Germany 

Qiaprep Spin Miniprep kit Qiagen, Hilden, Germany 

EZ DNA methylation Kit Zymo Research, Irvine, CA, USA 

Agilent RNA 6000 Nano Kit Agilent Technologies, Santa Clara, CA, USA 

Agilent High sensitivity DNA Kit Agilent Technologies, Santa Clara, CA, USA 

NEBNext Ultra DNA Library Prep Kit for 
Illumina 

New England Biolabs, Ipswich, USA 

Auto ChIP Kit- A 100 Diagenode, Liège, Belgium 

RNase-free DNase Set Qiagen, Hilden, Germany 

MassCLEAVE T7 kit (T Cleavage) Sequenom, San Diego, CA, USA 

Qubit dsDNA HS assay kit Invitrogen, Life Technologies, Darmstadt, Germany 

TOPO TA cloning Kit Qiagen, Hilden, Germany 

 

Table 3-5 Consumables 

Consumables Manufacturer 

15ml, 50ml falcon tubes Greiner Bio-One, Frickenhausen, Germany 

Filter tips and normal tips for pipettes 
(10µl, 20µl, 200µl, 1000µl)  

Biozym, Hessisch Oldendorf, Germany 

8-well single cap PCR strips Biozym, Hessisch Oldendorf, Germany 

384 well PCR plates, transparent or white 
tubes for LC480 

Steinbrenner, Wiesenbach, Germany 

384 well plates, white flat bottom Greiner Bio-One, Frickenhausen, Germany 

Sterile serological pipettes (5ml, 10ml, 
25ml) 

BD Bioscience, San Jose, CA, USA 

Cell culture flasks, 25cm2 and 75cm2 Greiner Bio-One, Frickenhausen, Germany 

6-, 12-, 96- well tissue culture plates Greiner Bio-One, Frickenhausen, Germany 

10 cm petri dish Greiner Bio-One, Frickenhausen, Germany 

Reaction tubes (1.5ml, 2ml, 5ml) Eppendorf AG, Hamburg, Germany 

Scalpels Feather Safety Razor, Osaka, Japan 

Cell scraper Sigma-Aldrich, Taufkirchen, Germany 
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3.1.2 Software and databases 

Table 3-6 Software and databases 

Software URL 

BEDTools Suite of tools v2.17.0 http://bedtools.readthedocs.io/en/latest/index.html 

ChromHMM http://compbio.mit.edu/ChromHMM/ 

EpiDesigner http://epidesigner.com/ 

EpiTYPER 
http://www.MassARRAY-

EpiTYPER.software.informer.com/ 

Gene Set Enrichment Analysis  http://www.broadinstitute.org/gsea/index.jsp 

GraphPad Prism® http://www.graphpad.com/ 

HOMER Suite of tools http://homer.salk.edu/homer/ 

Inkscape https://inkscape.org/de/ 

Molecular Signatures Database v5.1 http://software.broadinstitute.org/gsea/msigdb 

Multi Experiment Viewer Version 4.9.0 http://www.tm4.org/mev.html 

Qlucore Omics Explorer v3.1 http://www.qlucore.com/ 

R http://www.r-project.org/ 

TCGA data download https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp 

UCSC Cancer Genomics browser https://genome-cancer.ucsc.edu/ 

UCSC Genome Browser  http://genome.ucsc.edu/ 

UPL assay design center 

https://lifescience.roche.com/webapp/wcs/stores/servlet/

CategoryDisplay?tab=Assay+Design+Center&identifier=

Universal+Probe+Library&langId=-1 

Zenbu Genome browser http://fantom.gsc.riken.jp/zenbu/ 

 

3.1.3 Primers  

Table 3-7 RT-qPCR primers 

Gene name Forward primer Reverse Primer Probe 

Actb AAGGCCAACCGTGAAAAGAT GTGGTACGACCAGAGGCATAC 56 

Cldn4 CATCCAAATTGCTGGTGGAT CCAGCTTGCGCCTCTACT 29 

Elf3 CCAGAAAGCTGAGCAAGGAA CTCGGATAAACTCCCACAGG 95 

Esrp2 TCAGTGTCTTTCAAGCCTACCA CAACAGGCATCAGAGTGGTG 92 

Esrp2-as v1+2 AACACTCATTACAACTCAGTCATGG CGAGACCGACTTAATCCTCCT 22 

Esrp2-as v1-4 CCTAACTCATGCCCAAGGAA TGTGTGGACAAACCCAGAAG 106 

Gsn v1 CCCAAAGTCGGGTGTCTG CTTCCCTGCCTTCAGGAAT 22 

Gsn v2+4 CCTTGTGCAGCCTGTAAGC CTTCCCTGCCTTCAGGAAT 22 

Hprt1 TCCTCCTCAGACCGCTTTT CCTGGTTCATCATCGCTAATC 95 

Igfbp6 AACCCCGAGAGAACGAAGAG GGGGTTTGCTCTCCTTTGTAG 81 

Pkp3 CTAGTCGCCCCTGTCACTATG AGGGAGCAAACACCAGTCTC 18 

Tbp CGGTCGCGTCATTTTCTC GGGTTATCTTCACACACCATGA 107 

Unc5b TGGAGGACACACCTGTAGCA CAAGTAGCCACCCAGAGTCC 1 
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Table 3-8 EpiTYPER MassARRAY primer 

Amplicon  Forward primer 
a)

 Reverse primer T7 
b)

 

Esrp2 A1 GGTTTAATATTGTTAGGTGGGTGTG AACCCATAAATCTCAACCCTTACTC 

Esrp2 A2 TTATTGTTAGGATTGGGTGAGTGTT ACACCCACCTAACAATATTAAACCC 

Esrp2 A3 TTGTGTTATGGTGTTTATTGTGAGG AAACCAACTTTACAACCTAAATCCC 

Esrp2 A4 GTGTGGGTTAAAGTTTAGGTTGTTG ATTCAACCCTACCCTACCTAAAAAA 

Esrp2 A5 AGGTTTGTTTGTTTTAGTTGATTGG AACAACCTAAACTTTAACCCACACC 

Esrp2 A6 GGTTAGTTAGTTGGGATAGGTAGGT TACTAAACCATTCCCAAAACCAC 

Esrp2 A7 GGTTTTATTATTTGTTAAATTAGGAGGA AATCTCTACAACTCCCACTACACCC 

Esrp2 A8 TGTTTTTTGTTGAATTTTATGGGTT AAAAAACCAAAACCCTACCCAA 

Esrp2 A9 TGGAATTTAATAGGAGGTAATTTAGGG AAAAACAAAAACAAACAAACAAACC 

Esrp2 A10 GGAGGGGTTTTATTTTAAGGTTTT CCCATTCATCCCATACAATTTAATA 

Esrp2 A11 AGTATTTGGGAGGTAGAGGTAGGTG TCCTTCCACAAATAAATCCTAAACA 

Esrp2 A12 TTGGGGTGGTAGAAATAGGTAGATT CCTACCTTTAATCCCAACACTAAAA 

Esrp2 A13 TATTGTTATTTATGGGTAGGTTGGG AATAACATCAAATCACTCCCTTTCT 

Esrp2 A14 TTAGGGTAGGGTTTTTAGGAGAGA CCTTCAATAACCAATAACCAAAAAC 

Cbx8_intergenic TGTTTATGGATTTAATTTTTTGGGA ACTACAATCAACCTACACAAACCAA 

Cdh4 TGGGTTTTGATAGATTATTGGATTG AAAACTATACCTCTAACTCTCCCTTC 

Ch16_intergenic GGTTATTTGGTTTTTTAGAAATTTTG TCAACTATCAACACATAATCCCTC 

Cldn4 GGTGGGTAATTGTAGTAGAGGAGGT CAAAACACAAATCAAATACAATACAAAA 

Cldn6 TTAAATGTTGGAGTTTTGATTTTGG TCCACCTTACCCCTAAAAATAACAT 

Elf3 GTTTTTGAGGTTATAGGAAGGGAAG AAACAACCTAAAACACAAATACCCA 

Espin TGTTGTATTAGGTAGGTAGGTTGG ACACCACCCAAAACTAACAAAAAAT 

Galnt13 TATTAAGAAGAGAAGAGAGAGAAGAAAGAT TAATCCTAACCCAATAACAAACCTC 

Gsn TGTAGGAAGGAAAGAGTTTTGGTTT AAACCCAAATATCTCAAAAATCCC 

Hoxa5 TTTTGTTTGATGATTTTTAGAGGTAAAT CCTCACAATTAATACATCCTAATAAAACTA 

Iffo1 TAGAGGATGTTAAGGGTTTAGTTGG TCTTCCTCCTACAACAAAAACAACA 

Igfbp6 GGTTGGTATTGTAGTTTTGGGG AACCATAACCTAAAATAAACTACCCA 

Klf15 AAGTATTTTGTAGTTTTTGGGGAGG AATTCTAAAATCCACTAAAAACCC 

Mab21l1 GAGAAATGTTAGGTTAGGAAAGTTGTTAT CCTAAACCACCAATATCTAAAACCT 

Msi1 AGGGTTATGTAGTTGAAGAAATTGG ACCCCACCTCACCTACTAAAACTAT 

Omp GGGGTAGGGTAGTTAGGGTTGTTAT AACCAAAACCTAACCCAACAAATAC 

Pkp3 GGGAAGGAGAGATGTTTTATTTAGG AACTTCCTACTATCTACCCTACAACC 

Tmem39 GAGGGGATAGGATTTTATAGTG CAAAACAACTCACACCAAATAAACA 

Tor2a ATTTTTGTTTTTTGGTTTGGTTTTT AACCAAACTCCCTTCTCTCTACCTA 

Unc5b ATATGGGATGTGAGTGTTGGTATTT CACCCAAACCCAATAAAATAAATC 
a) 10bp balancing tag is attached 5’ to forward primer (aggaagagag)   

b) 
T7 RNA polymerase recognition site is attached 5’ of the reverse primer (cagtaatacgactcactatagggagaaggct) 
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Table 3-9 Cloning Primers 

Primer name Sequence Purpose 

Esrp2-as v4 fwd TATGGTACCTGCTGAGGCGTGCGCTCGCCGGC
TGGAGTCCCACCTCTTGCT 

Overexpression Esrp2-as 

Esrp2-as v1 fwd TATGGTACCCAAGGACAGAGCTTCATACTTGGC
CACTCGCAG 

Overexpression Esrp2-as 

Esrp2-as v1+4 rev TATGTCGACTTTGAAGTTCTGGAATTGTTTTAAT
ATGGGGAATGCCTGGTTGAG 

Overexpression Esrp2-as 

Esrp2-as P4/E4 fwd 
a)

 GAGCTCGCTAGCTTACGAATTCCTCCCCTGTG Luciferase Promoter + Enhancer 

Esrp2-as P3/E3 fwd 
a)

 GAGCTCGCTAGCCCACTTCTGGCTTCGAGAAC Luciferase Promoter + Enhancer 

Esrp2-as P2/E2 fwd 
a)

 GAGCTCGCTAGCCATCATGCACATGCTTGGAC Luciferase Promoter + Enhancer 

Esrp2-as P1/E1 fwd
 a)

 GAGCTCGCTAGCCCCCTAGCCTAGTTCCCTGT Luciferase Promoter + Enhancer 

Esrp2-as P1-4 rev 
b)

 ATTGCCAAGCTTGCTCTGTCGGCCTTAGATTG Luciferase Promoter  

Esrp2 P1 fwd 
b)

 ATTGCCAAGCTTCTACTCCGGCGAGTTACCTG Luciferase Promoter  

Esrp2 P1 rev 
a)

  GAGCTCGCTAGCCCTTGCAGAATGGAAAGAGG Luciferase Promoter  

Esrp2 P2 rev 
a)

  GAGCTCGCTAGCACTCTAGCCGCTCTCTGCTG Luciferase Promoter  

Esrp2 P3 rev 
a)

 GAGCTCGCTAGCCATTCCAGGCTTATCGTGGT Luciferase Promoter  

Esrp2 P1rev fwd 
a)

 GAGCTCGCTAGCCTACTCCGGCGAGTTACCTG Luciferase Promoter  

Esrp2 P1rev rev 
b)

 ATTGCCAAGCTTCCTTGCAGAATGGAAAGAGG Luciferase Promoter  

Esrp2 E4 rev 
b)

 ATTGCCAAGCTTGGCAATCATCAGACCAGGAT Luciferase Enhancer 

Esrp2 E3 rev 
b)

 TAAGCCAAGCTTGCCGTATGGGCTGTATGAAT Luciferase Enhancer 

Esrp2 E2 rev 
b)

 ATTGCCAAGCTTCTAGGGGTGGGGATTAGGAG Luciferase Enhancer 

Esrp2 E1 rev 
b)

 ATTGCCAAGCTTCTGTCCTTGGTGGCTCTGTT Luciferase Enhancer 

Esrp2 E4 rev 
a)

 GAGCTCGCTAGCGGCAATCATCAGACCAGGAT Luciferase Enhancer 
a)

 NheI restriction site attached 
b)

 HindIII restriction site attached 

Table 3-10 Additional Primers 

Primer name Sequence Purpose 

IMR_0069 GGACAAACCACAACTAGAATGCAG Genotyping C3(1) 

IMR_0068 CAGAGCAGAATTGTGGAGTGG Genotyping C3(1) 

IMR_0016 GTCAGTCGAGTGCACAGTTT Genotyping internal control 

IMR_0015 CAAATGTTGCTTGTCTGGTG Genotyping internal control 

mouseSall3 Fwd GTTATTTTAGATTTTATTTAGTAGTG Bisulfite conversion 

mouseSall3 Rev TAAAAATAAACCTTCAAATTACCCTT Bisulfite conversion 

mouseMest fwd CAGACGCCACCTCCGATCC Control for MCIp enrichment 

mouseMest rev GGCCGCATTATCCCATGCC Control for MCIp enrichment 

mChIP-K4me3_fwd GGGCCCACGAGTGTCTAC 
control of ChIP pulldown with 
H3K4me3 (UPL #5) 

mChIP-K4me3_rev CAGCCAACTTTACGCCTAGC 
control of ChIP pulldown with 
H3K4me3 (UPL #5) 

mChIP-K4me1_fwd TGCCAGTCCTGCAAGTCA 
control of ChIP pulldown with 
H3K4me1 (UPL #96) 

mChIP-K4me1_rev GGAATACTCTGGGCTCTCCTTAT 
control of ChIP pulldown with 
H3K4me1 (UPL #96) 
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M TG TG WT WT

500bp

250bp

3.2 Mouse work 

3.2.1 Breeding and genotyping 

Mouse work was supported by Jana Petersen and Monika Helf, Division of Epigenomics and 

Cancer Risk Factors, DKFZ, Heidelberg. The FVB-Tg(C3-1-TAg)cJeg/J (C3(1)) mouse 

model for breast cancer was described previously [85, 86] and 4 founder animals were 

purchased from Jackson laboratories. The animals were bred and housed in the animal 

facility of the German Cancer Research Center (DKFZ) under a controlled 14h light/10h dark 

cycle, at 22°C±1°C, relative humidity 50-55% with access to chow (phytoestrogen-low R/M-

H, V1554-703, Ssniff, Soest, Germany) and water ad libitum. Mice were bred on either 

complete transgenic background (TG) or mixed with wildtype (WT) in a ratio of 2 females : 1 

male. 

For genotyping, tail biopsies were taken at time of weaning to isolate DNA and perform 

genotyping PCR (Table 3-11).  

Table 3-11 PCR set-up and cycling protocol for C3(1) genotyping 

Component Amount  Temperature Time   

Mouse tail DNA 2µl  94°C 2min   

10x Immolase Buffer 1.2µl  94°C 20sec  1
2
x
 dNTPs (10mM) 0.96µl  64°C: -0.5°C/ cycle 30sec  

MgCl2 (50mM) 0.6µl  72°C 1min  

IMR068 (20µM) 0.6µl  94°C 20sec  2
5
x
 IMR069 (20µM) 0.6µl  58°C 30sec  

IMR015 (20µM) 0.3µl  72°C 40sec  

IMR016 (20µM) 0.3µl  72°C 5min   

Yellow Sub 
TM

 1.6µl  10°C hold   

Immolase DNA Polymerase (5U/µl) 0.28µl      

H2O Add to 12µl      

 

The band at 200bp represents the internal PCR control and is present in both TG and WT 

samples. The band of 500bp represents the SV40T product in transgenic animals (Figure 

3-1). 

 
Figure 3-1 Representative gel of C3(1) 
genotyping PCR products.    

M: DNA ladder; TG: C3(1) animal, WT: 
wild type animal 
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3.2.2 Sample collection 

For the analysis of DNA methylation kinetics, female mice of WT or TG animals were 

sacrificed in age intervals of 4 weeks starting at 8 weeks up to 24 weeks of age. After 

sacrifice of animals by CO2, individual tumors or mammary glands were resected before 

snap freezing in liquid nitrogen. The animal work was approved by the state Animal Care 

and Use Committee (Regierungspräsidium Karlsruhe) as regulated by German federal law 

for animal welfare under the registration number 35-9185.82/A-15/08. 

3.3 Nucleic acid isolation and quantification 

DNA and RNA were isolated from tissues or cell lines with the DNeasy Blood & Tissue kit, 

RNeasy Mini Kit or AllPrep DNA&RNA kit from Qiagen according to manufacturer’s 

instructions. For removal of residual DNA during RNA isolation, an additional on-column 

DNase treatment with RNase-Free DNase Set was performed according to the 

manufacturer’s recommendation. For disruption and homogenization of tissue pieces during 

AllPrep isolation, 3-4 cycles of tissue lyser shaking (30s, frequency 30 1/s) in buffer RLT plus 

were conducted. Quantity and purity of nucleic acids were measured with Nanodrop 

spectrophotometer (ND-1000). For RNA quality, the RNA integrity (RIN) was assessed by 

Agilent RNA 600 Nano chip and only samples with a RIN> 6 were analyzed by RT-qPCR. In 

case of library preparation for next generation sequencing, double stranded DNA is required, 

which can be measured by means of a DNA intercalating fluorophore on a Qubit 2.0 

Fluorometer using Qubit dsDNA HS assay kit according to the manufacturer’s instructions.  

 

3.4 Methyl CpG binding domain immunoprecipitation (MCIp) 

For the analysis of genome-wide DNA methylation differences, Methyl CpG binding domain 

immunoprecipitation followed by next generation sequencing (MCIp-seq) was applied [100, 

101]. This exploits the capability of the MBD2-Fc fusion protein to bind methylated DNA 

fragments by the MBD2 domain and to protein A-coated paramagnetic beads by the Fc part. 

Binding of DNA fragments to the MBD2 domain is dependent on the methylation level and 

CpG density of fragments. Washing with five solutions of increasing salt concentration elutes 

fragments bound to the MBD2 domain, thus enriching for highly methylated fragments. The 

highest salt concentration contains the fragments with highest methylation levels and was 

used for enrichment of both TG as well as WT samples of different ages to compare 

methylation changes occurring in the course of tumorigenesis.  

MCIp was conducted following the protocol described by Sonnet et al. [100] with minor 

modifications using a SX8G-V52 robot for automated processing of a maximum of 8 samples 
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in parallel with the program MCIP30_ETipRedCorr3.HLD. In brief, 5µg DNA in 120µl EB 

buffer was sheared to ≈150bp using a Covaris S2 sonicator for 6 cycles (duty cycle 20% 

intensity 5, burst per cycle 200, time: 60sec), checking in between cycles for formation of air 

bubbles in the sonication tube which leads to uneven fragmentation. Size distribution was 

confirmed on an Agilent DNA High sensitivity Chip before proceeding with the MCIp reaction 

in the robot. 60µg of MBD2-Fc protein and 40µl of protein A-coated paramagnetic beads 

were used for the reaction.  

Several washing steps with wash buffer (0.1% NP-40, 20mM Tris-HCl pH 8.0, 2mM MgCl2, 

0.5mM EDTA), containing increasing NaCl concentrations (300mM - 1M), were performed to 

remove unbound fragments and enrich for highly methylated DNA, which exhibited the 

strongest affinity for MBD2. Thus, the highest salt concentration (1M) was at the same time 

the final eluate and was used in the following steps. DNA of the final eluate was purified with 

the MinElute Kit in 20µl dH2O. Enrichment of methylated DNA was confirmed by SYBR 

Green based RT-qPCR (Table 3-12) for the imprinted Mest gene with the program of 95°C 

for 15min followed by 45 cycles of 94°C for 15sec and 60°C for 30sec on a Light Cycler480. 

Enrichment of Mest fragments is found mostly in the low salt fraction (300mM, unmethylated 

allele) and in the highest salt fraction (1M, methylated allele). Relative enrichment was 

calculated with help of a standard curve generated from serial dilutions of fragmented, 

unprecipitated input DNA (1:10, 1:100, 1:1000). Fragment quantity and size distribution were 

measured by Qubit and DNA High sensitivity chip. 

Table 3-12 Enrichment RT-qPCR 

Component Amount 

2x Quantitect SYBR Green 5µl 

Mest Fwd (10µM) 0.3µl 

Mest Rev (10µM) 0.3µl 

DNA (diluted 1:10) 2µl 

dH2O 2.4µl 

 

The quality controlled DNA was processed by the DKFZ Genomics and Proteomics Core 

Facility for library preparation and next generation sequencing. Library preparation was 

performed using the Illumina ChIP-Seq DNA Sample Prep Kit (Catalog IDs: IP-102-1001) 

according to the manufacturer’s protocol (#11257047 Rev. A) with minor adaptations for 

ligation of 6mer barcoded adapters, size selection via E-gel, clean up via AmpureXP beads 

(Agencourt) and PCR with primers PE 1.0 (AATGATACGGCGACCACCGAGATCTACACT 

CTTTCCCTACACGACGCTCTTCCGATCT) and PE 2.0: (CAAGCAGAAGACGGCATACGA 

GATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT) according to Lefrancois et 

al. [102]. Barcoded adapter and primer sequences were kindly provided by Megumi Onishi 
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Seebacher. Samples were 18-plexed and sequenced on 2 lanes of an Illumina HiSeq 2000 

sequencer (single read 50bp). 

 

3.5 Bioinformatic data mining 

3.5.1 Alignment and quality control 

Alignment of reads to the mouse reference genome mm10 was performed with Burrows 

Wheeler aligner (BWA) [103] and removal of duplicates as well as bad quality reads was 

conducted with Picard (https://broadinstitue.github.io/picard) and Samtools [104], 

respectively. Saturation efficiency and CG-coverage was calculated as an additional control 

step by the R-MEDIPs package [105]. 

3.5.2  Calling of DMRs (HOMER) 

For peak calling of DMRs, reads for animals of the same genotype and the same age group 

were combined and analyzed with HOMER (findPeaks: FDR< 0.001, p-value< 0.0001, size 

150bp, minDist 300bp) [106] using either normal (hypermethylation) or tumor reads 

(hypomethylation) as background. DMRs in the 24w age group were selected for 

co-occurrence with DMRs in either the 16 or 20w group or both (mergePeaks –cobound). 

Promoter DMRs were required to overlap with a region of 2kb upstream and 0.5kb 

downstream of the TSS of RefSeq annotated genes (GRCm38/mm10, 

http://genome.ucsc.edu/ [107]) by the bedtools intersect option [108]. Application of the 

HOMER mergePeaks command (-d 300bp, -venn) on DMRs obtained from the individual 

age groups could further divide DMRs into age group unique DMRs and recurrent DMRs, the 

later being further classified into i) progressive (occurring from their first appearance to the 

latest age group at 24 weeks), ii) continuous (occurring in neighboring age groups, but not in 

the 24w group) and iii) discontinuous DMRs (occurring in non-neighboring age groups). 

Regions were further characterized for their localization with respect to the closest genomic 

feature (e.g. exon, CpG-island, repeat element) with the annotatePeaks command. 

Coverage at certain regions of interest (DMRs, tissue specific chromatin states) by MCIp-seq 

was obtained using the annotatePeaks –hist option for the respective regions. 

 

https://broadinstitue.github.io/picard
http://genome.ucsc.edu/index.html
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3.5.3 Principal component analysis of recurrent DMRs in C3(1) tumors and 

mammary glands 

Recurrent DMRs were annotated for the MCIp-seq tag densities in individual animals with 

HOMER (see section 3.5.2) and similarity of samples was examined by principal component 

analysis (PCA) with Qlucore Omics Explorer software v 3.1. 

 

3.6 Quantitative methylation analysis by EpiTYPER MassARRAY  

3.6.1 Bisulfite conversion and EpiTYPER PCR 

For the assessment of DNA methylation levels on a quantitative basis, EpiTYPER 

MassARRAY was performed as previously described [81, 109]. In brief, 500ng-1µg DNA 

was bisulfite treated using the ZYMO EZ DNA methylation kit according to manufacturer’s 

instructions except changing the denaturing conditions to 15 cycles of 1h at 50°C and 10sec 

at 98°C followed by an additional 1h at 50°C and increasing the elution volume to 2x 30µl 

M-elution buffer. Successful conversion was confirmed by PCR for Sall3 amplicon which 

only gives a product for converted cytosines (Primer in Table 3-10). In a PCR, BT DNA was 

amplified with target specific primers (Table 3-8) that attach a T7 polymerase recognition site 

to the PCR product (Table 3-13). 

Table 3-13 PCR set-up and cycling protocol for amplification of BT DNA for EpiTYPER 
MassARRAY analysis 

Component Amount  Temperature Time   

BT DNA 1µl  95°C 15min   

10x PCR Buffer 0.5µl  94°C 30sec  4
8
x
 Primer mix (10µM) 0.1µl  56 - 60°C 30sec  

dNTPs (10mM) 0.1µ  72°C 30-60sec  

Hotstar Taq (5U/µl) 0.04µl  72°C 5min   

dH2O add to 5µl  4°C hold   

 

3.6.2 Dephosphorylation, in vitro transcription, and desalting with Resin 

After dephosphorylation of unincorporated dNTPs by shrimp alkaline phosphatase (SAP) 

treatment for 20min at 37°C followed by heat inactivation for 5min at 80°C, the product was 

in vitro transcribed by T7 polymerase (MassCLEAVE T7 kit (T cleavage)) for 3h at 37°C in 

combination with RNaseA mediated base-specific fragmentation of RNA (Table 3-14).  
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Table 3-14 In-vitro transcription mix (MassCLEAVE T7 kit) 

Component Amount 

SAP-treated PCR product 2µl 

5x T7 Polymerase buffer  0.89µl 

T-Cleavage mix 0.22µl 

DTT (100mM) 0.22µl 

T7-polymerase 0.4µl 

RNaseA (10mg/ml) 0.06µl 

dH2O Add to 7µl 

 

The product was diluted with 20µl and desalted with 6mg resin rotating for 30min at room 

temperature before fragments were analyzed by matrix assisted light desorption/ionization 

time-of-flight mass spectrometry (MALDI-TOF). The EpiTYPER software compares the 

obtained mass spectra with the expected spectra and thus, identifies individual peaks. The 

difference between methylated and unmethylated cytosine is translated from a C/T transition 

after bisulfite conversion and PCR to an A/G difference after in vitro transcription, which 

results in a mass shift of 16Da per CpG site in the fragment. The software quantifies the ratio 

and area abundance for peaks of methylated and unmethylated fragments resulting in a 

relative methylation value. In addition, spectra were visually inspected for correct peak 

recognition in comparison with a 6-point in vitro methylated standard (0-100%) (Preparation 

see chapter 3.6.3) before inclusion of CpG units into the final dataset. 

 

3.6.3 Preparation of 6-point in vitro methylated standard 

For the generation of a 6-point in vitro methylated standard, genomic DNA was whole-

genome amplified to generate unmethylated DNA using the REPLI-G mini kit according to 

the manufacturer’s instructions. For the generation of methylated DNA, 15µg genomic DNA 

was incubated with M.SssI for 1h at 37°C (Table 3-15). In vitro methylated genomic DNA 

and whole-genome amplified DNA was cleaned using the DNeasy Blood & Tissue kit 

according to the manufacturer’s specifications. To obtain the 6-point standard, methylated 

and unmethylated DNA were mixed in different proportions to obtain 0%, 20%, 40%, 60%, 

80% and 100% methylation levels. Standard was bisulfite converted before use in 

EpiTYPER PCR. 

Table 3-15 Reaction mix for in vitro methylation of genomic DNA 

Component Amount 

Genomic DNA 15µg 

M.SssI  10µl 

50 x SAM  13µl 

10x M.SssI Buffer 65µl 

dH2O Add to 650µl 
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3.7 Relative quantification of nucleic acids by real time PCR (RT-qPCR) 

3.7.1 cDNA synthesis 

cDNA was generated from isolated RNA by means of reverse transcription (RT) using 

SuperScriptII Reverse Transcriptase. 0.5-1µg RNA were incubated with 200ng of random 

hexamers for 5min at 65°C and cooled for 1min on ice. Then, reverse transcription mix 

(Table 3-16) was added and incubated as follows: 22°C for 10min, 42°C 50min and 72°C for 

15min. cDNA was stored undiluted at -20°C or depending on application diluted 1:5 or 1:10 

with dH2O. 

Table 3-16 Reverse transcription mix and incubation conditions 

Components Amount 

5x First-Strand buffer 4µl 

DTT (0.1M) 2µl 

dNTPs (10mM) 1µl 

SuperScript II RT (200U/µl) 0.2µl 

 

3.7.2 Quantitative real time PCR 

Quantitative real time PCR (qPCR) analysis was performed using the Roche Lightcycler 480 

and the Universal Probe Library system, which employs a fluorescently labeled probe that 

specifically binds the target of interest. In the reaction setup, 2.5µl sample (cDNA, ChIP 

DNA) were mixed with 3.5µl Probes Master, 1µl primer mix (0.5µM each primer) and 0.05µl 

universal probe, for running the following Lightcycler program of 15min at 95°C followed by 

45 cycles of 10s at 95°C, 20s at 55°C and 10s at 72°C. Primer design was performed with 

the web-based Roche Universal Probe library assay design center to identify compatible 

probe-primer combinations. CT values were calculated by the Lightcycler 480 software with 

the Abs quant/2nd derivative max option. Relative expression levels of target genes were 

normalized to three housekeeping genes (Hprt1, Tbp, Actb) according to the Livak ΔΔCT 

method [110]. For calculation of enrichment of ChIP DNA fragments, DNA values were 

normalized to the 5% input control. Primers and respective probe numbers are listed in 

Table 3-7. 

3.8 Cell culture experiments 

3.8.1 Cell lines and cell culture 

The M28N2, M27H4, M6 and M6C cell lines were derived from different stages of mammary 

gland tumors of C3(1) origin [111] and were kindly provided by Cheryl Jorcyk (Boise State 

University). 3T3-L1 mouse preadipocytes [112], platinum-E (Plat-E) retroviral packaging cells 
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[113] and NMuMG mouse mammary gland epithelial cells [114] were a kind gift from Daniel 

Mathow and Hepa1.6 murine hepatoma cells [115] were generously provided by Ursula 

Klingmüller (both DKFZ Heidelberg). Cell lines were cultivated in DMEM +10% FCS in a 

humidified atmosphere at 5% CO2 and 37°C. For NMuMG cells, medium contained 10mg/ml 

insulin. DNA and RNA from MC38 murine colon carcinoma cells and CMT93 murine rectum 

carcinoma cells were provided by Christoph Weigel (DKFZ Heidelberg). For propagation, 

cells were dislodged from the tissue culture surface by trypsin-EDTA (0.02%) treatment. 

Cryoconservation of cells was conducted in medium containing 10% DMSO followed by 

freezing at a rate of -1°C/min in freezing containers before ultimate storage in liquid nitrogen. 

3.8.2 Decitabine treatment 

In order to evaluate the effect of methylation changes on gene expression, cell lines were 

treated with the DNMT inhibitor Dac. Cells were seeded at densities of 2-2.5x 105 cells per 

six well 24h before initiation of treatment and Dac dissolved in dimethylsulfoxide (DMSO) 

was added to a final concentration of 0.1µM (M6) and 1µM (M27H4) (max. DMSO 

concentration of 1µM respectively). Medium containing Dac or DMSO was replaced every 

24h for a total treatment duration of 96h. Changes in expression were measured by RT-

qPCR and demethylation was confirmed by EpiTYPER MassARRAY. The experiment was 

repeated two or three times. 

 

3.9 Comparison of DMRs in the C3(1) mouse model and human breast 

cancer samples 

3.9.1 Analysis of 450k DNA methylation data for TCGA breast cancer samples  

DNA methylation obtained for human breast samples by Infinium HumanMethylation 450k 

bead Chip array (450k) were downloaded from the TCGA data portal 

(http://cancergenome.nih.gov). For genes with a mouse DMR in the promoter region, all 

probes overlapping the human promoter (2kb upstream and 0.5kb downstream of the TSS) 

of the respective gene were selected for analysis. Pam50 classification of samples was used 

according to RNA microarray data [70]. Data were visualized by Qlucore Omics Explorer 

software v3.1 to generate principal PCA plots and heatmaps. Heatmaps for clustering 

applied weighted average linkage principle and a two-group t-test comparison between 

basal-like breast cancer samples and the other Pam50 defined subtypes (without normal 

control samples) identified the top 5% of Infinium probes that best distinguish the basal-like 

subgroup. 

http://cancergenome.nih.gov/
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For validation of DMRs between C3(1) and the human subtypes, the promoter methylation 

was calculated by averaging the methylation values for all probes of the respective gene. 

The methylation was independently compared for each individual pair (gene, subtype) to 

normal controls by student’s t-test, correcting for multiple testing by Benjamini-Hochberg 

correction. Hyper- and hypomethylation was defined as a significant (p< 0.01) increase or 

decrease in methylation. The direction of methylation change was compared with DMRs 

from the C3(1) model. 

