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Zusammenfassung
Tunnelionisation gehört zu den grundlegenden Prozessen in der Atomphysik. Es ist bis
heute noch nicht klar, wann ein Elektron ionisiert und wie lang dieser Tunnelprozess
dauert. In dieser Arbeit lösen wir die zeitabhängige Schrödingergleichung und wenden
ab initio Quantenberechnungen an, um diese Fragen zu beantworten. Zusätzlich, durch
Nutzen von Quantengrundprinzipien, legen wir den Ausgangsimpuls vom tunnelionisierten
Elektron fest. Dadurch finden wir heraus, dass die Annahmen des oft angewendeten two-
step Modells unpräzis sind. Es wird in dem two-step Modell angenommen, dass das Elek-
tron am Zeitpunkt des Maximums des elektrischen Feldes mit verschwindendem Impuls
tunnelionisiert. Nach der Berechnung der Wahrscheinlichkeitsverteilung des Endimpulses
zeigen wir, dass das two-step Modell nicht den korrekten Endimpuls voraussagen kann.
Aus diesem Grund leiten wir ein modifiziertes two-step Modell her, das den korrekten
Endimpuls voraussagen kann. Außerdem bestimmen wir einen Zeitpunkt, an dem die
Tunnelionisation anfängt. Dieser Zeitpunkt unterscheidet sich von dem Zeitpunkt des
Maximums des elektrischen Feldes. Durch die Bestimmung des wahrscheinlichsten Zeit-
punktes, an dem das Elektron in die Tunnelbarriere eintritt, und des wahrscheinlichsten
Zeitpunktes, an dem das Elektron ionisiert, definieren wir eine wahrscheinlichste Tun-
nelzeit. Darüber hinaus koppeln wir eine Quantenuhr an das Elektron, um die Dauer
des Tunnelprozesses zu messen. Mithilfe der Quantenuhr berechnen wir eine durchschnit-
tliche Tunnelzeit, die sich in Größe und Ursprung von der wahrscheinlichsten Tunnelzeit
unterscheidet. Um beide Tunnelzeiten zuzuordnen und die scheinbare Differenz zu erk-
lären, definieren wir eine Wahrscheinlichkeitsverteilung der Tunnelzeiten durch virtuelle
Detektoren. Die Ergebnisse in dieser Arbeit haben allgemein einen Einfluss auf die In-
terpretation und Auswertung von Experimenten, welche das Impulsspektrum der tun-
nelionisierten Elektronen messen, weil üblicherweise Modelle mit unpräzisen Annahmen
angewendet werden, um experimentelle Ergebnisse zu interpretieren. Besonders haben sie
Einfluss auf die Kalibrierung der sogenannten Attoclock Experimente.

Abstract
Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open
question when does the electron tunnel ionize and how long is the duration of tunneling.
In this work we solve the time-dependent Schrödinger equation in one and two dimensions
and use ab initio quantum calculations in order to answer these questions. Additionally, we
determine the exit momentum of the tunnel ionized electron from first principles. We find
out results that are different from the assumptions of the commonly employed two-step
model, which assumes that the electron ionizes at the instant of electric field maximum
with a zero momentum. After determining the quantum final momentum distribution of
tunnel ionized electrons we show that the two-step model fails to predict the correct final
momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we
determine the instant at which tunnel ionization starts, which turns out to be different
from the instant usually assumed. From determining the instant at which it is most
probable for the electron to enter the tunneling barrier and the instant at which it exits
we determine the most probable time spent under the barrier. Moreover, we apply a
quantum clock approach in order to determine the duration of tunnel ionization. From
the quantum clock we determine an average tunneling time which is different in magnitude
and origin with respect to the most probable tunneling time. By defining a probability
distribution of tunneling times using virtual detectors we relate both methods and explain
the apparent discrepancy. The results found have in general an effect on the interpretation
of experiments that measure the spectra of tunnel ionized electrons, and specifically on
the calibration of the so called attoclock experiments, because models with imprecise
assumptions are usually employed in order to interpret experimental results.
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Chapter 1.

Introduction

In quantum mechanics there are phenomena that have no classical analogs. These
phenomena are interesting to study because they give us insight about the quan-
tum world that is unreachable through common sense. In 1927 Friedrich Hund
(1896–1997) was the first to notice the possibility of the phenomenon of tunnel-
ing, which he called barrier penetration, in a calculation of the ground state in a
double-well potential [1, 2]. In general tunneling occurs when a particle approaches a
region having a potential higher than its energy, i.e., approaches a potential barrier.
According to classical mechanics the particle will either be reflected or be stopped
when reaching such a region. In quantum mechanics the particle has a probability
to tunnel through the potential barrier, see Fig. 1.1. Quantum tunneling is a very
fundamental process which occurs in many fields of physics like tunneling diodes [3–
6], or tunneling microscopy [7, 8], tunneling in Bose-Einstein condensates [9–12] and
many other fields. Although quantum tunneling is very fundamental and is applied
in many technologies in our everyday life there is still an important aspect of it
not understood till today. Namely, what is the time associated with the tunneling
process. Historically, quantum tunneling time was investigated by studying the case
of a particle approaching from far away a potential box, see Fig. 1.1. Also in text-
books the phenomenon of quantum tunneling is introduced through this example,
see Ref. [13]. Thus one asks the question: How long does it take for a particle to
travel through the potential barrier?
The difficulty in answering such a question is two fold. First, since tunneling is

a quantum phenomenon and has no classical analog, it is not possible to answer
time questions by using classical arguments. Second, in quantum mechanics when
one wants to measure a physical observable O, a corresponding quantum operator
Ô is defined and the measurement of the observable is defined via 〈ψ| Ô |ψ〉 where
|ψ〉 is the quantum state of the system. In quantum mechanics there is no such
operator t̂, such that one could measure the time observable. In classical mechanics
the generators of translations in space and time are the total momentum P and
the total energy H, respectively [14, 15]. In quantum mechanics the position oper-
ator of a particle q̂ is conjugate to the momentum operator p̂ and they satisfy the
commutation relations

[q̂i, p̂j ] = i~δij . (1.1)

where the indexes denote the components in Cartesian coordinates. In quantum me-
chanics one could try to define a time operator t̂ which is conjugate to the particle’s
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Chapter 1: Introduction

Figure 1.1.: Schematic of a wave packet which was originally incident from far left, with a
kinetic energy less than the potential height, a square potential. The wave packet scatters
on the square potential marked by the green shadowed area, one part is reflected (red dashed
line) while the other tunnels through the barrier (black dotted line).

Hamiltonian Ĥ which is the generator of translations in time. In accordance with
the space momentum relations, such an operator should also satisfy the following
commutation relation [

t̂, Ĥ
]

= i~. (1.2)

As pointed out by Pauli [16], such an operator should have an unbounded spectrum
[−∞,+∞] since the time variable can take any value in the space of real numbers R,
which causes problems since the spectrum of a physically meaningful Hamiltonian
is bounded from below and the operators Ĥ and t̂ are conjugate [17]. Defining such
an operator is still debated and there is no consensus on its definition [15, 17–21]. In
this thesis, the existence or non existence of such an operator, which is an interesting
question, is not discussed. From the above discussion, one can see that asking time
questions in quantum mechanics is not straightforward and thus many approaches
and techniques have been applied in the case of a particle approaching from far away
a potential box in order to define tunneling times.
A possible and very intuitive approach is to determine the tunneling time by

following the center of gravity of the transmitted wave packet [22]. The associated
time, however, has little physical significance as argued in Ref. [23]. The second class
of approaches constructs a set of dynamical paths and determines how much time
each path spends under the barrier. Then, one can define the most probable time
spent under the barrier, corresponding to the most probable path, or an average time
spent under the barrier by taking an average over all paths. Among others, this ap-
proach is realized by three methods: the Bohm method as described in Refs. [24, 25]
and references therein, the Feynman path integrals method as applied in Refs. [25–
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27], and finally the Wigner distribution paths method as studied in Refs. [28–30].
Time is not only a coordinate of the universal space-time background where phys-
ical processes take place. Time can also be introduced as a dynamical variable of
physical systems that clock a certain process [15]. This leads to the last category of
approaches to define a tunneling time. In the so-called quantum clock approach, an
additional physical system is coupled to the system which undergoes the tunneling
dynamics [31–36]. Then either a dynamical variable of the coupled system acts as
a clock or the accessory system may have an explicit time dependence with a given
time scale, which provides a reference for time measurements [37, 38]. Depending
on how temporal quantities are extracted from the clock system, the quantum clock
approach gives rise to definitions of various times which characterize the tunneling
dynamics. A detailed revision of these approaches is given in chapter 2, where also
the fundamental ideas needed to understand this thesis are presented.
Another example which is interesting to consider for investigating tunneling times

and which is experimentally accessible is tunnel ionization. Keller et al. have con-
ducted experiments using the angular streaking technique aiming to measure tun-
neling times for ionization from a bound state, the so-called attoclock experiments
[39, 40]. In the tunnel ionization case, a Coulomb-bound electron is ionized by a
strong electromagnetic field, and a potential barrier can be defined via the electron’s
binding energy and the Coulomb potential bent by the electric field’s potential. Since
the attoclock experiments have been performed, many renewed efforts have been di-
rected toward defining a tunnel ionization time, because a consensus on a suitable
theoretical definition of tunneling time and the interpretation of experimental results
is still lacking [17, 39–45]. The main difference between tunneling of free particles
and tunnel ionization is that in the latter the particle is initially bound. In partic-
ular, there is some part of the wavefunction of the bound electron that already lies
under the barrier in contrast to approaching the barrier from far away.
Though for studying tunneling times in tunnel ionization theoretically, many ap-

proaches can be adopted from tunneling of free particles. For example, the Wigner
time approach [46–48] was applied to tunnel ionization in the adiabatic limit in
Refs. [49, 50]. The adiabatic limit corresponds to a parameter regime where the
time scale of the tunneling dynamics is short compared to the time scale of the
variation of the electric field. Calculating the complex transmission amplitude as
a function of the barrier height and the electron energy, various theoretical defini-
tions of tunneling times can be introduced, often referred to as Büttiker Landauer
time, Pollack Miller time, Eisenbud Wigner time, and Lamor time. These have been
compared to experimental results in Ref. [51].
To my knowledge none of the above mentioned approaches has been applied dy-

namically to tunnel ionization, i. e., taking into account the continuous increase and
decay of the external driving electric field as it is the situation in an experimental
setting. Often the external field is treated as static [49] or switched on instanta-
neously [42, 52]. As emphasized in Ref. [42], tunneling in a continuously evolving
potential is very different from the sudden turn-on case. In particular, there is no
natural reference point in time which defines when tunneling begins. Furthermore,
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Chapter 1: Introduction

the quantum state at the onset of tunneling is no longer the ground state of the un-
perturbed binding potential. When tunneling sets in, the wavefunction has already
evolved in the time-dependent potential.
One of the main accomplishments in this thesis is adopting the Salecker-Wigner-

Peres quantum clock [31, 34] to tunnel ionization taking into account the continuous
evolution of the driving electric field to determine tunneling times, which is achieved
in chapter 5. The Salecker-Wigner-Peres quantum clock is coupled to the electron in
such a way that it measures the average time spent by the electron under the barrier.
Where we have defined in chapter 5 through the Salecker-Wigner-Peres quantum
clock an average tunnel ionization time spent under the barrier by electrons that
tunnel ionize, and an average time spent by electrons that do not undergo tunneling
ionization, i.e., a reflection time.
Another problem that we investigate in this thesis is when does the electron exit

the tunnel ionization barrier. Experimentally the quantum dynamics in the vicinity
of the tunneling barrier cannot be studied directly, i. e., it is not possible to place
a detector close to the atomic tunneling barrier. Thus, information about the tun-
neling dynamics has to be inferred from measurable asymptotic quantities, e. g., the
momentum distribution of the photo ionized electrons. In attoclock experiments,
an electron is ionized by an elliptically polarized few-cycle pulse. This quasi-free
electron is accelerated in the rotating electric field, and in this way the instant of
ionization texit is mapped to the final angle of the momentum vector in the polar-
ization plane. The mapping is carried out by using some theoretical model that
predicts the final momentum of the tunnel ionized electrons [51, 53–55]. Thus, the
interpretation of attoclock experiments requires a precise model of the electron’s
motion from the barrier exit to the detector. The value of a possible tunneling delay
depends crucially on the theoretical model [55], which is employed to calibrate the
attoclock. In the extraction of texit from attoclock experiments, it is state of the art
to treat the ionized electron classically, to take into account Coulomb corrections,
and to assume that the electron’s initial momentum follows from some semiclassical
theory [51, 53]. For a reliable reconstruction of the time texit, however, suitable
initial conditions have to be identified as pointed out in Refs. [54, 55]. In particular,
assumptions about the initial momentum [49, 56] bias the reconstructed value of
texit.
Neither the time texit nor the initial momentum of the tunnel ionized electron

are directly accessible by experiments, and it is also challenging to calculate them
analytically. Thus a second accomplishment in this thesis is employing ab initio
quantum calculations and the virtual detector [57, 58] method at the tunnel exit
through which we determine directly the electron’s time of arrival at the tunnel exit
as well as its exit momentum. This is accomplished for a one-dimensional system
that models the essential features of a three-dimensional system in chapter 3, and
is also achieved for a two-dimensional system in chapter 4.
In chapter 3 we solve the time-dependent Schrödinger equation in a one-dimensional

system and consider an electron bound to the soft-core potential [59–62] to model
the essential features of an electron in a three-dimensional Coulomb potential. By
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solving the equation and employing ab initio quantum calculations we find the in-
stant when the electron exits the tunneling barrier as well as the initial momentum
of the tunnel ionized electron for the considered system. Additionally, we also deter-
mine the final momentum of the tunnel ionized electron. From these three values we
study the applicability and correctness of the famous and commonly employed two-
step model [63, 64]. The so-called two-step model, which describes the ionization
as instantaneous tunneling at the electric field maximum and classical motion after-
ward with zero exit momentum, is commonly employed to describe tunnel ionization
in adiabatic regimes.
In the case of tunnel ionization the experimental determination of a tunneling

time is complicated by the fact that it is notoriously difficult to determine the
starting moment of the tunnel dynamics. There is no apparent reason to assume
that the electron enters the barrier at the instant of the electric field maximum
which is usually assumed in the community. A third accomplishment in this thesis
is determining from first principles the instant at which the electron enters the
tunneling barrier, which is achieved in chapter 4. In chapter 4 we solve the time-
dependent Schrödinger equation in two dimensions and employ ab initio quantum
calculations, and answer the question when does the electron enter the tunneling
barrier. Additionally, we answer the questions: When does the electron exit the
tunneling barrier in a similar manner as in chapter 3; and, accordingly, how much
time does the electron spend under the barrier? Moreover, we compare the quantum
trajectory of the electron to the one predicted by the two-step model [63–66]. Thus a
fourth accomplishment in this thesis is showing that the tunnel ionized wave packet
does not propagate according to classical equations of motion directly after the
exit, this is achieved in chapter 3 for a one-dimensional system and in chapter 4
for a two-dimensional system. With the results found in chapter 4 we do not only
confirm the results found for a one-dimensional system in chapter 3 but also we show
that the electron does not enter the tunneling barrier at the instant of electric field
maximum as usually assumed. The time spent by the electron under the barrier
defined in chapter 4 should be understood as the most probable time. Where as
the time spent under the barrier determined by the Salecker-Wigner-Peres quantum
clock in chapter 5 should be understood as an average time. A fifth accomplishment
in this thesis is that we have not only defined the most probable tunneling ionization
time from first principles in chapter 4, and that we have defined an average tunneling
ionization time from first principles in chapter 5, but we also show that these times
are physically meaningful since they do not correspond to superluminal velocities.
Finally in chapter 6 the main results reached in this thesis and their implications

are discussed and an outlook on how one can build on this work to gain more
information on tunnel ionization time is given.
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Chapter 2.

Theoretical background and basics

As we have seen in the introduction many approaches for defining tunneling time
have been applied in the case of a free particle approaching a potential barrier. In
Sec. 2.1 we briefly review most of the notable techniques that were used to investigate
quantum tunneling time for the above mentioned case. In this thesis we investigate
tunneling time in the strong field ionization process, because tunnel ionization is ex-
perimentally accessible. Thus strong field tunnel ionization is introduced in Sec. 2.2.
Moreover, the main concept of the so called attoclock experiment [39, 40] that aims
to extract tunneling times in strong field tunnel ionization is discussed in Sec. 2.4.
For understanding the experimental procedure it is important before to understand
the quite known two-step model of tunnel ionization which is introduced in Sec. 2.3.
After understanding the fundamentals of the considered problem, it is also impor-
tant to understand the techniques applied in this thesis for solving the problem. In
this work a new technique is applied to examine tunneling times, the virtual detec-
tor approach technique. In Sec. 2.5 the essentials of the virtual detector approach
are discussed. For simplifying the interpretation of the virtual detector approach,
throughout the whole work we apply a single form of an electric field pulse, its phys-
icality and applicability are discussed in Sec. 2.6. Last but not least, in this thesis
the time dependent Schödinger equation is numerically solved, thus the algorithms
and numerical techniques applied are reviewed in the last section. By reading this
chapter one gains the essential knowledge necessary to understand this thesis.

2.1. Quantum tunneling and time

Although tunneling is a fundamental process in quantum mechanics, there is still no
consensus on the definition and interpretation of tunneling time. Tunneling time was
first studied [67] in the problem of a particle tunneling through a square potential.
In this case, a particle approaches from far away a potential barrier of a height larger
than the particle’s energy and eventually tunnels through the barrier, see Fig. 1.1,
which is a classically forbidden region.
Thus one asks the question: How long does it take for a particle to travel through

the classically forbidden region? As stated, described and criticized in Ref. [23],
many of the approaches applied to define tunneling times for a particle tunneling
through a square potential can be listed into three categories:

7



Chapter 2: Theoretical background and basics

Wave packet approach

The first approach invokes following some feature of the incident wave packet, like
the peak or a centroid of the packet, as the wave packet goes through the barrier
and eventually tunnels. An example of this approach is presented in Ref. [22], where
a typical Gaussian wave packet was prepared and sent from far away through the
barrier. One can define a time delay τwpa as the difference between the instant the
peak of the tunneling wave packet leaves the tunneling barrier and the instant the
peak of the incident wave packet reaches the tunneling barrier. This approach is
criticized in [23]. As found out in Ref. [22], the high energy components of the wave
packet reach the barrier first, and because of their high energy are transmitted more
effectively than later proportions. As a result, one can prepare the wave packet in
a such a way, that the peak of the tunneling packet leaves the barrier even before
the peak of the incident packet reaches the barrier. This causes τwpa to be negative
violating the law of causality. Moreover, this approach is not useful for defining a
time delay in strong field tunnel ionization. In tunnel ionization the electron tunnels
from a bound state to a free state, and one cannot follow some peak of a wave packet
incident from far away on the barrier.

Dynamical path approach

The second class of approaches determines a set of dynamical paths and asks how
much time each path spends under the barrier. From these paths one can define
either the most probable time spent under the barrier, corresponding to the most
probable path, or an average time spent under the barrier, corresponding to the
averaged time spent by the electron through all possible paths. This approach is
mainly realized by three methods:
In the Bohm method, described mainly in [24] and references therein, one writes

the wave function ψ in the form ψ = R exp(iS/~) where R is the amplitude. Then
S would be the solution of the classical Hamilton-Jacobi equation with the original
problem potential V and an additional quantum potential Q. The difference between
the Bohm method and the well known Wentzel–Kramers–Brillouin (WKB) approx-
imation is that in the later the quantum potential Q is neglected. One can see, that
in the Bohm approach one has a set of classical paths following the Hamiltonian-
Jacobi equation and each weighted by R2. For each classical path one can define
a time spent in the classically forbidden region. For a discussion and review of the
Bohm method check Ref. [23].
The Feynman path integrals method applied by the authors of Ref. [26] follows

from the Feynman path-integral approach to quantum mechanics. Each path x(t) is
weighted by exp(iS(x(t))/~) where S(x(t)) is the action of the trajectory x(t). The
controversy in the Feynman path integral method is that the weight of each path is
in general a complex number. Specifically averaging over the time each trajectory
spends under the barrier with a complex weight, leads to a complex average time
spent under the barrier. For more explicit discussion see Ref. [23].

