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Summary 
 

Inflammation is an organism’s concerted response to damage and 

infection. For an inflammatory signal to spread it relies on specific signaling 

pathways to activate proinflammatory genes. One is set off by receptors that, 

after detecting an appropriate stimulus, nucleate the assembly of a large 

multimolecular signaling platform called the inflammasome.  

Currently, thanks to the advances in live microscopy, questions in 

immunology that can only be solved by live imaging are beginning to be 

addressed. In this work, we have established zebrafish and medaka as 

vertebrate model systems for the visualization of inflammasome signaling by 

three approaches. Since inflammasome assembly is driven by the aggregation 

of the adaptor molecule ASC, one approach was to study the dynamics of this 

molecule’s switch from a cellular cytoplasmic localization to a single 

aggregate, called a speck, using zebrafish. We saw that speck formation leads 

to pyroptosis, a proinflammatory type of cell death, in vivo. This is the first 

time this process is visualized in a live organism. Furthermore, we generated 

a zebrafish transgenic line with endogenously tagged ASC that can be used to 

study the role of inflammasome activation live in zebrafish infection models. 

Second, we used medaka to study the proinflammatory cytokine 

interleukin-1 (il1), whose activation is downstream of inflammasome 

assembly. We generated a transgenic line to track the transcriptional 

activation of the gene and the protein’s cleavage. Based on our results, we 

propose that il1 genes in teleost fish correspond genetically and functionally 

to both il1 paralogues in mammals, instead of only for il1β.  

Lastly, we generated a zebrafish reporter line to visualize and quantify 

NF-κB activity, a master regulator of proinflammatory genes. We show that 

the line has potential to be used in high-throughput screens.  

Overall, this work reveals unknown features of the functional role of 

the inflammasome signaling cascade in fish and its evolution.
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Zusammenfassung 
 

Durch Entzündungsreaktionen kann ein Organismus koordiniert auf 

Infektionen und Verletzungen reagieren. Membranständige Rezeptoren 

erkennen entsprechende Stimuli und lösen den Aufbau eines Mulitprotein-

Komplexes, des Inflammasoms, aus. Spezifische Signalwege sorgen daraufhin 

für die Ausbreitung der Entzündung durch Aktivierung 

proinflammatorischer Gene. 

Idealerweise werden solche Prozesse direkt durch Live-Mikroskopie 

auf molekularer Ebene verfolgt. In dieser Arbeit wurden zwei Fischarten, 

Zebrafisch und Medaka, als Wirbeltier-Modelle für die Visualisierung von 

Inflammasom-Signalwegen in drei unterschiedlichen Ansätzen etabliert. Da 

der Aufbau des Inflammasoms durch die Ansammlung des Adaptormoleküls 

ASC vorangetrieben wird, entschieden wir uns im ersten Ansatz dazu, die 

Lokaliesierung von ASC im Zytoplasma und die Bildung von Aggregaten, 

auch Specks genannt, im Zebrafisch zu untersuchen. Wir zeigten, dass die 

Ausbildung dieser Specks zu Pyroptose, einer Form des programmierten 

Zelltods, führt. Dies ist der erste Nachweis dieses Processes im lebenden 

Organismus. Ausserdem verknüpften wir endogenes ASC mit einem 

fluoreszenten Reportermolekül in einer neuen transgenen Zebrafisch-Linie, 

welche zur Untersuchung der Inflammasom-Aktivierung in 

Infektionsmodellen verwendet werden kann.  

Im zweiten Ansatz erforschten wir das proinflammatorische Zytokin 

Interleukin-1 (il1), welches vom Inflammasom aktiviert wird. Wir 

entwickelten eine transgene Linie in Medaka, die es erlaubt, sowohl die 

Epxression als auch die Spaltung von il1 zu verfolgen. Unsere Resultate legen 

nahe, dass il1 in Fischen genetisch und funktionell beiden il1 Paralogen in 

Säugetieren entspricht, statt wie bisher geglaubt nur il1β. 

Schließlich erzeugten wir eine Reporterlinie im Zebrafisch, welche die 

Visualisierung und Quantifizierung von NF-κB, eines Regulators von 

proinflammatorischen Zytokinen, ermöglicht.  
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Insgesamt zeigte diese Arbeit bisher unbekannte, funktionelle 

Merkmale der vom Inflammasom ausgehenden Signalwege auf und gestattet 

Rückschlüsse auf deren Evolution von Fisch zum Menschen.  
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I. Introduction 

1 Inflammatory signaling in the innate immune system 

Vertebrates rely on their innate and adaptive immune systems to 

recognize and deal with threats. The innate immune system, however, always 

responds first, providing the first line of defense by being the main driver of the 

inflammatory response. The classical definition of inflammation summarizes the 

response in five characteristic macroscopic symptoms: redness, swelling, heat, 

pain and loss of function. At the cellular level, these acute inflammatory 

symptoms are the result of a complex and carefully orchestrated response 

triggered upon the detection of pathogens, noxious stimuli andor physical injury, 

its basic purpose being to combat the source and consequences of the insult 

(Newton and Dixit, 2012). The activation of inflammatory signaling cascades is 

not limited to innate immune cells such as macrophages, dendritic cells, and 

circulating leukocytes; epithelial cells, endothelial cells, and fibroblasts also 

contribute to a global inflammatory response (Peeters et al., 2015; Yazdi et al., 

2010).  

The inflammatory response is also crucial for tissue and wound repair but 

should subside once the initial insult has been dealt with, i.e. the pathogen has 

been cleared or the tissue damage has been repaired. Failure to resolve the 

inflammatory response can occur when the offending agent is not removed or as 

a result of dysregulation of inflammatory signaling cascades, leading to a chronic 

inflammatory state or autoimmune disorders (Broderick et al., 2015; Newton and 

Dixit, 2012). 

1.1 PRRs: germline-encoded sensors for pathogen and danger signals 

The ability of the innate immune system to recognize and limit threats 

relies on elements that, for the most part, are constitutively present and ready to 

be mobilized immediately upon infection. Initial recognition is based on Pattern 

Recognition Receptors (PRRs), a fixed set of germ-line encoded receptors that 
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survey the extra and intracellular environment and are responsible for immune 

activation (Mogensen, 2009). PRRs are responsible for the recognition of 

conserved structures among microbial species that indicate the presence of a 

foreign organism. These include components of the microbial cell wall, secretion 

systems and microbial nucleic acids. However, some endogenous molecules 

released from damaged cells are also recognized by PRRs. These molecules are 

released by damaged host cells and alert the body to tissue damage. Molecules 

that belong to these two categories are known as PAMPs and DAMPs, for 

Pathogen Associated Molecular Patterns and Danger Associated Molecular 

Patterns respectively (Newton and Dixit, 2012; Takeuchi and Akira, 2010). 

Although, the recognition of DAMPs implies self-reactivity by PRRs, it can be 

beneficial in the context of infection since pathogens that escape recognition by 

conserved PAMPs may nonetheless lead to cellular damage (Fig. I.1.1). Therefore, 

mounting an inflammatory response to molecules indicative of compromised 

cellular integrity is an indirect way to sense invading microbes (Kono et al., 

2014). This is probably why inflammatory responses during infection can be very 

similar to those induced by sterile stimuli (Chen and Nuñez, 2010). 

PRRs can be broadly subdivided in transmembrane receptors found in the 

plasma membrane and in endosomes, where they can survey the extracellular 

milieu. This category includes Toll-like receptors (TLRs) and C-type lectin 

receptors (CLRs). The class of PRRs that reside in the intracellular environment is 

comprises the RIG-I-like receptors (RLRs), the AIM2-like receptors (ALRs) and 

NOD-like receptors (NLRs). Sensing of PAMPs or DAMPs by PRRs results in the 

release of cytokines and chemokines as well as the upregulation of a broad range 

of molecules, including cell adhesion molecules, immunoreceptors and further 

synthesis of chemokines and cytokines themselves. One of the main activators 

driving this transcriptional response is nuclear factor-κB (NF-κB) (Lamkanfi and 

Dixit, 2014; Mogensen, 2009; Takeuchi and Akira, 2010).  
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Figure I.1.1. Innate immune recognition by PRRs sets off the inflammatory response.  
During infection or injury, endogenous intracellular danger-associated molecules (DAMPs) 
are released by dying cells and alert to damage. Conserved molecular structures from 
pathogens (PAMPs) imply a foreign threat. Both DAMPs and PAMPs are recognized by 
pattern recognition receptors (PRRs). Activation of PRRs triggers a signaling cascade that sets 
off an inflammatory response and activates the innate immune system to elicit a response. 
Inflammation should subside after the insult has been dealt with. Failure to do so can lead to 
chronic inflammation and autoinflammatory disease. Figure modified from Mogensen (2009). 
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1.2 The modular structure of NOD-like receptors  

Members of the NLR family are cytosolic immune regulatory proteins that 

share structural homology to the apoptosis-activating factor Apaf-1, the sensor 

protein of the apoptosome. Most NLRs have a tripartite modular structure 

consisting of a variable N-terminal domain; a central nucleotide-binding and 

oligomerization domain (NOD, also called NACHT domain, for NAIP, CIITA, 

HET-E and TP1, based on proteins sharing these domains) and C-terminal 

leucine-rich repeats (LRRs) that vary both in composition and number. This 

domain architecture is thought to be the key property that confers NLRs the 

ability to translate sensing into downstream signaling through intramolecular 

conformational changes. The central NOD domain contains a nucleotide binding 

domain (NBD), a helical domain (HD1) and a winged helix domain (WHD). 

NLRs function as binary molecular switches, with a monomeric “off” state in 

which ADP is bound to the NDB and allows the interaction between the WHD 

and LRR to act as a lock (Lechtenberg et al., 2014). Ligand binding leads to a 

remodeling of the protein that allows the replacement of ADP by ATP. The ATP-

bound form of the NBD represents the “on” state and results in the 

oligomerization of multiple NBD domains (Fig. I.1.2) (Chai and Shi, 2014). The 

LRRs have been traditionally considered the ligand-binding as well as 

autorepression domain. However, the precise structural mechanism of ligand 

sensing has remained elusive and other domains have been shown to carry out 

this function (Tenthorey et al., 2014). The variable N-terminal domain contains 

one of several death-fold domains and is involved in the recruitment of 

downstream effector molecules. Subfamilies within the mammalian NLRs are 

classified based on their N-terminal effector domains: NLRA or Class II 

transactivator contain an acidic transactivation domain, NLRB or neuronal 

apoptosis inhibitor proteins (NAIPs) have a baculovirus inhibitor of apoptosis 

protein (IAP) repeat (BIR), NLRCs possess a caspase activation and recruitment 

domain (CARD), and NLRPs a pyrin domain (PYD) (Barbé et al., 2014; Ting et al., 

2008). These death-fold domains recruit effector molecules via homotypic 

domain interactions (e.g., a CARD-CARD and PYD-PYD) to mediate 

downstream signaling (Chai and Shi, 2014). 
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Figure I.1.2. Principles of NLR activation.  
NOD-like receptors (NLRs) are capable of sensing a wide variety of DAMPs and PAMPs. In a 
resting state, monomeric cytoplasmic NLRs are kept in an autoinhibited inactive conformation by 
the interaction between the WHD and the LRR. Upon sensing a stimulus, the NBD exchanges 
ADP for ATP and the receptor switches to an active conformation, which can oligomerize with 
other active NLRs into heptamers. The N-terminal DFD recruits downstream signaling molecules 
that trigger the signaling cascade. Figure modified from Broderick et al. (2015). 

1.3 Activated NLRs can form inflammasomes 

Almost 15 years ago, an overexpression system was used to show for the 

first time that, in its oligomerized state, the NLR protein NLRP1 can form part of 

a high-molecular weight cytosolic complex that also contained ASC (apoptosis-

associated speck-like protein containing a CARD) and caspase-1 (Martinon et al., 

2002). This molecular complex, named the “inflammasome”, was found to be 

responsible for the processing of the proinflammatory cytokine interleukin-1β 

(IL-1β). Macrophages lacking inflammasome components are deficient in their 

ability to activate caspase-1 or secrete activated IL-1β in response to infection 

(Mariathasan et al., 2004). A second NLR, NLRP3, was later shown to be 

responsible for the activation of caspase-1 following exposure to 

lipopolysaccharide (LPS) and ATP (Mariathasan et al., 2006). Other members of 

the NLR family as well as AIM2, an ALR PRR family member, have been found 

to form inflammasomes in response to a wide variety of stimuli. In addition to 

NLRP1 and NLRP3, these include NLRP6, NLRP7, NLRP12, NLRC4 and the 

NLRB proteins (Fig. I.1.3) (Barbé et al., 2014; Broderick et al., 2015). Although 
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until recently each NLR was thought to form distinct inflammasome scaffolds, it 

has been shown that more than one NLR can be recruited to the same 

inflammasome complex (Man et al., 2014; Qu et al., 2016). Additionally, a non-

canonical caspase-11-dependent inflammasome that does not require a PRR and 

whose activation indirectly leads to IL-1β secretion has also been described 

(Kayagaki et al., 2011). 

 

 

Figure I.1.3. The assembly of inflammasomes relies on homotypic domain interactions.  
Different NLRs are activated by specific stimuli. The downstream molecules are recruited 
through DFD homotypic interactions with the N-terminal domain of the NLRs. NLRs with a PYD 
domain recruit the adaptor molecule ASC, which is composed of a PYD and a CARD domain. 
The immature form of the inflammatory caspase-1, pro-caspase-1, is then recruited via its CARD 
domain. NLRs that have an N-terminal CARD domain can recruit pro-caspase-1 directly. 
Caspase-1 is activated via proximity-induced autoproteolytic cleavage and is the main effector 
molecule of the inflammasome. Activated caspase-1 cleaves its downstream targets, including the 
proinflammatory cytokine, IL-1β, and can also cause cell death. Figure modified from Vanaja et 
al. (2015). 
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In a manner thought to be analogous to the formation of the apoptosome, 

oligomerization of NLRs represents the first nucleation step in inflammasome 

formation. Like Apaf-1 for the apoptosome, which oligomerizes into heptamers 

upon activation, the NLR protein would form the scaffold of the complex (Chai 

and Shi, 2014). Afterwards, through its PYD domain, the NLR recruits ASC to act 

as an adaptor. ASC contains both a PYD and a CARD domain, which allow it to 

interact with both the PYD-containing NLR and CARD-containing pro-caspase-1. 

In cases where the NLR has a C-terminal CARD domain instead of a PYD, pro-

caspase-1 can be recruited through direct interaction with the CARD domain. 

Once recruited to the inflammasome, pro-caspase-1 is activated and can then 

proteolytically activates a number of proteins to further spread the inflammatory 

signal in the tissue (Latz et al., 2013).  

Inflammasomes play a key role in the innate immune system. Mutations in 

sensors are behind several autoinflammatory diseases, such as familial 

Mediterranean fever (FMF) and Cryopyrin-associated periodic syndrome 

(CAPS). Inflammasomes are implicated in chronic inflammation accompanying 

diseases such as gout, atherosclerosis, Alzheimer’s disease and Type 2 Diabetes 

(Broderick et al., 2015; Guo et al., 2015); and also have a role in cancer 

progression and therapy (Kolb et al., 2014; Zitvogel et al., 2012). The wide range 

of inflammasome involvement in disease underscores the potential for 

therapeutic benefit of studying these complexes. 

1.4 Death-fold domains in detail 

As already stated, interactions between PYD and CARDs determine the 

logic of inflammasome assembly. Both domains are members of the death 

domain fold (DDF) superfamily and possess the characteristic six anti-parallel α-

helices with a hydrophobic core and an outer surface composed of charged 

residues. Variations on length and orientation of these α-helices result in different 

charged and hydrophobic surface pockets that largely determine the specificity 

of protein-protein interactions (Dorfleutner et al., 2015). PYD domains are usually 

about 90 amino acids long and are always located at the N-terminus of proteins. 

The structures of PYD domains (evident from the available PYD structures of 
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NLRP1, NLRP3, NLRP7, NLRP12 and AIM2, among others) show that two acidic 

patches formed by residues in the α2 and α3 helices and basic patches formed by 

residues in the α1 and α4 helices are conserved among PYD domains. A likely 

source of variation among PYD domains is the sequence and length of the α2- α3 

loop region (Chu et al., 2015). Because PYD domains have a high propensity for 

aggregation, NMR and X-ray crystallography structures were obtained by 

preparing the proteins at low pH, which modifies the surface charge potential 

and thus prevents complementarity-induced aggregation (Hauenstein et al., 

2015). 

 CARD domains were first described as an interaction motif between 

apoptotic caspases and their adaptor molecules (as is the case for the 

apoptosome). However, the role of CARDs in signaling has been expanded to 

include assembly of signaling complexes in inflammation and NF-κB. Many 

caspase zymogens contain a CARD in their N-terminal domains, including 

human inflammatory caspases -1, -4, and -5, and mouse inflammatory caspases -1 

and -11 (Kao et al., 2014).  

 

 

Figure I.1.4. The structure of PYD domains determine the specificity of protein 
interactions.  
ASC and NLRP3 PYD domains, here shown in ribbon diagram, are composed of 6 
antiparallel α-helices that make up a hydrophobic core with the charged residues on the outer 
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surface. Electrostatic surface representations show negative (red) and positively (blue) 
charged residues. The specificity of PYD-PYD domain interactions is determined by these 
differently charged and hydrophobic surface pockets. Figure modified from Chu et al. (2015). 

1.5 Inflammasome activation requires two signals 

Mainly from the methodology that has been used to trigger inflammasome 

formation in cell-culture studies, activation of inflammasomes is thought to be a 

two-step process that requires two signals. Signal 1 functions as the priming 

signal. It can be provided by the activation of NF-κB or by other innate immune 

receptors and was thought to be necessary for the NF-κB-mediated upregulation 

of NLRP3 and il1β. NLRP3 upregulation would influence the susceptibility to 

inflammasome activation triggers and more IL-1β would strengthen the 

inflammatory signaling (Latz et al., 2013). However, current views suggest 

priming can also happen independently of the upregulation of inflammasome 

components, for example, though post-translational modifications. So far only 

ubiquitination and phosphorylation have been investigated (Barbé et al., 2014; 

Elliott and Sutterwala, 2015). Signal 2 is considered the direct trigger of 

inflammasome assembly through the recognition of PAMPs and DAMPs 

themselves by NLRs, although other signals such as potassium efflux, generation 

of mitochondrial reactive oxygen species (ROS), cathepsin release as a result of 

lysosomal membrane disruption and calcium signaling have also been reported 

to activate the inflammasome assembly (Elliott and Sutterwala, 2015; Vanaja et 

al., 2015). Signal 1 and 2 are always delivered one after the other to cells in 

culture, so their significance in a live situation in which cells sense and integrate 

multiple signals simultaneously, is unclear.  

2 ASC: an inflammasome adaptor molecule  

In its role as an adaptor molecule, ASC is frequently considered a central 

link in inflammasome assembly. ASC was discovered using monocolonal 

antibodies developed against the TritonX-100 insoluble components of the 

promyeloleukemic cell line HL-60 after induction of apoptosis. The protein, 

described as a 22-kD novel member of the CARD-containing adaptor family, was 
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located in the cytoplasm and nucleus of unstimulated HL-60 cells. However, 

upon treatment with retinoic acid or antitumor drugs, the protein relocalized to a 

single aggregate, called a speck, in the cell. At the time, specks were thought to 

be related to apoptotic cell death (hence the name) (Masumoto et al., 1999). 

Subsequent work has revealed the central role that ASC plays in inflammasome 

signaling as a crucial mediator of the assembly of this complex (Lu and Wu, 

2014). 

2.1 ASC forms speck-like aggregates upon stimulation 

Fernandes-Alnemri et al. (2007) coined the term “pyroptosome” to 

describe the spherical ASC specks of around 2µm in diameter formed in vitro by 

THP-1 macrophages. Cells stably expressing ASC fused to a fluorescent protein 

would form specks large enough to be visualized by light microscopy. The 

assembly of the ASC pyroptosome, from visualization of the first aggregate until 

all cytoplasmic protein was recruited to the speck took less than 3 min 

(Fernandes-Alnemri et al., 2007). This study also noted that in hypotonic THP-1 

lysates, incubation at 37°C results in the spontaneous formation of specks. 

Therefore, aggregation of ASC inside a cell seems to mimic a snowball effect in 

which the entire soluble pool of ASC protein in the cytoplasm is recruited to 

single subcellular location. Indeed, when using a fluorescently tagged version of 

ASC, the switch from a weak, diffuse signal present throughout the cell, 

including the nucleus, to one single bright point in a stimulated cell is currently 

considered a read-out for inflammasome activation (Stutz et al., 2013). The 

combined use of antibodies and flow cytometry has also allowed the 

quantification of endogenous inflammasome activation in mixed cell populations 

and its activation in vivo (Sester et al., 2015). 
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Figure I.2.1. The inflammasome adaptor ASC aggregates into specks. 
THP-1 macrophages stably expressing ASC-GFP show a switch from a cytoplasmic distribution 
of ASC to a single point in the cell after stimulation with LPS (white arrowheads). The 
concomitant morphological changes visible in the bright field show that THP-1 cells undergo cell 
death after assembly of ASC speck (A). After exposure to an inflammatory stimulus, all the 
protein in the cell is recruited to the speck. Speck formation is a proxy for inflammasome 
activation. Panel A modified from Fernandes-Alnemri et al. (2007) and panel B modified from 
Sester et al. (2015). 

ASC redistribution happens in a variety of cell types in response to stimuli 

that activate inflammasomes, including LPS, infection, and viral proteins (Bryan 

et al., 2009; Fernandes-Alnemri et al., 2007; McAuley et al., 2013). Overexpression 

of NLRP3, which colocalizes with ASC specks, also leads to speck formation 

(Hornung et al., 2009). Furthermore, since transfection of ASC leads to speck 

formation in cell types such as HeLa, HEK-293, and COS cells (Cheng et al., 2010; 

Fernandes-Alnemri et al., 2007; Masumoto et al., 1999); the ability to form specks 

seems to be an innate property of ASC.  
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2.2 Structural aspects of ASC speck formation 

The bipartite nature of ASC is crucial for its function in inflammasome 

assembly. An NMR high-resolution structure of ASC obtained under acidic 

conditions showed that the PYD and CARD of ASC (from here onwards referred 

to as PYDASC and CARDASC, respectively) are structurally independent and 

connected by a 23bp flexible linker (Fig. I.2.2) (de Alba, 2009). Subsequent studies 

have built upon this structure by using site-directed mutagenesis to unravel the 

role of specific residues in the interaction surface of individual ASC proteins (Lu 

and Wu, 2014; Sahillioglu et al., 2014).  

 

 

Figure I.2.2. Structure of full-length human ASC. 
An N-terminal PYD and a C-terminal CARD joined by a flexible linker make up ASC (right 
panel). Both death-fold domains have the typical 6 α-helices structure and a variably charged 
surface as shown by an electrostatic surface representation (left panel). NMR structure was 
originally solved by de Alba, (2009) (PDB ID 2KN6). Right panel modified from Sahillioglu et 
al. (2014) and left panel from de Alba (2009). 

Homotypic interactions between PYD or CARD domains are weak and no 

KD for these interactions has been reported (Lechtenberg et al., 2014). This is 

likely the reason why in the absence of a stimulus, ASC molecules have low 

affinity for one another and the likelihood of nucleation is very low. Changes in 

the protein concentration, however, will alter the aggregation kinetics (Cheng et 

al., 2010). Only two years after its discovery, it was shown that overexpressing 

ASC results in filament-like aggregates. Both PYDASC and CARDASC also 

independently form filament-like aggregates when overexpressed separately, 

suggesting that oligomerization of the domains could play a role in speck 

formation (Masumoto et al., 2001). Two recent in-depth studies addressing 
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assembly mechanics of ASC polymers confirmed this (Cai et al., 2014; Lu et al., 

2014). Both studies showed that, after priming (as an initial required nucleation 

step), PYDASC has a very strong tendency to self-associate into long hollow 

filaments. Using cryo-EM, Lu et al. (2014) solved the structure of PYDASC 

filaments. They found that filaments have a helical symmetry with the subunits 

densely packed in a spiral, ultimately giving rise to a cylinder-like structure with 

a three-fold symmetry. Using a yeast prion assay to test the aggregation 

properties of ASC, Cai et al. (2014) found that ASC is able to induce prion 

conversion. PYDASC forms fibers that can convert inactive ASC into an active 

prion form that is both necessary and sufficient for downstream signaling. 

Mutations that abolished the prion-like activity prevented the activation of 

reconstituted inflammasomes in HEK-293 cells, but replacing the PYDASC with a 

yeast prion protein did not affect the ability of ASC to activate pro-caspase-1 (Cai 

et al., 2014). This prion-forming ability seems to be unique to the PYDASC, since 

the PYD of NLRP3 and that of other proteins are unable to induce yeast prion 

conversion. A model in which the structure of full-length ASC is superimposed 

into the filaments formed by the PYDASC domains, shows that the PYDASC 

localizes at the core of the filaments and the flexibly linked CARDASC is directed 

outwards, forming a second layer that goes around the entire filament (Fig. I.2.3) 

(Lu et al., 2014). 
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Figure I.2.3. PYDASC assembles in filament structures. 
Upper panel: PYDASC filaments form a three start helical assembly. Each strand is represented 
by red, cyan and yellow as shown in a ribbon representation. Structure of PYDASC filaments 
was solved by cryo-EM (inlay corresponds to cryo-EM image) from PYDASC filaments that 
assembled spontaneously in vitro. Lower panel: A superimposition of the full-length ASC 
(PDB ID 2KN6) on the PYDASC filament model depicts the peripheral location of the flexibly 
linked CARDASC domain from the side (left) or in a cross-section (right). Figures modified 
from Lu et al. (2014). 

2.3 ASC properties: implications for inflammasome assembly  

Inflammasome formation was initially thought to occur in a manner 

analogous to apoptosome assembly. Recently, the fact that activation of signaling 

induces a prion-like polymerization of ASC into filaments has shifted the 

common view regarding inflammasome formation from an apoptosome-based 

model to one centering on PYD and CARD filaments, where inflammasome 

assembly is ASC-dependent (Lu and Wu, 2014; Ruland, 2014).  
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Figure I.2.4. In vitro reconstitutions of the inflammasome. 
Left panels: Electron micrographs of star-shaped ternary inflammasome complex assembled in 
vitro from purified AIM2 PYD domain, full-length ASC and the His-GFP labeled CARD 
domain of caspase-1. Labeling of the ternary complex with anti-ASC gold (upper panel) or Ni-
NTA gold (lower panel) showed ASC is located at the center of the structure whereas caspase-
1 locates along the protruding star filaments. Right panel: In vitro reconstituted 
inflammasomes incubated overnight. Inlay image shows model of the filamentous sphere 
formed through the aggregation of multiple filaments. Figures modified from Lu et al. (2014) 
and Lu and Wu (2014). 

 

Inflammasome assembly deviates from a 1:1 molecular stoichiometry 

(Elliott and Sutterwala, 2015). In vitro reconstitution reactions showed that PYD 

domains of ASC can be nucleated into forming filaments with sub-stoichiometric 

amounts of the PYD domains of the receptor proteins AIM2 or NLRP3. 

Furthermore, in a reconstituted AIM2/ASC/caspase-1 complex visualized by 

EM, full-length ASC induced the formation of caspase-1 filaments, which were 

themselves overstoichiometric to ASC. Using gold labeling, it was shown that the 

receptors were located at the tips of these filament bodies, with numerous 

filaments growing out from the site of receptor nucleation in a star shaped 

pattern (Lu et al., 2014). Over time, these in vitro structures further aggregate into 

filamentous spheres, which could represent the ASC speck formed by cells in vivo 

(Fig. I.2.4) (Lu and Wu, 2014). Furthermore, the PYD domains of AIM2 and 

NLRP3 are able to convert ASC into a self-perpetuating prion through PYD-PYD 

interactions (Cai et al., 2014). Therefore, in what has been called a branching tree 
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model (Elliott and Sutterwala, 2015), receptors detect a damage, assemble into 

heptamers and induce the formation of ASC filaments in which the PYDASC acts 

as building block that forms an inner core. The outer ring of flexibly linked 

CARDs on the filament’s surface can then further nucleate filament formation of 

pro-caspase-1 (Hauenstein et al., 2015; Ruland, 2014).  

2.4 Supramolecular organizing centers 

Structural studies give insight into the molecular basis of assembly of 

high-order signaling complexes in cells (Lu and Wu, 2014). It has become clear in 

recent years that these signaling complexes, called supramolecular organizing 

centers (SMOCs), provide a phenomenological explanation for the punctate 

morphology that is often observed for protein regulators in innate immunity. 

supramolecular organizing centers do not constitute random aggregates but 

instead, as has been seen in the case of ASC filaments, have a defined molecular 

basis of assembly (Fig. I.2.5) (Kagan et al., 2014; Wu, 2013). What are the 

properties of these signaling systems? First: effector enzymes drive the allosteric 

changes required for their activation. Second: immense signal amplification that 

enables a response threshold to be reached. In the case of the inflammasome, this 

ensures that once the cascade is activated, almost all pro-caspase-1 molecules in 

the cell are processed, which represents the maximum level of activation. Third: 

the modularity of the system, where numerous upstream stimuli converge in 

common downstream module. Fourth: supramolecular organizing centers may 

provide spatial regulation through transient compartmentalization of the 

complexes which, due to their size, do not easily diffuse (Kagan et al., 2014; Wu, 

2013).  
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Figure I.2.5. Nucleated polymerization driven assembly of supramolecular organizing centers.  
Left panel: Supramolecular organizing centers can be assembled via a nucleated polymerization 
mechanism in which the oligomer of a receptor (NLR), formed upon stimulation, constitutes the 
nucleus to which the adaptor (ASC) can bind and use as a seed for a filamentous polymerization. 
Right panel: Simulated response curves as a function of dosage (up) or time (down) for processes 
highly or lowly cooperative. In highly cooperative processes the transition between an “off” and 
an “on” state shifts abruptly upon overcoming a certain concentration threshold. Time-wise, 
assembly of cooperative processes would proceed with slow kinetics at first, as seeds assemble. A 
time delay could help overcome transient and stochastic variations in the stimuli, thus 
functioning as a noise filter. Right panel modified from Kagan et al. (2014) and left panel from Wu 
(2013). 

 

An obvious issue that arises from the formation of stable and large 

aggregates such as the inflammasome is how the cell manages to disassemble 

them. However, whether a mechanism for this purpose exists is unknown. From 

a biophysics standpoint, supramolecular organizing centers should exhibit slow 

dissociation kinetics, making a spontaneous disassembly highly unlikely. 

Furthermore, specks may be too large to be efficiently degraded by standard 

cellular protein degradation machinery (Kagan et al., 2014; Wu, 2013), although 

they could be delivered to autophagosomes and destroyed there after 

ubiquitination (Shi et al., 2012). However, inflammasomes can also persist as 

stable aggregates for a long time (discussed below).  
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2.5 Regulation of inflammasome assembly via ASC post-translational 
modifications 

How is the assembly of inflammasomes regulated? Given that ASC plays a 

central role in inflammasome assembly, post-translational modifications that 

regulate its aggregation can promote or inhibit inflammasome activation (Man 

and Kanneganti, 2015a). Thus far, only ubiquitination and phosphorylation have 

been investigated (Elliott and Sutterwala, 2015). As mentioned previously, 

polyubiquitination of ASC can target the inflammasome to autophagosomes (Shi 

et al., 2012). On the other hand, linear ubiquitination of ASC by the linear 

ubiquitination assembly complex (LUBAC) is a requirement for NLRP3 

inflammasome assembly (Rodgers et al., 2014). Phosphorylation of ASC as an 

indirect consequence of Syk and Jnk kinase activation is a checkpoint for 

inflammasome activation, since treatment with inhibitors of either kinase 

abolished speck formation. Phosphorylation of specific sites likely functions as a 

licensing step, with Y144 a critical phosphorylation site for speck formation. 

However, the kinase that is directly responsible has not been identified (Hara et 

al., 2013). The fact that ASC is modified by several post-translational 

modifications suggests that different cellular processes target this protein as 

prerequisite for assembly (Man and Kanneganti, 2015a).  

3 Pyroptosis  

Cells die. This can happen accidentally, for example, after a mechanical, 

physical or chemical insult causes cell destruction. However, cell death can also 

be “regulated” when it is engaged by a predestined molecular mechanism. Types 

of regulated cell death can be separated according to the immune response they 

elicit, if the cell’s membrane integrity is maintained, as in apoptosis, the cell 

death is “immunologically silent”. On the other hand, if membrane integrity is 

compromised, the cell death acts as an inflammatory activator (Stephenson et al., 

2015). Another distinction is that different regulated cell death programs require 

the activation of different signaling pathways and specific subsets of caspases, 

cysteine proteases that cleave after aspartic acid residues. Caspases are expressed 
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as zymogens in many tissues and organs both by immune and non-immune cells. 

