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Summary 
 Although the fight against malaria has achieved a remarkable progress during the last 

15 years, there were still 214 million new cases and 438000 estimated deaths caused by 

malaria worldwide in 2015. Transporters play a crucial role in Plasmodium biology but they 

can also be considered as double edge swords: on the one hand, they are potential new 

antimalarial drug targets but on the other hand, they are the main players in the 

development of drug resistance. PFE0825w is a putative organic cation transporter that has 

been proposed as the target of the candidate antimalarial drug albitiazolium and the locus 

where it is localized has been linked to chloroquine transport. In this study, different 

PFE0825w isoforms were identified and studied using the X. laevis oocyte system. Two of the 

isoforms were expressed at the oocyte oolemma but no significant transport of putative 

organic cation substrates was detected, restricting further characterization of this 

transporter. A better characterized transporter that plays a significant role in resistance 

against chloroquine (CQ) and quinine (QN) is the chloroquine resistance transporter PfCRT. It 

is known that this transporter has at least three different phosphorylation sites and that the 

phosphorylation of one of these sites -T416- is essential for the correct trafficking of PfCRT to 

the food vacuolar membrane. In this study the role of phosphorylation in the drug-

resistance-mediating function of PfCRT was investigated. CQ-resistant parasites treated with 

the kinase inhibitor ML-7 accumulated more CQ than untreated parasites and showed CQ 

and QN IC50 values comparable to those of sensitive strains. Along the same line, the 

mutagenesis of the phosphorylation site S33 to alanine in PfCRT led to reduced CQ and QN 

IC50 values although no increase in drug accumulation was observed. Furthermore, PfCRTS33A 

conferred a fitness advantage to the parasites in the absence of CQ and a fitness cost in the 

presence of the drug. Two protein kinases were analyzed regarding their roles in PfCRT 

phosphorylation, PfCK2 and PF11_0488, the latter being identified in a Y2H assay. The 

downregulation of PfCK2 did not have an effect on CQ accumulation, but the overexpression 

of the C-terminal part of PF11_0488 resulted in reduced levels of CQ accumulation. 

However, the same fragment did not show any catalytic activity when recombinantly 

expressed and used in in vitro phosphorylation assays. Downregulation of this kinase was 

not achievable, most likely due to its essential function. Altogether, these results point to 

the fact that the parasite susceptibility towards CQ and QN is regulated by phosphorylation, 

although the exact molecular mechanism needs to be further examined.  
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Zusammenfassung   
Obwohl der Kampf gegen Malaria in den letzten 15 Jahren bemerkenswerte 

Fortschritte gemacht hat, gab es im Jahr 2015 noch 214 Millionen Erkrankungsfälle und 

schätzungsweise 438.000 durch Malaria verursachte Todesfälle weltweit. Transport-Proteine 

spielen eine entscheidende Rolle in der Biologie von Plasmodium, aber sie können auch als 

eine zweischneidige Klinge angesehen werden: auf der einen Seite sind sie potenziell neue 

Ansatzpunkte für Anti-Malaria-Wirkstoffe, auf der anderen Seite die wichtigsten Akteure in 

der Entwicklung von Resistenzen. PFE0825w ist ein putativer Transporter für organische 

Kationen, der als Ansatzpunkt des potentiellen Antimalariamittels Albitiazolium 

vorgeschlagen wurde und der Ort, in dem es lokalisiert ist, wurde mit Chloroquin-Transport 

in Verbindung gebracht. In der vorliegenden Arbeit wurden verschiedene Isoformen von 

PFE0825w identifiziert und mit Hilfe des X. laevis Oozyten Systems untersucht. Zwei dieser 

Isoformen wurden auf dem Oolemma der Oozyte exprimiert, jedoch konnte kein 

signifikanter Transport von organischen Kationen nachgewiesen werden, was eine weitere 

Charakterisierung dieses Transporters eingrenzt. Ein besser charakterisierter Transporter, 

der eine bedeutende Rolle für die Resistenz gegen Chloroquin (CQ) und Chinin (QN) spielt, ist 

der Chloroquin Resistenz Transporter PfCRT. Es ist bekannt, dass dieser Transporter 

mindestens drei unterschiedliche Phosphorylierungsstellen besitzt und dass die 

Phosphorylierung an einer dieser Stellen - T416 - wesentlich ist, um korrekt an die 

Nahrungsvakuolen-Membran dirigiert zu werden. In dieser Studie wurde die Rolle der 

Phosphorylierung hinsichtlich der Medikamenten-Resistenz vermittelnden Funktion von 

PfCRT untersucht. CQ resistente Parasiten, welche mit dem Kinase-Inhibitor ML-7 behandelt 

wurden, akkumulierten mehr CQ als unbehandelte Parasiten und zeigten mit sensitiven 

Stämmen vergleichbare IC50-Werte für CQ und QN. Genauso führte die Mutation der 

Phosphorylierungsstelle S33 zu Alanine in PfCRT zu verringerten IC50-Werten für CQ und QN, 

obgleich keine Zunahme der Medikamenten-Akkumulation beobachtet wurde. Darüber 

hinaus vermittelte PfCRTS33A für die Parasiten einen Selektionsvorteil in Abwesenheit von CQ 

und einen Nachteil in Anwesenheit des Wirkstoffs. Es wurden zwei Proteinkinasen bezüglich 

ihrer Bedeutung für die Phosphorylierung von PfCRT untersucht, PfCK2 und PF11_0488, 

wobei letztgenannte in einem Y2H Versuchsansatz identifiziert wurde. Das 

Herunterregulieren der PfCK2 hatte keine Auswirkung auf die CQ-Akkumulation, die 

Überexpression des C-terminalen Teils von PF11_0488 jedoch führte zu einer verringerten 
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Anhäufung von CQ. Allerdings zeigte das gleiche Fragment keine katalytische Aktivität, wenn 

es rekombinant exprimiert und in in vitro Phosphorylierungs-Versuchsansätzen verwendet 

wurde. Eine Herunterregulation dieser Kinase konnte nicht erreicht werden, wahrscheinlich 

wegen ihrer essentiellen Funktion. Insgesamt deuten diese Ergebnisse darauf hin, dass die 

Anfälligkeit des Parasiten gegen CQ und QN durch Phosphorylierung reguliert wird, der 

genaue molekulare Mechanismus bedarf jedoch weiterer Untersuchungen. 
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1. Introduction 

1.1. Malaria etiology, symptoms and epidemiology 

 Malaria is an infectious disease caused by parasitic protozoa from the genus 

Plasmodium and transmitted by female mosquitoes of the genus Anopheles. In humans, 

malaria is caused by the species P. falciparum, P. vivax, P. malariae, P. ovale (P. ovale curtisi 

and P. ovale wallikeri) and P. knowlesi (Sutherland et al., 2010). P. falciparum is the species 

that causes the highest number of deaths worldwide. However, outside sub-Saharan Africa, 

P. vivax causes half of the malaria cases and is responsible for between 3.5% and 16% of the 

total deaths. P. knowlesi can also cause severe malaria and death, although to a minor 

extent (WHO, 2015a). Additionally, P. vivax can cause multiple relapses of the disease since 

it can remain dormant in infected liver cells in a cellular stage known as hypnozoite (Imwong 

et al., 2007; Krotoski et al., 1986). P. ovale can as well cause relapses of the disease, but 

there is no biological evidence proving that this species also generates hypnozoites (Richter 

et al., 2010). However, hypnozoites have been found in monkeys infected with P. simiovale, 

an analog of the human parasite P. ovale (Cogswell et al., 1991). 

 The first symptoms of malaria are fatigue, headache and muscle pain followed by 

fever, shivering and vomiting. When the patient receives appropriate treatment at this 

stage, the prognosis is good. But when P. falciparum infections remain untreated, they might 

develop into severe malaria, which can still be cured but is lethal in the majority of cases if 

left untreated. The symptoms of severe malaria include unarousable coma, severe distress, 

seizures and severe anemia. Besides the treatment regime, the outcome of the disease also 

depends on the parasite strain and the immune status of the host (WHO, 2014).  

 More than 40% of the world’s population (fig. 1.1) is at risk of being infected by 

Plasmodium. The various species have different geographical distributions; P. falciparum is 

predominant in sub-Saharan Africa and P. vivax in America and the western Pacific region. 

P. knowlesi is particularly prevalent in Malaysia, where it caused 38% of the malaria cases 

reported in 2014. In Southeast Asia the proportion of each species varies greatly between 

countries. Even in the eastern Mediterranean region, there are still six countries with high 

malaria transmission, mostly caused by P. falciparum (WHO, 2015a).    
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Figure 1.1. Percentage of population at risk of contracting malaria in 2013. 
Map created with the online mapping tool "Global Malaria Mapper". 

 The fight against malaria has achieved remarkable progress during the last 15 years; 

malaria mortality has been reduced globally by 66% and particularly in children under five, 

by 71%. Malaria is no longer the highest cause of death among children under five in 

sub-Saharan Africa. This advance has been possible due to the increased use of insecticide-

treated nets and a better access to diagnostic tests and appropriate treatments. 

Nevertheless, in 2015 there were still around 214 million new cases and 438,000 estimated 

deaths caused by malaria worldwide (WHO, 2015a).    

1.2. Plasmodium biology 

 1.2.1. Plasmodium life cycle 

 Plasmodium has a complex life cycle; it multiplies asexually in the human host and 

sexually in the mosquito vector (fig. 1.2.A). Around 100 Plasmodium sporozoites are injected 

by a mosquito bite into the skin of the human host, where they become actively motile. 

Eventually, a few find a blood vessel, enter the bloodstream and get to the liver (Amino et 

al., 2006). Sporozoites traverse sinusoidal cells to reach the hepatocytes and they 

transmigrate through a few cells before they establish an infection (Frevert et al., 2005). The 

initial attachment step in liver entry is mediated by the binding of CSP to heparan sulfate 

Not endemic 
0-20 % 
20-40 % 
40-60 % 
60-80 % 
80-100 % 



Introduction 
 

 
3 

proteoglycans (Frevert et al., 1993). TRAP (Sultan et al., 1997), AMA1 (Silvie et al., 2004), 

TRSP (Labaied et al., 2007) and the two proteins P36 and P36p (Ishino et al., 2005) are also 

involved in the early steps of hepatocyte invasion, although the host receptors they interact 

with haven’t been identified so far. On the other hand, the hepatocyte molecules CD81 

(Silvie et al., 2003) and SR-B1 (Rodrigues et al., 2008) also play a crucial role in hepatocyte 

invasion. After infecting a hepatocyte, the sporozoite undergoes multiple rounds of division 

and produces tens of thousands of merozoites that within 6 to 10 days, depending on the 

Plasmodium species, are released from the liver cell into the lumen of the liver sinusoids 

within membranous structures called merosomes. Once in the lung vasculature, merosomes 

burst releasing the merozoites into the bloodstream (reviewed by Prudencio et al., 2006).     

       A 

 

 

 

 

 

 

   B   

 

 

                                 merozoites          ring               early                late              schizont 
             trophozoite   trophozoite                                                                         

Figure 1.2. A. P. falciparum life cycle (de Koning-Ward et al., 2015). B. Images of Giemsa-stained 
P. falciparum blood stage parasites. 

  In the bloodstream, merozoites bind to and invade red blood cells (RBC). Erythrocyte 

binding is mediated by host receptors and parasite surface proteins mainly from the 

merozoite surface protein family; MSP1, for instance, is thought to bind the erythrocyte 

surface Band 3 (Goel et al., 2003). After egress and during invasion, the secretory organelles 
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called micronemes and rhoptries secrete parasite adhesins (EBL and PfRh families) and 

invasins (AMA1) at specific time points during the invasion process to ensure the correct 

sequence of attachment events (Singh et al., 2010). Merozoites can bind the RBC at any 

point on its surface but once they attach, they reorient with the apical end pointing to the 

RBC. A tight junction is then formed, creating an irreversible attachment event. At the tight 

junction, RON2, which is secreted by rhoptries and inserted into the erythrocyte membrane, 

links the parasite with the host cell membrane via its binding to AMA1 (Richard et al., 2010). 

Invasion is then driven by the actomyosin motor (Baum et al., 2006), with the tight junction 

moving along the merozoite surface, while the parasitophorous vacuole (PV) forms, until the 

merozoite pinches off (Riglar et al., 2011).  

 In P. falciparum, the intraerythrocytic cycle lasts 48h and causes the clinical 

symptoms associated with malaria (fig. 1.2.B). After invasion, the merozoite develops 

sequentially from ring to trophozoite to schizont. Each schizont then divides into 10-30 

merozoites, the RBC ruptures and the merozoites are able to invade new erythrocytes. The 

first step in merozoite egress from the host cell is RBC destabilization, mediated by the 

proteases falcipain-2, plasmepsin II and the host calpain-1, which degrade several actin 

cytoskeleton proteins (Chandramohanadas et al., 2009; Hanspal et al., 2002; Le Bonniec et 

al., 1999). After cytoskeleton destabilization, PfSUB1 cleaves PfSERA5, which mediates the 

rupture of the parasitophorous vacuolar membrane (PVM) and therefore the release of free 

merozoites (Arastu-Kapur et al., 2008). Some of these proteases are stored at the exonemes, 

which discharge their content into the PV after egress is triggered by a yet unidentified signal 

(Yeoh et al., 2007).   

 During the intraerythrocytic cycle, the parasite remodels its host cell to a large extent 

by exporting proteins to the RBC. Exported proteins need to cross the plasma membrane of 

the parasite and the PVM in order to reach the RBC cytosol, and in some cases the RBC 

plasma membrane. Most of the exported proteins contain an export element (PEXEL) motif, 

the canonical signal that targets P. falciparum proteins for export to the host cell (Marti et 

al., 2004). This PEXEL sequence is acetylated and cleaved in the ER (Chang et al., 2008) 

before proteins are transported in vesicles to the PV. Protein translocation is mediated by 

the PTEX complex from the PV to the RBC cytoplasm (Beck et al., 2014; Elsworth et al., 

2014). In order to establish its own protein export machinery in the RBC cytoplasm, the 

parasite creates the membrane structures called Maurer’s clefts during or shortly after 
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invasion (Gruring et al., 2011). Exported proteins are thought to be transported in vesicles 

attached to actin filaments from this organelle to the knobs, electron-dense surface 

protrusions at the erythrocyte plasma membrane (Cyrklaff et al., 2011). It has also been 

postulated that Maurer’s clefts are connected to the erythrocyte membrane via tubular 

structures where MAHRP2 is localized (Pachlatko et al., 2010).                

 The ligands expressed at the RBC membrane, mainly proteins from the RIFIN, STEVOR 

and PfEMP1 families, bind to the endothelium. This allows the parasite to cytoadhere and to 

evade the host immune response, causing the severe outcome of the disease (Niang et al., 

2009; Smith et al., 1995). The PfEMP1 protein family is coded by the clonally variant var gene 

family, which enables the parasite to express different surface proteins over time as a 

second mechanism of immune evasion. In P. falciparum, only one var gene is expressed at a 

particular time point, whereas the other members of the family are silenced (Scherf et al., 

1998). Var gene expression is regulated epigenetically through reversible histone 

modifications (Lopez-Rubio et al., 2007; Lopez-Rubio et al., 2009) and transcriptionally 

through non-coding RNAs (Swamy et al., 2011).     

 Some of the parasites (<10%) commit to sexual forms called gametocytes. 

Gametocyte commitment is a biological process which is poorly understood, although 

significant progress has been made in recent years. Schizonts are the stage that commit to 

sexual forms, producing merozoites that, upon reinvasion of new RBCs, will develop to 

gametocytes (Bruce et al., 1990). In P. falciparum, gametocyte development lasts 10-12 days 

and is divided into five stages. However, only stage I and stage V gametocytes are found in 

the bloodstream since the other stages sequester in the bone marrow (Joice et al., 2014). 

The disruption of the transcription factor AP2-G results in the downregulation of many genes 

expressed during the early stages of gametocyte development and therefore, causes the 

inability of the parasite to produce gametocytes (Kafsack et al., 2014; Sinha et al., 2014). The 

current model for regulation of sexual commitment is that, due to environmental signals or 

in a stochastic manner, those parasites that develop into gametocytes express AP2-G, whose 

expression activates early stage gametocyte genes triggering gametocytogenesis. AP2-G 

itself is thought to be regulated by epigenetic factors and to be silenced in the majority of 

the cells (Josling and Llinas, 2015).            

 Gametocytes are taken up by the mosquito with the blood meal, where they mature 

and develop into one female macrogamete or several male microgametes. In the mosquito 
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midgut, the gametes fuse to produce a zygote. The zygote develops to ookinete and invades 

the mosquito midgut wall, where it matures into an oocyst. Thousands of new sporozoites 

are formed within the oocyst that eventually ruptures, releasing the sporozoites, which 

migrate and invade the salivary glands of the mosquito. When the mosquito feeds from a 

new host, the cycle starts again.  

1.2.2. Hemoglobin degradation and heme detoxification 

 During the intraerythrocytic cycle, the parasite consumes 60-80% of the RBC 

hemoglobin (Krugliak et al., 2002). Hemoglobin digestion starts at the late ring stage, when 

the erythrocyte cytoplasm is engulfed via cytostome-derived invaginations. The small 

vesicles generated merge and form a mature food vacuole when the trophozoite stage 

begins (Abu Bakar et al., 2010). Hemoglobin is digested in the food vacuole by different 

proteases, including falcilysin and members of the plasmepsin and falcipain families 

(Banerjee et al., 2002; Eggleson et al., 1999; Sijwali et al., 2006). The proposed digestion 

pathway is as follows: first plasmepsins truncate the native hemoglobin and then, falcipains 

cleave the denatured globin. After that, falcilysin recognizes these peptides of 10-15 amino 

acids long and generates small peptides that are further hydrolyzed to amino acids by the 

parasite’s aminopeptidases (Gavigan et al., 2001; Gluzman et al., 1994). It has recently been 

suggested that plasmepsins and falcipains form a protein complex together with a heme 

detoxification protein that promotes hemozoin formation (Chugh et al., 2013). 

 During hemoglobin degradation, free heme is released and its iron molecule is 

oxidized from Fe+2 to Fe+3. The resulting ferriprotoporphyrin IX (FP) is highly reactive and 

forms oxygen-free radicals, causing protein and DNA oxidation and lipid peroxidation when 

not detoxified (Orjih et al., 1981). The parasite forms hemozoin, a cyclic dimer of FP (Pagola 

et al., 2000) in order to avoid free FP’s toxicity. There are different reports regarding the 

percentage of FP that is converted to hemozoin. Some studies showed a conversion of 

30-50% (Ginsburg et al., 1998; Zhang et al., 1999) while others reported a conversion rate of 

above 80% (Egan et al., 2002). The proportion of FP that is not converted into hemozoin is 

hypothesized to be detoxified by glutathione (Ginsburg et al., 1998) and hydrogen peroxide 

(Brown et al., 1978).  

 It is not clear how hemozoin formation is initiated. It could be mediated by lipids, 

since hemozoin formation occurs within lipid nanospheres (Pisciotta et al., 2007), or by the 
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heme detoxification protein (DHP), a likely essential protein localized at the food vacuole 

that is highly efficient promoting hemozoin formation in vitro (Jani et al., 2008).         

1.2.3. P. falciparum transporters 

 Transporters can be classified in two main categories: channels, which form aqueous 

pores and transport specific solutes across the membrane, and carriers, which bind to 

specific substrates and undergo conformational changes to mediate transport. Carriers can 

transport their substrates down their electrochemical gradient (facilitative carriers) or 

against it (pumps) using ATP (primary active carriers) or an ion gradient as a source of energy 

(secondary active carriers). More than 100 genes in the P. falciparum genome have been 

classified as putative transporters (Martin et al., 2005) of which only a few have been 

characterized up to date.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Schematic illustration depicting some representative transporters from P. falciparum 
and the iRBC (Staines et al., 2010). 

The examples represented are classified according to the major classes of membrane transport 
proteins. Transporters are represented at the erythrocyte plasma membrane (EPM), parasitophorous 
vacuolar membrane (PVM) and parasite plasma membrane (PPM). Channels: new permeation 
pathways and the Ca2+-activated K+ channel. Primary active carriers: the Na+/K+ ATPase, the Ca2+ 
pump and a putative v-type H+ pump. Secondary active carriers: the H+ coupled monocarboxylate 
symporter that mediates the efflux of lactate (L-), the HCO3

-/Cl- exchanger and the putatives H+ 
coupled pantothenate (P-) symporter and H+ coupled lactate (L-) symporter. Facilitative carriers: the 
hexose transporters GLUT1 and PfHT.     
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 One of the first P. falciparum transporters to be studied was PfHT, an essential 

hexose carrier that belongs to the major facilitator superfamily (MSF) (Woodrow et al., 

1999). Putative transporters of this family, for instance the putative organic cation 

transporter PFE0825w, are predicted to mediate the transport of folate, choline, lactate or 

pantothenate, but there is, to date, no experimental evidence to support this assumption. In 

P. falciparum there are 12 proteins that belong to this family (Martin et al., 2005), a small 

proportion compared with other living organisms which exhibit around 100 members. The 

parasite genome also codes for several anion and cation carriers, such as PfPiT, a 

sodium/phosphate cotransporter that localizes to the parasite plasma membrane (Saliba et 

al., 2006) or the recently identified vacuolar iron-transporter (PfVIT) that localizes to the 

parasite endoplasmic reticulum. Although VIT is not essential in P. berghei, PbVIT knockout 

parasites are more sensitive to high concentrations of iron, suggesting that one of the roles 

of this transporter is iron detoxification (Slavic et al., 2016).  

 Among the P. falciparum putative pumps, there are two belonging to the P-type 

ATPases which have been partially characterized. PfATP4 is a cation ATPase localized at the 

plasma membrane and at undefined membrane structures within the parasite (Rottmann et 

al., 2010) while the PfCuP ATPase is a putative copper transporter localized at the parasite 

and host plasma membranes (Rasoloson et al., 2004). There are also 12 subunits of a v-type 

H+ ATPase, 2 v-PPase genes and the subunits of a mitochondrial f-type H+ ATPase present in 

the P. falciparum genome that could be potential drug targets but haven't been investigated 

so far. 

 Regarding P. falciparum channel transporters, PfAQP is one of the 12 putative 

channels, and it plays an important role in the parasite biology. PfAQP has been linked to 

osmotic protection, glycerol uptake, oxidative stress reduction and detoxification (Hansen et 

al., 2002; Pavlovic-Djuranovic et al., 2006). Among the 12 putative channels, there are also 4 

K+ channels, 2 of which have been partially characterized. Pfkch1/PfK1 localizes at the RBC 

plasma membrane and Pfkch2/PfK2 at the parasite plasma membrane and both might be 

essential in blood stages (Waller et al., 2008).  

 Nucleoside and amino acid transporters also play an essential role during blood stage 

development. In order to survive, the parasite needs to take up several nutrients such as 

pantothenic acid (Saliba et al., 1998) or isoleucine, the only amino acid that is not present in 

hemoglobin (Liu et al., 2006). Only PfNT1, 1 of the 4 predicted P. falciparum nucleoside 
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transporters, has been characterized; it is essential and localizes to the parasite plasma 

membrane (El Bissati et al., 2008). On the other hand, none of the 6 putative amino acid 

transporters of the parasite have been studied so far.  

 P. falciparum transporters that localize to the mitochondria or the apicoplast 

organelles have also been identified. Two ATP/ADP translocases which show mitochondrial 

localization have been expressed and characterized in E. coli (Razakantoanina et al., 2008) 

and the apicoplast PfiTPT and PfoTPT transporters have been proposed to transport 

phosphorylated C3 compounds into the plastid (Mullin et al., 2006). 

  Although P. falciparum transporters are involved in multiple metabolic pathways and 

are essential in some cases for the uptake of nutrients and the discard of toxic metabolites, 

they haven’t been exploited yet as antimalarial targets in part due to the absence of 

structural data. PfAQP is the only P. falciparum transporter with a resolved crystal structure 

(Newby et al., 2008). Furthermore, the cation ATPases PfATP6 and PfATP4 are the only 

transporters that have been validated as antimalarial targets (Jimenez-Diaz et al., 2014; 

Pulcini et al., 2013). PfATP6 has been proposed to be one of the molecular targets of 

artemisinins (Eckstein-Ludwig et al., 2003), although this hypothesis has been disputed 

(O'Neill et al., 2010b) and hasn’t been confirmed by whole-genome sequencing of 

artemisinin resistant strains in more recent studies (Ariey et al., 2014).  

 Besides being relevant potential drug targets, transporters have also been 

investigated with regards to their role in drug resistance. Duplications or point mutations 

within P. falciparum transporters cause reduced drug susceptibility by reducing the drug 

concentration in the compartment where the drug exerts its antimalarial activity. The main 

transporters that cause drug resistance in the parasite are PfCRT (described later), PfMDR1, 

PfMRP and PfNHE. 

 PfMDR1 is an ATP-binding cassette (ABC) transporter with 12 predicted 

transmembrane domains that localizes to the food vacuole with both termini facing the 

cytosol (Cowman et al., 1991; Karcz et al., 1993). The wild type protein transports the 

antimalarial drugs quinine and chloroquine and the mutant form transports halofantrine 

(Sanchez et al., 2008a). Its amplification confers resistance to lumefantrine, artemisinin, 

quinine, mefloquine and halofantrine (Sidhu et al., 2006) and several point mutations (N86Y, 

Y184F, S1034C, N1042D and D1246Y) influence the parasite susceptibility to lumefantrine, 
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artemisinin, quinine, mefloquine, halofantrine and chloroquine (Reed et al., 2000; Sidhu et 

al., 2005).  

 Two other ABC transporters have been associated with drug resistance, PfMRP1 and 

PfMRP2. The first one localizes to the plasma membrane and membrane-bound vesicles 

(Klokouzas et al., 2004). It is not essential, but when knocked out, the parasite susceptibility 

to chloroquine, quinine, artemisinin, piperaquine and primaquine increases (Raj et al., 2009). 

Point mutations within this transporter (Y191H and A437S) are also associated with increased 

resistance to chloroquine and quinine (Mu et al., 2003). Likewise, a deletion in the 5'UTR 

region of the pfmrp2 gene also correlates with increased levels of resistance towards 

chloroquine, quinine and mefloquine (Mok et al., 2014).  

 Differences in the copy number of the DNNND repeat (Ferdig et al., 2004) and 

expression levels (Nkrumah et al., 2009) of the PfNHE Na+/H+ exchanger have been 

associated with quinine resistance, although this association remains controversial 

(Andriantsoanirina et al., 2010). The transporter localizes to the parasite plasma membrane 

and has 12 predicted transmembrane domains (Bennett et al., 2007).                

1.3. Malaria treatment and resistance 

1.3.1. Antimalarial drugs and their targets 

 The bark from the cinchona tree was introduced into Europe as antimalarial 

treatment in the 17th century by Jesuit priests returning from Peru. The active compounds of 

this plant are quinine and its diastereomer quinidine. Nowadays, quinine is only 

recommended in combination with the antibiotic clindamycin to treat women in the first 

trimester of pregnancy (WHO, 2015b). Quinidine is more active than quinine but its use has 

been associated with severe side effects.     

 Efforts to produce synthetic quinine led to the discovery of the 4-aminoquinolone 

chloroquine (CQ) in 1934, which was used worldwide until resistance emerged around 1960. 

CQ is able to diffuse across membranes when it is not protonated, but in the acidic digestive 

vacuole pH, CQ is protonated and becomes membrane impermeable thus, accumulating in 

this organelle (Yayon et al., 1984). It is generally accepted that CQ inhibits heme 

detoxification by binding to FP and therefore blocking hemozoin formation (Bray et al., 1998; 

Chou et al., 1980). However, it has also been suggested to block hemoglobin degradation by 
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reducing its binding affinity to falcipain-2 (Chugh et al., 2013). CQ is currently still used to 

treat P. vivax, P. ovale, P. malariae and P. knowlesi infections, although P. vivax CQ 

resistance has already been confirmed in ten countries around the world (WHO, 2015a).         

 Several CQ derivatives such as amodiaquine and piperaquine were developed in 

order to overcome CQ resistance and they are used nowadays in artemisinin combination 

therapies (ACTs). Based on structural similarity, amodiaquine and piperaquine are thought to 

share the same mode of action as CQ. Although amodiaquine is effective against CQ 

resistant strains it also shows some cross-resistance (Sa et al., 2009). Piperaquine efficacy is 

also reduced against strains carrying CQ resistant PfCRT haplotypes, although to a lesser 

extent (Muangnoicharoen et al., 2009).  

 Arylamino alcohols derived from the chemical structure of quinine such as 

mefloquine, halofantrine and lumefantrine are also used to treat malaria. Mefloquine is used 

in prophylaxis and in combination with artesunate, despite its psychiatric side effects, since 

it is active against CQ-resistant strains (Tansley et al., 2010). Mefloquine resistance is 

associated with an increased concentration of the drug in the food vacuole, suggesting that 

it inhibits a cytosolic drug target. On the other hand, mefloquine inhibits the PfMDR1-

mediated transport of other compounds into the food vacuole and therefore, the 

transporter has also been proposed as its potential target (Rohrbach et al., 2006; Sidhu et 

al., 2006). Furthermore, an alternative hypothesis suggests that mefloquine's mode of action 

is endocytosis inhibition (Hoppe et al., 2004). Halofantrine is also active against CQ-resistant 

strains and probably shares the same mode of action and mechanism of resistance with 

mefloquine but it is currently not used due to its serious side effects. Conversely, 

lumefantrine is well tolerated and it is currently used in a combination therapy with 

artemether.  

 Another antimalarial drug currently in use is atovaquone, which targets the 

cytochrome bc1 complex and consequently inhibits the electron transport chain and 

collapses the mitochondrial membrane potential (Fry and Pudney, 1992). As a result, 

pyrimidine biosynthesis is inhibited and the parasite dies (Painter et al., 2007). Atovaquone 

is only used in combination with proguanil and only as prophylactic treatment due to its high 

cost and because the parasite develops resistance quickly through mutations in the cytb 

gene.  
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 Primaquine, an 8-aminoquinoline, is the only drug available that is effective against 

P. vivax hypnozoites and young stage gametocytes. It is used to reduce transmission in 

combination with ACTs (WHO, 2015b). However, it is not recommended to patients with 

glucose 6-phosphate 1-dehydrogenase (G6PD) deficiency due to an increased risk of 

hemolytic anemia (Bolchoz et al., 2001). One single dose of tafenoquine, a primaquine 

analog currently under development, could be as effective as 14 days of treatment with 

primaquine although it doesn’t overcome the side effects in patients with G6PD deficiency. 

Tafenoquine is expected to be approved in the upcoming years (Price and Nosten, 2014). 

Their mode of action is not known, but primaquine doesn’t inhibit heme polymerization like 

other quinolines (Hawley et al., 1998). No evidence of resistance against primaquine has 

been reported so far, instead it has been suggested that it can revert CQ resistance by 

inhibiting PfCRT (Bray et al., 2005; Sanchez et al., 2004).  

 Inhibitors of the dihydropteroate synthase (DHPS) and the dihydrofolate reductase 

(DHFR), both key enzymes of the folate biosynthetic pathway, have also been used as 

antimalarial drugs. The DHPS inhibitor sulfadoxine is used in combination with the DHFR 

inhibitor pyrimethamine, although only as ACT in combination with artesunate or as 

intermittent preventive treatment during pregnancy (WHO, 2015b).          

 In the current situation, the World Health Organization recommends the use of 

artemisinin-based combination therapies (an artemisinin derivative plus a second 

antimalarial) to treat uncomplicated P. falciparum malaria and parenteral artesunate or 

artemether to treat severe malaria. The partner drug should have a different mode of action 

and a longer half live than the artemisinin derivative in order to avoid the development of 

resistance. Artemisinin was also identified from a plant extract, in this case Artemisia annua, 

also known as sweet wormwood. It is a sesquiterpene lactone that exhibits an endoperoxide 

bridge essential for the antimalarial activity of the compound. Several artemisinin derivatives 

were synthesized in order to improve artemisinin solubility. These include 

dihydroartemisinin, artesunate and artemether, which are the fastest acting antimalarials 

known so far. Dihydroartemisinin (DHA), which is also an active metabolite of artesunate 

and artemether, inhibits the P. falciparum phosphatidylinositol 3-kinase (PfPI3K) (Vaid et al., 

2010). There are other hypothesis regarding the mode of action of artemisinin; one claims 

that artemisinin derivatives inhibit PfATP6 (Krishna et al., 2014) while another claims that 

their mode of action is related to hemoglobin digestion (Klonis et al., 2013). The current 
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recommended ACTs include artemether + lumefantrine, artesunate + amodiaquine, 

artesunate + mefloquine, dihydroartemisinin + piperaquine and artesunate + sulfadoxine-

pyrimethamine.  

1.3.2. Drug resistance mechanisms 

 Chloroquine resistance arose from 6 different loci in the Mekong region, Colombia 

and India in the late 50s and early 60s and it later spread to Africa (fig. 1.4) (Mehlotra et al., 

2008; Wootton et al., 2002). Resistance to sulfadoxine-pyrimethamine arose in the 60s and 

to mefloquine in the 70s. In 2009, the first reports of artemisinin resistance appeared and 

recently also to piperaquine, marking the first time that an artemisinin combination therapy 

fails because the parasite develops resistance to both drugs (Amaratunga et al., 2016). 

Combination therapies reduce the chances of resistance emergence but when one of the 

drugs is not effective anymore, the likelihood of the parasite developing resistance towards 

the second drug increases, as in the current situation. Whether artemisinin resistance will 

spread to other geographical areas in the way that CQ resistance did four decades ago, is still 

unknown. So far, resistance to artemisinins has been confirmed in Cambodia, Laos, 

Myanmar, Thailand and Vietnam (WHO, 2015a). 

 

 

 

   

 

 

 

 

Figure 1.4. Spread of chloroquine resistance (Roberts, 2016). 

 CQ resistance is associated with mutations on the chloroquine resistance transporter 

(PfCRT) which promotes CQ transport out of the food vacuole, thus reducing the amount of 
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CQ available to bind its target (Sidhu et al., 2002). All CQ-resistant strains carry a mutation 

on the PfCRT residue K76. The positive charge of the lysine side chain is thought to block the 

binding of CQ to the active site of the transporter in CQ-sensitive strains. Further mutations 

in PfCRT are thought to balance the level of parasite resistance and fitness. Interestingly, the 

mutation of serine 163 to arginine confers halofantrine resistance but restores CQ 

susceptibility (Johnson et al., 2004). Mutations in other transporters have also been linked to 

CQ resistance, as the mutation N86Y in PfMDR1 (Duraisingh et al., 1997) or the mutations 

Y191H and A437S in PfMRP1 (Mu et al., 2003).  

 Resistance against quinine, mefloquine, halofantrine, lumefantrine and artemisinin 

has been linked to an amplification of the PfMDR1 locus (Price et al., 2004). Mefloquine, 

halofantrine and artemisinin are transported by PfMDR1 into the food vacuole, thus 

preventing their activity against their putative targets in the cytosol (Rohrbach et al., 2006). 

In addition, the N86Y mutation of PfMDR1 confers resistance to lumefantrine (Sisowath et al., 

2005). Quinine resistance has also been associated with point mutations in PfMDR1 (Sidhu et 

al., 2005), PfCRT (Cooper et al., 2007), PfNHE1 (Nkrumah et al., 2009) and PfMRP1 (Mu et al., 

2003).  

  Resistance against DHFR inhibitors are directly linked to mutations in this protein. 

The sequential acquisition of mutations increases the level of resistance towards 

pyrimethamine and proguanil from 10-fold for the single mutant S108N to 500-fold for the 

quadruple mutant S108N/N51I/C59R/I164L. Similarly, resistance against sulfadoxine is due to 

mutations in the dhps gene. The mutations S436A/F, A437G, K540E, A581G and A613T/S decrease 

the binding affinity of the inhibitor towards the enzyme (reviewed by Gregson and Plowe, 

2005). 

 Mutations in the Kelch 13 propeller gene (PfKelch13) have been associated with 

reduced rates of parasite clearance and it is the only molecular marker for artemisinin 

resistance characterized so far (Ariey et al., 2014). Pfkelch3 mutations are spread in the five 

Southeast Asian countries where artemisinin resistance has been detected (fig. 1.5). It has 

been shown that dihydroartemisinin (DHA), the active metabolite of artemisinin, inhibits the 

phosphatidylinositol 3-kinase of P. falciparum (PfPI3K), which phosphorylates 

phosphatidylinositol (PI) and produces phosphatidylinositol 3-phosphate (PI3P) (Vaid et al., 

2010). It has been proposed that PfKelch13 polyubiquitinates PfPIK3 in normal conditions 
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and that it fails to target PfPIK3 to the proteasome when mutated, leading to its 

accumulation and resulting in artemisinin resistance (Mbengue et al., 2015). 

 

 

Figure 1.5. Current map distribution of PfKelch13 mutations. Adapted from the Worldwide 
Antimalarial Resistance Network (WWARN) website. 

1.3.3. P. falciparum chloroquine resistance transporter 

 The P. falciparum chloroquine resistance transporter (PfCRT) belongs to the drug 

metabolite transporter (DMT) superfamily (Martin and Kirk, 2004). There is no crystal 

structure available, but it is predicted to have 10 transmembrane domains. It is localized at 

the digestive vacuolar membrane with both termini facing the cytoplasm (Fidock et al., 

2000). Transport kinetics and trans-stimulation assays support the theory that PfCRT is a 

carrier and not a channel (Bellanca et al., 2014; Martin et al., 2009; Sanchez et al., 2007). The 

PfCRT locus was identified in a genetic linkage analysis of the F1 progeny of a genetic cross 

between the CQ-sensitive strain HB3 (CQS) and the CQ-resistant strain Dd2 (CQR) (Su et al., 

1997). There are PfCRT homologs in Plasmodium and CRT-like proteins are also present in 

Cryptosporidium parvum, Dictyostelium discoideum and Arabidopsis thaliana, where the 

CRT-like protein transports γ-glutamylcysteine, a glutathione precursor (Maughan et al., 

2010).  

 PfCRT is predicted to have an essential physiological function. Other members of the 

DMT family transport amino acids, weak bases and organic cations. In the case of PfCRT, 

many physiological substrates have been proposed but none has been confirmed. So far it 
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has been linked to the transport of amino acids or small peptides (Martin et al., 2009, Juge 

et al., 2015) and glutathione (Patzewitz et al., 2013).      

 In general, parasite strains with mutated PfCRT haplotypes accumulate less CQ than 

wild type strains (Fidock et al., 2000), mostly because they transport CQ out of the food 

vacuole (Martin and Kirk, 2004; Sanchez et al., 2005). This observation was confirmed in 

different parasite strains, genetically modified to express different pfcrt alleles in the same 

genetic background (Lakshmanan et al., 2005; Sidhu et al., 2002). PfCRT has also been 

heterologously expressed in different systems. PfCRTDd2 expressed in Dictyostelium 

discoideum resulted in decreased CQ and QN accumulation (Naude et al., 2005). Along the 

same line, oocyte studies showed that wild type PfCRT does not transport CQ but mutants 

do (Martin et al., 2009). Mutant haplotypes also alter the parasite susceptibility towards 

amodiaquine and lumefantrine (Cooper et al., 2007; Echeverry et al., 2007; Sisowath et al., 

2009).    

 Two different pathways have been proposed to explain the evolution from CQS 

haplotypes to CQR, including mutations that have little effect on CQ transport. At least 2 

mutations are necessary to confer low levels of CQ transport: K76 to a non-positively charged 

residue and N75 or N326 to a negatively charged amino acid. Other mutations in PfCRT may 

balance the level of parasite resistance and fitness since only four of the eight mutations of 

the Dd2 allele are required to mediate high levels of CQ transport (Summers et al., 2014). 

The idea that CQ-resistant strains may have a fitness cost is supported by the fact that once 

CQ is not used as treatment for a long time, the wild type strains seem to overgrow the 

resistant ones (Kublin et al., 2003; Wang et al., 2005). 

1.3.4. The future of antimalarial drugs 

 There is, at present, no commercially available vaccine against malaria and the most 

developed vaccine candidate RTS,S/AS01 showed only modest efficacy in infants and 

children in the lasts clinical trials that took place in malaria endemic regions (Rts, 2015). This, 

together with the spreading of artemisinin resistance, highlights the need to develop new 

antimalarial drugs with new modes of action. It is of special concern that, besides the new 

artemisinin-based combination treatments approved in 2009, no new antimalarial drug has 

been launched into the market in the past decade (Wells et al., 2015).  
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 Currently, there are several compounds with new modes of action that are 

undergoing clinical trials or preclinical development. For instance, PfATP4 is inhibited by the 

compounds AJ557733 and PA21A092 and has been recently validated as a new antimalarial 

target (Jimenez-Diaz et al., 2014; Vaidya et al., 2014). Other compounds in the early stages 

of the malaria pipeline are: MMV390048, an inhibitor of the PI(4) kinase (McNamara et al., 

2013); P218, an inhibitor of the Plasmodium dihydrofolate reductase (Yuthavong et al., 

2012); DSM265, an inhibitor of the dihydroorotate dehydrogenase (Coteron et al., 2011) and 

KAF156, an inhibitor of the cyclic amine resistance locus (Meister et al., 2011).   

 New synthetic endoperoxides such as OZ439 and OZ277 are also under development. 

Although they contain the same active group present in artemisinin, OZ439 has shown to be 

active against artemisinin-resistant strains and both compounds show a reduced 

reproductive toxicology compared with artemisinin in preclinical safety studies. The 

potential antimalarial activity of artemisone and RK 182 is also being investigated 

(Nagelschmitz et al., 2008; O'Neill et al., 2010a).        

 Additionally, a new generation of aminoquinolines is in the pipeline. Ferroquine is 

one of these compounds and so far has been shown to be active against chloroquine, 

amodiaquine and mefloquine resistant strains (Dubar et al., 2011). AQ13 is another 

aminoquinoline undergoing preclinical development (Mzayek et al., 2007).   

  On the other hand, there are several known drugs that have been used to treat other 

diseases that are now under clinical studies for malaria treatment. Among these compounds 

are methylene blue and trimethoprim. Also, the known antibiotic fosmidomycin, an inhibitor 

of the DXP reductoisomerase (Jomaa et al., 1999), is ongoing clinical trials in combination 

with piperaquine. 

 In a different approach, large compound libraries have been screened against 

P. falciparum. Among around 6 million compounds tested, more than 25,000 kill the parasite 

with an IC50 of around 1 μM (Avery et al., 2014; Gamo et al., 2010). KAE609, a PfATP4 

inhibitor, is the most advanced compound that has been identified in one of these high 

throughput screens (Rottmann et al., 2010).  

1.3.5. Lipid metabolism as antimalarial target 

  Choline enters the host cell by the residual erythrocytic choline carrier and the new 

permeation pathways (Kirk et al., 1991). Then, an unknown organic cation transporter 
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mediates choline transport inside the parasite (Biagini et al., 2004). Once inside the parasite, 

choline is converted to phosphatidylcholine via de novo cytidine diphosphate choline 

pathway that involves three enzymes: choline kinase, phosphocholine cytidylyltransferase 

and choline/ethanolamine phosphotransferase. It can also be synthesized from serine and 

ethanolamine precursors in an alternative pathway (Pessi et al., 2004). Phospholipid 

metabolism is considered a potential antimalarial target, although there are currently no 

approved antimalarial drugs targeting this pathway (Ben Mamoun et al., 2010). 

 Already in the late 90s, several choline analogs were developed in order to inhibit 

phospholipid metabolism in P. falciparum since phosphatidylcholine is the most abundant 

phospholipid in P. falciparum membranes (Ancelin et al., 1998). The lead compound T3, a 

bis-thiazolium salt also known as albitiazolium or SAR97276, is known to accumulate in the 

parasite food vacuole where it binds to heme (Biagini et al., 2003). However, the main mode 

of action is thought to be the inhibition of choline transport inside the parasite. T3 also 

inhibits the enzymes involved in phosphatidylcholine biosynthesis, although at higher 

concentrations (Wein et al., 2012). T3 entered clinical trials but was discontinued because it 

did not meet its primary endpoint in Phase II (Sanofi, 2013). Currently, efforts are focused on 

the design of albitiazolium prodrugs in order to improve the oral availability of the 

bis-thiazolium salts (Peyrottes et al., 2014).   

1.4. Post-translational modifications in Plasmodium 

1.4.1. Phosphorylation in Plasmodium 

 Post-translational modifications (PTMs) regulate all stages of Plasmodium species. 

Invasion, motility, exflaggellation, proliferation and egress are regulated by phosphorylation 

and lipidation (palmitoylation, myristoylation and prenylation). Furthermore, epigenetic 

regulation, which implies PTMs of histones, is involved in hypnozoite regulation, var gene 

expression and gametocytogenesis commitment (reviewed by Doerig et al., 2015). 

 The P. falciparum genome codes for around 90 kinases, of which 36 out of the 65 that 

have been studied are likely essential in blood stages (Solyakov et al., 2011). The majority of 

kinases are predicted to belong to the eukaryotic protein family; however, there are some 

discrepancies between the parasite and the human kinome. Tyrosine kinases are absent in 

Plasmodium and on the contrary, the FIKKs and CDPKs families are present in Apicomplexa 
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parasites but not in mammals. On the other hand, 30 protein phosphatases were identified 

in the P. falciparum genome (Wilkes and Doerig, 2008).   

 Among the characterized kinases, PfPKG is essential for merozoite egress. Its activity 

is necessary for exonemes and micronemes discharge (Collins et al., 2013b). Another 

essential kinase is PfPKA, which regulates invasion by phosphorylating AMA1 (Leykauf et al., 

2010). Plasmodium kinases also play essential roles in non intra-erythrocytic stages. For 

example, PbCDPK4 and PbMAP2 control the process of male gametocyte differentiation into 

gametes (Billker et al., 2004; Tewari et al., 2005) and the P. falciparum and P. berghei eIF2α 

kinases regulate translation and play an essential role in stress-response and the transition 

of the parasite between different stages (Fennell et al., 2009; Zhang et al., 2010; Zhang et al., 

2012).        

1.4.2. Other post-translational modifications in Plasmodium 

 Much less is known about the role of palmitoylation, the reversible addition of a 

long-chain fatty acid to a cysteine residue, in P. falciparum biology. It is the second more 

abundant modification of parasite proteins in blood stages after phosphorylation. Proteins 

implicated in trafficking, cytoadherence, signaling, metabolism, invasion and drug resistance 

are palmitoylated, suggesting a crucial role of this modification in several essential pathways 

of the parasite. Palmitoylation inhibition by 2-bromopalmitate causes abnormal 

development of blood stage parasites and invasion impairment due to reduced levels of the 

complex motor proteins PfGAP45 and PfMTIP (Jones et al., 2012). Furthermore, disruption of 

the palmitoyltransferase PfDHHC9 leads to a decrease in gametocyte numbers. Attempts to 

disrupt PfDHHC3, 7 and 8 by double crossover recombination failed, suggesting an essential 

role of these palmitoyltransferases in blood stages (Tay et al., 2016).       

 Other lipidation modifications are myristoylation and prenylation, both irreversible. 

Myristoylated proteins have also been identified in P. falciparum blood stages and molecules 

targeting the only P. falciparum N-myristoyltransferase have proven to arrest the parasites 

at the schizont stage (Wright et al., 2014). Similarly, prenylation inhibitors cause 

mislocalization of Rab5, a small GTPase, which mediates cellular vesicular trafficking (Howe 

et al., 2013).       
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 The main role of methylation and acetylation is to control transcription levels 

through histone modification. This regulatory mechanism is particularly important in var 

gene regulation (Freitas-Junior et al., 2005; Lopez-Rubio et al., 2009).   

 N- and O-linked glycosylation (Kimura et al., 1996; Nasir ud et al., 1992), 

ubiquitylation (Ponts et al., 2011), sumoylation (Issar et al., 2008), S-nitrosylation (Wang et 

al., 2014) and S-glutathionylation (Kehr et al., 2011) have also been detected in plasmodial 

proteins but their roles in Plasmodium biology have not been deeply investigated.   

1.4.3. Transporters regulation by phosphorylation 

 No Plasmodium transporter has been reported so far to be regulated by 

phosphorylation. However, the cellular functions of multiple transporters have been shown 

to be regulated by phosphorylation in other eukaryotic organisms.  

 Phosphorylation can either activate or inhibit the activity of a transporter. For 

example, the activity of the rat organic cation transporter (rOCT1) is stimulated by the 

phosphorylation of a serine residue by protein kinase C (Mehrens et al., 2000). Conversely, 

phosphorylation of the dopamine transporter reduces its maximal velocity (Moritz et al., 

2015). Phosphorylation can also regulate the cellular localization of a transporter, therefore 

regulating the levels of functional protein present at the membrane. This is the case of the 

water channel aquaporin-2 (Moeller et al., 2011) and the insulin-regulatable glucose 

transporter (Lawrence et al., 1990). Both transporters show increased levels of protein 

expression at the membrane when phosphorylated. On the contrary, when the glutamate 

transporter GLAST is phosphorylated by the glycogen synthase kinase 3 isoform β (GSK3β), 

the protein levels of this transporter at the membrane decrease (Jimenez et al., 2014). 

 Interestingly, transporters linked to drug resistance are also regulated by 

phosphorylation. This is the case with hMDR1, the human homolog transporter of the 

P. falciparum multidrug resistance transporter PfMDR1 (Aftab et al., 1994). In Plasmodium, 

PfMDR1 is phosphorylated at residues S14, S514 and T513 (Solyakov et al., 2011) but the 

biological functions of these post-translational modifications are not known.  

