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Abstract 

Introduction: Colorectal cancer (CRC) is the most common type of gastrointestinal cancer 

and a major cause of morbidity and mortality throughout the world. Today we know that 

exposure to exogenous chemicals (xenobiotics) combined with a modified ability to detoxify 

carcinogens increases the risk of developing cancer. Xenobiotic metabolizing enzymes 

(XMEs) play a major role in the activation and detoxification of several carcinogens but their 

expression and activity in human colorectal tissue as well as their role in the development of 

CRC has not been sufficiently explored. In order to shed light on this question, this study 

aimed to link XME metabolism, lifestyle and risk factors with the etiology of CRC 

investigating two different aims. Therefore, the thesis is split into two parts: 

 

1) Evaluation of mRNA, protein and enzyme activities of relevant phase I and phase II 

xenobiotic metabolizing enzymes in normal colorectal tissue of colorectal cancer patients: 

In this study, three different layers of XME abundance (mRNA, protein, and enzyme activity) 

were evaluated in cytochromes P450 (CYPs), glutathione S-transferases (GSTs), and UDP-

glucuronosyltransferases (UGTs). Gene expression was assessed by quantitative real-time 

PCR (qRT-PCR), protein expression evaluated by immunoassay detection, and enzymatic 

activities measured by biochemical assays, in the normal tissue of 97 patients with CRC. The 

mean relative expression levels in normal colorectal tissue were highest for GSTP1 [mean (± 

standard deviation): 7.70 (0.60)] and lowest for GSTM1 [mean: 4.08 (1.80)]. Associations of 

xenobiotic metabolism-related gene expression, protein level and enzyme activities with 

clinical parameters in patients with CRC, were evaluated by the Mann-Whitney U-test and 

the Kruskal-Wallis test. Results of the univariate analysis revealed a 1.2-fold lower UGT1A8 

expression and 1.7-fold lower UGT activity in normal tissue of rectal compared to colon 

cancer patients (p=0.008; pFDR=0.34 and p=0.002; pFDR=0.17, respectively). Furthermore, 

lower GSTP1 expression levels among recent nonsteroidal anti-inflammatory drug (NSAIDs) 

users compared to non-users (p=0.04; pFDR=0.58) were detected. Associations with lifestyle 

and dietary factors were evaluated using linear regression models. Results of the 

multivariable models adjusted for relevant covariables, showed that regular consumption 

(>1x/week) of cooked vegetables was associated with higher CYP3A4 protein levels (β=5.62, 

pn=0.009; pFDR=0.65) and regular consumption of raw vegetables was associated with lower 

UGT activities (β=-0.56; pn=0.03; pFDR=0.72) compared to non-regular consumption  

of raw and cooked vegetables (≤ 1x/week) in the normal mucosa of CRC patients.  
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Relation of mRNA expression, protein levels and enzyme activities were assessed using 

Spearman correlation coefficients. No statistically significant associations were found 

between mRNA expression and neither protein levels, nor enzymatic activities for the CYPs 

and GSTs. For the UGTs, statistically significant, albeit weak, positive associations between 

UGT1A8 protein and mRNA abundance (r=0.20, p≤ 0.05) and UGT1A10 mRNA levels and UGT 

activity (r=0.28, p ≤0.01) were observed. However, between UGT1A10 protein level and UGT 

activity, a statistically significant negative correlation (r= -0.27, p ≤0.01) was detected.  

 

2) Evaluation of differentially expressed XMEs in normal and tumor colorectal tissue: The 

expression of eight selected XMEs (GSTP1, GSTA1, GSTM1, UGT1A10, UGT1A8, CYP2W1, 

CYP2C9, and CYP3A4) in colorectal carcinomas and adjacent normal mucosa (n=71) was 

compared and associations of sociodemographic, lifestyle and dietary factors with the 

expression of these genes were investigated. Differences between XMEs’ gene expression 

(IlluminaHT-12 Expression BeadChips) in tumor and normal mucosa were tested by the 

paired Wilcoxon-Rank-sum test. Among the genes analyzed, GSTM1, GSTA1, UGT1A8, 

UGT1A10, CYP3A4, and CYP2C9 were down-regulated in tumor tissue as compared to normal 

tissue, while GSTP1 and CYP2W1 were up-regulated. Linear regression models were used to 

evaluate potential associations between sociodemographic, lifestyle and dietary factors and 

the relative gene expression in tumor and normal mucosa tissue. Although none of these 

relationships remained statistically significant after false discovery rate (FDR)-adjustment for 

multiple testing, a trend toward significance (β=-0.21; pn=0.0005; pFDR=0.05) with lower 

CYP2C9 expression in normal tissue of rectal compared to colon cancer patients was 

detected. CYP2C9 plays a key role in the metabolic activation of many environmental and 

dietary mutagens and interactions of its expression with these factors should be considered 

in larger studies. 

 

Overall conclusions: In summary, it can be concluded that in normal tissue of CRC patients: 

- Correlations between XMEs’ mRNA, protein and enzyme activities are moderate to poor 

- Colon and rectum showed considerable differences regarding expression and activities of 

several XMEs  

- Regular consumption of cooked vegetables was associated with CYP3A4 gene expression 

and protein levels  

Taken together, the results of this thesis suggest some interesting differences, which should 

be considered in larger studies to elucidate its potential contribution to CRC etiology. 
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Zusammenfassung 

Einleitung: Darmkrebs ist die häufigste Krebserkrankung des Magen-Darmtraktes und eine 

der Hauptursachen für durch Krebs verursachte Erkrankungen und Todesfälle weltweit. 

Heute wissen wir, dass eine Exposition gegenüber chemischen Stoffen (Fremdstoffe oder 

Xenobiotika) zusammen mit einer veränderten Fähigkeit diese Karzinogene zu entgiften, das 

Risiko erhöht an Krebs zu erkranken. Fremdstoffmetabolisierende Enzyme spielen bei der 

Aktivierung und Entgiftung einiger Karzinogene eine wichtige Rolle. Allerdings wurde deren 

Expression und Aktivität im menschlichen Darmgewebe, genauso wie deren Rolle bei der 

Entstehung von Darmkrebs, noch nicht ausreichend untersucht. Um dieser Frage 

nachzugehen, versucht diese Studie Fremdstoffmetabolismus, Lebensstil- und Risikofaktoren 

mit der Entstehung von Darmkrebs durch zwei verschiedene Zielsetzungen zu verbinden: 

 

1) Evaluierung von mRNA, Protein und Enzymaktivitäten relevanter Phase I und Phase II 

fremdstoffmetabolisierender Enzyme im normalen Darmgewebe von Darmkrebspatienten: 

In dieser Studie wurden drei verschiedene Parameter (mRNA, Protein und Enzymaktivität) in 

den fremdstoffmetabolisierenden Enzymen Cytochrom P450 (CYP), Glutathion-S-Transferase 

(GST) und UDP-Glucuronosyltransferase untersucht. Genexpression wurde durch 

quantitative Echzeit-PCR (qRT-PCR) bestimmt, Proteinexpression durch immunologische 

Verfahren und die Messung der Enzymaktivität erfolgte durch biochemische Analysen. Alle 

Analysen fanden im Normalgewebe von 97 Darmkrebspatienten statt. Die mittleren 

Expressionslevel waren am höchsten für GSTP1 [Mittelwert: 7.70 (0.60)] und am niedrigsten 

für GSTM1 [Mittelwert: 4.08 (1.80)]. Zusammenhänge fremdstoffmetabolismus-bezogener 

Genexpression, Proteinlevel und Enzymaktivität mit klinischen Parametern, wurden unter 

Anwendung des Mann-Whitney-U-Testes und des Kruskal-Wallis-Testes, in 

Darmkrebspatienten analysiert. Ergebnisse der univariaten Analyse zeigten eine 1.2-fach 

niedrigere UGT1A8 Expression und eine 1.7-fach geringere UGT Aktivität im Normalgewebe 

von Patienten mit Rektumkarzinom im Vergleich zu Patienten mit Kolonkarzinom(p=0.008; 

pFDR=0.34 und p=0.002; pFDR=0.17). Des Weiteren wurden bei Patienten die regelmäßig nicht-

steroidale entzündungshemmende Medikamente (NSAIDs) einnahmen, niedrigere GSTP1 

Expressionslevel festgestellt als bei Patienten die keine NSAIDs einnahmen (p=0.04; 

pFDR=0.58). Zusammenhänge mit Lebensstil- und Ernährungsfaktoren wurden mittels linearer 

Regressionsmodelle analysiert. Ergebnisse der multivariablen Modelle zeigten im 

Normalgewebe von Darmkrebspatienten einen Zusammenhang zwischen regelmäßigem 

Verzehr von gekochtem Gemüse (>1x/Woche) und höheren CYP3A4 Proteinlevel (β=5.62, 

pn=0.009; pFDR=0.65) und einen Zusammenhang zwischen regelmäßigem Verzehr  

von rohem Gemüse und niedrigeren UGT Aktivitäten (β=-0.56; pn=0.03; pFDR=0.72).  
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Das Verhältnis von mRNA-Expression, Proteinlevel und Enzymaktivität wurde mittels 

Spearman Korrelationskoeffizienten analysiert. Es wurden weder für die mRNA-Expression, 

noch für Proteinlevel oder Enyzmaktivität der CYPs und GSTs statistisch signifikante 

Zusammenhänge gefunden. Für die UGTs wurde ein schwach positiver, jedoch statistisch 

signifikanter Zusammenhang, zwischen UGT1A8 Protein und mRNA (r=0.20, p≤ 0.05) und 

UGT1A10 mRNA und UGT Aktivität (r=0.28, p ≤0.01) gefunden. Allerdings wurde zwischen 

UGT1A10 Protein und UGT Aktivität ein statistisch signifikant negativer Zusammenhang 

gefunden (r= -0.27, p ≤0.01).  

 

2) Evaluierung unterschiedlich exprimierter XMEs im normalen Darm- und Tumorgewebe 

Die Expression acht ausgewählter XMEs (GSTP1, GSTA1, GSTM1, UGT1A10, UGT1A8, 

CYP2W1, CYP2C9, and CYP3A4) wurde im Tumor- und angrenzendem Normalgewebe 

verglichen (n=71) und Zusammenhänge von soziodemografischen-, Lebensstil-, und 

Ernährungsfaktoren mit der Expression dieser Gene untersucht. Unterschiede im Normal- 

und Tumorgewebe zwischen Genexpression dieser XMEs wurden mittels des Wilcoxon-

Rangsummen-Tests verglichen. Unter den untersuchten Genen waren, im Tumorgewebe im 

Vergleich zum Normalgewebe, GSTM1, GSTA1, UGT1A8, UGT1A10, CYP3A4, und CYP2C9 

herunterreguliert und GSTP1 und CYP2W1 hochreguliert. Um mögliche Zusammenhänge 

zwischen Lebensstil- und Ernährungsfaktoren mit der relativen Genexpression im Tumor- 

und Normalgewebe zu untersuchen, wurden lineare Regressionsmodelle verwendet. 

Obwohl keiner dieser Zusammenhänge nach einer „false discovery rate“ (FDR) Adjustierung 

für multiples Testen signifikant war, wurde ein deutlicher Trend zu statistischer Signifikanz 

(β=-0.21; pn=0.0005; pFDR=0.05) mit niedriger CYP2C9 Expression im Normalgewebe von 

Rektum- im Vergleich zu Kolonkarzinom Patienten gefunden. CYP2C9 spielt eine wesentliche 

Rolle bei der metabolischen Aktivierung vieler Umwelt- und Ernährungsmutagene und 

Zusammenhänge dieser Faktoren mit der Expression von CYP2C9, sollten in größeren 

Studien berücksichtigt werden.  

 

Allgemeine Schlussfolgerungen: Zusammengefasst wurde festgestellt, dass im 

Normalgewebe von Darmkrebspatienten: 

- Genexpression, Proteinlevel und Enzymaktivitäten nicht oder nur schlecht korrelieren, 

- Kolon und Rektum sich in Bezug auf Expression und Aktivität einiger XMEs unterscheiden, 

- Regelmäßiger Verzehr von gekochtem Gemüse mit CYP3A4 mRNA- und Proteinexpression 

assoziiert war. 

Insgesamt zeigten die Ergebnisse dieser Arbeit einige interessante Unterschiede, die in 

größeren Studien berücksichtigt werden sollten, um deren möglichen Beitrag bei der 

Darmkrebsentstehung aufzuklären. 
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1 Introduction 

1.1 Colorectal Cancer 

1.1.1 Basic- and histologic organization of the gastrointestinal tract 

 The term colorectal cancer (CRC) refers to cancer that arises in the lower gastrointestinal 

tract (GI tract), also known as the large intestine. The large intestine is divided into three 

main sections: cecum including the appendix, colon, and rectum with the anal canal. The 

digestive system removes and processes nutrients (minerals, carbohydrates, vitamins, 

proteins, fats, and water) from foods and helps pass waste material out of the body [1]. 

After food is chewed and swallowed, it travels through the esophagus to the stomach. There 

it is partially broken down and send to the small intestine, where digestion continues and 

most of the nutrients are absorbed. The small intestine joins the large intestine in the lower 

right abdomen. The first and longest part of the large intestine is the colon, a muscular tube 

about five feet long. Water and mineral nutrients are absorbed from the food matter in the 

colon. Waste (feces) left from this process passes into the rectum, the final six inches of the 

large intestine, and is then expelled via the anus. All segments of the GI tract are divided into 

four layers: the mucosa, the submucosa, the muscularis mucosa, and the serosa (see Figure 

1). The mucosa is the innermost layer which surrounds the lumen of the GI tract and consists 

of three sublayers [2]. The first sublayer is made up of epithelial cells supported by a thin 

second sublayer of connective tissue known as the lamina propria. The third sublayer, the 

muscularis mucosa, is a thin layer of smooth muscle that produces local movements of the 

mucosa. The submucosa is a thick connective tissue layer that consists of a variety of 

arteries, veins, lymphatics, and nerves. The muscularis mucosa surrounds the submucosa 

and is composed of two muscle layers, the inner circular layer and outer longitudinal layer. 

These two layers move perpendicularly to one another and form the basis of peristalsis. The 

outermost layer is named as the serosa or, if it lacks an outer layer of mesothelial cells, the 

adventitia. The serosal layer forms a natural barrier from the spread of inflammatory and 

malignant processes. 
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1.1.2 Epidemiology of colorectal cancer 

 With about 62 000 newly diagnosed cases in 2010 and a lifetime risk of more than 5% 

among both, men and women, CRC is the second most common cancer in Germany [3]. 

Globally, 1.4 million people are diagnosed with the disease, and about 700 000 die from it 

each year [4]. The incidence rates of CRC vary widely between different geographical areas. 

Countries of the Western world, such as United States, Canada, United Kingdom, and 

Germany have a much higher incidence of CRC compared to India, Angola, Namibia, Uganda 

and Congo. CRC incidence rates increase with age. In general, 90% of cases are newly 

diagnosed and 94% of deaths occur in individuals 50 years or older. The incidence rate of 

CRC is more than 15 times greater in individuals 50 years or older compared to the incidence 

rate of those aged 20 to 49 years [5]. The risk of a German developing colon cancer during 

his or her lifetime is about 6% and the risk of subsequent death is about 2.5-3.0%. Of 1000 

people between the ages 45 to 75 years, 300 will have benign polyps in the colon and ten 

will have an undetected CRC tumor [3]. 

Figure 1: Layers of the gastrointestinal tract 
Illustration of the four layers of the GI tract, from deep to superficial, are the mucosa, 
submucosa, muscularis, and serosa. Illustration modified from National Cancer Institute, 
March 2016. http://www.cancer.gov/images/cdr/live/CDR688427-750.jpg 

 

 

 

Modified from http://www.cancer.gov 

http://www.cancer.gov/images/cdr/live/CDR688427-750.jpg


Introduction  3 

 

1.1.3 Risk factors of colorectal cancer  

 CRC is traditionally divided into sporadic and familial (hereditary) cases with some 

overlapping of clinical features. Most commonly, CRC arises sporadically (>80%), and is 

influenced by environmental factors. An overview on causes for the development of CRC is 

shown in Figure 2 [6]. 

 In sporadic CRC, dietary factors play an important role. Geographical differences in CRC 

incidence rate can primarily be explained by dietary patterns (Western style diet) [7]. Diets 

high in vegetables, fruits, and whole grain products as consumed in African-, Asian- and 

South American countries have been linked to lower risk of CRC [8]. A high fiber diet has a 

protective effect as shown in several studies [9-14]. Migrant studies have shown that people 

from a country with low prevalence of CRC emigrating to countries with higher prevalence, 

soon acquire the risk rates of the host country by the second or third generation post 

lifestyle-adoption [15]. Other important inverse associations exist with nonsteroidal anti-

inflammatory drugs (NSAIDs), hormone replacement therapy, and physical activity [16-18]. 

 Environmental factors, such as lack of sun exposure are also pertinent; vitamin D plays a 

key role. Insufficient vitamin D, vitamin D precursors, and UV-light are associated with colon 

cancer [19] and also long-term smoking and high alcohol consumption are known to increase 

the risk of CRC [20-24]. Additional studies revealed that being overweight or obese are 

additional risk factors for colon cancer [25].  

 
 

 

 

 
 
 
 
 
 
 

Figure 2: Causes for developing colorectal cancer 
The majority of CRC arises sporadically, 16% are referred to as “familial” and may be caused 
by the interaction of low-penetrance genes, gene-environment interactions, or both. An 
additional 6% are caused by hereditary factors (FAP and HNPCC) [6]. CRC: colorectal cancer; 
FAP: Familial adenomatous polyposis; HNPCC: Hereditary nonpolyposis colorectal cancer. 
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Aggregations of cancer within kindred’s are usually referred to as familial, which does not 

necessarily mean that the disease is genetically inherited. Familial risks calculated between 

family members are unable to distinguish between hereditary and environmental factors, 

because families share many environmental factors, such as diet and lifestyle, which may 

increase or decrease exposures to cancer-related factors [26]. In the third type of CRC, 

hereditary factors play a decisive role. Familial adenomatous polyposis (FAP) causes less 

than 1% of all CRC cases and affects approximately 1 in 7000 people. FAP is caused by an 

inherited mutation in the APC (adenomatous polyposis coli) gene [27]. Hereditary 

nonpolyposis colorectal cancer (HNPCC), also known as Lynch syndrome, affects 1 in 5000 

people and first occurs, on average between the ages of 40 to 50 years. This syndrome is 

caused by a mutation in one of the DNA mismatch repair system (MMR) genes, and accounts 

for 2% of CRC cases [28]. 

1.1.4 Colorectal cancer carcinogenesis 

 The stepwise progression from adenoma to carcinoma may take several decades. As a 

result of genetic alterations that allow growth of neoplastic cells, these alterations may lead 

to deregulated growth, replication and apoptosis- pathways that ultimately lead to a 

progressive malignant phenotype [9]. 

 Currently, two major pathways in colorectal carcinogenesis are known. The most 

common genetic pathway is called the “canonical” (adenoma-carcinoma sequence) or 

“suppressor” pathway, which involves chromosomal instability (CIN) [10]. The second 

pathway is referred to as the microsatellite instability (MSI) pathway. 

 The “canonical” pathway is present in 80%-85% of colorectal carcinomas and it is 

assumed to arise from pre-existing adenomas. For this, Fearon and Vogelstein [3] proposed a 

model of colorectal carcinogenesis that correlates specific genetic events with evolving 

tissue morphology, which is described below. 

 As shown in Figure 3, the cancer sequence is initiated after a mutation in the APC gene 

located on chromosome 5. Damage to the APC gene may result in the formation of an 

adenoma which is a benign lesion. Loss of APC is necessary, but insufficient to cause cancer. 

The next step involves the mutation in the KRAS (Kirsten rat sarcoma) gene which is located 

on chromosome 12 and leads to a constantly activated KRAS protein. With APC wildtype, 

KRAS does not cause cancer but results in a condition known as aberrant crypt foci (ACF). 
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The third genetic mutation in this pathway is the mutation of the SMAD2/4 gene which is 

located on chromosome 18q. The fourth step in this pathway is a mutation of TP53 (tumor 

suppressor protein p53), a tumor suppressor gene which is deactivated in at least 50% of 

CRC cases. This gene is located on chromosome 17p and works by recognizing damaged DNA 

and then prevents the cell from replicating. If genetic repair fails, TP53 probably will 

stimulate apoptosis. Ultimately, loss of TP53 permits abnormal cells to avoid death and 

continue proliferating without restraint [9] 

 

Figure 3: Adenoma-carcinoma sequence  
Illustration of the stepwise progression from normal epithelium to carcinoma due to a series 
of genetic changes [29]. Wnt: Wingless type integration site family, EGFR: Epidermal Growth 
Factor Receptor; TGFß: Tumor Growth Factor ß; APC: adenomatous polyposis coli; KRAS: 
Kirsten Rat Sarcoma Viral Oncogene Homolog; SMAD: portmanteau of SMA (small body size) 
and MAD (mothers against decapentaplegic). Illustration adapted from Davies, R.J et al. 2005 
[30] 

The second pathway of colorectal carcinogenesis involves MSI, and is called the “mutator” 

pathway. The mutator pathway is present in approximately 15-20% of sporadic CRC. 

Mismatch of DNA nucleotides occurs, if DNA polymerase inserts the wrong bases in newly 

synthesized DNA. Normally, cells respond to DNA mismatch by means of mismatch repair. 

Disturbances of the MMR system can result in a situation known as MSI. MSI refers to 

abnormal variations in short, repetitive DNA sequences. However, defects in the mismatch 

repair mechanism lead to MSI. There are two different mechanisms for MSI in sporadic and 

hereditary CRC. HNPCC is caused by a germline mutation in DNA mismatch repair genes, 

most frequently MutS homologue 2 (MSH2) and MutL homologue 1 (MLH1). Instability in 

microsatellite sequences in sporadic CRC exhibiting MSI is often due to loss of expression of 

a mismatch repair gene (most commonly MLH1) caused by epigenetic silencing [31]. 
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1.2 Xenobiotic metabolism and its impact on carcinogenesis 

 The metabolism of xenobiotics is complex and involves multiple steps and multiple 

enzymes. Variable levels of expression of these enzymes as well as the level of exposure to 

their substrates could alter metabolism and clearance of potential carcinogens and thus alter 

CRC susceptibility. Recently, many studies have focused on the relationship between genetic 

polymorphisms and risk of CRC. However, there have been very few studies on the tissue-

specific expression of xenobiotic metabolizing enzymes (XMEs) in the human colon and 

rectum. During my doctoral studies I have written and published a review: Biotransformation 

of xenobiotics in the human colon and rectum and its association with colorectal cancer [32], 

which addresses this issue in a comprehensive manner, providing a systematic overview of 

currently available data on the relation between the cytochrome P450 (CYP), the glutathione 

S-transferase (GST), and the UDP-glucuronosyltransferase (UGT) biotransformation system 

and CRC in human colon and rectum. I this section, I mention the most important findings. 

Table 1, Table 2 and Table 3 provide an overview on human studies on colon and rectum-

specific CYP, GST and UGT expression and activities The full bibliographic information and 

discussion of the respective studies can be found in the original publication [32].  

 The human body is exposed to a great number of xenobiotics in a lifetime, including a 

variety of pharmaceuticals, dietary supplements, plant constituents, and food additives. 

Most of these compounds are lipophilic and therefore poorly excreted, because of the lipid-

rich cell membranes in the GI and urinary tract. The organism can only excrete them by 

metabolism to more hydrophilic metabolites; otherwise they would accumulate in body fat. 

It is, therefore, the task of XMEs to increase the water-solubility of these lipophilic 

compounds, which can afterwards easily be eliminated through the bile or urine. Conversely, 

XMEs can by its action also convert certain chemicals to highly toxic metabolites, which is 

usually the initial event of chemical carcinogenesis. In general, the metabolism of 

xenobiotics is divided into three phases: The phase I reactions include the introduction of 

polar functional groups into the molecule or the modification by oxidation, reduction or 

hydrolysis. Phase II reactions comprise chemical conjugation to water soluble molecules. The 

excretion of biotransformed molecules is often referred to as phase III metabolism. The most 

important phase I metabolic enzymes are the CYP superfamily. UGT and GST enzymes play a 

crucial role in the phase II metabolism [33-35]. The primary biotransformation site is the 

liver, as it is the main detoxification organ. However, extra-hepatic tissues also show 
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metabolic activity, i.e. the GI tract, kidney or bladder. The GI tract is the first site in the body 

that is exposed to a vast majority of xenobiotics. Food constituents, orally administered 

drugs, as well as chemicals from inhaled air end up in the bowel. The ingested chemicals are 

spread by the peristaltic movement of the GI tract over a very large surface area which 

provides favorable conditions for the absorption of lipophilic compounds. Most metabolic 

enzymes are characterized by several genetic polymorphisms, which can affect their 

activities [36]. Different alleles of enzymes involved in xenobiotic metabolism contribute to 

different CRC susceptibility [37]. It is now widely accepted that the development of CRC is 

determined by a complex interaction of both genetic polymorphisms and environmental 

factors [38]. Recently, many studies have focused on the relationship between these genetic 

polymorphisms and risks of CRC [39-43]. However, there have been very few studies on the 

tissue-specific expression of XMEs in the human colon and rectum. 

1.2.1 Human cytochromes P450 

 The CYP enzymes are a multi-gene superfamily of heme-dependent monooxygenases 

which catalyze the oxidation of a broad range of exogenous and endogenous compounds. 

The highest amounts of the most abundant CYPs involved in the metabolism of xenobiotics 

are present in the liver, although some specific forms are also expressed in extra-hepatic 

tissues. CYPs are mainly embedded in the membrane of the endoplasmatic reticulum (ER). 

However, some CYPs are also located in other subcellular compartments, including 

mitochondria and plasma membranes [33, 43, 44]. 

 In humans, 18 CYP families are known, consisting of 44 subfamilies, within 57 annotated 

functional genes [45]. Around 30 CYP enzymes are responsible for drug metabolism and 

belong to families 1-3. CYPs are expressed in a cell type– and tissue-specific pattern [46]. 

They play a major role in the detoxification and elimination of toxic xenobiotics. However, 

CYPs can also activate potential pro-carcinogens into highly toxic metabolites. As a result, 

CYP overexpression is also linked to the development of various types of tumors. CYPs 

activate polycyclic aromatic hydrocarbons (PAHs) and heterocyclic amines (HCAs) to toxic 

metabolites that are implicated in the etiology CRC [47]. Because CYPs are involved in the 

oxidative metabolism of many anticancer drugs, they are not only important for the 

development of tumors but also during treatment of colonic neoplasia [48, 49].  
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In human colon, expression of CYP1A1, CYP1B1, CYP2C, CYP2E1, CYP3A4 and CYP3A5 has 

been detected [46].  

1.2.1.1 The human CYP1 family 

 The human CYP1 family consists of CYP1A1, CYP1A2, and CYP1B1. CYP1A1 is mainly 

expressed in extra-hepatic tissues and is present only at low levels in the liver [50, 51]. It is 

one of the most important enzymes participating in the bioactivation of procarcinogens to 

generate reactive metabolites but it also detoxifies environmental carcinogens such as PAHs, 

HCAs, and industrial arylamines [52]. CYP1A1 gene expression is mediated by the aryl 

hydrocarbon (Ah) receptor-mediated signal pathway [53]. The Ah-receptor is a cytosolic 

transcription factor that is activated upon ligand binding, resulting in translocation to the Ah 

receptor-ligand complex to the nucleus and finally to changes in gene transcription. 

