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SUMMARY 

The limited life span of non-transformed somatic cells is largely due to the induction 

of replicative (telomere dependent) or premature (telomere independent)senescence.  

Senescenceis astate of stable G1 arrest and thus represents a barrier to proliferation 

and transformation. Premature senescence is induced by several factors including 

stress, DNAdamage and oncogenes. Senescent cell phenotypic changes include 

altered morphology, increased cell volume and increased natural senescence-

associated ß-galactosidase activity (SA-ß-gal). Based on the results of previous 

studies, I hypothesized that hyperforin,a compound from St. John's Wort that has 

anti-cancer activity in vitro and in vivo, may exert its effects in part through the 

induction of senescence.In my thesis work I therefore aimed to determine whether 

hyperforin induces senescence in tumor and endothelial cells in vitro and/or in vivo, 

and if so to study the molecular mechanism by which hyperforin induces senescence. 

As a subsidiary aim I set out to establish novel methodsfor analyzing and quantifying 

senescent cells. I found that at low concentrations, hyperforin and its derivative 

aristoforin induce senescence in cultured endothelial cells and tumor cells, and also 

in tumor tissues, whereas at higher concentrations it induces apoptosis. Hyperforin 

inhibits SIRT1, but my results suggest that this only partially explains how hyperforin 

induces senescence. The senescence-inducing concentration of hyperforin is also 

able to induce Noxa expression in MCF-7 cells after 24h, 4 and 6 days. Importantly, 

in hyperforin-treated MCF-7 cells in which Noxa was knocked down, a significant 

reduction of senescence compared to hyperforin-treated control cells was observed. 

Hyperforin-induced Noxa expression was found to be independent of p53 expression, 

but p53 is required for senescence induction by hyperforin. In addition to these 

mechanistic studies, I also established an improved method for the detection of 

senescent cells. Together these findings show that induction of senescence by 

hyperforin is a novel anti-cancer mechanism that affects both tumor cells and 

endothelial cells, and strengthen the notion that hyperforin is a promising anti-cancer 

agent. 
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ZUSAMMENFASSUNG 

Alle Zellen außer Tumorzellen haben eine beschränkte Lebensdauer, welche mit 

replikativer Seneszenz (Telomer-abhängig) oder frühzeitiger Seneszenz (Telomer-

unabhängig) erklärbar ist. Replikative Seneszenz ist der Zustand der Zellen in der G1 

Phase ohne Eintritt in die Zellteilungsphase und Transformation. Die frühzeitige 

Seneszenz wird durch mehrere Faktoren wie z.B. Stress, DNA-Schäden und 

Onkogene induziert. Die seneszenten Zellen zeigen phänotypische Veränderungen 

in der Morphologie. Sie zeigen gesteigertes Zellvolumen und eine erhöhte ß-

Galactosidase Aktivität. Aufgrund der Ergebnisse bisheriger Arbeiten, habe ich eine 

Hypothese aufgestellt. Dabei zeige ich wie Hyperforin, ein Präparat des 

Johanniskraut, das in vitro und in vivo Wirkung gegenüber Krebs zeigt,  diesen Effekt 

zum Teil durch die Induktion der Seneszenz ausübt. In meiner Arbeit habe ich mir 

daher vorgenommen zu untersuchen, ob Hyperforin in Tumor- und  Endothelzellen in 

vivo und in vitro Seneszenz induziert, und dabei den zugrundeliegenden 

Mechanismus aufzuklären. Um die Seneszenz der Zellen zu analysieren und 

quantifizieren zu können, habe ich als ergänzendes Ziel neue Methoden etabliert. Ich 

habe festgestellt, dass Hyperforin und ebenso dessen Derivat Aristoforin in niedriger 

Konzentration Seneszenz in kultivierten Endothel- und Tumorzellen induziert, aber 

auch in Tumorgeweben funktioniert. In höherer Konzentration wird dagegen 

Apoptose induziert. Auch beim SIRT1-Knockdown wird durch Hyperforin eine 

signifikante Steigerung der Seneszenz hervorgerufen. Weiterhin wird durch 

Hyperforin nach 24 Stunden, 4 und 6 Tagen die Expression von Noxa in MCF-7 

Zellen induziert. Interessanterweise wurde, im Vergleich zu mit Hyperforin 

behandelten Kontrollzellen, in Abwesenheit von Noxa eine signifikante Reduktion der 

Seneszenz beobachtet. Hyperforin induzierte Noxa-Expression ist dabei p53 

unabhängig, wobei p53 allerdings für die Induktion der Seneszenz durch Hyperforin 

benötigt wird. Zusätzlich gelang es mir zu diesen mechanistischen Studien eine 

bessere Methode zurDetektion von seneszierenden Zellen zu etabilieren.                .            

Es wurde gezeigt, dass die Induktion von Seneszenz durch Hyperforin  ein neuartiger 

Anti-Krebs-Mechanismus ist, der sowohl Tumor- als auch auf Endothelzellen 

beeinflusst. Diese Ergebnisse sprechen für den Anti-Krebs-Effekt von Hyperforin.  
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1 INTRODUCTION 

Normally, cells grow old and die after a certain time, for example through apoptosis, 

or through entering an irreversible non-dividing state called senescence. In cancer, 

somatic cells start to grow and dividein an unregulated manner, replacing and 

destroying healthy tissue. Understandinghow senescence is induced may 

identifynovel ways ofinhibiting the proliferation of cancer cells. Furthermore, tumor 

growth requires the formation of new blood vessels that sprout from pre-existing 

vessels in the process of angiogenesis tonurture tumor cells (Folkman, 1995). 

Lymphangiogenesis, the new growth of lymphatic vessels, also stimulates metastasis 

formation (Ohta et al, 2000). As blood and lymphatic vessels are lined with 

endothelial cells (ECs), induction of senescence in ECs may also inhibit tumor 

development and metastasis by suppressing angiogenesis and lymphangiogenesis, 

respectively (Vogel et al, 2007). The focus of this study was to determine whether 

senescence is induced in endothelial and tumor cells in response to hyperforin 

treatment, and if so, to determine the molecular mechanisms through which it exerts 

these effects. Understanding the molecular mechanisms through which hyperforin 

induces senescence may provide new insights into the process of senescence and 

its regulation, and possibly pave the way to new targets for cancer treatment.   

1.1 Hyperforin 

Hypericum perforatum is a perennial plant of the Guttiferase family (Medina et al, 

2006). Some taxonomists classify the genus Hypericum in a separate family, the 

Hypericaceae (Arfan et al, 2009). From 400 species of the genus Hypericum, 10 

species grow in central Europe (Hölzl, 1993). Hyperforin was first isolated in the 

1960s due to its antibiotic activity against several gram-positive bacteria such as 

Staphylococcus aureus (Schempp et al, 1999). Hyperforin is poorly soluble and 

unstable in aqueous solution and is sensitive to light and oxygen, which limits its 

clinical potential. Therefore,a stable and more hydrophilic chemical derivate, 

aristoforin,has been synthesized (Gartner et al, 2005). 

In the context of cancer, hyperforin inhibits matrix proteinases, tumor invasion and 

metastasis (Donà et al, 2004), and inhibits the proliferation of a number of 
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mammalian cancer cell lines as well as showing an antiproliferative effect on 

phytohemagglutinin-stimulated peripheral blood lymphocytes  (Schempp et al, 2000); 

(Figure 1). In part, the anti-proliferative effect of hyperforin is due to the induction of 

apoptosis, as demonstratedin various types of tumor cells(Schempp et al, 2000; 

Merhi et al, 2011). 

 

Figure 1 - Inhibition of proliferation in tumor cell lines by hyperforin 

The growth of the tested tumorcell lines was inhibited by hyperforin, with IC50 values of 3-15 µM. At 

lower hyperforin concentrations, proliferation was inhibited largely in the absence of apoptosis. 

Above15 µMhyperforin induced apoptosis(from Schempp et al, 2000). 

At concentrations around 30 µM, hyperforin also induces apoptosis in lymphatic 

endothelial cells (LECs) (Rothley et al, 2009) in a dose-dependent manner (Figure 2). 

Importantly, hyperforin also inhibits the proliferation of LECs at lower concentrations 

(less than 10 µM)without inducing apoptosis, but rather by inducing cell cycle arrest, 

as assessed by flow cytometry (Rothley et al, 2009).  
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Figure 2 - Hyperforin and Aristoforin inhibit endothelial cell proliferation 

The left graph shows the proliferation assay of LECs treated by hyperforin and aristoforin at different 

concentrations. Hyperforin and aristoforin inhibit proliferation at low concentrations (5µM). The right 

graph shows cell cycle analysis of LECs untreated and treated with 5 and 30 M hyperforin. Note that 

LECs treated with 5 M hyperforinexhibit a reduced sub G1 and S phase level compared to 30 

µMhyperforin (with permission of Rothley et al, 2009). 

Mechanistically, hyperforin causes the release of cytochrome c from mitochondria 

and activates the mitochondria-mediated apoptosis pathway (Schempp et al, 2002). 

Accordingly, hyperforin induces cell death in primary malignant cells from patients 

with chronic lymphocytic leukemia through mitochondrial caspase-dependent 

apoptosis, which correlates with activation of the pro-apoptotic protein Noxa (Billard 

et al, 2003). Hyperforin inhibits the phosphorylation of Akt1 and thereby inhibits Bad, 

a direct downstream target of Akt1, by its dephosphorylation of Ser136 (Martelli et al, 

2006), which leads to apoptosis. Hyperforin changes the level of Ser136-p-Bad but not 

the level of total Bad (Zhao et al, 2004), as well as levels of the anti-apoptotic Bcl-2, 

pro-apoptotic Noxa and caspase-9 and-3 in AML U937 cells (Merhi et al, 2011). In 

mammary carcinoma cells hyperforin also increases the activity of caspase-9 and -3 

to induce apoptosis (Schempp et al, 2002). Furthermore, hyperforin was found to 

promote apoptosis in B-cell chronic lymphatic leukemia (B-CLL) cells, which leads to 

phosphatidylserine externalization and DNA fragmentation by caspase-3 activation 

(Quiney et al, 2006). 

Hyperforin inhibits EC migration and invasion (Dona et al, 2004), an early step in the 

process of angiogenesis. It further inhibits the activity of urokinase, elastase and 

matrix metalloproteinase-2 and -9 (Carmeliet and Jain, 2000). The activation of NF-
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kB, a transcription factor which regulates numerous genes involved in cell growth, 

survival, angiogenesis and invasion in endothelial cells is prevented by hyperforin 

(Noonan et al, 2011).In addition, hyperforin and aristoforin inhibit lymphangiogenesis 

in the thoracic duct ring outgrowth assay (Rothley et al, 2009). The observation that 

hyperforin at around 5 µM inhibits proliferation but does not induce apoptosis 

suggests that hyperforin may lead to cell cycle arrest and promote senescence 

(Rothley et al, 2009). Altogether, these properties qualify hyperforin as a lead 

structure for the development of new therapeutic molecules in the treatment of 

malignant tumors (Quiney et al, 2006). 

1.2 Historical perspective and definition of senescence 

The basis of this study is the hypothesis that hyperforin can inhibit the proliferation of 

ECs and tumor cells by inducing senescence. The concept of senescence arose from 

the observation that primary cells isolated from tissues and grown in culture have a 

limited capacity to divide (Hayflick and Moorhead, 1961). Hayflick and Moorhead 

divided the stages of cell culture into three phases. When the cells cover the surface 

of the culture flask, they reach the first phase. The second phase represents the 

period when cells are dividing in culture and must be subcultivated to keep them 

growing. After some time, the cells stop dividing (growing) but remain vital, which 

marks the beginning of the third phase, which is characterized by replicative 

senescence (Hayflick, 1965). Replicative senescence has been found in many cell 

types such as keratinocytes, endothelial cells, lymphocytes, adrenocortical cells, 

vascular smooth muscle cells and chondrocytes. Replicative senescence is also 

detected in cells derived from embryos and adults of all ages (Hayflick, 1965), and is 

associated with progressive telomere shortening during each successive round of 

DNA replication (Frenck et al, 1998). 

From an evolutionary perspective, cellular senescence has evolved as a mechanism 

to prevent the transmission of damaged DNA into the next generation (Carnes and 

Olshansky 1994). For example, activation of proto-oncogenes leads to the induction 

of senescence, which acts as a barrier to transformation (Campisi, 2001). Many 

cancer cells senesce either spontaneously or in response to extracellular stress 

stimuli (Benhar et al, 2002). Tumor cells are often resistant to apoptosis by 

anticancer treatment. Therefore, induction of senescence in tumor cells could be an 
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alternative approach in cancer therapy (Schmitt et al, 2002; Shayand Wright 

2005).For example, in cancer cells, telomerase is an attractive target to induce 

senescence. Inhibition of telomerase in cancer cells leads to shortening of telomeres, 

which causes senescence (Harley, 1991; Kiyono et al, 1998; Bodnar et al, 1998). 