 

3.9.2 Hierarchical clustering of mouse promoters and progressive DMRs 

For comparison with DMRs in human breast cancer samples, tag density was calculated 

over the complete promoter regions in contrast to specifically for the DMRs, and animals of 

the age groups 20-24w were analyzed with hierarchical clustering (average linkage, 

Spearman rank correlation) using Multiexperiment Viewer (MeV) Version 4.9.0. In order to 

examine the dynamics of DMR formation during tumorigenesis, read densities for 

progressive DMRs were normalized according to the mean and variance across all MCIp-

seq samples with Qlucore and were clustered with average linkage to generate heatmaps. 

 

3.10 Gene set enrichment analysis (GSEA) 

In order to investigate whether differentially methylated genes were enriched in previously 

defined gene sets, the Molecular Signatures Database v5.1 (MSigDB) was queried for 

overlaps [116] (http://software.broadinstitute.org/gsea/msigdb/annotate.jsp). Furthermore, 

gene sets defined by differences in DNA methylation and chromatin states were analyzed for 

enrichment in the published C3(1) gene expression data set [90] with GSEA Java desktop 

application [117]. The analysis was conducted with standard parameters using a cutoff for 

p-value < 0.5 and false discovery rate (FDR) < 0.25. 

 

3.11 Chromatin Immunoprecipitation (ChIP) 

3.11.1 Mammary epithelial cell (MEC) enrichment  

For chromatin immunoprecipitation in WT mammary glands we isolated and enriched MECs, 

following an adapted protocol for isolation and cultivation of mammospheres by Dr. Ansam 

Sinjab [118]. In particular, axillary and inguinal mammary glands were dissected and 

collected in ice-cold DMEM/F12. Glands were washed by dipping into 70% ethanol and 

http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
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DMEM/F12 before mincing on a petri dish to a size of ≈1mm3 with scissors. Minced glands 

were digested while rotating at 37°C for 3-4h in digestion cocktail (10ml per 5 glands; 

200mM glutamine, 5% FCS, 500µl collagenase A (stock 25mg/ml in HBSS), 

1.25ml hyaluronidase (1mg/ml freshly prepared in HBSS), add DMEM/F12 to 10ml). The mix 

became more turbid with organoids sinking to the bottom and fat tissue floating on top. 

Organoids were sedimented by 4 centrifugation steps at 4°C for 1min increasing speed from 

80g, 160g, 320g, to 450g. Supernatant was removed without disturbing the pellet. The pellet 

was washed once with 10ml cold DMEM/F12 and once with 10ml cold HBSS with 

centrifugation at 450g for 5min at 4°C. Cells in the pellet were enriched for mammary 

epithelial cells and were freshly cross-linked for chromatin preparation. 

 

3.11.2 Chromatin preparation 

For ChIP of C3(1) tumors, tissue was disrupted and homogenized in liquid nitrogen using a 

tissue dismembrator S to generate a homogenous tissue powder. For crosslinking of 

chromatin and chromatin-bound proteins, approximately 60-80mg tissue powder was thawed 

on ice for 10min before adding 1ml freshly prepared 1% formaldehyde (methanol-free) 

diluted in PBS and incubation for 10min at room temperature. During incubation, 

homogenization of solution was enhanced by two cycles of tissue lyser shaking (30sec, 

1/30sec frequency) before the reaction was quenched by adding glycine to a final 

concentration of 125mM and incubation for 5min at room temperature. Samples were 

pelleted by centrifugation at 300g for 5min at 4°C and washed three times in PBS/0.5mM 

PMSF. The pellet was resuspended in 900µl MNase Buffer (Table 3-17) with addition of 10U 

MNase/15mg tissue before incubation for 15min at 37°C. The reaction mix was then 

complemented by 100µl 10x sonication buffer (Table 3-17). Suspension was cooled for 15 

min on ice before sonication using a Covaris S2 sonicator for 40 cycles (cycles per burst 

200, duty cycle 20%, intensity 8, time 60s). An aliquot was analyzed on an Agilent High 

Sensitivity DNA Chip for quality assessment, with good quality indicated by a large peak at 

150bp indicating mononucleosomes and only a minor tail towards larger fragments of 

polynucleosomes (Figure 3-2).  
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Figure 3-2. Agilent chip results for chromatin samples after MNase digestion and 
ultrasonication.  If fragmentation was incomplete (left), the highest peak was seen at fragment sizes 
of polysomes (four nucleosomes or more). Completely fragmented chromatin (right) displayed mainly 
mononucleosomes sized (≈150bp) fragments and only fewer large fragments. 

 

For MEC chromatin, cells were freshly crosslinked with 10ml of 1% formaldehyde in PBS 

shaking at room temperature for 10min followed by quenching and washing as with tumor 

samples. Cells were counted before the last washing step and aliquoted before snap-

freezing the pellet in liquid nitrogen. For fragmentation, MECs were resuspendend in 900µl 

MNase buffer and homogenized by 2x2 cycles of tissue lyser shaking before incubation at 

37°C with 5U MNase/ 1x106 cells for 40min at 600rpm. Reaction was complemented with 

10x sonication buffer as for tumors and sonicated at the same conditions for 20 cycles.  

Chromatin was centrifuged at full speed for 15min followed by preclearing the supernatant 

with 20µl pre-equilibrated protein A paramagnetic beads and 1µl of rabbit negative control 

IgG antibody by rotating for 2h at 4°C. 

Table 3-17 Buffer composition for Chromatin imunoprecipitiation 

MNase Buffer:  100mM Tris pH 8.0, 2M NaCl, 10mM EDTA 0.1% SDS 0.2% Na deoxycholate, 
1x protease inhibitor complete EDTA-free 

10x sonication buffer: 100mM Tris pH 8.0, 2M NaCl, 10mM EDTA 01% SDS 0.2% Na 
deoxycholate, 1x protease inhibitor complete EDTA-free 

ChIP elution buffer: 10mM Tris pH 8.0, 5mM EDTA 300mM NaCl, 0.5% SDS 

 

3.11.3 Automated Chromatin Immunoprecipitation 

Immunoprecipitation reaction was performed with the Auto ChIP Kit and the SX8G-V52 robot 

according to the manufacturer’s specifications using the IP and beads incubation 100µl 

program [119]. 10µg Chromatin DNA were incubated with antibodies against histone 

modifications (Table 3-18) by constant pipetting of the robot at 4°C overnight for 11-13h 

before precipitation of the formed complex by pre-washed protein A coupled paramagnetic 

[bp] [bp]
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beads. Further washing steps to reduce unspecific DNA binding was followed by elution in 

ChIP elution buffer (Table 3-17) and de-crosslinking for 4h at 65°C with 5µl proteinase K and 

3µl RNase A (10mg/ml) for 30min at 37°C. Finally, DNA was cleaned up with AMPure XP 

SPRI beads 1.8x, 3 wash steps with 80% EtOH and eluted in 22µl EB buffer before initial 

analysis of enrichment with RT-qPCR (chapter 3.7.2). For next generation sequencing, 20ng 

DNA of precipitated samples as well as from 5% input control were used for library 

preparation for NGS according to the NEBnext Ultra DNA Library Prep Kit for Illumina and 

sequenced on an Illumina HiSeq2000 (single read 50bp). 

 

Table 3-18 Antibodies used for ChIP 

Antibody Amount used per precipitation 
(10µg chromatin DNA) 

Company 

H3K4me3 (ab8580) 2µg Abcam, Cambridge, UK 

H3K4me1 (ab8895) 1µg Abcam, Cambridge, UK 

H3K27ac (ab6002) 5µg Abcam, Cambridge, UK 

H3K27me3 (07-449) 3µg Merck Milipore, Darmstadt, Germany 

negative control IgG 
(AIB-103-110) 

1µg/ chromatin preparation Diagenode, Liège, Belgium 

 

3.11.4 ChIP-seq library preparation 

Library preparation was performed according to the NEBnext Ultra DNA Library Prep Kit for 

Illumina protocol diluting the NEBNext Adaptor 1:10 and including size selection. PCR 

amplification, which included the addition of index primers, was monitored by RT-qPCR on a 

LightCyler 480 by addition of SybrGreen to the reaction. PCR amplification was stopped in 

the exponential phase shortly before entering the linear phase of the reaction and if the 

fluorescence intensity was higher than 7, which occurred mostly between 9-13 cycles. After 

clean-up with AMPure XP beads, quantity and size distribution of libraries was controlled by 

Qubit and DNA High sensitivity Chip, before they were multiplexed and sequenced on an 

Illumina HiSeq2000 (single read 50bp) by the DKFZ Genomics and Proteomics Core Facility. 

Alignment and quality control of ChIP-seq reads were performed as for MCIp-seq reads (see 

chapter 3.5.2) only omitting the saturation analysis. 

 

3.11.5 Classification of chromatin states 

The ChIP-seq data obtained for MECs and the three tumor samples for the four histone 

marks, H3K4me3, H3K4me1, H3K27ac, and H3K27me3 were examined with the 

ChromHMM algorithm [37] to train a Hidden Markov model, which allows the assignment of 

chromatin states to the different positions of the genome. The input signal combined for the 
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four samples was used for corrections and ChromHMM was run with standard parameters to 

train a single joint model over all samples. The ChromHMM CompareModels option was 

used to compare different models that were trained for different numbers of states with the 

16-state model (16 is the maximal possible number of states when analyzing data obtained 

with four different marks). When reducing the number of states from the 16-states model to 

11-states, none or only one additional state was lost at each step due to low correlation 

(correlation < 0.9 or < 0.8). Since four additional states were lost between the 10- and the 

11-state model, the later model was chosen for analysis based on the available data. The 

basic features to calculate for enrichment that were provided by ChromHMM, like CpG 

islands or RefSeq Genes, were extended by FANTOM5 CAGE-seq data and CAGE-seq 

based enhancers [120] (downloaded from: http://fantom.gsc.riken.jp/5/data/), chromatin 

defined enhancers from 19 mouse tissues and cell types by Shen and colleagues [121] and 

H3K36me3 ChIP-seq data for MECs [122]. Respective regions were converted from 

NCBI37/mm9 assembly to GRCm38/mm10 with LiftOver (http://genome.ucsc.edu/). Another 

enrichment analysis was performed to look for overlap with DMRs, in particular progressive 

DMRs (details for selection are provided in chapter 3.5.2). With the Rmerge Peaks script (by 

Manuela Zuckncik) regions with the same chromatin state in at least two of the three tumor 

samples were identified as common for tumors. For the definition of a region as being a 

tissue-specific chromatin state (either tumor- or MEC-specific), the regions with common 

states in tumor were reduced by those that overlapped with regions of the same state in 

MECs by means of the bedtools subtract (option –A) command or vice versa. With the 

bedtools intersect command, the tissue-specific chromatin state regions that overlap with 

DMRs could then be identified and used for a HOMER Motif analysis (command: 

findMotifsGenome.pl –size 200 –S10) [106]. 

 

3.12 Antisense LNA Gapmer mediated knockdown of Esrp2-as 

For Locked nucleic acid (LNA) Gapmer mediated knockdown, custom designed antisense 

oligos against Esrp2-as and the negative control oligo A were reverse transfected into cell 

lines M6, M28N2 and NMuMG with Dharmafect 1 solution. LNAs activate RNaseH mediated 

RNA degradation and allow for strand-specific targeting of RNA molecules, which in total 

reduces off-target effects. LNAs at a final concentration of 20nM and Dharmafect 1 solution 

(2µl/well for 12 well plates) were separately diluted in 100µl serum-free DMEM medium and 

incubated for 5min before mixing the components. After additional 20min of incubation, the 

transfection mix was added to the cell suspension (≈ 5x104 cells per well in 1ml medium) in 

the wells and incubated for 96h (M6, M28N2) or 72h (NMuMG). In M6 cells, a long term 

http://fantom.gsc.riken.jp/5/data/
https://genome.ucsc.edu/index.html
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knockdown series was performed by repeatedly transfecting cells after 96h for four times. 

Knockdown experiments were performed once. 

 

3.13 Overexpression of lncRNA Esrp2-as and Esrp2 

3.13.1 Cloning of Esrp2-as for overexpression 

For cloning of Esrp2-as, 3µg murine liver RNA was reverse transcribed using 200ng random 

hexamers and SuperScript II reverse transcriptase as described in section 3.4.2. The 

transcript was PCR amplified with primers to attach KpnI and SalI restriction sites to the 

product (Table 3-19). 

Table 3-19 PCR setup and cycling protocol for amplification of Esrp2-as 

Component Amount  Temperature Time 
 

 

cDNA 1µl  98°C 3min 
 

 

5x Phusion buffer GC 4µl  98°C 10sec 

 

3
2
x
 dNTPs (10mM, 2.5mM each) 0.4µl  66°C 30sec 

 

Primer fwd (10µM) 0.5µl  72°C 1min 

 

Primer rev (10µM) 0.5µl  72°C 5min 
 

 

Phusion Polymerase (2U/µl) 0.2µl  4°C hold 
 

 

Q-solution (Qiagen) 5x 4µl    
 

 

Template cDNA 1µl    
 

 

dH2O Add to 20µl      

 

The PCR reaction for transcript variants v1 and v4 were confirmed for correct size on an 

agarose gel and consequently gel purified using Qiaquick gel extraction Kit. After A-tailing, 

the PCR product was inserted into the pCR2.1 vector following the TOPO-TA (Invitrogen) 

protocol. Chemical competent TOP10 E.coli were transformed for propagation following the 

manufacturer’s instruction. The insert was cut at the introduced KpnI and SalI restriction 

sites, and after gel purification ligated into the respectively digested pCRII-cGFP-bGH vector 

(kindly provided by Sven Diederichs, DKFZ). Correct sequence of clones was confirmed with 

Sanger sequencing by GATC Biotech (Konstanz, Germany).  

 

3.13.2 Transfection of cell lines for overexpression of Esrp2 and Esrp2-as  

For overexpression of Esrp2-as in M27H4, Hepa 1.6, and 3T3-L1 cells, constructs (v1 or v4) 

were diluted in serum-free DMEM (2.5µg) and mixed with respectively diluted TransIT-Lt1 

(7.5µl) transfection reagent solution at a ratio of 3:1 transfection reagent to plasmid DNA. 20-
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30min after mixing, the transfection mix was evenly distributed to cells, which were seeded 

18-24h before (≈1x 105 cells per well in 6 well plates). For transient transfection, cells were 

harvested after 72h (M27H4) or 48h (Hepa 1.6 and 3T3-L1) and analyzed by RT-qPCR.  

The retroviral vector pMXs-IRES-Blast-Esrp2-FF [123] and the corresponding empty vector 

with GFP were a gift from Russ P Carstens (University of Pennsylvania). Retroviral infection 

of M27H4 and 3T3-L1 cells was performed as in [124], followed by selection with Blasticidin S 

at 5µg/ml for stable incorporation. 

 

3.14 Luciferase Reporter assays 

3.14.1 Cloning for dual luciferase reporter assays 

For dual luciferase reporter assays, the sequences covering regions upstream of the Esrp2 

and the Esrp2-as TSS were PCR amplified from genomic liver DNA with primers attaching 

NheI and HindIII restriction sites (Table 3-20). 

Table 3-20 PCR set-up and cycling protocol for amplification of reporter fragments 

Component Amount  Temperature Time   

10x PCR buffer 3µl  95°C 15min   

dNTPs (10mM, 2.5mM each) 0.6µl  94°C 30sec  

3
5
x
 

Primer fwd (10µM) 0.75µl  60°C 30sec  

Primer rev (10µM) 0.75µl  72°C 1min/kb  

Hotstar Taq polymerase (5U/µl) 0.2µl  72°C 10 min   

Q-solution (Qiagen) 5x 6µl  4°C hold   

Template DNA (55ng/µl) 2µl      

dH2O Add to 30µl      

 

After gel purification with the Qiaquick Gel extraction kit, the PCR products were digested 

with NheI-HF and HindIII-HF restriction enzymes for 3h at 37°C and subsequently purified 

with the MinElute PCR purification kit and ligated in the respectively cut and gel-purified 

target vectors pGL4.10 or pGL4.23. Transformation and sequence confirmation by Sanger 

sequencing was conducted as before (chapter 3.13.1). Primers are listed in Table 3-9. 

 

3.14.2 Promoter and enhancer evaluation with dual luciferase reporter assays 

For the assessment of promoter and enhancer potential, Hepa1.6 cells were reverse 

transfected with 40ng of pGL4.10 or pGL4.23 firefly luciferase reporter constructs using 0.2µl 

GenJet Ver.II-LnCAP and 10ng CMV-Renilla luciferase as a transfection normalization 
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control. The plasmids were separately adjusted to 5µl with plain DMEM and incubated for 

5min before mixing. The transfection reagent was diluted in 5µl DMEM and after short 

mixing immediately added to the plasmids. After incubation for 15min, the transfection 

mixture was added to the wells of a white 384 well flat bottom plate with ≈6000 cells per well. 

Luciferase activity was measured after 48h on a Spectramax microplate reader as previously 

described [125]. Measurements were taken for eight technical transfection replicates of four 

independent experiments and normalized to the respective pGL4.10 or pGL4.23 empty 

vector (EV). 

 

3.15 Statistical analyses 

Statistical analyses were conducted with GraphPad Prism v5.04 or Excel 2007. Experiments 

were evaluated by statistical means for experiments with n ≥3 as indicated in Figure 

legends. 
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4. Results 

4.1 Genome-wide analysis of DNA methylation changes in the C3(1) 

mouse model  

A major focus of this work was the evaluation of the DNA methylation kinetics in the C3(1) 

mouse model of breast cancer. We chose this model because of its continuous progression 

of tumor formation with stages that resemble human breast cancer at the histological level. 

Besides, there is a set of cell lines available for functional analysis that was established from 

various stages of tumorigenesis in this model [111]. In order to study the kinetics of tumor 

formation, we collected tumors and age-matched WT mammary glands at 4-week (w) 

intervals starting at 8 weeks up to 24 weeks of age (Figure 4-1).  

 

 

Figure 4-1 Schematic representation of tumor progression in the C3(1) mouse model. 
The model resembles stages of human breast cancer (MIN, DCIS, invasive carcinoma, 
metastasis) and the respective time points for sample collection for MCIp are indicated. The 
cell lines are derived from C3(1) lesions and represent the stages at the specific time points. 
w: weeks MIN: mammary intraepithelial neoplasia; DCIS: ductal carcinoma in situ. 

 

Three samples per age group of mammary glands and tumors were used in a genome-wide 

approach to enrich for methylated regions using MCIp-seq. The quality of the data obtained 

by sequencing was tested by a number of steps that involved bioinformatics followed by 

technical and biological validation (Figure 4-2).  
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MCIp-seq

Illumina HiSeq2000

(15 TG vs 15 WT, 3 animals per age group)

Bioinformatic quality control

BWA, Picard, Samtools, Medips

(Alignment, duplicates, bad quality, saturation)

DMR calling

HOMER

(unique and recurrent DMRs)

Principal Component Analysis 

Qlucore

(Recurrent DMRs: 8-24w and 16-24w)

Technical validation

EpiTYPER MassARRAY

(14 regions)

Promoter DMRs

Bedtools intersect

(+2kb/ -500bp TSS, recurrent DMRs 16-24w)

Gene expression microarray

Herschkowitz et al. 2007, p < 0.05

(8 tumors & 5 mammary gland samples)

Biological validation

MassARRAY, qPCR, Decitabine

(20-24w: 7-10 samples; cell lines: M6, M27H4 )

 

 Figure 4-2 Workflow for generation and analysis of 
MCIp-seq data and validation of DMRs.  Detailed 

description in chapter 4.1.1 - 4.1.3 

 

 

4.1.1 DNA methylome mining using MCIp-seq data 

4.1.1.1 Bioinformatic quality control 

The process of bioinformatic quality control with respect to unique alignment and removal of 

duplicate and bad quality reads is described in detail in the material and methods section 

(chapter 3.5.1). 

Individual samples contained 2-4.5 Mio unique reads with saturation correlation values of 

0.75-0.92 (Supplementary Table 1). Saturation values estimate the reproducibility and 

complexity of the analyzed MCIp-seq library. Values below 0.7 are considered as low quality, 
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although no general rule exists. Since we measured three animals per age group and at 

least two animals in each group had saturation values higher than 0.85, we decided to 

include even samples with lower saturation in our analysis. 

 

4.1.1.2 DMR calling and principal component analysis  

After bioinformatic quality control of the sequencing data, we wanted to identify differentially 

methylated regions, which are defined for MCIp as differences in the enrichment between 

the samples. Calling of DMRs was achieved with HOMER findPeaks looking for a 2-fold 

change in enrichment between TG and WT samples in an age-matched fashion. We 

distinguished between DMRs unique for a single age group or those recurrent in more than 

one age group. The overall number of DMRs increased with age for both the recurrent and 

individual DMRs (Figure 4-3) starting with approximately 10.000 DMRs in the young animals 

(8-12w) and increasing up to 30.000 DMRs for 24w animals. The recurrent DMRs 

contributed about one third to the DMRs in each age group. The largest increase in DMRs 

occurred between 12 and 16 weeks of age, indicating this stage as an important period for 

DNA methylation changes during tumorigenesis.  

 

 
Figure 4-3 Increase in DMRs during tumor 
progression in age-matched samples of the 
C3(1) mouse model. Unique DMRs only occur 
in a single age group and recurrent DMRs occur 
in more than one age group. 

 

Since we considered the recurrent DMRs as biologically most relevant, we annotated read 

counts to each individual animal and performed a principal component analysis (PCA). 

Young TG animals grouped closely together with most of the WT animals (Figure 4-4, left 

panel, indicated by a green circle). The older animals showed a tendency to group further 

away from this central group both for the TG animals (16-24w, red circle) and for some of the 

20-24w WT animals (blue circle). In order to investigate the age groups with respect to 

distinction between tumor and normal tissue, we limited our analysis to the older animals 

(16-24w) and indeed observed a clear separation of TG and WT animals (Figure 4-4, right 
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panel). This suggested that the largest and most consistent methylation differences occur in 

these age groups. Therefore, in our further analyses we focused on these animals. 

 

 

Figure 4-4 Principal component analysis of recurrent DMRs. DMRs (in reads per animal) for age 
groups from 8-24 weeks (w) distinguish tumors (TG) from normal mammary glands (WT). TG (in 
shades of red) and WT samples (in shades of blue) separate into two distinct groups from an age of 
16 weeks onwards. 

 

4.1.2 Validation of differential methylation with quantitative EpiTYPER 

MassARRAY technology 

4.1.2.1 Technical validation of randomly selected candidate regions 

Since MCIp is an enrichment-based method and detects methylation changes in a relative 

manner, we next tested the reproducibility of the identified DMRs at a quantitative level. We 

applied the quantitative EpiTYPER MassARRAY technology to the same samples that had 

been analyzed by MCIp-seq. We selected 14 DMRs occurring in the 24w age group, which 

overlapped with at least one other age group (16 or 20w). When comparing MCIp-seq reads 

(as genome browser tracks) with heatmaps of EpiTYPER results, we saw a high 

concordance on a sample-wise basis. A CGI overlapping with Cldn6 (Claudin6) is 

exemplarily shown as a hypermethylated region, and a CGI overlapping with exon 1 of Omp 

(olfactory marker protein) depicts an example hypomethylated region (Figure 4-5). For 

specific genomic regions small differences were reproducible between the two techniques, 

e.g. for the Cldn6 amplicon, WT animals had lower DNA methylation levels and lower 

enrichment in the left half of the region and higher enrichment corresponding to higher DNA 

methylation levels in the right half (Figure 4-5). In order to further confirm concordance 

between both techniques, we correlated average amplicon methylation levels and 
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normalized read counts of the DMRs and found significant, positive correlations (> 0.45) for 

all but one (Cdh4) of the examined regions (Figure 4-5+ Supplementary Table 2 Genomic 

Regions for technical and biological validation, genomic location of all selected DMRs in 

Supplementary Figure 1). Thus, an overall validation rate of > 90% confirmed a high 

reproducibility of results between the relative and absolute techniques and confirmed the 

validity of our DMR selection criteria.  

 

 

Figure 4-5 Sample-wise technical validation of DNA methylation assessed by MCIp-seq and 
EpiTYPER MassARRAY.  Depicted are recurrent DMRs associated with Cldn6 A) and Omp B) as 
examples of genomic regions gaining or losing methylation during tumorigenesis. The top part 
displays the localization of the DMR (black) identified by MCIp in relation to the gene locus (blue), 
CpG islands (green), and MassARRAY amplicons used for technical comparison (red). Genome 
browser tracks (left) represent the MCIp reads for three animals per age group (TG: red; WT: blue) 
and are compared on a sample-wise basis with quantitative MassARRAY data (heatmap, right). 
Methylation levels in the heatmap are depicted by a color gradient from 0% methylation (light yellow) 
to 100% methylation (blue). Each square represents one CpG unit consisting of at maximum 4 
individual CpGs; grey squares depict failed measurements. Spearman rank correlations were 
calculated for MCIp reads and median amplicon methylation of the Cldn6 (C) and Omp (D) DMRs.  
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4.1.2.2 Selection and technical validation of promoter DMRs 

Hypermethylation of promoter regions during carcinogenesis is commonly known to result in 

gene silencing [1]. To investigate this effect in a genome-wide manner, we overlapped 

DMRs recurrent in the 16-24w age groups with promoter regions (2kb upstream to 500bp 

downstream of TSSs) of RefSeq-annotated genes (GRC38/mm10) and detected 291 hypo- 

and 159 hypermethylated promoters (Supplementary Table 3 and Supplementary Table 4). 

Using published gene expression microarray data for the C3(1) model [2], we retrieved 

relative expression levels for 322 of those genes. We found significant expression 

differences (Student’s two sided t-test, p< 0.05) between tumor and normal tissue for 

114 genes. Of these, more than 70% (80 genes) had hypomethylated promoters, which were 

associated with upregulation of 50 genes (62.5%) and downregulation of 30 genes (37.5%). 

Among the genes with hypermethylated promoters, the majority (24 genes, 70%) was 

downregulated, and 10 genes (30%) were upregulated in tumors versus normal mammary 

glands.  

Among the hypermethylated genes with significant expression differences, we selected the 

top three most downregulated ones, namely Gsn (Gelsolin), Igfbp6 (Insulin-like growth factor 

binding protein 6), and Rbpms2 (RNA binding protein with multiple splicing 2) for further 

investigation (Supplementary Table 3). The selection of these regions was supported by 

gene expression changes in human basal-like breast cancer [2], for which we required the 

same trend as in the mouse model. This criterion was true for the top hypermethylated 

candidate genes, but led to the exclusion of some top hypomethylated candidate genes, 

which were upregulated in the mouse model, but downregulated in human samples.  

Due to its dependence on enrichment for detection of methylation differences, MCIp-seq 

requires a consistent read coverage for reliable detection of DMRs. Especially 

hypomethylation can be over-interpreted if enrichment for background methylation (in our 

case in normal mammary glands) is highly variable. Consequentially, some of the top 

upregulated candidate genes (Marveld2, Rtkn, Vasn) were disregarded due to high 

enrichment variability for the respective regions in WT samples (Supplementary Table 4). 

Cell-type specific marker proteins such as Krt7 or Krtcap3 were also excluded. Finally, we 

selected Pkp3 (Plakophilin 3), Elf3 (E74 like factor 3), Unc5b (Unc-5 netrin receptor b) and 

Cldn4 (Claudin 4) as hypomethylated candidate genes. 

All EpiTYPER assays for the selected regions performed well, except for Rbpms2, which 

had a strong PCR bias for methylated DNA. Methylation patterns of the Rbpms2 amplicon 

were also highly heterogeneous; therefore the gene was excluded from analysis. For the 

other regions EpiTYPER methylation levels and MCIp sequencing reads were significantly 
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positively correlated with Spearman rho coefficients from 0.57 to 0.82 (Supplementary Table 

2). While for all amplicons methylation levels in the WT samples were relatively stable over 

time, we confirmed a more or less gradual loss or gain in methylation for TG animals with 

increasing progression of tumor development (Figure 4-6 and Table 4-1).  

 

 

Figure 4-6 Carcinogenesis-induced DNA methylation changes in Igfbp6, Gsn, Unc5b, Pkp3, 
Elf3, and Cldn4 promoters.  Validation of gradual changes in DNA methylation by EpiTYPER 
MassARRAY for candidate promoter DMRs detected by MCIp-seq. Depicted is the average + SEM 
of median amplicon methylation for 2-3 individual animals per age group. Statistical analysis in Table 
4-1. 

 

Kruskal Wallis analyses confirmed significant changes in DNA methylation in the TG animals 

over time, whereas methylations levels in the WT groups did not significantly change (Table 

4-1). 

Table 4-1 Kruskal Wallis group-wise statistical analysis of methylation changes in selected 
promoter regions.  

Gene Igfbp6 Gsn Unc5b Pkp3 Elf3 Cldn4 

TG # 0.01 * 0.03 * 0.03 * 0.04 * 0.02 * 0.02 * 

WT # 0.18 ns 0.21 ns 0.07 ns 0.51 ns 0.86 ns 0.56 ns 

# reported are p-values of the Kruskal-Wallis analysis over the age groups in either TG or WT 

animals. 

* p< 0.05, ns: not significant. 
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4.1.3 Promoter methylation and functional impact on gene expression  

4.1.3.1 Biological validation of promoter methylation and gene expression differences  

We selected an additional set of ten TG and seven WT samples from the 20 and 24w age 

groups to estimate the biological reproducibility of promoter methylation levels and to confirm 

expression differences indicated from the microarray data. Variability of median methylation 

levels in WT samples was low for Igfbp6, Gsn and Unc5b, but deviating up to 30% around 

the group average for Pkp3, Elf3, and Cldn4 (Figure 4-7A). Nevertheless, we confirmed the 

DNA methylation levels measured at 20-24w in the discovery samples (marked in red) and 

detected significant methylation differences between TG and WT samples of approximately 

40% for all candidates regions, with the exception of Gsn for which the difference was only 

about 20% (Figure 4-7A). This lower difference in methylation levels for Gsn can be 

explained by the fact that Gsn methylation increased only in the 24w group during 

carcinogenesis, whereas methylation levels at 20 weeks were still in the range of the WT 

animals (Figure 4-6).  

When evaluating mRNA expression levels of the candidate genes, we detected a significant 

increase in tumor tissue in the range of 4-6 fold for Unc5b, Pkp3, Elf3, and Cldn4, and 20-

10,000-fold downregulation for Igfbp6 and Gsn. For Gsn, we investigated two transcript 

variants (v1 and v2/4) and only the variant v1, which displayed promoter hypermethylation, 

was downregulated in tumors (Figure 4-7B). 

A) 

 

B) 

 

Figure 4-7 Promoter methylation and expression levels of candidate regions in animals aged 
20-24w.  A) Median amplicon methylation levels determined by EpiTYPER MassARRAY as in Figure 
4-5. B) Gene expression levels relative to three reference genes (Hprt1, Tbp, Actb). Circles: tumors 
(TG); squares: mammary glands (WT). Red symbols indicate samples used for discovery of DMRs 
by MCIp-seq. For Elf3, RT-qPCR measurements were only conducted for the validation sample set 
due to insufficient RNA availability for the discovery set. Depicted are the individual samples and the 
mean ± SEM. Student’s t-test (two-sided), * p< 0.05, *** p< 0.001, **** p< 0.0001.  
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4.1.3.2 Correlation between DNA methylation and gene expression 

For four out of six of the investigated genes, we measured a significant inverse correlation 

between expression levels and promoter DNA methylation (Figure 4-8) with Spearman 

correlation coefficients in the range of -0.62 to -0.82. Correlation analysis of Unc5b did not 

indicate an influence of promoter methylation on expression levels. For Gsn the situation 

appeared to be different: all the TG animals (circles) had low expression levels irrespective 

of their methylation level (≈ 5%- 75%), whereas the region was unmethylated in WT animals, 

and the generally high expression levels of Gsn v1 varied up to 10-fold. This might indicate 

that expression of Gsn is regulated in WT animals by a transcription factor, which binds the 

unmethylated region and modulates expression levels. Absence of the respective factor in 

tumors would explain the low levels of Gsn expression and allow a gradual gain in promoter 

methylation during carcinogenesis. 

 

Figure 4-8 DNA methylation and gene expression levels are inversely correlated for candidate 
genes.  For Gsn, correlation was calculated for expression of transcript variant 1. Samples and 

symbols as in Figure 4-7. Spearman’s rank correlation, ** p< 0.01, *** p< 0.001, **** p< 0.0001 

 

4.1.3.3 Decitabine treatment of C3(1) cell lines 

Spearman correlation results supported a role of DNA methylation for regulation of 

expression of most of our candidate genes. In order to evaluate this relationship, we treated 

cell lines derived from C3(1) tumors (M6, M27H4) with Decitabine (Dac) and measured 

expression changes. The M6 cell line was chosen as it represented the late stages of tumor 

development in the C3(1) model and was highly methylated for Igfbp6 and Gsn (> 90%) and 
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weaker methylated for Unc5b (40%). Many of the hypomethylated candidates (Pkp3, Elf3, 

Cldn4) were completely unmethylated in the M6 cells and therefore were studied in the 

M27H4 cell line with basal methylation levels between 20% (Pkp3) and 50-60% (Elf3, Cldn4) 

(see Figure 4-9A and compare Figure 4-1). Dac treatment resulted in a decrease in 

methylation of the target regions in M27H4 cells by 5-15% and in M6 cells by 20-60%.  

Upon loss of methylation after Dac treatment we observed upregulation of all transcripts at 

variable levels except for Unc5b. This confirmed our previous observations (Figure 4-8) that 

expression levels of Unc5b were not dependent on promoter methylation.  

 

Figure 4-9 Promoter demethylation induces reexpression of candidate genes. A) Treatment of 
cells with 100nM (M6) and 1µM (M27H4) Dac decreased DNA methylation levels for candidate genes. 
Depicted are the average amplicon methylation levels with the mean ± SD of 2 independent 
experiments. B) Dac treatment induces reexpression of candidate genes in M6 and M27H4 cells. 
Depicted are expression levels relative to three reference genes (Hprt1, Tbp, Actb) as the mean ± 

SD of 2 independent experiments and thus data were not evaluated by statistical means. 

