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1. General Introduction 

 

Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) as its prodromal 

stage are accompanied by structural and functional cerebral changes that often occur 

before the onset of symptoms. It is therefore assumed that disease-related processes 

are taking place long before symptoms become apparent rendering primary and 

secondary preventive measures inapt. While advances in clinical practice, including 

the use of novel imaging techniques (e.g. amyloid positron emission tomography) 

and/or identification of disease-related biomarkers (e.g. β-amyloid and  τ-protein) 

have enabled physicians to detect disease progression at relatively early stages, the 

identification of genetic and acquired risk factors in developing MCI/AD could be of 

great prognostic value even before disease onset and may bear important 

implications for disease prevention and intervention, e.g. through the adaptation of 

lifestyle factors and early implementation of adequate training approaches. 

 While studies have shown that early-onset AD (before the age of 65) has a 

strong genetic component, the exact role of genetic and acquired risk factors in the 

development of late-onset (or sporadic) AD or MCI remains a subject of zealous 

research and results remain inconclusive. Thus, when evaluating one’s own risk of 

developing MCI/AD, genetic counseling - including susceptibility gene testing - must 

be regarded with caution as few conclusions can be drawn from such examinations 

due to the complicated nature of the disorder. Presumably, pathogenesis is likely to 

be influenced by a myriad of genetic and acquired risk factors, which are likely to 

exert varying degrees of influence at different stages of life. In this dissertation, I 

present three research articles on the relative roles of given and acquired risk factors 

for cognitive impairment in aging. Specifically, the relative contribution of high levels 

of plasma total cholesterol and diabetes mellitus type II as acquired risk factors on 
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the one hand, and the role of the two common genetic risk variants of the 

Apolipoprotein E gene (APOE) and the Catechol-O-Methyltransferase (COMT) gene 

as given risk factors on the other hand, to cognitive impairment in aging were 

investigated. The data presented here are derived from the Interdisciplinary 

Longitudinal Study of Adult Development and Ageing (ILSE, Schönknecht, Pantel, 

Kruse & Schröder, 2005), a prospective longitudinal study that was initiated in 1992 

and comprises two birth cohorts born between 1950 and 1952 (N=502) or 1930 and 

1932 (N=500). The three articles “Cholesterol in Mild Cognitive Impairment and 

Alzheimer’s disease in a birth cohort over 14 years” (Toro et al., 2014, Paper 1), “The 

COMT p.Val158Met polymorphism and cognitive performance in adult development, 

healthy aging, and Mild Cognitive Impairment” (Degen et al., 2015, Paper 2), and 

“Diabetes Mellitus Type II and cognitive capacity in healthy aging and Mild Cognitive 

Impairment” (Degen, Toro, Schönknecht, Sattler, & Schröder, 2016, Paper 3) are 

briefly summarized and placed into empirical contexts in Sections 2.1, 2.2, and 2.3. 

Afterwards, theoretical and practical implications of the respective results are 

discussed in Section 3.  
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2. Theoretical and Empirical Background 

 

Besides age, as the most consistent risk factor for the development of MCI/AD, a 

multitude of genetic, psychosocial and environmental factors have been prescribed 

an important role in pathogenic processes. These factors are likely to interact and/or 

mediate each other, rendering a clear-cut classification into genetic, psychosocial 

and environmental factors unfeasible. These difficulties persist when attempting a 

strict delineation of genetic from acquired risk factors, given the plausible, albeit 

vaguely known hereditary influences on conditions acquired during a lifetime, as is 

the case in hypercholesterimia and diabetes mellitus type II. Hence, the risk factors 

referred to as “acquired” in this dissertation are potentially influenced by genetic 

predispositions and are very plausibly the result of complex gene*environment 

interactions. Nevertheless, the term is used to distinguish direct genetic influences 

from conditions that are more likely to originate in lifestyle factors, e.g. malnutrition.  

Genetic association studies have substantiated the role of the APOE gene in 

the occurrence of sporadic AD, while the amyloid precursor protein (APP), the 

psenelin 1 and 2 as well as the sortilin-related receptor genes are implicated in the 

development of familial dementia. In addition to these, the COMT, the serotonin 2a 

receptor (5HT2a), the serotonin transporter (5HTTLPR), the brain derived 

neurotrophic factor (BDNF), and the glutamate receptor metabotropic (GRM3) genes 

have been associated with general age-related decline of cognitive functioning 

(Kremen & Lyons, 2011). At the same time, cerebrovascular and lifestyle factors, 

including hypertension, high cholesterol levels, diabetes mellitus type II, heart 

disease, smoking, and obesity/malnutrition have been linked to the development of 

MCI/AD (Kivipelto et al., 2005; Luchsinger et al., 2005; van der Flier & Scheltens, 
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2005). However, none of these factors is sufficient or necessary for MCI/AD to occur 

illustrating the likely complexities of disease pathogenesis.  

The intricate unfolding of given and acquired risk factors in cognitive decline is 

likely to vary as a function of age as inter-individual neural and cognitive variability 

increases. According to the resource modulation hypothesis (Lindenberger et al., 

2008) losses in neurochemical and structural cerebral resources, such as age-related 

dopamine decline and atrophic changes, modulate the effects genes exert on 

cognitive functioning. Accordingly, genetic determinants exert increasing influence on 

cognition as we age. The hypothesis is based on the premise that heterogeneity in 

cognitive performance increases from early relative to late adulthood when resources 

are typically declining. However, with depleted resources – as is the case in AD – the 

influence of genes is hypothesized to dwindle (Lindenberger et al., 2008).  

In clinical practice however, it is often observed that lifestyle factors such as 

the incorporation of regular physical and mental exercise may alter the trajectory of 

cognitive functioning in old age beneficially, suggesting that genetic dispositions 

become less pivotal during aging. The effects of learning on patterns of cerebral 

activation in the elderly corroborate this hypothesis as training may lead to 

reorganization of neural recruitment and more efficient processing.  Thus, the aging 

brain remains a high degree of plasticity (Degen & Schröder, 2014). Related to these 

observations is the concept of cognitive reserve, which implicates that a given degree 

of neuropathological change can lead to differential degrees of functional impairment 

(Stern, 2002; Schröder & Pantel, 2011). As a result, some individuals with AD-related 

pathology are more resilient and may only display little functional impairment due to 

higher compensatory proficiency and functional plasticity (Schröder & Pantel, 2011; 

Sattler, Toro, Schönknecht, & Schröder, 2012). Cognitive reserve is typically 

operationalized via years of education, socio-economic status, chosen profession, 
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and lifestyle factors suggesting that these factors serve a compensatory role in AD-

related functional impairment. Thus, the resource modulation hypothesis assumes an 

increase in the extent to which genetic vulnerability translates into functional 

impairment during aging, while studies on cognitive reserve and functional plasticity 

posit that age-related cognitive decline can, to a certain extent, be compensated for 

by environmental, i.e. lifestyle factors.  

Scientifically, the course in which given and acquired factors (and 

combinations thereof) become apparent in a complex construct such as cognitive 

functioning throughout a lifespan can be most reliably assessed using large 

prospective longitudinal studies. The Interdisciplinary Longitudinal Study of Adult 

Development and Ageing (ILSE) is a population-based, prospective, longitudinal 

study that was initiated in 1992.  Two birth cohorts born between 1930 and 1932 

(N=500) or born between 1950 and 1952 (N=502) were examined at three 

examination waves in 1993/1994 (T1), between 1996 and 1998 (T2), and between 

2005 and 2007 (T3). A fourth examination is currently being conducted and was 

initiated in 2014. At each examination wave, careful screening for physical and 

mental health was conducted by trained physicians. Psychiatric diagnoses were 

established using the German version of the Structured Clinical Interview for the 

Diagnostic and Statistical Manual Version III -Revised (DSM III-R; Wittchen et al., 

1991) and the diagnostic criteria for aging-associated cognitive decline of the 

International Psychogeriatric Association working Party (Levy, 1994). To assess 

cognitive capacity, the subtests Word List and Digit Symbol Test of the Nuremberg 

Age Inventory (Oswald & Fleischmann, 1991), the subtests Mosaic Test, and Finding 

Similarities of the Hamburg Wechsler Intelligence Test Battery for adults (HAWIE-R; 

Tewes, 1991), the subtests Word Fluency and Visual Thinking of the Performance 

Evaluation System (“Leistungsprüfsystem”; Sturm, Willmes & Horn, 1993), as well as 
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the Attentiveness Endurance Test “D2” (Brickenkamp, 1978), were conducted among 

others. An overview of the participant flow between T1 and T3 can be seen in Figure 

1. The study design allows for the investigation of various protective and risk factors 

in the course of healthy aging and the development of MCI/AD-related pathology 

over a period of 14 years (T1-T3). 

 

Figure 1   Participant flow ILSE 

 

*21 individuals participated in T3, but not in T2 

 

  

T1 (1993/1994) 

1930-1932: N=500 

1950-1952: N=502 

 

T2 (1996/1998) 

1930-1932: N=449 

1950-1952: N=447 

T3 (2005-2007) 

1930-1932: N=381 

1950-1952: N=408 

deceased: N=45   

drop out: N=83 (-21*) 

deceased: N=28 

drop out: N=78  
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2.1. Cholesterol in Mild Cognitive Impairment and Alzheimer’s disease in a 

birth cohort over 14 years (Paper 1) 

 

Higher levels of total cholesterol in midlife have frequently been associated 

with an increased risk for developing dementia in later life (Solomon, Kivipelto, 

Wolozin, Zhou & Whitmer, 2009; Kivipelto & Solomon, 2006; Anstey, Lipnicki, & Low, 

2008; Whitmer, Sidney, Selby, Johnston & Yaffe, 2005), while a gradual decrease of 

total cholesterol levels is observed before the onset of cognitive symptoms - possibly 

reflecting disease progression (Solomon et al., 2007; Mielke et al., 2010; Stewart, 

White, Xue, & Launer,  2007).  Moreover, it has been suggested that the 

administration of cholesterol-lowering medication may serve a protective function 

(Dufouil et al., 2005; Wolozin et al., 2007; Li et al., 2007). High levels of total 

cholesterol have been linked to a modulation of the expression of the APOE and APP 

genes, thereby affecting β-amyloid secretion (Tokuda et al., 2000; Howland et al., 

1998).  APOE is a lipoprotein that is involved in the metabolism of cholesterol with a 

common variant of the APOE gene - the ε4 allele - displaying the least efficient 

cholesterol-clearing capacity relative to the two other variants ε2 and ε3 (Whalley, 

2015). The APOE gene is an established susceptibility gene that has been reliably 

demonstrated to be a risk factor for decrements to cognitive functioning  (Small, 

Rosnick, Fratiglioni, & Bäckman, 2004), the occurrence of sporadic AD as well as 

with earlier onset of familial AD (Whalley, 2015). A meta-analysis conducted on 77 

studies (N=40.942 cognitively healthy adults) confirmed that the presence of ε4 

alleles exerts adverse effects on cognitive functioning in healthy adults, particularly 

pertaining to episodic memory, global cognitive functioning, executive functioning and 

perceptual speed (Wisdom, Callahan & Hawkins, 2011). The authors found that 

people without the ε4 allele performed between .003 and .140 standard deviations 
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above those with the ε4 allele. Moreover, age resulted in larger effect size differences 

in tests assessing episodic memory and global cognitive ability between ε4 carriers 

and non-carriers, supporting the assumption that this particular genetic effect 

increases across the lifespan.  

In the article “Cholesterol in Mild Cognitive Impairment and Alzheimer’s 

disease in a birth cohort over 14 years” (Toro et al., 2014; Paper 1) our research 

group has looked at the role of plasma total cholesterol levels in the development of 

MCI/AD with the APOE genotype as a potential modulator across a 14-year interval 

(T1-T3). We hypothesized relatively higher levels of total cholesterol in midlife (T1) in 

individuals who developed MCI/AD at T3 in comparison to individuals who remained 

cognitively healthy. A total of 381 participants from the older birth cohort of the ILSE 

returned for T3. After exclusion of participants with other psychiatric disorders and 

those who refused APOE genotyping, 222 participants were included in the analyses. 

Total cholesterol was determined using Advia® 2400 Chemistry System from 

Siemens Healthcare Diagnostics, while genomic DNA was extracted from whole 

blood using the High Pure polymerase chain reaction (PCR) Template Preparation 

Kit.  

Diagnostic groups (AD, n=22; MCI, n=82 and healthy controls, n=118) did not 

differ in terms of sex, body mass index, statin use, and APOE ε4 allele distribution, 

although a slightly higher proportion of ε4 carriers was observed in AD patients 

(27.3%) relative to MCI patients (22%) and healthy controls (23.7%). Interestingly, 

participants diagnosed with AD or MCI at T3 displayed higher levels of total 

cholesterol at T1 than healthy control participants with F(2,221)=3.179, p=0.044. 

Repeated measures analysis confirmed an interaction effect of time between 

examination waves and cognitive diagnoses, suggesting that total cholesterol levels 

declined between T1 and T3 for individuals diagnosed with MCI/AD, while remaining 
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stable for healthy controls F(4,438)=3.88, p<.005 (Figure 2). In addition, total 

cholesterol levels were higher in APOE ε4 carriers as indicated by a main effect of 

the APOE genotype F(1,216)=14.39, p<.005. We did not identify an interaction of 

time and APOE genotype suggesting that levels of total cholesterol did not change 

over time as a function of the APOE genotype. 

 
Figure 2. Total cholesterol levels (mg/dl) across diagnostic groups and APOE genotypes 

 

 

Our findings corroborate a bidirectional relationship between plasma total 

cholesterol and MCI/AD such that high total cholesterol in midlife is a risk factor for 

the development of MCI/AD while an observed decrease of total cholesterol may be 

associated with disease progression (Mielke et al., 2005; Stewart, White, Xue, & 

Launer,  2007). Thus, high levels of total cholesterol in midlife may serve as an early 

indicator for an increased risk to develop MCI/AD and bear implications for secondary 

preventive measures in this at-risk population. By drawing on one of the two birth 

cohorts of the ILSE, we were able to adjust for potential age effects. However, 

differences between cohorts in plasma total cholesterol are likely to exist, given that 
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lifestyle factors diverge between the cohorts. In particular, diets are likely to be 

different for the older cohort, born before World War II, than for the younger cohort. 

The younger cohort was not taken into consideration in this study due to the still low 

prevalence of MCI/AD in this population. Further research on levels of total 

cholesterol in young to middle adulthood and its predictive value for the occurrence 

of MCI/AD is of great importance to initiate disease prevention and adequate training 

approaches as early as possible.  

No significant difference in the APOE ε4 proportion emerged for individuals 

diagnosed with MCI/AD and healthy controls in this particular sample contradicting 

findings from large epidemiological studies (National Institute on aging/Alzheimer’s 

Association Working Group, 1996; Kivipelto, Helkala, & Laakso, 2002). The absence 

of a direct association between APOE ε4 frequency and diagnoses of MCI/AD in this 

sample may be due to a relatively low AD frequency at T3 in the older birth cohort. 