1.3 Hallmarks of senescent cells 

Senescent cells are identified in vitro and in vivo by a number of characteristics, 

including irreversible growth arrest, altered cell morphology, senescence associated 

ß-galactosidase activity, activation of tumor suppressor networks and altered gene 

expression, senescence associated heterochromatic foci (SAHF) and autophagy 

(Muller et al, 2009). These characteristics can be identifiedusing specific biomarkers. 

1.3.1 Irreversible growth arrest 

The most obvious hallmarks of senescent cells are growth arrest, inability to replicate 

DNA and lack of responsiveness to physiologic mitogenic stimuli (Cristafalo,1993). 

Senescent cells experience growth arrest in the transition from phase G1 to phase S 

of the cell cycle (Sherwood et al, 1988). In contrast to early passage human diploid 

fibroblasts (HDFs), late passage senescent HDFs do not respond to epidermal 

growth factor (EGF), tumor necrosis factor alpha (TNF-α), fibroblast growth factor 

(FGF) or interleukin-1 (IL-1) (Cristofolo, 1973). The quantification of newly 

synthesized DNA in the cell cycle can be performed using5-bromo-2-deoxyuridine or 

[3H]-thymidine-incorporation assays, thus enabling the researcher to distinguish 

arrested and senescent cells from dividing cells. Cellular senescence both in vitro 

and in vivo can also be identified using cell cycle biomarkers associated with 

senescence. Unfortunately, none of these biomarkers detectonly senescent cells. For 

example, p16 and p21are not specific for senescence but are also cell cycle arrest 

biomarkers (Campisi,2007). 

1.3.2 Altered cell morphology 

Senescent cells have a flattened or thin cytoplasm (Figure 3). The expression of actin 

and tubulin is downregulated, while the synthesis of vimentin dramatically increases 

(Hay and Strehler, 1967; Lima and Macieira, 1972). Furthermore, the size of 

senescent cells is larger as compared to pre-senescent cells (Figure 3). For example, 

a flat cell phenotype is seen in cells undergoing H-RASV12 induced-senescence 
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(Serrano et al, 1997), stress-induced senescence (Parrinello et al, 2003) or DNA-

damage-induced senescence (Chen et al, 1995).Senescent cells frequently develop 

abnormal nuclei or a multi-nuclear phenotype due to genomic instability (Matsumura 

et al, 1979). Additionally, caveolin-1 plays an important role in the morphological 

changes of senescence by regulating focal adhesion kinase activity and actin fiber 

formation (Cho etal, 2004). 

 

Figure 3 - Senescence-associated (SA)-ß gal staining in HUVECs. Senescent cells show 

flattened structure 

Representative pictures showing how images were processed for quantification of senescent cells. 

The right microscopy picture shows senescent cells and the left one presents non-senescent cells, 

which are smaller than senescent cells. 

1.3.3 Senescence-associated ß-D-galactosidase activity 

The maximal activity ofß-D-galactosidase in the lysosomes of non-senescent cells, 

which is encoded by the GLB1 gene, is at pH 4 (Lee et al, 2004). Lysosomal ß-D-

galactosidase is overexpressed in senescent cells, allowing x-gal staining at the 

suboptimal pH 6 to differentiate between normal and senescent cells (Figure 3). Thus 

ß-D-galactosidase can be used as a reliable senescence biomarker (Dimri et al, 

1995).  The x-gal staining assay produces a blue perinuclear precipitate in ß-D-

galactosidase-positive cells (Christofalo et al, 1993) and therefore is a simple 

qualitative histochemical method to detect galactosidase at pH 6 in senescent cells, 

but not in presenescent or immortalized cells(Dimri et al, 1995). Fibroblasts from 

patients with autosomal recessive GM1-gangliosidosis, a lysosomal disorder in which 

galactosidase is defective, do not exhibit senescence-associated ß-galactosidase 
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(SA-ß-gal)staining when becoming senescent, demonstrating that ß-galactosidase 

itselfis not functionally required for senescence (Muller et al, 2009). 

1.3.4 Altered gene expression and activation of tumor 

suppressor networks 

Cells undergo senescence in response to a variety of signals, including shortened 

telomeres, DNA damage, oncogenes or supra physiological mitogenic signals. These 

cause irreversible changes in gene expression that regulate growth arrest and 

cellular senescence, including the p53, p21 and retinoblastoma (Rb) proteins (Dulic 

et al, 2000). Pathways that lead to cell cycle arrest are activated by stress factors 

such as the p38 mitogen-activated protein kinase (p38 MAPK). Key components of 

these senescence-regulating signaling pathways are discussed in more detail in later 

sections. 

1.3.5 Chromatin architecture and senescence associated 

heterochromatin foci (SAHF) 

Epigenetic gene regulation has been implicated in the process of senescence(Kiyono 

et al, 1998; Dickson et al, 2000). Global chromatin reorganization is not a specific 

senescence marker, but plays an important role in the senescence mechanism. High 

mobility group A (HMGA) proteins are senescence-associated chromatin binding 

proteins.Senescence-associated heterochromatin foci (SAHF) formation contributes 

to stable senescence arrest and causes the irreversibility of the senescent phenotype 

(Beausejour et al, 2003; Narita et al, 2003). Some senescence-inducing stimuli such 

as DNA damage and replicative stress induce HMGA upregulation (Narita, 2007). 

HMGA upregulation is an early event in response to oncogenic stimuli during 

tumorgenesis and activates the senescence program. HMGA1 is essential for SAHF 

architecture. SAHF are detectable through markers of heterochromatin, such as 

heterochromatin protein 1 (HP1),methylation (K3me3) of histone H3 (which creates a 

docking site forHP1) and exclusion of euchromatin markers, such as histone H3K9 

acetylation and Lys4 tri-methylation (K4me3) (Narita, 2007).MacroH2A and histone 

chaperones asf1a and HIRA also play a critical role in SAHF formation (Zhang et al, 

2005). MacroH2A is a transcriptionally repressive variant of histone H2A and is a 

marker of the inactive X (Xi) chromosome in female mammals, which is a form of 

facultative heterochromatin (Costanziand Pehrson, 1998). 
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1.3.6 Autophagy 

Autophagy is a catabolic process that is mediated by autophagosomes (membrane 

vesicles) that fuse with lysosmes. The cellular lysosomal degradation pathway 

involved in autophagy increases in activity with age(Dice, 1990) and is also a major 

component of the cellular stress response. Therefore, autophagy and senescence 

may be coupled responses that influence tumor growth and prolonged states of 

growth arrest. The stress of oncogene activation causes autophagy (Young et al, 

2009). The activation of autophagy in senescent cells is correlated with down 

regulation of cell cycle exiting. Interestingly, autophagy related genes including 

ULK3, BNI 3 and BNIP3L are upregulated in senescent cells (Young et al, 2009). 

1.4 Senescence induction 

A variety of conditions can induce premature senescence. These include DNA-

damage induced senescence,stress-induced senescence, oncogene-induced 

senescence (OIS), and tumor suppressor loss-induced senescence.  

1.4.1 DNA-damage induced senescence 

Reactive oxygen species (ROS), ionizing radiation and ultraviolet light can induce 

oxidation of DNA bases and generate single-strand (SSB) or double-strand breaks 

(DSBs) (Hoeijmakers, 2009).Chemical agents used in cancer chemotherapy can 

cause a variety of DNA lesions. Alkylating agents such as methyl methanesulfonate 

and temozolomide attach alkyl groups to DNA bases, which introduce covalent links 

between bases of the same DNA strand (intrastrand crosslinks) or between different 

DNA strands (interstrand crosslinks) (Iyer& Szybalski, 1964).Many repair 

mechanisms counteract DNA damage. Mispaired DNA bases are replaced with 

correct bases by mismatch repair. Small chemical alterations of DNA bases are 

repaired by base excision repair  (Jiricny, 2006;Lindahl, 2000). Pyrimidine dimers and 

intrastrand crosslinks are corrected by nucleotide excision repair through the removal 

of an oligonucleotide of 30bp containing the damaged bases (Moldovan, 2009). 

SSBs are repaired by single-strand break repair and DSBs are processed either by 

nonhomologous end joining or homologous recombination (Caldecott, 2008). 

In response to DSBs, the ATM protein is activated via phosphorylation on multiple 

residues(Bakkenist, 2003), and ATR in complex with its partner protein (ATRIP) is 
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activated in DSBs (Cimprich, 2008). ATM and ATR are required for all repair 

mechanisms, including non-homologous end joining, homologous recombination, and 

interstrand crosslinks repair.Both proteins phosphorylate and activate p53 (Giaccia, 

1998). This activation of p53 leads to the senescence that can ensue following DNA 

damage (Canman et al, 1994). 

1.4.2 Stress- induced senescence 

In vitro, abnormal concentrations of nutrients and growth factors, the presence of O2 

above physiologicallevels, and other sources of oxidative stress (e.g. H2O2 and tert-

butylhydroperoxide),as well as other stressors such as ethanol, ionizing radiation and 

mitomycin, or the absence of extracellular matrix components, can induce premature 

senescence (Sherr and Depinho, 2000).Higher levels of stress generally result in 

apoptosis, while senescence is induced in response to lower levels of stress.This 

type of senescence is independent of telomere length (Prowseand Greider, 1995).  

1.4.3 Oncogene-induced senescence (OIS) 

Oncogenes such as Ras (Serrano et al, 1997) or Raf (Zhu et al, 1998) can induce 

differentiation, apoptosis or senescence in normal human cells, which is called 

oncogene-induced senescence (O´shae et al, 1996; Kaufmanzeh et al, 1997). 

Oncogenic Ras is mitogenic, and activates the Raf-MEK-ERK signaling cascade. 

Constitutive mitogenic signals trigger Ras-induced cell cycle arrest through 

accumulation of p16, p19, p21 and p53 (Lin et al, 1998; Palmero et al, 

1998).Activated (mutant) oncogenes such as H-RasV12 induce cell cycle arrest and 

OIS (Land et al, 1983; Franza et al, 1986; Serrano et al, 1997) in a p53-dependent 

manner. In the absence of p53, Ras/Raf signaling induces transformation rather than 

senescence (Kemp et al, 1993; Lin et al, 1998). Raf-induced senescence is 

irreversible. The signal from Raf that induces senescence is transmitted through 

MEK. Thus OIS canbe inhibited by blocking MEK using pharmacological drugs (Zhu 

et al, 1998). 

1.4.4 Tumor suppressor loss-induced senescence in vitro 

Loss of tumor suppressors such as PTEN (a phosphatase that counteracts pro-

proliferative, pro survival kinases) (Alimonti et al, 2002) and NF1 (the gene 

responsible for the familial cancer syndrome neurofibromatosis type 1 (Courtois-Cox 
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et al, 2006) can cause senescence in mouse and human cells. For example, the loss 

of PTEN in MEF cells leads to senescence induction (Chen et al, 2005). Depletion of 

NF1, which encodes a RasGAP protein, leads to activation of Ras and thereby to 

induction of senescence (Basu et al, 1992). 

1.5 Regulation senescence by signal transduction pathways 

As described in Section 1.4, a variety of stresses are able to induce senescence. 

Many of the intracellular signaling pathways thereby activated mediate their activity 

through p53 (Figure 4), for example by increasing its transcription, its stability, and/or 

through modifying its phosphorylation or acetylation (Qian and Chen, 2013).  

 

Figure 4 - The role of p53 in cellular senescence 

Stress factors induce senescence through deregulated expression of p53 targets. A number of 

modifications of p53 contribute to this deregulation, including phosphorylation (through ATM/ATR-
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Chk2/Chk1), acetylation (through p300/CBP, PCAF, Tip60/hMOF, and SIRT1), increased protein 

stability (through ARF-MDM2), and increased translation rates (throughRNPC1, HuR, and RPL26). 

PML regulates p53 stability by positively modulating its acetylation and phosphorylation levels. Some 

p53 target genes including p21, PML, PAI-1 and DEC1functionally promote cellular senescence, and 

cause the typical senescence phenotype that is associated with hyperphosphorylation ofp130 (Qian 

and Chen, 2013). 

During the induction of replicative senescence, activation of ATM or ATR leads to 

upregulation or phosphorylative activation of p53 and thus senescence (Herbig et al, 

2004). In OIS, oncogenic Ras induces senescence in cells with wild-type p53, but 

transforms cells lacking p53 (Kemp et al, 1993; Serrano et al,1997), again 

underscoring the role of p53 in the induction of senescence. Although not true for all 

genotoxic stressors, p53 is required for senescence induced by chemotherapeutic 

drugs such as camptothecin, doxorubicin and cisplatin (Ewald et al, 2010).  