 Human CYP1A2 is constitutively expressed in human liver, albeit not in extra-hepatic 

tissues. It metabolizes several critical endogenous compounds (retinols, melatonin, steroids, 

uroporphyrinogen and arachidonic acids), a number of procarcinogens (PAHs, HCAs, 

mycotoxins), and a variety of therapeutic drugs (clozapine, tacrine, tizanidine, and 

theophylline) [54, 55]. Similar to CYP1A1, the CYP1A2 gene expression is also regulated by 

the Ah receptor [56]. 

 CYP1B1 is a main extra-hepatic cytochrome and its activity has been implicated in 

carcinogenesis, drug resistance and hypertension [57].  

1.2.1.2 The human CYP2 family 

 The human CYP2 family comprises the subfamilies CYP2A, CYP2B, CYP2C, CYP2D, CYP2E, 

CYP2F, and CYP2J. The most important genes of the CYP2 family contributing to the 

metabolism of clinically relevant drugs and alcohol are CYP2A6, CYP2B6, CYP2C8, CYP2C9, 

CYP2C19, CYP2D6, CYP2E1, and CYP2F1. Unlike the CYP1 family, the members of the CYP2 

family do not possess shared regulatory features. Also, the substrate and tissue-specificities 

of these enzymes differ markedly.  

 CYP2A6 is by far the best studied enzyme in its subfamily [58, 59]. It has been shown to 

catalyze the metabolic activation of several procarcinogens and clinically used drugs such as 

coumarin [60-63]. It is also a primary metabolizer of nicotine and cotinine [64, 65]. CYP2A6 is 
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mainly expressed in the human liver but also in extra-hepatic tissues, most notably kidney, 

lung, nasal mucosa and other areas of the respiratory tract [59, 66-69]. 

 CYP2B6 is the only functional enzyme of its subfamily in humans. It is the major 

biotransformation enzyme for a number of clinically used drugs including 

chemotherapeutics such as cyclophosphamide, the antiestrogen tamoxifen and the 

benzodiazepine diazepam [70-72]. CYP2B6 also plays an important role in the metabolism of 

several pesticides and other environmental xenobiotics such as chlorpyrifos, metolachlor, 

butachlor, and the insect repellant N, N-diethyl-m-toluamide (DEET) [73-75]. The functional 

CYP2B6 gene is primarily expressed in the liver with large inter-individual variability [76-79]. 

Besides the liver, CYP2B6 is also expressed in the brain, skin, kidney, lung, peripheral blood 

lymphocytes, and in different parts of the GI- and respiratory tract [46, 76, 80].  

 The human CYP2C subfamily provides approximately 20% of the CYP enzyme complement 

in the liver, but also this subfamily is expressed in various extra-hepatic tissues (lung, kidney, 

gut, and cardiovascular tissues) [81-83]. 

 CYP2C8 metabolizes the chemotherapeutic drug paclitaxel and the anti-diabetic drug 

rosiglitazone, among others [84]. Additionally, CYP2C8 is the principal enzyme in the in the 

liver and kidney that metabolizes arachidonic acid to biologically active epoxyeicosatrienoic 

acids (EETs) [85, 86]. EETs induce vasodilation and exert anti-inflammatory effects in blood 

vessels but they may also promote cancer progression by directly inducing cancer cell 

proliferation [87, 88].  

 CYP2C9 is the most abundant CYP isoform of its subfamily and the second most expressed 

CYP in human liver and intestine [89]. It is involved in the metabolism of numerous 

substrates including the highly carcinogenic HA 2-amino-3, 4-dimethylimidazo(4,5-

f)quinolone or the PAH dibenzo(a,h)anthracene [90, 91]. The enzyme also plays a key role in 

the metabolism of NSAIDs and individuals with several variant alleles demonstrated 

decreased metabolic clearance compared with individuals with the wild-type enzyme [92]. 

 CYP2C19 metabolizes the anticonvulsant drug S-mephenytoin, the antiulcer drug 

omeprazole and other proton pump inhibitors, certain tricyclic antidepressants, and the β-

adrenoceptor blocker propranolol. It is also responsible for the biotransformation of the 

antimalarial drug proguanil to its active metabolite cycloguanil [92-95].  

 CYP2D6 is the only functional gene in the human CYP2D subfamily and probably the most 

studied polymorphically expressed drug metabolizing enzyme in humans. Its activity is highly 
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variable ranging from no activity in poor metabolizers (PM) to ultrarapid metabolizers (UM), 

depending on the gene locus. To date, more than 88 different polymorphic CYP2D6 alleles 

are known. CYP2D6 is involved in the metabolism of at least 25% of the common drugs used 

today [96-99]. This includes antipsychotic agents, antidepressants, opioids, and anticancer 

agents. The most prominent anticancer agent metabolized by CYP2D6 is tamoxifen [100]. 

Tamoxifen is currently used to prevent recurrence of estrogen receptor positive breast 

cancer [101]. Tamoxifen is a largely inactive pro-drug, requiring metabolism by CYP2D6 into 

its active metabolites 4-hydroxytamoxifen and endoxifen [102, 103]. Patients with variant 

forms of the CYP2D6 gene may not receive full benefit from tamoxifen because of a too slow 

metabolism to the more potent active metabolites 4-hydroxytamoxifen and endoxifen [100, 

104, 105]. Inhibition of CYP2D6 by other drugs (e.g. selective serotonin reuptake inhibitors 

(SSRIs)) can result in reduced endoxifen formation which can lead to failure of tamoxifen 

therapy [106]. 

 CYP2E1 is implicated in several diseases such as diabetes, non-alcoholic steatohepatitis 

(NASH), and cancer. It is a key player in alcohol metabolism, oxidative stress, and drug 

metabolism. Apart from the liver, CYP2E1 is also expressed in many other tissues such as 

lung, brain, kidney, GI tract and breast tissues (for review see [107]).  

 Predominantly expressed in the lung, CYP2F1 is the only functional member of the CYP2F 

subfamily [108-110]. Its substrates are pneumotoxicants and styrene [111-115].  

1.2.1.3 The human CYP3 family 

 The human CYP3 family is composed of only of one subfamily, CYP3A, which comprises 

the four CYP genes 3A4, 3A5, 3A7, and 3A43. The CYP3A subfamily is the most abundant CYP 

isoform expressed at both, the mRNA- and protein levels in the human liver and metabolizes 

30-40% of all clinically used drugs [116, 117]. 

 CYP3A7 is the major CYP3A expressed in the human fetal liver, the placenta and 

endometrium [118, 119]. CYP3A43 is expressed at comparatively low levels in fetal and adult 

liver, skeletal muscle, pancreas, kidney, prostate and testis [120, 121]. The amino acid 

sequence of CYPA43 is to 75% identical to CYP3A4 and CYP3A5 and to 71% identical to 

CYP3A7.  
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 CYP3A4 is the major CYP3A isoform in the small intestine, whereas CYP3A5 has been 

reported to be the main form in the human colon [122]. CYP3A4 and CYP3A5 share 

approximately 85% sequence identity leading to similar substrate specificities of these 

isoforms and making a determination of their specific contribution to the overall CYP3A-

mediated drug metabolism difficult [123, 124]. CYP3A4 and CYP3A5 metabolize drugs and 

many endogenous substrates, such as bile acids, steroid hormones and retinoic acid [125].
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 Table 1: Human studies on colon and rectum-specific cytochrome P450 expression and activities 

Study Tissue 
CYP 
isoform 

Protein expression mRNA expression 
Enzyme 
activity 

Additional 
findings 

Plewka et al., 2014*   UC biopsies 

 CD biopsies 

 Normal colorectal 
biopsies 

 3A4 

 2C9 

 2E1 

 2B6 

 1A1 

CYP2C9 1.3 fold higher in 
CD and 0.75 fold lower in 
UC vs. control tissue; 
CYP2B6 higher in the 
disease group vs. the 
control group 
[Immunohistochemistry] 

n.a. n.a. n.a. 

Androutsopoulos et 
al., 2013* 

 Colon cancer tissue 
(n=20) 

 Adjacent normal 
mucosa (n=20) 

 1A1 

 1B1 

n.a CYP1A1 and CYP1B1 
higher in tumor tissues 
vs. adjacent normal 
tissues [qRT-PCR] 

Higher CYP1 
activity in 
colon 
tumors vs. 
normal 
tissue 

mRNA level do 
not correlate 
with enzyme 
activity 

Stenstedt et al., 
2012* 
 

 Colon cancer tissue 
(n=235) 

 2W1 CYP2W1 high in 30% of 
the tumors 
[Immunohistochemistry] 

n.a.  n.a. High CYP2W1 
expression is 
correlated 
with worse 
outcome 

Continues on next page. 
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Study Tissue 
CYP 
isoform 

Protein expression mRNA expression 
Enzyme 
activity 

Additional 
findings 

Matsuda et al., 
2007* 

 Adenoma (n=16) 

 Adenocarcinoma 
(n=30) 

 Carcinoma in or 
with adenoma (n=7) 

 Adjacent normal 
mucosa for all colon 
specimens (n=53) 

 2A6 CYP2A6 higher in 
adenocarcinomas, 
carcinomas in adenoma, 
and adenoma vs. control 
tissue. 
[Immunohistochemistry] 

CYP2A6 detected in 
adenocarcinoma only. 
[in situ hybridization] 

n.a. n.a. 

Thorn et al., 2005*  Normal mucosa 
(n=27) 

 

 2E1 

 3A4 

 3A5 
 

n.a. CYP3A5 higher than 
CYP3A4 
[RT-PCR] 

n.a. Smoking, 
alcohol intake, 
or sex had no 
association 
with CYP 
mRNA level 

Bergheim et al., 
2005* 

 Colonic adenoma 
(n=25) 

 Surrounding normal 
colon mucosa 
(n=25);  

 Disease-free 
controls (n=27) 

 2C 

 2E1 

 3A4 

 3A5 

CYP2C8, CYP3A4, and 
CYP3A5 lower (86%, 
69%, and 54%) in normal 
tissue of adenoma 
patients vs. disease-free 
controls 
[Immunohistochemistry] 

CYP3A5 higher in 
adenoma vs. normal 
tissue of adenoma 
patients (48%) 
[RT-PCR] 

n.a.  CYP protein 
level and 
mRNA 
expression are 
not related in 
normal colonic 
tissue 
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Study Tissue 
CYP 
isoform 

Protein expression mRNA expression 
Enzyme 
activity 

Additional 
findings 

Bergheim et al., 
2005* 
 

Normal mucosa of  

 Ascending (n=10),  

 Descending (n=7) 

 Sigmoid (n=24) 
colon 

 2C 

 2E1 

 3A4 

 3A5 
 

CYP2C8 higher (73%) in 
sigmoid colon vs. 
descending colon; 
CYP2E1 in sigmoid colon 
81% of. descending 
colon 
[Immunohistochemistry] 

CYP2C9 higher in 
ascending colon vs. 
sigmoid colon; 
CYP2E1 and CYP3A5 
lower in the ascending 
colon vs. descending 
and sigmoid colon 
[RT-PCR] 

n.a. n.a.  

Kumarakulasingham 
et al., 2005* 

 CRC tissue (n=264) 

 Normal colorectal 
samples (n=10) 

 Lymph node 
metastasis (n=91) 

 1A1/ 
B1 

 2A/B/
C/D6/
E1/F1/
J2/R1/
S1/U1 

 3A4/ 
A5/A7
/A43 

 4F11/
V2/X1
/Z1 

 24 

 26A1 

CYP1B1, CYP2S21, 
CYP2U1, CYP3A5, and 
CYP51 higher in CRC 
tissue vs. normal colon 
tissue. 
[Immunohistochemistry] 

 n.a.  Higher CYP51 
and CYP2S1 
expression 
associated 
with poorer 
prognosis; 
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Study Tissue 
CYP 
isoform 

Protein expression mRNA expression 
Enzyme 
activity 

Additional 
findings 

Chang et al., 2005*   Colorectal 
adenocarcinoma 
(n=97) 

 Adenomas with 
low-grade dysplasia 
(n=53) 

 Adenomas with 
high-grade 
dysplasia (n=32) 

 Non-neoplastic 
colons (n=49) 

 1B1 CYP1B1 expression rate 
higher in the adenoma 
and carcinoma groups 
vs. non-neoplastic colon 
group 
[Immunohistochemistry] 

n.a. n.a. n.a. 

Gibson et al., 2003*  
 

 Adenocarcinoma 
tissue (n=61) 

 Adjacent normal 
mucosa (n=14) 

 1B1 CYP1B1 higher in 
adenocarcinoma vs. 
normal colon mucosa 
[Immunohistochemistry] 

n.a. n.a. n.a. 

Gervot et al., 1996*  Colon cancer tissue 
(n=21) 

 Adjacent normal 
mucosa (n=21) 

 Sigmoiditis biopsies 
(n=25) 

 3A4 

 3A5 

No difference in control 
and tumor samples 
[Immunoblotting] 

n.a. n.a. 600 mg/day 
rifampicin did 
not induce 
CYP3A 
expression in 
control and 
tumor 
samples. 
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Study Tissue 
CYP 
isoform 

Protein expression mRNA expression 
Enzyme 
activity 

Additional 
findings 

Mercurio et al., 
1995* 

 Normal colorectal 
biopsies (n=5) 

 1A1 

 1A2 

 3A3 

n.a. CYP1A1 higher in 
rectum vs. colon; 
CYP3A3 higher in colon 
vs. rectum; 
CYP1A2 inconsistent 
[RT-PCR] 

n.a. n.a. 

de Waziers et al., 
1991* 

 Normal colon 
mucosa from 
patients with 
sigmoiditis (n=13)  

 Peritumoral and 
tumoral mucosa 
(n=15)  

 1A1 

 1A2 

 2C8-
10 

 2E1 

 3A4 

CYP1A1 not detectable; 
CYP3A4 lower in tumor 
tissue vs. normal tissue 
[Immunoblotting] 

n.a. n.a. n.a. 

*Full bibliographic information and discussion of the respective studies can be found in the original publication [32].  
Abbreviations: UC: ulcerative colitis; CD: Crohn’s disease; CRC: colorectal cancer; qRT-PCR: real-time quantitative PCR; RT-PCR: real-time PCR. 
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1.2.2 Human glutathione S-transferases 

 Human GSTs play a major role in the detoxification of numerous endo- and xenobiotics 

including carcinogens, environmental pollutants and cancer chemotherapeutic drugs [126, 

127]. Aside from detoxifications, GSTs carry out a wide range of functions in cells, such as 

the removal of reactive oxygen species (ROS), apoptosis, steroid and prostaglandin 

biosynthesis, and tyrosine catabolism [128]. GSTs occur in three cellular compartments and 

can be thus distinguished into: cytosolic GSTs, mitochondrial GSTs, and microsomal GSTs, 

also referred to as membrane-associated proteins in eicosanoid and glutathione metabolism 

(MAPEG). The cytosolic GSTs are represented by the classes alpha, mu, pi, theta, zeta, 

omega, and sigma [129]. The mitochondrial GSTs belong to the class of kappa GSTs [126, 

128-131]. Members of the same class share greater than 40% sequence identity, between 

classes the identity is less than 25%. The most abundant mammalian GSTs belong to the 

cytosolic classes alpha, mu, and pi [34]. Class alpha GSTs are basic proteins with 

intermediate subunit molecular masses, class mu GSTs are neutral proteins with high 

molecular masses, and class pi GSTs are acidic proteins of low molecular mass [132]. GSTs 

show a high tissue-specificity although the liver is regarded the most important organ with 

respect to biotransformation. However, GSTs are also active in the kidneys, esophagus, 

stomach, small intestine, and colon [133]. Specific isoenzymes of GST are known to be 

expressed in preneoplastic as well as neoplastic cells and are involved in the development of 

drug resistance [134]. Recent studies have shown decreased protein levels and activities of 

GST in different tumors than in the corresponding normal tissues, including colorectal 

carcinoma [135-138]. Therefore, interventions which increase the glutathione detoxification 

capacity may reduce cancer incidence. In vivo and in vitro studies revealed variety of dietary 

compounds to induce GSTs [139-141]. These include several non-nutrient compounds 

occurring in fruit and vegetables such as limonoids and flavonoids from citrus fruits, 

glucosinolate in brassica vegetables (e.g. broccoli, brussel sprouts), diallyl sulfides in allium 

vegetables (e.g. onion, garlic), and butyrate produced by colonic fermentation of fiber [34, 

132, 142-146].  
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1.2.2.1 The human alpha class GSTs  

 The alpha class GSTs consists of four proteins. GSTA1 and GSTA2 catalyze the conjugation 

of glutathione with electrophiles [147]. They exhibit glutathione dependent steroid 

isomerase activity, and glutathione-dependent peroxidase activity [147]. GSTA3 catalyzes 

glutathione-dependent Δ5-Δ4 isomerization of steroids [148]. GSTA4 is involved in tissue and 

cell defense against oxidative stress by its high activity for the glutathione‐dependent 

detoxification of alkenyl products of lipid peroxidation [149, 150].  

 Alpha class GSTs are widely expressed in human tissues. GSTA1 and GSTA2 are present at 

high protein and mRNA levels in liver, kidney, pancreas, testis, small intestine and adrenal 

gland and at low levels in a wide range of tissues including the GI tract [34, 151-155]. GSTA3 

expression at the mRNA level was reported in the placenta, testis, mammary gland, adrenal 

gland, ovary, lung, stomach, and trachea [148, 154]. GSTA4 is present in almost all tissues at 

the mRNA level and its protein has been found in several cell types of the liver, kidney, skin, 

muscle, and brain [156]. Diets high in cruciferous vegetables, therapeutic drugs, and other 

xenobiotics induce GSTA1/A2 mRNA- and protein expression but also several diseases are 

known to affect its expression [157]. GSTA1/A2 expression in the stomach of Helicobacter 

pylori infected individuals is decreased in comparison to healthy individuals [158]. Also a 

decrease in GSTA expression has been observed in the small intestine of celiac disease 

patients, as well as in stomach and liver cancers [159]. In contrast, an increased expression 

has been observed in lung cancer and in CRC [133].  

1.2.2.2 The human mu class GSTs  

 The human mu class GSTs are encoded by a 100-kb gene cluster on chromosome 1p13.3 

and is highly polymorphic [130, 160-163]. About 50% of the human population carry a 

deletion for GSTM1 gene and this null polymorphism has been widely investigated as a risk 

biomarker for various cancers, resistance to chemotherapy treatment, drug response, and 

disease susceptibility and poorer outcome [164-166]. In smokers, absence of GSTM1 has 

been associated with an increased risk of developing urinary bladder or larynx cancer [167, 

168]. The genes of four other members of the GST mu subfamily (GSTM2-GSTM5) exhibit 

high levels of sequence homology and substrate-specificity with GSTM1 [159].  
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1.2.2.3 The human pi class GSTs (GSTP) 

 GSTP is found in a wide range of normal and neoplastic tissues and is the predominant 

subclass of the GST family in colonic epithelial cells. Increased protein- and mRNA expression 

of GSTP1 has been shown to be associated with poor prognosis and reduced survival in many 

cancers, including head and neck, breast, lung, neurological, hematological and 

gastrointestinal malignancies [169-174]. GSTP1 is a major enzyme participating in the 

inactivation of toxic and carcinogenic compounds. It directly detoxifies a variety of 

anticancer drugs such as chlorambucil, cisplatin or melphalan and can modify also the effect 

of radiotherapy by conjugation of glutathione to ROS [174-176].  
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 Table 2: Human studies on colon and rectum-specific expression and activities of Glutathione S-transferases 

Study Tissue 
GST 
isoforms 

Protein expression Enzyme activity Additional findings 

Hoensch et al., 
2013* 

 Adenoma biopsies 
(n=28)  

 CRC biopsies 
(n=20) 

 GST n.a. Lower in CRC  
(241 nmol/min/mg 
protein) vs. adenoma 
patients (268 
nmol/min/mg) 
[Spectrophotometry / 
CDNB] 

n.a. 

Bedford et al., 
2012* 

 Rectal tumor 
mucosa (n=92) 

 Adjacent normal 
mucosa (n=92) 

 P1 GSTP1 higher in rectal 
adenocarcinoma vs. matched 
normal mucosa [6.59 µg ⁄ mg 
vs 4.57 µg ⁄ mg; P < 0.001]; 
Tumor GSTP1 lower in the 
neoadjuvant treated vs. non-
treated [4.47 µg ⁄ mg vs 7.76 
µg ⁄ mg; P < 0.001] 
[ELISA] 

n.a. n.a. 

Tan et al., 
2011* 

 Colon tumor tissue 
(n=449) 

 P1 [Immunohistochemistry] 
 

n.a. High GSTP1 expression is 
associated with features 
of tumor aggressiveness 
and with reduced overall 
survival 

Continues on next page. 
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Study Tissue 
GST 
isoforms 

Protein expression Enzyme activity Additional findings 

Gaitanarou et 
al., 2008* 

All polyp tissue 
were adenoma of 
different stage of 
dysplasia:  

 low-grade (n=3)  

 mild-grad (n=9) 

 high-grade (n=4) 

 P1 Increase from low-grade 
adenoma to high-grade 
adenoma 
[Immunohistochemistry] 

n.a. n.a. 

Grubben et al., 
2006 

Tissue from patients 
with  

 Adenoma (n=64) 

 HNPCC-Adenoma 
(n=33) 

 HNPCC+Adenoma 
(n=34) 

 FAP (n=19),  

 Carcinoma (n=37), 

 earlier data from 
10 healthy controls  

 GST n.a. GST activity lower in CRC 
or FAP vs. adenoma 
patients or healthy 
controls 
[Spectrophotometry / 
CDNB]  

n.a. 

Table 2 continued 

Continues on next page. 
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Study Tissue 
GST 
isoforms 

Protein expression Enzyme activity Additional findings 

Hoensch et al., 
2006* 

 Biopsies of 
macroscopically 
normal mucosa 
from both 
proximal and distal 
colon (n=208) 

 GST 

 P1 

 M1 

GSTP1 level decreased sig. 
from proximal to distal colon 
(2.25 vs. 2.10 µg/mg protein) 
GSTP1 increase in females 
from the age of under 50 years 
to over 70 years 
[Immunoblotting] 
 

Decrease from proximal 
to distal colon (264 vs. 
244 nmol/min/mg 
protein); 
GST activities increase in 
females from the age of 
under 50 years to over  
70 years 
[Spectrophotometry / 
CDNB] 

n.a. 

Wark et al., 
2004* 

 Rectal biopsies of 
HNPCC and non-
HNPCC subjects 
(n=94) 

 GST 

 A1 

 M1 

 P1 

Cancer-free members of 
HNPCC families had lower 
rectal GSTA1 protein levels 
than those who did not belong 
to a HNPCC family 
[Immunoblotting] 
 

[Spectrophotometry / 
CDNB] 
n.a.  

Smoking is associated with 
higher GST activity and 
higher GSTA1 and GSTP 
protein levels; 
Consumption of fruits, in 
particular citrus fruits, is 
associated with higher 
rectal GST activity 

Naidu et al., 
2003* 

 Colorectal cancer 
tissue (n=13) 

 Adenoma (n=13) 

 Adjacent normal 
mucosa (n=13) 

 GST 

 P1 

GSTP1 protein higher in 
adenocarcinomas vs. normal 
colonic mucosa 
[Immunoblotting] 
 

GST levels increase with 
the stage of neoplastic 
progression from normal 
colonic mucosa, to 
adenoma, to invasive 
adenocarcinoma 
[Spectrophotometry / 
CDNB]  

n.a. 

Table 2 continued 

Continues on next page. 
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Study Tissue 
GST 
isoforms 

Protein expression Enzyme activity Additional findings 

Coles et al., 
2002* 

 Normal tissue of 
the GI tract (n=16) 

 P1 

 A1 

 A2 

 M1 

 M3 

GSTP1 expression throughout 
the GI tract and decrease of 
expression from stomach to 
colon; 
GSTA1 expression 20- to 800-
fold lower in colon vs. 
corresponding small intestine 
[HPLC] 

n.a. n.a. 

Grubben et al., 
2000* 

 Colorectal biopsies 
from healthy 
volunteers (n=64) 

 GST n.a. [Spectrophotometry / 
CDNB] 

 

No effects of unfiltered 
coffee on colorectal GST 
activity 

Sutoh et al., 
2000* 

 Colorectal tumor 
tissue (n=130) 

 P1 [Immunohistochemistry] n.a. High GST Pi expression 
was associated with 
reduced overall survival 

Hengstler et 
al., 1998* 

 Colon cancer 
tissue (n=23) 

 Adjacent healthy 
tissue (n=23) 

 A1 

 P1 

GSTP1 1.9-fold higher in colon 
cancer tissue vs. normal colon 
tissue [15.1 µg ⁄ mg  
vs 8.1 µg ⁄ mg; p = 0.035]; 
GSTA1 higher in colon cancer 
tissue vs. normal tissue  
[0.4 µg ⁄ mg vs 0.0 µg⁄ mg;  
p = 0.019]. [Immunoblotting] 
 

n.a.  n.a. 

Table 2 continued 

Continues on next page. 
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Study Tissue 
GST 
isoforms 

Protein expression Enzyme activity Additional findings 

O’Dwyer et al., 
1995* 

 Mucosal biopsies 
from patients at 
high risk for CRC 
(n=24) 

 
 

 GST n.a. [Spectrophotometry / 
CDNB] 

 

21% GST activity increase 
after a single dose of 250 
mg/m2 Oltipraz 

Nijhoff et al., 
1995* 

 Rectum biopsies 
from healthy 
volunteers (n=10) 

 GST 

 A1 

 M1 

 P1 

[Immunoblotting] 
 

GST enzyme activity not 
affected by Brussels 
sprouts consumption 
[Spectrophotometry / 
CDNB] 

300 g /d Brussel sprouts (1 
week )  30% rectal GSTA 
increase and 15% rectal 
GSTP1 increase in protein 
expression 

Mulder et al., 
1995* 

 Colorectal tumor 
tissue (n=100) 

 Adjacent normal 
mucosa (n=100) 

 GST 

 A1 

 M1 
P1 

High GSTA1 (>0.14 µg/mg; HR, 
2.40; p= 0.008) levels in the 
carcinoma associated with 
poorer overall survival; 
Low GSTM1 (<0.18 µg/mg; HR, 
1.95; p = 0.004) levels in the 
carcinoma associated with 
poorer overall survival; 
High GSTP1 (>5.30 µg/mg; HR, 
1.92, p = 0.0054) associated 
with poorer prognosis, 
(borderline significant) 
[Immunoblotting] 

High level (>243 
nmol/min/mg protein; HR, 
1.66, p = 0.0058) 
associated with poorer 
prognosis (borderline 
significant)  
[Spectrophotometry / 
CDNB] 
 

significant linear 
correlation between 
GSTP1 level and GST 
enzyme activity in the 
tumors 

Table 2 continued 

Continues on next page. 
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Study Tissue 
GST 
isoforms 

Protein expression Enzyme activity Additional findings 

Howie et al., 
1990* 

 Colon tumor tissue 
(n=27) 

 Adjacent normal 
mucosa (n=27) 

 GST 

 P1 

GSTP1 elevated in tumor 
tissue vs. normal colon 
[Immunohistochemistry and 
RIA] 

GST activity increase in 
tumor vs. normal colon 
[Spectrophotometry / 
CDNB] 

Strong correlation 
between GST activity and 
GSTP1 levels in tumor 
tissue. 