While systematic drop-out, with individuals suffering from severe concomitant 

conditions being less likely to participate,  selection effects, due to the application of 

strict exclusion criteria (presence of other forms of dementia, Mild Cognitive Disorder, 

affective disorders, anxiety disorders, substance abuse disorders) and reliance on 

individuals who agreed to APOE genotyping, may have influenced the results, the 

return rate is generally regarded high in the older birth cohort with n = 381, 76.2% of 

the baseline sample after 14 years. Moreover, the prevalence of MCI/AD at T3 

paralleled numbers reported in other population-based studies (Bischkopf, Busse & 

Angermeyer, 2002; Ferri et al., 2005), implying that selection effects are rather 

unlikely. As a result, we conclude that high levels of total cholesterol at age 60 with a 

subsequent decline in total cholesterol is indicative of the development of MCI/AD a 

decade later. This relationship is independent of the APOE genotype. 
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2.2. The COMT p.Val158Met polymorphism and cognitive performance in 

adult development, healthy aging, and Mild Cognitive Impairment 

(Paper 2) 

 

COMT is an enzyme that is involved in the modulation and reduction of dopamine in 

the frontal cortex, where it inactivates neurotransmission (Mattay & Goldberg, 2004; 

Egan, Goldman & Weinberger, 2002). The COMT gene has a functional genetic 

polymorphism that results in the substitution of the amino acid Valine (Val) with 

Methionine (Met) allowing for three variants at codon 108/158: Val/Val, Met/Met and 

Val/Met. The Val allele is more temperature-resistant and its resultant enzyme more 

active. It is therefore associated with reduced dopamine levels and inferior cognitive 

performance, while the Met allele is, in turn, associated with reduced enzyme activity, 

higher levels of dopamine and superior cognitive performance (Savitz, Solms & 

Ramesar, 2006; Sheldrick et al., 2008). 

The potential effect of COMT on cognition throughout the lifespan remains a 

subject of debate. A meta-analysis did not identify such an effect from cross-sectional 

data (Barnett, Scoriels, & Munafo, 2008), while results reported by Nagel et al. (2008) 

indicate that older (between 60 and 70 years of age) individuals carrying the Val 

allele displayed a higher number of perseverative errors in the Wisconsin Card 

Sorting Test than non-carriers. This discrepancy was absent for the younger 

participants (aged 20 to 30). The authors concluded that carriers of the COMT Val 

allele undergo greater loss in dopamine signaling than Met carriers during aging. 

However, this conclusion seems premature given the cross-sectional nature of the 

design chosen. In a longitudinal design de Frias et al. (2005) found that Val/Val 

carriers’ performance on tasks of executive functioning declined over a five-year 

interval in contrast to Met carriers’ performance. In particular, the researchers 
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identified a COMT*age interaction for middle-aged adults at ages 50-60 years. 

Contrarily, Fiocco et al. (2010) found that individuals (aged 70-79) with a 

homozygous Val/Val genotype displayed significantly less decline in performance on 

the Digit Symbol Substitution Test than carriers of the Met/Met genotype across an 

eight-year interval indicating an approximation of genotypes in cognitive test 

performance in aging.  

The article “The COMT p.Val158Met polymorphism and cognitive performance 

in adult development, healthy aging, and Mild Cognitive Impairment” (Degen et al., 

2015; Paper 2) examines the role of the COMT genotype in cognitive functioning, 

following cognitively healthy participants from the younger birth cohort as well as 

cognitively healthy individuals and participants diagnosed with MCI from the older 

birth cohort of the ILSE over 14 years. We hypothesized that potential discrepancies 

between Val allele carriers and Met allele carriers of the COMT p.Val159Met 

polymorphism are particularly pronounced in cognitive tests assessing prefrontal 

cortex activity (i.e. executive functioning and mental flexibility) and would be more 

pronounced in the older birth cohort than the younger birth cohort, given relatively 

greater loss of striatal and extrastriatal dopamine. After exclusion of individuals with 

Mild Cognitive Disorder, AD, other forms of dementia, or affective disorders, 587 

individuals (younger cohort: n=306; older cohort: n=281) were included in the 

analyses. DNA was extracted from whole blood using the Nucelon® Genomic DNA 

Extraction Kit BACC1. COMT genotype was determined as a restriction fragment 

length polymorphism after PCR amplification and digestion with NlaIII, as described 

by Lachman et al. (1996). Individual repeated measures analyses were conducted for 

the subtests Word List, Digit Symbol Test, Mosaic Test, Finding Similarities, Word 

Fluency and Visual Thinking as well as the Attentiveness Endurance Test “D2” from 

the neuropsychological test battery.   
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Analysis of Variance yielded no significant differences between genotypes with 

respect to demographic and clinical characteristics (age, education, APOE genotype, 

sex, cohort, cognitive diagnoses). However, significant differences between 

genotypes were identified for baseline cognitive performance, specifically in the 

subtests “D2” F(2,580) = 3.40, p=.034 and the Digit Symbol Test F(2,584) = 3.77, 

p=.023 such that individuals carrying the Val/Val genotype performed poorer than 

individuals carrying the Met/Met genotype or the heterogeneous genotype.  

Results of a repeated measures analyses for healthy individuals from the older 

and the younger birth cohort illustrate a significant interaction of the COMT genotype 

and cohort for the Digit Symbol Test F(2,451)=3.326, p=.037 suggesting an effect of 

the COMT genotype for the younger, but not the older cohort (Figures 3 and 4). Also, 

a triple interaction between the COMT genotype, cohort and time emerged for the 

mosaic test with F(2,254)=4.909, p=.008 illustrating that trajectories in performance 

differed for carriers of different COMT genotypes from the two cohorts. Another 

repeated measures analysis was performed for the older birth cohort only, this time 

including individuals diagnosed with MCI. In this set of analyses, no significant main 

or interaction effect of the COMT genotype occurred.  
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Figure 3 Digit Symbol Test performance across COMT genotypes old cohort 

 
 

 
 
 
Figure 4 Digit Symbol Test performance across COMT genotypes young cohort 

 
 

We find that, at baseline, Val/Val allele carriers perform significantly worse on 

tests of mental flexibility and attention than Val/Met or Met/Met allele carriers.  The 

absence of an interaction effect between COMT and time (between examination 

waves) contradicts the idea of an approximation of different genotypes in the course 

of aging as demonstrated by Fiocco et al. (2010) but rather suggests a preservation 

of differences between genotypes in the younger cohort. Thus, our results imply 
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fundamental differences between birth cohorts that are independent of aging per se. 

Thus, no effects of the COMT genotype on cognitive performance in healthy aging 

and/or the occurrence of MCI were identified. Cohort differences may originate in 

lifestyle choices and/or environments, which very plausibly differ between individuals 

born 7-9 years before, and 5-7 years after World War II (nutrition, health care 

provision, social security, etc.). Interestingly, studies have identified neurological 

differences between carriers of different COMT genotypes (e.g. inefficient cortical 

processing) in the absence of behavioral differences (Dennis et al., 2010), implying 

that Val/Val carriers may be able to compensate reduced dopamine signaling in 

neuropsychological tests. The identification of neurological differences and specific 

factors that would lead to differential gene expression in cognitive functioning in the 

younger but not the older cohort is outside the scope of this article but augurs a 

variety of very interesting research ideas.  
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2.3. Diabetes mellitus type II and cognitive capacity in healthy aging and 

Mild Cognitive Impairment (Paper 3) 

 

With an expected global increase of diabetes mellitus type II prevalence in people 

aged 65 and older (Wild, Roglic, Green, Sicree, & King, 2004) and a general 

understanding that this disease is associated with an increased risk for the 

development of dementia (for meta-analysis of prospective studies see Gudala, 

Bansal, Schifano, & Bhansil, 2013) diabetes mellitus type II is one of the most 

consistently described acquired risk factors for the development of MCI/AD.  

Cukierman, Gerstein and Williamson (2005) concluded that diabetes mellitus type II 

leads to a 1.2 to 1.5 fold greater decline in cognitive functioning and a 1.6 fold greater 

risk for developing dementia relative to healthy controls. The complex association 

between diabetes mellitus and dementia is assumed to be mediated by vascular 

factors. In a previous study, our research group was able to demonstrate that 

diabetes mellitus type II was associated with psychomotor slowing, but not with 

memory decline, which is typically compromised by AD pathogenesis (Toro, 

Schönknecht & Schröder, 2009). Contrarily, Awad, Gagnon, & Messier (2004) and 

Strachan, Deary, Ewing, & Frier (1997) find that diabetes mellitus-related deficits are 

consistently found with respect to verbal memory and processing speed, while other 

cognitive domains (visuospatial functioning, attention, language functioning) remain 

largely preserved. 

In “Diabetes Mellitus Type II and cognitive capacity in healthy aging and Mild 

Cognitive Impairment” (Degen et al., 2016; Paper 3) we investigated the putative 

influence of diabetes mellitus type II and disease duration on cognitive functioning in 

healthy aging and the development of MCI/AD by drawing on the older birth cohort of 

the ILSE. To assess cognitive functioning, the subtests Word List, Digit Symbol Test, 
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Mosaic Test, Finding Similarities, Word Fluency and Visual Thinking, as well as the 

Attentiveness Endurance Test “D2” were considered.  Individuals with Mild Cognitive 

Disorder and Vascular Dementia, as well as individuals diagnosed with affective or 

anxiety disorders were excluded. A distinction was made between individuals that 

had suffered from diabetes mellitus type II at T1 already and those that had not. We 

hypothesized that (1) diabetes mellitus type II is associated with decrements to tasks 

assessing psychomotor speed in healthy aging, (2) that diabetes mellitus type II 

aggravates cognitive decline in MCI/AD and (3) that disease duration is negatively 

associated with cognitive functioning.  

At T3, there were 27 participants with both MCI/AD and diabetes mellitus type 

II, 108 participants with MCI/AD but without diabetes mellitus type II, and 26 

individuals without MCI/AD but with diabetes mellitus type II and 134 participants 

without MCI/AD or diabetes mellitus type II. No difference in distribution of diabetes 

mellitus type II in the MCI/AD and healthy control groups was identified by Chi-

Square test χ2(1, n=295) = 0.699, p=.403. However, the prevalence of diabetes 

mellitus type II in participants with MCI/AD was slightly higher (20.61%) than in those 

without a MCI/AD (16.25%). Repeated measures analyses yielded no significant 

main effects of diabetes mellitus type II on cognitive performance, but an interaction 

effect of time (between examination waves) and diabetes mellitus type II for the Digit 

Symbol Test F(4,468) = 3.23, p=.012 suggesting a steeper decline in cognitive 

performance for individuals diagnosed with diabetes mellitus type II at T1 and T3, 

relative to individuals diagnosed with diabetes mellitus type II at T3 only and those 

not suffering from diabetes mellitus type II (Figure 5). The same pattern was 

observed for the subtest visual thinking F(4,466) = 2.76, p =.027 (Figure 6). 

Moreover, a triple interaction of time (between examination waves), diabetes mellitus 

type II and diagnosis of MCI/AD was observed for the subtest visual thinking F(4,464) 
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= 2.81, p =.025. Accordingly, individuals with both MCI/AD and diabetes mellitus type 

II exhibited a steeper decline between T1 and T3 than other individuals. Additionally, 

performance of individuals with MCI/AD and diabetes mellitus type II diagnosis at T3 

(but not T1) exhibited a more pronounced decline between T1 and T2 than those with 

MCI/AD and no diabetes mellitus type II.  

 

Figure 5 Trajectories for performance on the Digit Symbol Test across diabetes mellitus type 
II diagnostic groups 

 
 
 
Figure 6 Trajectories for performance on the Visual Thinking subtest across diabetes mellitus 
type II diagnostic groups
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We found support for the assumption that diabetes mellitus type II may 

aggravate the course of cognitive decline in aging after the disease has been present 

for a longer period of time. Thus, it is plausible that diabetes-related cognitive 

changes progress slowly and behavioral and neurophysiological manifestations 

become apparent somewhat later with disease progression. This effect mostly 

pertains to tasks involving psychomotor speed and executive functioning. Both 

findings are in line with previous studies reporting that memory-related cognitive 

domains remain largely preserved, while psychomotor speed and executive 

functioning are affected by diabetes mellitus type II (Toro, Schönknecht & Schröder, 

2009) and the respective effects are evident only at later stages of the disease (van 

den Berg, 2010). Prolonged exposure to diabetes mellitus type II may very plausibly 

lead to neurophysiological changes, which in turn results in psychomotor slowing. 

Our findings contradict results from cross-sectional studies, according to which effect 

sizes consistently range between -.3 and -.6 on cognitive tests (Awad, Gagnon, & 

Messier, 2004). The absence of significant associations between diabetes mellitus 

type II and the diagnosis of MCI/AD maybe partially attributed to selective dropout, 

given that 50% of individuals with diabetes mellitus type II at T1 did not follow up to 

T3 (n=22). However, prevalence of MCI/AD in this sample resembles rates reported 

in other population-based studies, rendering selective dropout of patients suffering 

from MCI/AD less likely. It is reasonable to assume that diabetes mellitus type II may 

serve as a model for other concomitant diseases (e.g. hypertension) that, if present 

for a prolonged period of time, may cause neurophysiological damage, such as 

periventricular hyperintensities (van Harten et al., 2007), white matter lesions and 

cortical and subcortical atrophy (Manschot et al., 2006). These cerebrovascular 

changes are likely to affect cognitive functioning in the long term. Early diagnoses 

and effective disease management can therefore bear important implications for the 
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preservation of cognitive functioning in old age. As a result, diabetes mellitus type II 

may be illustrative for other concomitant diseases (e.g. hypertension), which 

conceivably lead to neurophysiological changes and may, after prolonged exposure, 

reinforce cognitive decline in aging.  
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3. Discussion 

The investigation of the relative contribution of given and acquired risk factors for the 

development of MCI/AD across the lifetime bears important implications for the 

identification of at-risk populations, the implementation of preventive measures as 

well as effective disease management. Not surprisingly, patient requests for 

information are on the rise as reflected in the emergence of genetic counseling units, 

and ready availability of gene susceptibility test procedures. However, such 

procedures must be interpreted with caution. As our results illustrate, genetic 

predispositions adopt subsidiary roles in age-related cognitive decline and the 

development of MCI/sporadic AD, relative to environmental and/or lifestyle factors.  

Our results are in line with the clinical concept, according to which efforts to 

improve concomitant conditions such as diabetes mellitus type II, hypercholesterimia, 

or hypertension are warranted to relieve cognitive dysfunction during aging. While 

this is frequently observed in clinical practice, only a handful of studies provide 

empirical support. In this respect, the protective function of statin use is considered 

most established (Dufouil et al., 2005; Wolozin et al., 2007; Li et al., 2007). Thus, 

preventive measures targeting high levels of total cholesterol in midlife, but also 

diabetes mellitus type II may very plausibly alter and/or stabilize cognitive functioning 

in old age by preventing micro-vascular damage that may result from prolonged 

exposure to these conditions. Thus, diagnoses of diabetes mellitus type II or 

hypercholesterimia in midlife may help to identify individuals that are at risk for 

developing MCI/AD or Mild Cognitive Disorder. The promotion of healthy lifestyles in 

midlife, including proper nutrition, is of particular importance to these patient groups.  

 While prolonged exposure to concomitant diseases influences cognitive aging 

very conceivably, our results imply that testing for genetic risk factors is of limited 
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prognostic value in establishing individuals’ probabilistic risks for the development of 

MCI/AD. While having a relative with AD may increase the probabilistic risk of 

developing AD – given the presence of certain susceptibility genes -, research 

examining the relative contributions of genes and environmental factors in developing 

sporadic AD illustrate the relatively greater importance of environmental factors. 