They can be classified as apoptotic and inflammatory caspases. The first include 

initiator caspases -2, -8, -9 and -10, which receive the apoptotic signal and activate 

the downstream effector caspases -3, -6 and -7, which then cleave target proteins. 

Inflammatory caspases are involved in the activation of inflammasomes and in 

the induction of a lytic cell death called pyroptosis. These include caspase-1, -4 

and -5 (humans), and -11 (mice) (Man and Kanneganti, 2015b). In spite of the 

distinction between apoptotic and inflammatory caspases, there is increasing 

evidence of cross-talk between pathways leading to the activation of caspases in 

either group (Aachoui et al., 2013). 

3.1 Caspase-1 is activated by the inflammasome 

Caspase-1 was originally termed interleukin-converting enzyme (ICE) 

based on its ability to cleave pro-IL-1β into its mature secreted form. The 

zymogen of caspase-1, pro-caspase-1, contains an N-terminal CARD domain that 

gets cleaved off during activation. The C-terminal domain also undergoes 

cleavage to yield two subunits, p20 and p10, which heterodimerize to form active 

caspase-1 (Thornberry et al., 1992). As has been reported for apoptotic caspases, 

cleavage may lead to the stabilization of the active site, which is essential for the 

processing of pro-IL-1β (Boucher et al., 2014). As mentioned previously, 

activation of caspase-1 occurs after its recruitment to the inflammasome. In 

macrophages, discrete foci of caspase-1 colocalize with ASC and NLRP3 specks 

(Bryan et al., 2009) and IL-1β can be recruited to the ASC speck in a caspase-1-

dependent manner that is unaffected by addition of a caspase-1 inhibitor (Broz et 

al., 2010b). This would suggest that IL-1β is processed by caspase-1 within the 

ASC focus (Miao et al., 2011). Similar to PYDASC, Caspase-1 CARD forms 

filaments in vitro. A recent study solved the structure of these Caspase-1 CARD 

filaments by cryo-EM and showed that the CARDASC nucleates the assembly of 

these filaments (Lu et al., 2016). As pro-caspase-1 clusters in this cylindrical 

arrangement, they are thought to activate and heterodimerize. Whether these 

structures are also formed in vivo is unclear (Hauenstein et al., 2015).  
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3.2 Inflammasome activation leads to pyroptosis though caspase-1  

One of the most prominent physiological functions of caspase-1 that is 

unrelated to the cleavage of pro-IL-1β is pyroptosis. The name comes from the 

Greek word pyro, fire, to denote a “screaming, alarm-ringing proinflammatory” 

type of regulated cell death (Cookson and Brennan, 2001). Pyroptosis depends on 

the activation of inflammasomes (either the canonical caspase-1-dependant or the 

non-canonical caspase-11-dependent inflammasome) and is independent of 

apoptotic caspases. Although targets downstream of caspase-1 and -11 driving 

pyroptosis had remained elusive, two recent studies independently found that 

Gasdermin D is a pro-pyroptotic substrate of caspase-1 or -11 whose cleavage is 

sufficient to drive pyroptosis as a response to inflammasome activation 

(Kayagaki et al., 2015; Shi et al., 2015). The morphological features of pyroptosis 

include loss of plasma membrane integrity, due to which the cell permeable to 

small molecules, water and ions. This influx of molecules causes the cell to swell, 

rupturing the membrane and leading to cell lysis (Jorgensen and Miao, 2015). 

Mitochondria of pyroptotic cells also lose membrane integrity and release their 

contents (Man and Kanneganti, 2015b).  

Speck assembly induces pyroptosis in macrophages in a caspase-1-

dependent manner within seconds after speck formation (Fernandes-Alnemri et 

al., 2007). Caspase-1 can also trigger pyroptosis independently of both ASC and 

autoproteolytic cleavage of the p20 and p10 subunits of the enzyme. The catalytic 

activity of the enzyme, though, was shown to be indispensable for pyroptosis 

and cells expressing a catalytically inactive caspase-1 were resistant to this type 

of cell death. This suggests that two distinct activation states of caspase-1 are 

behind IL-1β processing and pyroptotic cell death (Broz et al., 2010a). In the 

absence of caspase-1, inflammasome stimuli do not lead to pyroptosis and cells 

instead undergo apoptosis much more slowly (Pierini et al., 2012; Sagulenko et 

al., 2013). In this case, apoptotic death occurs in an ASC-dependent manner via 

an unusual heterotypic PYD-DED domain interaction in which caspase-8 DED 

filaments assemble as an extension to the PYDASC filaments in the direction of 

filament growth (Vajjhala et al., 2015). It is possible that the recruitment of 
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caspase-8 to the ASC speck represents a back up mechanism in case the pathogen 

manages to somehow obstruct pyroptosis (Boucher et al., 2014). 

3.3 Pyroptosis as a defense mechanism  

The existence of pyroptosis was first suggested by experiments in which 

macrophages infected with Shigella flexneri underwent a form of death similar to 

apoptosis (Zychlinsky et al., 1992), which was later also observed upon infection 

with Salmonella enterica serovar Typhimurium (S. Typhimurium) (Boucher et al., 

2014). Subsequent studies showing mice deficient in the inflammatory caspases 

that trigger pyroptosis are susceptible to intracellular bacterial pathogens that 

induce inflammasome formation, indicated that pyroptosis is an effective 

mechanism to deal with intracellular pathogens (Jorgensen and Miao, 2015), even 

in the absence of IL-1β (Miao et al., 2010). How does a pyroptotic cell contribute 

to the host response against pathogens? First, because the intracellular contents 

are released, intracellular pathogens are deprived of an environment in which 

they can survive and reproduce, exposing them to extracellular defenses and 

making them susceptible to engulfment by a secondary phagocyte, like a 

neutrophil (Fig. I.3.1). The observation that neutrophils activate caspase-1 and 

release IL-1β, but do not undergo concomitant pyroptosis upon various 

inflammatory stimuli supports this notion (Chen et al., 2014). Second, the 

released intracellular contents contain DAMPs such as ATP and IL-1α that 

activate an inflammatory response in the surrounding tissue. Lastly, other 

intracellular components released during pyroptotic cell death have direct anti-

microbial activity (Stephenson et al., 2015). In vivo, it is likely that inflammasome-

dependent cell death and cytokine production work together to promote 

microbial clearance, although the individual contributions of each probably differ 

depending on the pathogen (Aachoui et al., 2013). 
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Figure I.3.1. Pyroptosis can aid in the clearance of intracellular pathogens.  
After a pathogenic microbe is engulfed by a macrophage (1), if it evades detection (2a) it can 
replicate inside the host cell (3a), eventually leading to its release in greater numbers. Instead, 
pathogen recognition by the inflammasome (2b) will trigger a pyroptotic response and the 
pathogen will be released to the extracellular space (3b). Released bacteria lose their replicative 
niche and are exposed to the additional clearance mechanisms including clearance by 
neutrophils, which do not undergo pyroptotic cell death (4b). Figure modified from Miao et al. 
(2011) and Broderick et al. (2015). 

3.4 Extracellular specks spread inflammation 

It was recently reported that ASC specks persist can in vivo during 

Pseudomonas aeruginosa infection, in chronic lung inflammation and in serum of 

patients with active CAPS (Baroja-Mazo et al., 2014; Franklin et al., 2014). 

Furthermore, antibodies against ASC were found in patients with autoimmune 
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diseases (Franklin et al., 2014). Rather than this being a consequence of an active 

secretion mechanism, inflammasomes (or specks) are released passively together 

with the rest of the intracellular contents during pyroptosis (Broderick and 

Hoffman, 2014) 

 

 

Figure I.3.2. Specks released after pyroptosis can spread inflammation. 
Upon activation of the inflammasome (1), specks recruit all cytoplasmic ASC to a single speck, 
which leads to IL-1β release (2) and can also cause pyroptotic cell death (3). After pyroptosis, the 
cell’s intracellular contents, including unprocessed caspase-1 and IL-1β, are released together 
with the ASC speck (4), which continues to activate the former two (5). Extracellular specks can 
be ingested by phagocytes (6) and, in the long term, cause phagolysosomal damage that leads to 
their release into the cytoplasm and the recruitment of the host cell’s soluble ASC (7). Figure 
modified from Broderick et al. (2015) 

 

Specks in the extracellular environment continue to activate pro-caspase-1 

and pro-IL-1β. The engulfment of these extracellular specks by macrophages 
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results in inflammasome activation in the recipient cell (Franklin et al., 2014). 

This suggests that the effects of initial inflammasome activation might have long-

lasting effects due to resistance to extracellular protease-mediated degradation 

(Broderick and Hoffman, 2014), moreover, it indicates that inflammasomes can 

function as endogenous danger signal that could be accumulated in sites of tissue 

damage, leading to persistent inflammation (Broderick et al., 2015). 

3.5 Inflammasome activation in non-myeloid cells 

Most progress in understanding inflammasome function has been made in 

cells of the innate immune system. However, cell types other than immune cells 

can also activate the inflammasome, release IL-1β and undergo pyroptotic cell 

death. The need for an innate immune surveillance in these cells becomes evident 

when considering that certain cell types, like epithelial cells, are located at 

interfaces between the body and the environment and are therefore directly 

exposed to threats (Yazdi et al., 2010). Keratinocytes activate the inflammasome 

as a response to UVB irradiation (Feldmeyer et al., 2007), contact hypersensitivity 

(eczema) (Watanabe et al., 2007), and Human papillomavirus (HPV) infection 

(Reinholz et al., 2013). Infected intestinal epithelial cells are extruded from the 

gut epithelium likely as a mechanism to prevent enteric pathogens from crossing 

the epithelial barrier. Although caspase-1 activation is involved in this process, 

the fact that intestinal epithelial cells dislodge from the epithelium without losing 

plasma membrane integrity means the process might not be entirely analogous to 

pyroptosis in macrophages (Sellin et al., 2015). Other epithelial tissues that have 

been reported to secrete IL-1β in response to inflammatory stimuli include 

airway epithelial cells lining the respiratory tract, glomerular and tubular 

epithelial cells in the kidney and genital epithelia such as cervical and prostate 

epithelial cells (Peeters et al., 2015). Hematopoietic progenitor cells also activate 

the inflammasome and pyroptosis in response to stress induced by 

chemotherapy or viral infection, a response that led to cytopenia and 

immunosuppression (Masters et al., 2012).  
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4 Zebrafish as a model to study the inflammasome 

Most knowledge of the inflammasome comes from studies in human cell 

lines and mice, and knowledge of the role the inflammasome in innate immunity 

of other vertebrate species is limited. However, the increasing number of 

available genome sequences has greatly increased the information on the 

repertoire of innate immune genes in many organisms (Bryant and Monie, 2012). 

Fish are a link to early vertebrate evolution and important models in comparative 

immunology, whose study improve our understanding of fish immunology as 

well as the evolution of the immune system (Zhu et al., 2013). In particular, 

zebrafish (Danio rerio) has emerged as a genetically and optically accessible in 

vivo model organism for diseases and drug screening (Renshaw and Trede, 2012; 

Torraca et al., 2014; van der Vaart et al., 2012), where evolutionary and functional 

aspects of the inflammasome can be studied (Angosto and Mulero, 2014).  

4.1 The NLRs family is expanded in teleost fish 

The number of NLRs encoded in the genomes of animal species varies 

considerably. There are around 22 NLRs in humans and 34 in mouse (Bryant and 

Monie, 2012; Ting et al., 2008), whereas the genome of some early diverging 

metazoans like the sea urchin, contain a repertoire of over 200 NLRs (Rast et al., 

2006). In teleost fish, NLRs seems to have undergone an expansion into several 

hundreds of predicted genes. They posses possible orthologues for both the 

NLRC and NLRP subfamilies, but also have an additional unique group of NLRs 

(Bryant and Monie, 2012). The N-terminus of the NLR teleost proteins contains a 

range of effector domains (including PYD domains, but also novel NLR effector 

domains like B30.2 and fish-specific domains), suggesting that the downstream 

signaling network is diverse (Bryant and Monie, 2012). Moreover, NLR 

sequences identified in fish species group mostly on species-specific branches 

indicating further species-specific expansions of NLR subfamilies (Stein et al., 

2007). The zebrafish genome contains over 350 NLRs, however, it lacks clear 
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orthologues of some of the best characterized inflammasome-forming NLRs in 

mammals, like NLRP1, NLRP3 and NLRC4 (Hansen et al., 2011; Howe et al., 

2016; Stein et al., 2007). Overall, the variation observed in range and numbers of 

NLRs across species underscores that these sensor genes of the innate immune 

system are under strong evolutionary pressure. The divergence may be reflective 

of the types of threats commonly faced by each species (Bryant and Monie, 2012).  

4.2 ASC might have a functional orthologue in zebrafish 

Teleost fish contain asc genes that in some cases seem to correspond to 

functional orthologues (Hansen et al., 2011). The asc gene has been cloned and 

characterized to some extent in the Japanese flounder (Paralichthys olivaceus) (Li et 

al., 2016), the mandarin fish (Siniperca chuatsi) (Sun et al., 2008), and in zebrafish 

(Masumoto et al., 2003). In the last two, ASC fused to a fluorescent protein 

transiently expressed in mammalian cells in culture appeared to form specks 

(Masumoto et al., 2003; Sun et al., 2008). Masumoto et al. (2003) also identified a 

zebrafish homologue of caspase-1 (caspy, currently named caspa). Although Caspa 

has an N-terminal PYD domain instead of a CARD, when co-transfected with 

zebrafish ASC in mammalian cells the two proteins colocalize in a single speck. 

Furthermore, the expression of Caspa induces cell death in mammalian cells, 

which is enhanced by enforced zebrafish ASC oligomerization (Fig. I.4.1).  

 

 

Figure I.4.1. The zebrafish ASC orthologue forms specks in mammalian cells.  
Constructs for expression of zebrafish ASC fused to DsRed and Caspa fused to GFP were 
transfected in COS-7 cells that were then fixed after 24h and stained with DAPI. DsRed-ASC 
and GFP-Caspa colocalize in a single speck. Figure from Masumoto et al. (2003). 

 

In zebrafish larvae, asc and caspa are expressed in pharyngeal arches. 

Knockdown of caspa is associated with a defective formation of the cartilaginous 
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pharyngeal skeleton (Masumoto et al., 2003). Overall, the study suggested that 

the interaction between these two inflammasome components is conserved in 

zebrafish. The role of caspase-1 homologues in fish in IL-1 maturation is 

discussed below. A summary of the number of inflammasome components 

identified in humans, mouse and zebrafish can be found in Table I.4.1. 

 

Table I.4.1. Number and domain structure of inflammasome components in human, mouse 
and zebrafish.  
Summary of nlr, asc and caspase-1 homologous genes in human, mouse and zebrafish including 
number of genes and domain composition. NLR subfamily nomenclature is based on Ting et al.  
(2008) although some domain compositions were simplified. The single member of the NLRX1 
family was excluded. Its N-terminal domain shows no strong homology to that of any other NLR 
subfamily. In the case of zebrafish only genes annotated in ENSEMBL are included except for the 
estimation of total nlr gene number, which is based on Howe et al. (2016). Abbreviations: AD, 
acid domain; BIR, baculovirus inhibitor of apoptosis protein repeat; NOD, nucleotide 
oligomerization domain. 

Organism\ Gene nlr asc caspase-1 

Human  

(Homo sapiens) 

22 

NLRA: AD-NOD-LRR (1) 

NLRB: BIR-NOD-LRR (1) 

NLRC: CARD-NOD-LRR (5) 

NLRP: PYD-NOD-LRR (14) 

1  

PYD-CARD 

1 

CARD-Casp 

Mouse 

(Mus musculus) 

34 1  

PYD-CARD 

1 

CARD-Casp 

Zebrafish  

(Danio rerio) 

>350 1  

PYD-CARD 

2 

Caspa:PYD-Casp 

Caspb:PYD-Casp 

 

4.3 Inflammasome signaling in fish 

There is some evidence that inflammasome activators lead to an increase 

in caspase-1-like activity in fish. Caspase-1 is activated in sea bream macrophage 

cultures in response to bacterial infection and a triggered cell death that was 

abolished by treatment with a pan-caspase inhibitor (Angosto et al., 2012). In 

zebrafish leukocytes, caspase-1-like activity was detected after F. noatunensis 

infection and treatment with caspase-1 inhibitor prevented the cleavage and 

release of IL-1 (Vojtech et al., 2012), whereas treatment with a caspase inhibitor 
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diminished IL-1 activation in response to UVB irradiation and sterile injury 

(Banerjee and Leptin, 2014; Ogryzko et al., 2014b). Macrophages were also seen to 

activate caspa expression in response to viral infection (Varela et al., 2014) and 

caspa knockdown partly rescued the mortality of a L. monocytogenes infection in 

zebrafish larvae (Vincent et al., 2015). Overall, although specific sensor molecules 

have not been identified, the activation of caspase-1 as an inflammatory response 

seems to be conserved in fish.  

5 Interleukin-1 signaling 

The IL-1 family of cytokines in human includes 11 genes, all of which are 

major mediators of innate immune reactions and probably arose from the 

duplication of a common ancestral gene (Sims and Smith, 2010). Two of its 

members, Interleukin-1α and β (IL-1α and IL-1β) were the first interleukins 

identified. Because they are sensed by virtually all cell types, these cytokines are 

central mediators of innate immunity and inflammation and are involved 

autoinflammatory, infectious and degenerative diseases (Garlanda et al., 2013b; 

Van de Veerdonk and Netea, 2013).  

5.1 IL-1α: a second proinflammatory member of the IL-1 family 

Il1α and Il1β are encoded by two genes located adjacent to one another in 

the human genome. Although they share only 26% amino acid sequence, IL-1α 

and IL-1β have similar biological properties, mainly because they signal through 

the same IL-1 receptor (IL-1R) cell surface receptor complex, and elicit the same 

downstream signaling events. However, despite engaging the same receptor and 

signaling pathways, these cytokines are not redundant, their differences mostly 

due to varying localization, expression and release mechanisms in different cell 

types (Afonina et al., 2015). Both IL-1α and IL-1β are synthesized as 31kDa 

precursor pro-proteins, with cleavable N-terminal pro-domains of approximately 

100 amino acid residues, and lack a classical signal peptide (Sims and Smith, 

2010). IL-1α expression is widespread, being constitutively present in all 

epithelial cells, including the entire gastrointestinal tract, thymic epithelium, 
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lung, liver, kidney, keratinocytes, endothelial cells and astrocytes. In contrast, IL-

1β is produced in hematopoietic cells like blood monocytes, tissue macrophages, 

skin dendritic cells and microglia. It is strongly inducible and expressed mostly 

in response to inflammatory stimuli such as TLR activation, activated 

complement components and other cytokines (including IL-1 itself) (Garlanda et 

al., 2013a; Joosten et al., 2013). 

5.2 The different processing of IL-1α and IL-1β  

Since IL-1β cannot bind to its receptor in its immature form, the cleavage 

of pro-IL-1β downstream of inflammasome assembly determines the activity of 

the molecule. On the other hand, IL-1α is active in its unprocessed form, but 

cleavage strongly enhances its binding receptor affinity (Afonina et al., 2015). 

After caspase-1 cleavage into a 17kDa processed form, IL-1β is selectively 

released from cells via an active secretion mechanism for which more than one 

pathway is available, including exocytosis by secretory lysozymes, microvesicle 

shedding from the plasma membrane or release of multivesicular bodies 

containing exosomes (Joosten et al., 2013). The mechanism varies depending on 

cell type, culture conditions and stimulus applied (Carta et al., 2013). In the case 

of IL-1α, because pro-IL-1α is constitutively present in cells, it can act as an alarm 

signal as it is passively released during a lytic cell death (Carta et al., 2013; Kim et 

al., 2013). Pyroptosis leads to a strong inflammatory response and the infiltration 

of immune cells because of the release of both, IL-1β and pro-IL-1α (Aachoui et 

al., 2013; Stephenson et al., 2015). Pro-IL-1α is directly cleaved into its 18kDa 

mature form in an inflammasome dependent or independent manner by 

calpains, a family of Ca2+-dependent proteases activated downstream of the 

inflammasome (Rider et al., 2013). Strong inducers of Ca2+ influx, like the Ca2+ 

ionophore ionomycin, lead to inflammasome-independent cleavage and release 

of IL-1α, whereas NLRP3 inflammasome activators induced cleavage and release 

of both IL-1α and IL-1β in an inflammasome-dependent manner in bone marrow-

derived cells (Fig. I.5.1). Both interleukins were actively released with similar 

kinetics prior to cell death (Groß et al., 2012).  
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Figure I.5.1. IL-1α can be secreted by inflammasome-dependent or independent mechanisms. 
IL-1β cleavage takes place downstream of inflammasome activation and is actively released in its 
mature form. Inflammasome-dependent IL-1α cleavage takes place when calpain proteases 
responsible for it become activated as a consequence of inflammasome signaling. Ca2+ influx 
activates calpains and leads to inflammasome-independent maturation and secretion of IL-1α. 
Also depicted is the binding to IL-1 receptor (IL-1R). IL-1α, in its processed and unprocessed form 
can act as ligand, whereas only the mature IL-1β can bind the receptor. Binding to the IL-1R leads 
to the activation of NF-κB signaling. Figure modified from Groß et al. (2012).  

Binding of both IL-1α and IL-1β to the ubiquitously expressed receptor, 

type I IL-1 receptor (IL-1R), results in activation of the NF-κB pathway, which 

drives expression of proinflammatory cytokine genes, including the il1 genes 
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themselves. Therefore, IL-1 signaling serves as a positive feedback loop that 

amplifies the inflammatory response (Joosten et al., 2013). The different 

properties of IL-1α and IL-1β are listed in Table I.5.1.  

Table I.5.1. Functional characteristics of mammalian IL-1α and IL-1β. 
  

 Property IL-1β IL-1α 

Sources 

Blood monocytes, tissue 

macrophages, skin DCs and 

microglia  

Epithelial cells, primary cells, 

endothelial cells and astrocytes  

Expression Inducible Constitutive 

Precursor Inactive Active 

Mature form Active Active 

Cleaved by  Caspase-1 Calpain-like proteases 

Signal peptide  Absent Absent 

Receptor IL-1R IL-1R 

 

5.3 IL-1 conservation in teleost fish 

Throughout vertebrate evolution, there have been several expansions of 

the IL-1 family members. One of them is thought to have resulted in the 

divergence of Il1α and Il1β (Ogryzko et al., 2014b). Although an il1 gene has been 

cloned from many species of teleost fish, including salmonids (salmon and trout), 

cyprinids (carp and zebrafish), perciforms (sea bream, sea bass, nile tilapia) and 

tetraodontiform (pufferfish) (Secombes et al., 2011), there is no evidence that 

there are any orthologues in fish corresponding to this expansion of the il1 locus, 

which took place roughly at the same time as mammals emerged (Ogryzko et al., 

2014b). Some species of teleost fish contain more than one il1 gene, in some cases 

due to genome duplication events in particular lineages and in others due to local 

gene duplications (Husain et al., 2012). Although il1 genes identified in fish have 

been designated specifically as il1β orthologues, the difference between IL-1 

protein sequences in fish and tetrapods is quite high, with a maximum of 30% 
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shared identity and different exon organization. Therefore, it is difficult to 

determine which mammalian il1 gene teleost IL-1 are closest to (Ogryzko et al., 

2014b). Furthermore, the caspase-1 cleavage site located after an aspartic acid 

residue in exon 5 in mammalian pro-IL-1β is absent in fish IL-1 (Bird et al., 2002). 

In spite of the differences, IL-1 seems to have a similar role in teleost 

innate immunity as its mammalian homologues. In zebrafish larvae il1 

expression is induced after UVB irradiation (Banerjee and Leptin, 2014) and in 

leukocytes following sterile injury (Ogryzko et al., 2014a). Furthermore, a 

zebrafish transgenic il1:GFP reporter showed both constitutive expression in 

epithelial cells and a strong induction of il1 following bacterial infection. This 

increase in IL-1 signaling was required for recruitment of neutrophils (Nguyen-

Chi et al., 2014). The il1 gene is also strongly inducible in trout spleen of infected 

adult trout (Secombes et al., 2011), and in head kidney macrophages of after 

phytohaemagglutinin (PHA) treatment (Husain et al., 2012), indicating the 

cytokine’s role as a prominent proinflammatory molecule is conserved. 

5.4 Cleavage of fish IL-1  

 The literature regarding cleavage of IL-1β in fish is inconsistent, with 

studies in different species coming to different conclusions. Sea bream 

macrophages infected ex vivo with S. Typhimurium, released an 18 kDa mature 

form of this species’ pro-IL-1β, which was unaffected by treatment with Caspase-

1 inhibitors. However, the inhibitors did prevent sea bream macrophage cell 

death after S. Typhimurium infection. Therefore, although caspase-1 is involved 

in the inflammatory response to infection in this model, it is not required for the 

activation of pro-IL-1β (Angosto et al., 2012). In zebrafish, primary leukocytes 

were also shown to secrete a processed form of IL-1β in a partly caspase 

inhibitor-sensitive manner after infection with Francisella noatunensis. 

Coexpression of Caspa and a second zebrafish homologue of caspase-1, Caspb, 

with zebrafish IL-1β in HEK293 cells resulted in cleavage of the latter in two 

aspartic acid sites, which were validated by mutation analysis (Vojtech et al., 

2012). Direct cleavage of IL-1 by caspase-1 was also shown in vitro for sea bass, 

where caspase-1 was able to cleave IL-1β after it underwent autoproteolytic 
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cleavage during incubation of the two recombinant proteins (Reis et al., 2012), 

although the result could be an artifact of the in vitro system used for the 

experiments (Ogryzko et al., 2014b). Some evidence for cleavage had also been 

obtained for carp (Mathew et al., 2002) and trout (Hong et al., 2004) by using 

antibodies, although in both cases the protease behind the cleavage was not 

investigated. A summary of these studies can be found in Table I.5.2. 

A general conclusion regarding the conservation of IL-1 cleavage by 

caspase-1 in fish cannot be reached due the lack of rigorous in vivo analyses. 

However, a consistent observation across fish species is that the cytokine is 

inducible and proinflammatory, which suggests that IL-1’s role in inflammation 

is conserved. Therefore, it is possible that the association between caspase-1 

activation and IL-1 developed later in evolution, as a function coopted to act 

downstream of inflammasomes (Denes et al., 2012; Ogryzko et al., 2014b) 

 

Table I.5.2. Summary of evidence for IL-1 cleavage in teleost fish.  
 

Organism Finding Reference 

Carp  
(Cyprinus carpio, 
Cypriniformes) 

Processed IL-1 is detected in supernatants of carp 
leukocytes after stimulation with PHA. 

(Mathew et al., 
2002) 

Rainbow trout 
(Oncorhynchus 
mykiss, 
Salmoniformes) 

Processed IL-1 is detected in supernatants of a trout 
macrophage cell line, independently of LPS stimulation. 
 

(Hong et al., 2004) 

Sea bream 
(Sparus aurata, 
Perciformes) 

Isolated sea bream leukocytes release mature IL-1 in 
response to S. Typhimurium but not in response to 
inflammasome activators. (Angosto et al., 

2012) Pharmacological inhibition of sea bream caspase-1 did 
not prevent IL-1 processing, but prevented cell death.  

Ectopically expressed caspase-1 did not cleave IL-1. 
Sea bass 
(Dicentrarchus 
labrax, 
Perciformes) 

Sea bass IL-1 is cleaved by caspase-1 in vitro after 4h of 
incubation of the two recombinant proteins. 
Sea bass caspase-1 also cleaves recombinant human pro-
IL-1 in the same experimental setup. 

(Reis et al., 2012) 

Zebrafish  
(Danio rerio, 
Cypriniformes) 

Processed IL-1 is detected in supernatants of isolated 
zebrafish leukocytes in a caspase-dependent manner 
following Francisella noatunensis injection. 
IL-1 aspartic acid cleavage sites following coexpression 
with Caspa and Caspb in HEK293 cells were identified 
and confirmed via mutational analysis. 

(Vojtech et al., 
2012) 
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6 Nuclear factor-κB (NF-κB) signaling 

The NF-κB transcription factor signaling cascade has long been considered 

a prototypical proinflammatory pathway because it is activated by 

proinflammatory cytokines (IL-1 included) and downstream of PRRs (Lawrence, 

2009). However, NF-κB is also involved in the regulation of many other cellular 

and developmental functions including growth, differentiation and apoptosis 

through the activation of hundreds of genes (Gilmore and Wolenski, 2012). NF-

κB activity must therefore be tightly regulated, and its inappropriate activation is 

linked to autoimmunity, chronic inflammation and cancer (Hoesel and Schmid, 

2013; Rinkenbaugh and Baldwin, 2016).  

6.1 The core NF-κB pathway  

The NF-κB transcription factor is a dimer composed of two members of 

the ubiquitously expressed NF-κB/Rel protein family, all of which share a highly 

conserved Rel homology region (RHR), a DNA-binding domain that enables 

these proteins to homo and heterodimerize. In unstimulated cells, NF-κB, in one 

of its dimeric forms, is sequestered in the cytoplasm through an interaction with 

the IκB inhibitory protein, whose binding of NF-κB masks the latter’s nuclear 

localization signal (NLS). As long as NF-κB remains in the cytoplasm it cannot 

activate its targets. Upon activation by a physiological signal, the IκB kinase 

(IKK) phosphorylates IκB, which targets IκB for proteasomal degradation. The 

released NF-κB translocates to the nucleus, and activates its targets by direct 

DNA binding to its specific sites. As is the case for dimeric NF-κB transcription 

factor, multiple genes can take the role of IκB and IKK (Napetschnig and Wu, 

2013). 

6.2 Conservation of NF-κB pathway  
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The core NF-κB pathway is conserved in all vertebrates. In mammals there 

are five NF-κB transcription factors, seven IκB-like inhibitors, and four IKKs 

whereas zebrafish contains five NF-κB family members, five IκB-like inhibitors, 

and four IKKs (Gilmore and Wolenski, 2012), some of which have been cloned 

and functionally characterized (Correa et al., 2005; 2004). Aside from its 

conserved role in innate immune signaling (van der Vaart et al., 2012) roles for 

NF-κB in zebrafish have been identified in notochord development (Correa et al., 

2004), cell cycle coordination during gastrulation (Liu et al., 2009), epidermal 

differentiation (Fukazawa et al., 2010), gonad formation and sex determination 

(Pradhan et al., 2012).  

6.3 NF-κB binding sites determine downstream targets  

One major source of complexity in the NF-κB pathway are κB sites, 9 to 11 

bp long DNA binding sites to which the NF-κB dimers bind. Although a κB 

consensus sequence has been found, it is highly degenerate and several κB sites 

that strongly deviate from this consensus are still able to attract certain NF-κB 

dimer combinations with high affinity. However, there are no clear correlations 

between specific dimer combinations and κB sequences in target genes and while 

some genes require specific combinations of NF-κB proteins for activation, others 

are able to recruit all NF-κB proteins without apparent specificity. An additional 

source of complexity arises from the fact that dimers can be exchanged at a given 

promoter or enhancer site over time (Natoli, 2006). Recently, Siggers et al. (2012) 

carried out a comprehensive analysis of DNA binding by NF-κB dimers from 

mouse and human to discover these dimer-specific differences and identified 

lower affinity, new non-traditional sites as well as high affinity ones. 

Furthermore, the authors provided a database and search tool to analyze 

potential κB sites and to predict the affinity of specific dimer combinations 

(Siggers et al., 2012). 

6.4 Visualizing and quantifying NF-κB activity via reporters 

Given the importance of the NF-κB pathway, there has been great interest 
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in establishing reporters that allow the tracking of activation via imaging of in 

vitro and in vivo systems. This has been done by placing a minimal promoter 

downstream of one or several copies of κB sequences and cloning a reporter gene 

for visualization (fluorescent protein) of activity or for quantification (luciferase 

gene) (Badr et al., 2009; Matsuda et al., 2007).  

Kanther et al. (2011) generated a transgenic nfkb:EGFP zebrafish reporter 

line containing a single NF-κB binding site. The reporter enabled the authors to 

visualize endogenous patterns of NF-κB activity by tracking GFP expression 

during zebrafish larval development. The authors also analyzed the activation of 

NF-κB in the digestive tract as a response to colonization by commensal 

microbiota (Kanther et al., 2011). That same reporter line was later used to 

visualize the NF-κB activity as an indicator of inflammatory response to 

wounding (Ogryzko et al., 2014a) and high-cholesterol diet in zebrafish larvae 

(Progatzky et al., 2014). A second transgenic zebrafish reporter line was 

developed by Banerjee et al. (2014) using three copies of a consensus NF-κB 

binding sequence located upstream of the Kal4:UAS system driving EGFP 

expression. The line was used to track the inflammatory response of zebrafish 

larvae to UVB irradiation live (Banerjee and Leptin, 2014). These studies 

underscore the potential of the zebrafish as a model in which inflammatory 

responses, both constitutive and inducible, can be visualized live. 
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II. Motivation and aims 
 

In spite of the significant contribution cell culture studies have made to 

the understanding of the molecular processes underlying inflammation, 

results are highly dependent on culturing conditions as well as cell type. 