 The new permeation pathways (NPPs) induced by the parasite upon RBC infection 

(Krugliak and Ginsburg, 2006) are also thought to be regulated by phosphorylation. When 

the phosphoproteomes of RBC and iRBC are compared, 5 membrane proteins (PMCA, AQ1, 

Band3, GLUT1 and the nucleoside transporter 1) appear to be differentially phosphorylated 
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(Bouyer et al., 2016). Infected RBCs are more permeable to inorganic anions and cations, 

sugars, amino acids, peptides and nucleosides, among other compounds. The increased 

permeability of the iRBC is due to the expression of parasite anion transporters from the 

clag gene family at the host cell membrane (Nguitragool et al., 2011) as well as due to an 

upregulation of the RBC endogenous channels (Staines et al., 2007). The exact mechanism of 

activation is still under discussion. On the one hand, RBCs subjected to oxidative stress 

mimic the induced hemolysis and electrophysiological properties of iRBCs (Huber et al., 

2002) but on the other hand, protein kinase A can also activate RBC anion channels (Egee et 

al., 2002).  

1.4.4. Post-translational modifications of PfCRT 

 PfCRT phosphorylation at residues 33 and 411 has been experimentally proven in 

different studies but the functional role of these modifications still remains to be elucidated 

(Kuhn et al., 2010; Lasonder et al., 2012; Solyakov et al., 2011). Phosphorylation of serine 

420 was also detected in one of these studies (Lasonder et al., 2012). There is evidence that 

PfCRT localization is regulated by this post-translational modification. The threonine residue 

at position 416 is essential for the trafficking and localization of the transporter to the food 

vacuole. When the residue T416 of an episomal copy of PfCRT tagged with GFP is mutated to 

alanine, the transporter is localized at the plasma membrane. This phenotype can be 

partially rescued by substitutions with aspartic and glutamic acid (Kuhn et al., 2010).    

 Another post-translational modification that takes place in PfCRT is the 

palmitoylation of the cysteine residue 301. This modification was detected in a large-scale 

study that identified more than 400 blood stage palmitoylated proteins (Jones et al., 2012). 

The role of palmitoylation in PfCRT function remains to be investigated. However it is 

possible to speculate that palmitoylation at position 301 may change the topology of PfCRT 

by promoting the insertion of the outside loop into the membrane. 

1.5. Molecular tools in P. falciparum 

1.5.1. Genome editing in P. falciparum 

 A huge progress has recently been made in the field of genome editing in 

Plasmodium with the implementation of the CRISPR-Cas9 technology (Ghorbal et al., 2014; 

Zhang et al., 2014). Before the introduction of this technology, to disrupt a gene or to do 
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allelic exchange required the transgenic parasite cultures carrying an episomal plasmid to be 

subjected to multiple rounds of ON/OFF drug selection, hoping for the plasmid to integrate 

by single (Crabb and Cowman, 1996; Wu et al., 1996) or double crossover recombination 

(Duraisingh et al., 2002; Maier et al., 2006).  

 The CRISPR-Cas9 technology is based on a prokaryotic defense system that uses short 

RNAs to target and degrade foreign nucleic acids (Jinek et al., 2012; Mali et al., 2013). In the 

adapted system, the Cas9 endonuclease binds to a single guide RNA (sgRNA) that is designed 

to be complementary to a specific sequence of the gene of interest. Cas9 introduces a 

double strand break into the genome that is repaired by homologous recombination using a 

DNA template that has been modified to introduce the desirable genetic modification 

(fig. 1.6.A).  

 The use of zinc-finger nucleases (ZFNs) is an alternative methodology that also 

introduces double strand breaks into the genome using site-specific nucleases (fig. 1.6.B). 

This technology has been adapted to the malaria parasite (Moraes Barros et al., 2015; 

Straimer et al., 2012) but due to the high costs derived from the complex DNA-binding 

domain design process, it is not widely used.   

 Both methodologies depend on DNA double-strand break repair (DSBR). There are 

two main mechanisms of DSBR in eukaryotes: homologous recombination (HR) and end 

joining (EJ). EJ can be further divided into the classical non-homologous end joining (NHEJ), 

and the two alternative pathways, microhomology-mediated end joining (MMJE) and single 

strand annealing (SSA). HR is a high fidelity mechanism, since homology sequences of DNA 

are used to repair the breaks. On the contrary, EJ pathways usually cause deletions or 

insertions because the broken DNA is just ligated together (NHEJ) or by annealing of 

homology sequences that are exposed after the DSB (MMJE and SSA). In P. falciparum, the 

genes involved in NHEJ have not been identified, suggesting that the parasite lacks this 

repair mechanism (Lee et al., 2014). On the other hand, P. falciparum has the molecular 

machinery necessary to complete alternative EJ pathways although these repair events are 

not frequently detected (Straimer et al., 2012). This fact makes the genome editing 

techniques based on DSB repair by HR especially suitable for P. falciparum.       

 Both ZFNs and CRISPR-Cas9 make it possible to mutate, disrupt, replace and tag 

genes without altering the genomic region by introducing a selectable marker or creating 
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partial duplication of the gene of interest as a result of a single or double recombination. 

Nevertheless these modifications are permanent and cannot be modulated.      

 

A. CRISPR-Cas9 
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Figure 1.6. Site specific genome editing strategies currently available in P. falciparum. 

1.5.2. Gene downregulation strategies in P. falciparum 

 There are several established methodologies to knockdown or conditionally knockout 

genes in P. falciparum: the tetracycline-repressible transcriptional system, the PKBP12 

destabilization domain (DD), the E. coli DHFR degradation domain (DDD), the conditional 

aggregation domain (CAD), the glmS ribozyme and the Cre-loxP, FLP-frt and diCre systems 

(reviewed by de Koning-Ward et al., 2015). The use of interference RNA (RNAi) is not 

possible in P. falciparum because the necessary enzymes are not present in the parasite’s 
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genome (Baum et al., 2009). Another methodology that could be used, but hasn’t been 

reported in P. falciparum so far, is the use of a mutant version of Cas9 to block transcription 

(Gilbert et al., 2013). 

 The first approach which showed that it is possible to regulate gene expression in 

P. falciparum was the Tet-OFF system. This strategy uses anhydrotetracycline (ATc) -

regulated transactivators, identified in T. gondii, to control the expression of P. falciparum 

genes. The promoter of the target gene has to be modified to incorporate tetracycline 

operator sites (TetO). In absence of ATc, the transactivators bind to the TetO sites and 

promote the transcription of the gene. When ATc is added, the gene expression is repressed 

since the transactivators are sequestered by ATc and cannot bind to the TetO sites. 

Unfortunately, this system only enables the regulation of episomally expressed transgenes 

(Meissner et al., 2005).    

 The Cre-loxP, FLP-frt and diCre systems are based on the directed recombination of 

two short sequences (loxP or frt) flanking the gene of interest by an inducible recombinase 

(Cre or FLP) (O'Neill et al., 2011). In the case of diCre, the recombinase is expressed in two 

different subunits that aggregate and form a functional heterodimer upon the addition of 

rapamycin (fig. 1.7.A). The last approach is the most efficient and allows the tightest 

regulation of recombinase activity. The main disadvantage is that recombination doesn’t 

occur in the whole population of parasites, so it is problematic to link a particular phenotype 

directly to a knockout gene (Collins et al., 2013a).  

 The DD tag, when fused to a protein, targets the protein for proteosomal 

degradation. Protein levels are regulated via the addition of the compound Shield-1, which 

stabilizes the protein and prevents its degradation (fig. 1.7.B). Its main disadvantage is that 

the DD tag can interfere with the function of the tagged protein, making the tagging 

unfeasible (Armstrong and Goldberg, 2007). The PKBP12 destabilization domain (DD) is 

preferred over the E. coli DHFR degradation domain (DDD) since the compound 

trimethoprim used to stabilize the DDD domain is toxic for the parasites, which need to 

express hDHFR to survive (Muralidharan et al., 2011).   

 One strategy used to downregulate gene expression at the post-transcriptional level 

is the glmS ribozyme. In the adapted system, the glmS ribozyme sequence is cloned at the 

3’UTR of the gene of interest. Upon addition of glucosamine, the glmS ribozyme cleaves its 

own mRNA. Consequently, both mRNAs are degraded, leading to a decrease in protein levels 



Introduction 
 

 
25 

of the targeted gene (fig. 1.7.C) (Prommana et al., 2013). The disadvantages of this system 

are the toxicity of glucosamine at high concentrations and poor levels of downregulation 

compared with other systems.  
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Figure 1.7.Knockdown strategies currently available in P. falciparum. 
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 Another inducible system is the conditional aggregation domain (CAD) which 

aggregates in absence of the anti-aggregation ligand Shield-1. However, only secreted 

proteins have been shown to be regulated by this domain (Rivera et al., 2000; Saridaki et al., 

2008).   

 A different strategy, the Tet repressor (TetR)-aptamer system, to post-

transcriptionally downregulate protein levels was recently published. The TetR-aptamer is 

designed to bind specifically to the mRNA of the gene of interest, blocking translation. The 

addition of tetracycline disrupts this interaction, and promotes protein expression. No 

genome modification is necessary, which is one of the main advantages of the technique. 

Whether this system would be widely applicable in P. falciparum remains to be 

demonstrated (Goldfless et al., 2014).  

1.6. X. laevis oocytes as a system to study membrane proteins 

 Xenopus oocytes are a well-established system that has been extensively used to 

study all major classes of transporters from different eukaryotic organisms. It was first used 

in the early 70s to synthesize rabbit hemoglobin (Gurdon et al., 1971) and some years later 

was used to express plant proteins, particularly maize proteins (Larkins et al., 1979). It has 

been proven to be a useful system to express proteins that require post-translational 

modifications or those which need to be exported from the cell (Pult et al., 2011; Sive et al., 

2010). Transporters expressed in this system retain their native properties, showing similar 

kinetic parameters to those obtained when expressed in other heterologous eukaryotic 

systems like S. cerevisiae. However, the oocyte system is the only one that can be used for 

electrophysiological transport studies.  

 Oocytes cells are easy to maintain because they don’t require nutrients from the 

medium and don’t need sterile culture conditions. A high proportion of the injected oocytes 

express the recombinant protein and it is possible to manipulate single cells. 

Electrophysiological techniques such as patch clamp, two electrode voltage clamp and ion-

selective electrodes can also be applied in this system due to the large size of the oocytes 

(Wagner et al., 2000). On the other hand, the main disadvantages of the system are the high 

seasonal variation in the oocyte quality, the limited number of injected oocytes that can be 

used on a single experiment and the short period of time the cells can survive after mRNA 

injection.               
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 In the first report about P. falciparum transporters being functionally expressed in 

X. laevis oocytes, poly(A)+-mRNA purified from intraerythrocytic stages of the parasite was 

injected into the oocytes, resulting in enhanced uptake of D-adenosine, 2’-deoxy-D-glucose 

and L-lactic acid (Penny et al., 1998). This opened the door for the use of this heterologous 

system to express parasite membrane proteins. Since then, several P. falciparum 

transporters have been successfully expressed in the X. laevis oocyte system, among them 

the ATPases PfATP4 and PfATP6 (Krishna et al., 2014; Krishna et al., 2001); PfMDR1 (Sanchez 

et al., 2008a); PfCRT (Martin et al., 2009); PfCHA, a Ca+2/H+ antiporter (Rotmann et al., 2010); 

and the formate-nitrite transporter PfFNT (Marchetti et al., 2015).  

 

 

          I and II        III             IV              V             VI 

 

 

 

Figure 1.8. Left, the South African clawed toad Xenopus laevis (picture from Nasco’s website); right, 
X. laevis oocytes at different developmental stages. 

 Thousands of oocytes develop asynchronously in the ovary of X. laevis adult females. 

Stage I oocytes are small (50-300 μm) with transparent cytoplasm, stage II are white and 

opaque and up to 450 μm in diameter, stage III are still small but already pigmented, stage 

IV are between 600 and 1000 μm and the animal and vegetal poles start to differentiate, 

stage V are between 1000 and 1200 μm with clearly delineated hemispheres and stage VI 

are the largest, with a size between 1200 to 1300 μm showing an unpigmented equatorial 

band between the vegetal and the animal pole (Dumont, 1972). Oocytes at stages V and VI 

are the ones used to express heterologous proteins. In the ovary, the oocytes are 

surrounded by a vitelline envelope and a layer of follicle cells, which has to be removed by 

collagenase treatment before they can be used experimentally.         
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1.7. Aim of this study 

 The aim of this study has been to characterize the function and/or mechanisms of 

regulation of two P. falciparum transporters: PFE0825w (PF3D7_0516500, MAL5P1.165) and 

PfCRT (PF3D7_0709000, MAL7P1.27).   

 PFE0825w is a putative organic cation transporter that has been proposed to be a 

choline carrier (Staines et al., 2010) and one of the putative molecular targets of the 

compound albitiazolium. It belongs to the Major Facilitator Superfamily (MFS), the largest 

family of secondary carriers which includes uniporters, antiporters and symporters. 

 Although progression of albitiazolium to phase III clinical trials was blocked due to its 

poor bioavailability, further understanding of its mechanism of action could lead to the 

validation of a new target and the design of new albitiazolium derivatives. Albitiazolium is 

known to block choline transport inside the parasite; however it is not known for which 

transporter albitiazolium and choline compete (Wein et al., 2012). Bioinformatic analyses 

identified the putative organic cation transporter PFE0825w as a possible candidate for this 

role.   

 

 

 

 

 

 

Figure 1.9.Mode of action of the antimalarial drug albitiazolium (Wein et al., 2012). 

 

 On the other hand, the gene that codes for this transporter is localized at the C5M3 

locus which has been associated with altered CQ responses in the parasite. The F1 progeny 
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of a GB4x7G8 cross that inherited the C5M3 locus from GB4 showed increased CQ 

accumulation levels (Sanchez et al., 2011).  

 One of the aims of this thesis has been to characterize PFE0825w using the X. laevis 

expression system and to confirm or reject its role as antiplasmodial target and resistance 

mediator. 

 The second aim of this study has been to evaluate if phosphorylation regulates PfCRT 

function as a drug carrier and to identify and characterize the kinase(s) which phosphorylate 

this transporter. Particularly, the role of phosphorylation at positions 33 and 411 in the drug 

resistance-mediating function of PfCRT has been investigated. The role of the PfCRT T416 

residue in CQ and QN transport was not assessed since it is essential for PfCRT trafficking to 

the food vacuole. The substitution of this amino acid by glutamic and aspartic acid only 

rescues the T416A phenotype partially (Kuhn et al., 2010). Therefore, allelic exchange studies 

are not suitable to study the role of this residue.     

 The results might contribute to a deeper understanding of PfCRT regulation, function 

and role in drug resistance. Furthermore, the identification of the kinase that phosphorylates 

the residue T416 of PfCRT could lead to the identification of a novel antimalarial target. The 

inhibition of phosphorylation at this particular position could block the trafficking of PfCRT to 

the food vacuole, impairing the parasite’s viability. 

 Therefore, the characterization of PFE0825w and the mechanisms involved in PfCRT 

phosphorylation would not only contribute to a better understanding of the parasite’s 

molecular biology, but might also contribute to the identification of new antimalarial targets. 
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2. Materials and methods 
2.1. Materials 

2.1.1. Equipment 
 

Equipment Model Company 

Autoclave ABT 120-5DM Kern & Sohn, Balingen, Germany 
 2540 EL Tuttnauer, Breda, The Netherlands 

Blot scanner C-DiGit Li-cor, Bad Homburg, Germany 

Camera S6X11 Rainbow CCTV, Irvine, CA, USA 

Centrifuge Biofuge fresco Thermo Fisher Scientific, Dreieich, 
Germany 

 Biofuge pico Thermo Fisher Scientific, Dreieich, 
Germany 

 J2-MC Beckman Coulter, Krefeld, Germany 

 Megafuge 1.0 R Heraeus, Hanau, Germany 

 Megafuge 2.0 R Heraeus, Hanau, Germany 

 Sorvall RC5B Plus Thermo Fisher Scientific, Dreieich, 
Germany 

Confocal microscope LSM510 Zeiss, Jena, Germany 

Electrophoresis power supply Power Pac 300 Bio-Rad, München, Germany 

 Power Pac 200 Bio-Rad, München, Germany 

 EPS 1001 Amersham (GE Healthcare), 
München, Germany  

 EPS 3501 Amersham (GE Healthcare), 
München, Germany 

Film processor Hyperprocessor Amersham (GE Healthcare), 
München, Germany 

Freezer -20°C LGex 3410 MediLine Liebherr, Biberach, Germany 

Freezer -80°C HERAfreeze Thermo Fisher Scientific, Dreieich, 
Germany 

Fridge LKexv 3910 MediLine Liebherr, Biberach, Germany 

Gel dryer 583 Bio-Rad, München, Germany 

Heating block NeoBlock Mono I NeoLab, Heidelberg, Germany 

Hybridization incubator Techne HB-1D Bibby Scientific, Staffordshire, UK  

Ice machine  Ziegra, Isernhagen, Germany 

Incubator Heraeus B12/UB12 Thermo Fisher Scientific, Dreieich, 
Germany 

http://home.liebherr.com/en/dnk/commercial-appliances/research-and-laboratories/laboratory-freezers/details/lgex-3410_34518.html
http://home.liebherr.com/en/dnk/commercial-appliances/research-and-laboratories/laboratory-refrigerators/details/lkexv-3910.html
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Injector Nanoject II Drummond Scientific Company, 
Broomall, PA, USA 

Light optical microscope Axio Lab.A1 Zeiss, Jena, Germany 

Liquid nitrogen tank MVE Cryosystem 6000 Thermo Fisher Scientific, Dreieich, 
Germany 

 LS 6000 Taylor-Wharton, Husum, Germany 

 RS Series Taylor-Wharton, Husum, Germany 

Liquid scintillation counter LS6000IC Beckman Coulter, Krefeld, Germany 

Magnetic sorter VarioMACS Miltenyi Biotec, Bergisch Gladbach, 
Germany 

Magnetic stirrer RCT IKA, Staufen, Germany 

 COMBIMAG RCH IKA, Staufen, Germany 

 HR 3001  Heidolph, Schwabach, Germany 

Microwave oven R940/94ST Sharp, Hamburg, Germany 

MiliQ water system Purist  ultrapure Rephile, Germany 

Particle counter Z1 Beckman Coulter, Krefeld, Germany 

pH meter pH 7110  WTW, Weilheim, Germany 

Pipetman  P10 Gilson,  Limburg an der Lahn, 
Germany 

 P20 Gilson,  Limburg an der Lahn, 
Germany 

 P1000 Gilson,  Limburg an der Lahn, 
Germany 

Pipetus Forty\Standard Hirschmann, Eberstadt, Germany 

Plate reader FLUOstar OPTIMA BMG Labtech, Ortenberg, Germany 

PyroMark  Q96 ID QIAGEN, Hilden, Germany 

Semi-dry transfer cell Trans-blot SD Bio-Rad, München, Germany 

Shaker KS 501 digital IKA, Staufen, Germany 

Shaker incubator Innova 4300 Eppendorf (New Brunswick), 
Wesseling-Berzdorf, Germany  

 Innova  4000 Eppendorf (New Brunswick), 
Wesseling-Berzdorf, Germany 

Sonicator Sonoplus HD 2070 Bandelin, Berlin, Germany 

Spectrophotometer UVIKON 923 Kontron instruments, Munich, 
Germany 

Sterile work bench  Herasafe Thermo Fisher Scientific, Dreieich, 
Germany 

 SterilGard Class II The Baker company, Sanford, ME, 
USA 

Thermocycler Labcycler Sensoquest, Göttingen, Germany 
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UV chamber GS Gene linker Bio-Rad, München, Germany 

UV table TFX-35M Vilber Lourmat, Eberhardzell, 
Germany  

Vortex Genie 2 Scientific Industries, Bohemia, NY, 
USA  

Vacuum Workstation PyroMark Q96 QIAGEN, Hilden, Germany 

Waterbath 7A Julabo, Seelbach, Germany 

 5B Julabo, Seelbach, Germany 

2.1.2. Disposables 

 

Disposable Company 

96 well cell culture plates    Greiner bio one, Frickenhausen, Germany 

Aluminium foil    Carl Roth, Karlsruhe, Germany 

Cellstar tubes    Greiner bio one, Frickenhausen, Germany 

Centrifuge bottles Nalgene 500 ml    Thermo Fisher Scientific, Dreieich,  
    Germany 

Clingfilm Saran     Dow, Schwalbach, Germany 

Cuvettes Gene Pulser    Bio-Rad, München, Germany 

Filters Millex GS (0,2μm)     Merck Millipore, Darmstadt, Germany 

Filter systems 500 ml    Corning, Kaiserslautern, Germany 

Gloves TouchNTuff     Ansell, München, Germany 

MACS CS column    Miltenyi Biotec, Bergisch Gladbach,  
    Germany 

Micro tubes 1.5 ml    Saarstedt, Nümbrecht, Germany 

Parafilm     Bemis, Londonderry, UK 

Petri dishes (10 ml diameter)     Greiner bio one, Frickenhausen, Germany 

Petri dishes (25 ml diameter)     Greiner bio one, Frickenhausen, Germany 

Pipette tipps     Corning, Kaiserslautern, Germany 

Plastic pipettes (1 ml; 2 ml; 5 ml; 10 ml; 25 ml) Corning, Kaiserslautern, Germany 

Precision wipes (11x21cm)    Kimberly Clark, Mainz, Germany 

Polypropylene tubes (14 ml)    Greiner bio one, Frickenhausen, Germany 

PyroMark Q96 Plate Low    QIAGEN, Hilden, Germany 

Scalpel 11, disposable    Feather, Osaka, Japan  
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Strip tubes & domed caps    BioMedical Instruments, Zoellnitz,    
    Germany 

Stiches Safil 4/0 45 cm    B|Braun, Melsungen, Germany  

Transfer pipettes    Sarstedt, Nümbrecht, Germany 

Vials Mini PolyQ     Beckman Coulter, Krefeld, Germany  

XAR biomax films    Kodak, Stuttgart, Germany 

2.1.3. Kits 

Kit Company 

BM chemiluminescence blotting substrate POD  Roche, Mannheim, Germany  

CloneJET PCR Cloning kit    Fermentas - Thermo Fischer Scientific, 
       Dreieich, Germany 

DNeasy Blood & Tissue kit    QIAGEN, Hilden, Germany 

FastTrack MAG mRNA isolation kit    Ambion - Thermo Fisher Scientific,  
       Dreieich, Germany 

Gel extraction kit      QIAGEN, Hilden, Germany 

High pure plasmid miniprep kit    Roche, Mannheim, Germany 

In-Fusion HD Cloning kit    Clontech - Takara Bio Europe,          
       Saint-Germain-en-Laye, France    

In vitro RNA transcription kit     Ambion - Thermo Fisher Scientific, 
(mMessage mMachine SP6)    Dreieich, Germany 

Matchmaker Gold Yeast Two-Hybrid System Clontech - Takara Bio Europe,  
       Saint- Germain-en-Laye, France    

PCR purification kit      QIAGEN, Hilden, Germany 

Pierce co-immunoprecipitation kit   Thermo Fisher Scientific, Dreieich,  
       Germany 

Plasmid maxiprep kit      QIAGEN, Hilden, Germany 

SuperScript III First Strand Synthesis     Invitrogen - Thermo Fisher Scientific,  
System for RT-PCR      Dreieich, Germany 
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2.1.4. Chemicals 

2.1.4.1. Non-radioactive chemicals 

 All non-radioactive chemicals used during this study were purchased from one of the 

following companies: Boehringer Ingelheim, Carl Roth, General Electric Company including 

the trademarks it owns (GE Healthcare and Amersham), Honeywell, ICN Biomedicals, Merk 

Millipore including the trademarks it owns (Calbiochem, Novagen), MP Biomedicals, Roche, 

Sigma-Aldrich including the trademarks it owns (Fluka) and Thermo Fisher Scientific including 

the trademarks it owns (Gibco, Invitrogen, Molecular Probes). 

2.1.4.2. Radioactive chemicals 

Chemical Reactivity Concentration Company 

[γ- 32P]-dATP 6000 Ci/mmol         10 mCi/ml         PerkinElmer, Baesweiler, Germany 

[14C]-albitiazolium  100 mM Sanofi, Chilly-Mazarin, France 

[3H]-chloroquine 25 Ci/mmol 1 mCi/ml GE Healthcare, München, Germany 

[3H]-choline 85.5 Ci/mmol           1 mCi/ml PerkinElmer, Baesweiler, Germany 

[3H]-MPP 80 Ci/mmol  1 mCi/ml Biotrend, Köln, Germany 

[3H]-quinine 20 Ci/mmol 1 mCi/ml  Biotrend, Köln, Germany 

[14C]-TEA 55 mCi/mmol   0.1 mCi/ml           Biotrend, Köln, Germany 

2.1.5. Biological materials 

2.1.5.1. Size Markers 

Marker Company 

GeneRuler 1 Kb plus DNA ladder        Ambion - Thermo Fisher Scientific,
           Dreieich, Germany 

PageRuler Plus Prestained protein ladder       Ambion - Thermo Fisher Scientific, 
           Dreieich,Germany 
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2.1.5.2. Antibodies 

Antibody Source  Company 

Anti-α-tubulin monoclonal  

Anti-BIP polyclonal 

Anti-GFP monoclonal  

Anti-guinea pig-POD monoclonal    

Anti-HA tag monoclonal  

Anti-His tag monoclonal  

Anti-InsP3R-II polyclonal 

Anti-mouse-POD monoclonal           

Anti-PfCRT polyclonal 

Anti-rabbit-POD monoclonal 

Mouse  

Rabbit 

Mouse 

Donkey   

Mouse           

Mouse 

Rabbit  

Donkey          

Guinea pig 

Goat                  

Sigma Aldrich, München, Germany 

Provided by J. Przyborski (Pesce et al., 2008) 

Roche, Mannheim, Germany  

Jackson ImmunoResearch, Suffolk, UK 

Roche, Mannheim, Germany 

Merck Millipore, Darmstadt, Germany 

Sigma Aldrich, München, Germany  

Jackson ImmunoResearch, Suffolk, UK  

Eurogentec, Köln, Germany  

Jackson ImmunoResearch, Suffolk, UK 

2.1.5.3. Enzymes 

 

Enzyme  Company 

Calf intestinal alkaline phosphatase  New England BioLabs, Frankfurt am Main,  
      Germany 

Collagenase Type IA     Sigma Aldrich, München, Germany 

EuroTaq DNA polymerase    BioCat, Heidelberg, Germany 

Phusion Polymerase     Finnzymes - Thermo Fisher Scientific, Dreieich, 
      Germany 

Restriction enzymes     New England BioLabs, Frankfurt am Main,  
      Germany 

Shrimp Alkaline Phosphatase   Promega, Mannheim, Germany 

T4 DNA Ligase     Thermo Fisher Scientific, Dreieich, Germany 

   

2.1.5.4. Plasmids 

 All the plasmids used in this study are described in Appendix I.  



Materials and methods 
 

 
37 

2.1.5.5. Organisms 

 

Organism Strain  Origin 

E. coli 

E. coli  

E. coli  

E. coli  

S. cerevisiae  

P. falciparum 

P. falciparum 

P. falciparum 

P. falciparum 

P. falciparum 

X. laevis 

PMC 103    

XL10 Gold             

BL21(DE3)  

BL21-CodonPlus- RIL    

AH109 

3D7 

7G8 

Dd2  

GB4  

HB3 

Provided by Prof. Cowman (Doherty et al., 1993) 

Agilent Technologies, Böblingen, Germany  

Novagen- Merck Millipore, Darmstadt, Germany  

Agilent Technologies, Böblingen, Germany  

Takara, Saint-Germain-en-Laye, France   

The Netherlands (Walliker et al., 1987) 

Brazil (Hadley et al., 1987) 

Indochina (Guinet et al., 1996) 

Ghana (Sullivan et al., 2003) 

Honduras (Bhasin and Trager, 1984) 

NASCO, Fort Atkinson, WI, USA 

 

 

 

2.1.5.6. Oligonucleotides 

 All oligonucleotides used in this study were purchased from Thermo Fisher Scientific 

or Eurofins.  

- Vector oligonucleotides for colony PCR and sequencing: 

 

Nº Name Sequence 

1 pJET-for CGACTCACTATAGGGAGAGCGGC 

2 pJET-rev AAGAACATCGATTTTCCATGGCAG 

3 pSP64T-for AGAATACAAGCTTGCTTGTTC 

4 pSP64T-rev GTAAGTTGGTATTATGTAG 

5 pL6-guide-for GTAACCAAAATGCATAATTTTTCC 

6 pL6-guide-rev TAGGAAATAATAAAAAAGCACC 

7 pL6-HA-glmS-3’-for ATCACATGATCTTCCAAAAAACATG 

8 pL6-HA-glmS-3’-rev TAAACCAATAGATAAAATTTGTAGAG 

9 pL6- HA-glmS-5’-for ATTTAACTATATACTATGGAATAC 

10 pL6- HA-glmS-5’rev TATTGAGAAAATAAGAACAAGAC 

11 pARL-for CTATAATATCCGTTAATAATAAATACACGCAGTC 
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12 pARL-rev CACAACATACACATTTTTACAG 

13 Matchmaker 3' AD GTGAACTTGCGGGGTTTTTCAGTATCTACGATT 

14 Matchmaker 5' AD CTATTCGATGATGAAGATACCCCACCAAACC 

- PFE0825w oligonucleotides:   

In blue, enzyme restriction sites. 

Nº Name Sequence 

15 PFE0825w-for ATGGAAGTAACATCAACCTTATTAG 

16 PFE0825w-rev TTATAAAATCGACTTAATACTGG 

17 PFE0825w-ga-XhoI-for CCGCTCGAGATGGAAGTTACTTCTACCTTG 

18 PFE0825w-ga-NcoI-rev CATGCCATGGTTAGTGGTGGTGGTGGTGGTGCAAG 

19 PFE0825w-ga-var1-XhoI-for CCGCTCGAGATTATGGTTTGTGAATCCACC 

20 PFE0825w-var2-XhoI-for CCGCTCGAGGAAATGTTTATGTATTTATATATTTT 

21 PFE0825w-var2-rev CAGGTGGATTCACAAACCATGATCATTAGGTACATTAAGC 

22 PFE0825w-ga-(-his)-NcoI-rev CATGCCATGGTTACAAGATGGATTTGATGGAAGAGAAC 

23 PFE0825w-exon5-for GCAAACATTTCAAGCTTCCT 

24 PFE0825w-exon5-rev CGAAATTTGTTTTTAAGCACAC 

- PfCRT oligonucleotides: 

In green, homology regions for In Fusion cloning,* phosphorothioate-modified bases.  

Nº Name Sequence 

25 PfCRT-(-120)-In fusion-for ATGGCCCCTTTCCGCAAATATTTTAAAATCGACATTCCG 

26 PfCRT-(780)-In fusion-rev TTTTTACAAAATGCTACTGAACAGGCATCTAACATGG 

27 PfCRT-(-120)-for A*A*ATATTTTAAAATCGACATTCCG 

28 PfCRT-(780)-rev A*C*TGAACAGGCATCTAACATGG 

29 PfCRT-S33A-for CTTAACAGATGGAGCACGTTTAGGTGG 

30 PfCRT-S33A-rev CCACCTAAACGTGCTCCATCTGTTAAG 

31 PfCRT-guide3-for TAAGTATATAATATTTAAACGTGAGCCATCTGTTAGTTTTAGAGCTAGAA 

32 PfCRT-guide3-rev TTCTAGCTCTAAAACTAACAGATGGCTCACGTTTAAATATTATATACTTA 

33 Pfcrt-(900)-rev TTTTTACAAAATGCTTAAAATAGTATACTTACCTATATC 

34 PfCRT(-160)-Bio CATTGTCTTCCACATATATGAC 

35 PfCRT-S33A-Pyro-rev-2 AATAAGTTTAAACACATGAGCAC 

36 PfCRT-S33A-Pyro-seq CCAAGACAAGAACCTCCACCTAAAC 
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- PF11_0488 oligonucleotides: 

In blue, enzyme restriction sites; in green, homology regions for In Fusion cloning; in red, 
shield mutations. 

Nº Name Sequence 

37 PF11_0488-(3529)-SpeI-for             GGACTAGTGAAATGTATGCAGCCAAAATTC 

38 PF11_0488-BssHII-rev TTGGCGCGCCTGGTATATTAAAGTAGTTAAAAATTGG 

39 PF11_0488-shld1-BssHII-rev TTGGCGCGCCTGGTATATTAAAGTAGTTAAAAATTGGATAGCTCAATG 

40 PF11_0488-shld2-for GACCTTTCCAATTTAATTATTTAGAAAAATGTTCAAAAG 

41 PF11_0488-shld2-rev CTTTTGAACATTTTTCTAAATAATTAAATTGGAAAGGTC 

42 PF11_0488-3’UTR-NarI-for GAGGCGCCAGAAATTATATATATATATCATTAAATATTTTG 

43 PF11_0488-3’UTR-AlfII-rev AGCTTAAGGAATTTTAAAGAATTCATTGTTCGCATTTG 

44 PF11_0488-guide1-for TAAGTATATAATATTGTTAAAAATTGGATAGCTTAGTTTTAGAGCTAGAA 

45 PF11_0488-guide1-rev TTCTAGCTCTAAAACTAAGCTATCCAATTTTTAACAATATTATATACTTA 

46 PF11_0488-guide2-for TAAGTATATAATATTATTCTTTTGAACATTTTTCAGTTTTAGAGCTAGAA 

47 PF11_0488-guide2-rev TTCTAGCTCTAAACTGAAAATGTTCAAAAGAATAATATTATATACTTA 

48 PF11_0488-(-62)-3’UTR-rev GTATTACAATGAGTTATAAGAAATAATCC 

49 GlmS-XmaI-rev TCCCCCCGGGAGATCATGTGATTTCTCTTTGTTC 

50 PF11_0488-(3328)-NheI-for CTAGCTAGCATGAAATTAAATTTGGATAAAAAAAGAGC 

51 PF11_0488-XhoI-rev CCGCTCGAGTGGTATATTAAAGTAGTTAAAAATTGG 

2.1.6. Buffers, media and solutions 

Buffer/media/solution   Composition 

Anesthetic solution      0.1% (w/v) ethyl 2-aminobenzoate 
       methanesulfonate salt in tap water 

Annealing buffer (pyrosequencing)   20 mM Tris 
       2 mM magnesium acetate 
       Set pH to 7.6 with HCl and autoclave 

Binding buffer (pyrosequencing)   10 mM Tris 
       2 M NaCl 
       1 mM EDTA 
       Set pH to 7.6 with HCl and autoclave 
       Add 0.1% Tween 20 
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Blocking solution      5% (w/v) skimmed milk in PBS 

Collagenase solution     0.1% (w/v) of collagenase D 

       0.5% (w/v) of BSA 

       9 mM Na2HPO4 

       in OR2 buffer  

Complete RPMI/HEPES medium   10% human serum 

       0.2 mM hypoxanthine   

       0.002% (w/v) gentamicin  

       in RPMI/HEPES medium 

Coomassie destaining solution    20% methanol 

       7% acetic acid 

Coomassie staining solution     50% methanol 

       10% acetic acid 

       0.5% Coomassie Blue R-250 

Cytomix      25 mM HEPES pH 7.6 

       120 mM KCl 

       0.15 mM CaCl2 

       2 mM EGTA 

       5 mM MgCl2 

       10 mM K2HPO4/KH2PO4 

Denaturation solution (pyrosequencing)  0.2 M NaOH 

Dialysis buffer      20 mM Tris-HCl 

       20 mM MgCl2 

       2 mM MnCl2 

       10% glycerol 

       Protease inhibitors 

DNA loading buffer (6x)     60% glycerol 

       60 mM EDTA 

       0.25% Bromophenol blue 
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Freezing solution     6.2 M glycerol 

       0.14 M sodium lactate 

       0.5 mM KCl 

       Set pH to 7.2 with NaHCO3 pH 9 

       Sterilize by filtration 

 Kinase assay buffer     20 mM Tris-HCl 

       20 mM MgCl2 

       2 mM MnCl2 

       2 mM DTT 

       100 μM ATP 

       50 mM β-GP 

       0.5% phosphatase inhibitors cocktail  

       (Sigma Aldrich, München, Germany) 

       Add fresh protease inhibitors before use 

LiAc (10x)      1 M lithium acetate 

       Adjust to pH 7.5 with glacial acetic acid 

       Sterilize by filtration 

LB        1% (w/v) tryptone 

       0.5% (w/v) yeast extract 

       0.5% (w/v) NaCl 

       Autoclave     

LB Agar      1% (w/v) tryptone 

       0.5% (w/v) yeast extract 

       0.5% (w/v) NaCl 

       1.5% (w/v) agar 

       Autoclave and pour into petri dishes 
       (~25 ml/100 mm plate) 

Lysis buffer for IC50     20 mM Tris-HCl pH 7.4 

       5 mM EDTA 

       0.008% (w/v) saponin 

       0.08% (w/v) triton X-100
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Lysis buffer for S. cerevisiae DNA isolation  10 mM Tris-HCl pH 8.0 

       1 mM EDTA 

       100 mM NaCl 

       1% (w/v) SDS 

       2% (w/v) triton-X 

Low salt buffer     10 mM NaPO4 

       Set pH to 7.0 with NaOH and autoclave 

MACS buffer      2 mM EDTA 

       1 x PBS 

       Autoclave 

       Add 0.5% (w/v) BSA prior to use 

ND96        96 mM NaCl 

       2 mM KCl 

       1 mM MgCl2 

       1.8 mM CaCl2 

       10 mM HEPES 

       Set pH to 7.5 with NaOH and autoclave 

       Add 20 U/ml of penicillin/streptomycin 

NETT buffer      10 mM Na3PO4 pH 7.0 

       150 mM NaCl 

       1 mM EDTA 

       0.1% NP40 

NETT I buffer      10 mM Na3PO4pH 7.0 

       250 mM NaCl 

       1 mM EDTA 

       0.1% NP40 

NETT II buffer      10 mM Na3PO4 pH 7.0 

       350 mM of NaCl 

       1 mM EDTA 

       0.1% NP40  
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NZY+ Broth      1% (w/v) NZ amine (casein hydrolysate) 
       0.5% (w/v) yeast extract 
       0.5% (w/v) NaCl 
       Set pH to 7.5 with NaOH and autoclave 
       Add the following filter-sterilized  
       supplements prior to use: 
       12.5 mM MgCl2 

       12.5 mM MgSO4 
       0.4% (w/v) glucose 

OR2 buffer      96 mM NaCl 
       2 mM KCl 
       1 mM MgCl2 

       10 mM HEPES 
       Set pH to 7.5 with NaOH and autoclave 

Protease inhibitors (PI)    0.002% (w/v) leupeptin   
       0.005% (w/v) aprotinin 
       100 μM PMSF  

Protein loading buffer (2x)    3% (w/v) SDS 
       250 mM Tris pH 6.8 
       20% glycerol 
       0.1% Bromophenol blue 

Protein lysis buffer for P. falciparum   0.07% (w/v) saponin in PBS 
       Protease inhibitors 

Protein lysis buffer for E. coli    1x PBS 
       5% (w/v) glycerol 
       0.1% triton X-100 
       1 mM EDTA 
       1 mM DTT 
       Add fresh before use: 
       Protease inhibitors 
       0.01% (w/v) lysozyme 

Protein lysis buffer for S. cerevisiae   40 mM Tris-HCl pH 6.8 
       0.1 mM EDTA 
       5% (w/v) SDS 
       8 M urea 
       Add fresh before use: 
       Protease inhibitors 
       1 % β-mercaptoethanol  
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Protein purification wash buffer   25 mM Tris-HCl pH 7.0 
(for GST-tagged proteins)    75 mM NaCl 
       5% glycerol 
       1 mM DTT 
       Protease inhibitors 

Protein purification wash buffer   50 mM Na3PO4 
(for His-tagged proteins)    300 mM NaCl 
       150 mM imidazole 
       Adjust to pH 7.4 with NaOH 
       Add protease inhibitors 

Protein elution buffer (for GST-tagged proteins) 50 mM Tris pH 7.0 
       75 mM NaCl 
       5% glycerol 
       1 mM DTT 
       10 mM reduced glutathione 
       Add protease inhibitors 

Protein elution buffer (for His-tagged proteins) 50 mM Na3PO4 
       300 mM NaCl 
       400 mM imidazole 
       Adjust to pH 7.4 with NaOH 
       Add protease inhibitors 

Ringer solution     10 mM HEPES 
       122.5 mM NaCl 
       5.4 mM KCl 
       1.2 mM CaCl2 

       0.8 mM MgCl2 

       1 mM NaH2PO4 
       11 mM glucose 
       Adjust to pH 7.4 with NaOH 
       Sterilize by filtration 

RIPA buffer       10 mM Na3PO4 pH 7.0 
       150 mM NaCl 
       1 mM EDTA 
       1% NP40 
       1% DOC 
       0.1% SDS 

RNA running buffer (20x)     400 mM MOPS 
       40 mM C2H3NaO2 
       5 mM of EDTA  
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SB       3.5% (w/v) tryptone 

       2% (w/v) yeast extract 

       0.5% (w/v) NaCl 

       2 mM NaOH 

       Autoclave 

SD medium  0.67% (w/v) yeast nitrogen base Ø amino 
acids 

       2% (w/v) agar (for plates only) 

Add the recommended amount of the 
appropriate OD supplement according to 
the manufacturer’s instructions.  

       Set pH to 5.8 with NaOH and autoclave 

       Add 2% (w/v) glucose 

SDS-PAGE running buffer     25 mM Tris 

       250 mM glycine 

       0.1% (w/v) SDS 

SDS-PAGE transfer buffer     39 mM Tris 

       48 mM glycine 

       0.038% (w/v) SDS 

SOB medium      2% (w/v) tryptone 

       0.5% (w/v) yeast extract 

       0.05% (w/v) NaCl 

       0.5% (w/v) MgSO4*7H2O 

       Autoclave 

SOC medium      SOB + 20 mM glucose 

Stripping buffer      1x PBS 

       2% SDS 

       100 mM β-mercaptoethanol 

Thawing solution I     12% (w/v) NaCl 

       Autoclave  
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Thawing solution II     1.6% (w/v) NaCl 
       Autoclave 

Thawing solution III     0.9% (w/v) NaCl  
       0.2% (w/v) glucose 
       Sterilize by filtration 

TB Buffer       10 mM PIPES 
       15 mM CaCl2 

       250 mM KCl  
       Set pH to 6.7 with KOH 
       Add 55 mM MnCl2 
       Sterilize by filtration 

TE buffer      10 mM Tris-HCl pH 7.5 
       1 mM EDTA 
       Sterilize by filtration    

Transfection medium     5% (w/v) albumax I  
       5% serum 
       0.2 mM hypoxanthine 
       0.002% gentamicin  
       in RPMI/HEPES medium 

Uptake buffer oocytes (pH 7.4)   96 mM NaCl    
       2 mM KCl    
       1 mM MgCl2    

       1 mM CaCl2    

       10 mM HEPES    
       Set pH to 7.4 with NaOH and autoclave 

Uptake buffer oocytes (pH 6.0)   96 mM NaCl    
       2 mM KCl 
       1 mM MgCl2 

       1 mM CaCl2 

       10 mM MES 
       Set pH to 6.0 with NaOH and autoclave 

Uptake buffer oocytes (pH 5.0)   96 mM NaCl 
       2 mM KCl 
       1 mM MgCl2 

       1 mM CaCl2 

       10 mM HOMOPIPES 
       Set pH to 5.0 with NaOH and autoclave  
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Wash buffer (pyrosequencing)   10 mM Tris 
       Set pH to 7.6 with HCl and autoclave 

YPDA medium      2% (w/v) peptone 
       1% (w/v) yeast extract 
       2% (w/v) agar (for plates only) 
       0.003% (w/v) of adenine hemisulfate 
       Autoclave 
       Add 2% (w/v) glucose  

2.1.7. Computer software and databases 
 

Program  Company 

Bioedit      Ibis Biosciences, Carlsbad, CA, USA  

EndNote      Thomson Reuters, Philadelphia, PA, USA 

SigmaPlot 11.0     Systat, San Jose, CA, USA 

SnapGene Viewer    GSL Biotech, Chicago, IL, USA   

LSM imaging software       Zeiss, Jena, Germany 

FIJI      (Schindelin et al., 2012)   
  

Databases and online bioinformatic tools  

PlasmoDB 

Prosite 

Sequence manipulation suite 

PhosphoMotif Finder 

TMHMM server v. 2.0 

2.2. Methods 

2.2.1. Methods in molecular biology 

2.2.1.1. Genomic DNA purification from P. falciparum 

 The genomic DNA was extracted and purified from P. falciparum cultures using the 

DNeasy Blood & Tissue Kit from QIAGEN. The cultures (14 ml, parasitemia 3-5% trophozoites, 

3.6% hematocrit) were centrifuged at 900 x g for 2 min, the supernatant was discarded and 

the pellet was resuspended in 10 ml of cold PBS. The samples were lysed with saponin (final 
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concentration 0.1% w/v) for 5 min on ice. After a centrifugation of 10 min at 2600 x g, the 

supernatant was discarded and the pellet was washed twice with cold PBS. The gDNA 

extraction was performed according to the manufacturer’s instructions. Briefly, the samples 

were lysed with proteinase K and lysis buffer and purified using a silica-based membrane 

that absorbs the DNA in presence of high concentrations of chaotropic salts. The samples 

were loaded onto the DNeasy spin column and centrifuged. After two washing steps, the 

genomic DNA was eluted in 100 µl of ddH2O and stored at -20°C.  

2.2.1.2. Polymerase chain reaction 

 The amplification of the DNA fragments used for cloning was done using either the 

Phusion polymerase or a mix of Taq:Pfx (4.5:1) polymerases. The reactions were set as 

follows: 

Phusion 

4 µl buffer 5x 
                             2 µl template (100 ng) 
                             2 µl dNTPs (2 mM) 
                          0.5 µl primer for (50 µM) 
                          0.5 µl primer rev (50 µM) 
                          0.2 µl Phusion 
                        10.8 µl of ddH2O  

                           20 µl total volume 

Taq:Pfx 

 5 µl buffer 10x 
                            2 µl template (100 ng) 
                            5 µl dNTPs (2 mM) 
                         2.5 μl MgCl2 
                            1 µl primer for (50 µM) 
                            1 µl primer rev (50 µM) 
                         0.5 µl Taq:Pfx 
                          33 µl of ddH2O  

                         50 µl total volume 

The program used in the thermocycler was the following: 
 
95 °C   10 min 
95 °C 45 s 
  X °C 45 s 
68 °C   X min 
68 °C  10 min 
  4 °C     ∞  

2.2.1.3. Agarose gel electrophoresis  

- DNA 

 The size of all DNA fragments used during cloning and the final vectors used on this 

study was checked by agarose gel electrophoresis. The agarose was dissolved to a final 

concentration of 0.8% or 2% (w/v) on TAE buffer. The DNA was stained using ethidium 

bromide. As a marker, the GeneRuler 1 Kb plus DNA ladder was loaded in parallel with the 

30 cycles 
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samples. The 60 ml gels were run at 90 V and the 140 ml gels at 140 V during approximately 

30-45 min. The DNA fragments were visualized using a UV table and the images were 

captured with a digital camera.     

- RNA 

 The quality of all RNA samples was checked by agarose gel electrophoresis. The 

agarose was dissolved in 30 ml of ddH2O plus 2 ml of 20x RNA running buffer to a final 

concentration of 0.7%. The solution was allowed to cool down to 55°C and then 7.9 ml of 

formaldehyde were added. After addition of 0.5 µl of ethidium bromide, the solution was 

allowed to cool down until it was solidified. After the addition of RNA loading buffer (Ambion 

- Thermo Fisher Scientific), the samples were heated at 65°C during 3 min and loaded into 

the gel. The gel was run at 60 V during 60 min. The RNA samples were visualized using a UV 

table and the images were captured with a digital camera. 

2.2.1.4. DNA restriction digestion 

The DNA digestion reactions of plasmids and PCR products were set up as follows: 

Control digestions 

1 µl NEB buffer 
                        0.5 µl of each enzyme  
                          1 µg DNA 
                           x µl ddH2O 

                        10 µl total volume 

Digestion of vectors and inserts for cloning 

5 µl NEB buffer 
                           1 µl of each enzyme  
                         20 µg DNA 
                            x µl ddH2O 

                         50 µl total volume 

 The control digestions were incubated for 90 min and the digestions of vectors and 

inserts for cloning for a minimum of 2 hours at the temperature for each enzyme 

recommended by NEB.   

2.2.1.5. DNA gel extraction 

 The extraction and purification of DNA fragments from agarose gels was performed 

using the QIAquick Gel Extraction Kit from QIAgen according to the manufacturer’s 

instructions. Briefly, the DNA fragments were excised from the agarose gel and dissolved in 

QG buffer which provides optimal pH and salt concentration for binding of DNA to a silica 

membrane. The samples were loaded onto the QIAquick spin column and centrifuged. After 

two washing steps, the DNA fragments were eluted in 30-50 µl of ddH2O and stored at -20°C.  
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2.2.1.6. Dephosphorylation of DNA ends 

 All the vectors used for cloning were dephosphorylated prior to their use on ligation 

reactions. The reactions were set as follows: 

 
20 µg of vector 
 1 µl of SAP 
 1 µl of SAP buffer 10x 
x µl of ddH2O   
 
10 µl total volume 
 
 The reaction was incubated for 30 min at 37°C and then the vector was purified using 

the QIAGEN PCR Purification kit and eluted in 30 µl of ddH2O. 