These factors may include not only concomitant diseases, but also exposure to 

viruses and bacteria, diet, vitamin deficiencies or nutrients, history of head trauma, 

exposure to toxins and pollutants, as well as lifestyle factors (e.g. physical and 

cognitive activity, education).  

 Somewhat surprisingly, no statistically significant association between the 

APOE genotype, a well-established susceptibility gene, and the development of 

MCI/AD was identified in our sample. Some studies suggest that the presence of ε4 

alleles influences the age of onset at which AD occurs, but does not confer 

information about the overall lifetime risk for AD (Khachaturian, Corcoran, Mayer, 

Zandi, & Breitner, 2004; Meyer et al., 1998). Other studies suggest that the presence 

of a ε2 allele resembles a protective factor against AD (Corder et al., 1994), which 

has not been taken into account here, due to the relatively low prevalence of the ε2 

allele in our immediate geographical region (Corbo & Scacchi, 1999). For the COMT 

polymorphism, a weak association was identified with performance in tests assessing 

mental flexibility, but not with the development of MCI/AD.  This association was 

limited to the younger cohort of the ILSE contradicting assumptions based on the 

resource modulation hypothesis according to which genetic influences increase 

across the lifetime. Our results suggest that the link between genetic predispositions 

and the occurrence of sporadic AD/MCI remains weak at best. The use of genetic 

counseling (e.g. gene susceptibility testing) in sporadic AD must therefore be 

regarded with utmost caution. While individuals, whose parents or siblings are 
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affected by AD, may desire disclosure to be able to prepare adequately, arrange 

health care plans, or modify lifestyle factors, it is important to highlight the limitations 

of APOE susceptibility testing at this point. There is no clear genotype-phenotype 

association as genotypes may have variable expressions within families. As a result, 

APOE susceptibility testing lacks sensitivity and specificity, while the current lack of 

preventive options and likely difficulties in conveying probabilistic risk to patients may 

plausibly cause (additional) psychological harm to patients (Mayeux et al., 1998, 

Goldman et al., 2011).   

Our results suggest that cohorts differ fundamentally, as the COMT 

polymorphism affects cognitive functioning in the younger, but not in the older birth 

cohort. This may be attributed to higher levels of cognitive reserve in individuals born 

between 1950 and 1952 as opposed to individuals born between 1930 and 1932. As 

a result, the young cohort displays higher compensatory proficiency, presumably due 

to lifestyle factors, including overall healthier lifestyles and medical supply, but also 

chosen profession and level of education. Notably, the two cohorts differ with respect 

to years of formal education (younger cohort: 14.04 ± 2.52; older cohort: 12.88 ± 

2.80) with t(1000) = -6.88, p<.0001. In addition, differences between cohorts with 

respect to neuropsychological functioning have been described previously (Flynn, 

1987). The so called “Flynn effect” describes a gradual increase of test scores on 

standardized intelligence quotient (IQ) tests between generations.  Salthouse (1991) 

referred to the conservation of known birth cohort differences in overall cognition as 

preserved differentiation. As a result, younger cohorts may perform better on certain 

tests of cognitive functioning than older cohorts, while the degree of age-associated 

cognitive decline remains the same. Differential preservation on the other hand, 

assumes differential trajectories between birth cohorts. Finkel, Reynolds, McArdle, & 

Pedersen (2007) applied growth curve models to data from 806 participants from the 
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Swedish Adoption/Twin Study of Aging. Taking into consideration five examination 

waves across a 16-year interval and splitting the sample into two separate cohorts 

(born between 1900 and 1925 or 1926 and 1948) the authors identified significant 

differences between cohorts at age 67.5 years for verbal, spatial and memory 

abilities, but not for processing speed. These results suggest that younger birth 

cohorts’ cognitive performance is superior to older birth cohorts’ cognitive 

performance. In this light, we performed a preliminary analysis on differences in 

neuropsychological functioning and intelligence between the younger and the older 

cohort from the ILSE. While 447 individuals from the older birth cohort (mean age 

66.41 +/- 0.97) completed the second examination wave in 1996/1998, a total of 187 

individuals from the younger birth cohort have already completed the fourth 

examination wave that was initiated in 2014 (mean age 63.37 +/- 0.54). Analyses of 

Variance included education as a covariate and suggest significant differences 

between cohorts with respect to general intelligence, visuo-spatial thinking, attention, 

learning, and memory with the younger cohort outperforming the older cohort (see 

Table 1). Thus, differences between the two cohorts exist, potentially modifying the 

extent to which genetic and acquired risk factors influence cognitive functioning.  

 

Table 1. Differences in neuropsychological functioning between cohorts of the  ILSE 

 Old birth cohort 

(1930/1932) 

Young birth cohort 

(1950/1952) 

ANCOVA (F, p) 

Intelligence1  76.34 (±18.57) 87.90 (±20.92) 16.29,  <.0001 

Visuo-spatial thinking 20.48 (±6.73) 23.96 (±7.41) 11.80,  .0006 

D2 concentration 142.54 (±39.86) 143.30 (±44.90) 6.02, .0144 

Verbal memory 5.29 (±1.48) 5.91 (±1.48) 10.28, .0014 

Verbal Fluency 30.05 (±9.43) 31.17 (±9.91) 0.46, .4962 

1
=sumscore of general knowledge, finding similarities, complementing pictures, and mosaic test of the Wechsler 

Intelligence Test battery 
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Currently, the fourth examination wave of the ILSE is about to be completed. 

We expect a rise in MCI/AD prevalence in the older and the younger cohort, as age is 

the most consistently found risk factor for pathogenesis. Recent studies suggest that 

the prevalence of dementia is declining in spite of a demographic shift towards an 

aging society (Satizabal et al., 2016). However, while we are now able to directly 

compare the two birth cohorts at the same age, a comparison of individual 

trajectories across time will be visible only in future examination waves. According to 

cognitive reserve theory, individuals with higher levels of compensatory proficiency at 

their disposal display more rapid cognitive decline once AD pathology is evident. 

Specifically, individuals with higher cognitive reserve can compensate higher degrees 

of AD pathology until the “point of inflection” (Stern, 2009; p. 2018) is reached. 

Following this line of reasoning, clinical symptoms will occur at later stages of AD 

pathology, but the subsequent decline in cognitive functioning will be steeper for 

individuals with high cognitive reserve as opposed to low cognitive reserve (Stern, 

2009). If cohort differences in the ILSE are attributable to different levels of cognitive 

reserve the observed cohort differences will remain stable at first, but a rapid 

approximation of cognitive trajectories is to be expected at later stages. Alternatively, 

differences between cohorts will remain stable, as illustrated by the concept of 

preserved differentiation (Salthouse, 1991). 

It is for this reason that the continuation of the ILSE as a comprehensive and 

sustainable prospective research framework with a follow-up interval of 23 years is of 

utmost significance. A major strength of the study lies in the comparison between 

repeated measures over a long period of time. With a high return rate at T3 (78.74% 

of the baseline sample) and an expected return rate of approximately 550 (>50.00%) 

at T4 across a 23-year interval confirmatory analyses can be conducted in spite of 

expected drop-out. Also, future research may potentially target the inclusion of a new 
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birth cohort at ages 41-43 to systematically address differences between cohorts. 

From this, potential intervention studies could arise, targeting hypercholesterimia and 

diabetes mellitus type II, besides other important risk factors associated with MCI/AD. 

The potentially protective role of cholesterol-lowering medication may be of particular 

importance in this context. In addition, the identification of genetic risk factors could 

be enhanced by incorporating novel techniques, including neuroimaging and whole 

genome analyses rather than single nucleotide polymorphisms.  

Cognitive performance in aging is modulated by a myriad of variables of 

different types. A clear-cut delineation of aging effects per se from effects of time, 

genes, or secular events is restricted in this and other observational settings. With a 

follow-up interval of 23 years (fourth examination wave 2014-2016) the ILSE 

represents a unique prospective research framework for the investigation of various 

determinants of healthy and pathological aging. However, when interpreting the 

results presented in this dissertation, some limitations in the respective analyses 

need to be considered. First, selective dropout may have influenced our results. For 

example, we found that 50% of individuals that were initially diagnosed with diabetes 

mellitus type II did not follow up to T3. Mielke et al. (2010) found that differences in 

levels of total cholesterol reached statistical significance only in the survivor analysis, 

and no significant differences appeared between the groups in the whole sample 

analysis. Given that we identified an effect of diabetes mellitus type II on cognitive 

functioning if it had been present at T1 already, we can assume that effects would be 

more pronounced, potentially expanding other cognitive domains if the entire sample 

was taken into consideration. Moreover, we expect that analyses regarding sources 

of attrition (death, moving away, illness, not traced, non-compliance) will yield no 

differences from other longitudinal studies. 
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The second limitation concerns a general drawback of genetic association 

studies and their reliance on a single genotype – phenotype association. A construct 

such as cognitive functioning in aging is the result of various genetic and 

environmental factors. In this light, different candidate genes affecting dopamine 

regulation and amyloid secretion are likely to be important and interact. The golden 

standard in identifying genetic risk factors is to look at unique features between 

individuals that develop AD and those that do not. However, while other diseases 

have certain biomarkers that reliably predict disease outcome, as is the case in 

cancer or HIV, this is less clear-cut in patients potentially affected by AD rendering 

definite conclusions of potential genotype-phenotype associations more difficult.  

Likewise, MCI generally describes cognitive profiles that are marked by 

verifiable cognitive deficits that do not reach the severity typically observed in 

manifest dementia. Nevertheless, MCI is regarded a major risk factor for the 

development of dementia - Alzheimer’s dementia (AD) in particular. Various 

conceptualizations of this particular “transition stage” exist and are commonly used in 

research. As such, aging-associated Cognitive Decline as postulated by Levy in 1994 

is defined by the presence of subjective complaints of cognitive decline (by the 

patient or a close relative), a progressive decline of cognitive functioning, and 

neuropsychological deficits in one of the following cognitive domains: memory and 

learning, attention and concentrations, language, visuo-spatial functioning and 

abstract thinking. A cognitive deficit is thereby any performance that is at least one 

standard deviation below age- and education-adjusted normative values. The 

reliance on neuropsychological test batteries in diagnosing can potentially be 

regarded as a limitation as these are largely classified by their content and can only 

partially reflect differential cognitive domains or phenotypes (review Harris & Deary, 

2011). However, by using the same test battery throughout all examination waves 
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(and therefore focusing on the same cognitive constructs throughout) and relying on 

thorough and individual medical assessment by specialized physicians, diagnostic 

accuracy can be regarded as high in this study design.   
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4. Conclusion 

 

The identification and characterization of given and acquired risk factors in 

pathological aging, i.e. the development of MCI/AD, is crucial for the development of 

preventive measures, the implementation of adequate interventions as well as 

effective disease management. We investigated the relative contribution of the well-

established susceptibility genes APOE and COMT on the one hand, and diabetes 

mellitus type II and high levels of total cholesterol as acquired risk factors, on the 

other hand. Our results indicate that the susceptibility genes APOE and COMT can 

generally be regarded as subsidiary in evaluating one’s probabilistic risk of 

developing cognitive dysfunction, MCI, or sporadic AD, while highlighting the 

importance of effectively treating concomitant diseases in midlife. Specifically, 

individuals suffering from high levels of total cholesterol or diabetes mellitus type II in 

midlife are at risk of cognitive dysfunction in old age.  

Cognitive functioning in old age may benefit not only from effective treatment 

of the respective concomitant diseases, but the patient groups may be particularly 

susceptive to physical and cognitive training interventions. Likewise, given the 

protective function of cognitive reserve, the incorporation of educational measures 

and cognitively demanding recreational activities in daily routines is likely to promote 

healthy cognitive aging. The identification of differences between the two birth 

cohorts substantiates the important role of environmental/secular factors, including 

levels of education and medical provision, which could plausibly influence the extent 

to which genes influence cognitive functioning in old age. 

Our findings bear important directions for future research, including the 

systematic investigation of cohort differences. Moreover, intervention studies 

specifically targeting frequently occurring concomitant diseases, including the 
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monitoring of neurophysiological correlates in a longitudinal setting are desirable and 

of great value to understanding the development of cognitive functioning during aging 

as well as the onset of pathological processes as typically observed in MCI/AD. 
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Abstract Animal epidemiological and clinical studies

suggest that cholesterol is a risk factor for Alzheimer’s

disease (AD). Nevertheless, the relation of cholesterol to

mild cognitive impairment (MCI), influence of APOE

genotype and its changes in lifespan is controversial. We

investigated the potential impact of plasma total cholesterol

(TC) on development of MCI and AD in the interdisci-

plinary longitudinal study on adult development and aging,

a representative birth cohort (born 1930–1932), examined

in 1993/1994 (VT1), 1997/1998 (VT2), and 2005/2007

(VT3). Of 500 participants at baseline, 381 survived and

were examined at VT3. After exclusion of participants with

lifetime prevalence of major psychiatric diseases or mild

cognitive disorder due to a medical condition, 222 partic-

ipants were included in the analysis. At VT3, 82 partici-

pants had MCI, 22 participants had AD, and 118 were in

good health. Participants with MCI and AD at VT3 evi-

denced higher TC levels at VT1 than those who were

healthy. Higher TC levels at baseline were associated with

an increased risk for cognitive disorders at VT3 (highest vs.

lowest quartile: OR 2.64, 95 % CI 1.12–6.23, p \ 0.05).

Over the 14 year follow-up, TC levels declined in those

with MCI and AD, but remained stable in those who

remained healthy. These findings were not modified by

APOE genotype or use of cholesterol-lowering medica-

tions. Our findings demonstrate that higher TC levels are

observed long before the clinical manifestation of MCI and

AD in patients without psychiatric or somatic comorbidi-

ties and are independent of APOE genotype.

Keywords AACD � AD � APOE � Cholesterol �
ILSE � MCI

Introduction

Cholesterol is considered to be involved in the pathogen-

esis of mild cognitive impairment (MCI) and Alzheimer’s

disease (AD). In view of that, clinical studies have dem-

onstrated increased levels of cerebrospinal fluid

24-hydroxycholesterol in AD patients compared with

healthy controls [1]. Likewise, epidemiological studies

have established that higher total cholesterol (TC) in

midlife is a risk factor for the development of AD [2–4]

(for a review see [5, 6]), and that cholesterol-lowering

agents, such as statins, may have a protective function [7,

8]. Interestingly, there is evidence that TC values decrease
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more rapidly in subjects experiencing subsequent cognitive

decline or dementia compared with individuals who remain

healthy. Declining cholesterol levels appear to accompany

aging specifically in AD and are probably a manifestation

of underlying dementia-related neuropathology [9, 10].

Experiments on cell cultures provide a feasible expla-

nation for this association, indicating that the accumulation

of cholesterol in neurons results in an accelerated cleavage

of amyloid precursor proteins into amyloidogenic compo-

nents [1]. This may lead to the formation of amyloid pla-

ques in susceptible brain regions with consecutive neuronal

degeneration. Thus, experiments on hypercholesterolemic

rabbits [2] find an association with blood cholesterol and

enhanced amyloid deposition in the brain. Additionally,

cholesterol deposits in amyloid plaques may promote the

stability thereof.