Furthermore, because most studies focus on cells of the immune system, very 

little is known of the capabilities of other cells to respond to inflammatory 

stimuli. Therefore, studies using whole organisms are necessary to address 

the dynamics of signaling and activation in vivo, which have yet to be studied.  

Teleost fish are becoming a widely used model for studying the innate 

immune system, especially because of the ease with which live imaging can 

be done. This enables us to visualize the response to inflammatory stimuli in 

multiple cell types simultaneously and to integrate the role of cells not 

traditionally considered part of the immune system within a global response 

towards an insult. Furthermore, through the use of teleost fish we learn about 

the degree of conservation of inflammatory molecules and signaling 

mechanisms across different vertebrate lineages, allowing us to uncover how 

immune response have been shaped throughout vertebrate evolution. 

 

In the present study we chose to take advantage of two teleost model 

systems to address aspects of innate immune signaling, mostly surrounding 

inflammasome signaling. The specific aims were the following: 

 

I) Adapt the zebrafish (Danio rerio) model for the study of dynamics of 

the inflammasome by focusing on the visualization of adaptor molecule ASC 

and the downstream effects of its activation.  

II) Use the medaka model (Oryzias latipes) to study the in vivo activation of 

the inflammatory cytokine Interleukin-1. 

III) Generate a qualitative and quantitative zebrafish in vivo reporter nfκB, 

suitable for high throughput studies of inflammatory activation.  
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III. Results 

7 ASC 

7.1 Analysis of asc expression 

We first carried out a genetic characterization of asc by studying the 

expression of the gene and protein in several stages during embryo 

development.  

7.1.1 asc is expressed from early stages of development in epithelial 

tissues   

To find out when asc expression begins during zebrafish development, 

we performed Reverse Transcription PCR (RT-PCR) on cDNA obtained from 

mRNA extracted at several stages: morula, blastula, and 1, 2, 3 and 8dpf, as 

well as the two adult hematopoietic tissues, head kidney and spleen (Fig. 

III.1.1A). Our results showed that the expression of asc starts early during 

embryo development and is still present at 8dpf and that adult hematopoietic 

tissues also express asc. To determine which embryonic tissues expressed the 

asc we carried out in situ hybridization (ish). It had been reported that in 2dpf 

larvae, asc is expressed most strongly in the pharyngeal arches, but also 

slightly in the epidermis and mouth (Masumoto et al., 2003). We assessed the 

expression pattern in the whole larva at a slightly older stage, 3dpf (Fig. 

III.1.1B). We found that, although expression is strongest in the area around 

the pharyngeal arches and gills, asc is also expressed in the entire epidermis. 

We used a sense probe as a negative control and observed no background 

staining (Fig. III.1.1C). To determine whether the observed expression is 

limited to the epidermis or extends into the underlying tissues we performed 

sections on the plastic-embedded ish samples at different angles (marked by 

colored lines in Fig. III.1.1D). Different sections allowed us to determine that 

the expression is limited to the external epidermal layers surrounding the 

entire body (Fig. III.1.1E, F and G) including that of the lateral fins (Fig. 
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III.1.1G’) and specific organs exposed to the surface like gills (Fig. III.1.1I). We 

also observed that expression is absent from the muscles (Fig. III.1.1E and 

1.1E’). The expression of asc is also present in the epithelium lining the mouth 

opening (Fig. III.1.1H), and very likely throughout the whole intestine, since 

the expression in intestine was found at all sections that included these organs 

(Fig. III.1.1F, G and G’’). We also found that certain cells in the brain 

expressed asc strongly (Fig. III.1.1G and G’’’). Overall, at 3dpf zebrafish larvae 

express asc in epithelial tissues at levels strong enough to be detected by in 

situ hybridization.  

 

 
 
Figure III.1.1. asc is expressed in epithelial tissues during early development in zebrafish. 
RT-PCR of asc during early development in Morula (M), Blastula (B), 1 (1dpf), 2 (2dpf), 3 
(3dpf), 8 (8dpf) and adult spleen (S) and head kidney (K). ef1a is used as housekeeping gene 
control [A]. asc in situ hybridization (ish) in 3dpf zebrafish larvae [B] asc sense probe is used 
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as a negative control [C]. Diagram depicting sectioning on plastic-embedded ish sample [D]. 
Lack of expression in muscle cells is shown in longitudinal section and magnification [E, E’] 
as well as in mid-body cross section [F]. Expression in fins and intestine, as well as expression 
in brain cells is shown in a more anterior cross section with respective magnifications [G, 
G’,G’’,G’’’]. The two anterior most cross sections show expression in mouth and pharyngeal 
arches [H, I]. 

7.1.2 ASC protein is present in epithelial tissues 

To determine the localization of ASC during larval stages, we carried 

out whole-mount immunostainings. Due to lack of a commercial antibody for 

the protein, we generated an antiASC polyclonal antibody in-house by 

purifying the full-length recombinant protein and injecting it in rabbits (a 

more detailed description on antibody production is available in Materials 

and Methods).  

We first tested the antiASC antibody’s specificity by performing an 

immunostaining both with the purified antibody and preimmunization serum 

collected prior to antigen immunization. The preimmunization serum was 

used at a 10 fold higher dilution. The immunostaining showed a defined 

staining with the purified antibody (Fig. III.1.2A), but not with the 

preimmunization serum (Fig. III.1.2B). Immunostainings on whole larvae 

showed that the protein is present in the tissues where expression had been 

detected using ish, most prominently, in the epidermis (Fig. III.1.2A’) and the 

gut epithelia (Fig. III.1.2A’’). Additional stainings at earlier and later stages 

showed that expression in the epidermis is present from 1dpf and retained at 

least until 5dpf (Fig. III.1.2C left and right panels, respectively).  
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Figure III.1.2. ASC is expressed in larvae and localizes to cytoplasm and nucleus. 
Immunostaining of 3dpf larva with antiASC [A]. Magnifications highlight staining in 
epithelial cells [A’] and intestine [yellow arrowhead, A’’]. Preimmunization serum is used as 
primary antibody in negative control [B]. Immunostaining of 1 and 5dpf larvae [C]. Single 
plane of immunostaining with antiLamin and DAPI as nuclear markers [D]. 
Immunostainings on wild type (Wt) [E] and asc morphant 3dpf larvae [F]. AntiLamin was 
used as the immunostaining positive control. 



III. Results 

  51 

From the immunostainings it seemed that ASC was localized not only 

in the cytoplasm but also in the nuclei of epithelial cells. Costaining with 

DAPI and a nuclear envelope marker (Lamin) (Fig. III.1.2D) showed that ASC 

is found in the nuclei of cells. To further test the specificity of the antibody we 

used an ATG-morpholino to knock down the expression of asc. We observed 

that asc morphant larvae did not display any obvious morphological 

phenotype. We therefore repeated the immunostaining of ASC and the 

nuclear envelope, as a positive control for the staining, in asc morphant and 

wild type fish (Fig. III.1.2E). The ASC staining was completely absent in the 

morphants, whereas the nuclear envelope staining was unaffected. This not 

only confirmed the specificity of the morpholino, but also that of the 

antibody.  

To confirm the identity of the epidermal cells expressing ASC, we 

performed immunostainings on the transgenic lines krt4:GFP and 

krt19:tomato-CAAX. At this stage, zebrafish has only two layers of 

keratinocytes in the epidermis and only the outermost monolayer, called 

enveloping layer (EVL), is labeled in the krt4:GFP line, whereas the 

krt19:tomato-CAAX labels both the EVL and the monolayer beneath it, 

composed of basal keratinocytes (Fischer et al., 2014). Immunostainings on 

3dpf larvae from the krt4:GFP line showed that all cells that expressed GFP 

were also labeled by antiASC (Fig. III.1.3A, left panels). Furthermore, a cross-

section of the lateral fin showed that in addition to the EVL, the second 

epidermal layer beneath it also expresses ASC (Fig. III.1.3A, right panels). 

This was confirmed by staining the krt19:tomato-CAAX line in which most 

cells were double positive (Fig. III.1.3B). However, epidermal cells seem to 

express the protein at variable levels.  
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Figure III.1.3. ASC is expressed in epidermal layers. 
Immunostaining of krt4:GFP transgenic 3dpf larva [A]. Cross sections of lateral fin show GFP 
expression only in enveloping layer (EVL), and antiASC staining on EVL and basal epidermal 
layers [A, right panels]. Immunostaining of krt19:tomato-CAAX transgenic 3dpf larva shows 
coexpression in basal and EVL epidermal cells [B]. 

Although ASC is present in the epidermis of mammals (Feldmeyer et 

al., 2010), inflammasome signaling is mainly studied in cells belonging to the 

innate immune system, predominantly macrophages. To find out whether 

ASC is also present in cells of the innate immune system we performed 

immunostainings on transgenic lines that label all myeloid-derived cells 

(pU1:tagRFP), macrophages (mpeg1:EGFP) and neutrophils (lysC:DsRed2) (Fig. 

III.1.4A and B, C, and D, respectively). In the pU1:tagRFP line we observed 

that only a subset of cells was labeled (Fig. III.1.4A). However, in stainings of 

the mpeg1:EGFP line (Fig. III.1.4C) all cells were double positive, indicating 

that all macrophages express ASC. Furthermore, all red cells in the head area 

of pU1:tagRFP larvae (Fig. III.1.4B) were also ASC positive. The only cells in 

the zebrafish brain that are labeled by pU1:tagRFP are microglia, the tissue-

resident macrophages of the brain (Peri and Nüsslein-Volhard, 2008). The 

labeled microglia likely correspond to the positive cells localized to the brain 

in the in situ hybridization (Fig. III.1.1G’’). That all microglia also express ASC 
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further supports the statement that all macrophages contain ASC. In the case 

of neutrophils, we observed a higher degree of variation in the levels of ASC 

expression, with some cells expressing at high levels and others at barely 

detectable ones (Fig. III.1.4D). Therefore, some of the pU1:tagRFP cells that do 

not express ASC could be neutrophils. 

 

 

Figure I.1.4. Myeloid cells expressed ASC.  
Caudal hematopoietic tissue (CHT) region of antiASC immunostaining of 3dpf pU1:tagRFP 
larva with myeloid cells labeled with tagRFP. Only one expresses ASC [A, white arrowhead]. 
In head region of immunostaining all tagRFP cells (microglia) express ASC [B, white 
arrowheads]. Immunostaining of mpeg:EGFP in a 3dpf larva shows macrophages (green) 
express ASC [C]. 3dpf lysC:DsRed2 larva immunostaining shows neutrophils (red) express 
ASC.  
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In summary, ASC is expressed in zebrafish from early stages in the 

epidermis, localizing to both the nuclear and cytoplasmic compartments, and 

is also expressed in innate immune cells such as macrophages.  

7.2 Misexpression studies of ASC 

ASC speck formation is a defining features of classical inflammasome 

activation (Man and Kanneganti, 2015a), but how the protein behaves in 

zebrafish has not been studied. Therefore, in order to study the behavior of 

the protein live we used several strategies to misexpress the protein and then 

used live imaging to visualize its localization in vivo.  

7.2.1 Heat shock-driven expression of ASC-mKate2 leads to speck 

formation in zebrafish larvae 

In order to visualize ASC live while controlling its expression, we 

generated a construct containing ASC tagged with a fluorescent protein 

(mKate2) under the control of a heat shock promoter (Bajoghli et al., 2004). 

We injected the construct in wild type embryos at the one-cell stage and gave 

a heat shock at 2.5dpf to induce expression. We first tested whether ASC-

mKate2 could be stably transiently overexpressed. We carried out 

immunoblotting using antiASC against whole-larva lysates and detected both 

tagged and untagged versions of ASC. As a negative control we used the 

preimmunization serum (Fig. III.1.5A). The antiASC antibody recognized a 

23kDa band corresponding to the endogenous protein. In the samples from 

larvae that had been induced to transiently expressed ASC-mKate2, an 

additional higher band of approximately 50kDa corresponding to the fusion 

protein was detected. Both bands were absent when using preimmunization 

serum as primary antibody. This confirmed that the fluorescently tagged 

protein could be stably expressed in zebrafish larvae.  

To visualize the protein live, we imaged larvae a certain period after 

heat shock. We observed that the transient expression of ASC-mKate2 led to 

the formation of specks over the entire larva. On the other hand, expression of 
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mKate2 alone had a cytoplasmic distribution (Fig. III.1.5B). Specks were also 

formed in cells that do not endogenously express asc, such as muscle cells. 

This finding suggests that speck formation is an intrinsic behavior of the 

protein, independent of the presence of endogenous, untagged ASC.  

 

 

 
Figure III.1.5. ASC-mKate2 can be stably misexpressed by heat shock and results in specks 
formation. 
Immunoblot of 3dpf whole-larvae lysates with or without heat shock-induced transient 
expression of ASC-mKate2 collected 24 after induction [A]. Using antiASC 1 and 2, a band of 
approx. 23kDa corresponding to endogenous ASC is detected in all samples (lower black 
arrowhead). After heat shock an additional band of approx. 50kDa corresponding to ASC-
mKate2 appears (upper black arrowhead). Preimmunization serum is used as primary 
antibody in negative control. 3dpf larvae were imaged 17 h after heat shock-induced transient 
expression of HSE:mKate2 (upper panel) or HSE:asc-mKate2 (middle panel). Specks only form 
in larvae injected with HSE:asc-mKate2 [B]. Immunostaining of 3dpf larvae after heat-shock 
induced expression of a morpholino-resistant asc-mKate2 containing 6 silent mutations (asc*-
mKate2). Endogenous asc expression was knocked down using asc ATG morpholino. Speck 
formation of ASC-mKate2 is unaffected in asc morphants [C]. 
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To test this hypothesis, we carried out immunostainings of 

misexpressed ASC-mKate2 in the asc morphant background. This would also 

allow us to reject that lack of staining in the muscle cells was due to a 

penetration issue. We therefore generated a version of the heat shock 

construct (ASC*-mKate2) resistant to the asc ATG-morpholino, by introducing 

6 silent mutations in the asc region targeted by the morpholino. These point 

mutations would prevent the morpholino from binding to the mRNA coming 

from the transiently expressed construct, while not affecting its ability to 

silence endogenous asc expression. As observed when expressing ASC-

mKate2, transient expression of ASC*-mKate2 in a wild type background 

resulted in speck formation (Fig. III.1.5C upper row). After silencing the 

endogenous asc with the ATG-morpholino, we observed that ASC*-mKate2 is 

still expressed and also able to form specks (Fig. III.1.5C lower row). That 

antiASC recognized specks formed inside muscle cells, indicates that the 

antibody is able to penetrate in muscle cells and confirms that muscle cells do 

not endogenously express the protein. Second, it shows that the antibody is 

able to recognize ASC after speck formation. Furthermore, in both cases we 

also observed muscle cells expressing ASC*-mKate2 either contained a speck 

or had a uniform cytoplasmic distribution of the protein, suggesting that 

upon speck formation all protein is recruited to a single site in the cell. 

7.2.2 Alternative tags and overexpression methods also result in speck 

formation of ASC 

To discard the possibility that speck formation was a result of an 

artifact of our heat shock-induced misexpression system we tested two 

alternative misexpression strategies (mRNA and a drug inducible system) as 

well as different fluorescent protein tags. First, we produced mRNA of asc-

mKate2 and of an additional construct where ASC was fused to turboGFP 

(tGFP, Evrogen). We imaged larvae at 1dpf and 2dpf and observed that 

specks were uniformly distributed already at 1dpf and were still present at 

2dpf. This was the case irrespective of the fluorescent protein used (Fig. 

III.1.6A). The second misexpression strategy used the LexPR drug inducible 
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system (Emelyanov and Parinov, 2008), in which the LexPR transactivator 

induces expression of the genes downstream of the Lex operator (LexOP) 

upon addition of Mifepristone to the water. Therefore, the LexPR/OP system 

allows for timed control of gene expression. We used a ubiquitous promoter 

(ubi) to drive expression of LexPR. Just as we observed with heat shock, drug-

induced misexpression of ASC led to speck formation over the entire larva 

(Fig. III.1.6B).  

These two experiments showed that overexpressed ASC forms specks 

regardless of the expression method. One possible explanation for speck 

formation is that the process is being driven by ASC’s fluorescent protein tag. 

To confirm that speck formation did not only occur when ASC is fused to a 

fluorescent protein, we returned to the heat shock overexpression system. We 

overexpressed ASC* (the morpholino resistant version) fused to an HA 

(Human influenza hemagglutinin) tag and an untagged version. To visualize 

the overexpressed protein we performed immunostainings on these larvae 

(Fig. III.1.6C). Indeed, we observed that both proteins retained their ability to 

form specks. In the case of ASC*-HA, the specks were labeled by staining 

with antiHA. A single plane of the ASC* speck reveals that, as seen before, 

only one speck is formed per cell, with cells expressing the transgene having 

an otherwise uniform cytoplasmic distribution of the protein. These results 

indicate that speck formation is a property intrinsic of ASC, with the protein 

being able to aggregate in these structures when overexpressed irrespective of 

the method or the tag used to visualize it.  
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Figure III.1.6. ASC misexpression in vivo leads to speck formation.  
asc-mKate2 or asc-tGFP mRNA injected embryos at 1 and 2 dpf [A]. Drug-induced expression 
of asc-mKate2 by transiently expressing the driver LexPR (under the ubiquitin promoter), and 
placing asc-mKate2 downstream of the LexPR operator, LexOP. Specks are observed 17h after 
addition of Mifepristone to the media allows LexPR to bind to the LexOP sequence and drive 
expression of asc-mKate2 [B]. AntiASC immunostaining of 3dpf larvae after heat-shock 
induced expression of asc*-HA (upper row) or asc* (lower row) [C]. Specks of ASC-HA are 
labeled by antiHA. White arrowheads highlight ASC specks. The speck in the middle panel is 
indicated by a yellow arrowhead in the left panel.  

7.2.3 Mutation of potential phosphorylation sites impair speck formation 

Several recent studies have studied the aggregation properties of ASC 

by mutating key residues required for speck formation (Hara et al., 2013; Lu 

et al., 2014; Sahillioglu et al., 2014). One performed an in silico analysis of 

mouse ASC to predict Syk and JNK phosphorylation sites, and showed that 

mutating these potential post-translational regulation sites affected the 

protein’s ability to form specks (Hara et al., 2013). We therefore carried out a 

phosphorylation site prediction analysis of ASC using the same software and 

parameters as reported (Fig. III.1.7A). By aligning the protein sequences, we 

saw that 3 of the 4 predicted phosphorylation sites identified in the CARD 

domain (Y152, T160 and T170) were highly conserved with those identified in 

mouse ASC (Fig. III.1.7B). We therefore targeted these three sites as well as 

one additional site in the PYDASC domain (T38) by site-directed mutagenesis 

(Fig. III.1.7B, residues boxed in red). All threonines (T) were mutated into 

alanines (A) and the tyrosine (Y) into phenylalanine (F). Thus, the final 

protein contained the following mutations: T38A, Y152A, T160A and T170A. 

We transiently expressed a construct containing all mutations 

(HSE:asc(4xmut)-mKate2). In order to avoid interference from the wild type 

ASC, we analyzed the mutant phenotypes only in muscle cells, which do not 

express asc (Fig. III.1.7C). The mutated ASC (T38A, Y152A, T160A, T170A) 

displayed a striated pattern or formed large clumps when expressed in 

muscle cells, in contrast to the wild type ASC, in which the protein is 

concentrated in a single site in the cell. We then expressed constructs with 

single mutations and observed that the Y152F mutation alone disrupted speck 

formation, similar to that of all 4 mutations together (Fig. III.1.7D). Mutations 
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in the corresponding site in mouse ASC was sufficient to abrogate speck 

formation in vitro (Hara et al., 2013). These results indicate that speck 

formation in zebrafish may be under the control of the same regulatory 

mechanisms as in mice.  
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Figure III.1.7. Mutations targeting potential phosphorylation sites abolish speck 
formation. 
Results from phosphorylation sites analysis using the online GPS 2.1.1 (Xue et al., 2011) 
depicting Syk and JNK-specific predicted phosphorylation sites in zebrafish ASC and those 
previously published using the same analysis for mouse ASC (Hara et al., 2013) [A]. Sections 
of full protein alignment of zebrafish (Dr), mouse (Mm) and human (Hs) ASC orthologues 
separated by domain. Amino acids boxed represent sites that were identified in the analysis. 
In red, are those chosen for single site mutagenesis [B]. Larvae transiently expressing either 
asc-mKate2 or asc(4xmut)-mKate2, which contains base pair changes that lead to 4 missense 
mutations (T38A, Y152F, T160A and T170A) [C]. Single muscle cell in larvae transiently 
expressing asc-mKate2, asc(4xmut)-mKate2 or asc(Y152F)-mKate2. The last construct only 
contains the Y152F missense mutation [D]. 

7.2.4 Generation of a stable HSE:asc-mKate2 transgenic line 

Inducing transient expression of ASC-mKate2 via heat shock allowed 

us to visualize the effects of speck formation, but because integration of the 

transgene is random, it does not occur in all cells and can happen multiple 

times and in different sites in the genome. Labeling is therefore not uniform 

throughout the organism, and quantifications of a large number of larvae are 

unreliable. To circumvent this issue, we generated the stable line HSE:asc-

mKate2. We used time-lapse imaging of the whole larva after heat shock to 

visualize speck formation after induction of ASC-mKate2. We then quantified 

the number of specks in the entire embryo throughout the time-lapse (Fig. 

III.1.8A). Only 2.5 hours post heat shock (hphs), speck numbers began to rise 

steadily until a plateau was reached at ca. 20hphs (Fig. III.1.8B).  

 



III. Results 

 62 

 

 
Figure III.1.8. Ubiquitous speck formation in the HSE:asc-mKate2 transgenic line.  
Larvae of the HSE:asc-mKate2 transgenic line were heat shocked at 2.5dpf and imaged 
overnight [A]. Speck formation in several larvae over the time-lapse was quantified using 3D 
image analysis software [B]. Time-lapse of a higher magnification allowed for the manual 
segmentation of individual epidermal cells (demarcated in red) in order to quantify and 
follow the change in fluorescence intensity from 3h after heat shock until speck formation [C]. 
Plot depicting the change in mean intensity of individual cells (n=14) over time until speck 
formation. Dashed lines represent cells that do not form a speck before end of time-lapse [D]. 
Plot of individual slope values of linear phase of fluorescence intensity increase (from 3 to 
12hphs) in all cells vs. time-point of speck formation. Inverted triangles represent cells that do 
not form a speck by 12hphs [E]. Plot of mean intensity values in time-point before speck 
formation in all cells that form a speck vs. time of speck formation [F]. In both plots, the 
dashed line represents linear regression whose R2 value is depicted at the top right corner.  
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The rising speck numbers led us to ask whether speck formation in a 

certain cell type is concentration-dependent and whether all cells form a 

speck once a specific concentration threshold is passed. To answer this, we 

carried out time-lapse imaging at a magnification that enabled us to visualize 

speck formation in single epidermal cells (Fig. III.1.8C). We then quantified 

the average pixel intensity of each cell at every time-point prior to speck 

formation (Fig. III.1.8C left column). These values we took as a proxy for the 

concentration of ASC-mKate2. By plotting the increase in concentration over 

time for each cell (Fig. III.1.8D), we observed that cells did not form a speck at 

the same concentration of ASC-mKate2. Furthermore, some cells that did not 

form a speck eventually reached the highest concentration levels detected 

(Fig. III.1.8D, red lines). We plotted the average intensity values at the time-

point immediately preceding speck formation and saw that ASC-mKate2 

concentration did not strongly correlate with time-point of speck formation 

(R2=0.53, Fig. III.1.8E). We then calculated the slope of the linear increase in 

ASC-mKate2 for every cell until the time-point of speck formation or until 

12hphs for cells that did not form a speck. We plotted these values with time 

of speck formation, and saw that the rate of protein accumulation highly 

correlated with time-point before speck formation (R2=0.84, Fig. III.1.8F). The 

data imply that the faster cells accumulate ASC-mKate2, the faster and likelier 

it is that they will form a speck. Cells whose rate of increase is too low will not 

not form a speck even at relatively high concentrations of ASC-mKate2. These 

results suggest that the rate of ASC-mKate2 increase is a better predictor for 

speck formation time-point than concentration of the protein. 

7.3 Studying cell type-specific consequences of speck formation 

Pyroptosis, an inflammatory form of cell death, is thought to occur as a 

consequence to speck formation (Boucher et al., 2014). During pyroptosis, the 

cell membrane collapses, spilling cytoplasmic contents into the extracellular 

space thus spreading the inflammatory response to all nearby tissues. 

Pyroptosis as a consequence of speck formation has never been observed in 

zebrafish. The transgenic line, HSE:asc-mKate2, allowed us to induce speck 
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formation throughout the larva simultaneously, and it provided us with the 

possibility to look at downstream effects of speck formation in different cell 

types live.  

7.3.1 Speck formation has cell-type specific consequences 

We first tested whether speck formation caused by overexpression of 

ASC was enough to drive cell death in zebrafish larvae. We stained HSE:asc-

mKate2 transgenic larvae and the negative siblings as controls with the 

fluorescent dye acridine orange, which labels dying cells and can be used in 

zebrafish larvae in vivo (Peri and Nüsslein-Volhard, 2008). Given that we 

already know the time course of speck formation in the larvae after heat 

shock (Fig. III.1.8B, left panel), we stained transgenic larvae and negative 

siblings (with non-heat shocked larvae as control for both) at an early time-

point where very few if any specks have formed and at a later one where 

specks are distributed throughout the larvae, namely 2.5 and 15hphs (Fig. 

III.1.9A). We then used 3D image analysis software to segment the trunk 

region including the fins to exclude autoflorescence from pigment cells in the 

head and from the yolk (Fig. III.1.9B, white outline). In the segmented region 

we quantified the acridine orange spots (Fig. III.1.9B, white spots). Spots that 

were also red were assumed to be bleed-through from specks and were 

excluded from the final numbers (Fig. III.1.9B, magenta spots). We observed 

there was no significant difference in the amount of cell death from all groups 

at an early time-point (2.5hphs). However, by 15hphs, the number of acridine 

orange spots was significantly higher (p<0.001) in transgenic larvae that had 

been heat shocked as compared to all other groups (Fig. III.1.9B, right panel 

dark orange bar). This indicates expression of ASC-mKate2 induces cell death, 

but only at a time-point where specks are abundant.  
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Figure III.1.9. ASC overexpression causes increase in cell death.  
HSE:asc-mKate2 transgenic larvae and their negative siblings were heat shocked and stained 
for cell death using the live stain acridine orange. Whole larvae were imaged 2.5 and 15hphs 
[A]. 3D rendering of individual larvae were manually segmented to exclude the head, heart 
and yolk regions. Acridine orange spots in the segmented region were quantified using 3D 
image analysis software [white spots, left panel, B]. Spots also positive in the red channel 
(indicative of pigment cells or cross excitation from specks) were excluded from the analysis 
[magenta spots, left panel, B]. Plot depicting number of acridine orange spots in each group 
of larvae. The only group with a significant increase in cell death detected was the HSE:asc-
mKate2 transgenic larvae 15hphs (p<0.0001) [right panel, B]. 

 

An optical cross section of the larva (Fig. III.1.10A) showed that the 

acridine orange signal was most prominent at the epidermal layer of the 

trunk, suggesting that these cells may be particularly susceptible to cell death. 

To test this, we performed time-lapse imaging of HSE:asc-mKate2 transgenic 

larvae after heat shock and staining with acridine orange (Fig. III.1.10B). We 

observed that within 2 hours after speck formation, epidermal cells 

accumulated acridine orange positive cellular debris in the vicinity of the 

speck. Muscle cells in the same time period did not.  

Bright-field field images of these cells show that, in addition to the 

acridine orange-labeled debris, epidermal cells respond to speck formation by 

the dramatic morphological changes typical of pyroptotic cell death (Fig. 

III.1.10C, upper row). Within 15 minutes after speck formation, the cells 

round up and dislodge themselves from the surrounding epidermal layer. 
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The plasma membrane of the rounded up cell eventually collapses and the 

speck remains in the extracellular environment. A muscle cell imaged in the 

same time-lapse (Fig. III.1.10C, lower row) does not display any changes in 

cell morphology even 4 hours after speck formation. Overall, these results 

indicate that after speck formation, epidermal cells, but not muscle cells, 

undergo morphological changes that resemble pyroptosis and eventually lead 

to cell death, as shown by the acridine orange staining.  

 

 

Figure III.1.10. Speck formation has cell type-specific consequences.  
A cross section of a HSE:asc-mKate2 transgenic larvae 15hphs stained with acridine orange 
showing cell death is mostly located in the lateral side [A]. HSE:asc-mKate2 transgenic larvae 
were stained with acridine orange 3hphs and individual epidermal cells (top row) and 
muscle cells (bottom row) were imaged in a time-lapse to visualize debris accumulation in 
the vicinity of the cells. This only occurred after speck formation in epidermal cells [B]. Time-
lapse of individual epidermal cells (top row) and muscle cells (bottom row) HSE:asc-mKate2 
transgenic larvae to visualize changes in cell morphology brought about by speck formation 
by imaging the bright-field [C]. Drastic morphological changes were only observed in the 
case of epidermal cells.  

7.3.2 Epidermal cells undergo a pyroptotic-like cell death after speck 

formation 

To determine the identity of the cells that undergo cell death after 

speck formation, we turned again to the keratinocyte labeling lines krt4:GFP 



III. Results 

  67 

and krt19:tomato-CAAX. In the krt4:GFP and HSE:asc-mKate2 double 

transgenic line transgenic line after heat shock, cells labeled by GFP 

underwent the same form of cell death as we had observed previously after 

speck formation. The loss of cytoplasmic GFP signal indicates that the plasma 

membrane integrity is compromised and the cytoplasmic contents are leaked 

to the extracellular environment, a feature of pyroptosis (Fig. III.1.11A, white 

arrowhead). Furthermore, in the bright-field, we again saw that the cell 

detaches from the surrounding epidermal tissue and rounds up (Fig. 

III.1.11A’). To visualize speck formation in the krt19:tomato-CAAX line, we 

transiently expressed the HSE:asc-tGFP construct. Because in this transgenic 

line the membranes of epidermal cells are labeled, we were able to observe 

the changes that the plasma membrane undergoes after speck formation (Fig. 

III.1.11B). Once speck formation takes place, the plasma membrane fragments 

into vesicles that likely correspond to the debris labeled by acridine orange. In 

this case, even after the cell has died, the speck can remain in the extracellular 

environment as stable aggregate. 

These experiments confirmed that epidermal cells are indeed 

susceptible to cell death after speck formation, whereas in other cell types, 

such as muscle cells, misexpressed ASC can form specks without causing cell 

death. 
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Figure III.1.11. Speck formation leads to cell death of epidermal cells.  
Time-lapse imaging of the double transgenic line HSE:asc-mKate2, krt4:GFP after heat shock 
showing an epidermal cell disappearing after speck formation [white arrowhead, A]. 
Magnification of a single plane merged with the bright-field of the epidermal cell showing 
changes in cell morphology after speck formation [A’]. Time-lapse imaging krt19:tomato-
CAAX transiently ASC-tGFP, shows that speck formation leads to collapse of the plasma 
membrane and the formation of debris [B]. Time-lapse imaging of transient coexpression of a 
membrane anchored version of ASC (ASC-mKate2-CAAX) and GFP. Speck formation caused 
cell death in epidermal cells [C]. Magnification of the red channel in the time-points before 
and after speck formation, showing local recruitment of membrane anchored ASC to form a 
speck [C’]. Time-lapse imaging of in muscle cells expressing the same construct [D]. 
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7.3.3 Anchoring ASC-mKate2 to the membrane does not prevent cell death 

after speck formation  

Thus far we have seen epithelial cells die after ASC forms a 

cytoplasmic speck. We therefore wondered if, by targeting ASC to specific 

subcellular localization we could inhibit its cytoplasmic aggregation and 

subsequently, cell death. To test this we used the construct HSE:asc-mKate2-

CAAX, which contains the CAAX farnesylation sequence at the C-terminus of 

the mKate2, which targets the fusion protein to the plasma membrane (Fig. 