2.2.1.7. Ligation of DNA fragments 

- In Fusion 

 The In Fusion cloning technology was used to introduce the guide sequences into the 

pL6 plasmids. The pL6 plasmid of interest was digested with the enzyme BtgZI at 60°C for 

1 h, dephosphorylated and purified with the QIAquick gel extraction kit. The primers 

containing the guide sequences and the sequences for homology recombination were 

resuspended at 100 µM and 5 µl of each primer (for and rev) were mixed together with 

1.1 µl of NEB buffer #2. The mix was heated for 5 min at 94°C, was allowed to cool down to 

25°C and was kept on ice. The reaction was set as follows: 

0.5 µl vector (200 ng) 
3.5 µl hybridized primers (1/10 dilution) 
   1 µl In Fusion enzyme mix  

 The reaction was incubated for 15 min at 50°C and was kept on ice until its 

transformation into XL-10 Gold cells.    

- T4 DNA ligation 

 The DNA fragments that were ligated using the T4 DNA ligase were previously 

digested with the adequate restriction enzymes and were purified using the QIAquick gel 

extraction kit. The ligation reactions were set as follows:  
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    1 µg vector 
3-7 µg insert 
    1 µl T4 DNA ligase 
    1 µl T4 DNA ligase buffer 10x 
    x µl ddH2O 
 
 10 µl total volume 

 The reaction was incubated at RT during minimum 30 min. If the transformation was 

performed on the following day, then the reaction was incubated over-night at 16°C.  

- Ligation into pJET1.2/blunt 
 
 As an intermediate cloning step, many of the inserts used on this study were cloned 

into the pJET1.2/blunt plasmid. The CloneJET PCR Cloning Kit (Fermentas - Thermo Fischer 

Scientific) was used for this purpose. The reaction was set as follows: 

    5 µl 2X reaction buffer 
0.5 µl DNA blunting enzyme 
3.5 µl insert (100 ng) 

 The reaction was incubated at 70°C for 5 min and chilled on ice. Then the following 

reagents were added: 

0.5 µl pJET1.2/blunt cloning vector (50 ng/µl) 
0.5 µl T4 DNA ligase 

 The ligation mixture was incubated at RT for 30 min. The reaction was used directly 

for transformation in E. coli PMC 103 electrocompetent cells.  

2.2.1.8. Plasmid DNA isolation from E. coli 

- Small scale (miniprep) 

 The DNA plasmid isolation from bacteria was performed using the High pure plasmid 

miniprep Kit from Roche according to the manufacturer's instructions. The purification 

principle is based in alkaline lysis followed by DNA absorption in a glass fiber fleece 

immobilized in a plastic filter tube. Briefly, bacterial over-night cultures (10 ml) were 

centrifuged for 5 min at 1100 x g. The pellet was resuspended in suspension buffer and lysed 

with lysis buffer for 5 min at RT. The samples were incubated on ice for 5 min after addition 

of chilled binding buffer and centrifuged for 10 min at 17000 x g. The supernatant was 
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transferred onto a High Pure filter tube and centrifuged for 1 min at 17000 x g. After two 

washing steps, the plasmids were eluted in 50 µl of ddH2O and stored at -20°C.  

- Large scale (maxi prep) 

 In order to isolate higher amounts of plasmid, for example for transfection, the 

QIAGEN Plasmid Maxi kit was used according to the manufacturer's instructions. The 

protocol is based on alkaline lysis followed by DNA binding to an anion-exchange resin. 

Briefly, bacterial over-night cultures (400 ml of SB medium) were centrifuged at 4°C for 

15 min at 20000 x g. Each pellet was resuspended in resuspension buffer and lysed with the 

lysis buffer for 5 min at RT. Next, the samples were incubated for 20 min on ice with 

neutralization buffer, centrifuged at 4°C for 30 min at 15000 x g and the supernatant was 

transferred to a column previously equilibrated. After washing, the DNA was eluted in 15 ml 

of elution buffer, precipitated with isopropanol and centrifuged at 4°C for 30 min at 

15000 x g. The pellet was washed with ethanol and centrifuged at 4°C for 20 min at 

15000 x g. The DNA pellet was air-dried, resuspended in 300 µl of ddH2O and stored at -20°C. 

2.2.1.9. Plasmid DNA isolation from S. cerevisiae 

 One single colony was inoculated in 10 ml of the appropriate YPDA or SD medium 

and was incubated over-night at 30°C with shaking. Next, the culture was centrifuged at 

1600 x g for 5 min, the supernatant was discarded and the pellet was resuspended in 200 µl 

of lysis buffer for S. cerevisiae DNA isolation. The suspension was added to a new 1.5 ml tube 

containing 300 mg of glass beads and 200 µl of Phenol:Chloroform:Isoamylalcohol (25:24:1). 

The tube was vortexed for 5 min and centrifuged at 4°C for 5 min at 17000 x g. The upper 

phase (150 µl) was transferred to a new tube and was mixed with 150 µl of 

Phenol:Chloroform:Isoamylalcohol (25:24:1). The sample was centrifuged again under the 

same conditions and the upper phase was precipitated with sodium acetate / ethanol 

(1/10 volumes of 2.5 M sodium acetate and 2.5 volumes of 100% ethanol). After the ethanol 

precipitation and one wash with ethanol 70%, the pellet was air-dried and resuspended in 

10 µl of ddH2O. 

2.2.1.10. Sequencing of DNA 

 The sequencing of the DNA samples was performed by GATC Biotech (Konstanz, 

Germany). The samples were prepared as follows:  
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Plasmids: 20 µl, 30-100 ng/µl 
PCR products: 20 µl, 10-50 ng/µl 
Primers: 20 µl, 10 pmol/µl 

2.2.1.11. RNA isolation 

 Two big plates (35 ml, 3-5% parasitemia in trophozoites, 3.6% hematocrit) were lysed 

with saponin 0.1% (w/v) in cold PBS. The pellet after centrifugation (3000 x g, 2 min without 

brake) was resuspended in 1 ml of TRIzol® LS reagent (Ambion - Thermo Fisher Scientific). 

The homogenized sample was incubated for 10 min at RT and 200 µl of chloroform were 

added. The tube was shaken vigorously by hand and incubated 10 min at RT. The sample was 

centrifuged at 4°C for 30 min at 17000 x g. The aqueous phase of the sample, containing the 

RNA, was pipetted into a new tube and 500 µl of 100% isopropanol were added. The sample 

was incubated for 10 min at RT and then centrifuged at 4°C for 10 min at 17000 x g. The 

supernatant was discarded; the pellet was washed with 1 ml of 70% (v/v) ethanol and 

centrifuged at 4°C for 5 min at 17000 x g. The supernatant was discarded; the pellet was air-

dried for 10 min and then resuspended in 30 µl of ddH2O.   

2.2.1.12. Determination of the DNA/RNA concentration 

 The DNA/RNA concentration of the samples was measured using the 

spectrophotometer UVIKON 923. The OD spectrum from 230 to 300 nm of a 1/100 dilution 

of the sample (or a lower dilution if it was necessary) was measured against a blank (ddH2O). 

The DNA/RNA concentration of the sample was calculated as follows: 

1 O.D. at 260 nm for double-stranded DNA = 50 ng/µl  

1 O.D. at 260 nm for RNA molecules = 40 ng/µl of RNA 

2.2.1.13. cDNA synthesis 

 
 The cDNA synthesis from RNA was performed using the SuperScript III First Strand 

Synthesis kit from Invitrogen. The reaction was set up as follows: 

5 µg RNA 
1 µl 50 µM oligo (dT)20 

1 µl 10 mM dNTP mix 
x µl ddH2O 
 
10 µl final volume 
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 The mix was incubated at 65°C for 5 min and then placed on ice for 5 min. Next, the 

following reagents were added: 

2 µl 10X RT buffer 
4 µl 25 mM MgCl2 

2 µl 0.1 M DTT 
1 µl RNaseOUT (40 U/µl) 
1 µl SuperScript III RT (200 U/µl) 
 
20 µl final volume 
 
 The reaction was incubated at 50°C for 50 min and terminated at 85°C for 5 min.  

After it was chilled on ice, 1 µl of RNase H was added and the reaction was incubated for 

20 min at 37°C. The cDNA was stored at -20°C until it was used as PCR template. 

2.2.1.14. In vitro synthesis of RNA 

 The in vitro synthesis of the RNA used for the protein expression in X. laevis oocytes 

was performed using the in vitro RNA transcription kit mMessage mMachine SP6 (Ambion - 

Thermo Fisher Scientific). The plasmid that was used as a template for transcription was 

linearized and purified with phenol: Cl3CH3. The reaction was set as follows: 

10 µl 2x NTP/CAP 
  1 µg template 
  x µl ddH2O  
  2 µl buffer 10x 
  2 µl enzyme mix 
 
20 µl total volume 
 
 The reaction was incubated for 60 min at 37°C, then 1 µl of DNase was added and the 

reaction was further incubated at 37°C for 15 min more. In order to precipitate the RNA, 

30 µl of LiCl were added and the sample was kept over-night at -80°C. On the following day it 

was centrifuged at 4°C during 30 min at 17000 x g. The supernatant was discarded and the 

pellet was washed with 70% ethanol and centrifuged again under the same conditions. After 

the pellet was air-dried, it was resuspended in 20 µl of ddH2O.   

2.2.1.15. Pyrosequencing 

 Part of the sequence of PfCRT was amplified by PCR using one of the primers 

biotinylated (primers nº34 and nº35). The PCR product was mixed with 3 μl of Streptavidin 
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Sepharose HP (GE Healthcare) and 40 μl of binding buffer. The final volume was set to 80 μl. 

The mixture was transferred to a 96 well-plate V-bottom and shaken for 10 min at 1400 rpm. 

The strand separation was done using the PyroMark Q96 vacuum workstation as follows. 

The filter probes were flushed with 180 ml of ddH2O to wash them and then they were 

lowered into the 96 well-plate containing the samples to capture the beads. The beads were 

washed with 70% ethanol by flushing the filter probes for 5 s, then denaturalized with the 

denaturation solution for 5 s and finally washed with wash buffer for 10 s. The filter probes 

were drain by raising the tool at 90° for 5 s and then the beads were released into a 

PyroMark Q96 Plate Low containing 0.4 μM of sequencing primer (primer nº36) in 40 μl of 

annealing buffer. The samples were heated at 80°C for 2 min and allowed to cool down to 

RT. The reagent cartridge was filled with the recommended volumes of PyroMark Gold Q96 

Reagents provided by the software. The PyroMark Q96 Plate Low was placed on the heating 

block of the PyroMark Q96 ID and the cartridge on the dispensing unit. The set up and the 

run analysis were done using the PyroMark Q96 Software v1.0.   

2.2.2. Methods in microbiology 

2.2.2.1. Preparation of electrocompetent E. coli cells 

 One colony of PMC 103 cells was inoculated in 10 ml of SB and incubated over-night 

at 37°C with shaking at 250 rpm. The over-night culture (6 ml) was inoculated in 600 ml of SB 

and incubated for 3.5 h more. From this point on, the cells were always kept on ice. The 

culture was divided into 2 centrifuge bottles and centrifuged at 6000 x g during 20 min at 

4°C. The supernatant was discarded and each pellet was resuspended in 300 ml of sterile 

ddH2O and centrifuged again under the same conditions. The last step was repeated 2 times 

more. After the last centrifugation, the supernatant was discarded and each pellet was 

resuspended in 300 ml of sterile 10% (v/v) glycerol and centrifuged again. The supernatant 

was discarded and each of the pellets was resuspended in 1.2 ml of sterile 10% glycerol. The 

cells were aliquoted (50 µl aliquots) in 1.5 ml tubes on dry ice and immediately frozen 

at -80°C.  

2.2.2.2. Transformation of competent E. coli cells 

- PMC 103 electrocompetent cells 
 
 The cells (50 µl aliquots) were thawed on ice and mixed gently with 100 µl of 10% 

glycerol. The DNA of interest was mixed with the cells and the mix transferred to an 
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electroporation cuvette. The samples were electroporated at 2500 V and immediately 900 µl 

of prewarmed (37°C) SOC medium were added to the samples. The samples were 

transferred to 15 ml tubes and incubated at 37°C for 1h with shaking at 250 rpm. The cells 

were plated on LB agar plates containing the appropriate antibiotic concentration. The 

plates were incubated over-night at 37°C.    

- XL10 Gold ultra-competent cells 

 The cells (40 µl aliquots) were thawed on ice and mixed gently. β-mercaptoethanol 

(1.2 µl) was added to each aliquot of cells. The cells were incubated on ice for 10 min and 

swirled every 2 min. The DNA of interest was mixed with the cells and the mix was incubated 

during 30 min on ice. The samples were subjected to a heat pulse at 42°C for 30 s. The tubes 

were incubated on ice for 2 minutes and then 900 µl of prewarmed (42°C) NZY+ broth were 

added to the samples. The samples were transferred to 15 ml tubes and incubated at 37°C 

for 1h with shaking at 250 rpm. The cells were plated on LB agar plates containing the 

appropriate antibiotic. The plates were incubated over-night at 37°C.    

The antibiotic concentrations used were the following: 

Ampicillin  100 μg/ml 
Kanamicin   20 μg/ml 
Chloramphenicol  34 μg/ml 

2.2.2.3. Transformation of S. cerevisiae 

 One single colony was inoculated in 10 ml of YPDA and shaken over-night at 30°C. 

The culture was diluted to an OD600 of 0.4 in 25 ml of YPDA and grown for 3 h more. The cells 

were centrifuged at 1100 x g for 5 min and the pellet was resuspended in 20 ml of TE buffer. 

The cells were centrifuged again under the same conditions and the pellet was resuspended 

in 0.8 ml of 1X LiAc/0.5X TE buffer. The cells were incubated at RT for 10 min. For each 

transformation, 1 µg of plasmid and 100 µg of denatured salmon sperm DNA were mixed 

together with 100 µl of the yeast suspension. Then, 700 µl of 1X LiAc/40% PEG/1X TE buffer 

were added and mixed. The solution was incubated for 30 min at 30°C. DMSO (88 µl) was 

added to the mix, that was incubated at 42°C for 7 minutes. The cells were centrifuged for 

10 s at 17000 x g and the supernatant was discarded. The cell pellet was resuspended in 1 ml 

of TE buffer and centrifuged again. Finally, the pellet was resuspended in 100 µl of TE buffer 

and plated on the appropriate selective plate. 
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2.2.2.4. Yeast Two Hybrid assay 

 - mRNA purification from total RNA 

 The mRNA purification from P. falciparum total RNA was performed using the 

FastTrack MAG mRNA isolation kit from Ambion according to the manufacturer's protocol. 

All the steps were performed using a magnetic particle separator. Briefly, FastTrack MAG 

Beads (100 µl) were washed twice and mixed with 150 µg of total RNA and 500 µl of binding 

buffer. The samples were incubated at 70°C for 5 min and then rotated for 10 min at RT. 

After three washing steps the beads were resuspended in 10 µl of ddH2O and incubated at 

37°C for 5 min to elute the mRNA. The mRNA was quantified and used directly for the 

synthesis of cDNA.   

 - cDNA synthesis 

 The cDNA synthesis from P. falciparum mRNA was performed using the Matchmaker 

Gold Yeast Two-Hybrid System kit from Clontech. The reaction was set up as follows: 

2   µg mRNA 

1   µl CDS primer 

x   µl ddH2O 

4  µl final volume 

 
 The mix was incubated at 72°C for 2 min and then placed on ice for 2 min. Next, the 

following reagents were added: 

2 µl 5X First-Strand Buffer 

1 µl dNTP Mix (10 mM) 

1 µl DTT (100 mM) 

1 µl SMART MMLV Reverse Transcriptase 

 
9 µl final volume 
 
 The reaction was incubated for 10 min at 42°C. Then, 1 µl of SMART III-modified oligo 

was added and the reaction was mixed and incubated for 1h at 42°C. The sample was placed 

at 75°C for 10 min to end the first-strand synthesis. After that, it was cooled down to RT and 

1 µl of RNAse H (2U) was added. The reaction was incubated for 20 min at 37°C and the 

cDNA was used as a template for a long distance PCR.  



Materials and methods 
 

 
58 

 - Long distance PCR 

Two 100 µl PCR reactions were set up for each experimental sample as follows: 

  2 µl First-Strand cDNA 
70 µl ddH2O 
10 µl 10X Advantage 2 PCR Buffer 

  2 µl 50X dNTPs 
  2 µl 5' PCR primer 
  2 µl 3' PCR primer 
10 µl 10X Melting Solution 
  2 µl 50X Advantage 2 Polymerase Mix 
 
100 µl final volume 
 

The program used in the thermocycler was the following: 

 
95 °C   30 s    
95 °C 10 s 
68 °C   6 min* 
68 °C     5 min 
  4 °C     ∞ 

 - cDNA purification 

 The cDNA after the long distance PCR was purified using a CHROMA SPIN TE-400 

column for each of the 2 PCR samples. The columns were inverted in order to resuspend the 

gel matrix, the top cap and the break from the bottom of the column were removed and the 

columns were placed in a collection tube. They were centrifuged at 700 x g for 5 min and the 

equilibrium buffer was discarded. The PCR samples were applied to the center of the column 

and centrifuged under the same conditions. The purified samples were collected in a 1.5 ml 

tube. The 2 purified samples were combined and precipitated with sodium acetate / ethanol 

(1/10 volumes of 2.5M sodium acetate and 2.5 volumes of 100% ethanol). After ethanol 

precipitation the pellet was air-dried and resuspended in 20 µl of ddH2O. 

 - Preparation of competent cells 

 One colony of a yeast strain expressing the appropriate prey was inoculated in 3 ml 

of YPDA and incubated 8-12 h at 30°C with shaking at 250 rpm. Next, 5 µl of the culture were 

inoculated in 250 ml of YPDA and incubated until the OD600 reached 0.3 (around 16-20 h). 

After this time, the cells were centrifuged at 700 x g during 5 min at RT. The supernatant was 

30 cycles 

*  The thermocycler was programmed to increase the   
     extension time by 5 s each successive cycle. 
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discarded and the pellet was resuspended in 100 ml of fresh YPDA. The culture was 

incubated at 30°C until it reached an OD600 of 0.5 (around 5 h) and then divided into two 

50 ml tubes and centrifuged at 700 x g for 5 min at RT. The supernatant was discarded and 

each pellet was resuspended in 30 ml of sterile ddH2O. The cells were centrifuged again 

under the same conditions, the supernatant was discarded and each pellet was resuspended 

in 1.5 ml of 1.1xTE/LiAc. The cell suspension was transferred to a 1.5 ml tube and 

centrifuged at 17000 x g for 15 s. The supernatant was discarded and each pellet was 

resuspended in 600 µl of 1.1xTE/LiAc. The cells were used immediately for transformation.  

 - Library scale transformation 

 In a 15 ml tube, 5 µg of pGADT7 plasmid (SmaI-linearized) plus the 20 µl of the 

SMART-amplified cDNA and 200 µg of denatured yeastmaker carrier DNA were mixed 

together. Then 600 µl of fresh prepared competent cells and 2.5 ml of PEG/LiAc were added 

and the sample was mixed gently. The cells were incubated 45 min at 30°C. After that, 160 µl 

of DMSO were added to the mix and the cells were incubated at 42°C for 20 min. Next, the 

sample was centrifuged at 700 x g during 5 min, the supernatant was discarded and the 

pellet was resuspended in 3 ml of YPD Plus Medium. The cells were incubated at 30°C with 

shaking for 90 min and then centrifuged again under the same conditions. The supernatant 

was discarded and the cells were resuspended in 15 ml of 0.9% (w/v) NaCl Solution. The cells 

were plated in SD medium plates (-HIS, -LEU, -TRP; 1 ml/plate) and incubated for 3 days at 

30°C. 

2.2.3. Methods in protein biochemistry 

2.2.3.1. Preparation of protein samples from P. falciparum 

 P. falciparum cultures with a parasitemia in trophozoites of 3-5% were purified using 

the MACS system. After elution of the iRBC, the samples were centrifuged (900 x g for 2 min) 

and the pellets were washed once with ice-cold PBS. The iRBCs were resuspended in the 

appropriate volume of protein lysis buffer for P. falciparum (approximately 1 ml for 50 µl of 

iRBC) and incubated on ice for 3 min. The samples were then centrifuged at 17000 x g for 

1 min at 4°C and the pellet of parasites was washed 1-2 times with ice-cold PBS and kept 

at -80°C or resuspended directly in protein loading buffer.  
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2.2.3.2. SDS-PAGE electrophoresis 

 Protein samples were analyzed by SDS-PAGE electrophoresis (Shapiro et al., 1967). 

After the addition of the protein loading buffer, the protein samples were sonicated and 

heated at 70°C during 5 min before loading them into the gel. The PageRuler Plus Prestained 

(Ambion - Thermo Fisher Scientific) was used as a protein ladder. The gels were run at 40 mV 

(1 gel) or 80 mV (2 gels) during approximately 90 min in SDS-PAGE running buffer.   

SDS-PAGE gels were prepared as follows:  

Stacking gel Resolving gel 

 10% 12% 
 
       3.46 ml ddH2O  
         630 µl 1M Tris pH 6.8 
            50 µl 10% SDS 
         830 µl 30% acrylamide 
           50 µl 10% APS 
             5 µl TEMED 

 
    3.96 ml ddH2O 
       2.5 ml 1M Tris pH 8.6 
      100 µl 10% SDS 
    3.33 ml 30% acrylamide 
      100 µl 10% APS 
          6 µl TEMED 
 

 
      3.35 ml ddH2O 
        2.5 ml 1M Tris pH 8.6 
        100 µl 10% SDS 
           4 ml 30% acrylamide 
       100 µl 10% APS 
            6 µl TEMED 

2.2.3.3. Coomassie staining of proteins 

 For protein visualization, the gels after SDS-PAGE electrophoresis were soaked in 

Coomassie solution for 10 min with constant shaking and then were incubated with 

Coomassie destaining solution until the protein bands could be clearly distinguished. The 

gels were kept in ddH2O until they were dried using a gel drying system.  

2.2.3.4. Western blotting 

 The SDS-PAGE gels were transferred to an Immun-Blot® PVDF membrane (Bio-Rad) 

using a Trans-blot SD semi-dry transfer cell. The membrane was activated soaking it in 

methanol for 30 s. The membrane and the SDS-PAGE gel were incubated in transfer buffer 

during 30 min prior to the transfer. Afterwards, 3 Whatman papers were soaked on transfer 

buffer and placed on the device, then the membrane was placed on top, then the SDS-PAGE 

gel and finally 3 more soaked Whatman papers. The transfer was run for 60 min at 230 mA. 

The membrane was blocked over-night with 5% (w/v) milk in PBS. The following day, the first 

antibody was diluted in 3% (w/v) BSA in PBS and the membrane was incubated with the 

solution during 60 min. Then, 3 washes of 10 min with PBST (0.1% (v/v) of Tween in PBS) 
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were performed. The membrane was blocked again with 5% (w/v) milk in PBS during 30 min. 

The incubation of the second antibody (diluted as well in 3% (w/v) BSA in PBS) was carried 

out during 30 min. Before the developing, the membrane was washed 3 times more during 

10 min with PBST. The developing solution (BM chemiluminescence blotting substrate POD 

from Roche) was prepared fresh (2 ml of solution A + 20 µl of solution B) and the membrane 

was incubated with the solution for 5 min. Afterwards, the signal was captured with a blot 

scanner (C-DiGit from Li-Cor).    

The dilutions of the antibodies that were used for Western blot are the following: 

Anti-α-tubulin monoclonal    1:1000    

Anti-BIP     1:2000 

Anti-GFP monoclonal    1:1000 

Anti-guinea pig-POD monoclonal       1:5000   

Anti-HA tag monoclonal   1:1000 

Anti-His tag monoclonal   1:1000  

Anti-mouse-POD monoclonal       1:10000  

Anti-PfCRT polyclonal    1:1000 

Anti-rabbit-POD monoclonal   1:10000 

2.2.3.5. Western blot stripping 

 For stripping of the antibodies, the Western blot membranes were incubated during 

30 min with stripping buffer and then washed 3 times during 10 min with PBST (0.1% (v/v) of 

Tween in PBS).  

2.2.3.6. Expression of recombinant GST-tagged PfCK2α and PfCK2αK72M 

 Vectors for the in vitro expression of PfCK2α as well as for a mutated form of the 

protein (PfCK2αK72M) were kindly provided by Prof. Christian Doerig. Both vectors are 

described in a publication by this group (Holland et al., 2009). Shortly, competent cells 

BL21 (DE3) were transformed with 0.5 µg of the pGEX-4T-3-PfCK2α or pGEX-4T-3-

PfCK2αK72Mplasmids, plated in LB agar containing 100 µg/ml of ampicillin and incubated 

over-night at 37°C. A single colony was inoculated in 10 ml of LB and incubated at 37°C for 

16 h with shaking at 200 rpm. The starter culture was diluted into 50 ml of SB medium to a 

starting OD600 = 0.1. The culture was incubated at 37°C and 200 rpm until the OD600 

reached 0.5. The incubation temperature was reduced to 20°C for 20 min and then the 
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protein expression was induced by adding 0.1 mM IPTG. The expression continued for 20 h. 

The cells were harvested by centrifugation at 4000 x g at 4°C for 20 min. The pellet was 

stored at – 80°C until purification.       

2.2.3.7. Purification of recombinant GST-tagged PfCK2α and PfCK2αK72M 

 The protein pellet was resuspended in protein lysis buffer for E. coli (7.5 ml/g pellet) 

and homogenized by pipetting. The lysate was sonicated 3 times for 20 s on ice and was 

centrifuged at 17000 x g at 4°C during 30 min. In the meantime, 100 µl of glutathione beads 

were washed twice with 1 ml of ddH2O and once with 1 ml of lysis buffer. The supernatant 

from the lysate and the glutathione beads were mixed in a 15 ml tube and rotated gently at 

4°C during 2 h. Then, the beads were washed twice with 500 µl of lysis buffer and 3 times 

with wash buffer. All the centrifugation steps were carried out at 400 x g during 2 min. The 

bound protein was eluted in 200 µl of elution buffer. The protein samples were used on the 

kinase assays the same day of the purification when possible or aliquoted and frozen 

at -20°C after addition of 10% glycerol.  

2.2.3.8. Expression of recombinant His-tagged PF11_0488C-terminal 

 Competent BL21-CodonPlus-RIL cells were transformed with 0.5 µl of the pET28a-

PF11_0488C-terminal plasmid, plated in LB agar containing 20 µg/ml of kanamicin and 34 µg/ml 

of chloramphenicol and incubated over-night at 37°C. A single colony was inoculated in 

10 ml of LB and incubated at 37°C for 16 h with shaking at 200 rpm. The starter culture was 

diluted into 100 ml of SB medium to a starting OD600 = 0.1. The culture was incubated at 

37°C and 200 rpm for one hour more and then the protein expression was induced by adding 

0.05 mM IPTG. The temperature was reduced to 25°C and the culture was incubated for 4 h 

more at this temperature. The cells were harvested by centrifugation at 4000 x g at 4°C for 

20 min. The pellet was stored at -80°C until purification.       

2.2.3.9. Purification of recombinant His-tagged PF11_0488C-terminal 

 The pellet was resuspended in wash buffer (5 ml/g pellet) and homogenized by 

pipetting. The lysate was sonicated 3 times for 20 s on ice and it was centrifuged at 

17000 x g at 4°C during 30 min. In the meantime, 100 µl of cobalt charged resin (TALONTM 

from Clontech) were equilibrated. All the centrifugation steps were carried out at 400 x g 

during 2 min. The resin was centrifuged to remove the storage buffer and then washed twice 
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with 200 µl of wash buffer. The supernatant from the lysate and the cobalt resin were mixed 

in a 15 ml tube and rotated gently at 4°C during 30 min. Then the resin was washed 3 times 

with 200 µl of wash buffer. The bound protein was eluted in 100 µl of elution buffer. The 

protein samples were dialyzed 2 times for 90 min in 100 ml of dialysis buffer and used on the 

kinase assays the same day of the purification when possible or aliquoted and frozen 

at -20°C. 

2.2.3.10. Immunoprecipitation of PfCRT-HA 

 Protein extracts were prepared from a P. falciparum strain (Dd2) transfected with the 

overexpression plasmid pARL-PfCRTDd2-HA. The protein pellet was resuspended in 3 volumes 

of RIPA buffer and incubated for 10 min at 4°C vortexing every 2 min. The samples were 

sonicated 2 times during 5 s and centrifuged at 17000 x g during 10 min at 4°C. The 

supernatant was diluted 10 times in NETT buffer and mixed with 25 µl (dried volume) of 

HA-agarose beads that were previously washed twice with NETT buffer. The sample was 

rotated gently in a wheel over-night at 4°C. The next day it was centrifuged (1600 x g for 

3 min at 4°C) and the HA-agarose beads were washed as follows: 2 times during 3 minutes 

with 400 µl of NETT I buffer, 2 times during 3 minutes with 400 µl of NETT II buffer and 

1 time during 3 minutes with 400 µl of low salt buffer. Alternatively, in order to 

dephosphorylate the protein, the last washing step was done with NEB buffer 4, the beads 

were resuspended in 50 μl of NEB buffer 4 and incubated at 37°C for 1h after the addition of 

1 μl CIP. PfCRTDd2-HA was assayed on beads. 

2.2.3.11. In vitro kinase assays 

 Standard kinase reactions were prepared in kinase assay buffer containing 

3 μCi/sample of γ-ATP in a final volume of 50 μl. The reactions were carried out at 37°C for 

30 min and were stopped by the addition of 50 μl of TCA 20%. The protein samples were 

incubated on ice for 30 min and centrifuged at 17000 x g for 10 min. The protein pellets 

were first washed with TCA 10% and then with pure acetone, air-dried and resuspended in 

15 μl of protein loading buffer. The samples were separated by SDS-PAGE electrophoresis; 

the protein gels were dried using a gel drying system and exposed for autoradiography using 

XAR biomax films.    
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2.2.4. Xenopus laevis oocytes  

2.2.4.1. X. laevis maintenance 

 Two year's old female Xenopus laevis frogs were purchased from NASCO and 

maintained by the animal facility of Heidelberg University (Interfakultär Biomedizinisches 

Forschungszentrum). The frogs were kept in aquariums at 18°C and were fed three times a 

week with food pellets.  

2.2.4.2. Surgical isolation of ovaries from X. laevis 

 The frog was submerged in anesthetic solution during 15-30 min. When the frog 

could be turned upside down without showing any reaction, it was taken out of the solution 

and placed on a wet sheet of paper towel on the top of a metal surface on ice. The incision 

area was gently wiped with cotton soaked in 70% (v/v) ethanol. A small incision (1 cm) was 

made on the down left part of the abdomen. Both the skin and the muscular layer were cut. 

The ovary was pulled out from the incision and using tweezers and a scissor, small fragments 

of the ovary were cut and incubated in OR2 buffer. The incision in the muscular layer was 

closed using 1 or 2 stitches and the incision in the skin was closed afterwards using 2 or 3 

stitches more. The frog was left to recover half covered in tap water, keeping the head over 

the water level. When fully awake, the frog was completely submersed in tap water and 

brought back to the aquarium. The frogs were operated a maximum of 5 times with a 

recovering period of minimum 3 months between each surgery.            

2.2.4.3. Collagenase treatment 

 The ovary fragments were cut into small pieces, transferred to an Erlenmeyer flask 

and washed with OR2 until the solution was clear. The OR2 buffer was removed and the 

ovary fragments were incubated over-night at 16°C in collagenase solution with gentle 

agitation. The OR2 buffer does not contain Ca+2 in order to avoid the activation of proteases 

that results in oocyte damage (Goldin, 1992). The following morning the oocytes were 

washed five times with OR2 buffer and five times more with ND96 buffer.  The oocytes were 

stored at 16°C in ND96 buffer. 
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2.2.4.4. Microinjection of X. laevis oocytes 

 The day following surgery, stage V and VI oocytes were manually selected for 

injection. Each oocyte was injected with 30 ng of RNA using a Nanoject II injector into the 

vegetal pole of the oocyte. The oocytes were then stored at 16°C in ND96 buffer. Every day 

the medium was exchanged and the damaged oocytes discarded.    

2.2.4.5. Drug transport assays in X. laevis oocytes 

 Groups of 10 oocytes were incubated under each experimental condition. The 

oocytes were incubated during 60 min in uptake buffer plus the appropriate radioisotope 

and then washed 3 times in uptake buffer without radioisotope. Each individual oocyte was 

transferred to a scintillation vial. Then the oocytes were lysed adding 100 µl of a 10% (w/v) 

SDS solution and vortexing. Scintillation solution (2 ml) was added to each vial and the vials 

were shaken before the radioactivity of each sample was measured using a scintillation 

counter. Radioisotope concentrations as well as general conditions used on the assays can 

be found in Appendix III. 

2.2.5. Methods in parasitology 

2.2.5.1. In vitro culture of P. falciparum 

 Intraerythrocytic stages were maintained in continuous culture according to the 

general methodology used for P. falciparum (Trager and Jensen, 1976). The different strains 

were cultured in vitro at 3.5% hematocrit (group A+) in complete RPMI/HEPES medium at 

37°C under controlled atmospheric conditions: 5% O2, 3% CO2, 92% N2 and 95% humidity. 

The parasites were fed at least every second day when the parasitemia was also determined 

using Giemsa-stained blood smears. The parasitemia of the cultures was maintained 

between 0.1% and 10% to ensure optimal growing conditions.      

2.2.5.2. Freezing of P. falciparum 

 Parasite cultures, mainly ring stages, were resuspended and centrifuged at 900 x g for 

2 min. The supernatant was discarded and, 1/3 of the pellet volume of freezing solution was 

added drop by drop and mixed carefully with the iRBCs. The samples were incubated at 

room temperature for 5 min and then 4/3 of freezing solution was added to the iRBCs drop 
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by drop. The samples were transferred to 2 cryogenic vials that were kept at -80°C for one 

night. For long term storage the samples were kept in liquid nitrogen.  

2.2.5.3. Thawing of P. falciparum 

 The cryogenic vials were thawed in a 37°C water bath for 30 s. Drop by drop 0.2 ml of 

thawing solution I was added and the samples were transferred to a 15 ml tube. Again, very 

slowly, 9 ml of thawing solution II were added to the sample shaking time to time. The 

samples were centrifuged (900 x g for 2 min), the supernatant was removed, and slowly 7 ml 

of thawing solution III were added. The samples were centrifuged again under the same 

conditions, the supernatant was discarded and the pellets were resuspended in 14 ml of 

complete RPMI medium and transferred to a Petri dish containing 500 µl of RBC.  

2.2.5.4. Synchronization of P. falciparum 

 The parasites were synchronized in ring stages using sorbitol 5% as described 

previously (Lambros and Vanderberg, 1979). This method is based on the differential 

permeability of RBC infected by mature forms of the parasite which are permeable to 

sorbitol and are killed by osmotic shock. The cultures were resuspended and centrifuged at 

900 x g for 2 min and the supernatant was discarded. The pellet was resuspended in 8 ml of 

prewarmed sorbitol 5% and incubated at 37°C for 5 min. The cells were centrifuged at 

900 x g for 2 min, the supernatant was discarded and the pellet was resuspended in 14 ml of 

complete RPMI medium and transferred back to a Petri dish.   

2.2.5.5. Magnetic purification 

 P. falciparum trophozoite and schizont stages were purified using the MACS system 

that takes advantage of the paramagnetic properties of hemozoin to facilitate the 

purification of late stage parasites by magnetic cell sorting (Paul et al, 1981). The MACS CS 

column was washed twice with MACS buffer and inserted into the VarioMACS separator. The 

cultures were resuspended and applied to the top of the column. The flow was adjusted to 

1 drop every 3 s. The column was washed with MACS buffer until the flow-through was 

clear. The column was removed from the separator and the enriched late stages iRBC were 

eluted in 10 ml of MACS buffer. The cells were centrifuged at 700 x g for 2 min and the pellet 

was resuspended in the appropriate buffer according to the experiment the cells were going 

to be used for.        
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2.2.5.6. Transfection of P. falciparum 

 P. falciparum ring stages were transfected by electroporation as described previously 

(Wu et al., 1995). The plasmids that were going to be transfected (75 µg) were precipitated 

with sodium acetate / ethanol (1/10 volumes of 2.5 M sodium acetate and 2.5 volumes of 

100% ethanol). After the ethanol precipitation and one washing step with ethanol 70%, the 

pellet was air-dried and resuspended in 30 µl of TE buffer. When transfecting with PCR 

products, 8 x 50 µl PCR reactions were combined and precipitated with ammonium acetate / 

ethanol (0.5 volumes of 2.5M ammonium acetate and 2.5 volumes of 100% ethanol). After 

ethanol precipitation and one wash with ethanol 70%, the pellet was air-dried and 

resuspended in TE buffer. The DNA concentration was quantified and 30 µg were used for 

transfection. Cytomix (370 µl) was added to each of the DNA samples.   

 Synchronized P. falciparum cultures with a parasitemia of 3-5% ring-stage parasites 

were centrifuged at 900 x g during 2 min. The supernatant was discarded and 200 µl of pellet 

were transferred to a new tube. The cytomix/plasmid mix was added to the pellet of iRBC 

and mixed gently. The sample was transferred to an electroporation cuvette and 

electroporated at 310 V and 950 µF. Immediately, the electroporated sample was 

transferred to a Petri dish containing 14 ml of transfection medium and 500 µl of RBCs.  

 After the day of transfection, the medium was changed every day during 7 days. The 

second day after the transfection, the appropriate drug for selection was added to the 

medium. After the first week, the medium was changed every 2 days. Fresh RBCs (100 µl) 

were added once a week until the transfectant parasites appeared.  

The concentrations of the drugs used are the following: 
 
   Stock   Final 

DSM1    10 mM   1.5 μM 
WR99210  20 μM   5 nM 
Blasticidin  10 mg/ml  3.8 μg/ml 
Shield-1  0.5 mM  200 nM 

2.2.5.7. IC50 determination 

 The IC50 determinations were performed according to the standard SYBR green 

fluorescence-based assay (Smilkstein et al., 2004). It is the gold standard protocol used to 

measure the effectiveness of a drug to inhibit parasite growth. The parasites that were going 
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to be used on the assay were synchronized two days before the experiment. The day of the 

experiment the culture was adjusted to 0.5% parasitemia and 3% hematocrit. 

 From a 96 well plate, the first and the last rows and columns were not used on the 

assay; they were just filled with 100 µl of RPMI medium to avoid evaporation. The tenth 

column was used as a positive control (100% growth, no drug) and the eleventh column as a 

negative control (0% growth, 1 µM CQ). Rows 2-7 were used to do duplicates of the assay for 

each drug. The highest drug concentration to be used on the assay (75 µl) was pipetted on 

the second column and 1/3 serial dilutions were performed (25 µl of the first well to the next 

well containing 50 µl of RPMI complete medium and so on). 

Plate scheme: 

 The drug concentrations used on the assays were the following (final concentration 

on the first well): 

 CQ: 1.5 µM 
 QN: 4.5 µM 
 ML-7: 50 µM 

 The parasites (50 µl) were added to each well and the plates were incubated during 

72 hours at 37°C. After the incubation time, the plates were frozen at -80°C at least for 2 h. 

The plates were thawed for at least 1h and 100 µl of lysis buffer containing SYBR green 

(1.2 µl in 10 ml of buffer) were added to each well. The plates were shaken briefly and 

incubated for at least 1 h at RT. Fluorescence measurements were done using the plate 

reader FLUOstar OPTIMA and the following parameters: excitation wavelength: 485 nm; 

emission wavelength: 520 nm; gain: 1380; nº of flashes/well: 10; top optic.           

 

 

Drug 1                  1/3 dilutions 

iRBC 
iRBC +  

1 µM CQ 
 

Drug 1                  1/3 dilutions 

Drug 2                  1/3 dilutions 

Drug 2                  1/3 dilutions 

Drug 3                 1/3 dilutions 

Drug 3                 1/3 dilutions 
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2.2.5.8. Drug transport assays in P. falciparum 

 Drug transport assays were performed according to the methodology established in 

the lab (Sanchez et al., 2003). P. falciparum cultures with a parasitemia in young 

trophozoites of ~3% were purified with the MACS system. The cultures were synchronized 

with sorbitol 5% the previous day and fed at least 20 min before starting the purification. 

After purification, the cells were centrifuged and resuspended in RMPI medium without 

bicarbonate equilibrated at 37°C at pH 7.3. The concentration of the parasites was adjusted 

between 20000 and 30000 iRBC/µl. The appropriate amount of radiolabelled drug (40 nM 

CQ or 20 nM QN) was added to the cells that were incubated at 37°C during specific time 

periods. Every 5 min, 2 µl of 0.5 M glucose were added to the cells. From each sample, two 

75 µl aliquots were transferred to a PCR tube containing 100 µl of separation oil (a 5:4 

mixture of dibutylphthalate and diocytlphthalate) and 75 µl of RMPI medium without 

bicarbonate equilibrated at 4°C at pH 7.3. The PCR tubes were placed inside 1.5 ml tubes 

without lid and kept on ice. The samples were immediately centrifuged at 17000 x g for 

1 min and then 75 µl of the upper phase of each duplicate were transferred to a scintillation 

vial containing 2 ml of scintillation cocktail. The tip of each PCR tube was cut with a scalpel 

and transferred to a new 1.5 ml tube. Next, 100 µl of tissue solubilizer (2:1 mixture of 

ethanol and tissue solubilizer from Pharmacia) were added to the tube and the samples 

were incubated over-night at 55°C. The following day, 25 µl of H2O2 (30%) were added to the 

solubilized pellets until the color was bleached. HCl (25 µl) was then added in order to 

neutralize the samples. The lids of the 1.5 ml tubes were cut and each tube was transferred 

to a scintillation vial containing 4 ml of scintillation cocktail. The radioactivity of the upper 

phase and the pellets was measured using a scintillation counter. 

2.2.6. Microscopy methods 

2.2.6.1. IFA of X. laevis oocytes 

 All the incubation steps were performed in gentle agitation. After 2 days of 

expression, the oocytes were fixed during 4 h using paraformaldehyde 4% (v/v) and then 

washed 3 times during 5 min with 3% (w/v) BSA in PBS. Afterwards the oocytes were 

permeabilized during 60 min in 0.05% (w/v) NP40 in PBS. Next, another 3 washing steps 

were performed as before. The incubation with the first antibody was performed over-night 

at 4°C. The antibodies were diluted in 3% (w/v) BSA in PBS. On the following day, 3 more 
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washing steps were performed as before. Finally, the oocytes were incubated during 3 h 

with the secondary antibody and washed again 3 times. The oocytes were analyzed using the 

confocal microscope LSM 510.  

The dilutions of the antibodies that were used for the IFAs are the following: 

Anti-His tag monoclonal  1:1000  

Anti-InsP3R-II polyclonal  1:50 

Anti-mouse Alexa Fluor 488  1:1000 

Anti-rabbit Alexa Fluor 546  1:1000 

2.2.6.2. IFA of P. falciparum 

 The parasites were purified using the MACS system and washed once with PBS. The 

samples were fixed with 4% paraformaldehyde and 0.0075% glutaraldehyde in PBS for 

30 min. The samples were centrifuged (all the centrifugations were carried out at 600 x g for 

2 min) and the pellets were resuspended and incubated with 0.1% (v/v) Triton in PBS during 

15 min. After a washing step with PBS, the samples were neutralized during 10 min with 

10 mM NH4Cl pH 7.0. Then the iRBCs were washed 1 time with PBS and one time with 3% 

(w/v) BSA in PBS. The 3% (w/v) BSA in PBS solution was used for the blocking and the rest of 

washing steps as well as to dilute the antibodies. The samples were blocked for 2 h and 

afterwards the incubation with the first antibody was carried out for 90 min. Then the iRBCs 

were washed 3 times and incubated with the secondary antibody for 45 min. The samples 

were then washed again 3 times and kept over-night in PBS at 4°C until they were analyzed 

using the confocal microscope LSM 510. 

The dilutions of the antibodies that were used for the IFAs are the following: 
 

Anti-HA tag monoclonal   1:1000 

Anti-PfCRT polyclonal    1:1000 

Anti-mouse Alexa Fluor 488   1:1000 

2.2.6.2. Confocal fluorescence microscopy 

 Parasites and oocytes labeled by IFA and live GFP tagged parasites were analyzed 

using the LSM 510 laser scanning microscope. For live imaging, the parasites were purified 

using the MACS system, washed twice in ringer solution and imaged in a perfusion chamber.   

The samples labeled with anti-mouse Alexa Fluor 488 and the GFP-tagged proteins were 
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excited using a 488 nm Argon ion laser and the emission was detected using a 505-550 nm 

band pass filter. The samples labeled with anti-rabbit Alexa Fluor 546 were excited using a 

543 nm Helium-Neon laser and the emission was detected using a 560 nm low pass filter. 

The objective used was a C-Apochromat with 100 x magnification. The images were acquired 

using the LSM imaging software and processed with the FIJI program.           

2.2.8. Data analysis 

All the data analysis was performed using SigmaPlot 11.0.   
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3. Results 
3.1. PFE0825w characterization in X. laevis oocytes 

3.1.1. Pfe0825w has alternative mRNA splice variants 

 The amplification of pfe0825w from cDNA revealed that this gene is transcribed into 

three different mRNA variants. Variant 0 was identified in Henry Vial’s group (CNRS, 

Montpellier) from 3D7 cDNA. It follows the genomic organization predicted by PlasmoDB 

with 6 exons and 5 introns. Two other mRNA variants were identified from 3D7, 7G8 and 

GB4 cDNA. The fourth exon is not present in variant 1, while in variant 2 the third intron is 

not spliced out (fig. 3.1). As a result, variant 1 and 2 code for ORFs with alternative start 

codons downstream of the ATG starting codon in variant 0 (see appendix II). No differences 

in the amino acid sequences between 7G8 and GB4 were detected. 

 

   
 

 

   

 

   

 
 

Figure 3.1. Alternative mRNA splicing variants of pfe0825w. 

Diagram of the pfe0825w predicted coding sequence in PlasmoDB (DNA) and experimentally 
identified mRNA sequences (mRNA variants). Exons are represented by light blue boxes (E1-E6) and 
introns by light blue lines (I1-I5). 

3.1.2. PFE0825w localizes at the oolemma of PFE0825w-his-
expressing X. laevis oocytes 

 The codon-optimized sequences of the three mRNA variants whose putative 

endosomal-lysosomal trafficking motifs were substituted by alanines (see appendix II) were 

cloned into the expression vector pSP64T (see appendix I) and transcribed in vitro. 

Expression of PfCRT in X. laevis oocytes was reported to be improved by removing such 

trafficking motifs from both termini of the PfCRT protein sequence (Martin et al., 2009). The 
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coding region of variant 2 that is not in frame in the other variants was cloned from 

P. falciparum gDNA and was not codon optimized (see yellow sequence in appendix II). All 

sequences were fused to a 6xHis tag in order to study the localization of the transporter 

when expressed in X. laevis oocytes. PFE0825w expression was examined by confocal 

fluorescence imaging of fixed pfe0825w-his-injected oocytes and water-injected oocytes. 

Variants 0 and 1 showed a co-localized expression with the inositol 1,4,5 triphosphate 

receptor (InsP3R), a receptor localized at the oocyte oolemma (Parys et al., 1992). The 

expression of variant 2 was not detected (fig. 3.2). 

A 

 N-terminal 

 PFE0825w P. falciparum 1 MEVTSTLLEK GKNFAQDPSE VFPESKKFFF 30 
 PFE0825w motif free   1 MEVTSTLLEK GKNFAQDPSE AAPESKKAAF 30 

 C-terminal 

 PFE0825w P. falciparum 422 IFKDDKDSIE TMFSSIKSIL 442 
 PFE0825w motif free  422 IFKAAKASIA TMFSSIKSIL 442 

B 
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                                  DIC                α-InsP3R               α-His 

Figure 3.2. PFE0825w expression at the oolemma of X. laevis oocytes. 

A. Mutagenesis of the putative trafficking motifs of PFE0825w. The putative trafficking motifs of the 
N-terminal and C-terminal domains of PFE0825w were substituted by alanines (highlighted in green) 
to promote the correct trafficking of the protein to the oocyte oolemma. B. Immunofluorescence of 
fixed H2O-injected and pfe0825w-His-injected oocytes using a mouse monoclonal anti-His antibody 
and rabbit polyclonal anti-InsP3R antibodies. The oocytes were injected with 30 ng of RNA or water 
and incubated for 2 days at 18°C in ND96 buffer. Scale bar: 200 µm.     
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3.1.3. PFE0825w does not transport [14C]-TEA, [3H]-MPP, 
[3H]-choline or [14C]-T3 under the experimental conditions used 

 PFE0825w is predicted to be an organic cation transporter and therefore, the first 

approach in this study was to use [14C]-TEA as a substrate in order to characterize its 

transport properties. This compound has been widely used in other studies to characterize 

the transport properties of several organic cation transporters (Roth et al., 2012). In 

accordance with the expression data, only X. laevis oocytes injected with mRNA from 

pfe0825w variant 0 (V0) and variant 1 (V1) were further analyzed regarding their transport 

properties. Preliminary uptake experiments were conducted at a wide pH range (5 to 7.3) as 

well as substrate concentrations (20 to 320 µM) in order to analyze the best experimental 

settings. No significant difference in uptake was observed between the water-injected 

oocytes and the PFE0825W-his-expressing oocytes under any of the tested conditions (fig. 

3.3). Different RNA amounts (10-50 ng) were also injected but not further positive outcome 

was obtained (data not shown). 

    

 

 

 

 

 

 

       

Figure 3.3. TEA accumulation by PFE0825-his-expressing X. laevis oocytes. 