Peters et al., 
1989* 

 Stage C colon 
tumor tissue 
(n=449) 

 P1 High GSTP1 expression 
associated with features of 
tumor aggressiveness and with 
reduced overall survival 
[Immunohistochemistry] 

n.a. n.a. 

*Full bibliographic information and discussion of the respective studies can be found in the original publication [32]. 
Abbreviations: CRC: colorectal cancer; RIA: radioimmunoassay; sig: significantly; FAP: familial adenomatous polyposis; HNPCC: Hereditary 
nonpolyposis colorectal cancer; n.a.: not available; CDNB: 1-Chloro-2,4-dinitrobenzene. 
 

Table 2 continued 
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1.2.3 Human UDP-glucuronosyltransferases 

 UGTs are a superfamily of enzymes that catalyze the glucuronidation of numerous 

endogenous compounds including bile acids, steroid hormones and bilirubin as well as 

exogenous substrates such as carcinogens, therapeutic drugs, and environmental pollutants. 

Currently, 21 different UGT proteins have been identified in humans and they are grouped 

into three subfamilies: UGT1A, UGT2A and UGT2B [177, 178]. The human UGT1A gene is 

located on chromosome 2q37 and encodes nine functional proteins (UGT1A1, UGT1A3-

UGT1A10) and four pseudo genes (UGT1A2, UGT1A11-UGT1A13) [179]. The UGT2A and 

UGT2B genes are located on chromosome 4q13 and are comprised of nine individual 

structural genes [177, 180]. In general, UGT1A enzymes conjugate both endogenous and 

exogenous substrates, whereas UGT2B enzymes more often have endogenous compounds 

as substrates [35]. Each enzyme encoded by a UGT gene exhibits a unique, but usually 

overlapping substrate-specificity, tissue localization and regulation. Although the liver is 

recognized as the major site of glucuronidation, it is now clear, that extra-hepatic tissues 

such as the GI tract, kidney, breast or brain also plays an important role in glucuronidation 

reactions [35, 181, 182]. In terms of drug metabolism, the kidneys and GI tract are 

considered the most important sites of extra-hepatic metabolism. There are emerging data 

which suggests that different UGT isoforms might be important in the process of 

carcinogenesis. For example, down-regulation of several UGT1A enzymes has been shown to 

be an early event in hepatic and bilary cancers [183].  

 The GI tract has a unique complement of UGTs, with mRNA and protein expression of all 

isoforms present in liver and additionally UGT1A8 and UGT1A10 [184]. However, their tissue 

distribution along this organ varies significantly. 
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 Table 3: Human studies on colon and rectum-specific expression of UDP-glucuronosyltransferases 

Study Tissue 
UGT 
isoforms 

Protein expression mRNA expression Enzyme activity 
Additional 
findings 

Wang et al., 
2013* 

 CRC tissue and 
surrounding 
healthy tissue 
(n=150) 

 Healthy colon 
mucosa samples 
(n=120) 

 1A1 

 1A3-
1A10 

n.a. UGT1A reduced in 
cancer vs. normal 
tissues from the same 
patient; 
UGT1A in healthy 
tissue in study patients 
lower than control; 
[RT-PCR] 

n.a. n.a. 

Hoensch et 
al., 2013* 

 Colorectal 
adenoma 
biopsies (n=28)  

 Colorectal 
carcinoma (20) 
biopsies 

 UGT n.a. n.a. UGT enzyme activities 
lower in cancer 
patients (150 
pmol/min/mg protein) 
vs. adenoma patients 
(197 pmol/min/mg) 
[LC-MS with 4-
nitrophenol as 
substrate]  

n.a. 

Continues on next page. 
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Study Tissue 
UGT 
isoforms 

Protein expression mRNA expression Enzyme activity 
Additional 
findings 

Court et al., 
2012* 

 Pooled RNA 
from human 
normal tissue 
donors (colon: 
purchased from 
BD-Clontech) 

 1A1-
1A10 

 2A1-2A3 

 2B4 

 2B7 

 2B10 

 2B11 

 2B15 

 2B17 

 2B28 

n.a. In colon highly 
expressed (mRNA 
content >100 copies 
per 109 copies of 
18rRNA): UGT1A4, 1A6, 
1A10, 2A3, 2B4; 
Moderately expressed 
50-100): UGT 1A3, 1A7, 
1A9 
Weakly expressed: 
(<50): UGT1A1, 1A5, 
1A8, 2B7, 2B15, 2B17 
Not expressed: 
UGT2A1, 2A2, 2B10, 
2B11, 2B28 
[qRT-PCR] 

n.a. n.a. 

Wang et al., 
2012* 

 Normal colonic 
mucosa (n=24) 

 Adenoma tissue 
(n=30) 

 Adenocarcinoma 
tissue (n=77) 

 1A UGT1A is highly 
expressed in normal 
colonic mucosa vs. low 
or no expression in the 
adenoma and 
adenocarcinoma tissues 
[Immunohistochemistry] 
 

n.a. n.a.  n.a. 

Table 3 continued 

Continues on next page. 
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Study Tissue 
UGT 
isoforms 

Protein expression mRNA expression Enzyme activity 
Additional 
findings 

Nakamura 
et al., 2008* 

 Total RNA from 
human normal 
tissues 
(purchased from 
Stratagene) 
Tissues: liver, 
colon, kidney, 
bladder, breast, 
ovary, uterus, 
stomach, small 
intestine, 
adrenal gland 
and testis) 

 Total RNA from 
cell lines 

 1A1-
1A10 

 2B4 

 2B7 

 2B10 

 2B11 

 2B15 

 2B17 

 2B28 

n.a. In colon highly 
expressed: UGT1A1, 
1A3, 1A8, 1A10, 2B7, 
2B17 
Moderately expressed: 
UGT1A4, 1A5, 1A6, 
1A7, 2B15 
Weakly expressed: 
UGT1A9, 2B4, 2B11 
No expression: 
UGT2B10, 2B28 
[RT-PCR] 

n.a.  n.a. 

Table 3 continued 

Continues on next page. 
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Study Tissue 
UGT 
isoforms 

Protein expression mRNA expression Enzyme activity 
Additional 
findings 

Giuliani et 
al., 2005* 

 Sections of 
urothelial 
carcinoma, 
lymph node 
metastasis and 
liver metastasis  

 Sections of low 
grade adenoma 
(n=5), high 
grade adenoma 
(n=5), and colon 
carcinoma 
(n=11) 

 1A UGT1A positive only in 
adenomas with low 
grade dysplasia (5/5) 
and in carcinomas 
(2/11); 
High grade dysplasia 
adenoma (5/5) and 
carcinomas (9/11), are 
UGT1A negative 
[Immunohistochemistry] 

n.a. n.a. n.a. 

Strassburg 
et al., 1999* 

 Normal colon 
mucosa from 
CRC patients 
(n=5) 

 Normal liver 
samples from 
patients 
undergoing 
hemihepatect 
my (n=5) 

 1A1 

 1A3 

 1A4-
1A10  

UGT1A diversity greater 
in colon than in liver 
microsomes 
[Immunoblotting] 

UGT1A1, 1A3, 1A4, 
1A6, and 1A9 are 
expressed in human 
liver; 
Human colon 
additionally expresses 
UGT1A8 and 1A10 
[RT-PCR] 

Maximum in liver: 3637 
+/- 1202 pmol/min/mg; 
Maximum in colon: 100 
pmol/min/mg 
[Spectrophotometry:54 
different substrates] 
 

96-fold higher 
UGT activity in 
liver vs. colon 
 

*Full bibliographic information and discussion of the respective studies can be found in the original publication [32]. 
Abbreviations: CRC: colorectal cancer; RIA: radioimmunoassay; sig: significantly; FAP: Familial adenomatous polyposis; HNPCC: Hereditary 
nonpolyposis colorectal cancer; GI tract: gastrointestinal tract; n.a. not available; qRT-PCR: real-time quantitative PCR; RT-PCR: real-time PCR; LC-
MS: liquid chromatography-mass spectrometry. 

Table 3 continued 



Introduction  31 

 

1.3 The central dogma of molecular biology and its implication in xenobiotic 

metabolism 

 The central dogma of molecular biology was first coined by Francis Crick in 1958 [185] and 

re-stated in 1970 [186]. It proposes an unidirectional flux of information from genes to 

mRNA (transcription) to proteins (translation) and explains the flow of genetic information 

within a biological system. With modern research it is becoming clear that some aspects of 

the central dogma are not entirely accurate and numerous findings suggest that the control 

mechanisms in a living cell are more complex than what is presented by the central dogma 

[187] (see Figure 4). One of the most notable exceptions of this is reverse transcription, in 

which RNA encodes DNA. Because genetic, environmental and dietary factors influence the 

expression of XMEs, their inter-individual variability is large, and the susceptibility of humans 

to the pharmacological and toxicological actions of drugs and other chemical varies 

considerably [188]. Therefore, expression level and activities of XMEs, especially for CYPs, 

have been a focus of interest for a long time. Despite advances in genome sequencing and 

high throughput methods, the relationship between XMEs’ gene expression, protein 

abundance, and enzyme activity is still unclear. Although gene expression levels have been 

thoroughly analyzed, mRNA levels do not necessarily reflect protein expression or activity of 

the corresponding enzymes [189]. For example, a study by Rodriguez-Antona et al. 

determined activity and mRNA contents of 10 CYPs in human liver samples and 

demonstrated high correlation coefficients for CYP1A1, CYP1A2, CYP3A4, CYP2D6, and 

CYP2B6, but no significant correlations for CYP2C9, CYP2A6, and CYP2E1 were found [190]. 

Several other studies also reported poor correlations between mRNA expression and activity 

of various CYPs and UGTs [74, 188, 191, 192]. Since biological processes are typically driven 

by proteins, protein expression levels are considered to be a more suitable parameter of the 

functional activity of enzymes. Some studies have demonstrated that, in fact, CYP, GST, and 

UGT protein expression levels were better correlated with enzyme activities than mRNA 

expression levels [74, 192, 193]. For example, Hayashi et al. reported that protein expression 

of CYP2E1 correlated well with activity but not with mRNA expression in human intestinal 

tissue samples [192]. However, high-throughput quantification of protein expression has 

been shown to be more difficult and less straightforward than transcriptome quantification 

and high-throughput methods for most enzyme activity measurements are not available.  
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Thus, it has become common practice to carry out microarray and qRT-PCR measurements 

and use the obtained transcript data to infer functions without information about how the 

protein levels and their activities change. To increase their usefulness, the relationship of 

such genomic and proteomic data to gene product activity should be evaluated in future 

studies. 

 

 

 

 

 

Figure 4: The central dogma of molecular biology 
(A) Classical view. The central dogma of molecular biology explains that DNA codes for RNA, 
which codes for proteins. (B) Expanded view showing post-translational and post-
transcriptional modifications.  
Illustration modified from http://biochem-vivek.tripod.com/id32.html, March 2016. 

 

http://biochem-vivek.tripod.com/id32.html
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2 Aims of the project 

2.1 Aim 1: Evaluation of mRNA, protein and enzyme activities of relevant phase I and 

phase II xenobiotic metabolizing enzymes in normal colorectal tissue of colorectal 

cancer patients 

 The central aim of this thesis was an attempt to link molecular data on enzymes, 

important in the metabolism of foreign compounds to which humans are exposed through 

their food and environment to the etiology of CRC. Data on activities in colon mucosa of 

enzyme activating and detoxicating carcinogens are scarce. Expression at the mRNA and 

protein level show great inter-individual variability and the correlation between mRNA and 

protein levels are poor. The reasons for these variations may be genetic, or caused by food 

ingredients inducing or inhibiting expression. Because the etiology of CRC is not well 

understood due to its complexity, this study on molecular mechanisms of expression and 

activities of enzymes involved in the metabolism of foreign compounds aimed to shed 

further light on this situation. The specific aims were: 

- To quantify mRNA, protein and enzyme activities of the phase I enzymes CYPs known 

or hypothesized to be expressed in normal human colonic mucosa, including CYP2C9 

and CYP3A4/5, and the phase II enzymes GSTM1, GSTP1, UGT1A8 and UGT1A10 in 

mucosa of 97 CRC patients 

- To compare mRNA, protein and enzyme activity levels among all patients included in 

this project  

- To investigate associations of sociodemographic, lifestyle and dietary factors with the 

expression of xenobiotic metabolism-related genes 

2.2 Aim 2: Evaluation of differentially expressed xenobiotic metabolizing enzymes in 

normal and tumor colorectal tissue 

 XMEs are involved in the activation and detoxification of diverse chemical carcinogens. 

Inter-individual variations in the metabolism of carcinogens may occur from various 

activities of metabolizing enzymes in the human colon and rectum. These variations may 

result in different susceptibilities to CRC development. XMEs may also be targets for 

chemoprevention. Up-regulation of detoxifying enzymes and/or down-regulation of 
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activating enzymes may reduce the activity of carcinogenic compounds at the target sites. 

Thus, primary aims included: 

- To compare mRNA expression of eight different XMEs in colorectal carcinomas and 

adjacent normal mucosa in 71 CRC patients 

- To investigate associations of sociodemographic, lifestyle and dietary factors with the 

expression of xenobiotic metabolism-related genes 
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3 Material and Methods 

A detailed listing of the materials used for this project is set out in Appendix A. 

3.1 Study design and study population  

 This thesis was based on CRC patients who participate in the ColoCare study, Heidelberg, 

Germany. ColoCare is an international prospective cohort study of newly-diagnosed stage I-

IV CRC patients (ICD-10 C18-C20). The ColoCare Consortium is a multicenter initiative 

establishing an international cohort of CRC patients for interdisciplinary studies of CRC 

prognosis and outcomes, with sites at the Fred Hutchinson Cancer Research Center, Seattle 

(Washington, USA), H. Lee Moffitt Cancer Center and Research Institute, Tampa (Florida, 

USA), and the National Center for Tumor Diseases (NCT), Heidelberg (Germany). Eligible for 

the study were CRC patients, at least 18 years of age, with a first diagnosis of colon or rectal 

cancer (stages I-IV), and availability of normal mucosal tissue and tumor tissue. Subjects 

meeting the inclusion criteria are recruited to the ColoCare study prior to tumor surgery. 

Baseline examination includes anthropometric measurements, biospecimen collection (fresh 

frozen tissue), and self-administered questionnaires on symptoms and health-related 

quality-of-life. Participants are followed-up (1) passively by retrieving medical data from 

hospital records, and (2) actively at 3, 6, 12, 24 and 36 months post-surgery. The study was 

approved by the Institutional Review Board and all participants provided written informed 

consent. ColoCare uses standard operating procedures that are highly standardized across all 

participating centers to ensure data comparability. Data presented in this thesis were 

exclusively based on ColoCare-Heidelberg. 
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3.1.1 Study sub-populations for different parts of this thesis 

 This thesis is subdivided into two different main aims (see section 2). For each aim, a 

different sub-population of the ColoCare study was analyzed (see Figure 5). 

 

Study population 1  

Aim 1: Evaluation of mRNA, protein and enzyme activities of relevant phase I and phase II 

xenobiotic metabolizing enzymes in normal colorectal tissue of colorectal cancer patients 

 This pilot study involved 97 CRC patients selected from the ColoCare study and recruited 

between June 2013 and July 2015 at the Division of Preventive Oncology in Heidelberg, 

Germany. CRC patients were eligible for selection if they were at least 18 years of age, with a 

first diagnosis of colon or rectal cancer (stages I-IV), and availability of at least 0.5 g normal 

mucosal tissue adjacent to the tumor tissue. 

 

Study population 2  

Aim 2: Evaluation of differentially expressed xenobiotic metabolizing enzymes in normal 

and tumor colorectal tissue of colorectal cancer patients 

 This pilot study involved 71 CRC patients selected from the ColoCare study and recruited 

between November 2010 and May 2014 at the Division of Preventive Oncology in 

Heidelberg, Germany. Eligible for the study were CRC patients, at least 18 years of age, with 

a first diagnosis of colon or rectal cancer (stages I-IV), and availability of both tumor and 

normal mucosal tissue (at least 0.5 g tissue).  
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Figure 5: Study sub-populations 
Two different sub-populations within the ColoCare study were identified, and are 
characterized by different availability of biospecimen. Study population 1 consists of  
n = 97 CRC patients recruited between June 2013 and July 2015. Study population 2 involves 
n = 71 patients recruited between November 2010 and May 2014. Participants in study 
population 1 provided colorectal tissue (normal mucosa) adjacent to the tumor, whereas 
study population 2 provided tumor tissue in addition to the normal mucosa. Following RNA 
isolation, gene expression profiles were analyzed following two different approaches: Gene 
expression profiles were determined by qRT-PCR analysis (for study population 1) and by 
gene expression Illumina HT-12v4 beadchips (for study population 2). Afterwards, 
associations of sociodemographic, lifestyle, and dietary factors with the expression of 
xenobiotic metabolism-related genes were determined in both study populations. 
Additionally, cytosol and microsomes were isolated from normal colorectal tissue (study 
population 1) and protein levels and enzyme activities were determined and correlated with 
each other and with mRNA expression. 
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3.1.2 Data collection 

 Demographic, clinical and treatment data were abstracted from patients’ charts and 

records from the University Clinic of Heidelberg and the NCT tumor registry. Self-

administered ColoCare and interview-based DACHS (Darmkrebs: Chancen der Verhütung 

durch Screening) questionnaires were used to consider lifestyle and dietary data. Variables 

derived from the DACHS questionnaire were marked by an asterisk*. The following variables 

were used within this thesis: 

 

Demographic data 

- Patients’ age at surgery and gender was collected using a self-administered ColoCare 

questionnaire. 

Clinical data 

- Patients’ height and weight at the time point of surgery were abstracted from 

anesthesia documentation sheets. Patients’ weight was further self-reported at follow-

up time points. Body mass index (BMI) was computed as the ratio of weight in kilograms 

to height in meters squared. 

- Patients were staged according to the American Joint Committee on Cancer (AJCC) 

based on histopathological findings and stratified into two groups for analysis; ‘early 

stage CRC patients’ (stages I and II) and ‘late stage CRC patients’ (stages III and IV).  

- Cancer site was defined according to the tenth revision of the International 

Classification of Diseases, Injuries and Causes of Death (ICD-10) as colon cancer (C18.0-

C18.7) and rectal cancer (C19-C20). 

- Patients’ treatment was stratified into ‘neoadjuvant therapy’ and ‘no neoadjuvant 

therapy’ groups. The ‘therapy’ group included patients who had undergone neoadjuvant 

therapy (chemotherapy or radiotherapy) prior to surgery and the ‘no therapy’ group 

included those patients who had not undergone neoadjuvant therapy prior to surgery. 
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Lifestyle data 

- Cigarette smoking was categorized as ‘non- smoker’ (never and former smoker who 

stopped smoking more than 2 years ago) and ‘smoker’ (current smoker). 

- Use of NSAIDs (reported as acetylsalicylic acid (aspirin), ibuprofen, naproxen or 

celecoxib/ etoricoxib) was categorized as either being a user or a non-user. NSAID user 

took at least one pill per month in the past month before surgery (baseline).  

- Mean daily alcohol intake* (in grams) was calculated assuming an ethanol content of 4 g 

in 100 ml of beer, 8.6 g of ethanol in 100 ml of wine and 33 g ethanol in 100 ml of spirit. 

Alcohol consumption was categorized as: ‘0-<4.7 g/day’ (nondrinker and light drinker) 

and ‘>4.7 g/day’ (moderate and heavy drinker). 

Dietary data 

 Consumption of red meat*, processed meat*, and raw- and cooked vegetables* were 

categorized into two groups based on the empirical distributions in the population. The ‘low 

intake’ group included patients who consumed less than one serving of meat or vegetables 

per week and the ‘high intake group’ consisted of patients who consumed at least one 

serving per week during the period of 12 months prior to surgery. 

3.1.3 Tissue collection 

 Normal mucosal tissue with a distance of at least 10 cm from the primary tumor (Study 

population 1) and adjacent colorectal tumor tissue (Study population 2) from the same 

patient were collected by a pathologist (Tissue Bank of the NCT Heidelberg) from a surgical 

specimen in collaboration with the University Clinic Section for Surgical Oncology following 

standard protocols by the surgeon. Normal tissue samples were placed into vials containing 

Hank`s Balanced Salt Solution (HBSS), in order to stabilize the samples during the transport 

process for subsequent isolation of cytosol and microsomes. Normal and tumor tissue 

samples were aliquoted, then snap-frozen in liquid nitrogen and stored at -80°C until use. 

One part of the sample was placed in 4% formalin fixative and, sent to the Department of 

Pathology for histopathologic tissue diagnosis in each case.  
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3.2 Methods Aim 1 

Evaluation of mRNA, protein and enzyme activities of relevant phase I and phase II 

xenobiotic metabolizing enzymes in normal colorectal tissue of colorectal cancer patients 

3.2.1 Isolation of cytosol and microsomes  

 Microsomal and sub-cellular fractions were isolated from an aliquot of fresh-frozen 

tissue, pulverized under liquid nitrogen and suspended in 1/15 M Na/K phosphate buffer 

with 0.5% KCl (pH 7.4) followed by centrifugation at 18 000 g (4°C) for 30 min. The resulting 

supernatant fraction was spun at 100 000 g (4°C) for 60 min, resulting in sedimentation of 

the microsomes. The microsomal pellet was suspended in 1/4 vol. of the organ weight of 

1/15 M Na/K phosphate buffer. Microsomal and cytosolic protein fractions were stored as 

aliquots at -80°C until further use. Protein concentrations were estimated in duplicate by the 

method of Lowry et al. [194] using bovine serum albumin (BSA) as the standard. 

3.2.2 Gene expression experiments 

3.2.2.1 RNA isolation and quantification 

 RNA isolation was performed by an RNeasy protocol (Qiagen, Hilden, Germany) according 

to the manufacturer’s instructions. To this end, 0.15-0.5 g colon or rectal mucosa frozen in 

liquid nitrogen was homogenized using a micro-dismembrator S (Sartorius, Göttingen, 

Germany) in a frozen Teflon container (1 min, 2500 rpm). The powder was transferred into a 

15 ml tube and 7.5 ml of 1% β-mercaptoethanol (β-ME) lysis buffer (Qiagen, Hilden, 

Germany) was added to each sample and mixed until complete homogenization was 

achieved. After homogenization, the tissue lysate was spun for 10 min at 4300 rpm. The 

supernatant was then transferred to a new 15 ml tube and 7.5 ml of 70% ethanol added. The 

lysate was mixed and applied to an RNeasy maxi column placed in a 50 ml tube and spun for 

5 min at 4300 rpm. The column was washed with 15 ml of wash buffer-1 (RW1 Buffer, 

RNeasy kit) and spun for 5 min. at 4300 rpm. A second wash followed using 10 ml of RPE 

Buffer (RNeasy Kit) and the samples were spun again. The eluates were in both cases 

discarded. Another 10 ml RPE Buffer was added to the column and spun for 10 min at 4300 

rpm to dry the RNeasy silica-gel membrane. The eluate was again discarded.  
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Finally, the RNA elution was completed with RNAse free water (RNeasy kit). A first elution 

with 800 μl was followed by another 600 μl. Each elution was spun for 1 min at 4300 rpm. 

The RNA eluates were aliquoted and stored at - 80°C until further use. Total RNA was 

quantified using micro-spectrophotometry (Nano-Drop Technologies, Inc.).  

3.2.2.2 Reverse transcription 

 Single-stranded cDNA was synthesized using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Foster City, USA) according to the manufacturer’s 

instructions. In short: 10 µl of 2X Reverse transcription (RT) Master Mix (see Table 4) and 10 

µl of RNA sample (1 µg/10 µl) were added into a 96-well reaction plate, mixed and loaded 

into the thermal cycler. Thermal cycler conditions are listed in Table 5.  

Table 4: Components of the 2X RT Master Mix used for the reverse transcription 

Component Volume/Reaction 

10X RT Buffer 2.0 µl 

25X dNTP Mix (100 mM) 0.8 µl 

10X RT Random Primers 2.0 µl 

MultiScribe™Reverse Transcriptase 1.0 µl 

RNase Inhibitor 1.0 µl 

Nuclease-free H2O 3.2 µl 

Total per Reaction 10.0 µl 

 

Table 5: Thermal cycler conditions for the reverse transcription 

Temperature  Time 

25°C 10 min 

37°C 120 min 

85°C 5 min 

4°C ∞ 
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3.2.2.3 Real-time quantitative PCR (qRT-PCR) 

cDNA was amplified using predesigned TaqMan® gene expression assays (Applied 

Biosystems, Foster, USA) for GSTP1, GSTM1, CYP2C9, CYP3A5, UGT1A8, UGT1A10, and the 

endogenous controls GAPDH and β-Actin (see Table 6). 

For the real-time PCR reaction, 2X TaqMan® Universal PCR Master Mix (Applied Biosystems, 

Foster, USA) were used. The reaction mixtures were composed as described in Table 7. 

Table 6: TaqMan® MGB probes used in this study 

 

Table 7: Reaction mixture for the real-time PCR reaction 

Component Volume/Reaction  

2X TaqMan® Gene Expression Master Mix  10.0 µl 

20X TaqMan® Gene Expression Assay  1.0 µl 

cDNA template 2.5 µl 

Nuclease-free H2O 6.5 µl 

Total per Reaction 20.0 µl 

 

 TaqMan® PCR amplification was performed using an Applied Biosystem 7900HT Fast Real-

Time PCR system. The cycling conditions were 2 min at 50°C and 10 min at 95°C, followed by 

45 cycles: 15 sec at 95°C, 1 min at 60°C. Reactions were performed in duplicate. Changes in 

GSTP1, GSTM1, CYP2C9, CYP3A5, UGT1A8, and UGT1A10 expression levels, normalized to 

GAPDH and β-Actin mRNA levels, were calculated by the 2–ΔCT method [195]. 

Gene Amplicon Length (bp) Assay ID 

GAPDH 93  Hs02758991_g1 

ACTB (β-Actin) 63  Hs01060665_g1 

GSTP1 54  Hs00168310_m1 

GSTM1 80  Hs01683722_gH 

UGT1A8 137  Hs01592482_m1 

UGT1A10 119  Hs02516990_s1 

CYP2C9 104  Hs01682803_mH 

CYP3A5 82  Hs00241417_m1 
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3.2.3 Protein expression analyses 

3.2.3.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

 25 µg of either microsomal (for CYP and UGT analyses) or cytosolic (for GST analyses) 

protein fractions were mixed with 4x Laemmli Sample Buffer (Bio-Rad Laboratories, 

München), heated for 5 min at 95°C and separated by SDS-PAGE. Known amounts of purified 

proteins were run in parallel with the experimental samples and, served as standards for the 

calculation of the protein levels. A prestained protein molecular weight marker (Precision 

Plus Protein WesternC Standards in conjunction with Precision Protein Streptactin HRP 

Conjugate; Bio-Rad Laboratories, München) was used for protein molecular weight 

estimation. An upper 4% polyacrylamide stacking gel concentrates the samples in the gel. 