Activation of p53 induces the expression of p21WAF1, and/or increases the expression 

of p16INK4A (Serrano et al, 1997). Both p21WAF1 and p16INK4A are inhibitors of cyclin-

dependent protein kinases (CDKs) that phosphorylate and inactivate the 

retinoblastoma protein (Rb). Subsequent accumulation of the hypophosphorylated, 

active form of Rb leads to cell-cycle arrest and other phenotypes associated with 

senescence (Xu et al, 2014). 

Several signal transduction pathways can trigger senescence (Figure 5). For example, 

mitogen-activated protein kinases (MAPKs) play important roles in senescence 

induction. In particular, the JNK and p38 MAPK pathways are activated by cytotoxic 

stresses including UV irradiation, chemotherapy, heat shock and inflammatory 

cytokines (Zanke te la, 1996). During OIS, sequential activation of the Raf–MEK–

ERK and MKK3/6–p38 pathways results in activation of three p38 isoforms, p38α, 

p38γ , and p38δ  that induce senescence in a coordinate manner (Xu et al, 

2014).p38α induces transcription of p16INK4A. Both p38α and p38γ stimulate the 

activity of p53 by phosphorylation. Once activated, p53 induces the expression of 

p21WAF1, which, together with p16INK4A, triggers senescence. On the other hand, p38

δ mediates senescence independently of p53 and p16INK4A, for example through 

regulating the activity of the DNA-damage checkpoint kinases CHK1 and CHK2. 
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The PI3K/AKT/mTOR pathway also plays a role in the induction of senescence, for 

example during ras-induced OIS or tumor suppressor loss-induced senescence. In 

the latter example, loss of PTEN leads to activation of the PI3K/AKT/mTOR pathway. 

In turn, activated mTOR stimulates the translation of p53, leading to p21WAF1 

expression and induction of senescence (Xu et al, 2014,Figure 5).  

 

Figure 5 - Pathways to senescence 

Summary diagram showing some of the pathways activated by various stimuli that lead to senescence 

(modified from Muller et al, 2008). See text for details. 

Despite the evidence implicating p53 in the induction of senescence, in some 

contexts p53 has also been shown to suppress senescence (reviewed in Vigneron 

and Vosden, 2010) for example in human fibroblasts that lose both wild-type p53 

alleles (Medcalf et al, 1996) or express a dominant negative p53 allele (Medcalf et al, 

1996; Bond et al, 1994). Notably, p53 can suppress senescence while promoting cell 

cycle arrest(Demidenko, 2010). 

The paradoxical ability of p53 to both suppress and induce senescence is likely due 

in part to the ability ofp53 to both positively and negatively regulate oxidative stress. 

On one hand, p53 can increase levels of ROS (Reactive Oxygen Species) that play 

an important role in senescence (Johnson et al, 1994). On the other hand p53 
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induces antioxidant pathways(Olovnikov et al, 2009). The balance between 

suppression and induction of senescence by p53 is thought to involve mTOR. As 

pointed out above, mTOR signaling promotes senescence. However, p53 inhibits 

mTOR, whichcontributes to the anti-senescence effect of p53 (Feng and levine, 

2010; Korotchkina et al, 2010). On the other hand, increased ROS levels – as 

induced by p53 - activate mTOR (Blagosklonny, 2008, Figure 6). 

 

Figure 6 - Schematic representation of p53 acetylation, mTOR activity and the induction of senescence or 

cell cycle arrest 

Oxidative stress induces senescence by deacetylation of p53, which promotes the activity of mTOR. 

SIRT1 activity under nutrient deprivation deacetylates p53, thus inhibits mTOR activity, which leads to 

increased longevity (modified from Vigneron et al, 2010). 

1.6 SIRT1 and senescence 

SIRT1 is a NAD+-dependent deacetylase localized in the nucleus that belongs to the 

sirtuin family, and deacetylates acetyl-lysine residues on various proteins. SIRT1 was 

first identified in yeast as a transcriptional regulator with the name of silent 

information regulator 2 (Sir2). The upregulation of Sir2 leads to an extension inthe life 

span ofSaccharomyces cerevisiae (Tissenbaum and Guarente, 2001) and 

Caenorhabditis elegans in response to caloric restriction (Wood et al, 2004). 

Therefore, SIRT1might also regulate life span in mammals (Bordone et al, 2006). 

SIRT1 expression is strongly downregulated in senescent cells (Sasaki et al, 2006). 

Accordingly,SIRT1 blocks endothelial cell senescence (Huffman et al, 2007; Chu et 
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al, 2005).Sirtinol, an inhibitor of SIRT1, induces senescence in breast and lung 

cancer cells (Liu et al, 2006). Hyperforin also has an inhibitory effect on SIRT1 (Gey 

et al, 2007), supporting the notion that hyperforin may induce senescence.  

Mechanistically, SIRT1 physically interacts with p53 and deacetylates p53 at its C-

terminal Lys382 residue (Vaziri et al, 2001).As acetylation of p53 promotes 

senescence (Sakaguchi et al, 1998),this provides a mechanism whereby SIRT1 may 

inhibit p53-induced senescence. Thus if SIRT1 is inactivatedby sirtinol, p53 remains 

acetylated and is thereby able to induce senescence(Grozinger the al, 2001). A 

similar mechanism of action is conceivable for hyperforin, as hyperforin inhibits 

SIRT1 (Gey et al, 2007). SIRT1is also able to deacetylatea number of transcription 

factors including FOXO1, FOXO3, FOXO4, Ku70, NFkB and MyoD (Gey et al, 2007), 

thereby regulating their activity. Resveratrol (RSV), a polyphenol found in red wine, 

stimulatesthe deacetylase activity of SIRT1 (Howitz et al, 2003). 

In chronic lymphatic leukemia cells, hyperforin upregulates Noxa, a primary p53 

response gene and proapoptotic protein (Zaher et al, 2009). Noxa belongs to the 

BH3-only group of the BCL2 family, which does not activate Bax/Bak (proapoptotic 

proteins) directly, but neutralizes prosurvival proteins (Delia et al, 1995). At least 

eight BH3-only members have been identified, including Bad, Bid, Bik, Bim, Bmf, Hrk, 

Noxa and Puma.   

Noxa mRNA is rapidly induced after adenovirus-mediated introduction of p53 

intofibroblasts derived from p53-/- or wild type mice. Promoter analysis of the human 

Noxa gene revealed the presence of a bone fide p53 response element 195bp 

upstream of the transcriptional start site (Oda et al, 2000). The oncogene Ras 

induces both senescence and Noxa expression(Nicke et al, 2005). Noxa expression 

may therefore conceivably play a role in senescence, providing a further link between 

hyperforin and the induction of senescence. 

1.7 Analysis of senescent cells 

The analysis of senescent cells requires a reproducible assay to differentiate 

senescent from dividing or apoptotic cells. Most commonly, 5-bromo-4-chloro-3-

indolyl β-d-galactoside (x-gal) is used for senescence detection. As outlined above, 

x-gal staining can be used to identify senescent cells because ß-galactosidaseis 
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overexpressed in senescent cells (so-called senescence-associated ß-galactosidase 

(SA-ß-gal), and therefore its activity can be detected at pH 6, which is suboptimal for 

enzymatic activity, meaning that the lower levels of ß-galactosidasein non-senescent 

cells are not detectable. When x-gal is cleaved, an intense blue halogenated indoxyl 

(C8H7NO) derivative is formed(Dimri et al, 1994), allowing the percentage of 

positively stained cells to be counted under the microscope. Due to the fact that 

manual counting is very time consuming, part of my thesis was devoted to the 

development of methods for the analysis of senescent cells more rapidly and more 

precisely by using specific fluorescence markers of senescent cells such as 5-

dodecanoyl-aminofluorescencein di-ß-D galactopyranoside (C12FDG), Lysotracker 

yellow and 4-methylumbelliferone, to allow thequantification of senescent cells more 

rapidly and sensitively.  

The ß-galactosidase substrate C12FDGhas been used to develop a highly sensitive 

flow cytometric ß-galactosidase assay in live mammalian cells (Noppe et al, 2009). 

C12FDG is a membrane permeable, non-fluorescent substrate of ß-galactosidase. 

After hydrolysis, the glycosyl residues emit green fluorescence and the hydrolysed 

compound remains confined within the cell, as it becomes membraneinsoluble (Kurz 

et al, 2000). I aimed to develop a flow cytometry-based technique to quantity SA-ßgal 

activity using C12FDGin conjunction with flow cytometry, which compared with the 

cytochemical method would not be subjective and has a higher throughput (Kurz et 

al, 2000). 
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2 AIMS OF MY STUDY 

Previous studies have shown that hyperforin can induce apoptosisabove certain 

threshold concentrations, but below these concentrations can nevertheless inhibit 

proliferation by inducing cell cycle arrest in the absence of apopotsis induction. 

Circumstantial evidence suggests that hyperforin can activate signaling pathways 

associated with the induction of senecence. The aim of my study was therefore to 

determine whether hyperforin induces senescence in tumor cells and endothelial 

cells at non-apoptosis-inducing concentrations, both in cell culture and in vivo. If so, I 

then planned to study the molecular mechanism by which hyperforin induces 

senescence. Finally I aimed to establish improved methods for the analysis of 

senescent cells. 

The specific aims of my study were as follows: 

- Determine whether hyperforin induces senescence in tumor cells and ECs 

using x-gal staining, and investigate the concentration and time-dependency 

of any effects observed 

- Treat tumor-bearing animals with hyperforin in vivo to determine whether it is 

also able to induce senescence in vivo 

- Study the molecular pathwaysthrough which hyperforin induces senescence, 

focusing on SIRT1,p53 and Noxa. 

- Establish methods to quantify senescent cells more quickly and specifically 

that standard x-gal staining methods.  

 



 

 

3 MATERIAL AND METHODS 

3.1 Materials 

3.1.1 Instruments 

Centrifuges Thermo Fisher Scientific, Schwerte 

Developer for X-ray films CAWOMAT 2000R CAWO, 

Schrobenhausen 

Electrophoresis Apparatus PeqLab, Erlangen; BioRad, München 

ELISA reader Multiskan Acscent Thermo Fisher Scientific, Schwerte 

FACS-can BectonDickinson, Franklin Lakes USA 

Fluorescence microscope Axio Imager  Carl Zeiss, Jena 

Incubator Binder Tuttlingen 

Incubator HeraCell Thermo Fisher Scientific, Schwerte 

Microscope Axiovert 40 CFL Carl Zeiss, Jena 

NanoDrop PeqLab, Erlangen 

Shaker for bacteria Certomat IS Sartorius, Göttingen 

Sonicator Sonoplus Bandelin, Berlin 

Sterile hood Hera Safe Thermo Fisher Scientific, Schwerte 

Thermomixer 5436  Eppendorf, Hamburg 

Ultracentrifuge Sorval RC6plus Thermo Fisher Scientific, Schwerte 

Vortex VWR International, UK 
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Water bath Memmert, Büchenbach 

 

3.1.2 Chemicals, reagents and consumables 

0.25% Trypsin-EDTA (1x), phenol red Life Technologies, Darmstadt 

AceGlow PeqLab, Erlangen 

Acetic acid  Roth, Karlsruhe 

Acrylamide/N,N‘-Methylenbisacrylamide 

(37,5:1) 

Roth, Karlsruhe 

Agarose Biozym, Wien, Austria 

Ammonium peroxodisulfate (APS)  Roth, Karlsruhe 

Ampicillin Roth, Karlsruhe 

Aristoforin Prof. Giannis, University of Leipzig 

Bafilomycin A1 Sigma Aldrich, Steinheim 

BCA assay Thermo Fisher Scientific, Schwerte 

Bovine serum albumin (BSA) PAA, Pasching, Austria 

Bromophenol blue Roth, Karlsruhe 

Butanol  Roth, Karlsruhe 

Cell death detection ELISA Roche, Mannheim 

C12FDG Invitrogen 

CHAPS Fulka, Switzerland 

Chloroform  Roth, Karlsruhe 
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Coomassie Brilliant Blue R250  Roth, Karlsruhe 

Diethylpyrocarbonate (DEPC)  Roth, Karlsruhe 

Dimethylsulfoxide (DMSO) Sigma Aldrich, Steinheim 

Dithiothreitol (DTT) Fluka, Neu-Ulm 

Dulbecco‘s modified Eagle Medium 

(DMEM) 

Life Technologies, Darmstadt 

ECL-Western blotting detection reagent  Thermo Fisher Scientific, Schwerte 

Ethidium bromide  Roth, Karlsruhe 

Ethylenediaminetetraacetic acid (EDTA) Sigma Aldrich, Steinheim 

Fetal Calf Serum (FCS) Life Technologies, Darmstadt 

Formaldehyde Roth, Karlsruhe 

Glutaldehyde Roth, Karlsruhe 

Glycerol Sigma Aldrich, Steinheim 

Glycine Roth, Karlsruhe 

HEPES Roth, Karlsruhe 

Hyperforin Prof. Giannis Lab, University of Leipzig 

Lipofectamine 2000  Life Technologies, Darmstadt 

Lipofectamine LTX  Life Technologies, Darmstadt 

Lysotracker yellow Invitrogen 

Magnesium chloride Roth, Karlsruhe 

Methanol Roth, Karlsruhe 
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Milk powder  Sigma Aldrich, Steinheim 