A. Effect of pH on [14C]-TEA accumulation by PFE0825w-his-expressing X. laevis oocytes. Two days 
post-injection oocytes were incubated for 60 min at 19°C in uptake buffer containing 20 μM [14C]-TEA, 
adjusted to different pHs. The data represent the mean ± SEM of one to five independent 
determinations with 10 oocytes per condition B. Effect of TEA concentration on [14C]-TEA 
accumulation by PFE0825w-his-expressing X. laevis oocytes.  Two days post-injection oocytes were 
incubated for 60 min at 19°C in uptake buffer (pH 6.0) containing 20 μM [14C]-TEA + different 
concentrations of cold TEA (0, 20, 60, 140 and 300 μM). The data represent the mean ± SEM of four to 
eleven independent determinations with 10 oocytes per condition. No significant difference was 
observed between water-injected and PFE0825w-his-expressing oocytes for any of the conditions.  
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  To exclude the possibility of TEA being a poor substrate of PFE0825w, the 

compounds [3H]-MPP, [3H]-CQ and [3H]-choline were tested under the same experimental 

settings.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4. MPP, CQ and Choline accumulation by PFE0825w-his-expressing X. laevis oocytes. 

A. Effect of pH on [3H]-MPP accumulation by PFE0825w-his-expressing X. laevis oocytes. Two days 
post-injection oocytes were incubated for 60 min at 19°C in uptake buffer containing 100 μM MPP 
adjusted to different pHs. The data represent the mean ± SEM of four independent determinations 
with 10 oocytes per condition. B. [3H]-CQ accumulation by PFE0825w-his-expressing X. laevis oocytes. 
Two days post-injection oocytes were incubated for 60 min at 19°C in uptake buffer containing 10 μM 
CQ. The data represent the mean ± SEM of two independent determinations with 10 oocytes per 
condition. C. Effect of choline concentration on [3H]-choline accumulation by PFE0825w-his-
expressing X. laevis oocytes. Two days post-injection oocytes were incubated for 60 min at 19°C in 
uptake buffer (pH 6.0) containing different concentrations of choline (10, 50 and 150 μM). The data 
represent the mean ± SEM of three independent determinations with 10 oocytes per condition. No 
significant difference was observed between water-injected and PFE0825w-his-expressing oocytes for 
any of the conditions.  
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 In similar approaches, MPP and choline have shown to be appropriate substrates of 

the organic cation transporters hCHT1, rOCT1 and hOCT1 (Busch et al., 1996; Okuda and 

Haga, 2000; Zhang et al., 1997). As shown in Figure 3.4, MPP, CQ and choline were also not 

differentially taken up by PFE0825w-his-expressing oocytes under any of the experimental 

conditions tested.   

 Due to the lack of activity observed in the previous experiments and to rule out a 

detrimental effect of the His tag on the activity of the transporter, as previously reported for 

other proteins (Perron-Savard et al., 2005; Sabaty et al., 2013), the tag was removed from 

the constructs and further uptake experiments were performed.  

 In addition, some modifications were applied to the uptake protocol in order to 

overcome the lack of transport activity. The concentration of radiolabelled [14C]-TEA was 

increased up to 50 µM and the final concentration of TEA was set to 200 μM. The assay 

temperature was increased to 30°C, as it was previously reported for PfCRT that an increase 

in temperature during the uptake experiments improved the activity of the transporter 

(Summers and Martin, 2010). As a final approach, the incubation temperature of the oocytes 

during the two days of expression time was reduced to 14°C in order to facilitate the correct 

folding of the transporter and therefore its functional expression.  

 The uptake of the transporter’s putative substrate [14C]-T3 was also tested under 

these conditions. Additionally, the PfCRT-mediated [3H]-CQ uptake was conducted in parallel 

as a positive control for the experiments. 

 Despite the modifications on the uptake protocol, no differences were detected 

between water-injected oocytes and PFE0825w-expressing oocytes for any of the 

compounds used on the experiments. On the other hand, pfcrt-injected oocytes 

accumulated 4 times more chloroquine than water-injected oocytes, proving that the quality 

of the oocytes and the experimental procedures used were adequate. 

 Appendix III contains a detailed list of all the different experimental conditions tested 

for each PFE0825w variant. 
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Figure 3.5. TEA, MPP and T3 accumulation by PFE0825w-expressing X. laevis oocytes and CQ 
accumulation by PfCRT-expressing X. laevis oocytes. 

A. Effect of expression and uptake temperatures on [14C]-TEA accumulation by PFE0825w-expressing 
X. laevis oocytes. After RNA injection, the oocytes were incubated at 18°C or 14°C and after two days 
of expression, the oocytes were incubated for 60 min at 22°C or 30°C in uptake buffer (pH 6.0) 
containing 200 μM TEA. B. [3H]-MPP accumulation by PFE0825w-expressing X. laevis oocytes. Three 
days post-injection oocytes were incubated for 60 min at 30°C in uptake buffer (pH 6.0) containing 
100 μM MPP. C. [14C]-T3 accumulation by PFE0825w-expressing X. laevis oocytes. Three days post-
injection oocytes were incubated for 60 min at 30°C in uptake buffer (pH 6.0) containing 200 μM T3. 
D. [3H]-CQ accumulation by PfCRT-expressing X. laevis oocytes. Three days post-injection oocytes 
were incubated for 60 min at 22°C in uptake buffer (pH 6.0) containing 10 μM CQ. All the data 
represent the mean ± SEM of one determination with 10 oocytes per condition. No significant 
difference was observed between water-injected and PFE0825w-his-expressing oocytes for any of the 
substrates. The difference in CQ uptake between water-injected and PfCRT-expressing oocytes was 
assessed using the Mann-Whitney Rank Sum test; p<0.001 (***).  
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3.2. Analysis of the role of phosphorylation in the drug-
resistance-mediating function of the chloroquine resistance 
transporter PfCRT 

 Different experimental approaches were followed in order to achieve the aims of the 

project. On the one hand, the identification of the kinase that phosphorylates PfCRT was 

attemped through two different strategies: a screen to identify kinase inhibitors with an 

effect on CQ accumulation and a two yeast hybrid assay. On the other hand, PfCRT 

phosphorylated residues were mutated to alanine using the CRISPR-Cas9 system in order to 

study the direct role of phosphorylation in PfCRT-mediated drug transport. 

3.2.1. The kinase inhibitor ML-7 modulates CQ accumulation and CQ 
and QN susceptibility 

 The 411 and 416 phosphorylation sites of PfCRT were identified as consensus 

phosphorylation recognition sequences of CK2 using the PhosphoMotif Finder online tool 

(Amanchy et al., 2007). No motif was identified for the phosphorylated sequence at position 

33.  

 

Position Sequence Motif Motif features 

33 SRLG - - 

411 SegE [S/T]-XX-[D/E] Casein kinase II substrate motif 

416 TnvD [S/T]-XX-[D/E] Casein kinase II substrate motif 

Table 3.1. PfCRT phosphorylation motifs. 

Motifs identified using the PhophoMotif Finder online tool. 

 Taking this prediction into account, a screen of more than 25 different compounds 

known to affect phosphorylation events by targeting different classes of kinases and 

phosphatases was performed in the lab by Dr. Cecilia Sanchez. Three known P. falciparum 

casein kinase II (CK2) inhibitors ML-7, rottlerin and TBB, as well as several human CK2 

inhibitors (Perez et al., 2011) were included in the screen.  
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Figure 3.6. Effect of kinase and phosphatases inhibitors on CQ accumulation in P. falciparum. 

A. Chloroquine accumulation in Dd2 after 5 min of treatment with different compounds known to 
affect phosphorylation. The maximum concentration of each compound used in the assay is indicated 
in brackets (µM). The accumulation data are normalized to the CQ accumulation in untreated Dd2. 
The data represent one single determination or at least two determinations when error bars (SEM) 
are shown. These results were generated by Dr. Cecilia Sanchez. B. Chemical structure of the 5 
compounds with higher effect on CQ accumulation.         
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 The readout of the assay was CQ accumulation. To compare the level of drug 

accumulation between the treated and the untreated Dd2 strain, the parasites were 

incubated with radiolabelled CQ and the ratio between the drug concentration within the 

infected erythrocytes and the extracellular medium was calculated at the 5 min time point. 

The same approach has been used in numerous studies in order to correlate CQ and QN 

susceptibility with CQ and QN efflux outside the food vacuole (Sanchez et al., 2003; 

Lakshmanan et al., 2005) as well as to characterize the transport mechanisms of different 

drugs in P. falciparum (Wein et al., 2014).  

 In Figure 3.6, CQ accumulation of Dd2 parasites treated with the different 

compounds at the maximum concentration used in the assay is shown normalized to CQ 

accumulation of untreated Dd2. The screen revealed that the Dd2 strain treated with the 

compounds rottlerin, ML-7, W7, H-89 and imipramine accumulated higher levels of CQ 

compared with the untreated Dd2. As mentioned before, rottlerin and ML-7 are known 

inhibitors of PfCK2 (Holland et al., 2009). The role of these two inhibitors in relation to CQ 

susceptibility was further investigated in this study. CQ and QN accumulation was measured 

in the sensitive strain HB3 and the resistant strain Dd2 after 5 minutes of treatment with 

ML-7 and rottlerin in a dose-response curve.  

 ML-7 showed the same profile as verapamil, a widely known CQ chemosensitizer, in 

the same experimental procedure (Sanchez et al., 2004). At increasing concentrations of the 

inhibitor, the CQR strain Dd2 accumulated more CQ than the untreated strain, whereas 

there was no effect on the CQS strain HB3 at the same concentrations. The inhibitor showed 

its highest activity in Dd2 at 10 µM although, at this concentration, the CQ accumulation 

values for HB3 decreased, indicating a toxic effect at high concentrations of the inhibitor. On 

the other hand, rottlerin showed a lower effect at the same concentration range for Dd2 and 

a higher toxic effect on HB3. Regarding QN accumulation, the effect of both kinase inhibitors 

was the same for both CQR and CQS strains, suggesting no specific activity. Remarkably, 

rottlerin and ML-7 are inhibitors of PfCK2 in the same µM range: ML-7 inhibits the enzyme 

with an IC50 of roughly 3 to 4 μM and rottlerin exhibits an IC50 of 7 μM (Holland et al., 2009). 

Besides, ML-7 was previously used as an inhibitor of the myosin light chain kinase in other 

studies with the concentrations ranging from 1 to 40 µM, comparable to the conditions  

used in this study (Arii et al., 2010; Connell and Helfman, 2006; Lin et al., 2012).  
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Figure 3.7. Effect of rottlerin and ML-7 on CQ and QN accumulation in P. falciparum. 

A. Chloroquine accumulation in Dd2 and HB3 treated with different concentrations of ML-7 at the 5 
minute time point. B. Chloroquine accumulation in Dd2 and HB3 treated with different concentrations 
of rottlerin at the 5 minute time point. C. Quinine accumulation in Dd2 and HB3 treated with different 
concentrations of ML-7 at the 5 minute time point. D. Quinine accumulation in Dd2 and HB3 treated 
with different concentrations of rottlerin at the 5 minute time point. The data represent the mean ± 
SEM of three to four independent determinations. 

 The intrinsic antimalarial activity of ML-7 was also determined by calculating the IC50 

value of this compound in the Dd2 and HB3 strains. ML-7 only had an effect on parasite 

growth at high concentrations. In both cases, the ML-7 IC50 value was higher than 50 μM, 

although the Dd2 strain is shown to be more sensitive to this compound than HB3 (figure 

3.8). 
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Figure 3.8. Effect of ML-7 on CQ and QN IC50 for Dd2 and HB3. 

A. ML-7 IC50 curve for Dd2. The data correspond to the percentage of growth at different 
concentrations of ML-7 after 72h of drug treatment. The values represent the mean ± SEM of six 
independent determinations. B. ML-7 IC50 curve for HB3. The data correspond to the percentage of 
growth at different concentrations of ML-7 after 72h of drug treatment. The values represent the 
mean ± SEM of five independent determinations. C. Chloroquine IC50 values for Dd2 and HB3 strains 
treated with different concentrations of ML-7 during the 72h period of incubation with CQ. The data 
represent the mean ± SEM of three to seven independent determinations. The difference between 
untreated Dd2 and Dd2 treated with 10 μM ML-7 was assessed using the ANOVA on Ranks test; 
p<0.001 (***). There was no significant difference between treated and untreated HB3. D. Quinine 
IC50 values for the Dd2 and HB3 strains treated with different concentrations of ML-7 during the 72h 
period of incubation with QN. The data represent the mean ± SEM of seven to twelve independent 
determinations. The difference between untreated Dd2 and Dd2 treated with 10 μM ML-7 was 
assessed using the ANOVA on Ranks test; p<0.001 (***). There was no significant difference between 
treated and untreated HB3. 
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  To study whether ML-7 could also reduce the concentration of CQ and QN necessary 

to inhibit the growth of CQ-resistant strains, the IC50 for CQ and QN of the Dd2 and HB3 

strains was measured in the presence and absence of 1 µM and 10 μM of ML-7. As shown in 

Figure 3.8, the addition of 1 µM of ML-7 had no effect on CQ and QN IC50 values for both 

HB3 and Dd2 strains, but the addition of 10 μM of ML-7 caused a significant decrease on the 

CQ and QN IC50 values of Dd2, whereas no effect was observed for the HB3 strain.  

 To follow up on this result, a screen of 12 different ML-7 analogs was performed in 

order to find a compound with properties similar to ML-7 but a higher effect on CQ 

accumulation. The compounds were selected by the 4SC company in a similarity search using 

the core structure of ML-7 as a query (the compound structures can be found in 

appendix IV). The effects on CQ accumulation of each compound were analyzed at three 

different concentrations and compared with the accumulation in untreated parasites (1x 

accumulation). 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Screen of ML-7 analogs with an effect on CQ accumulation in P. falciparum. 

Chloroquine accumulation of Dd2 treated with different ML-7 analogs at the 5 minute time point. 
Three different concentrations of each compound were used in the assay 3, 10 and 30 µM. The 
accumulation data are normalized to the CQ accumulation in untreated Dd2. The data represent the 
mean ± SEM of at least three independent determinations. 
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ML-7 analogs only accumulated 1.65 times more CQ than the untreated control. Therefore, 

no better inhibitor than ML-7 was identified in this screen. 

 In a different approach, Xenopus laevis oocytes were used to assess the effect of ML-

7 on PfCRT transport activity. X. laevis oocytes have previously been used to study the effect 

of resistance-reversing agents (Martin R et al., 2009). PfCRTDd2-expressing oocytes and 

water-injected control oocytes were incubated in acidic medium (pH = 6.0) with 10 µM of 

unlabeled CQ and trace amounts of [3H]-CQ for 60 min, in presence or absence of ML-7. 

 As shown in Figure 3.10, a decrease in PfCRT-mediated CQ transport was observed 

when oocytes were treated with increasing concentrations of ML-7. 

  

 

 

 

 

 

 

 

Figure 3.10. ML-7 influences the PfCRT-mediated CQ uptake in X. laevis oocytes. 

PfCRT-mediated [3H]-CQ uptake in X. laevis oocytes treated with different concentrations of ML-7. 
Three days post-injection oocytes were incubated for 60 min at 22°C in uptake buffer (pH 6.0) 
containing 10 μM CQ in the presence or absence of different concentrations of ML-7. The values 
correspond to the percentage of CQ uptake compared with untreated oocytes. The data represent the 
mean ± SEM of two to four independent determinations. Data generated together with Dr. 
Sebastiano Bellanca.   
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downregulation of PfCK2 and consequent phenotype analysis based on CQ accumulation 

experiments and the establishment of an in vitro phosphorylation assay.   

 A 3D7 strain with the CK2α endogenous locus tagged with hemagglutinin (HA) and 

the destabilization domain (DD) was kindly provided by the group of Prof. Alan Cowman. To 

evaluate the level of PfCK2α downregulation, the transgenic strain was cultured in the 

presence or absence of Shield-1 ligand over 24h. PfCK2α protein levels were quantified by 

Western blot for both conditions. As shown in Figure 3.11, the level of PfCK2α 

downregulation reached almost 90% after 24h in the absence of Shield-1. This outcome is in 

accordance with the data obtained by the group of Prof. Alan Cowman (unpublished data). 

  
 A 

                   Strain         3D7             3D7CK2α-DD 

                             h                       0             24 

                 Shield-1                      +         +          - 

 
 
 
 
 
 
 

Figure 3.11. CK2α downregulation using the DD domain. 

Young trophozoite synchronized cultures of the parental strain 3D7 and the transgenic strain 
3D7Ck2α-DD were cultured in the presence or absence of 200 nM Shield-1 for 24h. Protein samples were 
collected at the 0 and 24 h time points. A. Western blot using a mouse monoclonal anti-HA antibody 
and rabbit polyclonal anti-BIP antibodies. Expected molecular weights: PfCK2α-DD: 56 kDa; PfBIP: 
72 kDa. Molecular weight markers at 55 and 70 kDa. B. Quantification of CK2α expression after 24h 
in the presence and absence of Shield-1 ligand. The quantification was performed using the Image 
studio Lite Ver 4.0 software.  

 Taking into account that 3D7 is CQS, PfCRTDd2 fused to GFP was episomally 

overexpressed in this strain in order to analyze the CQ accumulation phenotype when 

PfCK2α is downregulated. The 3D7CK2-DD and the 3D7CK2-DD + PfCRTDd2-GFP parasite lines were 

cultured in the presence or absence of Shield-1 ligand for 24 h and then CQ ratios within the 

infected erythrocytes and the extracellular medium were calculated at the 5 min time point. 
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Figure 3.12. Episomal PfCRTDd2-GFP overexpression in the 3D7CK2α-DD strain. 

Confocal live imagining of 3D7CK2α-DDtrophozoites expressing PfCRTDd2-GFP episomally.  Left image, 
green channel; middle image, differential interference contrast (DIC); right image, overlay of both 
channels. Scale bar: 2 μm. 

 The strain 3D7 with the modified PfCK2α locus accumulated the same levels of CQ as 

the parental strain 3D7. When PfCRTDd2 was overexpressed, the levels of CQ accumulation 

decreased, although not to the same levels as the resistant strain Dd2. In the absence of 

Shield-1, when PfCK2α was downregulated, the levels of CQ accumulation remained 

unaffected. 

 

 

 

 

 

 

 

Figure 3.13. Effect of CK2α downregulation on CQ accumulation in P. falciparum. 

Chloroquine accumulation in the Dd2, 3D7, 3D7CK2α-DD and 3D7CK2α-DD + PfCRTDd2-GFP strains in 
presence or absence of 200 nM Shield-1 at the 5 minutes time point. The data represent the mean ± 
SEM of three to four independent determinations. There was no significant difference when the 
3D7CK2α-DD + PfCRTDd2-GFP strain was grown in absence or presence of Shield-1.  

 PfCK2α and the inactive mutant (PfCK2αK72M) were overexpressed and purified from 

E. coli and preliminary phosphorylation assays were performed in order to test the activity of 
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the recombinant proteins. The results from the in vitro assay showed that the wild type 

protein had autocatalytic activity and that it was able to phosphorylate α-casein, while the 

mutant form was not active. The same amount of wild type and mutant enzyme was used on 

the assay, although the recombinant enzymes are not visible in the Coomassie-stained gel in 

Figure 3.14 due to the low amount of recombinant enzyme used in the assay. The 

concentration of both enzymes was quantified by Western blot before the kinase assay was 

performed.  

 

A                    B 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.14. PfCK2α-GST and PfCK2αK72M-GST kinase activity. 

BL21 (DE3) cells expressing GST, PfCK2α-GST and PfCK2αK72M-GST were induced with 0.1 mM IPTG for 
20h. The recombinant proteins were then purified by affinity chromatography (glutathione beads) 
and used on the kinase assays. A. Glutathione affinity purified GST, PfCK2α-GST and PfCK2αK72M-GST. 
Left panel, Coomassie-stained SDS-PAGE; right panel, Western blot using a mouse monoclonal 
anti-GST antibody. Expected molecular weights: GST: 26 kDa; PfCK2α-GST and PfCK2αK72M-GST: 
66 kDa. B. PfCK2α-GST and PfCK2αK72M-GST kinase assays. Autoradiograms on the left and 
Coomassie-stained SDS-PAGE on the right. As a substrate for the assays, 5 μg of α-casein or no 
substrate was used.   
 

 In order to purify PfCRT to use it as a substrate for the phosphorylation assays, a Dd2 

strain was transfected with a plasmid overexpressing PfCRT tagged with HA. As shown in 

Figure 3.15, PfCRT-HA exhibited the expected size and it was localized at the parasite’s food 

vacuolar membrane. 
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A     B 

 
 
 
 
 

 
 
 
 

Figure 3.15. PfCRT-HA overexpression in P. falciparum. 

 Dd2 strain transfected with the episomal overexpression plasmid pAR-PfCRTDd2-HA. A. Western blot 
using mouse monoclonal anti-HA and anti-tubulin antibodies. Expected molecular weights: PfCRT-HA: 
51 kDa; PfTubulin: 50 kDa. Molecular weight marker at 55 kDa. B. Immunofluorescence of fixed Dd2 
trophozoites overexpressing PfCRTDd2-HA using a mouse monoclonal anti-HA antibody. Left image, 
green channel; middle image, differential interference contrast (DIC); right image, overlay of both 
channels. Scale bar: 5μm. 

 The overexpressed PfCRT-HA was immunoprecipitated and used as a substrate in 

in vitro phosphorylation assays to test the ability of PfCK2α to phosphorylate PfCRT. With 

the purpose of using it as a positive control of the assay, a P. falciparum extract was tested 

for its ability to phosphorylate α-casein and PfCRT-HA.  

 

                                                          1      2      3                1     2     3            2        3 

 
 
 
 
 
 
 

Figure 3.16. PfCRT-HA in vitro phosphorylation assay. 

Kinase assays performed with the following reagents: lane 1, P. falciparum protein extract + α-casein; 
lane 2, P. falciparum protein extract + PfCRT-HA; lane 3, PfCK2α-GST + PfCRT-HA. Left panel, 
Coomassie-stained SDS-PAGE; middle panel, autoradiogram; right panel, Western blot using guinea 
pig polyclonal anti-PfCRT antibodies. The samples from the Coomassie-radiogram gel and the 
Western blot were prepared in the same reaction tube, but loaded into two different gels. Expected 
molecular weights: PfCRT-HA: 51 kDa; PfCK2α-GST: 66kDa. 
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No phosphorylation activity was detected for PfCRT-HA when using either CK2α or the 

P. falciparum extract. The immunoprecipitated PfCRT-HA protein was not visible on the 

Coomassie-stained gel, but it was detectable by Western blot, therefore if PfCRT-HA would 

have been phosphorylated it should have been possible to detect a clear signal on the 

autoradiogram. Due to the lack of a positive control, it was not possible to determine if 

PfCK2α phosphorylates PfCRT in vitro.  

3.2.3. PF11_0488 characterization 

 In a previous Yeast Two Hybrid (Y2H) assay conducted in the lab by Anne Christin 

Roth, a serine/threonine kinase (PF11_0488 - PF3D7_1148000) was identified as an 

interaction partner of the C-terminal domain of PfCRT. A second Y2H assay was performed in 

order to further validate this result. 

 
 

  

 

 

 

 

 

 

 

 

Figure 3.17. Y2H assay bait sequences.  

Position of the bait sequences that were used in the Y2H assay in a PfCRT topological model. Black 
arrows point to polymorphic residues; the red arrow point to residue K76, a key residue in chloroquine 
resistance; green arrows point to residues that can be phosphorylated and the orange arrow point to 
the residue 301 that can be S-palmitoylated. Figure adapted from Sanchez et al. 2010. 

 In both assays, a P. falciparum cDNA library was used as prey and four different 

domains of PfCRT as bait: the N-terminal domain, a putative calmodulin binding site (CBS), 

the out loop and the C-terminal domain (fig. 3.17). Table 1 shows the summary of all the 

interaction partners of PfCRT found in the two assay replicates. 

Bait 3: Out loop 

Bait 4: C-terminal 
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Bait Prey 

N-terminal 

PF3D7_0623100: Coronin binding protein, putative 

PF3D7_0707300: Rhoptry-associated membrane antigen (RAMA)(2x) 

PF3D7_1024800: Conserved Plasmodium protein, unknown function 

PF3D7_1244800: Cytoplasmic translation machinery associated protein, putative 

Putative CBS 

PF3D7_0609000: Conserved Plasmodium protein, unknown function 

PF3D7_1133800: RNA (uracil-5-) methyltransferase, putative 

PF3D7_1207800: Conserved Plasmodium protein, unknown function 

OUT loop 

PF3D7_0106900: 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, putative (IspD) 

PF3D7_0210600: Conserved Plasmodium protein, unknown function 

PF3D7_0907000: Conserved Plasmodium protein, unknown function 

PF3D7_0919800: TLD domain containing protein 

PF3D7_1033200: Early transcribed membrane protein 10.2 (ETRAMP10.2) 

PF3D7_1108600: Endoplasmic reticulum-resident calcium binding protein (ERC) 

PF3D7_1233600: Asparagine and aspartate rich protein 1 (AARP1) 

PF3D7_1324800: Dihydrofolate synthase/ folylpolyglutamate synthase (DHFS-FPGS) 

PF3D7_1425200: Enoyl-CoA hydratase, putative 

C-terminal 

PF3D7_0220000: Liver stage antigen 3 (LSA3) 

PF3D7_0406500: Conserved Plasmodium protein, unknown function 

PF3D7_1148000: Serine/ threonine protein kinase, putative 

 
Table 3.1. Putative interaction partners of PfCRT.  

Genes identified from a P. falciparum cDNA library as preys in two independent Y2H assays using four 
different sequences from PfCRT as baits. In black, preys found in the first assay (performed by Anne 
Christin Roth and Dr. Cecilia Sanchez) and in grey, preys found in the second assay. The PfCRT bait 
sequences and the exact sequences identified on the second assay can be found in appendix V.   

 There was no overlapping between the proteins identified in the two assays. Despite 

the fact that the interaction between PF11_0488 and PfCRT was not confirmed in the second 

assay, this kinase, which has been classified as an orphan kinase and described as essential 

for asexual growth in P. falciparum, was further characterized (Solyakov et al., 2011). 

 The cloning of the full length PF11_0488 sequence into the P. falciparum expression 

vector pARL1a+ was unsuccessful. Therefore, only the C-terminal fragment containing the 

sequences that code for the ATP binding region and the Ser/Thr protein kinase active site 

predicted by Prosite was cloned into the overexpression vector fused to a GFP tag. When 

PF11_0488C-terminal was overexpressed fused only to GFP, no expression was detected, 

therefore it was cloned fused to a GFP-CAD tag in order to control the expression levels and 
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avoid possible overexpression toxic effects. CAD is a conditional aggregation domain that 

aggregates in absence of Shield-1 (Rivera et al., 2000; Saridaki et al., 2008).      

 PF11_0488C-terminal-GFP-CAD did not aggregate in the absence of the ligand, 

conversely showed a cytosolic localization (fig. 3.18). The expected size of the protein was 

confirmed by Western blot. 
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   PF11_0488 protein (170 kDa) 

 

 

 

 

B       C 
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Figure 3.18. PF11_0488C-terminal -GFP-CAD overexpression in P. falciparum. 

A. Schematic representation of the PF11_0488 protein. The PF11_0488 domains predicted by Prosite 
are represented by different colors. The numbers indicate aminoacid positions. The length of the 
C-terminal fragment that was episomally overexpressed in P. falciparum and expressed and purified 
from E. coli is indicated by the black arrow. The fragment identified in the Y2H screening is indicated 
by the green line. B. Confocal live imaging of Dd2 trophozoites expressing PF11_0488C-terminal-GFP-CAD 
episomally. Left image, green channel; middle image, differential interference contrast (DIC); right 
image, overlay of both channels. Scale bar: 2 μm. C. Upper panel, Western blot using a mouse 
monoclonal anti-GFP antibody. Expected molecular weight of PF11_0488 C-terminal-GFP-CAD: 111 kDa. 
Down panel, gel stained with Coomassie blue as a loading control.                    

 These overexpressing parasites were analyzed for changes in CQ and QN 

accumulation as previously described. The overexpression of the C-terminal fragment of 

PF11_0488 reduced both the CQin/CQout and the QNin/QNout ratios. For CQ, the differences in 

accumulation between the parental and the transgenic strain were significant after 5 and 

20 min of incubation with the drug, whereas for QN it was only significant after 20 min of 
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incubation (fig. 3.19). The accumulation values for the Dd2 + PF11_0488C-terminal-GFP-CAD 

strain were the same in absence or presence of Shield-1 (not shown, data generated by 

Dr. Cecilia Sanchez).  
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Figure 3.19. Effect of the PF11_0488C-terminal-GFP-CAD overexpression on CQ and QN accumulation. 

A. Chloroquine accumulation ratios at the 5 and 20 minute time points in the transgenic strain Dd2 
expressing PF11_0488C-terminal-GFP-CAD episomally and in the parental strain Dd2. B. Quinine 
accumulation ratios at the 5 and 20 minute time points in the transgenic strain Dd2 expressing 
PF11_0488C-terminal-GFP-CAD episomally and in the parental strain Dd2. The data represent the mean ± 
SEM of at least four independent determinations for the parental strain Dd2 and eleven independent 
determinations for the transgenic strain Dd2 expressing PF11_0488C-terminal-GFP-CAD episomally. The 
differences between the parental strain Dd2 and the transgenic strain Dd2 expressing 
PF11_0488C-terminal-GFP-CAD episomally were assessed using the T-test; p<0.05 (*); p<0.001 (***).  
Data generated together with Dr. Cecilia Sanchez.    

 
 In order to confirm this result and taking into account the fact that PF11_0488 is 

considered essential during the erythrocytic asexual cycle of P. falciparum (Solyakov et al., 

2011), the glmS ribozyme system (Prommana et al., 2013) was chosen to down-regulate this 

kinase instead of attempting a knock-out. 

 The CRISPR-Cas9 technology was used to introduce the glmS ribozyme into the 3’UTR 

of the PF11_0488 locus. Two different guide sequences were tested in this approach (see 

appendix II).  As shown in Figure 3.20, the integration of the HA-glmS tag was successful in 

both cases.  

n=5 
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Figure 3.20. HA-glmS ribozyme tagging of PF11_0488 using the CRISPR-Cas9 system. 

A. Tagging strategy. The vector pUF1-Cas9 codes for the sequence of the Cas9 endonuclease flanked 
by nuclear localization signals (NLS). Its expression is regulated by the promoter region of the heat 
shock protein 86 (5’ hsp) and the 3’UTR region of the P. berghei dhfr (3’ Pb dhfr). The selection marker 
of the plasmid is the yeast dihydroorotate dehydrogenase gene (ydhodh). The pL6 plasmid contains 
the sgRNA-expression cassette. The expression of the sgRNA is regulated by the promoter and the 
3’UTR region of the P. falciparum U6 snRNA polymerase III (5’ U6). The selection marker of the 
plasmid is the human dihydrofolate reductase gene (hdhfr) and the negative selection marker is the 
bifunctional yeast cytosine deaminase and uridyl phosphoribosyl transferase (yfcu). A C-terminal 
PF11_0488 homology region of ~500 bp and a homology region of its 3’UTR, also of ~500 bp, were 
cloned before and after the HA-glmS tag respectively.The star indicates a shield mutation. B. Tag 
integration at the endogenous locus confirmed by PCR. Left, localization of the primers used in the 
PCR reaction and expected sizes of the PCR products for the endogenous and the tagged locus. Right, 
agarose gel of the PCR products obtained from the gDNA amplification of Dd2 (D) and Dd2 
transfected with both pUF1-Cas9 and pL6-PF11_0488-HA-glmS-guide-1 (1) or pL6-PF11_0488-HA-
glmS-guide-2 (2) plasmids. 

  

 In order to quantify the downregulation level that is possible to achieve using this 

strategy, the transgenic strain was cultured in presence of increasing concentrations of 

glucosamine during 48 h. Before and after the treatment, PF11_0488-HA protein levels were 

quantified by Western blot. 
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Figure 3.21. PF11_0488 downregulation using the glmS ribozyme. 

Trophozoite synchronized cultures of the parental Dd2 and the transgenic Dd2PF11_0844-HA-glmS strains 
were treated with different concentrations of glucosamine over 48h. Protein samples were collected 
at time point 0 and 48 h after the treatment started. A. Western blot using a mouse monoclonal anti-
HA and anti-tubulin antibodies. Expected molecular weights: PF11_0488-HA: 175 kDa; PfTubulin: 50 
kDa. B. Quantification of PF11_0488-HA expression at 48h, normalized to tubulin, at different 
concentrations of glucosamine. C. Dd2 growth curve in presence of different concentrations of 
glucosamine. Parasitemias over a time period of 56 h were determined by counting Giemsa-stained 
thin blood smears (~1000 RBC/slide). 

 

 Only at a glucosamine concentration of 5 mM was the expression of the protein 

downregulated to 50%. However, this concentration of the compound, as seen in 

Figure 3.21, also affected the growth of the parental strain Dd2. Taking this result into 

account, the strain was not further characterized. 

 As a second approach, PF11_0488 was heterologously expressed in E. coli and the 

purified protein was tested for kinase activity. In order to purify the PF11_0488C-terminal 
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fragment from E. coli, it was cloned into the expression vector pET28a and expressed fused 

to a 6xHis tag in RIL cells, which contain extra copies of the argU, ileY, and leuW tRNA genes. 

The cloning of the full-length sequence in this expression vector was also not achievable. 

Most of the protein aggregated in inclusion bodies in all the expression conditions tested. 

Nevertheless, it was possible to purify it from the soluble fraction after one affinity 

purification step, although the yield and the purity were not optimal. A second strategy 

followed in order to improve the yield and the purity of the protein was to purify it from 

inclusion bodies. The bacterial pellet was solubilized with 10% of the anionic detergent 

N-Lauroylsarcosine and then purified. This detergent has been used to solubilize functional 

proteins from inclusion bodies (IBs) with a 95% recovery efficacy (Tao et al., 2010). 

          A           B 
                                             Soluble fraction                               Solubilized inclusion bodies 

 

 

 

 

 

 

 

 

Figure 3.22.PF11_0488C-terminal-his purification from E. coli. 

RIL cells overexpressing the PF11_0488 C-terminal fragment fused to a 6xHis tag were induced with 
0.05 mM IPTG for 4h at 25°C. A. The soluble recombinant fraction was purified by affinity 
chromatography (TalonTM from Clontech). Left panel, protein gels stained with Coomassie blue; right 
panel, Western blot using a mouse monoclonal anti-His antibody. B. The inclusion bodies were first 
solubilized with 10% sarkosyl and then purified by affinity chromatography. Left panel, protein gels 
stained with Coomassie blue; right panel, Western blot using a mouse monoclonal anti-His antibody. 
The expected molecular weight for the PF11_0488 C-terminal-his protein is 39 kDa. 

 Both purified proteins (soluble fraction and inclusion bodies solubilized with 

N-Lauroylsarcosine) were used to perform in vitro phosphorylation assays. The activity of 

both the soluble fraction and the solubilized inclusion bodies was tested against three 

ubiquitous substrates commonly used for in vitro phosphorylation assays: α-casein, myelin 

basic protein and histone H1. None of the substrates was phosphorylated by 

PF11_0488C-terminal-his (data not shown). 
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 As a second approach, the activity of the soluble fraction was tested against a 

P. falciparum extract that was heat inactivated, and against immunoprecipitated PfCRT-HA. 

Again, no phosphorylation activity was detected. As a positive control, the phosphorylation 

of α-casein by a P. falciparum protein extract is shown in Figure 3.23. 

 

                                                         1      2      3      4              1      2      3      4 

 

 

 

 

 

 

 

Figure 3.23. PF11_0488 in vitro phosphorylation assay. 

Kinase assays performed with the following reagents: lane 1, P. falciparum protein extract + α-casein; 
lane 2, P. falciparum protein extract + PF11_0488C-terminal-his soluble fraction (both heat inactivated); 
lane 3, P. falciparum protein extract (heat inactivated) + PF11_0488C-terminal-his soluble fraction; lane 
4, PF11_0488C-terminal-his soluble fraction. Left panel, Coomassie-stained SDS-PAGE; right panel, 
autoradiogram. 
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3.2.4. PfCRT serine 33 modulates CQ and QN susceptibility and 
affects parasite’s fitness 

 Genome editing in P. falciparum using the CRISPR-Cas9 system has been developed in 

recent years, opening up the possibility to introduce marker-free point mutations in 

endogenous genes with high efficiency (Ghorbal et al., 2014). This strategy was followed to 

mutate the residue S33 of PfCRT in the CQ-resistant Dd2 strain, from serine to alanine, in 

order to analyze the role of phosphorylation on PfCRT function. The S33A mutation was 

successfully introduced into the Dd2 genome and two clones, named B5 and B6, were 

isolated by limiting dilution. This strain will henceforth be referred to as PfCRTS33A.  

 

 
Figure 3.24. CRISPR-Cas9 strategy used to mutate PfCRT residue S33 from serine to alanine. 

The vector pUF1-Cas9 codes for the sequence of the Cas9 endonuclease flanked by nuclear 
localization signals (NLS). Its expression is regulated by the promoter region of the heat shock protein 
86 (5’ hsp) and the 3’UTR region of the P. berghei dhfr (3’ Pb dhfr). The selection marker of the 
plasmid is the yeast dihydroorotate dehydrogenase gene (ydhodh). The pL6 plasmid contains the 
sgRNA-expression cassette. The expression of the sgRNA is regulated by the promoter and the 3’UTR 
region of the P. falciparum U6 snRNA polymerase III (5’ U6). The selection marker of the plasmid is 
the human dihydrofolate reductase gene (hdhfr) and the negative selection marker is the bifunctional 
yeast cytosine deaminase and uridyl phosphoribosyl transferase (yfcu). The homology region 
containing the S33A mutation (position -137 to 778) was transfected as a PCR product with modified 
ends (2 phosphorothioate-modified bases at the 5' end). 

  

 In order to assess the effect of this mutation on the sensitivity of the parasite 

towards CQ and QN, the half maximal inhibitory concentration (IC50) was determined for 

both drugs. The chloroquine resistant strain (QRS) Dd2 and the chloroquine sensitive strain 

(CQS) HB3 were used as reference. 
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Figure 3.25. CQ and QN IC50 values for Dd2, PfCRT S33A and HB3. 

A. Chloroquine IC50 values in the mutant parasite lines, B5 and B6, in the parental strain Dd2 and in 
the CQS strain HB3 as a reference. B. Quinine IC50 values in the mutant parasite lines B5 and B6, in the 
parental strain Dd2 and in the CQS strain HB3 as a reference. The data represent the mean ± SEM of 
seven to eleven independent determinations per strain. The differences between the parental strain 
Dd2 and the transgenic strains PfCRTS33A were assessed using the One Way ANOVA test; p<0.05 (*); 
p<0.01 (**). 

 

 The CQ IC50 values decreased from 101 ± 11 nM in Dd2 to 62 ± 7 nM in B5 and 

66 ± 9 nM in B6 when the residue S33 of PfCRT was mutated from serine to alanine. QN IC50 

values were also reduced from 295 ± 36 nM in Dd2 to 151 ± 8 nM in B5 and 169 ± 23 nM in 

B6 when the mutant strains were compared to Dd2 (fig. 3.25).  

 A decrease in CQ and QN IC50 values is, in general, associated with a decrease in drug 

accumulation in the food vacuole. Therefore, CQ and QN accumulation was determined for 

the parental and the mutant strains as described previously. As shown in Figure 3.26, 

PfCRTS33A clones accumulated the same level of CQ and QN as the parental strain Dd2 at any 

given time points. 

 To verify that the reduced CQ and QN susceptibility of the PfCRTS33A strain was not 

due to a mislocalization of the transporter, an IFA using PfCRT antibodies was performed for 

this strain. The images in Figure 3.27.A confirmed that the mutant PfCRT was localized at the 
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embrane of the parasite’s food vacuole as expected. This indicates that the protein is 

correctly localized despite carrying the S33A mutation. 

 

 

   

 

  

 

 

 

 

 

Figure 3.26. CQ and QN accumulation in Dd2 and PfCRT S33A. 

A. Time course of CQ accumulation ratios in the mutant parasite lines, B5 and B6, and in the parental 
strain Dd2. The data represent the mean ± SEM of five to six independent determinations per strain. 
B. QN accumulation ratios at the 5 and 20 minutes time point in the mutant parasite lines B5 and B6 
and in the parental strain Dd2. The data represent the mean ± SEM of five independent 
determinations per strain. No significant difference was observed between the parental strain Dd2 
and the transgenic strain PfCRTS33A. 

  Similarly, the stability of the mutant protein was assessed and compared to the wild 

type protein. The parental Dd2 strain and the two clones were treated with cycloheximide, a 

drug that inhibits protein synthesis (Schneider-Poetsch et al., 2010). Samples were collected 

at different time points after the beginning of the treatment and the protein levels over time 

were quantified by Western blot.  

 The endogenous control of the experiment was α-tubulin, which has shown to be 

stable after 8 hours of cycloheximide treatment in HeLa cells (Mi et al., 2009). As shown in 

Figure 3.27, both the wild type and the mutant proteins are equally stable.  
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Figure 3.27. PfCRTS33A localization and stability. 

A. Immunofluorescence of fixed Dd2 PfCRTS33A (clone B6) trophozoites using mouse polyclonal 
anti-PfCRT antibodies. Left image, green channel; middle image, differential interference contrast 
(DIC); right image, overlay of both channels. Scale bar: 2 μm. B. A synchronized trophozoite culture of 
Dd2 and the transgenic strains PfCRTS33A clones B5 and B6, were treated with 50 µg/ml of 
cycloheximide. Protein samples were collected at 0h, 1h, 2h and 5h after the treatment started. 
Western blot using mouse polyclonal anti-PfCRT antibodies and a mouse monoclonal anti-tubulin 
antibody. Expected molecular weights: PfTubulin: 50 kDa; PfCRT: 48 kDa. Molecular weight marker at 
55 kDa. C. Quantification of PfCRT expression normalized to tubulin with the Image Studio Lite Ver 4.0 
software. The data represent the mean ± SEM of two independent Western blot quantifications. No 
significant difference was observed between the parental strain Dd2 and the transgenic strain 
PfCRTS33A. 
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 It has been previously shown that different pfcrt alleles confer different fitness 

characteristics to the parasite (Mita et al., 2004; Petersen et al., 2015). In order to test if the 

S33A mutation conferred a growth advantage or disadvantage in the presence and absence 

of CQ, the growth of both strains was compared by means of a fitness experiment.  

 

  

     

 

 

 

 

 

 

 
 

Figure 3.28. Effect of  PfCRTS33A on parasite fitness. 

Fitness assay. Mixed cultures at ~50% ratio between Dd2 and the mutant strain PfCRTS33A were 
cultured in presence or absence of 30 nM CQ. The allelic proportions were measured by 
pyrosequencing during 10 cycles in absence of the drug or during 20 cycles in the presence of CQ. The 
proportion of Dd2 in the cultures over time is represented on the Y axis. The data represent the mean 
± SEM of three independent mixed cultures for each clonal line. 

 

 The parental Dd2 and the mutant PfCRTS33A strains were mixed together and kept in 

culture over 10 cycles. Every two cycles, samples of 3 replicates were analyzed by 

pyrosequencing to determine the proportion of each strain in the culture. The same 

experiment was performed in presence of 30 nM of CQ for 20 cycles. In the absence of drug 

pressure, the percentage of Dd2 in the culture decreased over time, indicating that the 

PfCRTS33A clones had better fitness than Dd2. Conversely, under drug pressure, the 

percentage of Dd2 in the cultures increased over time, suggesting that the S33A mutants are 

more sensitive to CQ than Dd2.          
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4. Discussion 
4.1. PFE0825w characterization in X. laevis oocytes 

 The Pfe0825w gene is transcribed into three different mRNA variants. Variant 0 is the 

splice variant predicted in silico by PlasmoDB, but, as experimentally proven for this 

particular gene, often these predictions are inaccurate or incomplete. Particularly, the 

analysis of a P. falciparum cDNA library revealed that more than 20% of the investigated 

genes exhibited splicing events that were not correctly predicted (Lu et al., 2007).  

 Different mRNA variants were detected in different parasite strains. The fact that 

variant 0 was not detected in 7G8 and GB4 was probably due to differences in the 

methodology used to synthesize the cDNA. Asynchronous cultures were used to isolate the 

cDNA from 3D7, whereas 7G8 and GB4 cDNA was isolated from trophozoite synchronized 

cultures. Pfe0825w transcriptional profile data (Penarete-Vargas et al., unpublished) showed 

that variant 0 in asexual blood stages is the lowest transcribed variant. Therefore, the 

detection of variant 0 could have been overlooked in the 7G8 and GB4 strains.  

 Pfe0825w alternative splicing (AS) produces premature stop codons. The alternative 

transcripts can be targeted to nonsense mediated mRNA decay and therefore, the role of AS 

in this case could be associated with expression regulation (reviewed by Lykke-Andersen and 

Jensen, 2015). On the other hand, three protein isoforms with alternative start codons can 

be translated from the different splice variants. In Plasmodium, there are some examples 

where different isoforms of the same gene have different localizations and, potentially, 

different functions. AS generates two isoforms of MAEBL, an essential protein for merozoite 

invasion of erythrocytes and for sporozoite invasion of mosquito salivary glands, one of 

which is soluble and the other is membrane-bound (Preiser et al., 2004). The cysRS gene, 

cysteinyl tRNA synthetase, is also alternatively spliced and dually targeted to the apicoplast 

and the cytosol (Pham et al., 2014). Whether the different PFE0825w isoforms have different 

localizations or functions remains to be investigated. However, taking into account that the 

differences in the N-terminal sequence correlate with a different number of predicted 

transmembrane domains (TM) using the TMHMM server 2.0 (10 TM for variants 0 and 2 and 

8 TM for variant 1), it is reasonable to speculate that the different isoforms have different 

biochemical properties.        
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 The three mRNA variants were injected into X. laevis oocytes but only variants 0 and 

1 were expressed and targeted to the oocyte oolemma. The fact that the sequence of the 

first 16 aminoacids in variant 2 was not codon optimized could explain why it was not 

possible to detect the expression of this protein isoform.  

    No differences in uptake between PFE0825w-expressing oocytes and water-injected 

oocytes were observed for any of the compounds tested in this study. The uptake conditions 

as well as the substrate concentrations used in the experiments were similar to the ones 

used to characterize other organic cation transporters in X. laevis oocytes (Grundemann et 

al., 1994; Kakehi et al., 2002; Okuda and Haga, 2000). For example, choline is transported 

into the parasite with an apparent Km of 25-80 μM (Biagini et al., 2004; Lehane et al., 2004) 

and its physiological concentration in plasma is around 10 μM (Ozarda Ilcol et al., 2002), 

therefore the highest choline concentration (150 μM) used in the assays should have been 

sufficient to observe uptake. For the T3 compound, as it had never been used before in X. 

laevis uptakes, a concentration of 200 μM was chosen, consistent with the range of 

concentrations used in parasite uptakes (Wein et al., 2012).     

 Experiments carried out in Prof. Vial’s group pointed to the predicted function of 

PFE0825w as albitiazolium and choline transporter (Penarete-Vargas et al., unplublished), 

thus the lack of transport activity in the oocyte system might be due to the limitations of this 

heterologous system. However, studies performed to discover interaction partners of this 

compound failed to identify PFE0825w as an albitiazolium target (Penarete-Vargas et al., 

2014).    

 Considering that the expression of variants 0 and 1 at the oocyte membrane was 

confirmed by immunofluorescence, the lack of expression or the mistargeting of the 

transporter to another compartment are not problematic areas. At the parasite, the 

transporter is localized at the plasma membrane with the substrate binding site facing the 

parasitophorous vacuole (Penarete-Vargas et al., unpublished). Still, the topology of the 

transporter at the oocyte membrane is not a concern, because if the topology would be 

inverted in the oocyte, a decrease in accumulation would be expected. This is the case of the 

PfMDR1 transporter, where PfMDR1-expressing oocytes accumulate less vinblastine than 

water-injected oocytes (Sanchez et al., 2008a).  
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On the other hand, the transporter may be expressed at the oocyte oolemma, 

although incorrectly folded and therefore inactive. Moreover, the sequence of the 

transporter was mutated in order to remove the lysosomal trafficking motifs and these 

mutations may also affect the activity of the transporter. 

 Another possible explanation is that the transporter may not be active under the 

conditions used for the uptake experiments. Temperature can have a large effect on 

transport activity (Summers and Martin, 2010) and in the case of PFE0825w, it may be a 

critical factor. It has to be considered that it is not possible to carry out the experiments at 

the parasite’s physiological temperature because it is much higher than that of the oocytes 

(37°C vs. 18°C).  

 It is also possible that the transporter requires association with a second protein to 

form a functional heterodimer, as is the case of the human sterol half-transporters 

ABCG5 and ABCG8 (Graf et al., 2004) or the S. pneumonia ABC multidrug efflux half-

transporters PatA and PatB (Boncoeur et al., 2012). 

  Finally, different post translational modifications of the protein may take place in the 

parasite in comparison to the oocyte and this may have an effect on the activity and the 

substrate specificity of the transporter in the oocyte system. There are several examples of 

transporters whose activity and substrate specificity is regulated by post translational 

modifications such as the rOCT1 (Mehrens et al., 2000) and the hAQP2 (Moeller et al., 2011).  

4.2. Analysis of the role of phosphorylation in the drug-
resistance-mediating function of the chloroquine resistance 
transporter PfCRT 

4.2.1. The kinase inhibitor ML-7 modulates CQ accumulation and CQ 
and QN susceptibility 

 The 411 and 416 phosphorylation sites of PfCRT match the consensus 

phosphorylation recognition sequence of casein kinase II (CK2), but the phosphorylation site 

at position 33 does not match any known kinase recognition sequence. For this reason, 

additionally to known CK2 inhibitors, a panel of inhibitors and activators targeting different 

classes of kinases and phosphatases was chosen to identify compounds with an effect on CQ 

accumulation. 