8



2.1. Quantum tunneling and time

The last method is the so called Wigner distribution path method based on
the Wigner function is a phase-space distribution function [23, 68]. For a time-
independent tunneling barrier, trajectories in phase-space can be determined by de-
manding that the Wigner function remains constant along these trajectories [23, 69].
These trajectories satisfy then the classical Hamilton equation with a modified quan-
tum potential. Again for each trajectory one can define the time spent under the
barrier with a weight given by the Wigner distribution function. For more detailed
discussion see Ref. [23].

Clock approach

The last category which is preferred by the authors of Ref. [23] as well as by the
author of this thesis, from the above listed approaches, is the clock approach. As
pointed out in Ref. [15], that in quantum and classical mechanics one has to make a
difference between the time parameter t as a c-number, and dynamical time variables
that time a certain process. In both classical and quantum mechanics one needs
clocks to time a certain process [15]. In classical mechanics one could determine at
each time, the position, velocity, and acceleration of a particle. Suppose there is an
analog to quantum tunneling in classical mechanics. Then one can easily define the
time spent under the tunneling barrier similarly to the way done by the dynamical
path approach. Since one knows when the point particle enters the barrier and
when the particle exits the barrier. In classical mechanics such a problem is straight
forward since there is a simple relation between time t and the particle’s position x.
If such a relation does not exist one has to map the position x of the point particle
to some dynamical variable θ which could be mapped to time. Such a dynamical
variable θ behaves like a clock. One could imagine that in classical mechanics, for
timing a complex dynamical process that could not be directly mapped to time,
one needs a clock. In quantum mechanics there is no simple relation between the
position of the particle and time. The particle is not even point like. Thus measuring
tunneling times is also not straight forward as it would be in classical mechanics.
Fortunately in quantum systems one can map the dynamics of the particle under
the barrier to a dynamically measurable observable θ̂ that could be mapped to time.
In other words, one could couple the quantum particle to a quantum clock in order
to time its dynamics under the barrier.
There are many ways that one could define clocks in quantum mechanics [70], i.e.,

map some dynamical process to some dynamical variable which could be mapped
to time. Here we list the ones most known in the tunneling time community [23];
the oscillatory tunneling barrier clock [37], a clock measuring the precession of the
particle’s spin due to a uniform magnetic field applied in the tunneling region which is
known as the Larmor clock [33, 35] (and references therein), and finally the Salecker-
Wigner-Peres (SWP) quantum clock [31, 34]. Although not all clocks give the same
results for a particle tunneling through a square potential, there are lot of overlaps
and similarities [23].
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Chapter 2: Theoretical background and basics

In the oscillating barrier clock the originally static barrier is perturbed by an
oscillation whose amplitude could be chosen as small as desired. If the particle
interaction time with the barrier is smaller than the oscillation frequency the par-
ticle would be affected by the perturbation. While if it is much larger, the particle
will experience many oscillations such that it feels effectively a static barrier. The
frequency at which such a transition from experiencing the oscillation to not expe-
riencing the oscillation occurs, defines the interaction time of the particle with the
barrier.

The main idea of the Larmor clock is that due to a constant magnetic field in the
tunneling region the spin will precess and one could map this precession to time.
On the one hand, the Larmor clock concept is very attractive because in principle
electrons have spin and their spin precession could be measured experimentally. On
the other hand, in the Larmor clock approach one requires a magnetic field which has
a constant value in the tunneling region and zero elsewhere, which is experimentally
very challenging to achieve.

The Salecker-Wigner-Peres quantum clock is in concept very similar to the Larmor
clock. In fact the Larmor clock is a special case of the more general SWP quantum
clock. The Larmor clock is two dimensional whereas the SWP quantum clock could
be of any integral dimensionality. This quantum clock is a quantum system that is
coupled to the particle in such a way that it only evolve in time when the particle
is inside the barrier. The quantum clock in structure is very similar to a classical
periodic clock. The SWP quantum clock has been applied to the tunneling through
square potential by Ref. [71–73].

To my knowledge none of the above methods has been applied dynamically to
the tunnel ionization problem. Note that some of the above mentioned concepts
cannot be even applied dynamically. For example the Wigner time approach [46–
48] was applied for tunnel ionization by Ref. [49, 50] where the adiabatic limit was
considered. In tunnel ionization a time-dependent electric field pulse is considered,
and the adiabatic limit means that the electric field pulse changes much slower
than the tunneling dynamics. Taking the adiabatic limit and considering that at
the instant of electric field maximum one has the highest ionization probability, in
Ref. [49, 50] the wavefunction at the instant of field maximum is considered. And
many of the above listed approaches have been applied to tunnel ionization in Ref.
[51]. In Ref. [51] the wavefunction was propagated till the instant of electric field
maximum and considered at that instant for calculating tunneling times. In other
words the approaches in [51] have been applied non dynamically. The results were
compared to the experimental results of the attoclock experiments. In this thesis,
we apply the SWP quantum clock to the problem of tunnel ionization in order to
explore tunneling times, where a detailed description of the quantum clock is given
in chapter 5.
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2.2. Tunnel ionization in strong fields

2.2. Tunnel ionization in strong fields
Tunneling is defined as when a particle having an energy E goes through a region
in space where a potential V̂ (r) exists and such that E < V̂ (r), where r is a vector
in three dimensional space. In classical mechanics, such a process is forbidden since
the particle does not possess enough energy to go through such a region and the
particle would either reflect or stop when reaching such a region. While quantum
mechanically there is a probability that the particle would go through the classically
forbidden region. Here we illustrate how the tunneling picture can describe ion-
ization of an electron by an electric field pulse, and under which conditions such a
picture is applicable. The Schrödinger equation of an electron bound by a Coulomb
potential in an electromagnetic field is written as (in atomic units)

i
∂Ψ(r, t)
∂t

=
(

1
2

(
−i∇ + 1

c
A(r, t)

)2
− Z

|r|
− φ(r, t)

)
Ψ(r, t) = ĤΨ(r, t) , (2.1)

where φ(r, t) and A(r, t) denote the electromagnetic potentials of the pulse, Ψ(r, t)
the wave function of the electron, ∇ is the gradient, Z the atomic number and
−Z/|r| is the Coulomb potential. In experiments, a Coulomb-bound electron is
usually excited by a laser pulse with a wavelength much bigger than the atomic
dimensions such that the laser pulse is nearly homogeneous over the size of the
atom and the condition

a0 � λ (2.2)

is satisfied, with a0 being the Bohr radius and λ the wavelength of the pulse. Ac-
cording to Maxwell’s equations the relation between the electromagnetic potentials
and the electric field E and the magnetic field B, which are the physical quantities,
is given by (in atomic units)

E = −∇φ(r, t)− 1
c

∂A(r, t)
∂t

, (2.3a)

B = ∇×A(r, t) , (2.3b)

where c is the speed of light. If one approximates the electromagnetic field with a
space homogeneous one, which is known as the dipole approximation, the electric
field as well as the magnetic field should then be position independent. This im-
plies from Eqs. (2.3) that the electromagnetic potentials should be as well position
independent. From Eqs. (2.3) one could see that applying the dipole approxima-
tion insinuates that one also approximates the electromagnetic pulse by a pulse
without magnetic field, since for a homogeneous vector potential A(t) one obtains
∇×A(t) = 0. Nevertheless, it was shown in [74] that one could find a gauge where
both electric and magnetic field are non zero even when the dipole approximation is
applied. The Lorentz force on an electron in an electromagnetic field is (in atomic
units)

F = −
(

E + v

c
×B

)
, (2.4)
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Chapter 2: Theoretical background and basics

Figure 2.1.: The one dimensional representation of the tunneling barrier of an electron
bound by a Coulomb potential in the radial direction. The electron is represented by the
radial part of the ground state ψ0(r) of the Coulomb potential with binding energy −Ip.
The Coulomb potential is bent by the electric field. The points rentry and rexit represent the
entry and exit points of the tunneling barrier respectively. The figure is adopted from Ref.
[75].

where v is the velocity of the electron. One can see that the force due to the
magnetic field is multiplied by 1/c in comparison to that of the electric field E
[74]. In this thesis we consider hydrogen like ions which are not highly charged.
For such ions where Z < 20, the term v/c and hence the effect of the magnetic
field [50, 74]. Relativistic effects are even of the order (|v|/c)2 and consequently
can also be neglected [50, 74]. Thus we apply the dipole approximation without
magnetic field. In strong field physics two gauges are commonly used within the
electric dipole approximation, the length-gauge defined by the scalar potential φ(t) =
−x · E(t) and vector potential A(t) = 0, and the velocity gauge defined by φ(t) =
0 and A(t) = −c

∫
E(t)dt. Let us consider the time-independent solution of the

Schrödinger equation at static electric field E0, the maximum of the applied pulse,
in the length gauge. Then we have

ĤΨ =
(
−1

2∆− Z

|r|
+ x · E0

)
= −IpΨ (2.5)

where −Ip is the eigenenergy solution with Ip > 0 and ∆ = ∇ ·∇ is the Laplacian.
In this gauge we see that the Coulomb potential is bent by the electric potential
forming the total potential V̂ (x, y, z) as shown in Fig. 2.1, where the electric field
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2.2. Tunnel ionization in strong fields

direction is chosen opposite to the x-direction such that x · E0 = −xE0. Then the
potential V̂ (x, y, z) could be written as

V̂ (x, y, z) = − Z

|r|
− xE0. (2.6)

Whereas the potential plotted in Fig. 2.1 corresponds to an electric field opposite to
the r direction such that

V̂ (r) = − Z

|r|
− rE0. (2.7)

The definition of the tunneling barrier in three or two dimensions is more complicated
and requires a different approach that we will discuss in Chapter 4. But for the sake
of understanding the tunneling ionization picture we treat the three dimensional
system here like a one dimensional system and consider the potential V̂ (r). As a
result, we have an electron with energy E = −Ip penetrating the potential V (r),
then the boundary of the classically forbidden region is defined by

−Ip = V (r). (2.8)

Other than the electric dipole approximation and the one dimensional radial treat-
ment that we used to define the tunneling picture, we have also considered the system
static and applied the length gauge. Yet the electromagnetic pulse with frequency ω
applied in experiments is time dependent. The semi-classical theory of Keldysh [41]
defines the so called Keldysh parameter γ which determines when the tunneling pic-
ture is applicable in tunnel ionization. Keldysh considered the classical time needed
by the electron to pass the barrier the so called Keldysh time τk =

√
2Ip/E0. Then

the tunneling picture applies for γ = ωτk � 1. In this case the period of the applied
pulse is much bigger than the typical time of the tunneling process such that during
tunneling the electric field could be considered static. In this case one should be
careful since for very long pulses the relativistic effects set in again and the dipole
approximation is not valid anymore [76]. But as a result, for long enough pulses the
tunneling picture holds.
One issue remains here to consider: is the tunneling picture valid in the velocity

gauge? In principle the tunneling picture should be gauge independent. Substituting
the velocity gauge in Eq. (2.1) one gets the Hamiltonian Ĥ:

Ĥ = 1
2

(
−i∇−

∫
E(t)dt

)2
− Z

|r|
, (2.9)

where obviously the potential bent by the electric field is not apparent anymore as
in V (r). Any physical observable should be gauge invariant under a gauge trans-
formation, which is not the case for Hamiltonian Ĥ. Hence the Hamiltonian Ĥ is
not a physical observable, while the quantity Ĥ − i∂/∂t is gauge invariant and is
a physical observable. The Hamiltonian if time-independent represents the energy
of the system and thus is a physical observable, otherwise if time-dependent it is
responsible for translations in time and is not a physical observable [50, 77]. For the
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Chapter 2: Theoretical background and basics

static case one can find a time-independent gauge where the Hamiltonian is explic-
itly time independent and is in an observable [50, 77] of the system’s total energy.
As pointed out in [50, 77] defining the time-independent Hamiltonian with this time
independent gauge one can define a gauge invariant tunneling picture.
In this thesis we apply the dipole approximation, i.e., we consider a homogeneous

pulse in space. The frequency of the pulse is chosen such that γ < 1. After explain-
ing what is strong field tunnel ionization, in the next section the famous two-step
model of tunnel ionization that predicts the momentum of the tunneled electrons is
explained.

2.3. Two-step model
Corkum el al. [63, 64] developed a simple and easily applicable model in order to
describe the spectra of tunnel ionized electrons, the so-called two step model. This
model is important to understand the attoclock experiment. Moreover in this thesis
we test, for the considered physical setups, how good can the two step model predict
the final momentum of the tunnel ionized electron. Additionally, we examine how
good this model can be used to extract tunneling times. The main assumptions of
this model are ones concerning the tunneling process. In this thesis we examine the
tunneling process and question these assumptions and inquest how realistic they are.
In the first step of the model, the electron tunnels out at the instant of field

maximum. This is founded on the theoretical calculations [53, 78] that results in a
maximal tunnel probability for maximal electric field strength. Assuming that the
electron tunnels out at the instant of field maximum means also that the electron
spends no time under the barrier, i.e., instantaneous tunneling. Additionally, at the
tunnel exit (the turning point) the total energy of the electron is exactly equal to the
potential. It follows from classical mechanics, specifically from energy conservation
E = P 2/2 + V that the electron does not posses any kinetic energy and thus have
zero momentum at the tunnel exit.
In the second step the electron follows Newton’s equations of motion of a nega-

tively charged particle in an electric field. Accordingly, the final momentum of the
tunneled electron p(tf ) is given by (in atomic units),

p(tf ) = p(t0) +
∫ tf

t0
E(t′)dt′, (2.10)

where t0 is the instant of field maximum such that E(t0) = E0 and tf is at the
instant at which the electric field pulse vanishes. Also here the dipole approximation
is applied. The initial conditions of Newton’s equations of motion follow from the
first step assumptions. The electron is at the tunnel exit xexit at the instant t0, i.e.,
x(t0) = xexit with an initial momentum p(t0) = 0 since the electron has no kinetic
energy at the tunneling exit. The two step model is usually corrected by the so called
Perelomov, Popov and Terentev (PPT) theory [79]. In the PPT theory Eq. 2.1 is
solved by considering the length gauge and approximating the Coulomb potential
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by a short range potential. The Coulomb effect is then considered by correcting
the resulting ionization rate by a prefactor calculated using a quasi-classical theory.
From the ionization spectra of the PPT theory one induces that the electron exits
with a non-zero transverse momentum (perpendicular to the electric field direction).
In the static limit, for γ � 1 this exit transverse momentum goes to zero. Note that
the so called Ammosov, Delone and Krainov (ADK) theory [80] is just the static
limit of the PPT theory.

2.4. Attoclock experiment

Keller et al. have conducted experiments using the angular streaking technique aim-
ing to measure when does the electron ionize from a bound state, the so-called
attoclock experiments [39, 40]. Although the attoclock experiments try to deter-
mine when does the electron tunnel ionize, a consensus on the interpretation of the
experimental results is still lacking. In the following we sketch the basic idea of
the angular streaking attoclock experiment [39, 40] in order to clarify where the
difficulties lei.
Consider a circularly polarized laser field applied to the Coulomb bound electron

defined as (within the electric dipole approximation):

E(t) = E0 [− sin(ωt)x̂ + cos(ωt)ŷ] (2.11)

where E0 is the electric field strength and ω is the angular frequency of the applied
field. Consider the electron that has tunneled at electric field maximum when the
field was pointing in the negative y-direction i.e., E(t0) = −E0ŷ at instant t0 = π/ω,
and that the pulse runs for one period, i.e. tf = 2π/ω. Using the two-step model
by substituting Eq. (2.11) in Eq. (2.10) the asymptotic momentum of the tunneled
electron should point only along the x-direction x̂ see Fig. 2.2. In the experiment
one finds that the asymptotic momentum is shifted with respect to the x-direction.
The origin of this shift could be of many reasons. One of the reasons could be long
range Coulomb effects not considered in the two-step model. Another reason could
be an initial momentum not equal to zero at the instant of electric field maximum
pe(t0) 6= 0. The initial momentum of the tunneled electron is usually corrected by a
momentum perpendicular to the electric field direction due to non-adiabatic effects
by the so called PPT theory [53, 79, 80] see also Sec. 2.3. Also a momentum in the
electric field direction exists as pointed out in [49, 75], as we will show in this thesis.
Moreover, the shift could be caused by a delay τexit with respect to the instant of
electric field maximum, i.e., the electron exits the tunneling barrier either before or
after the instant of electric field maximum t0 with a negative or positive delay τexit,
respectively. One can easily recognize that the interpretation of the experimental
results are not straight forward and are dependent on a theoretical model that
calibrates the attoclock, as done for example in [54, 55] where the analytical R-
matrix theory [81] is used to develop a calibration model.
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Chapter 2: Theoretical background and basics

Figure 2.2.: A schematic representation of the direction of the electric field E(t) at the
instant of tunneling t0 and at the instant of decay of the pulse tf . (a) The direction of the
asymptotic momentum pe(tf ) as expected using the two-step model. (b) The direction of
the asymptotic momentum pe(tf ) as measured experimentally.

The main purpose of the attoclock angular streaking experiment is to provide
information about the instant of tunnel ionization, i.e., the instant the electron
leaves the tunneling barrier. According to the attoclock experimental setup this
could be only determined with respect to the instant of maximum electric field
strength. Such that one can define the delay

τexit = texit − t0 (2.12)

where texit is the instant of ionization and t0 = arg max [|E(t)|] is the instant of
maximum electric field strength.
The aim in this thesis is not to calibrate or model the attoclock experiment.

The main purpose in this work is to determine the instant of ionization texit and
consequently the delay τexit from first principles. Another aim is the interpretation
of the delay τexit, does it represent the time spent under the barrier? Moreover, some
findings of this thesis influence the modeling of attoclock experiment, although the
exact parameters of the experiment are not considered here. This will be discussed
thoroughly in Chpater. 3.
In conclusion, one should note that the attoclock experiment aims to determine the

delay τexit , and for this purpose the final momentum of the tunnel ionized electron is
measured. Accordingly, τexit is extracted from the measured final momentum using
some theoretical model.
In this thesis τexit is determined from first principles via the virtual detector

approach which is introduced in the next section.
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2.5. Virtual detector
In this thesis we apply the virtual detector method [57, 58] to investigate tunneling
ionization dynamics1. Ionization from a binding potential means that an electron
moves away from the vicinity of the binding potential’s minimum. A virtual detector
allows to quantify this dynamics. More specifically, a virtual detector is a hypothet-
ical device that determine how the probability to find a particle within some specific
space region changes over time. In the following, we lay down its mathematical
foundations.
The quantum mechanical evolution of an electron’s wave function Ψ(r, t) is gov-

erned by the Schrödinger equation (in atomic units)

i∂Ψ(r, t)
∂t

=
(

1
2

(
−i ∂
∂r

+ 1
c

A(r, t)
)2
− φ(r, t)

)
Ψ(r, t) , (2.13)

where φ(r, t) and A(r, t) denote the electromagnetic potentials. The probability
density to find the electron at position r at time t is given by

%(r, t) = Ψ(r, t)∗Ψ(r, t) , (2.14)

where Ψ(r, t)∗ indicates the complex conjugate of Ψ(r, t). The dynamics of the
density %(r, t) is associated with the probability current

j(r, t) = Re
(

Ψ(r, t)∗
(
−i ∂
∂r

+ 1
c

A(r, t)
)

Ψ(r, t))
)
. (2.15)

Expressing the wavefunction as

Ψ(r, t) =
√
%(r, t) exp(iϕ(r, t)) , (2.16)

the probability current may be written as a product of the probability density %(r, t)
and some local velocity, viz.

j(r, t) = %(r, t)
(
∂ϕ(r, t)
∂r

+ 1
c

A(r, t)
)
, (2.17)

which occurs in the framework of Bohmian mechanics [82]. The probability density
and the probability current fulfill the continuity equation

−∂%(r, t)
∂t

= ∇ · j(r, t) . (2.18)

For a compact subspace V of the physical space with a piecewise smooth boundary
S the continuity equation (2.18) yields by integration over the subspace

− d
dt

∫
V
%(r, t) dV =

∫
S

j(r, t) · n dS , (2.19)

1This method was developed by the author before the knowledge of the above cited work. Nev-
ertheless, this method is only here applied for the purpose of investigating tunnel ionization
dynamics.
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Figure 2.3.: A schematic representation of the virtual detectors in two dimensions applied
for the tunneling ionization problem. The probability distribution of an electron in the
ground state of a Coulomb potential in two dimensions is plotted in logarithmic scale. The
parabolic red lines describe the boundaries of the tunneling barrier as calculated using
parabolic coordinates for E0 = 1.1 in atomic units. The calculation of the tunneling barrier
is described thoroughly in Chapter 4. The detector at the entry is realized by calculating
Dcentry(t)dt, see Eq. (2.22), along the entry curve as pointed out by the arrows. The arrows
point to the starting and end points of the curve. Similarly the detector at the exit is realized
by calculating Dcexit(t)dt along the exit curve as pointed out by the arrows. Calculating
Dx=7(t)dt over the dotted red line gives the probability that an electron passes x = 7 in the
time window [t, t+ dt].

where n denotes the outward pointing unit normal field of the boundary S. Equa-
tion (2.19) holds also for unbounded subspaces if %(r, t) decreases fast enough when
|r| → ∞. Thus, the rate of the change of the probability to find the electron within
the space region V is given by the probability current through the volume’s sur-
face, which is quantified by the virtual detector. In other words, a virtual detector
placed at the surface S determines how much probability passes from one side of
the surface to the other per unit time. Here we explain the virtual detector method
intuitively in the usual interpretation of quantum mechanics. Understanding the
virtual detector method is important for interpreting the represented results in this
thesis. Since in this thesis we investigate a one dimensional and two dimensional
systems, the interpretation of the virtual detector is explained in both cases.
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In one dimension

Suppose an experimentalist wants to measure the time of arrival of an ionized elec-
tron at a certain point in space xd. One way would be to place an electron detector
at xd and each time the detector ticks, register the time of arrival with a time un-
certainty δt. In the usual interpretation of quantum mechanics the experimentalist
is expected to measure a distribution of number of electrons in time, i.e., at each
time of arrival the experimentalist will measure a certain number of ticks. This is
interpreted as at each arrival time window [t, t + δt] one has a certain probability
of an electron arriving at the detector. The higher the probability is, the higher
the number of ticks is. Summing over all the number of ticks during the whole
measurement time, gives the total number of ionized electrons that have passed xd.
In the above explained way the probability current multiplied with a time interval
j(xd, t)dt represents a virtual electron detector in one dimension 2. It gives us the
quantity of probability that have passed xd in the time window [t, t + dt], or for
the experimentalist the number of ticks in the time window [t, t + δt]. Integrating
j(xd, t)dt over time gives us the total probability that have passed xd or for the
experimentalist the total number of ionized electrons that have passed xd.

