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Abstract: Wielandt (1967) proved an eigenvalue inequality for partitioned sym-

metric matrices, which turned out to be very useful in statistical applications. A

simple proof yielding sharp bounds is given.
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Let A ∈ Rp×p be a symmetric matrix of the form

A =

(
B C
C ′ D

)

with B ∈ Rr×r, C ∈ Rr×s and D ∈ Rs×s such that

λr(B) > λ1(D);

generally λ1(E) ≥ λ2(E) ≥ · · · ≥ λq(E) denote the ordered eigenvalues of a sym-

metric matrix E ∈ Rq×q. Wielandt (1967) showed that the eigenvalues of A can be

approximated by the eigenvalues of B and D in the following sense:

0 ≤ λi(A)− λi(B) ≤ λ1(CC
′)

λi(B)− λ1(D)
for 1 ≤ i ≤ r and (1)

0 ≤ λj(D)− λr+j(A) ≤ λ1(CC
′)

λr(B)− λj(D)
for 1 ≤ j ≤ s.

These inequalities can be used to compute derivatives and pseudo-derivatives of

eigenvalues. They are also very useful in statistical problems involving eigenvalues

of random symmetric matrices; see Eaton and Tyler (1991, 1994). In my opinion

the original proof, described in Eaton and Tyler (1991), is somewhat complicated.

The main ingredient seems to be the Courant-Fischer minimax representation

λk(E) = max
V:dim(V)=k

min
v∈V:v′v=1

v′Ev for 1 ≤ k ≤ q, (2)

where V stands for a linear subspace of Rq; see section 1f.2 of Rao (1973). In this

note (2) is used directly to derive the following refinement of (1):

Theorem. For 1 ≤ i ≤ r,

0 ≤ λi(A)− λi(B) ≤

√
(λi(B)− λ1(D))2

4
+ λ1(CC ′) −

λi(B)− λ1(D)

2
,

and for 1 ≤ j ≤ s,

0 ≤ λj(D)− λr+j(A) ≤

√
(λr(B)− λj(D))2

4
+ λ1(CC ′) −

λr(B)− λj(D)

2
.
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Remark 1: Since

√
α2/4 + β2 − α/2 ≤ min

{
β, β2/α

}
∀α, β > 0,

this result implies Wielandt’s bounds (1).

Remark 2: The upper bounds are sharp. For if p = 2 one can compute the

eigenvalues of A explicitly and obtains

λ1(A)− λ1(B) = λ1(D)− λ2(A) =

√
(B −D)2

4
+ C2 − B −D

2
.

For general p one has to consider diagonal matrices B,D and suitable matrices C

with only one nonzero coefficient.

Proof of the Theorem: One easily verifies that the asserted inequalities are

invariant under the transformation A 7→ A−λ1(D)I, where I is the identity matrix

in Rp×p. Therefore one may assume without loss of generality that λ1(D) = 0.

For 1 ≤ i ≤ r it follows from (2) that

λi(A) ≥ max
V⊂Rr×{0}:dim(V)=i

min
v∈V:v′v=1

v′Av = λi(B). (3)

On the other hand, let W be an i-dimensional subspace of Rp such that

λi(A) = min
v∈W:v′v=1

v′Av.

If v ∈ Rp is written as v = (v′(1), v
′
(2))
′ with v(1) ∈ Rr and v(2) ∈ Rs, then

W(1) = {v(1) : v ∈W}

is an i-dimensional subspace of Rr. For if dim(W(1)) < i, then w(1) = 0 for some

unit vector w ∈W, and

λi(A) ≤ w′Aw = w′(2)Dw(2) ≤ 0,

which would contradict (3). Any unit vector v ∈W can be written as

v =
√

(1 + ρ)/2u(1) +
√

(1− ρ)/2u(2)
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for unit vectors u(1) ∈W(1), u(2) ∈ Rs and some ρ ∈ [−1, 1]. Then

v′Av = (1 + ρ)u′(1)Bu(1)/2 +
√

1− ρ2 u′(1)Cu(2) + (1− ρ)u′(2)Du(2)/2

≤ (1 + ρ)u′(1)Bu(1)/2 +
√

1− ρ2
√
λ1(CC ′)

= u′(1)Bu(1)/2 +
(
ρ,
√

1− ρ2
)( u′(1)Bu(1)/2√

λ1(CC ′)

)
≤ u′(1)Bu(1)/2 +

√
(u′(1)Bu(1))

2/4 + λ1(CC ′).

Consequently, since H(x) := x/2 +
√
x2/4 + λ1(CC ′) is nondecreasing in x ≥ 0,

λi(A) ≤ min
u(1)∈W(1):u

′
(1)

u(1)=1
H(u′(1)Bu(1))

= H

(
min

u(1)∈W(1):u
′
(1)

u(1)=1
u′(1)Bu(1)

)
≤ H(λi(B))

= λi(B) +
√

(λi(B)− λ1(D))2/4 + λ1(CC ′)− (λi(B)− λ1(D))/2.

Thus the first part of the theorem is true, and the second half follows by replacing

A with −A 2
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