Proteins were separated on a 12% polyacrylamide gel (see Table 8). The electrophoresis was 

run at 110 V in 1x running buffer. 

Table 8: Gel casting reagents used for SDS-polyacrylamide gel electrophoresis 

 Running Gel 12% Stacking Gel 4% 

dH2O 8.4 ml 7.6 ml 

3 M Tris-HCl, pH 8.8 1.88 ml --- 

1 M Tris-HCl, pH 6.8 --- 1.3 ml 

40% Acrylamide-Solution* 4.5 ml 1 ml 

10% (w/v) SDS 200 µl 100 µl 

10% (w/v) APS 150 µl 75 µl 

TEMED 15 µl 10 µl 

 15 ml 10 ml 

* Ratio of acrylamide:bisacrylamide = 19:1. 
Abbreviations: SDS: sodium dodecyl sulfate; APS: ammonium persulfate; TEMED: 
tetramethylethylenediamine. 

3.2.3.2 Immunoblot analysis 

 Following electrophoretic separation, proteins were transferred onto a nitrocellulose 

membrane (pore size 0.45 µm) (GE Healthcare, München, Germany) using a Mini Trans-Blot 

electrophoretic transfer cell system (Bio-Rad Laboratories, München, Germany). Gels and 

nitrocellulose membranes were equilibrated for 20 minutes in ice cold transfer buffer.  
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The sandwich was prepared with a pre-wetted fiber pad, a sheet of filter paper, the 

equilibrated gel, the pre-wetted membrane, a sheet of filter paper and a fiber pad. This 

sandwich was placed in the anode part of the cassette and assembled into the transfer tank 

filled with 1x transfer buffer. Proteins were transferred at 4°C at 125 V for 2.30 h. To confirm 

a successful transfer, membranes were stained with Ponceau-S staining solution (AppliChem, 

Darmstadt, Germany) for 2 min, followed by a brief rinse in distilled water, so that the lanes 

and bands were clearly visible. Subsequently, the staining solution was removed by washing 

three times with phosphate buffered saline (PBS) for 5 min, and non-specific binding sites 

were blocked with 5% (w/v) non-fat dry milk in PBS (blocking buffer) for 45 min at room 

temperature (RT). The primary antibodies were diluted in blocking buffer to the appropriate 

concentrations (1:200-1:1000) and incubated overnight at 4°C. After washing three times 

with wash buffer (PBS + Tween 20), membranes were incubated for 1 h at RT with the 

appropriate HRP-conjugated secondary antibody and, diluted to a final concentration of 0.12 

μg/ml in the same media as the primary antibody. After removing excess antibody by three 

washes with wash buffer, the enhanced chemiluminescence reagent (ECL) (Thermo 

Scientific, Rockford, USA) was added in a 1:1 (v/v) ratio, and chemiluminescence was 

detected by conventional standard radiography (Protec, Oberstenfeld, Germany). After the 

detection of the proteins, the blots were stripped and re-probed with anti-β-Actin as a 

loading control.  
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Table 9: Primary- and secondary antibodies used for Western blot analyses 

Antibody Host Dilution Company 
Article 
number 

Primary antibodies 

anti-GSTP1 Rabbit polyclonal 
IgG 

1:200 Sigma-Aldrich, 
Germany 

HPA019869 

anti-β-Actin Rabbit 
monoclonal IgG 

1:200 Cell Signaling, 
Danvers, USA  

4970 

anti-UGT1A10 Mouse polyclonal 
IgG 

1:500 Abnova, Taipei, 
Taiwan 

H00054575-
A01 

anti-CYP3A4 Rabbit polyclonal 
IgG 

1:200 Sigma-Aldrich, 
Germany 

SAB1400065 

Secondary antibodies 

anti-rabbit IgG 
(whole molecule)-
Peroxidase 

Goat  1:1000 Sigma-Aldrich, 
Germany 

A0545 

anti-mouse IgG 
(whole molecule)-
Peroxidase 

Rabbit 1:1000 Sigma-Aldrich, 
Germany 

A9044 

Abbreviations: GST: glutathione S-transferase; UGT: UDP-glucuronosyltransferase; CYP: 
cytochrome P450; IgG: immunoglobulin G. 
 

Table 10: Purified protein standards used for Western blot analyses 

Protein Host 
Mw 
(kDa) 

Company Article number 

GSTP1 (Human) 
Recombinant 
Protein 

Wheat Germ (in 
vitro) 

48.84 Abnova, Taipei, 
Taiwan 

H00002950-P01 

CYP3A4 (Human) 
Recombinant 
Protein 

Wheat Germ (in 
vitro) 

83.70 Abnova, Taipei, 
Taiwan 

H00001576-P01 

UGT1A10 (Human) 
Recombinant 
Protein 

Wheat Germ (in 
vitro) 

37.07 Abnova, Taipei, 
Taiwan 

H00054575-
Q01 

Abbreviations: GST: glutathione S-transferase; UGT: UDP-glucuronosyltransferase; CYP: 

cytochrome P450. 
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3.2.3.3 Indirect Enzyme-Linked Immunosorbent Assay (ELISA) 

 High-binding ELISA plates (Alpha Diagnostics, Texas, USA) were coated with 0.1 μg/well 

antigen (microsomal protein fraction; all samples were loaded in duplicate) in 50 μl of 

coating buffer (0.05 M Na2CO3, 0.05 M NaHCO3, pH 9.6) and incubated for 2 h at 37°C. Plates 

were blocked with 5% casein in PBS overnight, followed by the addition of 100 µl anti-

UGT1A8 antibody (2 mg/ml) (Abcam, Cambridge, US) for an additional 2 h at room 

temperature. Horseradish peroxidase (HRP) conjugated rabbit anti-mouse IgG (1:1000) in 

blocking buffer was added (2 h at room temperature) and the reaction was visualized by the 

addition of 50 µl of TMB (3,3′,5,5′-tetramethylbenzidine) ELISA substrate. After incubation 

for 20 min (previously determined as the optimum time for the determination of the 

absorption, data not shown), 50 µl of stop solution (Abcam, Cambridge, US) was added and 

the plates were read on a µQuant™ microplate spectrophotometer (BioTek, Bad 

Friedrichshall, Germany) at 450 nm. Plates were washed once with washing buffer (PBS, pH 

7.4, containing 0.1% (v/v) Tween 20) and five times with PBS, pH 7.4 after each step. Due to 

the lack of an appropriate reference, it was not possible to quantify the relative amount of 

UGT1A8 in the samples. Binding specificity of the antibody was verified by Immunoblot 

analysis using human UGT1A8 Supersomes (Corning, NY, USA) as a control.  

3.2.4 Enzyme activities 

3.2.4.1 Establishment of a fluorescence-based assay for the determination of Cytochrome 

P450 activity in human colorectal microsomes  

 Crespi et al. reported a high-throughput microtiter plate fluorescence assay for CYP1A1/2, 

activity measurements [196]. Assays were based on using the substrate  

3-cyano-7-ethoxycoumarin (CEC), which is deethylated to 3-cyano-7-hydroxycoumarin (CHC), 

a fluorescent metabolite. Although the assay is well-established for in vitro models, such as 

human liver microsomes, where CYP1A1/2 activity is high, it is questionable whether it is 

also suitable for the measurement of CYP activities in human colon and/or rectal 

microsomes, especially in low amounts of tissue To test whether the assay is working in 

general, CYP activities in Sudan I induced rat liver microsomes and control microsomes 

without Sudan I were assessed in different concentrations. In a 96-well plate the incubation 

mixture (200 μL) contained 67 mM potassium phosphate buffer (pH 7.4),  
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3 mM glucose-6-phosphate, 0.5 U glucose-6-phosphate dehydrogenase, 10 mM MgCl2,  

1 mM NADP, 5 μM CEC (dissolved in DMSO) and 50 μg, 20 µg and 10 µg of microsomal 

fractions from Sudan I induced microsomes and 200 µg, 100 µg and 50 µg of control 

microsomes. The reaction was initiated by the addition of 20 µl CEC and the formation of  

3-cyano-7-hydroxycoumarin was measured every 2 min for 20 min at 37°C in a microplate 

fluorescence reader (Biotek Synergy™ 2) (excitation wavelength 400/30 nm, emission 

wavelenght 460/40 nm). 

 A similar test with human colorectal microsomes and human liver microsmes (as control) 

was subsequently performed in the same way as described above. Concentrations of the 

human liver microsomes were: 50 µg, 20µg and 10 µg and the concentration of the 

colorectal microsomes was 40 µg.  

3.2.4.2 GSH assay for the determination of colorectal glutathione levels 

 The spectrophotometric/microplate reader assay method for glutathione (GSH) is a 

modification of the method first described by Tietze [197]. The assay is based on the 

reaction of GSH with DTNB (5,5'-dithio-bis-2-nitrobenzoic acid, Ellman’s reagent) that 

produces a yellow 5-thio-2-nitrobenzoic acid (TNB) (see Figure 6). The disulfide product, GS-

TNB, is reduced by glutathione reductase (GR) in the presence of nicotinamide adenine 

dinucleotide phosphate (NADPH), to recycle the GSH back into reaction and produce more 

TNB. The rate of TNB production is directly proportional to this recycling reaction which is 

also directly proportional to the concentration of GSH in the sample. Measurement of the 

absorbance of TNB at 405 nm provides an accurate estimation of GSH in the sample. 
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Total colon or rectal GSH was determined using the above mentioned 

spectrophotometric/microplate reader assay method for glutathione. All cytosolic samples 

were deproteinated using 5% sulfosalicylic acid (SSA). One cytosol volume was mixed with 17 

volumes of 5% SSA, incubated for 10 min and spun for 10 min at 10 000 rpm. After 

deproteination, cytosol was diluted with 5% SSA to the appropriate concentration (5.25 µg 

cytosolic protein/10 µl SSA). GSH standards (0.2 µM to 4 µM) were prepared from 84 µM 

stock solution. The assay was set up under the following conditions: 

 Twenty µl of deproteinized sample, standard and blank were added to different columns 

of a 96-well-microplate. Equal volumes of freshly prepared DTNB and GR solutions were 

mixed together and 150 µl were added to each well. After 5 min for the conversion of 

glutathione disulfide (GSSG) to GSH, 50 µl of β-NADPH was added. The absorbance at 412 

nm was immediately read in a µQuant™ microplate spectrophotometer (BioTek, Bad 

Friedrichshall, Germany) and measurements were taken every minute for 15 min. All 

reactions were performed in triplicates. The actual total GSH concentration in the sample 

was determined by using linear regression to calculate the values obtained from the 

standard curve.  

  

Figure 6: Mechanism of total glutathione quantification 
The reaction of GSH with Ellman’s reagent (DTNB) gives rise to a product that can be 
quantified spectrophotometrically at 412 nm. This reaction is used to measure the 
reduction of glutathione disulfide (GSSG) to GSH. The rate of the reaction is proportional to 
the GSH and GSSG concentration. GSH: Glutathione; DTNB: (5, 5'-dithio-bis-2-nitrobenzoic 
acid; TNB: 5-thio-2-nitrobenzoic acid 
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3.2.4.3 Glutathione S-transferase activity measurement 

 Cytosolic GST activity was measured by the conjugation of 1-chloro-2, 4-dinitrobenzene 

(CDNB) with reduced GSH [198]. The conjugation is accompanied by an increase in 

absorbance at 340 nm. The rate of increase is directly proportional to the GST activity in the 

sample (see Figure 7). 

 

Figure 7: The reaction of CDNB with GSH 
GST catalyzes the conjugation of L-glutathione to CDNB through the thiol group of the 
glutathione. The reaction product, GS-CDNB conjugate, absorbs at 340 nm. GSH: glutathione 

 The reaction mixture was prepared by mixing 16 ml of 0.1 M KH2PO4 buffer, pH 6.5, 

(prewarmed to 37°C) with 1 ml of 20 mM GSH and 1 ml of 20 mM CDNB. 20 µl (5 µg/20 µl) of 

the cytosolic protein fraction was added to each well of a 96-well-plate. Each sample was set 

up in triplicate and 20 µl 0.1 M KH2PO4 buffer was used as a blank control. Then, 180 µl of 

the above reaction mixture was added to each well in the microplate and, the plate was 

immediately scanned at 340 nm every minute up to 5 min in a spectrophotometer. The rate 

of conjugated CDNB formation was calculated using the extinction coefficient (ε) 9.6 mM x 

1000 cm2 and a light path of 0.549 cm. The GST activity was calculated as follows: 

 

c =  
∆ABS/min

ε × d
 

 ∆ABS/min = absorptions per min. 

 ε = Extinction coefficient of CDNB: 9.6mM x 1000 cm2 

 d = 0.591 cm 

Data were normalized to protein concentration.  
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3.2.4.4 UDP-glucuronosyltransferase activity 

 A stock solution of 0.01 mM for 4-nitrophenyl β-D-glucuronide (4-NPG) was prepared. For 

calibration curves and quality control samples, serial dilutions of 0.05 – 1 µM were prepared. 

UGT activities toward 4-nitrophenol (4-NP) were determined by quantification of the 4-NPG 

production from glucuronidation by colon microsomes. Incubations were performed in 2 ml 

test tubes. The standard incubation mixture contained 4-NP (0.5 mM), colon microsomal 

proteins from humans (250 μg), 10 mM MgCl2 and, 2 mM uridine-diphosphate-glucuronic 

acid (UDPGA), in a final volume of 400 μl of 50 mM Tris–HCl buffer (pH 7.4). After pre-

incubation at 37°C for 2 min, the reaction was initiated by the addition of 40 µl UDPGA. The 

mixture was incubated at 37°C for 60 min and the reaction terminated with 50 μl of ice-cold 

15% (w/v) perchloric acid and 50 μl of 1% (w/v) bovine serum albumin with vortexing. 

Deproteinated samples were placed on ice for 30 min. The contents of the tubes were 

transferred to 1.5-ml polypropylene test tubes and spun at 12 000 g for 10 min at 4°C. The 

supernatant was filtered with a polytetrafluorethylene (PTFE) membrane filter of 0.45 μm 

pore size (Millipore, Bedford, MA) and analyzed by high-performance liquid 

chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) within 8 h.  

Blank samples containing all components except the UDPGA were added after termination 

of the reaction. 

 HPLC-ESI-MS-MS was conducted on an Agilent 1100 HPLC coupled to an Agilent single-

quadrupole mass-selective detector (HP 1101; Agilent Technologies, Waldbronn, Germany) 

fitted with a reverse-phase C18 Gemini column (250 mm, 4.6 mm i.d., 5 µm; Phenomenex, 

Aschaffenburg, Germany). The mobile phase comprised 2% acetic acid in doubly distilled 

water (solvent A) and acetonitrile (solvent B), with the following gradient profile: initially 

80% A for 20 min; to 0% A over 1 min and continuing at 0% A until completion of the  

run (30 min). The flow rate of the mobile phase was 1.0 ml/minute, the samples were cooled 

at 4°C and 20 μl were injected on column. 4-NP and its glucuronidated product (4-NPG) were 

detected at 305 nm, with a diode-array UV detector (HP 1040M) at 40°C. 
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Negative-ion mass spectra, in selected ion monitoring (SIM) mode were generated under the 

following conditions: drying gas (9 l/ min), drying gas temperature 350°C, fragmentor 

voltage, 50; capillary voltage, 2500 V; nebulizer pressure, 30 psi; m/z scan range, 100-1500 

D. The pseudomolecular ions [M-H]- of 4-NP and 4-NPG were monitored at m/z 138.2 and 

314.2 respectively. Calibration curves for 4-NPG were prepared from stock standard 

solutions at concentrations of 0.05, 0.1, 0.25, 0,5, and 1 μM, as described above. Instrument 

control and data handling were performed with the HP Chemstation software. 

3.2.5 Statistical methods  

 Standard descriptive methods were used to assess sociodemographic, lifestyle and 

dietary factors of the study population. Continuous variables are reported as mean with 

standard deviation (SD) and categorical variables as percentages. 

 For qRT-PCR analyses, SDS 2.4, RQ manager 1.2 (Life Technologies) and Microsoft Excel 

were used with automatic baseline and threshold settings for all targets. Changes in GSTP1, 

GSTM1, CYP2C9, CYP3A5, UGT1A8, and UGT1A10 expression levels, normalized to GAPDH 

and β-Actin mRNA levels, were calculated by the 2–ΔCT method. All normalized expression 

levels were multiplied by a factor 100 000 and log2 transformed to improve legibility and 

comparability. The 97 samples were processed in 20 batches and ComBat, an Empirical 

Bayes method [199], was subsequently used to remove batch effects.  

 Expression of genes linked to drug metabolism in normal mucosa of CRC patients was 

visually evaluated using box plots. 

 To evaluate potential associations between lifestyle and dietary factors and the relative 

gene expression, protein level and enzyme activities in normal mucosa, linear regression 

models were used. After evaluating univariate associations in unadjusted linear regression 

models, multivariable models were used to adjust for potential confounding variables, 

including age (continuous), sex (male, female), smoking status (yes, no), tumor site (colon, 

rectum), neoadjuvant therapy (yes, no), alcohol consumption (0-4.7g/day, >4.7 g/day), 

consumption of red meat, -processed meat, -raw vegetables, and –cooked vegetables (≤ 

1x/week, > 1x/week).  

 The Mann-Whitney U-test and the Kruskal-Wallis test were used to compare associations 

of xenobiotic metabolism-related gene expression, protein level and enzyme activities with 

clinical parameters in patients with CRC.  
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 To address the multiple comparison issue, the Benjamini-Hochberg method to adjust p-

values to the false discovery rate (FDR) was applied (25). FDR-adjusted p-values < 0.05 were 

considered statistically significant. 

 Correlations of mRNA expression, protein level and enzyme activities of XMEs in normal 

colorectal mucosa of CRC patients were tested using Spearman correlation coefficients. 

 Statistical tests were two-sided, and an alpha level of 0.05 was used to determine 

statistical significance. Analyses were performed using SAS, version 9.3 (SAS Institute, Inc., 

Cary, NC) and R, version 3. 2. 3.  
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3.3 Methods Aim 2 

Evaluation of differentially expressed xenobiotic metabolizing enzymes in normal and 

tumor colorectal tissue of colorectal cancer patients 

3.3.1 RNA extraction and gene expression measurements 

 RNA was isolated from 50 mg of tumor and adjacent normal colorectal tissue of 71 CRC 

patients using QIAGEN AllPrep DNA/RNA Mini Kit according to the manufacturer’s 

instructions. Total RNA integrity was assessed on an Agilent Bioanalyzer and the RNA 

Integrity Number (RIN) was calculated; all RNA samples had a RIN > 6.0. Gene expression 

patterns were measured using Illumina HumanHT-12 Expression BeadChips that target more 

than 47 000 transcripts including GSTP1, GSTA1, GSTM1, UGT1A10, UGT1A8, CYP2W1, 

CYP2C9, and CYP3A4. Raw gene expression data was transformed using variance stabilization 

transformation and normalized using robust spline normalization (lumi package) [200]. Data 

was adjusted for possible batch effects using ComBat (sva package) [199, 201]. All 

preprocessing steps were conducted using the statistical software R 3.1.0 (www.r-

project.org). 

3.3.2 Statistical methods 

 Standard descriptive methods were used to assess sociodemographic, lifestyle and 

dietary factors of the study population. Continuous variables are reported as mean with SD 

and categorical variables as percentages.  

 Expression of genes linked to drug metabolism in tumor and normal mucosa of CRC 

patients was visually evaluated using box plots.  

 Differences between tumor and normal mucosa were compared by the paired Wilcoxon-

Rank-sum test.  

 For each gene (GSTP1, GSTA1, GSTM1, UGT1A10, UGT1A8, CYP2W1, CYP2C9, and 

CYP3A4), linear regression models were used to evaluate potential associations between 

sociodemographic, lifestyle and dietary factors and relative gene expression in tumor and 

normal mucosa tissue, respectively. After evaluating univariate associations in unadjusted 

linear regression models, multivariable models were used to adjust for  

potential confounding variables, including age (continuous), sex (male, female),  

smoking status (yes, no), tumor site (colon, rectum), and neoadjuvant therapy (yes, no). 
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Further potential confounding variables were selected separately for each gene, by 

backward elimination using an alpha-value of 0.1. The following covariates were included in 

the backward elimination: BMI (continuous), alcohol (g/day, 0-4.7, >4.7), stage (I/II, III/IV), 

regular NSAID use (yes, no), and consumption of red meat, processed meat-,  

cooked vegetables-, and raw vegetables (≤ 1x/week, > 1x week). Because candidate  

genes were investigated and specifically hypothesized, in parts previously reported 

associations [202, 203], nominal p-values (pn) are presented. However, to address also the 

potential impact of multiple comparisons, the Benjamini-Hochberg method was applied to 

adjust p-values to the false discovery rate (FDR) [204] and adjusted p-values were reported 

as well. FDR-adjusted p-values < 0.05 (pFDR) were considered statistically significant. 

 Statistical tests were two-sided, and an alpha level of 0.05 was used to determine 

statistical significance. Analyses were performed using SAS, version 9.3 (SAS Institute, Inc., 

Cary, NC). 
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4 Results Aim 1  

Evaluation of mRNA, protein and enzyme activities of relevant phase I and phase II 

xenobiotic metabolizing enzymes in normal colorectal tissue of colorectal cancer patients 

4.1 Characteristics of the ColoCare study sub-population 1 

 Of the 103 patients who were selected for the study, six met exclusion criteria or had no 

carcinoma. Finally, the remaining 97 patients were included, constituting the population of 

the present study.  

 The demographic characteristics of the patients entered into the study are shown in  

Table 11. The average age of the participants was 62.4 ± 12.2 years, of which 64% were men. 

Half of the participants were diagnosed with rectal cancer and 58% of the patients had later 

stage disease (stage III or IV). Neoadjuvant radiotherapy was received by 22% of the patients 

and 24% of the patients took NSAIDs regularly in the past month (baseline). Of all patients, 

81% were non-smoker and over 60% had a BMI higher than 25. Evaluation of the dietary 

characteristics showed that a high percentage (≥ 75%) of people ate red and processed 

meat, as well as raw and cooked vegetables several times a week.  
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Table 11: Characteristics of the ColoCare study sub-population 1 

Table continues on next page. 

  

Characteristic n (97) % 

Age (years)1 62.4 ± 12.2  
< 60 38 39% 
60-70 33 34% 

 >70 26 27% 
Sex   

Women 35 36% 
Men 62 64% 

BMI (kg/m2)1 26.9 ± 4.5  
<18.5 1 1% 
18.5-25 34 35% 
25-30 42 43% 
>30 20 21% 

Tumor site   
Colon 48 50% 
Rectum 49 50% 

Smoking status2   
No smoker 78 81% 
Active smoker 18 19% 

Alcohol consumption (g/day)   
0-<4.7  38 40% 
>4.7 56 60% 

NSAID use (past month)3   
No 73 76% 
Yes 23 24% 

Tumor stage   
I/II 38 42% 
III/IV 53 58% 

Neoadjuvant therapy   
No 74 78% 
Yes 21 22% 
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Table 11 continued 

1 Mean ± SD. 
2 Cigarette smoking was categorized as ‘non- smoker’ (never and former smoker who 
stopped smoking more than 2 years ago) and ‘smoker’ (current smoker). 
3 NSAID user took at least one pill per month in the past month before surgery (baseline). 
Abbreviations: NSAIDs: nonsteroidal anti-inflammatory drugs; BMI: body mass index 
Missing values: smoking status: n=1; alcohol consumption: n=4; NSAID use: n=1;  
tumor stage: n=6; consumption of red meat, processed meat, cooked vegetables, and  
raw vegetables n=9. 
 

4.2 Expression of xenobiotic metabolism-related genes, protein levels, enzyme 

activities, and glutathione levels in normal colorectal tissue of colorectal cancer 

patients 

4.2.1 Expression of xenobiotic metabolism-related genes 

 For this thesis, gene expression of six candidate genes (GSTP1, UGT1A8, UGT1A10, 

CYP3A5, and GSTM1) involved in drug metabolism was successfully detected in normal 

colorectal tissue of CRC patients. Figure 8 shows the transcript levels in normal colorectal 

tissues for the six genes analyzed. GSTP1, UGT1A8, UGT1A10, and CYP3A5 expression was 

detectable in all the samples analyzed, whereas GSTM1 expression was detectable in only 65 

out of 97 samples (67%). The mean expression levels in normal colorectal tissue were 

highest for GSTP1 [mean 7.70 (0.60)] and lowest for GSTM1 [mean: 4.08 (1.80)] 

(Supplementary Table 4).  

Characteristic n(97) % 

Red meat consumption   
>1x/week 70 80% 
≤1x/week 18 20% 

Consumption of processed meat   
>1x/week 70 80% 
≤1x/week 18 20% 

Consumption of raw vegetables   
>1x/week 66 75% 
≤1x/week 22 25% 

Consumption of cooked vegetables   
>1x/week 77 88% 
≤1x/week 11 12% 
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4.2.2 Levels of xenobiotic metabolism-related proteins  

 Western blot analyses of GSTP1 and CYP3A4 were performed on the microsomal and 

cytosolic fractions in normal colorectal mucosa of 95 and 92 CRC patients, respectively. A 

representative Western blot is depicted in Supplementary Figure 1.  

 Protein levels of UGT1A10 and UGT1A8 were determined by ELISA in the microsomal 

fractions of 96 normal mucosa samples. Due to the lack of an appropriate purified protein 

standard, it was not possible to quantify the relative amount of UGT1A8 in the samples and 

protein values are based upon the use of photometric measurements at an OD of 450 nm. 

However, binding specificity of the antibody was verified by Immunoblot analysis using 

human UGT1A8 supersomes as control.  

 As shown in Table 12, UGT enzymes could be quantified in all of the samples analyzed, 

whereas GSTP1 and CYP3A4 protein levels were quantified in 95 and 92 samples, 

respectively.  

Figure 8: Expression of genes linked to drug metabolism in normal mucosa samples of CRC 
patients 
Box plot presenting the expression of UGT1A10, UGT1A8, GSTP1, GSTM1, CYP2C9, and 
CYP3A5 in normal mucosa samples of CRC patients. The boxes represent the interquartile 
range, which contains 50% of the values. The whiskers extend from the box to the highest 
and lowest values. Outliers are presented as dots. A line across the box indicates the 
median value 
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 UGT1A10 exhibited the greatest inter-individual differences in protein expression level, 

with a 28-fold difference between the highest and lowest levels measured.  

Table 12: Protein expression levels of GSTP1, CYP3A4, UGT1A10, and UGT1A8 in normal 
mucosa of colorectal cancer patients 

* Due to the lack of an appropriate reference it was not possible to quantify the relative 
amount of UGT1A8 in the samples. Values listed are based upon the use of photometric 
measurements at an OD of 450 nm. 
 