 

The low level of methylation for Pkp3 was probably the reason for the minor methylation 

changes upon Dac treament, but the change was sufficient to induce a 4-fold upregulation of 

the transcript (Figure 4-9B). Basal expression of Gsn v1 in M6 cells was below the detection 

limit of RT-qPCR, but upon Dac exposure Gsn v1 levels passed the detection threshold, 

while the other Gsn transcripts were unaffected and remained highly expressed. This 

suggested a role of DNA methylation in the regulation of this gene in the cell line, despite the 

fact that we could not observe significant correlation between expression levels and DNA 

methylation in tissue samples (Figure 4-8). Igfbp6, Elf3, and Cldn4 transcripts were 

upregulated ranging between 2-fold to more than 120-fold upon treatment with Dac. Taken 

together, these results suggested that promoter methylation in these genes contributes to 

the regulation of their expression.  
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4.1.4 Comparison of methylation profiles for C3(1) and human breast cancer  

So far, the C3(1) model was compared to human breast cancer only at the level of histology, 

gene- and miRNA expression [90, 92], but not for epigenetic modifications. We selected 

promoter regions as a set of candidate regions for interspecies comparison of DNA 

methylation, since they were found to have higher functional conservation in form of 

transcription factor binding between mouse and human tissues than other more distal 

regulatory elements [126]. We evaluated 450k data for human breast cancer samples 

published by ‘The Cancer Genome Atlas’ consortium (TCGA) [70]. From the genes with a 

DMR in the C3(1) model, we selected those genes with a known human homologue and 

chose the 4149 probes in the respective promoters of 355 genes, among which 133 were 

hypermethylated and 222 were hypomethylated in the mouse (for more details see Material 

& Methods chapter 3.9). From the sample set of 664 primary tumors and 96 normal control 

samples, we only investigated 215 tumors with known Pam50 classification to analyze the 

similarity of DNA methylation patterns between mouse and human breast cancer subtypes. 

A principal component analysis of tumor samples with all 4149 probes distinguished the 41 

basal-like breast cancer samples (red) from all other breast cancer subgroups (Figure 

4-10A).  
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Figure 4-10 TCGA breast cancer subtypes are 
distinguished by C3(1) DMRs.  A) PCA analysis 
of breast cancer subtypes from TCGA. PCA was 
performed with DNA methylation levels obtained 
from 450k data for 4149 probes corresponding to 
DMRs in promoters of the C3(1) mouse model of 
breast cancer. 215 primary tumor samples with 
known Pam50 classification according to [70] were 
analyzed. B) Hierarchical clustering (weighted 
average linkage) of the top 5% of probes that 
distinguish basal-like breast cancer from other 
subtypes. Heatmap depicts methylation levels from 
blue (0%) to yellow (100%) for 205 probes in 215 
tumor and 96 normal samples.  

B)  
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Since the 450k dataset covered the complete promoter regions (2kb upstream to 500bp 

downstream of the TSS with an average of 12 probes per gene), many CpG sites depicted 

similar methylation levels across all samples. Thus, for higher discriminatory power between 

the subtypes, we selected the top 5% probes that discriminated basal-like samples from the 

other subtypes. When including the normal control samples in a hierarchical clustering 

analysis, the basal-like group was distinct from other breast cancer subtypes and clustered 

close to the control samples (Figure 4-10B). The top 5% of probes were located in a set of 

85 genes. We compared this gene list for overlap with published gene sets available in the 

Molecular Signatures Database collection (MSigDB v5.1). We found overlaps with several 

gene sets from the C2 collection of curated gene sets (GCP: chemical and genetic 

perturbations, 3396 gene sets). The top 15 most significantly enriched sets are listed in 

Table 4-2. These sets included high or intermediate CpG density promoters including those 

that were marked by H3K4me3 or H3K27me3 in ES cells [127], but also gene sets linked to 

breast development [128] and breast cancer, in particular the basal-like subtype [129].  

  



 

 
 

Table 4-2 Gene set enrichment analysis for genes with promoter DMRs among the top 5% probes that distinguish basal-like breast cancer. 

 Geneset name Description Ratio * p-value Genes 

1 
MIKKELSEN_ES_ICP_WITH
_H3K4ME3 

Genes with intermediate-CpG-density (ICP) promoters bearing 
histone H3 K4 trimethylation mark (H3K4me3) in embryonic 
stem cells (ES). 

0.0167 4.41E-09 
KRT17, TRIM29, TRIM2, PTGES, C1QTNF1, ALDOC, NME5, 

ZP3, ASPRV1, GDF5, HNF1A, CPSF4L  

2 
SMID_BREAST_CANCER_ 
BASAL_UP 

Genes upregulated in basal subtype of breast cancer samples. 0.017 1.75E-08 
KRT17, TRIM29, TRIM2, CSPG4, SCHIP1, KRT4, DZIP1, 

MFAP2, HSPB2, SPIB, COL11A2  

3 ISSAEVA_MLL2_TARGETS 
Genes downregulated in HeLa cells upon knockdown of MLL2 
[GeneID=8085] by RNAi. 

0.0806 8.43E-08 KRT17, TRIM29, CSPG4, SCHIP1, GSN  

4 
KOINUMA_TARGETS_OF_ 
SMAD2_OR_SMAD3 

Genes with promoters occupied by SMAD2 or SMAD3 
[GeneID=4087, 4088] in HaCaT cells (keratinocyte) according 
to a ChIP-chip analysis. 

0.0133 1.96E-07 
KRT17, PTGES, KRT4, BCAT1, PLEC, SAT1, DKK3, CLU, 

KRT8, TNFRSF1A, HOXD11  

5 
HATADA_METHYLATED_IN
_LUNG_CANCER_UP 

Genes with hypermethylated DNA in lung cancer samples. 0.0205 4.26E-07 
C1QTNF1, ALDOC, BCAT1, HPN, BCOR, GFPT2, JPH2, 

ST6GAL2  

6 
PURBEY_TARGETS_OF_ 
CTBP1_NOT_SATB1_DN 

Genes downregulated in HEK-293 cells (fibroblast) upon 
knockdown of CTBP1 but not of SATB1 [GeneID=1487, 6304] 
by RNAi. 

0.0179 1.20E-06 NME5, KRT4, DZIP1, PLEC, SAT1, DKK3, TBX1, SLC5A1  

7 LEI_MYB_TARGETS 
Myb-regulated genes in MCF7 (breast cancer) and lung 
epithelial cell lines overexpressing MYBL2, MYBL1 or MYB 
[GeneID=4605;4603;4602]. 

0.022 1.47E-06 KRT17, PLEC, SAT1, CLU, KRT8, SLC16A3, NUPR1  

8 
NIKOLSKY_BREAST_ 
CANCER_17Q21_Q25_AMP
LICON 

Genes within amplicon 17q21-q25 identified in a copy number 
alterations study of 191 breast tumor samples. 

0.0209 2.07E-06 
C1QTNF1, SLC16A3, HOXB3, HOXB8, HOXB1, HOXB9, 

UTS2R  

9 
MCBRYAN_PUBERTAL_ 
BREAST_3_4WK_UP 

Genes upregulated during pubertal mammary gland 
development between weeks 3 and 4. 

0.028 2.14E-06 ALDOC, CSPG4, GSN, CLU, KRT8, TNFRSF12A  

10 
MIKKELSEN_NPC_HCP_ 
WITH_H3K27ME3 

Genes with high-CpG-density promoters (HCP) bearing histone 
H3 trimethylation mark at K27 (H3K27me3) in neural progenitor 
cells (NPC). 

0.0205 2.33E-06 
HOXD11, HOXB3, HOXB8, HOXB1, HOXB9, PRKCZ, 
GALNT13  

11 
BENPORATH_ES_WITH_ 
H3K27ME3 

Set 'H3K27 bound': genes possessing the trimethylated H3K27 
(H3K27me3) mark in their promoters in human embryonic stem 
cells, as identified by ChIP on chip. 

0.0098 3.81E-06 
GSN, PLEC, TBX1, HOXB3, HOXB8, HOXB1, RARA, INA, 

MAB21L1, GBX2, HIC1  

12 
SMID_BREAST_CANCER_ 
LUMINAL_B_DN 

Genes downregulated in the luminal B subtype of breast 
cancer. 

0.0142 6.54E-06 
KRT17, TRIM29, TRIM2, DZIP1, MFAP2, HSPB2, SPIB, 
SAT1  

13 
SMIRNOV_CIRCULATING_ 
ENDOTHELIOCYTES_IN_ 
CANCER_UP 

Genes upregulated in circulating endothelial cells (CEC) from 
cancer patients compared to those from healthy donors. 

0.0316 8.80E-06 PTGES, BCAT1, DKK3, CLU, RARA  

14 
OXFORD_RALA_OR_RALB_
TARGETS_DN 

Genes downregulated after knockdown of RALA or RALB 
[GeneiD=5898;5899], which were also differentially expressed 
in bladder cancer compared to normal bladder urothelium 
tissue. 

0.125 1.00E-05 KRT17, CLU, SLC16A3  

15 
LIM_MAMMARY_STEM_ 
CELL_DN 

Genes consistently downregulated in mammary stem cells both 
in mouse and human species. 

0.0164 1.02E-05 KRT8, HPN, SLC5A1, PRKCZ, PSME1, RORC, FAM110A  
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Clustering according to the mouse DMRs revealed that the basal-like samples are different 

from other subtypes and similar to normal breast tissue. Since the DMRs in the mouse 

covered only part of the promoter region we extended the analysis to the full 2.5kb regions 

and annotated the average MCIp read density in the 20 and 24w animals (Figure 4-11). 

Hierarchical clustering of the promoter reads still separated the TG and WT animals into two 

clusters. For some promoter regions the MCIp-seq coverage in the animals was low, which 

most likely indicated that the DMR was weak or only restricted to a narrow part of the 

promoter. However, the analysis still showed a higher prevalence of hypomethylated regions 

in the tumors, which resembled the pattern of hypomethylation in basal-like breast cancer 

[70]. According to the read coverage, the complete promoter regions were similar to the 

pattern of the DMRs. 

 

Figure 4-11 Hierarchical clustering of 
differentially methylated promoter 
regions according to MCIp-seq 
coverage.  Each row depicts the MCIp-
seq coverage in tags per bp per region for 
an individual promoter according to a 
colorcode from blue to yellow. The 
columns depict the TG (red) and WT (blue) 
samples. Hierarchical clustering was 
performed using average linkage 
according to Spearman’s rank correlation. 

 

For a further validation of mouse DMRs in human breast cancer, we first investigated the 

degree of differential methylation at the 355 genes for the four molecular subtypes compared 

to normal controls (chapter 3.9.1). The normal-like subtype only contained five samples and 

thus was excluded from the comparison. The highest number of significant DMRs (p< 0.01) 

among the 355 genes was detected for the luminal subtypes with 261 and 240 DMRs for 
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type and type B respectively (Figure 4-12). In contrast, for the basal-like samples only 50% 

of the genes were differentially methylated and even less in the HER2 subtype. Since 

methylation levels for basal-like samples were described to be similar to normal breast 

tissue, which we also observed in the hierarchical cluster analysis, this explained the 

relatively low number of DMRs for this subtype. The HER2 group only consisted of 13 

patients, which might account for the low number of DMRs in this subgroup. Overall, about 

25% of the evaluated genes displayed concordant loss or gain of methylation between C3(1) 

tumors and all human breast cancer subtypes, with an equal proportion of hyper- and 

hypomethylated regions. This suggested low, but evident similarity between the mouse 

model and human breast cancer at the level of DNA methylation. About the same number of 

genes also had a similar methylation status among all subtypes, but did not reflect the 

methylation change detected in the C3(1) samples. For the remainder of the genes the 

methylation signature was variable between the subtypes. However, an assignment of the 

C3(1) model to a specific molecular subtype was not possible. The apparent high degree of 

similarity in terms of methylation levels of the basal-like subtype and normal controls 

introduced a bias when analyzing human DMRs, as regions might be variable between the 

subtypes, but not between basal-like tumors and normal controls. As the frequency of DMRs 

is already much higher in the luminal subtypes, the likelihood to observe a consistent 

methylation change between a human subtype and the C3(1) model would be higher for the 

luminal than for the basal-like subgroups. Thus, subtype assignment would be more reliable 

when based on quantitative methylation levels for both the mouse model and the human 

samples to allow a direct comparison. 

 
Figure 4-12 Promoter DMRs in human 
breast cancer subtypes.  Depicted is the 
respective number of DMRs for the 355 genes 
with mouse promoter DMRs in the different 
molecular breast cancer subgroups. 
Hypermethylated regions are in red, 
hypomethylated regions in blue and in grey 
regions with no significant methylation change. 
n= number of samples in subtype. 

This figure was prepared by Dr. Yassen 
Assenov. 
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4.1.5 Characterization of recurrent DMRs 

In our analysis so far, we characterized the DMRs without considerations for the kinetics or 

direction of methylation changes. Thus, for a more detailed evaluation we separated the 

DMRs into hyper- and hypomethylated regions. Similar to our previous observation, the 

number of DMRs increased with tumor progression over time. With increasing age, we 

observed more hypomethylated than hypermethylated regions (Figure 4-13A). While the 

number of unique DMRs with gain or loss of DNA methylation was relatively similar per age 

group, recurrently hypomethylated regions were twice as frequent as hypermethylated ones, 

especially in age groups 16-24w and when combining all age groups (Figure 4-13B). 

Currently we cannot exclude that the unique DMRs represent technical noise due to variable 

enrichment by MCIp. 

 

Figure 4-13 Frequency of hyper- and hypomethylated regions. Frequency of DMRs 

is depicted per age groups A) and in total B). 

 

4.1.5.1Recurrent DMRs form specific subgroups 

In order to subgroup the recurrent DMRs further, we defined a group of i) progressive 

DMRs that occur in all age groups up to 24 weeks from the time point of first occurrence, 

ii) continuous DMRs with occurrence in two or more neighboring age groups except for the 

24w group, and iii) discontinuous DMRs, for which the sequential occurrence of DMRs was 

interrupted (Figure 4-14A). Again, the frequency of DMRs per subgroup was different for 

hyper- and hypomethylated regions. Especially the progressive DMRs were more frequently 

hypomethylated, contributing by almost 50% to the recurrent DMRs (Figure 4-14B). 
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Figure 4-14 Characterization of recurrent DMRs. A) Scheme for categorizing recurrent DMRs 
according to their occurrence in neighboring age groups into progressive, continuous and 
discontinuous DMRs. B) Distribution frequency of recurrent DMRs among hyper- and 
hypomethylated regions. 

 

In addition, when comparing the MCIp-seq coverage at the three recurrent DMR types 

between the different age groups, the largest changes occurred in the progressive DMRs of 

TG animals (Figure 4-15A). In this DMR subtype, the loss and gain of methylation 

progressed gradually in even steps from one age group to the next and the differences in 

enrichment were most prominent. In contrast, in the WT animals, we observed a gradual 

age-related drop in MCIp-seq coverage mainly for the continuous and discontinuous DMRs, 

whereas the profiles for the progressive DMRs were similar in all age groups (Figure 4-15B). 

This development of the DMRs during tumorigenesis was also observed for the individual 

animals of the different age groups in the progressive DMRs (Figure 4-15C). Thus, we 

focused further analyses on the progressive subgroup of the recurrent DMRs.  
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Figure 4-15 Sequencing coverage of recurrent DMRs.  A,B) Average MCIp tag coverage (per bp 
per DMR) of the different age groups around the center of different recurrent DMR subgroups for TG 
animals A) and WT animals B). Depicted is the average coverage of three animals in the age group. 
C) MCIp coverage of progressive DMRs for the individual animals of the different age groups. Tag 
density was normalized according to the mean and the variance of each individual DMR and is 
depicted in a color coded gradient from blue to yellow. 

 

4.1.5.2 Relative distribution of DMRs in the context of genomic features 

In order to evaluate potential functions for the DMRs, we annotated the regions according to 

their closest genomic feature using HOMER. The distribution of hyper- and hypomethylated 

unique DMRs was similar (Figure 4-16A). Only 3% of the roughly 30.000 regions were 

located in TSS-associated features (CpG island, promoter, 5’ untranslated region (5’UTR)), 

while 41-48% were located in exons and introns. The remainder of regions was distributed 



4.Results 

70 
 

30%

24%

26%
12%

3%

1%

2%

2%
0%4%

Hypo progressive

Intergenic

Exon

Intron

Repeats

Other

3UTR

CpG-Island

Promoter

5UTR

18%

19%

31%

7%
3% 2%

9%

9%

2%
20%

Hyper progressive

Intergenic

Exon

Intron

Repeats

Other

3UTR

CpG-Island

Promoter

5UTR

Intergenic

Exon

Intron

Repeats

Other

3’ UTR

TSS associated

features:

CpG Islands

Promoter

5’ UTR

Hypermethylation (1462 DMRs)

Hypomethylation (4397 DMRs)

20%

14%

34%

24%
3%

2%

1%

2% 0%
3%

Hyper unique

Intergenic

Exon

Intron

Repeats

Other

3UTR

CpG-Island

Promoter

5UTR

22%

15%

26%

29% 3%

2%

1%

2% 0%
3%

Hypo Unique

Intergenic

Exon

Intron

Repeats

Other

3UTR

CpG-Island

Promoter

5UTR

Hypomethylation (29832 DMRs)

Hypermethylation (29973 DMRs)

between repeat elements (1/4 to 1/3) and intergenic regions (1/5). This highly similar 

distribution and lack of enrichment for any feature further hints that the unique DMRs might 

represent background noise.  

For the recurrent DMRs, we focused on the progressive subgroup and observed almost 

three times more hypomethylated regions than hypermethylated (Figure 4-16B). Again, 

about half of the differential hyper- and hypomethylated regions were located in exons and 

introns. The largest difference was seen for regions in TSS-associated features: 20% of the 

hypermethylated regions, but only 4% of the hypomethylated regions were annotated to this 

feature, consistent with a gradual gain in methylation in gene promoters during 

carcinogenesis. In contrast to the unique DMRs, only few of the progressive DMRs (7-12%) 

mapped to repetitive sequences. Almost one third of the hypomethylated regions were 

located in intergenic areas. The biological function of these intergenic regions is less well 

defined, but distal regulatory elements such as enhancers can be situated in this genomic 

context. Therefore, limiting the analysis of DMRs to promoter regions is likely to miss 

important regions.  

A) Unique DMRs  

 

B) Progressive DMRs 

 

Figure 4-16 Genomic distribution of hyper- and hypomethylated regions. A) DMRs with unique 
occurrence in any age group. B) Recurrent DMRs with progressive occurrence in all age groups up to 
24w of age. 

 

Despite the fact that promoter DMRs only cover part of the changes that occur during 

tumorigenesis, we wanted to investigate some potential functions of the respective genes 

and performed a gene set enrichment analysis using the HOMER annotation for the closest 

gene of the promoter and 5’ UTR features. While the hypermethylated genes were enriched 

for targets of the PRC2 complex and/or marked by H3K27me3 in embryonic stem (ES) cells 
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(LRRC3B, ESAM, TCEA3, HOXD1, GNAS, CDH11, NRG1, EPHA5, GABRA2, POU3F4, 

CDH7, DOK6, HES7, ARL5C, ELAVL2, C1QL1, GABRG3, PRRT1, GSN, PRKCB), the 

hypomethylated genes displayed the active H3K4me3 mark at promoters in ES cells 

(KRT17, ZMYND8, HNF1A, OPLAH, PKP3, C1QTNF1, GDF5, PADI4, ZNF750, ADAM18, 

CPSF4L, MYBPC2, MCTS1, TNK1). Furthermore, we observed opposite patterns for 

differentially expressed genes in mammary stem cells (MaSCs). MaSC-specific upregulated 

genes were found to be hypermethylated in tumors of the C3(1) model (BCOR, GSN, NRG1, 

FAM184A, LRRN1, PCDH7, SCHIP1, CSPG4, SORBS1, SLC6A8, TMEM47, TSPYL2, 

DKK3) and genes downregulated in MaSCs were enriched in hypomethylated promoters 

(OPLAH, ZNF750, CLDN7, C1orf210, LYPD3, NIPSNAP3A). This suggested that the 

differentiation of MaSCs might be prone to epigenetic deregulation during tumorigenesis in 

the C3(1) model. 

4.1.6  Summary and outlook 

In conclusion, we could validate the DNA methylation changes that we identified with our 

genome-wide approach using MCIp-seq. We further confirmed a link between DNA 

methylation levels at the promoter and gene expression for five selected candidate genes. 

Comparison of promoter DMRs from the C3(1) model with TCGA data of human breast 

cancer samples revealed similarity between mouse and human DNA methylation across 

different molecular breast cancer subtypes. Moreover, recurrent DMRs were separated into 

three distinct subgroups with the progressive DMRs demonstrating the largest differences in 

methylation levels and were almost three times more frequent in hypomethylated regions 

than in hypermethylated. Gene set enrichment analyses pointed to antagonistic functions of 

genes with progressively hyper- and hypomethylated promoter regions.  

Beside exonic and intronic regions, a large proportion of the progressive DMRs were 

localized in intergenic regions. In order to better characterize these intergenic DMRs, in 

particular to identify possible enhancer regions, data for histone marks at these regions are 

required. It is known that enhancers are highly tissue-specific [35, 121]. Therefore, patterns 

of enhancer-specific histone marks have to be acquired for the tissue of interest. Two 

previous studies described changes in the chromatin landscape between mammary 

epithelial cells of virgin and pregnant mice using ChIP-seq for histone marks H3K4me2, 

H3K36me3, and H3K27me3 [122, 130], later supplemented by data for H3K4me3 [131]. 

Since chromatin changes during tumorigenesis are likely to be distinct from those occurring 

during pregnancy and the histone marks provided in these studies were only of limited 

suitability to study enhancers, we generated independent ChIP-seq data for the C3(1) 

mouse model. 
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4.2 Characterization of the chromatin landscape in the C3(1) model 

Our analysis of genome-wide changes in DNA methylation in the C3(1) mouse model 

revealed that the majority of DMRs occurred in exons, introns or intergenic regions. In order 

to better understand these epigenetic changes and to characterize potential enhancer 

regions, we generated a map of chromatin states from ChIP-seq data for histone 

modifications. 

4.2.1 ChIP-seq of histone modifications in the C3(1) mouse model 

For the creation of a chromatin map of histone marks, we evaluated three tumor samples 

from the age group of 20-24w. For comparison, we enriched mammary epithelial cells 

(MECs) by enzymatic tissue dissociation from a pool of mammary glands of seven age-

matched WT animals. We selected mammary epithelial cells, since the SV40T transgene is 

expressed in this cell type, and tumor formation is correlated with transgene expression [85, 

86]. We analyzed by ChIP-seq H3K4me3, H3K4me1, and H3K27ac as histone marks of 

active chromatin and H3K27me3 as a repressive mark. Alignment and bioinformatic quality 

control of sequencing reads was performed as for MCIp-seq, omitting the saturation 

analysis. Depending on the histone marks, we obtained around 17-30 Mio reads per sample 

(Supplementary Table 5).  

Initial examination of candidate regions revealed comparable enrichment of the histone 

marks for the three tumor samples. We also noticed that gene expression differences for 

selected genes were reflected in chromatin mark differences between tumors and WT 

epithelial cells, as depicted exemplary for Foxc1 or Mybl2 (Figure 4-17). These two genes 

are included in the Pam50 classification of breast cancers subtypes and show high 

expression in human basal-like samples [132]. Expression levels for these genes were also 

elevated in tumors of the C3(1) model. Consistently, we observed higher enrichment of the 

active marks H3K4me3 and H3K27ac and loss of repressive H3K27me3 in tumors 

compared to MECs. For Foxc1, the active histone marks were not only limited to the direct 

proximity of the TSS, but even spanned several kb around the complete transcript. This 

initial plausibility check of our data supported the validity of our ChIP-seq data. 
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Figure 4-17 Genome browser tracks for ChIP-seq data of histone modifications in three tumors 
and one MEC pool for regions of Foxc1 and Mybl2. Color code for histone modifications is as 

follows: H3K4me3, blue; H3K27ac, red; H3K4me1, light blue; H3K27me3, green.  

 

4.2.2 A hidden Markov model defines chromatin states in the C3(1) model 

The functional units in the genome are generally marked by different chromatin states that 

consist of combinations of various marks. We applied the ChromHMM algorithm to train a 

hidden Markov model of such states on our ChIP-seq data [37] (chapter 3.11.5). With the 

four analyzed histone modifications the maximum number of possible combinations in a 

model was 16, but not all theoretically possible combinations actually occur in a biological 

setting or are relevant. Consequently, the most appropriate model would include the minimal 

number necessary to define all functional states, but at the same time ignoring redundant 

states. Therefore, we evaluated models with different numbers of states and compared the 

correlation of the individual states to the 16-state model with the aim to define the optimal 

number of states in the model with a low number of states with correlations < 0.9. We 

selected the 11-state model, since we observed a decrease in the correlations of individual 

states with the 16-state model for the 10-state model and all other models with lower 

numbers of states (Figure 4-18). 

 
Figure 4-18 Correlation of individual 
chromatin states in models with different 
numbers of states to the 16-state model. 
For each model, the number of states from the 
16-state model is depicted that have a 
correlation < 0.9 or less.  
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The 11 different states of the model were classified according to known biological functions 

of histone mark combinations as well as the association of particular states with genomic 

features (Figure 4-19). For example, H3K27me3 occupancy is known to mark a repressive 

chromatin state. By annotating the respective regions with HOMER for genomic context we 

discriminated a genic and an intergenic repressed state (blue states). Following a similar 

approach, we classified poised/inactive (dark pink) and active promoter states (red). 

Moreover, we examined enrichment of the states at particular genomic features such as 

TSSs, CGIs or published enhancer regions in MECs and tumor samples (see Figure 4-20). 

This enabled the allocation of enhancer states, in particular the enhancer state marked in 

yellow, for which the enrichment patterns varied between tissue types. While for MECs this 

state associated with promoters and enhancer regions, in tumors the strongest enrichment 

was found at known enhancers. Since this state was also defined via enrichment of 

H3K4me1, which is more often associated with enhancers than with promoters, the yellow 

state was classified as an enhancer rather than promoter state. The transcription/low signal 

state (green) covered only few regions weakly associating with H3K27ac and H3K4me1 

(Figure 4-19). It enriched strongest for known H3K36me3 peaks (defined by ChIP-seq in 

MECs [122]), therefore association with transcription is likely. However, since enrichment for 

the green state was overall quite weak (Figure 4-20), and only few regions of this state had 

coverage for any of our chipped histone marks, it was also assigned as low signal.  

 

 
Figure 4-19 A combined hidden Markov model 
for 11 chromatin states. The model was 
determined by ChromHMM and functional 
interpretation of chromatin states is depicted by a 
color code. Each row represents an individual 
chromatin state of the model with its assigned 
functional category and the frequency (%) of 
regions in that state, which are occupied by the 
respective histone modification.  
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When comparing the chromatin landscape of MECs and tumors, we observed in tumors a 

transition from active to inactive/poised promoter states and loss of the strong enhancer 

state at CGIs, TSS, and CAGE-seq peaks (Figure 4-20). States that overlapped with genes 

and the H3K36me3 peaks were consistent between MECs and tumors.  

 

 

Figure 4-20 Enrichment of chromatin states at genomic features. Enrichment was calculated for 
MECs A) and the average of three tumor samples B). Numbers represent the individual enrichment 
score of the chromatin state for the respective genomic feature or regions defined by other studies 
such as CAGE-seq peaks (FANTOM 5 [120]), enhancers defined by CAGE-seq (FANTOM 5 [120]), 
enhancers defined by histone modifications (Shen et al. [121]) or H3K36me3 peaks in MECs (Lemay 
et al. [122]). A color gradient from white (low) to blue (high) represents the intensity of chromatin 
state enrichment for each individual feature. 

 

4.2.3  Chromatin state enrichment at progressive DMRsFor a more 

comprehensive description of the epigenetic differences between tumors and MECs, we 

analyzed the enrichment of chromatin states at progressive DMRs (Figure 4-21). Regions 

with progressive hypermethylation were strongest enriched for inactive promoter marks in 

both MECs and tumors. Enrichment for enhancer states was reduced in tumors compared to 

MECs at regions that gained methylation, suggesting methylation-mediated silencing of 

these active regions during tumorigenesis. Although this analysis only calculates enrichment 

and does not investigate which exact genomic positions are affected, this might explain the 

loss of enhancer state enrichment at promoters and TSS for tumors (Figure 4-20). In 

contrast, the association of hypomethylated regions with strong enhancer states increased 

2-3 fold in tumors compared to MECs. This was also true for the association with active and 

Active Promoter 111 81 26 70 5.8 0.4 1.7 0.3

Weak Promoter 8.9 7.8 14 8.3 7.5 3.2 2.1 0.8

Weak Promoter (poised) 4.7 7.9 14 6.1 4.0 1.3 1.5 0.9

Inactive/poised Promoter 48 23 16 19 6.1 2.3 1.6 0.2

Enhancer (CAGE/strong) 25 15 15 18 16 4.1 2.0 0.4

Enhancer (weak-1) 0.1 0.6 0.9 1.4 4.2 7.7 2.0 0.9

Enhancer (weak-2) 0.2 0.8 1.2 2.7 11 9.1 1.7 1.0

Repressed (intergenic) 0.1 0.6 0.9 0.5 0.7 0.9 0.9 0.2

Repressed (genic) 1.0 1.7 2.5 1.4 1.5 2.2 1.1 0.2

Transcription/low signal 0.2 0.4 0.8 1.0 1.9 2.8 1.7 2.3

Low signal 0.0 0.3 0.4 0.2 0.4 0.3 0.8 1.0

Active Promoter 70 48 23 43 8.2 1.2 1.8 0.4

Weak Promoter 4.2 5.2 12 6.2 7.3 3.9 2.1 0.9

Weak Promoter (poised) 4.7 7.0 17 5.6 4.7 1.5 1.8 0.7

Inactive/poised Promoter 76 31 17 26 6.5 2.2 1.6 0.1

Enhancer (CAGE/strong) 4.5 5.2 6.4 7.6 14 7.0 1.8 0.5

Enhancer (weak-1) 0.2 1.0 1.4 1.6 4.5 6.7 1.7 0.7

Enhancer (weak-2) 0.1 1.0 1.5 2.0 6.2 6.2 1.5 0.9

Repressed (intergenic) 0.1 0.6 1.0 0.6 0.8 0.9 1.0 0.1

Repressed (genic) 1.7 1.8 2.8 1.7 1.9 2.1 1.1 0.1

Transcription/low signal 0.2 0.5 1.2 1.1 2.1 3.2 1.5 2.0

Low signal 0.0 0.3 0.4 0.3 0.5 0.5 0.9 1.0

C
p

G
 i
s
la

n
d

s

T
S

S
 (

R
e
fs

e
q

)

T
S

S
  

2
k
b

C
A

G
E

-s
e
q

(F
a
n

to
m

5
)

E
n

h
a
n

c
e
r 

(F
a
n

to
m

5
)

E
n

h
a
n

c
e
r 

(S
h

e
n

2
0
1
2
)

G
e
n

e
s
 (

R
e
fs

e
q

)

H
3
K

3
6
m

e
3
 p

e
a
k
s

C
p

G
 i
s
la

n
d

s

T
S

S
 (

R
e
fs

e
q

)

T
S

S
  

2
k
b

C
A

G
E

-s
e
q

(F
a
n

to
m

5
)

E
n

h
a
n

c
e
r 

(F
a
n

to
m

5
)

G
e
n

e
s
 (

R
e
fs

e
q

)

H
3
K

3
6
m

e
3
 p

e
a
k
s

E
n

h
a
n

c
e
r 

(S
h

e
n

2
0
1
2
)

MECs: Tumors:

A) B)



4.Results 

77 
 

weak promoter states. Overall, recurrent loss of DNA methylation was accompanied by a 

gain in active chromatin states. 

 

 

Figure 4-21 Enrichment of chromatin states at progressive DMRs. Enrichment of states was 
calculated for hyper- and hypomethylated regions in MECs and three tumors and is displayed as 
absolute enrichment scores A) or relative to the enrichment score of MECs B). Color gradient from 
white (low) to blue (high) represents the intensity of chromatin state enrichment separately for MECs 
and tumors. 

 

In order to compare changes in DNA methylation and chromatin states during tumorigenesis 

in more detail, we focused on regions with MEC- or tumor-specific chromatin states. MCIp-
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observed hypomethylation with tumor progression, which was even more pronounced than 

gain in methylation at MEC-specific enhancers and inactive promoters.  

 

Figure 4-22 MCIp-sequencing coverage at MEC- or tumor-specific chromatin states. Depicted is 
the average of the MCIp-seq coverage (per bp per peak) for samples at active, weak and inactive 
promoters, as well as for strong enhancer states. Chromatin states are separated in MEC- (left) and 
tumor-specific states (right). States common in both sample types were omitted. Methylation coverage 
at specific age groups is depicted in separate graphs for WT (yellow to red lines) and TG animals 
(grey to blue lines).  

 

4.2.4 Functional characterization of tissue-specific chromatin states  

4.2.4.1 Association of chromatin states with gene expression 

In order to further characterize the interaction of chromatin and DNA methylation changes in 

the regulation of gene expression during carcinogenesis in the C3(1) model, we focused on 
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summary of the degree of overlap between tissue-specific chromatin states and progressive 

DMRs is listed in Table 4-3.  