4-methylumbelliferyl-ß-D-

galactopyranoside (MUG) 

Sigma Aldrich, Steinheim 

N,N,N‘,N‘-Tetramethylethylendiamine 

(TEMED) 

Roth, Karlsruhe 

Oligonucleotides Metabion 

OptimMem Life Technologies, Darmstadt 

Paraformaldehyde J.T. Baker, Deventer, The Netherlands 

Penicillin/Streptomycin Life Technologies, Darmstadt 

Phenol Roth, Karlsruhe 

Phenylmethylsulfonyl fluoride (PMSF) Roth, Karlsruhe 

Phosphate buffer saline (PBS)  Life Technologies, Darmstadt 

Plasmid Maxi Kit Qiagen, München 

Propanol Roth, Karlsruhe 

Reagents for developer  AGFA, Bonn 

Restriction enzymes and buffers Fermentas 

Resveratrol Sigma Aldrich, Steinheim 

Sirtinol Sigma Aldrich, Steinheim 

SOC  Life Technologies, Darmstadt 

Sodium acetate Roth, Karlsruhe 

Sodium chloride Roth, Karlsruhe 

Sodium orthovanadate Roth, Karlsruhe 
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Sodium dodecylsulfate (SDS) Roth, Karlsruhe 

Sodium hydroxide (NaOH) Roth, Karlsruhe 

Tip-500-columns  Qiagen, München 

Tris-HCl, Tris-Base  Sigma Aldrich, Steinheim 

Triton X-100  Sigma Aldrich, Steinheim 

Trizol  Life Technologies, Darmstadt 

Tryptone Roth, Karlsruhe 

Tween 20 GE Heathcare, München 

X-gal Sigma Aldrich, Steinheim 

Yeast extract Roth, Karlsruhe 

3.1.3 Antibodies 

3.1.3.1 Primary antibodies 

Anti-ß-actin mouse, monoclonal, Sigma 

Anti-Noxa 

Anti-SIRT1 

Anti-H4 

mouse, monoclonal, US Biological 

rabbit, polyclonal, Abcam 

mouse, monoclonal, Sigma 

Anti-H4Ac rabbit, polyclonal, Abcam 

3.1.4 Secondary antibodies 

All secondary antibodies were from DAKO, polyclonal, produced in goat: 

Anti mouse HRP 

Anti rabbit HRP 

Anti Rat HRP 
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3.1.5 Cells 

Eukaryotic cells: 

NAME SPECIFICATION REFERENCE SOURCE 

HUVEC Human umbilical 

vein endothelial 

cells 

(Jaff EA et al, 

1973) 

Promocell 

LEC Human lymphatic 

endothelial cells 

(Casley-Smith, 

1961) 

Promocell 

 

MCF-7 Human breast 

adenocarcinoma 

(Rockville et al, 

1985) 

ATCC 

T47D Human breast 

adenocarcinoma 

(Rockville et al, 

1985) 

ATCC 

HCT116  Human colon 

carcinoma 

(Dexter et al, 

1979) 

ATCC 

HCT+/+, 

HCT-/- 

Human colon 

carcinoma 

(Bunz et al, 

1999) 

Dr. Blattner , ITG 

Karlsruhe 

ACC57 Human cervix 

carcinoma 

(Akiyama et al, 

1985) 

ATCC 

PC3 Human prostate 

carcinoma 

(Nagafuchi, 

1989) 

ATCC 

SW480 Human colon 

carcinoma 

(Goyette et al, 

1992) 

ATCC 
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3.1.6 Buffers and solutions 

All solutions were prepared with double deionized water (ddH2O). 

Buffer Composition 

5x TBE buffer 400 mM Tris, pH 8.0 EDTA 

10 mM EDTA 

Acetic acid for pH titration 

 

6x DNA loading buffer 0.25% (w/v) Bromphenol blue 

0.25% (w/v) Xylene cyanol FF 

40% (w/v) sucrose 

 

6x Laemmli sample buffer 350 mM Tris, pH 6.8 

30% glycerin 

1% SDS 

0.5 M DTT 

12% Bromophenol blue 

 

LB-agar (autoclaved) 1.5% (w/v) Bacto agar in LB medium 

 

LB-medium (autoclaved) 1% (w/v) Bacto tryptone 

0.5% (w/v) Bacto yeast extract 

170 mM NaCl 

adjusted to pH 7.6 with NaOH 

 

RIPA buffer 150 mM NaCl 

0.1% Nonidet P40 

0.5% Sodium deoxycholate 
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0.1% SDS 

50 mM Tris pH 7.0 

1 mM EDTA 

 

4X Loading Buffer 0.1 M Tris-HCl pH 6.8  

8% SDS  

40% glycerol  

0.02% Bromophenol Blue  

0.1 M DTT 

 

1x Running buffer 25 mM glycine  

192 mM Tris 

0.1% SDS 

 

Staining solution 2% Coomassie brilliant blue  

40% methanol  

5% glacial acetic acid  

Water up to volume 

 

De-staining solution 40% methanol  

5% glacial acetic acid  

Water up to volume 

 

1x Transfer buffer 25 mM glycine  

192 mM Tris  

0.1% SDS  
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Methanol 15%-20% according to protein 
size 

Tris-buffered saline (TBS) 10X 500 mM Tris HCl, pH 7.4  

1.5 M NaCl 

 

Washing buffer 1X TBS  

0.05% Tween 

 

Blocking buffer 1% Bovine serum albumin  

1X TBS  

0.05% Tween 

 

Stripping solution 2% SDS  

0.7% β-mercaptoethanol  

62.5 μM Tris-HCl pH 6.8 

 

X-gal buffer 1 mg/ml x-gal 

 0.12 mM K3Fe[CN]6 

0.12 mM K4Fe[CN]6 

1 mM MgCl2 

adjusted to pH 6.0 with PBS 
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3.2 Methods 

3.2.1 DNA Quantification 

To quantify the amount of DNA, the optical density (O.D.) at 260, 280 and230 nm 

was measured with a NanoDrop® device and ND-1000 software (version3.1.2). An 

OD260=1 corresponds to 50 μg/ml of double-stranded DNA. An OD260/OD280ratio of 

1.8 indicates a nucleic acid preparation relatively free fromprotein contamination. An 

OD260/OD230 ratio above 1.6 indicates a preparation free of organic chemicals and 

solvents. 

DNA concentration (μg/ml) = (OD260) x (dilution factor) x (50 μg DNA/ml)/(1 OD260 unit) 

3.2.2 Agarose gel electrophoresis 

The agarose was dissolved in 1xTAE buffer. The mass of the agarose was 

dependent on the size of the fragments to be analyzed (0.8-1.5%). After cooling, 

ethidium bromide (EtBr) solution (0.5 mg/ml final concentration) was added to the 

liquid agarose. The liquid agarose with EtBr was poured into the running chamber 

with a comb. The comb was removed and the chamber was filled with 1xTAE buffer. 

The DNA was loaded into the wells and separated electrophoretically. The bands 

were detectable at 265 nm. 

3.2.3 Preparation of CaCl2 competent E. coli cells 

LB medium (50 ml) containing selection antibiotics was inoculated with a bacterial 

culture at OD600of 0.06. During the logarithmic phase of the bacterial growth, cultures 

were centrifuged at 4.000 rpm for 10 minutes at 4°C.The resulting pellet was first 

washed in 20 ml 0.1 M MgCl2 and then centrifuged as before. The pellet was then 

resuspended in 20 ml 0.1 M CaCl2 and centrifuged again, then resuspended in 2 ml 

0.1 M CaCl2, and incubated on ice for a minimum of 2 hours. Finally, sterile glycerol 

(ratio 1:1) was added and the aliquoted competent cells were frozen in liquid 

nitrogen. 

3.2.4 Transformation of competent E. coli cells 

Calcium chloride weakens the capsular structure of E. coli cells, allowing the transfer 

of plasmids into bacteria by a short heat pulse (Dagert and Ehrlich, 1979). For 

bacterial transformation 10 μl ligation mixture was combined with 100μl of 
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CaCl2competent bacterial suspension, incubated on ice for 15 minutes, and then 

heat-shockedat 42°C for 90 sec. After 3 minutes incubation on ice, 200 μl LB medium 

was added to each tube and cells were placed on a shaker for 45 minutes at 37°C. 

Transformed E. coli cells were then plated out on agar dishes containing an 

antibiotic, resistance against which was conferred by the vector used for 

transformation. Therefore, only bacteria carrying the incorporated plasmid were able 

to grow. 

3.2.5 Isolation of plasmid DNA from E. coli cells 

For evaluation of cloning results, a small-scale plasmid preparation(“miniprep”) was 

used. For this purpose, several bacterial colonies were pickedfrom an agar plate, and 

each was used to inoculate 5 ml of LB medium containingthe appropriate selective 

antibiotic. After an overnight incubation at 37°C,bacterial plasmids were purified 

using QIAprep Spin Miniprep Plasmid PurificationKit (QIAgen) according to the 

manufacturer’s instructions. Briefly, an overnightculture of E. coli was harvested by 

centrifugation (4.500 rpm, 10 minutes, 4°C),and the pellets were resuspended in 250 

ml buffer P1 containing 100 μl/mlRNaseA. An equal amount of the lysis buffer P2 

was added, and gently mixed by inverting the tube 10-15 times. After a maximum 

lysis time of 5 minutes at RT,350 μl of neutralizing buffer P3 was mixed with the 

contents of the tube, and the resulting cell debris, cellular proteins and chromosomal 

DNA were pelleted bycentrifugation (13.000 rpm, 10 minutes, RT). The supernatant 

containing the dissolved plasmid DNA was then transferred to a spin column, left for 

1 minute toequilibrate, and centrifuged (13.000 rpm, 1 minute, RT). The flow-through 

wasdiscarded, and the column was washed with 750 μl wash buffer. After removal 

ofthe wash flow-through, the column was spun dry and placed on a fresh 

reactiontube. Then, 30-50 μl double distilled H2O was applied to the column, and the 

DNA was elutedby a final centrifugation step (1 minute, 13.000 rpm, RT).  

For a larger preparationof plasmid DNA (maxiprep), 200 ml of LB medium was 

inoculated with a bacterialculture and purified with the QIAfilter Plasmid Maxi Kit 

(QIAgen) according to themanufacturer’s instructions. After extraction of plasmid 

DNA by mini- or maxipreparation, its absorbance at 260 nm was measured. As 

already brieflydescribed in 3.2.2, an OD260 value of 1 unit corresponds to a 
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concentration of 50μg/ml of double-stranded DNA. After quantification all purified 

DNA was diluted asappropriate and stored at -20°C. 

3.2.6 Cell culture methods 

Cryopreservedtumor and endothelial cells were removed from liquid nitrogen and 

thawed for 1-2 min with constant agitation to quickly thaw the cells. Slowly, drop-by-

drop, cells were diluted in a 10-fold volume of pre-warmed growth medium in a 

culture dish. The cells were incubated at 37°C in an incubator (Hera Cell 150) with 

5% CO2 and 95% air humidity, except for LECs which were kept for a maximum of 6 

passages under the same conditions as the other cells, but with 3% O2.  In general, 

cells were allowed to grow until a confluency of 80-90% was reached. The cell 

monolayer was washed with PBS and trypsin /EDTA (1 ml per 25 cm2 of surface 

area) was added to the washed cell monolayer. The flask was returned to the 

incubator and incubated for 1-2 min or until cells were detached. Fresh medium was 

added and the cells were replated at the desired density. All cell lines were routinely 

screened for mycoplasma using VectorGem Myco Detection Kit (Vector). Only 

earlypassage primary endothelial cell cultures wereused for all experiments. 

Treatments of cells with hyperforin, aristorforin, RSV and sirtinol: 0.25 mg hyperforin 

or aristoforin were dissolved in 23 or 21 l DMSO, respectively, which corresponds 

20 mM of each of the agents. To obtain the desired final concentrations, the 20 mM 

hyperforin or aristoforin stock solutions were diluted in the medium and the cells were 

treated immediately. A concentration of 70 mM RSV correlates to 16 mg RSV 

dissolved in 1 ml DMSO. A 1 mM solution of sirtinol was obtained by dissolving 1 mg 

sirtinol in 2.5 ml DMSO. As different end concentrations of DMSO were used in the 

experiments, appropriate DMSO controls were added for each treatment in all 

experiments. In experiments in which the cells were treated every two days for 6 

days, medium was removed every 48 h and the cells were treated with fresh medium 

for the next 48 h. 

