
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis in Physics

submitted by

Katja Schwarz

born in Mannheim (Germany)

2016





Spatio-Temporal Measurements of Water-Wave Height

and Slope using Laser-Induced Fluorescence and Splines

This Bachelor Thesis has been carried out by Katja Schwarz at the

Institute of Environmental Physics (IUP) in Heidelberg

under the supervision of

Prof. Bernd Jähne





Abstract. Within the framework of this thesis an algorithm was designed,

which extracts the height of water waves from a time series of along-wind

surface profile images. The surface position is detected with help of thresh-

olding and subsequently fitted on the basis of two-dimensional smooth

spline fitting. As result a function of the height in space and time direc-

tion and its slope as well as its time derivative are obtained. For wind

speeds of up to 10 m/s it was possible to identify the height with an ac-

curacy of approximately 18µm. Furthermore, a script for data evaluation

was written, which computes general properties of the wave field, like the

significant wave height and the mean square slope in along-wind direc-

tion, as well as the frequency spectra and the dispersion relation. Both

tools were used to evaluate measurements with wind speeds from 2.5 m/s

to 14 m/s performed at the Large Marseille-Luminy Wind-Wave Facility

within the ASIST-campaign in June 2016. The wave field differs from pure

wind waves to additional mechanically generated waves with frequencies of

0.9 Hz and 1.3 Hz.

Zusammenfassung. Im Rahmen dieser Arbeit wurde ein Algorithmus

entworfen, der die Höhe von Wasserwellen aus einer Zeitserie von Auf-

nahmen des Wellenprofils in Windrichtung bestimmt. Die Position der

Wasseroberfläche wird mit Hilfe eines Schwellenwertverfahrens detektiert

und anschließend auf der Basis von zwei-dimensionalen glättenden Splines

gefittet. Als Ergebnis erhält man eine Funktion der Höhe in Orts- und

Zeitrichtung und deren Neigung sowie deren zeitlichen Ableitung. Für

Windgeschwindigkeiten von bis zu 10 m/s war es möglich die Höhe mit einer

Genauigkeit von etwa 18µm zu bestimmen. Des Weiteren wurde ein Skript

zur Datenauswertung geschrieben, das sowohl allgemeine Eigenschaften des

Wellenfeldes, wie die signifikante Wellenhöhe und die mittlere quadratische

Neigung in Windrichtung, als auch die Frequenzspektren und die Disper-

sionsrelation berechnet. Beide Methoden wurden verwendet, um Messun-

gen mit Windgeschwindikeiten zwischen 2.5 m/s und 14 m/s auszuwerten,

die an der Large Marseille-Luminy Wind-Wave Facility im Rahmen der

ASIST-Kampagne im Juni 2016 durchgeführt wurden. Die Wellenfelder

variieren zwischen ausschließlich Wind-generierten und zusätzlich mecha-

nisch generierten Wellen mit Frequenzen von 0.9 Hz und 1.3 Hz.
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1. Introduction

The world’s oceans cover about 71% of the earth’s surface and play a key role in the

global carbon cycle. Besides acting as sink and source for atmospheric carbon dioxide

they also provide its largest reservoir. As recent anthropogenic emissions of greenhouse

gases like CO2 are the highest in history [IPCC, 2014], their impact on the oceans is

of great interest. Therefore, it is fundamental to understand the processes of air-sea

interaction.

The gas exchange, i.e. the mass flux j between air and water, depends on the con-

centration difference ∆c, as well as its efficiency, characterized by the transfer velocity

k. The transfer velocity also depends on physico-chemical properties of the trace gas

like the solubility and the diffusion constant. Furthermore, it is influenced by various

complex processes near the surface, as shown in figure 1. One factor, that impacts

the transfer velocity, are waves, i.e. the dynamics of the water surface. In order to

Figure 1: Simplified schematic of physical factors that influence the transfer velocity

k. Through exchange of momentum, wind generates shear stress and waves,

which in turn alter the boundary layer dynamics. The near-surface turbu-

lence ultimately controls the transfer velocity. Furthermore, the properties

of the wave field, and thus k, are affected by various environmental factors.

Modified after Wanninkhof et al. [2009].
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quantify the wave field, parameters like the significant wave height1 and the mean

square slope2 have proven useful, as they are measures for the statistical distribution

of the waves and the roughness of the water surface, respectively. Moreover, a spectral

representation is extremely favorable, as it yields concentrated information about the

characteristics of the wave field. All of this creates the need for a reliable detection of

the position of the water surface.

Various techniques to measure the surface position and its shape have been developed

over the past decades. A widely used approach is to measure the height with wave

wires, which basically consist of two parallel conductors, see for example Chen [1994]

or Peter [2015]. The underlying idea is, that the resistance of the conductors changes

linearly with water depth. A major advantage of this method is the low expenditure.

However, it is often desirable to use methods, which do not require direct contact

with the water, as waves and wind might impact the setup. Here, techniques based

on optical measurements provide an excellent alternative. Early attempts based on

stereo photography go back more than a century. The height was then retrieved from

the images by hand, see for instance Laas [1905]. Modern approaches use quanti-

tative visualization techniques in combination with image processing. In 1992 Waas

and Jähne developed a system for combined slope-height measurements, also based

on the principle of stereopsis. In his work, Kiefhaber [2010] enhanced this system and

introduced the reflective stereo slope gauge (RSSG), where light reflection is utilized

to determine slope and height of the wave field. Another approach is based on the

refraction of light and goes back to Jähne [1983]. It was modified by Balschbach [2000]

and Rocholz [2008], who used a color imaging slope gauge (CISG), to determine the

slope of the waves. Knowledge of the gradient of the wave field allows a subsequent

reconstruction of the height.

Due to their great potential in accuracy, optical methods are still an active field of

research. In 2013 Horn used laser-induced fluorescence to visualize the water surface

at one point and extracted the height by subsequent image processing. The framework

of this thesis is based on a similar approach, but in the meantime the laser point, used

by Horn to detect the water surface, was extended to a laser sheet. Consequently, it

is now possible to obtain spatio-temporal information about the wave field, enabling

a two-dimensional description. For this purpose an algorithm, that extracts and fits

the height from a series of images, was designed within this work. General proper-

ties of the wave field, like the significant wave height and the mean square slope in

1i.e. the mean height of the highest third of the waves
2defined as the sum of the variances of the slope components
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along-wind direction, as well as height and slope frequency spectra and the dispersion

relation are then reconstructed from the measured heights with a script developed in

this thesis. The algorithm and the script for data evaluation were applied to data sets

from a measurement campaign in Marseille (ASIST-campaign June 2016), where mea-

surements for different wind speeds and under the influence of mechanically generated

waves were made.
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2. Theory

In the following sections the physical background (section 2.1) and some theoretical

basics on image processing (section 2.2), that are used in this thesis, are provided.

2.1. Physical Background

The subsequent sections examine the physical background of deep water surface waves.

It is assumed that the wave motion is unaffected by earth’s rotation, i.e. that the wave

frequency is much larger than the Coriolis frequency [Kundu and Cohen, 2008]. Fur-

thermore amplitudes are considered to be small, such that the governing equations

become linear. The general dispersion relation of small amplitude waves is derived in

section 2.1.1. Special cases for gravity and capillary waves are presented in section

2.1.2, where the restoring force is dominated by gravity and surface tension, respec-

tively. Lastly, in section 2.1.3 the energy density of the wave field is discussed, which

also comprises a description of the power spectrum.

2.1.1. Small Amplitude Waves

The constraint to small amplitudes allows to linearize the governing equations, yield-

ing an analytical solution to describe the waves. Oscillations at the free surface are

considered small, when their amplitude a is small compared to the water depth H

and the wavelength λ, i.e. a/H � 1 and a/λ � 1. The first condition justifies the

evaluation of the velocity potential at z = 0 instead of z = η because undisturbed and

instantaneous water depth do not differ significantly. The second condition implies

that the slope of the sea surface is small. Therefore, the free surface can be treated as

a linear superposition of plane waves. Moreover, it is sufficient to make the following

common assumptions:

We consider water to be an incompressible fluid

∇u = 0 (2.1)

where u denotes the fluid velocity. Due to small viscosity, viscous effects shall not affect

wave propagation significantly. The flow is regarded as irrotational, which allows for

the definition of a velocity potential Φ such that

u = ∇Φ . (2.2)

For a two-dimensional, steady flow the system is then described by Laplace’s equation

∆Φ = 0 . (2.3)
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z

Figure 2: Coordinate system and wave nomenclature. Representation based on Kundu

and Cohen [2008, chap. 7.4].