 

Table 4-3 Tissue-specific chromatin states overlapping with DMRs 

Chromatin state 

# of MEC-specific states 

overlapping with 

hypermethylated regions 

# of tumor-specific states 

overlapping with 

hypomethylated regions 

Active promoter 32 365 

Weak promoter 197 45 

Inactive/poised promoter 197 59 

Enhancer strong 101 441 

 

We identified 365 hypomethylated regions that overlapped with tumor-specific active 

promoter states. Surprisingly, only a minor fraction of these promoter states was actually 

annotated as promoter or a TSS-associated feature by HOMER. Instead, almost 75% of 

these regions were annotated as exons, introns or intergenic regions, similar to the pattern 

we observed when examining all progressively hypomethylated regions (Figure 4-23A). This 

might be due to the fact that the DMRs identified with MCIp are biased by their requirements 

of CpG density and methylation degree. Therefore, we might have missed DMRs in the 

promoter context and instead detected neighboring DMRs located closer to an exon or 

intron. Since the chromatin states often covered larger regions than the relatively narrow 

MCIp peaks, promoter regions might be better covered by the chromatin state than by the 

MCIp signals. This is exemplary depicted for DMRs associated with Krt8 and Col7a1, which 

are upregulated in prepubertal breast (Figure 4-23B, C). Krt8 is hypomethylated at a 

promoter- and an intron-associated DMR ≈2.3kb downstream of the TSS, both covered by 

the active promoter chromatin state. Col7a1 only displayed hypomethylation in an exonic 

region, although the DMR is only about 500bp downstream of the TSS and also is covered 

by an active promoter state. In addition, promoter states in intergenic regions might hint 

towards lncRNA promoters, which are not annotated so far. 
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A) 
Figure 4-23 Tumor-specific active 
promoter states.  A) Genomic distribution of 
progressively hypomethylated regions 
overlapping with a tumor-specific active 
promoter state. Annotation of regions 
according to HOMER. B, C) Tumor-specific 
active promoter states overlap with 
hypomethylated regions for Krt8 (B) and 
Col7a1 (C). Color code for chromatin states 
as in Figure 4-19. MCIp-seq reads are 
depicted as average of three animals per age 
group in tumors (red) and normal mammary 
glands (blue). Black boxes mark DMRs while 
RefSeq genes are depicted in blue. Overlap 
between tissue-specific chromatin states and 
DMRs is emphasized by dotted lines. 

B)  

C) 

 

Annotating the respective regions according to the closest gene with HOMER allowed us to 

find common functions for these genes by performing GSEA (Table 4-4). We found genes 

enriched in prepubertal mammary gland development or upregulated in ERBB2 tumors (e.g. 

Cln3, Cldn7, Krt8), as well as genes that could be either upregulated in MaSCs, such as 

Bmp7, Wif1, and Krt14 or downregulated in MaSCs such as Krt8, Krt18 or Cldn8. In addition 

genes were enriched that were upregulated after overexpression of TRP53 or TRP63 in 

human mammary epithelial cells (HMEC), such as Egr2, Smad6, and Wnt7b. Since the 

SV40T transgene is known to inactivate p53 and Rb1, we would have rather expected to find 

enrichment of upregulated genes after knockdown of Tp53. However, when SV40T binds to 
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p53 it stabilizes the protein and prevents degradation [133]. This could mimic overexpression 

of p53. Furthermore, several genes were upregulated in preneoplastic stages and showed 

continuously high expression in breast tumors, like Cldn3, Cldn7, Spint 1 or Vdr. 

 

Table 4-4 Gene set enrichment analysis of hypomethylated tumor-specific target genes with 
active promoter state 

 Gene set name (# of overlaps) * Description ratio P-value 

1 
MCBRYAN_PUBERTAL_BREAST_ 
4_5WK_UP (24) 

Genes upregulated during pubertal mammary gland 
development between week 4 and 5. 

0.089 5.68E-22 

2 
MEISSNER_BRAIN_HCP_WITH_ 
H3K4ME3_AND_H3K27ME3 (38) 

Genes with high-CpG-density promoters (HCP) bearing 
histone H3 dimethylation at K4 (H3K4me2) and 
trimethylation at K27 (H3K27me3) in brain. 

0.036 4.63E-20 

3 
LANDIS_ERBB2_BREAST_ 
TUMORS_324_UP (17) 

Upregulated genes from the 324 genes identified by two 
analytical methods as changed in the mammary tumors 
induced by transgenic expression of ERBB2 
[GeneID=2064]. 

0.113 9.80E-18 

4 
GRAESSMANN_APOPTOSIS_BY_ 
DOXORUBICIN_DN (44) 

Genes downregulated in ME-A cells (breast cancer) 
undergoing apoptosis in response to doxorubicin 
[PubChem=31703]. 

0.025 3.63E-17 

5 
WONG_ADULT_TISSUE_STEM_ 
MODULE (28) 

The 'adult tissue stem' module: genes coordinately 
upregulated in a compendium of adult tissue stem cells. 

0.039 5.82E-16 

6 
KOINUMA_TARGETS_OF_SMAD2_ 
OR_SMAD3 (29) 

Genes with promoters occupied by SMAD2 or SMAD3 
[GeneID=4087, 4088] in HaCaT cells (keratinocyte) 
according to a ChIP-chip analysis. 

0.035 2.16E-15 

7 CUI_TCF21_TARGETS_2_DN (27) 
All significantly downregulated genes in kidney glomeruli 
isolated from TCF21 [Gene ID=6943] knockout mice. 

0.033 1.37E-13 

8 
GROSS_HYPOXIA_VIA_ELK3_AND 
_HIF1A_UP (13) 

Genes upregulated in SEND cells (skin endothelium) at 
hypoxia after knockdown of ELK3 [GeneID=2004] and 
HIF1A [GeneID=3091] by RNAi. 

0.092 1.19E-12 

9 PEREZ_TP63_TARGETS (18) 
Genes upregulated in the HMEC cells (primary mammary 
epithelium) upon expression of the transcriptionally active 
isoform of TP63 [GeneID=8626] off adenoviral vector. 

0.051 1.40E-12 

10 
DACOSTA_UV_RESPONSE_VIA_ 
ERCC3_DN (26) 

Genes downregulated in fibroblasts expressing mutant 
forms of ERCC3 [GeneID=2071] after UV irradiation. 

0.030 1.81E-12 

11 
LANDIS_BREAST_CANCER_ 
PROGRESSION_UP (9) 

Genes upregulated in preneoplastic mammary tissues and 
whose expression is maintained in tumors. 

0.205 2.09E-12 

12 PEREZ_TP53_TARGETS (30) 
Genes upregulated in the HMEC cells (primary mammary 
epithelium) upon expression of TP53 [GeneID=7157] off 
adenoviral vector. 

0.026 2.60E-12 

13 
LIM_MAMMARY_STEM_CELL_DN 
(19) 

Genes consistently downregulated in mammary stem cells 
both in mouse and human species. 

0.044 3.36E-12 

14 
LIM_MAMMARY_STEM_CELL_UP 
(20) 

Genes consistently upregulated in mammary stem cells 
both in mouse and human species. 

0.041 3.95E-12 

* full list of overlapping genes in Supplementary Table 6. 

 

We identified 197 hypermethylated regions that overlapped with MEC-specific inactive 

promoters. As both DNA hypermethylation and enrichment of the H3K27me3 mark represent 

a gene-repressive state, gain in methylation at these regions might reflect an epigenetic 

switch from chromatin-mediated repression in normal tissue to methylation-mediated gene 

silencing in tumors. A role in gene silencing was further supported by the fact that half of the 

regions were annotated as TSS-associated features (Figure 4-24).  
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Figure 4-24 MEC-specific inactive poised 
promoter states.  A) Genomic distribution 
of progressively hyper-methylated regions 
overlapping with MEC-specific inactive 
poised promoters. Annotation of regions 
according to HOMER. B) Hoxd11 is 
hypermethylated at a MEC-specific 
inactive/poised promoter state. Color code 
and samples as in Figure 4-23.  

B) 

 

Consistently, in GSEA analyses genes associated with these MEC-specific inactive promoter 

regions were highly enriched for targets of PRC2 members and genes marked by bivalent 

chromatin in brain and neural progenitor cells (Table 4-5) (e.g. Hoxc4, Hoxd11, Foxc1, Lhx2, 

Pcdhx11). These genes are generally expressed only during development and silenced in 

differentiated cells. 
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Table 4-5 Gene set enrichment analysis of hypermethylated MEC-specific target genes with 
inactive/poised promoter state 

 Gene set name (# of overlaps )* Description ratio P-value 

1 
BENPORATH_SUZ12_TARGETS 

(26) 

Set 'Suz12 targets': genes identified by ChIP on chip as 

targets of the Polycomb protein SUZ12 [GeneID=23512] in 

human embryonic stem cells. 

0.025 2.90E-17 

2 
BENPORATH_EED_TARGETS 

(24) 

Set 'Eed targets': genes identified by ChIP on chip as targets 

of the Polycomb protein EED [GeneID=8726] in human 

embryonic stem cells. 

0.0226 5.32E-15 

3 
MEISSNER_BRAIN_HCP_WITH_

H3K4ME3_AND_H3K27ME3 (24) 

Genes with high-CpG-density promoters (HCP) bearing 

histone H3 dimethylation at K4 (H3K4me2) and trimethylation 

at K27 (H3K27me3) in brain. 

0.0225 6.14E-15 

4 
BENPORATH_PRC2_TARGETS 

(19) 

Set 'PRC2 targets': identified by ChIP on chip on human 

embryonic stem cells as genes that: posess the trimethylated 

H3K27 mark in their promoters and are bound by SUZ12 

[GeneID=23512] and EED [GeneID=8726] Polycomb proteins. 

0.0291 5.52E-14 

5 
MEISSNER_NPC_HCP_WITH_H3

K4ME2_AND_H3K27ME3 (15) 

Genes with high-CpG-density promoters (HCP) bearing 

histone H3 dimethylation mark at K4 (H3K4me2) and 

trimethylation mark at K27 (H3K27me3) in neural precursor 

cells (NPC). 

0.043 1.15E-13 

* full list of overlapping genes in Supplementary Table 7. 

 

Of the regions classified as strong enhancers, 101 MEC-specific ones were 

hypermethylated, whereas 441 tumor-specific ones were hypomethylated during 

tumorigenesis (Figure 4-25). Both hypo- and hypermethylated enhancer regions were mostly 

found in introns, exons and intergenic regions. In total, this comprised 75-85% of all regions. 

In addition, 20% of the MEC-specific enhancers that gained methylation were located close 

to TSS-associated features.  
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Figure 4-25 Tissue specific enhancer 
states.  A) Genomic distribution of 
progressive DMRs at tissue-specific 
strong enhancer states. Annotation of 
regions according to HOMER. B,C) 
Tissue-specific enhancer states are 
hypomethylated for Cdh1 (B) or 
hypermethylated for Tgfbr3 (C). Color 

code and samples as for Figure 4-23. 
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A high proportion of differentially methylated enhancer regions were annotated to genic 

features (exons, introns), suggesting that these enhancers could influence expression of the 

closest gene. Therefore, we used the closest gene annotation according to HOMER to select 

genes for enrichment analysis with known gene sets of the MSigDB. 

The top five most enriched gene sets for the hypomethylated tumor-specific enhancers 

included three sets of known RB1 and p53 targets (Table 4-6) that were downregulated after 

knockdown in skin cells. In the C3(1) model, which is driven by disturbing Rb1 and p53 
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signaling via expression of SV40T, these genes were rather upregulated, but as mentioned 

before, SV40T-binding to p53 leads to higher protein stability, which could explain the 

increased expression. Additional gene sets indicated upregulation in basal-like breast cancer 

and involvement in pubertal breast development.  

 

Table 4-6 Gene set enrichment analysis of hypomethylated tumor-specific target genes with 
strong enhancer state 

 Gene set name (# of overlaps) * Description ratio p-value 

1 
MARTINEZ_RB1_AND_TP53_ 

TARGETS_DN (38) 

Genes downregulated in mice with skin specific double 

knockout of both RB1 and TP53 [GeneID=5925;7157] by Cre-

lox. 

0.0643 1.22E-26 

2 
MARTINEZ_TP53_TARGETS_ 

DN (36) 

Genes downregulated in mice with skin specific knockout of 

TP53 [GeneID=7157]. 
0.0607 2.00E-24 

3 

MEISSNER_BRAIN_HCP_WITH 

_H3K4ME3_AND_H3K27ME3 

(41) 

Genes with high-CpG-density promoters (HCP) bearing 

histone H3 dimethylation at K4 (H3K4me2) and trimethylation 

at K27 (H3K27me3) in brain. 

0.0384 2.85E-20 

4 
BLALOCK_ALZHEIMERS_ 

DISEASE_UP (41) 

Genes upregulated in brain from patients with Alzheimer's 

disease. 
0.029 4.99E-19 

5 
MARTINEZ_RB1_TARGETS_ 

DN (28) 

Genes downregulated in mice with skin specific knockout of 

RB1 [GeneID=5925] by Cre-lox. 
0.0516 2.31E-17 

6 JAEGER_METASTASIS_DN (20) 
Genes downregulated in metastases from malignant 

melanoma compared to the primary tumors. 
0.0775 4.46E-16 

7 
WONG_ADULT_TISSUE_ 

STEM_MODULE (30) 

The 'adult tissue stem' module: genes coordinately 

upregulated in a compendium of adult tissue stem cells. 
0.0416 5.28E-16 

8 
DODD_NASOPHARYNGEAL_ 

CARCINOMA_UP (46) 

Genes upregulated in nasopharyngeal carcinoma (NPC) 

compared to the normal tissue. 
0.0253 1.18E-15 

9 PEREZ_TP63_TARGETS (22) 

Genes upregulated in the HMEC cells (primary mammary 

epithelium) upon expression of the transcriptionally active 

isoform of TP63 [GeneID=8626] off adenoviral vector. 

0.062 1.60E-15 

10 
SMID_BREAST_CANCER_ 

BASAL_UP (28) 

Genes upregulated in basal subtype of breast cancer 

samples. 
0.0432 2.04E-15 

11 
MCBRYAN_PUBERTAL_ 

BREAST_4_5WK_UP (19) 

Genes upregulated during pubertal mammary gland 

development between week 4 and 5. 
0.0701 1.54E-14 

* full list of overlapping genes in Supplementary Table 8. 

 

Genes associated with the hypermethylated MEC-specific enhancers were enriched in 

genes deregulated in various types of cancer, such as thyroid cancer or acute myeloid 

leukemia (Table 4-7). This included the transforming growth factor β receptor III (TGFBR3), 

which could have both tumor promoting [134] as well as tumor suppressive functions [135] in 

breast cancer depending on the subtype. Surprisingly the MEC-specific enhancer, which 

overlaps with the progressively hypermethylated region, displayed an active promoter state 

in two tumors and an inactive promoter state in the third tumor. Thus further testing will be 

required to evaluate if this represents an example of intratumor heterogeneity and which 

epigenetic mark will be the dominant factor to influence gene expression. 
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Table 4-7 Gene set enrichment analysis of genes associated with hypermethylated MEC-
specific strong enhancers 

 Gene set name (#of overlaps)* Description ratio P-value 

1 
CHYLA_CBFA2T3_TARGETS_

UP (11) 

Genes upregulated in immature bone marrow progenitor 

cells upon knock out of CBFA2T3 [GeneID=863]. 
5.33E-11 1.81E-07 

2 

RODRIGUES_THYROID_CARC

INOMA_POORLY_DIFFERENTI

ATED_DN (13) 

Genes downregulated in poorly differentiated thyroid 

carcinoma (PDTC) compared to normal thyroid tissue. 
8.71E-10 1.48E-06 

3 
LIM_MAMMARY_STEM_CELL_

UP (10) 

Genes consistently upregulated in mammary stem cells 

both in mouse and human species. 
9.85E-09 1.12E-05 

4 
RODRIGUES_THYROID_CARC

INOMA_ANAPLASTIC_DN (10) 

Genes downregulated in anaplastic thyroid carcinoma 

(ATC) compared to normal thyroid tissue. 
2.38E-08 1.89E-05 

5 
WEST_ADRENOCORTICAL_TU

MOR_ DN (10) 

Downregulated genes in pediatric adrenocortical tumors 

(ACT) compared to the normal tissue. 
2.78E-08 1.89E-05 

6 
MULLIGHAN_MLL_SIGNATURE

_2_UP (9) 

The 'MLL signature 2': genes upregulated in pediatric AML 

(acute myeloid leukemia) with rearranged MLL 

[GeneID=4297] compared to the AML cases with intact 

MLL and NPM1 [GeneID=4869]. 

3.65E-08 2.07E-05 

7 
DACOSTA_UV_RESPONSE_VI

A_ ERCC3_DN (11) 

Genes downregulated in fibroblasts expressing mutant 

forms of ERCC3 [GeneID=2071] after UV irradiation. 
1.90E-07 9.20E-05 

8 
MULLIGHAN_MLL_SIGNATURE

_1_UP (8) 

The 'MLL signature 1': genes upregulated in pediatric AML 

(acute myeloid leukemia) with rearranged MLL 

[GeneID=4297] compared to all AML cases with the intact 

gene. 

2.60E-07 1.10E-04 

9 HAN_SATB1_TARGETS_UP (8) 
Genes upregulated in MDA-MB-231 cells (breast cancer) 

after knockdown of SATB1 [GeneID=6304] by RNAi. 
3.48E-07 1.31E-04 

10 
BOYLAN_MULTIPLE_MYELOM

A_D_ CLUSTER_DN (4) 

Genes from cluster 4: downregulated in group D of tumors 

arising from overexpression of BCL2L1 and MYC 

[GeneID=598;4609] in plasma cells. 

6.36E-07 2.04E-04 

11 
JOHNSTONE_PARVB_TARGET

S_ 3_UP (9) 

Genes upregulated upon overexpression of PARVB 

[GeneID=29780] in MDA-MB-231 cells (breast cancer) 

cultured in 3D Matrigel only. 

6.59E-07 2.04E-04 

* full list of overlapping genes in Supplementary Table 9. 

 

With the lists of differentially methylated, tissue-specific chromatin state associated genes, 

we performed additional GSEA on the published gene expression microarray data set of the 

C3(1) model [90]. We could confirm that differential methylation for genes of these lists was 

associated with gene expression changes that link to the phenotype. This was true for the 

MEC-specific hypermethylated inactive promoters, the hypomethylated tumor-specific active 

promoters and both of the enhancer gene sets (Figure 4-26). For the enhancers, 

hypomethylation was linked with upregulation of gene expression in the C3(1) model, while 

the hypermethylated regions were rather downregulated.  

In contrast, enrichment was not significant for genes of hypomethylated tumor-specific weak 

promoters, probably due to the low number of regions (45 regions, Table 4-3) in this gene 

list.  

These results emphasize the importance of DNA methylation changes at the strong 

enhancer regions for gene expression and tumorigenesis in the C3(1) model. 
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Figure 4-26 Gene set enrichment analysis (GSEA) of gene sets comprising progressive DMRs 
overlapping with tissue specific chromatin states. Enrichment was calculated on gene expression 
microarray data [90] for eight C3(1) tumors and five WT mammary gland samples. Depicted are 
enrichment score (ES) graphs (green, top), gene set distribution (black line graphs, below the ES 
graph), p-values and false discovery rate q-values (FDR). Significance cutoffs were p< 0.05 and FDR 
< 0.25. 
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Motif Name p-value

% of Target 

Sequences 

with Motif

% of Background 

Sequences with 

Motif

Nf1 1.00E-07 10.43% 4.34%

Tlx? 1.00E-05 10.43% 5.09%

Tead4 1.00E-03 10.66% 6.58%

Egr1 1.00E-03 15.19% 10.34%

Smad4 1.00E-02 26.53% 21.01%

Tead2 1.00E-02 6.35% 3.67%

Znf711 1.00E-02 31.07% 25.52%

Sox6 1.00E-02 13.83% 9.91%

Tp53 1.00E-02 2.27% 0.85%

Sox2 1.00E-02 8.39% 5.43%

Batf 1.00E-02 6.12% 3.65%

Sox3 1.00E-02 15.87% 11.85%

AR-halfsite 1.00E-02 49.21% 43.35%

AP-1 1.00E-02 7.03% 4.46%

Most similar

motif
p-value

% of Target 

Sequences 

with Motif

% of Background 

Sequences with 

Motif

Nhlh1 1.00E-14 1.59% 0.01%

Hand1-Tcfe2a 1.00E-12 6.80% 1.26%

Arnt-Ahr 1.00E-12 4.08% 0.38%

Runx1 1.00E-12 1.13% 0.00%

Ets-class 1.00E-12 1.13% 0.00%

A)

B)

Motif Name p-value

% of Target 

Sequences 

with Motif

% of Background 

Sequences with 

Motif

Hoxc9 1.00E-03 7.92% 2.00%

Mef2c 1.00E-02 5.94% 1.13%

Ehf 1.00E-02 24.75% 13.59%

Erg 1.00E-02 29.70% 17.85%

Mef2a 1.00E-02 5.94% 1.37%

Pu.1 1.00E-02 11.88% 4.77%

Ets1 1.00E-02 22.77% 12.84%

Etv1 1.00E-02 28.71% 17.77%

Gata:Scl 1.00E-02 3.96% 0.72%

Hoxa9 1.00E-02 7.92% 2.91%

Thra 1.00E-02 9.90% 4.19%

C)

4.2.4.2 Transcription factor binding sites at tissue-specific chromatin states 

Since gene expression can be influenced by binding of transcription factors, we investigated 

whether the enhancer regions were enriched for transcription factor binding sites. For the 

441 hypomethylated enhancer regions, HOMER motif search predicted enrichment for 14 

known transcription factor motifs and five motifs with similarity to previously defined motifs 

(Figure 4-27A, B). Another 11 known motifs were enriched in the hypermethylated MEC-

specific enhancer regions (Figure 4-27C).  

 

Figure 4-27 HOMER list of enriched motifs for transcription factors in progressive DMRs at 
tissue-specific strong enhancers.  A, B) Hypomethylated tumor-specific strong enhancers. A) 
Known transcription factor binding motifs with hypergeometric motif logo and the respective name of 
the transcription factor. Additional values depict the p-value for motif enrichment, as well as the 
percentage of sequences that contain the motif in either the target regions or the background regions. 
B) De novo motif search. Depicted are motif logos that were calculated by a de novo motif search in 
the target regions. Motifs are named according to the transcription factors whose motif most closely 
resembles the new one. Additional information as in A). C) Hypermethylated MEC-specific strong 
enhancers. Information for motifs depicted as in A). 
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The p-values for the enrichment of these motifs were quite low and thus, these results need 

to be handled with caution. Therefore, we assessed the expression levels of the respective 

transcription factors in the C3(1) model to ascertain whether motif enrichment was 

accompanied by changes in expression of the respective transcription factors between WT 

and TG animals. We limited our selection to inverse correlations, meaning that loss of 

enhancer methylation was linked to increased transcription factor expression and vice versa. 

We found significant upregulation of Tead4, Egr1, Arnt, Runx1, and Etv4 (Ets-class) in 

tumors, as well as significant downregulation of Mef2c and Hoxa9 (Figure 4-28).  

 

Figure 4-28 Expression levels of selected transcription factors associated with motif 
enrichment. Expression levels are depicted as microarray intensities for eight tumors (TG, red circle) 
and five normal mammary glands (WT, blue square). Samples were measured relative to whole 
mouse RNA of day one pups [90].Student’s t-test (two-sided), * p< 0.05, ** p< 0.01, **** p< 0.0001. 

 

Of the analyzed transcription factors, Egr1 and Runx1 were the two factors with the highest 

increase in tumor issue. Examining the chromatin states and DMRs for these transcription 

factors, we found hypomethylated regions overlapping with active promoter states in tumors 

that were defined as weak promoter (Egr1) and inactive promoter states (Runx1) in MECs 

(Figure 4-29). In addition, we detected three hypomethylated regions overlapping with tumor-

specific intragenic enhancer states in Runx1. Together with other genes of the 

hypomethylated enhancers, Runx1 was also enriched in gene sets for bivalent brain 

promoters and nasopharyngeal carcinoma upregulated genes (Supplementary Table 8). Our 

data suggested that the expression of these factors is coordinately regulated by both the 

chromatin state and the methylation levels at their promoters.  

For Etv4 we observed a change from inactive to active promoter state around the TSS 

without accompanying loss of methylation. However, we found a similar change in chromatin 
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states about 25kb upstream coinciding with hypomethylation, which might confer an 

alternative promoter for Etv4.  

For Hoxa9, we detected a hypermethylated region located downstream of the gene with an 

inactive/poised promoter state changing into a completely repressed state in tumors, 

consistent with its downregulation in tumors.  

A) 

B) 

C) 
Figure 4-29 Chromatin states and 
DNA methylation levels for 
transcription factors.  Examples 
depict the situation for A) Etv4, B) 
Runx1 C) Egr1, and D) Hoxa9. Color 
code for chromatin states as in 
Figure 4-16. MCIp-seq data are 
depicted as the average reads for 3 
animals of 20 and 24 weeks for 
tumors (red) and normal mammary 
glands (blue). Dashed lines mark 
regions of DMRs coinciding with 
changes in the chromatin states. 
RefSeq gene: blue boxes, CpG 
islands: green boxes, DMRs: black 
boxes. Color code for ChromHMM 
tracks as in Figure 4-19. 

D) 
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The enrichment of binding motifs for these transcription factors in hypomethylated enhancers 

suggests that the epigenetic changes might be either caused by overexpression of the 

factors, or the binding of the factors is facilitated due to the changes in epigenetics. Our data 

indicates that up- and downregulation of these transcription factors might be regulated by 

epigenetic changes themselves and that these factors might be involved in processes that 

are important for tumorigenesis in the C3(1) mouse model.  

 

4.2.5 Summary  

In conclusion, we created a map of chromatin states for the C3(1) tumors and MECs and 

observed tissue specific changes in these states. When we overlapped these tissue specific 

chromatin states with progressive DMRs we observed several concordant changes between 

the chromatin composition and DNA methylation. Moreover, we found that a combination of 

these marks can be linked to gene expression changes of the C3(1) model especially for 

enhancer and active promoter states. Finally, we observed enriched transcription factor 

motifs in differentially methylated enhancers and expression of these factors in turn might be 

regulated by epigenetic mechanisms. These transcription factors might play an important 

role during the tumorigenesis in the C3(1) model.  
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DMRs in promoter of Refseq lncRNAs 

69 candidates

Protein coding RNA antisense to lncRNA 

26 candidate pairs

Protein coding RNA covered on 

gene expression micorarray

23 candidate pairs

Genome-wide screen for DMRs in the 

C3(1) mouse model of breast cancer

1614 hyper-, 4956 hypomethylated regions

Significant expression difference

tumor vs normal mammary gland

6 candidate pairs

4.3 Evaluation of differentially methylated lncRNA Esrp2-as 

(1810019D21RIK) and protein-coding gene Esrp2 

4.3.1 Genome-wide screen to identify differentially methylated lncRNAs  

In order to evaluate the third level of epigenetic regulation of gene expression, we 

investigated the regulation of lncRNAs. For a screen of differentially methylated lncRNAs, we 

utilized the MCIp-seq dataset for samples of mice at 20 and 24 weeks of age to define 

DMRs common in both age groups (screening strategy in Figure 4-30). This sample set 

contained 1614 hyper- and 4956 hypomethylated regions. By overlapping these DMRs with 

promoters (2kb upstream to 500bp downstream of the TSS) of 3639 mouse RefSeq 

annotated lncRNAs (GRCm38/mm10), we identified 37 hyper- and 32 hypomethylated 

lncRNA promoters (Table 4-8).  

 

 

 Figure 4-30 Schematic representation of the 
screening strategy for identification of 
differentially methylated lncRNAs. 
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lncRNAs can function on protein-coding genes in direct neighborhood or on more distal 

genes, sometimes located even on different chromosomes. Following the ‘guilt by 

association’ principle, we focused on lncRNAs in the vicinity of protein-coding genes and 

selected candidates with neighboring mRNAs in antisense orientation and the TSSs of both 

RNAs not more than 2kb apart. We thus identified 26 pairs of protein-coding and noncoding 

RNAs (Table 4-8).  

Studies that describe the lncRNA function of these candidates are scarce, except for Haglr 

(previously designated as Hoxd-as1), Fendrr, and Hoxa11as, which were all shown to 

regulate expression of protein-coding genes, either in the direct neighborhood or located 

more distantly [53, 55, 136-138]. Therefore, we investigated the neighboring protein-coding 

genes for overlap with published gene sets of the Molecular Signature Database v5.1 

(MSigDB). The protein-coding genes located close to hypermethylated lncRNAs were known 

targets of the PRC2 members EED and SUZ12 (Foxf1, Foxd2, Hoxd1, Evx1, Dlx4, Sox21, 

Magi2, Itpkb) or were marked by the repressive histone modification H3K27me3 in 

progenitor or even differentiated cells (Aldh1a2, Gabrg3, Cdh8, Vstmb2, Nrg3, Otud7a) [127, 

139, 140]. The hypomethylated genes were either amplified (Hoxa11, Hoxa2) [141] or 

methylated (Irs2, Thbs1) [142] in breast cancer or were downregulated in metastasis from 

malignant melanoma compared to primary tumors (Esrp2, Palmd, Lsr) [143].  

Using published gene expression microarray data [90], we identified 6 pairs with significant 

expression differences of the protein-coding RNA between tumor and normal mammary 

gland samples. We could not analyze expression of the lncRNAs as they were mostly not 

covered on the array. Among the differentially expressed genes we selected Esrp2 and 

Esrp2-as for further analysis. Loss of Esrp2 has been associated with epithelial-to-

mesenchymal transition [144-146], a process that plays an important role in metastasis 

formation. 

 

   



 

 
 

Table 4-8 Candidate lncRNAs with differentially methylated promoters and neighboring protein-coding genes 

DMR lncRNA protein-coding gene expression difference reference 

Genomic position (mm10) name ID name ID 
Tumor - 

Normal(a) 
p-value (b)  

Hypermethylation  

chr1:180332417-180332819 Gm5069 NR_003623 Itpkb NM_001081175    

chr2:74762966-74763423 Haglr NR_110445 Hoxd1 NM_010467 -0.10 0.55  

chr3:37896886-37897206 Gm20755 NR_040559      

chr3:82876021-82876531 Rbm46os NR_040382 Rbm46 NM_001277170    

chr4:114907033-114907726 Foxd2os NR_030721 Foxd2 NM_008593 -0.34 0.09  

chr4:145463820-145464350 Smarca5-ps NR_002888      

chr4:152697098-152697448 Gm833 NR_033138      

chr5:19226691-19226991 4921504A21Rik NR_102341 Magi2 NM_001170746 0.64 0.23  

chr5:57718135-57718436 4932441J04Rik NR_015588 Pcdh7 NM_018764 -1.26 0.0007 *** [147] 

chr6:47943214-47943743 Zfp783 NR_027963      

chr6:52315701-52316027 5730457N03Rik NR_038163 Evx1 NM_007966 -0.34 0.10  

chr6:6864808-6865158 Dlx6os2 NR_002839      

chr7:14623181-14623487 Nlrp5-ps NR_045119      

chr7:40899025-40899517 A230077H06Rik NR_040329 Vstm2b NM_021387 -0.49 0.13  

chr7:51511083-51511470 Ano5 NR_073508      

chr7:57386794-57387157 Gm9962 NR_033504 Gabrg3 NM_008074 -0.45 0.04 * [148] 

chr7:63444419-63444734 4930554H23Rik NR_131089 Otud7a NM_130880 2.36 0.00009 **** [149] 

chr7:79515301-79515977 AI854517 NR_040312      

chr8:120230039-120230397 A330074K22Rik NR_110496      

chr8:121084994-121085403 Fendrr NR_045471 Foxf1 NM_010426 0.30 0.11  

chr8:84912426-84912992 Gm38426 NR_103491      

chr8:99416005-99416420 A330008L17Rik NR_132435 Cdh8 NM_007667 0.01 0.97  

chr9:71216962-71217270 Gm3458 NR_110518 Aldh1a2 NM_009022 -0.39 0.13  

chr10:93336092-93336432 Gm17745 NR_038014      
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chr11:95143377-95143691 Dlx4os NR_040279 Dlx4 NM_007867 0.05 0.90  

chr13:111868178-111868548 Gm15326 NR_130345      

chr13:72816340-72816825 D730050B12Rik NR_046196      

chr14:118234395-118234797 LOC105245869 NR_131969 Sox21 NM_177753 -0.27 0.37  

chr14:39472112-39472839 LOC432842 NR_131973 Nrg3 NM_008734 -0.15 0.59  

chr15:83366702-83367300 1700001L05Rik NR_027980      

chr16:98081806-98082497 A630089N07Rik NR_015491      

chr17:34094655-34095214 BC051537 NR_046183      

chr17:80373020-80373349 Gm10190 NR_028385      

chr19:30539362-30539867 Ppp1r2-ps3 NR_003650      

chrX:12159988-12160665 2900008C10Rik NR_045434      

chrX:12761797-12762195 Gm14634 NR_045852 Med14 NM_012005 -0.31 0.13  

Hypomethylation  

chr1:133269974-133270300 Gm19461 NR_037984      

chr1:136696173-136696502 Platr22 NR_037986      

chr1:71888158-71888468 Gm8883 NR_027658      

chr2:118112952-118113258 Gm13986 NR_126479 Thbs1 NM_011580    

chr3:116968252-116968565 4930455H04Rik NR_040596 Palmd NM_023245 -0.09 0.84  

chr5:112206149-112206560 1700028D13Rik NR_045377      

chr5:112206149-112206560 1700028D13Rik NR_045378      

chr5:135000770-135001082 Wbscr25 NR_026907      

chr5:143758048-143758457 D130017N08Rik NR_015486      

chr6:52165042-52165362 Hoxaas2 NR_131182 Hoxa2 NM_010451 -0.39 0.28  

chr6:52243386-52243706 Hoxa11os NR_015348 Hoxa11 NM_010450 -0.31 0.05 * [150, 151] 

chr7:28496984-28497589 1700028B04Rik NR_033605      

chr7:30971903-30972229 Fam187b NR_038860 Lsr NM_017405 3.57 0.00004 **** [152] 

chr8:106133504-106133810 

1810019D21Rik 

(Esrp2-as) 

NR_040344 Esrp2 NM_176838 1.55 0.0005 *** [144, 145] 
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chr8:11005553-11005971 9530052E02Rik NR_046017 Irs2 NM_001081212    

chr8:70774591-70774966 2010320M18Rik NR_029440 Pik3r2 NM_008841 0.47 0.11  

chr9:40333291-40333624 1700110K17Rik NR_040728      

chr11:102377699-102378035 Bloodlinc NR_131196      

chr11:112711182-112711489 BC006965 NR_024085      

chr12:11204247-11204597 9530020I12Rik NR_131083      

chr12:33149419-33149899 F730043M19Rik NR_015602 Atxn7l1 NM_028139 -0.18 0.53  

chr13:44216558-44216865 A330076C08Rik NR_045088      

chr13:63296450-63296765 Gm16907 NR_045794      

chr14:105589344-105589691 9330188P03Rik NR_102319      

chr14:118363552-118363938 1700044C05Rik NR_045624      

chr14:118922434-118923043 Dzip1 NR_130725      

chr14:55071799-55072110 Zfhx2os NR_004444      

chr15:103147888-103148190 D930007P13Rik NR_045743      

chr16:95928970-95929274 1600002D24Rik NR_040484      

chr17:56554141-56554483 Gm20219 NR_130128      

chr19:53076038-53076348 1700054A03Rik NR_045320      

(a) Expression data were taken from [90] and include eight TG tumor samples and five WT mammary glands. Values are reported as the 

differences between tumor and normal samples in log2 array intensities relative to a pool of whole mouse embryo RNA.  