Most of the prospective studies reporting on cholesterol

and cognitive impairment or dementia [2–4] have involved

northern European populations, which are generally char-

acterized by a high prevalence of the APOEe4 allele. This

is of particular importance, since the presence of the

APOEe4 allele confers an increased risk of AD. The APOE

protein is involved in Aß metabolism, and the affinity of

APOE for Aß is increased in the presence of lipids [11].

Animal studies demonstrate that a high cholesterol diet

affects not only TC plasma levels but also modulates

APOE expression, and APP and Aß secretion [12].

In the present study, we investigated the role of TC levels

in the development of MCI and AD, as well as the potential

impact of APOE genotype. Specifically, a German popu-

lation-based sample born between 1930 and 1932 drawn

from the interdisciplinary longitudinal study on adult

development and aging (ILSE) was considered in the course

of three examination waves—extending over 14 years.

Materials and methods

Participants

The ILSE is a prospective study of adult development in

Germany based on two birth cohorts born in 1930–1932

and 1950–1952 [13, 14]. At baseline, in 1993–1995, par-

ticipants were randomly selected and recruited from the

community registers in the urban regions of Leipzig

(Saxony) and Heidelberg/Mannheim (Palatine), for which

inclusion is mandatory for citizens aged 16 years and older

in Germany. This recruitment procedure yielded a repre-

sentative sample of the communities included [15]. Par-

ticipants were subsequently recontacted over a 14 year

period, in 1997–2000 and 2005–2008.

This study includes only those participants born

1930–1932 and who completed the 2005–2008

examination (n = 381). A description of this sample is as

follows (see Fig. 1). At baseline, in 1993–1995 (VT1), 500

participants were examined. In the second examination

(VT2) in 1997–1999, 449 persons were re-examined; and

in 2005–2008 (VT3), 381 [76.2 % of the baseline sample,

average age 74.3 (SD = 1.2) years] persons were exam-

ined. Of the 119 non-participants at VT3, 64 (53.8 %) had

died, seven (5.9 %) no longer lived in the region, 39

(32.8 %) were ineligible, and nine (7.5 %) did not wish to

participate.

Since MCI and AD were the primary outcomes of

interest, additional exclusion criteria were applied at VT3,

such that those who met criteria for other mental disorders

such as vascular dementia, major depression, anxiety dis-

orders, or mild cognitive disorder (MCI due to a medical

condition as defined by ICD-10) were excluded. Thus, only

those participants surviving from VT3—developing MCI

or AD or remaining cognitively healthy—were included.

Given study exclusion criteria, the final sample at VT3

included 109 participants with MCI, 26 with AD, and 157

cognitively healthy individuals, without any psychiatric

disorder. Of these, 70 participants refused APOE geno-

typing (39 without any psychiatric disorder, 27 with MCI

and four with AD), leaving a final sample of 222 partici-

pants. Amount of missing data did not differ between

diagnostic groups [v2(2) = 1.16, p = 0.56].

The study was approved by the Ethical Committee of

the University of Heidelberg. After a complete description

of the study to the participants, written informed consent

was obtained.

Psychiatric diagnoses at VT3

Psychiatric disorders were diagnosed using the German

version of the Structured Clinical Interview for the DSM-

III-R [16]. MCI was diagnosed according to the aging-

associated cognitive decline criteria (AACD, International

Psychogeriatric Association working Party, [17]) including

(1) subjective impairment: A report by the individual or an

informant that cognitive function has declined and (2)

objective impairment: difficulties in any of the following

cognitive domains, as indicated by neuropsychological test

performance of at least one standard deviation below nor-

mal age and educational levels: memory and learning,

attention and concentration, abstract thinking (problem

solving, abstraction), language, and visuospatial function-

ing. Moreover, MCI patients were classified as amnestic or

non-amnestic types, depending on the affected cognitive

domain. AD and vascular dementia were diagnosed using

the NINCDS–ADRDA and the NINDS–AIREN criteria,

respectively [18, 19]. Additional methodological details

have been described elsewhere [13, 14]. Particular care was

taken to exclude participants with mild cognitive disorder
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(ICD-10), and major psychiatric disorders such as depres-

sion or substance abuse, since symptoms of these condi-

tions overlap with dementia and other cognitive disorders.

Clinical diagnoses were established by consensus of two

psychiatrists (P.T., P.S.) under supervision of a specialist

(J.S.) in geriatric psychiatry.

Laboratory measures

TC was analyzed with Advia� 2400 Chemistry System from

Siemens Healthcare Diagnostics. Genomic DNA was

extracted from whole blood using the High Pure PCR Tem-

plate Preparation Kit (Roche Diagnostics, Mannheim, Ger-

many) following the manufacturer’s instructions. APOE

genotype was assessed using the LightCycler technology [20].

Survey measures

Participants were carefully screened for physical and

mental health via questionnaires, extensive personal inter-

views, as well as medical and neuropsychological exam-

inations at all visits (VT1, VT2, and VT3). The cognitive

assessment included the mini-mental state examination

(MMSE [21]), subtests of the Nürnberger–Alters–Inventar

(NAI) [22] and the Leistungsprüfsystem [23], both of

which are well-established and commonly used test bat-

teries in Germany (for more details see [14]):

1. Memory and learning: immediate word list recall and

delayed word list recognition (NAI)

2. Attention and concentration: Aufmerksamkeits–Belas-

tungs-Test (d2 test [24].

3. Abstract thinking: similarities subtest (Hamburg–

Wchsler–Intelligneztest für Erwachsene) [25].

4. Language-subtest of verbal fluency

(Leistungsprüfungssystem).

5. Visuospatioal functioning: subtest of visual imagina-

tion (Leistungsprüfungssystem).

Statistics

Diagnostic groups were compared using analyses of vari-

ance with repeated measures for time. Post hoc Tukey’s

tests and v2 tests were used where appropriate. To address

potential effects of the APOE genotype, groups were

VT1

n= 500

VT2

n= 449

VT3

n= 381

24 deceased
27 other reasons

40 deceased
28 other reasons

Cognitive healthy
n= 118

MCI
n= 88

AD
n= 22

83 excluded due to VaD,
MCD or mayor 
psychiatric diseases

70 refused APOE
genotyping

Fig. 1 Study design. MCI mild

cognitive impairment, MCD

mild cognitive disorder due to

medical condition, VaD

vascular dementia
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additionally dichotomized according to the presence or

absence of at least one e4 allele.

In order to assess the risk of MCI and AD associated

with plasma TC, participants were divided into TC quar-

tiles and odds ratios (OR) were calculated. Logistic

regression analyses were performed to determine statistical

significance at 95 % confidence intervals. In order to adjust

for important potentially confounding variables, education,

APOE genotype, socio-economic status, and gender were

included into the logistic regression model.

SAS software (version 9.01; SAS Institute, Cary, NC,

USA) was used for all statistical analyses.

Results

Demographic and clinical characteristics of the diagnostic

groups are summarized in Table 1.

Diagnostic groups (AD, MCI, healthy controls) did not

differ on the basis of sex, statin use, and APOEe4 allele.

Moreover, no significant differences between diagnostic

groups emerged with respect to body mass index (BMI) for

VT1 (F = 1,182; n.s.), VT2 (F = 1,786; n.s.), and VT3

(F = 1,226; n.s.), smoking behavior for VT1 (v2 = 1.090,

df = 2, n.s.), VT2 (v2 = 0.276, df = 2, n.s.), and VT3

(v2 = 0.224, df = 2, n.s.), hypertension at VT1 (Fisher’s

exact test: n.s.), VT2 (Fisher’s exact test: n.s.) or diabetes

mellitus for VT1 (v2 = 0.289, n.s.) and VT2 (Fisher’s

exact test: n.s.). AD cases were slightly older than the

cognitively healthy. Length of formal school education was

shorter in those with AD or MCI (F = 13.23, p \ 0.0001).

Mean MMSE scores differed between groups (F = 100.10,

p \ 0.0001) with the MCI group ranking in between par-

ticipants with AD and the cognitively healthy. 19.5 % of

MCI cases were classified as amnestic (scoring [1SD

below average on NAI word list), 65.9 % were classified as

non-amnestic.

TC levels at baseline differed between diagnostic groups

with MCI and AD patients having higher TC levels than

controls (F = 3.179, p = 0.044). Post hoc analysis

revealed a significant difference between MCI and healthy

controls (p = 0.046). Average TC levels declined during

follow-up in MCI and AD, but were almost stable in par-

ticipants who remained cognitively healthy at VT3. These

findings were confirmed by a repeated measures ANOVA

that yielded a main effect of time (F = 15.51, df = 2/438,

p \ 0.0001) and an interaction effect of diagnosis by time

(F = 3.88, df = 4/438, p \ 0.005), while diagnosis alone

was not informative (F = 0.90, df = 2/219, p = 0.4, n.s.).

Diagnostic groups were also dichotomized according to

presence of an APOEe4 allele (Table 2; also see Fig. 2).

TC levels were significantly higher among those with any

e4 allele (p \ 0.05). A repeated measures ANOVA with

time as within-subject factor revealed significant main

effects for APOE and time, as well as a significant time by

diagnosis interaction (F = 14.39, df = 1/216, p \ 0.005;

F = 13.68, df = 2/432, p \ 0.001; and F = 5.40, df = 4/

432, p \ 0.005, respectively). No other main or interaction

effect emerged (diagnosis: F = 0.77, df = 2/216; diagno-

sis 9 APOE: F = 0.50, df = 2/216; time 9 APOE:

F = 2.06, df = 2/432; time 9 diagnosis 9 APOE:

F = 2.34, df = 4/432).

Table 1 Clinical characteristics of ILSE participants with AD, MCI, or cognitively healthy

AD (A)

n = 22

MCI (B)

n = 82

Cognitively healthy

(C) n = 118

v2, Tukey, ANOVA

Age (years) 74.8 ± 1.0 74.3 ± 1.1 74.0 ± 1.0 A [ C***, B = C, A

% Female (n) 40.9 (9) 47.6 (39) 47.5 (56) n.s.

% Statin use (n) 31.8 (7) 29.3 (24) 22.0 (26) n.s.

% APOEe4 (n) 27.3 (6) 22.0 (18) 23.7 (28) n.s.

Education (years), mean ± SD 11.2 ± 1.8 12.1 ± 2.2 13.7 ± 3.0 A, B \ C***

MMSE, mean ± SD 24.2 ± 2.1 28.1 ± 1.4 28.9 ± 1.2 A \ B \ C***

Total cholesterol (mg/dl)

VT1, mean ± SD 246.1 ± 40.7 247.0 ± 43.8 233.0 ± 38.0 B [ C*

VT2, mean ± SD 242.8 ± 37.4 242.9 ± 37.5 232.6 ± 36.2 n.s.

VT3, mean ± SD 219.5 ± 47.1 221.3 ± 42.8 228.4 ± 38.9 n.s.

BMI

VT1, mean ± SD 27.31 ± 2.99 26.71 ± 3.25 26.32 ± 3.82 n.s.

VT2, mean ± SD 28.58 ± 3.13 27.55 ± 3.84 27.30 ± 4.02 n.s.

VT3, mean ± SD 28.40 ± 4.42 27.22 ± 3.42 27.76 ± 4.61 n.s.

MCI mild cognitive impairment, AD Alzheimer’s disease, VT visit time, MMSE mini-mental state examination, BMI body mass index

*** p \ 0.0001; * p \ 0.05
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A logistic regression revealed an increased risk of

developing a cognitive disorder for the higher quartile of

TC levels in comparison with the lower (OR 2.64, 95 % CI

1.12–6.23, p \ 0.05) and second lower quartile (OR 3.15,

CI 1.29–7.70, p \ 0.05). TC levels at VT2 and VT3 were

not associated with cognitive disorders.

Discussion

In our study, TC levels at age 60 were associated with a

diagnosis of MCI or AD 14 years later. Moreover, in the

course of 14 years, a distinct trajectory in TC levels among

those who develop MCI or AD in comparison with subjects

that remain healthy was observed, such that TC remained

stable in the cognitively healthy, whereas decline was

observed among those developing MCI or AD. Interest-

ingly, these associations were independent of potential

modulators of the cholesterol–dementia relationship, such

as APOE genotype and statin use, as well as other poten-

tially confounding variables, including cardiovascular risk

factors (e.g., smoking, hypertension, BMI, and diabetes).

Our findings confirm a previous report by Solomon et al.

[4] suggesting a bidirectional relationship between TC

levels and MCI/AD diagnosis such that high TC levels in

midlife is a risk factor for subsequent dementia, while an

Table 2 Mean total cholesterol by APOEe4 status and diagnosis at VT3

AD MCI Cognitive healthy

APOE4e?

n = 6

APOEe4-

n = 16

APOEe4?

n = 18

APOEe4-

n = 64

APOEe4?

n = 28

APOEe4-

n = 90

Total cholesterol (mg/dl), mean ± SD

VT1 281.0 ± 42.0 232.9 ± 33.9 267.5 ± 57.9 241.1 ± 37.6 247.3 ± 46.8 228.6 ± 34.0

VT2 249.8 ± 40.3 240.1 ± 37.3 259.1 ± 42.6 238.4 ± 34.9 241.5 ± 35.1 229.8 ± 36.4

VT3 247.8 ± 54.2 208.9 ± 41.0 221.9 ± 44.5 221.2 ± 42.6 247.7 ± 40.7 222.4 ± 36.6

Repeated measures ANOVA

Main effects

Diagnosis (df = 2) F = 0.77

APOE (df = 1) F = 14.39**

Time (df = 2) F = 13.68***

Interactions

Diagnosis 9 APOE (df = 2) F = 0.50

Time 9 diagnosis (df = 4) F = 5.40**

Time 9 APOE (df = 2) F = 2.06

Time 9 diagnosis 9 APOE (df = 4) F = 2.34

The ILSE study

MCI mild cognitive impairment, AD Alzheimer’s disease, VT visit time

** p \ 0.005; *** p \ 0.0001
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Fig. 2 Longitudinal course of

total cholesterol means by

diagnosis and APOE genotype.

VT visit time, CH cognitive

healthy, MCI mild cognitive

impairment, AD Alzehimer’s

disease, ? participants with

APOEe4 allele, - participants

without APOEe4 allele. VT1

(1993–1995) mean age = 62.4

(SD = 2.4), VT2 (1995–1998)

mean age = 66.7 (SD = 1.1),

VT3 (2005–2008) mean

age = 74.3 (SD = 1.2)
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observed decrease of TC levels after midlife may reflect

ongoing disease processes. Thus, our results support find-

ings [10] describing a more pronounced decline in TC

among those who develop AD at least 15 years before a

clinical diagnosis [26].

Study methodologies differ in this field, which may

influence observations, as well as interpretation thereof.

Some [2, 3, 27, 28]—but not all [26, 29]—studies show a

relationship between higher TC values and subsequent

development of MCI or dementia. Most studies relating TC

to dementia are cross sectional or have included partici-

pants across a broad age range. This limits conclusions

related to temporality of the association, since TC levels do

not only change with age, but also with secular effects

(e.g., birth cohort) [30]. It is well documented that TC

levels increase with age, rising to a plateau before the age

of 70 and subsequently decrease in older age (for an

example in the German population see [31]). Since our

study cohort is comprised of persons from the general

German population born between 1930 and 1932, we have,

by design, adjusted for age.