III.1.11C and D). Surprisingly, we found that, although the construct localized 

to the plasma membrane of epidermal cells it could nonetheless form local 

ASC aggregates. In these cells, cell death ensued without all of the available 

ASC-mKate2-CAAX to relocalizing to the speck (Fig. III.1.11C’). In muscle 

cells (Fig. III.1.11D), the protein often aggregated before reaching the plasma 

membrane (without causing cell death), but sometimes also localized to the 

plasma membrane entirely.  

7.3.4 Intranuclear speck formation also results in cell death  

Specks have been seen in intranuclear, perinuclear or cytoplasmic 

locations. In a cell line in which speck formation does not lead to pyroptosis, 

specks that formed in either the nucleus or the cytoplasm first depleted the 

pool of ASC only in the respective compartment prior to speck formation 

(Cheng et al., 2010). We therefore looked at the localization of specks relative 

to the nucleus in epidermal cells. To visualize the nucleus we used a 

βactin:NLS-tagBFP transgenic line, in which nuclei are labeled throughout the 

whole larva. To visualize the cytoplasm, GFP was coexpressed with ASC-

mKate2 under the heat shock promoter, which is bidirectional (Bajoghli et al., 

2004). We induced expression and observed that specks can form both in the 

cytoplasmic and the nuclear compartments of the cell (Fig. III.1.12A, yellow 

arrowheads). If the speck forms in the cytoplasm, the cytoplasmic pool of 

ASC-mKate2 is depleted immediately with the nuclear pool still being visible 

after speck formation (Fig. III.1.12B). Conversely, if the speck forms inside the 
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nucleus (Fig. III.1.12C), it is this compartment’s pool of ASC-mKate2 that is 

depleted to form the speck with the cytoplasm seemingly retaining its pool of 

ASC-mKate2 until cell death. We confirmed this by quantifying plot profile 

(white line) intensity levels in all three channels before and after speck 

formation in the case depicted in Fig. III.1.12C (Fig. III.1.12D). After speck 

formation, both green and cyan channels are unaffected, however, in the red 

channel, the nuclear pool is relocalized to a single saturated spot. The red 

channel’s cytoplasmic signal remains unchanged. Regardless of speck 

localization, however, disintegration of the nuclear compartment and cell 

death consistently take place after speck formation. These downstream events 

appear to occur more rapidly if the speck is formed in the cytoplasm than in 

the nucleus (roughly three times faster, 15 min vs. 45 min). Therefore, in 

epidermal cells, specks can form in or outside of the nucleus using that 

compartment’s pool of ASC with speck formation leading to cell death in each 

case.  
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Figure III.1.12. Speck formation can occur in the nucleus or cytoplasm of epidermal cells.  
Time-lapse imaging of transient heat-shocked induced coexpression of ASC-mKate2 and GFP 
in the transgenic line βactin:NLS-tagBFP [A]. Yellow arrowheads highlight localization of two 
specks assembled during time-lapse. Red channel from time-lapse showing depletion of ASC-
mKate2 pool in cytoplasmic [B] and nuclear compartments [C]. Intensity plot profile of line 
marked in second panel of [B] for all three channels [C]. The plot profiles shown correspond 
to the time-points before and after speck formation, the latter in dashed lines. The middle and 
right panels contain plot profiles of green and red channels separately.  
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7.3.5 Macrophages can engulf cellular debris generated from speck 

formation-induced cell death 

We had previously observed that a large amount of cellular debris was 

generated after a pyroptotic-like cell death both by staining with acridine 

orange (Fig. III.1.9A) and visualizing the membrane of epidermal cells (Fig. 

III.1.11C). Furthermore, we had seen that specks seem to persist after cell 

death and remain in the extracellular environment. Therefore, we wondered 

whether phagocytes cleared the cellular debris after speck formation.  

We used the transgenic line mpeg1:EGFP, which labels macrophages, 

crossed with the HSE:asc-mKate2 and imaged the larvae after heat shock (Fig. 

III.1.13A). We observed that macrophages were capable of engulfing cellular 

debris containing ASC specks, and that they can contain multiple 

phagosomes with specks. In the example presented in Fig. III.1.12A, we see 

that more than an hour after speck formation, although there are two 

macrophages in the vicinity of the debris that is later engulfed (signaled by 

the white arrow) only the macrophage on the right (which already contains 

several specks inside phagosomes from previously ingested material) 

branches out and engulfs the speck in a phagocytic cup, which can be seen in 

the bright-field of a single merged z plane of time-point 6 (Fig. III.1.13A’). In 

this case, the macrophage accumulates debris-containing specks, but it is 

unclear whether the material was being digested or not. Further imaging of 

such events, this time using the pU1:tagRFP to label macrophages and 

transient expression of HSE:asc-sfGFP showed that indeed they can. As 

depicted in Fig. III.1.13B, a macrophage (as judged by cell morphology) 

engulfs cellular debris containing a speck and afterwards seemingly digests 

the engulfed material, as shown by the vanishing speck fluorescent signal 2 

hours after engulfment. These experiments indicate that the cellular debris 

resulting from speck formation-induced cell death can be cleared up by 

professional phagocytes and that the latter are able to process the engulfed 

material.  
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Figure III.1.13. Macrophages phagocytize specks.  
Time-lapse imaging of the double transgenic line HSE:asc-mKate2, mpeg:EGFP after heat shock 
shows macrophage engulfing a speck (white arrowhead) [A]. Single plane merge with bright-
field of time-point when phagocytic cup surrounds the speck [A’]. Time-lapse imaging of 
heat-shock induced transient expression of HSE:asc-tGFP in the pU1:tagRFP transgenic line. 
Movie starts before cell (white border) forms speck A myeloid phagocytic cell in the vicinity 
engulfs the speck. Movie ends when speck inside the phagosome is no longer visible [B].  

7.4 A caspase-1 homologue as a downstream effector molecule 

In mammals, the ASC speck recruits the immature form of the 

downstream effector molecule caspase-1 (pro-caspase-1). Caspase-1 

undergoes autoproteolytic activation and the mature form of caspase-1 is 

released into the cytoplasm, becoming the major effector driving pyroptotic 

cell death (LaRock and Cookson, 2013). Given the similarity between the 

response we observed after specking in epidermal cells and pyroptosis, we 

speculated that caspases could be involved in this response. We focused on 

Caspa, a zebrafish caspase whose catalytic domains have the highest 
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homology to those of human caspase-1 (Masumoto et al., 2003).  

7.4.1 Caspase inhibition reduces cell death in the HSE:asc-mKate2 line  

To determine whether caspases were involved in the cell death 

resulting form speck formation we treated larvae from HSE:asc-mKate2 the 

with the pan-caspase inhibitor Q-VD-OPh hydrate (Sigma) after heat shock. 

We imaged the larvae 15hphs and compared the amount of cell death 

between DMSO-treated transgenic larvae and negative siblings treated with 

the inhibitor by staining with acridine orange (Fig. III.1.14). Treatment with 

the inhibitor significantly diminished cell death in HSE:asc-mKate2 larvae 

compared to DMSO-treated controls. This result indicated that caspases were 

involved in the cell death caused by speck formation.  

 

 

 
Figure III.1.14. Caspase inhibitors reduce cell death caused by speck formation. 
Plot depicting number of acridine orange spots in stained HSE:asc-mKate2 transgenic larvae 
with and without heat shock and with or without treatment with the pan-caspase inhibitor Q-
VD-OPh (100 µM) imaged 17h after heat shock [A]. Spots in the manually segmented regions 
of 3D rendering of individual larvae were quantified using 3D image analysis software. Spots 
also positive in the red channel (indicative of pigment cells or cross excitation from specks) 
were excluded from the analysis. A significant reduction in cell death was observed in heat-
shocked larvae treated with Q-VD-OPh (p<0.0001). Quantification of specks in the segmented 
region of each larva belonging to a group where ASC-mKate2 expression was induced 
showing treatment with inhibitor does not affect speck formation [B]. 
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7.4.2 Caspa overexpression is highly toxic 

Since we knew caspases were involved in the cell death induced by 

speck formation, we visualized the downstream cellular consequences 

brought about by the activation of the two mammalian caspase-1 homologues 

in zebrafish, caspa and caspb. Both Caspa and Caspb have N-terminal PYD 

domains. To compare levels of cell death, we used an apoptotic caspase that 

lacks a PYD domain, Casp3a, the orthologue of mammalian caspase-3. We 

generated heat shock overexpressing constructs for all three (HSE:caspa-EGFP, 

HSE:caspb-EGFP and HSE:cas3a-EGFP). To concomitantly observe the 

response of myeloid cells, we transiently expressed these constructs in 

pU1:tagRFP transgenic larvae (Fig. III.1.15).  

In larvae transiently overexpressing Caspa (Fig. III.1.15A), we 

observed a high amount of cellular debris in the epidermis, indicative of cell 

death. The debris is visible from 3hphs, a time after which the cell has barely 

accumulated enough fluorescent protein for it to be detectable. Myeloid cells 

were frequently seen ingesting green-labeled material. Therefore, epidermal 

cells appeared to be especially susceptible to cell death after induction of 

Caspa expression. Muscle cells were also affected by Caspa expression, but at 

later time-points after induction, with a detached plasma membrane and a 

darkening cytoplasm visible from 17hphs (Fig. III.1.15B). This suggests that 

expression of Caspa itself is sufficient to trigger cell death in both of these cell 

types. We only observed this drastic response when we expressed Caspa. 

Transient expression of either Caspb (Fig. III.1.15C) or Casp3a (Fig. III.1.15D) 

did not result in any obvious defects in either epidermal cells (top rows) or 

muscle cells (bottom rows) in the same time period. These results indicate that 

Caspa activation is capable of causing cell death swiftly both in epidermal 

cells and muscle.  
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Figure III.1.15. Caspa overexpression causes cell death. 
Imaging of heat-shock induced transient expression of HSE:caspa-EGFP [A], HSE:caspb-EGFP 
[B] or HSE:casp3a-EGFP [C] in the pU1:tagRFP transgenic line, between 9 and 17hphs. Massive 
amounts of cellular debris in the epidermis are only evident in the case of Caspa-GFP 
overexpression. Single plane of HSE:caspa-EGFP transient expression merged with bright-
field showing muscle cells’ morphological change in response to Caspa-GFP overexpression 
17hphs [B]. 

7.4.3 Caspa is recruited to ASC speck 

Caspase-1 in mammals is recruited to the speck, where it undergoes 

autoproteolytic activation. Therefore, recruitment to the speck is the key 

downstream effector event that unleashes pyroptosis. To find out whether 

Caspa can be recruited to the ASC speck. We transiently coexpressed HSE:asc-

mKate2 and HSE:caspa-EGFP and used the HSE:caspb-EGFP and HSE:casp3a-

EGFP as control. Because muscle cells show no response to speck formation, 

we used these cells as an in vivo test for recruitment of the different caspases 

to the speck. Imaging the larvae coexpressing different combinations of asc 

and caspase constructs revealed that speck formation is unaffected by caspase 

expression (Fig. III.1.16A). Moreover, if the two proteins were coexpressed in 

the same cell, we observed recruitment only in the case of Caspa-GFP (Fig. 

III.1.16B). These experiments confirmed that Caspa is recruited to the speck 

but another PYD-domain containing caspase is not.  

 



III. Results 

 78 

 
Figure III.1.16. Caspa is recruited to the ASC speck. 
Imaging of heat-shock induced transient expression of HSE:caspa-EGFP, HSE:caspb-EGFP or 
HSE:casp3a-EGFP with transient expression of HSE:asc-mKate2 [A]. Single cells show that 
recruitment of a caspase to the ASC specks only happens in the case of Caspa-EFGP 
coexpression with ASC-mKate2 [B]. 

 

 



III. Results 

  79 

7.4.4 Caspa and ASC interact via their PYD domains  

It had been previously shown that ASC and Caspa colocalized in a 

PYD-dependent manner when coexpressed in mammalian cells (Masumoto et 

al., 2003). To test whether Caspa is recruited to the ASC speck via its PYD 

domain (PYDCaspa) in vivo we generated heat shock constructs containing each 

domain for both Caspa and ASC separately, namely HSE:PYDCaspa-EGFP and 

HSE:CaspCaspa-EGFP, in the case of Caspa, and HSE:PYDASC-mKate2 

HSE:CARDASC-mKate2 for ASC (Fig. III.1.17-1.19). We coexpressed 

combinations of these constructs transiently in larvae and focused on muscle 

cells to visualize the interaction without the background of endogenous ASC. 

Expressing either PYD or CARD domains of ASC (PYDASC or CARDASC, 

respectively) resulted in abnormal speck formation, with fibril-like aggregates 

forming instead of a single speck. We first coexpressed the separate domains 

of Caspa fused to GFP (PYDCaspa-GFP and CaspCaspa-GFP), or GFP alone as a 

negative control, with PYDASC-mKate2. The coexpressed protein tagged with 

GFP colocalized with the PYDASC-mKate2 aggregates exclusively when the 

GFP fusion contained the PYDCaspa (Fig. III.1.17). Namely, we only observed 

an interaction between PYDASC-mKate2 and the full-length protein, and 

between PYDASC-mKate2 and PYDCaspa-GFP. When we performed the 

converse experiment expressing CARDASC-mKate2, none of the GFP-tagged 

proteins colocalized with the aggregates of CARDASC-mKate2 (Fig. III.1.18). 

We then coexpressed the ASC-mKate2 with the separate domains of Caspa. In 

this case, PYDCaspa-GFP but not CaspCaspa-GFP was recruited to a properly 

assembled speck (Fig. III.1.19A). When expressed alone, PYDCaspa-GFP and 

CaspCaspa-GFP had a cytoplasmic distribution alone in muscle cells (Fig. 

III.1.19B), as observed for the full-length protein (Fig. III.1.15). These results 

indicate that the recruitment of Caspa to the ASC speck in vivo is dependent 

on their PYD domains. 
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Figure III.1.17. ASC PYD (PYDASC) recruits Caspa via its own PYD.  
Imaging of heat-shock induced transient expression of HSE:PYDASC-mKate2 with HSE:EGFP, 
HSE:PYDCaspa-EGFP, HSE:CaspCaspa-EGFP and HSE:caspa-EGFP. Colocalization of GFP fusion 
proteins with PYDASC is only seen in cases where PYDCaspa domain is included.  
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Figure III.1.18. ASC CARD (CARDASC) is not involved in recruitment of Caspa to the 
speck. 
 Imaging of heat-shock induced transient expression of HSE:CARDASC-mKate2 with 
HSE:EGFP, HSE:PYDCaspa-EGFP, HSE:CaspCaspa-EGFP and HSE:caspa-EGFP. No colocalization 
is observed.  
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Figure III.1.19. Caspa is recruited to ASC speck through a PYD-PYD interaction.  
Imaging of heat-shock induced transient expression of HSE:asc-mKate2 with HSE:PYDCaspa-
EGFP and HSE:CaspCaspa-EGFP. The only domain in Caspa required for recruitment to the 
speck is PYDC [A]. Imaging of heat-shock induced transient expression of HSE:mKate2 with 
HSE:PYDCaspa-EGFP and HSE:CaspCaspa-EGFP, showing that both constructs have a cytoplasmic 
cellular localization [B]. 
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7.4.5 Caspa is expressed in the epidermis  

For Caspa to be the downstream effector driving pyroptotic cell death 

in the epidermis it would need to be expressed by these cells. To determine 

the endogenous expression pattern of caspa, we performed an in situ 

hybridization on 3dpf zebrafish larvae (Fig. III.1.20A). Similar to the 

expression pattern we had observed for asc (Fig. III.1.1B), caspa is strongly 

expressed in the area of the gills and mouth and in the intestinal area. We also 

saw expression, albeit at low levels, in epidermal cells covering the main body 

of the fish and in fins, but no expression in muscle cells (Fig. III.1.20B). This 

suggests that Caspa in epidermal cells could be a downstream effector of 

pyroptosis after speck formation, where as muscle cells, lacking Caspa, do not 

undergo cell death upon speck formation. 

 

 

Figure III.1.20. caspa is expressed 
in the epidermis.  
caspa in situ hybridization (ish) in 
3dpf zebrafish larvae. Sense probe 
is used as a negative control [A]. 
Magnification of caspa wish 
showing expression in epidermis 
and ventral fin [B]. 

 

7.4.6 Generation of a caspa CRISPR mutant 

To test whether caspa is necessary to drive cell death after speck 

formation in epidermal cells we generated a zebrafish knockout using 

CRISPR/Cas9. We generated two different small guide RNAs (sgRNAs) 

targeting the first exon of the caspa gene, caspa Guide 1 and 2 (Fig. III.1.21A).  
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Figure III.1.21. Generation of two caspa mutant alleles by use of CRISPR-Cas9.  
Sequence of first exon of caspa gene (yellow) showing target sites of two sgRNAs, Guide1 and 
Guide 2 caspa (lime green), designed using the online tool at http://crispr.mit.edu [A]. 
Sequence of first caspa- allele after genotyping F1 of incross between caspa Guide1-injected F0, 
caspaK**. NHEJ led to insertion of 9 base pairs resulting in the addition of one lysine (K) and 
two STOP codons in the caspa reading frame [B]. Sequence of second mutant allele, caspaΔ800, 
which lacks an 800bp fragment that includes 224bp of Exon 1 and the first 596bp from Intron 
1 [C]. The translation of caspaΔ800 results causes a frame shift and the insertion of a STOP 
codon after 37aa[D]. 

 

To test whether the sgRNAs were effectively targeting caspa, we 

performed injection trials with either sgRNA. The injection of both sgRNAs 

led to mutations in the caspa gene. Caspa Guide 1 was much more efficient and 

caused mutations in 75% of injected embryos vs. 25% of injected embryos in 

the case of caspa Guide 2. We therefore raised embryos injected with caspa 

Guide 1 (F0). Adults from the F0 were genotyped by tail fin clipping and 

those with detected mutations were incrossed to give rise to F1, which were 
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also raised to adulthood. Adults from F1 were genotyped to find mutant 

alleles. We found several F1 adults that carried two different caspa alleles that 

resulted in a knockout of the protein, which we named caspaK** and the 

caspaΔ800 alleles. In the case of the caspaK**allele, a 9 bp insertion resulted in the 

introduction of two STOP codons in the reading frame (Fig. III.1.21B), which 

would result in either early degradation of the mRNA or the production of a 

truncated protein of 16 amino acids (aa). The caspaΔ800 allele (Fig. III.1.21C) 

corresponds to a large deletion spanning the last 224bp of Exon 1 and the first 

596bp from Intron 1. This deletion results in the translation of product that is 

truncated after 37 aa. The first 15 aa correspond to caspa, but the last 22 are 

entirely different (Fig. III.1.21C). Therefore, the adult F1 fish carrying these 

two alleles were already caspa loss of function mutants (caspaK**/caspaΔ800). We 

detected no obvious phenotypes resulting from the knock down. To obtain F2 

mutants homozygous for the caspaK**and the caspaΔ800 alleles (caspaK**/caspaK** 

and caspaΔ800/caspaΔ800), the caspaK**/caspaΔ800 F1 fish were incrossed and the F2 

generation was raised to adulthood.  

7.5 Endogenous speck formation  

Thus far, all the experiments in which ASC was misexpressed in the 

zebrafish larvae led to speck formation in both epidermal and muscle cells. 

Although we found no defined threshold of ASC-mKate2 concentration that 

needs to be surpassed for a cell to form a speck (Fig. III.1.8B), it is probable 

that the process is concentration-dependent since all the methods used to 

visualize speck formation up to this point rely on the addition of more copies 

of the gene or increasing amounts of mRNA. This was true for all cell types 

observed, including the ones that do not endogenously express asc. That the 

additional layer of expressed protein is driving the speck formation process 

could also explain why we do not observe specks with immunostainings, 

although a technical issue cannot be discarded. In order to find out whether 

the endogenous ASC can form specks we followed two approaches: 

immunostainings of larvae after an inflammatory stimulus and the generation 

of a transgenic CRISPR knock-in line.  
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7.5.1 Immunostainings of larvae after inflammatory stimuli do not show 

specks  

To test whether endogenous ASC forms specks as a response to 

inflammatory stimuli we first performed immunostainings of larvae that had 

been subjected to UVB exposure (Banerjee and Leptin, 2014) or tail fin 

wounding (de Oliveira et al., 2013; Ogryzko et al., 2014a). Both have been 

reported to activate interleukin-1 signaling in fish, which is connected to 

inflammasome signaling. Furthermore, both assays target epidermal cells 

directly, one through direct injury and another one by causing DNA damage.  

UVB treatments were performed on the krt4:GFP line, in order to be 

able to visualize the damage to the external layer of epidermal cells (EVL) 

directly. Embryos were fixed for immunostaining at several time-points after 

irradiation. We saw the strongest tissue damage at 24hpt (Fig. III.1.22A), with 

cells losing their normal shape, stretching along the AP axis and appearing to 

adopt the shape of the muscle tissue underneath instead of forming a smooth 

layer. A further indication of epidermal cell damage is the cellular debris at 

the surface and the fact that some patches of epidermis lacked GFP 

expression, but had normal ASC expression (Fig. III.1.22A, white 

arrowheads). In spite of the evident damage, however, we could not detect 

any clear cases of speck formation. Although we observed certain cases where 

a spot was seemingly labeled by antiASC; in the midst of a high amount of 

cellular debris, it is impossible to confirm whether the spot actually 

corresponds to a speck. 
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Figure III.1.22. Endogenous specks are not detected in immunostainings of larvae after 
inflammatory stimuli.  
AntiASC immunostaining of krt4:GFP transgenic larva at 4dpf, 24h after UVB irradiation. 
Although the overall morphology of the epidermis is abnormal and debris is visible, no 
specks were observed [A]. AntiASC immunostaining of mpeg:EGFP transgenic larva at 
several time-points (5 min, 1h and 4h) after tail fin wounding [B]. Recruitment of 
macrophages to the site of injury increases with passing time, but no specks are observed [B].  

 

We then turned to a second assay, fin tail wounding. Because it was 

previously reported (Ogryzko et al., 2014a) that this type of assay results in 
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recruitment of both macrophages and neutrophils to the site of injury in an 

interleukin-1 signaling-dependent manner, we used the mpeg1:EGFP line to 

visualize macrophage recruitment to the injury site. Larvae were fixed for 

immunostaining at several time-points after injury (Fig. III.1.22B). We 

observed increased recruitment of macrophages after the injury. However, we 

did not detect any signs of speck formation either in epithelial cells or in 

macrophages.  

7.5.2 Generation of an asc:asc-EGFP CRISPR knock-in line via 

homologous recombination 

To visualize endogenous speck formation live, we inserted a linker-

EGFP sequence into the endogenous asc locus by CRISPR/Cas9 genome 

editing (Auer and Del Bene, 2014). The exogenous DNA was inserted while 

leaving all intronic sequences as well as the 3’UTR of the asc gene intact. We 

used a previously published method for both sgRNA and donor vector 

design (Stemmer et al., 2015). The CCTop CRISPR/Cas9 target online 

predictor was used to design sgRNAs targeting the 3’ end of the protein. Two 

sgRNAs whose predicted cleavage site was located upstream of the STOP 

codon were found suitable, Guide 1 and Guide 2 asc (Fig. III.1.23A).  

We tested whether the sgRNAs could successfully target the genomic 

locus. Trial injections with only sgRNAs and Cas9 showed that Guide 2 asc 

successfully targeted the region in close to 100% of injected embryos, whereas 

Guide 1 asc had an efficiency of close to 70%. We therefore used only Guide 2 

asc for further injections.  
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Figure III.1.23. Design of sgRNAs and donor vector for endogenous tagging of asc.  
Diagram of full asc gene (green) with exons (yellow) showing region chosen to search for 
candidate sgRNAs (teal) using the online design tool at http://crispr.cos.uni-heidelberg.de. 
Chosen sgRNAs, Guide1 and Guide 2 asc (lime green) are located at the end of the gene’s last 
exon [A]. Donor vector was designed included 1 and 2kb left and right homology arms (LHA 
and RHA) flanking a linker-EGFP CDS. The homology arms ended (LHA) or started (RHA) at 
the predicted cutting site for Guide 2 asc sgRNA [B].  

 

The DNA insertion was carried out by homology directed repair. This 

method relies on coinjecting a donor vector in which two homology arms (for 

the 5’ and 3’ ends) flank a linker sequence upstream of a fluorescent protein. 

Following an approach for donor vector design published previously (Hisano 

et al., 2015), we designed homology flanks specific to Guide 2 asc, meaning 

that homology flanks extended up to the cutting site of Cas9 specific for the 

sgRNA used. The total length of the two the 5’ and 3’ homology flanks was 

1kb and 2kb in length, respectively (Fig. III.1.23B). The 5’ homology flank 

covered a genomic region that included the last exon, whereas the 3’ region 

covered that of the 3’ UTR of asc and part of the 3’ UTR of a second gene on 

the opposite strand, scn1b (ENSDARG00000070170). Because it has been seen 

that recombination is more efficient when the donor vector is linearized in 

vivo by Cas9 after injection (Irion et al., 2014), we included the sgRNA-1 target 

site (Stemmer et al., 2015) for linearization upstream of the 5’ homology flank 

(Fig. III.1.23B, green arrowhead). All elements were assembled in the final 

donor vector using the Golden GATEway cloning system (Kirchmaier et al., 

2013) (a more detailed description on the donor vector cloning strategy is 
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available in Materials and Methods). The final donor vector was injected in 

combination with Cas9 and the sgRNAs (Guide 2 asc to target the genomic 

locus and sgRNA-1 to linearize the donor vector). At 2dpf embryos were 

screened for those with GFP expression pattern reflected that of the asc 

mRNA and protein (Fig. III.1.1 and 1.2). We observed some embryos with 

patchy expression of GFP in the epidermis in an extremely low ratio. In total, 

we obtained approximately one positive embryo for every 150 injected, 

although the success rate varied, occasionally being as high as 1 in 50 or with 

no positive embryos found at all. Due to the low number of embryos with 

GFP expression we abstained from genotyping at this stage and instead raised 

all positive F0 fish to adulthood.  

7.5.3 The GFP expression in the asc:asc-EGFP CRISPR knock-in line 

reflects RNA and protein expression pattern 

The F1 was screened for positive integration in the germline by 

outcrossing the F0 adults with wild type fish. We obtained one founder 

whose progeny with GFP expression was approximately 30%. We tested for 

successful integration by amplifying the region containing the Guide 2 asc 

sgRNA target site. Amplification of the wild type allele would yield a PCR 

product of 260bp, whereas amplification of an allele where recombination had 

been successful would give a longer 1.1kb product containing the 850bp 

corresponding to the GFP and the linker sequences. Indeed, we observed that 

GFP positive embryos contained both alleles, whereas GFP negative embryos 

were homozygous for the wild type allele (Fig. III.1.24A). Sequencing of the 

1.1kb PCR product (Fig. III.1.24B) confirmed that the fragment corresponded 

to the linker-EGFP tag from the donor vector inserted via homologous 

recombination in the genome (Fig. III.1.23B). 
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Figure III.1.24. Genotyping of F1 progeny of asc:asc-EGFP.  
F0 was outcrossed and F1 progeny, screened based on GFP expression, was genotyped via 
PCR by using primers flanking the Guide 2 asc sgRNA target site. Amplification of the wild 
type allele yields 260bp product, whereas amplification of asc:asc-EGFP allele results in a 
1.1kb product containing the 850bp linker-GFP sequence [A]. Sequence of the 1.1kb asc:asc-
EGFP allele PCR product [B].  

 

After genotyping, we imaged the larvae at different stages to visualize 

the endogenous expression pattern of asc (Fig. III.1.25 and 1.26). We observe 

expression of asc-EGFP throughout the entire epidermis from 1dpf (Fig. 

III.1.25A). Expression is seen also at 2dpf (Fig. III.1.25B and C), 3dpf 

(Fig.1.26A and A’) and 5dpf (Fig. III.1.26B). At all stages examined, muscle 

cells never express asc, as can be seen in a sagittal sections of the 3dpf larva 

(Fig. III.1.25C and 1.26C). The protein has both a cytoplasmic and nuclear 

localization (Fig. III.1.25B’) and is expressed in epithelial tissues that were also 

seen to express asc mRNA as judged by ish, such as gills (Fig. III.1.25C’) and 

intestine (Fig. III.1.26C’). Furthermore, we also observe cells in the brain that 

were also strongly expressing GFP (Fig. III.1.26C’’), again reflecting the 

mRNA expression pattern.  
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Figure III.1.25. asc:asc-EGFP shows expression in epidermis at 1 and 2dpf.  
Live imaging of asc:asc-EGFP F1 during early development showing expression patterns at 
1dpf [A] and 2dpf [B]. Imaging epidermal cells shows ASC-GFP localizing also to the nucleus 
of epidermal cells [B’]. Optical sagittal section of 2dpf larva showing no expression in muscle 
cells [C] and expression in the pharyngeal branches [C’]. 
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Figure III.1.26. Epithelial tissues show expression of asc:asc-EGFP.  
Live imaging of asc:asc-EGFP F1 shows expression patterns of larvae at 3dpf [A] and 5dpf [B]. 
Optical cross section of 3dpf larvae showing expression in epidermis also in dorsal and 
ventral fins [A’]. Optical sagittal section of 5dpf larva [C] showing expression in intestine [C’]. 
Transversal optical sectioning of the brain showing expression pattern in the head [C’’]. 

 

To determine whether myeloid cells were GFP positive in the asc:asc-

EGFP line, we crossed the founder with the pU1:tagRFP line and imaged the 

offspring at 3dpf. We observed that myeloid cells labeled by the pU1:tagRFP 

line coexpressed GFP. These included microglia (Fig. III.1.27A), macrophages 

(judging by morphology) in the muscle tissue (Fig. III.1.27B) and myeloid 

cells in the caudal hematopoietic tissue (CHT, Fig. III.1.27C). In the CHT, we 

observed other cells that expressed asc, but were not labeled by pU1 (Fig. 

III.1.27C, white arrowhead).  

Overall, the observed GFP expression pattern confirms the antiASC 

immunostaining showing that myeloid cells in the pU1:tagRFP contain ASC 

protein (Fig. III.1.4A and B). 
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Figure III.1.27. Myeloid cells express asc-EGFP.  
Live imaging of a 3dpf asc:asc-EGFP, pU1:tagRFP transgenic larva in the head region shows 
coexpression in microglial cells [A] and macrophages in muscle tissue [B]. Imaging the CHT 
region revealed some myeloid cells expressing high levels of asc (yellow arrowheads) 
whereas in others asc expression was barely detectable (white arrowhead). Other cells in the 
CHT that were not tagRFP positive were also seen to express asc [C].  

7.5.4 Specks in the asc:asc-EGFP CRISPR knock-in line happen 

concomitantly with cell death 

While imaging the asc:asc-EGFP line, we noticed the occasional 

appearance of GFP specks without any experimental stimuli. Upon closer 

examination, we observed that, without exception, specks were contained in 

what appear to be dead or dying cells in the epidermis as shown in the bright-

field (Fig. III.1.28A). A time-lapse of the events following one case of speck 

formation (Fig. III.1.28B) showed that the speck is contained within the 

seemingly dying cell. Afterwards, the appearance of a second cell 
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surrounding it is visible in the bright-field (Fig. III.1.28B, yellow arrowhead). 

The cells remain in contact until the dying cell collapses (Fig. III.1.28B, orange 

arrowhead). Afterwards, the speck seems to shrink and disappear. We 

observed specks appearing also in epidermal cells in fins. The example in Fig. 

III.1.28C (first time-point), shows a speck inside a dying cell in the dorsal fin. 

We again followed the events by time-lapse imaging and saw that after a 

period of time in which the speck remains in the vicinity of the dead cell, the 

speck seems to fade and disappear (Fig. III.1.28D, yellow arrowhead). The 

reason for speck formation in these examples is unclear. These events confirm 

that speck formation happens in zebrafish with endogenous levels of ASC 

and that it leads to cell death. The causes leading to speck formation can now 

be further studied using our newly developed in vivo model. 
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Figure III.1.28. Speck formation occurs in vivo.  
Live imaging of the dorsal region of 3dpf asc:asc-EGFP larva where three specks have formed. 
Merge with bright-field plane shows all specks are within a cell displaying altered 
morphology (circled by a yellow dashed line) [A]. Time-lapse imaging of an epidermal cell 
after speck formation. A single plane merged with the bright-field to display cell features is 
shown. Yellow arrowheads highlight a cell that approaches the one containing a speck and 
appears to engulf it over the course on almost an hour. Orange arrowhead shows degradation 
of the cell body, which marks the subsequent disappearance of the speck [B]. Example of 
speck formation in dorsal fin, shown in a single plane merged with the bright-field. The 
speck-containing cell displays altered morphology (circled by a yellow dashed line). Time-
lapse of cell in [C] in 3D rendering, showing speck slowly fading 90 min after movie start 
[yellow arrowhead, D].  