In two dimensions

In two dimensions the probability current is a vector j(x, y, t) = jx(x, y, t)x +
jy(x, y, t)y where (in atomic units)

jx(x, y, t) = 1
2i

(
Ψ(x, y, t)†∂Ψ(x, y, t)

∂x
−Ψ(x, y, t)∂Ψ(x, y, t)†

∂x

)
, (2.20)

jy(x, y, t) = 1
2i

(
Ψ(x, y, t)†∂Ψ(x, y, t)

∂y
−Ψ(x, y, t)∂Ψ(x, y, t)†

∂y

)
(2.21)

are the probability currents in x and y directions, respectively, when A(r, t) = 0. We
consider this case because in this thesis the length gauge is applied. The probability
current in two dimensions j(x, y, t) could not be interpreted in the same manner
as the probability current in one dimension j(x, t). The integral of j(x, y, t) over a
curve in two dimensions

Dc(x,y)(t)dt =
[∫

c(x,y)
j(x, y, t) · nd [c(x, y)]

]
dt (2.22)

could be interpreted like j(x, t)dt, where n is the unit vector normal to the curve3

c(x, y). Note, that Eq. (2.22) is equivalent to the right side of Eq. (2.19) but ex-
2Note that in one dimension the closed surface occurring in (2.19) is formed of two points. Also
the electric field points only in one direction. As a result, it is enough to consider one point
in order to calculate the probability of ionized electrons since one could choose the other point
where the probability flow is null.

3In two dimensions the surface occurring in the integral (2.19) is a closed curve. While the entry
and the exit curves shown in Fig. 2.3 are not closed. It will be shown in chapter 4 the probability
flow is non-negligible only along parabolic curves that are not closed.

19



Chapter 2: Theoretical background and basics

panded in two dimensions.Dc(x,y)(t)dt gives the amount of probability that passes
the curve c(x, y) in time window [t, t+ dt]. Thus calculating Dc(x,y)(t)dt resembles
placing a detector along the curve c(x, y). For calculating the probability that an
electron exits the tunneling barrier in the interval [t, t+dt], Dc(x,y)(t)dt is calculated
over the exit curve cexit. Similarly, for calculating the probability that an electron
enters the tunneling barrier in the interval [t, t+ dt], Dc(x,y)(t)dt is calculated over
the entry curve centry. For calculating the probability that an electron passes the line
x = c in the time window [t, t+ dt], where c is a constant, Dx=c(t)dt is calculated,
see Fig. 2.3 for an illustration.
It is also important to remark that the detectors here are virtual detectors realized

by calculating the probability flow and do not affect the system in any way. On the
other hand, realizing such a measurement setup experimentally if possible requires
a real electron detector, which would affect the considered ionization process. Thus
the simple method described above allows one to detect the electron at the tunneling
barrier entry and exit without effecting the tunnel ionization process.
In order not to complicate the interpretation of the virtual detector results, a

certain shape of an electric field pulse is applied throughout this thesis. The shape
of the pulse and it’s physicality is discussed in the next section.

2.6. Electric field pulse and gauge invariance

In this thesis the same pulse is applied for all considered physical setups. As argued
in Sec. 2.2 the dipole approximation as well as the length gauge is applied in this
work. Usually in experiments the applied pulse is of a sinusoidal form with a Gaus-
sian similar envelope. Applying a pulse similar to the one applied in experiments
would complicate the interpretation and analysis of the results attained in this the-
sis. Since a sinusoidal pulse would change direction and causes scatterings of the
tunneled part of the wave function with the bound part. Thus to keep the analy-
sis of the results clear and simple we apply an electric field pulse with a Gaussian
structure of the form

E(t) = E0 exp
(
−α

2(t− t0)2

2

)
, (2.23)

where α is constant that has to be determined. Such a pulse would mimic a half cycle
sinusoidal pulse. The time τE =

√
(2)/α is the time scale of the rise and the decay

of the pulse. The constant α should be determined from the Keldysh parameter,
see Sec. 2.2, by setting γ < 1. Since α determines how fast does the pulse change
and the Keldysh parameter should be set in a way such that the pulse dynamics are
much slower than the tunneling dynamics. But the frequency of the pulse ω given
in the Keldysh parameter γ is given for a sinusoidal pulse whereas here we have a
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Gaussian pulse. For this reason we expand the Gaussian pulse and a pulse of the
form E(t) = E0 cos(ω(t− t0)) around the instant of field maximum t0

E(t) = E0 exp
(
−α

2(t− t0)2

2

)
= E0

(
1− α2(t− t0)2 +O(α4)

)
(2.24)

E(t) = E0 cos(ω(t− t0)) = E0

(
1− ω2

2 (t− t0)2 +O(ω4)
)

(2.25)

and solve for the parameter α in terms of ω by equalizing both pulse equations.
Additionally, the condition α, ω < 1 is satisfied for the studied systems such that
one compares the pulses up to second order. Accordingly, one finds that α = ω/

√
2

and ω is determined from setting the Keldysh parameter γ to some constant k such
that k < 1.
This pulse is applied in the Hamiltonian via a length gauge, the scalar potential is

given by φ(r, t) = −E(t)·r, and one can write the total Hamiltonian as ĤT (t) = Ĥs+
ĤI(t) where Ĥs is the system Hamiltonian and ĤI(t) is the Hamiltonian describing
the interaction of the pulse with the system. If one considers a physical pulse
then the interaction term of the Hamiltonian should be zero at the beginning of
the interaction, and goes back to zero at a certain time. Mathematically, this is
satisfied by the condition ĤT (t → ±∞) = Ĥs, i.e., the interaction of the pulse
with the system starts and ends at certain instants of time. In the length gauge
this criteria is satisfied for an electric field described by Eq. (5.2), nevertheless such
a pulse is not physical. To see this we represent the same electric field pulse but
in the velocity gauge. In this case the vector potential A(t) that represents the
interaction in the Hamiltonian is given by A(t) = −c

∫ t
−∞ E(t′)dt′. By a simple

calculation one finds out that for a Gaussian electric field pulse A(−∞) = 0 and
A(+∞) 6= 0. Thus for the considered electric field pulse in the velocity gauge the
condition ĤT (t → +∞) = Ĥs is not satisfied. For this reason one questions the
reality of the Gaussian electric field pulse applied in this thesis. This Gaussian pulse
mimics a half cycle pulse and half cycle pulses have been achieved experimentally
[83, 84]. Though the pulses achieved experimentally have a long negative tail with
small absolute value compared to the positive part of the pulse [84]. For such pulses
the integral of the electric field vanishes for large times because of the long negative
tail and A(±∞) = 0 is satisfied. Applying such a realistic pulse in this work would
not effect the results but requires a more numerical effort because of the long negative
tail. In conclusion, although the Gaussian pulse is rigorously not realistic, it mimics
realistic pulses that are generated experimentally.
After we have laid the physical foundations of the considered problems, we discuss

in the next section which algorithms have been used in order to solve this problem.

2.7. Numerical techniques
In this thesis the time dependent Schrödinger equation of an electron interacting
with an electric field is solved numerically. For this purpose two algorithms have
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been applied, the Lanzcos algorithm, see for example [85–88], and the split operator
method, see for example [89–91]. The split operator method is applied for the case
when a soft core potential4 is used. Whereas the Lanzcos algorithm is applied when
a Coulomb potential is used. The reason for this is that for a Coulomb potential the
split operator algorithm does not converge as later explained. The equation that
has to be solved is of the form:

i~∂Ψ(t)
∂t

= Ĥ(t)Ψ(t) (2.26)

which could be written as:

Ψ(t) = T̂o exp
(
−i~

∫ t

t0
Ĥ(t′)dt′

)
Ψ(t0) = Û(t, t0)Ψ(t0) (2.27)

where T̂o is the time ordering operator. The expression for Û(t, t0) used almost
exclusively in physics [92],

Û(t, t0) = 1− i

~

∫ t

t0
Ĥ(t1)dt1 +

(
i

~

)2 ∫ t

t0
dt1

∫ t1

t0
dt2Ĥ(t1)Ĥ(t2) + . . . (2.28)

which is obtained by iteration [92]. For a numerical solution the expansion (2.28)
has to be terminated at a certain order, which is not convenient because then the
unitary property of Û(t, t0) would be lost. A much more convenient expansion,
which is in contrast unitary, is given by the Magnus formula [89, 92, 93],

Û(t+ ∆t, t) = exp
(
− i
~

∫ t+∆t

t
Ĥ(t′)dt′

)
+D3(t) (i∆t)3 +D5(t)(i∆t)5 + . . . (2.29)

where D3(t) is expressible as commutator of Ĥ(t) at two different times. Similarly
D4(t) is a higher order commutation of Ĥ(t). In this thesis the series is truncated
at the second order and Û(t+ ∆t, t) is approximated by,

Û(t+ ∆t, t) = exp
(
− i
~

∫ t+∆t

t
Ĥ(t′)dt′

)
+O (∆t)3 . (2.30)

As shown in [89–91] a fourth order approximated propagator can be obtained by
a multiplication procedure of the second order approximated propagator. In the
following two algorithms will be described that are used to solve the equation,

Ψ(t+ ∆t) = exp
(
− i
~

∫ t+∆t

t
Ĥ(t′)dt′

)
Ψ(t). (2.31)

4A soft core potential is a potential of the form a
√

r · r + b, where a and b are some constants.
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2.7.1. The split operator method

The first procedure of the split operator method is factorizing the propagator Û(t+
∆t, t) in it’s exponential form by using the well known Trotter formula [94]. An
important criteria for the applicability of this method is the ability to separate
the Hamiltonian into parts, where each part has a certain eigenbasis, and it is not
computationally demanding to transform from one eigenbasis to another . For ex-
ample, for the Schrödinger equation the split operator method would be applied
by separating the Hamiltonian into a part diagonal in the momentum space and a
part diagonal in the Cartesian space. due to fast algorithms one could transform
from one space to another very efficiently. Solving the Schrödinger equation of an
electron interacting with a magnetic and electric field could become tricky, since
the vector potential is space dependent and multiplied with the canonical momen-
tum. Although the propagator could be factorized via the Trotter formula for any
Hamiltonian, the algorithm could be only applied to Hamiltonians which could be
separated into a part that is diagonal in the momentum space and a part which is
diagonal in the Cartesian space. In the Schrödinger propagator this translates into
separating the Hamiltonian into a kinetic part and a potential part. If this is the
case then Eq. (2.31) could be written as (in atomic units),

Ψ(t+ ∆t) = exp
(
−i∆t(T̂ + V̂ (t, t+ ∆t)

)
Ψ(t), (2.32)

Where T̂ is the kinetic term and V̂ (t, t + ∆t) = 1
∆t
∫ t+∆t
t V̂ (t′)dt′ is the time in-

tegration of the potential part. Then according to Trotter formula this could be
expanded in the following way:

exp
(
−i∆t(T̂ + V̂ (t+ ∆t, t)

)
= exp

(
− i

2∆tT̂
)

exp
(
−iV̂ (t+ ∆t, t)∆t

)
exp

(
− i

2∆tT̂
)

+ 1
24
[
T̂ + 2V̂ (t+ ∆t, t),

[
T̂ , V̂ (t+ ∆t, t)

]]
(∆t)3 + . . . ,

(2.33)

where
[
T̂ , V̂ (t+ ∆t, t)

]
is the commutation between the kinetic part and the inte-

grated potential part. In this thesis the Trotter formula is terminated at it’s second
order expansion i.e. the propagator is approximated by,

exp
(
−i∆t(T̂ + V̂ (t+ ∆t, t)

)
= exp

(
− i

2∆tT̂
)

exp
(
−iV̂ (t+ ∆t, t)∆t

)
exp

(
− i

2∆tT̂
)

+O(∆t)3.

(2.34)

Higher order truncation can be obtained from this second order truncation as shown
in [89]. An important criteria for the convergence and thus the applicability of this
second order truncation is the convergence of the commutator in Eq. (2.33), i.e., it is
bounded such that as ∆t goes to zero the commutator multiplied by ∆t also goes to
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zero. For example it can be shown that for a Coulomb potential it does not converge
and thus this algorithm is not applicable. Whereas for a soft-core potential the
commutator converges and the algorithm is applicable. Another important criteria
of factorizing the propagator as in Eq. (2.34), is the that the propagator remains
unitary. To see the aim of writing the propagator as in Eq. (2.34) consider the
wavefunction Ψ(t) in it’s momentum space representation,

Ψ(t) =
∫

p
Cp(t) |p〉 dp, (2.35)

where Cp is a complex number and |p〉 is the eigen vector of the momentum p. Then
applying exp

(
− i

2∆tT̂
)
is trivial since |p〉 is also an eigen vector of the operator T .

After this the resulting wavefunction is fourier transformed to it’s cartesian space
representation via,∫

p
Cp(t) exp

(
− i

2∆tTp

)
|p〉 dp =

∫
x

∫
p
Cp(t) exp

(
− i

2∆tTp

)
〈x|p〉 |x〉 dxdp,

(2.36)
where Tp is just a c-number and |x〉 is the eigen vector of the position x and
〈x〉p = exp (ipr). This could be done because of the completeness of the |x〉 ba-
sis. Now having exp

(
− i

2∆tT̂
)

Ψ(t) represented in the |x〉 basis it is trivial to apply

exp
(
−iV̂ (t+ ∆t, t)∆t

)
to it since |x〉 is an eigen vector for the operator V̂ (t+∆t, t).

What is left is to Fourier transform the whole thing back to the momentum space
representation and apply the last exponential factor of the propagator via,∫

p′

∫
x

∫
p
Cp(t) exp

(
− i

2∆tTp′

)
exp (−iVx(t+ ∆t, t)∆t)×

exp
(
− i

2∆tTp

)
〈x|p〉 〈p′|x〉 |p′〉 dpdxdp′.

(2.37)

In the above described way the wavefunction is propagated from t0 to t by repeating
the above procedure for each iteration ∆t. ∆t is chosen such that ∆t� 1/E where
E is the energy of the system.
The split operator method as described above is easily parallelizable. The Fourier

transformation can be done by existing fast Fourier transformation routines like the
FFTW [95]. The two dimensional calculations have been paralellized by using GPU
(Graphic processing unit) cards. This algorithm is really suitable for graphic card
simulations. In graphic cards one has a grid of threads where its geometry could be
initialized before executing a certain routine. It is very convenient to form the grid
dimensions as the matrix dimensions which represents the wavefunction. Since then
each thread will take one matrix element and multiply it with the exponential factor
of the propagator. After that there exists a Fast Fourier transformation routine
implemented to GPU computing which is applied on the wavefunction matrix. As a
result, the algorithm will first multiply each matrix element with the first propagator
factor then fourier transform the matrix then multiply it with the second exponential
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factor. Next apply a back Fourier transformation and at the end multiply each
matrix element with the last factor (from right to left) of the propagator. In the
next part the Lanzcos algorithm is explained.

2.7.2. The Lanczos algorithm
The description of the Lanczos algorithm presented here is based on the following
material [85–88] The Lanczos algorithm is based on the Krylov subspace [85, 86].
Consider an N × N matrix A and an N -dimensional vector b then the Krylov
subspace of dimension k is defined as:

Kk (A, b) = span
{

b,Ab, . . . ,Ak−1b
}

(2.38)

where k ∈ [1, N ]. Thus the Krylov subspace is spanned by the successive powers
of matrix A applied to vector b. The dimension of the Krylov subspace cannot
be larger than N , since applying AN on b will produce a vector which is linearly
dependent on the previous vectors [87]. If A is a Hermitian matrix then there exits
a unitary transformation Q such that the following holds [87]:

Q†AQ = T =


α1 β1
β1 α2 β2

. . . . . . . . .
βN−2 αN−1 βN−1

βN−1 αN


where T is tridiagonal real matrix. The columns of the matrix Q are labeled qi
and are called the Lanzcos vectors. The vectors qi form an orthonormal basis of the
Krylov subsapce Kk (A, b), and can be constructed from the vector b. The aim of
the Lanzcos algorithm is to find the matrices Q and T . One can easily show from
the previous equation that

AQ = QT (2.39)
holds. Form Eq. (2.39) one could show the following 5:

Aqj =
N∑
i=1

qiTij . (2.40)

From the property of tridiogonality of T and the above introduced notation Eq. (2.40)
reduces to:

βiqi+1 = Aqi − αiqi − βi−1qi−1. (2.41)
5First I prove the right hand side of Eq. (2.40). Let the result of matrix multiplication AQ be the
matrix R. Then an element of matrix R with indexes i, j is equal to Rij =

∑
l
AilQlj . Let ei

be an N dimensional column vector with zeros everywhere except at index i. Then a column of
R could be expressed as

∑
i
Ri,jei =

∑
i

∑
l
AilQljei. The column with index l of matrix A is

expressed as Al =
∑

i
Ailei. Inserting this to the original equation one gets Rj =

∑
l
AlQlj.