In addition, differences in diagnostic criteria exist. In a

Finnish study [4], for example, only individuals scoring 24

or below on the MMSE were referred for subsequent

diagnostic evaluation with respect to MCI or AD. This

screening algorithm may have led to a selection of indi-

viduals who were in more advanced stages of MCI or

dementia but excluded most cases of preclinical dementia.

In our study, every participant underwent thorough neu-

ropsychological testing, as did participants in the Gothen-

burg birth cohort studies [26, 32]. This made it possible to

identify subjects in early stages of MCI who often score

above 24 on the MMSE. In addition, we improved diag-

nostic accuracy via personal medical assessment of each

participant focusing on medical and neuropsychiatric

morbidities. Thus, given our inclusion- and exclusion cri-

teria, our baseline sample was cognitively healthy. We

were therefore able to chart the trajectory of TC levels in

relation to MCI/AD overtime. In addition, participants with

mild cognitive disorder due to a general medical condition

(i.e., cardiovascular disease or severe metabolic disorder)

or any psychiatric comorbidity (e.g., history of major

depression or alcohol abuse) were excluded to assess the

relationship of TC among participants with a specific MCI

syndrome, and at risk for developing an AD type of

dementia. This was accomplished in concordance with the

Consensus of the International Psychogeriatric Association

[17] which emphasizes that the differential diagnosis

between MCI, dementia, and ICD-10 ‘‘mild cognitive

disorder’’ should be considered the most important.

The prevalence of the APOEe4 allele was higher in

those with AD versus those developing MCI or remaining

cognitively healthy. That this difference did not reach

statistical significance may be due to lack of power, to the

low prevalence of AD in this age group and the relatively

low APOEe4 prevalence. The Finnish population, however,

has a higher APOEe4 allele prevalence, as well as higher

average TC levels and lower MMSE scores [33]. These

characteristics may well account for the strong TC-

dementia observations in Finnish studies. Solomon et al.

[4] found APOEe4 prevalence of 35 % in those without

dementia or MCI, but over 50 % in those with dementia.

Other European and American community-based studies

yielded APOEe4 prevalences that are comparable with

those observed in ILSE among cognitively healthy elderly:

11.2 % in a French study [34] and 12.6 % in white

Americans [35]. These population differences emphasize

potential difficulties in extrapolating results from one

population to another even within Europe, and underscores

the importance of conducting epidemiological studies in

individual European countries in relationship to vascular

factors in dementia etiology.

Selection effects have to be discussed as a potential

confounding factor, since we solely focused on survivors

from the ILSE. In Mielke et al. [32] the differences in TC

levels reached significance only in the survivor analysis,

and no significant differences appeared between the groups

in the whole sample analysis. Nevertheless, our follow-up

quote of 76 % of initial subjects in the 14 years with a strict

and complete clinical examination of all study subjects in

all visits expands the clinical significance of our findings.

To our knowledge, this is the first study describing the

longitudinal relationship of APOE and TC in relation to

clinically diagnosed MCI and AD. Considered together,

APOE genotype and TC levels may be independent risk

factors [2] for AD at the population level. One epidemio-

logical study [36] found high TC levels to be a risk factor

only among non-APOEe4 carriers, however, this study

dichotomized their sample according to TC levels without

reporting whether APOEe4 carriers had elevated TC levels

in comparison with non-carriers [37–39]. Gender and statin

use have to be considered as potential confounding factors.

However, diagnostic groups showed only marginal, non-

significant differences with respect to these variables; in

addition, the proportion of subjects who received statins

were rather low and did not exceed 33 %. Studies

describing a protective effect of statins in cognitive disor-

ders (AD and MCI) are misunderstanding, with some

showing a protective effect [7, 40] and other showing no

clear relation [41, 42]. Since most of them focused on

dementia and very few in MCI as an outcome, more pro-

spective studies are needed to address this topic.

In conclusion, higher TC levels at age 60 are associated

with the development of MCI and AD at age 75 years

(highest vs. lowest quartile: OR 2.64, 95 % CI 1.12–6.23,

p \ 0.05). While TC levels decline and stabilize during
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this period, these effects are not accounted for by APOE

genotype, birth cohort, statin treatment, or other cardio-

vascular risk factors. These findings support the hypothesis

that preventive measures targeted on TC in relationship to

cognition may have benefit before the seventh decade of

life.

Acknowledgments The interdisciplinary longitudinal study on

adult development and aging (ILSE) was supported by the ‘‘Research

Program of the State of Baden-Württemberg’’ and the ‘‘Federal
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50-90jährige. Hogrefe, Göttingen

24. Brickenkamp R (1978) Test d2: Aufmerksamkeits–Belastungs-

test. Hofgrefe, Göttingen

25. Tewes W (1991) HAWIE-R: Hamburg–Wchsler–Intelligneztest

für Erwachsene, revision. Huber, Bern

26. Mielke MM, Zandi PP, Sjogren M, Gustafson D, Ostling S, Steen

B, Skoog I (2005) High total cholesterol levels in late life asso-

ciated with a reduced risk of dementia. Neurology

64(10):1689–1695. doi:10.1212/01.WNL.0000161870.78572.A5

27. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kareholt I,

Winblad B, Helkala EL, Tuomilehto J, Soininen H, Nissinen A

(2005) Obesity and vascular risk factors at midlife and the risk of

Eur Arch Psychiatry Clin Neurosci (2014) 264:485–492 491

123

http://dx.doi.org/10.1212/01.WNL.0000149519.47454.F2
http://dx.doi.org/10.1212/01.WNL.0000149519.47454.F2
http://dx.doi.org/10.1212/01.wnl.0000256368.57375.b7
http://dx.doi.org/10.1212/01.wnl.0000256368.57375.b7
http://dx.doi.org/10.1111/j.1600-0404.2006.00685.x
http://dx.doi.org/10.1097/JGP.0b013e31816b72d4
http://dx.doi.org/10.1186/1741-7015-5-20
http://dx.doi.org/10.1212/01.wnl.0000277657.95487.1c
http://dx.doi.org/10.1212/01.wnl.0000277657.95487.1c
http://dx.doi.org/10.1212/WNL.0b013e3181feb2bf
http://dx.doi.org/10.1212/WNL.0b013e3181feb2bf
http://dx.doi.org/10.1001/archneur.64.1.103
http://dx.doi.org/10.1001/archneur.64.1.103
http://dx.doi.org/10.1212/01.WNL.0000161870.78572.A5


dementia and Alzheimer disease. Arch Neurol 62(10):

1556–1560. doi:10.1001/archneur.62.10.1556

28. Notkola IL, Sulkava R, Pekkanen J, Erkinjuntti T, Ehnholm C,

Kivinen P, Tuomilehto J, Nissinen A (1998) Serum total cho-

lesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s dis-

ease. Neuroepidemiology 17(1):14–20

29. Reitz C, Tang MX, Luchsinger J, Mayeux R (2004) Relation of

plasma lipids to Alzheimer disease and vascular dementia. Arch

Neurol 61(5):705–714. doi:10.1001/archneur.61.5.70561/5/705

30. Coffey CE, Saxton JA, Ratcliff G, Bryan RN, Lucke JF (1999)

Relation of education to brain size in normal aging: implications

for the reserve hypothesis. Neurology 53(1):189–196

31. Richter V, Rassoul F, Hentschel B, Kothe K, Krobara M, Unger

R, Purschwitz K, Rotzsch W, Thiery J, Muradian K (2004) Age-

dependence of lipid parameters in the general population and

vegetarians. Z Gerontol Geriatr 37(3):207–213. doi:10.1007/

s00391-004-0232-3

32. Mielke M, Zandi P, Shao H, Waern M, Östling S, Guo X,
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 Abstract 
  Background:  The impact of genetic polymorphisms on cognition is assumed to increase with 
age as losses of brain resources have to be compensated for. We investigate the relation of 
catechol-O-methyltransferase  (COMT)   p.Val158Met  polymorphism and cognitive capacity in 
the course of adult development, healthy aging and the development of mild cognitive im-
pairment (MCI) in two birth cohorts of subjects born between 1930 and 1932 or between 1950 
and 1952.  Methods:  Thorough neuropsychological assessment was conducted in a total of 
587 participants across three examination waves between 1993 and 2008. The  COMT  geno-
type was determined as a restriction fragment length polymorphism after PCR amplification 
and digestion with  Nla III.  Results:  Significant effects of the  COMT   p.Val158Met  polymorphism 
were identified for attention and cognitive flexibility in the younger but not the older cohort. 
 Conclusion:  These results confirm the importance of the  COMT   p.Val158Met  genotype on 
tasks assessing attention and cognitive flexibility in midlife but not in healthy aging and the 
development of MCI. Our findings suggest that the influence of  COMT  changes as a function 
of age, decreasing from midlife to aging.  © 2015 S. Karger AG, Basel 
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 Introduction 

 Cognitive functioning is commonly linked to dopaminergic activity, and studies have 
associated age-related losses of dopaminergic activity with age-related cognitive decline  [1] . 
Catechol-O-methyltransferase  (COMT)  is involved in the modulation of dopamine in the 
prefrontal cortex (PFC), where its resultant enzyme operates postsynaptically by inacti-
vating neurotransmission  [2, 3] .  COMT  contains a functional polymorphism, which enables 
the substitution of valine  (Val)  with methionine  (Met) . The  Met  allele results in the production 
of an enzyme that is unstable at body temperature with approximately ¼ of the activity of 
the  Val  polypeptide  [4] . Thus, the  Met  allele is associated with lower enzyme activity, elevated 
dopamine levels and superior cognitive performance, while the  Val  allele is associated with 
higher enzyme activity, reduced dopamine levels and inferior cognitive performance  [5, 6] . 
While feasible, the association of  COMT  and cognitive capacity has been the focus of debate. 
Some studies identified an association, such that individuals with a homozygous  Met/Met  
genotype exhibit increased efficiency and superior performance on tests of executive func-
tions and working memory in comparison to individuals with a homozygous  Val/Val  genotype 
 [4, 7, 8] . By contrast, other studies, including a meta-analysis  [9] , describe this association to 
be rather limited or even absent [for a review, see  5 ;  8, 10 ].

  The respective discrepancies may partially arise from differential effects of the  COMT  
polymorphism on cognitive capacity during midlife development and old age. It has been put 
forward that the impact of genetic polymorphisms on cognitive capacity increases when 
resources decline – as is the case in aging  [11] . As such, a decline in anatomical and neuro-
chemical brain resources may lead to subsequent decline in compensatory skills, thereby 
amplifying genetic effects on cognitive capacity. In line with this are results reported by 
Nagel et al.  [12]  who found a negative effect of the  Val  allele on the number of perseverative 
errors in the Wisconsin Card Sorting Test in older (between 60 and 70 years of age), but not 
younger (between 20 and 30 years of age), participants. However, longitudinal studies yield 
contradictory results. De Frias et al.  [13]  found  Val/Val  carriers’ performance on tasks of 
executive functioning to decline over a 5-year interval in contrast to  Met  carriers and iden-
tified a  COMT  × age interaction for middle-aged adults (50–60 years). Fiocco et al.  [14]  found 
the opposite, such that individuals (aged 70–79) with a homozygous  Val/Val  genotype 
displayed significantly less decline in the performance on the Digit Symbol Substitution Test 
than carriers of the  Met/Met  genotype across an 8-year interval, indicating an approximation 
of genotypes in cognitive test performance in aging. Other longitudinal studies have found 
no genetic impact on cognitive decline (n = 53, mean age 75.5, SD = 5.3  [15] ; n = 473, age 
64–68  [16] ).

  No overall conclusion can be drawn based on the respective studies, as they differ 
regarding their overall design, neuropsychological instruments, age of subjects, and length 
of follow-up interval. Previous research has focused on cognitive domains most commonly 
linked to PFC activity, e.g. executive functioning and working memory  [4, 17] , while from a 
neuropsychological standpoint, the inclusion of other cognitive domains relying on PFC acti-
vation (e.g. episodic memory retrieval  [18] ) is important to investigate the domain speci-
ficity of the respective effects. Here, we sought to examine the role of the  COMT   p.Val158Met  
genotype in different aspects of cognitive capacity in the course of adult development, 
healthy aging and the development of mild cognitive impairment (MCI) in the Interdisci-
plinary Longitudinal Study on Adult Development and Aging (ILSE), which involves two 
large birth cohorts of subjects born between 1930 and 1932 (C30) or between 1950 and 
1952 (C50)  [19, 20] . We hypothesized that there are specific effects of  COMT p.Val158Met  
polymorphism on tests of executive functioning, which are more pronounced in older than 
in younger subjects.
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  Methods 

 Participants 
 Participants were recruited via local registries. For the purpose of the present study, exclusion criteria 

were psychiatric diagnoses affecting cognitive functioning apart from MCI, as defined by the Aging-Asso-
ciated Cognitive Decline criteria  [21] . Participants with mild cognitive disorder due to a medical condition, 
manifest Alzheimer’s disease, other forms of dementia, or mood disorders were excluded. Examinations of 
both birth cohorts were conducted in parallel.

  Measures 
 The first examination (T1) took place in 1993/1994, the second examination (T2) in 1998/1999, and 

the third examination (T3) was conducted between 2006 and 2008. Each time, careful screening of physical 
and mental health using extensive physical examination and the German version of the Structured Clinical 
Interview for the Diagnostic and Statistical Manual of Mental Disorders  [22]  was performed by trained physi-
cians. DNA was extracted at T3 from whole blood using the Nucelon ®  Genomic DNA Extraction Kit BACC1. 
The  COMT  genotype was determined as a restriction fragment length polymorphism after PCR amplification 
and digestion with  Nla III, as described by Lachman et al.  [23] . The same kit was used for both cohorts.

  To assess cognitive capacity, the subtests Word List (WL) and Digit Symbol Test (DST) of the Nuremberg 
Age Inventory  [24] , the subtests Mosaic Test (MT) and Finding Similarities (FS) of the Wechsler Intelligence 
Test Battery  [25] , the subtests Word Fluency (WF) and Visual Thinking (VT) of the Performance Evaluation 
System  [26]  as well as the Attentiveness Endurance Test ‘d2’ (D2) [27]  were administered. Due to time 
restrictions, certain subtests were not administered to the younger birth cohort at T2.

  Statistical Analyses 
 Statistical analyses were performed using the SPSS 14.0 statistical package. After data description, 

analyses of variance (ANOVAs) and χ 2  tests were conducted to test for significant differences between (a) 
cohorts, healthy participants and participants with MCI, and (b) carriers of different  COMT   p.Val158Met  geno-
types. Afterwards, repeated-measures ANOVAs were performed with test scores at all three examination 
waves being treated as repeated measures. A separate analysis was conducted for healthy individuals using 
cohort (C30/C50) and  COMT  genotypes as independent variables and controlling for the level of education. 
Afterwards, C30 was analyzed separately to allow for the inclusion of cognitive status (MCI) in the model. In 
case assumption of sphericity was violated, Greenhouse-Geisser corrected values were used. The Bonferroni 
correction was applied to correct for multiple testing.