In the following the wave shall propagate in x-direction only. The free surface displace-

ment η(x, t) occurs in z-direction, where z = 0 denotes the position of the undisturbed

surface. The coordinate axes are chosen accordingly to figure 2.

To solve Laplace’s equation the formulation of boundary conditions is vital. The

kinematic boundary states, that a fluid particle never leaves the surface

∂η

∂t
+ u

∂η

∂x

∣∣∣∣
z=η

=
∂Φ

∂z

∣∣∣∣
z=η

(2.4)

and that the normal velocity component vanishes at the bottom

∂Φ

∂z

∣∣∣∣
z=−H

= 0 . (2.5)

For small amplitude waves both u and ∂η/∂x are small and as pointed out above, the

right hand side can be evaluated at z = 0 instead of z = η. Therefore equation 2.4

simplifies to
∂η

∂t
=
∂Φ

∂z
at z = 0 . (2.6)

Additionally, ambient pressure and pressure just below the surface must be equal,

which is reflected in the dynamic boundary condition

∂Φ

∂t
=
σ

ρ

∂2η

∂x2
− gη at z = 0 (2.7)

where the first term on the right hand side accounts for pressure change due to surface

tension σ. The second term is subject to ’hydrostatic’ pressure [Kundu and Cohen,

2008, chap. 7.7]. Consider an arbitrary disturbance of the free surface. By Fourier
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analysis it can be decomposed into various sinusoidal components, which motivates

the choice of the following ansatz for the surface elevation

η(x, t) = a cos(kx− ωt) (2.8)

where a denotes the wave’s amplitude, and k and ω are wavenumber and frequency,

respectively. Substitution into Laplace’s equation (equation 2.3) and using solely kine-

matic boundaries (equation 2.5 and 2.6) yields

Φ =
aω

k

cosh k(z +H)

sinh kH
sin(kx− ωt) . (2.9)

From the dynamic boundary condition follows the dispersion relation for small ampli-

tude waves

ω =

√
kg

(
1 +

σ

ρg
k2

)
tanh kH (2.10)

which can also be expressed in terms of the phase velocity c = ω/k

c =

√(
g

k
+
σ

ρ
k

)
tanh kH . (2.11)

2.1.2. Deep Water Gravity and Capillary Waves

From the previously derived relation between frequency ω and wavenumber k, gravity

and surface tension can be identified as driving mechanisms of the restoring force.

Depending on the wavelength either one or another factor prevails. Equilibrium in

clean water at 20◦C is obtained for waves with λ = 2π
√
σ/ρg = 1.7 cm. Then the

phase speed becomes minimal [Phillips, 1977, chap. 3.2]. In the following the water is

assumed to be deep, in the sense that kH � 1, i.e. tanh kH ≈ 1.

When λ > 7 cm, effects of surface tension can be neglected, leading to gravity waves

[Kundu and Cohen, 2008, chap. 7.4]. Then the dispersion relation (equation 2.10)

simplifies to

ω =
√
kg for

σ

ρg
k2 � 1 and kH � 1 . (2.12)

The complementary scenario of capillary waves is observed, when the restoring force

is dominated by surface tension. For the dispersion relation follows from equation 2.10

ω =

√
σ

ρ
k3 for

σ

ρg
k2 � 1 and kH � 1 . (2.13)
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2.1.3. Energy Density of the Wave Field

In linear wave theory the total energy density for deep water gravity waves is

E = ρg η(x, t)2 (2.14)

and

E = σ (∇η(x, t))2 = σ s(x, t)2 (2.15)

for deep water capillary waves with the slope s, respectively. The spectral energy

density X(k, ω), can be calculated in terms of the Fourier transform of the surface

displacement

X(k, ω) = |η̃(k, ω)|2 . (2.16)

This is also referred to as power density spectrum. Note, that by taking the squared

absolute value any phase information is lost.

In particular it holds that ∫ +∞

−∞

∫ +∞

−∞
X(k, ω)dk dω = η2 . (2.17)

The wavenumber (power density) spectrum Ψ(k) follows from integration over all fre-

quencies ω

Ψ(k) =

∫ +∞

−∞
X(k, ω)dω . (2.18)

In the same manner the frequency (power density) spectrum φ(ω) is obtained. However,

for a statistically stationary wave field the frequency spectrum is real valued and

symmetric about ω = 0, which justifies the formulation

φ(ω) = 2 ∗
∫ +∞

−∞
X(k, ω)dk for ω ≥ 0 . (2.19)

These equations are for example derived in Phillips [1977, chap. 3.2 & chap. 4.1].

2.2. Image Processing

The following sections give an overview over basic techniques used to extract data from

images. Starting with the impact of digitalization on a signal, section 2.2.1 introduces

the Sampling Theorem and the effect of aliasing. Next, some basic operations on

digital images are reviewed. The Fourier transformation is presented briefly in section

2.2.2, as it provides an essential tool in digital image processing, and the principle of

segmentation is subject to section 2.2.3. The description of these concepts is based on

Jähne [2012]. Furthermore, different types of splines are presented in section 2.2.4, as

they are valuable instruments for data fitting.
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Figure 3: Visualization of the aliasing-effect: The periodic signal is sampled with 9/10

of the wavelength. This violates the Sampling Theorem and results in a

distorted reconstructed signal. The reconstructed wavelength is nine times

larger than the original wavelength. Representation based on Jähne [2012,

chap. 5.1]).

2.2.1. Sampling

Typically, the sensor elements (pixel) are arranged on a rectangular grid. This mo-

tivates the interpretation of a monochrome image as two-dimensional array of gray

values gm,n, where m and n denote the pixel position on the grid. Let the sensor con-

sist of M ×N quadratic pixels of length ∆x. Then, the field of view X · Y is specified

by:

X = M∆x (2.20)

Y = N∆x . (2.21)

The limited size of the observed area generates a loss of information on scales larger

than X and Y in the respective directions. Consequently, the original form of the

underlying continuous signal cannot be reconstructed exactly anymore, if it exceeds

the field of view. Similarly, the pixel size ∆x determines a minimum scale, on which

periodic structures of the signal can be observed. To predict the underlying signal

correctly, at least two discrete sampling points per wavelength are needed, yielding

λmin = 2∆x . (2.22)

Equation 2.22 is also referred to as the Sampling Theorem. Its violation leads to signal

distortion. An example is given in figure 3, where the reconstructed wavelength turns

out much larger than the wavelength of the original signal. In case of a one-dimensional

signal, this effect is called aliasing.
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2.2.2. Fourier Transformation

Generally speaking, the Fourier transformation specifies the transition from position

space to frequency space3 and vice versa. It operates on the space of integrable func-

tions4. The continuous Fourier transformation (FT ) of a function g(x) is given by:

g̃(k) =
1

2π

∫ +∞

−∞
g(x) exp(−2πikTx)dx (2.23)

with the inverse transformation

g(x) =

∫ +∞

−∞
g̃(k) exp(2πikTx)dk . (2.24)

In data analysis usually discrete data points rather than continuous functions are

subject of interest. Accordingly, it is beneficial to consider the one-dimensional discrete

Fourier transformation (DFT ), which maps complex valued vectors of length N to

complex valued vectors of length N :

g̃ñ =
1

N

N−1∑
n=0

gn exp

(
−2πinñ

N

)
(2.25)

with the inverse transformation

gn =

N−1∑
ñ=0

g̃ñ exp

(
2πinñ

N

)
. (2.26)

Note that real valued data is thereby interpreted as complex valued with vanishing

imaginary part.

Additionally, two important properties of the Fourier transformation shall be men-

tioned, which are also discussed comprehensively in Jähne [2012, part III]. The con-

volution theorem indicates, that a convolution in position space corresponds to a mul-

tiplication in frequency space and vice versa:

h(x) ∗ g(x) c s h̃(x)g̃(x) . (2.27)

Furthermore, it holds that the partial derivative in position space is equivalent to a

multiplication in frequency space:

∂g(x)

∂xd
c s 2πikdg̃(k) . (2.28)

3i.e. Fourier space
4in the sense that for a function g(x) : RD 7→ C∫ +∞

−∞
|g(x)|2dx < ∞
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2.2.3. Segmentation

Image segmentation is typically used to identify and locate objects in digital images.