(b) p-values were calculated using two sided Student’s t-test, * p< 0.05, *** p< 0.001, **** p< 0.0001 
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4.3.2 Esrp2 and Esrp2-as are coordinately overexpressed in C3(1) tumors 

Esrp2-as is expressed as four annotated transcripts with a length between 1.2 and 1.6kb 

(Figure 4-31). The three longer transcripts (v1-3) share a common TSS approximately 1.6kb 

downstream of the Esrp2 TSS. In contrast, the TSS of the short variant (v4) is located about 

100bp upstream of the Esrp2 TSS. Thus, the three longer lncRNA transcripts overlap partly 

with Esrp2, but still share two exons and an intronic region with the short variant. The DMR 

identified by MCIp-seq was located about 1.7kb upstream of the v1-3 TSS overlapping with 

exon 8 of Esrp2. The TSS of the short variant v4 was located at the border of a CpG island, 

which also covers exon 1 and 2 of Esrp2. 

 

Figure 4-31 DMR identified by MCIp-seq at the Esrp2 region.  Depicted is the genomic 
organization of Esrp2 (dark blue) and Esrp2-as variants 1-4 (v1-4, light blue). Enrichment of 
methylated fragments by MCIp is shown for tumors (red) and normal WT mammary glands (blue), 
each lane representing the average of sequencing reads obtained for three samples at age 20 and 24 
weeks. The DMR (pink) is located ≈ 1.7kb upstream from the TSS of Esrp2-as v1-3. The CpG island 
(green) covers exon 1 and 2 of Esrp2. 

 

In order to validate the reported difference in Esrp2 expression [90] in our own data set and 

to examine expression levels of Esrp2-as, we performed RT-qPCR analysis and confirmed a 

significant 3-fold higher expression of Esrp2 in tumors vs. normal tissue (Figure 4-32A). 

Since the different splice variants of Esrp2-as could not be detected individually by RT-

qPCR, we designed assays to detect either the long variants 1+2 (v1+2) by an assay 

spanning the first intron, or all 4 variants together (v1-4) using primers located in the 

common last exon. When detecting all four variants together, Esrp2-as was about 20-fold 

higher expressed than when analyzing only the long variants v1+2. Publicly accessible 

FANTOM5 CAGE-seq (Cap Analysis of Gene Expression) data [153, 154] confirmed 

transcription initiation for both the short and the long variants of Esrp2-as in mammary 

glands of lactating and pregnant mice (Figure 4-32B), supporting expression of both the long 

and the short transcript variants. Esrp2-as v1-4 levels were significantly increased by about 

2-fold in tumor tissue, whereas the long variants (v1+2) did not show differential expression. 
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This indicated that in tumorigenesis the short variant v4 might be stronger induced than the 

long variants, which were kept at a constant level of expression.  

A) B) 

Figure 4-32 Gene expression in C3(1) tumors and normal mammary glands.  A) Relative 
expression levels as determined by RT-qPCR are significantly different between tumor (n=11) and 
normal samples (n=9) for Esrp2 and Esrp2-as (v1-4), but not for Esrp2-as (v1+2). Samples were 
derived from animals aged 20-24 weeks, and expression levels were normalized to three reference 
genes (Hprt1, Tbp, β-Actin). Mann-Whitney-U test, ** p< 0.01, *** p< 0.001. B) CAGE-seq data from 
FANTOM 5 were obtained for mammary gland samples (CNhs 10480 & CNhs 10476) via the Zenbu 
genome browser [154, 155] in the region of Esrp2. Color coding indicates strand specificity of CAGE 
signals (green: + strand, purple: - strand). 

 

Correlation analysis indicated co-expression of Esrp2 and the antisense transcripts in tumor 

tissue and normal mammary glands (Esrp2-as v1-4, Spearman r= 0.85, p< 0.0001). When 

extending the expression analysis to spleen and liver samples derived from C3(1) mice as 

well as various mouse cell lines, we confirmed strong, positive correlation for Esrp2 and the 

lncRNA transcripts (Spearman r= 0.88, p< 0.0001 (Esrp2-as v1-4) and r= 0.60, p< 0.0001 

(Esrp2-as v1+2)), but also correlation between the different antisense transcripts (Spearman 

r= 0.66, p< 0.0001 (Figure 4-33 and Figure 4-34)). These results suggested either mutual 

regulation of expression between the coding and noncoding RNA, or a common control 

mechanism.  
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C) 
Figure 4-33 Esrp2 and Esrp2-as are coordinately 
expressed.  Expression of Esrp2, Esrp2-as (v1-4) 
and Esrp2-as (v1+2) as assessed by RT-qPCR 
relative to three housekeeping genes (Hprt1, Tbp, 
Actb) for tumors, normal mammary gland, cell lines, 
spleen, and liver samples. Expression levels 
correlated for A) Esrp2 and Esrp2-as (v1+4) 
(Spearman’s rank correlation r= 0.88, p< 0.0001), 
for B) Esrp2 and Esrp2-as (v1+2), (Spearman 
r= 0.61, p< 0.0001), and for C) Esrp2-as (v1-4) and 
Esrp2-as (v1+2) (Spearman r= 0.66, p< 0.0001). 

 

A) B) 

Figure 4-34 Rel. expression levels in cell lines 
and tissues.  Rel. RNA expression levels of Esrp2 
(white), Esrp2-as (v1-4) (orange) and Esrp2-as 
(v1+2) (blue) relative to three housekeeping genes 
(Hprt1, Tbp, Actb) for different breast and other cell 
lines of mouse origin A) and for liver and spleen 
tissues (n=4) B).  

 

4.3.3 CGI shores of Esrp2 are differentially methylated in tumors and cell lines 

Using published whole genome bisulfite sequencing (WGBS) and RNA-seq datasets of 

different mouse tissues [156-159] (Figure 4-35), we detected that the CGI located in the 
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Esrp2 promoter region was generally unmethylated in all tissues, whereas the CGI shores 

displayed variable methylation between tissues that express Esrp2 and Esrp2-as (liver, 

kidney, stomach, lung) and those that do not (spleen, heart). This indicated that differential 

methylation was not only limited to the region that we identified by MCIp-seq. 

 

Figure 4-35 DNA methylation and RNA-seq levels for different mouse tissues in the Esrp2 
region.  Data tracks were downloaded from the UCSC genome browser. Whole genome bisulfite 
sequencing tracks (WGBS) were taken from the Hon_2013 track [156, 157] and RNA-seq data from 
CSHL_Long_RNA-seq track [158, 159]. Blue horizontal bars represent regions of hypomethylation, 
while DNA methylation levels at individual CpG sites are depicted by orange vertical lines. RNA-seq 
reads are reported strand specifically (+, -) for replicates 1 and 2 by color codes for the different 
tissues. The genomic region is depicted as in Figure 4-31, with the addition of amplicons A1-A14 
(black boxes) for EpiTYPER MassARRAY analysis. 

 

In order to analyze methylation levels in a quantitative manner, we designed EpiTYPER 

MassARRAY amplicons covering the DMR (Figure 4-35, Amplicon A1), the CGI (A6-A8), as 

well as the shore regions on both sides of the CGI (A2-5, A9-14). MassARRAY analyses 

confirmed that the DMR (A1) was hypomethylated in tumors vs. normal mammary glands 

with an average methylation difference of 35% (Figure 4-36A).  
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Figure 4-36 DNA methylation at the Esrp2 region.  DNA methylation levels for tumor samples 
(n=11) and normal mammary gland tissue (n=9) A), for liver and spleen samples (n=4) B) or various 
cell lines C) are determined by quantitative EpiTYPER MassARRAY technology. Heatmaps display 
DNA methylation with each row representing one individual sample and each column one CpG unit 
comprising of 1 to 4 individual CpG sites. Locations of the different amplicons relative to the genes 
are depicted in Figure 4-35. DNA methylation is displayed by a color coded gradient from 0% (light 
yellow) to 100% methylation (blue). Gray squares represent failed measurements. 

 

The central region spanning the CGI (A6-A8) was unmethylated in both tumor and normal 

tissue. In contrast, individual CpG units in the shore regions A3-A5 and A9-A11 were 10 to 

50% less methylated in tumors than in normal mammary glands. As WGBS tracks are not 

yet available for murine mammary gland tissue, we selected four spleen and four liver 

samples of the C3(1) mouse model to determine concordance of MassARRAY data with 

published WGBS data (Figure 4-36B). Indeed, methylation values for spleen and liver 



4.Results 

103 
 

Methylation vs Expression

 (Tissue)

0 10 20 30
0.01

0.1

1

50100

Esrp2-as (v1-4)

Esrp2 Spearman
r = -0.81 (Esrp2) ****
r = -0.57 (Esrp2-as v1-4) **
r = -0.20 (Esrp2-as v1+2)ns

re
l.
 e

x
p

re
s
s
io

n

Methylation (%)
(region avg.)

Spearman

r = -0.81 (Esrp2) ***

r = -0.57 (Esrp2-as v1-4) **

Esrp2

Esrp2-as (v1-4)

Mammary glands + tumorsCell lines

re
l.
 e

x
p

re
s
s

io
n

Methylation (%)
(region avg.)

Spearman

r = -0.82 (Esrp2) *

r = -0.53 (Esrp2-as v1-4) ns

Methylation vs Expression
(cell lines)

0 20 40 60 80 100
0.001

0.01

0.1

1

Legend

Legend

correlated well between techniques (Spearman r= 0.67, p< 0.0001 (liver) and r= 0.77, 

p< 0.0001 (spleen)). For comparison, we also examined DNA methylation levels in various 

cell lines (Figure 4-36C). Whereas most of the cell lines had a methylation profile either 

similar to normal mammary glands (M27H4 (mammary cells derived from the C3(1) mouse 

model), Hepa1.6 (murine hepatoma), NMuMG (murine mammary gland), CMT93 (murine 

rectal carcinoma)) or to tumor tissue (M28N2, M6, M6C, all three derived from the C3(1) 

mouse model), two cell lines (3T3-L1 (murine preadipocytes), MC38 (murine colon 

carcinoma)) were completely methylated (70-90% methylation) in the analyzed region, 

except for amplicon A13 which was unmethylated in all samples. Consistently, 3T3-L1 and 

MC38 cell lines displayed also the lowest expression levels of Esrp2 and Esrp2-as (Figure 4-

34). 

 

A) B) 

Figure 4-37 DNA methylation inversely correlates with gene expression of Ersp2 and Esrp2-as. 
Correlation between DNA methylation levels (average over complete region A1-A14 as shown in 
Figure 4-36) and expression levels normalized to three housekeeping genes (Hprt1, Tbp, Actb) was 
calculated by Spearman’s rank correlation for cell lines A) and tumor/normal tissues B). * p< 0.05, ** 
p< 0.01, *** p< 0.001. 

 

We observed strong, negative correlation between expression and DNA methylation in cell 

lines (Spearman r= -0.82, p= 0.02 (Esrp2) and r= -0.53, p= 0.1 (Esrp2-as v1-4)) (Figure 

4-37A), as well as levels in tumor samples and normal tissue (Spearman r= -0.81, p< 0.0001 

(Esrp2) and r= -0.57, p = 0.008 (Esrp2-as v1-4)) (Figure 4-37B). These results confirmed 

that the region around Esrp2 was differentially methylated, and methylation inversely 

correlated with expression. 
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4.3.4 ESRP2 in human breast cancer 

In order to test whether our findings regarding Esrp2 are also relevant for human breast 

cancer, we extracted DNA methylation levels in the region around the TSS of ESRP2 from 

TCGA 450k. Breast tumors were indeed significantly hypomethylated in the region 

downstream of the ESRP2 TSS compared to normal breast tissue (Figure 4-38A). Besides, 

ESRP2 was significantly overexpressed in TCGA breast cancer samples (Figure 4-38B), and 

expression inversely correlated with average DNA methylation levels in that region 

(Spearman’s rank correlation r= -0.29, p< 0.0001). Furthermore, high expression of ESRP2 

was significantly associated with lower disease-free survival (hazard ratio 1.24, 95% 

confidence interval 1.098 – 1.409) (Figure 4-38C)) as indicated by Breastmark data [160]. So 

far, a human homologue of Esrp2-as has not been annotated yet, but CAGE-seq data for 

MCF7 human breast cancer cells (FANTOM5 [153]) suggest transcription initiation at 

genomic locations corresponding to the TSSs of mouse Esrp2-as.  
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Figure 4-38 ESRP2 hypomethylation and overexpression lowers chances of disease-free 
survival in human breast cancer.  A) 450k array data were downloaded for 511 breast tumors (red 
circles) with available Pam50 classification from TCGA data download and compared with 94 normal 
control samples (blue squares). Values are depicted as mean ± SD. The scheme (top) depicts the 
genomic location of human ESRP2 (blue) and respective positions of 450k methylation probes (red). 
The location of the CGI is indicated in green. B) ESRP2 is overexpressed in human breast cancer 
samples from the TCGA data set. RNA-seq gene expression data were downloaded from UCSC 
cancer browser (TCGA BRCA gene expression (IlluminaHiSeq)) for 825 tumor samples with available 
Pam50 classification and were compared to 96 normal control samples by two-sided Student’s t-test 
**** p< 0.0001. RSEM: RNA-Seq by Expectation-Maximization. C) Kaplan Meier curves of disease-
free survival are plotted for ESRP2 expression. A total of 2281 breast cancer patients with an overall 
number of 992 events are separated by median ESRP2 expression into a high (blue) and low (red) 

expressing group. p = 0.00059 (logrank test). Data obtained from Breastmark [160]. 
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4.3.5 Demethylation induces reexpression of Esrp2 and Esrp2-as 

In order to analyze whether changes in DNA methylation would result in gene expression 

changes, we performed demethylation experiments in the M27H4 murine breast cancer cell 

line treated with 1µM  Dac. DNA methylation levels were reduced by 10-30% in amplicons 

with methylation levels above 20% in the DMSO control, with A1 being among the strongest 

demethylated amplicons (Figure 4-39A). Both Esrp2 and Esrp2-as v1-4 transcript levels 

increased by 3- and 4-fold respectively, whereas the increase in Esrp2-as v1+2 expression 

was only marginal (Figure 4-39B), which further supports the importance of the short variant 

v4.  

 

A)                                                                                 B) 

Figure 4-39 Decitabine (Dac) treatment induces demethylation and reexpression of Esrp2 and 
Esrp2-as. A) Treatment of M27H4 cells with 1µM Dac decreased DNA methylation levels. Depicted 
are the average amplicon methylation levels for A1-A14 with the mean ± SD of 3 independent 
experiments. Mann Whitney test (one-sided), * p< 0.05. B) Dac treatment induces reexpression of 
Esrp2 and Esrp2-as in M27H4 cells. Expression is measured relative to three housekeeping genes 
(Hprt1, Tbp, Actb) and normalized to DMSO control. Depicted is the mean ± SD of 3 independent 

experiments. Unpaired Student’s t-test (one-sided). *** p< 0.001, ns: not significant. 

 

4.3.6 Knockdown and overexpression of Esrp2-as does not affect Esrp2 

expression 

lncRNAs have been associated with gene silencing functions by interacting with modifiers of 

epigenetic marks, such as the polycomb repressor complexes or DNA methyltransferases. 

More recently, lncRNAs were also reported to target gene activating functions to specific 

DNA loci, such as the lncRNA TARID involved in demethylation and expression of tumor 

suppressor gene TCF21 (transcription factor 21) [54]. 
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Dac treatment experiments did not allow to discriminate whether reexpression of the lncRNA 

transcripts upregulated expression of the coding RNA or whether both RNAs were regulated 

by a common mechanism. To test a mutual regulation of both RNAs, we knocked down 

expression of Esrp2-as with locked nucleic acid antisense Gapmers (LNAs). Transfection of 

M6 murine breast cancer cells with two different LNAs targeting the last exon of the Esrp2-as 

variants reduced antisense transcript levels by 60-80% after 96h, whereas Esrp2 levels were 

not influenced (Figure 4-40A).  

In case that the lncRNA influences Esrp2 expression, this could either happen at the level of 

de novo transcription or at the level of RNA stability, which might require more time to 

manifest. We therefore performed a series of four repeated knockdowns by transfecting the 

cells with the LNAs every 96h. Neither the knockdown efficiency of the lncRNA nor its effect 

on Esrp2 expression was enhanced after this knockdown series (Figure 4-40A). Knockdown 

of Esrp2-as in the M28N2 and NMUMG cell line also did not lead to a reexpression of Esrp2 

(Figure 4-40B). 

Conversely, transient overexpression of Esrp2-as v1 or v4 in M27H4 cells resulted on 

average in a 30-fold and 2500-fold higher expression of Esrp2-as v1-4 and Esrp2-as v1+2 

respectively, but Esrp2 transcript levels were unaffected (Figure 4-40C). Additional attempts 

of overexpression in the Hepa1.6 and 3T3-L1 cell line produced similar results (Figure 

4-40D). 
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A)  C) 

B) D) 

Figure 4-40 Knockdown and overexpression of Esrp2-as. A) Knockdown of Esrp2-as by Locked 
Nucleic Acid antisense Gapmers (LNAs) in the M6 cell line for 96h or 4x 96h. Expression levels are 
measured relative to three housekeeping genes (Hprt1, Tbp, Actb) and are normalized to cells 
transfected with negative control LNA. Experiments were performed once. B) M28N2 and NMuMG 
cells were transiently transfected with LNAs against Esrp2-as and examined with RT-qPCR after 96h 
(M28N2) and 72h (NMuMG) for changes in expression levels. Experiments were conducted once. C) 
M27H4 cells were transiently transfected with constructs containing Esrp2-as v1 or v4 for 
overexpression. Expression levels were assessed by RT-qPCR 72h post-transfection and normalized 
to cells transfected with the empty vector (EV). Mean ± SD of 7 independent experiments, student’s t-
test did not show significant changes in Esrp2 expression. D) Overexpression of Esrp2-as in 
additional cell lines. Hepa 1.6 (left) and 3T3-L1 cells (right) were transiently transfected with Esrp2-as 
v1 or v4 constructs and expression was determined after 48h. Depicted is the mean of 2 independent 
experiments and thus data were not evaluated by statistical means.  

 

In order to exclude the possibility that expression of the coding transcript regulates the 

noncoding RNA, we also generated a M27H4 mammary cell and 3T3-L1 preadipocyte cell 

population that stably overexpressed Esrp2 (Figure 4-41). Under these conditions, Esrp2 

was about 100-fold higher expressed than in the EV control in M27H4 and almost 2000-fold 

higher in the 3T3-L1 cell line, but Esrp2-as levels were not changed. 
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          A)                                                      B) 

 

Figure 4-41 Overexpression of Esrp2.  M27H4 A) and 3T3-L1 B) cells were retrovirally 
infected with either EV or pMXs-Esrp2 and were selected for incorporation of the gene 
by Blasiticidin S to generate stable cell lines. RT-qPCR measurements were normalized 
to EV. Experiments were performed once.  

 

These data taken together suggested that neither Esrp2 nor Esrp2-as are controlled by the 

respective transcript on the opposite strand and instead indicated a common regulation of 

expression, which is controlled by DNA methylation. 

 

4.3.7 Luciferase reporter assays confirm a bidirectional promoter and an 

enhancer region 

In order to identify the regions involved in the regulation of Esrp2 and Esrp2-as expression, 

we performed dual luciferase reporter assays using promoter constructs (P) of Esrp2 and the 

long variants of Esrp2-as, v1-3 (Figure 4-42A). Reporter assay results confirmed promoter 

activity for the Esrp2 P-fragments. The P1 fragment located closest to the Esrp2 TSS was 

associated with strong 4-fold induction of luciferase activity compared to EV (Figure 4-42B). 

For Esrp2-as constructs P1-P4, luciferase activity was comparable to that of EV. These 

findings were concordant with the weaker expression levels of the long variants Esrp2-as 

v1+2 compared to the combined transcripts v1-4 and further indicated that the short variant 

v4 might be the major Esrp2-as transcript. Indeed, luciferase assays with Esrp2 P1 in 

reverse orientation relative to the luciferase gene (sense to the Esrp2-as v4 transcript) 

revealed almost equally high luciferase activity as for the Esrp2 P1 fragment (Figure 4-42C). 
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Therefore, we concluded that the Esrp2 P1 region has bidirectional promoter activity and is 

relevant for expression of both Esrp2 and Esrp2-as v4.  

A) 

B) 

 

C) 

Figure 4-42 Luciferase reporter assays confirm bidirectional promoter activity at Esrp2.          
A) Schematic representation of luciferase reporter constructs to determine promoter activity of 
fragments covering the Esrp2 region. Location of Esrp2 and Esrp2-as are depicted in grey and 
promoter constructs are marked in red and green. B,C) Reporter plasmids with firefly luciferase for 
promoter B) and bidirectional promoter C) activity were transiently transfected into Hepa1.6 cells and 
luciferase activity was measured 48h post transfection and normalized to a co-transfected CMV-
Renilla luciferase construct. Transfections were conducted parallel in eight technical replicates and 
reported is the mean ± SEM of four independent experiments normalized to the pGL4.10 EV. 
Unpaired Student’s t-test (two-sided), asterisks represent comparisons against EV, * p< 0.05, ** 
p< 0.01. RLA: relative luciferase activity. 

 

DNA methylation levels in the Esrp2 P1 region (Figure 4-35 and Figure 4-36, amplicon A7-

A8) are very low in both normal mammary glands and tumors as well as in all other tissues 

with publicly available methylation data and thus failed to explain the observed differences in 

expression between tumor and normal tissue and among different tissues. Examining our 

data for chromatin states we observed tumor-specific enhancer states next to the TSS of 

Esrp2-as (Figure 4-43A). This suggested that in tumors these regions might have enhancer 

rather than promoter function. Therefore, we analyzed Esrp2-as E1-E4 regions in luciferase 

vectors with a minimal promoter (pGL4.23) to test for enhancer activity. The E4 region 

demonstrated the strongest activity of the enhancer constructs and increased the luciferase 

expression from the minimal promoter significantly by about 5-fold (Figure 4-43B). For 

confirmation of enhancer activity on the specific Esrp2 P1 promoter, we also positioned the 



4.Results 

111 
 

enhancer Hepa normalized to all EV

0 2 4 6 8

Esrp2-as E1

Esrp2-as E2

Esrp2-as E3

Esrp2-as E4

pGL4.23 EV

**
**

*

RLA RLA

Promospecific Enhancer Hepa normalized to all EV

0 2 4 6

Ep1 rev + E1 fwd

Ep1 rev + E1 rev

Esrp2_P1 rev

Ep1 fwd + E1 fwd

Ep1 fwd + E1 rev

Esrp2_P1 fwd

pGL4.10 EV

ns

ns

ns

ns

E4 fragment in front of the bidirectional Esrp2 P1 fragments. In this setting, we could not 

confirm added enhancer activity of E4 (Figure 4-43C). This might be due to the fact that the 

activity of the bidirectional promoter fragment was already higher than that of the minimal 

promoter of the pGL4.23 empty vector and thus might not respond to a similar extent to the 

additional enhancer effect.  

A)  

B) 
C) 

Figure 4-43 Esrp2-as upstream regions exhibit enhancer activity. A) Schematic representation of 
enhancer reporter fragments with respect to genomic location and association with chromatin states. 
Enhancer reporters are displayed as blue boxes combined with a minimal promoter (pink). Esrp2 
promoter fragment P1 is depicted in red, enhancer fragment E4 is indicated in blue for P1 specific 
enhancer constructs. Fwd (forward) and rev (reverse) describe the orientation of the fragments 
relative to the natural orientation. Location of Esrp2 and Esrp2-as is depicted in grey. Color code for 
chromatin states obtained by ChromHMM as for Figure 4-19. B, C) Transfections and measurements 
were conducted and reported as in Figure 4-43 and were normalized to the pGL4.23 EV B) or the 
pGL4.10 EV C). Unpaired Student’s t-test (two-sided), asterisks represent comparisons against 
pGL4.23 EV * p< 0.05, ** p< 0.01, ns: not significant. RLA: relative luciferase activity; EV: empty 
vector. 
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5. Discussion 

5.1 DNA methylation changes in the C3(1) model 

In order to gain information on genome-wide alterations in DNA methylation in the C3(1) 

mouse model, we conducted MCIp-seq using  mammary gland and tumor tissue of different 

age groups. We confirmed a link between DNA methylation and gene expression at 

recurrent DMRs and demonstrated the general similarity of the methylation profile to human 

breast cancer samples.  

5.1.1 Genome-wide DNA methylation studies in mouse models of cancer  

The importance of DNA methylation for cancer formation in genetically engineered mouse 

models (GEMMs) has been frequently investigated by interfering with epigenetic modifying 

enzymes either by demethylating drugs such as decitabine and zebularine or by knockout of 

the epigenetic protein of interest such as DNMTs or MBD protein (reviewed in [161]). In 

breast cancer models, the relevance of DNA methylation was demonstrated by knockout of 

DNMT1 in the C3(1) and in the MMTV-Neu-Tg model, and by Zebularine treatment in the 

MMTV polyoma middle T antigen (PyMT) model. In all three models, depletion of DNMT1 

reduced tumor formation and tumor burden, therefore distinguishing DNA methylation as an 

essential factor for tumorigenesis [162, 163].  

Until recently, reports of DNA methylation analysis at a genome-wide scale in mouse models 

of cancer were limited, in contrast to human cancer studies. The efforts to investigate the 

genome-wide methylome in human cancer were greatly facilitated by the introduction of the 

Illumina 27k and 450k DNA methylation arrays. This allowed the evaluation of tens to 

hundreds of thousands of preselected CpG sites in a quantitative manner in an easily 

reproducible and relatively cheap manner [164]. An equivalent platform for other species is 

not on the market so far. Although Wong and colleagues [165] confirmed the applicability of 

the human arrays also for mouse tissues, this was at the cost of greatly reducing the number 

of analyzable sites to 1308 and 13715 sites on the 27k and 450k array, respectively. 

Therefore, genome-wide analysis in mouse models were mainly based on enrichment of 

methylated fragments by methylation-specific antibodies (MeDIP) or by proteins containing a 

methyl-CpG binding domain (MethylCap, MCIp) followed by microarray analysis [166, 167] 

or next generation sequencing [168-170]. Using the MCIp-seq approach in the C3(1) model 

of breast cancer, we identified about 5000 hyper- and 10.000 hypomethylated regions that 

were recurrently occurring during tumorigenesis and localized in different genomic regions, 

such as promoters, exons, or intergenic regions. We observed that a majority of DMRs was 

located outside of promoter regions and CGIs. Therefore, the sequencing approach provided 
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a greater coverage of regions than approaches using microarrays that are mostly limited to 

promoter regions or CGIs. The functional relevance of these DMRs outside of CGIs and 

promoters is less well understood, although examples were discovered that DNA 

methylation influences splicing [171] or binding of transcription factors [172]. Nevertheless, 

MCIp is based on enrichment and requires both a high CG density and intermediate to high 

levels of methylation for binding of DNA fragments. Despite the increased coverage of 

regions by MCIp-seq compared to analysis by microarray, interesting candidates might still 

have escaped our analysis. Furthermore, the identification of candidate DMRs with MCIp is 

based on relative quantification of differences and requires a quantitative confirmation by 

other techniques such as pyrosequencing or EpiTYPER. The validation rate with the 

EpiTYPER technique was higher than 90%. We managed not only to confirm significant 

methylation differences to age-matched WT animals in late age groups, when tumors had 

developed, but also demonstrated high correlation between sequencing coverage and DNA 

methylation levels over different age groups during tumor formation. To overcome the 

limitation that DMRs determined by MCIp rely on relative changes in enrichment, nowadays 

the analysis of methylation dynamics is facilitated by quantitative approaches like reduced 

representation bisulfite sequencing (RRBS) or even more detailed with whole genome 

bisulfite sequencing. 

 

5.1.2 The role of C3(1) promoter DMRs in the mammary gland during 

pregnancy and tumorigenesis  

Among the list of candidates with promoter DMRs, we confirmed a link between DNA 

methylation and gene expression of five genes, Gsn, Igfbp6, Elf3, Pkp3, and Cldn4. ELF3 is 

an important factor for the differentiation of epithelial cells [173]. CLDN4 and PKP3 assist in 

the formation of cell-cell adhesion structures such as tight junctions or desmosomes [174, 

175]. GSN regulates actin polymerization thereby controlling the mobility of cells [176] and 

IGFBP6 regulates insulin-like growth factor (IGF) functions in particular by inhibiting anti-

apoptotic functions of IGF2 [177]. 

Epigenetic regulation of expression of these genes was further supported by data for the 

MMTV-PyMT breast cancer mouse model [163]. After treatment of the MMTV-PyMT with the 

DNMT inhibitor zebularine, two of the genes that were hypermethylated in the C3(1) model, 

Gsn and Igfbp6, were upregulated upon inhibitor treatment. Differential methylation also led 

to differential gene expression in different mammary cell populations or during pregnancy 

[178, 179]. Igfbp6 was higher methylated in luminal progenitor and differentiated cells than in 
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a cell fraction containing MaSCs, myoepithelial and basal cells, while Cldn4 was 

hypomethylated in the luminal cells compartment. DMRs were inversely associated with 

expression for both genes, and Cldn4 also showed striking upregulation after demethylation 

treatment in both cell types. Hypomethylation of Pkp3 was observed in the mammary stem 

cell population following pregnancy [178] and for Elf3, pregnancy-associated 

hypomethylation was observed for both basal and luminal cell populations [179]. These data 

and our results indicate that the candidates play an important role in the mammary gland 

either during tumorigenesis or pregnancy. The genes were also shown to be differentially 

expressed in human cancers including breast cancer [180-184].  

We found additional DMRs co-occuring between the C3(1) model and different mammary 

gland cell populations or during pregnancy [178]. By evaluating the DNA methylation levels 

of cell type specific markers, we could deduce the cell type composition of tumors. For 

example, mammary gland luminal cells are not methylated at the luminal cell marker Krt8 or 

Elf5, and basal cells are hypomethylated at the basal cell marker Krt5 [179, 185]. The 

progressive hypomethylation of Krt8 and Elf5 in the C3(1) tumors in comparison to the 

constant levels of Krt5 methylation at the different tumor stages suggests an expansion of 

luminal cells compared to the WT mammary gland. Besides, the changes of Igfbp6 and 

Cldn4 methylation resemble a luminal cell-like pattern and further support a high proportion 

of luminal cells in tumors. Evaluating potential common characteristics of those regions 

might help to uncover how physiological processes are highjacked during carcinogenesis.  

In addition, comparing the methylation data from the C3(1) model with RRBS data for 

tumorspheres generated from the MMTV-NeuTg breast cancer model, we found a number of 

about 400 concurrent DMRs in both models [162]. Since the two models represent two 

different molecular subtypes, namely basal-like and HER2-enriched, these overlapping 

regions might reflect a common breast cancer signature. The majority of DMRs in either 

study was unique to the models, thus supporting the differences between the molecular 

subtypes of breast cancer in the models also at the level of methylation. 

 

5.1.3 Common DMRs between the C3(1) model and human breast cancer 

patients 

While the similarity of GEMMs to human cancer types is generally established by histological 

and gene expression analyses, the comparability of epigenetic modifications such as DNA 

methylation cannot be taken for granted. Diede et al. evaluated mouse models of 

medulloblastoma, Burkitts-lymphoma and also breast cancer and did not find consistent 
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hypermethylation at CGIs between mouse and human [186]. In contrast, Sonnet et al. [166] 

confirmed promoter hypermethylation in a mouse model of AML for ≈40-45% of those genes 

with known promoter hypermethylation in human AML or MDS. Furthermore, they 

discovered nine novel hypermethylated targets in the mouse, which they validated in human 

sample sets of AML and MDS. In the APC+/Min model of intestinal adenoma, Grimm et al. 

[168] identified a conserved set of promoter DMRs (48 concordantly hyper- and 52 

hypomethylated promoters in both species) that they validated in human colon carcinoma. 

Therefore, depending on the specific model, epigenetic variation might be consistent with the 

human situation or not, and individual examination of the models is required.  

Using data of the C3(1) mouse model we could confirm that a set of promoter DMRs 

distinguishes the human basal-like subtype from the other Pam50 subtypes. Although we 

could confirm the resemblance between C3(1) and human breast cancer DMRs at the level 

of individual DMRs in about 25% of promoters, the reliable assignment to one specific 

subtype was not possible, partly due to technical limitations of our data. MCIp in mouse was 

performed on bulk tissue and not on sorted cells, and the cell type composition in tumors is 

different to that of normal tissue. Due to the nature of MCIp, we might enrich for such 

changes that reflect differences between cell types rather than between methylomes in 

tumor and normal epithelial cells. Especially adipose tissue in the breast displayed high 

differences to breast epithelial cells. For the analysis of 450k methylome data, algorithms 

were established that can compensate for differences in the cell content by comparison with 

reference methylomes of sorted cell populations [187]. Applying this algorithm to the TCGA 

normal control samples, we revealed also considerable heterogeneity in cell type 

composition of normal control samples (data not shown). While some samples mainly 

consisted of fat tissue and apparently contained hardly any epithelial cells, others were 

mainly composed of epithelial cells and stromal mammary fibroblasts. Consequently, some 

hypomethylated mouse DMRs might actually reflect tissue composition differences and thus 

might not be detectable as DMR in basal-like samples, since this subtype is already lowly 

methylated and similar to normal controls. This would hinder a correct assignment of the 

model to a human breast cancer subtype. Overall luminal subgroups were already more 

variable in methylation and would thus be more likely to overlap with the mouse DMRs. 