Freezing protocol: Logarithmically growing cells were trypsinized, harvested by 

medium addition andcentrifuged as described above. The supernatant was then 

removed and the cells resuspended in normal culture medium containing 10% 

DMSO. The suspension wasplaced in 1.8 ml freezing vials. Prepared cells were 

immediately placed in - 80°Cand after some days moved to liquid nitrogen.  
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3.2.7 DNA plasmid transfection of cultured cells 

When cells reached a density of 80-90% confluency, the culture medium was 

removed and replaced with serum-free Opti-MEM medium. For a 6-well plate, 

Lipofectamine 2000 was added to 250 µl Opti-MEM in 1.5 ml microfuge tube and 

incubated for 5 min at RT. DNA (2 µg in 250 µl Opti-MEM) and the diluted 

lipofectamine 2000 werethen combined and incubated for 20 min at RT. DNA and 

lipofectamine 2000 mixture was subsequently added tothe cells. The medium was 

replaced after 6 h withthe fresh culture medium. 

3.2.8 RNA interference 

For all siRNA oligonucleotides, thetransfection was performed as follows. Cells were 

seeded to reach a confluency of~50% on the transfection day. Both the 

oligonucleotides and the Lipofectamine2000 were separately diluted in OptiMem 

according to the Lipofectamine 2000 protocol. The ratio nmolsiRNA:μl Lipofectamine 

2000 was always 0.1:5. In case of a co-transfection, the RNA amount was divided 

equally between the two sequences, in order to maintain a constant total amount of 

RNA.Briefly, the diluted Lipofectamine 2000 was incubated for five minutes at RT, 

and subsequently combined with the diluted oligonucleotides. Themixture was 

incubated for 20 minutes at RT, and finally added dropwise to the cells. These were 

maintained in medium containing FCS, but withoutantibiotics. The knock down was 

most efficient after 72 hours for all three siRNAs.Scrambled controls were used for 

each siRNA. 

3.2.9 Preparation of cell lysates 

Cells were harvested and counted. To lyse the cells, 100 µl ice-cold lysis buffer 

(RIPA buffer)was added for every 1x106 cells. The lysate was incubated on ice for 30 

min, then transferred into a microcentrifuge tube and centrifuged at 14,000 rpm for 15 

min at 4°C. The protein concentration in the soluble supernatant was determined 

using the Bradford protein assay. The soluble supernatant was thenwere diluted in 2x 

sample buffer and boiled for 5 min at 95°C. Aliquots were stored at -20°C or -80°C. 

3.2.10 Protein concentration determination 

The protein concentration of cell lysates was assessed with a commercially 

availablebicinchoninic acid assay, using known concentrations of bovine serum 
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albumin for the calibration curve. A 1:5 dilution of the lysate was used for the 

colorimetric reaction that was performed in flat bottom 96 well plates. The color 

development is proportional to the amount of protein present in the solution, and was 

measured at 595nm with an ELISA reader. The concentration was then calculated 

with the Ascent software, according to the calibration curve. 

3.2.11 SDS-PAGE and Western Blotting 

The samples were added to 6x sample buffer containing 100mM DTT. Heating for 5 

minutes at 95 °C denatured the samples and then tubes were spun at 13,000 rpm for 

~1 min. SDS polyacrylamide gel electrophoresis (SDS-PAGE) was performed as 

described by Laemmli (Laemmli, 1970). Depending on the molecular mass of the 

protein of interest, 8 to 15% polyacrylamide gels were used. The protein samples 

were loaded onto the gel and the gel was run at about 60 V until the dye migrated 

through the stacking gel, then the voltage was increased to about 85 V until the dye 

front reached the bottom of the separating gel. Gels were western blotted onto a 

nitrocellulose membrane. The gel and membrane were sandwiched between a 

sponge and Whatman paper. The gel was placed on the side of the negative 

electrode in the transfer apparatus. Electrotransfer was performed at 27 V for 12h. 

After transfer, the membrane was incubated in blocking buffer (5% nonfat dry milk in 

TBST) for 1 h at RT. The protein of interest was detected with a primary antibody 

solutionat 4°C overnight. The membrane was washed three times for 5 min in 1x 

TBST buffer at RT, then incubated with a secondary antibody for 1 h at RT, and was 

then washed again with TBST. The proteins were detected using the Western 

Lightning chemiluminescence kit. 

3.2.12 FACS analysis 

Cells were suspended in 70 μl of PBS/ 10% FCS, then incubated with primary 

antibodies directed against the protein of interest for one hour at 4°C. The cells were 

washed twice, then resuspended in 100 μl PBS/ 10% FCS containing appropriate 

secondary antibodies, and incubated for 30 minutes at 4°C. After washing three 

times with 150 μl PBS, the cells were resuspended in PBS/ 10% FCS and analysed 

with a FACScan cytometer (Becton Dickinson). The ideal concentration of both 

primary and secondary antibodies was determined in titration experiments. All the 
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FACScan operations performed in this study were done under the kind supervision 

and help of Melanie Grassl (if performed in the CBTM - Mannheim). 

3.2.13 Senescence-associated-ß-gal staining 

Monolayers of cells were washed twice with PBS pH 6.0, and then fixed with 0.2% 

glutaraldehyde prepared in PBS pH 7.5 for 10 min. The cells were then washed twice 

again with PBS pH 6.0 containing 1mM MgCl2. After the last wash, staining solution 

was added [1 mg/ml 5-bromo-4-chloro-3-inolyl-ß-D-galactosidase (x-gal)] in 

dimethylformamide (20mg/ml stock), 0.12 mM potassium ferrocyanide, 0.12 mM 

potassium ferricyanide, 1mM MgCl2 in PBS pH 6.0 and the cells were incubated at 

37°C overnight. Cells were then washed twice with PBS, and DAPI staining was 

applied to the cells. The percentage of stained and photographed cells was counted. 

The percentage of blue cells in a total of 800 counted cells was evaluated for each 

experiment.  

3.2.14 In vivo experiments 

Animals used for detection of x-gal positive cells in vivo were NOD.SCID CB-17 mice, 

between 8 and 10 weeks of age. All the mice were bred in the ITG (Institute for 

Toxicology and Genetics), part of the KIT (Karlsruhe Institute of Technology) animal 

facility under full specific pathogen free (SPF) conditions. 

MCF-7 cells (5x 106 cells/ per animal) were injected into the breast. The mice were 

injected intravenously with 1mg/ml estrogen every week to support tumor growth. 

Every two days up to 6 days tumors were subcutaneously injected with 100 μl of 2 

mM hyperforin, PBS and the solvent (10% DMSO). All tumor tissues obtained from 

animals were embedded in OCT (Sakura Finetek) for cryosections. 

 

3.2.15 Tissue Processing – OCT 

After tissue dissection, the samples were either fixed in 4% PFA on ice for 5-10 

minutes or simply washed for 5 minutes in 1x PBS, depending on the analysis to be 

performed. The tissues were placed in cryomolds, then overlaid with OCT, and frozen 

on dry ice. 
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3.2.16 X-gal staining in tissue 

OCT-embedded tissues were cut into 5 µM thick frozen sections, dried at RT 

overnight, then fixed in for 30 min at RT. The fixative consisted of 10.8 ml 37% 

formaldehyde, 1.6 ml 25% glutaraldehyde and PBS added up to a volume 200 ml. 

The sections were subsequently washed three times with PBS for 2 min, then 

immersed in x-gal buffer (1mg/ml x-gal, 0.12mM K3Fe[CN]6, 0.12mM K4Fe[CN]6, 

1mM MgCl2 adjusted to pH 6.0 with PBS) and incubated for 24h at 37°C in a water 

bath.The sections were then washed with PBS and stained with 1µg/µl DAPI for 5 

min at RT. The slides were washed with PBS twice, and were then analysed using 

the AxioVision Image 1 microscope (Zeiss). 

3.2.17 Cell death detection ELISA 

Endothelial and tumor cells at a confluency of ~ 50% and were treated with 

hyperforin or DMSO as a control for for 1, 2 and 6 days. Levels of apoptosis as 

assessed by release of oligonucleosomes into the cytoplasm were quantified using 

the cell death detection ELISA kit (Roche) according to the manufactuer’s 

instructions.  

3.2.18 Quantitative assay of senescence-associated ß-

galactosidase activity using cell extracts by MUG (4-

Methylumbelliferyl β-D-Galactopyranoside) 

Cells grown in 6-well plates were washed six times with phosphate-buffered saline to 

remove all traces of protein from the growth medium. Cells were then lysed by the 

addition of 450 μl of 1x lysis buffer (5mM 3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonate [CHAPS], 40 mM sodium phosphate, 0.5 mM benzamidine and 

0.25 mM phenylmethanesulfonyl fluoride [PMSF], pH 6.0). Cells were scraped, 

transferred to a 1.5 ml tube, vortexed vigorously and centrifuged for 5 min at 12000g.  

The clarified supernatant was kept on ice until use. The reaction buffer at 2x strength 

consisted of 40 mM citric acid, 40 mM sodium phosphate, 300 mM NaCl, 10mM ß-

mercaptoethanol and 4mM MgCl2 (pH 6.0) with 1.7mM of 4-methylumbelliferyl-ß-D-

galactopyranoside (MUG) added immediately prior to use from a 34mM stock in 

dimethyl sufoxide. 
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Clarified lysate (150μl) was mixed with 150μl of 2 x reaction bufferand placed at 37°C 

for 30min. At the indicated times, 50μl of the reaction mix were added to 500μl of 

400mM sodium carbonate stop solution, and stored at 4°C until measurement of 

fluorescence. The carbonate-terminated reaction mix was read at 150μl per well in a 

96-well plate using a Tecan GENios automated plate reader with excitation at 360nm, 

and emission at 465nm. 

3.2.19 Statistics 

In all presented graphs error bars represent the standard error of the mean. 

Statistical significance was evaluatedusing a two-tailed student’s t-test. A p-value of 

less than 0.05 was considered significant. In all the graphs where a statistical 

analysis is shown, the following symbols were used: 

* = P≤0.05 

** = P≤0.01 

*** = P≤0.001 
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4 RESULTS 

4.1 Senescence induction by hyperforin and aristoforin 

4.1.1 Induction of senescence in endothelial cells 

As previously described, the group of Prof. Sleeman has demonstrated that 

hyperforin and aristoforin possess anti-proliferative properties at concentrations less 

than 10 μM, while higher concentrations of these agents induce apoptosis in LECs 

(Rothley et al, 2009).To investigate the hypothesis that concentrations of less than 

10 µM induce senescence, I cultivatedhuman umbilical vein endothelial 

cells(HUVECs) with different concentrations of hyperforin and aristoforin, then 

quantified levels of senescence. Asa positive control, HUVECs were treated with 

sirtinol, a SIRT1 inhibitor that induces senescence(Grozinger et al, 2001).  

HUVECs were treated with hyperforin or aristoforin at a concentration of 5, 6, 7, 8, 9 

and 10 μM or with 50 μM sirtinol for 4, 6 and 9 days. Because hyperforin, aristoforin 

and sirtinol were dissolved in DMSO, control cells were treated with DMSO alone. 

The number of senescent cells was measuredby x-gal staining (Demri et al, 1995).In 

comparison tountreated and DMSO-treated HUVECs, sirtinol strongly induced 

senescence in a time-dependent manner (Figure 7, A).Low concentrations of 

aristoforin (5 μM) induced a time-dependent increase in the number of senescent 

cells (Figure 1, A). However, increasing concentrations of aristoforin (6 -10 μM) 

progressively induced lower levels of senescence(Figure 7, A).Similar results were 

obtained for hyperforin-treated HUVECs, as hyperforin at 5 μM provided the highest 

induction of senescence in HUVECs after 9 days of treatment (Figure 7, B), while 

higher hyperforin concentrations (6-10 μM)induced less pronounced senescence 

induction(Figure 7, B). 

In summary, hyperforin and aristoforin both induce senescence in HUVECs in a 

concentration- and time-dependent manner at concentrations that do not efficiently 

induce apoptosis. The reduced incidence of senescent cells with higher 

concentrations may be due to increasing induction of apoptosis.  
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Figure 7 - Induction of senescence by hyperforin and aristoforin in HUVECs 

Human umbilical vein endothelial cells were treated with different concentrations of hyperforin or 

aristoforin at concentrations between 3-10 μM for 4 to 9 days; the treatment was terminated using x-

gal staining. A) X-gal staining in HUVECs by aristoforin shows maximal senescence induction using 5 

μM aristoforin for 9 days. N=3; the error bars represent standard error.*p≤ 0.05. B)X-gal staining in 

HUVECs by hyperforin shows a significant increase in the number of senescent cells when 5 μM of 

hyperforin was applied for 9 days. N=3; the error bars represent standard error.*p≤ 0.05. 