In principle a binary image is created, by assigning the value one to pixels belonging

to objects and zero to all others. This leads to a partition of the digital image into

multiple regions, marking objects, boundaries and background.

The simplest approach to generate the binary image is by thresholding. Here, pixels

with gray values above a certain threshold are assigned the value one, whereas all

others are set to zero. The difficulty of this method lies in determining the optimal

threshold value. A first impression can be gained by looking at the histogram of gray

values. Usually this follows a bi-modal distribution, i.e. shows two peaks representing

two classes of pixels (foreground pixels and background pixels). Then Otsu’s method

is an established way of finding the ideal threshold, where the term ’ideal’ states, that

the chosen value minimizes the variance in both pixel classes. For a more detailed

description see Otsu [1979].

2.2.4. Splines

In general, a spline of degree q is constructed from piecewise polynomials of maximum

degree q, such that the resulting function is (n− 1) times continuously differentiable.

The points where neighboring pieces are joint are called knots. Additional to their

smooth behavior at the knots, even high order splines do not struggle with oscillations

at the interval edges, which is a common problem in polynomial interpolation. These

advantageous properties make splines a fundamental tool for interpolation tasks, and,

as for instance shown by Reinsch [1967] in his work on smoothing splines, also ex-

tremely suitable for smooth data fitting. Within the framework of this thesis the

special cases of the cubic smoothing spline discussed in De Boor [1978], as well as

penalized, i.e. P-Splines introduced by Eilers and Marx [1996], are examined.

The Cubic Smoothing Spline The essential idea of smooth data fitting with splines is

to add a penalty term to the least squares function. This proposal was already made by

Whittaker [1923] and picked up again by Schoenberg [1964] as well as Reinsch [1967].

The latter suggest to choose the model function f(x) with existing m-th derivative

f (m) for a set of approximate data points yi with variance δyi, such that it minimizes:

S = p
N∑
i=1

(
yi − f(xi)

δyi

)2

+ (1− p)
∫ xN

x1

(
f (m)(t)

)2
dt . (2.29)
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Via the smoothing parameter p ∈ [0, 1] a compromise between staying close to the

data points, and a smooth fit is realized. Note, that for p = 0 f(x) becomes the least-

squares straight-line fit to the data. Then again, choosing p = 1 yields the natural

spline interpolant. Schoenberg [1964] showed, that the solution of equation 2.29 is

a spline of order κ = 2m with knots at x2, . . . , xN and natural boundary conditions

f (j)(x1) = f (j)(xN ) = 0, for j = m, . . . , κ− 2. For the special case of cubic splines, i.e.

splines of order κ = 4, equivalent to equation 2.29, a linear system of equations can

be solved [De Boor, 1978]. For this purpose we define

a :=[a1, . . . , aN ]T with ai :=f(xi) (2.30)

c :=[c2, . . . , cN−1]T with ci :=f (2)(xi)/2 (2.31)

u :=c/(3p) . (2.32)

Further let R and QT be tridiagonal matrices of order (N − 2), and (N − 2) × N ,

respectively, with the general rows:

R : ∆xi−1, 2(∆xi−1 + ∆xi), ∆xi (2.33)

QT :
1

∆xi−1
, −

(
1

∆xi−1
+

1

∆xi

)
,

1

∆xi
(2.34)

and let D denote the diagonal matrix containing the variances D = diag(δy1, . . . , δyN ).

Then, the solution of equation 2.29 can be obtained from:(
6(1− p)QTD2Q + pR

)
u = QTy (2.35)

and

a = y − 6(1− p)D2Qu . (2.36)

A thorough derivation of these equations can be found in De Boor [1978, chap. XIV].

P-Splines In 1996 Eilers and Marx modified the idea of the smoothing spline and

introduced the P-Spline. An extension to higher dimensions by Eilers et al. followed

in 2006. Below, the one- and two-dimensional cases are discussed.

The main difference to the smoothing spline lies in the idea to write the model function

f(x) in terms of a special set of basis functions, the B-Splines. A B-Spline of degree q is

a function, that is composed of q+ 1 polynomial pieces, each of degree q. It is positive

valued on a domain spanned by q + 2 knots and zero everywhere else. Therefore, the

basis functions (B-Splines) of the P-Spline, overlap (except at the boundaries) with

2q polynomial pieces of their neighbors. In figure 4 these properties are illustrated.
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Figure 4: Illustration of B-Splines of degree q = 3. On the left an isolated B-Spline is

shown. It consists of four polynomial pieces, that join at three inner knots

(x2 - x4). The dashed lines indicate beginning and end of the pieces. On

the right three overlapping B-Splines are pictured. The middle one overlaps

with two polynomial pieces of each of its neighbors. Representation modified

after Eilers and Marx [1996].

Likewise to all splines, their derivatives at the q inner knots are continuous up to order

q− 1. For further reading it is referred to De Boor [1978] and Eilers and Marx [1996].

Subsequently, we express the model function f(x) as linear combination of parameters

aj in the B-Spline basis:

f(x) =

n∑
j=1

ajBj(x; q) . (2.37)

Eilers and Marx point out, that it is sufficient to approximate the κ-th derivative with

the finite differences operator ∆κ of order κ. Similar to equation 2.29, the optimal fit

minimizes the penalized least squares function, defined as

S =

m∑
i=1

(yi − f(x))2 + λ

n∑
j=κ+1

(∆κaj)
2 (2.38)

where λ denotes the smoothing parameter. Note, that in equation 2.38 the first term

corresponds to common B-Spline regression and the second term approximates the

smoothness penalty. Equivalent to minimizing equation 2.38 the set of penalized

normal equations can be solved:

(BTB + λDT
κDκ)a = BTy (2.39)

with Dκ being the matrix representation of ∆κ and (B)ij = Bj(xi).

Let us now observe the two-dimensional case. Consider a set of M data points

ym(vi, xj) on a grid of size I × J . Let B̆, I × K, and B, J × L, be the B-Spline
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bases in v- and x-direction, respectively. Then, the model function ξ(v, x) can be

expressed in terms of the tensor product of the bases:

ξ(v, x) =
K∑
k=1

L∑
l=1

B̆k(v)Bl(x)akl (2.40)

where A = [akl] is the K×L coefficient matrix. For the subsequent steps it is beneficial

to define an M × 1 coefficient vector β, that contains the stacked columns of A, i.e.

β = vec(A). Use of the tensor product also yields the regression basis C

C = B⊗ B̆ (2.41)

and the penalty matrices can be calculated from

P = IK ⊗DT
κDκ (2.42)

P̆ = IL ⊗DT
κ̆Dκ̆ (2.43)

with Ix denoting the identity matrix of size x. The set of penalized normal equations

can then be written as

(CTC + λP + λ̆P̆)β = CTy . (2.44)

Note, that weights can be introduced by element-wise multiplication of CT with a

weight matrix W. Thereby W is of size M ×KL and repeats the weights for all data

points in each column.
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Figure 5: Schematic setup of the Large Marseille-Luminy Wind-Wave Facility. The

water tank is 40 m long, 2.6 m wide and 0.9 m deep. The recirculating wind

tunnel above is 3.2 m wide and 1.5 m high. The measurement section is

located at a fetch of 28 m. Representation based on Caulliez [2013].

3. Setup

3.1. The Large Marseille-Luminy Wind-Wave Facility

The experimental data used in this thesis originates from a measurement campaign,

carried out in June 2016 at the Large Marseille-Luminy Wind-Wave Facility of the

Mediterranean Institute of Oceanography (MIO) in Marseille. A schematic set up

of the wind-wave flume is depicted in figure 5. The facility comprises a 40 m long,

2.6 m wide and 0.9 m deep water tank5 and a 3.2 m wide and 1.5 m high wind tunnel

above. With air ducts above the tunnel, the air is recirculated from end to beginning,

whereby steady wind speeds from 1 m/s - 14 m/s can be generated by an axial fan.