Since in the last equation one sums over all the columns of matrix A multiplied with the elements
of column Qj one can write Rj = Aqj . In a similar manner the right hand side can be written
as Rj =

∑
l
Tlj

∑
i
Qilei and as a result one gets Rj =

∑
i
qiTij .
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Data: The initial input is b and A
Result: Calculate the matrix Q and matrix T
q1 = b/‖b‖2
Z = Aq1
for i = 1→ i = k − 1 do

αi = qi · Z
Z = Z − αiqi
βi = ‖Z‖2
qi+1 = Z/βi
Z = Aqi+1 − βiqi

end
αk = qk ·Z

Algorithm 1: The Lanzcos Algorithm

Since the vectors qi are orthonormal multiplying Eq. (2.41) by qi one gets:

αi = qi ·Aqi. (2.42)

The Lanzcos algorithm is an iterative procedure based on Eq. (2.41) and Eq. (2.42).
This corresponds to classical Gramm-Schmidt orthogonalization. It is known that
this algorithm is unstable. Paige [96] suggested a modified stable algorithm by
substituting Eq. (2.42) by:

αi = qi ·
(
Aqi − βi−1qi−1

)
, (2.43)

which is arithmetically equivalent to Eq. (2.42) since the vectors qi are orthonormal.
So one has the Matrix A and needs to calculate the matrix Q and T . For this one
can start from a random non-zero vector b corresponding to q1, and then using
Eq. (2.43) and Eq. (2.41) calculate the matrix Q and matrix T iteratively as shown
in Algorithm 1. The Lanzcos relation:

AQ(k) = Q(k)T (k) +
[
0, . . . , 0, βkqk+1

]
(2.44)

holds for each iteration k for 1 < k < N , where Q(k) is the matrix formed of the first
k Lanzcos vectors qi and T (k) is the tridiagonal matrix for α1 till entry αk. Since Q
is unitary then the eigenvalues ai of matrix A are the same as the eigenvalues ti of
T and the eigen vectors of both matrices are related via,

ai = Qti. (2.45)

One can stop the iterations at k instead of N and approximate the Lanzcos relation
with:

A ≈ Q(k)T (k)Q(k)†. (2.46)

Accordingly the eigen vectors ai of A could be approximated by:

ai ≈ a
(k)
i = Q(k)t

(k)
i , (2.47)
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and the eigenvalues ti by t(k)
i .The error done with such an approximation is bounded

by [87]:
∆t(k)

i = min
j

∣∣∣t(k)
i − tj

∣∣∣ ≤ ∣∣∣βkt(k)
i (k)

∣∣∣ (2.48)

where t
(k)
i (k) denotes the kth (last component) of the eigen vector t

(k)
i . Since one

could calculate the error via Eq. (2.48) it is possible to stop the calculation at a
certain iteration k with the desired accuracy. Stopping at a certain iteration is
what is known as the Lanzcos algorithm. A back-draw of the Lanzcos algorithm as
presented here is it’s numerical instability, because the unitary property of Q is lost
due to floating arithmetic rounding errors. For the same reason the orthogonality of
the Lanzcos vectors qi is also lost [96]. An unconditional stable algorithm is attained
by orthogonalization twice against all Lanzcos vectors qi [97].
As said in the beginning of the section the aim is to solve the equation,

Ψ(t+ ∆t) = exp
(
−i
∫ t+∆t

t
Ĥ(t′)dt′

)
Ψ(t) = exp (−iA) Ψ(t), (2.49)

where the matrix A is obtained by fourth order finite differences and time integration
[85, 98]. Note that the matrix A is the representation of the operator

∫ t+∆t
t Ĥ(t′)dt′

in the basis |x〉. Then from Eq. (2.39) we get,

Ψ(t+ ∆t) = exp
(
−iQT Q†

)
Ψ(t), (2.50)

because Q is unitary and using Eq. (2.46) we get,

Ψ(t+ ∆t) ≈ Q(k) exp
(
−iT (k)

)
Q(k)†Ψ(t), (2.51)

where T (k) and Q(k) are obtained by stopping the Lanzcos algorithm at some itera-
tion k. What remains is to diagonalize T (k) which is necessary in order to calculate
exp

(
−iT (k)

)
. Since the dimension of T (k) is small compared to A and it is real and

tridiagonal, diagonalize it using eigendecomposition routines is not expensive.
As both algorithms applied in this thesis are explained it remains to explain how

these algorithms could be applied to a system of coupled Schrödinger equations as
in the case of the quantum clock.

2.7.3. Quantum clock numerical application
In this thesis a quantum clock is coupled to the electron in order to measure tunneling
times. The quantum clock will be first introduced in chapter 5, but here we introduce
the information needed to understand the algorithm. The technique used for this
purpose when applying the split operator method and when applying the Lanzcos
algorithm is explained below. When coupling the quantum clock to the electron
the total Hamiltonian of the system have the form ĤT = Ĥe + ĤcP (x), where
Ĥc is the clock Hamiltonian, P (x) is a space dependent operator and the electron
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Hamiltonian Ĥe = T̂ + V̂ (t). Additionally, the total wavefunction of the system
could be represented as a cross product of the Clock Hamiltonian eigenbasis |i〉 and
some eigenbasis of the electron |x〉 via,

ΨT (t) =
∑
i

∫
x
φi,x(t) |x〉 |i〉 dx, (2.52)

where φi,x(t) is a complex number. Since the clock Hamiltonian is time indepen-
dent, the basis |i〉 remains an eigenbasis of Ĥc during the whole propagation. The
quantum clock will be deliberately introduced in Chapter 5, for now the above given
information is enough to understand the applied techniques. The propagator of the
clock-electron system has the form,

ΨT (t+ ∆t) = exp
(
−i∆t(T̂ + V̂ (t, t+ ∆t)) + ĤcP̂ (x)

)
ΨT (t). (2.53)

The split operator method case

In the split operator case the application of the clock is straight forward. Applying
the Trotter formula [94] to Eq. (2.53) and a second order truncation will give the
following approximate propagator,

Û(t+ ∆t, t) = exp
(
− i

2∆tT̂
)

exp
(
−i(V̂ (t+ ∆t, t) + ĤcP̂ (x))∆t

)
exp

(
− i

2∆tT̂
)
,

(2.54)
which is straight forward to implement along the above explained split operator
algorithm since the basis as shown in Eq. (2.52) is an eigenbasis of V̂ (t + ∆t, t) +
ĤcP̂ (x).

The Lanzcos algorithm case

Suppose that the quantum clock has in total N states. One can show, see chap-
ter 5, that one can write the electron-clock Schrödinger equation as N Schrödinger
equations each with a different potential. Thus the simplest way of solving this prob-
lem using the Lanzcos algorithm is solving each equation with a different Lanzcos
propagator. Unfortunately, the perturbation of the original potential by the clock
potential is very small such that it could not be resolved by the Lanzcos algorithm.
As a result, a combination of the Lanzcos algorithm and split operator method has
to be used. Applying the Trotter formula on Eq . 2.53 , then the second order
truncated propagator could be written as,

Û(t+∆t, t) = exp
(
− i

2∆tĤcP̂ (x)
)

exp
(
−i(T̂ + V̂ (t+ ∆t, t))∆t

)
exp

(
− i

2∆tĤcP̂ (x)
)
.

(2.55)
To calculate this propagator first the exponential factor of the propagator on the
most right of Eq. (2.55) is applied on the wavefunction when represented as in
Eq. (2.52). This is straight forward to do since |x〉 |i〉 represents an eigenbasis of
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ĤcP̂ (x). Then the middle factor is applied by using the Lanzcos algorithm on each
clock eigen state

∫
x φi,x(t) |x〉 |i〉 dx separately. The matrix that is calculated using

the Lanzcos algorithm from the middle exponential factor is the same for each clock
state. This is because the middle factor does not depend on the clock. Finally, the
first factor of the propagator is again applied by representing the wavefunction as
in Eq. (2.52). Of course, the initial wavefunction is prepared in the form Eq. (2.52)
and as a result the first and last step reduce to multiplication.

2.8. Conclusion
This chapter should be seen as a fundamental layout for the rest of the thesis, al-
though the first section is only a review of tunneling time determination techniques.
The other chapters discuss the fundamental ideas that one should know to under-
stand this work. Most importantly, are the sections discussing strong-field tunnel
ionization, the two step model, the attoclock experiment and the virtual detector.
The section about the chosen electric field pulse is important but not necessary to
understand the different chapters of this thesis. The final section, which explains
the applied numerical techniques would be beneficial for someone who is interested
in doing a similar work or reproducing the results represented here. In the next
chapter we investigate strong field tunnel ionization of a one-dimensional system
that models the essential features of an electron in a three-dimensional Coulomb
potential.
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Chapter 3.

Tunnel ionization in one dimension

In this chapter we investigate strong field tunnel ionization in a one-dimensional
system that models the essential features of a correspondent three-dimensional sys-
tem, the considered system is introduced in Sec. 3.2. As discussed in Sec. 2.4 the
tunneling time delay extracted from the attoclock experiment depends on the used
theoretical model, this is again briefly discussed in Sec. 3.1. The tunneling time
delay that the attoclock experiment aims to measure is determined from first prin-
ciples in Sec. 3.4. For determining the exit time of the ionized electron one needs
to determine the position of the tunneling exit, in Sec. 3.3 we show that the exit
determined from the energy conservation principle is indeed the tunneling exit. The
so-called two-step model introduced in Sec. 2.3, which describes the ionization as in-
stantaneous tunneling at the electric field maximum and classical motion afterwards
with zero exit momentum, is commonly employed to describe tunnel ionization in
adiabatic regimes. As found in Sec. 3.4 by solving numerically the time-dependent
Schrödinger equation in one dimension and employing a virtual detector, see Sec. 2.5,
at the tunnel exit that there is a nonvanishing positive time delay, between the elec-
tric field maximum and the instant of ionization. We additionally examine the exit
momentum of the tunnel ionized electron in Sec. 3.5, where we find a nonzero exit
momentum in the direction of the electric field. Moreover, we find that there is a
difference between the asymptotic momentum predicted by the two-step model and
the quantum mechanical one as shown in Sec. 3.6. As a result, in Sec. 3.6 we propose
a modified two-step model that predicts the correct momentum of the tunnel ionized
electron. These findings have implications on the experiments that try to measure
tunneling times. Specifically, To extract proper tunneling times from asymptotic
momentum distributions of ionized electrons, it is essential to incorporate the elec-
tron’s initial momentum in the direction of the external electric field, as shown in
Sec. 3.8.
Most of the results presented in this chapter have been published in Ref. [75].

3.1. Introduction
In attoclock experiments, electrons are ionized by elliptically polarized light, which
makes the direction of the asymptotic momentum very sensitive to the ionization
time t0 + τexit. In the extraction of τexit from attoclock experiments, it is state of the
art to treat the ionized electron classically, to take into account Coulomb corrections,
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and to assume that the electron’s initial momentum follows from some semiclassical
theory [51, 53]. For a reliable reconstruction of the attoclock time τexit, however,
suitable initial conditions have to be identified as pointed out in Refs. [54, 55]. In
particular, assumptions about the initial momentum bias the reconstructed value for
τexit. The popular two-step model of tunnel ionization assumes a maximal ionization
rate at the instant of maximal electric field strength, i. e., τexit = 0, and that free
electrons have zero initial momentum, i. e., p(t0 + τexit) = 0. Within the two-step
model, the electron’s asymptotic momentum follows by solving the classical equa-
tions of motion for the electron’s motion in the combined electromagnetic field of
the binding potential and the ionizing external light pulse. This model, however,
cannot be used as a benchmark for experiments, because a possible match or mis-
match of experimental data and the theoretical prediction by the two-step model
may be explained by various pairs of nonzero delay τexit [99] and nonzero initial mo-
mentum p(t0 + τexit), which may a have nonzero component parallel to the electric
field direction [49, 56].
Neither the delay τexit nor the initial momentum p(t0+τexit) are directly accessible

by experiments, and it is also challenging to calculate them analytically. Therefore,
we employ ab initio quantum calculations and a virtual detector [57, 58] at the tunnel
exit. The virtual detector technique allows us to determine directly the electron’s
time of arrival at the tunnel exit as well as its exit momentum.
We analyze theoretically an initially bound electron ionized by an electric field

pulse. To determine the time delay τexit and the exit momentum, we solve the time-
dependent Schrödinger equation and place a virtual detector at the tunneling exit.
The virtual detector is realized by calculating the probability current at the exit. The
most probable time delay τexit is determined by comparing the instant of maximum
probability current at the potential barrier exit and the instant of maximum electric
field strength. The exit momentum is determined by the space-resolved momentum
distribution at the tunnel exit at the instant of ionization. By separating the wave
function into a tunneled part and a bound part after the interaction with the laser
pulse, we can calculate the momentum distribution of the tunneled electron, from
which one can determine the most probable asymptotic momentum. We additionally
find out that the quantum asymptotic momentum is different than the asymptotic
momentum predicted by the two step model. As a result we propose a modified
two-step model that predicts the correct asymptotic momentum.
In the next section we describe the considered system, the used parameters and

the motivation behind choosing such a system and such parameters.

3.2. Considered system

As explained in 2.2 and 2.6, in experiments, a Coulomb-bound electron is usually
excited by a laser pulse with a wavelength much bigger than the atomic dimensions
such that the laser pulse is nearly homogeneous over the size of the atom. Further-
more, relativistic effects and effects due to the magnetic field component set in only
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Figure 3.1.: The one dimensional tunneling barrier of a soft core potential bent by an electric
field for the parameter E0/Z

3 = 0.025. The electron is represented by the ground state ψ0(x)
of the soft core potential with binding energy −Ip = −Z2/2. The points xentry and xexit
represent the entry and exit points of the tunneling barrier respectively.

for tunneling from highly charged ions [50], see also 2.2. Thus, we will apply the
electric dipole approximation. The laser pulse is modeled by a time-varying homo-
geneous electric field E(t) = E0 exp(−ω2(t− t0)2/2), where t0 denotes the instant of
the maximum field strength E0 and τE =

√
2/ω is the time scale of the rise and decay

of the electric field. The linear polarization of the electric field and neglecting the
magnetic field component render the motion of the electron quasi-one-dimensional
allowing us to investigate general features of tunneling times in a one-dimensional
scenario, see 2.6. Furthermore, tunneling in the fully three-dimensional Coulomb
problem can be described by an effective one-dimensional tunneling barrier via in-
troducing parabolic coordinates [100], see Chapter 4. Thus, we restrict ourselves to
one-dimensional systems and consider an electron bound to the soft-core potential
−Z/

√
x2 + α(Z) [59–62] to model the essential features of an electron in a three-

dimensional Coulomb potential, see Fig. 3.1. Here, Z is the atomic number, and
the softening parameter α(Z) = 2/Z2 is chosen such that the ground state energy
of the soft-core potential is −Ip = −Z2/2, which equals the ground state energy of
the Coulomb potential [101]. Thus, the Schrödinger equation (in atomic units)

i∂ψ
∂t

= Ĥ(t)ψ =
(
−1

2
∂2

∂x2 −
Z√

x2 + α(Z)
− E(t)x

)
ψ (3.1)
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Figure 3.2.: The probability current j(x, t) as a function of time at different positions x
between the barrier entry x = xin and the barrier exit xexit separated by ∆x = (xexit−xin)/5
for the parameters E0/Z

3 = 0.048 and γ = 0.25. The shadowed area represents the time
between the instant of maximum electric field strength t0 and the instant of maximum
probability at xexit. The figure is adopted from Ref. [75].

with the Hamiltonian Ĥ(t) and the effective potential V (x, t) = −Z/
√
x2 + α(Z)−

E(t)x will be solved numerically 1, using the split operator method described in
Sec. 2.7. The so-called Keldysh parameter γ = ω

√
2Ip/E0 [41] characterizes the ion-

ization process as dominated by tunneling for γ � 1 and by multiphoton ionization
for γ � 1. Thus, simulation parameters will be set such that γ < 1 in the following
as already discussed in 2.2.

After we have introduced the considered system, in the next section we inves-
tigate the position of the tunneling barrier exit for the above described system.
The tunneling barrier exit is usually easily determined from the argument of energy
conservation. But the argument of energy conservation is based on methodology
of classical mechanics. One could ask does the quantum particle exit at the po-
sition determined by the energy conservation argument? Answering this question
is essential for the techniques used here and for understanding tunnel ionization in
general.
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3.3. Tunneling exit determination

3.3. Tunneling exit determination
Here the tunneling barrier, and thus the tunneling exit, is determined by the classical
argument of energy conservation, see 2.2. Additionally, the virtual detector method
is used to verify the tunneling exit determined from the classical argument. In our
one-dimensional model the probability current

j(x, t) = (ψ(x, t)∗∂xψ(x, t)− ψ(x, t)∂xψ(x, t)∗)/(2i), (3.2)

represents the average net number of electrons passing a given point at a specific
time. Thus, we determine the ionization rate via the probability current at the
exit xexit as a function of time, where xexit is defined by the maximum electric field
strength E0 via V (xexit, t0) = −Ip, see Fig. 3.1. Monitoring the probability current at
a fixed position is justified, because the tunnel probability is maximal for E(t) = E0
and it is exponentially suppressed for lower electric fields. Furthermore,

E(t) = E0(1−∆t2/τ2
E +O(∆t4/τ4

E)) (3.3)

for ∆t = t − t0 with |∆t| < τE = 2
√
IP/(γE0). Thus the tunneling barrier does

not change substantially if times close to t0 are considered. To further ensure that
the calculated exit xexit is where the electron exits the barrier, we place a virtual
detector at different points between xin and xexit and calculate j(x, t) at each point
as a function of time. As shown in Fig. 3.2, the probability current has a positive
peak as well as a negative one for x < xexit, indicating the tunneling and reflec-
tion dynamics, respectively. This tunneling and reflection dynamics corresponds to
under-the-barrier dynamics. As reflection is absent for x ≥ xexit, the particle leaves
the barrier at xexit.
In the introduction we have introduced the two-step model that assumes that the

electron exits at the instant of electric field maximum. After we have determined
from first principles at which position does the electron exit, in the next section we
answer the question, when does the electron exit the tunneling barrier?

3.4. Tunneling exit time
In this section we explain how to determine the time delay τexit and what discuss
what does this delay mean. The time delay τexit is based on the time-dependent
ionization rate.The most probable time delay τexit is calculated by subtracting the
instant of maximum field strength from the instant of the maximum current, i. e.,
τexit = arg max j(xexit, t) − arg max E(t),see Fig. 3.3, which yields the positive time
delay shown in Fig. 3.4. Note that, for the parameters used in Fig. 3.4, τexit < τE,
and thus the electric field remains almost constant for times |∆t| / τexit, justifying
our choice for xexit.

1The dependence on Z can be removed by suitable transformations of space, time, and the electric
field strength, see [102]
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Chapter 3: Tunnel ionization in one dimension

Figure 3.3.: The probability flow at the tunnel exit j(xexit, t) is plotted in function of time,
as well as the electric field E(t), plotted for γ = 0.25 and E0/Z

3 = 0.048. Time delay τexit
which is defined as the difference between the instant of maximum probability current at
the exit and the instant of maximum electric field t0 is marked by the shadowed area.

Figure 3.4.: The time delay τexit, the Mandelstam-Tamm time τMT, and the time τ2(see
3.8) plotted for different electric field strengths E0 and for different Keldysh parameters γ.
Definitions of the various times are given in text. The figure is adopted from Ref. [75].
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3.4. Tunneling exit time

The origin of the time delay τexit can be understood by considering the time-
energy uncertainty principle and following its interpretation given by Mandelstam
and Tamm [42, 103–105]. As a consequence of the time-energy uncertainty principle,
the time, which a wave function ψ of a system with a time-independent Hamiltonian
Ĥ needs to change significantly, is bounded from below by 1/(2σĤ), where

σĤ =
√
〈ψ|Ĥ2|ψ〉 − 〈ψ|Ĥ|ψ〉2. (3.4)

As mentioned before, the Hamiltonian in (3.1) can be considered as time-independent
for times |∆t| < τE. This allows us to define the Mandelstam-Tamm time

τMT = 1
2
(
〈ψ(t0)|Ĥ(t0)2|ψ(t0)〉 − 〈ψ(t0)|Ĥ(t0)|ψ(t0)〉2

)−1/2
, (3.5)

which is indeed a lower bound to the time delay τexit as indicated in Fig. 3.4. The
time delay τexit is close to its lower bound τMT, which indicates that the delay τexit is a
consequence of the wave function’s inertia, i. e., its inability to adopt instantaneously
to the field. The time delay τexit decreases as E0 increases at fixed Keldysh parameter
γ and matches approximately τMT when the regime of over-the-barrier ionization is
approached, which is for E0/Z

3 ≈ 0.06 a.u.
The observed decrease of the delay τexit with growing electric field strength (but

constant γ) is consistent with calculations for the case of a sudden turn-on of the
electric field, which show that the time for the wave function to adopt to the electric
field is proportional to the Keldysh time τK =

√
2Ip/E0 [42, 105], although the

functional dependence on E0 is different for continuously changing electric fields.
For a fixed maximum electric field strength E0 but increasing γ, the time delay τexit
increases. As γ increases, the pulse duration decreases, granting the wave function
less time ∼ τE to evolve and to adopt to the time-varying Hamiltonian during the rise
of the electric field. Thus, the wave function has less time to develop the necessary
components for tunneling and thus needs more time to reach the maximum ionization
rate.
The delay τexit describes the time interval that the electron spends under the bar-

rier after the field maximum. Interpreting τexit as a tunneling time [51] is justified
only if the classical forbidden region is entered at the field maximum. Also, the time
delay τexit is often understood as the time under the barrier , because the interpre-
tation as under-the-barrier time is based on the assumption that tunneling starts
at the instant of the maximal electric field, but the wave function could penetrate
the tunneling barrier earlier. This will be examined and discussed thoroughly in the
next chapter.
As we have seen the electron exits the tunneling barrier with a delay τexit which

proves the assumption of the two-step model that the electron exits at the instant
of electric field maximum wrong. Another assumption the two-step model makes is
that the electron exit with a zero exit momentum along the electric field direction.
This is investigated in the next section.
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Chapter 3: Tunnel ionization in one dimension

Figure 3.5.: The distribution of the exit momentum p0 at the time t0 + τexit at the tunnel
exit xexit for electric field strength E0 = 0.048 and different Keldysh parameters γ. The
distribution is obtained by Method 1 as described in text; see the main text for details. The
windowing function is normal distribution of the form 1/(2πσ2

w) exp(−(x−xexit)2/2σ2
w) and

σw = (xexit − xentry)/20.