  Results 

 Demographics and Baseline Characteristics 
 A total of 587 participants were included in the analysis: 188 healthy individuals from 

C30, 93 individuals diagnosed with MCI from C30, and 306 healthy individuals from C50, 
respectively. Distribution of genotypes was consistent with the Hardy-Weinberg equilibrium 
( Val/Val  = 21.98%,  Val/Met  = 52.30%;  Met/Met  = 25.72%; χ 2  = 1.32; p = 0.251). Demographic 
and baseline characteristics across genotypes can be inferred from  table 1 , while demo-
graphic characteristics across cohorts can be inferred from  table 2 .

  Cognition 
 Results of the repeated-measures ANOVAs are presented in  table 3 . For the healthy 

participants from C30 and C50, no significant main effect of the  COMT  genotype on cogni-
tive performance was identified. Cohort effects were evident for subtests DST (mean differ-
ence = –6.897; SE = 0.847; p < 0.001), MT (mean difference = –2.467; SE = 0.716; p = 0.001), 
VT (mean difference = –2.103; SE = 0.532; p < 0.001), WL (mean difference = –1.783; SE = 
0.236; p < 0.001), D2 (mean difference = –14.888; SE = 7.023; p = 0.035) and FS (mean differ-
ence = –0.814; SE = 0.323; p = 0.012), with C50 performing better than C30. A significant inter-
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action of  COMT  and cohort arose for DST, suggesting that an effect of the  COMT  genotype on 
executive functioning was apparent in C50 but not in C30 ( fig. 1 ). A triple interaction of the 
 COMT  genotype, time and cohort was found for MT as illustrated in  figure 2 .

  The second repeated-measures analysis examined the influence of the  COMT  genotype 
and diagnosis of MCI on cognitive performance over 14 years in C30. No significant effects of 
the  COMT  genotype appeared. Significant main effects of diagnosis (MCI/cognitively healthy) 
emerged for DST (mean difference = 8.018; SE = 2.252; p < 0.001), MT (mean difference = 
3.693; SE = 0.934; p < 0.001), VT (mean difference = 2.689; SE = 0.770; p = 0.001), WF (mean 
difference = 4.902; SE = 1.091; p < 0.001), WL (mean difference = 1.427; SE = 0.325; p < 0.001), 

 Table 1.  Demographic characteristics and baseline cognitive performance across the COMT genotype

Val/Val
(n = 129)

Val/Met
(n = 307)

Met/Met
(n = 151)

ANOVA/χ2 Duncan

Demographics
Age baseline 52.98 (9.30) 52.78 (9.43) 53.72 (9.28) F = 0.521, p = 0.594
Education 13.71 (2.74) 13.94 (2.77) 13.95 (2.74) F = 0.382, p = 0.683
APOE genotype
(% ε4 allele)

19.38 25.41 18.54 χ2 = 3.39, d.f. = 2
p = 0.183

Sex (% females) 48.83 48.86 47.68 χ2 = 0.062, d.f. = 2
p = 0.970

Cohort (% C30) 47.29 46.58 50.99 χ2 = 0.813, d.f. = 2
p = 0.666

Cognitive status
(% MCI)

15.50 15.64 16.55 χ2 = 0.079, d.f. = 2
p = 0.961

Cognitive performance baseline
DST 48.29 (10.95) 51.10 (10.31) 50.61 (10.02) F = 3.40, p = 0.034 Val/Val < Val/Met,

Met/Met
MT 29.77 (8.07) 30.68 (8.44) 30.73 (8.13) F = 0.632, p = 0.532
WL 12.70 (3.16) 12.76 (3.40) 12.81 (3.35) F = 0.038, p = 0.963
D2 147.51 (42.52) 156.21 (33.12) 159.19 (38.85) F = 3.77, p = 0.023 Val/Val < Val/Met,

Met/Met
FS 26.02 (4.33) 26.70 (4.17) 26.43 (4.18) F = 1.204, p = 0.301
WF 31.26 (7.98) 33.11 (9.00) 32.40 (9.28) F = 2.008, p = 0.135
VT 23.33 (6.69) 24.27 (6.19) 24.38 (5.96) F = 1.242, p = 0.290

Figures in parentheses are SD.

 Table 2. Demographic characteristics and baseline cognitive performance across cohorts and cognitive 
status groups

 Healthy MCI
C30 (n = 93)

ANOVA/χ2 Duncan

C30 (n = 188) C50  (n = 306)

Demographics
Mean age baseline ± SD, 
years

62.78 ± 0.897 44.15 ± 0.904 62.76 ± 0.877 F = 31525.63,
p < 0.001

Healthy C50 < 
Healthy C30, MCI

Mean education ± SD, 
years

13.77 ± 3.027 14.47 ± 2.525 12.25 ± 2.170 F = 25.48,
p < 0.001

Healthy C50 > 
Healthy C30 > MCI

APOE genotype
(% ε4 allele)

22.34 22.55 21.51 χ2 = 0.03, d.f. = 2,
p = 0.983

Sex (% females) 53.19 46.08 47.31 χ2 = 2.427, d.f. = 2,
p = 0.297
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 Table 3. Results of the repeated-measures analyses

Test Healthy subjects C30 and C50 C30 (healthy and MCI)

DST COMT: F2, 451 = 1.149, p = 0.318 COMT: F2, 249 = 0.972, p = 0.380
Cohort: F1, 451 = 66.263, p < 0.001 Diagnosis: F1, 249 = 4.992, p < 0.001
COMT × cohort: F2, 451 = 3.326, p = 0.037 COMT × diagnosis: F2, 249 = 1.8, p = 0.167
Time: F2, 902 = 0.258, p = 0.772 Time: F2, 498 = 0.653, p = 0.521
COMT × time: F4, 902 = 0.152, p = 0.962 COMT × time: F4, 498 = 0.701, p = 0.591
Time × cohort: F2, 902 = 9.765, p < 0.001 Time × diagnosis: F2, 498 = 0.951, p = 0.387
Time × COMT × cohort: F4, 902 = 0.522, p = 0.719 Time × COMT × diagnosis: F4, 498 = 1.453, p = 0.215

MT COMT: F2, 454 = 0.288, p = 0.750 COMT: F2, 250 = 0.622, p = 0.538
Cohort: F1, 454 = 11.885, p = 0.001 Diagnosis: F1, 250 = 14.156, p < 0.001
COMT × cohort: F2, 454 = 0.871, p = 0.419 COMT × diagnosis: F2, 250 = 1.113, p = 0.330
Time: F1, 454 = 0.053, p = 0.817 Time: F2, 500 = 3.561, p = 0.029
COMT × time: F2, 454 = 1.162, p = 0.314 COMT × time: F4, 500 = 2.127, p = 0.076
Time × cohort: F1, 454 = 8.350, p = 0.004 Time × diagnosis: F2, 500 = 0.267, p = 0.766
Time × COMT × cohort: F2, 454 = 4.909, p = 0.008 Time × COMT × diagnosis: F4, 500 = 0.572, p = 0.683

VT COMT: F2, 453 = 1.820, p = 0.163 COMT: F2, 249 = 1.572, p = 0.210 
Cohort: F1, 453 = 15.644, p < 0.001 Diagnosis: F1, 249 = 15.193, p < 0.001
COMT × cohort: F2, 453 = 0.143, p = 0.867 COMT × diagnosis: F2, 249 = 0.277, p = 0.758
Time: F1, 453 = 2.170, p = 0.141 Time: F2, 498 = 3.692, p = 0.026
COMT × time: F2, 453 = 0.265, p = 0.767 COMT × time: F4, 498 = 1.976, p = 0.097
Time × cohort: F1, 453 = 20.291, p < 0.001 Time × diagnosis: F2, 498 = 2.942, p = 0.054
Time × COMT × cohort: F2, 453 = 0.536, p = 0.585 Time × COMT × diagnosis: F4, 498 = 0.681, p = 0.605

WF COMT: F2, 453 = 1.247, p = 0.288 COMT: F2, 248 = 0.334, p = 0.717 
Cohort: F1, 453 = 0.003, p = 0.960 Diagnosis: F1, 248 = 24.633, p < 0.001
COMT × cohort: F2, 453 = 0.367, p = 0.693 COMT × diagnosis: F2, 248 = 0.264,p = 0.768
Time: F1, 453 = 3.352, p = 0.068 Time: F2, 496 = 0.410, p = 0.664
COMT × time: F2, 453 = 1.199, p = 0.302 COMT × time: F4, 496 = 0.971, p = 0.423
Time × cohort: F1, 453 = 9.596, p = 0.002 Time × diagnosis: F2, 496 = 7.027, p = 0.001 
Time × COMT × cohort: F2, 453 = 2.766, p = 0.064 Time × COMT × diagnosis: F4, 496 = 1.188, p = 0.315

WL COMT: F2, 451 = 0.622, p = 0.537 COMT: F2, 250 = 0.689, p = 0.503 
Cohort: F1, 451 = 57.018, p < 0.001 Diagnosis: F1, 250 = 26.705, p < 0.001
COMT × cohort: F2, 451 = 1.614, p = 0.200 COMT × diagnosis: F2, 250 = 0.095, p = 0.909
Time: F2, 902 = 0.225, p = 0.798 Time: F2, 500 = 9.960, p < 0.001
COMT × time: F4, 902 = 0.602, p = 0.661 COMT × time: F4, 500 = 0.099, p = 0.983
Time × cohort: F2, 902 = 0.546, p = 0.580 Time × diagnosis: F2, 500 = 3.969, p = 0.019 
Time × COMT × cohort: F4, 902 = 0.616, p = 0.651 Time × COMT × diagnosis: F4, 500 = 1.865, p = 0.115

D2 COMT: F2, 442 = 1.237, p = 0.291 COMT: F2, 241 = 0.355, p = 0.702 
Cohort: F1, 442 = 4.494, p = 0.035 Diagnosis: F1, 241 = 32.309, p < 0.001
COMT × cohort: F2, 442 = 1.269, p = 0.282 COMT × diagnosis: F2, 241 = 0.802, p = 0.450
Time: F2, 884 = 12.590, p < 0.001 Time: F2, 482 = 9.122, p < 0.001
COMT × time: F4, 884 = 0.152, p = 0.962 COMT × time: F4, 482 = 0.992, p = 0.412
Time × cohort: F2, 884 = 31.965, p < 0.001 Time × diagnosis: F2, 482 = 1.143, p = 0.320
Time × COMT × cohort: F4, 884 = 0.823, p = 0.511 Time × COMT × diagnosis: F4, 482 = 0.556, p = 0.694

FS COMT: F2, 454 = 0.013, p = 0.987 COMT: F2, 251 = 1.147, p = 0.319 
Cohort: F1, 454 = 6.353, p = 0.012 Diagnosis: F1, 251 = 31.246, p < 0.001
COMT × cohort: F2, 454 = 0.09, p = 0.914 COMT × diagnosis: F2, 251 = 0.298, p = 0.743
Time: F1, 454 = 0.140, p = 0.709 Time: F2, 502 = 4.832, p = 0.008
COMT × time: F2, 454 = 1.561, p = 0.211 COMT × time: F4, 502 = 2.352, p = 0.053
Time × cohort: F1, 454 = 1.899, p = 0.169 Time × diagnosis: F2, 502 = 3.814, p = 0.023
Time × COMT × cohort: F2, 454 = 0.339, p = 0.713 Time × COMT × diagnosis: F4, 502 = 1.784, p = 0.131

D
ow

nl
oa

de
d 

by
: 

V
er

la
g 

S
. K

A
R

G
E

R
 A

G
, B

A
S

E
L 

   
   

   
   

   
   

   
   

   
 

17
2.

16
.6

.1
 -

 4
/2

0/
20

16
 5

:0
4:

01
 P

M



32Dement Geriatr Cogn Disord 2015;41:27–34

 DOI: 10.1159/000439585 

 Degen et al.: The  COMT   p.Val158Met  Polymorphism and Cognitive Performance in 
Adult Development, Healthy Aging and Mild Cognitive Impairment 

www.karger.com/dem
© 2015 S. Karger AG, Basel

D2 (mean difference = 57.102; SE = 10.046; p < 0.001), and FS (mean difference = 2.920;
SE = 0.515; p < 0.001), with healthy individuals outperforming those diagnosed with MCI. No 
interaction of the  COMT  genotype and diagnosis was found. No significant interaction effects 
of the  COMT  genotype and time appeared, while interaction effects by trend emerged for MT, 
VT, and FS. Significant interaction effects of time and diagnosis of MCI were found for WF, WL, 
and FS. No triple interaction was observed.

  Discussion 

 In this study, we investigated the effect of the  COMT p.Val158Met  polymorphism on 
cognitive performance in a sample of 587 participants of two distinct age cohorts, born 
between 1930 and 1932 (C30) or between 1950 and 1952 (C50). Our results suggest that the 
 COMT  genotype exerts a different influence on cognitive functioning for the C50 than for the 
C30 cohort. For C50, we find significant differences in baseline test performance between 
 COMT  genotypes on the subtests D2 and DST, such that homozygous  Val  carriers perform 
more slowly than heterozygotes and homozygous  Met  carriers. We identified an interaction 
suggesting that this effect is only applicable to C50, but not to C30, contrary to our second 
hypothesis. The minimal effects of the  COMT p.Val158Met  polymorphism are more pronounced 
in tests of executive functioning than other cognitive domains. However, no interaction with 
time was identified, indicating that the  COMT  genotype does not influence cognitive trajec-
tories over time. An individual analysis for the C30 cohort suggests that cognitive perfor-
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  Fig. 2.  Interaction of  COMT,  co-
hort and time for MT. 

  Fig. 1.  Interaction of  COMT  and 
cohort for DST. 
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mance trajectories in older subjects are largely independent on the  COMT  genotype. No effect 
was found for subjects diagnosed with MCI. These results confirm the importance of the 
 COMT   p.Val158Met  genotype on tasks assessing attention and cognitive flexibility in midlife 
but not in healthy aging and the development of MCI.

  De Frias et al.  [13]  found that the performance of  Val/Val  carriers on tasks of executive 
functioning declined over a 5-year interval compared to that of  Met  carriers. An interaction of 
 COMT  and age was identified for middle-aged participants (aged 50–60), supporting the idea 
that discrepancies due to genetic effects are greater in midlife than in aging. Fiocco et al.  [14]  
identified a difference in cognitive decline across an 8-year interval, such that individuals with 
a homozygous  Val/Val  genotype displayed significantly less decline in the Digit Symbol Substi-
tution Test performance compared to  Met  homozygotes, indicating an approximation of 
different genotypes in test performance in the course of healthy aging. Generally, the respective 
studies are in line with our findings, even though we did not identify an interaction effect of 
time (age) and the  COMT  genotype. However, a few studies point to a potential amplification 
of genetic effects in old age  [12] . While it is plausible that losses of brain resources such as 
decline of striatal and extrastriatal dopamine or atrophy affecting the PFC may amplify the 
effects of genetic polymorphisms such as  COMT p.Val158Met  on cognition  [11] , our results 
show that the  COMT  genotype on its own is not a determining factor. Further studies have 
demonstrated inefficient cortical processing as reflected by low performance and greater 
activity in  Val  homozygotes compared to  Met  homozygotes in tasks demanding working 
memory capacity in participants in their mid-thirties  [4, 28]  and attentional control  [29] . 
Remarkably, neurological differences were sometimes identified in the absence of effects on 
behavioral measures such as test performance  [28] , suggesting a compensatory mechanism. 
Since we did not find an effect of the  COMT  genotype on cognitive trajectories, we must consider 
that certain factors related to the birth cohort are determinative rather than age per se.