4.2.3 Cytochrome P450 enzyme activities 

 Results of the CYP1A1/2 activity measurements in Sudan I induced rat liver microsomes 

and control microsomes without Sudan I can be found in Supplementary Figure 2. However, 

in human colorectal microsomes no CYP1A1/2 activity could be detected.  

4.2.4 Glutathione S-transferase and UDP-glucuronosyltransferase enzyme activities  

 Cytosolic GST activity was measured spectrophotometrically in 94 normal mucosa 

samples of CRC patients using CDNB as substrate and UGT activity was determined in the 

microsomal fraction of 96 normal mucosa samples by HPLC-ESI-MS using p-nitrophenol as 

substrate. Table 13 shows the mean GST and UGT activities in normal mucosa samples of 

CRC patients. UGT enzymes showed high inter-individual variability in their activities, with 

170-fold difference between the highest and lowest levels measured. A representative 

chromatogram showing the detection of UGT activity toward 4-NP is depicted in 

Supplementary Figure 3. 

Table 13: GST and UGT enzyme activities in normal colorectal tissue of CRC patients 

Enzyme Fraction n Mean activity Max Min Method Substrate 

GST Cytosol 94 
95.62 ± 36.18  
nmol/min x mg 

protein 
175.33 27.32 Photometry CDNB 

UGT Microsomes 96 
16.69 ± 18.21  
pmol/min x mg 
protein 

103.97 0.61 HPLC 
p-nitro-
phenol 

Protein Fraction n (97) 
Mean amount 
(µg/mg protein) 

Max Min Method 

GSTP1 Cytosol 95 12.93 ± 4.17 22.11 3.05 Western blot 

CYP3A4 Microsomes 92 16.60 ± 6.02 36.65 3.06 Western blot 

UGT1A10 Microsomes 96 28.03 ± 13.19 63.29 2.25 ELISA 

UGT1A8* Microsomes 96 0.23 ± 0.15 0.75 0.04 ELISA 
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4.2.5 Cytosolic glutathione level  

 Cytosolic GSH levels were measured in normal mucosa samples of 93 CRC patients and 

values are reported as mean with SD (see Table 14). GSH level varied greatly among CRC 

patients with more than a 20-fold difference between the highest and lowest levels 

measured.  

Table 14: Cytosolic GSH level in normal colorectal tissue of CRC patients 

 

4.3 Association of xenobiotic metabolism-related gene expression, protein levels and 

enzyme activities with clinical parameters  

 Associations of xenobiotic metabolism-related gene expression, protein levels and 

enzyme activities with clinical parameters, including age at diagnosis, gender, BMI, and 

tumor site, tumor stage, neoadjuvant therapy, and NSAID use are summarized in Table 15. 

Results of the univariate analysis revealed a 1.2-fold lower UGT1A8 expression and a 1.7-fold 

lower UGT activity in normal tissue of rectal compared to colon cancer patients (p=0.008; 

pFDR=0.34 and p=0.002; pFDR=0.17, respectively). Furthermore, a lower GSTP1 expression 

level among recent NSAID users compared to non-users (p=0.04; pFDR=0.58) was detected. 

However, after FDR-adjustment for multiple testing, none of the associations tested 

remained significant.  

 Fraction n Mean level Max Min Method 

GSH Cytosol 93 19.02 ± 7.86 nmol/mg  42.64 1.81 Photometry 
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 Table 15: Association of xenobiotic metabolism-related gene expression, protein levels and enzyme activities with clinical parameters in 
patients with colorectal can  

 UGT1A8 gene expression UGT1A10 gene expression GSTP1 gene expression GSTM1 gene expression 

 Mean ± SD p pFDR Mean ± SD p pFDR Mean ± SD p pFDR Mean ± SD p pFDR 

Age (years)             
< 60 4.23 ± 1.33 

0.051 0.58 
5.37 ± 1.09 

0.14 0.60 
7.69 ± 0.54 

0.57 0.91 
4.53 ± 0.91 

0.58 0.91 60-70 4.95 ± 1.13 5.80 ± 1.10 7.77 ± 0.76 3.63 ± 2.14 
>70 4.81 ± 1.01 5.24 ± 1.00 7.62 ± 0.45 4.02 ± 2.13 

Sex             
Women 4.60 ± 1.19 

0.81 0.92 
5.63 ± 0.96 

0.23 0.60 
7.74 ± 0.55 

0.55 0.91 
4.40 ± 1.70 

0.26 0.66 
Men 4.64 ± 1.24 5.38 ± 1.15 7.67 ± 0.62 3.85 ± 1.85 

BMI (kg/m2)             
18.5-25 4.34 ± 1.20 

0.09 0.58 
5.26 ± 1.24 

0.56 0.91 
7.65 ± 0.59 

0.79 0.92 
4.42 ± 1.61 

0.47 0.91 25-30 4.91 ± 1.20 5.63 ± 1.02 7.75 ± 0.63 4.09 ± 1.68 
>30 4.38 ± 1.17 5.51 ± 0.98 7.62 ± 0.54 3.44 ± 2.37 

Tumor site             
Colon 4.98 ± 1.10 

0.008 0.34 
5.65 ± 1.02 

0.11 0.58 
7.59 ± 0.64 

0.11 0.58 
3.98 ± 1.65 

0.27 0.67 
Rectum 4.27 ± 1.23 5.29 ± 1.13 7.80 ± 0.54 4.19 ± 1.98 

Tumor stage             
I/II 4.50 ± 1.21 

0.32 0.73 
5.50 ± 1.22 

0.87 0.96 
7.67 ± 0.58 

0.54 0.91 
4.23 ± 1.37 

0.82 0.92 
III/IV 4.82 ± 1.19 5.44 ± 1.01 7.72 ± 0.62 4.01 ± 2.09 

Neoadjuvant 
therapy 

            

No 4.80 ± 1.16 
0.051 0.58 

5.53 ± 1.10 
0.69 0.91 

7.70 ± 0.63 
0.94 0.99 

3.92 ± 2.03 
0.49 0.91 

Yes 4.17 ± 1.29 5.33 ± 1.07 7.69 ± 0.53 4.57 ± 0.87 
NSAIDs  
(past month)1 

            

No 4.51 ± 1.29 
0.12 0.59 

5.45 ± 1.13 
0.63 0.91 

7.79 ± 0.58 
0.04 0.58 

4.09 ± 1.78 
0.63 0.91 

Yes 4.97 ± 0.89 5.59 ± 0.99 7.44 ± 0.58 4.03 ± 1.92 
Continues on next page. 
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 Table 15 continued 

 

 

 CYP2C9 gene expression CYP3A5 gene expression UGT1A8 protein level UGT1A10 protein level 

 Mean ± SD p pFDR Mean ± SD p pFDR  Mean ± SD p pFDR Mean ± SD p pFDR 

Age (years)             
< 60 4.56 ± 1.30 

0.17 0.60 
4.38 ± 0.75 

0.08 0.58 
0.19 ± 0.11 

0.17 0.60 
25.90 ± 12.44 

0.20 0.60 60-70 4.11 ± 1.48 4.23 ± 1.26 0.22 ± 0.10 26.39 ± 12.12 
>70 4.75 ± 1.33 3.88 ± 0.95 0.22 ± 0.11 31.57 ± 11.26 

Sex             
Women 4.75 ± 1.35 

0.13 0.60 
4.39 ± 0.91 

0.19 0.60 
0.18 ± 0.08 0.05

2 
0.58 

24.85 ± 11.64 
0.09 0.58 

Men 4.29 ± 1.38 4.08 ± 1.05 0.23 ± 0.12 29.23 ± 12.24 
BMI (kg/m2)             

18.5-25 4.54 ± 1.38 
0.15 0.60 

4.36 ± 1.07 
0.21 0.60 

0.19 ± 0.08 
0.52 0.91 

27.91 ± 12.37 
0.59 0.91 25-30 4.67 ± 1.46 4.03 ± 1.04 0.23 ± 0.14 28.44 ± 12.09 

>30 3.98 ± 1.09 4.36 ± 0.75 0.18 ± 0.08 24.96 ± 12.30 
Tumor site             

Colon 4.70 ± 1.35 
0.10 0.58 

4.19 ± 1.03 
0.92 0.98 

0.22 ± 0.13 
0.72 0.91 

26.62 ± 13.17 
0.29 0.70 

Rectum 4.21 ± 1.37 4.20 ± 0.99 0.19 ± 0.09 28.52 ± 11.10 

Tumor stage             

I/II 4.21 ± 1.51 
0.18 0.60 

4.09 ± 1.12 
0.66 0.91 

0.21 ± 0.12 
0.76 0.91 

28.11 ± 11.24 
0.66 0.91 

III/IV 4.59 ± 1.28 4.22 ± 0.92 0.20 ± 0.10 28.00 ± 12.79 
Neoadjuvant 
therapy 

            

No 4.42 ± 1.45 
0.37 0.78 

4.13 ± 1.05 
0.17 0.60 

0.20 ± 0.11 
0.33 0.73 

26.76 ± 12.04 
0.33 0.73 

Yes 4.71 ± 1.10 4.45 ± 0.85 0.22 ± 0.09 30.27 ± 12.66 

NSAIDs  
(past month)1 

            

No 4.50 ± 1.46 
0.81 0.92 

4.26 ± 0.99 
0.69 0.91 

0.20 ± 0.10 
0.50 0.91 

27.43 ± 12.21 
0.74 0.91 

Yes 4.38 ± 1.14 4.06 ± 1.07 0.23 ± 0.12 28.41 ± 12.36 
Continues on next page. 
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 Table 15 continued 

  

 GSTP1 protein level CYP3A4 protein level GST activity UGT activity 

 Mean ± SD p pFDR Mean ± SD p pFDR Mean ± SD p pFDR Mean ± SD p pFDR 

Age (years)             
< 60 13.70 ± 4.24 

0.22 0.60 
15.74 ± 5.72 

0.07 0.58 
95.05 ± 38.62 

0.75 0.91 
15.74 ± 13.98 

0.23 0.60 60-70 13.04 ± 3.82 18.38 ± 4.82 96.13 ± 28.50 14.47 ± 13.50 
>70 11.68 ± 4.35 15.29 ± 5.65 89.62 ± 37.17 19.55 ± 14.63 

Sex             
Women 13.32 ± 3.08 

0.69 0.91 
15.66 ± 4.67 

0.39 0.80 
86.58 ± 28.20 

0.22 0.60 
16.89 ± 13.83 

0.53 0.91 
Men 12.69 ± 4.70 17.01 ± 5.92 97.89 ± 37.36 15.99 ± 14.18 

BMI (kg/m2)             
18.5-25 13.20 ± 3.34 

0.99 1.00 
16.51 ± 5.28 

0.99 1.00 
91.01 ± 32.69 

0.63 0.91 
14.31 ± 11.40 

0.67 0.91 25-30 12.81 ± 4.85 16.36 ± 5.67 99.00 ± 36.79 17.41 ± 15.90 
>30 12.61 ± 4.20 16.90 ± 5.87 89.68 ± 35.03 17.63 ± 14.57 

Tumor site             
Colon 12.92 ± 4.48 

0.92 0.98 
16.18 ± 6.13 

0.52 0.91 
101.29 ± 33.43 

0.06 0.58 
20.69 ± 15.25 

0.002 0.17 
Rectum 12.93 ± 3.89 16.90 ± 4.84 87.22 ± 34.85 12.13 ± 11.31 

Continues on next page. 
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 Table 15 continued 

1 NSAID user took at least one pill per month in the past month before surgery (baseline). 
Note: p-values correspond to Mann-Whitney U test (two-sample group comparisons) and Kruskal-Wallis test (multiple group comparisons).  
Abbreviations: pFDR: false-discovery-rate-adjusted p-value; BMI: body mass index; SD: standard deviation; NSAIDs: nonsteroidal anti-inflammatory 
drugs.  
Units: Protein level (µg/mg) except of UGT1A8 (OD 450nm); GST activity (nmol/min x mg protein); UGT activity (pmol/min x mg protein). 

 GSTP1 protein level CYP3A4 protein level GST activity UGT activity 

 Mean ± SD p pFDR Mean ± SD p pFDR Mean ± SD p pFDR Mean ± SD p pFDR 

Tumor stage             

I/II 12.96 ± 3.98 
0.92 0.98 

16.29 ± 5.36 
1.00 1.00 

86.34 ± 31.02 
0.15 0.60 

16.07 ± 15.14 
0.95 0.99 

III/IV 13.13 ± 4.35 16.43 ± 5.80 98.81 ± 35.61 15.52 ± 12.60 
Neoadjuvant 
therapy 

            

No 12.87 ± 4.10 
0.80 0.92 

15.75 ± 5.45 
0.06 0.58 

93.62 ± 35.10 
0.74 0.91 

16.74 ± 13.74 
0.62 0.91 

Yes 12.93 ± 4.66 18.74 ± 5.29 89.36 ± 30.62 15.76 ± 15.52 
NSAIDs (past 
month)1 

            

No 13.05 ± 4.04 
0.74 0.91 

16.40 ± 5.90 
0.46 0.91 

90.59 ± 34.60 
0.10 0.58 

15.58 ± 14.09 
0.37 0.78 

Yes 12.79 ± 4.54 17.15 ± 4.25 103.99 ± 34.65 17.20 ± 12.19 
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 4.4 Glutathione levels are not associated with clinical parameters in normal colorectal 

tissue of colorectal cancer patients 

 Patient’s normal tissue GSH levels are not associated with clinical parameters including 

age at diagnosis, gender, BMI, tumor site, tumor stage, neoadjuvant therapy, and NSAID use 

(see Table 16). 

 Table 16: Association of patient’s GSH level with clinical parameters 

1 NSAID user took at least one pill per month in the past month before surgery (baseline). 
Note: p-values correspond to Mann-Whitney U test (two-sample group comparisons) and 
Kruskal-Wallis test (multiple group comparisons). 
Abbreviations: BMI: body mass index; SD: standard deviation; NSAIDs: nonsteroidal anti-
inflammatory drugs. 
 
 
  

 GSH level nmol/mg  
 Mean ± SD p 

Age (years)   
< 60 19.00 ± 7.77 

0.52 60-70 20.27 ± 9.21 
>70 17.55 ± 6.07 

Sex   
Women 19.69 ± 6.98 

0.31 
Men 18.61 ± 8.37 

BMI (kg/m2)   
18.5-25 18.41 ± 7.23 

0.62 25-30 18.19 ± 6.33 
>30 21.86 ± 11.05 

Tumor site   
Colon 19.25 ± 5.88 

0.47 
Rectum 18.80 ± 9.46 

Tumor stage   
I/II 18.00 ± 8.00 

0.33 
III/IV 19.97 ± 7.87 

Neoadjuvant therapy   
No 19.51 ± 7.99 

0.47 
Yes 13.91 ± 7.62 

NSAID use (past month)1   
No 19.27 ± 8.66 

0.87 
Yes 18.02 ± 4.87 
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 4.5 Association of xenobiotic metabolism-related gene expression, protein levels and 

enzyme activities with diet and lifestyle  

 Regression estimates of the univariate analyses and multiple adjusted regression models 

separated for each variable are shown in Table 17. Results of the univariate analyses showed 

statistically significant differences in UGT1A8, UGT1A10 and CYP3A4 protein level and UGT 

and GST enzymatic activities between high and low categories of lifestyle and dietary 

variables, but these differences were not shown for gene expression data. Multivariable 

analyses of the eight significant variables determined by univariate analysis identified two 

prognostic factors. Regular consumption of cooked vegetables (>1x/week) was associated 

with higher CYP3A4 protein level (β=5.62; pn=0.009; pFDR=0.65) and regular consumption of 

raw vegetables was associated with lower UGT activities (β=-0.56; pn=0.03; pFDR=0.72) 

compared to non-regular consumption of raw and cooked vegetables (≤ 1x/week) in the 

normal mucosa of CRC patients. However, after FDR-adjustment for multiple testing, none of 

the associations tested remained significant. 
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 Table 17: Association of xenobiotic metabolism-related gene expression, protein level and enzyme activities with diet and lifestyle in patients 
with colorectal cancer 

  

  UGT1A8 gene expression UGT1A10 gene expression 

  Unadjusted Model (n=97) Adjusted Model (n=80) Unadjusted Model (n=97) Adjusted Model (n=82) 
  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Smoking No Ref.  Ref.   Ref.  Ref.   
 Yes -0.45 [-1.10, 0.19] 0.17 -0.28 [-0.95, 0.39] 0.40 0.98 0.16 [-0.43, 0.74] 0.59 0.18 [-0.48, 0.83] 0.60 0.98 

Alcohol 0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
 >4.7 g/day -0.02 [-0.56, 0.52] 0.95 0.11 [-0.43, 0.65] 0.70 0.98 -0.15 [-0.62, 0.32] 0.52 -0.17 [-0.70, 0.35] 0.23 0.87 

Red meat ≤ 1x/week Ref.  Ref.   Ref.  Ref.   
 > 1x/week 0.22 [-0.43, 0.86] 0.50 0.04 [-0.67, 0.75] 0.92 0.98 0.21 [-0.38, 0.81] 0.47 0.43 [-0.27, 1.13] 0.52 0.98 

Processed  
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.18 [-0.82, 0.47] 0.58 0.07 [-0.63, 0.77] 0.85 0.98 -0.21 [-0.80, 0.37] 0.47 -0.01 [-0.70, 0.67] 0.97 0.98 

Raw  
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.17 [-0.44, 0.78] 0.59 0.54 [-1.58, 0.41] 0.17 0.72 -0.38 [-0.93, 0.18] 0.18 -0.35 [-1.09, 0.38] 0.34 0.93 

Cooked 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.25 [-1.05, 0.55] 0.54 -0.58 [-1.58, 0.41] 0.25 0.89 -0.28 [-0.99, 0.43] 0.43 -0.10 [-1.01, 0.81] 0.83 0.98 

Continues on next page. 
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 Table 17 continued 

  

  GSTP1 gene expression GSTM1 gene expression 

  Unadjusted Model (n=97) Adjusted Model (n=82) Unadjusted Model (n=61) Adjusted Model (n=55) 
  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 
Smoking No Ref.  Ref.   Ref.  Ref.   
 Yes 0.02 [-0.29, 0.34] 0.90 0.02 [-0.35, 0.38] 0.92 0.98 0.25 [0.69, -1.00] 0.69 -0.13 [-1.61, 1.35] 0.86 0.98 
Alcohol 0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
 >4.7 g/day 0.21 [-0.05, 0.46] 0.11 0.24 [-0.05, 0.53] 0.11 0.72 0.19 [-0.77, 1.15] 0.70 0.32 [-0.79, 1.42] 0.57 0.98 
Red meat ≤ 1x/week Ref.  Ref.   Ref.  Ref.   
 > 1x/week 0.07 [-0.26, 0.40] 0.68 0.08 [-0.30, 0.47] 0.67 0.98 0.52 [-0.64, 1.68] 0.38 0.76 [-0.76, 2.28] 0.32 0.93 
Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.06 [-0.26, 0.39] 0.69 -0.004 [-0.38, 0.37] 0.98 0.98 -0.24 [-1.38, 0.90] 0.68 -0.53 [-1.91, 0.85] 0.45 0.98 

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.20 [-0.11, 0.50] 0.21 0.31 [-0.10, 0.72] 0.14 0.72 -0.29 [-1.37, 0.78] 0.58 -0.11 [-1.56, 1.33] 0.87 0.98 

Cooked 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.15 [-0.54, 0.24] 0.45 -0.37 [-0.87, 0.13] 0.15 0.72 -0.65 [-1.99, 0.68] 0.33 -0.86 [-2.51, 0.79] 0.30 0.93 
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 Table 17 continued 

  

  CYP2C9 gene expression CYP3A5 gene expression 

  Unadjusted Model (n=97) Adjusted Model (n=82) Unadjusted Model (n=97) Adjusted Model (n=83) 
  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Smoking No Ref.  Ref.   Ref.  Ref.   
 Yes -0.16 [-0.90, 0.58] 0.67 -0.11 [-0.90, 0.68] 0.78 0.98 -0.07 [-0.61, 0.47] 0.80 -0.22 [-0.81, 0.36] 0.45 0.98 

Alcohol 0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
 >4.7 g/day -0.08 [-0.68, 0.52] 0.79 -0.15 [-0.78, 0.49] 0.64 0.98 -0.13 [-0.56, 0.30] 0.55 -0.20 [-0.67, 0.27] 0.39 0.98 

Red meat ≤ 1x/week Ref.  Ref.   Ref.  Ref.   
 > 1x/week 0.54 [-0.22, 1.29] 0.17 0.86 [0.01, 1.71] 0.046 0.72 0.20 [-0.34, 0.74] 0.48 0.44 [-0.18, 1.07] 0.16 0.72 

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.22 [-0.97, 0.52] 0.56 -0.14 [-0.96, 0.69] 0.74 0.98 -0.02 [-0.55, 0.51] 0.94 0.01 [-0.59, 0.62] 0.96 0.98 

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.36 [-1.08, 0.35] 0.32 -0.47 [-1.37, 0.42] 0.30 0.93 -0.29 [-0.80, 0.22] 0.26 -0.31 [-0.97, 0.35] 0.35 0.93 

Cooked 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.50 [-1.40, 0.41] 0.28 -0.13 [-1.23, 0.97] 0.81 0.98 -0.23 [-0.87, 0.42] 0.49 -0.06 [-0.87, 0.75] 0.89 0.98 

Continues on next page. 
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 Table 17 continued 

 
  

  UGT1A8 protein expression UGT1A10 protein expression 

  Unadjusted Model (n=97) Adjusted Model (n=78) Unadjusted Model (n=97) Adjusted Model (n=81) 
  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 
Smoking No Ref.  Ref.   Ref.  Ref.   
 Yes -0.32 [-0.62, -0.03] 0.03 -0.23 [-0.55, 0.09] 0.16 0.72 0.81 [-5.58, 7.21] 0.80 -0.37 [-7.08, 6.33] 0.92 0.98 
Alcohol 0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
 >4.7 g/day -0.003 [-0.25, 0.25] 1.00 0.07 [-0.20, 0.35] 0.58 0.98 -0.12 [-5.42, 5.17] 0.96 -0.24 [-5.84, 5.35] 0.93 0.98 
Red meat ≤ 1x/week Ref.  Ref.   Ref.  Ref.   
 > 1x/week 0.41 [0.12, 0.70] 0.006 0.31 [-0.03, 0.64] 0.07 0.72 7.45 [1.20, 13.70] 0.02 6.06 [-1.12, 13.25] 0.10 0.72 
Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.17 [-0.13, 0.47] 0.25 0.13 [-0.20, 0.47] 0.43 0.98 8.74 [2.43, 15.06] 0.007 6.36 [-0.94, 13.66] 0.09 0.72 

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.19 [-0.09, 0.48] 0.18 0.13 [-0.22, 0.47] 0.47 0.98 -1.37 [-7.38, 4.65] 0.65 -1.30 [-8.50, 5.90] 0.72 0.98 

Cooked 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.11 [-0.27, 0.50] 0.55 0.09 [-0.36, 0.54] 0.68 0.98 -1.86 [-9.71, 5.99] 0.64 -1.84 [-11.00, 7.33] 0.69 0.98 

Continues on next page. 
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 Table 17 continued 

  

  GSTP1 protein level CYP3A4 protein level 

  Unadjusted Model (n=97) Adjusted Model (n=82) Unadjusted Model (n=97) Adjusted Model (n=78) 
  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Smoking No Ref.  Ref.   Ref.  Ref.   
 Yes 0.12 [-2.05, 2.29] 0.92 -0.68 [-3.07, 1.72] 0.58 0.98 -0.86 [-3.83, 2.11] 0.57 -0.73 [-3.84, 2.38] 0.64 0.98 

Alcohol 0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
 >4.7 g/day -0.41 [-2.17, 1.35] 0.64 -0.21 [-2.20, 1.78] 0.83 0.98 -0.55 [-3.01, 1.91] 0.66 -0.86 [-3.49, 1.77] 0.52 0.98 

Red meat ≤ 1x/week Ref.  Ref.   Ref.  Ref.   
 > 1x/week 1.49 [-0.66, 3.63] 0.17 2.01 [-0.55, 4.58] 0.12 0.72 1.36 [-1.59, 4.31] 0.36 -0.12 [-3.44, 3.20] 0.94 0.98 

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -1.67 [-3.81, 0.47] 0.13 -1.93 [-4.48, 0.62] 0.14 0.72 1.14 [-1.88, 4.16] 0.45 0.23 [-3.10, 3.56] 0.89 0.98 

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -1.13 [-3.14, 0.88] 0.27 -1.30 [-3.94, 1.34] 0.33 0.93 2.23 [-0.48, 4.94] 0.11 0.84 [-2.49, 4.18] 0.61 0.98 

Cooked 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.83 [-3.58, 1.92] 0.55 -0.62 [-4.15, 2.91] 0.73 0.98 4.47 [1.09, 7.85] 0.01 5.62 [1.43, 9.80] 0.009 0.65 

Continues on next page. 
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 Table 17 continued 
 

Note: Uni- and multivariable linear regression models were used for the estimation of the b-coefficients. All multivariable models adjusted for age 
(continuous), gender (men, women), current smoking status (yes, no), neoadjuvant therapy (yes, no), tumor site (colon, rectum), alcohol 
consumption (0-4.7 g/day, >4.7 g/day), consumption of red meat, processed meat, raw vegetables, and cooked vegetables (≤ 1x/week, > 
1x/week). 
Abbreviations: pn: nominal p-value; pFDR: false-discovery-rate-adjusted p-value. 
 

  GST activity UGT activity 

  Unadjusted Model (n=97) Adjusted Model (n=79) Unadjusted Model (n=97) Adjusted Model (n=79) 
  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 
Smoking No Ref.  Ref.   Ref.  Ref.   
 Yes -4.92 [-23.25, 13.41] 0.60 1.53 [-15.88, 18.95] 0.86 0.98 -0.35 [-0.81, 0.10] 0.13 -0.28 [-0.73, 0.17] 0.22 0.87 
Alcohol 0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
 >4.7 g/day -20.55 [-34.94, -6.16] 0.006 -10.12 [-24.78, 4.54] 0.17 0.72 -0.19 [-0.57, 0.19] 0.32 -0.22 [-0.60, 0.16] 0.26 0.89 
Red meat ≤ 1x/week Ref.  Ref.   Ref.  Ref.   
 > 1x/week 20.91 [3.07, 38.75] 0.02 16.84 [-1.77, 35.45] 0.08 0.72 -0.18 [-0.66, 0.30] 0.46 -0.04 [-0.56, 0.47] 0.87 0.98 
Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.66 [-17.39, 18.70] 0.94 5.10 [-13.79, 24.00] 0.59 0.98 -0.37 [-0.82, 0.08] 0.10 -0.21 [-0.70, 0.28] 0.40 0.98 

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -5.31 [-22.66, 12.04] 0.54 -2.19 [-21.06, 16.67] 0.82 0.98 -0.52 [-0.94, -0.11] 0.01 -0.56 [-1.06, -0.06] 0.03 0.72 

Cooked 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -6.22 [-31.38, 18.95] 0.62 7.46 [-20.76, 35.67] 0.60 0.98 -0.51 [-1.05, 0.04] 0.07 -0.12 [-0.74, 0.50] 0.71 0.98 
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 4.6 Association of glutathione level with diet and lifestyle  

 No statistically significant associations of GSH level with diet and lifestyle in normal tissue 

of CRC patients was determined by uni- and multivariable analyses (see Table 18).  