3.5. Exit momentum

In the following, we determine the quantum mechanical exit momentum p0 in the
direction of the electric field at the tunnel exit xexit at the instant of ionization
t = t0 + τexit by two different methods. In the first method, we calculate a space-
resolved momentum distribution around x = xexit by multiplying the wave function
ψ(x, t0 + τexit) by a Gaussian window function with mean xexit and width δx =
(xexit − xin)/20 and calculating its Fourier transform ψ̃exit(t0 + τexit). The most
probable exit momentum p0 can be inferred by the momentum where |ψ̃exit(t0 +
τexit)|2 is maximal. In the second method, the most probable initial momentum p0
is determined from the probability current j(xexit, t0 +τexit) at the exit at the instant
of the maximum probability current. Following Refs. [57, 58], the local velocity of the
wave function’s probability flow at xexit equals v = j(xexit, t0 + τexit)/|ψ(xexit, t0 +
τexit)|2. Both methods yield very similar results for the moment p0 as shown in
Fig. 3.8. The initial momentum p0 is almost independent of the parameter γ and
depends only weakly on the electric field strength E0.
As p0 does not depend on the parameters of the external electric field it must

result from the initial quantum state, i. e., the ground state of the binding potential.
In fact, the ground state of the employed soft-core potential has in momentum space
a width of about 0.38 × Z, which is of the same order as p0; see Fig. 3.8. The fact
that p0 scales with the width of the ground state’s momentum distribution and not
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3.6. Two step-model applicability

Figure 3.6.: The momentum p0 at the time t0 + τexit at the tunnel exit xexit for different
electric field strengths E0 and different Keldysh parameters γ as determined by two different
methods. Method 1 is based on the space-resolved momentum distribution, while method 2
utilizes the velocity of the probability flow; see the main text for details on both methods.
The figure is adopted from Ref. [75].

with its mean (which is zero) may be interpreted as momentum components, which
propagate into the ionization direction, being ionized preferably. After we have seen
in the two previous sections that the two assumptions of the two-step model are
wrong, one can ask could this model still predict the correct final momentum of the
tunnel ionized electron? This question is investigated in the next section.

3.6. Two step-model applicability

Applying the Wigner formalism to ionization from a zero-range potential by a static
electric field it has been shown that the momentum of the tunnel-ionized electron at
a far-away detector differs from the prediction of the two-step model in the so-called
near-threshold-tunneling regime [49]. Our numerical solution of the time-dependent
Schrödinger equation allows us now to study the final momentum by going beyond
the static-field approximation.
Propagating the wavefunction till some final time tf such that tf−t0 � 1/ω we can

separate the tunneled part from the bound part of the wavefunction. The tunneled
wavefunction ψfree(tf) is determined by projecting out all bound eigenstates of Ĥ
in Eq. (3.1) for E(t) = 0 from ψ(tf). The resulting probability densities of ψfree(tf)
and its momentum-space representation ψ̃free(tf) are shown in Fig. 3.7. Note that
the momentum distribution of the tunneled electron is relatively sharp whereas
the position distribution is very widely spread. From ψ̃free(tf) the most probable
momentum pf,q can be inferred by the position where |ψ̃free(tf)|2 is maximal.
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Figure 3.7.: (color online) Probability distribution in position and momentum space of the
tunneled part of the electron’s wavefunction for E0/Z

3 = 0.056 a.u. and for different Keldysh
parameters γ at time tf − t0 = 4/ω, i. e., the electric field has been nearly turned off.

For the same parameters of the above quantum simulations we also calculated the
final momentum pf,c of the tunneled electron as predicted by the two-step model.
This is accomplished by solving Newton’s equations of motion till time tf for the
initial position x(t0) = xexit and the initial momentum p(t0) = 0. The difference
between the final quantum and classical momenta ∆pf = pf,q − pf,c is indicated in
Fig. 3.8 by squares. In particular, the solution of the time-dependent Schrödinger
equation yield a final momentum that differs from the prediction of the two-step
model more the stronger the external electric field E0 is.

3.7. Modified two-step model

Our numerical quantum mechanical calculations point out two problems of the two-
step model. The electron leaves the tunneling barrier after the instant of maximal
electric field strength and, furthermore, there is a difference between the final mo-
menta from the quantum theory and from the two-step model. Therefore, we suggest
a modified two-step model, which allows for a nonzero initial momentum and takes
into account the time delay τexit. In this modified two-step model the initial condi-
tions are specified at the instant of the maximal ionization rate. The initial position
equals x(t0 +τexit) = xexit and the initial momentum is p(t0 +τexit) = pi,e. This effec-
tive initial momentum pi,f is chosen such that the final momentum p′f,c predicted by
this modified two-step model agrees with the final quantum momentum pf,q. Note
that the effective initial momentum pi,f is different than the initial momentum p0.
Using p0 as an initial condition will also yield a final moemntum which is different
than the quantum determined one pf,q. This can be attributed to that pf,q originates
from the motion of a broad wave packet which experiences a spatially varying soft
core potential force [106]. Our numerical results yield that the effective initial mo-
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3.8. Conclusion and implications

Figure 3.8.: (color online) The difference ∆pf between the quantum momentum pf,q and the
classical momentum pf,c at final simulation time tf − t0 = 4/ω plotted for different electric
field strengths and for different Keldysh parameters γ. Additionally the plot indicates the
effective initial momentum pi,e, which is required to match the final momentum of the
modified two-step model with the final quantum momentum pf,q.

mentum is almost independent of the Keldysh parameter γ and the maximal electric
field strength E0 as indicated by the circles in Fig. 3.8.

3.8. Conclusion and implications

The above considerations are relevant for every high-precision laser-induced tunnel-
ing experiment. Here we discuss as an example attoclock measurements due to their
currently high attention. Attoclock experiments aim to determine the time delay
τexit between the instant of the electric field maximum and the instant of tunneling,
which is not directly accessible experimentally. Instead, the asymptotic momentum
of the tunneled electron is measured. As it depends on the exit momentum and on
the moment at which the electron starts to propagate freely in the field, one can
infer τexit from the electron’s asymptotic momentum provided that the exit momen-
tum is known. The delay τexit is commonly reconstructed by assuming zero initial
momentum in the electric field direction. Our numerical simulations and the virtual
detector approach, however, indicated a nonzero initial momentum in the direction
of the electric field. How does the zero-initial-momentum assumption affect the
reconstruction of τexit from the asymptotic momentum?
Using the Newton equations of motion for an electron in the effective potential

V (x, t), we can calculate at which instant of time the electron must exit the bar-
rier at xexit with zero initial momentum in the electric field direction such that its
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Chapter 3: Tunnel ionization in one dimension

asymptotic momentum equals pf,q. The result is the time delay τ2, which is also
shown in Fig. 3.4 and that does not coincide with the delay τexit. The delay τ2 is
close to zero or even negative depending on the electric field strength as found in
Refs. [49, 50, 54, 55, 99]. Consequently, the delay τexit and the instant of tunnel-
ing cannot be determined on the basis of the standard assumption of zero initial
momentum in the electric field direction. The exit momentum has to be included.
Similarly to the delay τ2, also the time delays determined from measured asymp-

totic momenta are close to zero (of the order of experimental uncertainties) [39, 40].
As our numerical calculations indicate that the reconstruction of the delay τexit from
asymptotic momenta is sensitive to the electron’s exit momentum, we argue that a
possible nonzero exit momentum into the electric field direction has to be included
for a reliable reconstruction of τexit in attoclock experiments, not only a nonzero exit
momentum in the direction perpendicular to the electric field as recently proposed
[54, 107].
Furthermore, there is a discrepancy between the final momentum of the ionized

electron as calculated via the Schrödinger equation and as predicted by the classical
two-step model. Describing the ionization, however, by a modified two-step model,
where ionization happens τexit after the electric field has reached its maximum and
which allows for a suitable initial momentum into the direction of the electric field,
gives the correct final momentum. The initial momentum necessary to correct the
two-step model is different than the initial momentum the electron tunnel ionize
with. This results probably from the width of the tunnel ionized wave packet.
In this chapter we have shown that the tunneling exit determined from energy

conservation is indeed the position where the particle leaves the tunneling barrier.
On one hand, it follows from the energy conservation argument that the electrons
exits the tunneling barrier with zero momentum. On the other hand, we have
shown that the electron exits the tunneling barrier with a non-zero momentum.
thus one concludes that the tunneling exit is not the point where the particle has
zero momentum, rather it is the point where the tunneling wave packet completely
tunnels and does not reflect anymore.
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Chapter 4.

Tunnel ionization in two dimensions

In the previous chapter we have employed the virtual detector method, see Sec. 2.5 to
find out when does the electron exit the tunneling barrier. In this chapter we apply
the same approach for a two-dimensional system which is described in Sec. 4.2. The
motivation behind choosing a two-dimensional system is two-fold. First, the concepts
introduced for the one-dimensional system could be applied for the two-dimensional
system, and with this one can check if any of the qualitative behavior seen for the one-
dimensional system originates from it’s dimensionality. Second, there are solid state
systems that can be described by a two-dimensional Hamiltonian. In Sec. 4.3 and
with the help of Appendix we show that the parabolic coordinates are the natural
coordinate system for tunnel ionization in two-dimensions, and that defining the
tunneling barrier via parabolic coordinates is the correct method to define tunneling
ionization in two dimensions. In Sec. 4.4 we investigate what is the meaning of the
time delay τexit that the attoclock experiment aims to measure. Specifically, with
the theoretical approach introduced in this chapter, it becomes possible to define
unique moments when the electron enters and leaves with highest probability the
classically forbidden region from first principles and a tunneling time can be specified
unambiguously. It is shown that neither the moment when the electron enters the
tunneling barrier nor when it leaves the tunneling barrier coincide with the moment
when the external electric field reaches its maximum. With this information the
meaning of the time delay τexit becomes clear. Apart from that, in Sec. 4.5 using
virtual detectors we determine the quantum trajectory of the tunneling electron.
We find out that under the tunneling barrier as well as at the exit the electron has
a nonzero velocity in electric field direction as we also found out in the previous
chapter. After comparing these quantum trajectories with correspondent classical
ones, we find out that this nonzero exit velocity has to be incorporated when the
free motion of the electron is modeled by classical equations of motion. Most of the
results of this chapter have been published in Ref. [108].

4.1. Introduction
In the case of tunnel ionization, see Fig. 4.1, the experimental determination of a
tunneling time is complicated by the fact that it is notoriously difficult to determine
the starting (and ending) moment of the tunnel dynamics. There is no apparent
reason to assume that the electron enters the barrier at the instant of the electric
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Chapter 4: Tunnel ionization in two dimensions

Figure 4.1.: Tunneling potentials V1(ξ) and V2(η) (solid lines) and the ground state energy
level E (dashed lines) for the two-dimensional Coulomb problem with (black) and without
(light blue) accounting for the Stark effect in parabolic coordinates ξ and η for E = 1 a.u.
Intersections between the potential lines and the energy level determine the borders between
classically allowed classically forbidden regions, i. e., the tunneling entry ξin, tunneling exit
ξexit, and η0. See Appendix for details. This figure is adopted from Ref. [108].

field maximum. In fact, we are going to demonstrate that one has to carefully
distinguish between the tunneling time, i. e., the time to cross the tunneling barrier,
and the tunneling delay, i. e, the time delay until the electron becomes quasi-free
with respect to some external reference, e. g., the moment of maximal electric field
strength.
Experimentally the quantum dynamics in the vicinity of the tunneling barrier

cannot be studied directly, i. e., it is not possible to place a detector close to the
atomic tunneling barrier. Thus, information about the tunneling dynamics has to be
inferred from measurable asymptotic quantities, e. g., the momentum distribution of
the photo ionized electrons. In attoclock experiments, an electron is ionized by an
elliptically polarized few-cycle pulse. This quasi-free electron is accelerated in the
rotating electric field and in this way the instant of ionization texit is mapped to the
final angle of the momentum vector in the polarization plane using some theoretical
model. For a disccusion of the main concept of the attoclock experiment see Sec.
2.4.
In view of the difficulties of determining tunneling times from asymptotic momen-

tum measurements, see Sec. 3.1 , we consider a complementary theoretical approach
based on ab initio solutions of the time-dependent Schrödinger equation and virtual
detectors [57, 58], which allows us to link tunneling times to observables related to
the quantum dynamics in the vicinity of the tunneling barrier. The main aim of this
chapter is to determine how much time does the electron spend under the barrier.
With the same method used in the previous chapter we determine when does the
electron enter and leave the tunneling barrier. From those two times the time spent
by the electron under the barrier is determined. In the next section we introduce
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the two-dimensional system considered for answering the above raised questions,
and also the motivation behind choosing such a system.

4.2. Considered system

Figure 4.2.: Schematic of tunneling time determination via virtual detectors at the tunneling
entry and the tunneling exit. The lines ξ = ξin,out and η = η0 which determine tunneling
region, the classically forbidden, and the classical allowed regions are indicated by the solid
lines; see Ref. [109] and Appendix for details. The black solid lines indicate the positions
of the virtual detectors. The wave-function’s probability density Ψ(x, y, t)∗Ψ(x, y, t) at the
instant of electric field maximum, i. e., t = t0, is represented by colors for E0 = 1.1 a.u. and
for the Keldysh parameter γ = 0.25. Arrows indicate the probability current j(x, y, t), where
the arrows’ length is proportional to the absolute value of the current and the arrows’ opacity
scales with the wave-function’s probability density.This figure is adopted from Ref. [108].

In the following, we will study tunnel ionization from a two-dimensional Coulomb
potential. The restriction to two dimensions is mainly because this system resembles
tunnel ionization from hydrogen-like ions while keeping the computational demands
small. In the long-wavelength limit, i. e., when the dipole approximation is applica-
ble, see Sec. 2.2, the three-dimensional Coulomb potential with an external linearly
polarized electric field has rotational symmetry which makes this system effectively
two-dimensional. Furthermore, the two-dimensional Coulomb problem is of interest
in its own and has been used to model some semiconductor systems [110–112]. The
two-dimensional Coulomb potential can also be derived as a limit of the Hamiltonian
of a three-dimensional hydrogen atom in a planar slab as the width of the slab tends
to zero [113].
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Chapter 4: Tunnel ionization in two dimensions

Applying the dipole approximation and choosing the coordinate system such that
the linearly polarized external electric field E(t) points into the (negative) x direction,
the Schrödinger equation reads in atomic units,

i∂Ψ(x, y, t)
∂t

= ĤΨ(x, y, t) =
(
−1

2
∂2

∂x2 −
1
2
∂2

∂y2 −
1√

x2 + y2 − xE(t)
)

Ψ(x, y, t) .

(4.1)
In order to study the ionization dynamics without undesirable artifacts, i. e., to avoid
multiple ionization and rescattering, we choose an electric field pulse with a unique
maximum,

E(t) = E0 exp
(
−ω

2(t− t0)2

2

)
, (4.2)

where t0 denotes the instant of maximal electric field E(t0) = E0 and τE =
√

2/ω
is the time scale of the raise and decay of the electric field. In contrast to the
one-dimensional case, in two dimensions it is not straight forward to define the
tunneling region, and accordingly the realization of the virtual detectors is also
more demanding. In the next section and with the help of the Appendix we define
the tunneling region and the virtual detectors for the above described system.

4.3. Tunneling region determination and realization of the
virtual detectors

Cartesian coordinates are not the most suitable choice to deal with the Coulomb
problem with an external homogeneous electric field. Parabolic coordinates are the
natural coordinate system for this problem. In particular, it allows to define a
tunneling barrier [114]. As one can show, the Hamiltonian Ĥ in Eq. (5.1) separates
in parabolic coordinates 0 ≤ ξ < ∞ and 0 ≤ η < ∞, which are related to the
Cartesian coordinates x and y via

x = ξ − η
2 , (4.3a)

y =
√
ξη , (4.3b)

into two independent one-dimensional Schrödinger-type Hamiltonians with specific
potentials V1(ξ) and V2(η), see Appendix for details. While V2(η) is purely attrac-
tive, V1(ξ) represents the tunneling barrier and, therefore, ξ denotes the tunneling
direction. Intersections of the potentials with the energy value E/4 of the one-
dimensional Hamiltonians define the borders between the classically allowed, the
tunneling, and the classically forbidden regions. Here, E denotes the Stark-effect

46
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detectors

corrected ground state energy of the two-dimensional system. The classically al-
lowed, the tunneling, and the classically forbidden regions are characterized by

E/4 > V1(ξ) , E/4 > V2(η) , (4.4a)
E/4 > V1(ξ) , E/4 < V2(η) , (4.4b)
E/4 < V1(ξ) , E/4 < V2(η) , (4.4c)

respectively. The tunneling barrier is confined by the three parabolas at ξ = ξin,
ξ = ξexit, and η = η0, which are functions of the applied electric field strength E(t).
See Appendix for details and also Figs. 4.1 and 4.2.
As the tunneling barrier is defined we introduce how one can realize the virtual

detector for this system. The virtual detectors, see Sec. 2.5, are placed at ξ = ξin
and ξ = ξexit as given for the maximal electric field strength E0 at t = t0. In two
dimensions, the surface integral in Eq. (2.19) becomes a line integral of a vector
field j(x, y, t). Thus, the probability current over the entry line ξ = ξin, denoted by
Dξin(t), and the current over the exit line ξ = ξexit, denoted by Dξexit(t), are given
explicitly by

Dξ(t) =
∫ η0

0
j(x(ξ, η), y(ξ, η), t) ·

∂x(ξ,η)
∂η

∂y(ξ,η)
∂η

dη

+
∫ η0

0
j(x(ξ, η),−y(ξ, η), t) ·

 ∂x(ξ,η)
∂η

−∂y(ξ,η)
∂η

 dη , (4.5)

where we have taken into account that Eq. (4.3) covers only the upper half of the
coordinate system. Monitoring the probability current at these fixed entry and
exit lines can be justified as follows. For static fields the tunneling probability is
maximal for maximal electric fields and it is exponentially suppressed for lower fields.
Furthermore, the applied electric field (5.2) is quasistatic for |t− t0| < τE , i. e.,

E(t) = E0
(
1− (t− t0)2/τ2

E +O
(
(t− t0)4/τ4

E

))
. (4.6)

Therefore, the tunneling barrier is also quasistatic if times close to t0 are considered.
As it will be shown later, the extracted tunneling times are short compared to τE
indeed.
The Schrödinger equation (5.1) is solved numerically by employing a Lanczos

propagator [85, 98] and fourth-order finite differences for the discretization of the
Schrödinger Hamiltonian, see Sec. 2.7 for details. The ground state of the two-
dimensional Coulomb potential was chosen as an initial condition at t− t0 = −5τE ,
i. e., when the external electric field is negligible small. The so-called Keldysh pa-
rameter γ = ω

√
−2E0/E0 [41] characterizes the ionization process as dominated by

tunneling for γ � 1 and by multiphoton ionization for γ � 1. Here, E0 denotes
the ground state binding energy, which equals E0 = −2 a.u. for the two-dimensional
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Coulomb problem, see also the Appendix. In the following, the electric field ampli-
tude E0 and the frequency ω are adjusted such that γ = 0.25 < 1.
Figure 4.2 illustrates the ionization dynamics in the vicinity of the tunneling

barrier by presenting the electron’s probability density Ψ(x, y, t)∗Ψ(x, y, t) and the
probability current j(x, y, t) at the instant of maximal field strength t = t0. The
external electric field induces a probability current opposite to the direction of the
electric field. This flow is nonnegligible only in the region η < η0, i. e., in the
classically allowed region and the tunneling region. Thus, the shape of the proba-
bility current confirms that parabolic coordinates are the natural choice to define a
tunneling barrier for the Coulomb problem.
Having defined the tunneling region and accordingly the required measurement

apparatus (virtual detector), in the next section we determine when does the elec-
tron enter and exit the tunneling barrier. The obtained results are discussed and
explained.