  A potential limitation to studies examining specific cognitive domains is their reliance on 
neuropsychological test batteries that are largely classified by their content. Assessment 
instruments can only partially reflect differential cognitive domains or phenotypes (for a 
review, see Harris and Deary  [30] ). Moreover, an interplay of different candidate genes 
affecting dopamine regulation seems likely. There exists relatively robust evidence for risk of 
increased cognitive decline from  APOE ε4  allele as well as  BDNF   [30, 12] . However, in this 
study, we were able to consider a follow-up interval of 14 years, allowing for conclusions on 
the influence of the  COMT  genotype on the process of healthy aging and the development of 
MCI, while previous research was limited to a few years only. Moreover, directly contrasting 
two different birth cohorts allowed us to delineate cohort effects from aging effects. Our 
findings can shed light on the often somewhat contradictory findings reported in the liter-
ature. Another strength of this study is the use of extensive neuropsychological testing. Given 
the role of the  COMT  genotype in dopaminergic pathways, it is likely that areas relying on the 
PFC are affected differently than other areas. Results of our study suggest that the  COMT 
p.Val158Met  polymorphism has a larger genetic contribution to tests of attention, cognitive 
flexibility and information processing speed at ages 43–56 than at ages 63–76. The effects of 
 COMT  were therefore specific to tests assessing executive functioning rather than tests of 
memory, verbal fluency or visuospatial thinking.

  Acknowledgements 

 The Interdisciplinary Longitudinal Study on Adult Development and Aging (ILSE) is supported by the 
‘Research Program of the State of Baden-Württemberg’, the ‘Federal Ministry for Family, Senior Citizen, 
Women, and Youth, Germany’ and the ‘Dietmar-Hopp-Stiftung’.
 

D
ow

nl
oa

de
d 

by
: 

V
er

la
g 

S
. K

A
R

G
E

R
 A

G
, B

A
S

E
L 

   
   

   
   

   
   

   
   

   
 

17
2.

16
.6

.1
 -

 4
/2

0/
20

16
 5

:0
4:

01
 P

M



34Dement Geriatr Cogn Disord 2015;41:27–34

 DOI: 10.1159/000439585 

 Degen et al.: The  COMT   p.Val158Met  Polymorphism and Cognitive Performance in 
Adult Development, Healthy Aging and Mild Cognitive Impairment 

www.karger.com/dem
© 2015 S. Karger AG, Basel

 References 

  1 Backman L, Nyberg L, Lindenberger U, Li S, Farde L: The correlative triad among aging, dopamine, and cognition: 
current status and future prospects. Neurosci Biobehav Rev 2006;   30:   791–807. 

  2 Mattay VS, Goldberg TE: Imaging genetic influences in human brain function. Curr Opin Neurobiol 2004;   14:   239–
247. 

  3 Egan M, Goldman D, Weinberger D: The human genome: mutations. Am J Psychiatry 2002;   159:   12. 
  4 Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR: Effect of 

COMT Val108/158Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001;  
 98:   6917–6922. 

  5 Savitz J, Solms M, Ramesar R: The molecular genetics of cognition: dopamine, COMT and BDNF. Genes Brain Behav 
2006;   5:   311–328. 

  6 Sheldrick AJ, Krug A, Markov V, Leube D, Michel TM, Zerres K, Eggermann T, Kircher T: Effect of COMT val158met 
genotype on cognition and personality. Eur Psychiatry 2008;   23:   385–389. 

  7 Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D: A functional polymorphism in the COMT 
gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002;   159:   652–654. 

  8 Bruder GE, Keilp JG, Xu H, Shikhman M, Schori E, Gorman JM, Gilliam TC: Catechol-O-methyltransferase (COMT) 
genotypes and working memory: associations with differing cognitive operations. Biol Psychiatry 2005;   58:   901–
907. 

  9 Barnett JH, Scoriels L, Munafo MR: Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene 
Val158/108Met polymorphism. Biol Psychiatry 2008;   64:   137–144. 

 10 Ho B, Wassink TH, O’Leary DS, Sheffield VC, Andreasen NC: Catechol-O-methyl transferase Val158Met gene poly-
morphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol 
Psychiatry 2005;   10:   287–298. 

 11 Lindenberger U, Nagel IE, Chicherio C, Li S, Heekeren HR, Bäckman L: Age-related decline in brain resources 
modulates genetic effects on cognitive functioning. Front Neurosci 2008;   2:   234–244. 

 12 Nagel IE, Chicherio C, Li S, von Oertzen T, Sander T, Villringer A, Heekeren HR, Bäckman L, Lindenberger U: Human 
aging magnifies genetic effects on executive functioning and working memory. Front Hum Neurosci 2008;   2:   1–8. 

 13 De Frias CM, Annerbrink K, Westberg L, Eriksson K, Adolfsson R, Nilsson LG: Catechol O-methyltransferase 
Val158Met polymorphism is associated with cognitive performance in nondemented adults. J Cogn Neursci 2005;  
 17:   1018–1025. 

 14 Fiocco AJ, Lindquist K, Ferrel R, Li R, Simonsick EM, Nalls M, Harris TB, Yaffe K: COMT genotype and cognitive 
function: an 8-year longitudinal study in white and black elders. Neurology 2010;   74:   1296–1302. 

 15 Erickson KI, Kim JS, Suever BL, Voss MW, Francis BM, Kramer AF: Genetic contributions to age-related decline in 
executive function: a 10-year longitudinal study of COMT and BDNF polymorphisms. Front Hum Neurosci 2008;  
 2:   11. 

 16 Starr JM, Fox H, Harris SE, Deary IJ, Whalley LJ: COMT genotype and cognitive ability: a longitudinal aging study. 
Neurosci Lett 2007;   421:   57–61. 

 17 Aguilera M, Barrantes-Vidal N, Arias B, Moya J, Villa H, Ibanez MI, Ruiperez MA, Ortet G, Fananas L: Putative role 
of the COMT gene polymorphism (Val158Met) on verbal working memory functioning in a healthy population. 
Am J Med Genet B Neuropsychiatr Genet 2008;   147B:898–902. 

 18 Schröder J, Buchsbaum MS, Shihabuddin L, Tang C, Wei T-C, Spiegel-Cohen J, Hazlett EA, Abel L, Luu-Hsia C, 
Ciaroavolo TM, Marin D, Davis KL: Patterns of cortical activity and memory performance in Alzheimer’s disease. 
Biol Psychiatry 2001;   49:   426–436. 

 19 Schröder J, Kratz B, Pantel J, Minnemann E, Lehr U, Sauer H: Prevalence of mild cognitive impairment in an elderly 
community sample. J Neural Transm Suppl 1998;   54:   51–59. 

 20 Schönknecht P, Pantel J, Kruse A, Schröder J: Prevalence and natural course of aging-associated cognitive decline 
in a population-based sample of young-old subjects. Am J Psychiatry 2005;   162:   2071–2077. 

 21 Levy R: Aging-associated cognitive decline. Working Party of the International Psychogeriatric Association in 
collaboration with the World Health Organization. Int Psychogeriatr 1994;   6:   63–68. 

 22 Wittchen H, Zaudig M, Schramm E, Spengler P, Mombour W, Klug J, Horn R: Strukturiertes klinisches Interview 
für DSM-III-R. Weinheim, Beltz-Test, 1991. 

 23 Lachman HM, Papolos DF, Saito T, et al: Human catechol-O-methyltransferase pharmacogenetics: description of 
a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996;  
 6:   243–250. 

 24 Oswald W, Fleischmann V: Nürnberger Alters-Inventar. Erlangen, Universität Erlangen-Nürnberg, 1991. 
 25 Tewes U (ed): HAWIE-R: Hamburg-Wechsler-Intelligenztest für Erwachsene. Revision 1991. Handbuch und 

Testanweisung. Bern, Hans Huber, 1991. 
 26 Sturm W, Willmes K, Horn W: Leistungsprüfsystem für 50–90jährige. Göttingen, Hogrefe, 1993. 
 27 Brickenkamp R: Test d2: Aufmerksamkeits-Belastungstest. Göttingen, Hogrefe, 1978. 
 28 Dennis NA, Need AC, LaBar KS, Waters-Metenier S, Cirulli ET, Kragel J, Goldstein DB, Cabeza R: COMT val108/158met 

genotype affects neural but not cognitive processing in healthy individuals. Cereb Cortex 2010;   20:   672–683. 
 29 Blasi G, Mattay VS, Bertolino A, Elvevag B, Callicott JH, Das S, Kolachana BS, Egan MF, Goldberg TE, Weinberger 

DR: Effect of catechol-O-methyltransferase val158met genotype on attentional control. J Neurosci 2005;   25:   5038–
5045. 

 30 Harris SE, Deary IJ: The genetics of cognitive ability and cognitive ageing in healthy older people. Trends Cogn Sci 
2011;   15:   388–394. 

  

D
ow

nl
oa

de
d 

by
: 

V
er

la
g 

S
. K

A
R

G
E

R
 A

G
, B

A
S

E
L 

   
   

   
   

   
   

   
   

   
 

17
2.

16
.6

.1
 -

 4
/2

0/
20

16
 5

:0
4:

01
 P

M



Psychiatry Research 240 (2016) 42–46
Contents lists available at ScienceDirect
Psychiatry Research
http://d
0165-17

n Corr
Voßstr.

E-m
journal homepage: www.elsevier.com/locate/psychres
Diabetes mellitus Type II and cognitive capacity in healthy aging, mild
cognitive impairment and Alzheimer's disease

Christina Degen a,n, Pablo Toro b, Peter Schönknecht c, Christine Sattler d,
Johannes Schröder a,e

a University Hospital Heidelberg, Section of Geriatric Psychiatry, Heidelberg, Germany
b Pontificia Universidad Catolica de Chile, Medicine School, Department of Psychiatry, Chile
c Department of Psychiatry, University of Leipzig, Leipzig, Germany
d Institute of Psychology, Heidelberg University, Heidelberg, Germany
e Institute of Gerontology, Heidelberg University, Heidelberg, Germany
a r t i c l e i n f o

Article history:
Received 17 September 2015
Received in revised form
1 April 2016
Accepted 2 April 2016
Available online 7 April 2016

Keywords:
Dementia
Neuropsychology
Cognitive decline
Age
x.doi.org/10.1016/j.psychres.2016.04.009
81/& 2016 Elsevier Ireland Ltd. All rights rese

espondence to: Section of Geriatric Psychiat
4, 69115 Heidelberg, Germany.
ail address: Christina.degen@med.uni-heidelb
a b s t r a c t

While diabetes mellitus (DM) Type II has repeatedly been linked to Alzheimer´s disease (AD) and mild
cognitive impairment (MCI), longitudinal research is scarce and disease duration has not always been
taken into account. In a birth cohort born between 1930 and 1932 we investigated the influence of DM
Type II and disease duration on neuropsychological functioning (memory/learning, attention, verbal
fluency, visuospatial thinking and abstract thinking) across 14 years. Subjects who developed MCI or AD
performed significantly poorer on all neuropsychological tests applied. While significant main effects DM
Type II did not arise, its presence led to a significant deterioration of performance in the digit symbol test
and visuospatial thinking over time. Additionally, in visuospatial thinking this change was more pro-
nounced for individuals suffering from MCI/AD. We found that, as a concomitant disease DM Type II does
not affect memory functioning, which is typically compromised in MCI and early AD. Rather, it may lead
to deficits in cognitive flexibility and visuospatial thinking. DM Type II can be considered a frequent
comorbid condition which can aggravate the course of MCI and AD. In this respect it may serve as a
model for other comorbid conditions in AD.

& 2016 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Projections of future Diabetes Mellitus (DM) prevalence esti-
mate a global increase of diagnoses especially in people aged 65
and older (Wild et al., 2004). Cross-sectional and longitudinal
studies have identified associations of DM Type II and cognitive
impairment (Strachan et al., 1997; Awad et al., 2004), incidence of
mild cognitive impairment (MCI), and dementia (Stewart and
Liolitsa, 1999). Various mechanisms have been proposed by which
DM Type II affects cognitive functioning and aggravates the clinical
picture typically observed in MCI and dementia. However, the
complex interrelationship between diabetes and dementia are
most likely confounded and/or mediated by vascular, nonvascular
and genetic risk factors. A previous study conducted by our re-
search group showed that DM Type II is associated with psycho-
motor slowing, but does not affect other cognitive domains,
rved.

ry, University of Heidelberg,

erg.de (C. Degen).
including memory (Toro et al., 2009). However, reviews by Awad
et al. (2004) and Strachan et al. (1997) suggest that deficits are
most consistently found in verbal memory and processing speed,
while other cognitive domains (visuospatial functioning, attention,
language) remain largely preserved. A detailed review of long-
itudinal studies by Cukierman et al. (2005) suggests a 1.2–1.5 fold
greater decline in cognitive functioning and a 1.6 greater risk for
developing dementia in individuals diagnosed with DM Type II
compared to healthy controls. Studies typically comprised follow-
up intervals between 2 and 6 years limiting generalizability to
healthy aging and the development of dementia. Thus, it remains
unclear how cognition is affected and how different cognitive
domains progress over time in the presence of DM Type II.

It was the aim of this study to examine a) the influence of DM
Type II on cognitive functioning in healthy aging, b) the influence
of DM Type II on cognitive functioning in the development of MCI/
AD, and c) potential associations of cognitive trajectories with
disease duration. Our analyses are based on data from the Inter-
disciplinary Longitudinal Study of Adult Development and Aging
(ILSE, Pantel et al., 2003; Schönknecht et al., 2005) – a prospective,
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population-based study with a 14 year follow-up interval. Neu-
ropsychological functioning was operationalized using the Inter-
national Psychogeriatric Association working Party's (Levy, 1994)
guidelines to establish the diagnosis of Aging Associated Cognitive
Decline: memory/learning, attention, verbal fluency, visuo-spatial
functioning and abstract thinking. In line with existing reviews
and our previous study we expected that a) DM Type II is asso-
ciated with decrements to cognitive functioning in healthy aging
specifically pertaining to tasks assessing psychomotor speed, b)
DM Type II aggravates the clinical picture typically observed in the
development of MCI/AD and c) disease duration is negatively as-
sociated with cognitive functioning, such that individuals suffering
from DM Type II for a longer period of time display larger decre-
ments to cognitive functioning than individuals who have been
diagnosed with DM Type II more recently.
Fig. 1. Participant flow.
2. Methods

2.1. Procedure

The ILSE is a longitudinal study which has followed up two birth cohorts, born
between 1930 and 1932 or between 1950 and1952, for a total of 14 years. Parti-
cipants were recruited via community registers in the Heidelberg and the Leipzig
area, yielding a representative sample of N¼1002 participants. The first examina-
tion (T1) took place in 1993/1994, the second examination (T2) in 1998/1999 and
the third examination (T3) was conducted between 2006 and 2008. The fourth
examination is about to be completed in 2016. Each time, careful screening of
physical and mental health using extensive physical examination and the German
version of the Structured Clinical Interview for the Diagnostic and Statistical
Manual of Mental Disorders (DSM-III-R, Wittchen et al., 1991) was performed by
trained physicians. Laboratory tests included triglycerides and glycosylated he-
moglobin. Moreover, the Apolipoprotein E (APOE) genotype was determined using
the LightCycler technology (Aslanidis and Schmitz, 1999).