4.1.2 Antiproliferative potential of hyperforin against cancer    

cells is due in part to senescence induction 

Hyperforin inhibits proliferation of human tumor cells with an IC50 of3 to 15 μM 

(Schempp et al, 2002). To determine whether hyperforin also induces senescence in 

human tumor cells, first I tested the tumor cell line T47D (breast cancer cells)with 
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different low concentrations of hyperforin for certain time periods. The quantification 

of senescent cells was performed using x-gal staining. High levels of spontaneous 

senescence were observed in untreated and DMSO-treated T47D cells. 

Nevertheless, significantly increased numbers of senescent cells were observed after 

6 days of treatment with 3 and 5 μM of hyperforin.The use of 8, 10, 12 and 15 µM 

hyperforin resulted in reduced senescence compared to 3 and 5 µMhyperforin(Figure 

8).  

 

Figure 8 - Dose- and time-dependent senescence induction in the T47D cell line via hyperforin 

X-gal analysis of T47D cells treated with 3-15 μM hyperforin for 24 h, 48 h and 6 days. The level of 

senescent cells in hyperforin-treated T47D cells, which were treated by 3 and 5 µM, is significantly 

induced after 6 days compared to 24 and 48 h of treatment and also compared to negative controls 

including untreated and DMSO-treated cells. N=3; the error bars represent standard error.*p≤ 0.05. 

Similar to the case with HUVECs, hyperforin-induced senescence in T47D cells was 

progressively less pronounced at concentrations above 5 µM. As 15 µM hyperforin 

can induce apoptosis in tumor cell lines (Schempp et al, 2002), the reduced induction 

of senescence may be due to increasing levels of apoptosis induction.To determine 

is this is the case,T47D cells were treated with DMSO, 50 μM sirtinol or varying 

concentrations of hyperforin (the substances were refreshed every two days, up to 6 

days), then the induction of apoptosis was assessed using a quantitative 
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oligonucleosome release assay (Roche). I observed no significant induction of 

apoptosis in untreated, DMSO-treated cells or in hyperforin-treated cells at any of the 

concentrations used, but a slight tendency of apoptosis inductionwas seen in sirtinol-

treated T47D cells (Figure 9). 

 

Figure 9 - Dose- and time-dependent inductions of apoptosis using hyperforin in T47D cells 

Quantitative oligonucleosome release assay of T47D cells treated with hyperforin at different 

concentrations. There is little apoptosis in untreated T47D cells as well as in DMSO-treated and 3-

15 µM hyperforin treated cells.  There is a tendency of apoptosis induction at 50µM sirtinol. The 

positive control from the kit shows a high level of apoptotic cells. The rate of apoptosis is reflected by 

the enrichment of nucleosomes in the cytoplasma shown by the value of the y-axis. N=3; the error 

bars represent standard error. 

4.1.3 Senescence induction using hyperforin and aristoforin in 

different tumor cell lines 

For both HUVECs and T47D cells, treatment with hyperforin concentrations of around 

3 - 5 µM for 6 days were found to optimally induce senescence. Next I determined 

whether this is generally true for other tumor cell lines.  

A panel of cancer cell lines was treated with DMSO, sirtinol (50 μM), or 5 μM 

hyperforin or aristoforin for 6 days, with a medium change every 48h as before. 

Under these conditions, hyperforin induced senescence significantly in ACC57 
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cervical carcinoma cells, HCT116 and SW480 colorectal cancer cells, and MCF-7 

breast cancer cells, but not in PC3human prostate cancer cells (Figure 10). As MCF-7 

cells showed the most pronounced hyperforin-induced senescence, these cells were 

chosen for subsequent in vivo and mechanistic studies. 

 

Figure 10 -Senescence induction by hyperforin and aristoforin in different cancer cells 

The indicated tumor cell lines were treated with DMSO, sirtinol (50 μM), or 5 μMhyperforin or 

aristoforin for 6 days, with a medium change every 48 h. After subsequent x-gal staining, the 

percentage of x-gal-positive cells was evaluated. The mean and standard error of 4 independent 

samples is presented.*p≤ 0.05. 
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4.1.4 Hyperforin induces senescence in vivo 

To determine whetherhyperforin caninduce senescence in vivo, MCF-7 tumor-

bearing animals were treated withhyperforin, then the presence of senescent cells in 

the tumor was evaluated by x-gal staining of frozen tumor sections. To this end, mice 

were injected subcutaneously with MCF-7 cells. Tumors were allowedto develop for 4 

weeks, then the animals were treated intraperitoneally with PBS, DMSO or 2 mM 

hyperforin every day for 6 days. Tumors were then excised and prepared for cryo 

sectioning. X-gal staining was performed on 5 μM sections for senescent cell 

analysis. Each section was stained with DAPI as well as x-gal. After the staining, the 

sections were observed under the microscope and both DAPI and x-gal positive cells 

were counted separately to assess the percentage of x-gal positive (senescent) cells 

compared to the total number of DAPI-stained cells. Compared to controls, hyperforin 

treatment resulted in a significant increase in the presence of senescent cells (Figure 

11), with control tumors containing around 0.7% senescent cells compared to more 

than 4% in hyperforin-treated tumors. 
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Figure 11 - Detection of x-gal positive cells in tumor tissue using hyperforin 

A) X-gal staining shows the positive x-gal stained cells in hyperforin-treated tumor tissue from mice.B) 

X-gal staining in DMSO treated tumor tissue from mice. C) X-gal staining shows the level of x-gal 

positive cells in mouse tumor tissue, which had been treated with PBS, DMSO or hyperforinfor 6 days. 

The level of x-gal positive cells in the tissue treated with hyperforin is significantly increased in 

comparison to the DMSO control.N=5; the error bars represent standard error.*p≤ 0.05. 

 

4.2 Molecular mechanism of hyperforin-induced senescence 

Next I set out to determine the molecular mechanism by which HF and AF induces 

senescence.As outlined in detail in the Introduction, a number of candidate factors 

through which hyperforin could induce senescence can be identified from the 

literature. Hyperforin inhibits SIRT1 activity (Gey et al, 2007), and induces Noxa 
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expression, a direct target of the p53 gene that regulates senescence induction. 

Experiments were therefore performed to determine whether these factors play a role 

in senescence induction by hyperforin treatment. 

4.2.1 Role of SIRT1 

RSV activates SIRT1 activity (Howitz et al, 2003). I therefore reasoned that if 

hyperforin/aristoforin induces senescence by inhibiting SIRT1, then RSV should 

counteract hyperforin-induced senescence. To determine if this is the case, HUVECs, 

LECs and different tumor cells were treated in the presence or absence of RSV witha 

senescence-inducing concentration of hyperforin or aristoforin (5 μM), or with sirtinol. 

As before, cells were treated for up to 6 days, and the medium was changed every 

48h. The cells were then stained by x-gal to detect senescent cells. 

Untreated and DMSO-treated HUVECs and LECs exhibited similar levels of 

senescent cells as untreated cells, as didresveratrol-only treated HUVECs and LECs 

(Figure 12). In contrast, senescence was strongly induced by hyperforin, arisitoforin 

and sirtinoltreatment of HUVECsand LECs as expected (Figure 12). Importantly, RSV 

treatment significantly reduced senescence induced by hyperforin, aristoforinand 

sirtinol (Figure 12).These data provide evidence that hyperforin and aristoforin induce 

senescence by inhibiting the activity of SIRT1. 

 

Figure 12 - Hyperforin- and aristoforin-induced senescence is suppressed by the sirtuin 

activator RSV in ECs 
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HUVECs and LECs were treated in the presence or absence of RSV with hyperforin or aristoforin 

(5 μM), or with sirtinolfor 6 days, and the medium was changed every 48 h. The cells were then 

stained by x-gal to detect senescent cells, and the percentage of x-gal-positive cells was evaluated. 

The mean and standard error of 3 independent samples is presented. *p≤ 0.05. 

 

Similar experiments were performed with different cancer cell lines (Figure 13). For 

some of these lines, notably MCF-7 and T47D, RSV was able to suppress hyperforin 

and aristoforin-induced senescence (Figure 13). However, for other cell lines such as 

ACC57 and SW480, while hyperforin and aristoforin significantly induced 

senescence, RSV was unable to reverse this effect (Figure 13). Together these data 

suggests that hyperforin and aristoforin may induce senescence at least partially by 

inhibiting SIRT1 in ECs and some tumor cells, but that hyperforin and aristoforin can 

also induce senescence via other mechanisms. In view of the observations I 

therefore first investigated the possible role of SIRT1 in hyperforin/aristoforin-induced 

senesence before expanding the analysis to explore other possible mechanisms.  
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Figure 13 -Hyperforin- and aristoforin-induced senescence can be inhibited by the sirtuin 

activator RSV in some cancer cells 

The indicated tumor cells were treated in the presence or absence of RSV with hyperforin or aristoforin 

(5 μM), or with sirtinolfor 6 days, and the medium was changed every 48 h. The cells were then 

stained by x-gal to detect senescent cells, and the percentage of x-gal-positive cells was evaluated. 

The mean and standard error of 3 independent samples is presented. *p≤ 0.05. 

4.2.1.1 Effect of SIRT1 inactivation on senescence induction 

If inhibition of SIRT1 is responsible for hyperforin-mediated senescence, I reasoned 

that SIRT1 knockdown should also induce senescence, and hyperforin should not 
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further increase senescence over and above that induced by hyperforin. To 

determine if this is the case, I knocked down SIRT1 expression in MCF-7 cells using 

a retroviral shRNA construct. Then the level of senescent cells induced by hyperforin 

in the absence of SIRT1 was analyzed in comparison with the senescence level in 

HF-treated parental cells.  

As demonstrated inFigure 14, SIRT1 protein could not be detected using western 

blotting in MCF-7 cells transfected with shRNA against SIRT1, whereas a robust 

signal was found in both MCF-7 parental cells and MCF-7 transfected with scrambled 

RNA, demonstrating the efficiency of the knockdown. Treatment of cells with 

hyperforin and aristoforin also reduced SIRT1 expression compared to DMSO-

treated control cells (Figure 14). 

 

Figure 14 - Western blotting of MCF-7 cells related to the SIRT1 expression by hyperforin 

treatment 

Western blot analysis of parental, scrambled control and knock down of SIRT1 in MCF-7 cells using 

polyclonal rabbit-anti-SIRT1 antibody. Actin is used as a loading control. 

MCF-7 cells with knockdown of SIRT1 showed a significant increase in spontaneous 

senescence (Figure 15). However, hyperforin and aristoforin strongly increased 

senescence over and above these levels. These data suggest that the inhibitory 

effect of hyperforin and aristoforin on SIRT1 is not sufficient to explain senescence 

induction by these compounds, and additional molecular mechanisms must exist.  
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Figure 15 - Knockdownof SIRT1 expression in MCF-7 cells does not inhibithyperforin-induced 

senescence 

 X-gal analysis of parental, scrambled control and knock down of SIRT1 in MCF-7 cells treated by 

DMSO and hyperforin. N=4; the error bars represent standard error.*p≤ 0.05. 

4.2.2 Hyperforin induces Noxa expression at senescence-

inducing concentrations 

Hyperforininduces Noxa expression in chronic lymphatic leukemia cells and induces 

apoptosis (Zaher et al, 2002). However, to date Noxa expression has not been 

associated with senescence. Nevertheless, it is a direct p53 target, and p53 regulates 

senescence. Therefore I reasoned that Noxa expression may play a role in 

hyperforin-induced senescence. To determine whether this is the case, I first 

examined whether hyperforin is able to induce Noxa expression at senescence-

inducing concentrations (Figure 16). As a positive control, the cells were also treated 

with 18 μM of hyperforin for 24h which is sufficient to induce Noxa expression (Zaher 

et al, 2002). As another control, cells were transfected with a Noxa expression 

plasmid.  

Induction of Noxa expression by 8 μM hyperforin was evident on the western blot 

24 h, 4 and 6 days after treatment (Figure 16), showing that Noxa is also expressed in 

response to hyperforin at senescence-inducing concentrations.  
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Figure 16 - Western blot analysis of Noxa expression using 8 μM hyperforin at low 

concentration 

Western blot analysis shows the Noxa expression after different time points in MCF-7 cells using 

monoclonal mouse-anti-Noxa antibody. Actin is used as a loading control.Positive control shows MCF-

7 cells transfected with pcDNA-Noxa. Cells treated with hyperforin for 24 h, 48 h, 4 and 6 days show 

Noxa induction. 

After determining that the first time point at which hyperforin-induced Noxa 

expression could be detected in MCF-7 cells was 24 h, I then examined whether the 

induction of Noxa expression in response to hyperforin at this time point is dose-

dependent. This proved to be the case (Figure 17, A). Furthermore, aristoforin also 

induced Noxa expression in MCF-7 cells in a dose-dependent manner (Figure 17, B). 
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Figure 17 - Western blot analysis of Noxa induction by hyperforin and aristoforin at low 

concentrations 

A) Western blot analysis of hyperforin treated MCF-7 cells using monoclonal mouse-anti-Noxa 

antibody. B) Western blot analysis of aristoforin treated MCF-7 cells using monoclonal mouse-anti-

Noxa antibody. Actin was used as a loading control.Positive control shows MCF-7 cells transfected 

with pcDNA-Noxa. 