8 Interleukin-1 

The hallmark of inflammasome activation in mammals is the release of 

the mature form of IL-1β after it is cleaved by caspase-1. We therefore set out 

to characterize Interleukin-1 in fish to understand its role as an inflammatory 

cytokine in the context of what is known about the two Il1 paralogues in 

mammals, Il1α and β. This project was carried out using medaka (Oryzias 

latipes). 

8.1  Teleost fish Interleukin-1 orthologues lack conserved caspase-1 
cleavage site  

Humans and mice, where interleukins are well characterized, have two 

paralogues of the Il1 gene, Il1α and Il1β. The divergence of these genes form a 

single locus roughly coincides with the emergence of mammals. IL-1 family 

members have been described in fish, however, there is no evidence that the 

expansion of the IL-1 locus (that includes Il1α and Il1β, among other genes) 

also took place in fish (Ogryzko et al., 2014b). Regardless, because il1 genes in 

fish possess an IL-1 family signature and have an overall higher homology to 

IL-1β than IL-1α, they have generally been considered orthologues of the latter 

(Bird et al., 2002; Ogryzko et al., 2014b).  

It has been previously reported that the caspase-1 cleavage site, which 

in mammalian pro-IL-1β is located after an aspartic acid residue in exon 5, is 

not revealed by sequence alignments analysis of the corresponding regions in 

mammalian and fish IL-1 (Huising et al., 2004; Secombes et al., 2011). To test 
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whether the reported cleavage site for IL-1α was conserved in fish IL-1, we 

performed alignments using the protein sequences of both IL-1 mammalian 

paralogues (in their immature forms) and available IL-1 sequences from a 

number of teleost fish species (Fig. III.2.1). As previously reported (Bird et al., 

2002), the alignment showed that the cleavage site of pro-IL-1β (Fig. III.2.1, 

aspartic acid in red) is not conserved in any of the IL-1 sequences of  fish 

species included in the analysis. However, the reported calpain cleavage site 

for pro-IL-1α (Fig. III.2.1, serine in blue) is conserved in most analyzed 

sequences, including both medaka and zebrafish. This led us to hypothesize 

that il1 in fish, instead of being the functional orthologue of either 

mammalian Il1α or Il1β, retained genetic and functional characteristics of the 

ancestral il1 that gave rise to both paralogues during the mammalian IL-1 

family expansion. 

 

 
Figure III.2.1. Conservation of mammalian Interleukin-1 cleavage sites in fish. 
Fragment of alignment of protein sequences from human and mouse IL-1α and IL-1β with IL-
1 sequences from various species of teleost fish. Cleavage site of IL-1β	 is printed in red (D, 
aspartic acid) and that of IL-1α in blue (S, serine). Alignment by Baubak Bajoghli. 

8.2 The expression of interleukin 1 in medaka larvae is both constitutive 
and inducible  

In mammals, Il1α is expressed constitutively in epithelial layers 

whereas Il1β expression is induced in myeloid cells such as monocytes, 

macrophages and dendritic cells as a response to inflammatory stimuli 

(Garlanda et al., 2013a). To test whether il1 in medaka was constitutively 

expressed and/or inducible, we used two approaches. We first examined the 

expression pattern of the gene in medaka. In situ hybridization on naïve 

medaka embryos, showed that expression of il1 is not detectable at this stage. 

However, infection of the embryo with bacteria (Escherichia coli) leads to an 
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upregulation that is detectable using the same assay (Fig. III.2.2).  

 

 

Figure III.2.2. Induced, but not basal, 
expression of il1 is detectable by in 
situ hybridization in medaka larvae.  
In situ hybridization of 6dpf medaka 
larvae in a naïve situation and after 
bacterial injection. Expression of il1 is 
only detected in the latter. Experiment 
performed by Baubak Bajoghli. 

 

Second, to track the spatiotemporal induction of il1 after an 

inflammatory stimulus live, we generated a transgenic reporter line for the 

gene. The il1:EGFP-t2a-il1-HA vector used to generate this line is depicted Fig. 

III.2.3A. We used the 7kb region upstream of the il1 CDS as promoter and 

inserted an EGFP directly downstream. The expression of GFP is a proxy for 

the transcriptional activation of il1. To determine whether the protein is being 

cleaved in vivo, we included the il1 CDS tagged with a C-terminal HA 

downstream of the EGFP. The two sequences were separated by a T2A 

sequence to produce two separate proteins (Provost et al., 2007).  

The il1:EGFP-t2a-il1-HA transgenic line expressed GFP from very early 

in development, namely the blastula stage (Fig. III.2.3C). To corroborate the 

early expression of the gene we performed a RT-PCR on cDNA produced 

from morula, blastula, 1dpf and 2dpf medaka wild type embryos (Fig. 

III.2.3B). The gene is indeed endogenously expressed from the blastula stage, 

and present at 1 and 2dpf, indicating that the temporal expression of the 

il1:EGFP-t2a-il1-HA transgenic line reflects that of the endogenous gene. 

Transgenic larvae showed a basal level of expression in the epidermis as well 

as in specific organs such as the gills, intestine and thymus (Fig. III.2.3D). 
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Figure III.2.3. The il1:EGFP-t2a-il1-HA transgenic reporter line shows endogenous 
expression pattern of il1 in medaka larvae.  
The 7kb region upstream of the il1 transcriptional start site drives expression of EGFP and the 
il1 CDS tagged C-terminally with HA with a T2A sequence in between [A]. RT-PCR of il1 
during early developmental stages: morula (M), blastula (B), 1 dpf (1) and 2dpf (2). ef1a is 
used as housekeeping gene control [B]. Live imaging of the il1:EGFP-t2a-il1-HA line showing 
endogenous expression patterns at early developmental stages [C]. At 10dpf il1:EGFP-t2a-il1-
HA transgenic larvae shows expression in the epidermis and gills [D]. 
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We tested whether the il1:EGFP-t2a-il1-HA reporter would respond to 

inflammatory stimuli. We used the tail fin wounding assay (de Oliveira et al., 

2013; Ogryzko et al., 2014a) in medaka larvae (Fig. III.2.4A). Time-lapse 

imaging after the insult revealed a strong activation in the area surrounding 

the cut 6 hours after injury. The induction continues to increase with more 

elapsed time, indicating the inducibility of the reporter and therefore of il1. 

We next tested another localized injury by injecting bacterial 

lipopolysaccharides (LPS) directly into the muscle tissue (Fig. III.2.4B) and 

performing time-lapse imaging. Because LPS induces il1 in zebrafish larvae 

(Novoa et al., 2009; Watzke et al., 2007), we tested whether it would result in 

an increased in vivo response of the reporter. As a control we injected PBS 

(Fig. III.2.4C). After PBS injection activation began at 7.5 hours after injection 

and after LPS at 6 hours after injection. This indicates that the injury sustained 

during injection itself is sufficient to activate il1. However, LPS does cause a 

heightened response, with larger numbers of cells in the surroundings 

showing il1 activation. The muscle cells immediately adjacent to the site of 

injury do not activate il1 (Fig. III.2.4D). Because myeloid cells can be a major 

source of il1 activation in zebrafish (Banerjee and Leptin, 2014), it is possible 

that the induction we see corresponds to myeloid cells drawn to the site of 

injury and activating il1 expression.  
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Figure III.2.4. Expression of il1 is induced in reporter line as a response to injury.  
Time-lapse imaging of an il1:EGFP-t2a-il1-HA transgenic larvae after tail fin wounding, cut is 
depicted by a dashed yellow line. [A]. Time-lapse imaging of an il1:EGFP-t2a-il1-HA 
transgenic larvae after injection of PBS [B] or LPS [C]. Single plane of last time-point from LPS 
injection time-lapse is merged with the bright-field [D]. In all images, green channel is 
displayed using a color lookup table. 

 

Thus far, our experiments show that il1 is inducible after an insult and 

that the il1:EGFP-t2a-il1-HA reporter line recapitulates this inducibility. 

Furthermore, the reporter line also revealed il1’s endogenous expression 

pattern, showing that there is constitutive expression of the gene in the 

epidermis that is below the ish detection limit.  

8.3 Adult myeloid cells express interleukin 1  

To test whether il1 expression was constitutive and/or inducible in 

myeloid cells, we used flow cytometry of samples from medaka adults. As an 

inflammatory stimulus, adults were first injected intraperitoneally with 

fluorophore-conjugated E. coli. Blood, spleen and head kidneys were collected 

16 hours post infection (hpi). We saw that close to 6% of all cells in blood 

samples constitutively expressed GFP. No GFP+ cells were found on wild 

type controls (Fig. III.2.5A, left and middle panels). In blood samples from 

injected fish, one fifth of this population became double positive (RFP+/GFP+) 

indicating that fluorescent bacterial were phagocytized in vivo. The GFP- 

fraction remained unchanged (Fig. III.2.5A, right panel). That no RFP+/GFP- 

cells were found suggests that all phagocytic cells in the blood constitutively 

express il1. When blood samples were gated for myelomonocytic cells (Fig. 

III.2.5B, left panel), the percentage of GFP+ cells increased to more than 70% of 

the total population, indicating that myelomonocytic cells represent a major 

fraction of the cells constitutively expressing il1 in the blood (Fig. III.2.5B, 

middle panel). Furthermore, in blood samples from injected fish, we observed 

that the GFP+ myelomonocytic population slightly increased suggesting these 

cells can upregulate il1 upon inflammatory insult (Fig. III.2.5B, middle panel).  
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Figure III.2.5. Myeloid cells in adult induce il1 expression after inflammatory stimuli.  
Single cell suspensions of blood [A], spleen [C] and head kidney [D] collected from medaka 
il1:EGFP-t2a-il1-HA adults 16h after intraperitoneal injection with red fluorescent E. coli were 
analyzed by flow cytometry with non injected and wild type controls. Cells are plotted 
according to GFP (FITC axis) and red (PE-A) fluorescence intensity. Cells in right quadrants 
express il1. Cells in the top quadrants engulfed red-labeled bacteria. The myelomonocytic cell 
population was gated according to forward (FSC-A) and side (SSC-A) scatter [B].  
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We found that the spleen and kidney had a higher ratio of GFP+ cells 

than the blood (Fig. III.2.5C and 2.5D, respectively), with one out of every 4 

cells being GFP+ in the kidney. Injecting the fish with bacteria resulted in a 

20% increase in the GFP+ population in the kidney, indicating that the gene is 

constitutively expressed but also inducible in this organ. In contrast to blood 

samples, both spleen and kidney GFP+ and GFP- fractions were able to engulf 

bacteria, suggesting that a phagocytic cell type that does not express il1 is 

absent in the blood but is present in both these organs.  

Overall, the experiments confirm that il1 is constitutively expressed in 

some adult cell types and that the expression increases upon inflammatory 

stimuli. 

8.4 Medaka IL-1 is cleaved in vivo  

Treatment of mammalian cells in vitro with the K+ ionophore nigericin 

results in cleavage of both IL-1α and IL-1β cleavage whereas treatment with 

the Ca2+ ionophore, ionomycin, results only in cleavage of IL-1α (Groß et al., 

2012). To test if we could detect cleavage of the IL-1HA, we treated il1:EGFP-

t2a-il1-HA and wild type larvae as controls with either nigericin or ionomycin. 

The drug was added directly to the water and protein lysate samples were 

collected after 30 min of exposure. To visualize cleavage we performed an 

immunoblot using antiHA (Fig. III.2.6A). We detected a band of 31kDa 

corresponding to the full-length IL-1-HA as well as a band of around 60kDa 

corresponding to the GFP-T2A-IL-1-HA protein. Given that it has been 

reported that the cleavage of the T2A peptide is not 100% efficient in zebrafish 

(Kim et al., 2011), this was expected. Both bands were absent in the wild type 

controls. Upon addition of ionomycin and to a slightly lesser extent, nigericin 

at a concentration of 10µm, two bands of lower molecular weight appeared in 

the antiHA blot, of around 20 and 18kDa. These bands were absent in the 

wild type sample, suggesting that they correspond IL-1-HA whose N-

terminal domain is cleaved off in two different sites. Because the ratio of the 

cleaved to immature IL-1-HA was extremely low, we included a pretreatment 

with LPS to induce activation of il1 and increase the ratio of cleaved protein, 
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as is frequently done in in vitro experiments (Groß et al., 2012) (Fig. III.2.6B). 

Samples pretreated with LPS showed greater induction of the reporter, as 

shown by the increase in antiGFP signal. However, this increase did not 

directly translate into a higher ratio of the cleaved fragments to immature IL-

1-HA.  

 

 
Figure III.2.6. IL-1-HA is cleaved in vivo after exposure to inflammatory stimuli. 
Immunoblots of protein lysates of 10-14dpf il1:EGFP-t2a-il1-HA medaka larvae after a 30 min 
treatment with nigericin or ionomycin in the concentrations shown. Wild type larvae were 
used as negative controls. γtubulin is used as loading control. Possible cleavage products of 
IL-1 appear in antiHA blot as bands of lower molecular than the full-length IL-1-HA, these 
and the band corresponding to protein GFP-T2A-IL-1-HA are highlighted by black 
arrowheads [A]. Immunoblots of protein lysates of 10-14dpf il1:EGFP-t2a-il1-HA medaka 
larvae exposed to 3 hours of LPS pretreatment followed by 30 min of 10 µM ionomycin 
treatment [B]. Immunoblots of protein lysates of 10-14dpf il1:EGFP-t2a-il1-HA medaka larvae 
exposed to 3 hours of LPS pretreatment followed by 30 min of 10 µM ionomycin [B]. 
Immunoblots of protein lysates of 10-14dpf il1:EGFP-t2a-il1-HA medaka larvae exposed to 
either 24 or 48 mJ/cm2 of UVB irradiation, 30 or 60 min after exposure. No cleavage of IL-1-
HA was observed at the selected time-point after insult [C]. Immunoblots of head kidney and 
spleen protein lysates of il1:EGFP-t2a-il1-HA medaka adults collected 1 (I-1) or 3 (I-3) days 
after intraperitoneal injection with E. coli. Wild type samples were used as negative control 
[D]. 
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Because we had seen that the epidermis expresses il1 constitutively, we 

hypothesized that an inflammatory treatment that affects these cells directly 

might lead to IL-1-HA cleavage in a higher ratio than what we had observed 

with ionophore treatment. Since UVB irradiation leads to increase in il1 

expression in zebrafish larvae (Banerjee and Leptin, 2014) we chose this 

inflammatory stimulus. We used two doses of irradiation and collected the 

samples 30 and 60 min after treatment (Fig. III.2.6C). The UVB treatment did 

lead to an induction of il1 expression, but we could not detect the cleaved 

fragments in these samples.  

We therefore suspected that the cleavage was not taking place in 

epidermal cells, but in other cell types constitutively expressing il1. Since we 

had seen that these cell types could be found in adult blood, spleen and head 

kidneys (Fig. III.2.5), we tested if we could detect cleaved fragments in these 

organs. We again used intraperitoneal bacterial injection to induce an 

inflammatory response and, because we had seen the largest GFP+ 

populations in spleen and kidney (Fig. III.2.5C and 2.5D) we collected these 

organs 1 and 3 days post injection (dpi) (Fig. III.2.6D). Expression of il1 was 

induced in both organs strongly at 3dpi, especially in the spleen. This 

increased expression also translated into a higher concentration of both 

cleaved fragments, which had the same molecular size as those appearing in 

whole larva lysates. Taken together, these experiments suggested that IL-1-

HA was being cleaved in vivo as a response to inflammatory stimuli both in 

medaka larvae and adults.  

8.5 IL-1-HA cleaved fragments can be immunoprecipitated and their 
identity confirmed by MS 

To confirm the identity of the cleaved fragments we decided to use 

Mass Spectrometry (MS). Given that the entire proteome is too complex a 

sample to analyze by MS, we first enriched for the proteins of interest via 

immunoprecipitation (IP) using beads covalently bound to antiHA antibody. 

This allowed us to recover both the full-length IL-1-HA and the cleaved 

fragments. Because we had seen the highest ratio of cleaved fragments to full-
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length IL-1-HA in adult spleens collected from fish injected with bacteria (Fig. 

III.2.6D), we used this sample for an IP. As a negative control we used lysate 

from a spleen collected from a wild type fish (Fig. III.2.7A). To avoid antibody 

contamination from the beads, the sample was eluted with HA peptide. We 

assessed the efficiency of elution by boiling the beads (“beads sample”) to 

visualize the protein that remained bound after HA peptide elution. Both 

cleaved fragments and the full-length IL-1-HA were present in the eluate, 

thus showing that the fragments were specifically bound by HA antibodies. 

We could no longer detect GFP or γtubulin in the eluted fraction showing that 

unspecific binding was minimized. We detected some full-length IL-1-HA in 

the beads sample, indicating that the elution method was not 100% efficient. 

However, because using HA peptide meant avoiding contamination from the 

antibody in the beads (Fig. III.2.7A, red dash), we did not switch to a more 

aggressive elution method. We proceeded with MS using the eluate sample. 

To confirm the identity of the full-length IL-1-HA and the cleaved fragments 

separately, eluates were separated by SDS-PAGE and stained with Coomassie 

(Fig. III.2.7B). Coomassie is an insensitive staining method, but we could 

nonetheless detect both the full-length and the cleaved fragments. The gel 

was cut to separate the section containing the full-length IL-1-HA and the 

cleavage products (Fig. III.2.7B, black lines) and samples were subsequently 

processed separately for MS. The MS results from these “Upper” and “Lower 

sections” are depicted in Fig. III.2.7C. Also depicted are results from MS using 

the full eluate without SDS page separation. Each colored block represents a 

peptide detected. We identified peptides belonging to IL-1HA in all samples, 

but only the full eluate contained a peptide belonging to GFP. This confirmed 

the identity of the cleaved fragments, since full-length IL-1HA would not be 

present in the lower section of the gel. We also noticed that the peptide 

containing the predicted cleavage site of IL-1-α was present in both the full 

eluate and the upper section, but absent from the lower section. This could 

suggest that the cleavage site is within the region containing amino acids 81-

113, but further experiments would be required to confirm this.  
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Figure III.2.7. Immunoprecipitation of cleavage products and identification by MS.  
Immunoblot of immunoprecipitation using antiHA-conjugated sepharose beads of protein 
lysates of spleen samples of il1:EGFP-t2a-il1-HA medaka adults collected 3 days after 
intraperitoneal injection with E. coli. Bound fraction (E) was eluted using HA peptide, bead 
sample (B) was obtained by boiling beads after elution. Red lines show unbound antiHA 
antibody (light and heavy chain) originating from beads [A]. Coomassie stain of SDS-PAGE 
containing elution sample from spleen antiHA immunoprecipitation. Black lines mark gel 
sections that were analyzed separately with mass spectrometry. “Upper section” contains 
full-length IL-1-HA and “Lower section” the cleaved fragments. A “Full elute” sample 
corresponding to the eluate not separated by SDS-PAGE was also included. [B]. MS results 
showing identified peptides marked by colored blocks for each sample: full eluate (green), 
upper section (blue) and lower section (red). Peptides corresponding to IL-1 were found in all 
samples, but in the “lower section” peptides identified correspond to sections of the protein 
downstream of the conserved IL-1α (SSAPS) cleavage site [C].  

 

Overall, the combination between IP and MS strengthen the claim that 

the fragments detected correspond to cleaved products of IL-1HA, produced 

in response to inflammatory stimuli in vivo.  
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9 NF-κB 

After the mature forms of IL-1α or IL-1β are secreted from the cell, they 

can bind to IL-1 receptors in neighboring cells. This activates a signaling 

cascade that eventually leads to the translocation of NF-κB to the nucleus, 

thus activating the expression of proinflammatory genes, including that of il1 

itself. Therefore, as an additional and more general tool to visualize and 

quantify the immune response live we generated a reporter line for the 

activation of NF-κB. This project was carried out in zebrafish.  

9.1 The NF-κB zebrafish reporter shows endogenous activation 

A previous study addressing the DNA-binding properties of different 

NF-κB dimers found a high-affinity palindromic binding sequence for a 

diverse combination of dimers using a an NF-κB-specific protein-binding 

microarray (Siggers et al., 2012). To generate a new more sensitive NF-κB 

reporter, we used an 8x multimer of this sequence (5’-GGGAATTCCC-3’) as a 

promoter upstream of an EGFP in one strand and a Renilla luciferase gene 

(luc) on the other (Fig. III.3.1). The simultaneous induction of a fluorescent 

protein and the luciferase gene would allow the activation of NF-κB to be 

visualized by live imaging and also to be quantified (nfκb:EGFP,luc).  

 

 

Figure III.3.1. Map of nfκb:EGFP,luc 
NF-κB binding sites (8 multimers of 5’-
GGGAATTCCC-3’) are located between 
the Renilla luciferase and EGFP CDS, 
located on opposing strands. Each 
reporter gene also has a CMV minimal 
promoter immediately upstream. 
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We generated a transgenic zebrafish line using this construct. We 

identified a founder, outcrossed it and then incrossed the F1. We raised these 

fish and imaged their progeny and that of the next generation (F2 and F3) 

(Fig. III.3.2A-E). The nfκb:EGFP,luc line allowed us to visualize the 

endogenous pattern of NF-κB activation during early development. The 

strongest early expression appeared at 1dpf (Fig. III.3.2A, white arrowhead), 

in two symmetric groups of neurons in the head, which likely correspond to 

the olfactory placodes (Whitlock and Westerfield, 2000). The activation of the 

reporter at 2dpf was reduced in the olfactory placodes and the lateral line, the 

proctodeum and epithelial cells around the edges of the fins became positive 

(Fig. III.3.2B). This expression pattern remained at 3dpf (Fig. III.3.2C), with 

the activity in cells lining the proctodeum (which will become the anal 

passage) increasing (Fig. III.3.2C’). By 5dpf (Fig. III.3.2D), we observed that in 

addition to the signal remaining in the lateral line, fins and proctodeum; cells 

in the intestinal lining became positive (Fig. III.3.2D). This activation coincides 

with the stage in which the larva begins to feed.  

 

 

Figure III.3.2. The nfκb:EGFP,luc transgenic reporter line reveals endogenous NF-κB 
activation pattern during early zebrafish development.  
Live imaging of the nfκb:EGFP,luc transgenic reporter line during early development showing 
endogenous NF-κb activation pattern at 1dpf [A] with expression in the olfactory placodes 
[A’]; 2dpf [B]; 3dpf [C] a single plane merge with the bright-field showing activation in the 
proctodeum [C’]; and 5dpf [D], highlighting activation in the intestine [D’] in a 3D rendering 
of the organ and a single plane merge with the bright-field. Quantification of luciferase 
reporter levels in 2, 3 and 4dpf embryos, shows increase in NF-κb activation with age [E].  
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We tested whether the early activation of NF-κB in the reporter line 

could be quantified using a previously published method for in vivo 

bioluminescence measurement in zebrafish larvae (Lahiri et al., 2014). Because 

measurements are carried out in 96-well plates and the luminescence reagent 

is added directly to the water, the method is non-invasive and easily scalable. 

We observed that in the first 4 dpf, concomitant with the broadening of the 

GFP expression pattern, luciferase expression increases approximately 10 

fold. This confirmed that the palindromic sequence was successfully driving 

expression of both EGFP and luc genes. Therefore, the line is suitable for both 

live visualization and quantification of NF-κB activity, the latter in high 

throughput.  

9.2 NF-κB is active from blastula stages  

NF-κB begins to activate its transcriptional targets from early 

embryogenesis. In zebrafish, it has been shown to play a role in mesoderm 

formation (Correa et al., 2004) and in coordinating the cell cycle with cell 

movements during gastrulation (Liu et al., 2009). Since we had seen that the 

nfκb:EGFP,luc reporter line is sensitive enough to detect the endogenous 

pattern of NF-κB activity, we tested whether we could visualize the early 

activation using live microscopy. We imaged the whole embryo at the 

gastrula stage, from around 6hpf through the beginning of the segmentation 

stage. In order to image the entire embryo at this stage with minimum 

photodamage we used light-sheet microscopy (Reynaud et al., 2008). We were 

able to detected uniform GFP signal already at shield stage, with the animal 

pole entirely labeled (Fig. III.3.3A). Cells retained approximately the same 

level of expression throughout the rest of the gastrula stage and into the 

segmentation stage. Right before the onset of somitogenesis, individual cells 

distributed throughout the embryo had higher levels of reporter activity (Fig. 

III.3.3A, white arrowhead). Furthermore, light-sheet imaging also allowed us 

to delineate the time frame at which expression in the proctodeum increases 

(Fig. III.3.3B, white arrowhead). Shifting to a frontal view allowed us to 

visualize that the strongly labeled cells line the notochord (Fig. III.3.3B’, white 
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arrowhead). 

 

Figure III.3.3. NF-κB is activated transcription from gastrula stage.  
Time-lapse imaging of nfκb:EGFP,luc transgenic reporter line using light-sheet microscopy 
from the gastrula stage until segmentation stages [A]. Time-lapse imaging of the entire 
nfκb:EGFP,luc embryo within the chorion using light-sheet microscopy at 1dpf to visualize 
activation of expression in proctodeum [B].  

 

9.3 Knocking down nfκbiαa results in increased reporter activation 

In the cytoplasm, NF-κB is bound by an inhibitory protein, NF-κBiαa, 

that prevents its translocation to the nucleus (Correa et al., 2004). As a 

confirmation that we observed NF-κB activation with our reporter, we 

genetically reduced nfκbiαa expression by using a previously published 
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morpholino (He et al., 2015). To test whether NF-κB activation was increased 

in the absence of the inhibitor we measured luciferase levels in embryos 

injected with a low and high morpholino dose. Morpholino injection resulted 

in a dose-dependent increment in NF-κB activation in 2 and 3dpf embryos 

(Fig. III.3.4A and E). This increase in NF-κB activation led to severe embryo 

malformation, especially in embryos injected with the high dose (Fig. III.3.4D 

and H). These experiments confirmed that reporter activity in the 

nfκb:EGFP,luc line is linked to NF-κB activation, and further underscore that 

precise regulation of NF-κB is crucial during early developmental processes. 

 

 
Figure III.3.4. nfκbiαa MO of the nfκb:EGFP,luc reporter line show increase NF-κB 
activation and developmental defects.  
nfκbiαa expression was knocked down using a morpholino injected at a low (0.3mM) or high 
(1mM) concentrations. The luciferase activity of larvae belonging to all groups was quantified 
2 [A] and 3dfp [E] and individual larvae were imaged to visualize GFP activation also at 2 [B-
D] and 3dpf [F-H]. 
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9.4 Injury leads to increase in NF-κB activation  

 To test whether the nfκb:EGFP,luc reporter responds to an 

inflammatory stimulus we used the tail fin wounding assay (de Oliveira et al., 

2013; Ogryzko et al., 2014a). To distinguish activation in epidermal cells for 

these experiments we crossed the nfκb:EGFP,luc reporter line with the krt19: 

tomato-CAAX transgenic line (Fig. III.3.5). In an uninjured tail fin of a 4dpf 

larva (Fig. III.3.5A), we observe the previously described basal activation in 

cells at the tail fin edge (Fig. III.3.2C). At 16hpi we see that the reporter is 

active in epithelial cells surrounding the wound edge of injured larvae (Fig. 

III.3.5B’). These results indicate that the activation of NF-κB in response to an 

inflammatory stimulus can be visualized in the nfκb:EGFP,luc reporter line. 

 

 

Figure III.3.5. nfκb:EGFP,luc reporter line shows activation after injury.  
Imaging of naïve nfκb:EGFP,luc/krt19:tomato-CAAX double transgenic larvae [A] and 16h after 
tail fin wounding, cut is depicted by a dashed white line [B]. Magnification of epithelial cells 
shows activation of the reporter after wounding [B’]. 
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IV. Discussion 

1 Using teleost fish models to visualize inflammation  

In this study we characterized diverse aspects of inflammasome 

activation in teleost fish by use of two species. We used zebrafish to visualize 

speck formation and its downstream consequences in a whole organism for 

the first time by developing a misexpression and a knock-in transgenic line. 

Also in zebrafish we developed a tool to visualize and quantify NF-kB 

activation, a master transcriptional regulation of proinflammatory genes. To 

address the issue of IL-1 cleavage in fish we developed a transgenic reporter 

line in medaka to visualize both the induction and the cleavage of IL-1 in 

larvae and adults in vivo.  

1.1 Inflammasome conservation in zebrafish 

Previous work in the lab characterized the repertoire of innate 

immunity genes in the zebrafish genome and found that the NLR genes in 

zebrafish have undergone a massive expansion, resulting in more than 350 

genes with varying domain structures (Howe et al., 2016). This gene 

amplification and diversification could imply that NLR receptors in fish have 

wider direct detection abilities than in mammals or that the variety is 

analogous to the multiple isoforms of mammalian gene families (Ogryzko et 

al., 2014b).  

The zebrafish genome has only a single orthologue of asc that retains 

the domain composition of one PYD and CARD domain of its mammalian 

counterpart and (Masumoto et al., 2003). This appears to be the case for at 

least two other teleost fish in which asc has been cloned (Li et al., 2016; Sun et 

al., 2008). The ASC speck is the central platform upon which inflammasomes 

are built (Vanaja et al., 2015) and its formation and assembly are considered a 

proxy for inflammasome activation (Sester et al., 2015; Stutz et al., 2013). 

Although it is unclear whether fish can assemble NLR inflammasomes, we 
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focused on the adaptor, which might have a more general function than any 

of the NLRs in the zebrafish genome. As has been reported for mammals, 

overexpression of ASC led to speck formation, and, by generating a knock-in 

line, we also observed speck formation of tagged ASC expressed at 

endogenous levels under its own promoter. While certain aspects of 

inflammasome activation had been studied in fish using isolated cells 

(Angosto et al., 2012; Reis et al., 2012) or larvae (Vincent et al., 2015; Vojtech et 

al., 2012), to our knowledge no previous study had visualized speck 

formation and its consequences by in vivo imaging in the otherwise intact 

organism. 

Another aspect in inflammation that this study addressed was the role 

of IL-1 in vivo using medaka fish. The activation observed with a il-1 

transgenic reporter indicated that gene expression is strongly induced and 

also undergoes proteolytic cleavage after an inflammatory stimulus. Both of 

these aspects are reported downstream of inflammasome activation in 

mammals (Garlanda et al., 2013b). 

2 ASC speck is formed in vivo 

2.1 ASC overexpression drives speck formation 

The fact that ASC was discovered because it formed aggregates 

(Masumoto et al., 1999) is a clear indicator of how intrinsic a behavior speck 

formation is to this protein. Since then, the fact that ASC is prone to 

aggregation has been well documented. To generate a clonal inflammasome 

reporter macrophage line in which ASC is tagged to a fluorescent protein, 

Stutz et al. (2013) indicates that following transgene insertion, there will be 

cells that form specks autonomously. The paper also notes that selecting cells 

with a precise level of fluorescence is crucial given that highly fluorescent 

cells are prone to speck formation without addition of inflammatory stimuli 

(Stutz et al., 2013). Similarly, Sester et al. (2015) observed a dose-dependent 

increase in spontaneous speck formation when transfecting ASC-GFP in 

HEK293 cells (Sester et al., 2015).  
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Masumoto et al. (2003) had previously shown that expressing zebrafish 

ASC fused to a fluorescent protein in mammalian cells resulted in speck 

formation without any external stimuli. Indeed, one previous study using asc-

GFP mRNA injection to assess speck formation in a zebrafish Listeria 

monocytogenes infection model as a proxy for inflammasome activation, found 

that PBS injected controls contained the same number of specks as larvae 

infected with wild type bacteria. Only infection with an L. monocytogenes 

strain engineered to express flagellin exogenously resulted in higher numbers 

of specks than negative controls (Vincent et al., 2015). However, which cell 

types formed the specks and whether those would actually express asc 

endogenously was not investigated. These results, together with our own 

experiments using heat-shock, drug induction and mRNA-driven 

misexpression of zebrafish ASC (Fig. III.1.5 and 1.6) support the notion that 

overexpression of ASC in zebrafish leads to speck formation without 

exposure to any exogenous inflammatory stimuli.  

NLR oligomerization functions as a nucleation factor that then drives 

speck formation (Lu and Wu, 2014). In the case of speck formation as a 

consequence of overexpression, like the one we observe in zebrafish larvae, 

the requirement for a nucleating molecule is likely being bypassed. This is 

consistent with the observation that ASC behaves like a prion-like protein. 