Verbal memory was assessed using the subtest Word List of the Nuremberg Age
Inventory (Oswald and Fleischmann, 1991), where twelve words are read to the
participant, who is instructed to recall as many words as possible immediately after
presentation and after a short delay period. Processing speed and mental flexibility
were assessed using the digit symbol test of the Nuremberg Age Inventory (Oswald
and Fleischmann, 1991), where participants are instructed to fill in symbols fol-
lowing a prescribed pattern as fast as possible. Visuospatial reasoning and abstract
thinking capacity were assessed using the subtest Mosaic Test of the Wechsler
Intelligence Test Battery (Tewes, 1991), where participants are asked to construct
patterns using a set of duo-colored building blocks. The subtest Finding Similarities
of the Wechsler Intelligence Test Battery (Tewes, 1991) assesses abstract reasoning
capacity by asking participants to find similarities between a maximum of 16 word
pairs. Verbal fluency is measured using the subtest verbal fluency of the “Leis-
tungsprüfsystem” (Sturm et al., 1993) where participants are asked to name as
many words as possible with the initial letter “s” or “f”. Likewise, in the subtest
visual thinking (Sturm et al., 1993) participants are presented two-dimensional
pictures of three-dimensional geometrical figures and are asked to count the
number of surfaces. Finally, the attentiveness endurance test “d2” (Brickenkamp,
1978) assesses attention and processing speed by instructing participants to
identify whenever the letter “d” is presented in combination with 2 lines in several
rows of distractor stimuli.

Basic visual screening was conducted prior to neuropsychological testing.

2.2. Participants

381 participants from the cohort born between 1930 and 1932 returned for T3
(Fig. 1). Participants meeting ICD-10 criteria for Mild Cognitive Disorder including
the presence of systemic physical disorders known to cause cerebral dysfunction
(World Health Organization, 1993), NINDS-AIREN criteria for Vascular Dementia
(Roman et al., 1993), depression or anxiety disorders (DSM-III-R criteria; Wittchen
et al., 1991) at any examination wave were excluded, leaving a final sample of 295
participants. 135 were diagnosed with MCI (International Psychogeriatric Associa-
tion working Party; Schröder et al., 1998) or AD (McKhann et al., 1984), while 160
were healthy control subjects. A distinction between individuals with MCI and
those with Mild Cognitive Disorder was drawn to delineate subjects at risk of de-
veloping AD from individuals with impairments resulting from vascular dysfunc-
tion and other systemic causes. DM Type II was diagnosed on the basis of labora-
tory tests (glycated hemoglobin levels) and subjects’ histories. When necessary,
medical records were called upon. Disease duration was assessed using self-report
and medical records presented at T1. Individuals were then classified according to
whether DM Type II had been present at T1 or not.
2.3. Statistical Analysis

Statistical Analysis System software (SAS Institute, Cary, NC; USA) was used for
all statistical analyses. The level of significance was set to p¼ .05. Chi-Square test
was used to compare individuals who dropped out between T1 and T3 and in-
dividuals who were included in the follow-up analysis. Afterwards, ANOVAs and
Chi-Square tests were used to compare demographic and clinical characteristics
between diagnostic groups at T3. Separate repeated measures ANOVAS (Proc GLM)
were performed for each neuropsychological test using time between examination
waves as the within subject factor, DM Type II (not present, present at T3 and T1,
only present at T3) and diagnosis of MCI/AD as between subject factors. If as-
sumption of sphericity was violated, Greenhouse-Geisser corrected values were
used.
3. Results

Clinical and demographic characteristics of participants can be
seen in Table 1. Note that at T3, individuals with MCI/AD without
DM Type II were slightly older than the other participants (F¼3.97,
p¼ .009). Moreover, cognitively healthy participants had sig-
nificantly more years of education than those with MCI/AD
(F¼8.17, po .0001). As expected, individuals diagnosed with DM
Type II showed increased glycosylated hemoglobin levels com-
pared to those without DM Type II (F¼31.66, po .0001). Chi
Square test revealed no difference in distribution of DM Type II in
the MCI/AD and healthy control groups (χ2¼0.699, p¼ .403). Note
however, that the prevalence of DM Type II in participants diag-
nosed with MCI/AD is slightly higher with 20.61% as opposed to
16.25% in those without a diagnosis of MCI/AD. No association
between APOE genotype and DM Type II was identified (χ2¼1.959,
p¼ .162). When comparing individuals that dropped out between
T1 and T3 (N¼119) and those that were included in this analysis
(N¼295) we found that 50% of individuals with a record of DM
Type II at T1 (N¼44) did not participate in T3, while the dropout
rate for those that were not diagnosed with DM Type II was 26.10%
(χ2¼10.964, p¼ .0009).

Repeated measures analyses were performed controlling for
age and education. An overview of results can be seen in Table 2.



Table 1
Comparison of demographic and clinical characteristics.

MCI/AD with DM Type II
N¼27 (a)

MCI/AD without DM Type II
N¼104 (b)

Controls with DM Type II
N¼26 (c)

Controls without DM Type II
N¼134 (d)

F/χ2 p Duncan

Age T1 62.37 (1.04) 62.62 (.89) 62.42 (.86) 62.40 (.97) F¼1.31 0.271
Age T2 66.42 (1.07) 66.76 (94) 66.56 (.96) 66.46 (1.02) F¼2.32 0.075
Age T3 74.22 (1.01) 74.55 (1.17) 74.23 (0.99) 74.10 (1.12) F¼3.97 0.009 bZa,c,d
Education 12.26 (2.23) 12.03 (2.18) 14.00 (2.71) 13.63 (3.08) F¼8.17 o .0001 a,boc,d
T3HbA1c 6.68 (.78) 5.75 (52) 6.97 (1.48) 5.73 (.44) F¼31.66 o .0001 a,c4b,d
APOE (ε4 present
%)

19.23 23.66 25.83 12.00 χ2¼2.47 0.480
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The analyses yielded no significant main effects of DM Type II, but
an interaction effect of time (between examination waves) and DM
Type II for the digit symbol test (F4,468¼3.23, p¼ .012) suggesting a
steeper decline in cognitive performance for individuals diagnosed
with DM Type II at T1 and T3, relative to individuals diagnosed
with DM Type II at T3 only and those that do not have DM Type II
(Fig. 2). The same pattern was observed for visual thinking
(F4,466¼2.76, p¼ .027). Moreover, a triple interaction of time (be-
tween examination waves), DM Type II and diagnosis of MCI/AD
was observed for visual thinking (F4,464¼2.81, p¼ .025) as illu-
strated in Fig. 3. Accordingly, individuals with both MCI/AD and
DM Type II exhibited a steeper decline between T1 and T3 than
other individuals. Moreover, performance of individuals with MCI/
AD and DM Type II diagnosis at T3 (but not T1) exhibited a more
pronounced decline between T1 and T2 than those with MCI/AD
and not DM Type II.
4. Discussion

In the present study we investigated the putative influence of
DM Type II on cognitive functioning in healthy aging and the de-
velopment of MCI/AD. We found that individuals diagnosed with
MCI/AD showed a slightly higher prevalence of DM Type II, even
though the association did not reach statistical significance. As
expected, cognitively healthy individuals performed better on
tests of neuropsychological functioning than subjects diagnosed
with MCI/AD across domains. Repeated measures analyses re-
vealed no significant main effect of DM Type II on cognitive per-
formance. For visual thinking and digit symbol subtests significant
interaction effects of time between examination waves and DM
Type II were identified suggesting a steeper decline in cognitive
performance for individuals diagnosed with DM Type II at T1 al-
ready in comparison to those diagnosed with DM Type II only at T3
and those without DM Type II. Moreover, a triple interaction of
time between examination waves, DM Type II and diagnosis for
the subtest visual thinking suggests that performance decline of
individuals suffering from MCI/AD and DM Type II (present at T1
already) is significantly more pronounced than in the other par-
ticipants. Thus, we find that DM Type II aggravates cognitive de-
cline observed in healthy aging in particular pertaining to tasks
assessing processing speed, mental flexibility and visual thinking if
DM Type II has been present for a longer period of time. Moreover,
additional cognitive decrements in patients with MCI/AD are ob-
served given relatively longer disease duration.

Our findings are in line with a previous cross-sectional study
from our research group, where an influence of DM Type II was
found for tasks assessing psychomotor speed and executive func-
tioning (Trail-Making Test A & B), but not for memory and learning
(Wechsler Memory Scale, logical memory) or global cognitive
performance (Mini Mental State Examination) (Toro et al., 2009).
Likewise, van den Berg et al. (2010) found modest alterations of
cognitive functioning in participants diagnosed with DM Type II
that were largely in the lines of “normal aging”. The authors in-
vestigated domain-specific cognitive capacity (abstract reasoning,
memory, information processing speed, attention and executive
functioning and visuoconstruction) in 106 participants over a
period of 4.1 years. They identified a significant effect of DM Type
II on information processing speed and attention/executive func-
tioning. However, no time*DM Type II interaction was observed.
The authors concluded that diabetes-related cognitive changes
progress slowly and over a prolonged period of time. Here, we
were able to draw on a larger sample and a longer interval of in-
spection than van den Berg et al. (2010), and found support for the
assumption that cognitive decline associated with DM Type II
occurs somewhat later with disease progression. Likewise, neu-
rophysiological changes, including periventricular hyperintensities
(Van Harten et al., 2007), white matter lesions (Manschot et al.,
2006) as well as cortical and subcortical atrophy (Manschot et al.,
2006) have been associated with reductions in motor speed and
overall cognitive dysfunctioning in patients with DM Type II.
While Van Harten et al. (2007), found no relation to memory
performance but other cognitive domains, Manschot et al. (2006)
identified decrements in areas of attention and executive func-
tioning, information processing speed and memory.

The absence of a direct effect of DM Type II on cognitive per-
formance contradicts findings from cross-sectional studies that
suggest that effect sizes consistently range between � .3 and � .6.
All in all, we conclude that DM Type II can aggravate the course of
cognitive decline, mostly pertaining to tasks with a psychomotor
component and executive functioning. Moreover, DM Type II alters
cognitive decline typically observed in aging after the disease has
been present for a longer period of time. In the visual thinking
subtest this change is more pronounced for individuals suffering
from MCI/AD. It is important to highlight the effect of dropout on
our results. 50% of individuals that were initially diagnosed with
DM Type II did not follow up to T3, suggesting systematic drop-out
in our sample. It is plausible to assume that if these individuals
were included in our analysis effects of DM Type II would be
enlarged.

From a clinical perspective DM Type II might serve as a model
for other concomitant diseases such as hypertension which be-
come more frequent as people age and present cardiovascular risk
factors that are associated with neurophysiological changes to the
brain. These are likely to interact and/or mediate each other and
the exact mechanisms by which cerebrovascular changes occur
and their association with cognitive deficits remain unclear. In
clinical practice these conditions need to be considered when di-
agnosing MCI or AD. In this respect, it is notable that in our study
DM Type II did not affect declarative memory, which is typically
compromised in MCI and early AD, but cognitive flexibility and
visual thinking both of which contribute to executive functioning.
The latter drives a number of other neuropsychological functions
and is therefore crucial for neural compensation (Buschkühl et al.,
2014). In addition, cognitive deficits are associated with severe
functional disabilities in everyday life. Taken together, these



Table 2
Results of the repeated measures analyses.

Test Factor F, p

Word list Timea F(2,470)¼0.31, p¼ .735
DM Type II F(2,235)¼0.35, p¼ .704
Cognitive statusb F(1,235)¼2.57, p¼ .110
DM Type II* cognitive status F(2,235)¼1.25, p¼ .287
Time1*DM Type II F(4,470)¼0.59, p¼ .673
Time1*DM Type II* cognitive
statusb

F(4,470)¼0.75, p¼ .556

Digit symbol test Timea F(2,468)¼2.76, p¼ .064
DM Type II F(2,234)¼1.88, p¼ .156
Cognitive statusb F(1,234)¼20.80, po .0001
DM Type II* cognitive status F(2,234)¼0.07, p¼ .936
Time1*DM Type II F(4,468)¼3.23, p¼ .012
Time1*DM Type II* cognitive
statusb

F(4,468)¼0.64, p¼ .872

Mosaic test Timea F(2,470)¼1.88, p¼ .155
DM Type II F(2,235)¼0.34, p¼ .713
Cognitive statusb F(1,235)¼8.01, p¼ .005
DM Type II* cognitive status F(2,235)¼0.07,p¼ .937
Time1*DM Type II F(4,470)¼1.05, p¼ .379
Time1*DM Type II* cognitive
statusb

F(4,470)¼0.97, p¼ .425

Finding similarities Timea F(2,472)¼4.27, p¼ .014
DM Type II F(2,236)¼0.02, p¼ .979
Cognitive Statusb F(1,236)¼12.59, p¼ .0005
DM Type II*Cognitive Status F(2,236)¼0.69, p¼ .501
Time1*DM Type II F(4,472)¼0.12, p¼ .975
Time1*DM Type II* Cognitive
Statusb

F(4,472)¼0.40, p¼ .809

Word fluency Timea F(2,466)¼0.56, p¼ .569
DM Type II F(2,233)¼0.76, p¼ .470
Cognitive Statusb F(1,233)¼6.15, p¼ .014
DM Type II *Cognitive Status F(2.234)¼0.90, p¼ .410
Time1*DM Type II F(4,466)¼1.36, p¼ .245
Time1*DM Type II* Cognitive
Statusb

F(4,466)¼1.20, p¼ .309

Visual thinking Timea F(2,464)¼5.80, p¼ .003
DM Type II F(2,232)¼0.27, p¼ .766
Cognitive statusb F(1,232)¼7.53, p¼ .007
DM Type II* cognitive status F(2,232)¼0.14, p¼ .867
Time1*DM Type II F(4,464)¼2.81, p¼ .025
Time1*DM Type II* cognitive
statusb

F(4,464)¼2.76, p¼ .027

D2 (Attention
endurance)

Timea F(2,446)¼4.47, p¼ .012
DM Type II F(2,223)¼0.44, p¼ .644
Cognitive statusb F(1,223)¼24.92, po .0001
DM Type II* cognitive status F(2,223)=1.01, p=0.366
Time1*DM Type II F(4446)¼0.34, p¼ .851
Time1*DM Type II* cognitive
statusb

F(4446)¼0.21, p¼ .935

a Time between examination waves (within subject factor in the repeated
measures design).

b Diagnosis of MCI/AD or healthy control.

Fig. 2. Raw Scores for Digit-Symbol Test across examination waves.

Fig. 3. Raw Scores for Visual Thinking across examination waves.
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findings facilitate the hypothesis that concomitant diseases in
general and DM Type II in particular can aggravate the course of
MCI and early AD by aggravating neuropsychological deficits but
do not have a direct effect on the pathophysiological changes
involved.

The relatively long follow up interval of 14 years represents a
clear strength of this study allowing for more accurate assessment
of the longitudinal dimensions of the impact of DM Type II on
cognitive functioning. A potential drawback to this study is the
absence of reliable records of when DM Type II was actually pre-
sent. Recent estimates demonstrate that as many as half of all
individuals suffering from DM Type II are undiagnosed. In this
study, we mitigated this effect partially by classifying individuals
according to our examinations, including DM Type II diagnostics at
T1.
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