Discussion 
 

 
106 

 From all the CK2 inhibitors tested, only ML-7 and rottlerin had an effect on CQ 

accumulation. Nevertheless, only three CK2 inhibitors from the panel have been shown to be 

active against the P. falciparum CK2 in vitro: ML-7, rottlerin and TBB (Holland et al., 2009). 

The fact that TBB did not show any effect on CQ accumulation may be due to the TBB 

concentration used in the assay; it might have been too low when compared with the 

concentration used in other cellular assays (Duncan et al., 2008; Ruzzene et al., 2002). On 

the other hand, quinalizarin has also been shown to be a potent inhibitor of PfCK2, although 

it was not tested in this study (Graciotti et al., 2014).         

 When analyzing phenotypes from kinase inhibitor treatments, careful interpretation 

of the results is pivotal since most of the compounds are not specific. All the inhibitors that 

had an effect on CQ accumulation target more than one kinase. ML-7, for example, is 

classified as a selective myosin light chain kinase inhibitor (MLCK) (Bain et al., 2003; Saitoh et 

al., 1987) but it also inhibits PfCK2α and hCK2α with an IC50 of 3-4 μM (Holland et al., 2009). 

H-89 inhibits PKA with an IC50 of 135 nM, but it also inhibits S6K1, MSK1, ROCK-II, PKBα, 

MAPKAP-K1b and MLCK (Davies et al., 2000; Umeda et al., 2008). W-7 is a calmodulin 

antagonist that inhibits the MLCK (Yamaki et al., 1979; Zimmer and Hofmann, 1984). 

Rottlerin, is also found to target multiple kinases in vitro and its use in cellular assays is 

questionable (Bain et al., 2003). Imipramine is a tricyclic antidepressant but its inhibitory 

effect on SRC and cyclic AMP-dependent protein kinases activity has also been reported (Ito 

et al., 1982; Nestler et al., 1989). 

 One possibility that needs to be ruled out is if the kinase inhibitors with an effect on 

CQ accumulation could inhibit the transport of CQ not by inhibiting a putative kinase, but by 

competing structurally with CQ to bind to PfCRT. Several compounds used in the assay share 

some chemical properties with CQ. For example, H-89 displays a quinoline chemotype; W-7, 

a naphthalene group with a chloride ligand, and imipramine, an azepane moiety in the 

tricyclic heterocycle. All those elements confer aromaticity to the compounds, a feature 

shared with CQ. In the case of ML-7, although it also exhibits this aromaticity, it is not 

probable that the compound competes with CQ because, an inhibition in QN transport 

should have also been observed. Furthermore, compounds with the same core structure as 

ML-7 did not show any effect on the accumulation assay. Uptake experiments of these 

radiolabelled compounds by pfcrt-injected oocytes would resolve this question.   
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 Nevertheless, ML-7, W-7 and H-89 share a common target: the myosin light chain 

kinase (MLCK). Although the P. falciparum genome doesn’t encode for any mlck gene, the 

parasite calcium-dependent protein kinase family includes members that share a high 

degree of homology with this kinase. The first hit on a BLAST search of the human myosin 

light chain kinase against the P. falciparum proteome is CDPK5 (e value = 8e-50). 

Furthermore, PbCRT has been identified in co-immunoprecipitation assays with PbCDPK4 in 

P. berghei gametocytes (personal communication from Mathieu Brochet). The hypothesis 

that CDPKs play a role on PfCRT phosphorylation is currently being investigated by other lab 

members. 

 When the CQS strain HB3 is treated with rottlerin, there is also a decrease in the 

amount of CQ that the strain accumulates. This indicates that the activity of this inhibitor is 

highly unspecific and is in agreement with the observation that rottlerin has multiple targets 

(Bain et al., 2003). Conversely, ML-7 only affects CQ accumulation in HB3 at high 

concentrations.  

 Taking into account the results from the screen of compounds that have a core 

structure similar to ML-7, it is clear that the increase in CQ accumulation is highly dependent 

on the specific structure of ML-7. Despite the high structural similarities between ML-7 and 

the compounds K20037526 and K100027117, they were not active in the assay. K20037526 

displays both the diazepane ring and the naphthalene moieties but lacks the halogen. 

Conversely, K100027117 shows a halogen-substituted benzene, and a piperidine ring instead 

of the diazepane group. Furthermore, this result, together with the result from the first 

screen shows that CQ accumulation in Dd2 is only altered by a few specific compounds. 

There is no information available about the activity of the ML-7 analogs in any in vitro or in 

vivo assays, but the structure of the compounds can be found in appendix IV.          

 ML-7 not only affects CQ accumulation, but it also affects CQ and QN susceptibility. 

Although the Dd2 strain is slightly more sensitive to ML-7 than HB3, both strains show an 

IC50 for the compound higher than 50 μM, indicating that the compound does not have 

antiparasitic activity itself. When the Dd2 strain is treated with 10 μM of ML-7, its IC50 value 

for CQ decreases to sensitive levels. The same is true for QN, although ML-7 did not affect its 

accumulation. CQ and QN have been shown to be transported by PfCRT out of the food 

vacuole (Sanchez et al., 2005; Sanchez et al., 2008b) and the inhibition of PfCRT-mediated 

CQ transport by ML-7 could explain the phenotype observed for CQ but not for QN. 
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Therefore, it is reasonable to speculate that ML-7 is targeting different kinases or that the 

targeted kinase has multiple substrates.  

 QN accumulation does not always correlate with QN resistance as seen in the 

treatment of Dd2 with ML-7. The parasite lines C4Dd2 and C67G8 are pfcrt allelic exchange 

mutants derived from GCO3, in which the endogenous PfCRT locus was replaced by the Dd2 

or the 7G8 allele (Sidhu et al., 2002). These strains accumulate less QN than the parental 

one, and yet they are more sensitive to QN than the parental strain (Sanchez et al., 2008b). 

Furthermore, in the F1 progeny from a HB3xDd2 cross, parasites containing the PfCRT from 

Dd2 showed higher sensitivity towards QN than some parasites containing the HB3 allele 

(Ferdig et al., 2004). It has been suggested that QN has another target outside of the food 

vacuole and that when it is pumped out, it is accumulated in another organelle (Sanchez et 

al., 2008b).  Along the same line, different pfmdr1 alleles are not correlated with changes in 

QN accumulation but with changes in IC50 values, which led to the hypothesis that QN 

targets PfMDR1. The transport of Fluo-4 can be inhibited by QN in the parasites (Rohrbach et 

al., 2006) and in PfMDR1-expressing X. laevis oocytes (Sanchez et al., 2008a). Also the 

analysis of the F1 progeny of a GB4x7G8 cross showed no significant correlation between QN 

accumulation and QN IC50 values. In this study, QN accumulation was shown to be 

determined by PfCRT and QN resistance by PfMDR1. GB4 PfMDR1 conferred reduced 

resistance and GB4 PfCRT reduced accumulation. Conversely, 7G8 PfMDR1 conferred 

increased resistance and 7G8 PfCRT increased accumulation (Sanchez et al., 2011). 

Therefore, the observation that ML-7 has an effect only on QN IC50 but not on QN 

accumulation could be explained by the effect of this kinase inhibitor on PfMDR1 or on an 

alternative target of QN.  

  

                                                       Position within PfCRT                                     Position within PfMDR1            

 

Table 4.1. Polymorphisms within PfCRT and PfMDR1 in the strains HB3, 7G8, GB4 and Dd2. 

 To investigate whether ML-7 has a direct effect on PfCRT, PfMDR1 or on both 

transporters, it would be interesting to substitute the endogenous transporter locus of HB3 

for the codon optimized versions of PfCRTDd2 or PfMDR1Dd2, using the CRISPR-Cas9 system, 

Strain 72 74 75 76 220 271 326 356 371  86 184 1034 1042 1246 

HB3 C M N K A Q N I R  N F S D D 
7G8 S M N T S Q D L R  N F C D Y 
GB4 C I E T S E N I I  Y F S N D 
Dd2 C I E T S E S T I  Y Y S N D 
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and then perform accumulation assays and determine the CQ IC50 of these strains in the 

presence of ML-7. Performing IC50 determination of other drugs not related to PfCRT, 

PfMDR1 and heme detoxification in presence of ML-7 would also support the hypothesis 

that the decrease of CQ and QN IC50 in the presence of ML-7 is not due to its toxic effects. 

 The effects of ML-7 on PfCRT-mediated CQ uptake in X. laevis oocytes have to be 

interpreted carefully. On the one hand, it is not possible to distinguish between competition 

of CQ and ML-7 for the binding pocket of PfCRT, and the effects of the inhibition of a 

putative oocyte kinase in CQ transport. Furthermore, it is not known whether PfCRT is 

phosphorylated or not when expressed in the oocyte. Attempts to identify the 

phosphorylation status of PfCRT in X. laevis oocytes have, so far, not been successful. On the 

other hand, both termini of the PfCRT sequence were modified in order to eliminate the 

endosomal-lysosomal trafficking motifs and these mutations are within the phosphorylation 

recognition sequences. The in silico prediction program PROSITE does not identify the 

residue S411 in the modified PfCRT sequence as a phosphorylation site.   

4.2.2. The downregulation of PfCK2 does not have an effect on CQ 
accumulation 

 PfCK2 is formed by one catalytic subunit, PfCK2α, and two regulatory subunits, 

PfCK2β1 and PfCK2β2 (Holland et al., 2009). Each subunit is essential in blood stages and all 

localize dually to the cytosol and the nucleus. Interactions between the regulatory subunits 

and proteins from different metabolic pathways have been reported, with proteins involved 

in the chromatin assembly pathway being one of the most abundant (Dastidar et al., 2012).  

 PfCK2α downregulation mediated by the DD domain resulted in a protein expression 

decrease of 88%, comparable with previous reports (Armstrong and Goldberg, 2007).      

 The overexpression of PfCRTDd2-GFP in the 3D7CK2α-DD background led to CQ 

accumulation levels between Dd2 and 3D7 which are in agreement with similar values 

reported for the overexpression of PfCRTDd2-GFP in the HB3 background (Sanchez et al., 

2014). When a protein is expressed from an episomal plasmid in P. falciparum, the 

percentage of cells expressing the transgene is lower compared to the same gene expressed 

from a chromosomal locus following integration. Also, the variance in expression levels 

observed between different parasites from the same culture is greater when the gene is 

expressed episomally (Adjalley et al., 2010; Nkrumah et al., 2006). Therefore, it was 
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expected that the level of CQ accumulation in the 3D7CK2α-DD + pARL- PfCRTDd2-GFP strain 

would not reach the same level as reported for the Dd2 strain.   

 When the expression of PfCK2α is downregulated due to the absence of the 

stabilizing Shield-1 ligand, there are no changes in CQ accumulation. This result suggests that 

PfCK2α does not regulate PfCRT-mediated CQ transport. Nevertheless, it can not be ruled 

out that the remaining 12% of the enzyme is sufficient to regulate CQ transport, to the 

extent that no phenotypical changes can be observed, or that other kinases are 

complementing its function.  

 The outcome from the heterologous overexpression of PfCK2α-GST and  

PfCK2αK72M-GST experiments and from the in vitro kinase assays is comparable to the 

previously reported results. PfCK2α-GST has autophosphorylation activity and is able to 

phosphorylate α-casein in vitro. The nature of the phosphorylated protein that runs at 36 

kDa is unknown, but considering the fact that a signal is also detected in the Western blot 

against GST at the same molecular weight, it is probably a degradation product. The K72 

residue is involved in the binding of ATP to the active site of the kinase, therefore the 

PfCK2αK72M-GST mutant is inactive and can be used as a negative control (Holland et al., 

2009).  

 In order to obtain PfCRT to use as a substrate in the kinase assay, the protein was 

tagged with a 3xHA tag and overexpressed in P. falciparum. The 3xHA tag was choosen due 

to its small size, compared with other tags, in order to reduce the possibility of a nonspecific 

phosphorylation of the tag. PfCRT-HA was not phosphorylated by PfCK2α-GST or by any 

protein from a P. falciparum extract in the in vitro assay. In the absence of a known kinase 

that phosphorylates PfCRT, a P. falciparum protein extract was used, under the assumption 

that one of the proteins in the extract could posphorylate PfCRT. The protein extract proved 

to contain active kinases that were able to phosphorylate α-casein as well as other proteins 

from the extract. The lack of PfCRT-HA phosphorylation may be due to at least two reasons. 

First, the low amount of PfCRT-HA used as a substrate in the assays compared with the 

amount of α-casein, although as it was possible to detect the same amount of protein used 

in the assay by Western blot, it is reasonable to assume that it should have also been 

possible to detect a signal in the autoradiogram. The second possibility is that because to 

extract PfCRT-HA from the membrane, anionic detergents had to be used and because 

PfCRT-HA was still bound to the sepharose beads when used in the assay, this could have an 
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efect on the PfCRT tertiary structure, preventing its recognition by the putative kinase. 

Without having a positive control of the assay, it is not possible to conclude whether or not 

PfCK2α phosphorylates PfCRT in vitro.                             

4.2.3. PF11_0488 characterization 

 To find interaction partners of membrane proteins is a challenging goal, particularly 

in the case of PfCRT. Co-immunoprecipitation experiments with PfCRT are very challenging 

because protein interactions are disrupted by the high concentration of anionic surfactants 

necessary to isolate the protein from the membrane. The use of the Y2H system, at least, 

allows interaction partners of the soluble fragments of a membrane protein to be identified. 

This was the chosen strategy to find PfCRT´s interacting partners. The two independent 

assays performed did not identify the same interacting proteins. This result is not 

particularly striking. Indeed, two large-scale assays which aimed to identify two-hybrid 

interactions in the entire yeast proteome, performed independently, had less than 30% 

overlap of positive interactions and, in general, only 12.5% of previously known interactions 

were identified (Ito et al., 2001). Recently, a new methodology called BioID (proximity-

dependent biotin identification) which enables the identification of protein interactions in 

eukaryotic cells has been developed. This technique enables detection of protein 

interactions in their cellular environment by tagging the protein of interest with a biotin 

protein ligase. The proteins that are in close proximity to the tagged protein are, therefore, 

biotinylated and thus, can be identified (Roux et al., 2012). This technique has already been 

applied to study protein interaction in the protozoan parasite Toxoplasma gondii (Chen et 

al., 2015) but there are, as yet, no reports in P. falciparum. This would be a better approach 

to find interaction partners of PfCRT because the full length protein in its native 

conformation could be assayed in its cellular environment.          

 Apart from the putative serine/threonine protein kinase PF11_0488, the rhoptry-

associated membrane antigen (RAMA) was also identified as a potential PfCRT-interacting 

protein. RAMA has been found to be significantly associated with the mutated form of 

PfCRT, although it seems to be part of the low variability region harboring PfCRT that 

segregates with it (Sanchez et al., 2014). Further experiments need to be done to confirm 

this interaction and unravel the molecular meaning of this association. Other preys found in 

the assay are related to different metabolic pathways that have, so far, not been linked with 
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PfCRT function, thus the confirmation of these interactions or a deeper analysis of these 

proteins was not a priority.  

 PF11_0488 is expressed at the trophozoite and early schizont stages (Ward et al., 

2004) and its expression is highly correlated with the expression of PfCRT (Adjalley et al., 

2015). It has been classified as an orphan kinase and it is essential for the asexual growth in 

P. falciparum. Attempts to knock out (KO) the gene were not successful but it was possible 

to tag it at the C-terminal, suggesting that the absence of integration of the KO vector was 

not caused by locus refractoriness to recombination, but rather due to the fact that the gene 

is essential during the asexual growth of the parasite (Solyakov et al., 2011). However, the 

ideal experiment would have been to disrupt the gene while complementing its function 

through episomal expression.  

 Taking into account the fact that pfcrt is suggested to be an essential gene (Waller et 

al., 2003) and that phosphorylation of PfCRT at the residue T416 is necessary for the correct 

localization of the transporter (Kuhn et al., 2010), it is reasonable to assume that the 

putative kinase that phosphorylates PfCRT would also be essential.   

  The cloning of the full length PF11_0488 gene in different expression vectors was 

unsuccessful. Therefore, the C-terminal fragment that contains the coding sequences for the 

ATP-binding region and the Ser/Thr protein kinase active site predicted by PROSITE was used 

as an alternative to characterize this protein. All the InterPro domains annotated for this 

protein in the PlasmoDB database are also within this fragment, supporting the choice of this 

coding region. Furthermore, this is the most conserved region between Plasmodium species 

(see appendix II). It is not possible to predict if this protein fragment is catalytically active but 

its overexpression in P. falciparum showed an effect on CQ and QN accumulation. It has also 

been shown before, that the expression of a truncated form of an enzyme can retain its 

catalytic activity as in the case of the P. falciparum HECT ubiquitin-protein ligase (Sanchez et 

al., 2014). Truncated enzymes from different organisms have also been used in order to 

characterize and resolve the crystal structure of enzymes when the full length protein is 

poorly soluble (Hilden et al., 2000; Joucla et al., 2006).   

 When PF11_0488C-terminal was overexpressed fused only to GFP, no expression was 

detected by fluorescence microscopy. Conversely, when fused to GFP-CAD, a strong cytosolic 

signal was observed. It is possible that the PF11_0488C-terminal-GFP overexpression was toxic 

for the parasite and that when the protein was fused to CAD, part of it aggregated (Rivera et 
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al., 2000; Saridaki et al., 2008), thereby decreasing the active concentration of the protein to 

non-toxic levels. Another possibility is that the GFP tag alone alters the conformation of the 

protein and makes it inactive, generating a dominant negative form of the protein, which 

causes parasite death upon overexpression. 

 The PF11_0488C-terminal-GFP-CAD overexpression in the P. falciparum Dd2 strain 

decreased the levels of CQ and QN accumulation in the parasite. This indicates that 

PF11_0488 is somehow enhancing the transport of these two drugs out of the food vacuole. 

This is contrary to the effect observed when the Dd2 strain is treated with kinase inhibitors, 

leading to the general observation that phosphorylation inhibition leads to lower levels of 

CQ and QN accumulation. This effect is unrelated with PfCRT S33 phosphorylation since the 

substitution of this residue by alanine doesn’t have an effect on CQ or QN accumulation. 

However, uptake experiments of a Dd2 strain which episomally overexpresses GFP-CAD 

would have helped to rule out any effect of the overexpression of the GFP-CAD tag itself. 

This is particularly a concern in this case as, the GFP-CAD tag is bigger than 

PF11_0488C-terminal itself, which could also affect the conformation of the protein fragment. 

Overexpression of PF11_0488C-terminal-GFP-CAD and consequent uptake experiments in the 

HB3 strain would have also been a good control to reject the possibility of an unspecific 

effect. Nevertheless, overexpression of other proteins tagged with GFP showed no effect on 

CQ and QN accumulation (Sanchez et al., 2014).         

 The HA-glmS tagging of the endogenous PF11_0488 was achievable using two 

different guide sequences. Conversely, it was not possible to introduce a GFP or a GFP-DD 

tag into the locus using the same homology regions and the same guide sequences. For 

guide 2, the recombination took place between the guide sequence and the GFP tag, so the 

double break was repaired by the introduction of the shield mutations but the tag was not 

inserted (data not shown). This outcome points to the fact that the GFP tag is interfering 

with the protein function, as already seen before in the episomal expression of 

PF11_0488C-terminal.  

 It was not possible to downregulate PF11_0488 using the glmS system. Only when 

the parasites were treated with 5 mM of glucosamine, the expression of PF11_0488 

decreased by 50%. However, this glucosamine concentration causes growing defects of the 

parental strain Dd2. Even higher concentrations of glucosamine (6-10 mM) have been used 

in other studies, although no significant decrease in parasitemia was found when the 
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parental strain 3D7 was treated with 5 mM of glucosamine (Prommana et al., 2013; Sleebs 

et al., 2014). Other members of the lab have also observed that 5 mM of glucosamine is a 

toxic concentration for the Dd2 strain therefore, this phenotype may be strain-specific. 

Currently, there are other strategies available to downregulate the expression of 

P. falciparum genes that could be applied to PF11_0488 such as the DD system (Armstrong 

and Goldberg, 2007). Another strategy that could be applied is to delete the gene using a 

conditional deletion system such as the diCre system (Collins et al., 2013a) which allows an 

efficient control of the recombination levels through the addition of the rapamycin ligand.        

 The recombinant expression of PF11_0488C-terminal-his resulted in high production of 

inclusion bodies and a minor fraction of soluble protein. Both forms of the protein fragment 

were tested for activity in phosphorylation assays in vitro, but no activity was detected. The 

possibility that any of the substrates used in the assays was suitable for this kinase was ruled 

out by using an inactivated P. falciparum protein extract. Even so, the appropriate substrate 

could have been present in amounts below the detection level. It is possible that only the 

full length protein is functional and that the Ca+2-binding domain is essential for its activity 

(fig. 3.18). Along the same line, PF11_0488 is phosphorylated at residues T669 and S680, 

suggesting that it could participate in a protein kinase cascade. These phosphorylations can 

also be crucial for the activity of the kinase. Nevertheless, the overexpression of 

PF11_0488C-terminal-GFP-CAD in the P. falciparum Dd2 strain decreased the levels of CQ and 

QN accumulation, suggesting that the PF11_0488C-terminal fragment is active, although the 

effects of the GFP-CAD tag overexpression alone were not investigated.   

4.2.4. PfCRT serine 33 modulates CQ and QN susceptibility and 
affects the parasite fitness 

 The mutation of the PfCRT residue S33 to alanine was achieved using the CRISPR-Cas9 

system, which has recently been adapted to P. falciparum (Ghorbal et al., 2014). Alanine was 

chosen to substitute serine because it is structurally the closest amino acid. Attempts to 

mutate this position to aspartic acid and glutamic acid in order to rescue the S33A phenotype 

were pursued but have so far been unsuccessful. Due to the lack of additional mutants, the 

phenotype that resulted from the S33A mutation cannot be directly linked to absence of 

phosphorylation since the possibility that the S33A mutation alters the structure of the 

transporter cannot be ruled out.   
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 The PfCRTS33A strains showed a significant decreased in the IC50 values for both CQ 

and QN, meaning that this mutation increases the susceptibility of the parasite towards 

these drugs. On the other hand, there were no differences in CQ or QN accumulation 

between the parental and the mutant strain. It has been shown that CQR strains accumulate 

lower levels of CQ compared to CQS strains (Fidock et al., 2000; Sidhu et al., 2002) but the 

analysis of the F1 progeny of a genetic cross between a CQR and a CQS strain showed that 

there is not always a correlation between the degree of susceptibility and the concentration 

of the drug in the digestive vacuole, suggesting that polymorphisms within transporters 

contribute to drug resistance through molecular mechanisms that have yet to be identified. 

It has been hypothesized that resistance associated with little change in drug accumulation 

could be explained by CQ blocking the transport of the physiological substrate of PfCRT, 

suggesting that PfCRT itself is also one of the CQ drug targets (Sanchez et al., 2011). The 

same result was obtained when an endogenous copy of PfCRT was substituted by different 

pfcrt alleles in the same genetic background (Petersen et al., 2015). In the same publication, 

different pfcrt alleles conferred different fitness properties, as also reported in this study.  

 Considering the fact that the localization and the stability of the mutant PfCRTS33A are 

not affected, the differences in drug susceptibility and fitness between the mutant and the 

parental strain must be related to the function of PfCRT. Furthermore, taking into account 

the fact that the susceptibility of the mutant strain is not linked to CQ and QN transport out 

of the food vacuole (at least in a short term experiment), it is reasonable to assume that the 

S33A mutation affects the transport of the physiological substrate of PfCRT as previously 

hypothesized.  

CQ and QN inhibit ferriprotoporphyrin IX (FP) crystallization (Fitch and Chou, 1997; 

Sullivan et al., 1996). On the one hand, CQ binds to monomeric FP and delays its 

detoxification (Chugh et al., 2013; Fitch, 1986). On the other hand, the exact mode of action 

of QN is still under discussion. Although at least 80% of the FP is converted to hemozoin at 

the trophozoite stage (Egan et al., 2002), the estimated concentration of free FP is about 

0.1 mM (Loria et al., 1999). One possible explanation for the phenotype observed in the 

PfCRTS33A mutants is that PfCRT transports FP out of the food vacuole to supply the parasite 

with Fe+3. FP transporters have been characterized in some organisms, including the 

pathogen bacterium Yersinia pestis (Woo et al., 2012) and the nitrogen-fixing bacterium 

Sinorhizobium meliloti (Cuiv et al., 2008).  
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Figure 4.1. Transport of FP by PfCRT as a model to explain the PfCRTS33A phenotype. 
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On the other hand, in the presence of CQ, the increased free FP concentration in the cytosol 

could be sequestered by CQ and, once bound to the drug, could not be detoxified.  

 This could explain why the mutant strain PFCRTS33A is more sensitive to CQ than the 

parental Dd2. It has been shown that FP can be degraded in vitro by glutathione and that 

this detoxification process can be inhibited by CQ and amodiaquine (Ginsburg et al., 1998). 

Furthermore, higher levels of glutathione have been detected in CQ-resistant strains 

(Meierjohann et al., 2002) and it has also been shown that FP binds to and inhibits the 

cytosolic enzyme PfGAPDH (Campanale et al., 2003).  

 To investigate this hypothesis, the most straight-forward experiment to do would be 

uptake assays using radiolabelled FP in the X. laevis oocyte system because competitive 

experiments of CQ transport with FP would not be able to distinguish between CQ-FP dimer 

formation and competitive inhibition. Another key experiment would be to determine the 

IC50 of a panel of drugs including compounds targeting different parasite pathways. The 

PfCRTS33A strain should be more sensitive only to drugs with an effect on heme 

detoxification. It would also be interesting to perform a fitness experiment in presence of 

QN as well as of another drug unrelated to heme detoxification, to confirm that the mutants 

are more susceptible only to drugs that target heme detoxification.  
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Figure 4.2. Upregulation of PfCRT phosphorylation under CQ pressure as a model to explain the 

PfCRTS33A phenotype. 
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transporter could be regulated by phosphorylation only when the parasite is under drug 

pressure. Phosphorylation is a dynamic process and it is regulated by the complementary 

activities of protein kinases and protein phosphatases. In this case, after a certain time of 

drug exposure, PfCRT would be phosphorylated and this would increase the rate of drug 

transport out of the food vacuole. Under drug pressure, the PfCRTS33A mutant could not be 

phosphorylated and hence, would accumulate more CQ than the parental strain Dd2. To test 

this hypothesis, uptake experiments for both strains previously cultured under drug pressure 

could be performed. Nevertheless, the outcome of this experiment is uncertain, because of 

the CQ trans-stimulation effect on PfCRT (Sanchez et al., 2003).        

4.2.5. Relevance of the study 

 If the results of this study are confirmed by further experiments, it would be the first 

report of a Plasmodium transporter whose activity is regulated by a post-translational 

modification. This result would open the door to new intervention strategies towards the 

fight against malaria resistance. New kinase inhibitors could be identified in order to revert 

drug resistance or be used in combination therapies in order to avoid resistance 

development.  

 Already in 1987, verapamil was identified as CQ chemosensitizer (Martin et al., 1987) 

although its cardiac toxicity in humans prevented its clinical application. Since then, several 

compounds have proven to inhibit PfCRT-mediated CQ transport but none of them is 

currently under development (Martin et al., 2012; Ch'ng et al., 2013). Amlodipine, for 

example, exhibits poor pharmacokinetics properties that restrict its use in humans although 

it is effective in the animal model (Pereira et al., 2011). To overcome the poor potency of 

these compounds, the combination of several chemosensitizers has also been proposed as a 

strategy to restore CQ efficacy (van Schalkwyk et al., 2001). However, the reintroduction of 

CQ as antimalarial drug is questionable.  

 On the other hand, new aminoquinolines are undergoing preclinical trials and these 

new compounds could be administered in combination with PfCRT inhibitors. Potential 

kinase inhibitors could, in theory, display antimalarial activity and therefore kill the parasite 

and avoid PfCRT-mediated resistance at the same time, when used in combination with 

other drugs.        
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5. Outlook 
 The X. laevis oocyte system might not be an appropriate method to use for the 

characterization of the transport properties of PFE0825w. Nevertheless, there are 

alternative techniques that have been successfully used to express and study organic cation 

transporters that could be applied to this particular protein. The different techniques include 

expression in mammalian cell lines as BALB/3T3 (Sinclair et al., 2000) or HeLa (Zhang et al., 

2000) and expression in yeast cells (Brosseau et al., 2015) or reconstituted proteoliposomes 

(Pochini et al., 2012).  

 Regarding the role of phosphorylation in PfCRT function, the generation of mutant 

lines carrying the PfCRTS33D and PfCRTS33E haplotypes should be a priority. Besides, the IC50 

determination of a panel of drugs including compounds targeting different parasite 

pathways would support the fact that PfCRTS33A has an effect only on heme detoxification 

targeting drugs. On the same line, additional fitness experiments should be done in presence 

of QN and another unrelated antimalarial drug to confirm this result. Furthermore, to test 

the hypothesis that PfCRT may be regulated by phosphorylation under drug pressure, uptake 

experiments of the parental strain Dd2 and the mutant strain PfCRTS33A should be performed 

after longer exposure of the parasite lines to CQ and QN.  

 On the other hand, to investigate whether ML-7 has a direct effect on PfCRT or on 

PfMDR1, it would be advisable to study the phenotype of genetic engineered HB3 parasite 

lines carrying the pfcrtDd2or pfmdr1Dd2genes in presence of ML-7.  

 Concerning PF11_0488, alternative strategies could be used to downregulate this 

protein, like the DD system. Instead, a conditional knock out could also be attempted using 

the diCre system to reject or confirm the interaction of this kinase with PfCRT. Finally and in 

order to identify new kinase candidates that could phosphorylate PfCRT, the recently 

developed technology called BioID that enables to study molecular interactions in its cellular 

environment could be applied for this transporter.  



 

 
120 

 

   

 

 

 



References 
 

 
121 

6. References 

Abu Bakar, N., Klonis, N., Hanssen, E., Chan, C., and Tilley, L. (2010). Digestive-vacuole genesis and 
endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. Journal 
of cell science 123, 441-450. 

Adjalley, S.H., Lee, M.C., and Fidock, D.A. (2010). A method for rapid genetic integration into 
Plasmodium falciparum utilizing mycobacteriophage Bxb1 integrase. Methods in molecular 
biology 634, 87-100. 

Adjalley, S.H., Scanfeld, D., Kozlowski, E., Llinas, M., and Fidock, D.A. (2015). Genome-wide 
transcriptome profiling reveals functional networks involving the Plasmodium falciparum 
drug resistance transporters PfCRT and PfMDR1. BMC genomics 16, 1090. 

Aftab, D.T., Yang, J.M., and Hait, W.N. (1994). Functional role of phosphorylation of the multidrug 
transporter (P-glycoprotein) by protein kinase C in multidrug-resistant MCF-7 cells. Oncology 
research 6, 59-70. 

Amanchy, R., Periaswamy, B., Mathivanan, S., Reddy, R., Tattikota, S.G., and Pandey, A. (2007). A 
curated compendium of phosphorylation motifs. Nature biotechnology 25, 285-286. 

Amaratunga, C., Lim, P., Suon, S., Sreng, S., Mao, S., Sopha, C., Sam, B., Dek, D., Try, V., Amato, R., et 
al. (2016). Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in 
Cambodia: a multisite prospective cohort study. The Lancet Infectious diseases 16, 357-365. 

Amino, R., Thiberge, S., Martin, B., Celli, S., Shorte, S., Frischknecht, F., and Menard, R. (2006). 
Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nature 
medicine 12, 220-224. 

Ancelin, M.L., Calas, M., Bompart, J., Cordina, G., Martin, D., Ben Bari, M., Jei, T., Druilhe, P., and Vial, 
H.J. (1998). Antimalarial activity of 77 phospholipid polar head analogs: close correlation 
between inhibition of phospholipid metabolism and in vitro Plasmodium falciparum growth. 
Blood 91, 1426-1437. 

Andriantsoanirina, V., Menard, D., Rabearimanana, S., Hubert, V., Bouchier, C., Tichit, M., Bras, J.L., 
and Durand, R. (2010). Association of microsatellite variations of Plasmodium falciparum 
Na+/H+ exchanger (Pfnhe-1) gene with reduced in vitro susceptibility to quinine: lack of 
confirmation in clinical isolates from Africa. The American journal of tropical medicine and 
hygiene 82, 782-787. 

Arastu-Kapur, S., Ponder, E.L., Fonovic, U.P., Yeoh, S., Yuan, F., Fonovic, M., Grainger, M., Phillips, C.I., 
Powers, J.C., and Bogyo, M. (2008). Identification of proteases that regulate erythrocyte 
rupture by the malaria parasite Plasmodium falciparum. Nature chemical biology 4, 203-213. 

Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A.C., Khim, N., Kim, S., Duru, V., 
Bouchier, C., Ma, L., et al. (2014). A molecular marker of artemisinin-resistant Plasmodium 
falciparum malaria. Nature 505, 50-55. 

Arii, J., Goto, H., Suenaga, T., Oyama, M., Kozuka-Hata, H., Imai, T., Minowa, A., Akashi, H., Arase, H., 
Kawaoka, Y., et al. (2010). Non-muscle myosin IIA is a functional entry receptor for herpes 
simplex virus-1. Nature 467, 859-862. 

Armstrong, C.M., and Goldberg, D.E. (2007). An FKBP destabilization domain modulates protein levels 
in Plasmodium falciparum. Nature methods 4, 1007-1009. 

Avery, V.M., Bashyam, S., Burrows, J.N., Duffy, S., Papadatos, G., Puthukkuti, S., Sambandan, Y., 
Singh, S., Spangenberg, T., Waterson, D., et al. (2014). Screening and hit evaluation of a 
chemical library against blood-stage Plasmodium falciparum. Malaria journal 13, 190. 



References 
 

 
122 

Bain, J., McLauchlan, H., Elliott, M., and Cohen, P. (2003). The specificities of protein kinase 
inhibitors: an update. The Biochemical journal 371, 199-204. 

Banerjee, R., Liu, J., Beatty, W., Pelosof, L., Klemba, M., and Goldberg, D.E. (2002). Four plasmepsins 
are active in the Plasmodium falciparum food vacuole, including a protease with an active-
site histidine. Proceedings of the National Academy of Sciences of the United States of 
America 99, 990-995. 

Baum, J., Papenfuss, A.T., Mair, G.R., Janse, C.J., Vlachou, D., Waters, A.P., Cowman, A.F., Crabb, B.S., 
and de Koning-Ward, T.F. (2009). Molecular genetics and comparative genomics reveal RNAi 
is not functional in malaria parasites. Nucleic acids research 37, 3788-3798. 

Baum, J., Richard, D., Healer, J., Rug, M., Krnajski, Z., Gilberger, T.W., Green, J.L., Holder, A.A., and 
Cowman, A.F. (2006). A conserved molecular motor drives cell invasion and gliding motility 
across malaria life cycle stages and other apicomplexan parasites. The Journal of biological 
chemistry 281, 5197-5208. 

Beck, J.R., Muralidharan, V., Oksman, A., and Goldberg, D.E. (2014). PTEX component HSP101 
mediates export of diverse malaria effectors into host erythrocytes. Nature 511, 592-595. 

Bellanca, S., Summers, R.L., Meyrath, M., Dave, A., Nash, M.N., Dittmer, M., Sanchez, C.P., Stein, 
W.D., Martin, R.E., and Lanzer, M. (2014). Multiple drugs compete for transport via the 
Plasmodium falciparum chloroquine resistance transporter at distinct but interdependent 
sites. The Journal of biological chemistry 289, 36336-36351. 

Ben Mamoun, C., Prigge, S.T., and Vial, H. (2010). Targeting the Lipid Metabolic Pathways for the 
Treatment of Malaria. Drug development research 71, 44-55. 

Bennett, T.N., Patel, J., Ferdig, M.T., and Roepe, P.D. (2007). Plasmodium falciparum Na+/H+ 
exchanger activity and quinine resistance. Molecular and biochemical parasitology 153, 48-
58. 

Bhasin, V.K., and Trager, W. (1984). Gametocyte-forming and non-gametocyte-forming clones of 
Plasmodium falciparum. The American journal of tropical medicine and hygiene 33, 534-537. 

Biagini, G.A., Pasini, E.M., Hughes, R., De Koning, H.P., Vial, H.J., O'Neill, P.M., Ward, S.A., and Bray, 
P.G. (2004). Characterization of the choline carrier of Plasmodium falciparum: a route for the 
selective delivery of novel antimalarial drugs. Blood 104, 3372-3377. 

Biagini, G.A., Richier, E., Bray, P.G., Calas, M., Vial, H., and Ward, S.A. (2003). Heme binding 
contributes to antimalarial activity of bis-quaternary ammoniums. Antimicrobial agents and 
chemotherapy 47, 2584-2589. 

Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B., and Brinkmann, V. (2004). Calcium 
and a calcium-dependent protein kinase regulate gamete formation and mosquito 
transmission in a malaria parasite. Cell 117, 503-514. 

Birago, C., Albanesi, V., Silvestrini, F., Picci, L., Pizzi, E., Alano, P., Pace, T., and Ponzi, M. (2003). A 
gene-family encoding small exported proteins is conserved across Plasmodium genus. 
Molecular and biochemical parasitology 126, 209-218. 

Bolchoz, L.J., Budinsky, R.A., McMillan, D.C., and Jollow, D.J. (2001). Primaquine-induced hemolytic 
anemia: formation and hemotoxicity of the arylhydroxylamine metabolite 6-methoxy-8-
hydroxylaminoquinoline. The Journal of pharmacology and experimental therapeutics 297, 
509-515. 

Boncoeur, E., Durmort, C., Bernay, B., Ebel, C., Di Guilmi, A.M., Croize, J., Vernet, T., and Jault, J.M. 
(2012). PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter 
responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. 
Biochemistry 51, 7755-7765. 



References 
 

 
123 

Bouyer, G., Reininger, L., Ramdani, G., L, D.P., Sharma, V., Egee, S., Langsley, G., and Lasonder, E. 
(2016). Plasmodiumfalciparum infection induces dynamic changes in the erythrocyte 
phospho-proteome. Blood cells, molecules & diseases 58, 35-44. 

Bray, P.G., Deed, S., Fox, E., Kalkanidis, M., Mungthin, M., Deady, L.W., and Tilley, L. (2005). 
Primaquine synergises the activity of chloroquine against chloroquine-resistant P. falciparum. 
Biochemical pharmacology 70, 1158-1166. 

Bray, P.G., Mungthin, M., Ridley, R.G., and Ward, S.A. (1998). Access to hematin: the basis of 
chloroquine resistance. Molecular pharmacology 54, 170-179. 

Brosseau, N., Andreev, E., and Ramotar, D. (2015). Complementation of the Yeast Model System 
Reveals that Caenorhabditis elegans OCT-1 Is a Functional Transporter of Anthracyclines. PloS 
one 10, e0133182. 

Brown, S.B., Hatzikonstantinou, H., and Herries, D.G. (1978). The role of peroxide in haem 
degradation. A study of the oxidation of ferrihaems by hydrogen peroxide. The Biochemical 
journal 174, 901-907. 

Bruce, M.C., Alano, P., Duthie, S., and Carter, R. (1990). Commitment of the malaria parasite 
Plasmodium falciparum to sexual and asexual development. Parasitology 100 Pt 2, 191-200. 

Busch, A.E., Quester, S., Ulzheimer, J.C., Waldegger, S., Gorboulev, V., Arndt, P., Lang, F., and 
Koepsell, H. (1996). Electrogenic properties and substrate specificity of the polyspecific rat 
cation transporter rOCT1. The Journal of biological chemistry 271, 32599-32604. 

Campanale, N., Nickel, C., Daubenberger, C.A., Wehlan, D.A., Gorman, J.J., Klonis, N., Becker, K., and 
Tilley, L. (2003). Identification and characterization of heme-interacting proteins in the 
malaria parasite, Plasmodium falciparum. The Journal of biological chemistry 278, 27354-
27361. 

Ch'ng, J.H., Mok, S., Bozdech, Z., Lear, M.J., Boudhar, A., Russell, B., Nosten, F., and Tan, K.S. (2013). A 
whole cell pathway screen reveals seven novel chemosensitizers to combat chloroquine 
resistant malaria. Scientific reports 3, 1734. 

Cogswell, F.B., Collins, W.E., Krotoski, W.A., and Lowrie, R.C., Jr. (1991). Hypnozoites of Plasmodium 
simiovale. The American journal of tropical medicine and hygiene 45, 211-213. 

Collins, C.R., Das, S., Wong, E.H., Andenmatten, N., Stallmach, R., Hackett, F., Herman, J.P., Muller, S., 
Meissner, M., and Blackman, M.J. (2013a). Robust inducible Cre recombinase activity in the 
human malaria parasite Plasmodium falciparum enables efficient gene deletion within a 
single asexual erythrocytic growth cycle. Molecular microbiology 88, 687-701. 

Collins, C.R., Hackett, F., Strath, M., Penzo, M., Withers-Martinez, C., Baker, D.A., and Blackman, M.J. 
(2013b). Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite 
secretory organelle discharge and egress. PLoS pathogens 9, e1003344. 

Connell, L.E., and Helfman, D.M. (2006). Myosin light chain kinase plays a role in the regulation of 
epithelial cell survival. Journal of cell science 119, 2269-2281. 

Cooper, R.A., Lane, K.D., Deng, B., Mu, J., Patel, J.J., Wellems, T.E., Su, X., and Ferdig, M.T. (2007). 
Mutations in transmembrane domains 1, 4 and 9 of the Plasmodium falciparum chloroquine 
resistance transporter alter susceptibility to chloroquine, quinine and quinidine. Molecular 
microbiology 63, 270-282. 

Coteron, J.M., Marco, M., Esquivias, J., Deng, X., White, K.L., White, J., Koltun, M., El Mazouni, F., 
Kokkonda, S., Katneni, K., et al. (2011). Structure-guided lead optimization of 
triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate 
dehydrogenase inhibitors with clinical candidate potential. Journal of medicinal chemistry 54, 
5540-5561. 



References 
 

 
124 

Cowman, A.F., Karcz, S., Galatis, D., and Culvenor, J.G. (1991). A P-glycoprotein homologue of 
Plasmodium falciparum is localized on the digestive vacuole. The Journal of cell biology 113, 
1033-1042. 

Crabb, B.S., and Cowman, A.F. (1996). Characterization of promoters and stable transfection by 
homologous and nonhomologous recombination in Plasmodium falciparum. Proceedings of 
the National Academy of Sciences of the United States of America 93, 7289-7294. 

Crabb, B.S., Rug, M., Gilberger, T.W., Thompson, J.K., Triglia, T., Maier, A.G., and Cowman, A.F. 
(2004). Transfection of the human malaria parasite Plasmodium falciparum. Methods in 
molecular biology 270, 263-276. 

Cuiv, P.O., Keogh, D., Clarke, P., and O'Connell, M. (2008). The hmuUV genes of Sinorhizobium 
meliloti 2011 encode the permease and ATPase components of an ABC transport system for 
the utilization of both haem and the hydroxamate siderophores, ferrichrome and 
ferrioxamine B. Molecular microbiology 70, 1261-1273. 

Cyrklaff, M., Sanchez, C.P., Kilian, N., Bisseye, C., Simpore, J., Frischknecht, F., and Lanzer, M. (2011). 
Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparum-infected 
erythrocytes. Science 334, 1283-1286. 

Chandramohanadas, R., Davis, P.H., Beiting, D.P., Harbut, M.B., Darling, C., Velmourougane, G., Lee, 
M.Y., Greer, P.A., Roos, D.S., and Greenbaum, D.C. (2009). Apicomplexan parasites co-opt 
host calpains to facilitate their escape from infected cells. Science 324, 794-797. 

Chang, H.H., Falick, A.M., Carlton, P.M., Sedat, J.W., DeRisi, J.L., and Marletta, M.A. (2008). N-
terminal processing of proteins exported by malaria parasites. Molecular and biochemical 
parasitology 160, 107-115. 

Chen, A.L., Kim, E.W., Toh, J.Y., Vashisht, A.A., Rashoff, A.Q., Van, C., Huang, A.S., Moon, A.S., Bell, 
H.N., Bentolila, L.A., et al. (2015). Novel components of the Toxoplasma inner membrane 
complex revealed by BioID. mBio 6, e02357-02314. 

Chou, A.C., Chevli, R., and Fitch, C.D. (1980). Ferriprotoporphyrin IX fulfills the criteria for 
identification as the chloroquine receptor of malaria parasites. Biochemistry 19, 1543-1549. 

Chugh, M., Sundararaman, V., Kumar, S., Reddy, V.S., Siddiqui, W.A., Stuart, K.D., and Malhotra, P. 
(2013). Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium 
falciparum. Proceedings of the National Academy of Sciences of the United States of America 
110, 5392-5397. 

Dastidar, E.G., Dayer, G., Holland, Z.M., Dorin-Semblat, D., Claes, A., Chene, A., Sharma, A., Hamelin, 
R., Moniatte, M., Lopez-Rubio, J.J., et al. (2012). Involvement of Plasmodium falciparum 
protein kinase CK2 in the chromatin assembly pathway. BMC biology 10, 5. 

Davies, S.P., Reddy, H., Caivano, M., and Cohen, P. (2000). Specificity and mechanism of action of 
some commonly used protein kinase inhibitors. The Biochemical journal 351, 95-105. 

de Koning-Ward, T.F., Gilson, P.R., and Crabb, B.S. (2015). Advances in molecular genetic systems in 
malaria. Nature reviews Microbiology 13, 373-387. 

Doherty, J.P., Lindeman, R., Trent, R.J., Graham, M.W., and Woodcock, D.M. (1993). Escherichia coli 
host strains SURE and SRB fail to preserve a palindrome cloned in lambda phage: improved 
alternate host strains. Gene 124, 29-35. 

Dubar, F., Egan, T.J., Pradines, B., Kuter, D., Ncokazi, K.K., Forge, D., Paul, J.F., Pierrot, C., Kalamou, H., 
Khalife, J., et al. (2011). The antimalarial ferroquine: role of the metal and intramolecular 
hydrogen bond in activity and resistance. ACS chemical biology 6, 275-287. 

Dumont, J.N. (1972). Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in 
laboratory maintained animals. Journal of morphology 136, 153-179. 



References 
 

 
125 

Duncan, J.S., Gyenis, L., Lenehan, J., Bretner, M., Graves, L.M., Haystead, T.A., and Litchfield, D.W. 
(2008). An unbiased evaluation of CK2 inhibitors by chemoproteomics: characterization of 
inhibitor effects on CK2 and identification of novel inhibitor targets. Molecular & cellular 
proteomics : MCP 7, 1077-1088. 

Duraisingh, M.T., Drakeley, C.J., Muller, O., Bailey, R., Snounou, G., Targett, G.A., Greenwood, B.M., 
and Warhurst, D.C. (1997). Evidence for selection for the tyrosine-86 allele of the pfmdr 1 
gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology 114 ( Pt 3), 
205-211. 

Duraisingh, M.T., Triglia, T., and Cowman, A.F. (2002). Negative selection of Plasmodium falciparum 
reveals targeted gene deletion by double crossover recombination. International journal for 
parasitology 32, 81-89. 

Eckstein-Ludwig, U., Webb, R.J., Van Goethem, I.D., East, J.M., Lee, A.G., Kimura, M., O'Neill, P.M., 
Bray, P.G., Ward, S.A., and Krishna, S. (2003). Artemisinins target the SERCA of Plasmodium 
falciparum. Nature 424, 957-961. 

Echeverry, D.F., Holmgren, G., Murillo, C., Higuita, J.C., Bjorkman, A., Gil, J.P., and Osorio, L. (2007). 
Short report: polymorphisms in the pfcrt and pfmdr1 genes of Plasmodium falciparum and in 
vitro susceptibility to amodiaquine and desethylamodiaquine. The American journal of 
tropical medicine and hygiene 77, 1034-1038. 

Egan, T.J., Combrinck, J.M., Egan, J., Hearne, G.R., Marques, H.M., Ntenteni, S., Sewell, B.T., Smith, 
P.J., Taylor, D., van Schalkwyk, D.A., et al. (2002). Fate of haem iron in the malaria parasite 
Plasmodium falciparum. The Biochemical journal 365, 343-347. 

Egee, S., Lapaix, F., Decherf, G., Staines, H.M., Ellory, J.C., Doerig, C., and Thomas, S.L. (2002). A 
stretch-activated anion channel is up-regulated by the malaria parasite Plasmodium 
falciparum. The Journal of physiology 542, 795-801. 

Eggleson, K.K., Duffin, K.L., and Goldberg, D.E. (1999). Identification and characterization of falcilysin, 
a metallopeptidase involved in hemoglobin catabolism within the malaria parasite 
Plasmodium falciparum. The Journal of biological chemistry 274, 32411-32417. 

El Bissati, K., Downie, M.J., Kim, S.K., Horowitz, M., Carter, N., Ullman, B., and Ben Mamoun, C. 
(2008). Genetic evidence for the essential role of PfNT1 in the transport and utilization of 
xanthine, guanine, guanosine and adenine by Plasmodium falciparum. Molecular and 
biochemical parasitology 161, 130-139. 

Elsworth, B., Matthews, K., Nie, C.Q., Kalanon, M., Charnaud, S.C., Sanders, P.R., Chisholm, S.A., 
Counihan, N.A., Shaw, P.J., Pino, P., et al. (2014). PTEX is an essential nexus for protein export 
in malaria parasites. Nature 511, 587-591. 

Fennell, C., Babbitt, S., Russo, I., Wilkes, J., Ranford-Cartwright, L., Goldberg, D.E., and Doerig, C. 
(2009). PfeIK1, a eukaryotic initiation factor 2alpha kinase of the human malaria parasite 
Plasmodium falciparum, regulates stress-response to amino-acid starvation. Malaria journal 
8, 99. 