4.2.2.1 Knock down of Noxa expression by short hairpin ribonucleic acid 

(shRNA) suppresses hyperforin-induced senescence 

To investigate whether Noxa plays a functional role in the induction of senescence by 

hyperforin, I used a loss of function approach. Specifically, Noxa expression was 

knocked down in MCF-7 cells using a shRNA against Noxa, and then the effect of the 

knockdown on hyperforin-induced senescence was evaluated.  

First, MCF-7 cells were transfected with fivedifferent Noxa shRNAs. Knock down 

efficiency of Noxa was checked by Western blot. Only Noxa shRNA 2 was found to 

suppress Noxa expression (Figure 18). 
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Figure 18 - Western blot analysis of Noxa induction using shRNA against Noxa by hyperforin 

treatment 

Western blot analysis of Noxa knock down efficiency by hyperforin treatment in MCF-7 cells using a 

monoclonal mouse-anti-Noxa antibody (upper panel). Noxa shRNA no. 2 shows a clear knockdown of 

Noxa.Actin was used as a loading control (lower panel).  

Knockdown of Noxa expression compared to parental cells and scramble control 

cells is shown inFigure 19.Hyperforin treatment increased Noxa expression in the 

parental and scramble control cells, but not in the Noxa knockdown cells (Figure 18). 

Loss of Noxa sufficed to significantly reduce the background levels of senescence. 

Importantly, loss of Noxa also strongly inhibited hyperforin-induced senescence 

(Figure 19). These data suggest that Noxa is a key regulator of hyperforin-induced 

senescence. 

 

Figure 19 - Functional analysis of Noxa expression 
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X-gal analysis of parental, scrambled control and knock down of Noxa in MCF-7 cells treated by 

DMSO and hyperforin. N=4; the error bars represent standard error. *p≤ 0.05. 

4.2.2.2 Noxa induction by hyperforin is not dependent on p53 

Noxa is a target gene of p53. Furthermore, p53 has been suggested to play a central 

role in SIRT1-mediated cell senescence (Yiand Luo, 2010). Therefore I next 

investigated whether p53 is required for hyperforin-mediated Noxa upregulation. 

To answer this question I used two related human colon carcinoma cell lines, namely 

HCT+/+with wild type p53, and a derivative cell line with a p53 deletion in both alleles 

(HCT-/-). The cell lines were treated with hyperforin or aristoforin, then senescence 

induction and Noxa and p53 expression were evaluated. 

Hyperforin and aristoforin both significantly induced senescence in HCT+/+ cells, 

whereas no induction was observed in HCT-/- cells (Figure 20, A). Western blot 

analysis confirmed that no p53 protein is present in HCT-/- cells, while HCT+/+ 

showed a strong expression of p53. HCT116 cells served as a positive control (Figure 

20, B). Furthermore, there was no significant effect on p53 protein levels after 

incubation of the cells with 6 μM hyperforin for 48 h. However, hyperforin-treated 

HCT116, HCT+/+ and HCT-/- cells all showed strong Noxa expression (Figure 20, B). 

Together, these data suggest that p53 is required for hyperforin- and aristoforin-

induced senescence, but not for induction of Noxa expression in response to these 

compounds. Moreover, these data indicate that while Noxa is required for hyperforin-

induced senescence (see Figure 20), in the absence of p53 its expression is not 

sufficient to mediate senescence by hyperforin.  



 

 60 

 

Figure 20 - Hyperforin and aristoforin induce senescence in a p53-dependent manner 

A) X-gal analysis of the indicatedcell lines afterhyperforin and aristoforin treatment (6 μM)for 48 h.N=4; 

the error bars represent standard error.*p≤ 0.05.B) Western blot analysis using monoclonal mouse-

anti-p53 and monoclonal mouse-anti-Noxa antibodies to detect p53 and Noxa expression in the 

indicated cell lines. Actin is used as a loading control. 

I also investigated whether RSV is able to suppress hyperforin- and aristoforin-

induced senescence in HCT+/+ cells, which proved to be the case (Figure 21). These 

data therefore suggest that inhibition of sirtiun activity also contributes to hyperforin- 

and aristoforin-induced senescence in these cells. 
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Figure 21 - Hyperforin- and aristoforin-induced senescence in HCT+/+ cells can be inhibited by the sirtuin 

activator RSV 

HCT+/+ cells were treated in the presence or absence of RSV with hyperforin or aristoforin (5 μM), or 

with sirtinolfor 6 days, and the medium was changed every 48 h. The cells were then stained by x-gal 

to detect senescent cells, and the percentage of x-gal-positive cells was evaluated. The mean and 

standard error of 3 independent samples is presented.*p≤ 0.05.  
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4.3 Development of improved methods to analyze senescent 

cells 

Quantification of x-gal stainingto analyze senescent cells using microscopy is time-

consuming and subjective, as the cells need to be evaluated by eye and counted. I 

therefore set out to develop a flow cytometry-based technique to quantify SA-ß gal 

activity. For this purpose I used 5-dodecanoyl-aminofluorescencein di-ß-D-

galactopyranoside (C12FDG), a membrane permeable, non-fluorescent substrate of 

ß-galactosidase, which upon hydrolysis by SA-ß gal becomes fluorescent and 

membrane impermeable (Kurz et al, 2000). Cell senescence was assessed in parallel 

by measuring both SA-ß gal activity with cytochemistry (x-gal staining) and flow 

cytometry (C12FDG staining) to cross-validate the technique.  

4.3.1 Rapid flow cytometric method for measuring senescence 

associated beta-galactosidase activity using C12-FDG 

HUVEC cells were treated with 50 μMsirtinol for 24 h to induce senescence, then 

subdivided into two groups. One group was analysed without further treatment. The 

other group was treated for 1 h with the pH modulator bafilomycin A1 to optimize ß-

galactosidase activity. The cells were then either incubated with C12FDG for 10 min 

and prepared for FACS analysis, or stained with x-gal. 

As seen in Table 1, as expected the number of x-gal positive cells without pH 

optimizationis lower compared to that in the pH-optimized cells. Levels of x-gal 

positive HUVEC cells were comparable to those obtained in previous experiments. In 

contrast, a very high level of C12FDG-positive cells was obtained regardless of pH 

optimization (Table 1). Crucially, the background signal in untreated cells is very high, 

which is not the case in x-gal staining. These date show that C12FDG staining is not 

specific and unsuitable for the quantification of senescent cells using FACS. 

Therefore, other approaches were taken to quantify senescent cells using the 

fluorescence markers Lysotracker yellow. 
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 C12FDG-positive (%) 

with/without bafilomycin 

X-gal staining-positive (%) 

with/without bafilomycin 

untreated 79.6/ 50.8 7.8/ 1 

DMSO 81.4/ 50.2 8.2/ 1.7 

sirtinol 87.8/ 76.3 26.6/ 11.1 

Table 1 - Quantification of senescent cells using x-gal staining, and parallel quantification of 

C12FDG-stained cells using FACS analysis 

The numbers indicate the percentage of positive cells in each case with and without pH optimization 

using bafilomycin in untreated, DMSO and sirtinol-treated HUVECs. 

4.3.2 Quantification of FACS analysis of lysotracker yellow 

stained cells 

One of the most characteristic changes in aged cells is an increase in the number 

and the size of lysosomes. This process is very intensive and often a large part of the 

cytoplasm is occupied by lysosomes. The increase in lysosomal mass is therefore a 

hallmark of aged cells (Keller et al, 2004; Samorajski et al, 1968). The fluorescent 

dye lysotracker yellow is taken up by cells and labels lysosomes, allowing the 

increased lysosomal mass to be quantified and used as a measure of senescence 

induction (Kurz et al, 2000). I therefore set out to establish a FACS-based analysis 

using lysotracker yellow to quantify senescent cells. To this end, HUVEC cells were 

treated with DMSO and sirtinol as before to induce senescence. After treatment, a 

portion of the cells was stained with lysotracker yellow and another portion was 

prepared for x-gal staining. Lysotracker yellow positive cells were quantified using 

FACS and the x-gal positive cells were counted under the microscope.  

X-gal staining showed an induction of senescence in sirtinol treated cells as expected 

(Table 2). However, in FACS analysis of lysotracker yellow treated cells there was no 

correlation between the percentage of positive cells and treatment with sirtinol (Table 

2). Thus, lysotracker yellow staining is also not a robust means of detecting 

senescence using FACS analysis. 
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 FACS analysis % 

unstained/ stained 

X-gal staining% 

untreated 0.6/ 32.4 2.4 

DMSO 0.1/ 5.1 4.6 

sirtinol 0.3/ 15.7 8.4 

Table 2 - Quantification of FACS analysis using lysotracker yellow and x-gal staining 

The HUVECs were treated with DMSO and sirtinol 50μMfor 24 h and finally stained with the dye and 

subjected to flow cytometry analysis. B) X-gal analysis of untreated and treated HUVECs. 

4.3.3 Quantitative assay of senescence-associated ß-

galactosidase activity using cell extracts 

I next aimed to use the ability of ß-galactosidase to convert 4-methylumbelliferyl 

(MUG) into the fluorescent product 4-methylumbelliferone (4-MUG) as a measure of 

senescence using cell lysates, which can be detected using a plate reader (Gary et 

al, 2005). A major advantage of the MUG fluorogenic assay is that SA-ß-gal is 

normalized on the basis of total protein, which avoids problems associated with 

concomitant induction of cell growth arrest or cell death, leading to changes in the 

number of cells present at the time of analysis. The second advantage is that the 

assay is much quicker compared to the x-gal assay. 

To establish the assay, MCF-7 cells were treated witheither DMSO or sirtinol(50μM) 

to induce senescence, then lysed after 24 h. Cell lysates werepipetted into a 96-well 

plate and MUG was added to the lysate. Subsequently, the levels of the fluorescent 

hydrolysis product 4-MUG were measured using a Tecan GENios automated plate 

reader. The x-gal assay was simultaneously performed with parallel samples to 

cross-validate the percentage of x-gal positive cells obtained in both methods. 

As shown inFigure 22,A sirtinol-treated MCF-7 cells showed significantly higher levels 

of 4-MUG compared to DMSO treated cells. Importantly, the x-gal assay showed 

equivalent relative levels of senescent cells compared to the 4-MUG fluorescence 

assay (Figure 22, B). These data indicate that the MUG fluorogenic assaycan be used 
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as a time-saving, sensitive and objective alternative method to x-gal staining and 

manual quantification. 

 

Figure 22 - Quantitative SA-ß gal assay using MUG 

A) MUG fluorogenic assay analysis after 24 h treatment of MCF-7 cells with50μMsirtinol shows a 

significant increase in4-MUG flourescence. The fluorescence intensity per μg protein in the lysate was 

calculated. B) Quantification of x-gal using SA-ß gal assay and microscopy. N=3; the error bars 

represent standard error. *p≤. 0.05. 
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5 DISCUSSION 

In this thesis I have investigated how hyperforin and aristoforin induce cell cycle 

arrest in endothelial  cells and tumor cells at concentrations below those required to 

induce apoptosis. I found that concentrations of hyperforin and aristoforin known from 

previous work to induce cell cycle arrest (Schempp et al, 2002; Rothley et al, 2009) 

were able to induce senescence in endothelial  cells and tumor cells both in vitro and 

in vivo as measured by SA--gal staining. Mechanistically I obtained evidence that 

inhibition of SIRT1 and induction of Noxa expression by hyperforin and aristoforin 

play a role in the induction of senescence, and that the presence of p53 is required 

for hyperforin and aristoforin-induced senescence. Together these data provide 

further support for the notion that hyperforin and aristoforin have potential application 

in cancer therapy through their ability to suppress tumor growth at multiple levels. 

To analyze senescent cells, the traditional x-gal staining method (Dimri et al, 1995) 

was used for most of this work. However, to analyse senescent cells rapidly and 

more specifically, I investigated the efficacy of other assays. The use of C12FDG and 

lysotracker yellow proved to be unsuitable for quantification of senescent cells using 

FACS analysis. However, I found that 4-methylumbelliferyl-ß-D-galactopyranoside 

(MUG) can be used in a rapid quantitative assay for the detection of senescent 

cellsthat is comparable with results analysed by x-gal staining. 