A wavemaker is installed at the downwind end of the water tank and permits the

creation of plane gravity waves at prescribed frequencies. Furthermore, a permeable

wave absorber (beach) is set at the upwind end, in order to damp wave reflections.

The measurement section sits at a fetch of 28 m and is equipped with glass windows,

enabling optical access.

5More precisely, the depth of the tank increases linearly and starts at 0.7 m at the downwind end.

At the measurement section the tank is 0.9 m deep.
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Figure 6: Sketch of the experimental setup. The surface profile is visualized with a

laser sheet of size A = (30×2) mm, constructed by a configuration of different

lenses (L1-L3). The distance to the side wall of the water tank amounts to

d = 69 cm. The length of the beam is approximately x = 3 m and the water

depth is h = 90 cm.

3.2. Experimental Setup

The experimental setup was designed in such a manner that it has no6 impact on the

observed wave field. For this purpose the height is processed from a series of gray

scale images, which is recorded with a camera next to the wind-wave flume. Figure 6

shows a sketch of the installation. To obtain suitable images, a distinct gradient from

water to air is vital. This is realized by adding the fluorescent indicator Pyranine7 to

the water. Pyranine is chosen due to its beneficial properties, like a large Stokes shift8

of 61 nm, and high quantum efficiency, which means that nearly all absorbed light is

emitted again. For further reading Kräuter [2015] is recommended. The surface profile

6Disregarding negligible heating of the surface and radiation pressure due to the laser.
7C16H2Na3O10S3
8i.e. the difference between excitation and emission wavelength



16 3. Setup

is then visualized with a laser sheet of size A = (30× 2) mm at a distance d = 69 cm

from the side wall of the water tank (see figure 6). For construction, the laser beam

is modified via three optical lenses [Raffel et al., 1998]. The configuration consists of

two spherical (L1, L3) and one cylindrical lens (L2), as shown in figure 7. The first

lens has a negative focal length of −100 mm and consequently diverges the beam. The

cylindrical lens is the essential element, as it only affects one dimension of the light

beam. Therefore, its focal length (100 mm) mainly determines the along-wind length

of the laser sheet (figure 7(a)). Lastly, a third lens (300 mm) is utilized to focus and

control the thickness. The total length of the laser beam, before it hits the water,

is approximately x = 3 m, and the laser itself consists of two combined 6 W laser

diodes with a wavelength of λ = 447 nm. As camera a Basler acA1920-um155 camera

was used with a Minolta 35 mm f/1.8 objective. For the measurements the maximum

aperture was used and an interference filter was placed in front of the objective. The

interference filter is used to dismiss any total reflections of the beam, which can for

example arise from bubble formation. Moreover it guarantees, that solely wavelengths

of the emission spectrum of Pyranine reach the camera sensor.

With the purpose of enabling a simple calibration, a special setup for the camera,

shown in figure 8, was designed. Usually the CCD-sensor is positioned centered to the

optical axis of the lens. Then the camera has to be tilted to observe the water surface,

resulting in a complex calibration of the images. This method was previously used by

Horn [2013] and Eisenhauer [2011]. Here, the sensor is shifted above the optical axis,

allowing observations without tilting. Hence, the subsequent calibration simplifies to

a scaling factor fcal, which transforms the image size in pixel into the object size in

meter. For the carried out experiments the scaling factor was determined with help

of a chessboard patterned target and found to be fcal = 183µm/pxl, meaning that a

length of one pixel in the image corresponds to an observed length of 183µm.
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(a) Side view (b) Top view

Figure 7: Construction of a laser sheet with a configuration of two spherical (L1, L3)

and one cylindrical lens (L2). Representation based on Raffel et al. [1998].

Figure 8: Sketch of the camera setup. Due to shifting the CCD-sensor (pictured as blue

rectangle), the camera does not need to be tilted and a simple calibration

becomes possible.
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4. Experiments

The processed data originates from measurements at the Large Marseille-Luminy

Wind-Wave Facility in Marseille (figure 5), performed from June 3 to 23, 2016 within

the ASIST-campaign. Measurements were taken at wind speeds from 2.5 m/s - 14 m/s

and the wavemaker was used to create paddle waves with frequencies of up to 1.3 Hz.

Table 1 lists the conditions and an approximated total measurement time for all exe-

cuted runs. With the set up described in section 3.2, image series were recorded with

a frequency of 500 Hz. Additionally, a laser slope gauge (LSG) was installed at the

same fetch and was used for simultaneous measurements of the slope. Moreover, the

wave height was measured with wave wires 3 m behind the measurement section. To

ensure that the wave field had reached equilibrium when measuring, the wind and

wave generation was started at least 30 minutes prior to each run.

number of run wind [m/s] paddle [Hz] duration [min]

1 2.5 - 30

2 3 - 30

3 4 - 30

4 5 - 10

5 6 - 45

6 6 0.9 30

7 6 1.1 25

8 6 1.3 30

9 8 - 90

10 8 0.9 40

11 10 - 40

12 10 0.9 35

13 10 1.3 30

14 12 - 30

15 12 0.9 40

16 14 - 40

17 14 0.9 17

18 14 1.3 40

Table 1: Conditions of all executed runs
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5. Method

In the framework of this thesis it was aimed to design an algorithm which is capable

of extracting the height of a water wave from a surface profile image. Therefore, the

method presented by Horn [2013] was extended by one dimension, now based on a

laser sheet instead of a one-dimensional laser point. The following sections explain the

different procedures performed by the developed algorithm, which are also summarized

and illustrated in figure 13. Section 5.1 focuses on extracting the height from the actual

series of images, whereas section 5.2 deals with processing of the data and compares

the implemented fitting mechanisms. In section 5.3 the course of action for data

evaluation is explained. Lastly, calculation of the uncertainty is discussed in section

5.4.

5.1. Detection of the Water Surface

Due to laser-induced fluorescence (see section 3.2) the images show a bright wave

profile, whereas the air on top appears dark. As already mentioned by Horn [2013],

two major techniques exist to detect the water surface in such a grayscale image.

The first method is the threshold method, previously discussed in section 2.2.3. An-

other approach is to examine the columnwise derivative of the gray values. Here, the

underlying idea is that the change in gray values is maximal at the transition from

foreground to background and vice versa. In the final version of the algorithm only

thresholding was implemented, because the derivative method was found to be more

prone to false detection. To extract the height from the time series of surface profile

images the final version of the algorithm proceeds as follows.

Step 1: Determination of the Threshold Value: First of all a robust threshold value

for each column of the grayscale images needs to be found. Therefore an image series

corresponding to three seconds measurement time is read in, and ideal values are iden-

tified using Otsu’s method (see section 2.2.3). Under the assumption, that the lighting

conditions remain constant during a measurement series, the identified thresholds are

representative for the complete series and thus are used for all images.

Since the intensity of the laser sheet lowers towards the edges, pixels in these regions

can be darker and therefore yield less accurate results. For this reason, only columns

with thresholds larger than 75 % of the maximum value are considered in the detection

process. Lastly, a range of five threshold values is defined for each column, reaching

from 90% to 110% of the detected threshold. Therefore, the height is detected for five

slightly different threshold values, which enables a subpixel accurate computation of
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(a) Detected height (b) Before filtering (c) After filtering

Figure 9: Benefit of the object filter. In each binary image objects with less than 100

pixels are filtered. Therefore splashes and drops are discarded, so that the

height is detected correctly at the water surface.

the surface position in the subsequent steps.

The following procedures are applied to every image of the complete time series:

Step 2: Image Segmentation: For each value of the threshold range the image is con-

verted into a binary image. In order to discard splashes from wave breaking, all objects

(i.e. pixel groups with value one) with less than 100 pixels are deleted. An example

is shown in figure 9.

Step 3: Extract the Height : Next, the binary images are element-wise multiplied with

a scaling matrix to obtain the surface position. The scaling matrix contains the mean

height of each row in terms of pixel (see figure 13, step 3). Then, the surface position

is simply given by the maximum value of each column of the product. Lastly, the

height is obtained by averaging over the surface positions of all binary images within

the threshold range.

To improve the accuracy, implausible heights are identified by their high standard

deviation9 and a local median filter is applied10. The values of these points are tem-

porarily set to ’NaN’ and subsequently reconstructed by interpolation (see section

5.2). Furthermore, images with less than 30% remaining data points are ignored com-

pletely, as such strong deviations indicate, that a reliable height detection was over all

not possible in this image.