Table 18: Association of GSH level with diet and lifestyle in normal colorectal tissue of CRC 
patients 

Note: Uni- and multivariable linear regression models were used for the estimation of the b-
coefficients. All multivariable models adjusted for age (continuous), gender (men, women), 
current smoking status (yes, no = never and former smoker who stopped smoking more than 
2 years ago), neoadjuvant therapy (yes, no), tumor site (colon, rectum), alcohol consumption 
(0-4.7 g/day, >4.7 g/day), consumption of red meat, processed meat, raw vegetables, and 
cooked vegetables. 

4.7 Relation of mRNA expression, protein levels and enzyme activities of xenobiotic 

metabolizing enzymes  

Relation of mRNA expression with protein levels  

 Gene expression levels detected by qRT-PCR of two UGTs, one GST, and one CYP were 

compared with protein expression using Spearman correlation coefficients (see Table 19). 

For UGT1A8, a weak statistically significant association between protein and mRNA 

abundance was observed (r=0.20, p≤ 0.05) (see Figure 9). Among the CYPs and GST, no 

significant correlations were detected.  

  

  GSH level 

  Unadjusted Model (n=97) Adjusted Model (n=83) 
  b-coeff. (95% CI) p b-coeff. (95% CI) pn 

Smoking No Ref.  Ref.  
 Yes 2.26 [-1.85, 6.37] 0.28 1.24 [-3.19, 5.67] 0.58 

Alcohol 0-4.7 g/day Ref.  Ref.  
 >4.7 g/day 2.48 [-0.93, 5.89] 0.15 1.93 [-1.83, 5.69] 0.31 

Red meat ≤ 1x/week Ref.  Ref.  
 > 1x/week 1.17 [-3.01, 5.35] 0.58 2.24 [-2.37, 6.84] 0.34 

Processed meat ≤ 1x/week Ref.  Ref.  
 > 1x/week 2.25 [-1.90, 6.41] 0.28 3.74 [-1.07, 8.55] 0.13 

Raw vegetables ≤ 1x/week Ref.  Ref.  
 > 1x/week -0.33 [-4.23, 3.58] 0.88 -0.05 [-4.83, 4.73] 0.98 

Cooked 
vegetables 

≤ 1x/week Ref.  Ref.  
> 1x/week -2.30 [-7.58, 3.00] 0.39 -2.61 [-8.84, 3.62] 0.41 
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 Relation of mRNA expression with enzyme activities 

 Gene expression levels of UGT1A8 and UGT1A10 were compared with UGT activities and 

GSTP1 and GSTM1 expression were compared with GST activities (see Table 19). Specific 

activities were determined spectrophotometrically (GST) or by HPLC-ESI-MS (UGT) using p-

nitrophenol and CDNB as UGT and GST substrates, respectively. Spearman correlation 

analysis revealed a weak, but statistically significant association of UGT1A10 mRNA levels 

with UGT activities (r=0.28, p≤0.01) (see Figure 9). No further correlations were found.  

Relation of protein levels with enzyme activities 

 UGT1A8 and UGT1A10 protein levels measured by ELISA and GSTP1 protein levels 

determined by Western blot were compared with the respective enzyme activities. As shown 

in Table 20, there was a statistically significant negative correlation between UGT1A10 

protein level and UGT activity (r= -0.27, p ≤ 0.01). UGT1A8 and GSTP1 protein levels showed 

no significant correlations with enzyme activities (see Figure 9).  

Table 19: Correlation of mRNA with protein level and enzyme activities 

* p ≤ 0.05, 
** p ≤ 0.01. 
Note: Association of relative gene expression level with protein level and enzyme activities 
(with rho values) in normal colorectal tissue. 
 

  

 Gene expression log(2) 

 UGT1A10 UGT1A8 GSTP1 GSTM1 CYP3A5 

Protein level (µg/mg)      

UGT1A10 -0.05     

UGT1A8  0.20*    

GSTP1   -0.08   

CYP3A4     -0.10 

Enzyme activity      

UGT (pmol/min x mg protein) 0.28** 0.14    

GST (nmol/min x mg protein)   -0.03 -0.04  
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 Table 20: Correlation of protein level with enzyme activities 

* p ≤ 0.05, 
** p ≤ 0.01. 
Note: Association of relative gene expression level with protein level and enzyme activities 
(with rho values) in normal colorectal tissue. 
 

  

 Protein level (µg/mg) 

 GSTP1 UGT1A10 UGT1A8 

Enzyme activity    

GST (nmol/min x mg protein) 0.02   

UGT (pmol/min x mg protein)  -0.28** -0.13 
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Figure 9: Scatter plots showing Spearman correlations  
of 1) UGT activity (pmol/min x mg protein) with UGT1A10 and UGT1A8 gene expression  
level (log2), 2) GST activity (nmol/min x mg protein) with GSTM1 and GSTP1 gene expression 
level (log2), 3) UGT activity (pmol/min x mg protein) with UGT1A10 protein level (µg/mg), and 
4) UGT1A8 protein levels with UGT1A8 gene expression (log2). Circles and triangles show 
individual samples. 
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 4.8 GST activities in GSTM1 negative and -positive groups  

 The most widely used method for genotyping null polymorphisms has been either 

conventional multiplex PCR followed by gel electrophoresis analysis, or Taqman based qRT-

PCR assays to discriminate between the wild-type, hemizygous deletion, and homozygous 

deletion of the GSTM1 gene. These methods involve the use of DNA which was not available 

in this study. For the purpose of this analysis, however, RNA was used to compare the “null” 

genotype with the “non-null” genotype, but do not distinguish between one and two copy 

numbers of the genes. Quantitative RT-PCR analysis was used to detect GSTM1 expression in 

94 normal colorectal tissue samples adjacent to the tumor. Among these 94 individuals, 32 

(34%) were found to have no detectable GSTM1 expression and were therefore categorized 

as ‘GSTM1-negative’. The remaining 62 (66%) individuals were positive for GSTM1 

(detectable GSTM1 expression). GST activity using CDNB as a substrate was determined in all 

of the 94 samples. No significant difference was observed in the overall GST activity between 

the GSTM1-negative and –positive individuals (see Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Total GST activity in GSTM1-positive and- negative groups 
Total enzyme activity (nmol/min x mg protein) using CDNB as substrate was found to be 
similar in both groups. 
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5 Discussion Aim 1  

 Cancer, by its nature, is a biologically complex disease and has been associated with 

several environmental and dietary risk factors [205]. Phase I and phase II-dependent drug 

metabolism is mainly carried out by polymorphic enzymes which are responsible for the 

metabolism and disposition of these compounds. These enzymes can either inactivate 

carcinogens or, in some cases, generate reactive species that lead to higher reactivity 

compared to the substrate [206]. A number of studies have shown that CYPs, GSTs and UGTs 

are commonly expressed in both normal and tumor tissue in a variety of organs [207]. 

Although the liver is the main detoxification organ in mammalian species, virtually all tissues 

possess the ability to metabolize foreign compounds, including the GI tract, kidney or 

bladder [208]. However, most data in this field of research originate from animal or in vitro 

studies, whereas human studies are limited. The GI-tract is the major path of entry for a 

wide variety of compounds including food, and orally administered drugs, but also 

compounds – with neither nutrient nor other functional value – such as carcinogens. The 

inter-individual variation in the activity of XMEs has been shown to be associated with 

substantial differences in toxicity or cancer risk, even in response to the same amount of 

exposure. Thus, individuals with a diminished capacity to detoxify carcinogens due to 

reduced enzymatic activity undergo more DNA and cell damage and are at greater risk of 

developing toxicity or cancer. For example, the GSTM1 enzyme plays a significant role in the 

detoxification of PAHs found in tobacco smoke. A null genotype which results in no GSTM1 

activity may, in the presence of PAHs, increase the risk of CRC through an inability to 

deactivate carcinogens. A large number of studies have been conducted on the effect of GST 

genes and CRC that show Caucasian GSTM1 null allele carrier’s exhibit increased CRC risk. 

Associations between colon cancer, GSTM1 null genotype and use of tobacco have been 

identified in a few studies, although most studies did not show such associations [209-211]. 

In order to shed light on those questions, mRNA, protein and enzyme activities of the phase I 

enzymes CYPs known or hypothesized to be expressed in normal colonic mucosa, including 

CYP2C9 and CYP3A4/5, and of the phase II enzymes GSTM1 and GSTP1 and UGT1A8 and 

UGT1A10 were quantified. Thereafter, associations of sociodemographic, lifestyle and 

dietary factors with the expression and activity of those XMEs were investigated.  
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Association of cytochrome P450 gene expression and protein levels with clinical 

parameters, diet and lifestyle in normal colorectal tissue of colorectal cancer patients 

 Relative expression levels of CYP2C9 and CYP3A5 and protein levels of CYP3A4 were 

quantified in the microsomal fraction of normal mucosa samples from CRC patients by qRT-

PCR and Western blot, respectively. Higher levels of CYP2C9 compared to CYP3A5 expression 

were detected.  

 Results of the multiple adjusted regression models showed that regular consumption of 

cooked vegetables (>1x/week) was associated with increased CYP3A4 protein level in the 

normal mucosa of CRC patients. When evaluating associations of cooked vegetables with 

CYP3A4 mRNA expression in study population 2 in the second aim of this thesis (page 74), a 

regular consumption of cooked vegetables was associated with decreased mRNA expression 

of CYP3A4 in the normal mucosa of CRC patients. As mRNA expression does not necessarily 

reflect expression at the protein level (see introduction page 24), and I did not quantify for 

CYP3A4 mRNA expression in this study population (Study population 1), a direct comparison 

between CYP3A4 mRNA and protein could not be made. However, this could be the subject 

of future studies.  

 From a biological point of view, one would expect rather decreased CYP3A4 protein levels 

among regular consumers of cooked vegetables. This can be explained by the fact that 

dietary isothiocyanates are formed by the hydrolysis of glucosinolates of ingested 

cruciferous vegetables (which are mostly eaten cooked). The anticarcinogenic activities of 

isothiocyanates are conferred to a variety of target organs including the lungs, liver, 

stomach, mammary gland, esophagus, small intestine, colon and bladder [212, 213].  

 Isothiocyanates are direct and very potent inhibitors of members of the CYP family, 

including CYP3A4 and had been shown to down-regulate CYP3A4 mRNA expression in 

human intestinal cells and human hepatocytes [214]. 

 This unexpected finding should, however, be carefully interpreted, because the 

distribution of the patients in the high and low vegetable groups varied considerably. About 

two thirds of the patients ate cooked vegetables several times a week, while only one third 

of the patients ate cooked vegetables less than once a week. Because this study is limited in 

size, chance findings with regard to the effect of diet on CYP protein expression cannot be 

ruled out and, after FDR-adjustment for multiple testing, this association did not remain 

significant. 
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Association of glutathione S-transferase gene expression, protein levels, enzyme activities 

and glutathione level with clinical parameters, diet and lifestyle in normal colorectal tissue 

of colorectal cancer patients 

 GSTP1 and GSTM1 mRNA expression, GSTP1 protein levels, GSH levels and GST activity in 

the cytosolic fraction of normal mucosa samples from CRC patients were quantified. GSTM1 

expression was detectable in only 67% of the samples and the mean expression levels in 

normal colorectal tissue were highest for GSTP1 and lowest for GSTM1. Associations of 

clinical parameters with GSTP1 expression demonstrated decreased GSTP1 expression 

among recent NSAID users compared to non-users. The metabolism leading to the 

inactivation and elimination of NSAIDs primarily involves oxidation by CYP enzymes (CYP2C9) 

and glucuronide conjugation by UGT enzymes (UGT1A6) but no conjugation with 

glutathione. However, after FDR-adjustment for multiple testing; this association did not 

remain significant. With respect to the small sample size, this could be a chance finding. No 

significant associations were found between GST expression, protein levels, enzyme 

activities or GSH level with diet and lifestyle.  

Association of UDP-glucuronosyltransferase gene expression, protein levels and enzyme 

activities with clinical parameters, diet and lifestyle in normal colorectal tissue of 

colorectal cancer patients 

 Relative expression levels, protein levels of UGT1A8 and UGT1A10 and UGT enzyme 

activities were measured in the microsomal fraction of normal mucosa samples from CRC 

patients. Associations of sociodemographic, lifestyle and dietary factors with the expression 

and activities of UGTs were investigated. Although the overall statistical analysis did not 

reveal significant differences after correction for multiple testing, we detected a trend 

toward significance for 1.2-fold lower UGT1A8 expression and 1.7-fold lower UGT activity in 

normal tissue of rectal compared to colon cancer patients. Studies on mRNA expression 

profiles of UGTs in human colorectal tissue are limited and only one study thus far 

investigated expression profiles of genes encoding proteins that are involved in the 

metabolism and the disposition of xenobiotics in intestinal mucosa from five different 

segments (ileum, ascending colon, transverse colon, descending colon, and rectum).  
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They also detected lower UGT1A8 expression in rectal biopsy samples compared to 

transverse colon biopsy samples [215]. The UGT1A8 gene is expressed exclusively in 

extrahepatic tissues of the GI tract and has been shown to participate in the metabolism of 

benzo (α) pyrene and 2-acetylaminofluorene as well as in the glucuronidation of flavonoids, 

phenolic compounds, coumarins, anthraquinones, and certain steroids [35, 216, 217]. 

Therefore, UGT1A8 may play important roles in the first step of inactivation and 

detoxification of carcinogenic compounds (e.g. benzo (α) pyrene). Due to its high activity 

towards many naturally occurring compounds (e.g. coumarin), UGT1A8 can also limit the 

bioavailability of these potential chemopreventive agents to the body. However, additional 

studies are needed to investigate the regulation of UGT1A8 in the GI tract.  

 UGT activities in normal tissue of rectal compared to colon cancer patients until now have 

not been investigated. Although organ-specific patterns of UGT activities had been 

previously determined in different parts of the GI-tract, including the esophagus, stomach, 

duodenum, ileum, and colon. The highest level of UGT activity has been shown in 

duodenum, followed by the ileum whereas glucuronidation activity in the most distal 

locations was clearly reduced [218-220]. Furthermore, in animal studies it has been reported 

that the specific activities of GSTs and UGTs in rats gradually decrease down the small 

intestine, by analysis of mucosal scrapings or isolated cells [221]. In addition, the activity of 

most drug-metabolizing enzymes has been shown to decrease slightly from the proximal to 

the distal small intestine, whereas in the mucosa of the large intestine a sharp fall in activity 

was observed distally [222]. 

 On evaluation of dietary factors likely to influence the expression and activities of UGTs, 

regular consumption of raw vegetables was associated with lower UGT activities in the 

normal mucosa of CRC patients, although the significant differences were lost after 

correction for multiple testing. Consumption of vegetables and fruits is associated with a 

lower risk of CRC and previous studies have shown that high dietary vegetable intake up-

regulates gastrointestinal UGT activities (for review see [223]). Thus, it is possible that this 

association could be a chance finding and should be further evaluated in future studies.  
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Relation of mRNA expression, protein level and enzyme activities of xenobiotic 

metabolizing enzymes in normal colorectal mucosa of colorectal cancer patients 

 A key assumption in studying mRNA expression is that it accurately predicts protein 

expression levels and enzymatic activities, thus leading to the phenotype. Because the 

Central Dogma of molecular biology states that DNA codes for RNA, which codes for 

proteins, one would expect a direct relationship between mRNA, protein levels and enzyme 

activities. Despite the well-established DNA microarray technology for mRNA profiling, a 

number of studies have shown poor [193] correlations between mRNA and the 

corresponding protein products. Several biological factors are known to influence this 

correlation (posttranslational modifications, protein and mRNA half-lives…), but also 

methodological constraints play a role when comparing mRNA to protein levels. XMEs are 

highly polymorphic and inter-individual variability may influence protein level and enzyme 

activity. Polymorphic enzymes may lose their enzymatic activity but still be detectable by 

Western blot or RT-PCR, depending on the antibody or primer used. So far, only a few 

studies have investigated the correlation of mRNA and protein expression levels in human 

tissues and, the results have demonstrated moderate to poor correlation levels for multiple 

CYPs, UGTs, and GSTs with only a handful of exceptions [218, 220-223]. However, CYP and 

UGT protein levels were better correlated with enzyme activities than with mRNA expression 

levels [221]. 

 In this study, three different parameters (mRNA, protein and enzyme) were compared by 

evaluating CYP, GST, and UGT levels. Gene expression was assessed by qRT-PCR, protein 

expression evaluated by immunoassay detection, and enzymatic activities measured by 

biochemical assays, in the normal tissue of 97 patients with CRC. No statistically significant 

relation was found between mRNA expression, protein levels or enzymatic activities for the 

CYPs and GSTs. For the UGTs, a weak, but statistically significant positive association was 

observed between UGT1A8 protein and mRNA abundance and UGT1A10 mRNA levels and 

UGT activity. However, between UGT1A10 protein level and UGT activity, a statistically 

significant negative correlation was found. One limitation of our study was that we 

measured total UGT activity which includes UGT1A8 and UGT1A10, but also the activity of 

other UGT isoforms. Like other XMEs, the majority of UGTs display broad and often 

overlapping substrate-specificities and isoform-selective substrates have not yet been 

identified for UGT1A8 and 10 [224].  
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Relation of GST activities in GSTM1 negative and -positive groups  

 GSTs are important phase II enzymes involved in the detoxification of a wide range of 

chemicals, including possible carcinogens. For two of the GST genes null polymorphisms 

(GSTM1*0 and GSTT1*0) are described which are of particular interest and result in 

complete absence of the respective GSTM enzyme activity [130]. About 50% of the 

Caucasian population carries a deletion of the GSTM1 gene and a decrease in GST enzyme 

activity could result in inefficient detoxification of various carcinogens, which could lead to 

genetic damage and increased cancer risk.  

 Numerous studies have attempted to identify associations of GSTM1 null with various 

types of cancer, including breast, lung, prostate and CRC but the results are inconsistent 

[193, 225-230]. The reason could be that genes of four other members of the GST mu 

subfamily (GSTM2–GSTM5) exhibit high levels of sequence homology and substrate 

specificity with GSTM1 [160].  

 An aim was to analyze the influence of GSTM1 expression on the enzymatic activity of 

total GST in normal colorectal mucosa of CRC patients and similar activities in individuals, 

irrespective of the presence or absence of GSTM1 were detected. These results are 

supported by Bhattacharjee et al., who also showed similar GST enzymatic activities in 

GSTM1 null and non-null groups in plasma samples of 275 healthy individuals [231]. The 

authors employed expression profiling and GSTM2 over-expression following transient 

knockdown of GSTM1 in HeLa cells and, confirmed that the absence of GSTM1 activity can 

be compensated for by overexpression of GSTM2.  

 

Strengths and limitations 

 

 A major strength of this study is that it is the first study that comprehensively evaluated 

three layers of XME abundance (gene, protein and enzyme) in one and the same patient in 

human colorectal tissue, an important target organ of human carcinogenesis. Such a 

multifactorial approach enabled the correlation of these three different parameters, 

minimized patient-specific variance, and illustrates the power of integrated analysis of 

mRNA, protein and enzyme activities. The data demonstrate that protein abundance and 

enzyme activities cannot be reliably predicted from gene expression measurements.  

The mRNA, protein and enzyme activities were modestly to poor correlated, as earlier cell 

and animal model studies suggested [232].  
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 A further advantage of the study is the detailed assessment of sociodemographic-, 

lifestyle-factors and dietary data and the standardized recruitment of patients at the time of 

surgery, enabling the collection of fresh-frozen tissue specimens.  

 Nonetheless, this study has some potential limitations. The sample size of 97 patients was 

very small, which causes a lack of power to detect statistically significant results, especially 

when performing a large number of tests. However, lack of significant findings could also be 

due to technical reasons. Currently available techniques are not perfectly accurate in mRNA, 

protein or enzyme activity quantification. Western blots and ELISAs are very sensitive 

methods but highly dependent on the specificity of the antibody used and this specificity can 

be confounded by the high degree of sequence homology between members of the same 

subfamily. Enzyme activity measurements are dependent on the substrate used. Many XMEs 

show broad and overlapping substrate specificities which makes it difficult to obtain isoform-

specific substrates.  
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6 Results Aim 2 

Evaluation of differentially expressed xenobiotic metabolizing enzymes in normal and 

tumor colorectal tissue  

6.1 Characteristics of the ColoCare study sub-population 2 

The distribution of selected population characteristics is shown in Table 21. The ColoCare 

study sub-population 2 involved analyses of 71 (48 men, 23 women) colorectal tumor and 

corresponding adjacent normal mucosal tissues from patients aged between 27 years  

and 85 years at the time of surgery (mean age = 64 years). Twenty-six were younger than  

60 years and 45 patients were 60 years, or older. 53.5% of the patients were diagnosed with 

colon cancer and 46.5% with rectal cancer. More than half of the patients (n=40) suffered 

from advanced CRC (stage III/IV) compared to 31 patients with early disease (stage I/II). 

Among the study population, 10 patients received neoadjuvant therapy and 17 patients took 

NSAIDs regularly in the month prior to surgery. 
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Table 21: Characteristics of the ColoCare study sub-population 2 

Table continues on next page. 
  

Characteristic n (71) % 

Age (years)1 63.9 ± 12.7  
< 60 26 37% 
60-70 21 30% 

 >70 24 33% 
Sex   

Women 23 32% 
Men 48 68% 

BMI (kg/m2)1 27.4 ± 4.2  
<18.5 0 0 
18.5-25 22 30% 
25-30 31 44% 
>30 18 26% 

Tumor site   
Colon 38 54% 
Rectum 33 46% 

Current smoking status2   
No smoker 54 83% 
Active smoker 11 17% 

Alcohol consumption (g/day)   
0-<4.7  22 35% 
>4.7 41 65% 

NSAID use (past month)   
No 48 74% 
Yes 17 26% 

Tumor stage   
I/II 31 44% 
III/IV 40 56% 
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Table 21 continued  

1 Mean ± SD, NSAIDs: nonsteroidal anti-inflammatory drugs.  
2 Cigarette smoking was categorized as ‘non- smoker’ (never and former smoker who 
stopped smoking more than 2 years ago) and ‘smoker’ (current smoker). 
3 NSAID user took at least one pill per month in the past month before surgery (baseline). 
Missing values: current smoking status: n=6; alcohol consumption: n=8; consumption of red 
meat, processed meat, raw vegetables, and cooked vegetables, respectively: n=8. 
  

Characteristic n (71) % 

Neoadjuvant therapy   
No 61 86% 
Yes 10 14% 

Red meat consumption   
>1x/week 47 75% 
≤1x/week 16 25% 

Consumption of processed meat   
>1x/week 52 83% 
≤1x/week 11 18% 

Consumption of raw vegetables   
>1x/week 51 81% 
≤1x/week 12 19% 

Consumption of cooked vegetables   
>1x/week 56 89% 
≤1x/week 7 11% 
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6.2 Expression of xenobiotic metabolism-related genes in normal and tumor 

colorectal tissues 

 The mRNA expression of eight xenobiotic metabolism-related enzymes was measured in 

both normal and tumor tissue. For each of the 71 patients, the relative expression of each 

gene was compared in normal and tumor tissue. As shown in Figure 11 and Table 22, all of 

these genes except CYP2C9 showed statistically significant differential expression between 

normal and tumor tissue. Amongst the genes analyzed, GSTM1, GSTA1, UGT1A8, UGT1A10, 

CYP3A4, and CYP2C9 were down-regulated in tumor tissue as compared to normal tissue, 

while GSTP1 and CYP2W1 were up-regulated in tumor tissue. The largest difference in the 

expression between tumor and normal tissue was detected for GSTP1 (mean fold change: 

0.60; p < 0.001) whereas the smallest difference was apparent in CYP3A4 gene expression 

(mean fold change: 1.09; p = 0.03). 

 

Table 22: Expression of genes linked to drug metabolism in normal mucosa and tumor 
tissue of CRC patients 

Abbreviations: FC: Fold change. 

 

Illumina ID Gene Reference ID Tumor tissue Normal mucosa FC p-value 

1070088 UGT1A10 NM_019075.2 7.53 ± 0.27 8.23 ± 0.38 +1.62 < 0.0001 
2070092 UGT1A8 NM_019076.4 7.35 ± 0.13 7.61 ± 0.21 +1.20 < 0.0001 
830047 GSTP1 NM_000852.2 12.47 ± 0.37 11.74 ± 0.26 -0.60 < 0.0001 
5260176 GSTA1 NM_145740.2 7.45 ± 0.21 7.93 ± 0.69 +1.39 < 0.0001 
50672 GSTM1 NM_000561.2 7.68 ± 0.48 7.83 ± 0.54 +1.11 0.004 
630743 CYP3A4 NM_017460.2 7.35 ± 0.12 7.48 ± 0.42 +1.09 0.03 
3390767 CYP2C9 NM_000771.2 7.43 ± 0.12 7.49 ± 0.22 +1.04 0.06 
1230152 CYP2W1 NM_017781.2 7.52 ± 0.33 7.31 ± 0.09 -0.86 < 0.0001 
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Figure 11: Expression of genes linked to drug metabolism in tumor and normal mucosa of CRC patients 
Box plot diagrams presenting the expression of UGT1A10, UGT1A8, GSTP1, GSTA1, GSTM1, CYP2W1, CYP2C9, and CYP3A4 in tumor and normal 
mucosa of CRC patients. The boxes represent the interquartile range, which contains 50% of the values. The whiskers extend from the box to the 
highest and lowest values. Outliers are presented as dots. A line across the box indicates the median value for each patient cohort (tumor, 
normal mucosa). p-values in each diagram refer to Wilcoxon-Rank-sum test. 
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 6.3 Associations of sociodemographic, lifestyle and dietary factors with the 

expression of xenobiotic metabolism-related genes 

 The statistically significant estimates of the multiple adjusted regression models 

separated for each variable are shown in Figure 12. After adjusting p-values for multiple 

testing using the Benjamini-Hochberg method, the most salient finding is a lower CYP2C9 

expression in the normal tissue (β=-0.21; pn=0.0005; pFDR=0.05) of rectal cancer patients 

compared to colon cancer patients. Similar associations were observed between 

sociodemographic, lifestyle and dietary factors and the relative gene expression in tumor 

and normal mucosa tissue, albeit none remained significant after multiple testing 

corrections (Supplementary Table 5): Women had a higher GSTM1 expression in the normal 

tissue compared to men (β=0.37; pn=0.02; pFDR=0.12). Among rectal cancer patients, a lower 

UGT1A10, and UGT1A8, expression in normal tissue (β=-0.32; pn=0.003; pFDR=0.10, and  

β=-0.13; pn=0.03; pFDR=0.15, respectively) and a higher CYP2W1 expression in tumor tissue 

(β=0.24; pn=0.007; pFDR=0.10) was observed compared to colon cancer patients. It was also 

observed that rectal cancer patients treated with neoadjuvant therapy had a lower GSTA1 

and UGT1A8 expression in tumor tissue (β=-0.20; pn=0.01; pFDR=0.10 and β=-0.11; pn=0.02; 

pFDR=0.12) compared to rectal cancer patients that were untreated. Late stage cancer 

patients (stage III/IV) had a lower CYP2W1 expression (β=-0.07; pn=0.005; pFDR=0.10) in the 

normal tissue compared to early stage cancer patients (stage I/II). A higher CYP2W1 

expression was detected in the tumor tissue of smokers compared to non-smokers (β=0.30; 

pn=0.01; pFDR=0.10) and it was shown that smoking was associated with a higher CYP2C9 

expression in normal tissue (β=0.17; pn=0.02; pFDR=0.12). Moreover, a higher GSTA1 and 

UGT1A8 expression in tumor tissue of patients drinking more than 4.7 g alcohol per day 

compared to those drinking less than 4.7 g alcohol per day was observed (β=0.15; pn=0.02; 

pFDR=0.12 and β=0.09; pn=0.01; pFDR=0.10). 