Ferdig, M.T., Cooper, R.A., Mu, J., Deng, B., Joy, D.A., Su, X.Z., and Wellems, T.E. (2004). Dissecting 
the loci of low-level quinine resistance in malaria parasites. Molecular microbiology 52, 985-
997. 

Fidock, D.A., Nomura, T., Talley, A.K., Cooper, R.A., Dzekunov, S.M., Ferdig, M.T., Ursos, L.M., Sidhu, 
A.B., Naude, B., Deitsch, K.W., et al. (2000). Mutations in the P. falciparum digestive vacuole 
transmembrane protein PfCRT and evidence for their role in chloroquine resistance. 
Molecular cell 6, 861-871. 

Fitch, C.D. (1986). Antimalarial schizontocides: ferriprotoporphyrin IX interaction hypothesis. 
Parasitology today 2, 330-331. 



References 
 

 
126 

Fitch, C.D., and Chou, A.C. (1997). Regulation of heme polymerizing activity and the antimalarial 
action of chloroquine. Antimicrobial agents and chemotherapy 41, 2461-2465. 

Freitas-Junior, L.H., Hernandez-Rivas, R., Ralph, S.A., Montiel-Condado, D., Ruvalcaba-Salazar, O.K., 
Rojas-Meza, A.P., Mancio-Silva, L., Leal-Silvestre, R.J., Gontijo, A.M., Shorte, S., et al. (2005). 
Telomeric heterochromatin propagation and histone acetylation control mutually exclusive 
expression of antigenic variation genes in malaria parasites. Cell 121, 25-36. 

Frevert, U., Engelmann, S., Zougbede, S., Stange, J., Ng, B., Matuschewski, K., Liebes, L., and Yee, H. 
(2005). Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS 
biology 3, e192. 

Frevert, U., Sinnis, P., Cerami, C., Shreffler, W., Takacs, B., and Nussenzweig, V. (1993). Malaria 
circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface 
membrane of hepatocytes. The Journal of experimental medicine 177, 1287-1298. 

Fry, M., and Pudney, M. (1992). Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-
(4'-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochemical 
pharmacology 43, 1545-1553. 

Gamo, F.J., Sanz, L.M., Vidal, J., de Cozar, C., Alvarez, E., Lavandera, J.L., Vanderwall, D.E., Green, D.V., 
Kumar, V., Hasan, S., et al. (2010). Thousands of chemical starting points for antimalarial lead 
identification. Nature 465, 305-310. 

Gavigan, C.S., Dalton, J.P., and Bell, A. (2001). The role of aminopeptidases in haemoglobin 
degradation in Plasmodium falciparum-infected erythrocytes. Molecular and biochemical 
parasitology 117, 37-48. 

Ghorbal, M., Gorman, M., Macpherson, C.R., Martins, R.M., Scherf, A., and Lopez-Rubio, J.J. (2014). 
Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 
system. Nature biotechnology 32, 819-821. 

Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, 
O., Whitehead, E.H., Doudna, J.A., et al. (2013). CRISPR-mediated modular RNA-guided 
regulation of transcription in eukaryotes. Cell 154, 442-451. 

Ginsburg, H., Famin, O., Zhang, J., and Krugliak, M. (1998). Inhibition of glutathione-dependent 
degradation of heme by chloroquine and amodiaquine as a possible basis for their 
antimalarial mode of action. Biochemical pharmacology 56, 1305-1313. 

Gluzman, I.Y., Francis, S.E., Oksman, A., Smith, C.E., Duffin, K.L., and Goldberg, D.E. (1994). Order and 
specificity of the Plasmodium falciparum hemoglobin degradation pathway. The Journal of 
clinical investigation 93, 1602-1608. 

Goel, V.K., Li, X., Chen, H., Liu, S.C., Chishti, A.H., and Oh, S.S. (2003). Band 3 is a host receptor 
binding merozoite surface protein 1 during the Plasmodium falciparum invasion of 
erythrocytes. Proceedings of the National Academy of Sciences of the United States of 
America 100, 5164-5169. 

Goldfless, S.J., Wagner, J.C., and Niles, J.C. (2014). Versatile control of Plasmodium falciparum gene 
expression with an inducible protein-RNA interaction. Nature communications 5, 5329. 

Goldin, A.L. (1992). Maintenance of Xenopus laevis and oocyte injection. Methods in enzymology 
207, 266-279. 

Graciotti, M., Alam, M., Solyakov, L., Schmid, R., Burley, G., Bottrill, A.R., Doerig, C., Cullis, P., and 
Tobin, A.B. (2014). Malaria protein kinase CK2 (PfCK2) shows novel mechanisms of 
regulation. PloS one 9, e85391. 

Graf, G.A., Cohen, J.C., and Hobbs, H.H. (2004). Missense mutations in ABCG5 and ABCG8 disrupt 
heterodimerization and trafficking. The Journal of biological chemistry 279, 24881-24888. 



References 
 

 
127 

Gregson, A., and Plowe, C.V. (2005). Mechanisms of resistance of malaria parasites to antifolates. 
Pharmacological reviews 57, 117-145. 

Grundemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., and Koepsell, H. (1994). Drug excretion 
mediated by a new prototype of polyspecific transporter. Nature 372, 549-552. 

Gruring, C., Heiber, A., Kruse, F., Ungefehr, J., Gilberger, T.W., and Spielmann, T. (2011). 
Development and host cell modifications of Plasmodium falciparum blood stages in four 
dimensions. Nature communications 2, 165. 

Guinet, F., Dvorak, J.A., Fujioka, H., Keister, D.B., Muratova, O., Kaslow, D.C., Aikawa, M., Vaidya, A.B., 
and Wellems, T.E. (1996). A developmental defect in Plasmodium falciparum male 
gametogenesis. The Journal of cell biology 135, 269-278. 

Gurdon, J.B., Lane, C.D., Woodland, H.R., and Marbaix, G. (1971). Use of frog eggs and oocytes for 
the study of messenger RNA and its translation in living cells. Nature 233, 177-182. 

Hadley, T.J., Klotz, F.W., Pasvol, G., Haynes, J.D., McGinniss, M.H., Okubo, Y., and Miller, L.H. (1987). 
Falciparum malaria parasites invade erythrocytes that lack glycophorin A and B (MkMk). 
Strain differences indicate receptor heterogeneity and two pathways for invasion. The 
Journal of clinical investigation 80, 1190-1193. 

Hansen, M., Kun, J.F., Schultz, J.E., and Beitz, E. (2002). A single, bi-functional aquaglyceroporin in 
blood-stage Plasmodium falciparum malaria parasites. The Journal of biological chemistry 
277, 4874-4882. 

Hanspal, M., Dua, M., Takakuwa, Y., Chishti, A.H., and Mizuno, A. (2002). Plasmodium falciparum 
cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages 
of parasite development. Blood 100, 1048-1054. 

Hawley, S.R., Bray, P.G., Mungthin, M., Atkinson, J.D., O'Neill, P.M., and Ward, S.A. (1998). 
Relationship between antimalarial drug activity, accumulation, and inhibition of heme 
polymerization in Plasmodium falciparum in vitro. Antimicrobial agents and chemotherapy 
42, 682-686. 

Hilden, I., Leggio, L.L., Larsen, S., and Poulsen, P. (2000). Characterization and crystallization of an 
active N-terminally truncated form of the Escherichia coli glycogen branching enzyme. 
European journal of biochemistry / FEBS 267, 2150-2155. 

Holland, Z., Prudent, R., Reiser, J.B., Cochet, C., and Doerig, C. (2009). Functional analysis of protein 
kinase CK2 of the human malaria parasite Plasmodium falciparum. Eukaryotic cell 8, 388-397. 

Hoppe, H.C., van Schalkwyk, D.A., Wiehart, U.I., Meredith, S.A., Egan, J., and Weber, B.W. (2004). 
Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum. 
Antimicrobial agents and chemotherapy 48, 2370-2378. 

Howe, R., Kelly, M., Jimah, J., Hodge, D., and Odom, A.R. (2013). Isoprenoid biosynthesis inhibition 
disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. Eukaryotic 
cell 12, 215-223. 

Huber, S.M., Uhlemann, A.C., Gamper, N.L., Duranton, C., Kremsner, P.G., and Lang, F. (2002). 
Plasmodium falciparum activates endogenous Cl(-) channels of human erythrocytes by 
membrane oxidation. The EMBO journal 21, 22-30. 

Imwong, M., Snounou, G., Pukrittayakamee, S., Tanomsing, N., Kim, J.R., Nandy, A., Guthmann, J.P., 
Nosten, F., Carlton, J., Looareesuwan, S., et al. (2007). Relapses of Plasmodium vivax 
infection usually result from activation of heterologous hypnozoites. The Journal of infectious 
diseases 195, 927-933. 

Ishino, T., Chinzei, Y., and Yuda, M. (2005). Two proteins with 6-cys motifs are required for malarial 
parasites to commit to infection of the hepatocyte. Molecular microbiology 58, 1264-1275. 



References 
 

 
128 

Issar, N., Roux, E., Mattei, D., and Scherf, A. (2008). Identification of a novel post-translational 
modification in Plasmodium falciparum: protein sumoylation in different cellular 
compartments. Cellular microbiology 10, 1999-2011. 

Ito, S., Richert, N., and Pastan, I. (1982). Vinculin phosphorylation by the src kinase: inhibition by 
chlorpromazine, imipramine and local anesthetics. Biochemical and biophysical research 
communications 107, 670-675. 

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001). A comprehensive two-
hybrid analysis to explore the yeast protein interactome. Proceedings of the National 
Academy of Sciences of the United States of America 98, 4569-4574. 

Jani, D., Nagarkatti, R., Beatty, W., Angel, R., Slebodnick, C., Andersen, J., Kumar, S., and Rathore, D. 
(2008). HDP-a novel heme detoxification protein from the malaria parasite. PLoS pathogens 
4, e1000053. 

Jimenez-Diaz, M.B., Ebert, D., Salinas, Y., Pradhan, A., Lehane, A.M., Myrand-Lapierre, M.E., 
O'Loughlin, K.G., Shackleford, D.M., Justino de Almeida, M., Carrillo, A.K., et al. (2014). (+)-
SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated 
clearance of Plasmodium. Proceedings of the National Academy of Sciences of the United 
States of America 111, E5455-5462. 

Jimenez, E., Nunez, E., Ibanez, I., Draffin, J.E., Zafra, F., and Gimenez, C. (2014). Differential regulation 
of the glutamate transporters GLT-1 and GLAST by GSK3beta. Neurochemistry international 
79, 33-43. 

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A 
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 
337, 816-821. 

Johnson, D.J., Fidock, D.A., Mungthin, M., Lakshmanan, V., Sidhu, A.B., Bray, P.G., and Ward, S.A. 
(2004). Evidence for a central role for PfCRT in conferring Plasmodium falciparum resistance 
to diverse antimalarial agents. Molecular cell 15, 867-877. 

Joice, R., Nilsson, S.K., Montgomery, J., Dankwa, S., Egan, E., Morahan, B., Seydel, K.B., Bertuccini, L., 
Alano, P., Williamson, K.C., et al. (2014). Plasmodium falciparum transmission stages 
accumulate in the human bone marrow. Science translational medicine 6, 244re245. 

Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Turbachova, I., 
Eberl, M., Zeidler, J., Lichtenthaler, H.K., et al. (1999). Inhibitors of the nonmevalonate 
pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573-1576. 

Jones, M.L., Collins, M.O., Goulding, D., Choudhary, J.S., and Rayner, J.C. (2012). Analysis of protein 
palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell 
host & microbe 12, 246-258. 

Josling, G.A., and Llinas, M. (2015). Sexual development in Plasmodium parasites: knowing when it's 
time to commit. Nature reviews Microbiology 13, 573-587. 

Joucla, G., Pizzut, S., Monsan, P., and Remaud-Simeon, M. (2006). Construction of a fully active 
truncated alternansucrase partially deleted of its carboxy-terminal domain. FEBS letters 580, 
763-768. 

Juge, N., Moriyama, S., Miyaji, T., Kawakami, M., Iwai, H., Fukui, T., Nelson, N., Omote, H., and 
Moriyama, Y. (2015). Plasmodium falciparum chloroquine resistance transporter is a H+-
coupled polyspecific nutrient and drug exporter. Proceedings of the National Academy of 
Sciences of the United States of America 112, 3356-3361. 

Kafsack, B.F., Rovira-Graells, N., Clark, T.G., Bancells, C., Crowley, V.M., Campino, S.G., Williams, A.E., 
Drought, L.G., Kwiatkowski, D.P., Baker, D.A., et al. (2014). A transcriptional switch underlies 
commitment to sexual development in malaria parasites. Nature 507, 248-252. 



References 
 

 
129 

Kakehi, M., Koyabu, N., Nakamura, T., Uchiumi, T., Kuwano, M., Ohtani, H., and Sawada, Y. (2002). 
Functional characterization of mouse cation transporter mOCT2 compared with mOCT1. 
Biochemical and biophysical research communications 296, 644-650. 

Karcz, S.R., Galatis, D., and Cowman, A.F. (1993). Nucleotide binding properties of a P-glycoprotein 
homologue from Plasmodium falciparum. Molecular and biochemical parasitology 58, 269-
276. 

Kehr, S., Jortzik, E., Delahunty, C., Yates, J.R., 3rd, Rahlfs, S., and Becker, K. (2011). Protein S-
glutathionylation in malaria parasites. Antioxidants & redox signaling 15, 2855-2865. 

Kimura, E.A., Couto, A.S., Peres, V.J., Casal, O.L., and Katzin, A.M. (1996). N-linked glycoproteins are 
related to schizogony of the intraerythrocytic stage in Plasmodium falciparum. The Journal of 
biological chemistry 271, 14452-14461. 

Kirk, K., Wong, H.Y., Elford, B.C., Newbold, C.I., and Ellory, J.C. (1991). Enhanced choline and Rb+ 
transport in human erythrocytes infected with the malaria parasite Plasmodium falciparum. 
The Biochemical journal 278 ( Pt 2), 521-525. 

Klokouzas, A., Tiffert, T., van Schalkwyk, D., Wu, C.P., van Veen, H.W., Barrand, M.A., and Hladky, S.B. 
(2004). Plasmodium falciparum expresses a multidrug resistance-associated protein. 
Biochemical and biophysical research communications 321, 197-201. 

Klonis, N., Creek, D.J., and Tilley, L. (2013). Iron and heme metabolism in Plasmodium falciparum and 
the mechanism of action of artemisinins. Current opinion in microbiology 16, 722-727. 

Krishna, S., Pulcini, S., Moore, C.M., Teo, B.H., and Staines, H.M. (2014). Pumped up: reflections on 
PfATP6 as the target for artemisinins. Trends in pharmacological sciences 35, 4-11. 

Krishna, S., Woodrow, C., Webb, R., Penny, J., Takeyasu, K., Kimura, M., and East, J.M. (2001). 
Expression and functional characterization of a Plasmodium falciparum Ca2+-ATPase 
(PfATP4) belonging to a subclass unique to apicomplexan organisms. The Journal of biological 
chemistry 276, 10782-10787. 

Krotoski, W.A., Garnham, P.C., Cogswell, F.B., Collins, W.E., Bray, R.S., Gwasz, R.W., Killick-Kendrick, 
R., Wolf, R.H., Sinden, R., Hollingdale, M., et al. (1986). Observations on early and late post-
sporozoite tissue stages in primate malaria. IV. Pre-erythrocytic schizonts and/or hypnozoites 
of Chesson and North Korean strains of Plasmodium vivax in the chimpanzee. The American 
journal of tropical medicine and hygiene 35, 263-274. 

Krugliak, M., and Ginsburg, H. (2006). The evolution of the new permeability pathways in 
Plasmodium falciparum--infected erythrocytes--a kinetic analysis. Experimental parasitology 
114, 253-258. 

Krugliak, M., Zhang, J., and Ginsburg, H. (2002). Intraerythrocytic Plasmodium falciparum utilizes only 
a fraction of the amino acids derived from the digestion of host cell cytosol for the 
biosynthesis of its proteins. Molecular and biochemical parasitology 119, 249-256. 

Kublin, J.G., Cortese, J.F., Njunju, E.M., Mukadam, R.A., Wirima, J.J., Kazembe, P.N., Djimde, A.A., 
Kouriba, B., Taylor, T.E., and Plowe, C.V. (2003). Reemergence of chloroquine-sensitive 
Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. The Journal of 
infectious diseases 187, 1870-1875. 

Kuhn, Y., Sanchez, C.P., Ayoub, D., Saridaki, T., van Dorsselaer, A., and Lanzer, M. (2010). Trafficking 
of the phosphoprotein PfCRT to the digestive vacuolar membrane in Plasmodium falciparum. 
Traffic 11, 236-249. 

Labaied, M., Camargo, N., and Kappe, S.H. (2007). Depletion of the Plasmodium berghei 
thrombospondin-related sporozoite protein reveals a role in host cell entry by sporozoites. 
Molecular and biochemical parasitology 153, 158-166. 



References 
 

 
130 

Lakshmanan, V., Bray, P.G., Verdier-Pinard, D., Johnson, D.J., Horrocks, P., Muhle, R.A., Alakpa, G.E., 
Hughes, R.H., Ward, S.A., Krogstad, D.J., et al. (2005). A critical role for PfCRT K76T in 
Plasmodium falciparum verapamil-reversible chloroquine resistance. The EMBO journal 24, 
2294-2305. 

Lambros, C., and Vanderberg, J.P. (1979). Synchronization of Plasmodium falciparum erythrocytic 
stages in culture. The Journal of parasitology 65, 418-420. 

Larkins, B.A., Pedersen, K., Handa, A.K., Hurkman, W.J., and Smith, L.D. (1979). Synthesis and 
processing of maize storage proteins in Xenopus laevis oocytes. Proceedings of the National 
Academy of Sciences of the United States of America 76, 6448-6452. 

Lasonder, E., Green, J.L., Camarda, G., Talabani, H., Holder, A.A., Langsley, G., and Alano, P. (2012). 
The Plasmodium falciparum schizont phosphoproteome reveals extensive 
phosphatidylinositol and cAMP-protein kinase A signaling. Journal of proteome research 11, 
5323-5337. 

Lawrence, J.C., Jr., Hiken, J.F., and James, D.E. (1990). Stimulation of glucose transport and glucose 
transporter phosphorylation by okadaic acid in rat adipocytes. The Journal of biological 
chemistry 265, 19768-19776. 

Le Bonniec, S., Deregnaucourt, C., Redeker, V., Banerjee, R., Grellier, P., Goldberg, D.E., and Schrevel, 
J. (1999). Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food 
vacuole, is active at neutral pH on the host erythrocyte membrane skeleton. The Journal of 
biological chemistry 274, 14218-14223. 

Lee, A.H., Symington, L.S., and Fidock, D.A. (2014). DNA repair mechanisms and their biological roles 
in the malaria parasite Plasmodium falciparum. Microbiology and molecular biology reviews : 
MMBR 78, 469-486. 

Lehane, A.M., Saliba, K.J., Allen, R.J., and Kirk, K. (2004). Choline uptake into the malaria parasite is 
energized by the membrane potential. Biochemical and biophysical research communications 
320, 311-317. 

Leykauf, K., Treeck, M., Gilson, P.R., Nebl, T., Braulke, T., Cowman, A.F., Gilberger, T.W., and Crabb, 
B.S. (2010). Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays 
an important role in erythrocyte invasion by the malaria parasite. PLoS pathogens 6, 
e1000941. 

Lin, H.B., Cadete, V.J., Sawicka, J., Wozniak, M., and Sawicki, G. (2012). Effect of the myosin light 
chain kinase inhibitor ML-7 on the proteome of hearts subjected to ischemia-reperfusion 
injury. Journal of proteomics 75, 5386-5395. 

Liu, J., Istvan, E.S., Gluzman, I.Y., Gross, J., and Goldberg, D.E. (2006). Plasmodium falciparum ensures 
its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme 
systems. Proceedings of the National Academy of Sciences of the United States of America 
103, 8840-8845. 

Lopez-Rubio, J.J., Gontijo, A.M., Nunes, M.C., Issar, N., Hernandez Rivas, R., and Scherf, A. (2007). 5' 
flanking region of var genes nucleate histone modification patterns linked to phenotypic 
inheritance of virulence traits in malaria parasites. Molecular microbiology 66, 1296-1305. 

Lopez-Rubio, J.J., Mancio-Silva, L., and Scherf, A. (2009). Genome-wide analysis of heterochromatin 
associates clonally variant gene regulation with perinuclear repressive centers in malaria 
parasites. Cell host & microbe 5, 179-190. 

Loria, P., Miller, S., Foley, M., and Tilley, L. (1999). Inhibition of the peroxidative degradation of haem 
as the basis of action of chloroquine and other quinoline antimalarials. The Biochemical 
journal 339 ( Pt 2), 363-370. 



References 
 

 
131 

Lu, F., Jiang, H., Ding, J., Mu, J., Valenzuela, J.G., Ribeiro, J.M., and Su, X.Z. (2007). cDNA sequences 
reveal considerable gene prediction inaccuracy in the Plasmodium falciparum genome. BMC 
genomics 8, 255. 

Lykke-Andersen, S., and Jensen, T.H. (2015). Nonsense-mediated mRNA decay: an intricate 
machinery that shapes transcriptomes. Nature reviews Molecular cell biology 16, 665-677. 

Maier, A.G., Braks, J.A., Waters, A.P., and Cowman, A.F. (2006). Negative selection using yeast 
cytosine deaminase/uracil phosphoribosyl transferase in Plasmodium falciparum for targeted 
gene deletion by double crossover recombination. Molecular and biochemical parasitology 
150, 118-121. 

Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013). 
RNA-guided human genome engineering via Cas9. Science 339, 823-826. 

Marchetti, R.V., Lehane, A.M., Shafik, S.H., Winterberg, M., Martin, R.E., and Kirk, K. (2015). A lactate 
and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum. 
Nature communications 6, 6721. 

Marti, M., Good, R.T., Rug, M., Knuepfer, E., and Cowman, A.F. (2004). Targeting malaria virulence 
and remodeling proteins to the host erythrocyte. Science 306, 1930-1933. 

Martin, R.E., Butterworth, A.S., Gardiner, D.L., Kirk, K., McCarthy, J.S., and Skinner-Adams, T.S. 
(2012). Saquinavir inhibits the malaria parasite's chloroquine resistance transporter. 
Antimicrobial agents and chemotherapy 56, 2283-2289. 

Martin, R.E., Henry, R.I., Abbey, J.L., Clements, J.D., and Kirk, K. (2005). The 'permeome' of the 
malaria parasite: an overview of the membrane transport proteins of Plasmodium 
falciparum. Genome biology 6, R26. 

Martin, R.E., and Kirk, K. (2004). The malaria parasite's chloroquine resistance transporter is a 
member of the drug/metabolite transporter superfamily. Molecular biology and evolution 
21, 1938-1949. 

Martin, R.E., Marchetti, R.V., Cowan, A.I., Howitt, S.M., Broer, S., and Kirk, K. (2009). Chloroquine 
transport via the malaria parasite's chloroquine resistance transporter. Science 325, 1680-
1682. 

Martin, S.K., Oduola, A.M., and Milhous, W.K. (1987). Reversal of chloroquine resistance in 
Plasmodium falciparum by verapamil. Science 235, 899-901. 

Maughan, S.C., Pasternak, M., Cairns, N., Kiddle, G., Brach, T., Jarvis, R., Haas, F., Nieuwland, J., Lim, 
B., Muller, C., et al. (2010). Plant homologs of the Plasmodium falciparum chloroquine-
resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. 
Proceedings of the National Academy of Sciences of the United States of America 107, 2331-
2336. 

Mbengue, A., Bhattacharjee, S., Pandharkar, T., Liu, H., Estiu, G., Stahelin, R.V., Rizk, S.S., Njimoh, 
D.L., Ryan, Y., Chotivanich, K., et al. (2015). A molecular mechanism of artemisinin resistance 
in Plasmodium falciparum malaria. Nature 520, 683-687. 

McNamara, C.W., Lee, M.C., Lim, C.S., Lim, S.H., Roland, J., Nagle, A., Simon, O., Yeung, B.K., 
Chatterjee, A.K., McCormack, S.L., et al. (2013). Targeting Plasmodium PI(4)K to eliminate 
malaria. Nature 504, 248-253. 

Mehlotra, R.K., Mattera, G., Bockarie, M.J., Maguire, J.D., Baird, J.K., Sharma, Y.D., Alifrangis, M., 
Dorsey, G., Rosenthal, P.J., Fryauff, D.J., et al. (2008). Discordant patterns of genetic variation 
at two chloroquine resistance loci in worldwide populations of the malaria parasite 
Plasmodium falciparum. Antimicrobial agents and chemotherapy 52, 2212-2222. 

Mehrens, T., Lelleck, S., Cetinkaya, I., Knollmann, M., Hohage, H., Gorboulev, V., Boknik, P., Koepsell, 
H., and Schlatter, E. (2000). The affinity of the organic cation transporter rOCT1 is increased 



References 
 

 
132 

by protein kinase C-dependent phosphorylation. Journal of the American Society of 
Nephrology : JASN 11, 1216-1224. 

Meierjohann, S., Walter, R.D., and Muller, S. (2002). Regulation of intracellular glutathione levels in 
erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium 
falciparum. The Biochemical journal 368, 761-768. 

Meissner, M., Krejany, E., Gilson, P.R., de Koning-Ward, T.F., Soldati, D., and Crabb, B.S. (2005). 
Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood 
stages using Toxoplasma gondii transactivators. Proceedings of the National Academy of 
Sciences of the United States of America 102, 2980-2985. 

Meister, S., Plouffe, D.M., Kuhen, K.L., Bonamy, G.M., Wu, T., Barnes, S.W., Bopp, S.E., Borboa, R., 
Bright, A.T., Che, J., et al. (2011). Imaging of Plasmodium liver stages to drive next-generation 
antimalarial drug discovery. Science 334, 1372-1377. 

Mi, L., Gan, N., Cheema, A., Dakshanamurthy, S., Wang, X., Yang, D.C., and Chung, F.L. (2009). Cancer 
preventive isothiocyanates induce selective degradation of cellular alpha- and beta-tubulins 
by proteasomes. The Journal of biological chemistry 284, 17039-17051. 

Mita, T., Kaneko, A., Lum, J.K., Zungu, I.L., Tsukahara, T., Eto, H., Kobayakawa, T., Bjorkman, A., and 
Tanabe, K. (2004). Expansion of wild type allele rather than back mutation in pfcrt explains 
the recent recovery of chloroquine sensitivity of Plasmodium falciparum in Malawi. 
Molecular and biochemical parasitology 135, 159-163. 

Moeller, H.B., Olesen, E.T., and Fenton, R.A. (2011). Regulation of the water channel aquaporin-2 by 
posttranslational modification. American journal of physiology Renal physiology 300, F1062-
1073. 

Mok, S., Liong, K.Y., Lim, E.H., Huang, X., Zhu, L., Preiser, P.R., and Bozdech, Z. (2014). Structural 
polymorphism in the promoter of pfmrp2 confers Plasmodium falciparum tolerance to 
quinoline drugs. Molecular microbiology 91, 918-934. 

Moraes Barros, R.R., Straimer, J., Sa, J.M., Salzman, R.E., Melendez-Muniz, V.A., Mu, J., Fidock, D.A., 
and Wellems, T.E. (2015). Editing the Plasmodium vivax genome, using zinc-finger nucleases. 
The Journal of infectious diseases 211, 125-129. 

Moritz, A.E., Rastedt, D.E., Stanislowski, D.J., Shetty, M., Smith, M.A., Vaughan, R.A., and Foster, J.D. 
(2015). Reciprocal Phosphorylation and Palmitoylation Control Dopamine Transporter 
Kinetics. The Journal of biological chemistry 290, 29095-29105. 

Mu, J., Ferdig, M.T., Feng, X., Joy, D.A., Duan, J., Furuya, T., Subramanian, G., Aravind, L., Cooper, 
R.A., Wootton, J.C., et al. (2003). Multiple transporters associated with malaria parasite 
responses to chloroquine and quinine. Molecular microbiology 49, 977-989. 

Muangnoicharoen, S., Johnson, D.J., Looareesuwan, S., Krudsood, S., and Ward, S.A. (2009). Role of 
known molecular markers of resistance in the antimalarial potency of piperaquine and 
dihydroartemisinin in vitro. Antimicrobial agents and chemotherapy 53, 1362-1366. 

Mullin, K.A., Lim, L., Ralph, S.A., Spurck, T.P., Handman, E., and McFadden, G.I. (2006). Membrane 
transporters in the relict plastid of malaria parasites. Proceedings of the National Academy of 
Sciences of the United States of America 103, 9572-9577. 

Muralidharan, V., Oksman, A., Iwamoto, M., Wandless, T.J., and Goldberg, D.E. (2011). Asparagine 
repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent 
affinity tag. Proceedings of the National Academy of Sciences of the United States of America 
108, 4411-4416. 

Mzayek, F., Deng, H., Mather, F.J., Wasilevich, E.C., Liu, H., Hadi, C.M., Chansolme, D.H., Murphy, 
H.A., Melek, B.H., Tenaglia, A.N., et al. (2007). Randomized dose-ranging controlled trial of 



References 
 

 
133 

AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers. PLoS clinical trials 2, 
e6. 

Nagelschmitz, J., Voith, B., Wensing, G., Roemer, A., Fugmann, B., Haynes, R.K., Kotecka, B.M., 
Rieckmann, K.H., and Edstein, M.D. (2008). First assessment in humans of the safety, 
tolerability, pharmacokinetics, and ex vivo pharmacodynamic antimalarial activity of the new 
artemisinin derivative artemisone. Antimicrobial agents and chemotherapy 52, 3085-3091. 

Nasir ud, D., Drager-Dayal, R., Decrind, C., Hu, B.H., Del Giudice, G., and Hoessli, D. (1992). 
Plasmodium falciparum synthesizes O-glycosylated glycoproteins containing O-linked N-
acetylglucosamine. Biochemistry international 27, 55-64. 

Naude, B., Brzostowski, J.A., Kimmel, A.R., and Wellems, T.E. (2005). Dictyostelium discoideum 
expresses a malaria chloroquine resistance mechanism upon transfection with mutant, but 
not wild-type, Plasmodium falciparum transporter PfCRT. The Journal of biological chemistry 
280, 25596-25603. 

Nestler, E.J., Terwilliger, R.Z., and Duman, R.S. (1989). Chronic antidepressant administration alters 
the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. 
Journal of neurochemistry 53, 1644-1647. 

Newby, Z.E., O'Connell, J., 3rd, Robles-Colmenares, Y., Khademi, S., Miercke, L.J., and Stroud, R.M. 
(2008). Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite 
Plasmodium falciparum. Nature structural & molecular biology 15, 619-625. 

Nguitragool, W., Bokhari, A.A., Pillai, A.D., Rayavara, K., Sharma, P., Turpin, B., Aravind, L., and Desai, 
S.A. (2011). Malaria parasite clag3 genes determine channel-mediated nutrient uptake by 
infected red blood cells. Cell 145, 665-677. 

Niang, M., Yan Yam, X., and Preiser, P.R. (2009). The Plasmodium falciparum STEVOR multigene 
family mediates antigenic variation of the infected erythrocyte. PLoS pathogens 5, e1000307. 

Nkrumah, L.J., Muhle, R.A., Moura, P.A., Ghosh, P., Hatfull, G.F., Jacobs, W.R., Jr., and Fidock, D.A. 
(2006). Efficient site-specific integration in Plasmodium falciparum chromosomes mediated 
by mycobacteriophage Bxb1 integrase. Nature methods 3, 615-621. 

Nkrumah, L.J., Riegelhaupt, P.M., Moura, P., Johnson, D.J., Patel, J., Hayton, K., Ferdig, M.T., Wellems, 
T.E., Akabas, M.H., and Fidock, D.A. (2009). Probing the multifactorial basis of Plasmodium 
falciparum quinine resistance: evidence for a strain-specific contribution of the sodium-
proton exchanger PfNHE. Molecular and biochemical parasitology 165, 122-131. 

O'Neill, M.T., Phuong, T., Healer, J., Richard, D., and Cowman, A.F. (2011). Gene deletion from 
Plasmodium falciparum using FLP and Cre recombinases: implications for applied site-specific 
recombination. International journal for parasitology 41, 117-123. 

O'Neill, P.M., Amewu, R.K., Nixon, G.L., Bousejra ElGarah, F., Mungthin, M., Chadwick, J., Shone, A.E., 
Vivas, L., Lander, H., Barton, V., et al. (2010a). Identification of a 1,2,4,5-tetraoxane 
antimalarial drug-development candidate (RKA 182) with superior properties to the 
semisynthetic artemisinins. Angewandte Chemie 49, 5693-5697. 

O'Neill, P.M., Barton, V.E., and Ward, S.A. (2010b). The molecular mechanism of action of 
artemisinin--the debate continues. Molecules 15, 1705-1721. 

Okuda, T., and Haga, T. (2000). Functional characterization of the human high-affinity choline 
transporter. FEBS letters 484, 92-97. 

Orjih, A.U., Banyal, H.S., Chevli, R., and Fitch, C.D. (1981). Hemin lyses malaria parasites. Science 214, 
667-669. 

Ozarda Ilcol, Y., Uncu, G., and Ulus, I.H. (2002). Free and phospholipid-bound choline concentrations 
in serum during pregnancy, after delivery and in newborns. Archives of physiology and 
biochemistry 110, 393-399. 



References 
 

 
134 

Pachlatko, E., Rusch, S., Muller, A., Hemphill, A., Tilley, L., Hanssen, E., and Beck, H.P. (2010). 
MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of 
Maurer's cleft tethers. Molecular microbiology 77, 1136-1152. 

Pagola, S., Stephens, P.W., Bohle, D.S., Kosar, A.D., and Madsen, S.K. (2000). The structure of malaria 
pigment beta-haematin. Nature 404, 307-310. 

Painter, H.J., Morrisey, J.M., Mather, M.W., and Vaidya, A.B. (2007). Specific role of mitochondrial 
electron transport in blood-stage Plasmodium falciparum. Nature 446, 88-91. 

Parys, J.B., Sernett, S.W., DeLisle, S., Snyder, P.M., Welsh, M.J., and Campbell, K.P. (1992). Isolation, 
characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in 
Xenopus laevis oocytes. The Journal of biological chemistry 267, 18776-18782. 

Patzewitz, E.M., Salcedo-Sora, J.E., Wong, E.H., Sethia, S., Stocks, P.A., Maughan, S.C., Murray, J.A., 
Krishna, S., Bray, P.G., Ward, S.A., et al. (2013). Glutathione transport: a new role for PfCRT in 
chloroquine resistance. Antioxidants & redox signaling 19, 683-695. 

Paul, F., Roath, S., Melville, D., Warhurst, D.C., and Osisanya, J.O. (1981). Separation of malaria-
infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation 
technique. Lancet 2, 70-71. 

Pavlovic-Djuranovic, S., Kun, J.F., Schultz, J.E., and Beitz, E. (2006). Dihydroxyacetone and 
methylglyoxal as permeants of the Plasmodium aquaglyceroporin inhibit parasite 
proliferation. Biochimica et biophysica acta 1758, 1012-1017. 

Penarete-Vargas, D.M., Boisson, A., Urbach, S., Chantelauze, H., Peyrottes, S., Fraisse, L., and Vial, H.J. 
(2014). A chemical proteomics approach for the search of pharmacological targets of the 
antimalarial clinical candidate albitiazolium in Plasmodium falciparum using 
photocrosslinking and click chemistry. PloS one 9, e113918. 

Penny, J.I., Hall, S.T., Woodrow, C.J., Cowan, G.M., Gero, A.M., and Krishna, S. (1998). Expression of 
substrate-specific transporters encoded by Plasmodium falciparum in Xenopus laevis 
oocytes. Molecular and biochemical parasitology 93, 81-89. 

Pereira, M.R., Henrich, P.P., Sidhu, A.B., Johnson, D., Hardink, J., Van Deusen, J., Lin, J., Gore, K., 
O'Brien, C., Wele, M., et al. (2011). In vivo and in vitro antimalarial properties of 
azithromycin-chloroquine combinations that include the resistance reversal agent 
amlodipine. Antimicrobial agents and chemotherapy 55, 3115-3124. 

Perez, D.I., Gil, C., and Martinez, A. (2011). Protein kinases CK1 and CK2 as new targets for 
neurodegenerative diseases. Medicinal research reviews 31, 924-954. 

Perron-Savard, P., De Crescenzo, G., and Le Moual, H. (2005). Dimerization and DNA binding of the 
Salmonella enterica PhoP response regulator are phosphorylation independent. Microbiology 
151, 3979-3987. 

Pesce, E.R., Acharya, P., Tatu, U., Nicoll, W.S., Shonhai, A., Hoppe, H.C., and Blatch, G.L. (2008). The 
Plasmodium falciparum heat shock protein 40, Pfj4, associates with heat shock protein 70 
and shows similar heat induction and localisation patterns. The international journal of 
biochemistry & cell biology 40, 2914-2926. 

Pessi, G., Kociubinski, G., and Mamoun, C.B. (2004). A pathway for phosphatidylcholine biosynthesis 
in Plasmodium falciparum involving phosphoethanolamine methylation. Proceedings of the 
National Academy of Sciences of the United States of America 101, 6206-6211. 

Petersen, I., Gabryszewski, S.J., Johnston, G.L., Dhingra, S.K., Ecker, A., Lewis, R.E., de Almeida, M.J., 
Straimer, J., Henrich, P.P., Palatulan, E., et al. (2015). Balancing drug resistance and growth 
rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance 
transporter. Molecular microbiology 97, 381-395. 



References 
 

 
135 

Peyrottes, S., Caldarelli, S., Wein, S., Perigaud, C., and Vial, H. (2014). Exploring prodrug approaches 
for albitiazolium and its analogues. Current topics in medicinal chemistry 14, 1653-1667. 

Pham, J.S., Sakaguchi, R., Yeoh, L.M., De Silva, N.S., McFadden, G.I., Hou, Y.M., and Ralph, S.A. (2014). 
A dual-targeted aminoacyl-tRNA synthetase in Plasmodium falciparum charges cytosolic and 
apicoplast tRNACys. The Biochemical journal 458, 513-523. 

Pisciotta, J.M., Coppens, I., Tripathi, A.K., Scholl, P.F., Shuman, J., Bajad, S., Shulaev, V., and Sullivan, 
D.J., Jr. (2007). The role of neutral lipid nanospheres in Plasmodium falciparum haem 
crystallization. The Biochemical journal 402, 197-204. 

Pochini, L., Scalise, M., Galluccio, M., Pani, G., Siminovitch, K.A., and Indiveri, C. (2012). The human 
OCTN1 (SLC22A4) reconstituted in liposomes catalyzes acetylcholine transport which is 
defective in the mutant L503F associated to the Crohn's disease. Biochimica et biophysica 
acta 1818, 559-565. 

Ponts, N., Saraf, A., Chung, D.W., Harris, A., Prudhomme, J., Washburn, M.P., Florens, L., and Le Roch, 
K.G. (2011). Unraveling the ubiquitome of the human malaria parasite. The Journal of 
biological chemistry 286, 40320-40330. 

Preiser, P., Renia, L., Singh, N., Balu, B., Jarra, W., Voza, T., Kaneko, O., Blair, P., Torii, M., Landau, I., 
et al. (2004). Antibodies against MAEBL ligand domains M1 and M2 inhibit sporozoite 
development in vitro. Infection and immunity 72, 3604-3608. 

Price, R.N., and Nosten, F. (2014). Single-dose radical cure of Plasmodium vivax: a step closer. Lancet 
383, 1020-1021. 

Price, R.N., Uhlemann, A.C., Brockman, A., McGready, R., Ashley, E., Phaipun, L., Patel, R., Laing, K., 
Looareesuwan, S., White, N.J., et al. (2004). Mefloquine resistance in Plasmodium falciparum 
and increased pfmdr1 gene copy number. Lancet 364, 438-447. 

Prommana, P., Uthaipibull, C., Wongsombat, C., Kamchonwongpaisan, S., Yuthavong, Y., Knuepfer, E., 
Holder, A.A., and Shaw, P.J. (2013). Inducible knockdown of Plasmodium gene expression 
using the glmS ribozyme. PloS one 8, e73783. 

Prudencio, M., Rodriguez, A., and Mota, M.M. (2006). The silent path to thousands of merozoites: 
the Plasmodium liver stage. Nature reviews Microbiology 4, 849-856. 

Pulcini, S., Staines, H.M., Pittman, J.K., Slavic, K., Doerig, C., Halbert, J., Tewari, R., Shah, F., Avery, 
M.A., Haynes, R.K., et al. (2013). Expression in yeast links field polymorphisms in PfATP6 to in 
vitro artemisinin resistance and identifies new inhibitor classes. The Journal of infectious 
diseases 208, 468-478. 

Pult, F., Fallah, G., Braam, U., Detro-Dassen, S., Niculescu, C., Laube, B., and Schmalzing, G. (2011). 
Robust post-translocational N-glycosylation at the extreme C-terminus of membrane and 
secreted proteins in Xenopus laevis oocytes and HEK293 cells. Glycobiology 21, 1147-1160. 

Raj, D.K., Mu, J., Jiang, H., Kabat, J., Singh, S., Sullivan, M., Fay, M.P., McCutchan, T.F., and Su, X.Z. 
(2009). Disruption of a Plasmodium falciparum multidrug resistance-associated protein 
(PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. The Journal of 
biological chemistry 284, 7687-7696. 

Rasoloson, D., Shi, L., Chong, C.R., Kafsack, B.F., and Sullivan, D.J. (2004). Copper pathways in 
Plasmodium falciparum infected erythrocytes indicate an efflux role for the copper P-ATPase. 
The Biochemical journal 381, 803-811. 

Razakantoanina, V., Florent, I., and Jaureguiberry, G. (2008). Plasmodium falciparum: functional 
mitochondrial ADP/ATP transporter in Escherichia coli plasmic membrane as a tool for 
selective drug screening. Experimental parasitology 118, 181-187. 

Reed, M.B., Saliba, K.J., Caruana, S.R., Kirk, K., and Cowman, A.F. (2000). Pgh1 modulates sensitivity 
and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906-909. 



References 
 

 
136 

Richard, D., MacRaild, C.A., Riglar, D.T., Chan, J.A., Foley, M., Baum, J., Ralph, S.A., Norton, R.S., and 
Cowman, A.F. (2010). Interaction between Plasmodium falciparum apical membrane antigen 
1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion 
process of malaria parasites. The Journal of biological chemistry 285, 14815-14822. 

Richter, J., Franken, G., Mehlhorn, H., Labisch, A., and Haussinger, D. (2010). What is the evidence for 
the existence of Plasmodium ovale hypnozoites? Parasitology research 107, 1285-1290. 

Riglar, D.T., Richard, D., Wilson, D.W., Boyle, M.J., Dekiwadia, C., Turnbull, L., Angrisano, F., 
Marapana, D.S., Rogers, K.L., Whitchurch, C.B., et al. (2011). Super-resolution dissection of 
coordinated events during malaria parasite invasion of the human erythrocyte. Cell host & 
microbe 9, 9-20. 

Rivera, V.M., Wang, X., Wardwell, S., Courage, N.L., Volchuk, A., Keenan, T., Holt, D.A., Gilman, M., 
Orci, L., Cerasoli, F., Jr., et al. (2000). Regulation of protein secretion through controlled 
aggregation in the endoplasmic reticulum. Science 287, 826-830. 

Roberts, L. (2016). Malaria wars. Science 352, 398-402, 404-395. 

Rodrigues, C.D., Hannus, M., Prudencio, M., Martin, C., Goncalves, L.A., Portugal, S., Epiphanio, S., 
Akinc, A., Hadwiger, P., Jahn-Hofmann, K., et al. (2008). Host scavenger receptor SR-BI plays a 
dual role in the establishment of malaria parasite liver infection. Cell host & microbe 4, 271-
282. 

Rohrbach, P., Sanchez, C.P., Hayton, K., Friedrich, O., Patel, J., Sidhu, A.B., Ferdig, M.T., Fidock, D.A., 
and Lanzer, M. (2006). Genetic linkage of pfmdr1 with food vacuolar solute import in 
Plasmodium falciparum. The EMBO journal 25, 3000-3011. 

Roth, M., Obaidat, A., and Hagenbuch, B. (2012). OATPs, OATs and OCTs: the organic anion and 
cation transporters of the SLCO and SLC22A gene superfamilies. British journal of 
pharmacology 165, 1260-1287. 

Rotmann, A., Sanchez, C., Guiguemde, A., Rohrbach, P., Dave, A., Bakouh, N., Planelles, G., and 
Lanzer, M. (2010). PfCHA is a mitochondrial divalent cation/H+ antiporter in Plasmodium 
falciparum. Molecular microbiology 76, 1591-1606. 

Rottmann, M., McNamara, C., Yeung, B.K., Lee, M.C., Zou, B., Russell, B., Seitz, P., Plouffe, D.M., 
Dharia, N.V., Tan, J., et al. (2010). Spiroindolones, a potent compound class for the treatment 
of malaria. Science 329, 1175-1180. 

Roux, K.J., Kim, D.I., Raida, M., and Burke, B. (2012). A promiscuous biotin ligase fusion protein 
identifies proximal and interacting proteins in mammalian cells. The Journal of cell biology 
196, 801-810. 

Rts, S.C.T.P. (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose 
in infants and children in Africa: final results of a phase 3, individually randomised, controlled 
trial. Lancet 386, 31-45. 

Ruzzene, M., Penzo, D., and Pinna, L.A. (2002). Protein kinase CK2 inhibitor 4,5,6,7-
tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of 
haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. The Biochemical journal 
364, 41-47. 

Sa, J.M., Twu, O., Hayton, K., Reyes, S., Fay, M.P., Ringwald, P., and Wellems, T.E. (2009). Geographic 
patterns of Plasmodium falciparum drug resistance distinguished by differential responses to 
amodiaquine and chloroquine. Proceedings of the National Academy of Sciences of the 
United States of America 106, 18883-18889. 

Sabaty, M., Grosse, S., Adryanczyk, G., Boiry, S., Biaso, F., Arnoux, P., and Pignol, D. (2013). 
Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the 
TAT signal sequence on YedY synthesis. BMC biochemistry 14, 28. 



References 
 

 
137 

Saitoh, M., Ishikawa, T., Matsushima, S., Naka, M., and Hidaka, H. (1987). Selective inhibition of 
catalytic activity of smooth muscle myosin light chain kinase. The Journal of biological 
chemistry 262, 7796-7801. 

Saliba, K.J., Horner, H.A., and Kirk, K. (1998). Transport and metabolism of the essential vitamin 
pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium 
falciparum. The Journal of biological chemistry 273, 10190-10195. 

Saliba, K.J., Martin, R.E., Broer, A., Henry, R.I., McCarthy, C.S., Downie, M.J., Allen, R.J., Mullin, K.A., 
McFadden, G.I., Broer, S., et al. (2006). Sodium-dependent uptake of inorganic phosphate by 
the intracellular malaria parasite. Nature 443, 582-585. 

Sanchez, C.P., Liu, C.H., Mayer, S., Nurhasanah, A., Cyrklaff, M., Mu, J., Ferdig, M.T., Stein, W.D., and 
Lanzer, M. (2014). A HECT ubiquitin-protein ligase as a novel candidate gene for altered 
quinine and quinidine responses in Plasmodium falciparum. PLoS genetics 10, e1004382. 

Sanchez, C.P., Mayer, S., Nurhasanah, A., Stein, W.D., and Lanzer, M. (2011). Genetic linkage analyses 
redefine the roles of PfCRT and PfMDR1 in drug accumulation and susceptibility in 
Plasmodium falciparum. Molecular microbiology 82, 865-878. 

Sanchez, C.P., McLean, J.E., Rohrbach, P., Fidock, D.A., Stein, W.D., and Lanzer, M. (2005). Evidence 
for a pfcrt-associated chloroquine efflux system in the human malarial parasite Plasmodium 
falciparum. Biochemistry 44, 9862-9870. 

Sanchez, C.P., McLean, J.E., Stein, W., and Lanzer, M. (2004). Evidence for a substrate specific and 
inhibitable drug efflux system in chloroquine resistant Plasmodium falciparum strains. 
Biochemistry 43, 16365-16373. 

Sanchez, C.P., Rohrbach, P., McLean, J.E., Fidock, D.A., Stein, W.D., and Lanzer, M. (2007). Differences 
in trans-stimulated chloroquine efflux kinetics are linked to PfCRT in Plasmodium falciparum. 
Molecular microbiology 64, 407-420. 

Sanchez, C.P., Rotmann, A., Stein, W.D., and Lanzer, M. (2008a). Polymorphisms within PfMDR1 alter 
the substrate specificity for anti-malarial drugs in Plasmodium falciparum. Molecular 
microbiology 70, 786-798. 

Sanchez, C.P., Stein, W., and Lanzer, M. (2003). Trans stimulation provides evidence for a drug efflux 
carrier as the mechanism of chloroquine resistance in Plasmodium falciparum. Biochemistry 
42, 9383-9394. 

Sanchez, C.P., Stein, W.D., and Lanzer, M. (2008b). Dissecting the components of quinine 
accumulation in Plasmodium falciparum. Molecular microbiology 67, 1081-1093. 

Sanofi Press Release (30 Oct 2013). Online: http://en.sanofi.com/Images/34723_20131030_ 
Q32013_en.pdf 

Saridaki, T., Sanchez, C.P., Pfahler, J., and Lanzer, M. (2008). A conditional export system provides 
new insights into protein export in Plasmodium falciparum-infected erythrocytes. Cellular 
microbiology 10, 2483-2495. 