9Values with a standard deviation of more than 3 pxl were classified as implausible.
10Within a range of five neighboring columns the allowed maximum deviation from the median height

was set to 8 pxl.
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Figure 10: Excerpt of a spatio-temporal fit of the wave height at 10 m/s wind and

mechanically generated waves with 0.9 Hz (run 12). The fit was carried out

by the built-in MATLAB function for the cubic smoothing spline.

5.2. Data Processing

At this point, the extracted height in spatial direction is available for each image of

the time series. Consequently, information is defined on a spatio-temporal surface.

As continuous behavior of the waves is expected in both dimensions, a smooth course

of the surface is motivated. The second part of the algorithm now concentrates on

fitting this spatio-temporal information, with the splines presented in section 2.2.4.

An example is given in figure 10. As result, the cubic smoothing spline as well as the

P-Spline, i.e. penalized spline fit yield a continuous, two-dimensional function of the

height. This allows to compute the derivatives analytically in time and space direc-

tion, instead of using finite difference schemes as an approximation. Consequently,

continuous functions of the time derivative as well as the slope are obtained additional

to the wave height.

In the following, the properties of the implemented spline methods are assessed.

Firstly, theoretical pros and cons of each method are discussed. Then, their fitting

properties are compared with respect to the data sets.

On the one hand, the two-dimensional P-Spline fit on the basis of Eilers et al. [2006]
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was implemented. This method is very flexible and provides a wide range of adjustable

parameters. Degree and order of the fit can be chosen separately for each dimension,

and the respective total number of basis functions, i.e. B-Splines, can be adjusted.

Moreover, it is possible to select a different smoothing parameter for each dimension.

Hence, it is possible to vary the amount of smoothing among the dimensions. Further-

more, individual weights for every data point can be set (see section 2.2.4). This is a

main advantage, because it allows to process values containing ’NaN’s, as individual

weights for these can be simply set to zero. Then again, the algorithm provided by

Eilers et al. [2006] is only applicable to small to moderately sized surfaces. For this

reason, the complete surface of data points has to be computed in segments which are

subsequently patched together. To ensure a smooth transition between the patches, an

overlap at the borders is initialized within the implemented fitting routine and values

in this regions are averaged.

On the other hand a cubic smoothing spline via the built-in function ”csaps” of MAT-

LAB was utilized for data fitting. The cubic spline is less flexible than the penalized

spline, as degree and order are set to the fixed values 3 and 2, respectively. Likewise to

the P-Splines, the smoothing parameter can be chosen separately for each dimension,

but weights can only be entered dimension-wise, permitting an individual weighting of

data points. Therefore, the built-in MATLAB function of the cubic smoothing spline

is not suitable to process data sets containing ’NaN’s in more than one dimension.

This is why in the implemented routine for the smoothing spline, these data points

have to be interpolated preliminary to fitting. This process is time consuming, as it

is computationally costly. Nevertheless, the smoothing spline remains competitive to

the penalized spline, because it is capable of fitting large surfaces as a whole.

Next, we consider the performance of both methods on the actual data sets. For

reasons of comparability, the P-Spline fit was executed with degree 3 and order 2, ac-

cordingly to degree and order of the cubic smoothing spline. The width of the surface

patches for the penalized splines comprises the full detection range in x-direction, and

100 columns in t-direction, with an overlap of 10 columns between two surfaces. The

number of basis functions, i.e. B-Splines, was set to nx = 20 and nt = 50. As the de-

tection range usually comprised about 100 pixel, a B-Spline comprises approximately

5 pixel in space direction and 2 pixel in time direction and the smoothing parameters

for the P-Spline fit were set to λx = 0.01 and λt = 0.5 in x- and t-direction, respec-

tively. For the smoothing spline px = 0.99 and pt = 0.5 were chosen. Therefore, both

fits stick close to the spatially detected height and allow moderate smoothing in time

direction.
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(a) Detected height (b) Fitted height

Figure 11: Data interpolation with the implemented spline methods. As shown in (a),

no height is detected at the dark region in the middle. The values are in-

terpolated with splines, which is demonstrated in (b). Only on small scales

differences in both methods become apparent. In figure (b) the difference

between both fits was at most 0.29 mm. Over all, the P-Spline is found to

provide a smoother fit, whereas the smoothing spline sticks closer to the

detected height.

Figure 12: Over smooth fitting of the P-Spline. The basis functions (B-Splines) of

the P-Spline comprise approximately 5 pixel (≈ 0.9 mm) in space direction

and are of degree 3. Therefore, they are sometimes not flexible enough to

capture small scale waves correctly.
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In figure 11 the interpolation of data points is demonstrated. It can be seen, that

the detected height of both methods differs on small scales, only. With the above

settings, the P-Spline was found to provide smoother fitting than the cubic smoothing

spline. This can be beneficial for the purpose of interpolation, as for instance shown

in figure 11(b). Then again, it often leads to over smooth data fitting, resulting in a

lack of ability to detect small wave lengths, which is depicted in figure 12. The cubic

smoothing spline sticks closer to the data points, making it generally more sensitive

to faulty detection, but also better in representing properly detected values. For this

reason, the fits of the cubic smoothing spline were used to compute the wave spectra.

Due to the statistics applied in the evaluation process, defective values are evened out,

whereas a general loss of small wavelengths would create a grave deficit in information.

The most important steps from the previous sections are again illustrated and sum-

marized in figure 13, where an overview over the proceedings of the algorithm is given.

5.3. Data Evaluation

Additional to the height detection algorithm, a script for the purpose of data evaluation

was written. It computes the frequency power spectra of height, slope, i.e. spatial

derivative, and time derivative. Furthermore, the dispersion relation introduced in

section 2.1.1 is calculated, and general wave properties, like maximum amplitude,

significant wave height and mean square slope11 of the wave field are determined.

Moreover, the ratio of interpolated values to all values, i.e.

ε =
#’NaN’

#values
(5.45)

is evaluated. The script proceeds as follows.

For the frequency spectrum information is solely required in time direction and there-

fore a spectrum could be obtained for each position in spatial direction. However, as

a precaution to correlation only every 20th column is treated as independent point of

observation, which was considered sufficient, as the polynomial pieces comprise less

than 5 pixel for the cubic smoothing spline. The height series at each point is then

decomposed into smaller time sequences. Here, it is crucial to choose sufficiently long

time segments, so all present wave lengths can occur several times within one sequence.

Therefore, the length of a sequence was chosen to be one minute, which is satisfactory

11Here, only the mean square slope in along-wind direction is computed, as information is solely

measured in one space dimension. Generally the mean square slope is defined as the sum of the

variances in along- and cross-wind direction.
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Figure 13: Illustration and brief summary of the procedures carried out by the devel-

oped algorithm.

Process surface profile images
of complete measurement series:

Step1
Determinationof thethresholds
- find representative thresholds
for each column
- define detection range

Step2
ImageSegmentation
- set threshold range from 90% - 110%
- convert image into binary images
- filter small objects
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of theshold range



26 5. Method

for the observed conditions. Next, frequency spectra of the sequences are computed

individually. The final spectrum is then the ensemble average.

To compute the phase speed, a fundamental property of the Fourier transform is ex-

ploited. As equation 2.28 states, execution of the spatial derivative in real space is

equivalent to a multiplication with the wavenumber k in Fourier space. Likewise, the

time derivative corresponds to a multiplication with the frequency ω. Therefore, di-

viding the frequency spectrum of the time derivative φη̇ by the frequency spectrum of

the spatial derivative φs yields the dispersion relation

c =
ω

k
=

√
φη̇
φs

. (5.46)

Note, that the spectra and not the Fourier transforms are divided here, which requires

to take the square root.

Additionally, the maximum amplitude is determined for positive as well as for negative

surface elevation with respect to the mean height. It is also computed as ensemble

average of all sequences, to correct for the possibility of defective values, and its

uncertainty follows from the uncertainty of the mean. Likewise, the significant wave

height and the mean square slope are obtained. Traditionally, the significant wave

height is defined as the mean height from crest to trough of the highest third of the

waves, but nowadays it is usually calculated as four times the standard deviation of

the surface elevation [Holthuijsen, 2007], namely

Hs = 4 ση . (5.47)

The mean square slope in along-wind direction is given by the variance of the slope

mss = σ2
s . (5.48)

5.4. Uncertainty Estimation

As described in section 5.1, the algorithm computes the standard deviation σij of the

detected height from the range of threshold values for each column j in each image

i. The uncertainty of the height ∆η is given by the uncertainty of the mean, i.e.