5.1 Hyperforin inducessenescence in ECs, tumor cell lines 

and tumors in vivo: 

For both HUVECs, LECs and several tumor cell lines, aristoforin and/or hyperforin 

concentrations of 5 µM were found to induce senescence. In all cases the most 

pronounced induction of senescence occurred after several days of treatment (at 

least 4 days, see (Figure 7,Figure 10). Thispresumably reflects at least in part the fact 

that cells enter senescence after a mitosis skip (Johmura et al, 2014), and thus in 

non-synchronized cell populations senescent cells accrue with a kinetic that is 

determined by the length of the cell cycle. Although not determined for all cell types 

tested, optimal senescence-inducing concentrations of hyperforin and aristoforin 

were 3-5 µM (Figure 7). 



 

 67 

Interestingly, different tumor cell lines had very different baseline levels of 

senescence ranging from 10% in HCT-/- and 12% in PC3 cells to 28% in MCF7 cells. 

Spontaneous senescence is widely observed in cancer cells, and probably reflects 

stochastic changes in telomere length, or microenvironmental changes (Shay and 

Roninson, 2004). It is notable that tumor cells with no functional p53 (PC3, Nagafuchi 

et al, 1989 and HCT-/-, Bunz et al, 1999) or inactivated p53 (ACC57, Akiyama et al, 

1985) showed the lowest spontaneous senescence levels. This is consistent with the 

known role of p53 in the induction of senescence. However, hyperforin did cause 

visible but small increases in senescence in these p53-deficient cell lines, indicating 

that hyperforin probably also activates p53-independent mechanisms of senescence 

induction at a lower level.  

It has previously been shown that hyperforin and aristoforin are able to induce 

apoptosis in both endothelial cells and tumor cells. Hyperforin (IC50 3-15 µM) inhibits 

the proliferation of a panel of tumor cells and at 15 µM induces apoptosis (Schempp 

et al, 2002). Similarly, hyperforin and aristoforin induce apoptosis of LECs at 

concentrations above 10 µM(Rothley et al, 2009). Surprisingly, I was unable to detect 

induction of apoptosis in T47D cells even at 15 µM, the highest concentration used 

(Figure 9). This may suggest that T47D cells are intrinsically resistant to hyperforin-

induced apoptosis. Alternatively, the specific activities of the hyperforin preparations 

used may have been lower than those used in previous studies, and thus higher 

hyperforin concentrations may have induced apoptosis. Further work will be 

necessary to investigate these possibilities. 

I observed the maximum induction of senescence at hyperforin and aristoforin 

concentrations of around 5 µM. At higher concentrations the proportion of senescent 

cells decreased. Given the documented ability of both hyperforin and aristoforin to 

induce apoptosis at concentrations above 5 µM (see above), the progressive 

reduction in the proportion of senescent cells observed at hyperforin and aristoforin 

concentrations above 5 µM presumably reflect an overlap between induction of 

senescence and induction of apoptosis. In this scenario, apoptosis would be 

expected to progressively increase as hyperforin and aristoforin concentrations 

increase above 5 µM, thus reducing the proportion of senescent cells. Such a 

mechanism is could be provided by p53, as using a p53-inducible system, it has been 

shown that changes in p53 levels correlate with transcriptional activation of genes 
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involved in senescence and apoptosis. However, apoptosis was only induced abovea 

particular p53 threshold (Kracikova et al, 2013). Further investigations will be needed 

to determine whether such a mechanism holds true for hyperforin-induced 

senescence and apoptosis. 

In addition to inducing senescence in cultured cells, hyperforin also induced 

senescence in tumor tissue in vivo (Figure 11). These data validate the relevance of 

senescence induction by hyperforin in vivo in the tumor context. Importantly, they 

also provide support for the notion that hyperforin may have therapeutic anti-cancer 

applications. Previously hyperforin and aristoforin have been shown to suppress 

tumor growth in vivo (Rothley et al, 2009). My findings add further mechanistic insight 

into the action of hyperforin in the inhibition of tumor growth. Specifically, in addition 

to its known ability to induce apoptosis, it can also induce senescence. Currently it is 

not clear whether hyperforin induced senescence in vivo in tumor cells, stromal cells 

such as endothelial cells or both. Attempts to co-stain with x-gal and antibody 

markers to allow x-gal-positive cells to be characterized have so far been 

unsuccessful. Development of methods to allow such co-staining will be the focus of 

future experiments. 

5.2 Molecular mechanism of hyperforin/aristoforin-induced 

senescence 

The experiments in this thesis allow me to propose a molecular mechanism through 

which hyperforin and aristoforin induce senescence (Figure 23).This mechanism 

involves suppression of SIRT1, induction of Noxa and requires p53.  
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Figure 23 - Schematic representation of mechanisms through which hyperforin and aristoforin 

induce senescence 

On one hand, hyperforin and aristoforin inhibit SIRT1, resulting in lower suppression of SIRT1-

dependent deacatylation of p53. On the other hand, hyperforin and aristoforin induce Noxa 

expression, which also activates senescence, but only in the presence of p53. 

 

5.2.1 Role of SIRT1 

Several of my results indicate at least a partial role for hyperforin-induced 

suppression of SIRT1 in senescence induction. RSV stimulates SIRT1 activity 

(Howitz et al, 2003)and is able to rescue hyperforin- and aristoforin-induced 

senescence in both endothelial cells and some tumor cells (Figure 7, Figure 10). These 

data are consistent with the literature that shows decreased levels of SIRT1 are 

associated with growth arrest of tumors in vivo (Campisi, 2005) and increased 

senescence in endothelial progenitor cells (Potente et al, 2007). 

In HUVECs and LECs my data show that RSV (10μM) reduces senescence induction 

inhyperforin, aristoforin and sirtinol-treated cellsto baseline levels (Figure 12). This 

suggests that the main mechanism by which hyperforin induces senescence in these 

endothelial cells is dependent on SIRT1. In tumor cell lines with wild-type p53 such 

as HCT+/+ and MCF-7, hyperforin-induced senescence was also fully rescued by 

RSV. However, in cell lines with non-functional p53 (HCT-/-, PC3 and SW480), 
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hyperforin and aristoforin only marginally induced senescence. Furthermore, 

senescence induction was not reduced to baseline levels with RSV, in contrast to 

sirtinol-induced senescence in these cells (Figure 13). These results suggest that 

senescence induction via SIRT1 inhibition requires p53, and that a minority of 

senescence induction by hyperforin and aristoforin is p53- and SIRT1-independent. 

Further evidence for SIRT1-independent hyperforin-induced senescence in p53 

wildtype cells was obtained through SIRT1 knockdown.Although knockdown of 

SIRT1 sufficed to increase spontaneous senescence (Figure 15), hyperforin and 

aristoforin both further augmented senescence induction in SIRT1 knockdown cells. 

While it could be argued that knockdown of SIRT1 was incomplete, and thus that 

augmentation of senescence by hyperforin and aristoforin could be due to inhibition 

of the residual SIRT1 remaining after knockdown, note that the SIRT1 knockdown 

was highly efficient, and no SIRT1 protein could be detected by western blot (Figure 

14). Thus I conclude that SIRT1 inhibition only partially accounts for hyperforin and 

aristoforin-induced senescence in both p53 wild-type and p53-deficient cells. 

Furthermore, in these experiments I observed that both hyperforin and aristoforin 

reduced the protein levels of SIRT1 relative to controls (Figure 15), suggesting that in 

addition to direct enzymatic inhibition of SIRT1 (Gey et al, 2007), hyperforin and 

aristoforin may also reduce SIRT1 activity at the expression level. 

SIRT1 activity is increased in a variety of tumor types (Campisi, 2005) and plays an 

important role in DNA repair mechanisms (Oberdoerffer et al, 2008). Accordingly, 

SIRT1 has anti-senescence activities, which has been demonstrated in MCF-7 

(breast cancer cells), H1299 (lung cancer cells), prostate cancer cells (Jung-Hynes, 

2009) and HUVECs (Ota et al, 2007; Ota et al, 2008). During replicative or 

oncogene-induced senescence, inactivation of SIRT1 leads to increased levels of 

acetylated p53 (Pearson et al, 2000; Langley et al, 2002), the mechanism through 

which SIRT1 regulates senescence by p53 (Smith, 2002). Thus I predict that 

hyperforin and aristoforin treatment should lead to increased levels of acetylated p53 

in those cells where hyperforin- and aristoforin-mediated inhibition of SIRT1 results in 

senescence. 
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5.2.2 Downstream targets: Noxa and p53 

It has been reported that p53 promotes apoptosis by induction of BH3-only proteins 

such as Noxa and PUMA, for example as demonstrated in PUMA-null mice (Yu et al, 

2003).In non-transformed cells, Noxa can mediate p53-dependent apoptosis, in a cell 

type-dependent manner (Quiney et al, 2006). On the other hand, Noxa induces cell 

cycle arrest at the G0 phase of the cell cycle in chronic lymphatic leukemia (CLL) 

cells, resulting the resistance of these cells to apoptotic signals (Kolb et al, 2003). 

Hyperforin has been previously reported to induce Noxa expression in CLL cells 

(Zaher et al, 2009). Consistently, we also found that Noxa expression is induced by 

hyperforinin a dose-dependent manner in MCF-7 cells. The concentrations of 

hyperforin used were sufficient to induce senescence but not apoptosis. Importantly, 

knockdown of Noxa in these cells substantially attenuated hyperforin-induced 

senescence (Figure 18). These observations are novel in that while Noxa has 

previously been implicated in apoptosis induction, this is the first evidence that it also 

plays a role in senescence. Nevertheless, hyperforin and aristoforin did not 

significantly induce senescence in p53 deficient HCT cells, even though Noxa 

expression was induced in these cells (Figure 20). Thus p53 appears to be required for 

Noxa-induced senescence. Furthermore, Noxa expression is induced by hyperforin in 

the absence of p53 (Figure 20). These observations are also novel, as to date Noxa 

induction has been investigated in its context as a p53 response gene.  

My results clearly show that p53 plays a central role in hyperforin and aristoforin-

mediated senescence. In cells deficient in p53, hyperforin and aristoforin-induced 

senescence was substantially attenuated (Figure 10, Figure 20). Furthermore, Noxa-

induced senescence was found to be dependent on p53 (Figure 20). The ability of 

RSV to suppress hyperforin-induced senescence was also dependent in part on the 

presence of p53 (Figure 13). Further work will be required to determine whether p53 

levels remain unaffected by hyperforin, or whether hyperforin upregulates p53 or 

modifies its post-translational modification, for example through acetylation. These 

studies will cast further light on the role of p53 in hyperforin and aristoforin-induced 

senescence. Nevertheless it is clear from my studies that hyperforin and aristoforin 

can also induce senescence, albeit less effectively, in a p53-independent manner. 
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5.2.3 Perspectives 

Future studies to further investigate hyperforin and aristoforin-induced senescence 

will be facilitated by the establishment of a method for quantifying senescent cells 

based in the use of MUG (Gary et al, 2005)that I show here is comparable with the 

traditional x-gal/FeCN assay (Dimri et al, 1995). The latter method is not sensitive 

enough to reveal the full range of SA--gal expression, and is very time consuming 

(Gugliotta et al, 1992; Kishigami et al, 2006). Thus the MUG method I describe here 

will have considerable advantages in terms of throughput, objectivity and accuracy. 

Nevertheless, the x-gal method has the advantage that the percentage of x-gal 

positive cells is quantified, whereas the MUG method only produces relative 

senescence values. However, if necessary this drawback could be overcome by 

producing a standard curve of MUG values plotted relative to x-gal values. 

My results suggest that hyperforin clearly induces senescence through other targets 

in addition to SIRT1 and Noxa. In the context of p53-induced senescence,other 

downstream targets of p53 may be involved. For example p21 and PML, the p53 

target genes, lead to oncogene-induced senescence (De Stanchina et al, 2004). 

Whether these p53 target genes contribute to senescence induction by hyperforin 

needs further investigation. 

The data presented here add further support to the notion that hyperforin and its 

derivatives may have utility in the therapy of cancer by suppressing tumor growth. 

Nevertheless, the induction of senescence by these compounds that I demonstrate 

here suggests that caution may be needed when taking these substances to the 

clinic. In particular, the therapeutic induction of cellular senescence potentially has 

unwanted side effects. Firstly, the senescence-mediated decrease in the 

regenerative capacity of normal tissues results in aging (Campisi, 2005). Secondly, 

the induction of senescence can lead to the activation of the sensence-associated 

secretory phenotype (SASP), in whichcytokines and other proinflammatory 

proteinsbecome upregulated, and thereby disrupt normal tissue homeostasis and 

induce inflammation, which can act posively on tumor formation and promote 

degenerative or hyperproliferative changes in neighboring cells (Parrinello et al, 

2005; Muller et al, 2009; Coppe et al, 2010).Thus while senescence-inducing 

compounds may on the one hand inhibit tumor growth by inducing senescence, on 
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the other hand they may promote tumor growth and progression if they induce an 

SASP.Future work will focus on whether hyperforin and its derivatives induce an 

SASP, and whether this limits the clinical application of these compounds. 
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