Prions usually induce an energetically favored self-polymerization process in 

which the native protein is converted into the polymerized form (“prion 

switching”) after a nucleation step (Ruland, 2014). However, since the 

frequency of prion switching depends on the concentration of the prion-like 

protein, the prion state can also be induced by overexpression (Cai et al., 

2014). However, if only physiological amounts of the protein are present, the 

nucleating factor is required. During in vitro assembly of PYDASC filaments, 

physiological amounts of PYDASC did not polymerize unless NLRP3 (lacking 

the LRR) was added (Lu et al., 2014). Therefore, in our experimental set up of 

induced misexpression of ASC in zebrafish larvae, specks are likely being 

assembled as a consequence of overexpression.  
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2.2 ASC behavior in single cells 

In the transgenic line Tg(HSE:asc-mKate2) (Fig. III.1.8), we observed 

that the total speck number reached a plateau in single larvae approximately 

15hphs (Fig. III.1.8A and B). In this line, a single pulse in the form of a heat 

shock induces ASC expression. Therefore, by 15hphs, cells in which the pulse 

induced expression to a level sufficient to overcome the ASC concentration 

threshold required for speck formation, had already formed a speck.  

In single cells we observed ASC is distributed throughout the 

cytoplasm, as has been reported in experiments in vitro (Bryan et al., 2009; 

Fernandes-Alnemri et al., 2007). Upon speck formation, all the available pool 

of the protein gets recruited to a single speck. This was true for epithelial 

cells, which endogenously express asc and muscle cells, which do not (Fig. 

III.1.1 and 1.2). The quantification of ASC-mKate2 in single epithelial cells 

showed no clear concentration threshold for activation (Fig. III.1.8D) and the 

amount of overexpressed ASC-mKate2 was not a good predictor for speck 

formation (Fig. III.1.8E). However, only the overexpressed ASC is detected in 

these experiments and the levels of endogenous ASC might vary between 

cells. Interestingly, we observed that cells in which ASC-mKate2 increased at 

higher rates formed a speck. Cells with a lowest rate of ASC-mKate2 increase 

did not form a speck, even though these cells eventually reached higher 

concentration levels of ASC-mKate than cells that did form a speck. 

Consistent with this observation, the rate of ASC-mKate2 increase was 

correlated with speck formation time point.  

Although mechanisms to control cellular concentration of ASC exist, a 

sudden and rapid increase in concentration could give the cell very little time 

to adjust the endogenous levels of the protein, resulting in speck formation. If 

the increase in ASC is slower, perhaps degradation or post-translational 

modifications can keep the total protein concentration in check. The results 

we observed with single point mutations targeting predicted phosphorylation 

sites suggests that this regulatory mechanism, reported for mammalian ASC 

(Hara et al., 2013), could be conserved in zebrafish. Additional post-

translational modifications could also play a role, especially in the light of 
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ASC being a ubiquitination target (Rodgers et al., 2014; Shi et al., 2012) or 

even the synthesis of other regulatory proteins, like the decoy CARD-only 

proteins or PYD-only proteins (known as COPs and POPs, respectively) 

(Dorfleutner et al., 2015). 

Why do cells form a single speck? Data obtained by studying kinetics 

of speck formation in single epithelial cells (HeLa cells) support a model in 

which soluble cytoplasmic ASC molecules have a low affinity for each other, 

consistent with the weak interaction between PYD domains (Lechtenberg et 

al., 2014). This results in a very low probability of nucleation, but, after 

nucleation occurs, the affinity of aggregation increases significantly, leading 

to a fast recruitment of all soluble ASC in the cell. This process is only limited 

by diffusion speed and makes the formation of a second speck a highly 

unlikely event (Cheng et al., 2010). This is consistent with the behavior 

predicted for the cooperative formation of oligomeric complexes (Wu, 2013) 

in which a sharp transition in the response is observed as a function of ligand 

concentration.  

3 Caspa recruitment and pyroptosis in epithelial cells 

3.1 An alternate domain organization in zebrafish inflammasome 

Masumoto et al. (2003) showed that if Caspa was coexpressed with 

zebrafish ASC in mammalian cells, it was recruited to ASC specks. Co-

immunoprecipitation experiments showed that Caspa lacking its PYD domain 

was unable to interact with ASC (Masumoto et al., 2003). This indicates that 

Caspa is recruited to the speck via its PYD domain (PYDCaspa) in mammalian 

cells. Our in vivo experiments showed that Caspa is recruited to the ASC 

speck live also via PYDCaspa in zebrafish. Although expression of the PYDASC 

or PYDCARD domain alone resulted in aberrant speck formation (Fig. III.1.17 

and 1.18), the aggregates formed by overexpression of PYDASC recruited 

PYDCaspa and Caspa and but not the caspase domain alone.  

Current models of inflammasome assembly based on the 

oligomerization of PYDASC and CARDASC domains into filaments (Lu and Wu, 
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2014) depict ASC filaments composed of an inner ring of homo-oligomerizing 

PYDASC domains with the CARDASC flexibly linked in en external outer ring. 

The CARDASC act as nucleating factors of caspase-1 when the protease docks 

onto them through CARD-CARD interactions and forms its own filaments. 

The structure of the caspase-1 CARD filaments assembled in vitro was 

recently solved using CryoEM (Lu et al., 2016). Caspase-1 CARD domains 

assemble in a helical manner to form a filament analogous to the one 

assembled by PYDASC domains. We observed no filament formation of 

PYDCaspa-GFP (Fig. III.1.19B), which could reflect a difference between in vitro 

and in vivo experimental approaches or one between zebrafish and 

mammalian inflammasome assembly. Regardless, given that both PYD and 

CARD domains can form these high-order assemblies, we can hypothesize 

that inflammasome assembly in zebrafish has an inverted ASC filament 

structure with CARD domains located on the inside and Caspa assembling its 

own PYD filaments by docking on the outer PYDASC layer. Given that within 

the numerous zebrafish NLRs some have an N-terminal CARD (or PYD) 

domain there are many possible sensor molecules that could nucleate ASC 

assembly in this scenario (Laing et al., 2008; Stein et al., 2007). Confirming this 

hypothesis would require a more detailed structural analysis of the zebrafish 

inflammasome components.  

3.2 Caspase-1 expression as a pyroptotic determinant  

We observed a striking difference in the cellular response to speck 

formation depending on cell type. Epithelial cells underwent a rapid cell 

death after speck formation, displaying the archetypical morphological 

features of pyroptosis such as cell detachment, swelling and rounding 

(Jorgensen and Miao, 2015), whereas muscle cells seemed unaffected by speck 

formation at least for the following 20h. Treatment with the general caspase 

inhibitor Q-VD-OPh significantly reduced speck formation-induced cell 

death, confirming that the cell death is caspase-dependent (Fig. III.1.14).  

The overexpression of Caspa was highly toxic for epidermal cells (Fig. 

III.1. 15A). Muscle cells also displayed an altered morphology upon Caspa 
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overexpression (Fig. III.1. 15D), although at a much later timepoint. It had 

been reported that Caspa or Caspb expression leads to cell death in 

mammalian cells (Masumoto et al., 2003), but within 20hphs only Caspa 

overexpression showed this response in vivo(Fig. III.1.15). A mouse model 

where caspase-1 was overexpressed in epidermal cells also caused high levels 

of epidermal cell death that led to dermatitis and ulcers (Yamanaka et al., 

2000). In situ hybridization showed weak expression of caspa in epithelial cells 

(Fig. III.1.20). Altogether, this suggests that the expression of caspa must be 

kept tightly under control to prevent unintentional activation of the protease.  

Fernandes-Alnemri et al. (2007) showed that HEK293 cells stably 

expressing physiological amounts of ASC–GFP were able to form a speck and 

remain viable. However, if pro-caspase-1 was coexpressed in this cell line, 

cells showed the morphological features of pyroptosis upon speck formation 

(Fernandes-Alnemri et al., 2007). We found no evidence for caspa or asc 

expression in muscle cells in naïve zebrafish larvae. Therefore, it is possible 

that muscle cells do not undergo pyroptosis after overexpression-induced 

speck formation because these cells lack the effector downstream of the initial 

inflammasome signaling. We took advantage of this fact to analyze ASC and 

Caspa domain interactions in vivo. However, it is possible that muscle cells 

are able to upregulate these genes in an inflammatory situation. In mice, the 

expression of NLRP3 inflammasome components is upregulated in primary 

mature muscle cells derived from a mice model of inflammatory muscle 

disease, whereas they were absent or strongly reduced in wild type mice. 

Furthermore, knocking down dysferlin from muscle cells in culture resulted 

in the release of mature IL-1β, although at levels 30x lower than those of a 

macrophage cell line after the same knockdown (Rawat et al., 2010). 

Therefore, although not expressed in a naïve situation, inflammasome 

components may be upregulated and activated under strong 

proinflammatory conditions in muscle cells. 

Because Caspa was recruited to the ASC speck and neither Caspb nor 

Casp3a were, we generated a knockout of this gene using CRISPR/Cas9. 

Further experiments will address whether speck formation leads to 
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pyroptosis in epidermal cells in caspa mutant larvae. However, in the absence 

of Caspa, other caspases might be recruited to the speck, as has been reported 

for caspase-8 in mammals (Pierini et al., 2012; Sagulenko et al., 2013). Since 

the caspase-8 zebrafish orthologue, like caspase-8, has an N-terminal DED 

domain, this caspase could have a homologous role in zebrafish.  

3.3 Speck assembly occurs in the cytoplasm and nucleus of epithelial cells 

We found that, regardless of whether the speck is assembled in the 

cytoplasm or the nucleus of epidermal cells, it leads to cell death (Fig. III.1.12). 

This was also shown in HeLa cells, which do not undergo pyroptosis 

immediately upon speck formation (Cheng et al., 2010). In these cells, specks 

assemble by recruiting the entire compartment’s (nucleus or cytoplasm) 

soluble pool of ASC within 15 min. Cheng et al. (2010) found that the second 

compartment’s ASC pool also translocated into or out of the nucleus in order 

to assemble at the speck. The transport across to and from the nucleus 

occurred at a much slower rate than the diffusion observed within each 

compartment, indicating that the movement of ASC across the nuclear 

envelope is restricted. To what extent the fusion of a fluorescent protein to 

ASC for visualization purposes affects the transport is unclear (Cheng et al., 

2010). Our data showed that zebrafish epidermal cells died before the second 

compartment’s pool of ASC was depleted. We observed that the cell death 

seems to occur more rapidly if the speck is formed in the cytoplasm than in 

the nucleus (roughly three times faster, 15 min vs 45 min) suggesting that 

other components of the inflammasome also need to be translocated to the 

nucleus for cell death to take place. However, experiments with higher time 

resolution are required to confirm this observation.  

3.4 Macrophage engulfment of specks 

After epidermal cells undergo cell death upon ASC overexpression, 

ASC specks accumulate in the extracellular environment (Fig. III.1.13). Specks 

also accumulate in a caspase-1-dependent manner in the supernatant of 
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macrophage cell culture upon exposure to inflammasome-activating stimuli. 

The extracellular specks retain their ability to process extracellular caspase-1 

and pro-IL-1β (Baroja-Mazo et al., 2014; Franklin et al., 2014). Franklin et al. 

(2014) also observed that adding specks of ASC-mCerulean assembled in vitro 

to a macrophage cell line expressing ASC-mCherry resulted in the engulfment 

of the specks (Franklin et al., 2014). In zebrafish, we observed that 

macrophages were able to engulf specks in phagosomes and degrade them. 

We also observed macrophages that had engulfed more than one speck. We 

did not detect macrophages undergoing pyroptotic cell death after having 

engulfed an extracellular speck. In the experimental setup by Franklin et al. 

(2014) the quantity of ASC-mCerulean detected in macrophage lysates peaks 

6 hours after incubation and strongly diminished after 24h, indicating that 

some degradation of engulfed specks in the phagolysosomal compartment is 

taking place. However, 36 hours after incubation they observed cases in 

which soluble ASC-mCherry of the recipient cell was recruited to the 

engulfed ASC-mCerulean speck after the latter escaped from the 

phagolysosomal compartment into the cytosol. Whether this leads to the 

recipient cell’s pyroptotic death was not investigated. Therefore, although 

macrophages can degrade engulfed specks, as we also observed, sometimes 

they are unable to do so. In the long term (namely 36 hours) the engulfed, 

undegraded speck can trigger lysosomal damage and be released into the 

cytosol, functioning as a nucleating factor for the recipient cell’s soluble ASC 

(Franklin et al., 2014).  

4 What causes speck formation in vivo? 

4.1 Detection of endogenous speck formation using immunostainings 

The antiASC antibody was able to recognize ASC also in its aggregated 

form (Fig. III.1.5) and antibody stainings have been used previously to 

recognize endogenous speck formation in macrophages (Sester et al., 2015). 

However, we were unable to detect endogenous specks by immunostaining 

larvae after exposure inflammatory stimuli (Fig. III.1.22). There are several 
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explanations for why this approach to visualize endogenous specks was not 

successful. It is possible that the treatments themselves did not stimulate 

inflammasome assembly or that fixation was not carried out at the right time 

point to visualize it. However, a technical issue could hinder detection by this 

method, since any cells in the epithelial surface that die upon speck formation 

would detach from the sample and be lost during fixation and washes 

included in the immunostaining protocol. Cells that remain in the sample 

would lose its cytoplasmic integrity and would no longer be discernable as 

single cells. Extracellular specks would unfortunately be indistinguishable 

from immunostaining artifacts.  

4.2 The use of Crispr to generate a zebrafish knock-in 

To find out whether zebrafish forms specks in a wild type situation we 

required a way to visualize this protein live without altering its endogenous 

concentration. We therefore chose to label the genomic asc copy itself. 

CRISPR/Cas9 genome editing has been used previously to insert exogenous 

DNA in zebrafish. In some cases integration relies on the exogenous fragment 

being integrated into the double stranded break by non-homologous end 

joining (homology independent repair) (Auer et al., 2014; Li et al., 2015) 

whereas others have taken advantage of homology directed repair (Hisano et 

al., 2015; Kimura et al., 2014). However, integration via homology 

independent repair can cause mutations at the junctions of the genomic DNA 

and the integrated fragment (Auer et al., 2014) and it has been reported to 

yield a smaller number of successful integration events than homology 

directed repair (Hisano et al., 2015). Therefore, we generated the asc:asc-EGFP 

line via homology directed repair with homology arms of the reported 

optimal length of 1kb (Irion et al., 2014), although homology regions as short 

as 40bp have been reported to successfully lead to integration (Hisano et al., 

2015). The rate of injected embryos that showed GFP expression was 

significantly lower than those reported for GFP fusion to a CDS via homology 

directed repair (Hisano et al., 2015). When tagging the krtt1c19e locus, Hisano 

et al. (2015) reported 37% of injected embryos had some level of GFP 
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expression, although only less than 3% had broad GFP expression. In our 

hands less than 1% of injected embryos showed GFP signal, although the rate 

varied from 0 to 2% for every injection session. Because the only component 

that varied between injections was the Cas9 protein and the sgRNA aliquots, 

it is possible that in some aliquots the stability of the protein or the guide 

RNAs had been compromised. Regardless, when we screened the F0 founder 

fish by mating it with a wild type we observed 30% F1 positive embryos, 

which is in agreement with the values Hisano et al. (2015) reported for F0 

founder fish (Hisano et al., 2015). When amplifying the asc locus in gDNA 

extracted from those F1 positive embryos we could detect one band 

corresponding to the wild type allele and one of larger size corresponding to 

the asc-EGFP. Sequence analysis of this fragment confirmed the integration of 

the exogenous DNA, thus confirming that the integration is heritable (Fig. 

III.1.24).  

4.3 A zebrafish line to analyze speck formation in vivo  

In spite of evidence that speck formation occurs in mouse and in 

humans under proinflammatory conditions (Broderick et al., 2015), the 

visualization of endogenous speck formation was limited to in vitro studies. 

Using the asc:asc-EGFP line we observed the endogenous pool of ASC 

recruited to form a speck (Fig. III.1.28). Furthermore, the speck-containing 

cells in the asc:asc-EGFP line displayed a the same morphology to cells in 

which speck formation occurred as a consequence of overexpression. This 

indicates that speck formation occurs in vivo in epidermal cells and leads to 

pyroptotic cell death. This finding represents a step forward in the 

understanding of inflammasome activation, but it also opens up many new 

questions and possibilities. For example, our study focused on the role of 

speck formation in epidermal cells, where asc is very prominently expressed. 

It will be interesting to investigate the role of asc in other cells that 

endogenously express asc, especially myeloid cells, where the phenomenon 

has been most prominently studied in mammals. Because these cells express 

levels of the protein that allow ASC-GFP to be easily imaged (Fig. III.1.27A 
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and B), the line could be used in zebrafish infection models where 

macrophage-pathogen interactions are important (Renshaw and Trede, 2012; 

Torraca et al., 2014). Pyroptosis in hematopoietic cells can lead to cytopenia 

and immunosuppression (Croker et al., 2014). Furthermore, inflammatory 

signaling was recently reported to be involved in hematopoiesis in both mice 

and zebrafish (Espín-Palazón et al., 2014; He et al., 2015). Given that we 

observed varying levels of ASC in cells within the caudal hematopoietic tissue 

(Fig. III.1.4D, 1.27C) an interesting application would be to use the asc:asc-

EGFP line to study whether speck formation is involved in this process.  

Another possible line of investigation would be the role of ASC in 

intestinal epithelial cells. Progatzky, et al. (2014) showed that the intestinal 

inflammation observed in response to a high cholesterol diet in zebrafish was 

dependent on inflammasome activation. Intestinal epithelial cells of adults 

fed with high cholesterol diet were stained positive for the activation of 

caspase-1-like proteases and knockdown of asc expression in intestinal 

epithelial cells diminished the recruitment of myeloid cells to the intestine in 

larvae (Progatzky et al., 2014). Whether high cholesterol diet leads to speck 

formation in intestinal epithelial cells was, however, not addressed by the 

study, and could be investigated live using our knock-in line.  

5 IL-1 signaling in fish 

5.1 Cleavage of IL-1 in medaka 

Whether IL-1 is cleaved and the cleavage has an analogous function in 

teleost fish as in mammals is an open question (Ogryzko et al., 2014b). In this 

study we used medaka to approach this issue. We generated a transgenic il1 

reporter, il1:EGFP-t2a-il1-HA and tracked the transcriptional and post-

translational activation of IL-1. We found that il1 is expressed constitutively 

(Fig. III.2.3), but is also highly inducible in response to injury and infection in 

larvae (Fig. III.2.4). Il1 was also expressed in the hematopoietic organs (head 

kidney and spleen) of adults (Fig. III.2.5). Furthermore, exposure of larvae to 

inflammatory stimuli reported to lead to the inflammasome-mediated 



IV. Discussion 

  129 

cleavage of IL-1α and IL-1β (Groß et al., 2012) also resulted in the cleavage of 

IL-1 in medaka. However, most of the IL-1 pool remained in its immature 

form, suggesting that cleavage only takes place in a small cell population in 

the larva. Cleavage of IL-1 occurred in the head kidney and spleen of adults 

in response to injection of bacterial debris (Fig. III.2.7). Mass spectrometry 

confirmed HA-specific antibodies pulled down IL-1 fragments of smaller size 

than the full-length protein (Fig. III.2.8). Overall our results indicate that 

medaka IL-1 is cleaved in vivo in response to inflammatory stimuli.  

5.2 A fish IL-1 that is neither α nor β 

IL-1α and IL-1β probably arose from the duplication of an ancestral 

gene (Sims and Smith, 2010). Although both genes were discovered at the 

same time (Dinarello, 2013), the role of IL-1α in inflammation has been less 

studied than that of IL-1β (Rider et al., 2013). Fish IL-1 homologues usually 

have the IL-1 family signature amino acid motif and slightly higher homology 

to IL-1β, and have therefore been considered and annotated as IL-1β 

orthologues (Ogryzko et al., 2014b). However, data from several fish species 

suggest that although fish IL-1 shares important characteristics with IL-1β, it 

is not an unambiguous genetic or functional orthologue.  

A feature that distinguishes il1β from il1α is the high degree of 

inducibility of the gene under inflammatory conditions (Joosten et al., 2013). 

This characteristic is conserved in fish, whose il1 expression is activated upon 

stimulation with bacteria or LPS (Secombes et al., 2011). We observed IL-1 

upregulation in medaka larvae in response to sterile injury and LPS 

treatment, which had also been reported in zebrafish larvae (Novoa et al., 

2009; Ogryzko et al., 2014a). In mammals, hematopoietic cells are the largest 

source of IL-1β. Medaka myeloid cells in adult blood expressed il1 and carried 

out bacterial engulfment in vivo (Fig. III.2.5B). IL-1-expressing cells were also 

located in the fish hematopoietic organs, spleen and head kidney. We also 

observed that cells in the head kidney induced expression of il1 in response to 

bacterial injection (Fig. III.2.5D). In zebrafish larvae, the il1 increase in 

response to UVB irradiation is driven by myeloid cells (Banerjee and Leptin, 
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2014), as is the il1 response after bacterial notochord infection, where it is 

expressed by macrophages and neutrophils in vivo (Nguyen-Chi et al., 2014). 

In contrast, IL-1α is expressed constitutively in resting cells under 

homeostatic conditions (Rider et al., 2013). The medaka il1 reporter line and a 

zebrafish il1:GFP line showed that the gene is expressed in a naïve situation 

(Nguyen-Chi et al., 2014). This constitutive level of expression is likely too 

low to be detected by ish in both species (Ogryzko et al., 2014a) (Fig. III.2.2). 

Furthermore, the expression pattern we observed, with il1 expressed in gills, 

skin and intestine (Fig. III.2.3) is consistent with that of il1α in mammals, 

which express il1α in the entire gastrointestinal tract, kidney and skin 

keratinocytes (Rider et al., 2013).  

An important aspect of IL-1β biology is the fact that its precursor is 

inactive and requires cleavage to bind to the IL-1 receptor, whereas IL-1α is 

able to bind to the IL-1 receptor in its immature and cleaved form (Afonina et 

al., 2015; Garlanda et al., 2013a; Joosten et al., 2013). Processing of IL-1β is 

carried out by caspase-1 after inflammasome activation, whereas calpain-like 

proteases cleave IL-1α in an inflammasome-dependent or independent 

manner (Groß et al., 2012). Although the caspase-1 site is not conserved in fish 

IL-1, when zebrafish IL-1 was co-expressed with Caspa or Caspb in HEK293 

cells both enzymes cleaved IL-1 at distinct aspartic acid residues (Vojtech et 

al., 2012). Incubation of recombinant sea bass caspase-1 and IL-1 led to direct 

cleavage of the latter. These studies show that caspase-1 orthologues can 

cleave IL-1 in an artificial environment, but fail to show whether it happens in 

vivo. In a protein sequence analysis, we found that the IL-1α cleavage site is 

conserved in some species of teleost fish including zebrafish and medaka. We 

found that medaka IL-1 is cleaved upon inflammasome-activating stimuli like 

nigericin and bacterial infection (Fig. III.2.6), and in response to ionomycin 

treatment, which does not activate the inflammasome in macrophages, and 

instead leads to an intracellular Ca2+ increase that activates calpain proteases 

(Groß et al., 2012). Bacterial infection led to IL-1 cleavage in sea bream 

leukocytes in a caspase-1 independent manner, suggesting that other 

proteases may process IL-1 in fish in vivo (Angosto et al., 2012). Whether 
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calpains do cleave fish IL-1 in vivo requires further investigation.  

Overall, IL-1 in teleost fish shares features of both IL-1α and of IL-1β. 

Considering it a direct orthologue of either one may bias interpretation of 

results.  

5.3 IL-1 incorporation into inflammasome signaling 

Although there is evidence that caspase-1 is activated in response to 

inflammatory stimuli in fish (Angosto et al., 2012; Banerjee and Leptin, 2014; 

Ogryzko et al., 2014a; Varela et al., 2014; Vincent et al., 2015), this activation 

might not directly lead to IL-1 cleavage. That activation of caspase-1 

orthologues leading to pyroptotic cell death, however, does appear to be 

conserved. We can therefore imagine a scenario in which IL-1 in fish is 

cleaved in vivo as an indirect consequence of inflammasome activation, as is 

the case for IL-1α (Groß et al., 2012). This is consistent with our own results 

and that of others who see IL-1 cleavage in fish after exposure to 

inflammasome-activating stimuli. A possible evolutionary scenario is that 

incorporation of IL-1 into the inflammasome signaling cascade occurred after 

the divergence of fish and tetrapods (Angosto and Mulero, 2014), as part of 

the subfunctionalization of IL-1α and IL-1β, when only the latter acquired a 

site suitable for caspase-based cleavage (Denes et al., 2012; Ogryzko et al., 

2014b). 

5.4 The role of inflammasomes in the skin 

Our own data and those of others (Chang et al., 2010) show that 

zebrafish ASC is expressed from early stages during embryo development. 

We show by ish that epidermis contributes to this early expression (Fig. 

III.1.1). As an immune organ, the skin provides protection from injury and 

infection. Keratinocytes function to relay environmental signals of immune 

cells, but also sense danger and execute a response which also serves to drive 

the infiltration of myeloid cells (Peeters et al., 2015). Mammalian 

keratinocytes express all inflammasome components in vitro and probably in 
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vivo (Feldmeyer et al., 2010). Furthermore, inflammasome components have 

been implicated in the inflammatory responses to UVB irradiation (Feldmeyer 

et al., 2007), contact hypersensitivity (Watanabe et al., 2007), HPV infection 

(Reinholz et al., 2013) and inflammatory disorders such as CAPS and atopic 

dermatitis (Dai et al., 2011; Feldmeyer et al., 2010). Crucial differences 

between mammalian and teleost skin epithelia are that the latter contains only 

living cells (Chang and Hwang, 2011). The skin in fish takes on an additional 

role as a barrier regulating salt and water homeostasis and in some species is 

used for nutrient acquisition and waste secretion (Glover et al., 2013). 

Therefore, control of skin microbial growth is crucial (Rakers et al., 2013), and 

the presence of an inflammation machinery is important from early 

development. This could explain why we observe that inflammasome 

components like ASC and IL-1 are present from early stages. However, there 

is also precedent for ASC in mice acting as a tumor suppressor gene in 

keratinocytes, and as a tumor promoter in myeloid cells (Drexler et al., 2012) 

implicating ASC in skin cancer. Given the accumulating evidence for the 

involvement of inflammasome signaling in cancer (Kolb et al., 2014), it is 

possible that similar links exists in inflammasome signaling in fish.  

6 A reporter for NF-κB for imaging and quantitation 

NF-κB is best known for its role as a master switch for the activation of 

proinflammatory genes, but it also regulates genes involved in growth, 

differentiation and cell death (Gilmore and Wolenski, 2012). This is achieved 

through binding sites for NF-κB dimers located upstream of coding sequences 

that act as regulatory sites (Natoli, 2006). Using a palindromic high affinity-

binding site predicted by a recent analysis of NF-κB dimers’ binding affinity, 

we generated a zebrafish NF-κB reporter line. Because the sequence is 

palindromic, we could place both the EGFP and Renilla luciferase genes 

downstream of the NF-κB regulatory sequences on opposing strands.  

The zebrafish NF-κB reporter line allowed us to visualize both the 

endogenous expression patters and the inflammatory response after insult. 
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The endogenous activation pattern for the high affinity binding sites was 

largely consistent with those observed for the reporter line generated by 

Kanther et al, (2011). Namely, we also observed expression in the intestine, 

cloaca, and the lateral line, but observed stronger sporadic epithelial 

expression and less expression in pharyngeal arches (Kanther et al., 2011).  

The expression in our line during the first 48hpf reflected previously 

reported roles for NF-κB. For example, activation during gastrulation (Liu et 

al., 2009) and the activation of cells in the notochord during somitogenesis 

most likely relate to NF-κB involvement in the formation of this structure 

(Correa et al., 2004). The severe malformation phenotypes we observed after 

nfκbiαa knockdown are consistent with those previously observed in zebrafish 

for NF-κB loss or gain of function experiments during early development 

(Correa et al., 2004; 2005).  

A novel aspect of our reporter line compared to previously available 

zebrafish NF-κB reporters (Banerjee and Leptin, 2014; Kanther et al., 2011) is 

that it enables NF-κB activity quantification by bioluminescence 

measurement. The activity of the luciferase reflected the endogenous increase 

in NF-κB activity observed during development (Fig. III.3.2E), as well as the 

increase resulting from knockdown of the NF-κB inhibitor nfκbiαa (Fig. 

III.3.4A and E). Luciferase in each larva is measured individually in a well 

that contains the reagents required for luciferase activity without any 

permeabilization. Therefore, the larva is unharmed and can survive for 

several days, allowing for continuous tracking of reporter activity (Lahiri et 

al., 2014). This represents a significant improvement from a previously 

published method to measure NF-κB activity in zebrafish with a luciferase 

reporter in which lysis of the embryo was required for measurement 

(Alcaraz-Pérez et al., 2008).  

Bioluminescence imaging of NF-kB expression in a luciferase 

transgenic mouse model has been used as a tool to screen for anti-NF-kB drug 

candidates (Robbins and Zhao, 2011). The zebrafish is a model ideally suited 

for whole-organism drug screening (Zon and Peterson, 2005) with 

fluorescence-based analysis of both reporter activity (Wang et al., 2015) and 
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bacterial count (Ordas et al., 2015; Veneman et al., 2013), and is used in high 

throughput screens to test for drug efficiency. We believe that our reporter 

could provide a cost-effective improvement for assays for drug discovery. 

Bioluminescence could be used to screen for whole-organism effects of drugs 

and tissue specific-effects could be visualized with the fluorescence reporter.  
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V. Closing remarks  
 

The use of both zebrafish and medaka as developmental biology 

models has been significantly expanded to cover areas of immunology and 

cancer (Lin et al., 2016; Renshaw and Trede, 2012). Overall, given the 

increasing importance of visualization in the immunology field (Bousso and 

Moreau, 2012), there is great value in using models that enable visualization 

of defined immune processes in the context of the whole organism.  

This work addressed the role of the inflammasome in teleost fish by 

generating reporters that enabled us to track signaling live. This allowed us to 

study ASC speck formation and to visualize the ensuing pyroptosis. Never 

before had this process been visualized in a living organism. Furthermore, the 

development of the asc:asc-EGFP knock-in line opens up new exciting 

research possibilities for the inflammasome research together with zebrafish 

immunity. Our work in medaka IL-1 led us to propose an alternate view on 

the role of this gene in fish and supports an evolutionary hypothesis for the 

incorporation of IL-1α and IL-1β into inflammasome signaling in mammals. 

Both projects point to the importance of inflammation in non-myeloid cells, 

where the inflammasome has been relatively scarcely studied.  

Overall, through work on ASC, IL-1 and NF-κB we have significantly 

built on available knowledge in the functional role of the inflammasome in 

fish and its evolution. Because of the possibilities of discovery that the use of 

fish models offer, a more comprehensive characterization of innate immune 

signaling in fish will be useful in developing human disease models and 

understanding the evolution of our immune system.  
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VI. Materials and methods 

1 Fish care, husbandry and genotyping 

1.1 Zebrafish 

Zebrafish (Danio rerio) were cared for as described previously 

(Westerfield, 2007). In short, fish were kept at 25°C on a 14-hour light-10-hour 

dark cycle. Mating crosses were set up late in the afternoon and eggs collected 

the following morning. In case of injection at one-cell stage, the pair was kept 

separate overnight and put together the following morning before injection. 

Eggs and larvae were kept in E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM 

CaCl2, 0.33 mM MgSO4) at 28°C. E3 medium was complemented with 

Methylene Blue at 0.0001% to prevent growth of mold only when embryos 

were not meant to be used for imaging purposes. In addition, the chemical 1-

phenyl-2-thiourea (PTU, Sigma) was added to E3 medium at a concentration 

of 0.2 mM from 12 to 24hpf to inhibit melanization. 

Throughout this study the Tupfel Long Fin (TLF) strain was used as a 

wild type with the Tübingen strain used for outcrossing. Additional 

transgenic lines generated prior to this study are described in Table VI.1.1.  

 

Table VI.1.1. Published zebrafish transgenic lines used in this study. 
 

Line Reference 

mpeg1:EGFP (Ellett et al., 2011) 

pU1:Gal4; UAS:tagRFP (Sieger et al., 2012) 

lysC:DsRed2 (Hall et al., 2007) 

krt4:GFP (Fischer et al., 2014) 

krt19:Tomato-CAAX (Fischer et al., 2014) 

βactin:NLS-tagBFP Lionel Newton, unpublished 
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1.2 Medaka 

Medaka fish (Oryzias latipes) were kept in the same environmental 

conditions as those mentioned above for zebrafish. Eggs were collected from 

mouse cages containing both males and females daily. In the case of 

injections, males and females were kept in separate mouse cages overnight 

and put together the following day before injection. Eggs and larvae were 

kept in Embryo Rearing Media (ERM, 0.1% (w/v) NaCl, 0.003% (w/v) KCl, 

0.004% (w/v) CaCl2 x 2H2O, 0.016% (w/v) MgSO4 x 7H2O). The Cab strain of 

wild type medaka were used throughout this study.  