(∆η)ij = σij/
√

5, as the range consists of 5 different threshold values. Averaging over

these uncertainties yields a sufficient estimate for the accuracy ∆η of the method.

Uncertainties in the spectra and the phase speed were estimated as follows. The

spectra result from averaging over a set of N sequences and therefore provide some

statistical uncertainty, described by their standard deviation σ. Then, the statistical
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uncertainty is the uncertainty of the mean

(∆φ)stat =
σ√
N

. (5.49)

Furthermore, the uncertainty in the detected height ∆η contributes to the accuracy

of the spectra. Detailed calculations for the propagation of uncertainty in Fourier

transformed signals are supplied in appendix A. The theoretical uncertainty of a single

spectrum φi depends on the length of the sequence, i.e. the number of data points M

(∆φ)th,i =

√
2

M
∆η |η̃| (5.50)

where |η̃| is the absolute value of the Fourier transform of the sequence. Thus, the

uncertainty of the power spectrum comprises

∆φ =

√√√√( σ√
N

)2

+

(
1

N

N∑
i=1

[(∆φ)th,i]
2

)2

. (5.51)

In order to compute the phase speed, the derivatives in space and time direction of

the height are used. Their uncertainty is approximated with help of the uncertainty

of the symmetric difference quotient

∆f ′(x0) =
f (3)(x0)

6
h2 (5.52)

where h is the spacing between the data points [Burden and Faires, 2011, chap. 4].

To obtain a good estimate, it was considered satisfactory to approximate the third

derivative with the mean of its absolute value, yielding

∆φη̇ =

(∣∣∣∣∂3η

∂t3

∣∣∣∣)h2
t

6
(5.53)

∆φs =

(∣∣∣∣∂3η

∂x3

∣∣∣∣)h2
x

6
. (5.54)

The spectra of the derivatives are ultimately divided as described in section 5.2. Con-

sequently, their uncertainties influence the phase speed as follows

∆c =
1

2c

√(
∆φη̇
φs

)2

+

(
φη̇
φ2
s

∆φs

)2

. (5.55)
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6. Results

This section presents the results of data evaluation with the algorithms described in

section 5. Firstly, the extracted height is examined in section 6.1 and conclusions about

general parameters of the wave fields, like maximum amplitude, significant wave height

and mean square slope are drawn. All evaluated parameters are provided in table 2.

In section 6.2 the frequency spectra of height and slope are shown and interpreted.

The chapter ends with a discussion of the resulting dispersion relation in section 6.3.

In this chapter exemplary plots are shown to illustrate the results. To be complete,

the frequency spectra of height and slope, as well as the dispersion relations of the

remaining data sets are supplied in appendix B.

6.1. Height Measurements

Figure 14 shows exemplary time series at 10 m/s wind speed for different paddle waves,

i.e. mechanically generated waves. This form of visualization gives a good impression

about the temporal behavior of the wave field. Additionally, a rough idea about the ac-

curacy of the method can be gained, as the fitted height is overlaid on top of the images.

A quantitative criterion for the quality of the height detection is provided in terms of

the standard deviation (see section 5.4). For the data sets evaluated in this work, it

was in the order of ∆η = 0.1 pxl which, with a scaling factor of fcal = 183µm/pxl,

corresponds to 18.3µm (see table 2).

As discussed in section 5.1, values with high standard deviation as well as points with

strong deviation from the median are ignored in the detection process. Therefore,

another beneficial quantity is the ratio ε of ’NaN’s to all values (equation 5.45). This

ratio is found to increase with wind speed (table 2). Partly, this is due to the imple-

mented median filter, which only allows a certain steepness of the waves. The major

cause though, are more frequently appearing dark regions in the images (see for ex-

ample figure 11). This can result from bubbles, which can scatter the light, or may be

caused by waves, that propagate between the side wall of the tank and the laser sheet

and therefore mask the surface. At high wind speeds the presence of spray might be

another cause and for steep slopes reflections of the laser beam can alter the lighting

conditions as well.

For wind speeds of up to 10 m/s and without additional generated waves this is a

minor issue, because the waves behave smoothly and a sufficient number of reliable

data points is available for fitting (run 1-5, 8, 11). At higher wind speeds and with

mechanically generated waves though, the waves have larger amplitudes and also break
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Figure 14: Time profile images for run 11 - 13. The time profile images show the

column in the middle of the detection range as time advances from left to

right in the image. Pure wind waves are shown at the top, paddle waves

with 0.9 Hz in the middle and with 1.3 Hz at the bottom. The wind speed

was 10 m/s and the sequences correspond to a measurement time of 6 s.

The cubic smoothing spline fit is depicted as green line.

more often, which intensifies the occurrence of dark regions in the images. This can

result in no, or even worse, faulty detection of the wave height, misguiding the sub-

sequent data fitting. However, even at the highest wind speed and with mechanically

generated waves of 1.3 Hz defective points have a very limited influence on the data

set as a whole, as can be seen in figure 15.

Amongst others, the extracted data was used to calculate the maximum amplitudes in

positive (Amax,+) and negative (Amax,-) direction with respect to the mean height. The

results are presented in table 2. In addition to a general increase of amplitude with

wind speed, the color scaling of the table indicates, that the highest surface elevation

is obtained for generated waves with medium frequency. Similar observations can be
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(a) Spatial Image (b) Time profile image

Figure 15: Faulty detection of the height at 14 m/s wind speed and paddle waves with

1.3 Hz (run 18). In figure (a) an incorrect wave height is detected, because

the actual surface appears not bright enough with respect to the determined

threshold. However, the effect on the overall height is very limited as the

time profile image in figure (b) shows. Corresponding columns are marked

with red arrows.
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Table 2: Evaluation of the fitted height. As indicated by the color scales, small wind

speeds generally correspond to smaller amplitudes, a smaller significant wave

height (Hs) and a smaller mean square slope in along-wind direction (mss).

Moreover, fewer values are interpolated. If more than one data set was avail-

able to a set of conditions (run 5-18), the values of the sets were averaged

and the uncertainties result from their standard deviation.
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made from the time profiles in figure 14. Cause of this behavior is the limited steep-

ness that waves can reach before breaking. Strongly simplified, the wave’s steepness

results from the ratio of amplitude to half a wave length, and consequently waves with

smaller frequencies can grow higher before they break. Another interesting feature of

the observed wave field reflects in the ratio of positive to negative maximum ampli-

tude, provided in table 2. Here, significant non-linear behavior of the waves becomes

apparent, as the maximum amplitude in positive direction is approximately 1.5 times

as large as the amplitude in negative direction for all runs. This implies, that even

at the lowest wind speeds, the waves show the typical sharpened crests and flatted

troughs of Stokes waves, which is also prominent in figure 14.

The significant wave height reveals information about the statistical distribution of

the waves, as it describes the mean height from crest to trough of the highest third

of the waves [Holthuijsen, 2007]. The computed values result from equation 5.47. As

illustrated in table 2, the over all behavior of the significant wave height mirrors that

of the maximum amplitudes. It can be seen, that values for mechanically generated

waves with 1.3 Hz are smaller than for 0.9 Hz, and do not vary much with the wind

speed. This indicates, that waves with this frequency already break at a wind speed

of 6 m/s. Note, that the corresponding wavelength of a deep water gravity wave with

small amplitude and 1.3 Hz is approximately 0.9 m.

Further, the mean square slope in along-wind direction was calculated from the data.

As it is a measure for the roughness of the surface, its increase with wind speed matches

the expectations. It is noted, that values between pure wind waves and additional gen-

erated waves with 0.9 Hz differ only slightly, but when wave breaking occurs at 1.3 Hz,

the roughness of the surface is increased.