Using quantitative DNA methylation data for the C3(1) tumors would be a way to overcome 

this limitation and allow direct comparison of the mouse methylome with that of human 

breast cancer subtypes.  

Several recent studies compared methylation heterogeneity between common breast cancer 

and detected similar methylation subtypes as well as novel subgroups. In 2010, Holm et al. 

[78] confirmed three of the molecular breast cancer subtypes (Luminal A, Luminal B, Basal-
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like) with variations in DNA methylation. Another study discovered specific methylation 

subtypes between luminal B and basal-like patients [188], while Stirzaker and colleagues 

even described additional methylation-based subgroups within the group of triple negative 

breast cancers that are linked to different prognosis [189, 190]. Actually, the definition of 

methylation subgroups might be influenced by the composition of the cohorts, as even more 

specific subgroups were recently defined, including a new cluster with HER2-enriched 

specific DNA methylation [191]. 

Besides, the genomic location also influenced whether a region would gain or loose 

methylation [191]. While hypermethylated sites were mostly found in CGIs and promoters, 

hypomethylation occurred at the CGI shore or at the open sea, which describes regions 

without enriched CpG content and often in intergenic areas [192]. Since this genomic 

distribution of methylation changes was also true for methylation subtypes assigned by Holm 

et al. [191], this result has also implications for a correct assignment of our C3(1) mouse 

model to a subtype. So far, we compared only promoter regions, but the basal-like samples 

as well as the C3(1) were mostly hypomethylated, which according to Holm et al. happens at 

non-promoter regions. Consequently, a suitable approach for subtype comparisons would 

require the inclusion of intergenic and distal regulatory regions, which are less conserved 

among species. In summary, similar to the stratification of the subtypes on the basis of 

histology or gene expression, further studies and additional cohorts will be required to define 

the robustness of subtype markers based on DNA methylation.  

 

5.1.4 Defining the cell of origin for the C3(1) model 

Over the last years increasing effort has been invested in the identification of the cell of 

origin of various cancer types. This revealed the concept that different cancer subtypes 

might arise from different cell populations [193]. Oakes et al. described that DNA methylation 

signatures among chronic lymphocytic leukemia patients closely resembled the different 

methylation patterns observed during stages of B-cell differentiation [194]. Thus, we 

evaluated our data to delineate the potential cell of tumor origin in the C3(1) model. We 

detected enrichment for genes with differential expression in MaSCs. Knockout of DNMT1 in 

mammary glands ascertained the importance of DNA methylation for the establishment of 

the MaSC population [162]. DNMT1 knockout also reduced tumor numbers and size in the 

C3(1) and the MMTV-NeuTg breast cancer models, which underlines the importance of 

MaSCs and DNA methylation for tumor formation. Intact mammary gland architecture 

seemed to be a prerequisite for full tumor development in these models, but was already 
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disturbed by the knockout in DNMT1-/- animals. Therefore, mammary glands from the 

knockout might not be equally affected by the transgene as WT glands, arguing against the 

MaSCs as the cell of origin. Transgene expression in the C3(1) model started around 

puberty at the age of 3-4 weeks [85, 86]. Lineage tracing experiments unraveled that 

different types of progenitor cells are required to control mammary gland development 

depending on the respective developmental stage [195]. The enrichment of hypomethylated 

genes with importance for pubertal mammary gland formation further argues that 

tumorigenesis in the C3(1) model involves deregulation during the pubertal differentiation 

process. Since at this time period differentiation of the terminal end buds is driven by luminal 

progenitors, this supports the hypothesis that this cell type has a role in C3(1) tumor 

formation.  

We detected several candidate genes, for which methylation changes in the C3(1) model 

resembled the pattern observed in luminal cells or luminal progenitors and suggested these 

cells as candidates for tumor origin. This is supported by the fact that the expression of 

SV40T is detected specifically in luminal epithelial cells [85, 86]. A categorization of this 

model as basal-like breast cancer, which is called ‘basal’ due to is expression profile 

resembling that of basal cells, seems to be inappropriate. Nevertheless, evidence supporting 

the assignment of the C3(1) model to the basal-like subtype was presented by studies that 

compared gene expression profiles of different mammary cell populations with those of the 

molecular breast cancer subtypes [196-199]. These results suggested ER-negative luminal 

progenitors as the cell of origin of basal-like breast cancer because the molecular profile of 

these progenitors resembled this subtype most closely [196, 197]. Furthermore, 

transformation of different mammary gland cell populations with PyMT specifically produced 

basal-like tumors when expressed in the luminal progenitors, but not equally exclusive from 

other cell populations [198]. While the cell of origin for other molecular subtypes is still 

unclear, luminal progenitors are the most likely cell of origin for basal-like breast cancer and 

therefore, this subtype should be better referred to as ‘luminal progenitor type’ [196]. 

According to the microarray gene expression data [90], two prominent markers of luminal 

progenitors, Itga6 and Epcam, were also upregulated in C3(1) tumors, which suggested 

expansion of this cell population. Since we also frequently saw DMRs reflecting the pattern 

of luminal cells or pregnancy-induced changes [178], these observations are in line with a 

basal-like phenotype of the C3(1) model at the level of DNA methylation. 
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5.2 A map of chromatin states in the C3(1) mouse model 

The influence of epigenetic marks on the regulation of gene expression is not restricted to 

changes in DNA methylation, but is accompanied by alterations in the chromatin landscape.  

When characterizing dynamic methylation changes during carcinogenesis in the C3(1) 

mouse model, we observed the majority of recurrent DMRs, especially hypomethylated 

regions, to be located outside of known promoter regions, CGIs or 5’UTRs that would confer 

a direct regulatory influence on gene expression. Unlike these TSS-associated features, 

distal regulatory elements like enhancers do not have a fixed and tissue universal position in 

the genome and required tissue-specific definition and characterization. To that end, we 

generated a chromatin map with histone modifications for C3(1) tumor samples. 

 

5.2.1 Defining a hidden Markov model of chromatin states in the C3(1) mouse 

model 

Using ChIP-seq data for four histone marks, H3K4me1, H3K4me3, H3K27ac, and 

H3K27me3, we defined a hidden Markov model of chromatin states using the ChromHMM 

algorithm [37]. The capability of a model to annotate functions to chromatin states largely 

depends on the number and the diversity of marks. Our analyses resulted in the definition of 

an 11-state ChromHMM model, which could define several variations of promoter and 

enhancer regions, but also of repressed states. Thus, it resembled other chromatin state 

models that were based on the same histone marks [35, 38, 200-202]. Among all changes 

between chromatin states observed for the C3(1) model, states for strong enhancers 

diverged most often between tumors and MECs, followed by active and inactive promoters. 

Since enhancer states previously were shown to occupy important tissue-specific distal 

regulatory sites [35, 121, 203], we expected such a process to occur during tumor formation. 

Ernst et al. also described some tissue specificity of promoter states, but hypothesized that 

the major promoter activity is required to perform general functions across many cell types 

instead of distinct cell type-specific roles [35].  

Since silencing of genes, in particular of tumor suppressors, is a common process in cancer, 

we expected the loss of active and gain in silent promoter states that we observed at the 

TSS of RefSeq promoters or CGIs. Thus, the ChromHMM model for the chromatin data 

followed the expected patterns regarding tissue-specific occurrence and changes between 

tumor and normal mammary epithelial cells. Further diversity of the ChromHMM model could 

have been achieved by measuring additional marks, like i) H3K36me3, which marks 
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transcribed genes over the complete length of the transcript [204], ii) CTCF binding, which is 

an organizer of chromatin structure and performs insulator functions [205], or iii) DNase 

hypersensitivity sites to define regions of open chromatin at different regulatory sites 

including promoters, enhancers and insulators [206, 207]. Since we could assign the main 

functional chromatin states and observed transitions between stages in tumors and MECs, 

the 11-state model deduced from the four histone modifications was integrated with changes 

in DNA methylation during carcinogenesis. 

 

5.2.2 Tissue-specific chromatin states and DNA methylation at promoters  

A focus on chromatin states that we found enriched specifically in MECs or in tumors 

facilitated the bioinformatic comparison with alterations in DNA methylation. Combining both 

mechanisms could help to better estimate the effect on gene expression than by using 

information on DNA methylation alone.  

We hardly observed a gain in methylation at MEC-specific active promoters during tumor 

formation that could explain silencing of the active state. However, we detected 

hypermethylation at MEC-specific inactive promoter states at known targets of the PRC2 

complex. This switch from polycomb-mediated repression to DNA methylation at promoters 

is often described in cancer and is important to silence genes in differentiated cells, which 

are functionally important only during development [80, 168, 191, 208]. It was also shown 

that altered DNA methylation levels modified the deposition of repressive histone 

modifications in particular of H3K27me3 [208-210]. Since DNA methylation and H3K27me3 

are often mutually exclusive, especially at CGIs [211], hypermethylation at developmental 

polycomb targets might release the PRC2 machinery for silencing of other regions and 

contribute to silencing of tumor suppressor genes. 

We also observed a high proportion of tumor-specific active promoter sites in intergenic 

regions and exons or introns. A possible explanation might be the aberrant activation of 

alternative or even cryptic promoters during carcinogenesis as it was seen in gastric 

carcinoma [212]. Such cryptic promoters, which have not been defined in the RefSeq gene 

annotation will result in an altered transcriptome or in altered patterns of isoform expression. 

This is not limited to coding genes, but lncRNAs have also been frequently identified in 

intergenic regions, often in combination with tissue-specific and relatively low levels of 

expression. Bogu et al. [201] combined chromatin maps with RNA-seq data of eight murine 

tissues and ES cells and defined 2803 novel lncRNAs, several of which were associated 

with promoter or enhancer chromatin states. 178 of these 2803 novel lncRNAs overlapped in 
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their promoter region (±1kb of the TSS) with tumor-specific active promoter states defined in 

our model, suggesting expression of these noncoding transcripts in C3(1) tumors. Bogu and 

colleagues validated many (up to 85%) of the previously identified lncRNAs. We also 

identified several candidates with differential methylation in the C3(1) model (see Chapter 

4.3). Considering the high tissue specificity of lncRNAs, RNA-seq of C3(1) mammary gland 

tumors should uncover expression of additional lncRNAs with differential chromatin states 

and DNA methylation. 

 

5.2.3 Tissue-specific methylation changes at enhancer regions 

The highest number of epigenetic alterations both at the level of chromatin states and DNA 

methylation occurred at enhancer states for which we observed both hyper- and 

hypomethylation, depending on whether we examined MEC- or tumor-specific states. Gene 

set enrichment analysis using the microarray expression dataset also confirmed a link of 

these differentially methylated enhancers with a significant effect on expression of the 

closest genes. Enhancer hypermethylation was associated with gene silencing and 

hypomethylation was linked to increased gene expression levels. Enhancer methylation was 

also frequently described to follow tissue- and cell-type specific patterns similar to changes 

in histone marks [156, 213, 214]. Methylation at these regions sometimes correlated even 

better with gene expression than promoter methylation, especially in case of unmethylated 

promoters with constantly open chromatin [214]. Such enhancer DMRs are not limited to 

determine physiological differences between tissues, but also appear as deregulated 

between tumors and their respective normal tissue [214-216]. Recently, Heyn et al. [217] 

described tumor-specific DMRs at so called super enhancers that are especially large 

enhancer clusters with an important role in regulating the transcriptional cell identity and that 

are marked by high levels of H3K27ac and H3K4me1. These findings are concurrent with 

our observations that normal tissue-specific enhancers (MEC-specific) gained methylation 

and that tumor-specific enhancers coincided with hypomethylation in cancer. Since super 

enhancers also mark so called ‘master transcription factors’ that control cell identity, it might 

be possible to discover similar factors for tumorigenesis in the C3(1) model. So far we did 

not distinguish in our analysis between ‘normal’ enhancers and super-enhancers, which 

might be required to separate master regulators from supporting transcription factors. 
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5.2.4 Transcription factors with potential involvement in C3(1) tumorigenesis 

Since enhancer regions generally are enriched for transcription factor binding sites [35] and 

transcription factor binding was even shown to modulate DNA methylation levels at these 

distal regulatory regions [218], we performed a transcription factor motif enrichment analysis 

at the differentially methylated enhancer regions. These data suggested accumulation of 

several candidate transcription factors among which Runx1, Egr1, Etv4, and Hoxa9 were 

differentially expressed in tumors compared to WT mammary glands concordantly with 

changes in the epigenetic patterns at enhancers. Since these factors themselves were 

associated with DMRs and altered chromatin states during carcinogenesis, they might also 

be epigenetically regulated. Detailed studies of the three-dimensional chromatin architecture 

will be needed to discover the exact mechanisms of regulation of these factors, especially to 

prove interaction between the potential enhancers and their promoters. 

Enrichment of transcription factor motifs was generally quite low, probably due to a relatively 

low number of regions used for the enrichment analysis. Moreover, the list was missing 

important regulators for mammary gland formation during puberty or pregnancy, like Stat5a 

or Elf5 [131, 179, 219]. Neither of these factors was differentially expressed, which is in line 

with data for the motif search. However, we found enrichment for a motif similar to that of 

ETS-class transcription factors. One of these, Etv4 (also known as Pea3), has been shown 

to be an important regulator of mammary gland development by controlling the differentiation 

of multipotent progenitor cells [220, 221]. ETV4 is also overexpressed in triple negative 

breast cancer patients associated with higher risk of metastasis formation [222]. This is also 

true for transgenic mouse models of breast cancer. In the MMTV-neu model, expression of a 

dominant-negative Etv4 protein reduced tumor number and size [223, 224].  

RUNX1 was originally discovered as a tumor suppressor in acute myeloid leukemia and is 

known for its role in hematopoiesis [225]. More recently it was discovered to be important in 

breast carcinogenesis with yet undetermined consequences. Mutation analysis supported 

tumor suppressor function, while a different study linked high expression of RUNX1 to poor 

survival, especially of triple negative breast cancer patients, and suggested an oncogenic 

function [226]. In addition, RUNX1 was shown to influence the differentiation of bipotent 

mammary progenitor cells into mature ductal and alveolar structures [227].  

With these two factors, we identified two epigenetically regulated transcription factors that 

are important for the differentiation of progenitor cells. Overexpression of these factors might 

be an important driving mechanism for tumorigenesis in the C3(1) mouse model. 
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The two other factors, Egr1 and Hoxa9, were also differentially expressed in human breast 

cancer and could be linked to silencing of BRCA1. Binding to the BRCA1 promoter by 

HOXA9 induces BRCA1 expression; HOXA9 is downregulated in human breast cancer in a 

correlated fashion with BRCA1 [228]. BRCA1 regulation by EGR1 is more indirect at the 

posttranscriptional level, since EGR1 induces the oncogenic mir20b, which was shown to 

target BRCA1 [229]. Consistently, the murine homologue of mir20b is upregulated in tumors 

derived from the C3(1) model [92]. The BRCA1 promoter also has a binding site for ETV4, 

although this region could also be bound by other ETS-class transcription factors, which 

have similar recognition motifs. It was shown that ETS2 can form a repressor complex with 

the SWI/SNF chromatin remodeling complex to silence the BRCA1 promoter [230]. Since 

triple negative and basal-like breast cancers often display mutations or DNA methylation-

mediated silencing of BRCA1, these transcription factor-based regulation mechanisms are in 

line with the classification of the C3(1) mice as a model for basal-like breast cancer. 

Surprisingly though, Brca1 was reported as significantly upregulated in C3(1) tumor samples 

[90], which would disagree with a regulatory influence of Egr1 and Hoxa9 in the C3(1) 

model. Nevertheless, additional evidence suggests that BRCA1 upregulation can also be 

linked to aggressiveness in breast cancer samples from the triple-negative or HER2-positive 

type [231]. This upregulated BRCA1 form is actually a C-terminally truncated splice 

alternative, named BRCA1-IRIS [232], whose mRNA expression levels are stabilized by the 

loss of full length BRCA1 [233]. The mouse microarray probe for Brca1 detects the 3’UTR, 

which would no longer be present in the BRCA1-IRIS homologue; however, other splice 

variants could exist in the mouse that contain the 3’UTR and act similar to BRCA1-IRIS. 

Additional investigations are required to answer this open question. Also, it needs to be 

further clarified whether these transcription factors are transmitters of the tumorigenic 

process in the C3(1) model.  

 

5.2.5 The role of SV40T and p53 in the C3(1) model 

When examining hypomethylated regions that co-occurred with tumor-specific active 

promoters and enhancers, we observed strong overlap of the associated genes with targets 

of p53 and RB1 that were downregulated after knockdown or upregulated after 

overexpression of p53 and RB1. We even detected the p53 binding motif enriched in the 

hypomethylated tumor-specific enhancer regions (Figure 4-27).  

In the C3(1) model, p53 and Rb1 are functionally inactivated by binding of SV40T, but the 

potential targets that we identified as hypomethylated were mostly upregulated in tumors. At 
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a first glance this inverse correlation seems contradictive to the GSEA results. However, the 

functional inactivation of p53 and Rb is not necessarily equivalent to knockdown or 

overexpression of a single gene, as SV40T has been shown to interact with many proteins to 

induce transformation of cells. Hermannstädter and colleagues [234] demonstrated that 

SV40-mediated transformation of cells was even more effective in p53 positive, compared to 

p53 negative cells, since this enabled the recruitment of additional proteins including the 

acetyltransferase p300. Binding of a complex of SV40T and p53 to the promoter of IGF1 was 

also described as necessary to induce growth-promoting activity [235]. Wildtype p53 is 

generally relatively unstable in the absence of cellular stress due to an auto-regulatory loop 

that controls its degradation by ubiquitinylation, but it is stabilized by binding of SV40T [133, 

236]. Increased stability of p53 is often observed in the context of mutant p53, which is 

similar to the effect of posttranslational modifications that influence protein stability in the 

physiological context (reviewed in [237]). Mutants of p53 have even been shown to interact 

with other proteins such as transcription factors like ETS2 to direct DNA-binding activity to 

new areas [238]. Actually, the binding motifs that we discovered for the transcription factors 

Runx1 and Etv4 were identified by the de novo motif algorithm of HOMER [106] and 

displayed slight differences to their canonical binding motifs. Since p53 was shown to be 

redirected to novel proximal and distal regulatory regions upon mutation and can bind other 

factors, also in combination with SV40T, this could explain the altered target sequence of 

Runx1 and Etv4 in the C3(1) model. A study of the Wap-Tag mouse model [239] described 

that mammary tumors expressing SV40T even selected cells for occurrence of such 

mutations. Therefore, it is likely that the transformation by SV40T is more complex than loss 

of p53 activity, and additional factors have to be considered. Additional experiments have to 

clarify whether C3(1) tumors possess mutated p53 or whether SV40T-bound p53 complexes 

are recruited to sites of hypomethylation and activated transcription.  

 

 

5.3 Differentially methylated lncRNAs in the C3(1) mouse model 

The third part of this work aimed to identify lncRNAs epigenetically regulated during breast 

carcinogenesis in the C3(1) SV40 Tag mouse model [85, 90]. We found 65 known RefSeq 

lncRNAs with differentially methylated promoters. Since we were also interested how 

epigenetic regulation of lncRNAs might influence expression of protein-coding genes in their 

vicinity, we selected candidates with protein-coding neighbors and detected 21 such pairs. 
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5.3.1 LncRNAs and neighboring coding RNAs with differential methylation 

A recent study by Li et al. followed a similar approach in human breast cancer [240]. The 

authors identified several hundred differentially expressed ncRNAs (including miRNAs) with 

aberrantly methylated promoters. These ncRNAs had high diagnostic potential and were 

involved in several pathways dysregulated in human breast cancer. Five of the differentially 

methylated lncRNAs with protein-coding genes in close vicinity that we identified were also 

reported as differentially methylated in the human study, namely EVX1-AS, MAGI2-AS, 

FOXD2-AS, FENDRR, and HOXA11-AS [240], emphasizing the relevance of the mouse 

model for human breast cancer. The characterization of the lncRNAs thereby follows the 

previous data of histologic, transcriptomic and miRNA profiling, which classified the C3(1) as 

model of the more aggressive luminal B and basal-like subtypes of breast cancer [90, 92, 

241]. 

Our initial genome-wide screen identified over 6500 DMRs in the age groups of 20-24w that 

were overlapped with about 3600 murine RefSeq lncRNA promoters. In total, less than 2% 

of the lncRNA promoters were described as differentially methylated. This relatively low 

fraction might be attributed to the fact that MCIp is an enrichment-based technique and only 

detects differential methylation in regions with high CpG density and homogeneous 

methylation patterns [242]. Because of these technical restrictions, additional epigenetically 

regulated lncRNAs might have escaped detection as we mentioned before.  

Gene set enrichment analyses [117, 243] associated the genes near hypermethylated 

lncRNA with epigenetic silencing mediated by the Polycomb repressive complexes. These 

genes included several homeobox genes, which represent an essential family of 

developmental regulators with important influence on cell growth and differentiation [244]. 

Hypermethylation of homeobox genes was identified as an early epigenetic event in human 

breast cancer [81, 245]. Gal-yam et al. postulated that Polycomb repression and DNA 

hypermethylation act in parallel to reduce the regulatory plasticity of these key regulatory 

genes [80]. Our study now adds epigenetic regulation of lncRNAs located close to these 

genes as an additional layer of complexity.  

Although we detected about 3-fold more hypo- than hypermethylated regions, these 

overlapped with fewer lncRNA promoters than the hypermethylated regions. Since our 

hypomethylated regions are enriched for enhancers that are often located in intergenic 

regions distal of gene promoters, the supposed lack of hypomethylated lncRNA promoters 

can be explained. Nine of the hypomethylated lncRNAs were associated with protein-coding 

genes in their vicinity, and the functions of these genes were more diverse than those 
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identified in the proximity of hypermethylated lncRNAs. Three of the genes were reported as 

downregulated in metastases from malignant melanoma compared to primary tumors 

(Esrp2, Palmd, Lsr) [143]. In C3(1) tumors vs. normal mammary tissue, Lsr and Esrp2 were 

significantly upregulated. Expression of LSR (Lipolysis Stimulated Lipoprotein Receptor) was 

described to correlate with ER expression in human breast cancer, and levels were 

reduced in patient samples with lymph node invasion and distant metastasis [246]. ESRP2 

and its related isoform ESRP1 were found to be specifically expressed in epithelial cells 

where they play a crucial role in enforcing an epithelial-specific alternative splicing program 

[123, 146]. Loss of these splicing factors led to epithelial-to-mesenchymal transition [144, 

145, 247], which is an important process involved in development, tumor progression, 

malignant transformation, and metastasis formation [248].  

 

5.3.2 Regulation of Esrp2/Esrp2-as expression 

We verified coordinate differential expression of Esrp2 and Esrp2-as between tumor and 

normal mammary gland tissue of the C3(1) model and in various cell lines inversely 

correlating with DNA methylation. Demethylation experiments as well as luciferase reporter 

assays in cell lines demonstrate that coordinate expression of Esrp2 and Esrp2-as is 

regulated by methylation of a putative enhancer region proximal to a bidirectional promoter. 

The promoter itself is lowly methylated in both tumor tissue and normal mammary glands, as 

well as in other murine tissues for which WGBS data are publicly available. This is consistent 

with the observation that enhancer methylation often correlates even better with gene 

expression than promoter methylation [214, 249]. Fragment E4 (corresponding to amplicon 

A1) had enhancer activity in luciferase reporter assays with a minimal promoter, but not in 

combination with the Esrp2-P1 promoter region. This might be due to the fact that luciferase 

vectors lack three-dimensional chromatin organization. Moreover, we cannot exclude the 

possibility that under endogenous conditions alternative enhancer regions interact with the 

bidirectional Esrp2 promoter, for example fragments E1-E3 that overlap the CGI shore 

region and are also differentially methylated between tumor and normal breast tissue as well 

as in murine tissues with high vs. low Esrp2 expression. Chromosome conformation capture 

techniques, such as 3C or 4C-seq, might be better suited to delineate these enhancer-

promoter interactions [250].  
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5.3.3 Potential function of Esrp2-as 

The biological function of Esrp2-as still remains unclear. Knockdown or overexpression 

experiments of Esrp2-as so far do not support a role in regulating the mRNA expression of 

Esrp2, as has been described for other lncRNAs [54, 55], but protein levels of Esrp2 still 

might be affected. Alternatively, the function of Esrp2-as might lie in the act of transcription 

rather than the transcript per se. lncRNA transcription can stabilize binding of transcription 

factors as demonstrated by transcription-mediated YY1 binding to the ARID1A promoter 

[251]. Also, lncRNA transcription in antisense might render an open chromatin conformation 

as seen in the activation of the HOXA cluster [252]. Such a mechanism might explain why 

expression of Esrp2-as from an exogenous plasmid did not induce changes in Esrp2 mRNA 

expression. Besides, lncRNAs not always influence expression of the closest protein-coding 

gene, as described for RB1 and ncRNA-RB1 [253]. Although ncRNA-RB1 acted via a target 

protein different from RB1, both fed into the same tumor-inhibitory pathway, thus 

representing two arms of one common regulatory network. For Esrp2-as, we would expect a 

similar function as for Esrp2. RNA-seq of cells with knockdown or overexpression of Esrp2-

as will identify possible alternative targets.  

Consistent with our observations in the mouse model, ESRP1 and ESRP2 were found to be 

upregulated during human oral squamous cell carcinogenesis [254]. Interestingly, the 

authors observed plasticity in expression, with low expression levels at the invasive tumor 

front. Since we analyzed homogenates of whole mammary glands and bulk tumor tissue, 

similar spatial differences in expression of Esrp2 and Esrp2-as might have escaped our 

observation. Using public data from TCGA we confirmed that ESRP2 is also upregulated in 

human breast cancer and that DNA methylation inversely correlated with expression. ESRP2 

upregulation was associated with an up to 2-fold enhanced hazard ratio for tumor relapse 

within the follow-up period. Future detailed analyses including distant metastases have to 

clarify whether ESRP2 shows a plastic expression profile in human breast cancer similar to 

oral cancer, or whether alternative functions in addition to regulation of epithelial splicing are 

related to poor prognosis.  
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6. Conclusion and outlook 

In this work, we generated comprehensive genome-wide profiles of epigenetic modifications 

in the C3(1) mouse model of breast cancer, which included DNA methylation, chromatin 

state maps defined by histone modifications, and epigenetic regulation of lncRNAs. The 

changes in the epigenetic landscape were associated with genes and genomic locations that 

suggest luminal progenitor cells as the cells of origin of tumorigenesis in the C3(1) model. 

Comparison with TCGA human breast cancer samples revealed general similarity of the 

C3(1) tumors at the level of DNA methylation for regions that might be differentially 

methylated in all breast cancer subtypes. Due to the resemblance of the basal-like 

methylome to that of normal breast tissue, which produced only low numbers of DMRs, the 

approach to use DMRs for the assignment of the C3(1) model to a specific breast cancer 

subtype was not feasible. This limitation could be overcome by using quantitative 

methylation data for the mouse model. However, the fact that we observed higher frequency 

of hypomethylation in the C3(1) model, especially at intergenic and distal regulatory regions, 

still indicates resemblance to human basal-like breast cancer. So far, 450k arrays cover 

mainly promoters and CpG islands, which are often hypermethylated in cancer. The 450k 

platform was recently upgraded to contain about 850.000 CpG probes, which will cover also 

more enhancer regions, and this upgrade might facilitate the comparison to the mouse 

dataset at distal genomic regions that tend to display higher degrees of differential 

methylation than promoters. 

Combination of chromatin state maps with DNA methylation levels revealed tumor-specific 

enhancers and several transcription factors with potential binding sites in these enhancers. 

Since some of these factors were differentially expressed between tumors and normal 

mammary glands, they might be involved in important regulatory processes for 

tumorigenesis in the C3(1) model. Future experiments will clarify their specific role and their 

importance for human breast cancer. In addition, the mechanisms of how enhancer 

methylation regulates gene expression are still poorly understood and have to integrate the 

impact of the three dimensional architecture of the genome. 

This comprehensive analysis of epigenetic modifications in the C3(1) mouse model can now 

be used as a resource to characterize novel targets for biomarkers and therapeutic 

approaches in breast cancer. In our screen, we confirmed several lncRNAs that have a role 

in regulation of gene expression or are differentially methylated in human cancer studies. 

This underlines the value of our data for further studies. For our analyses we selected the 

lncRNA Esrp2-as, which was hypomethylated and coordinately overexpressed with its 

protein-coding neighbor Esrp2. The biological function of the lncRNA Esrp2-as was not 
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ascertained so far, but the study of lncRNA activities is still in its early stages and 

continuously uncovers novel modes of actions for these transcripts. Nevertheless, we 

confirmed the epigenetic regulation of Esrp2 and Esrp2-as expression. Although no 

homologous lncRNA to the murine Esrp2-as is annotated in the human genome to date, high 

levels of Esrp2 expression in breast cancer resulted in increased risk of recurrence and 

metastasis. Thus, further candidates either of the protein-coding or noncoding type might be 

identified that improve prognosis and treatment options for breast cancer.  
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Appendix  

Supplementary Table 1 Samples and quality control for MCIp-seq 

Sample ID Genotype Age # of unique reads Saturation correlation 

kinetics 41 tg 12w 2469523 0.86 

kinetics 44 tg 12w 4062985 0.86 

kinetics 78 tg 12w 4632929 0.92 

kinetics 86 wt 12w 3556016 0.9 

kinetics 34 wt 12w 4129539 0.89 

kinetics 35 wt  12w 2651980 0.86 

kinetics 40 tg 16w 2974597 0.86 

kinetics 46 tg 16w 3645077 0.89 

kinetics 37 tg 16w 2422712 0.85 

kinetics 63 wt 16w 3006720 0.85 

kinetics 39 wt 16w 3775421 0.92 

kinetics 60 wt 16w 3912173 0.9 

kinetics 28 wt 20w 2254463 0.8 

kinetics 33 wt 20w 3694733 0.75 

kinetics 27 wt 20w 4849901 0.9 

kinetics 8 tg 21w 2178260 0.85 

kinetics 47 tg 21w 2660666 0.79 

kinetics 7 tg 21w 2942252 0.85 

kinetics 15 tg 23w 3276032 0.75 

kinetics 16 tg 23w 3317800 0.87 

kinetics 4 tg 24w 2017508 0.85 

kinetics 57 wt 24w 3555475 0.91 

kinetics 58 wt 24w 2328101 0.89 

kinetics 56 wt 24w 3290014 0.79 

kinetics 29 tg 8w 2918066 0.86 

kinetics 80 tg 8w 2137183 0.88 

kinetics 79 tg 8w 3543092 0.91 

kinetics 59 wt 8w 3242237 0.83 

kinetics 42 wt 8w 3990270 0.92 

kinetics 45 wt 8w 4072307 0.91 
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Supplementary Table 2 Genomic Regions for technical and biological validation 

Genomic location for 

EpiTYPER amplicon 

Amplicon 

name 

Spearman 

r 
p-value R2 DMR 

Techincal validation 

chr2:179895645-179896133 Cdh4 -0.49 0.01 0.29 Hypomethylation 

chr2:32751370-32751845 Tor2a 0.77 < 0.0001 0.60 Hypomethylation 

chr2:54436305-54436765 Galnt13 0.69 < 0.0001 0.63 Hypermethylation 

chr3:55783149-55783648 Mab21l1 0.86 < 0.0001 0.76 Hypermethylation 

chr4:152126124-152126565 Espin 0.62 0.0004 0.67 Hypermethylation 

chr5:115446949-115447324 Msi1 0.46 0.01 0.35 Hypomethylation 

chr6:125145282-125145767 Iffo1 0.71 < 0.0001 0.78 Hypermethylation 

chr6:42261839-42262170 Tmem139 0.47 0.01 0.32 Hypomethylation 

chr6:52204531-52204798 Hoxa5 0.68 < 0.0001 0.52 Hypomethylation 

chr6:90462107-90462398 Klf15 0.70 < 0.0001 0.70 Hypermethylation 

chr7:98144903-98145367 Omp 0.59 0.0006 0.41 Hypomethylation 

chr11:119044877-119045298 Cbx8_intergenic 0.57 0.001 0.73 Hypermethylation 

chr16:7982658-7983035 Chr16_intergenic 0.80 < 0.0001 0.56 Hypomethylation 

chr17:23679488-23679927 Cldn6 0.51 0.004 0.78 Hypermethylation 

Biological validation 

chr1:135258389-135258793 Elf3 0.76  < 0.0001 0.51 Hypomethylation 

chr1:24160814-24160833 Unc5b 0.59 0.007 0.53 Hypomethylation 

chr2:35282286-35282572 Gsn 0.56 0.02 0.83 Hypermethylation 

chr5:134946186-134946577 Cldn4 0.82  < 0.0001 0.62 Hypomethylation 

chr7:141080004-141080320 Pkp3 0.75  < 0.0001 0.45 Hypomethylation 

chr18:26501830-26501849 Igfbp6 0.57 0.001 0.67 Hypermethylation 
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Supplementary Table 3 RefSeq genes with hypermethylated promoter 