4.4. Exit time and time spent under the barrier

The action of the external electric field induces a probability current, which flows
over the tunneling barrier’s entry line ξ = ξin and its exit line ξ = ξexit. This means,
probability is carried over from the center region of the Coulomb potential into
the tunneling barrier, from where it can escape into the classically allowed region.
The quantities Dξin(t) and Dξexit(t) grow and decay over time with the applied
external electric field, as shown in Fig. 4.3. As a central result of our numerical
solution of the Schrödinger equation, however, the position of the maxima of Dξin(t),
Dξexit(t), and the electric field E(t) do not coincide. The probability current over the
tunneling entryDξin(t) reaches its maximum before the maximum of the electric field
is attained. Furthermore, the probability current over the tunneling exit Dξexit(t)
may reach its maximum before or after the maximum of the electric field is attained
depending on the electric field strength E0. For the rather strong electric field of
the parameters of Fig. 4.3, Dξexit(t) reaches its maximum slightly before the electric
field. Turning off the external electric field, the flow at the tunneling entry becomes
negative and then oscillates rapidly around zero after switching off the electric field.
These oscillations are a result of the excitation of the the bound portion of the
wave function during the action of the electric field. The final bound state is a
superposition of several eigenstates causing a nonsteady probability current. In
contrast, the quantity Dξexit(t) remains positive as reflections are absent at the
tunneling exit and behind the tunneling barrier [75], where this result was also
obtained in the previous chapter.
Monitoring the probability current at ξ = ξin and ξ = ξexit allows us to determine

the moments when the electrons enters or leaves the tunneling barrier with maximal
probability. The probability to cross the tunneling barrier entry at ξ = ξin or the exit
at ξ = ξexit during the small time interval [t, t + ∆t] is ∆tDξin(t) and ∆tDξexit(t),
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Figure 4.3.: The probability current Dξin(t) over the entry line ξ = ξin and the current
over Dξexit(t) the exit line ξ = ξexit and the amplitude of the external electric field E(t)
as functions of time t. The three vertical lines indicate from left to right the moments of
maximal probability current over the line ξ = ξin, of maximal electric field, and of maximal
probability current over the line ξ = ξexit. The parameters of the electric field correspond
to a maximal field strengths of E0 = 1.1 a.u. and a Keldysh parameter γ = 0.25. This figure
is adopted from Ref. [108].

respectively. This motivates us to introduce the times of maximal flow over the
tunneling entry and exit as

tin = arg maxDξin(t) (4.7)

and

texit = arg maxDξexit(t) . (4.8)

Then the delay between the instant of the maximum of the driving electric field t0
and the exit time texit, the tunneling delay,

τexit = texit − t0 (4.9)

and the tunneling time

τtsub = texit − tin (4.10)

can be introduced with the definitions above. A measurement of the delay τexit is
implemented in the attoclock experiments. The time τtsub denotes the delay between
the instants when the probability flow is maximal at the tunneling-barrier’s entry
and at the exit. Thus, τtsub may be interpreted as the typical time which an electron
needs to pass the tunneling barrier.
The times τexit and τtsub are presented in Fig. 4.4 for the considered setup and

varying electric field amplitudes E0. An increasing electric field amplitude reduces
the width of the tunneling barrier. Consequently, the tunneling time τtsub decreases
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Figure 4.4.: The tunneling delay τtsub and the tunneling time τexit as functions of the electric
field amplitude E0. The frequency ω is adjusted such that the Keldysh parameter is fixed
to γ = 0.25. This figure is adopted from Ref. [108].

with increasing electric field amplitude E0, as shown in Fig. 4.4. The time τtsub
remains, however, always positive. This means, the probability current reaches its
maximum at the entry of the tunneling barrier before the current becomes maximal
at the exit, i. e., the electron enters the barrier before it exits the barrier. Fur-
thermore, it follows from the data in Fig. 4.4 that τtsub > τexit and consequently
tentry < t0, because τtsub− τexit = t0− tentry. This means, the electron always enters
the tunneling barrier before the electric field reaches its maximum.
To explain the reason for this behavior, we define in analogy to Eq. (4.5) the two

integrals over the probability density

D%
ξ (t) =

∫ η0

0
%(x(ξ, η), y(ξ, η), t) dη +

∫ η0

0
%(x(ξ, η),−y(ξ, η), t) dη (4.11)

and over the velocity field

D∇ϕ
ξ (t) =

∫ η0

0
∇ϕ(x(ξ, η), y(ξ, η), t) ·

∂x(ξ,η)
∂η

∂y(ξ,η)
∂η

 dη

+
∫ η0

0
∇ϕ(x(ξ, η),−y(ξ, η), t) ·

 ∂x(ξ,η)
∂η

−∂y(ξ,η)
∂η

 dη , (4.12)

which are motivated by fact that the probability current can be written as a product
of the probability density and the local velocity, see Eq. (2.17). D%

ξin
(t) gives the

probability density integrated along the entry line ξ = ξin in function of time, while
D∇ϕ
ξin

(t) denotes the integrated velocity. As shown in Fig. 4.5, the velocity along
the entry line D∇ϕ

ξin
(t) increases with the electric field, reaches a maximum at the

instant of electric field maximum t = t0, then decreases with the electric field and
it becomes even negative due to reflections from the tunneling process. Finally,
the integrated velocity D∇ϕ

ξin
(t) oscillates around zero indicating the excitation of

the bound state. The probability density along the entry line D%
ξin

(t) is nonzero
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Figure 4.5.: The probability density D%
ξin

(t) (red dashed line, right scale) and the local
velocity D∇ϕ

ξin
(t) (blue dot-dashed line, left scale) along the entry line ξ = ξin are plotted

in function of time for the electric field strength E0 = 1.3 a.u. The solid black line denotes
the instant of maximal Dξin(t), vertical dashed lines indicate the position of the maxima of
D%
ξin

(t) and D∇ϕ
ξin

(t). This figure is adopted from Ref. [108].

even at t � t0 because the wave function penetrates tunneling barrier even for
E = 0. Increasing the electric field, the probability density flow from the core into
the barrier increases the probability density along the entry line. Although the local
velocity at the tunneling entry is maximal at t = t0 in sync with the electric field,
the probability flow along the entry line D%

ξin
(t) reaches its maximum earlier. The

quantity D%
ξin

(t) goes asymptotically to a constant value less than the initial value
because some of the total probability has tunneled. Because the probability flow is
the product of the probability density and the local velocity, the maximum of the
integrated probability flow Dξin(t) is reached between the instants of the maxima
of the integrated density D%

ξin
(t) and the integrated velocity D∇ϕ

ξin
(t), this means

tin < t0. The time texit is usually larger than t0, i. e., τexit > 0, especially for weak
external fields.
After the electron has passed the entry line of the tunneling barrier, it needs some

time to cross the barrier and to reach the tunneling exit. This means, texit > tin, but
not necessarily texit > t0. The latter may be understood by realizing that the above
explanation for tin < t0 is not specific to the coordinate ξ = ξin. In particular, it also
applies to ξ = ξexit. Consequently, also the integrated flow at the exit coordinate
D%
ξexit

(t) may reach its maximum before the maximum of the electric field, as for
example for the parameters in Fig. 4.3. In general, however, we find that D∇ϕ

ξexit
(t)

is maximal at an instant very close to t0.
Taking the results above into consideration, the time tin should be regarded as a

reference for the tunneling time, but not t0 which leads to the delay τexit. Choosing
t0 as a reference can lead to negative delays τexit for large electric field strengths,
e. g., for E0 ≥ 1.0 a.u. for the setup that was applied for Fig. 4.4. This, however,
should not be misinterpreted as a negative tunneling time because τexit is not related
to the time which an electron needs to pass the tunneling barrier. This time is given
by τtsub. As τtsub is always larger than τexit, the delay τexit may be used as a lower
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Figure 4.6.: Average velocity v of the motion of the probability-current’s maximum from
the tunneling barrier entry to the exit as a function of the applied maximal electric field
strength E0. This figure is adopted from Ref. [108].

bound of the tunneling time.
It has been speculated that tunnel ionization may be instantaneous [39, 55], which

would be associated with a superluminal traversal of the tunneling barrier. Our
results, however, clearly indicate that there is a nonvanishing tunneling time τtsub.
This leads to a finite average velocity of the motion of from ξ = ξin to ξ = ξexit

v = ξexit − ξin
2τtsub

. (4.13)

Here we have taken into account that the lines of constant ξ are parabolas in the
x-y plane and the probability current flows mainly at y ≈ 0. As shown in Fig. 4.6,
there is a monotonous relation between the applied maximal electric field strength
E0 and the velocity v. The velocity presented in Fig. 4.6, however, is more than two
orders of magnitude below the speed of light. Identifying the tunneling motion of
the electron over the tunneling barrier with the motion of the probability-current’s
maximum, it is justified to say that tunneling ionization is neither instantaneous nor
moves the electron at superluminal speed.
The virtual detector technique does not only allow us to define tunneling times.

As in the previous chapter here we also discuss the applicability of the famous two-
step model, see Sec. 2.3. For this we define a quantum trajectory with the help of
the virtual detector method, and compare this trajectory to the classical two-step
model trajectory. The obtained results agree with the ones of the one-dimensional
system, obtained in the previous chapter.

4.5. Quantum and classical trajectories
The probability currents over different lines of constant ξ reaches their maxima at
different times, which allows us to define a quantum trajectory ξq(t) by inverting

tξ = arg maxDξ(t) . (4.14)
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Figure 4.7.: The quantum trajectory of the electron in the ξ coordinate ξq(t), compared to
the classical trajectory according based on the two-step model ξc(t). Both are also compared
to the classical trajectory corrected according to quantum initial conditions ξcc(t). For more
information see text. The shadowed area marks the positions ξ corresponding to under the
barrier. This figure is adopted from Ref. [108].

The quantum trajectory ξq(t) defined by Eq. (4.14) can be compared to the trajec-
tory predicted by a Coulomb corrected two-step model ξc(t). This classical trajectory
is determined by the Newton equation

d2ξc(t)
dt2 = − 8

ξc(t)2 + 2E(t) , (4.15)

where the reduction to one dimension is justified as the most probable trajectory is
along the x direction at y ≈ 0. The initial conditions for the two-step model are

ξc(t0) = ξexit , (4.16a)
dξc(t)

dt

∣∣∣∣
t=t0

= 0 (4.16b)

meaning that the electron exits at the instant of electric field maximum t = t0 with
zero initial momentum at the turning point x = ξexit/2. As shown in Fig. 4.7 for
different electric field strengths, the classical trajectory ξc(t) deviates from the quan-
tum trajectory ξq(t) not only near the barrier exit but also at a far away detector,
i. e., for ξ � ξexit.
From the above studies we have seen that the electron exits the tunneling barrier

at texit, which differs from t0. It has been shown in the previous chapter by using

53
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Figure 4.8.: The quantum trajectory’s initial velocity vexit plotted for different electric field
strengths E0 for Keldysh parameter γ = 0.25. This figure is adopted from Ref. [108].

quantum mechanical calculations [75] that the electron exits also with an initial
momentum in the electric field direction. This initial velocity can be inferred from
the quantum trajectory, via

vexit = dξq(t)
dt

∣∣∣∣
t=texit

, (4.17)

which yields results that are consistent with the results of of the previous chapter,
see also Ref. [75]. The classical trajectory ξc(t) can be corrected by the quantum
initial conditions

ξcc(texit) = ξexit , (4.18a)
dξcc(t)

dt

∣∣∣∣
t=texit

= vexit . (4.18b)

As shown in Fig. 4.7 the corrected classical trajectory ξcc(t) agrees well with the
quantum trajectory ξq(t). Nevertheless, there is still a slight discrepancy between
both trajectories at a far away detector, which can be attributed to that ξq(t) origi-
nates from the motion of a broad wave packet which experiences a spatially varying
Coulomb force [106]. The initial velocity vexit is plotted in Fig. 4.8 for different
electric field strengths. In agreement with the previous chapter, the initial mo-
mentum is slightly dependent on the electric field strength also in the considered
two-dimensional system. The initial momentum is of the order of width of the
ground state distribution in momentum space.
The initial velocity vexit is difficult to measure directly in an experiment. But

is also affects the asymptotic velocity of the ionized electron. Note that one can
choose an electric field strength such that the quantum trajectory is at ξq = ξexit at
t = t0, i. e., the electron leaves the tunneling barrier at the moment of electric-field
maximum, which is one assumption of the two-step model. In this case, the differ-
ence between the electron’s actual asymptotic momentum and the prediction of the
classical Coulomb-corrected two-step model is just the electron’s initial momentum
at the barrier exit. For the two-dimensional model as considered in Fig. 4.7 the
condition ξq(t0) = ξexit is fulfilled for an electric field strength E0 = 1.0 a.u.
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4.6. Conclusions
We studied the dynamics of tunnel ionization by analyzing the quantum mechanical
wave-function’s probability current via virtual detectors. By calculating the prob-
ability current flow at all points of the considered space grid and at a fixed point
in time we show that parabolic coordinates are the natural choice of coordinates in
tunnel ionization. Moreover, virtual detectors are a capable concept for determin-
ing tunneling times because they allow to identify well-defined moments when the
ionized electron enters and leaves the tunneling barrier.
The numerical solutions of the time-dependent Schrödinger equation and the dy-

namics of the probability current at the tunneling barrier indicate that the electron
spends a nonvanishing time under the potential barrier. This corresponds to a cross-
ing velocity that is much lower than the speed of light. Furthermore, the electron
enters the classical forbidden region on average before the instant of the maximum of
the driving electric field. Therefore, the instant of electric field maximum should not
be considered as an initial reference time of the tunneling process. Nevertheless, for
electric field strengths well below the threshold regime the electron exits the barrier
after the instant of electric field maximum. For such strengths a nonvanishing delay
τexit between the electric field maximum and the emergence of the electron behind
the tunneling barrier exists as a signature of the time spent under the barrier. The
actual time span that the electron has spent in the classically forbidden region, how-
ever, will be larger than τexit. Vanishing or negative time delays τexit should not be
interpreted as instantaneous tunneling.
Under the barrier as well at the tunneling exit, the electron has a nonzero velocity

in electric field direction. After the tunneling exit, the quantum trajectory, which
is induced by the wave-function’s probability current, agrees well with a trajectory
as given by classical equations of motion when the electron’s initial velocity at the
tunneling exit is taken into account properly.
Having defined a most probable tunneling time using the virtual detector tech-

nique in the next chapter we define an average tunneling time for the above con-
sidered system. For this purpose we apply the quantum clock approach. It will be
shown in the next chapter that using virtual detector method we can also define an
average time spent under the barrier. This average time is compared to the average
time obtained by the quantum clock approach.
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Chapter 5.

Salecker-Wigner-Peres quantum clock
applied to tunnel ionization

In chapter 2 we have introduced many techniques that where developed in order
to define tunneling time in the case of tunneling through a potential barrier. For
studying tunneling time in strong field tunnel ionization one can implement these
techniques to the case of tunnel ionization. As mentioned in chapter 2 some of these
techniques have been applied to the case of strong field tunnel ionization, where for
calculating tunneling times the wavefunction at the instant of electric field maximum
was considered. In this chapter we apply a method which was to our knowledge not
applied before to strong field ionization, namely the Salecker-Wigner-Peres(SWP)
quantum clock. Additionally, instead of considering only the wavefunction at the
instant of electric field maximum we apply the SWP quantum clock dynamically
through the whole pulse duration. In the introduction we argue why we apply this
method instead of other techniques. Next we introduce the structure and the basic
concept of the SWP quantum clock in Sec. 5.3. Of course for this clock to measure
tunneling times of strong field tunnel ionization it has to be coupled to the system
in a specific way, as explained in Sec. 5.4. After propagating the Hamiltonian of the
coupled systems till the end of the pulse duration, in Sec. 5.5 we explain how one
can determine the tunneling time from the measurement of the SWP quantum clock.
The determined values and their physical interpretations are presented and discussed
in Sec. 5.6. As we will see in this chapter the SWP quantum clock determines an
average tunneling time. In the previous chapter we have determined a most probable
time by using the virtual detector method. In Sec 5.7 we define an average tunneling
time based on the virtual detector method and compare it to the average tunneling
time determined by the SWP quantum clock. Most of the results presented in this
chapter have been submitted for publication [115].

5.1. Introduction
Although tunneling is a fundamental process in quantum mechanics, there is still no
consensus on the definition and interpretation of tunneling time. Tunneling time was
first studied [67] in the problem of a particle tunneling through a square potential.
In this case a particle approaches from far away a potential wall higher than it’s
energy. Many approaches and methods were proposed to define tunneling time [23]
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in the case of tunneling through a potential barrier as discussed in Sec. 2.1. From
the discussed approaches the clock approach is preferred by the authors of [23]. The
reason for this preference is given in Sec. 2.1.
Another example of quantum tunneling where also tunneling time could be stud-

ied is tunnel ionization. Tunnel ionization is specifically attractive to study tunnel-
ing times because it is experimentally accessible. In the tunnel ionization case, a
Coulomb-bound electron is ionized by a strong electromagnetic field, and a potential
barrier can be defined via the electron’s binding energy and the Coulomb potential
bent by the electric field’s potential. Keller et al.have conducted experiments using
the angular streaking technique aiming to measure tunneling times for ionization
from a bound state, the so-called attoclock experiments [39, 40]. For studying tun-
neling times in tunnel ionization many approaches could be applied from the ones
used in the case of a particle tunneling through a square potential. Many of these ap-
proaches have been applied to Strong field tunnel ionization as discussed in Sec. 2.1.
To our knowledge none of the above mentioned approaches has been applied dy-
namically to tunnel ionization, i.e., taking into account the continuous increase and
decay of the external driving electric field as it is the situation in an experimental
setting. Often the external field is treated as static [49] or switched on instanta-
neously [42, 52]. As emphasized in Ref. [42], tunneling in a continuously evolving
potential is very different from the sudden turn-on case. In particular, there is not
natural reference point in time which defines when tunneling begins. Furthermore,
the quantum state at the onset of tunneling is no longer the ground state of the un-
perturbed binding potential. When tunneling sets in, the wavefunction has already
evolved in the time-dependent potential.
In this thesis, we apply the Salecker-Wigner-Peres quantum clock to tunnel ion-

ization taking into account the continuous evolution of the driving electric field to
determine tunneling times. The Salecker-Wigner-Peres quantum clock is coupled to
the electron in such a way that it measures the average time spent by the electron
under the barrier. The obtained results are compared to the virtual detector method
described in the previous chapter.
In the next section we describe the system and the electric field pulse that we

consider in order to measure tunneling ionization times.