Scherf, A., Hernandez-Rivas, R., Buffet, P., Bottius, E., Benatar, C., Pouvelle, B., Gysin, J., and Lanzer, 
M. (1998). Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive 
transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. 
The EMBO journal 17, 5418-5426. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, 
C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image 
analysis. Nature methods 9, 676-682. 

Schneider-Poetsch, T., Ju, J., Eyler, D.E., Dang, Y., Bhat, S., Merrick, W.C., Green, R., Shen, B., and Liu, 
J.O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and 
lactimidomycin. Nature chemical biology 6, 209-217. 



References 
 

 
138 

Sidhu, A.B., Uhlemann, A.C., Valderramos, S.G., Valderramos, J.C., Krishna, S., and Fidock, D.A. (2006). 
Decreasing pfmdr1 copy number in plasmodium falciparum malaria heightens susceptibility 
to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. The Journal of infectious 
diseases 194, 528-535. 

Sidhu, A.B., Valderramos, S.G., and Fidock, D.A. (2005). pfmdr1 mutations contribute to quinine 
resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. 
Molecular microbiology 57, 913-926. 

Sidhu, A.B., Verdier-Pinard, D., and Fidock, D.A. (2002). Chloroquine resistance in Plasmodium 
falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210-213. 

Sijwali, P.S., Koo, J., Singh, N., and Rosenthal, P.J. (2006). Gene disruptions demonstrate independent 
roles for the four falcipain cysteine proteases of Plasmodium falciparum. Molecular and 
biochemical parasitology 150, 96-106. 

Silvie, O., Franetich, J.F., Charrin, S., Mueller, M.S., Siau, A., Bodescot, M., Rubinstein, E., Hannoun, L., 
Charoenvit, Y., Kocken, C.H., et al. (2004). A role for apical membrane antigen 1 during 
invasion of hepatocytes by Plasmodium falciparum sporozoites. The Journal of biological 
chemistry 279, 9490-9496. 

Silvie, O., Rubinstein, E., Franetich, J.F., Prenant, M., Belnoue, E., Renia, L., Hannoun, L., Eling, W., 
Levy, S., Boucheix, C., et al. (2003). Hepatocyte CD81 is required for Plasmodium falciparum 
and Plasmodium yoelii sporozoite infectivity. Nature medicine 9, 93-96. 

Sinclair, C.J., Chi, K.D., Subramanian, V., Ward, K.L., and Green, R.M. (2000). Functional expression of 
a high affinity mammalian hepatic choline/organic cation transporter. Journal of lipid 
research 41, 1841-1848. 

Singh, S., Alam, M.M., Pal-Bhowmick, I., Brzostowski, J.A., and Chitnis, C.E. (2010). Distinct external 
signals trigger sequential release of apical organelles during erythrocyte invasion by malaria 
parasites. PLoS pathogens 6, e1000746. 

Sinha, A., Hughes, K.R., Modrzynska, K.K., Otto, T.D., Pfander, C., Dickens, N.J., Religa, A.A., Bushell, 
E., Graham, A.L., Cameron, R., et al. (2014). A cascade of DNA-binding proteins for sexual 
commitment and development in Plasmodium. Nature 507, 253-257. 

Sisowath, C., Petersen, I., Veiga, M.I., Martensson, A., Premji, Z., Bjorkman, A., Fidock, D.A., and Gil, 
J.P. (2009). In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-
susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. The 
Journal of infectious diseases 199, 750-757. 

Sisowath, C., Stromberg, J., Martensson, A., Msellem, M., Obondo, C., Bjorkman, A., and Gil, J.P. 
(2005). In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-
lumefantrine (Coartem). The Journal of infectious diseases 191, 1014-1017. 

Sive, H.L., Grainger, R.M., and Harland, R.M. (2010). Microinjection of RNA and preparation of 
secreted proteins from Xenopus oocytes. Cold Spring Harbor protocols 2010, pdb prot5538. 

Slavic, K., Krishna, S., Lahree, A., Bouyer, G., Hanson, K.K., Vera, I., Pittman, J.K., Staines, H.M., and 
Mota, M.M. (2016). A vacuolar iron-transporter homologue acts as a detoxifier in 
Plasmodium. Nature communications 7, 10403. 

Sleebs, B.E., Lopaticki, S., Marapana, D.S., O'Neill, M.T., Rajasekaran, P., Gazdik, M., Gunther, S., 
Whitehead, L.W., Lowes, K.N., Barfod, L., et al. (2014). Inhibition of Plasmepsin V activity 
demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria 
parasites. PLoS biology 12, e1001897. 

Smilkstein, M., Sriwilaijaroen, N., Kelly, J.X., Wilairat, P., and Riscoe, M. (2004). Simple and 
inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. 
Antimicrobial agents and chemotherapy 48, 1803-1806. 



References 
 

 
139 

Smith, J.D., Chitnis, C.E., Craig, A.G., Roberts, D.J., Hudson-Taylor, D.E., Peterson, D.S., Pinches, R., 
Newbold, C.I., and Miller, L.H. (1995). Switches in expression of Plasmodium falciparum var 
genes correlate with changes in antigenic and cytoadherent phenotypes of infected 
erythrocytes. Cell 82, 101-110. 

Solyakov, L., Halbert, J., Alam, M.M., Semblat, J.P., Dorin-Semblat, D., Reininger, L., Bottrill, A.R., 
Mistry, S., Abdi, A., Fennell, C., et al. (2011). Global kinomic and phospho-proteomic analyses 
of the human malaria parasite Plasmodium falciparum. Nature communications 2, 565. 

Spielmann, T., and Beck, H.P. (2000). Analysis of stage-specific transcription in plasmodium 
falciparum reveals a set of genes exclusively transcribed in ring stage parasites. Molecular 
and biochemical parasitology 111, 453-458. 

Spielmann, T., Fergusen, D.J., and Beck, H.P. (2003). etramps, a new Plasmodium falciparum gene 
family coding for developmentally regulated and highly charged membrane proteins located 
at the parasite-host cell interface. Molecular biology of the cell 14, 1529-1544. 

Staines, H.M., Alkhalil, A., Allen, R.J., De Jonge, H.R., Derbyshire, E., Egee, S., Ginsburg, H., Hill, D.A., 
Huber, S.M., Kirk, K., et al. (2007). Electrophysiological studies of malaria parasite-infected 
erythrocytes: current status. International journal for parasitology 37, 475-482. 

Staines, H.M., Derbyshire, E.T., Slavic, K., Tattersall, A., Vial, H., and Krishna, S. (2010). Exploiting the 
therapeutic potential of Plasmodium falciparum solute transporters. Trends in parasitology 
26, 284-296. 

Straimer, J., Lee, M.C., Lee, A.H., Zeitler, B., Williams, A.E., Pearl, J.R., Zhang, L., Rebar, E.J., Gregory, 
P.D., Llinas, M., et al. (2012). Site-specific genome editing in Plasmodium falciparum using 
engineered zinc-finger nucleases. Nature methods 9, 993-998. 

Su, X., Kirkman, L.A., Fujioka, H., and Wellems, T.E. (1997). Complex polymorphisms in an 
approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast 
Asia and Africa. Cell 91, 593-603. 

Sultan, A.A., Thathy, V., Frevert, U., Robson, K.J., Crisanti, A., Nussenzweig, V., Nussenzweig, R.S., and 
Menard, R. (1997). TRAP is necessary for gliding motility and infectivity of plasmodium 
sporozoites. Cell 90, 511-522. 

Sullivan, D.J., Jr., Gluzman, I.Y., Russell, D.G., and Goldberg, D.E. (1996). On the molecular mechanism 
of chloroquine's antimalarial action. Proceedings of the National Academy of Sciences of the 
United States of America 93, 11865-11870. 

Sullivan, J.S., Sullivan, J.J., Williams, A., Grady, K.K., Bounngaseng, A., Huber, C.S., Nace, D., Williams, 
T., Galland, G.G., Barnwell, J.W., et al. (2003). Adaptation of a strain of Plasmodium 
falciparum from Ghana to Aotus lemurinus griseimembra, A. nancymai, and A. vociferans 
monkeys. The American journal of tropical medicine and hygiene 69, 593-600. 

Summers, R.L., Dave, A., Dolstra, T.J., Bellanca, S., Marchetti, R.V., Nash, M.N., Richards, S.N., Goh, V., 
Schenk, R.L., Stein, W.D., et al. (2014). Diverse mutational pathways converge on saturable 
chloroquine transport via the malaria parasite's chloroquine resistance transporter. 
Proceedings of the National Academy of Sciences of the United States of America 111, 
E1759-1767. 

Summers, R.L., and Martin, R.E. (2010). Functional characteristics of the malaria parasite's 
"chloroquine resistance transporter": implications for chemotherapy. Virulence 1, 304-308. 

Sutherland, C.J., Tanomsing, N., Nolder, D., Oguike, M., Jennison, C., Pukrittayakamee, S., Dolecek, C., 
Hien, T.T., do Rosario, V.E., Arez, A.P., et al. (2010). Two nonrecombining sympatric forms of 
the human malaria parasite Plasmodium ovale occur globally. The Journal of infectious 
diseases 201, 1544-1550. 



References 
 

 
140 

Swamy, L., Amulic, B., and Deitsch, K.W. (2011). Plasmodium falciparum var gene silencing is 
determined by cis DNA elements that form stable and heritable interactions. Eukaryotic cell 
10, 530-539. 

Tansley, R., Lotharius, J., Priestley, A., Bull, F., Duparc, S., and Mohrle, J. (2010). A randomized, 
double-blind, placebo-controlled study to investigate the safety, tolerability, and 
pharmacokinetics of single enantiomer (+)-mefloquine compared with racemic mefloquine in 
healthy persons. The American journal of tropical medicine and hygiene 83, 1195-1201. 

Tao, H., Liu, W., Simmons, B.N., Harris, H.K., Cox, T.C., and Massiah, M.A. (2010). Purifying natively 
folded proteins from inclusion bodies using sarkosyl, Triton X-100, and CHAPS. BioTechniques 
48, 61-64. 

Tay, C.L., Jones, M.L., Hodson, N., Theron, M., Choudhary, J.S., and Rayner, J.C. (2016). Study of 
Plasmodium falciparum DHHC palmitoyl-transferases identifies a role for PfDHHC9 in 
gametocytogenesis. Cellular microbiology. 

Tewari, R., Dorin, D., Moon, R., Doerig, C., and Billker, O. (2005). An atypical mitogen-activated 
protein kinase controls cytokinesis and flagellar motility during male gamete formation in a 
malaria parasite. Molecular microbiology 58, 1253-1263. 

Trager, W., and Jensen, J.B. (1976). Human malaria parasites in continuous culture. Science 193, 673-
675. 

Umeda, D., Yamada, K., and Tachibana, H. (2008). H89 (N-[2-(p-bromocinnamylamino)ethyl]-5-
isoquinolinesulfonamide) induces reduction of myosin regulatory light chain phosphorylation 
and inhibits cell proliferation. European journal of pharmacology 590, 61-66. 

Vaid, A., Ranjan, R., Smythe, W.A., Hoppe, H.C., and Sharma, P. (2010). PfPI3K, a phosphatidylinositol-
3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in 
hemoglobin trafficking. Blood 115, 2500-2507. 

Vaidya, A.B., Morrisey, J.M., Zhang, Z., Das, S., Daly, T.M., Otto, T.D., Spillman, N.J., Wyvratt, M., 
Siegl, P., Marfurt, J., et al. (2014). Pyrazoleamide compounds are potent antimalarials that 
target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nature communications 
5, 5521. 

van Schalkwyk, D.A., Walden, J.C., and Smith, P.J. (2001). Reversal of chloroquine resistance in 
Plasmodium falciparum using combinations of chemosensitizers. Antimicrobial agents and 
chemotherapy 45, 3171-3174. 

Wagner, C.A., Friedrich, B., Setiawan, I., Lang, F., and Broer, S. (2000). The use of Xenopus laevis 
oocytes for the functional characterization of heterologously expressed membrane proteins. 
Cellular physiology and biochemistry : international journal of experimental cellular 
physiology, biochemistry, and pharmacology 10, 1-12. 

Waller, K.L., McBride, S.M., Kim, K., and McDonald, T.V. (2008). Characterization of two putative 
potassium channels in Plasmodium falciparum. Malaria journal 7, 19. 

Waller, K.L., Muhle, R.A., Ursos, L.M., Horrocks, P., Verdier-Pinard, D., Sidhu, A.B., Fujioka, H., Roepe, 
P.D., and Fidock, D.A. (2003). Chloroquine resistance modulated in vitro by expression levels 
of the Plasmodium falciparum chloroquine resistance transporter. The Journal of biological 
chemistry 278, 33593-33601. 

Walliker, D., Quakyi, I.A., Wellems, T.E., McCutchan, T.F., Szarfman, A., London, W.T., Corcoran, L.M., 
Burkot, T.R., and Carter, R. (1987). Genetic analysis of the human malaria parasite 
Plasmodium falciparum. Science 236, 1661-1666. 

Wang, L., Delahunty, C., Prieto, J.H., Rahlfs, S., Jortzik, E., Yates, J.R., 3rd, and Becker, K. (2014). 
Protein S-nitrosylation in Plasmodium falciparum. Antioxidants & redox signaling 20, 2923-
2935. 



References 
 

 
141 

Wang, X., Mu, J., Li, G., Chen, P., Guo, X., Fu, L., Chen, L., Su, X., and Wellems, T.E. (2005). Decreased 
prevalence of the Plasmodium falciparum chloroquine resistance transporter 76T marker 
associated with cessation of chloroquine use against P. falciparum malaria in Hainan, 
People's Republic of China. The American journal of tropical medicine and hygiene 72, 410-
414. 

Ward, P., Equinet, L., Packer, J., and Doerig, C. (2004). Protein kinases of the human malaria parasite 
Plasmodium falciparum: the kinome of a divergent eukaryote. BMC genomics 5, 79. 

Wein, S., Maynadier, M., Bordat, Y., Perez, J., Maheshwari, S., Bette-Bobillo, P., Tran Van Ba, C., 
Penarete-Vargas, D., Fraisse, L., Cerdan, R., et al. (2012). Transport and pharmacodynamics of 
albitiazolium, an antimalarial drug candidate. British journal of pharmacology 166, 2263-
2276. 

Wein, S., Tran Van Ba, C., Maynadier, M., Bordat, Y., Perez, J., Peyrottes, S., Fraisse, L., and Vial, H.J. 
(2014). New insight into the mechanism of accumulation and intraerythrocytic 
compartmentation of albitiazolium, a new type of antimalarial. Antimicrobial agents and 
chemotherapy 58, 5519-5527. 

Wells, T.N., Hooft van Huijsduijnen, R., and Van Voorhis, W.C. (2015). Malaria medicines: a glass half 
full? Nature reviews Drug discovery 14, 424-442. 

World Health Organization (2014). Severe malaria. Tropical medicine & international health : TM & IH 
19 Suppl 1, 7-131. 

World Health Organization (2015a). World Malaria Report 2015. Online: 
http://www.who.int/malaria/publications/world-malaria-report-2015/report/en 

World Health Organization (2015b). Guidelines for the treatment of malaria. Third edition. April 
2015. Online: http://www.who.int/malaria/publications/atoz/9789241549127/en 

Wilkes, J.M., and Doerig, C. (2008). The protein-phosphatome of the human malaria parasite 
Plasmodium falciparum. BMC genomics 9, 412. 

Woo, J.S., Zeltina, A., Goetz, B.A., and Locher, K.P. (2012). X-ray structure of the Yersinia pestis heme 
transporter HmuUV. Nature structural & molecular biology 19, 1310-1315. 

Woodrow, C.J., Penny, J.I., and Krishna, S. (1999). Intraerythrocytic Plasmodium falciparum expresses 
a high affinity facilitative hexose transporter. The Journal of biological chemistry 274, 7272-
7277. 

Wootton, J.C., Feng, X., Ferdig, M.T., Cooper, R.A., Mu, J., Baruch, D.I., Magill, A.J., and Su, X.Z. 
(2002). Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 
418, 320-323. 

Wright, M.H., Clough, B., Rackham, M.D., Rangachari, K., Brannigan, J.A., Grainger, M., Moss, D.K., 
Bottrill, A.R., Heal, W.P., Broncel, M., et al. (2014). Validation of N-myristoyltransferase as an 
antimalarial drug target using an integrated chemical biology approach. Nature chemistry 6, 
112-121. 

Wu, Y., Kirkman, L.A., and Wellems, T.E. (1996). Transformation of Plasmodium falciparum malaria 
parasites by homologous integration of plasmids that confer resistance to pyrimethamine. 
Proceedings of the National Academy of Sciences of the United States of America 93, 1130-
1134. 

Wu, Y., Sifri, C.D., Lei, H.H., Su, X.Z., and Wellems, T.E. (1995). Transfection of Plasmodium falciparum 
within human red blood cells. Proceedings of the National Academy of Sciences of the United 
States of America 92, 973-977. 

Yamaki, T., Tanaka, T., and Hidaka, H. (1979). [Platelet cyclic nucleotides and calcium]. Rinsho byori 
The Japanese journal of clinical pathology Suppl 40, 67-73. 



References 
 

 
142 

Yayon, A., Cabantchik, Z.I., and Ginsburg, H. (1984). Identification of the acidic compartment of 
Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug 
chloroquine. The EMBO journal 3, 2695-2700. 

Yeoh, S., O'Donnell, R.A., Koussis, K., Dluzewski, A.R., Ansell, K.H., Osborne, S.A., Hackett, F., Withers-
Martinez, C., Mitchell, G.H., Bannister, L.H., et al. (2007). Subcellular discharge of a serine 
protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131, 
1072-1083. 

Yuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, 
S.A., McLennan, D.N., White, K.L., Vivas, L., Bongard, E., et al. (2012). Malarial dihydrofolate 
reductase as a paradigm for drug development against a resistance-compromised target. 
Proceedings of the National Academy of Sciences of the United States of America 109, 
16823-16828. 

Zhang, C., Xiao, B., Jiang, Y., Zhao, Y., Li, Z., Gao, H., Ling, Y., Wei, J., Li, S., Lu, M., et al. (2014). 
Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. mBio 5, e01414-
01414. 

Zhang, J., Krugliak, M., and Ginsburg, H. (1999). The fate of ferriprotorphyrin IX in malaria infected 
erythrocytes in conjunction with the mode of action of antimalarial drugs. Molecular and 
biochemical parasitology 99, 129-141. 

Zhang, L., Dresser, M.J., Gray, A.T., Yost, S.C., Terashita, S., and Giacomini, K.M. (1997). Cloning and 
functional expression of a human liver organic cation transporter. Molecular pharmacology 
51, 913-921. 

Zhang, L., Gorset, W., Washington, C.B., Blaschke, T.F., Kroetz, D.L., and Giacomini, K.M. (2000). 
Interactions of HIV protease inhibitors with a human organic cation transporter in a 
mammalian expression system. Drug metabolism and disposition: the biological fate of 
chemicals 28, 329-334. 

Zhang, M., Fennell, C., Ranford-Cartwright, L., Sakthivel, R., Gueirard, P., Meister, S., Caspi, A., Doerig, 
C., Nussenzweig, R.S., Tuteja, R., et al. (2010). The Plasmodium eukaryotic initiation factor-
2alpha kinase IK2 controls the latency of sporozoites in the mosquito salivary glands. The 
Journal of experimental medicine 207, 1465-1474. 

Zhang, M., Mishra, S., Sakthivel, R., Rojas, M., Ranjan, R., Sullivan, W.J., Jr., Fontoura, B.M., Menard, 
R., Dever, T.E., and Nussenzweig, V. (2012). PK4, a eukaryotic initiation factor 
2alpha(eIF2alpha) kinase, is essential for the development of the erythrocytic cycle of 
Plasmodium. Proceedings of the National Academy of Sciences of the United States of 
America 109, 3956-3961. 

Zimmer, M., and Hofmann, F. (1984). Calmodulin antagonists inhibit activity of myosin light-chain 
kinase independent of calmodulin. European journal of biochemistry / FEBS 142, 393-397. 

 

 

 

 

 

 

 

 



Appendix I: Plasmid maps 
 

 
143 

Appendix I: Plasmid maps 
 

> pSP64T-pfe0825w 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The sequences of the different pfe0825w variants were amplified by PCR from the codon 
adapted sequence of the gene (synthesized by GeneArt) including (primers 17-18-19) or not 
(primers 17-19-22) the 6x histidine tag. They were cloned into the pSP64T vector using the 
restriction sites XhoI and NcoI. The coding region of variant 2 that is not in frame in the other 
variants was cloned from P. falciparum gDNA and was not codon optimized (primers 19-21). 
Pfe0825w mRNA in vitro transcription is driven by the SP6 promoter. The Pfe0825w gene is 
flanked by the 5’UTR and 3’UTR regions of the X. laevis globin gene. The selection marker of 
the plasmid is the ampicillin resistance gene (AmpR).       
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> pSP64T-PfCRTDd2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The sequence of PfCRT from the Dd2 strain was amplified by PCR from the codon adapted 
sequence of the gene (synthesized by GeneArt). It was cloned into the pSP64T vector using 
the restriction sites XhoI and NcoI. PfCRT mRNA in vitro transcription is driven by the SP6 
promoter. The pfcrt gene is flanked by the 5’UTR and 3’UTR regions of the X. laevis globin 
gene. The selection marker of the plasmid is the ampicillin resistance gene (AmpR). This 
construct was provided by Dr. Sebastiano Bellanca.     
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> pUF1-Cas9 
 
 
 

 
 
 
 
The vector pUF1-Cas9 codes for the sequence of the Cas9 endonuclease flanked by nuclear 
localization signals (NLS). Its expression is regulated by the promoter region of the heat 
shock protein 86 (5’ hsp) and the 3’UTR region of the P. berghei dhfr (3’ Pb dhfr). The 
selection marker of the plasmid is the yeast dihydroorotate dehydrogenase gene (ydhodh). 
This plasmid was provided by Dr. José Juan Lopez Rubio (Ghorbal et al., 2014). 
 
 
 
 
 
 
 
 
 



Appendix I: Plasmid maps 
 

 
146 

> pL6-guide 3 (PfCRT) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pL6 plasmid contains the sgRNA-expression cassette. The expression of the sgRNA is 
regulated by the promoter and the 3’UTR region of the P. falciparum U6 snRNA polymerase 
III (5’ U6). The selection marker of the plasmid is the human dihydrofolate reductase gene 
(hdhfr) and the negative selection marker is the bifunctional yeast cytosine deaminase and 
uridyl phosphoribosyl transferase (yfcu). The original pL6 vector was digested with the 
enzyme BtgZI and the PfCRT guide 3 sequence was cloned into the vector using the In Fusion 
cloning technology (primers 31-32). The original pL6 vector was provided by Dr. José Juan 
Lopez Rubio (Ghorbal et al., 2014).   
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>pARL-PfCRTDd2-GFP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The PfCRTDd2-GFP sequence from a pARL-PfCRTDd2-GFP-hdhfr vector (provided by Dr. Cecilia 
Sanchez) was cloned into a pARL-BSD vector (provided by Dr. Sophia Deil) using the enzymes 
XhoI and XmaI. The expression of PfCRT is regulated by the PfCRT promoter and the 3’UTR 
region of the P. berghei DT. The original pARL1a+ vector was provided by Prof. Tim Gilberger 
(Crabb et al., 2004). 
 
 
 
 
 
 
 
 
 



Appendix I: Plasmid maps 
 

 
148 

> pGEG-4T-3  GST, PfCK2α-GST and PfCK2αK72M-GST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pGEX-4T-3 is a commercially available plasmid from GE Healthcare Life Sciences. It is 
used to express recombinant proteins fused to GST in bacteria under the tac promoter (a 
hybrid promoter derived from the trp and lac promoters). It contains the resistance cassette 
for ampicillin and a thrombin cleavage site between the GST tag and the multicloning site. 
CK2α and CK2αK72M sequences were amplified from P. falciparum 3D7 cDNA and cloned into 
the vector using the BamHI and XhoI restriction sites. Both plasmids were provided by Prof. 
Christian Doerig (Holland et al., 2009).     
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>pARL-PfCRTDd2-HA 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
The GFP sequence from a pARL-PfCRTDd2-GFP construct was substituted by a 3xHis tag using 
the enzymes AvrII and XmaI. The expression of PfCRT is regulated by the PfCRT promoter 
and by the 3’UTR region of the P. berghei DT. The selection marker of the plasmid is the 
human dihydrofolate reductase gene (hdhfr). This construct was provided by Sarah Klinnert. 
The original pARL1a+ vector was provided by Prof. Tim Gilberger (Crabb et al., 2004). 
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> pGBKT7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pGBKT7 vector is a commercially available plasmid from Clontech. It is used to express 
recombinant proteins fused to the GAL4 DNA binding domain and the myc tag in yeast. The 
recombinant proteins are expressed in yeast under the control of the ADH1 promoter and 
the T7 and ADH1 terminators. The recombinant proteins fused to the myc tag can also be 
expressed in vitro from the T7 promoter. The plasmid contains the kanamicin resistance 
gene for selection in bacteria and the tryptophan nutritional marker for selection in yeast. 
The PfCRT sequences used as bait in the Y2H screen were amplified from P. falciparum Dd2 
cDNA and cloned into de vector using the NcoI and XmaI restriction sites. All the constructs 
in the pGBKT7 vector were provided by Anne Christin Roth.   
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> pGADT7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pGADT7 vector is a commercially available plasmid from Clontech. It is used to express 
recombinant proteins fused to the GAL4 activation domain and the HA tag in yeast. It also 
contains the SV40 nuclear localization signal in order to target the proteins to the yeast 
nucleus. The recombinant proteins are expressed in yeast under the control of the ADH1 
promoter and terminator. The recombinant proteins fused to the HA tag can also be 
expressed in vitro from the T7 promoter. The plasmid contains the ampicillin resistance gene 
for selection in bacteria and the leucine nutritional marker for selection in yeast. The 
plasmid was used to clone a cDNA library from the P. falciparum strain Dd2.   
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> pARL-PF11_0888 C-terminal -GFP-CAD 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The PF11_0488 C-terminal sequence (residues 1108-1429) was amplified from Dd2 cDNA 
and cloned into the pARL1a+ vector fused to GFP-CAD using the enzymes XhoI and AvrII. The 
expression of PF11_0488 C-terminal is regulated by the PfCRT promoter and by the 3’UTR region 
of the P. berghei DT. The selection marker of the plasmid is the human dihydrofolate 
reductase gene (hdhfr). This construct was provided by Dr. Cecilia Sanchez. The original 
pARL1a+ vector was provided by Prof. Tim Gilberger (Crabb et al., 2004). 
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> pL6-PF11_0888-HA-glmS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pL6 plasmid contains the sgRNA-expression cassette. The expression of the sgRNA is 
regulated by the promoter and the 3’UTR region of the P. falciparum U6 snRNA polymerase 
III (5’ U6). The selection marker of the plasmid is the human dihydrofolate reductase gene 
(hdhfr) and the negative selection marker is the bifunctional yeast cytosine deaminase and 
uridyl phosphoribosyl transferase (yfcu). The original pL6 vector was digested with the 
enzyme BtgZI and the PF11_0488 guide 1 (primers 44-45) or guide 2 (primers 46-47) 
sequences were cloned into the vector using the In Fusion cloning technology. A PF11_04488 
homology region from the C-terminal part of the gene (3529-4289 bp; primers 37-38) was 
cloned before the HA-glmS tag using the enzymes SpeI and BssHII. A 3’UTR homology region 
(1-523 bp; primers 42-43) was cloned after the HA-glmS tag using the enzymes NarI and AflII. 
The shield mutations were introduced by PCR (primers 39-40-41). The original pL6 vector 
was provided by Dr. José Juan Lopez Rubio.  
 



Appendix I: Plasmid maps 
 

 
154 

 
> pET28a-PF11_0488C-terminal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pET28a vector is a commercially available plasmid from Novagen. It is used to express 
recombinant proteins fused to a 6xHis tag in E.coli. The recombinant proteins are expressed 
under the control of the T7 promoter and terminator and the lac operator. The expression 
can be induced by the addition of IPTG, which binds to the lac repressor (lacI). The plasmid 
contains the kanamicin resistance gene for selection in bacteria. The C-terminal sequence of 
PF11_0488 (3328-4289 bp) was amplified from Dd2 cDNA and cloned into the pET28a vector 
using the restriction enzymes XhoI and NheI. This construct was provided by Anne Christin 
Roth.    
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Appendix II: DNA/Protein sequences 
 

1. PF11_0825w alignment between Plasmodium species  
 

P. vivax  PVX_080425 
P. falciparum     PF3D7_0516500   
P. chabaudi         PCHAS_1231900 
P. berghei          PBANKA_1231300 
P. yoelii                 PY17X_1234700 
 
 
P.vivax           MDVTSTLLDKSDSVAGDPSDAVPGAKKFFFSSIGKAHMINVLYGVGYTVQIAMLPYMLIS 
P.falciparum      MEVTSTLLEKGKNFAQDPSEVFPESKKFFFSSIGKAHLINSLYGIGYTIQIAMLPYLLIS 
P.chabaudi        MEVTSTLLQKSQMFADDSSDGFPTTKKFFVSSIGKAHLINSLYGIGYTIQIAMLPYLLIS 
P.berguei         MEVTSTLLKKSQMFADDSSDGFPTTKKFFVSSIGKAHLINSLYGIGYTIQIAMLPYLLIN 
P.yoelii          MEVTSTLLKKSQMFADDSSDGFPTTKKFFVSSIGKAHLINSLYGIGYTIQIAMLPYLLIN 
                  *:******.*.. .* * *: .* :****.*******:** ***:***:*******:**. 
 
P.vivax           SGAGIEHNGYLLTLFSLLQFVGSTFFGRLADIWGVKKSFYLSLCSSSLMYLMLPACRATW 
P.falciparum      SNAGIEHNGYLLTLFSLLQFTGSIFFGRMADIWGVKKSFYLSLISSCLMYLMIMVCESTW 
P.chabaudi        SNAGIEHNGYLLTLFSLLQFIGSIFFGRIADIWGVKKSFYLSLVSSSMMYLMLTISKSML 
P.berguei         SNAGIEHNGYLLTLFSLLQFVGSIFFGRIADIWGVKKSFYLSLLSSSMMYLMLTVCRSVL 
P.yoelii          SKAGIEHNGYLLTLFSLLQFIGSIFFGRIADIWGVKRSFYLSLVSSSIMYLMLTVCRSVL 
                  * ****************** ** ****:*******:****** **.:****:  ..:   
 
P.vivax           AYYVSFLPSFFMQTFQASSLLVCLKTDSEKRTAAIGYLNLSYGMGIILGSLIAGLMVNYV 
P.falciparum      AYYISFLPSFFMQTFQASSLLVCLKTNFDKRTGALGYLNLSYGMGIIFGSFLAGVMVNFV 
P.chabaudi        GYYISFVPSFFMQTFQVSSLLVCLKTENDNRTAAIGYLNLSYGIGIIFGSILAGMLVNIL 
P.berguei         GYYISFFPSFFMQTFQVSSLLVCLKTENDKRTAAIGYLNLSYGIGIIMGSILAGMLVNIL 
P.yoelii          GYYISFFPSFFMQTFQVSSLLVCLKTENDKRTAAIGYLNLSYGIGIIMGSILAGMLVNIL 
                  .**:**.*********.*********: ::**.*:********:***:**::**::** : 
 
P.vivax           GPRGNLLIALGSQIAALYVAKTLSEDPKLLKPVNLGDIKMREILSSIQNEYARVLNLFRK 
P.falciparum      GSRGNLLIALLSQLIALCISTTLEEDPKLLKSSNVDKMKMSEILLSIKNEYIRVLNLFKK 
P.chabaudi        GPRGNLFVAFLSQVLALYISKSLEEDPKLLVNNNIEKIKLKDLFTTAQNECTRLFKLFQK 
P.berguei         GPKGNLFVAFLSQILALYISKSLEEDPKLLINNNIEKIKLKELFKTAQNECTRLFKLFKK 
P.yoelii          GPRGNLFVAFLSQILALYISKNLEEDPKLLINNNIEKIKLKEIFKTAQNECTRLFKLFKK 
                  * :***::*: **: ** ::..*.******   *: .:*: ::: : :**  *:::**:* 
 
P.vivax           TYGMCLLILFGLLPILMTKFAFAPVVVDMFKLTPSHTSYLMTYAGIVTIIAEGLLAPYLS 
P.falciparum      TYGICLLILFGLLPILMTKFAFAPVVVDMFKLTPSHTSYLMTYAGIITIIAEGILAPYLS 
P.chabaudi        TYGICLLIIFGLLPILMTKFAFAPVVVDMFKLTPAHTSYLMTYAGIITIIAEGLLAPYLS 
P.berguei         TYGICLLILFGLLPILMTKFAFAPVVVDMFKLTPAHTSYLMTYAGIITIIAEGLLAPYLS 
P.yoelii          TYGICLLILFGLLPILMTKFAFAPVVVDMFKLTPAHTSYLMTYAGIITIIAEGLLAPYLS 
                  ***:****:*************************:***********:******:****** 
 
P.vivax           SILGDITCCKYSVPLTLAGFLALSLCGANEYLVLLFMSIPLCGGALLYICGTSQMTKRVE 
P.falciparum      SLLGDMICCKYSIPLTLTGFLLLSLCGANESLVLIFMSIPLCGGALLYICGTSQMTKRVE 
P.chabaudi        TLLGDMICCKFAIPLTLSGFLLLSLCGANEMFVLLFMIIPLCGGALLYICGTSQMTKRVD 
P.berguei         SLLGDMICCKFAIPLTLSGFLLLSLCGANEIFVLLFMTIPLCGGALLYICGTSQMTKRVD 
P.yoelii          SLLGDMICCKFAIPLTLSGFLLLSLCGANEFFVLLFMIIPLCGGALLYICGTSQMTKRVD 
                  ::***: ***:::****:*** ******** :**:** *********************: 
 
P.vivax           ESELGTAIGLNTSIFYAVTIVAPYLAFKSYLALGLGLYWLLCALICLVITTYIFALDKFT 
P.falciparum      ESELGSIIGLNTSLFYAVTIIAPYIAFKSYIALGLGLYWLLCAFICFVVTFYIFVLDKST 
P.chabaudi        ESELGSIIGLNTSIFYAVTIMAPYLAFKSYIALGLGLYWLLCAFICFVITIYIFVLDQST 
P.berguei         ESELGSIIGLNTSIFYAVTIMAPYLAFKSYIALGLGLYWLLCAFICFVITIYIFVLDQST 
P.yoelii          ESELGSIIGLNTSIFYAVTIMAPYLAFKSYIALGLGLYWLLCAFICFVITIYIFVLDQST 
                  *****: ******:******:***:*****:************:**:*:* ***.**: * 
 
P.vivax           LQIFEEDGDSLETMFSSVKLAW 
P.falciparum      LKIFKDDKDSIETMFSSIKSIL 
P.chabaudi        LKIFEDDADSLETMFSSIKLSL 
P.berguei         LKIFENDADSLETMFSSIKLSL 
P.yoelii          LQIFENDADSLETMFSSIKLSL 
                  *:**::* **:******:*    
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2. PF11_0825w mRNA variants  
 
> PF11_0825w variant 0 
 
         M  E  V  T  S  T  L  L  E  K  G  K  N  F  A  Q  D  P  S  E  V  F  P  E  S   
       1 ATGGAAGTAACATCAACCTTATTAGAAAAGGGTAAAAACTTTGCCCAAGATCCATCTGAGGTTTTTCCTGAGTCA 
        
         K  K  F  F  F  S  S  I  G  K  A  H  L  I  N  S  L  Y  G  I  G  Y  T  I  Q   
      76 TTTTTTAAAAAAAAAAGCAGTTAACCATTTCGAGTAAACTATTTAAGGGAGATACCTTATCCGATATGATAAGTT 
       
         I  A  M  L  P  Y  L  L  I  S  S  N  A  G  I  E  H  N  G  Y  L  L  T  L  F   
     151 TAGCGTTACAACGGTATAAACAACTATTCAAGATTACGTCCGTATCTTGTGTTACCTATAAATAATTGGAATAAA 
  
         S  L  L  Q  F  T  G  S  I  F  F  G  R  M  A  D  I  W  G  V  K  K  S  F  Y   
     226 AGCGAAAATGTTAAATGCCCTAGGTAAAAAAAACCTTCTTACCGTCTGTATACCCCACATTTTTTCAGGAAAATA 
 
         L  S  L  I  S  S  C  L  M  Y  L  M  I  M  V  C  E  S  T  W  A  Y  Y  I  S   
     301 AATAGAAATTAAAGGAGAACGAATTACATGGATTACTAGTACCACACGCTTAGCTGCACCCGGATGATGTAGTCG 
 
         F  L  P  S  F  F  M  Q  T  F  Q  A  S  S  L  L  V  C  L  K  T  N  F  D  K   
     376 AAGAATGGTAGGAAAAAATACGTTTGTAAAGTTCGAAGGAGGAATAATCACACGAATTTTTGTTTAAAGCTGTTT 
 
         R  T  G  A  L  G  Y  L  N  L  S  Y  G  M  G  I  I  F  G  S  F  L  A  G  V   
     451 TCCTGTCCTCGGAATCCAATAGATTTAGATTCAATACCTTACCCATAATATAAGCCATCAAAGAATCGTCCACAA 
 
         M  V  N  F  V  G  S  R  G  N  L  L  I  A  L  L  S  Q  L  I  A  L  C  I  S   
     526 TACCATTTGAAACATCCTAGTTCTCCTTTAAATAATTAACGTAATAATAGGGTTAATTATCGAAATACATATTCA 
 
         T  T  L  E  E  D  P  K  L  L  K  S  S  N  V  D  K  M  K  M  S  E  I  L  L   
     601 TGTTGCAATCTTCTTCTAGGCTTTAATAACTTCTCGAGATTACACCTATTTTACTTTTACAGTCTTTATGAAAAT 
 
         S  I  K  N  E  Y  I  R  V  L  N  L  F  K  K  T  Y  G  I  C  L  L  I  L  F   
     676 TCATAATTTTTACTTATGTATTCTCATAATTTAAATAAATTTTTTTGTATACCTTATACAAATAATTATGAAAAA 
 
         G  L  L  P  I  L  M  T  K  F  A  F  A  P  V  V  V  D  M  F  K  L  T  P  S   
     751 CCTAATAATGGATATAATTACTGTTTTAAACGAAAACGAGGACACCAACATCTATACAAGTTTAATTGAGGAAGT 
 
         H  T  S  Y  L  M  T  Y  A  G  I  I  T  I  I  A  E  G  I  L  A  P  Y  L  S   
     826 GTGTGTAGTATAGATTACTGAATACGTCCATATTATTGATAATAACGACTTCCCTATGAACGAGGAATAAATTCA 
 
         S  L  L  G  D  M  I  C  C  K  Y  S  I  P  L  T  L  T  G  F  L  L  L  S  L   
     901 AGAAATGATCCCCTATACTAAACAACATTTATAAGCTATGGTGATTGTAATTGTCCTAAAAATAATAATAGTAAT 
 
         C  G  A  N  E  S  L  V  L  I  F  M  S  I  P  L  C  G  G  A  L  L  Y  I  C   
     976 ACACCGCGATTGCTTAGTGAACAAGAATATAAATACAGATATGGTAATACACCTCCACGAAATAATATATATACA 
 
         G  T  S  Q  M  T  K  R  V  E  E  S  E  L  G  S  I  I  G  L  N  T  S  L  F   
    1051 CCTTGATCGGTTTACTGTTTTGCTCACCTTCTTAGTCTTAACCCAAGCTAATAACCAAATTTATGTAGAGAAAAA 
 
         Y  A  V  T  I  I  A  P  Y  I  A  F  K  S  Y  I  A  L  G  L  G  L  Y  W  L   
    1126 ATACGGCAATGTTATTATCGAGGTATATAACGGAAATTTAGTATATATCGGAACCCTAACCCTAATATAACCGAG 
 
         L  C  A  F  I  C  F  V  V  T  F  Y  I  F  V  L  D  K  S  T  L  K  I  F  K   
    1201 GATACACGGAAATAAACAAAACAACAATGAAAGATGTAAAAGCATGAACTATTTAGATGGGAATTTTAAAAATTT 
 
         D  D  K  D  S  I  E  T  M  F  S  S  I  K  S  I  L  *  
    1276 GACGATAAGGACAGCATAGAAACAATGTTTTCCAGTATTAAGTCGATTTTATAA 
    

 
 
> PF11_0825w variant 1 
 
In green, protein sequence of the longest ORF.  
 
 
           G  S  N  I  N  L  I  R  K  G  *  K  L  C  P  R  S  I  *  G  F  S  *  V  K 
          W  K  *  H  Q  P  Y  *  K  R  V  K  T  L  P  K  I  H  L  R  F  F  L  S  Q  
         M  E  V  T  S  T  L  L  E  K  G  K  N  F  A  Q  D  P  S  E  V  F  P  E  S   
       1 ATGGAAGTAACATCAACCTTATTAGAAAAGGGTAAAAACTTTGCCCAAGATCCATCTGAGGTTTTTCCTGAGTCA 
      
           K  I  F  F  F  V  N  W  *  S  S  F  D  K  F  P  L  W  N  R  L  Y  Y  S  N 
          K  N  F  F  F  R  Q  L  V  K  L  I  *  *  I  P  S  M  E  *  A  I  L  F  K  
         K  K  F  F  F  S  S  I  G  K  A  H  L  I  N  S  L  Y  G  I  G  Y  T  I  Q   
      76 TTTTTTAAAAAAAAAAGCAGTTAACCATTTCGAGTAAACTATTTAAGGGAGATACCTTATCCGATATGATAAGTT 
 
           R  N  V  A  I  F  V  D  K  F  *  C  R  H  R  T  Q  W  I  F  I  N  L  I  F 
          S  Q  C  C  H  I  C  *  *  V  L  M  Q  A  *  N  T  M  D  I  Y  *  P  Y  F  
         I  A  M  L  P  Y  L  L  I  S  S  N  A  G  I  E  H  N  G  Y  L  L  T  L  F   
     151 ATCGCAATGTTGCCATATTTGTTGATAAGTTCTAATGCAGGCATAGAACACAATGGATATTTATTAACCTTATTT 
     
           A  F  T  I  Y  G  I  H  F  F  W  K  N  G  R  H  I  M  V  C  E  S  T  W  A 
          R  F  Y  N  L  R  D  P  F  F  L  E  E  W  Q  T  Y  H  G  V  R  I  D  V  G  
         S  L  L  Q  F  T  G  S  I  F  F  G  R  M  A  D  I  S  W  C  A  N  R  R  G   
     226 TCGCTTTTACAATTTACGGGATCCATTTTTTTTGGAAGAATGGCAGACATATCATGGTGTGCGAATCGACGTGGG 



Appendix II: DNA/Protein sequences 
 

 
157 

 
           Y  Y  I  S  F  L  P  S  F  F  M  Q  T  F  Q  A  S  S  L  L  V  C  L  K  T 
          L  L  H  Q  L  L  T  I  L  F  Y  A  N  I  S  S  F  L  L  I  S  V  L  K  N  
         P  T  T  S  A  S  Y  H  P  F  L  C  K  H  F  K  L  P  P  Y  *  C  A  *  K   
     301 CCTACTACATCAGCTTCTTACCATCCTTTTTTATGCAAACATTTCAAGCTTCCTCCTTATTAGTGTGCTTAAAAA 
 
           N  F  D  K  R  T  G  A  L  G  Y  L  N  L  S  Y  G  M  G  I  I  F  G  S  F 
          K  F  R  Q  K  D  R  S  L  R  L  S  K  S  K  L  W  N  G  Y  Y  I  R  *  F  
         Q  I  S  T  K  G  Q  E  P  *  V  I  *  I  *  V  M  E  W  V  L  Y  S  V  V   
     376 CAAATTTCGACAAAAGGACAGGAGCCTTAGGTTATCTAAATCTAAGTTATGGAATGGGTATTATATTCGGTAGTT 
     
           L  A  G  V  M  V  N  F  V  G  S  R  G  N  L  L  I  A  L  L  S  Q  L  I  A 
          L  S  R  C  Y  G  K  L  C  R  I  K  R  K  F  I  N  C  I  I  I  P  I  N  S  
         S  *  Q  V  L  W  *  T  L  *  D  Q  E  E  I  Y  *  L  H  Y  Y  P  N  *  *   
     451 TCTTAGCAGGTGTTATGGTAAACTTTGTAGGATCAAGAGGAAATTTATTAATTGCATTATTATCCCAATTAATAG 
      
           L  C  I  S  T  T  L  E  E  D  P  K  L  L  K  S  S  N  V  D  K  M  K  M  S 
          F  M  Y  K  Y  N  V  R  R  R  S  E  I  I  E  E  L  *  C  G  *  N  E  N  V  
         L  Y  V  *  V  Q  R  *  K  K  I  R  N  Y  *  R  A  L  M  W  I  K  *  K  C   
     526 CTTTATGTATAAGTACAACGTTAGAAGAAGATCCGAAATTATTGAAGAGCTCTAATGTGGATAAAATGAAAATGT 
    
           E  I  L  L  S  I  K  N  E  Y  I  R  V  L  N  L  F  K  K  T  Y  G  I  C  L 
          R  N  T  F  K  Y  *  K  *  I  H  K  S  I  K  F  I  *  K  N  I  W  N  M  F  
         Q  K  Y  F  *  V  L  K  M  N  T  *  E  Y  *  I  Y  L  K  K  H  M  E  Y  V   
     601 CAGAAATACTTTTAAGTATTAAAAATGAATACATAAGAGTATTAAATTTATTTAAAAAAACATATGGAATATGTT 
    
           L  I  L  F  G  L  L  P  I  L  M  T  K  F  A  F  A  P  V  V  V  D  M  F  K 
          I  N  T  F  W  I  I  T  Y  I  N  D  K  I  C  F  C  S  C  G  C  R  Y  V  Q  
         Y  *  Y  F  L  D  Y  Y  L  Y  *  *  Q  N  L  L  L  L  L  W  L  *  I  C  S   
     676 TATTAATACTTTTTGGATTATTACCTATATTAATGACAAAATTTGCTTTTGCTCCTGTGGTTGTAGATATGTTCA 
     
           L  T  P  S  H  T  S  Y  L  M  T  Y  A  G  I  I  T  I  I  A  E  G  I  L  A 
          I  N  S  F  T  H  I  I  S  N  D  L  C  R  Y  N  N  Y  Y  C  *  R  D  T  C  
         N  *  L  L  H  T  H  H  I  *  *  L  M  Q  V  *  *  L  L  L  L  K  G  Y  L   
     751 AATTAACTCCTTCACACACATCATATCTAATGACTTATGCAGGTATAATAACTATTATTGCTGAAGGGATACTTG 
      
           P  Y  L  S  S  L  L  G  D  M  I  C  C  K  Y  S  I  P  L  T  L  T  G  F  L 
          S  L  F  K  F  F  T  R  G  Y  D  L  L  *  I  F  D  T  T  N  I  N  R  I  F  
         L  L  I  *  V  L  Y  *  G  I  *  F  V  V  N  I  R  Y  H  *  H  *  Q  D  F   
     826 CTCCTTATTTAAGTTCTTTACTAGGGGATATGATTTGTTGTAAATATTCGATACCACTAACATTAACAGGATTTT 
 
           L  L  S  L  C  G  A  N  E  S  L  V  L  I  F  M  S  I  P  L  C  G  G  A  L 
          I  I  I  I  M  W  R  *  R  I  T  C  S  Y  I  Y  V  Y  T  I  M  W  R  C  F  
         Y  Y  Y  H  Y  V  A  L  T  N  H  L  F  L  Y  L  C  L  Y  H  Y  V  E  V  L   
     901 TATTATTATCATTATGTGGCGCTAACGAATCACTTGTTCTTATATTTATGTCTATACCATTATGTGGAGGTGCTT 
   
           L  Y  I  C  G  T  S  Q  M  T  K  R  V  E  E  S  E  L  G  S  I  I  G  L  N 
          I  I  Y  M  W  N  *  P  N  D  K  T  S  G  R  I  R  I  G  F  D  Y  W  F  K  
         Y  Y  I  Y  V  E  L  A  K  *  Q  N  E  W  K  N  Q  N  W  V  R  L  L  V  *   
     976 TATTATATATATGTGGAACTAGCCAAATGACAAAACGAGTGGAAGAATCAGAATTGGGTTCGATTATTGGTTTAA 
 
           T  S  L  F  Y  A  V  T  I  I  A  P  Y  I  A  F  K  S  Y  I  A  L  G  L  G 
          Y  I  S  F  L  C  R  Y  N  N  S  S  I  Y  C  L  *  I  I  Y  S  L  G  I  G  
         I  H  L  F  F  M  P  L  Q  *  *  L  H  I  L  P  L  N  H  I  *  P  W  D  W   
    1051 ATACATCTCTTTTTTATGCCGTTACAATAATAGCTCCATATATTGCCTTTAAATCATATATAGCCTTGGGATTGG 
    
           L  Y  W  L  L  C  A  F  I  C  F  V  V  T  F  Y  I  F  V  L  D  K  S  T  L 
          I  I  L  A  P  M  C  L  Y  L  F  C  C  Y  F  L  H  F  R  T  *  *  I  Y  P  
         D  Y  I  G  S  Y  V  P  L  F  V  L  L  L  L  S  T  F  S  Y  L  I  N  L  P   
    1126 GATTATATTGGCTCCTATGTGCCTTTATTTGTTTTGTTGTTACTTTCTACATTTTCGTACTTGATAAATCTACCC 
    
           K  I  F  K  D  D  K  D  S  I  E  T  M  F  S  S  I  K  S  I  L  *  
          *  N  F  *  R  R  *  G  Q  H  R  N  N  V  F  Q  Y  *  V  D  F  I 
         L  K  F  L  K  T  I  R  T  A  *  K  Q  C  F  P  V  L  S  R  F  Y 
    1201 TTAAAATTTTTAAAGACGATAAGGACAGCATAGAAACAATGTTTTCCAGTATTAAGTCGATTTTATAA  
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> PF11_0825w variant 2 
 
In green, protein sequence of the longest ORF; in yellow, protein sequence codified on the 3rd intron that is not 
present on the other mRNA variants; in lower case, 3rd intron DNA sequence.  
 