Genomic location of DMR Gene ID RefSeqID 
Expression 
difference 
(mouse) 

a)
 

p-value 
b)

 
expression 
difference 
(human) 

c)
 

chr2:35282311-35282561 Gsn NM_146120 -2.95 0.00017 -1.64 

chr15:102144667-102144917 Igfbp6 NM_008344 -2.11 0.00002 -2.08 

chr9:65631078-65631328 Rbpms2 NM_028030 -1.82 0.00056 -0.79 

chr2:91931686-91931936 Mdk NM_001012335 -1.78 0.00158 0.46 

chr4:141010703-141010953 Mfap2 NM_001161799 -1.76 0.00234 1.58 

chr9:37527495-37527745 Esam NM_027102 -1.51 0.00039 0.05 

chr6:125145567-125145817 Iffo1 NM_001039669 -1.50 0.00011 
 

chr1:174921625-174921875 Grem2 NM_011825 -1.42 0.0028 0.07 

chr11:75167750-75168000 Hic1 NM_001098203 -1.34 0.00000 
 

chrX:23364574-23364824 Klhl13 NM_026167 -1.32 0.05 -0.89 

chr11:75468058-75468308 Tlcd2 NM_027249 -1.30 0.00236 
 

chr4:136247311-136247561 Tcea3 NM_011542 -1.27 0.015 -0.76 

chr6:145121043-145121293 Lrmp NM_008511 -1.15 0.019 -0.03 

chr16:18588802-18589052 Tbx1 NM_011532 -1.12 0.05 -0.01 

chr15:75893856-75894106 Naprt1 NM_172607 -1.12 0.00120 0.59 

chr11:95841993-95842243 Gngt2 NM_001038664 -1.01 0.00022 0.06 

chr14:63944058-63944308 Sox7 NM_011446 -1.00 0.005 
 

chr14:70627074-70627324 Epb4.9 NM_001252662 -0.91 0.00637 
 

chr8:125669863-125670113 4933403G14Rik NM_028908 -0.82 0.00557 
 

chr11:83849410-83849660 Hnf1b NM_009330 -0.79 0.03 -0.05 

chr7:3301951-3302201 Prkcg NM_011102 -0.72 0.00695 0.05 

chr7:3666993-3667243 Leng1 NM_027203 -0.67 0.02 -0.24 

chr6:65381235-65381485 C130060K24Rik NM_175524 -0.67 0.00137 
 

chr7:130692536-130692786 Tacc2 NM_021314 -0.66 0.13 -0.14 

chr7:57591335-57591585 Gabrb3 NM_008071 -0.66 0.02 -0.07 

chr2:74682346-74682596 Hoxd11 NM_008273 -0.64 0.10 0.05 

chr7:79515616-79515866 AI854517 NR_040312 -0.62 0.20 
 

chrX:81070354-81070604 Tmem47 NM_138751 -0.57 0.15 0.22 

chr2:54436319-54436569 Galnt13 NM_173030 -0.54 0.09 0.84 

chr18:37737159-37737409 Pcdhga9 NM_033592 -0.51 0.15 
 

chr7:40899050-40899300 Vstm2b NM_021387 -0.49 0.13 
 

chr8:18741159-18741409 Angpt2 NM_007426 -0.47 0.06 1.28 

chr11:45979956-45980206 Sox30 NM_173384 -0.46 0.09 0.30 

chr7:57386882-57387132 Gabrg3 NM_008074 -0.45 0.04 
 

chr7:57509401-57509651 Gabra5 NM_176942 -0.44 0.23 
 

chr16:31428016-31428266 Bdh1 NM_001122683 -0.41 0.29 0.19 

chr17:34629479-34629729 Prrt1 NM_030890 -0.41 0.11 -0.07 

chr6:31565131-31565381 Podxl NM_013723 -0.41 0.27 0.07 

chr3:68572420-68572670 Schip1 NM_013928 -0.38 0.34 0.72 

chrX:155216273-155216523 Sat1 NM_009121 -0.36 0.17 
 

chr8:29219472-29219722 Unc5d NM_153135 -0.35 0.26 -0.20 

chr16:4418965-4419215 Adcy9 NM_009624 -0.34 0.30 -0.14 

chr4:91371538-91371788 Elavl2 NM_010486 -0.34 0.30 0.53 

chrX:120290484-120290734 Pcdh11x NM_001081385 -0.33 0.16 -0.10 

chr16:41533262-41533512 Lsamp NM_175548 -0.32 0.26 
 

chr5:3845061-3845311 4932412H11Rik NM_172879 -0.32 0.08 
 

chr9:21990096-21990346 Rgl3 NM_023622 -0.30 0.27 
 

chr11:95841993-95842243 Abi3 NM_001163464 -0.28 0.26 0.23 

chr19:6926058-6926308 1700019N12Rik NM_001039494 -0.28 0.34 
 

chr2:152754023-152754273 Cox4i2 NM_053091 -0.27 0.27 -0.05 

chr1:171360360-171360610 Klhdc9 NM_001033039 -0.26 0.33 
 

chr17:55445750-55446000 St6gal2 NM_172829 -0.24 0.16 0.21 

chr18:37662063-37662313 Pcdhga1 NM_033584 -0.24 0.21 
 

chr13:34132346-34132596 Tubb2b NM_023716 -0.23 0.44 
 

chr11:69120344-69120594 Hes7 NM_033041 -0.23 0.10 0.00 

chr19:31083182-31083432 Cstf2t NM_031249 -0.22 0.33 -0.02 

chrX:74270554-74270804 Rpl10 NM_052835 -0.20 0.48 -1.29 

chr11:120048259-120048509 Aatk NM_001198785 -0.20 0.51 -0.19 

chr6:6864858-6865108 Dlx6as2 NR_002839 -0.20 0.51 
 

chr11:11684966-11685216 Ikzf1 NM_009578 -0.18 0.30 
 

chr4:15881210-15881460 Calb1 NM_009788 -0.16 0.69 -0.51 

chr14:39473342-39473592 Nrg3 NM_001190187 -0.15 0.59 0.45 

chr3:82876256-82876506 4930564K09Rik NR_040382 -0.14 0.58 
 

chr8:12947852-12948102 Mcf2l NM_001159485 -0.14 0.57 
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chr1:135584935-135585185 Nav1 NM_173437 -0.13 0.61 0.10 

chr5:138280393-138280643 Gpc2 NM_172412 -0.13 0.60 0.52 

chr2:74763148-74763398 Hoxd1 NM_010467 -0.10 0.55 -0.29 

chr13:72816469-72816719 D730050B12Rik NR_046196 -0.10 0.68 
 

chr9:56865005-56865255 Cspg4 NM_139001 -0.09 0.82 -0.16 

chr14:15438659-15438909 Lrrc3b NM_146052 -0.08 0.71 -0.17 

chr6:113469662-113469912 Il17rc NM_134159 -0.08 0.61 0.12 

chr1:32172648-32172898 Khdrbs2 NM_133235 -0.05 0.77 
 

chr1:187607657-187607907 Esrrg NM_001243792 -0.05 0.90 -0.04 

chr5:119669000-119669250 Tbx3 NM_011535 -0.04 0.87 -1.50 

chr7:101818524-101818774 Phox2a NM_008887 -0.03 0.93 -0.13 

chr8:84701610-84701860 Lyl1 NM_008535 -0.02 0.95 -0.22 

chr17:50293046-50293296 Dazl NM_010021 -0.01 0.95 -0.52 

chr11:72961653-72961903 Atp2a3 NM_001163336 -0.01 0.97 0.05 

chr3:86548149-86548399 Mab21l2 NM_011839 0.00 0.97 0.03 

chr8:99416030-99416280 Cdh8 NM_001039154 0.01 0.97 -0.02 

chrX:73967794-73968044 Hcfc1 NM_008224 0.03 0.86 -0.15 

chr18:37747221-37747471 Pcdhga10 NM_033593 0.03 0.92 
 

chr5:128432816-128433066 Tmem132d NM_172885 0.04 0.89 
 

chr4:120748378-120748628 Kcnq4 NM_001081142 0.05 0.93 -0.15 

chr6:90462100-90462350 Klf15 NM_023184 0.05 0.71 0.00 

chrX:66649445-66649695 Slitrk2 NM_001161431 0.06 0.81 0.13 

chr14:49525613-49525863 Slc35f4 NM_029238 0.07 0.73 -0.03 

chr11:97995908-97996158 Arl5c NM_207231 0.08 0.79 
 

chr6:110645837-110646087 Grm7 NM_177328 0.08 0.60 -0.07 

chr15:85131982-85132232 Ribc2 NM_026357 0.08 0.38 0.46 

chr1:109982763-109983013 Cdh7 NM_172853 0.09 0.56 -0.19 

chr1:69826920-69827170 Spag16 NM_029160 0.10 0.62 0.25 

chr15:85131982-85132232 Smc1b NM_080470 0.10 0.73 1.11 

chr15:103011834-103012084 Hoxc5 NM_175730 0.11 0.47 0.07 

chr3:53486672-53486922 Stoml3 NM_153156 0.14 0.59 0.15 

chr1:55363275-55363525 Boll NM_001113367 0.19 0.06 0.23 

chr1:90202930-90203180 Cxcr7 NM_007722 0.22 0.50 -0.32 

chr18:37685448-37685698 Pcdhga4 NM_033587 0.23 0.24 
 

chr17:23679308-23679558 Cldn6 NM_018777 0.25 0.40 -0.30 

chr19:50678214-50678464 Sorcs1 NM_001252501 0.31 0.21 -0.21 

chr11:96365809-96366059 Hoxb1 NM_008266 0.32 0.31 -0.09 

chr14:121738378-121738628 Dock9 NM_001128307 0.32 0.37 0.20 

chr4:123105426-123105676 Bmp8b NM_007559 0.33 0.42 
 

chrX:36874776-36875026 Ube2a NM_019668 0.42 0.14 0.27 

chr11:98349233-98349483 Ppp1r1b NM_144828 0.43 0.49 -0.30 

chrX:12160255-12160505 Bcor NM_001168321 0.44 0.18 -0.09 

chrX:12761920-12762170 Med14 NM_012005 0.45 0.21 -0.22 

chr3:66219976-66220226 Ptx3 NM_008987 0.48 0.45 0.70 

chr11:98386638-98386888 Pnmt NM_008890 0.55 0.05 -1.42 

chr11:120608620-120608870 Npb NM_153288 0.63 0.00207 
 

chr4:155345209-155345459 Prkcz NM_001039079 0.66 0.00006 0.51 

chrX:142390725-142390975 Acsl4 NM_001033600 0.79 0.07 0.13 

chr8:105374538-105374788 Plekhg4 NM_001081333 0.88 0.04 
 

chr17:24206640-24206890 Tbc1d24 NM_001163847 0.91 0.01 
 

chr17:15376986-15377236 Dll1 NM_007865 0.94 0.09 -0.99 

chr3:84220856-84221106 Trim2 NM_030706 0.97 0.03 0.18 

chr7:112158999-112159249 Dkk3 NM_015814 0.99 0.00904 -1.69 

chr5:138280393-138280643 Stag3 NM_016964 1.01 0.09 0.50 

chr17:23741629-23741879 Paqr4 NM_023824 1.35 0.00137 0.13 

chr16:89818004-89818254 Tiam1 NM_001145887 1.56 0.00003 -0.03 

chr7:63444459-63444709 Otud7a NM_130880 2.36 0.00009 -0.37 

chr17:23679308-23679558 Tnfrsf12a NM_001161746 2.60 0.00005 0.63 

chr1:39720817-39721067 Rfx8 NM_001145660 Not covered 
  

chr1:180332539-180332789 Gm5069 NR_003623 Not covered 
  

chr1:92848494-92848744 Mir149 NR_029559 Not covered 
  

chr3:89183647-89183897 Fam189b NM_001014995 Not covered 
  

chr3:95240913-95241163 Gm128 NM_001024841 Not covered 
  

chr3:82876256-82876506 Rbm46 NM_001146328 Not covered 
  

chr3:55780359-55780609 Mab21l1 NM_010750 Not covered 
 

-0.15 

chr3:37896911-37897161 LOC626410 NR_040559 Not covered 
  

chr4:43653502-43653752 Spag8 NM_001007463 Not covered 
 

0.25 

chr4:98726869-98727119 L1td1 NM_001081202 Not covered 
 

-0.66 

chr4:145463882-145464132 Smarca5-ps NR_002888 Not covered 
  

chr4:114907183-114907433 9130206I24Rik NR_030721 Not covered 
  

chr5:138820004-138820254 Gm5294 NM_001195128 Not covered 
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chr5:144545803-144546053 Nptx2 NM_016789 Not covered 
 

0.40 

chr5:57719494-57719744 4932441J04Rik NR_015588 Not covered 
  

chr6:134981757-134982007 Apold1 NM_001109914 Not covered 
 

-0.64 

chr6:47943239-47943489 Zfp783 NR_027963 Not covered 
  

chr6:52315726-52315976 5730457N03Rik NR_038163 Not covered 
  

chr7:144284384-144284634 Shank2 NM_001081370 Not covered 
  

chr7:57386882-57387132 Gm9962 NR_033504 Not covered 
  

chr7:40899050-40899300 A230077H06Rik NR_040329 Not covered 
  

chr7:14622792-14623042 Gm18756 NR_045119 Not covered 
  

chr8:121085019-121085269 1110050K14Rik NR_045471 Not covered 
  

chr9:76014949-76015199 Hmgcll1 NM_173731 Not covered 
  

chr10:59223216-59223466 Sept10 NM_001024910 Not covered 
  

chr10:53751281-53751531 Fam184a NM_001081428 Not covered 
  

chr11:120013446-120013696 Mir3065 NR_037225 Not covered 
  

chr15:36140308-36140558 Rgs22 NM_001195748 Not covered 
 

-0.43 

chr18:89769226-89769476 Dok6 NM_001039173 Not covered 
  

chr18:37751821-37752071 Pcdhgb7 NM_033579 Not covered 
  

chr18:37694503-37694753 Pcdhga5 NM_033588 Not covered 
  

chr18:37725808-37726058 Pcdhga8 NM_033591 Not covered 
  

chr18:37756018-37756268 Pcdhga11 NM_033594 Not covered 
  

chrUn_JH584304:59822-60072 Pisd-ps3 NR_003518 Not covered 
  

chrX:74270554-74270804 Snora70 NR_002899 Not covered 
  

chrX:12160255-12160505 2900008C10Rik NR_045434 Not covered 
  

chrX:12761920-12762170 Gm14634 NR_045852 Not covered 
  

a) Expression data are taken from [90]. Values are reported as the differences between 

tumor and normal samples in log2 array intensities relative to a pool of whole mouse embryo 

RNA 

b) Student’s t-test, two-sided. 

c) Expression data are taken from [90]. Values are reported as the differences between tumor 

and normal samples in log2 array intensities relative to a pool of Stratagene universal 

reference RNA mixed with 1/10 added MCF7 and ME16C RNAs. 

Cells with gray background are significantly (p-value < 0.05) downregulated. 
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Supplementary Table 4 RefSeq genes with hypomethylated promoter 

Genomic location of DMR Gene ID RefSeqID 
Expression 
difference 
(mouse) 

a)
 

p-value 
b)

 
Expression 
difference 
(human) 

c)
 

chr7:24636377-24636564 Lypd3 NM_133743 3.57 0.00002 -0.98 

chr13:100616541-100616728 Marveld2 NM_001038602 3.12 0.002 0.08 

chr15:76457331-76458226 Scx NM_198885 2.97 0.00004 
 

chr4:127355683-127355994 Gjb4 NM_008127 2.72 0.00000003 -0.12 

chr11:100260949-100261138 Krt17 NM_010663 2.60 0.002 -1.12 

chr15:101412163-101412892 Krt7 NM_033073 2.56 0.00000054 1.40 

chr11:69965053-69965203 Cldn7 NM_001193619 2.39 0.00001 -0.10 

chr4:140774047-140774234 Padi4 NM_011061 2.33 0.00003 -0.19 

chr7:141079944-141080170 Pkp3 NM_019762 2.26 0.0001 0.11 

chr5:31251572-31252211 Krtcap3 NM_027221 2.25 0.0003 1.10 

chr6:83135716-83136125 Rtkn NM_001136227 2.11 0.00002 0.28 

chr11:70323238-70323425 Alox12e NM_145684 1.96 0.03 
 

chr1:135258308-135258540 Elf3 NM_001163131 1.88 0.000005 0.08 

chr11:5263062-5263287 Kremen1 NM_032396 1.80 0.04 -0.23 

chr9:21312083-21312591 Ap1m2 NM_001110300 1.75 0.009 -0.68 

chr11:121519255-121519443 Zfp750 NM_178763 1.62 0.02 
 

chr16:96235671-96236094 B3galt5 NM_001122993 1.62 0.03 -0.06 

chr16:4640000-4640413 Vasn NM_139307 1.58 0.00004 0.61 

chr15:102003991-102004357 Krt8 NM_031170 1.55 0.0004 -0.65 

chr9:43311200-43311641 Trim29 NM_023655 1.48 0.03 -0.08 

chr10:60832976-60833163 Unc5b NM_029770 1.46 0.006 2.10 

chr6:113458903-113459053 Il17re NM_001034029 1.38 0.004 -1.48 

chr11:99492865-99493102 Krt23 NM_033373 1.34 0.17 1.45 

chr6:86628202-86628467 Asprv1 NM_026414 1.31 0.12 
 

chr11:106267316-106267466 Smarcd2 NM_031878 1.26 0.004 -0.15 

chr7:31115151-31115352 Hpn NM_001110252 1.26 0.02 -0.64 

chr15:89174219-89174369 Plxnb2 NM_001159521 1.25 0.0003 -0.76 

chr5:134946095-134946730 Cldn4 NM_009903 1.22 0.02 0.29 

chr15:76616535-76616685 Slc39a4 NM_028064 1.20 0.03 0.94 

chr17:25273274-25273424 Ube2i NM_001177609 1.19 0.0003 -0.42 

chr4:133601497-133601987 Sfn NM_018754 1.10 0.005 0.01 

chr11:120949514-120949701 Slc16a3 NM_001038653 1.09 0.02 1.74 

chr3:88364477-88364665 Paqr6 NM_198410 1.09 0.006 -0.26 

chr17:46728667-46729254 Gnmt NM_010321 1.03 0.18 -0.63 

chr14:87141776-87142066 Diap3 NM_019670 1.02 0.005 
 

chr19:53040296-53040495 Xpnpep1 NM_133216 0.92 0.01 0.27 

chr15:75910613-75910913 Eef1d NM_023240 0.85 0.03 -0.36 

chr2:167931553-167931703 Ptpn1 NM_011201 0.83 0.010 0.16 

chr4:118527171-118527416 2610528J11Rik NM_025572 0.82 0.04 
 

chr19:8897036-8897281 Ganab NM_008060 0.82 0.004 0.67 

chr14:55576389-55576578 Psme1 NM_011189 0.80 0.005 -0.35 

chr17:45733385-45733574 1600014C23Rik NM_028164 0.80 0.06 
 

chr17:33918366-33918632 Tapbp NM_001025313 0.80 0.01 0.35 

chr17:63937835-63938145 Fert2 NM_008000 0.71 0.007 
 

chr9:119562480-119562959 Scn5a NM_001253860 0.70 0.06 0.20 

chr5:24427536-24427763 Slc4a2 NM_001253892 0.68 0.0001 -0.19 

chr18:36663949-36664099 Eif4ebp3 NM_201256 0.66 0.02 
 

chr7:110626431-110626581 Adm NM_009627 0.64 0.26 1.24 

chr2:77171675-77172145 Ccdc141 NM_001025576 0.63 0.009 
 

chr11:3540494-3540768 Smtn NM_001159284 0.60 0.09 -0.43 

chr18:42053900-42054199 Sh3rf2 NM_001146299 0.58 0.10 1.40 

chr9:75561161-75561349 Tmod3 NM_016963 0.57 0.12 -0.22 

chr14:70429027-70429310 Piwil2 NM_021308 0.55 0.09 0.07 

chrX:72274358-72274583 Gabre NM_017369 0.53 0.24 0.09 

chr11:69858652-69858877 Tnk1 NM_031880 0.53 0.006 0.15 

chr8:9977186-9977374 Abhd13 NM_001081119 0.52 0.05 0.32 

chr8:24674648-24674873 Adam18 NM_010084 0.50 0.01 0.07 

chr14:26533368-26533518 Slmap NM_032008 0.49 0.12 -0.64 

chr14:21991252-21991402 Zfp503 NM_145459 0.45 0.29 
 

chr7:98145038-98145486 Omp NM_011010 0.45 0.008 -0.21 

chr15:76307199-76307558 Oplah NM_153122 0.45 0.05 0.91 

chr16:29544864-29545014 Atp13a4 NM_001164613 0.44 0.25 -0.33 

chr5:139812997-139813184 Tmem184a NM_144914 0.42 0.15 
 

chr17:47926035-47926224 Foxp4 NM_001110824 0.40 0.04 0.20 

chr4:133582444-133582631 Gpn2 NM_133884 0.40 0.03 0.36 

chr8:68276613-68276763 Sh2d4a NM_028182 0.40 0.17 0.07 

chr15:76329097-76329362 Gpaa1 NM_010331 0.39 0.20 0.13 
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chr5:139423338-139423565 Gper1 NM_029771 0.39 0.06 -0.51 

chr9:21337847-21338109 Slc44a2 NM_152808 0.39 0.31 -0.12 

chr11:78324412-78324562 Aldoc NM_009657 0.36 0.40 -0.17 

chr15:101940014-101940239 Krt79 NM_146063 0.34 0.23 
 

chr6:42261973-42262160 Tmem139 NM_175408 0.33 0.008 1.23 

chr9:106562149-106562339 Iqcf3 NM_026645 0.32 0.23 
 

chr8:3392847-3393246 Arhgef18 NM_133962 0.31 0.24 0.17 

chr8:9977186-9977374 Lig4 NM_176953 0.30 0.50 0.13 

chr15:76205758-76206103 Plec NM_001163540 0.26 0.10 0.33 

chr7:142899883-142900310 Th NM_009377 0.25 0.10 0.03 

chr11:98936204-98936561 Rara NM_001177302 0.24 0.32 0.05 

chr9:110624418-110624693 Nradd NM_026012 0.24 0.13 
 

chr2:168601930-168602163 Nfatc2 NM_001037178 0.23 0.20 0.27 

chr13:40287758-40287945 Ofcc1 NM_172143 0.23 0.40 -0.27 

chr15:102103467-102103655 Tenc1 NM_153533 0.23 0.62 -0.61 

chr11:118442724-118442874 C1qtnf1 NM_001204130 0.21 0.32 0.09 

chr7:30233312-30233698 Tbcb NM_025548 0.20 0.40 0.21 

chr11:96269651-96269801 Hoxb9 NM_008270 0.18 0.51 -0.68 

chr14:65968928-65969117 Clu NM_013492 0.18 0.63 -1.95 

chr8:71688023-71688210 Insl3 NM_013564 0.17 0.49 0.14 

chr5:32353688-32353838 Plb1 NM_172147 0.17 0.35 0.35 

chr18:34580715-34580910 Nme5 NM_080637 0.17 0.51 -1.19 

chr4:149675411-149675607 Pik3cd NM_001164051 0.17 0.09 -0.03 

chr5:135000839-135001026 Wbscr25 NR_026907 0.17 0.24 
 

chr1:9601670-9601857 3110035E14Rik NM_178399 0.14 0.53 
 

chr11:78385885-78386073 Foxn1 NM_008238 0.13 0.48 0.20 

chr12:59095638-59095825 Mia2 NM_177321 0.13 0.59 0.07 

chr2:14873795-14873983 Cacnb2 NR_045533 0.12 0.60 0.12 

chr8:105290443-105290630 4931428F04Rik NM_001166394 0.11 0.72 
 

chr2:32741419-32742591 6330409D20Rik NM_027529 0.10 0.66 
 

chr5:135980336-135980607 Zp3 NM_011776 0.10 0.50 0.16 

chr12:58210486-58210636 Sstr1 NM_009216 0.09 0.59 0.14 

chr7:46861140-46861328 Ldhc NM_013580 0.08 0.47 -0.56 

chr15:100936150-100936624 Scn8a NM_011323 0.07 0.82 -0.19 

chr4:43706208-43706395 Olfr71 NM_019486 0.06 0.64 
 

chr5:33104465-33104653 Slc5a1 NM_019810 0.05 0.93 0.08 

chr5:149411715-149412325 Medag NM_027519 0.05 0.93 
 

chr11:104186807-104186994 Sppl2c NM_001082535 0.05 0.82 
 

chr2:120032977-120033127 Pla2g4b NM_145378 0.03 0.86 0.36 

chr7:30306593-30306780 Alkbh6 NM_198027 0.03 0.88 -0.43 

chr8:84044760-84045022 Rln3 NM_173184 0.00 1.00 0.04 

chr9:108796235-108796385 Ip6k2 NM_029634 -0.01 0.98 -0.88 

chr7:28691213-28691363 Fbxo27 NM_001163702 -0.03 0.90 0.11 

chr2:163397212-163397658 Jph2 NM_001205076 -0.03 0.82 -0.05 

chr16:88562344-88562839 Cldn8 NM_018778 -0.04 0.90 -0.84 

chr11:99089291-99089478 Tns4 NM_172564 -0.04 0.83 -2.14 

chr5:114970817-114971005 Hnf1a NM_009327 -0.05 0.84 -0.22 

chr9:58741420-58741570 2410076I21Rik NM_028598 -0.06 0.88 
 

chr11:100269700-100269850 Krt42 NM_212483 -0.06 0.79 
 

chr4:52989285-52989472 Nipsnap3a NM_028529 -0.08 0.76 0.04 

chr3:116968340-116968490 Palmd NM_023245 -0.09 0.84 -0.78 

chr14:54935173-54935434 Cmtm5 NM_026066 -0.10 0.75 0.10 

chr6:145048444-145048899 Bcat1 NM_001024468 -0.11 0.46 -0.22 

chr8:48099294-48099481 Dctd NM_001161516 -0.11 0.53 -0.34 

chr11:69686883-69687033 Tnfsf13 NM_001159505 -0.13 0.73 -0.24 

chr17:31198230-31198488 Tmprss3 NM_001163776 -0.17 0.35 0.20 

chr5:112391522-112391985 Asphd2 NM_028386 -0.18 0.28 -0.04 

chr17:57087408-57087783 Tubb4a NM_009451 -0.18 0.68 0.01 

chr11:4949263-4949505 Nefh NM_010904 -0.19 0.20 -0.03 

chr9:107579125-107579275 Nat6 NM_019750 -0.19 0.29 -0.29 

chr1:89932541-89932953 Gbx2 NM_010262 -0.20 0.26 0.36 

chr11:82181445-82181595 Ccl1 NM_011329 -0.20 0.47 0.27 

chr7:28540939-28541313 Sycn NM_026716 -0.21 0.49 -0.11 

chrX:38600594-38600744 Mcts1 NM_026902 -0.22 0.47 0.31 

chr6:127015494-127015750 Fgf6 NM_010204 -0.23 0.29 0.12 

chr11:34207857-34208088 Foxi1 NM_023907 -0.24 0.46 0.23 

chr7:45667807-45668003 Fut2 NM_018876 -0.24 0.50 -0.18 

chr6:113501774-113502020 Prrt3 NM_172487 -0.25 0.18 -0.43 

chr5:77114817-77115086 Hopx NM_175606 -0.26 0.44 
 

chr11:121160590-121160960 Uts2r NM_145440 -0.27 0.22 -1.19 

chr4:156228136-156228332 Plekhn1 NM_001008233 -0.27 0.70 0.37 
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chr13:38149954-38150142 Dsp NM_023842 -0.28 0.21 -0.04 

chr7:19092583-19092733 Six5 NM_011383 -0.30 0.24 0.60 

chr5:119832520-119832711 Tbx5 NM_011537 -0.30 0.21 0.26 

chr15:101491270-101491532 Krt85 NM_016879 -0.30 0.13 -0.05 

chr15:10952359-10952509 C1qtnf3 NM_001204134 -0.30 0.26 -0.04 

chr17:34038638-34039065 Col11a2 NM_009926 -0.31 0.28 0.40 

chr14:118922461-118922950 Dzip1 NM_025943 -0.33 0.30 0.61 

chr9:115908341-115908491 Gadl1 NM_028638 -0.34 0.12 0.11 

chr11:96282039-96282189 Hoxb8 NM_010461 -0.37 0.18 0.44 

chr19:5426400-5426588 Drap1 NM_024176 -0.37 0.10 -0.21 

chr17:35074114-35074264 Ly6g6d NM_033478 -0.37 0.43 
 

chr6:125690481-125690722 Ano2 NM_153589 -0.38 0.41 -0.08 

chr11:78341746-78341937 Unc119 NM_011676 -0.38 0.12 -0.15 

chr6:52165691-52166054 Hoxa2 NM_010451 -0.39 0.28 
 

chr7:45638724-45639041 Mamstr NM_172418 -0.40 0.34 
 

chr7:27257234-27257539 Numbl NM_010950 -0.41 0.33 0.38 

chr2:170601772-170602085 4930470P17Rik NR_027825 -0.43 0.03 
 

chr6:138583226-138583413 Lmo3 NM_207222 -0.44 0.17 0.25 

chr14:70207897-70208047 Sorbs3 NM_011366 -0.45 0.03 -0.43 

chr17:25471983-25472133 Tekt4 NM_027951 -0.47 0.16 0.19 

chr1:192189769-192189957 Kcnh1 NM_001038607 -0.48 0.17 0.02 

chr11:49793227-49793377 Gfpt2 NM_013529 -0.48 0.01 0.82 

chr10:127077624-127077774 Agap2 NM_001033263 -0.49 0.13 -0.29 

chr7:45420078-45420313 Lhb NM_008497 -0.50 0.06 -0.11 

chr7:126624820-126625007 Nupr1 NM_019738 -0.51 0.30 -0.59 

chr5:24445657-24445859 Fastk NM_023229 -0.52 0.009 0.09 

chr11:99245094-99245283 Krt222 NM_172946 -0.58 0.09 
 

chr7:45240824-45241284 Cd37 NM_007645 -0.58 0.002 0.74 

chr2:155945167-155945370 Gdf5 NM_008109 -0.61 0.09 0.10 

chr4:133220894-133221081 Cd164l2 NM_027152 -0.64 0.06 
 

chrX:73659919-73660108 Pnck NM_001199351 -0.65 0.0005 0.00 

chr10:41886559-41886709 Sesn1 NM_001013370 -0.66 0.05 -1.04 

chr15:101924561-101924828 Krt4 NM_008475 -0.67 0.03 -0.29 

chr12:8598791-8598941 Slc7a15 NM_177802 -0.70 0.09 
 

chr10:78466662-78466812 Pdxk NM_172134 -0.70 0.11 -0.13 

chr11:96341911-96342400 Hoxb3 NM_010458 -0.73 0.003 0.17 

chr9:50727354-50727544 Dixdc1 NM_178118 -0.77 0.003 
 

chr4:155655249-155655478 Mmp23 NM_011985 -0.78 0.002 
 

chr19:4229814-4229964 Pold4 NM_027196 -0.79 0.002 -0.32 

chr11:112711264-112711414 BC006965 NR_024085 -0.81 0.19 
 

chr7:24480418-24480610 Cadm4 NM_153112 -0.83 0.002 
 

chr7:45725346-45725496 Spaca4 NM_027055 -0.90 0.15 0.27 

chr9:50752151-50752338 Hspb2 NM_001164708 -1.05 0.0009 0.13 

chr10:116177244-116177394 Ptprr NM_001161838 -1.06 0.0010 -0.17 

chr11:69397660-69397887 Tmem88 NM_025915 -1.16 0.00003 -0.36 

chr11:96301942-96302131 Hoxb5 NM_008268 -1.20 0.002 0.04 

chr3:94371712-94371862 Rorc NM_011281 -1.21 0.002 -0.07 

chr5:30920635-30921209 Khk NM_008439 -1.26 0.00009 0.32 

chr2:113828891-113829191 Scg5 NM_009162 -1.34 0.001 -0.69 

chr11:99374660-99374965 Krt28 NM_027574 -1.45 0.04 
 

chr6:52206332-52206737 Hoxa5 NM_010453 -1.54 0.006 -1.66 

chr15:76724917-76725202 C030006K11Rik NM_145472 -1.65 0.003 
 

chr9:50751281-50751786 Cryab NM_009964 -1.65 0.001 -0.31 

chr2:30904811-30904961 Ptges NM_022415 -1.71 0.006 0.38 

chr7:44533648-44533798 Spib NM_019866 -1.77 0.04 -0.27 

chr15:76696854-76697090 Gpt NM_182805 -1.83 0.0003 0.08 

chr14:67231822-67232168 Ebf2 NM_010095 -1.91 0.00008 -0.28 

chr1:74713575-74713913 Cyp27a1 NM_024264 -2.41 0.00010 0.23 

chr7:137315682-137315832 Ebf3 NM_001113414 -2.44 0.0002 
 

chr5:116422343-116422531 Hspb8 NM_030704 -2.47 0.005 -0.59 

chr13:113663203-113663442 Hspb3 NM_019960 -3.10 0.00006 0.16 

chr7:44525122-44525353 Mybpc2 NM_146189 -3.60 0.004 0.40 

chr16:95929025-95929215 1600002D24Rik NR_040484 Not covered  
 

chr19:53076090-53076287 1700054A03Rik NR_045320 Not covered  
 

chr9:40333366-40333516 1700110K17Rik NR_040728 Not covered  
 

chr5:66191007-66191326 1700126H18Rik NR_040695 Not covered  
 

chr8:106133567-106133754 1810019D21Rik NR_040344 Not covered  
 

chr8:70774662-70774971 2010320M18Rik NR_029440 Not covered  
 

chr7:29247728-29248246 2200002D01Rik NM_028179 Not covered  
 

chr3:116968340-116968490 4930455H04Rik NR_040596 Not covered  
 

chr2:68656660-68656810 4932414N04Rik NM_183113 Not covered  
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chr8:104794354-104794504 4932416K20Rik NM_001002775 Not covered  
 