 Assessment of associations of dietary factors with the expression of xenobiotic 

metabolism-related genes showed that frequent consumption of red meat (>1x/week) was 

statistically significantly associated with lower CYP2W1 expression in normal tissue (β=-0.06; 

pn=0.04; pFDR=0.18). Frequent consumption of processed meat was statistically significantly 

associated with higher CYP3A4 expression in the tumor tissue (β=0.09; pn=0.03; pFDR=0.15) 

and higher UGT1A10 expression in normal tissue (β=0.25; pn=0.04; pFDR=0.18). The stronger 

associations between dietary factors and XMEs’ gene expression were seen with the 
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 consumption of cooked vegetables. It was observed that a regular consumption of cooked 

vegetables (>1x/week) was associated with lower CYP3A4, and GSTA1 expression in the 

normal tissue (β=-0.43; pn=0.02; pFDR=0.12 and β=-0.72; pn=0.02; pFDR=0.12). In tumor tissue, 

however, a regular consumption of cooked vegetables was associated with higher CYP3A4 

expression (β=0.14; pn=0.007; pFDR=0.10). There was also a statistically significant association 

between high consumption of raw vegetables and higher GSTP1 expression in tumor tissue 

(β=0.32; pn=0.008; pFDR=0.10) and lower CYP2W1 expression in normal tissue (β=-0.06; 

pn=0.04; pFDR= 0.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Associations of sociodemographic, lifestyle and dietary factors with the 
expression of XMEs  
Multiple linear regression models were used to calculate the β-coefficients of the estimates. 
The bars represent the 95% confidence intervals (95% CI). All multivariable models were 
adjusted for age, gender, smoking status, neoadjuvant therapy, and tumor site. Further 
potential confounding variables were selected separately for each gene by backward 
elimination using an alpha-value of 0.1.  
Note: All data shown are statistically significant with nominal pn-values < 0.05. See 
Supplementary Table 5 for numeric data. 
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7 Discussion Aim 2 

 The aim of this study was 1) to compare the mRNA expression of eight different XMEs in 

colorectal carcinomas and adjacent normal mucosa in 71 CRC patients and 2) to investigate 

associations of sociodemographic, lifestyle and dietary factors with the expression of 

xenobiotic metabolism-related genes. There were two principal findings. First, significant 

differences in tumor vs. adjacent normal tissue in the expression of many genes involved in 

drug metabolism were observed. GSTP1 and CYP2W1 displayed higher expression in tumor 

samples, while GSTM1, GSTA1, UGT1A8, UGT1A10, CYP3A4, and CYP2C9 displayed lower 

expression than normal mucosa. Secondly, several genes were differentially expressed 

comparing high and low categories of lifestyle and dietary variables, both in tumor and 

adjacent normal tissue. However, only one of the findings remained statistically significant 

after correction for multiple testing and is discussed after the next paragraph. 

 Given the fact that carcinogens and their metabolites are generally detoxificated by phase 

II enzymes and, pro-carcinogens are activated to ultimate carcinogens by phase I enzymes, 

the hypothesis was that the expression of the CYPs would be higher in the tumor tissue 

compared to the normal adjacent tissue and the expression of the phase II enzymes  

(GSTs and UGTs) would be lower in tumor tissue. The data is consistent with the hypothesis, 

that GSTM1, GSTA1, UGT1A8, UGT1A10 were down-regulated in tumor tissue as compared 

to normal tissue, while CYP2W1 was up-regulated in tumor tissue. However, not in 

accordance with the hypothesis, the results revealed that the expression of the  

phase I enzyme CYP3A4 was slightly decreased in the tumor tissue, compared to expression 

in normal adjacent tissue and that GSTP1 gene expression was increased in tumor tissue. The 

latter finding is supported by five previous studies detecting similarly significant increases in 

GSTP1 mRNA and/or protein in human colorectal carcinomas [136, 233-236]. Miyanishi et al. 

demonstrated a close association of KRAS mutation with high levels of GSTP1 mRNA [236]. 

However, the exact mechanism of the interaction between KRAS mutation and  

GSTP1 overexpression remains still unclear. 
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The finding that mRNA expression of CYP2W1 was up-regulated in tumor tissue compared to 

normal tissue is supported by three previous studies detecting high amounts of CYP2W1 

mRNA and protein in colonic and rectal tumors and very low expression levels in adjacent 

normal tissue [237-239]. Clinical analyses revealed CYP2W1 as a promising prognostic 

marker for CRC because CYP2W1 gene expression was also shown to correlate with the 

degree of tumor malignancy and increased CYP2W1 protein levels predicts decreased  

10-year survival in colon cancer patients [237, 240].  

 The second aim of this study was to investigate associations of sociodemographic, 

lifestyle and dietary factors with the expression of xenobiotic metabolism-related genes. 

These candidate genes were chosen prior to analysis based on literature reports and their 

biological roles in drug metabolism [203, 241-243] (Supplementary Table 3).  

 Although the overall statistical analysis did not reveal significant differences after 

correction for multiple testing, a trend toward significance for lower CYP2C9 expression in 

rectal cancer patients compared to colon cancer patients in normal tissue was detected. This 

result is consistent with two other studies, detecting lower CYP2C9 expression in healthy 

rectal biopsy samples than in colon biopsy samples [215, 244]. CYP2C9 is the most abundant 

CYP isoform of its sub-family and, the second most expressed CYP in human liver  

and intestine. It is involved in the metabolism of numerous substrates including  

the highly carcinogenic HA 2-amino-3,4-dimethylimidazo(4,5-f)quinolone or the  

PAH dibenzo(a,h)anthracene. The enzyme also plays a key role in the metabolism of NSAIDs 

and, individuals with several variant alleles demonstrated decreased metabolic clearance 

compared with individuals with the wild-type enzyme [245]. Due to the limited sample size 

(and the resultant loss of sufficient power), interactions of CYP2C9 expression with NSAID 

use, PAHs or HAs were not detected but this could be the subject of larger studies in the 

future. 

 Furthermore I comment briefly on the nominally significant results on the associations of 

lifestyle and risk factors with the expression of xenobiotic metabolism-related genes in both, 

normal and tumor colorectal tissue. Several genes were differentially expressed between 

high and low categories of sociodemographic, lifestyle and dietary variables, both  

in tumor and adjacent normal tissue. One of the most interesting result was  

that regular consumption of cooked vegetables (>1x/week) was strongly associated  

with decreased expression of CYP3A4 in the normal mucosa of CRC patients.  
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Consumption of vegetables, especially of the family Cruciferae has been associated with a 

decreased risk of colorectal adenomas and cancer [246]. Cruciferous vegetables contain high 

amounts of glucosinolates which are hydrolyzed to the biologically active isothiocyanates 

[247]. Isothiocyanates are known for their antitumorigenic features and are also known to 

down-regulate CYP3A4 mRNA expression in human intestinal cells and human hepatocytes 

[214]. In a human dietary intervention study where CYP3A4 expression was investigated in 

biopsies from normal colorectal mucosa, CYP3A4 was downregulated in healthy controls as a 

consequence of high vegetable diet, but not in patients with sporadic adenoma [202]. 

Another interesting result of this study was that smoking was associated with higher CYP2C9 

expression in normal tissue of smokers compared to non-smokers. Tobacco smoke contains 

a variety of carcinogenic compounds such as PAHs, HAs and nitrosamines which require 

metabolic activation by different enzymatic pathways which is often initiated by  

CYP enzymes and primarily by CYP2C9 [248]. In addition PAHs are also potent inducers of 

CYP expression [249]. Therefore it can be hypothesized that a higher CYP expression may 

lead to increased carcinogen activation and thus increased disease risk among smokers. 

CYP2C9 expression and its association with smoking status in the human colon and rectum 

have rarely been studied. Among these prior studies, one reported that carriers of CYP2C9 

variants, with lower enzyme activity, have a reduced adenoma risk than smokers with wild-

type CYP2C9 [203]. Furthermore, it has been shown that CYP2C9 was significantly induced in 

smoker compared to non-smoker in lung and larynx tissue [250, 251]. 

 This illustrates that some of the observed associations are consistent with the literature 

and biologically meaningful. However, there are probably some false positives among these 

associations which need to be confirmed in further studies.  

 Associations of environmental factors with XMEs are of particular interest to fully 

understand the complex mechanism underlying CRC etiology. However, one of the biggest 

issues to overcome is to obtain a greater sample size needed to investigate these 

interactions with sufficient power to adjust for multiple testing. Therefore, the current study 

should be regarded as a pilot study. However, it is unique in that alterations in  

gene expression patterns of CYPs, GSTs and UGTs could be monitored in colorectal  

tumors and compared, in parallel, to normal adjacent tissues. A further limitation of this 

study is that no genotype information of the eight genes studied was available.  
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Besides single nucleotide polymorphisms and copy number variants, there are two null 

polymorphisms (GSTM1*0 and GSTT1*0) that are of particular interest which result in 

complete absence of the respective GSTM enzyme activity [130]. About 50% of the 

Caucasian population carry a deletion for GSTM1 gene and it has been postulated that 

variant-carriers have increased susceptibility to carcinogens and are more likely to develop 

cancer, including CRC [167, 252]. 

 Strengths of the study include a detailed assessment of sociodemographic-, lifestyle-

factors and dietary data, and the availability of both tumor and adjacent normal tissue from 

the same patient. 

 In conclusion, this study shows that colorectal tumor tissue and histologically normal 

tissue adjacent to tumors showed significant differences in the expression of eight genes 

involved in drug metabolism.  
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8 Conclusions and future perspectives 

 CRC is the most common type of gastrointestinal cancer and a major cause of morbidity 

and mortality throughout the world. Today we know that exposure to exogenous chemicals 

(xenobiotics) combined with a modified ability to detoxify carcinogens such as PAHs, which 

are ubiquitous environmental, dietary, and tobacco carcinogens, increases the risk of 

developing cancer. The phase I XMEs like CYPs and epoxide hydroxylase usually activate the 

pro-carcinogens through oxidation and dehydrogenation, thereby converting them into 

reactive metabolites. These metabolites react irreversibly with macromolecules such as 

proteins and nucleic acids, leading to mutations and finally to carcinogenesis. Phase II 

metabolic enzymes such as GSTs and N-acetyltransferases generally result in inactivation or 

detoxification of these reactive metabolites. These pathways are, however, also known to 

activate other toxic and carcinogenic chemicals, such as amines, to electrophilic forms. 

Equilibrium between expression and activity levels of these XMEs of both phase I and II 

therefore determines the relative level of detoxification of carcinogens. 

 It is therefore important to evaluate the different layers of XME abundance (mRNA, 

protein, and enzyme activity) in the target tissue of one and the same patient, to avoid inter-

individual variability, and to identify organ-specific patterns. The unique study design and 

biospecimen availability within the ColoCare cohort (sampling of both normal and tumor 

tissue) and a comprehensive collection of data on relevant lifestyle factors, diet and clinical 

parameters, is well suited to this type of analyses. In this thesis, two different aims dealing 

with similar issues were addressed: Aim 1 included the analysis of expression and activity 

levels of phase I and phase II XMEs in the normal tissue of CRC patients, their correlations, 

and associations with lifestyle, dietary and clinical parameters, while Aim 2 addressed mRNA 

analysis of these XMEs and associations with the same factors, albeit in tumor and normal 

tissue. In both fields of investigations, interesting associations were observed.  

 One of the most intriguing findings was that CYP and GST mRNA level did not  

correlate with their protein expression or enzymatic activity, even though these  

parameters were determined in the same patient. For the UGTs, a weak, but  

statistically significant positive association was observed between UGT1A8  

protein and mRNA abundance and UGT1A10 mRNA levels and UGT activity.  
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Between UGT1A10 protein level and UGT activity, a statistically significant negative 

correlation was found. It could also be demonstrated that total GST activity was found to be 

similar in GSTM1 negative and positive groups, though GSTM1 isoenzyme activity should be 

undetectable in the GSTM1-null individuals, illustrating that mRNA level are not necessarily 

correlated with enzymatic activities.  

 Another interesting result of this work was that investigation of associations between 

regular consumption of cooked vegetables and CYP3A4 expression in the normal mucosa of 

CRC patients, showed two contrasting results: For patients participating in the ColoCare 

study sub-population 1 (Aim 1), regular consumption of cooked vegetables (>1x/week) was 

associated with increased CYP3A4 protein level, while patients participating in the ColoCare 

study sub-population 2 (Aim 2) showed decreased CYP3A4 mRNA level after consumption of 

cooked vegetables. As it was indicated in the previous results of this work (Results Aim 1; 

pages 73-75), mRNA expression does not necessarily reflect expression at the protein level 

and inter-individual variabilities in translation may play a major role. Because this study was 

limited in size, chance findings cannot be ruled out and, after FDR-adjustment for multiple 

testing, these associations did not remain significant. Future, independent validations in a 

second prospective CRC cohort of larger sample size are needed.  

 Furthermore results of this thesis showed considerable differences between colon and 

rectum in the expression and activity of several XMEs in the normal mucosa of CRC patients.  

 Generally, expression levels and activities were found to be lower in the colon, primarily 

regarding UGT1A8 and CYP2C9 mRNA expression and UGT activity.  

 

In summary, it can be concluded that in normal tissue of CRC patients: 

- Correlations between XMEs’ mRNA, protein and enzyme activities are moderate to poor 

- Colon and rectum showed considerable differences regarding expression and activities of 

several XMEs  

- Regular consumption of cooked vegetables was associated with CYP3A4 gene expression 

and protein levels  
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Future perspectives 

 To better understand xenobiotic metabolic pathways in the human colon and rectum 

there is an emerging recognition of the need for multidisciplinary studies. In this work, I have 

attempted to analyze changes in the metabolism of xenobiotics at the level of mRNA, 

protein and enzyme in normal and tumor tissue of CRC patients. Unfortunately, it was not 

possible to analyze all these parameters in an integrated fashion. For example, ColoCare 

study sub-population 1 provided only normal tissue adjacent to the tumor to investigate 

correlations between mRNA, protein and enzyme. Although study- population 2 provided 

both, normal and tumor tissue, the amount of tissue from study sub-population 2 was too 

small to analyze protein levels and enzyme activities in addition to gene expression. These 

correlations are at least equally important in tumor tissue, but also the most difficult to 

obtain, since larger sample volumes are needed. To overcome this problem, there is a need 

for new technologies to quantify very small amounts of tissue. These methods, once 

developed and validated should, in the next step, enable to quantify large amounts of 

samples (high-throughput). Simultaneous analyses of large sample sizes are particular 

important in epidemiological studies, to achieve the power required to detect significant 

associations.  

 Further subjects of interest in the future are genotype-phenotype correlations. 

Traditional methods for phenotyping XMEs involve the measurement of enzymatic activities 

using diagnostic substrates. This has become less popular because it is more labor intensive 

than genotyping, where only blood is needed. To determine levels of expression and 

function (the phenotype) it is important to access the target-tissue where the phenotype is 

actually expressed. Until now, genotype-phenotype correlation studies in humans are 

scarce. As transcriptomic, proteomic and metabolomic information are better reflectors of 

phenotypes than genomic sequences alone, combining genomic information with 

longitudinal monitoring of these omics should enable researchers to obtain real-time 

information of a person’s physiological status. This information will lead to a  

better understanding of molecular mechanisms of human disease and individual response  

to drugs. 
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10 Appendix A: Supplementary Tables 

Supplementary Table 1: Laboratory equipment 

Equipment Manufacturer 

Tissue collection and isolation  

Mikro-Dismembrator S Sartorius, Göttingen-Germany 

Ultracentrifuge L8-70M Beckman Coulter GmbH, Krefeld, Germany 

Sorvall Super T21 centrifuge Sorvall 

  

Gene expression experiments  

Nanodrop spectrophotometer ND-1000 PeqLab Biotechnologie, Erlangen, Germany 

7900HT Fast Real-Time PCR System Applied Biosystems, Foster City, USA 

Tprofessional Basic Thermocycler Biometra, Göttingen, Germany 

SpeedVac Concentrator Eppendorf, Hamburg, Germany 

  

Protein expression experiments  

Mini Trans-Blot®Electrophoretic Transfer Cell Bio-Rad Laboratories, München-Germany 

Mini-PROTEAN® Tetra Cell  Bio-Rad Laboratories, München-Germany 

COMPACT™ X-ray film processor PROTEC , Oberstenfeld-Germany 

µQuant™ Microplate Spectrophotometer BioTek, Bad Friedrichshall, Germany 

ENDURO™ MiniMix™ Nutating Mixer Labnet, Edison NJ, USA 

  

Enzyme activities  

Agilent 1100 HPLC combined system 
consisting of a degaser, G1312A binary pump, 
G1330A autosampler, G1316A diode array and 
an MSD SL mass spectrometer 

Agilent Technologies, Santa Clara, USA 

Column: Gemini 250 mm x 10.0 mm, 5 µm Phenomenex, Aschaffenburg, Germany 

  

General laboratory equipment  

Thermomixer comfort Eppendorf, Hamburg, Germany 

Centrifuge Galaxy Ministar VWR, Darmstadt, Germany 

Heraeus Megafuge 40R Thermo Scientific, Karlsruhe, Germany 

Vortex Genie 2 Scientific Industries Inc., Bohemia, USA 
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Supplementary Table 2: Buffer and Reagents 

Reagent Company Article number 

Tissue collection and isolation 

Hank’s Balanced Salts Solution 
(HBSS) 

Biowest, Nuaillé - France  L0612-500 

Formaldehyde solution 
4%,buffered, pH 6.9 

Merck, Darmstadt-Germany 1004965000 

1/15 M Na/K phosphate buffer, pH 
7.4 

 1/15 M Na2HPO4 x 2H2O 

 1/15 M KH2PO4  

 0.5% KCl  

 
Merck, Darmstadt-Germany 
Merck, Darmstadt-Germany 
Merck, Darmstadt-Germany 

 
1065801000 
1048731000 
1049360250 

RNAlater Sigma-Aldrich, Germany R0901 

Lowry protein assay 

1% BSA (0.01 g/10 ml) Boehringer, Mannheim-Germany 775827 

Folin-Ciocalteus (1:2.5) Merck, Darmstadt-Germany 109001 

2% Na2CO3 in (20g/l) 
1N NaOH 

Merck, Darmstadt-Germany  
Merck, Darmstadt-Germany 

106392 
6498 

1% CuSO4 x 5H2O (0.5 g/50 ml) Merck, Darmstadt-Germany 102780 

2% sodium potassium tartrate  
(1g/50 ml) 

Merck, Darmstadt-Germany 108087 

Protein expression experiments 

4x Laemmli Sample Buffer Bio-Rad Laboratories, München-
Germany 

1610747 

Precision Plus Protein WesternC 
Standard 

Bio-Rad Laboratories, München-
Germany 

1610367 

Precision Protein StrepTactin-HRP 
Conjugate 

Bio-Rad Laboratories, München-
Germany 

1610381 

Phosphate buffered saline (PBS) 
(10X) pH 7,4 (1 l) 

 137 mM NaCl (80 g/l) 

 2.7 mM KCl (2 g/l) 

 8 mM Na2HPO4 x 2H2O 
(14.2 g/l) 

 1.5 mM KH2PO4 (2 g/l) 

 ddH2O 

 
 
Sigma-Aldrich, Germany 
Merck, Darmstadt-Germany 
Merck, Darmstadt-Germany 
 
Merck, Darmstadt-Germany 
 

 
 
31434 
1049360500 
1065801000 
 
1048731000 
 

Running Buffer (5x) (1 l) 

 25 mM Tris-Base (30.3 g/l) 

 190 mM Glycine (144 g/l) 

 0.1% SDS (5 g/l) 

 
Sigma-Aldrich, Germany 
AppliChem, Darmstadt, Germany 
AppliChem, Darmstadt, Germany 

 
T1503 
A1067,1000 
A1112,0100 

Continues on next page. 
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Reagent Company Article number 

Transfer Buffer (1 l) 

 150 mM Glycine (11.25 g/l) 

 20 mM Tris-Base (2.43 g/l) 

 20% Methanol (200 ml) 

 0.01% (w/v) SDS (0.1 g/l) 

 
AppliChem, Darmstadt, Germany 
Sigma-Aldrich, Germany 
Sigma-Aldrich, Germany 
AppliChem, Darmstadt, Germany 

 
A1067,1000 
T1503 
322113 
A1112,0100 

Wash Buffer 

 PBS  

 + 0.05% Tween-20 

 
 
Alpha Diagnostics, San Antonio, 
USA 

 
 
TW-100100 

Blocking Buffer 

 PBS 

 + 5% Skim milk powder 

 
 
Sigma-Aldrich, Germany 

 
 
70166-500G 

Ponceau S-solution (10 ml) 

 dH2O (9 ml) 

 Ponceau S-solution (1 ml) 

 
 
AppliChem, Darmstadt, Germany 

 
 
A2935,0500 

Nitrocellulose membrane 
AmershamTM ProtranTM 0.45 µm 
NC 

GE Healthcare, München, Germany 10600007 

Acrylamide solution (40%) – Mix 
19:1 

AppliChem, Darmstadt, Germany A3658 

Cytochrome P450 activity 

67 mM potassium phosphate 
buffer, pH 7.4 

 67 mM Na2HPO4 x 2H2O 

 67 mM KH2PO4  

 0.5% KCl 

 
 
Merck, Darmstadt-Germany 
Merck, Darmstadt-Germany 
Merck, Darmstadt-Germany 

 
 
1065801000 
1048731000 
1049360250 

Cofactors: 

 3 mM Glucose-6-phosphate 
(4.23 mg/ 5ml) 

 1 mM NADP (3.94 mg/5ml) 

 10 mM MgCl2 (10.17 mg/5 
ml) 

 0.5 U Glucose-6-phosphate 
dehydrogenase (35 µl/5ml) 

+ 5 ml potassium phosphate buffer 
(67 mM) 

Sigma-Aldrich, Germany 
 
Sigma-Aldrich, Germany 
Sigma-Aldrich, Germany 
Sigma-Aldrich, Germany 
 

 
G7879 
 
N7505 
M8266 
G5760 
 
 

10 mM CEC in DMSO, diluted 1:200 
in phosphate buffer to 50 µM, 
concentration in the incubation 5 
µM 

Sigma-Aldrich, Germany 

UC455 

 Continues on next page. 
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Reagent Company Article number 

Glutathione S-transferase activity   

0.1 M Potassium phosphate buffer, 
pH 6.5 

 0.1 M KH2PO4 (13.6 g/l) 

 0.1 M Na2HPO4 x 2H2O 
(17.8 g/l) 

 
 
Merck, Darmstadt-Germany 
Merck, Darmstadt-Germany 
 

 
 
1065801000 
1048731000 
 

20 mM CDNB (81 mg/20 ml) Sigma-Aldrich, Germany 138630-5G 

20 mM GSH (122.92 mg/20 ml) Sigma-Aldrich, Germany G4251-1G 

GSH assay 

Glutathione (reduced form) Sigma-Aldrich, Germany G4251-1G 

0.1 M postassium phosphate 
buffer with 1 mM EDTA, pH 7.0 

 0.1 M KH2PO4 (6.8 g/500 
ml) 

 0.1 M K2HPO4 (8.5 g/500 
ml) 

 1 mM EDTA  

 
 
Merck, Darmstadt-Germany 
Merck, Darmstadt-Germany 
Sigma-Aldrich, Germany 

 
 
1048731000 
1051011000 
E6758-100G 

DTNB Sigma-Aldrich, Germany D8130-1G 

Glutathione reductase Sigma-Aldrich, Germany G3664-100UN 

β-NADPH Sigma-Aldrich, Germany N7505-25MG 

5% 5-Sulfosalicylic acid Sigma-Aldrich, Germany S2130-100G 

UDP-glucuronosytransferase activity 

4-Nitrophenyl β-D-glucuronide Sigma-Aldrich, Germany 73677 

4-Nitrophenol (0.5 mM) Sigma-Aldrich, Germany 1048 

Triton™ X-100 Sigma-Aldrich, Germany X100 

UDPGA Sigma-Aldrich, Germany U6751 

87 mM Tris-HCl, pH 7.4 (0.53 g/50 
ml) 

Sigma-Aldrich, Germany T1503 

15% Perchloric acid  Merck, Darmstadt-Germany 1005141000 

1% BSA (0.01 g/10 ml) Boehringer, Mannheim-Germany 775827 

 

 
 
 
 

  

   

   

Continues on next page. 
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Reagent Company Article number 

Gene expression experiments   

High-Capacity cDNA Reverse 
Transcription Kit with RNAse 
Inhibitor 

Life Technologies, Darmstadt- 
Germany 

4374966 

TaqMan® Gene Expression Assays 
Applied Biosystems, Foster City, 
USA 

4331182 

2X TaqMan® Gene expression 
Master Mix  

Applied Biosystems, Foster City, 
USA 

4369016 

Abbreviations: BSA: bovine serum albumin; UDPGA: Uridine 5'-diphosphoglucuronic acid; 
EDTA: ethylenediaminetetraacetic acid; β-NADPH: β-Nicotinamide adenine dinucleotide  
2‘-phosphate. 
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Supplementary Table 3: Candidate genes chosen for analysis 

Note: All values are multiplied by factor 100 000 and log2 transformed. Mean ± SD. 
 