5.2. Considered system

Similar to chapter 4 we also study tunnel ionization from a two-dimensional Coulomb
potential. The restriction to two dimensions is mainly because this system resem-
bles tunnel ionization from hydrogen-like ions while keeping the computational de-
mands small. In the long-wavelength limit, i. e., in the dipole approximation, the
three-dimensional Coulomb potential with an external electric field has rotational
symmetry which makes this system effectively two-dimensional. Furthermore, the
two-dimensional Coulomb problem has been used to model some semiconductor sys-
tems [110–112].
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Applying the dipole approximation and choosing the coordinate system such that
the linearly polarized external electric field with the amplitude E(t) points into the
x direction, the Schrödinger equation reads in atomic unit,

i∂ΨE(x, y, t)
∂t

= HEΨE(x, y, t) =(
−1

2
∂2

∂x2 −
1
2
∂2

∂y2 −
1√

x2 + y2 − xE(t)
)

ΨE(x, y, t) . (5.1)

Applying an electric field pulse with a unique maximum allows us to study the
ionization dynamics without undesirable artifacts, i. e., to avoid multiple ionization
and rescattering see Sec. 2.6. Therefore, we employing a Gaussian pulse and the
electric field is given by

E(t) = E0 exp
(
−ω

2
E(t− t0)2

2

)
, (5.2)

where t0 denotes the instant of maximal electric field E0 and τE =
√

2/ωE is the
time scale of the raise and decay of the electric field. After we have determined the
system that we consider in order to measure tunnel ionization time using the SWP
quantum clock, we introduce the clock in the next section.

5.3. The Salecker-Wigner-Peres quantum clock
Salecker-Wigner-Peres [31, 34] introuced a quantum system that could serve as a
clock, the so called SWP Quantum Clock. The system has the Hamiltonian Ĥc = ωĴ
where Ĵ = −i~ ∂

∂θ is an angular momentum operator and the operator θ̂ is an angular
operator, and consequently ω is the angular frequency. Solving the time-independent
Schrödinger equation of the clock Hamiltonian Hcψ(θ) = Ecψ(θ) and requiring that
the clock angular wave functions to be periodic via ψ(θ) = ψ(θ+ 2π), results in the
energy quantization of the system, i.e., Ec = n~ω. Clearly, this also means that the
angular momentum is also quantized via:

Ĵψn(θ) = n~ψn(θ) (5.3)

From now on we use the Dirac’s bra-ket notation and denote ψn(θ) = |Jn〉. The
vector space { |Jn〉 } represents a complete orthonormal eigenbasis of Ĵ and Ĥc

consequently. From the hamiltonian eigenbasis we can define another complete or-
thonormal eigen basis { |Vk〉 } via

〈Vk|Jn〉 = 1√
N

exp
(
i
2πnk
N

)
(5.4)

where N is the dimension of the eigen basis and k ∈ [0, N − 1]. The clock state Ψ
can be described by either basis, and the transformation from one basis to the other
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is defined by Eq. (5.4). It is convenient though not necessary to assume that we
have an odd number N of the angular momentum eigen states such that the integer
n ∈ [−j, j] [34]. One can define ω, the angular frequency, in terms of a time interval
τ such that ω = 2π/Nτ . To see why this system behaves as a clock, we prepare the
clock state in a state |Vk〉 at t0 such that

|Ψ(t0)〉 = |Vk〉 =
∑
n

〈Jn|Vk〉 |Jn〉 . (5.5)

By propagating the wavefunction |Ψ(t0)〉 using the time-dependent Schrödinger
equation till time t such that t− t0 = τ , we get

exp
(
−iĤcτ

~

)
|Ψ(t0)〉 =

∑
n

1√
N

exp
(
−i2πn(k + 1)

N

)
|Jn〉 = |Vk+1〉 . (5.6)

According to equation Eq. (5.6), setting the clock in state |V0〉 at time t = 0 then
applying the evolution operator, the clock will pass successively through the states
|V0〉 , . . . , |VN−1〉 in time intervals τ . The quantum clock is cyclic as a normal clock,
i.e., If t− t0 = Nτ and Ψ(t0) = |Vk〉 the clock will be again in state |Vk〉 at time t.
Thus for time intervals t− t0 ≤ (N − 1)τ one can define an unambiguous mapping
from the clock state to time via measuring the expectation value of the operator

T̂ =
∑
k

kτP̂k, (5.7)

where P̂k is the projection operator on the states |Vk〉.The bahviour of the SWP
quantum clock in time is illustrated in Fig. 5.1. The precision of the quantum clock
is the time τ . Since propagating the clock for time intervals t − t0 that are not
integer multiples of τ will cause the quantum clock state Ψ to be in a coherent state
in the basis { |Vk〉 }. This means that for such intervals there is not a well defined
mapping to real time from these coherent states through the expectation value of
the time operator 〈T̂ 〉. Thus any time measurement by the clock should be read
with an error bar ±τ/2. In order to measure time using the SWP quantum clock,
the clock has to be coupled to the system of interest. This procedure is discussed in
the next section.

5.4. Coupling of the SWP quantum Clock and its calibration
As in the case of a normal clock, in order to time the dynamics of some system we
have to couple the clock to the system. Like measuring the duration that a runner
needs to run one lap. In this case one needs to know two times the instant the
runner starts running and the instant the runner finishes the lap, thus the coupling
is done by measuring when does the runner starts and finishes his lap. Suppose we
want to measure the time of flight of a free particle. One way to couple the quantum
clock to the free particle would be via the Hamiltonian [34],

ĤT = P̂ 2

2M + P̂ (x ∈ R)Ĥc, (5.8)
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Figure 5.1.: The bahviour of 〈T̂ 〉 in time t is plotted for a free running clock for N = 3 in
terms of the time interval τ .

where P̂ andM are the particle’s momentum operator and mass respectively, P̂ (x ∈
R) is the projection operator on the x-eigen states in the region R, and Ĥc is the
clock Hamiltonian. The projection operator P̂ (x ∈ R) = 1 when x ∈ R and zero
otherwise. Using the Hamiltonian Eq. (5.8) one is able to measure the time of flight
of a free particle in region R. From ĤT one could see that the clock would run
only when the particle is in region R. One should remark that in contrast to the
runner example the quantum clock does not measure the time of starting and time
of arrival, the quantum clock measures only the time spent in a certain region R
when coupled via the projection operator P̂ (x ∈ R).
In the classical limit the system is not influenced by the measurement of the

clock. But in the quantum limit coupling any measurement device will influence
the dynamics of the studied system. The wavefunction of the Hamiltonian ĤT is
the cross product of the particle’s state and the clock state, i.e. , |ΨT 〉 = |Ψp〉 |Ψc〉.
Expressing |Ψc〉 in the eigen basis { |Jn〉 } would result in N Schrödinger equations
of a particle approaching a potential in region R of height n~ω where n ∈ [−j, j]
and j = (N − 1)/2. For more details see [34], where this problem is solved and as
expected the time required for the free particle to pass region R is shown to be ttf =
|R|M/〈P̂ 〉. The free particle with energy Efp = 〈P̂ 2/2M〉 feels the influence by the
quantum clock via experiencing a potential of maximum height/depth |j~ω|. Thus
to minimize this influence one has to set the clock such that j~ω � Efp. But this
also restricts the possible measurable time of fight. This is a general characteristic
of SWP quantum clock. In general j~ω must be much smaller than the energy of
the studied system Es. This directly implies that the condition τ � (j~ω)/EsN
must be satisfied. This means that as one decreases the effect of the quantum clock
on the studied system the clock precision deteriorates. Note that increasing the
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number of states of the clock N does not improve the precision of the clock since
j also increases linearly with N . Indeed this fact restricts the applicability of the
quantum clock. This problem is solved by Leavens [72], where the quantum clock
is utilized to measure the tunneling time of a particle approaching from far away a
potential barrier.
Leavens suggests that one could prepare a free running clock and measure it’s

behavior in time. For each time t one could measure the expectation value of the
time operator Ffree(t) = 〈T̂free〉 for the free running clock. For t � τ the function
〈T̂ 〉(t) is monotonically increasing see Fig. 5.1. Such that one could define in the
domain t� τ an inverse function F−1

free. When coupling the quantum clock to some
quantum system one could calibrate it’s measurement by the function F−1

free. Such
that the coupled quantum clock final measurement would be F−1

free

(
〈T̂ 〉

)
. In this

case the clock precision τ has lost it’s meaning and one could now operate in the
opposite regime |j~ω| � Es. This condition is not only necessary to decrease the
quantum clock influence on the studied system but also to insure that the would be
measured dynamics occur on a time order t � τ . In the next section we present
the procedure of implementing the SWP quantum clock for measuring tunneling
ionization times.

5.5. Measurement procedure of the SWP quantum clock in
tunnel ionization

In order to measure the tunneling ionization time using the quantum clock one has
to couple the quantum clock to the electron in the tunneling region. This is done
by the Hamiltonian

HT = HE + P̂ (x ∈ R)Ĥc (5.9)

where HE is the Hamiltonian of a tunnel ionizing electron. Here R is the tunneling
region defined by parabolic coordinates for E(t) = E0 as described in chapter 4 and
in the Appendix, see Fig. 5.2 . Coupling the clock to the electron in a fixed tunneling
region is justified because for static fields the tunneling probability is maximal for
maximal electric fields and it is exponentially suppressed for lower fields [79, 80].
We can see form Eq. (5.9) that the clock will run only when the electron is in the
tunneling region see Sec. 5.3. In contrast to the time of flight measurement not all of
the electron will enter the tunneling region. Moreover, from the part that enters the
tunneling region one part will tunnel and the other will be reflected. Since the clock
cannot differentiate between reflected electrons and tunneled electrons, it measures
the average time spent in region R irrespective if the electron has been reflected
or transmitted. This average time is known as the dwell time τD and is originally
postulated by Büttiker [35]. An expression for the dwell time

τD(R) =
∫ ∞

0
dt

∫
R
dxdy|ΨE(x, y, t)|2 (5.10)
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Figure 5.2.: Schematic of tunneling time determination via SWP quantum clock measurment
in the tunneling region R, which is marked by the black solid lines. The lines ξ = ξin,exit
and η = η0 which determine the tunneling region, are indicated by the solid lines; see
Appendix. The wavefunction’s probability density |ΨE(x, y, t)|2 at the instant of electric
field maximum, i. e., t = t0, is represented by colors for E0 = 1.1 a.u. and γ = 0.25. This
figure has been adopted from Ref. [115].

is derived within conventional [46] and casual [116] interpretations of quantum me-
chanics and is accepted by almost all workers in the tunneling time field [117].Since
the expression in Eq. (5.10) and the quantum clock measure the same physical quan-
tity their values should agree [72]. In other words the expression Eq. (5.10) should
be considered as a check to weather if the quantum clock is implemented correctly
to the studied system.
To measure the dwell time of tunnel ionization using the quantum clock we prop-

agate the wave function |ΨT (ti)〉 = |ΨE(ti)〉 ⊗ |Ψc(ti)〉 till tf via the Schrödinger
equation:

i∂ |ΨT (t)〉
∂t

= HT |ΨT (t)〉 . (5.11)

The initial time ti is chosen such that (ti − t0) = −5τE . Moreover at instant ti the
initial state of the electron is the ground state of HE such that HE(ti) |ΨE(ti)〉 =
EE |ΨE(ti)〉. While the clock is set in the state corresponding to a zero expectation
value of the time operator T̂ , i.e., |Ψc(ti)〉 = |V0〉. After propagating till time tf ,
determined by (tf − t0) = 5τE , one could measure the expectation value of the time
operator of the clock 〈T̂ 〉tf . This expectation value is rigorously measured by taking
the tensor of the clock density operator ρ̂c. The total density matrix of the system
is given by

ρ̂T =
∑
k,k′

∫
dxdydx′dy′φ∗k′(x′, y′)φk(x, y) |x; y〉 〈x′; y′| ⊗ |Vk〉 〈Vk′ | . (5.12)
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Then the clock density operator ρ̂c is defined by tracing out the electron degrees of
freedom from ρ̂T viz

ρ̂c =
∫
dx′′dy′′ 〈x′′; y′′| ρ̂T |x′′; y′′〉

=
∑
k,k′

(∫
dxdyφ∗k′(x, y)φk(x, y)

)
|Vk〉 〈Vk′ | . (5.13)

Then the expectation value of the time operator at the instant tf , 〈T̂ 〉tf is given by

〈T̂ 〉tf =
∑
k′′

〈Vk′′ | T̂ ρ̂c(tf ) |Vk′′〉 . (5.14)

As explained in the previous section this measurement still needs calibration, and
the final clock measurement is then F−1

free

(
〈T̂ 〉tf

)
, and if everything is implemented

correctly this should be in agreement with τD.
The main aim of implementing the quantum clock is to measure the time a tun-

neled electron spends under the barrier. In the following we will show that the time
spent under the barrier by an electron that has tunneled is related to the Dwell time
τD similarly as shown in [71]. At tf the electric field has almost vanished and the
wavefunction is well separated in space into a bound part and a tunneled part such
that we can write the time operator expectation value as

〈T̂ 〉tf =
∑
k

(∫
bd
dxdyφ∗k(x, y)φk(x, y)

)
kτ

+
∑
k

(∫
tn
dxdyφ∗k(x, y)φk(x, y)

)
kτ. (5.15)

The bound part is the part of the wavefunction that has been reflected or did not
undergo the tunneling process at all, while the tunneled part is part that entered
the tunneling barrier and tunneled through it. If the system is not coupled to the
quantum clock the sums

∫
bd dxdyφ

∗(x, y)φ(x, y) and
∫

tn dxdyφ
∗(x, y)φ(x, y) corre-

spond to the reflection probability R and tunneling probability T respectively, where
R+ T = 1. Since in each state |Vk〉 the electron experiences a slightly different tun-
neling barrier, the reflection Rk and tunneling Tk coefficients will be different in each
state |Vk〉. Where Rk =

∫
bd dxdyφ

∗
k(x, y)φk(x, y) and Tk =

∫
tn dxdyφ

∗
k(x, y)φk(x, y).

We can express the reflection and tunneling coefficients in terms of the reflection and
tunneling coefficients of the non-coupled electron via, Rk = R∆R

k and Tk = T∆T
k .

Substituting these coefficients in 〈T̂ 〉tf gives

〈T̂ 〉tf = RτR + TτT (5.16)

where τR =
∑
k ∆R

k kτ is the reflection time and τT =
∑
k ∆T

k kτ is the tunneling
time. Expression (5.16) which satisfy the sum rule of reflection and tunneling time
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is well known; it is identical to the spin-precession result [33], and to the real-part of
the complex-valued Feynman-path [46] results [71]. On one hand we know that the
clock needs calibration and that the calibrating function F−1

free is not linear. Thus
F−1

free

(
〈T̂ 〉tf

)
would not be equal to RF−1

free (τR) +TF−1
free (τT ). On the other hand, for

one measurement one needs to calibrate three values 〈T̂ 〉tf , τR and τT . These values
are included in a small domain of F−1

free , ∆t. Since we are operating in the regime
t � τ , the function F−1

free is almost linear in the small domain ∆t. Thus as will see
in the next section, that the following holds

τCD = F−1
free

(
〈T̂ 〉tf

)
≈ RF−1

free (τR) + TF−1
free (τT ) . (5.17)

Finally, the calibrated tunneling time is defined by τCT = F−1
free (τT ) and the calibrated

reflection time τCR is determined by τCR = F−1
free (τR). To understand the separation

of dwell time into tunneling and reflection time intuitively, one can imagine that
there is a far away detector that does not disturb the system and can differentiate
between tunneled electrons and reflected electron. This detector is realized by the
integral which can separate between reflected part and tunneled part. Additionally
the measurement of the tunneled electrons is then normalized by the tunneling
probability T , while the measurement of the reflected electrons is normalized by the
reflection probability R.
Although the splitting (5.16) has been employed in many works, it has also be

criticized [23, 118, 119]. One point of criticism that was put forward is that the
dwell time (5.10) adds up probability density rather than probability amplitudes and
therefore neglects possible interferences between transmitted and reflected portions
of the wave packet. This argument, however, does not apply to the clock approach
taken here. The clock Hamiltonian couples to the wave function, not to the density.
For the quantum clock approach it is not required to separate the wave function
under the barrier into tunneling and reflecting parts, which would be problematic
indeed. Furthermore, the expectation value (5.14) is calculated when the tunneled
and the bound parts of the wave function are well separated and therefore there is
no interference between both parts.
Having defined the coupling, measurement and calibration procedure of the SWP

quantum clock in the next section the obtained results are discussed and interpreted.

5.6. Results and interpretation
The Schrödinger equation with the Hamilton operator (5.9) is solved numerically by
employing a Lanczos propagator [85, 98] and a fourth-order finite differences scheme
for the discretization of the Hamilton operator in order to investigate tunneling
times in strong-field tunnel ionization see Sec. 2.7. The so-called Keldysh parameter
γ = ωE

√
−2EEm/(eE0) [41] characterizes the ionization process as dominated by

tunneling for γ � 1 and by multiphoton ionization for γ � 1 see also Sec. 2.2.
Here, EE denotes the ground state binding energy, which equals E0 = −2 a.u. for
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Figure 5.3.: The ratio of the dwell time τD determined by integrating the probability density
in the tunneling barrier to the (corrected) dwell time τCD as given by the quantum clock for
different electric field strengths E0 and for a constant Keldysh parameter γ = 0.25. To
guide the eye, the horizontal dashed line indicates the ratio one, i. e., when both dwell times
exactly agree. This figure has been adopted from Ref. [115].

the two-dimensional Coulomb problem [120]. In the following, the electric field
amplitude E0 and the frequency ωE are adjusted such that γ = 0.25 < 1. The clock
parameters τ = 200 a.u. and N = 3 are chosen such that |j~ω/EE | = 0.0104 � 1,
i. e., the quantum clock Hamiltonian is coupled weakly to the Coulomb Hamiltonian.
This ensures that the distribution of Coulomb Hamiltonian by the quantum clock
Hamiltonian is negligible. This has been tested by repeating numerical calculations
with τ = 400 a.u., i. e., even weaker coupling, which yields results that are almost
equal to the results obtained for τ = 200 a.u. Note that choosing the clock parameter
τ arbitrary large such that the influence of the clock on the studied system becomes
infinitely small leads to numerical difficulties because then also transitions between
various clock states |Vk〉 becomes small and therefore difficult to resolve numerically.
As explained in Sec. 5.4 increasing the number of states of the clock does not improve
the clock precision, and thus we choose the smallest non trivial odd number of states
N = 3. A larger number of states N would increase the required numerical effort
without providing any advantage.
The two definitions of the dwell time τD defined in Eq. (5.10) and τCD defined

in Eq. (5.17) , respectively, provide us a valuable consistency check of the quantum
clock approach. To be consistent, the dwell time as determined by the quantum clock
(5.17) must agree with the dwell time (5.10), which does not rely on the concept
of a quantum clock. Our numerical results shown in Fig. 5.3 confirm this property.
For the chosen parameters, both dwell times agree up to a discrepancy of about 4%.
For larger field strengths E0 this small discrepancy tends to be systematically larger
than for small field strengths. This can be attributed to the fact that the dwell time
becomes small for large field strengths and therefore the relative accuracy of the
dwell-time determination is reduced.
The tunneling time τCT , the reflection time τCR , as well as the dwell time τCD are

presented in Fig. 5.4. Furthermore, the figure shows the weighted sum TτCT +RτCR ,
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Figure 5.4.: Refection time τCR , dwell time τCD , tunneling time τCT , the weighted sum
TτCT +RτCR , and tunneling time τvT for different electric field strengths E0 at a fixed Keldysh
parameter γ = 0.25. For specific definitions of the various times see main text. This figure
has been adopted from Ref. [115].

which is close to the dwell time τCD but does not strictly agree with the latter due to
the non-linearity of the function F−1

free. Because τCD is close to the weighted average
TτCT + RτCR it lies always between the tunneling time τCT and the reflection time
τCR . As one can also see in Fig. 5.4, the reflection time τCR is always larger than the
tunneling time τCT . The ratio of the reflection time τCR and the tunneling time τCT
is close to 1.6 almost independently of the strength of the applied electric field as
shown in Fig. 5.6. This can be intuitively understood as tunneling electrons enter
the barrier and then leave the barrier at the exit while reflected electrons move under
the barrier until they get reflected at the barrier exit and then travel back into the
direction of the atomic core.
The tunneling time as well as the reflection time decrease with increasing electric

field strength E0. In fact, we find a power-law behavior for τCT as well as for τCR ,
τT ∼ E−1.2

0 and τR ∼ E−1
0 as shown in Fig. 5.5.