1.3 Genotyping 

Larvae and adults were genotyped using the QuickExtract DNA 

Extraction Solution (Epicentre). A single larvae or a fin clip were placed in a 

PCR tube to which 100µl of the reagent were added. The mixture was 

vortexed for 15 s and incubated from 6 to 10 min at 65°C in a thermocycler. 

Sample was then vortexed again to fully disintegrate tissue and incubated for 

2 min at 98°C. The genomic DNA (gDNA) in the supernatant was either used 

directly (5 µl per PCR) or stored at -20°C for its later use.  

1.4 Injections 

DNA, mRNA, morpholinos and proteins were routinely injected to 

embryos at the one-cell stage to alter gene expression. All reagents were 

injected in a solution containing 100 mM KCl unless otherwise indicated. 

More information on how expression vectors and mRNA and sgRNA were 

synthesized is included below. Morpholinos were used for gene knockdown 

and function by preventing splicing (splice morpholinos) or translation 

initiation (ATG morpholinos) of mRNA. Morpholinos were designed (when 

not previously described) and ordered through Gene Tools, LLC. All 

morpholinos used are listed in Table VI.1.2. Morpholinos were diluted in 

Nuclease-free H2O to a concentration of 3 mM and kept at room temperature.  
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Table VI.1.2. Morpholinos used in this study. 
 

Target Sequence  Reference 

asc  

(ENSDARG00000040076) 

5’- GCTGCTCCTTGAAAGATTCCGCCAT-3' This study 

nfκbiαa 

(ENSDARG00000005481) 

5’-TGCGGCTCTGTGTAAATCCATGTTC-3’ (He et al., 2015) 

 

2 Inflammatory and Chemical treatments 

2.1 Tail fin wounding 

Assay was adapted from previously described methods (de Oliveira et 

al., 2013; Ogryzko et al., 2014a). Larvae were anesthetized with Tricaine, a 

Na+-channel inhibitor ethyl-m-aminobenzoate methanesulfonate (MESAB), 

by adding the compound to the media at a concentration of 40 µg/ml. 

Tricaine induces a temporary state of immobilization. While immobilized on a 

Petri dish, the tip of the caudal fin of each larvae was cut with a sterile 

surgical blade. Larvae were then placed in fresh medium and kept at 28°C 

until the time of sample collection. 

2.2 UVB irradiation treatment  

Larvae were exposed to UV radiation as previously described 

(Banerjee and Leptin, 2014). In short, larvae were placed on a Petri dish with 

as little media as possible and exposed to irradiation from broad-band UV 

lamps for periods corresponding to a maximum of 120 mJ/cm2. After 

exposure media was added to the larvae and they were kept at 28°C until the 

time of sample collection. 

2.3 Larval notochord injections  

Bacterial notochord injections of zebrafish larvae were performed as 

described (Nguyen-Chi et al., 2014). In brief, larvae were anesthetized with 
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Tricaine by adding the compound to the media at a concentration of 40 

µg/ml. Afterwards, fluorophore-conjugated Escherichia coli (E. coli, K-12 

strain) were injected into the notochord. Larvae were immediately imaged.  

2.4 Adult intraperitoneal injections 

Adult medaka fish were infected using a previously published method 

(Aghaallaei et al., 2010). In short, medaka adults were anesthetized with 

Tricaine and injected with either fluorophore-conjugated Escherichia coli (E. 

coli, K-12 strain) or Staphylococcus aureus (wood strain, without protein A) 

debris via intraperitoneal injection. Three days after injection adults were 

sacrificed with a high dose of anesthetic and blood, head kidney and spleen 

were collected.  

2.5 Chemicals 

The chemicals used in this study are listed in Table VI.2.1. Chemicals 

were added directly to the medium. 

 

Table VI.2.1. Chemicals used in this study. 
 

Name Purpose Stock conc. Working conc. Source 

Lipopolysacchari

des from E. coli 

(LPS) 

Signal 1 for 

inflammasome 

activation 

1 mg/ml in 

H2O 

50 µg/ml Sigma-Aldrich 

Ionomycin  Signal 2 for 

inflammasome 

activation 

10 mM in 

DMSO 

1- 50 µM Sigma-Aldrich 

 

Nigericin Signal 2 for 

inflammasome 

activation 

10 mM in 

DMSO 

1- 50 µM InvivoGen 

Q-VD-OPh 

hydrate 

Pan-caspase 

inhibitor 

10 mM in 

DMSO 

100 µM Sigma-Aldrich 

Mifepristone (RU-

486) 

Induce 

LexPR/LexOP 

expression  

20 mM in 

EtOH 

100 µM Sigma-Aldrich 
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3 Cloning 

3.1 Software 

The software Geneious Version 6.1.7r was used for the design of all 

cloning strategies, analyses of sequencing data and sequence alignments. 

Primers were also occasionally designed using this software.  

The kinase-specific prediction of phosphorylation sites in zebrafish 

ASC was carried out using the online software GPS 2.1.1 (Xue et al., 2011), 

with previously described parameters (Hara et al., 2013). 

The software Prism Version 6.03 (GraphPad) was used for all 

statistican analyses and graphs. 

3.2 Restriction digest cloning 

Polymerase Chain Reaction for cloning purposes was performed using 

Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific). PCR 

products were then run on a gel, extracted using MinElute Gel Extraction Kit 

(Qiagen) and digested with the appropriate FastDigest restriction enzymes 

(Thermo Fisher Scientific). Ligation with the digested vector treated with 

FastAP Alkaline Phosphatase (Thermo Fisher Scientific) was performed using 

T4 DNA Ligase (5 U/µl Thermo Fisher Scientific). 

3.3 TOPO cloning 

For TOPO cloning the PCR product was either gel extracted or directly 

used to set up a TOPO reaction. Because PCR products obtained using the 

Phusion polymerase are blunt (instead of having 3’A overhangs), the Zero 

Blunt TOPO PCR Cloning Kit (Invitrogen) was used. 

3.4 Gateway cloning 

Both BP and LR Gateway cloning reactions were performed according 

to manufacturer’s instructions.  
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3.5 Golden GATEway cloning 

Golden GATEway cloning was performed essentially as described 

(Kirchmaier et al., 2013). In short, 50 ng of entry vector (EV) plasmids 

numbered 1 to 6 and a vector backbone containing a different antibiotic 

resistance cassette as the rest, were digested with 0.5 µl of BsaI (Fast Digest, 

Thermo Fisher Scientific) and ligated with 0.5 µl of T4 DNA Ligase (30 U/µl, 

Thermo Fisher Scientific) in several rounds in one continuous reaction of 10 

cycles consisting of 30 min at 37°C and 20 min at 16°C, followed by 5 min of 

50°C and 5min of 80°C to inactivate both enzymes.  

3.6 Fusion PCR 

To join DNA fragments without restriction enzymes or DNA ligation 

fusion PCR was used. Most expression vectors used in this study containing a 

gene of interest fused to a fluorescent protein, among others, were cloned 

using this strategy. First, reverse and forward primers with overlapping 5’ 

sequences were designed for the fragment to be cloned upstream and 

downstream, respectively. The corresponding primer pair for each fragment 

(namely a forward primer for the upstream fragment and a reverse primer for 

the downstream fragment) usually contained a restriction enzyme site. 

Fragments obtained with their corresponding primer pair by Phusion PCR 

were purified and then set up in a first round of amplification with PCR with 

low annealing temperature and few cycles (56°C, 13 cycles). No primers were 

added to this reaction as each fragment would serve as the primer for the 

other. In a second round of PCR, 3 µl of the previous product were used as 

template together with the forward and reverse primers that would amplify 

the joined fragment (fragment 1’s forward primer and fragment 2’s reverse 

primer). Standard PCR conditions were used for this second round of PCR. 

Because the strategy sometimes yielded unspecific products, the desired PCR 

product was always gel extracted.  
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3.7 Transformation 

Several strains were used for transformation, depending on the size of 

the vector cloned and the complexity of cloning. For routine transformations 

the Subcloning Efficiency DH5α competent cells (Invitrogen) were used. For 

transformation of ligation, Gateway or Golden GATEway reactions a certain 

volume of the reactions was used directly for transformation by heat shock in 

either DH5α, TOP10 or Mach1 competent cells (Invitrogen). If blue/white 

colony screening was possible, the chromogenic substrate X-gal was added to 

the bacterial plates 1 h prior to bacterial plating after transformation.  

3.8 Colony screening 

Colonies grown in LB media with the appropriate antibiotic resistance 

and at 37°C overnight. To extract the plasmid, the QIAprep Spin Miniprep Kit 

(Qiagen) kit was used according to manufacturer’s instructions. A restriction 

digest of the extracted plasmids was carried out to confirm correct ligation. 

The identity of the positive plasmids was further corroborated by sequencing 

(outsourced to GATC Biotech AG). If a large concentration of highly pure 

plasmid was required (i.e. for injection or in vitro transcription) a Midi was 

performed using the QIAfilter Plasmid Midi Kit (Qiagen).  

3.9 Expression vectors 

The following table contains all expression vectors generated in this 

study together with their purpose. Further information on the vectors used to 

generate transgenic lines can be found in the Section 4. A more detailed 

description of each expression vector’s cloning strategy as well as primers 

designed for that purpose can be found in the Appendix, Section 3.  

 

Table VI.3.1. Description of vectors used in this study. 
 

Vector  Description  

HSE:asc-mKate2, cmlc2:tagRFP ASC (ENSDARP00000055920.5) fused to the fluorescent 
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protein mKate2 (Evrogen) under the control of a heat shock 

promoter. Contains red heart marker. 

HSE:mKate2, cmlc2:tagRFP mKate2 under the control of a heat shock promoter. Contains 

red heart marker. 

HSE:asc-mKate2-CAAX, 

cmlc2:tagRFP 
ASC to mKate2 with membrane anchor control of a heat 

shock promoter. Contains red heart marker. 

HSE:asc(4xmut)-mKate2, 

cmlc2:tagRFP 
ASC-mKate2 with 4 missense mutations: T38A, Y152F, T160A 

and T170A, under the control of a heat shock promoter. 

Contains red heart marker. 

HSE:asc(Y152F)-mKate2, 

cmlc2:tagRFP 
ASC-mKate2 with Y152F mutation, contains red heart 

marker. Contains red heart marker. 

HSE:asc*-mKate2, cmlc2:tagRFP ASC-mKate2 containing 6 silent point mutations that prevent 

asc ATG morpholino knockdown under the control of a heat 

shock promoter. This morpholino-resistant version of asc is 

indicated by an asterisk (asc*). Contains a red heart marker. 

HSE:asc*, cmlc2:tagRFP Untagged ASC* under the control of a heat shock promoter. 

Contains red heart marker. 

HSE:asc*-HA, cmlc2:tagRFP ASC* tagged with HA under the control of a heat shock 

promoter. Contains red heart marker. 

HSE:PYDA-mKate2, 

cmlc2:tagRFP 
PYD domain of ASC (aa 1-90) fused mKate2 under the 

control of a heat shock promoter. Contains red heart marker. 

HSE:CARDA-mKate2, 

cmlc2:tagRFP 
CARD domain of ASC (aa 112-203) fused mKate2 under the 

control of a heat shock promoter. Contains red heart marker. 

HSE:tGFP, cmlc2:tagRFP turboGFP (Evrogen) under the control of a heat shock 

promoter. Contains red heart marker. 

HSE:caspa-EGFP, cmlc2:tagRFP Caspa (ENSDARP00000034228.7) fused with GFP under the 

control of a heat shock promoter. Contains red heart marker. 

 

HSE:caspb-EGFP, cmlc2:tagRFP 
Caspb (ENSDARP00000068268.4) fused with GFP under the 

control of a heat shock promoter. Contains red heart marker. 

HSE:casp3a-EGFP, 

cmlc2:tagRFP 
Casp3a (ENSDARP00000006831.4) fused with GFP under the 

control of a heat shock promoter. Contains red heart marker. 

HSE:PYDC-EGFP, cmlc2:tagRFP PYD domain of Caspa (aa 1-89) fused to GFP under the 

control of a heat shock promoter. Contains red heart marker. 

HSE:caspC-GFP, cmlc2:tagRFP Caspase domain of Caspa (aa 134-383) fused to GFP under 

the control of a heat shock promoter. Contains red heart 

marker. 

ubi:LexPR, LexOP:asc-mKate2, 

cry:ECFP 
ASC-mKate2 is driven by LexPR/LexOP transactivation 

system. LexPR expression is controlled by ubiquitin 
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promoter, contains cyan eye marker. 

pCS2-asc-mKate2 Vector for in vitro transcription of ASC-mKate2 with SP6 

promoter. 

pCS2-asc-tGFP Vector for in vitro transcription of ASC-tGFP with SP6 

promoter. 

 

4 Generation of transgenic or mutant lines 

Throughout this study three different systems were used to generate 

transgenic fish. The medaka il1:EGFP-t2a-il1-HA and the zebrafish 

nfκB:EGFP,luc were generated using the meganuclease enzyme, the zebrafish 

HSE:asc-mkate2 line using Tol2 transposon system, and the CRISPR-Cas9 

system was used to generate the caspa mutant as well as the asc:asc-EGFP 

knock-in zebrafish lines. Each of these four cases will be described separately 

below.  

4.1 Medaka il1:EGFP-t2a-il1-HA line 

4.1.1 Vector design  

This vector was constructed from the il1:GFP vector cloned by Baubak 

Bajoghli (unpublished). The il1:GFP vector contains the 7 kb region upstream 

of the medaka interleukin 1 beta gene (il1b , ENSORLG00000000217) (originally 

amplified from genomic DNA using primers Fwd: 5’- 

AGTCTCGAGGAGGAGGAGTGGAAGTTCC -3’; Rev: 5’- 

TATCCATGGTGCCGGCAAACAGAGACATTC -3’) upstream of the EGFP 

CDS. The il1-HA sequence was first amplified from a previously available 

vector (pGEMT-il1b) containing the CDS of il1b using a forward primer with 

16 bp complementary to the t2a sequence  

(5’- GGAGAATCCCGGCCCTATGGAATCTGAGATGG -3’) and a reverse 

primer containing the HA sequence and a and SpeI site  

(5’GTCACTAGTTTAAGCGTAATCTGGAACATCGTATGGGTAACCGCCG

CTCTGGCGGATGTGGAAGG-3’). To generate the t2a-il1-HA sequence two 
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oligos cointaining the t2a sequence  

(Fwd: 5’- GAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAG 

GAGAATCCCGGCCCT-3’; 

Rev: 5’- AGGGCCGGGATTCTCCTCCACGTCACCGCATGTTAGAAGACTT 

CCTCTGCCCTC-3’) were annealed and then fused to the PCR product with 

fusion PCR using the afore mentioned reverse primer for il1-HA and a 

forward primer containing a Bsp1407I site  

(5’- AGCTGTACAAGGAGGGCAGAGGAAGTCTTCTAAC -3’). This PCR 

product was digested and inserted, downstream and in frame with the EGFP 

using the Bsp1407I and SpeI restriction sites.  

4.1.2 Injection and screening 

An injection solution containing the plasmid (30-40 ng/µl), 0.5 units of 

I-SceI meganuclease (New England Biolabs) and enzyme buffer was injected 

into blastomeres at the one-cell stage. Injected embryos were screened for 

GFP fluorescence at the larval stage and positive larvae were raised to 

adulthood (F0).  

4.2 Zebrafish nfκB:EGFP,luc line 

4.2.1 Vector design 

The vector nfκB:EGFP,luc had been previously designed and cloned in 

the lab (Baubak Bajoghli). It contains 8 multimers of an artificial palindromic 

nfκB sequence flanked by a minimal CMV promoter on each side. The 5’ side 

contains an EGFP CDS downstream of the minimal promoter while the 3’ side 

contains a Renilla luciferase (luc) gene. The vector backbone also contains two 

I-SceI cleavage sites for vector integration using meganuclease.  

4.2.2 Injection and screening 

An injection solution containing the plasmid (10-20 ng/µl), 0.5 units of 

I-SceI meganuclease and enzyme buffer was at the one-cell stage. Injected 
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embryos were screened for fluorescence at the larval stage and positive larvae 

were raised to adulthood (F0).  

4.3 Zebrafish HSE:asc-mKate2 line 

4.3.1 Vector design 

The CDS from asc (ENSDARG00000040076) was initially amplified 

from zebrafish cDNA by Sanjita Banerjee 

 (Fwd: 5’- GCAGCCATGGCGGAATCTTTCAAGGAGC-3’, Rev: 5’-

CGCCTCCACCCTCAGCATCCTCAAGGTCATCC -3’). The asc CDS was 

subcloned (Fwd: 5’- CTCGAATTCACCATGGCGGAATCTTTCAAGG -3’, 

Rev: 5’- ATCAGCTCGCTCACCATACCGCCTCCACCCTCAGC -3’) and 

fused to mKate2 (Evrogen)  

(Fwd: 5’- GCTGAGGGTGGAGGCGGTATGGTGAGCGAGCTGAT-3’, Rev: 

5’-ACGTCACTAGTTATCATCTGTGC-3’) via fusion PCR. The fused DNA 

fragment was inserted into pTH2 (cloned by Marleen Hanelt) a modified 

Gateway destination vector in which a heat shock element (Bajoghli et al., 

2004) drives expression of a gene of interest. The vector backbone also 

contains Tol2 sites for transgenesis and a red heart (cmlc2:tagRFP) marker to 

facilitate screening for successful integration.  

4.3.2 Injection and screening 

Plasmid (10-20 ng/µl) and transposase mRNA (200 ng/µl) 

complemented with 100 mM of KCl were injected into fertilized eggs at the 

one-cell stage of the zebrafish TLF strain. Injected embryos were screened for 

red heart fluorescence at the larval stage and positive larvae were raised to 

adulthood (F0). No heat shock was given at this stage. The F0 generation was 

screened by outcrossing to Tubingen wild type strain. Larvae were screened 

for red heart fluorescence. Afterwards, positive larvae were given a heat 

shock to confirm insertion of the whole construct. A single founder whose 

progeny had a red heart and also expressed the ASC-mKate2 after heat shock 

induction was chosen and propagated.  
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4.4 Zebrafish caspa mutant  

4.4.1 sgRNA design 

Small guide RNAs (sgRNAs) targeting the first exon of zebrafish gene 

caspa (ENSDARG00000008165) were designed using the design tool at 

http://crispr.mit.edu, which finds and ranks all 23-bp sgRNA sequences 

ending in the NGG motif according target specificity and genome-wide off 

targets. In order for the sgRNA to be compatible with the two-oligo PCR 

method to produce sgRNA (see below) target sequences that did not start 

with a 5’-G were rejected. From the remaining candidates two sgRNAs were 

synthesized, Guide 1 caspa: 5’-GGACGCTTTAAGTAATATTGGGG-3’ and 

Guide 2 caspa: 5’-GCTGAAAGACGAGATAGATCTGG-3’ using the two-oligo 

PCR method (Section 6.2). 

4.4.2 Injection 

To test whether the sgRNAs were targeting the region of interest in 

vivo, sgRNAs were injected in varying concentrations (120-275 ng/µl) together 

with 1 µl of in-house (Protein Expression and Purification facility, EMBL 

Heidelberg) synthesized Cas9 (4 mg/ml) complemented with ca. 150 mM KCl 

into fertilized eggs at the one-cell stage of the zebrafish TLF strain. 24 hours 

after injection genomic DNA was extracted. Successful knockdown was 

verified by sequencing of an 800 bp PCR product from the targeted region of 

caspa (Fwd: 5’-TGGGTTAACTAGGCAAGTCAGGG -3’, Rev: 5’- 

AGGGTGTATCAGGACTTGGGCCC-3’). Using this strategy, Guide 1 was 

determined to be more efficient and was therefore injected a second time with 

larvae being raised to adulthood (F0). 

4.4.3 Screening and breeding 

At 6wpf 20 F0 fish were genotyped by fin clipping. 19/20 fish showed 

successful targeting of the region of interesting. These F0 fish were later 

incrossed and the F1 generation was raised to adulthood. The F1 fish were fin 
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clipped, and the targeted region was amplified and sequence. Among the 

genotyped F1 fish, three were found to have a caspa allele in which the 5’-

AAATAATAA -3’ sequence inserted at the expected Cas9 cleavage site. This 

insertion resulted in the inclusion of two STOP codons (caspaK** allele) in the 

first exon. To discover the second allele, an additional reverse primer was 

used (5’- CCACACATGGGAGGTGTGAA -3’) to amplify a larger region. The 

three genotyped F1 fish were found to have a band of 1 kb instead of the 

expected 1.8kb wild type band. Sequencing of this PCR product revealed that 

the second allele had a larger deletion of ca. 800 bp (caspaΔ800). The deleted 

region included most of the first exon including the primer binding site used 

in the initial genotyping, thus explaining why this allele was not discovered 

in the first round of screening. The deletion also resulted in a nonsense 

mutation, thus confirming that these three F1 fish (2 males, one female) were 

caspa mutants and allowing them to be incrossed to obtain homozygous 

mutants with either the caspaK** or the caspaΔ800 deletion allele.  

4.5 Zebrafish asc:asc-EGFP knock-in 

4.5.1 Guide RNA design 

Guide RNAs that targeted the last exon of asc were designed using the 

CRISPR/Cas9 target online predictor CCTop (http://crispr.cos.uni-

heidelberg.de) (Stemmer et al., 2015). Two suitable hits, Guide 1 asc: 5’-

ATTCCTGATGGATGACCTTG-3’ and Guide 2 asc: 5’-

ATCTTCACTCAGCATCCTCA-3’ were synthetized using the oligo annealing 

method (described below) using the following primers listed in Table VI.4.1.  

 

Table VI.4.1. Primers used for asc sgRNA synthesis. 
 

Guide RNA Primers used for amplification  

Guide 1 asc Fwd: 5'- TAGGTCCTGATGGATGACCTTG -3' 

Rev: 5'- AAACCAAGGTCATCCATCAGGA -3' 

Guide 2 asc Fwd: 5'- TAGGCTTCACTCAGCATCCTCA -3' 

Rev: 5'- AAACTGAGGATGCTGAGTGAAG -3' 
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4.5.2 Donor vector design  

Donor vectors were cloned by Golden GATEway cloning. (Kirchmaier 

et al., 2013). All vectors except those whose cloning is explained below were 

kindly provided by the Wittbrodt lab. EV1 included the target site CRISPR 13 

for plasmid linearization (‘5- GGCGAGGGCGATGCCACCTACGG -3’), EV3 

contained an EGFP CDS with a flexilinker for tagging of ASC, EV4 was empty 

and EV6 contained a STOP codon. Homology flanks specific for the 5’ and 3’ 

ends were cloned from gDNA into empty EV2 and EV5, respectively. 

Plasmids were designed according to integration sites and with different 

lengths of homology flanks and were PCR-amplified with forward primers 

containing a BamHI cleavage site and reverse primers with a KpnI site. The 

description of each can be found in Table VI.4.1.  

 

Table VI.4.1. Primers used for amplification of asc homology arms from gDNA for each EV 
vector cloned. 

 

Vector Primers used for amplification  

EV2-

common_500bp 

Fwd: ‘5-GCCGGATCCTAAACTTCATCGATGAGCACTGGA-3’ 

Rev: ‘5-GCCGGTACCCTCAGCATCTTCCAAATCATCCATCAGG-3’ 

EV2- 

common_1kb 

Fwd: ‘5-GCCGGATCCTAGCCAGAGCTTACTGTGCTG-3’ 

Rev: ‘5-GCCGGTACCATCCTCAAGGTCATCCATCAGG-3’ 

EV5-

common_1kb 

Fwd: ‘5-GCCGGATCCTGAAGATTAAATCCTCTCAATCTGCA-3’ 

Rev: ‘5-GCCGGTACCACAATAGTAATATATAGTGTTTGCTTTGCT-3’ 

EV5-

common_2kb 

Fwd: ‘5-GCCGGATCCTGAAGATTAAATCCTCTCAATCTGCA-3’ 

Rev: ‘5-GCCGGTACCCATATTTGTACTGGCATATTTGAGCA-3’ 

EV5-asc2_1kb Fwd: ‘5- GCCGGATCCCTGAGTGAAGATTAAATCCTCTC -3’ 

Rev: ‘5- GCCGGTACCACAATAGTAATATATAGTGTTTGCTTTGCT-3’ 

EV5-asc2_2kb Fwd: ‘5- GCCGGATCCCTGAGTGAAGATTAAATCCTCTC -3’ 

Rev: ‘5- GCCGGTACCCATATTTGTACTGGCATATTTGAGCA -3’ 

 

4.5.3 Injection  

First, we tested whether the sgRNAs guide 1 asc and guide 2 asc were 

targeting the region of interest in vivo, sgRNAs were injected in varying 
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concentrations (15-150 ng/µl) together with 1 µl of Cas9 (4 mg/ml) 

complemented with ca. 150 mM KCl into fertilized eggs at the one-cell stage 

of the zebrafish TLF strain. 24 hours after injection gDNA was extracted. 

Successful knockdown was verified by sequencing of a 1.3 kb PCR product 

from the targeted region of asc  

(Fwd: 5’-CCTGTCTGACCATGTGAACATCTA-3’,  

Rev: 5’TTAGCATTTGTCCTTATCGCAAAC -3’).  

For homologous recombination, the DNA (20-50 ng/µl) was injected 

together with the sgRNA to target asc (15-150); the sgRNA for donor vector 

linearization, CRISPR 13 (150 ng/µl); and 1 µl of Cas9 (4 mg/ml) in a solution 

containing ca. 150 mM KCl. 

4.5.4 Screening and breeding 

Larvae were screened at 2dpf for correct recombination with the donor 

vector by looking for GFP expression in an expression pattern reflecting that 

of asc. Positive larvae were raised into adulthood. To look for founders, adults 

were outcrossed to TLF and the F1 was screened for GFP expression. F1 was 

genotyped using primers that bound upstream and downstream of sgRNA 

guide 2 asc target site (Fwd: 5’- AGAGTTATTAACAGGCCCAATCA -3’, and 

Rev: 5’-ACCAATGACTTTGAGATGTG -3’). Because only GFP positive 

embryos carried the allele corresponding to a successful recombination of the 

donor vector, GFP embryos (F1) were raised to adulthood. 

5 RNA extraction, cDNA synthesis and RT-PCR 

5.1 Trizol RNA extraction and DNase treatment 

Total RNA was extracted from larvae using TriFast (Peqlab) according 

to manufacturer’s instructions. TriFast reagent was directly added to the 

larvae. Tissue was homogenized with an electrical homogenizer (Carl Roth 

GmbH) or by vortexing and was followed by a brief incubation at room 

temperature to dissociate nucleoprotein complexes. Afterwards, chloroform 
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was added to the sample and centrifuged to separate the sample into layers. 

The aqueous upper layer (containing RNA) was transferred to a new tube and 

isopropanol was added to precipitate the RNA. Samples were left overnight 

at -20°C to maximize extraction yield. The following day, samples were 

centrifuged at top speed at 4°C to pellet the RNA. The supernatant was 

removed and after two ethanol (75%) wash steps, samples were air dried. 

Each sample was dissolved in 10 to 30 µl of RNase-free water.  

To prevent contamination form gDNA, samples were treated with RQ1 

RNase-Free DNase (Promega) and then repurified using TriFast. 

5.2 cDNA synthesis  

To generate first strand cDNA from total extracted RNA was generated 

using the Superscript III ReverseTranscriptase enzyme (Invitrogen). Briefly, a 

reaction mix that included oligo(dT) primer, dNTPs and 1 µg of RNA was 

incubated at 65°C for 5 min and then cooled on ice. Afterwards, the reaction 

was complemented with enzyme buffer, DTT, RNase Inhibitor and reverse 

transcriptase. The RT reaction was carried out at 50°C, after which it was 

inactivated by heating up to 70°C for 5 min. The obtained cDNA was directly 

used for reverse transcription PCR.  

6 RNA synthesis and clean up 

6.1 mRNA synthesis 

To produce RNA from DNA template, in vitro transcriptions (ivt) were 

carried out using the mMessage mMachine kit (Ambion), which yields 

capped RNA. First, the pCS2 + DNA vector containing the gene of interest to 

be used as template was linearized and gel extracted in sufficient amounts. 

The ivt reaction was set up according to manufacturer’s instructions and 

contained, NTPs, CAP analog, Reaction buffer, linearized plasmid (template) 

and the SP6 RNA polymerase. After 2 hours of incubation, Turbo DNase was 

added to remove template DNA.  



VI. Materials and methods 

  153 

6.2 sgRNA synthesis 

To synthesize the small guide RNAs (sgRNAs) targeting caspa, the two-

oligo PCR method (Shah et al., 2015) was used. In the case of sgRNAs 

targeting asc sgRNA plasmids were cloned using oligo annealing (Stemmer et 

al., 2015). 

6.2.1 Two-oligo PCR method 

After sgRNA design a “Guide oligo” containing a 20 bp gene-specific 

sequence between a T7 RNA polymerase promoter and a 20 bp region 

homologous to the scaffold oligo (5’-AATTAATACGACTCACTATA[20bp 

target sequence]GTTTTAGAGCTAGAAATAGC-3’) as well as a PAGE-

purified Scaffold oligo:  

(5’-GATCCGCACCGACTCGGTGCCACTTTTTCAAGTTGATAA 

CGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC-3’) 

containing the RNA loop structure required for recognition by Cas9 were 

synthesized. Both oligos are used to run a Phusion PCR reaction in which 10 

µM of each oligo was used to synthesize the template DNA (ca. 120 bp) after 

both oligos anneal to one another. The thermocycler conditions used were 

98°C for 30 s; 45 cycles of 98°C for 10 s, 60°C for 10 s, and 72°C for 15 s; and a 

final elongation time of 72°C for 5 min. The PCR product (5’-

AATTAATACGACTCACTATA[20bp 

targetsequence]GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAG

TCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCGGATC-3) was 

cleaned up using QIAquick PCR Purification Kit (Qiagen). 

6.2.2 Oligo annealing method  

Oligo pairs (each 22 bp) corresponding to the same target site were 

annealed using 1 µl of 100 µM of each oligo with 18 µl H2O and 20 µl 

annealing buffer (10 mM Tris, 30 mM NaCl) in a thermocycler. The following 

conditions were used: 95°C for 10 min, ramp down to 65°C and hold for 10 

min, ramp down to 60°C and hold for 10 min, ramp down to 10°C. 
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Temperature was dropped a rate of 0.1°C/sec. Oligos were designed so that 

each contained a central complimentary region of 18 bp that was and a 5’ 

overhang of 4 bp complimentary to the sticky ends generated by BsaI 

(Thermo Fisher Scientific) cleavage of the guide RNA expression vector 

DR274 (Addgene #42250). Ligation was carried out using 0.025 pmol of vector 

and 0.075 pmol of insert DNA.  

To obtain the final DNA template, the DR274 plasmid containing the 

oligo insert was digested with DraI (Thermo Fisher Scientific). The smaller 

fragment generated by this cleavage contained all elements required for its 

use as template for the ivt.  

6.2.3 sgRNA in vitro transcription 

Regardless of the origin of the template, all sgRNAs were transcribed 

using the T7 MEGAshortscript Kit (Ambion) according to manufacturer’s 

instructions. In short a rection containing 300 ng of DNA template, NTPs, 

reaction buffer and T7 RNA polymerase was incubated for 4 hours at 37°C. 

Afterwards, DNase was added to degrade the template DNA.  

6.3 RNA clean up 

After ivt reaction, RNA was cleaned up using the RNA Clean & 

Concentrator-5 (Zymogen) according to manufacturer’s inscructions. The 

concentration of both mRNA and sgRNAs was measured using a NanoDrop 

8000 spectrophotometer (Thermo Fisher Scientific). If necessary, samples were 

diluted to desired concentration and afterwards aliquoted and stored at -80°C 

until their use.  

6.4 in situ hybridization probe synthesis 

The DNA template for ish probe synthesis was obtained either by 

linearizing a plasmid containing the sequence of interest or by amplifying the 

sequence to be used as probes with a forward primer containing the T3 

promoter sequence (5’-AATTAACCCTCACTAAAGGGAAGA-3’) and a 
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reverse primer containing the T7 promoter sequence (5’-

TAATACGACTCACTATAGGGAGA-3’). The advantage of the second 

method is that it allows for both the sense and antisense probes to be 

synthesized from the same PCR product, using the T3 and T7 RNA 

polymerase, respectively. Regardless of which method was used to obtain the 

DNA template or which RNA polymerase was being used, the ivt proceeded 

the same way, by use of the DIG RNA Labeling Kit (Roche). During the ivt 

digoxigenin-labeled UTP will be incorporated into an otherwise standard 

single stranded RNA. Probes were purified using SigmaSpin Post-Reaction 

Clean-Up Columns (Sigma–Aldrich) as previously described (Thisse and 

Thisse, 2008). Probes were stored at -80°C 

7 ASC polyclonal antibody production 

The antigen production and antibody purification were performed in-

house by the Protein Expression and Purification Core Facility (EMBL, 

Heidelberg). The immunization procedure and all animal handling was 

carried out also in-house by the Laboratory Animal Resources.  