 

Supplementary Table 4: Expression of genes linked to drug metabolism in normal 
colorectal mucosa samples 

 

 

Assay ID Gene Gene expression log(2) 

Hs02516990_s1 UGT1A10 5.48 ± 1.09 

Hs01592482_m1 UGT1A8 4.63 ± 1.21 

Hs00168310_m1 GSTP1 7.70 ± 0.60 

Hs01683722_gH GSTM1 4.08 ± 1.80 

Hs00241417_m1 CYP3A5 4.20 ± 1.01 

Hs01682803_mH CYP2C9 4.46 ± 1.38 

Gene Location Description 

CYP2C9 10q24 Homo sapiens Cytochrome P450 family 2 subfamily C member 9, 
mRNA CYP2W1 7p22.3 Homo sapiens Cytochrome P450 family 2 subfamily W member 1, 
mRNA CYP3A4 7q21.1 Homo sapiens Cytochrome P450 family 3 subfamily A member 4, 
mRNA GSTA1 6p12.1 Homo sapiens Glutathione S-transferase alpha 1, mRNA 

GSTM1 1p13.3 Homo sapiens Glutathione S-transferase mu 1, mRNA 
GSTP1 11q13 Homo sapiens Glutathione S-transferase pi 1, mRNA 
UGT1A10 2q37 Homo sapiens UDP glucuronosyltransferase family 1 member A10, 

mRNA UGT1A8 2q37 Homo sapiens UDP glucuronosyltransferase family 1 member A8, 
mRNA 
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 Supplementary Table 5: Associations of sociodemographic, lifestyle and dietary factors with the expression of xenobiotic metabolizing enzymes 

  UGT1A10 Tumor UGT1A10 Normal 

  Unadjusted Model (n=71) Adjusted Model (n=65) Unadjusted Model (n=71) Adjusted Model (n=63) 

  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Age  0.002 [-0.003, 0.007] 0.45 0.001 [-0.005, 0.007] 0.72 0.78 0.007 [-0.0005, 0.01] 0.07 0.009 [0.001, 0.017] 0.02 0.12 
BMI  0.0008 [-0.01, 0.02] 0.91    -0.002 [-0.02, 0.02] 0.82    

Gender 
Men Ref.  Ref.   Ref.  Ref.   
Women 0.03 [-0.11, 0.16] 0.71 0.07 [-0.08, 0.22] 0.33 0.53 0.12 [-0.07, 0.32] 0.20 0.04 [-0.17, 0.25] 0.70 0.78 

Site 
Colon Ref.  Ref.   Ref.  Ref.   
Rectum 0.03 [-0.10, 0.16] 0.65 0.09 [-0.06, 0.23] 0.23 0.44 -0.25 [-0.42, -0.07] 0.006 -0.32 [-0.52, -0.12] 0.003 0.10 

Stage 
I/II Ref.  Ref.   Ref.  Ref.   
III/IV -0.02 [-0.15, 0.11] 0.77    0.07 [-0.11, 0.26] 0.43 0.12 [-0.06, 0.31] 0.18 0.37 

Smoking 
No Ref.  Ref.   Ref.  Ref.   
Yes -0.02 [-0.19, 0.16] 0.86 -0.06 [-0.25, 0.13] 0.55 0.71 0.12 [-0.13, 0.38] 0.34 0.20 [-0.05, 0.45] 0.11 0.30 

Alcohol 
0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
>4.7 g/day 0.06 [-0.09, 0.20] 0.43    -0.21 [-0.42. -0.01] 0.04    

NSAIDs* 
No Ref.  Ref.   Ref.  Ref.   
Yes 0.05 [-0.09, 0.20] 0.47    0.14 [-0.08, 0.37] 0.20    

Neoadjuvant 
therapy 

No Ref.  Ref.   Ref.  Ref.   
Yes -0.08 [-0.26, 0.10] 0.40 -0.10 [-0.30, 0.09] 0.30 0.52 -0.11 [-0.37, 0.16] 0.42 0.09 [-0.17, 0.34] 0.51 0.69 

Red meat 
≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.06 [-0.09, 0.21] 0.44    -0.21 [-0.43, 0.01] 0.07 -0.16 [-0.37, 0.05] 0.13 0.33 

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   

> 1x/week -0.02 [-0.20, 0.16] 0.83    0.12 [-0.15, 0.37] 0.40 0.25 [0.01, 0.49] 0.04 0.18 

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.004 [-0.17, 0.18] 0.96    -0.29 [-0.53, -0.05] 0.02 -0.16 [-0.46, 0.15] 0.30 0.53 

Cooked 
Vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.17 [-0.04, 0.38] 0.11    -0.28 [-0.59, 0.03] 0.07    

Continues on next page 
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 Supplementary Table 5 continued 

 

  UGT1A8 Tumor UGT1A8 Normal 

  Unadjusted Model (n=71) Adjusted Model (n=63) Unadjusted Model (n=71) Adjusted Model (n=63) 

  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Age  0.002 [-0.0009, 0.004] 0.21 0.0005 [-0.002, 0.003] 0.72 0.78 0.003 [-0.001, 0.007] 0.18 0.004 [-0.001, 0.008] 0.12 0.31 
BMI  -0.0005 [-0.007, 0.007] 0.89    0.001 [-0.01, 0.01] 0.83    

Gender 
Men Ref.  Ref.   Ref.  Ref.   
Women -0.02 [-0.08, 0.04] 0.49 0.04 [-0.03, 0.12] 0.25 0.46 0.10 [-0.008, 0.20] 0.07 0.09 [-0.03, 0.20] 0.15 0.35 

Site 
Colon Ref.  Ref.   Ref.  Ref.   
Rectum 0.01 [-0.05, 0.07] 0.69 0.05 [-0.02, 0.12] 0.17 0.36 -0.11 [-0.21, -0.01] 0.03 -0.13 [-0.25, -0.02] 0.03 0.15 

Stage 
I/II Ref.  Ref.   Ref.  Ref.   
III/IV -0.02 [-0.08, 0.04] 0.47    0.01 [-0.09, 0.11] 0.84    

Smoking 
No Ref.  Ref.   Ref.  Ref.   
Yes 0.005 [-0.07, 0.08] 0.90 -0.02 [-0.11, 0.07] 0.62 0.75 0.02 [-0.12, 0.16] 0.77 0.04 [-0.11, 0.19] 0.60 0.74 

Alcohol 
0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
>4.7 g/day 0.06 [-0.003, 0.12] 0.06 0.09 [0.02, 0.17] 0.01 0.10 -0.13 [-0.24, -0.02] 0.02    

NSAIDs* 
No Ref.  Ref.   Ref.  Ref.   
Yes 0.05 [-0.02, 0.11] 0.15 0.07 [-0.0009, 0.14] 0.05 0.21 0.07 [-0.06, 0.19] 0.29    

Neoadjuvant
therapy 

No Ref.  Ref.   Ref.  Ref.   
Yes -0.06 [-0.15, 0.02] 0.15 -0.11 [-0.20, -0.02] 0.02 0.12 -0.04 [-0.18, 0.11] 0.61 0.05 [-0.11, 0.20] 0.55 0.71 

Red meat 
≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.006 [-0.07, 0.06] 0.87    -0.11 [-0.23, 0.02] 0.09    

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   

> 1x/week -0.02 [-0.10, 0.05] 0.57    0.06 [-0.08, 0.20] 0.41 0.12 [-0.03, 0.26] 0.11 0.30 

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.03 [-0.04, 0.10] 0.42    -0.10 [-0.23, 0.04] 0.17    

Cooked 
Vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.08 [-0.01, 0.17] 0.09    -0.09 [-0.26, 0.09] 0.33    

Continues on next page 
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 Supplementary Table 5 continued 
 

  GSTP1 Tumor  GSTP1 Normal  

  Unadjusted Model (n=71) Adjusted Model (n=63) Unadjusted Model (n=71) Adjusted Model (n=61) 

  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Age  0.005 [-0.002, 0.01] 0.15 0.005 [-0.004, 0.01] 0.26 0.46 0.001 [-0.004, 0.006] 0.66 -0.001 [-0.007, 0.005] 0.66 0.77 
BMI  0.004 [-0.02, 0.03] 0.71    -0.003 [-0.02, 0.01] 0.69    

Gender 
Men Ref.  Ref.   Ref.  Ref.   
Women 0.08 [-0.11, 0.27] 0.39 -0.009 [-0.21, 0.20] 0.93 0.93 -0.04 [-0.17, 0.10] 0.57 0.03 [-0.12, 0.18] 0.67 0.77 

Site 
Colon Ref.  Ref.   Ref.  Ref.   
Rectum -0.006 [-0.18, 0.17] 0.95 -0.05 [-0.25, 0.15] 0.63 0.75 0.08 [-0.04, 0.21] 0.19 0.10 [-0.05, 0.25] 0.17 0.36 

Stage 
I/II Ref.  Ref.   Ref.  Ref.   
III/IV -0.15 [-0.32, 0.03] 0.10    0.09 [-0.03, 0.22] 0.15    

Smoking 
No Ref.  Ref.   Ref.  Ref.   
Yes 0.09 [-0.16, 0.33] 0.47 0.16 [-0.01, 0.43] 0.22 0.43 -0.06 [-0.24, 0.11] 0.47 -0.11 [-0.31, 0.08] 0.24 0.45 

Alcohol 
0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
>4.7 g/day 0.002 [-0.20, 0.20] 0.99    0.04 [-0.10, 0.18] 0.59    

NSAIDs* 
No Ref.  Ref.   Ref.  Ref.   
Yes 0.03 [-0.18, 0.24] 0.80    0.11 [-0.03, 0.25] 0.12 0.17 [0.01, 0.32] 0.03 0.15 

Neoadjuvant
therapy 

No Ref.  Ref.   Ref.  Ref.   
Yes -0.12 [-0.37, 0.14] 0.37 -0.10 [-0.36, 0.17] 0.48 0.69 0.12 [-0.06, 0.30] 0.19 0.05 [-0.14, 0.24] 0.60 0.74 

Red meat 
≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.06 [-0.28, 0.15] 0.57    -0.04 [-0.19, 0.12] 0.65    

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   

> 1x/week -0.20 [-0.44, 0.04] 0.10    0.10 [-0.07, 0.28] 0.24    

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.29 [0.06, 0.51] 0.01 0.32 [0.09, 0.56] 0.008 0.10 -0.10 [-0.27, 0.07] 0.26    

Cooked 
Vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.18 [-0.11, 0.48] 0.22    -0.07 [-0.29, 0.14] 0.50    

Continues on next page 
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 Supplementary Table 5 continued 

  GSTA1 Tumor GSTA1 Normal 

  Unadjusted Model (n=71) Adjusted Model (n=61) Unadjusted Model (n=71) Adjusted Model (n=61) 

  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Age  0.002 [-0.002, 0.006] 0.33 0.004 [-0.0006, 0.008] 0.09 0.27 0.005 [-0.008, 0.02] 0.48 0.007 [-0.008, 0.02] 0.34 0.54 
BMI  0.002 [-0.01, 0.01] 0.74    -0.02 [-0.06, 0.02] 0.39    

Gender 
Men Ref.  Ref.   Ref.  Ref.   
Women -0.03 [-0.14, 0.07] 0.53 0.07 [-0.06, 0.19] 0.31 0.52 0.38 [0.04, 0.71] 0.03 0.35 [-0.04, 0.74] 0.08 0.27 

Site 
Colon Ref.  Ref.   Ref.  Ref.   
Rectum 0.04 [-0.06, 0.14] 0.47 0.08 [-0.04, 0.19] 0.17 0.36 -0.25 [-0.57, 0.08] 0.13 -0.04 [-0.43, 0.35] 0.82 0.84 

Stage 
I/II Ref.  Ref.   Ref.  Ref.   
III/IV -0.08 [-0.18, 0.02] 0.12    -0.05 [-0.38, 0.28] 0.76    

Smoking 
No Ref.  Ref.   Ref.  Ref.   
Yes -0.09 [-0.23, 0.05] 0.19 -0.13 [-0.28, 0.01] 0.08 0.27 0.35 [-0.12, 0.81] 0.14 0.18 [-0.31, 0.67] 0.67 0.77 

Alcohol 
0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
>4.7 g/day 0.11 [0.0003, 0.23] 0.05 0.15 [0.02, 0.27] 0.02 0.12 -0.26 [-0.64, 0.12] 0.18    

NSAIDs* 
No Ref.  Ref.   Ref.  Ref.   
Yes -0.04 [-0.16, 0.08] 0.53    0.01 [-0.34, 0.36] 0.95    

Neoadjuvant 
therapy 

No Ref.  Ref.   Ref.  Ref.   
Yes -0.12 [-0.26, 0.02] 0.10 -0.20 [-0.36, -0.05] 0.01 0.10 -0.47 [-0.93, -0.02] 0.04 -0.31 [-0.81, 0.19] 0.22 0.43 

Red meat 
≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.11 [-0.01-0.23] 0.08 0.10 [-0.02, 0.22] 0.09 0.27 -0.16 [-0.58, 0.25] 0.43    

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   

> 1x/week 0.002 [-0.14. 0.15] 0.98    -0.11 [-0.59, 0.37] 0.65    

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.03 [-0.10, 0.17] 0.62    -0.15 [-0.61, 0.31] 0.52    

Cooked 
Vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.13 [-0.05, 0.30] 0.15    -0.70 [-1.25, -0.15] 0.01 -0.72 [-1.30, -0.14] 0.02 0.12 

Continues on next page 
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 Supplementary Table 5 continued 

  GSTM1 Tumor GSTM1 Normal 

  Unadjusted Model (n=71) Adjusted Model (n=65) Unadjusted Model (n=71) Adjusted Model (n=65) 

  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Age  -0.006 [-0.01, 0.003] 0.21 -0.004 [-0.01, 0.007] 0.47 0.68 -0.005 [-0.02, 0.005] 0.30 -0.002 [-0.01, 0.01] 0.74 0.79 
BMI  0.03 [0.003, 0.06] 0.03    0.01 [-0.02, 0.04] 0.39    

Gender Men Ref.  Ref.   Ref.  Ref.   
 Women 0.15 [-0.10, 0.39] 0.23 0.25 [-0.02, 0.53] 0.07 0.27 0.27 [0.003, 0.54]  0.05 0.37 [0.06, 0.67] 0.02 0.12 

Site Colon Ref.  Ref.   Ref.  Ref.   
 Rectum 0.11 [-0.12, 0.34] 0.34 0.19 [-0.08, 0.46] 0.17 0.36 0.061 [-0.20, 0.32] 0.64 0.15 [-0.15, 0.44] 0.33 0.53 

Stage I/II Ref.  Ref.   Ref.  Ref.   
 III/IV -0.03 [-0.26, 0.20] 0.81    -0.15 [-0.41, 0.10] 0.23    

Smoking No Ref.  Ref.   Ref.  Ref.   
 Yes -0.09 [-0.42, 0.24] 0.58 -0.24 [-0.60, 0.11] 0.18 0.37 0.05 [-0.31, 0.42] 0.77 -0.12 [-0.51, 0.27] 0.54 0.71 

Alcohol 
0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
>4.7 g/day -0.12 [-0.37, 0.14] 0.36    -0.08 [-0.36, 0.20] 0.56    

NSAIDs* 
No Ref.  Ref.   Ref.  Ref.   
Yes -0.01 [-0.29, 0.27] 0.92    -0.04 [-0.34, 0.27] 0.81    

Neoadjuvant 
therapy 

No Ref.  Ref.   Ref.  Ref.   
Yes 0.05 [-0.28, 0.38] 0.78 -0.03 [-0.40, 0.33] 0.86 0.88 -0.03 [-0.40, 0.34] 0.87 -0.05 [-0.45, 0.35] 0.80 0.83 

Red meat 
≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.16 [-0.44, 0.13] 0.28    -0.13 [-0.45, 0.18] 0.40    

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   

> 1x/week -0.10 [-0.43, 0.24] 0.56    -0.12 [-0.48, 0.24] 0.51    

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.008 [-0.33, 0.31] 0.96    0.10 [-0.25, 0.45] 0.56    

Cooked 
Vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.05 [-0.35, 0.45] 0.80    0.16 [-0.28, 0.60] 0.47    

Continues on next page 
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 Supplementary Table 5 continued 

 

  CYP3A4 Tumor CYP3A4 Normal 

  Unadjusted Model (n=71) Adjusted Model (n=63) Unadjusted Model (n=71) Adjusted Model (n=63) 

  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Age  0.0006 [-0.002, 0.003] 0.61 0.0006 [-0.002, 0.003] 0.69 0.77 0.001 [-0.007, 0.009] 0.74 0.006 [-0.003, 0.016] 0.20 0.40 
BMI  0.003 [-0.004, 0.01] 0.38 0.007 [-0.001, 0.01] 0.09 0.27 -0.01 [-0.04, 0.01] 0.26    

Gender 
Men Ref.  Ref.   Ref.  Ref.   
Women -0.04 [-0.11, 0.02] 0.15 -0.06 [-0.13, 0.005] 0.07 0.27 0.10 [-0.12, 0.31] 0.36 0.08 [-0.16, 0.33] 0.50 0.69 

Site 
Colon Ref.  Ref.   Ref.  Ref.   
Rectum -0.01 [-0.07, 0.04] 0.64 -0.06 [-0.13, 0.005] 0.07 0.27 -0.15 [-0.34, 0.05] 0.14 -0.11 [-0.35, 0.13] 0.37 0.57 

Stage 
I/II Ref.  Ref.   Ref.  Ref.   
III/IV -0.005 [-0.06, 0.05] 0.85    -0.02 [-0.22, 0.18] 0.86    

Smoking 
No Ref.  Ref.   Ref.  Ref.   
Yes -0.02 [-0.11, 0.06] 0.56 0.03 [-0.05, 0.12] 0.44 0.65 0.24 [-0.04, 0.53] 0.09 0.22 [-0.08, 0.53] 0.15 0.35 

Alcohol 
0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
>4.7 g/day 0.03 [-0.04, 0.09] 0.42    -0.07 [-0.30, 0.17] 0.58    

NSAIDs* 
No Ref.  Ref.   Ref.  Ref.   
Yes 0.02 [-0.04, 0.09] 0.48    -0.02 [-0.22, 0.18] 0.87    

Neoadjuvant 
therapy 

No Ref.  Ref.   Ref.  Ref.   
Yes -0.03 [-0.11, 0.05] 0.27 -0.02 [-0.11, 0.06] 0.56 0.71 -0.11 [-0.40, 0.18] 0.44 0.03 [-0.29, 0.34] 0.87 0.88 

Red meat 
≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.02 [-0.06, 0.09] 0.67    0.03 [-0.22, 0.29] 0.80    

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   

> 1x/week 0.07 [-0.007, 0.16] 0.07 0.09 [0.008, 0.17] 0.03 0.15 -0.02 [-0.31, 0.27] 0.89    

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.008 [-0.07, 0.09] 0.85    -0.04 [-0.32, 0.25] 0.80    

Cooked 
Vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.10 [-0.003, 0.19] 0.06 0.14 [0.04, 0.25] 0.007 0.10 -0.45 [-0.78, -0.11] 0.009 -0.43 [-0.79, -0.06] 0.02 0.12 

Continues on next page 
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 Supplementary Table 5 continued 

  CYP2C9 Tumor CYP2C9 Normal 

  Unadjusted Model (n=71) Adjusted Model (n=65) Unadjusted Model (n=71) Adjusted Model (n=63) 

  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Age  0.001 [-0.001, 0.003] 0.35 0.0009 [-0.002, 0.004] 0.54 0.71 0.003 [-0.0007, 0.007] 0.11 
0.006  
[0.001, 0.01] 

0.01 0.10 

BMI  0.0002 [-0.007, 0.007] 0.95    -0.007 [-0.02, 0.005] 0.27    

Gender 
Men Ref.  Ref.   Ref.  Ref.   
Women 0.02 [-0.04, 0.08] 0.57 0.03 [-0.04, 0.10] 0.42 0.64 0.04 [-0.07, 0.15] 0.47 -0.02 [-0.14, 0.09] 0.68 0.77 

Site 
Colon Ref.  Ref.   Ref.  Ref.   
Rectum 0.02 [-0.04, 0.08] 0.47 0.04 [-0.03, 0.11] 0.26 0.46 -0.19 [-0.28, -0.09] 0.0002 -0.21 [-0.32, -0.10] 0.0005 0.05 

Stage 
I/II Ref.  Ref.   Ref.  Ref.   
III/IV 0.005 [-0.05, 0.06] 0.85    -0.02 [-0.13, 0.08] 0.68    

Smoking 
No Ref.  Ref.   Ref.  Ref.   
Yes -0.0005 [-0.08, 0.08] 0.99 -0.01 [-0.11, 0.08] 0.75 0.80 0.11 [-0.42, 0.25] 0.16 0.17 [0.03, 0.32] 0.02 0.12 

Alcohol 
0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
>4.7 g/day 0.03 [-0.03, 010] 0.32    -0.06 [-0.19, 0.06] 0.29    

NSAIDs* 
No Ref.  Ref.   Ref.  Ref.   
Yes -0.008 [-0.08, 0.06] 0.82    0.11 [0.007, 0.22] 0.04    

Neoadjuvant 
therapy 

No Ref.  Ref.   Ref.  Ref.   
Yes -0.02 [-0.10, 0.06] 0.63 -0.03 [-0.13, 0.06] 0.49 0.69 -0.07 [-0.22, 0.08] 0.34 0.07 [-0.07, 0.22] 0.31 0.52 

Red meat 
≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.005 [-0.08, 0.07] 0.88    0.06 [-0.08, 0.19] 0.39    

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   

> 1x/week -0.05 [-0.14, 0.03] 0.19    0.01 [-0.14, 0.16] 0.88    

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.004 [-0.08, 0.08] 0.93    -0.04 [-0.19, 0.11] 0.58    

Cooked 
Vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   

> 1x/week 0.04 [-0.06, 0.14] 0.39    -0.22 [-0.40, -0.05] 0.01 -0.15 [-0.32, 0.02] 0.08 0.27 

Continues on next page 
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 Supplementary Table 5 continued 

 

 

 

 

 

 

 

  CYP2W1 Tumor CYP2W1 Normal 

  Unadjusted Model (n=71) Adjusted Model (n=61) Unadjusted Model (n=71) Adjusted Model (n=63) 

  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Age  -0.002 [-0.008, 0.004] 0.54 -0.0009 [-0.008, 0.006] 0.79 0.83 0.0004 [-0.001, 0.002] 0.66 -0.001 [-0.003, 0.001] 0.35 0.55 
BMI  0.01 [-0.008, 0.03] 0.27    -0.005 [-0.01, 0.0003] 0.06 -0.005 [-0.01, 0.001] 0.11 0.30 

Gender 
Men Ref.  Ref.   Ref.  Ref.   
Women 0.18 [0.02, 0.34] 0.03 0.07 [-0.13, 0.26] 0.50 0.69 0.008 [-0.04, 0.06] 0.73 -0.01 [-0.06, 0.04] 0.63 0.75 

Site 
Colon Ref.  Ref.   Ref.  Ref.   
Rectum 0.15 [-0.002, 0.30] 0.05 0.24 [0.07, 0.41] 0.007 0.10 0.04 [-0.003, 0.09] 0.07 0.04 [-0.01, 0.08] 0.14 0.34 

Stage 
I/II Ref.  Ref.   Ref.  Ref.   
III/IV 0.04 [-0.12, 0.19] 0.65    -0.005 [-0.09, -0.0008] 0.05 -0.07 [-0.12, -0.02] 0.005 0.10 

Smoking 
No Ref.  Ref.   Ref.  Ref.   
Yes 0.36 [0.16, 0.57] 0.0007 0.30 [0.07, 0.52] 0.01 0.10 0.02 [-0.04, 0.08] 0.60 -0.02 [-0.08, 0.05] 0.61 0.75 

Alcohol 
0-4.7 g/day Ref.  Ref.   Ref.  Ref.   
>4.7 g/day -0.12 [-0.30, 0.05] 0.17 -0.17 [-0.36, 0.02] 0.08 0.27 0.004 [-0.05, 0.05] 0.87    

NSAIDs* 
No Ref.  Ref.   Ref.  Ref.   
Yes 0.02 [-0.16, 0.21] 0.80    -0.02 [-0.07, 0.04] 0.49    

Continues on next page 
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 Supplementary Table 5 continued 

* NSAID user took at least one pill per month in the past month before surgery (baseline). 
Note: Uni- and multivariable linear regression models were used for the estimation of the b-coefficients. All multivariable models adjusted for age 
(continuous), gender (men, women), current smoking status (yes, no), neoadjuvant therapy (yes, no), and tumor site (colon, rectum). Further potential 
confounding variables were selected separately for each gene, by backward elimination using an alpha-value of 0.1. The following covariates were 
included in the backward elimination: BMI (continuous), alcohol (g/day, 0-4.7, >4.7), stage (I/II, III/IV), regular NSAID use (yes, no), and consumption of 
red meat, processed meat-, cooked vegetables-, and raw vegetables (≤ 1x/week, > 1x week). 
Abbreviations: pn: nominal p-value; pFDR: false-discovery-rate-adjusted p-value. 

  CYP2W1 Tumor CYP2W1 Normal 

  Unadjusted Model (n=71) Adjusted Model (n=61) Unadjusted Model (n=71) Adjusted Model (n=63) 

  b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR b-coeff. (95% CI) p b-coeff. (95% CI) pn pFDR 

Neoadjuvant 
therapy 

No Ref.  Ref.   Ref.  Ref.   
Yes -0.14 [-0.36, 0.08] 0.21 -0.18 [-0.41, 0.05] 0.12 0.31 0.04 [-0.03, 0.10] 0.24 0.03 [-0.04, 0.09] 0.44 0.65 

Red meat 
≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.06 [-0.14, 0.25] 0.56 0.15 [-0.03, 0.33] 0.10 0.29 -0.05 [-0.10, 0.005] 0.08 -0.06 [-0.11, -0.003] 0.04 0.18 

Processed 
meat 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   

> 1x/week 0.11 [-0.12, 0.33] 0.35    0.03 [-0.03, 0.09] 0.28    

Raw 
vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week -0.01 [-0.23, 0.21] 0.92    -0.04 [-0.09, 0.23] 0.23 -0.06 [-0.12, -0.002] 0.04 0.18 

Cooked 
Vegetables 

≤ 1x/week Ref.  Ref.   Ref.  Ref.   
> 1x/week 0.11 [-0.16, 0.38] 0.41    -0.02 [-0.09, 0.05] 0.58    
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Supplementary Figure 1: Western blot analyses of GSTP1 expression in normal 
mucosa of CRC patients  
Known concentrations (0.1 µg, 0.2 µg, and 0.5 µg) of GSTP1 human recombinant 
proteins were used for quantification. β-Actin was used as loading control.MW: 
molecular weight; kD: kilodalton 

Supplementary Figure 2: Fluorescence-based assay for the determination of 
CYP1A1/2 activity  
In a 96-well plate the incubation mixture (200 μL) contained 67 mM potassium 
phosphate buffer (pH 7.4), 3 mM glucose-6-phosphate, 0.5 U glucose-6-phosphate 
dehydrogenase, 10 mM MgCl2, 1 mM NADP, 5 μM CEC (dissolved in DMSO) and 50 μg, 
20 µg and 10 µg of microsomal fractions from Sudan I induced microsomes and 200 
µg, 100 µg and 50 µg of control microsomes.  
Abbreviations: RFU: relative fluorescence units. 
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Supplementary Figure 3: HPLC-ESI-MS detection of UGT activity toward 4-NP in normal 
human colorectal microsomes.  
Reactions were performed in the presence of 4-NP (0.5 mM) and colorectal microsomal 
proteins (250 µg) in a total volume of 400 µl for 60 min at 37°C. Peaks are: 1) UDPGA;  
2) 4-NPG; 3) 4-NP. 
Abbreviations: UDPGA: Uridine-diphosphate-glucuronic acid; 4-NPG: 4-nitrophenyl β-D-
glucuronide; 4-NP: 4-nitrophenol; HPLC-ESI-MS: High-performance liquid chromatography-
electrospray ionization mass spectrometry. 
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