In this section we have represented the results of tunneling time measured via
the SWP quantum clock τCD . In Sec. 4.4 we have also defined and represented the
tunneling time τtsub based on the virtual detector method. In the following section
we explain what is the difference between both times and how we can define an
average tunneling time based on virtual detectors.

5.7. Virtual detector method and average tunneling time

In chapter 4 we studied tunneling times for the same kind of system and the same
parameter regime as in this chapter by a different approach, the so-called virtual
detector method. In this section we are going to relate the virtual detector approach
to the quantum clock approach.
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Figure 5.5.: Reflection time τCR and tunneling time τCT on a double logarithmic scale. For
specific definitions of the various times see the main text. This figure has been adopted from
Ref. [115].

Figure 5.6.: Ratio of the reflection time τCR and the tunneling time τCT as a function of
the electric field strengths E0 at a fixed Keldysh parameter γ = 0.25. This figure has been
adopted from Ref. [115].
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Figure 5.7.: Probability distributions pin(t) and pexit(t) to enter or to leave the tunneling
barrier into the direction away from the atomic core as functions of time t and probability
distribution p(τ) of the tunneling time as derived from pin(t) and pexit(t) for E0 = 1.2 a.u.
and Z = 1. The vertical black dashed line indicates the time τtsub, which is the distance
between the positions of the maxima of the distributions pin(t) and pexit(t). This figure has
been adopted from Ref. [115].

The central idea of the virtual detector approach is to determine the electron’s
probability density flow at the entry line and the exit line of the tunneling barrier at
the parabolic coordinates ξ = ξin and ξ = ξexit as functions of the time t. Integrat-
ing the probability density flow along these lines gives the quantities Dξin(t) and
Dξexit(t). Furthermore, Dξin(t)Θ(Dξin(t)) ∆t is proportional to the probability that
the electron crosses the entry line of the tunneling barrier into the direction away
from the atomic core. Here Θ(x) denotes the Heaviside step function. Similarly,
Dξexit(t)Θ(Dξexit(t)) ∆t is proportional to the probability that the electron crosses
the exit line of the tunneling barrier into the direction away from the atomic core.
It is convenient to introduce the normalization constants Nin and Nexit and the
distributions pin(t) and pexit(t) such that

pin(t) = 1
Nin

Dξin(t)Θ(Dξin(t)) , (5.18a)

pexit(t) = 1
Nexit

Dξexit(t)Θ(Dξexit(t)) , (5.18b)

and ∫ ∞
−∞

pin(t) dt = 1 , (5.19a)∫ ∞
−∞

pexit(t) dt = 1 . (5.19b)

The functions Dξin(t) and Dξexit(t) have both a unique global maximum; see Fig. 4.3.
In sec. 4.4, we defined the distance of the positions of these maxima as the tunneling
time τtsub.
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Comparing τtsub and τCT , one finds that τtsub is smaller than τCT by a factor of about
three. This discrepancy is a direct consequence of the different definitions of τtsub and
τCT . It does not necessarily indicate a conflict between the quantum clock approach
and the virtual detector approach. As we will show in the following, the discrepancy
arises essentially because taking the difference between two expectation values of
two times is not equivalent to determining the expectation value of a time delay.
Due to the approximate symmetry of pin(t) and pexit(t) around their maxima, τtsub
equals approximately the difference between the expectation values for the moments
of entering and leaving the tunneling barrier. The tunneling time τT , however, is
derived from an expectation value of a clock operator which determines directly
the time spend in the tunneling barrier. As a quantum mechanical observable, the
time that corresponds to this operator has some distribution. Neglecting possible
quantum correlations between entering and leaving the tunneling barrier, one can
reconstruct this distribution from pin(t) and pexit(t) by assuming that the probability
to spend the nonnegative time τ in the tunneling barrier is proportional to the
product of pin(t) at the entry time t and pexit(t + τ). Integrating over all possible
entry times yields the probability distribution

p(τ) = 1
N

∫ ∞
−∞

pin(t)pexit(t+ τ) dt , (5.20)

where N is a normalization constant such that∫ ∞
0

p(τ) dτ = 1 . (5.21)

Note that due to causality reasons, p(τ) vanishes for τ < 0. The corresponding
expectation value of the tunneling time of the virtual detector approach is then

τvT =
∫ ∞

0
τp(τ) dτ . (5.22)

For comparison with the tunneling time τCT of the quantum clock approach, the
time τvT is also indicated in Fig. 5.4. In contrast to tunneling delay τtsub, τvT is
very close to the tunneling time τCT of the quantum clock approach. As one can see
in Fig. 5.7, the distribution p(τ) has a maximum approximately at τtsub. Due to
the distribution’s asymmetry that results from the causality condition p(τ) = 0 for
τ < 0, the expectation value of p(τ) is shifted away from the position of the maximum
to larger values, which explains the factor-3 discrepancy between τtsub and τCT . For
calculating τvT we have made the assumption that there is no correlation between the
probability of entering the barrier and the probability of exiting the barrier. Since
the numerical values of τvT and τCT

1 agree then we can conclude that there is no
correlation between when the electron enters the barrier and when does the electron
exit the barrier.

1Note that for the calculation of τC
T a pure quantum approach was used and no assumptions about

entry and exit probability distribution correlations were made.
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5.8. Conclusion
In this chapter we have applied the SWP quantum clock in order to determine tunnel
ionization times. We have defined through the quantum clock an average tunneling
time and an average reflection time. We have seen that the reflection time is almost
1.6 times the tunneling time. This is due to the fact that the electrons that enter
the barrier and reflect spend more time under the barrier in comparison to electrons
that tunnel. The SWP quantum clock in its structure measures an average tunneling
time while through the virtual detector method used in the previous chapter we
defined a most probable tunneling time. By defining a probability distribution of
tunneling times based on the virtual detector approach we find that the maximum
of this distribution is the time defined in sec. 4.4 and the expectation value of
this distribution is very close to the tunneling time defined by the quantum clock.
The difference between the maximum of the distribution and its expectation value,
i.e., between the magnitude of both times is due to the unsymmetrical probability
distribution of tunneling times.
Realizing a structure similar to the quantum clock and coupling it to the tunnel

ionizing electron is very hard to realize experimentally, since one needs to couple
both systems only under the tunneling barrier. Nevertheless, it is very interesting
to calculate expectation values of tunneling times from first principles by using the
SWP quantum clock.
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Chapter 6.

Summary and outlook

We started this work in chapter 3 by studying tunnel ionization of an electron
bound in a soft-core potential in a one-dimensional system that models the essential
features of a three-dimensional Coulomb system. Using the virtual detector method
we have shown that the electron exits the tunneling barrier after the instance of
electric field maximum. Furthermore, by resolving the momentum distribution of
the tunnel ionized electron at the instant of ionization, we find out that the electron
exits the tunnel barrier with a non-zero initial momentum. These two results are
different from the assumptions of the commonly employed two-step model, which
assumes ionization at the instant of electric field maximum with zero momentum.
For this reason we have also investigated the applicability of the two-step model
by determining the final momentum of the tunnel ionized electron. We have found
out that not only the assumptions of the two step model are not correct but also
its predictions of the final momentum deviate from the quantum mechanical one.
Furthermore, correcting the assumptions of the two-step model by the correct instant
of ionization and correct exit momentum does not result in a correct prediction of
the final momentum. This is a hint that propagation of the wave packet after tunnel
ionization is not classical. Nevertheless, we have shown that the two-step model
can be corrected by changing its initial parameters. These results have an effect
on the interpretation of tunnel ionization experiments in general and specifically on
the calibration of the attoclock experiment that aims to determine the instant of
ionization, because theoretical models with false assumptions are usually employed
in order to interpret experimental results.
In chapter 4 we studied tunnel ionization of an electron bound by a Coulomb

potential in two dimensions. We did not only determine the instant of ionization
but also we have determined the instant when the electron enters the tunneling
barrier. From these two instants we have determined the most probable duration
spent by an electron under the tunneling barrier. We found out that the determined
tunneling time is meaningful because it does not correspond to superluminal speeds.
Most importantly we have found out that tunnel ionization does not start at the
instant of electric field maximum as often assumed. Furthermore, we have shown
that also in two dimensions the assumptions and predictions of the two-step model
are incorrect. Namely, the electron exits the tunneling barrier not at the instant
of electric field maximum with a non-zero exit momentum. We have also seen that
the trajectory of the electron predicted by the two-step model deviates from the
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quantum trajectory, and that this deviation increases with increasing electric field
strength. Moreover, we have shown that the trajectory of the two-step model can
be corrected by changing the initial conditions.
Finally, in chapter 5 we have applied the Salecker-Wigner-Peres (SWP) quantum

clock on tunnel ionization. From the SWP quantum clock we have determined an
average tunneling time corresponding to an average time spent under the barrier
by electrons which tunnel. Also we have determined an average reflection time
spent under the barrier by the electrons which do not tunnel. We have seen that
both times do not correspond to superluminal speeds, and that the ratio between
reflection and tunneling time is greater than one. This could be understood as
electrons which are reflected penetrate the barrier to some point and then return
back, while electrons which tunnel just go through the barrier. In chapter 4 we
defined a most probable tunneling time based on the virtual detector method, while
in chapter 5 we determined an average tunneling time; these two tunneling times
are different in magnitude and origin. To understand this discrepancy we have
defined an average tunneling time based on the virtual detector method by defining
a probability distribution of tunneling times. The expectation value of tunneling
time taken over the probability distribution matches very well the tunneling time
defined by the quantum clock, while the maximum of the probability distribution
matches very well the tunneling time defined in chapter 4. The discrepancy between
the magnitude of the most probable time and the average time is attributed to the
unsymmetrical probability distribution of tunneling times.

Outlook

The present work may stimulate further studies in the field. In chapter 3 and
chapter 4 we have found out that the two-step model should be corrected. The
attoclock experiments measure the final momentum of the tunnel ionized electrons
and map from it the instant of ionization using some theoretical model. Many
works propose theoretical models to calibrate the attoclock. A direct measurement
of the instant of ionization is experimentally very hard to achieve. In the present
work we have directly determined the instant of ionization by simulations and by
using numerical quantum calculations for systems that model the essential features
of Coulomb potential in three dimensions. This has the advantage of simplicity of
solving the system with full quantum mechanical numerical calculations and finding
the correct qualitative behavior of exit time and exit momentum from first principles.
Additionally many methods that has been used in this thesis to determine the exit
time and the exit momentum are applied for the first time for tunnel ionization and
it would be convenient to apply them first to simple systems and understand them
before applying them to more complex systems. Though the considered system in
this work is not exactly the same as the experimentally used one. Thus one can
repeat the above presented simulations and calculations but for a three dimensional
system and by considering experimental parameters. This has the advantage of
determining the instant of ionization not only qualitatively but also quantitatively.
In experiments usually a Helium atom is ionized by an elliptically polarized pulse.
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Thus one needs to consider an electron in an effective potential which models the
Coulomb potential of a Helium atom screened by the first electron. Additionally,
one should consider an electrically polarized sinusoidal pulse with an envelope as
considered in experiments. Even nowadays three dimensional calculations are still
very demanding. As shown in Ref. [78] the three dimensional time-independent
tunnel ionization problem in the absence of a magnetic field can be reduced via
coordinate transformation two a two dimensional problem. This hints that the
important dynamics of the electron in the time-dependent problem is rendered in
two dimensions. Thus for the three dimensional time-dependent tunnel ionization
problem one could choose a grid where the third dimension is modeled by a thin
layer, which is numerically feasible.
Moreover, the two-step model is commonly employed in order to determine tunnel

ionization spectra and we have shown that it fails to predict the correct final mo-
mentum. It would be interesting to study the effect of correcting the two-step model
on the tunnel ionization spectra. For example, in tunnel ionization recombination
spectra, i.e., when an electron tunnel ionize and propagate away from the atom by
the driving field and then recombines with the atom after the driving field changes
sign. This problem could be studied via semi-classical calculations. Recently, it
was shown in [121] that high harmonic generation (HHG) spectra could not be re-
constructed using the two-step model. Particularly, it was shown that a non-zero
initial momentum in the electric field direction was necessary to describe the HHG
experimental spectra. In this work we have shown that the electron has a certain
distribution of exit time as well as a distribution of exit momentum. These distri-
butions could be used as initial conditions for the classical equations of motion in
order to calculate the spectrum. By comparing the results of the semi-classical cal-
culations to experimental or quantum calculated spectra one could study the effect
of the time delay at the exit as well as the effect of the non-zero initial momentum.
Furthermore, in this work we have introduced for the first time the virtual detector

approach in order to determine tunnel ionization times. It would be interesting to
employ this method on tunneling of free particles, when free particles approach
from far away a potential barrier. In this case most of tunneling time definitions in
literature lead to a tunneling time value corresponding to superluminal velocities.
Employing the virtual detector method for this problem would be straight forward,
and very promising based on the results found in this thesis.
Another field where these methods could be applied is in the field of trapped

Bose-Einstein condensates. Recently, in an experimental work, tunneling time of
Bose-Einstein condensates trapped in optical lattices was measured [122]. The tech-
niques applied in this work could also be used to determine tunneling times of
Bose-Einstein condensates which could be compared to experimental results. For
achieving this, one has to consider a particle (Bose-Einstein Condensate) in an ef-
fective potential that models the potential of the particle as well as the effect of
neighboring potentials. Additionally, one has to consider the effect of the interac-
tion with neighboring particles caused by lattice vibrations. For these one could use
the already developed techniques of condensed matter physics.
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Appendix A.

The Coulomb problem and the Strak
effect in two dimensions

The eigen equation of the two-dimensional Coulomb problem [111, 120] with some
additional homogeneous electric field of strength E is given in Cartesian coordinates
x and y and employing atomic units by(

−1
2
∂2

∂x2 −
1
2
∂2

∂y2 −
1√

x2 + y2 − Ex
)

Ψ(x, y) = EΨ(x, y) , (A.1)

where Ψ(x, y) denotes an eigen function with energy E. This eigen equation sep-
arates in parabolic coordinates ξ and η [120, 123, 124], which are related to the
Cartesian coordinates x and y via Eq. (4.3). This coordinate system is particularly
useful because here the two-dimensional Schrödinger equation can be separated into
two one-dimensional Schrödinger equations, which allows to define a one-dimensional
tunneling barrier. The calculations in this section follow Ref. [78], where the three-
dimensional Coulomb problem is considered in a similar way.
The Laplacian becomes in the new coordinate system

∂2

∂x2 + ∂2

∂y2 = 1
ξ + η

(
4ξ ∂

2

∂ξ2 + 2 ∂
∂ξ

+ 4η ∂
2

∂η2 + 2 ∂
∂η

)
. (A.2)

Expressing (A.1) in parabolic coordinates yields after some algebraic transformations(
ξ
∂2

∂ξ2 + 1
2
∂

∂ξ
+ E

2 ξ + E4 ξ
2
)

Ψ(ξ, η)+(
η
∂2

∂η2 + 1
2
∂

∂η
+ E

2 η −
E
4 η

2
)

Ψ(ξ, η) = −Ψ(ξ, η) . (A.3)

Substituting the ansatz Ψ(ξ, η) = f1(ξ)f2(η) into the last equation end separating
the variables ξ and η we obtain the two equations(

ξ
∂2

∂ξ2 + 1
2
∂

∂ξ
+ E

2 ξ + E4 ξ
2 + β1

)
f1(ξ) = 0 , (A.4a)(

η
∂2

∂η2 + 1
2
∂

∂η
+ E

2 η −
E
4 η

2 + β2

)
f2(η) = 0 , (A.4b)
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where the separation constants β1 and β2 are related by

β1 + β2 = 1 . (A.5)

The tunneling barriers are obtained by substituting f1(ξ) = g1(ξ)/ξ1/4 and f2(η) =
g2(η)/η1/4, which gives the equations for the new functions as

−1
2
∂2g1(ξ)
∂ξ2 +

(
− 3

32ξ2 −
β1
2ξ −

ξ

8E
)
g1(ξ) = E

4 g1(ξ) , (A.6a)

−1
2
∂2g2(η)
∂η2 +

(
− 3

32η2 −
β2
2η + η

8E
)
g2(η) = E

4 g2(η) . (A.6b)

These two equations represent Schrödinger-type eigen equations with potentials

V1(ξ) = − 3
32ξ2 −

β1
2ξ −

ξ

8E , (A.7a)

V2(η) = − 3
32η2 −

β2
2η + η

8E (A.7b)

and the energy E/4.
For a vanishing external electric field, i. e., E = 0, Eqs. (A.4a) and (A.4b) are

identical. Introducing the variable transformation ξ = η = ζ/
√
−2E gives in this

case (
ζ
∂2

∂ζ2 + 1
2
∂

∂ζ
+ β1,2√
−2E

− ζ

4

)
f1,2(ζ) = 0 . (A.8)

Making the ansatz f1,2(ζ) = exp(−ζ/2)g1,2(ζ) this differential equation yields the
equation (

ζ
∂2

∂ζ2 +
(1

2 − ζ
)
∂

∂ζ
−
(1

4 −
β1,2√
−2E

))
g1,2(ζ) = 0 (A.9)

for g1,2(ζ), which can be identified as the confluent hypergeometric equation [125]
with

a = 1
4 −

β1,2√
−2E

, b = 1
2 . (A.10)

The nonsingular solution of the confluent hypergeometric equation is usually called
confluent hypergeometric function and denoted by 1F1(a; b; ζ) or M(a; b; ζ). Thus
we have found the solution

f1(ξ) ∼ exp
(
−ξ2
√
−2E

)
M

(1
4 −

β1√
−2E

; 1
2 ; ξ
√
−2E

)
(A.11)

and similar for f2(η). These functions f1(ξ) and f2(η) can be normalized only if the
first argument of the confluent hypergeometric function is a negative integer or zero.
In this case the confluent hypergeometric function coincides (up to normalization)
with the associated Laguerre polynomials. Thus, the quantization conditions

1
4 −

β1,2√
−2E

= −n1,2 (A.12)
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Figure A.1.: The ground state energy E of the two-dimensional Coulomb problem with an
external electric field and the separation parameters β1 and β2 as functions of the electric
field strength E . This figure is adopted from Ref. [108].

with n1,2 = 0, 1, 2, . . . with have to be fulfilled. Together with the relation (A.5) the
quantization conditions yield

E = − 1
2(n1 + n2 + 1/2)2 , (A.13)

β1,2 =
(
n1,2 + 1

4

)√
−2E . (A.14)

Normalizing f1(ξ) and f2(η) to unity finally gives the bound eigen states of the
two-dimensional Coulomb problem Ψn1,n2(ξ, η) = f1;E,n1(ξ)f2;E,n2(η) with

f1;E,n1(ξ) =

√ √
−2E

1 + 4n1
exp

(
−ξ2
√
−2E

)
M

(
−n1; 1

2 ; ξ
√
−2E

)
, (A.15a)

f2;E,n2(η) =

√ √
−2E

1 + 4n2
exp

(
−η2
√
−2E

)
M

(
−n2; 1

2 ; η
√
−2E

)
(A.15b)

and the energy E given by (A.13).
Taking into account the Stark effect, i. ,e., E > 0, leads to a modification of the

eigen states, of the eigen energies E, as well as of the separation constants β1 and
β2. In this way, also the tunneling potential (A.7a) changes. The resulting values for
β1, β2, and E can be calculated via perturbation theory [78]. In case of the ground
state with n1 = n2 = 0, we get in second order

β1,2 = β
(0)
1,2 + β

(1)
1,2 + β

(2)
1,2 (A.16)

with

β
(0)
1,2 =

√
−E/8 , (A.17a)
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β
(1)
1,2 =

∫
f1,2;E,0(ξ)

(
∓ξ4E

)
f1,2;E,0(ξ) dξ = ∓ E4E , (A.17b)

β
(2)
1,2 = 1√

−2E
×
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n=1

1
1
4 −

(
n+ 1

4

) ∣∣∣∣∫ f1,2;E,n(ξ)
(
∓ξ4E

)
f1,2;E,0(ξ) dξ

∣∣∣∣2

≈ 0.2004642410
√
−2E E

2

E3 . (A.17c)

The Eqs. (A.16) and (A.5) determine the parameters β1, β2, and E uniquely and
the results of a numerical solution of these equations is shown in Fig. A.1.
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