chr15:101491270-101491532 5430421N21Rik NM_001201323 Not covered  
 

chr5:64044947-64045097 5830416I19Rik NR_045384 Not covered  
 

chr8:11005662-11005916 9530052E02Rik NR_046017 Not covered  
 

chr13:44216615-44216802 A330076C08Rik NR_045088 Not covered  
 

chr9:51875614-51875967 Arhgap20os NR_033560 Not covered  
 

chr2:158511087-158511317 Arhgap40 NM_001145015 Not covered  
 

chr10:80370475-80370662 Bc1 NR_038088 Not covered  
 

chr17:87194749-87194936 C330024C12Rik NR_046016 Not covered  
 

chr6:90430160-90430310 Ccdc37 NM_173775 Not covered  
 

chr12:112721582-112721732 Cep170b NM_001024602 Not covered  
 

chr7:66743292-66743442 Cers3 NM_001164201 Not covered  
 

chr11:113709429-113709616 Cpsf4l NM_001164532 Not covered  
 

chr5:143758213-143758402 D130017N08Rik NR_015486 Not covered  
 

chr15:103147963-103148113 D930007P13Rik NR_045743 Not covered  
 

chr1:153414109-153414337 E330020D12Rik NR_033736 Not covered  
 

chr7:141459454-141459702 Efcab4a NM_001025103 Not covered  
 

chr1:91322312-91322500 Espnl NM_001033292 Not covered  
 

chr2:151973248-151973547 Fam110a NM_028666 Not covered  
 

chr7:30971965-30972190 Fam187b NR_038860 Not covered  
 

chr7:44494816-44494966 Fam71e1 NM_028169 Not covered  
 

chr15:57985957-57986154 Fam83a NM_173862 Not covered  0.27 

chr2:155834558-155834783 Fam83c NM_027788 Not covered  0.18 

chr11:61684726-61685209 Fam83g NM_178618 Not covered  
 

chr4:141982150-141982300 Fhad1os1 NR_040672 Not covered  
 

chr15:101053918-101054399 Fignl2 NM_001214911 Not covered  
 

chr11:83429160-83429400 Gas2l2 NM_001013759 Not covered  -0.09 

chr4:57171555-57171743 Gm12530 NR_040669 Not covered  
 

chr7:127589512-127589706 Gm166 NM_001033040 Not covered  
 

chr1:136696240-136696465 Gm16880 NR_037986 Not covered  
 

chr13:63296519-63296709 Gm16907 NR_045794 Not covered  
 

chr17:25273274-25273424 Gm17801 NR_027452 Not covered  
 

chr19:41747378-41747634 Gm19424 NR_040320 Not covered  
 

chr1:133270030-133270218 Gm19461 NR_037984 Not covered  
 

chrX:102933791-102934335 Gm5126 NR_026596 Not covered  
 

chr3:37724358-37724589 Gm5148 NM_198657 Not covered  
 

chrX:56549472-56549622 Gm648 NM_001033372 Not covered  
 

chr1:71888225-71888412 Gm8883 NR_027658 Not covered  
 

chrX:37211404-37211695 Gm9 NM_001033234 Not covered  
 

chr19:4042222-4042420 Gstp2 NM_181796 Not covered  
 

chr6:52243420-52243652 Hoxa11os NR_015348 Not covered  
 

chr19:47012639-47012826 Ina NM_146100 Not covered  0.25 

chr7:44707895-44708095 Izumo2 NM_029317 Not covered  
 

chr7:143296298-143296487 Kcnq1ot1 NR_001461 Not covered  
 

chr11:99627769-99627959 Krtap4-1 NM_001048196 Not covered  
 

chr2:74725490-74725679 Mir10b NR_029566 Not covered  
 

chr8:107550028-107550215 Mir140 NR_029553 Not covered  
 

chr6:124718604-124718946 Mir141 NR_029554 Not covered  
 

chr11:96264243-96264474 Mir196a-1 NR_029721 Not covered  
 

chr2:180389141-180389291 Mir1a-1 NR_029528 Not covered  
 

chr6:124718604-124718946 Mir200c NR_029792 Not covered  
 

chr2:25440727-25440877 Mir3087 NR_037270 Not covered  
 

chr8:23144626-23144981 Mir3107 NR_037293 Not covered  
 

chr7:142655625-142655775 Mir483 NR_030251 Not covered  
 

chr1:34432869-34433098 Mir5103 NR_039562 Not covered  
 

chr12:109563627-109563889 Mir770 NR_030427 Not covered  
 

chr16:93369678-93369957 Mir802 NR_030429 Not covered  
 

chr6:52215862-52216088 Mira NR_045199 Not covered  
 

chr10:110000033-110000183 Nav3 NM_001081035 Not covered  -0.36 

chr15:98497651-98497878 Olfr279 NM_001001807 Not covered  
 

chr7:140176391-140176726 Olfr523 NM_146518 Not covered  
 

chr11:66912454-66912645 Pirt NM_178656 Not covered  
 

chr12:76417536-76417964 Ppp1r36 NM_001163103 Not covered  
 

chr11:59377440-59377627 Prss38 NM_001045521 Not covered  
 

chr1:34560630-34561039 Prss40 NM_009356 Not covered  
 

chr2:90481104-90481254 Ptprj NM_001135657 Not covered  0.27 

chr7:139247438-139247666 Pwwp2b NM_001033206 Not covered  
 

chr19:42752289-42752439 Pyroxd2 NM_029011 Not covered  
 

chr4:156130517-156131098 Rnf223 NM_001220499 Not covered  
 

chr1:157525749-157525936 Sec16b NM_001159986 Not covered  
 

chr2:151999850-152000093 Slc52a3 NM_001164819 Not covered  
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chr2:25846642-25846792 Sohlh1 NM_001001714 Not covered  
 

chr8:124896195-124896561 Sprtn NM_001111141 Not covered  
 

chr16:10395025-10395275 Tekt5 NM_001099275 Not covered  
 

chr11:69879894-69880186 Tmem95 NM_001195710 Not covered  
 

chr7:128004523-128004931 Trim72 NM_001079932 Not covered  
 

chr7:140835481-140835669 Urah NM_029821 Not covered  
 

chr12:86988267-86988455 Zdhhc22 NM_001080943 Not covered  -2.29 

chr14:55071861-55072060 Zfhx2os NR_004444 Not covered  
 

chr2:77703137-77703428 Zfp385b NM_001113399 Not covered  
 

chr7:39449748-39449898 Zfp939 NM_001243021 Not covered  
 

chr2:165858239-165858468 Zmynd8 NM_001252585 Not covered  
 

a) Expression data are taken from [90]. Values are reported as the differences between 

tumor and normal samples in log2 array intensities relative to a pool of whole mouse embryo 

RNA 

b) Student’s t-test, two-sided. 

c) Expression data are taken from [90]. Values are reported as the differences between tumor 

and normal samples in log2 array intensities relative to a pool of Stratagene universal 

reference RNA mixed with 1/10 added MCF7 and ME16C RNAs. 

Cells with gray background are significantly (p-value < 0.05) upregulated. 
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Supplementary Table 5 Samples and quality control for ChIP-seq data 

Sample Antibody # of unique reads 

Tumor 1 H3K4me1 23795321 

Tumor 1 H3K4me3 22796348 

Tumor 1 H3K27ac 23374206 

Tumor 1 H3K27me3 26473994 

Tumor 1 Input (5%) 22487101 

Tumor 2 H3K4me1 20677813 

Tumor 2 H3K4me3 17440855 

Tumor 2 H3K27ac 23725681 

Tumor 2 H3K27me3 25312350 

Tumor 2 Input (5%) 24670676 

Tumor 3 H3K4me1 29927526 

Tumor 3 H3K4me3 17876458 

Tumor 3 H3K27ac 27201814 

Tumor 3 H3K27me3 22750426 

Tumor 3 Input (5%) 23184949 

MECs H3K4me1 25823216 

MECs H3K4me3 21928903 

MECs H3K27ac 29116445 

MECs H3K27me3 28295966 

MECs Input (5%) 18823822 
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Supplementary Table 6 Gene set enrichment for genes with hypomethylated tumor-specific 
active promoter states 
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Genes 

without 

enrichment 

SHROOM3 X X X 

   

X 

   

X 

   

 PLXNB2 

CD9 X X X 

           

 SGMS2 

EGR2 X X 

  

X 

   

X 

  

X 

 

X  CYP2D6 

LAD1 X X 

   

X 

        

 IP6K2 

SOX9 X X 

       

X 

    

 AXIN2 

ST14 X X 

          

X 

 

 LRG1 

IRX1 X X 

            

 GNS 

FAM134B X 

 

X X X 

 

X 

   

X X 

  

 PGLYRP1 

DUSP6 X 

 

X 

  

X X 

      

X  PFDN1 

CLDN7 X 

 

X 

  

X 

    

X 

 

X 

 

 VIL1 

TFAP2C X 

 

X 

  

X 

    

X 

   

 SPEF1 

KRT8 X 

 

X 

  

X 

     

X X 

 

 SLC25A29 

CLDN3 X 

 

X 

       

X 

 

X 

 

 IFITM10 

SPINT1 X 

 

X 

       

X 

 

X 

 

 TMEM154 

SLC44A2 X 

  

X 

          

 LNX1 

GATA3 X 

   

X X X X 

   

X X 

 

 PWWP2B 

THBS1 X 

   

X X X 

      

X  DIXDC1 

COL7A1 X 

    

X 

       

X  TRPM1 

KRT14 X 

    

X 

       

X  FAM179A 

SLC2A1 X 

      

X 

      

 ATP13A4 

PTX3 X 

       

X X 

    

 MYH4 

KRT18 X 

           

X 

 

 NUFIP1 

CLDN8 X 

           

X 

 

 SRRM2 

HEBP2 X 

             

 RALBP1 

VDR 

 

X X 

 

X 

   

X 

 

X X 

  

 CD37 

PPAP2B 

 

X 

 

X X 

 

X X X X 

   

X  GAS2L1 

FOXC1 

 

X 

 

X X 

 

X 

    

X 

  

 PICK1 

NFIB 

 

X 

 

X X 

    

X 

    

 FANCE 

IGFBP5 

 

X 

 

X X 

         

 LPHN2 

NFIX 

 

X 

 

X X 

         

 TNFRSF25 

KCTD1 

 

X 

 

X 

 

X 

        

 BCL11A 

TCF7L2 

 

X 

 

X 

     

X 

    

 NUMBL 
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GAB1 

 

X 

 

X 

       

X 

  

 TOR2A 

DLX5 

 

X 

 

X 

          

 PTPLB 

GLI2 

 

X 

 

X 

          

 ZBP1 

CTGF 

 

X 

  

X X X X 

 

X 

   

X  FAM83H 

KLF4 

 

X 

  

X 

 

X X 

      

 LOC646862 

MYCN 

 

X 

  

X 

         

 FZD9 

CMTM8 

 

X 

  

X 

         

 SMARCD2 

AFAP1L2 

 

X 

   

X X 

       

 B3GALT5 

SMAD6 

 

X 

   

X 

  

X X 

 

X 

  

 ETV4 

CASZ1 

 

X 

   

X 

  

X 

   

X 

 

 KHK 

SIGIRR 

 

X 

   

X 

      

X 

 

 SORBS3 

MMP23B 

 

X 

    

X 

       

 NRBF2 

KCTD11 

 

X 

     

X 

      

 CREBL2 

SPRY4 

 

X 

     

X 

      

 RPS6KA4 

UNC5B 

 

X 

      

X 

  

X 

  

 COMMD10 

ARHGEF17 

 

X 

      

X 

  

X 

  

 S1PR2 

BMP7 

 

X 

         

X 

 

X  SDF2L1 

WIF1 

 

X 

           

X  GPR179 

AMIGO2 

 

X 

            

 PAFAH2 

SHOX2 

 

X 

            

 GDF5 

CDC42EP1 

 

X 

            

 TRIM46 

ACE 

 

X 

            

 MYBPC2 

SLC16A3 

 

X 

            

 RIOK1 

DDX6 

  

X X 

          

 PARK7 

FRRS1 

  

X X 

          

 KCNS1 

LRRFIP1 

  

X 

 

X 

 

X 

  

X X 

   

 TCEB3 

AIM1 

  

X 

 

X 

     

X 

   

 SLC9A4 

TIAM1 

  

X 

      

X 

    

 MGAT4A 

STK39 

  

X 

      

X 

    

 FADS6 

ITPR2 

  

X 

           

 SLC45A1 

PRKCDBP 

   

X X 

  

X 

      

 TNFRSF11A 

NRIP1 

   

X X 

    

X 

    

 MESP1 

RHOU 

   

X X 

         

 SIX5 

PBX1 

   

X X 

         

 MPO 

RAB4A 

   

X 

 

X 

        

 GPR37L1 

PBX2 

   

X 

  

X 

 

X 

     

 PITHD1 

RREB1 

   

X 

  

X 

     

X 

 

 HCCS 

BTBD3 

   

X 

  

X 

       

 MEN1 

TANC1 

   

X 

  

X 

       

 CBR4 

VWA1 

   

X 

   

X 

   

X 

  

 CCDC94 
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TRAK1 

   

X 

     

X 

 

X 

  

 CD80 

AHDC1 

   

X 

     

X 

 

X 

  

 SKOR1 

ZFHX3 

   

X 

     

X 

    

 RPLP0 

NR3C1 

   

X 

     

X 

    

 CIT 

MBD2 

   

X 

     

X 

    

 CATSPER1 

LGALS7 

   

X 

         

X  C8orf82 

SLC4A3 

   

X 

         

X  HNRNPA3 

FAM3C 

   

X 

          

 SLC35B3 

PPP2R1B 

   

X 

          

 FAN1 

DIP2B 

   

X 

          

 TMEM180 

AP3M2 

   

X 

          

 LONRF1 

LRRC58 

   

X 

          

 DHX8 

LTA4H 

   

X 

          

 MRPS23 

SNX9 

   

X 

          

 TNFRSF13B 

SRPRB 

   

X 

          

 RAD9B 

CYB5B 

   

X 

          

 BLOC1S3 

EXOC6 

   

X 

          

 KRTCAP3 

IQGAP3 

   

X 

          

 TMEM17 

D2HGDH 

   

X 

          

 TRIM72 

COMMD2 

   

X 

          

 NCKAP5L 

TINAGL1 

    

X X 

     

X 

 

X  KRTAP11-1 

DAB2IP 

    

X X 

     

X 

  

 SLC15A5 

LTBP2 

    

X X 

        

 LMOD3 

VLDLR 

    

X 

    

X 

    

 OFCC1 

BASP1 

    

X 

    

X 

    

 MIA2 

LRP4 

    

X 

        

X  A3GALT2P 

NUPR1 

    

X 

         

 MSL3P1 

KAZALD1 

    

X 

         

 HSBP1L1 

RIN2 

     

X X 

  

X 

    

  

RBPJ 

     

X 

 

X 

 

X 

    

  

GPRC5A 

     

X 

 

X 

      

  

TFAP2A 

     

X 

      

X 

 

  

ZFP36L1 

     

X 

        

  

ABHD2 

     

X 

        

  

FAM83A 

     

X 

        

  

BCL9L 

     

X 

        

  

CD109 

     

X 

        

  

MYH9 

     

X 

        

  

CRYAB 

      

X 

 

X 

  

X 

 

X   

PTPRJ 

      

X 

 

X 

  

X 
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SCHIP1 

      

X 

  

X 

   

X   

LMO7 

      

X 

    

X 

  

  

MYO6 

      

X 

    

X 

  

  

RAPGEF5 

      

X 

    

X 

  

  

PHF17 

      

X 

       

  

SEC11C 

      

X 

       

  

WWC2 

      

X 

       

  

LPHN3 

      

X 

       

  

TPI1 

       

X 

      

  

XPNPEP1 

       

X 

      

  

SYNJ2 

        

X X 

    

  

LUZP1 

        

X 

  

X 

 

X   

WNT7B 

        

X 

  

X 

  

  

HS6ST1 

        

X 

  

X 

  

  

ARID1B 

        

X 

  

X 

  

  

RAB11FIP3 

        

X 

     

  

WNT5B 

        

X 

     

  

GAPVD1 

         

X 

    

  

RYBP 

         

X 

    

  

PLCB4 

         

X 

    

  

MED13L 

         

X 

    

  

GNMT 

           

X 

  

  

SPATA18 

           

X 

  

  

SMAD5 

           

X 

  

  

CELSR2 

           

X 

  

  

FAM83G 

           

X 

  

  

OPLAH 

            

X 

 

  

LYPD3 

            

X 

 

  

TCIRG1 

            

X 

 

  

NEU1 

            

X 

 

  

SLC28A3 

            

X 

 

  

PYROXD2 

            

X 

 

  

ZDHHC12 

            

X 

 

  

TSHZ2 

             

X   

HSPB2 

             

X   

SMTN 

             

X   

PRICKLE1 

             

X   
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Supplementary Table 7 Gene set enrichment for genes with hypermethylated MEC-specific 
inactive/poised promoter states 

Gene ID B
E

N
P

O
R

A
T

H
_
S

U
Z

1
2
_
 

T
A

R
G

E
T

S
 

B
E

N
P

O
R

A
T

H
_
E

E
D

_
 

T
A

R
G

E
T

S
 

M
E

IS
S

N
E

R
_
B

R
A

IN
_
 

H
C

P
_
W

IT
H

_
 

H
3
K

4
M

E
3
 

_
A

N
D

_
H

3
K

2
7
M

E
3
 

B
E

N
P

O
R

A
T

H
_
P

R
C

2
_
 

T
A

R
G

E
T

S
 

M
E

IS
S

N
E

R
_
N

P
C

_
H

C
P

 

_
W

IT
H

_
H

3
K

4
M

E
2
 

_
A

N
D

_
H

3
K

2
7
M

E
3
 

 

 

Genes without enrichment 

CASZ1 X X X X X  FGF12 SAT1 

ITPKA X X X X 
 

 OTUD7A MYH14 

SHOX2 X X X X 
 

 AATK TCFL5 

LHX2 X X X X 
 

 RAPGEFL1 EXTL1 

SOX7 X X X X 
 

 ANK1 PRSS16 

ESPN X X 
 

X 
 

 GRIK2 USP10 

ADCYAP1 X X 
 

X 
 

 TMEM132D UBQLN2 

GRM7 X X 
 

X 
 

 MARCH11 DCTN1 

EPHA5 X X 
 

X 
 

 VAV3 TXLNG 

GABRA2 X X 
 

X 
 

 PNMT ARMC2 

NRG1 X X 
 

X 
 

 ACTN2 RGS22 

HOXC4 X X 
 

X 
 

 CLDN6 RIBC2 

DOK6 X X 
 

X 
 

 WNT7B MID1IP1 

OSR1 X X 
 

X 
 

 NETO1 SLC35F4 

SORCS1 X X 
 

X 
 

 L1TD1 ATG4A 

FAM84A X X 
 

X 
 

 AJAP1 ZMYM2 

POU3F4 X X 
 

X 
 

 NFAM1 KHDRBS2 

LONRF3 X X 
 

X 
 

 MPP3 UPF3B 

MAB21L2 X X 
 

X 
 

 SLC6A8 MAGEE1 

SLC18A3 X X 
  

X  SHANK2 WDR44 

HOXD11 X X 
  

X  MECP2 FAM19A5 

CDH11 X 
   

X  DLGAP1 UBOX5 

LRRC3B X 
    

 GABRB3 SGCZ 

PCDH11X X 
    

 IL10 RBM46 

SLITRK5 X 
    

 SSTR4  

SLITRK2 X 
    

 ACSL4  

FOXC1 
 

X X 
  

 NALCN  

ELAVL2 
 

X 
   

 HRASLS5  

MORF4L2 
 

X 
   

 DKK3  

DPP10 
  

X 
 

X  IGFBP6  

RAB11FIP1 
  

X 
 

X  SPATA20  

VIPR1 
  

X 
 

X  RPL10  

PLD5 
  

X 
 

X  HUWE1  
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NRG3 
  

X 
  

 NKRF  

ALPL 
  

X 
  

 LRRN1  

FAM46B 
  

X 
  

 MED14  

CPXM1 
  

X 
  

 ZFHX4  

PRKCZ 
  

X 
  

 PTPRD  

CBLN2 
  

X 
  

 SP6  

VSTM2B 
  

X 
  

 UBE2T  

TUBB2B 
  

X 
  

 ARTN  

PODXL 
  

X 
  

 TJP1  

NR4A2 
  

X 
  

 UBE2A  

CDKN2A 
  

X 
  

 CLDN9  

PPP1R1B 
  

X 
  

 VMA21  

FLT1 
  

X 
  

 WIPF3  

CSPG4 
  

X 
  

 EPHB2  

ST6GAL2 
    

X  AXIN2  

FAM155A 
    

X  TIAM1  

PRR16 
    

X  TMEM132C  

GALNT13 
    

X  TNFRSF18  

KCTD8 
    

X  TMIE  

GABRB1 
    

X  ADAM33  

UNC5D 
    

X  COX4I2  
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Supplementary Table 8 Gene set enrichment for genes with hypomethylated tumor-specific 
enhancer states 

Gene ID M
A

R
T

IN
E

Z
_

R
B

1
_
A

N
D

_
T

P
5
3
_
T

A
R

G
E

T
S

_
D

N
 

M
A

R
T

IN
E

Z
_

T
P

5
3
_
 T

A
R

G
E

T
S

_
D

N
 

M
E

IS
S

N
E

R
_
B

R
A

IN
_
H

C
P

_
W

IT
H

 

_
H

3
K

4
M

E
3
_
A

N
D

_
H

3
K

2
7
M

E
3
 

B
L
A

L
O

C
K

_
A

L
Z

H
E

IM
E

R
S

_
 D

IS
E

A
S

E
_
U

P
 

M
A

R
T

IN
E

Z
_

R
B

1
_
 T

A
R

G
E

T
S

_
D

N
 

J
A

E
G

E
R

_
M

E
T

A
S

T
A

S
IS

_
D

N
 

W
O

N
G

_
A

D
U

L
T

_
T

IS
S

U
E

_
S

T
E

M
_
  

M
O

D
U

L
E

 

D
O

D
D

_
N

A
S

O
P

H
A

R
Y

N
G

E
A

L
_
 

C
A

R
C

IN
O

M
A

_
U

P
 

P
E

R
E

Z
_

T
P

6
3
_
T

A
R

G
E

T
S

 

S
M

ID
_
B

R
E

A
S

T
_

C
A

N
C

E
R

_
 B

A
S

A
L
_
U

P
 

M
C

B
R

Y
A

N
_
P

U
B

E
R

T
A

L
_
 

B
R

E
A

S
T

_
4
_
5
W

K
_
U

P
 

 

 

 

Genes without 

enrichment 

SOX9 X X X X X 
    

X X 

 

TRIO SLC45A1 

MYO10 X X X X X 
    

X 
 

 

DCLK1 HHAT 

ST14 X X X 
 

X X 
 

X 
  

X 

 

PLEKHA1 SLC25A31 

VDR X X X 
 

X 
 

X 
 

X 
  

 

SLC25A42 DBX1 

FZD7 X X X 
 

X 
    

X 
 

 

SH3BP4 GBX1 

GJB2 X X X 
 

X 
      

 

SLC41A2 YWHAG 

LTBP2 X X 
 

X X 
 

X 
    

 

MGAT3 BPGM 

PTTG1IP X X 
 

X X 
 

X 
    

 

TBC1D16 LAPTM4A 

RPL37A X X 
 

X X 
     

X 

 

CDC42BPA VPS8 

PTPRF X X 
 

X X 
      

 

SEC14L1 ARL5C 

NAV2 X X 
 

X 
       

 

AHDC1 GPR179 

TCF20 X X 
 

X 
       

 

PEX14 ANO9 

KRT23 X X 
  

X X 
 

X 
 

X 
 

 

FBXW11 TM4SF20 

CTNNBIP1 X X 
  

X X 
     

 

KIAA0182 TMEM44 

CXXC5 X X 
  

X 
 

X X 
   

 

PTPN1 CARS2 

PMEPA1 X X 
  

X 
 

X 
    

 

TIAM1 GINS2 

DOPEY2 X X 
  

X 
  

X 
   

 

CHSY1 RIOK1 

IFFO2 X X 
  

X 
  

X 
   

 

CTIF PSMB8 

ELN X X 
  

X 
    

X 
 

 

MED13L SNORA7A 

RAB4A X X 
  

X 
      

 

STK39 BCL7A 

LAMA5 
X X 

  
X 

      

 

ARHGEF10

L CRYBB1 

POLG X X 
  

X 
      

 

NRM TMEM185B 

CELSR2 X X 
  

X 
      

 

PARD6B EXOG 

ACVR2B X X 
  

X 
      

 

GSR CHRDL2 

SCYL1 X X 
  

X 
      

 

TANC1 BCL2L14 

HOPX X X 
   

X 
 

X 
   

 

VAV3 ARHGEF19 

KRT17 X X 
   

X 
   

X 
 

 

IQGAP3 C1orf198 

ERRFI1 X X 
    

X 
   

X 

 

POLD2 GSG1 
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WWC1 X X 
     

X 
  

X 

 

FARP1 WNT8A 

OVOL1 X X 
      

X 
  

 

LTA4H YBX2 

NHSL1 X X 
        

X 

 

POLM GFI1B 

ENC1 X X 
         

 

WDSUB1 NDUFB9 

KRT79 X X 
         

 

PSAPL1 DERL3 

ERO1L X X 
         

 

DNASE1L2 MIR34A 

SRRM1 X X 
         

 

ETV4 FCHSD1 

CRYBA4 X X 
         

 

MFI2 GALNT9 

LTBP1 X 
   

X 
 

X 
  

X 
 

 

CMIP CILP2 

TNNT2 X 
   

X 
      

 

ITGB6 CCDC24 

FGFR3 
  

X X 
 

X 
     

 

TNFRSF25 TEX22 

ITGB5 
  

X X 
  

X 
    

 

LDB3 SNORD12 

TCF7L2 
  

X X 
       

 

ZBP1  

TNS3 
  

X X 
       

 

DAXX  

KIT 
  

X 
  

X X 
 

X X 
 

 

PDXP  

KLF4 
  

X 
  

X X 
    

 

EIF2B2  

ASS1 
  

X 
  

X 
 

X X 
  

 

XAB2  

CDH1 
  

X 
  

X 
    

X 

 

ZDHHC7  

CMTM8 
  

X 
   

X X 
   

 

SYT7  

GRHL3 
  

X 
    

X X 
  

 

MRPL38  

CASZ1 
  

X 
    

X X 
  

 

MEN1  

EZR 
  

X 
    

X 
  

X 

 

SYT8  

RUNX1 
  

X 
    

X 
  

X 

 

DMRTB1  

ADAMTS8 
  

X 
    

X 
   

 

LGI4  

TRNP1 
  

X 
    

X 
   

 

TMEM174  

CRISPLD2 
  

X 
     

X 
  

 

NKX6-3  

FOXP4 
  

X 
     

X 
  

 

ACOT7  

FOSL1 
  

X 
      

X 
 

 

GRAMD4  

CSPG4 
  

X 
      

X 
 

 

GAA  

PTPN14 
  

X 
      

X 
 

 

AMN  

SHROOM3 
  

X 
       

X 

 

BST1  

ROR1 
  

X 
        

 

SOAT2  

DYSF 
  

X 
        

 

ETV6  

TESC 
  

X 
        

 

ASPRV1  

WNT4 
  

X 
        

 

KIF26A  

KIAA1804 
  

X 
        

 

APEH  

AFAP1L2 
  

X 
        

 

PAQR6  

NFATC2 
  

X 
        

 

PLEKHJ1  

LFNG 
  

X 
        

 

PAFAH2  

ACE 
  

X 
        

 

BMP8B  
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SCN5A 
  

X 
        

 

CRTC2  

MAP3K6 
  

X 
        

 

PGLYRP1  

E2F2 
  

X 
        

 

FBL  

GLIS1 
  

X 
        

 

RPL19  

SCUBE3 
  

X 
        

 

PYROXD2  

SFN 
   

X 
 

X 
   

X 
 

  

 

COL7A1 
   

X 
 

X 
    

X 

  

 

MYO6 
   

X 
 

X 
     

  

 

ITGB4 
   

X 
 

X 
     

  

 

LRRFIP1 
   

X 
  

X X 
   

  

 

SOCS3 
   

X 
  

X 
 

X X 
 

  

 

ARPC1B 
   

X 
  

X 
    

  

 

LRP4 
   

X 
  

X 
    

  

 

RHOQ 
   

X 
  

X 
    

  

 

WWP2 
   

X 
   

X 
   

  

 

WNT7B 
   

X 
    

X 
  

  

 

ARHGAP26 
   

X 
    

X 
  

  

 

TCF7L1 
   

X 
     

X 
 

  

 

TGIF1 
   

X 
      

X 

  

 

ZFHX3 
   

X 
       

  

 

SPSB1 
   

X 
       

  

 

BIN3 
   

X 
       

  

 

TFEB 
   

X 
       

  

 

RYBP 
   

X 
       

  

 

MYO1E 
   

X 
       

  

 

ACVR1B 
   

X 
       

  

 

FDFT1 
   

X 
       

  

 

SEMA3B 
   

X 
       

  

 

MTMR11 
   

X 
       

  

 

SLC2A9 
   

X 
       

  

 

SCARB1 
   

X 
       

  

 

RBM15 
   

X 
       

  

 

AP3S2 
   

X 
       

  

 

ADCY3 
   

X 
       

  

 

TMBIM6 
   

X 
       

  

 

CSNK1E 
   

X 
       

  

 

VGLL4 
   

X 
       

  

 

UNG 
   

X 
       

  

 

DUT 
   

X 
       

  

 

FANCE 
   

X 
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HLCS 
   

X 
       

  

 

ENGASE 
   

X 
       

  

 

FOS 
    

X 
 

X 
   

X 

  

 

TRIB1 
    

X 
      

  

 

NDST2 
    

X 
      

  

 

ETS2 
     

X X 
    

  

 

EVPL 
     

X 
 

X X 
  

  

 

TRIM29 
     

X 
 

X 
 

X 
 

  

 

AIM1L 
     

X 
 

X 
   

  

 

DNASE1L3 
     

X 
 

X 
   

  

 

LYPD3 
     

X 
     

  

 

MSI2 
      

X X 
   

  

 

EPHB3 
      

X 
 

X X 
 

  

 

ZFPM1 
      

X 
 

X 
  

  

 

ALDOC 
      

X 
   

X 

  

 

IGF2R 
      

X 
    

  

 

EPHB4 
      

X 
    

  

 

RILPL1 
      

X 
    

  

 

IL1B 
      

X 
    

  

 

NEDD9 
      

X 
    

  

 

PADI4 
      

X 
    

  

 

SLC41A1 
      

X 
    

  

 

EYA2 
      

X 
    

  

 

MICAL3 
       

X 
   

  

 

CLMN 
       

X 
   

  

 

MYOF 
       

X 
   

  

 

TRAK1 
       

X 
   

  

 

OCEL1 
       

X 
   

  

 

MAPK3 
       

X 
   

  

 

TMEM121 
       

X 
   

  

 

ELF3 
       

X 
   

  

 

PCDH1 
       

X 
   

  

 

FAM83A 
       

X 
   

  

 

TTC39B 
       

X 
   

  

 

SLC25A29 
       

X 
   

  

 

SLC27A1 
       

X 
   

  

 

C22orf23 
       

X 
   

  

 

ACTL7B 
       

X 
   

  

 

DTX4 
       

X 
   

  

 

CROCC 
       

X 
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TGM1 
       

X 
   

  

 

ST3GAL3 
       

X 
   

  

 

TMEM154 
       

X 
   

  

 

C2orf54 
       

X 
   

  

 

KATNB1 
       

X 
   

  

 

FAM129C 
       

X 
   

  

 

ATP13A4 
       

X 
   

  

 

RUNX3 
        

X X 
 

  

 

WNT5B 
        

X X 
 

  

 

SOX8 
        

X 
  

  

 

PLCD1 
        

X 
  

  

 

FAM43A 
        

X 
  

  

 

ABCB9 
        

X 
  

  

 

ZCCHC24 
        

X 
  

  

 

CD101 
        

X 
  

  

 

NFIL3 
         

X X 

  

 

COL11A2 
         

X 
 

  

 

NRTN 
         

X 
 

  

 

SCHIP1 
         

X 
 

  

 

ARTN 
         

X 
 

  

 

FZD9 
         

X 
 

  

 

KIF1A 
         

X 
 

  

 

MFAP2 
         

X 
 

  

 

EDN2 
         

X 
 

  

 

NEK2 
         

X 
 

  

 

TGFB3 
          

X 

  

 

COL16A1 
          

X 

  

 

ATP1A1 
          

X 

  

 

BSPRY 
          

X 
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Supplementary Table 9 Gene set enrichment for genes with MEC-specific hypermethylated 

enhancer states 

Gene ID C
H

Y
L
A

_
C

B
F

A
2
T

3
_
T

A
R

G
E

T
S

_
U

P
 

R
O

D
R

IG
U

E
S

_
T

H
Y

R
O

ID
_
C

A
R

C
IN

O
M

A
_
P

O
O

R
L
Y

_
D

IF
F

E
R

E
N

T
IA

T
E

D
_
D

N
 

L
IM

_
M

A
M

M
A

R
Y

_
S

T
E

M
_

C
E

L
L
_
U

P
 

R
O

D
R

IG
U

E
S

_
T

H
Y

R
O

ID
_
C

A
R

C
IN

O
M

A
_
A

N
A

P
L
A

S
T

IC
_
D

N
 

W
E

S
T

_
A

D
R

E
N

O
C

O
R

T
IC

A
L
_
 

T
U

M
O

R
_
D

N
 

M
U

L
L
IG

H
A

N
_
M

L
L
_
S

IG
N

A
T

U
R

E
 

_
2
_
U

P
 

D
A

C
O

S
T

A
_
U

V
_
R

E
S

P
O

N
S

E
_
V

IA
_
 

E
R

C
C

3
_
D

N
 

M
U

L
L
IG

H
A

N
_
M

L
L
_
S

IG
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Supplementary Figure 1: Genomic location for MCIp DMRs and EpiTYPER amplicons 
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Supplementary Figure 1 Genomic location of DMRs and EpiTYPER amplicons used in 
technical and biological validation assays.  RefSeq gene locations are depicted in blue, CpG 
islands in green, DMRs in black and amplicons for EpiTYPER MassARRAY in red.  
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