6.2. Wave Spectra

Within the script for data evaluation frequency spectra of height, slope as well as the

time derivative were computed. Due to the reasons discussed at the end of section 5.2,

it was decided to use the fitted data from the cubic smoothing spline as input. The

presented spectra result from an ensemble average of one-minute time segments (see

section 5.2) and subsequent frequency averaging. Regions with uncertainties of more

than 10% are pictured in pale color.

Figure 16 shows the spectra of the wave height for exemplary wind speeds. It can

be seen that the general amplitude increases with wind speed, which matches the

expectations, as higher wind speeds correspond to an enhanced exchange of momentum

and thus to a higher energy of the wave field. Furthermore, for purely wind generated
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(a) Pure wind waves

(b) Mechanically generated waves with 0.9 Hz

(c) Mechanically generated waves with 1.3 Hz

Figure 16: Frequency power spectra of the wave height for run 1, 3, 5, 11, 16 (top),

6, 12, 17 (middle) and 8, 13, 18 (bottom). With increasing wind speed

the energy in the wave field enlarges, and the dominant waves become

longer, if the waves are purely wind generated (figure (a)). The frequency

of mechanically generated dominant waves is found to be independent of the

wind speed (figure (b) and (c)). A sharp cut off for 14 m/s at approximately

80 Hz is observed. Potentially, this results from difficulties in the detection

process, as strong turbulence and spray are present at this condition.
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Figure 17: Frequency power spectra for mechanically generated waves with 0.9 Hz (run

6, 12, 17). For all wind speeds the peak is at f0 ≈ 0.917 Hz and local

maxima are approximately found at 2f0, 3f0, 4f0 and 5f0. This indicates

the presence of a fundamental wave with bound harmonics.

waves the peaks of the spectra move to smaller frequencies, indicating that long waves

prevail at higher wind speeds. Then again, for mechanically generated waves the

peaks remain at fixed frequencies, independent of the wind speed. This shows, that

the wind has no significant impact on the frequency of the generated fundamental

wave. At a wind speed of 14 m/s a sharp cut off is observed at about 80 Hz for pure

wind waves as well as mechanically generated waves. The same effect is found in the

slope spectra (see figure 19). It is possible, that this originates from difficulties in the

height detection, rather than from the actual wave field. As the waves feature strong

turbulent behavior and a lot of spray is present at these conditions, the detection of

small scale waves is potentially affected. This could account for an artificial cut off at

higher frequencies.

As already indicated by the amplitude measurements in 6.1, the wave field features

significant non-linear behavior, which also mirrors in the spectra. The wave profile of

non-linear Stokes waves is no longer sinusoidal, but rather arises from superposition

of the fundamental wave with its harmonics [Kundu and Cohen, 2008, chap. 7.13].

The harmonics, i.e. bound waves, are therefore expected to appear in the spectrum

at integer multiples of the frequency of the fundamental wave. This phenomenon

is observed in all computed spectra, but is revealed particularly well for the case of

additional mechanically generated waves. In figure 17 an excerpt of the spectra for

waves with 0.9 Hz is shown. For all wind speeds the peak was identified at f0 ≈
0.917 Hz reflecting the fundamental wave generated with 0.9 Hz. Besides the peak,
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Figure 18: Excerpt of the frequency power spectra at a wind speed of 10 m/s (run 11-

13). The presence of mechanically generated waves damps all frequencies

but the harmonics.

local maxima are apparent at multiples of f0, corresponding to the bound harmonics.

Complementary to the influence of wind, the effects of mechanically generated waves

shall now be examined more closely. In figure 18 different spectra at a wind speed

of 10 m/s are presented. It is observed, that, if paddle waves are generated, wave

frequencies other than the fundamental and its harmonics are damped. This is already

indicated by the time profile images in figure 14. For pure wind waves a variety

of amplitudes and frequencies is present, whereas the wave fields with mechanically

generated waves appear relatively uniform. This becomes yet more evident, when

looking at the spectra in figure 18. For generated waves the energy density is sharply

peaked at the fundamental frequency and its harmonics, whereas a rather smooth

distribution is observed for pure wind waves.

Further, the evaluated data allows an analysis of the slope spectra of the observed wave

fields. Exemplary results for pure wind waves and mechanically generated waves at

different wind speeds are depicted in figure 19. The previously described effects of non-

linear waves are present in the slope spectra as well. In addition, a secondary bump

becomes apparent at frequencies between 30 Hz and 100 Hz. Similar observations for

pure wind waves were made by Jähne [1989], where it is stated, that the bump arises

from additional capillary waves, directly generated by instabilities of the dominant

gravity waves.
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(a) Pure wind waves

(b) Mechanically generated waves with 0.9 Hz

(c) Mechanically generated waves with 1.3 Hz

Figure 19: Frequency power spectra of the slope for run 1, 3, 5, 11, 16 (top), 6, 12, 17

(middle) and 8, 13, 18 (bottom). For scaling purposes the spectral density

is multiplied with the frequency. Secondary bumps are apparent in regions

of 30 Hz - 100 Hz.
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Figure 20: Dispersion relation for purely wind generated wave fields (run 1, 3, 5, 11,

16). The dominant waves have phase speeds close to the theoretical dis-

persion relation, but for higher frequencies non-linear behavior causes a

significant deviation.

6.3. Phase Speed

Lastly, the dispersion relation was computed for all data sets. The results are pre-

sented in this section. Again, regions with uncertainties of more that 10% are colored

pale in the plots and frequency averaging was performed, such that the data points

are equally spaced on a logarithmic scale.

In figure 20 the phase speeds for purely wind generated wave fields are shown. The

dashed line marks the theoretical dispersion relation for small amplitude waves (equa-

tion 2.11). Over all, the computed phase speeds are in excess of the theoretical values

for frequencies above the peak. This is a typical observation for non-linear wave fields,

as the effects of finite amplitudes can account for an increase in phase speed. On

the one hand a finite amplitude leads to a decrease of the wavenumber for a given

frequency. Commonly, this is referred to as amplitude dispersion, and can cause an

increase in phase speed of up to 10% [Donelan et al., 1985]. On the other hand, the

previously mentioned bound waves are a consequence of finite amplitudes. Other than



38 6. Results

the fundamental wave, the harmonics do not follow the theoretical dispersion relation

[Komen, 1980]. This can be seen from the secondary peak in figure 20, but becomes

even more apparent when looking at the phase speeds of additional mechanically gen-

erated waves shown in figure 21. The phase speeds of the fundamental waves are,

considering effects of amplitude dispersion, in good accordance with the theoretical

value. On the contrary, velocities for higher harmonics are significantly enlarged. Since

the harmonics are bound to the fundamental waves, it is expected that they propagate

with the same speed. At high wind speeds (≥ 10 m/s) this is observed indeed, but the

effect weakens with higher order of the harmonic and decreasing wind.
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Figure 21: Dispersion relation for mechanically generated waves of 0.9 Hz (run 6, 10,

12, 15, 17). The fundamental waves have phase speeds close to the the-

oretical dispersion relation, whereas higher harmonics show significantly

enlarged phase speeds.
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7. Conclusions and Outlook

Height Detection

A reliable detection of the shape of the water surface is crucial for a detailed description

of the wave field. Within this work, a measurement technique based on laser-induced

fluorescence was used to visualize the surface position. This technique was previously

applied by Horn [2013], and has recently been extended from a laser point to a laser

sheet. Therefore, it is now possible to measure both, spatial and temporal information

about the height. In order to process the surface profile images, an algorithm was

designed, which is capable of detecting the surface position and applies subsequent

spatio-temporal smooth fitting (figure 13). If the images feature a sharp difference in

gray values between water and air, the algorithm provides reliable results and reaches

an accuracy of about 18µm. However, at higher wind speeds and when additional

waves are generated, dark regions arise more frequently at the interface in the images

(section 6.1). To identify these areas, the detected height values undergo subsequent

filtering, where faulty detected positions are discarded and interpolated. Again, the

algorithm performs well, if the regions are sufficiently small and an overall smooth

behavior of the wave field is present (section 5.2). This is usually the case for pure

wind waves and wind speeds of up to 10 m/s. Then again, if dark regions are dominant

and if faulty detection is not captured by the filtering, defective values of the surface

position can occur (figure 15). As a consequence, the individual height detection

becomes less precise at high wind speeds and if additional waves are generated, but

through statistics, the characteristics of the wave field are still well identified (see

section 6.1).