7.1 ASC purification 

ASC was purified using a SUMO3 and His tag. To fuse the CDS of ASC 

to both tags, the sequence was amplified from the previously constructed 

HSE:asc-mKate vector and cloned into the pETM-11 vector using a BamHI and 

a HindIII site on the forward  

(5’-TCATCTGGATCCATGGCGGAATCTTTCAAGGAG-3’) and reverse (5’-

TCATCTAAGCTTTCACTCAGCATCCTCAAGGTC-3’) primers. The vector 

was transformed into the E. coli BL21 (DE3) CodonPlus-RIL strain 

(Stratagene) and expressed in a large scale. After lysis and sonication most 

ASC-SUMO3 remained in the pellet, so it was resuspended in denaturing 

buffer conditions of 6 M Guanidine hydrochloride. ASC-SUMO3 was purified 

under these denaturing conditions in a Niquel- Nitrilotriacetic (Ni-NTA) 

columns. Eluted fractions containing ASC-SUMO3 were pooled and dialyzed 
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against 2 M Urea buffer. Digestion with Senp2 to cleave the SUMO3 tag was 

performed under these conditions. Because the protein precipitated after 

digest, it was resuspended once again in a denaturing buffer of 6 M Urea 

(final concentration 12.9 mg/ml), snap frozen in liquid nitrogen and stored at 

-80°C.  

7.2 Immunization 

Immunization was carried out in 2 female rabbits (New Zealand 

White, 2-2.5 kg). To prepare sample for injection, 300 µg of ASC were diluted 

1:6 in H2O and then 1:2 in TiterMax adjuvant. Prior to the primary 

immunization, a pre-immune bleed sample was taken. At day 14 after 

primary immunization a first boost was given, and a second boost two weeks 

later. 12 days afterwards a first bleed was taken and tested. The last 3 boosts 

were given at day 56, 84 and 112 after primary immunization, with second 

and third bleeds taken at day 66 and 94, respectively. The terminal bleed was 

performed under anesthesia at day 122. 

7.3 Antibody purification 

For antibody purification ASC protein was coupled to Cyanogen-

Bromide-activated Sepharose. 10 ml of serum from the final bleed were used 

per ml of antigen-coupled resin. Suspension was transferred to a column for 

elution of antibody using low pH glycine buffer neutralized immediately 

after elution. Antibody-containing eluate fractions were pooled, 

complemented with 0.05% sodium azide and stored at 4°C.  

8 Protein extraction, immunoprecipitation and Mass 

Spectrometry 

8.1 Protein extraction 

Protein extraction of both larvae and adult tissues was carried out in 

freshly prepared IP buffer (10 mM HEPES pH 7.5, 100 mM KCl, 2 mM MgCl2, 
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0.1 mM CaCl2, 5 mM EGTA pH 8.0, 1 mM NaF, 1 mM Na3VO4, 0.5% Triton, 

Protease inhibitor cocktail tablets [1 tablet/10 ml, Roche]). After collection, 

samples (one adult organ or up to 5 larvae) were submerged completely in 

250 µl IP buffer and kept on ice. Samples were then sonicated to disintegrate 

tissue until no longer turbid. Tissue lysate was cleared by centrifugating at 

4°C for 15 min at 14000 rpm and supernatant was transferred to a fresh tube 

on ice. 

8.2 Immunoprecipitation 

Immunoprecipitation was carried out using EZview Red Anti-HA 

Affinity Gel (Sigma Aldrich) according to manufacturer’s instructions. Protein 

lysates were first precleared using EZview Red Protein A Affinity Gel (Sigma 

Aldrich) by incubating the lysate 1h at 4°C in IP buffer-equilibrated beads. 

Afterwards, samples were incubated with buffer-equilibrated Anti-HA beads 

overnight at 4°C, washed and eluted with HA peptide (Sigma Aldrich). To 

determine efficiency of immunoprecipitation, a small sample volume of the 

input and supernatant from wash before elution was collected for analysis. 

After collection 5xSDS Sample Buffer (10% SDS, 20% glycerol, 0.2M Tris-HCl 

pH 6.8, 0.05% Bromophenol Blue and 10% β-mercaptoethanol added right 

before use) was added to the samples, which were then denatured by boiling 

for 5 min at 95°C. Samples were afterwards stored at -20°C. 

8.3 Immunoblotting 

Prepared protein samples were separated by SDS-PAGE performed 

using the Mini-PROTEAN Vertical Electrophoresis Cell system (Bio-Rad) in 

1x Lämmli running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS). Proteins 

in the acrylamide gel were transferred to a polyvinylidene difluoride (PVDF) 

membrane (Immobilion-P) in a semi-dry transfer cell (Bio Rad). Gel, 

membrane (the latter after activation with methanol) and filter papers (Extra 

thick blot paper, Bio Rad) were submerged in transfer buffer (25 mM Tris, 192 

mM glycine, 0.037% SDS, 20% methanol) and stacked, with the membrane 
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placed below the gel and both sandwiched between two filter papers. 

Proteins were transferred 13 V for 1 h. After transfer, the membrane was 

blocked with 10% dry milk powder (Reform Instant-Magermilchpulver, 

Frema) in PBST for 1 h to prevent non-specific background binding of the 

antibodies. Primary antibody was diluted in 5% dry milk powder in PBST at a 

given dilution and incubated overnight at 4°C with agitation. Afterwards, 

excess antibody was removed by washing with PBST 15 min three times. 

Secondary antibody was also prepared in 5% dry milk powder in PBST, but 

incubated only 1 h at room temperature with agitation. Excess secondary 

antibody was removed by washing with PBST 15 min three times. Detection 

was carried out using Luminata Crescendo Western HRP Substrate 

(Millipore) according to manufacturer’s instructions. Chemiluminescent films 

(Amersham Hyperfilm ECL, GE Healthcare) were exposed to membranes and 

developed using an automated film developer.  

8.4 Mass Spectrometry 

All processing of samples and mass spectrometry was performed in 

house by the Proteomics facility at EMBL, Heidelberg. In brief, samples to be 

processes were run on an acrylamide gel and the gel was stained with 

Coomasie to visualize and cut bands of interest. Afterwards, an in-gel digest 

was performed with Trypsin. Peptides were then extracted from the gel and 

separated by HPLC (High Pressure Liquid Chromatography) in a 

NanoAcquity UPLC System (Waters). Peptides were afterwards identified 

and quantified by MS/MS in the hybrid linear ion trap-Orbitrap mass 

spectrometer LTQ Orbitrap Velos Pro (Thermo Fisher Scientific). Data was 

analyzed using Mascot (Matrix Science). 

9 Flow Cytometry 

Tissues from adult medaka (spleen, head kidney and blood) were 

collected essentially as described (Aghaallaei et al., 2010). Namely, after 

collection, all tissues were kept on ice. Blood was immediately diluted in 0.57 
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PBS/30 mM EDTA, and blood cells were pelleted (300 g for 5 min at 4°C) and 

resuspended in FACS buffer (5 mM EDTA, 10 U/ml Heparin in PBS). In the 

case of the head kidney and spleen, organs were submerged in FACS buffer 

directly after collection and, to obtain a single cell suspension, organs were 

disaggregated by using a cell strainer (40 µm Nylon, BD Falcon). Cell 

suspensions were sorted on a BD LSRFortessa Cell Analyzer (BD Biosciences). 

10 Imaging 

10.1 Mounting 

For confocal microscopy, anesthetized larvae were mounted in 1.3% 

low-melting point agarose (Peqlab). The agarose was prepared beforehand in 

E3 medium, aliquoted in 1 ml and kept at 42°C during sample mounting. 

Anesthetized larvae were transferred to the agarose using a glass Pasteur 

pipette, pipetted back up from the agarose and then deposited in a glass 

bottom culture dish (P35G-1.5-10-C, MatTek). Immediately after, larvae were 

oriented using a needle or a micropipette tip. In the case of SPIM imaging, 

larvae were deposited in a Petri dish after being submerged in agarose and 

were subsequently sucked up a glass capillary using a plunger. The sample 

was then pushed out of the capillary (which became the sample holder) prior 

to imaging. The immersion media was supplemented with Tricaine so that 

larvae remain anesthetized during imaging.  

10.2 Acridine Orange staining 

Acridine Orange (AO) is a live dye that has previously been used to 

label dying cells in live zebrafish embryos (Peri and Nüsslein-Volhard, 2008). 

To stain larvae with AO, a 1:1500 dilution of a 10 mg/ml stock (Sigma 

Aldrich) was prepared in E3. Larvae were incubated for 45 min and then 

rinsed 3 times and kept 5 min in the last wash to get rid of excess dye. Larvae 

were anesthetized, mounted and imaged directly afterwards. Because AO is a 

light-sensitive dye, larvae were kept in the dark during staining.  
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10.3 Microscopes 

Several microscopes were used during this study. Table lists all 

miscroscopes used. 

 

Table VI.10.1. Microscopes used in this study. 
 

Microscope Objectives 

Zeiss LSM 780 confocal microscope 5x NA 0.16 air 

10x NA 0.45 air 

20x NA 0.8 air 

40x NA 1.1 water 

Zeiss LSM 780 NLO 2-Photon confocal 

microscope 

Leica SP8 TCS confocal microscope 40x NA 1.1 water 

Zeiss Lightsheet Z.1 microscope 20x water 

 

Image acquisition and some occasional processing (such as tile merging) 

were carried out using the commercial software developed for each 

microscope by the manufacturer.  

10.4 Image processing 

Raw images were processed using ImageJ/Fiji (NIH) and Imaris x64 

7.6.4 (Bitplane, AG). Deconvolution was carried out using Huygens 

Deconvolution (Scientific Volume Imaging).  

10.5 Bioluminescence measurement 

Luciferase activity of zebrafish larvae was measured as previously 

described (Lahiri et al., 2014) in collaboration with Nik Foulkes (KIT). In brief, 

individual larvae are placed in separate wells in 96-multiwell plates. Beetle 

luciferin reagent (Promega) is directly added to the medium of each well. The 

plate is then sealed. Afterwards, bioluminescence from whole larvae is 

assayed using a Packard Top-count NXT scintillation counter or an EnVision 

multilabel counter (Perkin Elmer).  
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11 In situ hybridization (ish) 

11.1 Protocol 

In situ hybridization was performed essentially as previously described 

(Thisse and Thisse, 2008). In short, larvae were fixed overnight in 4% 

paraformaldehyde (PFA) at 4°C. After washes with PBS and PBST (0.1% 

Tween 20 in PBS), samples were dehydrated in a graded series of methanol 

(MeOH) diluted in PBST (25% MeOH, 50% MeOH, 75% MeOH, 100% MeOH) 

at room temperature for 5 min and stored overnight in 100% MeOH at -20°C. 

Embryos were occasionally stored at this point for later processing. Larvae 

were rehydrated in the same graded series of MeOH. After several washes in 

PBST larvae older than 1dpf were permeabilized with a Proteinase-K (Roche) 

treatment according to age (15 min of 5 µg/ml for 2 dpf, 35 min of 10 µg/ml 

for 3 dpf, 35 min of 30 µg/ml for 4dpf). After treatment, samples were washed 

with PBST and postfixed with 4% PFA. Samples were washed with PBST to 

remove PFA before adding Hyb- mix and incubating 5 min at 67°C in a water 

bath. Hyb- mix was substituted with Hyb+ mix and kept at 67°C for 4 to 6 

hours. Afterwards, 100 µl of Hyb+ containing approximately 100 ng of probe 

were added and samples were incubated overnight at 67°C for hybridization. 

Probe was removed the following day and samples were washed in 

formamide 50%/SSCT 2x twice for 30 min, in SSCT 2x for 15 min, and twice 

in SSCT 0.2x for 30 min. All washes were carried out at 67°C. Samples were 

then switched to room temperature and washed twice with Malate buffer 

before blocking with blocking buffer for 1 hour. Samples were then incubated 

overnight with a 1:4000 dilution of AntiDig-AP (Roche) in blocking buffer at 

4°C. Following antibody incubation Malate buffer 2x was used to rinse 

samples and then to wash four times for periods of 25 min per wash. Sample 

was then equilibrated with staining buffer by washing 5 min three times. 

Staining buffer was then substituted with BM Purple AP substrate (Roche) 

and incubated in the dark until signal was visible. After staining, samples 

were washed with PBST, postfixed with 4% PFA, washed with PBST again. If 
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necessary, samples were cleared in 70% ethanol (EtOH) and 100% EtOH 

washes to diminish background. For long term storage samples were washed 

in 25% glycerol/PBS , transferred to 50% glycerol/PBS and kept at 4°C. 

11.2 Plastic embedding and sectioning  

In situ samples were sectioned using the Leica Historesin embedding 

kit (Leica Microsystems) according to manufacturer’s instructions. Sample is 

first submerged in an intermediate infiltration solution (1:1.95% EtOH: 

Infiltration solution) and then transferred to infiltration solution. Embedding 

medium is prepared by mixing infiltration solution and a hardener powder. 

Only one specimen was immersed per well containing embedding medium in 

a Historesin Mold tray and left to harden. Sectioning was carried out 

manually using Leica RM2235 Manual Rotary Microtome (Leica 

Microsystems). Sections were placed on distilled water to remove wrinkles, 

mounted on glass slides (Super Frost, Thermo Fisher Scientific) and air dried.  

11.3 Solutions 

Table VI.11.1. Solutions and buffers used in this study. 
 

Name Components 

PBST 

 

0.1% Tween 20 in PBS. 

20x SSC NaCl 175.3 g, 88.2 g citric acid trisodium salt dissolved in 1 l H2O pH 

adjusted to 7.0 with NaOH. 

Hyb- mix 50% Formamide, 5x SSC, 0.1% Tween 20. Stored at -20°C. 

Hyb+ mix 50 µg/ml Heparin, 5 mg/ml tRNA added to Hyb- mix. Stored at -

20°C. 

2x Malate buffer 200 mM Malate pH7.5, 300 mM NaCl, 0.1% Tween 20 added prior to 

use. 

Blocking buffer 2% of Blocking Reagent (Roche), 50% 2x Malate Buffer with 0.1% 

Tween-20. 

Staining buffer 100 mM Tris pH 9.5, 50 mM MgCl2, 100 mM NaCl, 0.1% Tween 20 

added just prior to use. 
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12 Immunostainings 

Immunostainings were carried out using two different protocols, 

depending on the tissue being stained. They will be designated protocol 1 and 

2. The second protocol allows for preservation of the epidermis and was 

therefore used to visualize the keratinocytes.  

12.1 Protocol 1 

For an immunostaining of internal tissues a previously published 

immunstaining protocol was followed (Varela et al., 2014). In short, larvae 

were fixed overnight in 4% PFA at 4°C. After several washes with PBS and 

PBST, samples were dehydrated in a graded series of MeOH diluted in PBST 

(25% MeOH, 50% MeOH, 75% MeOH, 100% MeOH) at room temperature 

while on a rocker for 5 min and stored overnight in 100% MeOH at -20°C. The 

following day embryos were rehydrated in a graded series of MeOH this time 

diluted in PBS-DTx (1% DMSO, 0.3% TritonX-100 in PBS). After several 

washes in PBS-DTx embryos were permeabilized with a PK treatment 

according to age (see in situ hybridization protocol for details on treatment). 

After PK digest samples were washed in PBS-DTx and blocked with blocking 

buffer (5%BSA in PBS-DTx) for 1 h at room temperature. Primary antibody 

was diluted in blocking buffer and samples were incubated overnight at 4°C. 

Samples were washed in PBS-DTx, incubated with secondary antibody 2 

hours at room temperature, and washed again extensively with PBS-DTx. 

12.2 Protocol 2 

To visualize keratinocyte staining a much simpler and less abrasive 

protocol was used. The MeOH dehydration, PK treatment and postfixation 

were skipped entirely. Instead, fixed larvae were washed and then staining 

proceeded from blocking step, using PBST for all steps instead of PBS-DTx.  
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12.3 Antibodies 

Table VI.12.1. Primary and secondary antibodies used in this study. 
 

Antibody: Primary (p) or 

Secondary (s) 
Dilution and assay Source 

antiASC (p, rabbit) 1:1000 (WB, IC) Produced in house during this 

study 

antiGFP (p, mouse) 1:1000 (IC)  

1:10000 (WB) 

Santa Cruz 

antiLamin B2 (p, mouse) 1:200 (IC) Thermo Fisher Scientific 

anti-HA (p, rat) 1:200 (WB) Roche 

antiMouse-HRP (s) 1:5000 (WB) Jackson ImmunoResearch 

antiRabbit-HRP (s) 1:5000 (WB) Jackson ImmunoResearch 

antiRat-HRP (s) 1:5000 (WB) Dianova 

antiMouse-488 (s) 1:500 (IC) Invitrogen 

antiMouse-568 (s) 1:500 (IC) Invitrogen 

antiRabbit-488 (s) 1:500 (IC) Invitrogen 

antiRabbit-568 (s) 1:500 (IC) Invitrogen 

antiRabbit-647 (s) 1:300 (IC) Invitrogen 
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VII. Appendix 

1 Abbreviations 

• aa: amino acid 

• Ab: Antibody 

• ASC: Apoptosis-associated speck-like protein containing a CARD 

• BSA: bovine serum albumin 

• CAAX: CAAX prenylation sequence 

• CARD: caspase activation and recruitment domain 

• Cas: CRISPR associated system  

• cDNA: complimentary DNA 

• CDS: coding DNA sequence 

• CHT: Caudal hematopoietic tissue 

• CMV: Cytomegalovirus 

• CRISPR: clustered regularly-interspaced short palindromic repeats 

• DAMPs: Danger-associated molecular patterns 

• DFD: death-fold domain 

• DTT: Dithiothreitol  

• DMSO: dimethyl sulfoxide 

• dpf: days post fertilization 

• ECFP: enhanced cyan fluorescent protein 

• EGFP: enhanced green fluorescent protein 

• EM: Electron mycroscopy 

• EtOH: Ethanol 

• FACS: fluorescence-activated cell sorting 

• Fwd: forward primer 

• gDNA: genomic DNA 

• HA: human influenza hemagglutinin  

• hpf: hours post fertilization 

• HPV: Human papillomavirus 

• HSE: heat shock element 

• IEC: Intestinal epithelial cells 

• IP: Immunoprecipitation 

• ish: in situ hybridization 
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• ivt: in vitro transcription  

• LPS: Bacterial lipopolysaccharides 

• LRR: leucine-rich repeats 

• MeOH: Methanol 

• min: minutes 

• MS: Mass Spectrometry 

• NBD: nucleotide binding domain 

• NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells 

• NHEJ: Non-homologous end joining 

• NLR: NOD-like receptors 

• NLS: Nuclear localization signal  

• NOD: nucleotide-binding and oligomerization domain 

• PAGE: polyacrylamide gel electrophoresis 

• PAMPs: Pathogen-associated molecular patterns  

• PBDTx: phosphate-buffered saline plus 0.3%DMSO, 0.1%Triton-x 

• PBS: phosphate-buffered saline 

• PBST: phosphate-buffered saline plus 0.1% Tween- 20 

• PFA: paraformaldehyde 

• PHA: phytohaemagglutinin 

• PRR: Pathogen recognition receptors 

• PTM: Post-translational modification 

• PYD: pyrin domain 

• Rev: reverse primer 

• RFP: red fluorescent protein 

• ROS: reactive oxygen species  

• RT-PCR: reverse-transcription polymerase chain reaction 

• SDS: sodium dodecyl sulfate 

• sgRNA: small guide RNA 

• SMOC: supramolecular organizing centers  

• T2A: viral 2A peptide 

• TLR: Toll-like receptor  

• WHD: winged helix domain 
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2 RT-PCR Primers  

Table VII.2.1. Reverse transcription primers used in this study. 
 

Gene Sequence (5’- -3’) 

asc (zebrafish) GATCAAGTGTATTGCAGTAGC 

CAATTCTTTCCAGTGCTCATCG 

ef1a (zebrafish) CTTCTCAGGCTGACTGTGC 

CCGCTAGCATTACCCTCC 

interleukin-1 (medaka) GAACCGCAGCACAGCTCACAGC 

ACATGTTCAGCTGGACTTTGC 

nfκB (medaka) AGCCACTGCCTCACTATGAGTC 

AGTAAAAAGTTCCGCCTCCTCC 

ef1a (medaka) AAGTTCGAGAAGGAAGCCGC 

GCTGGGTTGTAGCCGATCTT 

 

3 Cloning strategies of expression vectors 

Table VII.3.1. List of all expression vectors designed and cloned in this study, including 
cloning strategy and primers.  

 

Vector  Description Sequence (5’- -3’) Cloning strategy 

HSE:asc-mKate2, 

cmlc2:tagRFP 

Fwd asc(EcoRI) GCTTGAATTCACCATGGC

GGAATC 

Fusion PCR to fuse asc and 

mKate2 fragments. 

Restriction digest 

(EcoRI/EcoRV) to insert 

into final vector.  

Rev asc-mKate2 

fusion 

ATCAGCTCGCTCACCATA

CCGCCTCCACCCTCAGC 

Fwd asc-mKate2 

fusion 

GCTGAGGGTGGAGGCGG

TATGGTGAGCGAGCTGAT 

Rev mKate2 

(EcoRV) 

CTAGTGATATCTCATCTG

TGC 

HSE:mKate2, 

cmlc2:tagRFP 

Fwd mKate2 

(EcoRI) 

CTCGAATTCACTATGGTG

AGCGAGCTGATTAAG 

PCR and restriction digest 

(EcoRI/EcoRV) to insert 

into final vector. Rev mKate2 

(EcoRV) 

ACGTCACTAGTTATCATC

TGTGC 

HSE:asc-mKate2-

CAAX, 

Fwd asc (EcoRI) GCTTGAATTCACCATGGC

GGAATC 

Fusion PCR to fuse asc and 

mKate2-CAAX fragments. 
Rev asc-mkate2 ATCAGCTCGCTCACCATA
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cmlc2:tagRFP fusion CCGCCTCCACCCTCAGC Restriction digest 

(EcoRI/EcoRV) to insert 

into final vector. 

Fwd asc-mKate2 

fusion 

GCTGAGGGTGGAGGCGG

TATGGTGAGCGAGCTGAT 

M13R (amplifies 

with EcoRV site) 

CAGGAAACAGCTATGAC 

HSE:asc(4xmut)-

mKate2, 

cmlc2:tagRFP 

Fwd mut T38A GGAGGCAGGAACCGCGC

GTCGCAAAGTCTGCAATC

GAAAAGCTG 

Site-directed mutagenesis 

of HSE:acs-mKate2, 

cmlc2:tagRFP done in two 

rounds, first with primer 

pairs for T38A and T160A 

mutations. Second round of 

site-directed mutagenesis 

was carried out in that 

modified vector with 

primer pairs for Y152F and 

T170A mutations 

Rev mut T38A CAGCTTTTCGATTGCAGA

CTTTGCGACGCGCGGTTC

CTGCCTCC 

Fwd mut Y152F CATCACAAATGAGGATTT

CTGTACCATTCGTAATAA

G 

Rev mut Y152F CTTATTACGAATGGTACA

GAAATCCTCATTTGTGAT

G 

Fwd mut T160A CCATTCGTAATAAGGAG

GCTCCTCAAAAGAAGAT

G 

Rev mut T160A CATCTTCTTTTGAGGAGC

CTCCTTATTACGAATGG 

Fwd mut T170A GAGAGAGTTATTAGCAG

GCCCAATCACATG 

Rev mut T170A CATGTGATTGGGCCTGCT

AATAACTCTCTC 

HSE:asc(Y152F)-

mKate2, 

cmlc2:tagRFP 

Fwd mut Y152F CATCACAAATGAGGATTT

CTGTACCATTCGTAATAA

G 

Site-directed mutagenesis 

of HSE:asc-mKate2, 

cmlc2:tagRFP with primer 

pair for Y152F. Rev mut Y152F CTTATTACGAATGGTACA

GAAATCCTCATTTGTGAT

G 

HSE:asc*-mKate2, 

cmlc2:tagRFP 

Fwd mut G6A, 

A9G, T12A 

GCTTGAATTCACCATGGC

AGAGTCATTCAAGGAGC

AGCTGCAG 

To make HSE:asc-mKate2, 

cmlc2:tagRFP asc ATG 

morpholino-resistant a 

total of 6bp changes were 

made with two rounds of 

site-directed mutagenesis, 

first with primer pair G6A, 

A9G, T12A mutations. 

Rev mut G6A, 

A9G, T12A 

CTGCAGCTGCTCCTTGAA

TGACTCTGCCATGGTGAA

TTCAAGC 

Fwd mut G18A, 

G21A, G24A 

CTCAAAAGCCTCCTGCAG

TTGTTCTTTGAATGACTCT

GCCATGGTG 
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Rev mut G18A, 

G21A, G24A CACCATGGCAGAGTCATT

CAAAGAACAACTGCAGG

AGGCTTTTGAG 

Second round of site-

directed mutagenesis was 

carried out in that modified 

vector with primer pair for 

G18A, G21A, G24A. 

HSE:zASC*, 

cmlc2:tagRFP 

Fwd asc* (NheI) CACTATAGGGCTAGCTTG

ATTTA 

PCR from HSE:asc*-mKate2, 

cmlc2:tagRFP and 

restriction digest (NheI). Rev asc CTTCACTCAGCATCCTCA

AGGTCATCC 

HSE:asc*-HA, 

cmlc2:tagRFP 

Fwd asc* (NheI) CACTATAGGGCTAGCTTG

ATTTA 

PCR from HSE:zASC*-

mKate2, cmlc2:tagRFP and 

restriction digest (NheI). Rev HA tag 

 

GATGTCGACTCAAGCGTA

ATCTGGAACATCGTATGG

GTAACCGCCTCCACCCTC

AGC 

HSE:PYDA-

mKate2, 

cmlc2:tagRFP 

Fwd zASC 

(EcoRI) 

GCTTGAATTCACCATGGC

GGAATC 

Fusion PCR to fuse PYDA 

and mKate2 fragments. 

Restriction digest 

(EcoRI/EcoRV) to insert 

into final vector. 

Rev PYDA -

mKate2 fusion 

ACCATACCGCCTCCACCT

TGCCCTGTGTTCCTC 

Fwd PYDA -

mKate2 fusion 

GAGGAACACAGGGCAAG

GTGGAGGCGGTATGGT 

Rev mKate2 

(EcoRV) 

CTAGTGATATCTCATCTG

TGC 

HSE:CARDA-

mKate2, 

cmlc2:tagRFP 

Fwd CARDA 

(BamHI) 

TTGAATTCAGAATGGTTG

CTTTCTCCAAGG 

PCR from HSE:asc-mKate2, 

cmlc2:tagRFP and 

restriction digest (BamHI). Rev mKate2 

(EcoRV) 

CTAGTGATATCTCATCTG

TGC 

HSE:tGFP, 

cmlc2:tagRFP 

Fwd tGFP 

(EcoRI) 

GCTTGAATTCACCATGGA

GAGCGACGAGAGCG 

PCR from and restriction 

digest (EcoRI/EcoRV). 

Rev tGFP 

(EcoRV) 

TCATCTGATATCTTATTCT

TCACCGGCATCTGC 

HSE:caspa-EGFP, 

cmlc2:tagRFP 

Fwd caspa 

(BamHI) 

TCAGGATCCAAGATGGC

CAAATCTATCAAGGACC 

PCR to amplify caspa from 

cDNA. Fusion PCR to fuse 

caspa and EGFP fragments. 

Restriction digest 

(BamHI/EcoRV) to insert 

into final vector. 

Rev caspa-EGFP 

fusion 

GCTCACCATGGTGGCGAC

CGGGAGTCCGGGGAACA

GGTAGAAC 

Fwd caspa-EGFP 

fusion 

GTTCTACCTGTTCCCCGG

ACTCCCGGTCGCCACCAT

GGTGAGC 
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Rev EGFP 

(EcoRV) 

CTAGATATCTTACTTGTA

CAGCTCGTCCATGC 

 

HSE:caspb-EGFP, 

cmlc2:tagRFP 

Fwd caspb 

(BamHI) 

GTCGGATCCAGAATGGA

GGATATTACCCAGC 

PCR to amplify caspb from 

cDNA. Fusion PCR to fuse 

caspb and EGFP fragments. 

Restriction digest 

(BamHI/EcoRV) to insert 

into final vector. 

Rev caspb CAGTCCAGGAAACAGGT

AGAACC 

Rev caspb-EGFP 

fusion 

CCTTGCTCACCATGGTGG

CGACCGGCAGTCCAGGA

AACAGG 

Fwd caspb-EGFP 

fusion 

CCTGTTTCCTGGACTGCC

GGTCGCCACCATGGTGA

GCAAGG 

Rev EGFP 

(EcoRV) 

CTAGATATCTTACTTGTA

CAGCTCGTCCATGC 

HSE:casp3a-

EGFP, 

cmlc2:tagRFP 

Fwd casp3a 

(BglII) 

GTCAGATCTAAGATGAA

CGGAGACTGTGTGG 

PCR to amplify casp3a from 

cDNA. Fusion PCR to fuse 

casp3a and EGFP 

fragments. Restriction 

digest (BglIII/EcoRV) to 

insert into final vector. 

Rev casp3a GGAGTGAAGTACATCTCT

TTGG 

Rev casp3a-

EGFP fusion 

GGAGTGAAGTACATCTCT

TTGG 

Fwd casp3a-

EGFP fusion 

GAGATGTACTTCACTCCT

CCGGTCGCCACCATGGTG

AGC 

Rev EGFP 

(EcoRV) 

CTAGATATCTTACTTGTA

CAGCTCGTCCATGC 

HSE:PYDC-EGFP, 

cmlc2:tagRFP 

Fwd PYDC 

(BamHI) 

TTCGGATCCAAGATGGCC

AAATC 

Fusion PCR to fuse PYDC 

and EGFP fragments. 

Restriction digest 

(BamHI/EcoRV) to insert 

into final vector. 

Rev fusion 

PYDC -GFP 

GCTCACCATGGTGGCGAC

CGGTTGCCCTGTGTTCTC

CAAGAGC 

Fwd fusion 

PYDC -GFP 

GCTCTTGGAGAACACAG

GGCAACCGGTCGCCACC

ATGGTGAGC 

Rev EGFP 

(EcoRV) 

CTAGATATCTTACTTGTA

CAGCTCGTCCATGC 

HSE:CaspC-GFP, 

cmlc2:tagRFP 

Fwd CaspC with 

BamHI 

GTCGGATCCAGAATGACT

TATGAAATAAAAGAC 

PCR from HSE:Caspa-

EGFP, cmlc2:tagRFP and 

restriction digest (BamHI). Rev EGFP 

(EcoRV) 

CTAGATATCTTACTTGTA

CAGCTCGTCCATGC 
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ubi:LexPR, 

LexOP:asc-

mKate2, cry:ECFP 

Fwd asc attB2R GGGGACAGCTTTCTTGTA

CAAAGTGGATATGGCGG

AATCTTTCAAG 

PCR to amplify asc-mKate2 

with att sites to insert into 

p3’E via BP reaction. LR 

reaction to produce final 

vector was done with 

p5’E:ubi and 

pME:LexPR,LexOP and 

pDEST cry:ECFP. 

Fwd mKate2 

attB3 

GGGGACAACTTTGTATAA

TAAAGTTGCTCATCTGTG

CCCCAGTTTG 

pCS2- asc-mKate2 Fwd asc (EcoRI) GCTTGAATTCACCATGGC

GGAATC 

PCR and restriction digest 

(EcoRI/EcoRV) to insert 

into final vector. Rev mKate2 

(EcoRV) 

ACGTCACTAGTTATCATC

TGTGC 

pCS2- asc-tGFP Fwd asc (EcoRI) GCTTGAATTCACCATGGC

GGAATC 

Fusion PCR to fuse asc and 

tGFP fragments. Restriction 

digest (EcoRI/EcoRV) to 

insert into final vector. 

Rev asc-tGFP 

fusion 

CGCTCTCGTCGCTCTCCA

TACCGCCTCCACCCTCAG

C 

Fwd asc-tGFP 

fusion 

GCTGAGGGTGGAGGCGG

TATGGAGAGCGACGAGA

GCG 

Rev tGFP 

(EcoRV) 

TCATCTGATATCTTATTCT

TCACCGGCATCTGC 
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• Bajoghli, B., Kuri, P., Inoue, D., Aghaallaei, N., Hanelt, M., Thumberger, 

T., Rauzi, M., Wittbrodt, J., and Leptin, M. (2015). Noninvasive In Toto 

Imaging of the Thymus Reveals Heterogeneous Migratory Behavior of 

Developing T Cells. The Journal of Immunology. 
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