Wave Spectra

Within the script for data evaluation, frequency spectra of height, slope and time

derivative were computed. For all conditions the phenomenon of bound harmonics

was observed, but it is particularly pronounced, if the waves are generated mechan-

ically, because then other wavelengths are damped (section 6.2). The slope spectra

show a secondary bump, which corresponds to the observations made by Jähne [1989].

This indicates the generation of additional capillary waves through instabilities in the

dominant gravity waves (section 6.2). At a wind speed of 14 m/s a sharp cut off at

approximately 80 Hz is observed. It is possible, that this arises from difficulties in the

detection process, rather than being an actual feature of the wave field. This could be

investigated by checking the results against the ones obtained from the wave wires, as

simultaneous measurements were made by our local partner Dr. Guillemette Caulliez

from MIO, Marseille.
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Phase Speed

Lastly, the dispersion relation was computed from the frequency spectra of slope and

time derivative. Again, non-linear features of the wave field were observed for all

conditions. The bound harmonics were found to propagate with the same speed as

the fundamental wave, which matches the expectations. This effect weakens with

decreasing wind, though (figure 21). Generally, the computed phase speed is slightly

larger than predicted by the theory for small amplitude waves. This can be explained

through the phenomenon of amplitude dispersion, which can account for an increase

of the phase speed of up to 10% (section 6.3).

Outlook

The developed algorithm is capable of extracting the spatio-temporal surface position

from large sets of surface profile images. For sufficiently calm behavior of the wave

field, the detection is reliable and accurate. In order to achieve the same accuracy

at high wind speeds and with mechanically generated waves, measures against the

occurrence of dark regions in the images have to be realized. As discussed in section 6.1,

waves between tank wall and laser sheet can mask the observed surface position. This

could be prevented, by placing the camera further above the water surface in future

experiments, which would enlarge the angle under which the surface is observed. Then,

waves in the foreground are less likely to overlap with the field of view. To correct

for a reduced intensity due to scattering of the light, e.g. by bubbles, adjusted gray

value thresholds could be computed in the affected images, instead of using the fixed

values determined from a series of images in the beginning. This could reduce faulty

detection at the expense of a higher computational cost. Alternatively, a different

approach in filtering the images could be considered. Caulliez, for example, applies

an algorithm based on the Canny edge detector to extract the wave profiles from the

images [Caulliez, 2013].

Moreover, the high flexibility of the implemented P-Spline method can be exploited

further. Within the framework of this thesis, only a small parameter range was tested,

to determine appropriate settings for smooth fitting. Further investigation on different

degrees of splines and orders of the penalties can be made, to optimize the fitting

properties.

As the wave height was also measured with wave wires 3 m behind the measurement

section by our local partner Dr. Guillemette Caulliez, a comparison of the results

would be interesting. Furthermore, the computed mean square slope in along wind

direction remains to be checked against the results from the laser slope gauge, which
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was installed at the same fetch.

The image processing algorithms developed in this work are generally applicable to all

images with a sharp gradient between water surface and air. Therefore, the algorithm

and the script for data evaluation can be readily used as a tool in future experiments

with a set up similar to the one in figure 6.
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J. Horn. Hochaufgelöste optische Wellenhöhenmessung am Aeolotron mit Laser-

induzierter Fluoreszenz. Bachelor thesis, Ruperto-Carola University of Heidelberg,

Heidelberg, 2013.

http://katalog.ub.uni-heidelberg.de/titel/64232452
http://katalog.ub.uni-heidelberg.de/titel/64232452
http://katalog.ub.uni-heidelberg.de/titel/3006343
http://katalog.ub.uni-heidelberg.de/titel/3006343


46 References

IPCC. Climate Change 2014: Mitigation of Climate Change. Fifth Assessment Report

of the Intergovernmental Panel on Climate Change, 2014.

B. Jähne. Optical water waves measuring techniques. In 1st International Symposium

on Gas Transfer at Water Surfaces, Cornell University, Ithaca, New York, 1983.

doi: 10.5281/zenodo.14008.

B. Jähne. Energy balance in small-scale waves - an experimental approach using optical

slope measuring technique and image processing. In G. J. Komen and W. Oost,

editors, Radar Scattering from Modulated Wind Waves, pages 105–120. Kluwer,

Boston, 1989. ISBN 9789401075374. doi: 10.1007/978-94-009-2309-6.

B. Jähne. Digitale Bildverarbeitung und Bildgewinnung. Springer, 7 edition, 2012.

ISBN 978-3-642-04951-4. doi: 10.1007/978-3-642-04952-1.

D. Kiefhaber. Development of a Reflective Stereo Slope Gauge for the measurement

of ocean surface wave slope statistics. Diploma thesis, Ruperto-Carola Univer-

sity of Heidelberg, 2010. URL http://katalog.ub.uni-heidelberg.de/titel/

67125364.

G. Komen. Nonlinear Contributions to the Frequency Spectrum of Wind-Generated

Water Waves. J. phys. Oceanogr., 5:779–790, 1980. doi: 10.1175/1520-0485(1980)

010〈0779:NCTTFS〉2.0.CO;2.
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A. Error Calculations for the DFT

The subsequent calculations follow the concepts for error propagation presented in

[Betta et al., 2000].

Consider the discrete Fourier transform of a noisy signal f + ∆f . For convenience, we

express the Fourier transform in terms of its real and imaginary part

f̃ñ =
1

N
(R(ñ)− iI(ñ)) (1.56)

with

R(ñ) =
N−1∑
n=0

fn cos

(
2πnñ

N

)
(1.57)

I(ñ) =
N−1∑
n=0

fn sin

(
2πnñ

N

)
. (1.58)

Supposing that ∆fn = ∆f it follows that

(∆R)2 =

N−1∑
n=0

(
∂R

∂fn
∆fn

)2

= (∆f)2
N−1∑
n=0

cos2

(
2πnñ

N

)
(1.59)

(∆I)2 =

N−1∑
n=0

(
∂I

∂fn
∆fn

)2

= (∆f)2
N−1∑
n=0

sin2

(
2πnñ

N

)
(1.60)

(∆(R, I))2 =

N−1∑
n=0

∂R

∂fn

∂I

∂fn
(∆fn)2 = (∆f)2

N−1∑
n=0

cos

(
2πnñ

N

)
sin

(
2πnñ

N

)
. (1.61)

As
∑

cos(x)sin(x) = 0 for all x it holds that

(∆(R, I))2 = 0 . (1.62)

Using:

N−1∑
n=0

cos2

(
2πnñ

N

)
=

N−1∑
n=0

sin2

(
2πnñ

N

)
=
N

2
for n > 0 (1.63)

it further simplifies for n > 0:

(∆R)2 =
N

2
(∆f)2 (1.64)

(∆I)2 =
N

2
(∆f)2 . (1.65)
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With the error of the Fourier transform derived, we now determine the error of the

module M , given by:

M =
1

N

√
R2 + I2 . (1.66)

Applying the common laws of error propagation, the error is obtained

(∆M)2 =
1

N4M2

(
(R∆R)2 + (I∆I)2 + 2RI∆(R, I)

)
(1.67)

=
1

2N
(∆f)2 for n > 0 . (1.68)

Lastly, we examine the error of the squared module according to the power spectrum:

(∆M2) = 2M∆M = M

√
2

N
∆f . (1.69)

This indicates, that the uncertainty of the power spectrum depends on the length N

of the signal. Furthermore, it states proportional scaling of the error to the module.
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B. Complementary Frequency Spectra and Dispersion

Relations

For completeness, complementary frequency spectra of height and slope and the dis-

persion relations of all evaluated data sets are supplied in this section. In the plots

regions with uncertainties of more that 10% are painted in pale color and frequency

averaging was performed, such that the data points are equally spaced on a logarithmic

scale. Accordingly to section 6.2, the slope spectra are multiplied with the frequency

for representation.
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Figure 22: Frequency spectra and dispersion relations for pure wind waves at varying

wind speeds (run 2, 4, 9, 14).
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Figure 23: Frequency spectra and dispersion relations for additional mechanically gen-

erated waves with 0.9 Hz at varying wind speeds (run 10, 15).
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Figure 24: Dispersion relations for run 8, 13, 18, i.e. additional paddle waves with

1.3 Hz.
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