 
           G  S  N  I  N  L  I  R  K  G  *  K  L  C  P  R  S  I  *  G  F  S  *  V  K 
          W  K  *  H  Q  P  Y  *  K  R  V  K  T  L  P  K  I  H  L  R  F  F  L  S  Q  
         M  E  V  T  S  T  L  L  E  K  G  K  N  F  A  Q  D  P  S  E  V  F  P  E  S   
       1 ATGGAAGTAACATCAACCTTATTAGAAAAGGGTAAAAACTTTGCCCAAGATCCATCTGAGGTTTTTCCTGAGTCA 
 
           K  I  F  F  F  V  N  W  *  S  S  F  D  K  F  P  L  W  N  R  L  Y  Y  S  N 
          K  N  F  F  F  R  Q  L  V  K  L  I  *  *  I  P  S  M  E  *  A  I  L  F  K  
         K  K  F  F  F  S  S  I  G  K  A  H  L  I  N  S  L  Y  G  I  G  Y  T  I  Q   
      76 AAAAAATTTTTTTTTTCGTCAATTGGTAAAGCTCATTTGATAAATTCCCTCTATGGAATAGGCTATACTATTCAA 
     
           R  N  V  A  I  F  V  D  K  F  *  C  R  H  R  T  Q  W  I  F  I  N  L  I  F 
          S  Q  C  C  H  I  C  *  *  V  L  M  Q  A  *  N  T  M  D  I  Y  *  P  Y  F  
         I  A  M  L  P  Y  L  L  I  S  S  N  A  G  I  E  H  N  G  Y  L  L  T  L  F   
     151 ATCGCAATGTTGCCATATTTGTTGATAAGTTCTAATGCAGGCATAGAACACAATGGATATTTATTAACCTTATTT 
     
           A  F  T  I  Y  G  I  H  F  F  W  K  N  G  R  H  V  K  N  I  N  R  I  I  Y 
          R  F  Y  N  L  R  D  P  F  F  L  E  E  W  Q  T  C  *  K  Y  K  Q  D  Y  I  
         S  L  L  Q  F  T  G  S  I  F  F  G  R  M  A  D  M  L  K  I  *  T  G  L  Y   
     226 TCGCTTTTACAATTTACGGGATCCATTTTTTTTGGAAGAATGGCAGACATgttaaaaatataaacaggattatat 
  
           Y  R  N  E  R  K  K  K  K  C  L  C  I  Y  I  F  L  F  F  H  I  I  Y  I  D 
          L  *  K  *  K  K  E  K  E  M  F  M  Y  L  Y  I  F  I  L  S  Y  N  I  Y  R  
         I  I  E  M  K  E  R  K  R  N  V  Y  V  F  I  Y  F  Y  S  F  I  *  Y  I  *   
     301 attatagaaatgaaagaaagaaaaagaaatgtttatgtatttatatatttttattctttcatataatatatatag 
      
           G  V  *  K  S  P  F  I  Y  L  *  F  P  L  A  *  C  T  *  *  S  W  C  A  N 
          W  G  V  K  K  S  F  Y  L  S  L  I  S  S  C  L  M  Y  L  M  I  M  V  C  E  
         M  G  C  K  K  V  L  L  F  I  F  N  F  L  L  L  N  V  P  N  D  H  G  V  R   
     376 ATGGGGTGTAAAAAAGTCCTTTTATTTATCTTTAATTTCCTCTTGCTTAATGTACCTAATGATCATGGTGTGCGA 
   
           R  R  G  P  T  T  S  A  S  Y  H  P  F  L  C  K  H  F  K  L  P  P  Y  *  C 
          S  T  W  A  Y  Y  I  S  F  L  P  S  F  F  M  Q  T  F  Q  A  S  S  L  L  V  
         I  D  V  G  L  L  H  Q  L  L  T  I  L  F  Y  A  N  I  S  S  F  L  L  I  S   
     451 ATCGACGTGGGCCTACTACATCAGCTTCTTACCATCCTTTTTTATGCAAACATTTCAAGCTTCCTCCTTATTAGT 
    
           A  *  K  Q  I  S  T  K  G  Q  E  P  *  V  I  *  I  *  V  M  E  W  V  L  Y 
          C  L  K  T  N  F  D  K  R  T  G  A  L  G  Y  L  N  L  S  Y  G  M  G  I  I  
         V  L  K  N  K  F  R  Q  K  D  R  S  L  R  L  S  K  S  K  L  W  N  G  Y  Y   
     526 GTGCTTAAAAACAAATTTCGACAAAAGGACAGGAGCCTTAGGTTATCTAAATCTAAGTTATGGAATGGGTATTAT 
 
           S  V  V  S  *  Q  V  L  W  *  T  L  *  D  Q  E  E  I  Y  *  L  H  Y  Y  P 
          F  G  S  F  L  A  G  V  M  V  N  F  V  G  S  R  G  N  L  L  I  A  L  L  S  
         I  R  *  F  L  S  R  C  Y  G  K  L  C  R  I  K  R  K  F  I  N  C  I  I  I   
     601 ATTCGGTAGTTTCTTAGCAGGTGTTATGGTAAACTTTGTAGGATCAAGAGGAAATTTATTAATTGCATTATTATC 
 
           N  *  *  L  Y  V  *  V  Q  R  *  K  K  I  R  N  Y  *  R  A  L  M  W  I  K 
          Q  L  I  A  L  C  I  S  T  T  L  E  E  D  P  K  L  L  K  S  S  N  V  D  K  
         P  I  N  S  F  M  Y  K  Y  N  V  R  R  R  S  E  I  I  E  E  L  *  C  G  *   
     676 CCAATTAATAGCTTTATGTATAAGTACAACGTTAGAAGAAGATCCGAAATTATTGAAGAGCTCTAATGTGGATAA 
 
           *  K  C  Q  K  Y  F  *  V  L  K  M  N  T  *  E  Y  *  I  Y  L  K  K  H  M 
          M  K  M  S  E  I  L  L  S  I  K  N  E  Y  I  R  V  L  N  L  F  K  K  T  Y  
         N  E  N  V  R  N  T  F  K  Y  *  K  *  I  H  K  S  I  K  F  I  *  K  N  I   
     751 AATGAAAATGTCAGAAATACTTTTAAGTATTAAAAATGAATACATAAGAGTATTAAATTTATTTAAAAAAACATA 
 
           E  Y  V  Y  *  Y  F  L  D  Y  Y  L  Y  *  *  Q  N  L  L  L  L  L  W  L  * 
          G  I  C  L  L  I  L  F  G  L  L  P  I  L  M  T  K  F  A  F  A  P  V  V  V  
         W  N  M  F  I  N  T  F  W  I  I  T  Y  I  N  D  K  I  C  F  C  S  C  G  C   
     826 TGGAATATGTTTATTAATACTTTTTGGATTATTACCTATATTAATGACAAAATTTGCTTTTGCTCCTGTGGTTGT 
 
           I  C  S  N  *  L  L  H  T  H  H  I  *  *  L  M  Q  V  *  *  L  L  L  L  K 
          D  M  F  K  L  T  P  S  H  T  S  Y  L  M  T  Y  A  G  I  I  T  I  I  A  E  
         R  Y  V  Q  I  N  S  F  T  H  I  I  S  N  D  L  C  R  Y  N  N  Y  Y  C  *   
     901 AGATATGTTCAAATTAACTCCTTCACACACATCATATCTAATGACTTATGCAGGTATAATAACTATTATTGCTGA  
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           G  Y  L  L  L  I  *  V  L  Y  *  G  I  *  F  V  V  N  I  R  Y  H  *  H  * 
          G  I  L  A  P  Y  L  S  S  L  L  G  D  M  I  C  C  K  Y  S  I  P  L  T  L  
         R  D  T  C  S  L  F  K  F  F  T  R  G  Y  D  L  L  *  I  F  D  T  T  N  I   

     976 AGGGATACTTGCTCCTTATTTAAGTTCTTTACTAGGGGATATGATTTGTTGTAAATATTCGATACCACTAACATT 
            Q  D  F  Y  Y  Y  H  Y  V  A  L  T  N  H  L  F  L  Y  L  C  L  Y  H  Y  V 
          T  G  F  L  L  L  S  L  C  G  A  N  E  S  L  V  L  I  F  M  S  I  P  L  C  
         N  R  I  F  I  I  I  I  M  W  R  *  R  I  T  C  S  Y  I  Y  V  Y  T  I  M   
    1051 AACAGGATTTTTATTATTATCATTATGTGGCGCTAACGAATCACTTGTTCTTATATTTATGTCTATACCATTATG 
 
           E  V  L  Y  Y  I  Y  V  E  L  A  K  *  Q  N  E  W  K  N  Q  N  W  V  R  L 
          G  G  A  L  L  Y  I  C  G  T  S  Q  M  T  K  R  V  E  E  S  E  L  G  S  I  
         W  R  C  F  I  I  Y  M  W  N  *  P  N  D  K  T  S  G  R  I  R  I  G  F  D   
    1126 TGGAGGTGCTTTATTATATATATGTGGAACTAGCCAAATGACAAAACGAGTGGAAGAATCAGAATTGGGTTCGAT 
 
 
           L  V  *  I  H  L  F  F  M  P  L  Q  *  *  L  H  I  L  P  L  N  H  I  *  P 
          I  G  L  N  T  S  L  F  Y  A  V  T  I  I  A  P  Y  I  A  F  K  S  Y  I  A  
         Y  W  F  K  Y  I  S  F  L  C  R  Y  N  N  S  S  I  Y  C  L  *  I  I  Y  S   
    1201 TATTGGTTTAAATACATCTCTTTTTTATGCCGTTACAATAATAGCTCCATATATTGCCTTTAAATCATATATAGC 
 
           W  D  W  D  Y  I  G  S  Y  V  P  L  F  V  L  L  L  L  S  T  F  S  Y  L  I 
          L  G  L  G  L  Y  W  L  L  C  A  F  I  C  F  V  V  T  F  Y  I  F  V  L  D  
         L  G  I  G  I  I  L  A  P  M  C  L  Y  L  F  C  C  Y  F  L  H  F  R  T  *   
    1276 CTTGGGATTGGGATTATATTGGCTCCTATGTGCCTTTATTTGTTTTGTTGTTACTTTCTACATTTTCGTACTTGA 
   
           N  L  P  L  K  F  L  K  T  I  R  T  A  *  K  Q  C  F  P  V  L  S  R  F  Y 
          K  S  T  L  K  I  F  K  D  D  K  D  S  I  E  T  M  F  S  S  I  K  S  I  L  
         *  I  Y  P  *  N  F  *  R  R  *  G  Q  H  R  N  N  V  F  Q  Y  *  V  D  F   
    1351 TAAATCTACCCTTAAAATTTTTAAAGACGATAAGGACAGCATAGAAACAATGTTTTCCAGTATTAAGTCGATTTT 
 
          
          *  
         I 
    1426 ATAA 

3. Alignment N-terminal PFE0825w  variants 

 

variant0      MEVTSTLLEKGKNFAQDPSEVFPESKKFFFSSIGKAHLINSLYGIGYTIQIAMLPYLLIS 
variant1      ------------------------------------------------------------ 
variant2      ------------------------------------------------------------ 
                                                                           
 
variant0      SNAGIEHNGYLLTLFSLLQFTGSIFFGRMADIWGVKKSFYLSLISSCLMYLMIMVCESTW 
variant1      -----------------------------------------------------MVCESTW 
variant2      ----------------MFMYLYIFILSYNIYRWGVKKSFYLSLISSCLMYLMIMVCESTW 
                                                                   ******* 

 

4. Codon optimized sequences for expression in X. laevis 
 
> PF11_0825w variant 0 
 
  1 ATGGAAGTTA CTTCTACCTT GTTGGAAAAG GGTAAGAACT TTGCTCAAGA TCCATCTGAA  
      61 GCTGCTCCAG AATCTAAAAA AGCTGCTTTC TCATCCATTG GTAAGGCCCA TTTGATCAAT  
     121 TCCTTGTATG GTATTGGTTA CACCATCCAA ATTGCCATGT TGCCATACTT GTTGATTTCT  
     181 TCTAACGCCG GTATCGAACA TAACGGTTAT TTGTTGACCT TGTTCTCCTT GTTGCAATTC  
     241 ACCGGTTCTA TTTTCTTCGG TAGAATGGCT GATATCTGGG GTGTTAAGAA GTCTTTCTAC  
     301 TTGTCTTTGA TCTCCTCCTG CTTGATGTAC TTGATGATTA TGGTTTGTGA ATCCACCTGG  
     361 GCTTACTACA TTTCTTTTTT GCCATCCTTC TTCATGCAAA CCTTCCAAGC TTCTTCTTTG  
     421 TTGGTCTGCT TAAAGACCAA CTTCGATAAG AGAACTGGTG CTTTGGGTTA CTTGAATTTG  
     481 TCTTATGGTA TGGGTATCAT CTTCGGTTCT TTTTTGGCTG GTGTTATGGT TAACTTCGTT  
     541 GGTTCTAGAG GTAACTTGTT GATTGCTTTG TTGTCCCAAT TGATTGCCTT GTGTATTTCT  
     601 ACCACCTTGG AAGAAGATCC AAAGTTGTTG AAGTCCTCCA ACGTTGATAA GATGAAGATG  
     661 TCCGAAATCT TGTTGTCCAT CAAGAACGAG TATATCAGAG TCTTGAACTT GTTCAAAAAG  
     721 ACCTACGGTA TCTGCTTGTT GATCTTGTTT GGTTTGTTGC CAATCTTGAT GACCAAGTTT  
     781 GCTTTTGCTC CAGTTGTTGT TGACATGTTT AAGTTGACTC CATCCCATAC CTCTTACTTG  
     841 ATGACATACG CTGGTATCAT TACCATTATT GCCGAAGGTA TTTTGGCCCC ATACTTGTCA  
     901 TCTTTGTTGG GTGATATGAT CTGTTGCAAG TACTCTATTC CATTGACTTT GACCGGTTTC  
     961 TTGTTGTTGT CTTTGTGTGG TGCTAACGAA TCCTTGGTTT TGATTTTCAT GTCCATTCCA  
    1021 TTGTGTGGTG GTGCTTTGTT GTACATTTGT GGTACTTCTC AAATGACCAA GAGAGTTGAA  
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    1081 GAATCTGAAT TGGGTTCCAT TATCGGTTTG AACACCTCTT TGTTCTACGC CGTTACTATT  
    1141 ATTGCTCCTT ACATTGCTTT CAAGTCCTAC ATTGCTTTGG GTTTGGGTCT ATATTGGTTG  
    1201 TTGTGTGCTT TCATCTGCTT CGTTGTTACC TTCTACATCT TCGTTTTGGA TAAGTCCACC  
    1261 TTGAAGATTT TCAAAGCTGC TAAGGCTTCC ATTGCTACTA TGTTCTCTTC CATCAAATCC  
    1321 ATCTTGCACC ACCACCACCA CCACTAA 
 
 
> PF11_0825w variant 1 
 
       1 ATGGTTTGTG AATCCACCTG GGCTTACTAC ATTTCTTTTT TGCCATCCTT CTTCATGCAA  
      61 ACCTTCCAAG CTTCTTCTTT GTTGGTCTGC TTAAAGACCA ACTTCGATAA GAGAACTGGT  
     121 GCTTTGGGTT ACTTGAATTT GTCTTATGGT ATGGGTATCA TCTTCGGTTC TTTTTTGGCT  
     181 GGTGTTATGG TTAACTTCGT TGGTTCTAGA GGTAACTTGT TGATTGCTTT GTTGTCCCAA  
     241 TTGATTGCCT TGTGTATTTC TACCACCTTG GAAGAAGATC CAAAGTTGTT GAAGTCCTCC  
     301 AACGTTGATA AGATGAAGAT GTCCGAAATC TTGTTGTCCA TCAAGAACGA GTATATCAGA  
     361 GTCTTGAACT TGTTCAAAAA GACCTACGGT ATCTGCTTGT TGATCTTGTT TGGTTTGTTG  
     421 CCAATCTTGA TGACCAAGTT TGCTTTTGCT CCAGTTGTTG TTGACATGTT TAAGTTGACT  
     481 CCATCCCATA CCTCTTACTT GATGACATAC GCTGGTATCA TTACCATTAT TGCCGAAGGT  
     541 ATTTTGGCCC CATACTTGTC ATCTTTGTTG GGTGATATGA TCTGTTGCAA GTACTCTATT  
     601 CCATTGACTT TGACCGGTTT CTTGTTGTTG TCTTTGTGTG GTGCTAACGA ATCCTTGGTT  
     661 TTGATTTTCA TGTCCATTCC ATTGTGTGGT GGTGCTTTGT TGTACATTTG TGGTACTTCT  
     721 CAAATGACCA AGAGAGTTGA AGAATCTGAA TTGGGTTCCA TTATCGGTTT GAACACCTCT  
     781 TTGTTCTACG CCGTTACTAT TATTGCTCCT TACATTGCTT TCAAGTCCTA CATTGCTTTG  
     841 GGTTTGGGTC TATATTGGTT GTTGTGTGCT TTCATCTGCT TCGTTGTTAC CTTCTACATC  
     901 TTCGTTTTGG ATAAGTCCAC CTTGAAGATT TTCAAAGCTG CTAAGGCTTC CATTGCTACT  
     961 ATGTTCTCTT CCATCAAATC CATCTTGCAC CACCACCACC ACCACTAA 
 
 
> PF11_0825w variant 2 
 
In yellow, protein sequence codified on the 3rd intron that is not present on the other mRNA variants and that 
was not codon optimized. 
 
 
       1 ATGTTTATGT ATTTATATAT TTTTATTCTT TCATATAATA TATATAGATG GGGTGTAAAA  
      61 AAGTCCTTTT ATTTATCTTT AATTTCCTCT TGCTTAATGT ACCTAATGAT CATGGTTTGT  
     121 GAATCCACCT GGGCTTACTA CATTTCTTTT TTGCCATCCT TCTTCATGCA AACCTTCCAA  
     181 GCTTCTTCTT TGTTGGTCTG CTTAAAGACC AACTTCGATA AGAGAACTGG TGCTTTGGGT  
     241 TACTTGAATT TGTCTTATGG TATGGGTATC ATCTTCGGTT CTTTTTTGGC TGGTGTTATG  
     301 GTTAACTTCG TTGGTTCTAG AGGTAACTTG TTGATTGCTT TGTTGTCCCA ATTGATTGCC  
     361 TTGTGTATTT CTACCACCTT GGAAGAAGAT CCAAAGTTGT TGAAGTCCTC CAACGTTGAT  
     421 AAGATGAAGA TGTCCGAAAT CTTGTTGTCC ATCAAGAACG AGTATATCAG AGTCTTGAAC  
     481 TTGTTCAAAA AGACCTACGG TATCTGCTTG TTGATCTTGT TTGGTTTGTT GCCAATCTTG  
     541 ATGACCAAGT TTGCTTTTGC TCCAGTTGTT GTTGACATGT TTAAGTTGAC TCCATCCCAT  
     601 ACCTCTTACT TGATGACATA CGCTGGTATC ATTACCATTA TTGCCGAAGG TATTTTGGCC  
     661 CCATACTTGT CATCTTTGTT GGGTGATATG ATCTGTTGCA AGTACTCTAT TCCATTGACT  
     721 TTGACCGGTT TCTTGTTGTT GTCTTTGTGT GGTGCTAACG AATCCTTGGT TTTGATTTTC  
     781 ATGTCCATTC CATTGTGTGG TGGTGCTTTG TTGTACATTT GTGGTACTTC TCAAATGACC  
     841 AAGAGAGTTG AAGAATCTGA ATTGGGTTCC ATTATCGGTT TGAACACCTC TTTGTTCTAC  
     901 GCCGTTACTA TTATTGCTCC TTACATTGCT TTCAAGTCCT ACATTGCTTT GGGTTTGGGT  
     961 CTATATTGGT TGTTGTGTGC TTTCATCTGC TTCGTTGTTA CCTTCTACAT CTTCGTTTTG  
    1021 GATAAGTCCA CCTTGAAGAT TTTCAAAGCT GCTAAGGCTT CCATTGCTAC TATGTTCTCT  
    1081 TCCATCAAAT CCATCTTGCA CCACCACCAC CACCACTAA  
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> PfCRTDd2 
 
  1 ATGAAGTTCG CCTCTAAGAA GAACAATCAA AAGAACTCCT CCAAGAATGC TGAAAGAGCT  
      61 AGAGCTGCTG ATAATGCTGC TCAAGAAGGT AACGGTTCTA GATTGGGTGG TGGTTCTTGT  
     121 TTGGGTAAAT GTGCTCATGC TGCTAAAGCT GCCTTCAAAG AAATCAAGGA CAACATCTTC  
     181 ATCTACATCT TGTCCATCAT CTACTTGTCC GTTTGCGTTA TTGAAACCAT CTTCGCCAAG  
     241 AGAACCTTGA ACAAGATTGG TAACTACTCT TTCGTTACCT CTGAAACCCA TAACTTCATC  
     301 TGCATGATCA TGTTCTTCAT CGTCTATTCC TTGTTCGGTA ACAAGAAGGG TAACTCCAAA  
     361 GAAAGACACA GATCCTTCAA CTTGCAATTC TTCGCCATTT CTATGTTGGA TGCCTGCTCT  
     421 GTTATTTTGG CTTTCATCGG TTTGACTAGA ACTACCGGTA ACATCCAATC TTTCGTCTTG  
     481 CAATTGTCCA TTCCAATCAA TATGTTCTTC TGCTTCTTGA TCTTGAGATA CAGATACCAC  
     541 TTGTACAATT ACTTGGGTGC CGTTATTATT GTCGTTACCA TTGCCTTGGT TGAAATGAAG  
     601 TTGTCCTTCG AAACCCAAGA AGAAAACTCC ATCATCTTCA ACTTGGTTTT GATCTCCTCA  
     661 TTGATCCCAG TTTGTTTCTC TAACATGACC AGAGAAATCG TTTTCAAGAA GTACAAGATC  
     721 GACATCTTGA GATTGAACGC TATGGTTTCC TTCTTCCAAT TATTCACCTC CTGCTTGATT  
     781 TTGCCAGTTT ACACCTTGCC ATTCTTGAAA GAATTGCACT TGCCATACAA CGAAATTTGG  
     841 ACCAACATCA AGAATGGTTT CGCTTGTTTG TTCTTGGGTA GAAACACCGT TGTTGAAAAC  
     901 TGTGGTTTGG GTATGGCTAA GTTGTGTGAT GATTGTGATG GTGCTTGGAA AACTTTCGCT  
     961 TTGTTCTCCT TCTTCTCCAT TTGCGATAAC TTGATCACCT CCTACATTAT CGATAAGTTC  
    1021 TCCACTATGA CCTACACTAT CGTATCTTGC ATTCAAGGTC CAGCTACTGC TATTGCTTAC  
    1081 TACTTCAAGT TCTTGGCTGG TGATGTTGTT ATTGAACCTA GATTATTGGA CTTCGTCACC  
    1141 TTGTTTGGTT ACTTGTTCGG TTCCATTATC TACAGAGTCG GTAACATCAT CTTGGAAAGA  
    1201 AAGAAGATGA GAAACGAAGA AAACGCTGAT TCTGCTGGTG CTTTGACTAA TGTTGATTCT  
    1261 GCTGCTACTC AACCTAGGTA A  
 
5. Mutagenesis of PfCRTS33A  
 
> PfCRT homology region  
 
In green, pfcrt ATG starting codon; in red, S33A mutation; in lower case, non coding DNA sequences. 
 
  1 aaatatttta aaatcgacat tccgatatat tatattttta gactataata tccgttaata  
      61 ataaatacac gcagtcatat tatttattat acattcattt attattttgt tttttttaat  
     121 ttcttacata taacaaaATG AAATTCGCAA GTAAAAAAAA TAATCAAAAA AATTCAAGCA  
     181 AAAATGACGA GCGTTATAGA GAATTAGATA ATTTAGTACA AGAAGGAAgt aagtatccaa  
     241 aaatggaaat attgaatgat ataaatgaat agataaatca acctattgga tatatatata  
     301 tatatatata tatatatata tatgtatacc catatgtatt aatttttttt tttttttttt  
     361 tttttttttt tttttttttt cccttgtcga ccttaacagA TGGAGCACGT TTAGGTGGAG  
     421 GTTCTTGTCT TGGTAAATGT GCTCATGTGT TTAAACTTAT TTTTAAAGAG ATTAAGGATA  
     481 ATATTTTTAT TTATATTTTA AGTATTATTT ATTTAAGTGT ATGTGTAATT GAAACAATTT  
     541 TTGCTAAAAG AACTTTAAAC AAAATTGGTA ACTATAGTTT TGTAACATCC GAAACTCACA  
     601 ACTTTATTTG TATGATTATG TTCTTTATTG TTTATTCCTT ATTTGGAAAT AAAAAGGGAA  
     661 ATTCAAAAgt aagataaatc aatatattaa aatgatggat ttataagaga atctattcca  
     721 cctaccaata taaaacatta cacatatata tatatatata tatatatata tatgtatgta  
     781 tgttgattaa tttgtttata tatttatatt tatttcttat gaccttttta gGAACGACAC  
     841 CGAAGCTTTA ATTTACAATT TTTTGCTATA TCCATGTTAG ATGCCTGTTC AGT 
 
 

> PfCRT guide 3 
 
  1 TAAACGTGAG CCATCTGTTA  
 
6. Episomal PfCRTDd2-GFP overexpression 
 
> PfCRTDd2-GFP 
 
In green, GFP tag coding sequence. 
 
  1 ATGAAATTCG CAAGTAAAAA AAATAATCAA AAAAATTCAA GCAAAAATGA CGAGCGTTAT  
      61 AGAGAATTAG ATAATTTAGT ACAAGAAGGA AATGGCTCAC GTTTAGGTGG AGGTTCTTGT  
     121 CTTGGTAAAT GTGCTCATGT GTTTAAACTT ATTTTTAAAG AGATTAAGGA TAACATTTTT  
     181 ATTTATATTT TAAGTATTAT TTATTTAAGT GTATGTGTAA TTGAAACAAT TTTTGCTAAA  
     241 AGAACCTTAA ACAAAATTGG TAACTATAGT TTTGTAACAT CCGAAACTCA CAACTTTATT  
     301 TGTATGATTA TGTTCTTTAT TGTTTATTCC TTATTTGGAA ATAAAAAGGG AAATTCAAAA  
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     361 GAACGACACC GAAGCTTTAA TTTACAATTT TTTGCTATAT CCATGTTAGA TGCCTGTTCA  
     421 GTCATTTTGG CCTTCATAGG TCTTACAAGA ACTACTGGAA ATATCCAATC ATTTGTTCTT  
     481 CAATTAAGTA TTCCTATTAA TATGTTCTTC TGCTTTTTAA TATTAAGGTA TAGATATCAC  
     541 TTATACAATT ATCTCGGAGC AGTTATTATT GTTGTAACAA TAGCTCTTGT AGAAATGAAA  
     601 TTATCTTTTG AAACACAAGA AGAAAATTCT ATCATATTTA ATCTTGTCTT AATTAGTTCC  
     661 TTAATTCCTG TATGCTTTTC AAACATGACA AGGGAAATAG TTTTTAAAAA ATATAAGATT  
     721 GACATTTTAA GATTAAATGC TATGGTATCC TTTTTCCAAT TGTTCACTTC TTGTCTTATA  
     781 TTACCTGTAT ACACCCTTCC ATTTTTAAAA GAACTTCATT TACCATATAA TGAAATATGG  
     841 ACAAATATAA AAAATGGTTT CGCATGTTTA TTCTTGGGAA GAAACACAGT CGTAGAGAAT  
     901 TGTGGTCTTG GTATGGCTAA GTTATGTGAT GATTGTGACG GAGCATGGAA AACCTTCGCA  
     961 TTGTTTTCCT TCTTTAGCAT TTGTGATAAT TTAATAACCA GCTATATTAT CGACAAATTT  
    1021 TCTACCATGA CATATACTAT TGTTAGTTGT ATACAAGGTC CAGCAACAGC AATTGCTTAT  
    1081 TACTTTAAAT TCTTAGCCGG TGATGTTGTA ATAGAACCAA GATTATTAGA TTTCGTAACT  
    1141 TTGTTTGGCT ACCTATTTGG TTCTATAATT TACCGTGTAG GAAATATTAT CTTAGAAAGA  
    1201 AAAAAAATGA GAAATGAAGA AAATGAAGAT TCCGAAGGAG AATTAACCAA CGTCGATTCA  
    1261 ATTATTACAC AATAACCTAG GAGTAAAGGA GAAGAACTTT TCACTGGAGT TGTCCCAATT  
    1321 CTTGTTGAAT TAGATGGTGA TGTTAATGGG CACAAATTTT CTGTCAGTGG AGAGGGTGAA  
    1381 GGTGATGCAA CATACGGAAA ACTTACCCTT AAATTTATTT GCACTACTGG AAAACTACCT  
    1441 GTTCCATGGC CAACACTTGT CACTACTTTC GCGTATGGTC TTCAATGCTT TGCGAGATAC  
    1501 CCAGATCATA TGAAACAGCA TGACTTTTTC AAGAGTGCCA TGCCCGAAGG TTATGTACAG  
    1561 GAAAGAACTA TATTTTTCAA AGATGACGGG AACTACAAGA CACGTGCTGA AGTCAAGTTT  
    1621 GAAGGTGATA CCCTTGTTAA TAGAATCGAG TTAAAAGGTA TTGATTTTAA AGAAGATGGA  
    1681 AACATTCTTG GACACAAATT GGAATACAAC TATAACTCAC ACAATGTATA CATCATGGCA  
    1741 GACAAACAAA AGAATGGAAT CAAAGTTAAC TTCAAAATTA GACACAACAT TGAAGATGGA  
    1801 AGCGTTCAAC TAGCAGACCA TTATCAACAA AATACTCCAA TTGGCGATGG CCCTGTCCTT  
    1861 TTACCAGACA ACCATTACCT GTCCACACAA TCTGCCCTTT CGAAAGATCC CAACGAAAAG  
    1921 AGAGACCACA TGGTCCTTCT TGAGTTTGTA ACAGCTGCTG GGATTACACA TGGCATGGAT  
    1981 GAACTATACA AATAA  
 
7. PfCK2α-GST and PfCK2αK72M-GST expression 
 
> PfCK2α-GST 
 
In grey, GST tag coding sequence; in pink, thrombin cleavage site. 
 
 
  1 ATGTCCCCTA TACTAGGTTA TTGGAAAATT AAGGGCCTTG TGCAACCCAC TCGACTTCTT  
      61 TTGGAATATC TTGAAGAAAA ATATGAAGAG CATTTGTATG AGCGCGATGA AGGTGATAAA  
     121 TGGCGAAACA AAAAGTTTGA ATTGGGTTTG GAGTTTCCCA ATCTTCCTTA TTATATTGAT  
     181 GGTGATGTTA AATTAACACA GTCTATGGCC ATCATACGTT ATATAGCTGA CAAGCACAAC  
     241 ATGTTGGGTG GTTGTCCAAA AGAGCGTGCA GAGATTTCAA TGCTTGAAGG AGCGGTTTTG  
     301 GATATTAGAT ACGGTGTTTC GAGAATTGCA TATAGTAAAG ACTTTGAAAC TCTCAAAGTT  
     361 GATTTTCTTA GCAAGCTACC TGAAATGCTG AAAATGTTCG AAGATCGTTT ATGTCATAAA  
     421 ACATATTTAA ATGGTGATCA TGTAACCCAT CCTGACTTCA TGTTGTATGA CGCTCTTGAT  
     481 GTTGTTTTAT ACATGGACCC AATGTGCCTG GATGCGTTCC CAAAATTAGT TTGTTTTAAA  
     541 AAACGTATTG AAGCTATCCC ACAAATTGAT AAGTACTTGA AATCCAGCAA GTATATAGCA  
     601 TGGCCTTTGC AGGGCTGGCA AGCCACGTTT GGTGGTGGCG ACCATCCTCC AAAATCGGAT  
     661 CTGGTTCCGC GTGGATCCAT GTCGGTTAGC TCAATTAATA AAAAAATTTA TATACCAAAA  
     721 TTTTATGCTG ATGTCAATAT TCATAAGCCT AAAGAATACT ATGATTATGA TAATTTAGAA  
     781 TTACAATGGA ATAAACCAAA TCGTTATGAG ATTATGAAAA AGATTGGGAG GGGAAAATAC  
     841 AGTGAGGTGT TTAATGGATA TGATACGGAA TGTAATAGAC CATGTGCTAT TAAAGTATTA  
     901 AAGCCTGTTA AAAAAAAAAA AATAAAAAGA GAAATAAAAA TTTTACAAAA TTTGAATGGT  
     961 GGTCCAAATA TAATAAAACT ATTAGATATA GTTAAAGATC CTGTTACGAA AACACCATCT  
    1021 TTAATATTTG AATATATTAA CAATATAGAT TTTAAAACAT TATATCCTAA ATTTACAGAT  
    1081 AAGGATATTC GTTATTATAT CTATCAAATT TTAAAAGCAT TGGATTATTG TCATAGCCAA  
    1141 GGTATTATGC ATAGAGATGT TAAACCACAT AATATTATGA TTGATCATGA AAATAGACAA  
    1201 ATTAGATTAA TTGATTGGGG TCTAGCTGAA TTTTATCATC CTGGTCAAGA ATATAATGTT  
    1261 CGTGTAGCAA GTAGATATTA TAAAGGTCCA GAACTTTTGA TCGATTTACA ACTTTATGAT  
    1321 TATTCATTAG ATATATGGAG CCTAGGTTGT ATGCTTGCTG GTATGATCTT TAAAAAGGAA  
    1381 CCTTTCTTTT GTGGTCATGA TAATTATGAT CAATTAGTTA AAATTGCAAA AGTTCTAGGA  
    1441 ACAGAAGATC TACATGCTTA CCTAAAAAAA TATAACATTA AACTTAAACC ACATTATCTT  
    1501 AATATCTTAG GAGAATATGA AAGAAAACCA TGGTCCCATT TTTTAACCCA ATCAAATATT  
    1561 GATATAGCAA AAGATGAAGT AATTGATCTA ATCGACAAAA TGTTGATTTA TGATCACGCA  
    1621 AAAAGAATCG CACCAAAGGA AGCCATGGAG CATCCTTACT TTAGAGAAGT CCGTGAGGAA  
    1681 TCATAA 
 
> PfCK2α K72M mutation 
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     214 AAA to ATG 
          K      M 
 

8. Episomal PfCRTDd2-HA overexpression 
 
> PfCRTDd2-HA 
 
In blue, 3xHA tag coding sequence.  
 
  1 ATGAAATTCG CAAGTAAAAA AAATAATCAA AAAAATTCAA GCAAAAATGA CGAGCGTTAT  
      61 AGAGAATTAG ATAATTTAGT ACAAGAAGGA AATGGCTCAC GTTTAGGTGG AGGTTCTTGT  
     121 CTTGGTAAAT GTGCTCATGT GTTTAAACTT ATTTTTAAAG AGATTAAGGA TAATATTTTT  
     181 ATTTATATTT TAAGTATTAT TTATTTAAGT GTATGTGTAA TTGAAACAAT TTTTGCTAAA  
     241 AGAACTTTAA ACAAAATTGG TAACTATAGT TTTGTAACAT CCGAAACTCA CAACTTTATT  
     301 TGTATGATTA TGTTCTTTAT TGTTTATTCC TTATTTGGAA ATAAAAAGGG AAATTCAAAA  
     361 GAACGACACC GAAGCTTTAA TTTACAATTT TTTGCTATAT CCATGTTAGA TGCCTGTTCA  
     421 GTCATTTTGG CCTTCATAGG TCTTACAAGA ACTACTGGAA ATATCCAATC ATTTGTTCTT  
     481 CAATTAAGTA TTCCTATTAA TATGTTCTTC TGCTTTTTAA TATTAAGATA TAGATATCAC  
     541 TTATACAATT ATCTCGGAGC AGTTATTATT GTTGTAACAA TAGCTCTTGT AGAAATGAAA  
     601 TTATCTTTTG AAACACAAGA AGAAAATTCT ATCATATTTA ATCTTGTCTT AATTAGTTCC  
     661 TTAATTCCTG TATGCTTTTC AAACATGACA AGGGAAATAG TTTTTAAAAA ATATAAGATT  
     721 GACATTTTAA GATTAAATGC TATGGTATCC TTTTTCCAAT TGTTCACTTC TTGTCTTATA  
     781 TTACCTGTAT ACACCCTTCC ATTTTTAAAA GAACTTCATT TACCATATAA TGAAATATGG  
     841 ACAAATATAA AAAATGGTTT CGCATGTTTA TTCTTGGGAA GAAACACAGT CGTAGAGAAT  
     901 TGTGGTCTTG GTATGGCTAA GTTATGTGAT GATTGTGACG GAGCATGGAA AACCTTCGCA  
     961 TTGTTTTCCT TCTTTAGCAT TTGTGATAAT TTAATAACCA GCTATATTAT CGACAAATTT  
    1021 TCTACCATGA CATATACTAT TGTTAGTTGT ATACAAGGTC CAGCAACAGC AATTGCTTAT  
    1081 TACTTTAAAT TCTTAGCCGG TGATGTTGTA ATAGAACCAA GATTATTAGA TTTCGTAACT  
    1141 TTGTTTGGCT ACCTATTTGG TTCTATAATT TACCGTGTAG GAAATATTAT CTTAGAAAGA  
    1201 AAAAAAATGA GAAATGAAGA AAATGAAGAT TCCGAAGGAG AATTAACCAA CGTCGATTCA  
    1261 ATTATTACAC AATAACCTAG GGGCGGTGGA TACCCTTACG ATGTGCCTGA TTACGCGTAT  
    1321 CCCTATGACG TACCAGACTA TGCATACCCT TATGACGTTC CGGATTATGC TCACGGGGTG  
    1381 TAA  
 
9. Y2H bait sequences 
 
> PfCRTDd2 N-terminal 
 
       1 ATGAAGTTCG CTTCTAAGAA GAACAACCAA AAGAACTCTT CTAAGAACGA CGAAAGATAC  
      61 AGAGAATTGG ACAACTTGGT TCAAGAAGGT AACGGTTCTA GATTGGGTGG TGGTTCTTGT  
     121 TTGGGTAAGT GTGCTCACGT TTTCAAGTTG ATTTTCAAGG AAATTAAGGA CAACTAA 
 
> PfCRTDd2 putative calmodulin binding site 
 
  1 TCTGTTTGTG TTATGAACAA GATTTTCGCT AAGAGAACTT TGAACAAGAT TGGTAACTAC  
      61 TCTTAA 
 
 
> PfCRTDd2 out loop 
 
  1 ACTTTGCCAT TCTTGAAGGA ATTGCACTTG CCATACAACG AAATTTGGAC TAACATTAAG  
      61 AACGGTTTCG CTTGTTTGTT CTTGGGTAGA AACACTGTTG TTGAAAACTG TGGTTTGGGT  
     121 ATGGCTAAGT TGTGTGACGA CTGTGACGGT TAA 
 
> PfCRTDd2 C-terminal 
 
       1 GAAAGAAAGA AGATGAGAAA CGAAGAAAAC GAAGACTCTG AAGGTGAATT GACTAACGTT  
      61 GACTCTATTA TTACTCAA  
 
10. PF11_0488 sequences 
 

> PF11_0488 C-terminal-GFP-CAD 
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In green, GFP tag coding sequence; in blue 4xCAD tag coding sequence. 
 

 1 ATGAAATTAA ATTTGGATAA AAAAAGAGCA ATACTTGAAA AACGATTAGA TCATTTTAAT  
      61 TTCCAAGAAA ACTCAGAATT CTCATTTTAT AATCCATTAA AAATAAATAT AAGAATGATG  
     121 AACTTAATTG GAAGAGGAGG ATTTGCTGAA GTGTGGGAAG TTTTTGATTC TATCAATTTA  
     181 GAAATGTATG CAGCCAAAAT TCATAAAATT GAACCAAGTA TGTCCAATGA AATAAAAAAT  
     241 AAAATTATTC AAAGAGCAGA AAATGAAATA AATATACATA TACATTGTCA TAGACATATA  
     301 TTTATTGTTA AATTAGAATT CTTTTTTGTA TTTGGTTCAG CAACAAATTT ATTAGTTGGA  
     361 ATGGAATTAT GTGATATTGA TCTAGATAAA TATATTAAAT ATCATGGGCC AATTAATGAA  
     421 CTTTTAGCTT TATGTTGGAT TAAACAAATA TTATTAGGCT TATTATATAT GAAAAATTTA  
     481 CCAACTGGAA AAGTACACCA TTGTGATTTA AAACCTGCCA ACTTATTAAT CAAGGATGGA  
     541 ATTATAAAAA TATCCGACTT TGGACTAGCC AAACTAATTT TACCAGATAC ACATCAATAT  
     601 TACAATGGAG GTGGTACATT GTATTATCAA CCACCAGAAT GTTTAAAAAA TAAAAAAAAC  
     661 CTTCTTATCA CAGATAAAAT TGATATCTGG TCATTGGGAT GCATTCTTTA TGAAATGCTC  
     721 TTTTGTGAAA GACCTTTCCA ATTTAATTAC CTTGAAAAAT GTTCAAAAGA ATTATTAGTT  
     781 AACAAAATGA AAAATGGATT AACCTATCCA AAAATTAATC AAAAAATTTC TAATGCTACT  
     841 TTAAGTTACA TACAATATTT ACTAAATTTT GACTATGAAT TACGACCATC TATAGAAGAA  
     901 GCCTTAAGCT ATCCAATTTT TAACTACTTT AATATACCAC CTAGGAGTAA AGGAGAAGAA  
     961 CTTTTCACTG GAGTTGTCCC AATTCTTGTT GAATTAGATG GTGATGTTAA TGGGCACAAA  
    1021 TTTTCTGTCA GTGGAGAGGG TGAAGGTGAT GCAACATACG GAAAACTTAC CCTTAAATTT  
    1081 ATTTGCACTA CTGGAAAACT ACCTGTTCCA TGGCCAACAC TTGTCACTAC TTTCGCGTAT  
    1141 GGTCTTCAAT GCTTTGCGAG ATACCCAGAT CATATGAAAC AGCATGACTT TTTCAAGAGT  
    1201 GCCATGCCCG AAGGTTATGT ACAGGAAAGA ACTATATTTT TCAAAGATGA CGGGAACTAC  
    1261 AAGACACGTG CTGAAGTCAA GTTTGAAGGT GATACCCTTG TTAATAGAAT CGAGTTAAAA  
    1321 GGTATTGATT TTAAAGAAGA TGGAAACATT CTTGGACACA AATTGGAATA CAACTATAAC  
    1381 TCACACAATG TATACATCAT GGCAGACAAA CAAAAGAATG GAATCAAAGT TAACTTCAAA  
    1441 ATTAGACACA ACATTGAAGA TGGAAGCGTT CAACTAGCAG ACCATTATCA ACAAAATACT  
    1501 CCAATTGGCG ATGGCCCTGT CCTTTTACCA GACAACCATT ACCTGTCCAC ACAATCTGCC  
    1561 CTTTCGAAAG ATCCCAACGA AAAGAGAGAC CACATGGTCC TTCTTGAGTT TGTAACAGCT  
    1621 GCTGGGATTA CACATGGCAT GGATGAACTA TACAAAGGTA CCGGAGTGCA GGTGGAAACC  
    1681 ATCTCCCCGG GAGACGGGCG CACCTTCCCC AAGCGCGGCC AGACCTGCGT GGTGCACTAC  
    1741 ACCGGGATGC TTGAAGATGG AAAGAAAATG GATTCCTCCC GGGACAGAAA CAAGCCCTTT  
    1801 AAGTTTATGC TAGGCAAGCA GGAGGTGATC CGAGGCTGGG AAGAAGGGGT TGCCCAGATG  
    1861 AGTGTGGGTC AGAGAGCCAA ACTGACTATA TCTCCAGATT ATGCCTATGG TGCCACTGGG  
    1921 CACCCAGGCA TCATCCCACC ACATGCCACT CTCGTCTTCG ATGTGGAGCT TCTAAAACTG  
    1981 GAAGTCGAGG GCGTGCAGGT GGAAACCATC TCCCCAGGAG ACGGGCGCAC CTTCCCCAAG  
    2041 CGCGGCCAGA CCTGCGTGGT GCACTACACC GGGATGCTTG AAGATGGAAA GAAAATGGAT  
    2101 TCCTCCCGGG ACAGAAACAA GCCCTTTAAG TTTATGCTAG GCAAGCAGGA GGTGATCCGA  
    2161 GGCTGGGAAG AAGGGGTTGC CCAGATGAGT GTGGGTCAGA GAGCCAAACT GACTATATCT  
    2221 CCAGATTATG CCTATGGTGC CACTGGGCAC CCAGGCATCA TCCCACCACA TGCCACTCTC  
    2281 GTCTTCGATG TGGAGCTTCT AAAACTGGAA ACTAGAGGAG TGCAGGTGGA AACCATCTCC  
    2341 CCAGGAGACG GGCGCACCTT CCCCAAGCGC GGCCAGACCT GCGTGGTGCA CTACACCGGG  
    2401 ATGCTTGAAG ATGGAAAGAA AATGGATTCC TCCCGGGACA GAAACAAGCC CTTTAAGTTT  
    2461 ATGCTAGGCA AGCAGGAGGT GATCCGAGGC TGGGAAGAAG GGGTTGCCCA GATGAGTGTG  
    2521 GGTCAGAGAG CCAAACTGAC TATATCTCCA GATTATGCCT ATGGTGCCAC TGGGCACCCA  
    2581 GGCATCATCC CACCACATGC CACTCTCGTC TTCGATGTGG AGCTTCTAAA ACTGGAAACT  
    2641 AGAGGAGTGC AGGTGGAAAC CATCTCCCCG GGAGACGGGC GCACCTTCCC CAAGCGCGGC  
    2701 CAGACCTGCG TGGTGCACTA CACCGGGATG CTTGAAGATG GAAAGAAAAT GGATTCCTCC  
    2761 CGGGACAGAA ACAAGCCCTT TAAGTTTATG CTAGGCAAGC AGGAGGTGAT CCGAGGCTGG  
    2821 GAAGAAGGGG TTGCCCAGAT GAGTGTGGGT CAGAGAGCCA AACTGACTAT ATCTCCAGAT  
    2881 TATGCCTATG GTGCCACTGG GCACCCAGGC ATCATCCCAC CACATGCCAC TCTCGTCTTC  
    2941 GATGTGGAGC TTCTAAAACT GGAAGGTACC CCGGGTCGAG GGATATGGCA GCTTAATGTT  
    3001 CGTTTTTCTT ATTTATATAT TTATACCAAT TGA  
 
> PF11_0488 C-terminal-His 
 
In yellow, 6xHis tag coding sequence. 
 
     1 ATGAAATTAA ATTTGGATAA AAAAAGAGCA ATACTTGAAA AACGATTAGA TCATTTTAAT  
      61 TTCCAAGAAA ACTCAGAATT CTCATTTTAT AATCCATTAA AAATAAATAT AAGAATGATG  
     121 AACTTAATTG GAAGAGGAGG ATTTGCTGAA GTGTGGGAAG TTTTTGATTC TATCAATTTA  
     181 GAAATGTATG CAGCCAAAAT TCATAAAATT GAACCAAGTA TGTCCAATGA AATAAAAAAT  
     241 AAAATTATTC AAAGAGCAGA AAATGAAATA AATATACATA TACATTGTCA TAGACATATA  
     301 TTTATTGTTA AATTAGAATT CTTTTTTGTA TTTGGTTCAG CAACAAATTT ATTAGTTGGA  
     361 ATGGAATTAT GTGATATTGA TCTAGATAAA TATATTAAAT ATCATGGGCC AATTAATGAA  
     421 CTTTTAGCTT TATGTTGGAT TAAACAAATA TTATTAGGCT TATTATATAT GAAAAATTTA  
     481 CCAACTGGAA AAGTACACCA TTGTGATTTA AAACCTGCCA ACTTATTAAT CAAGGATGGA  
     541 ATTATAAAAA TATCCGACTT TGGACTAGCC AAACTAATTT TACCAGATAC ACATCAATAT  
     601 TACAATGGAG GTGGTACATT GTATTATCAA CCACCAGAAT GTTTAAAAAA TAAAAAAAAC  
     661 CTTCTTATCA CAGATAAAAT TGATATCTGG TCATTGGGAT GCATTCTTTA TGAAATGCTC  
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     721 TTTTGTGAAA GACCTTTCCA ATTTAATTAC CTTGAAAAAT GTTCAAAAGA ATTATTAGTT  
     781 AACAAAATGA AAAATGGATT AACCTATCCA AAAATTAATC AAAAAATTTC TAATGCTACT  
     841 TTAAGTTACA TACAATATTT ACTAAATTTT GACTATGAAT TACGACCATC TATAGAAGAA  
     901 GCCTTAAGCT ATCCAATTTT TAACTACTTT AATATACCAC TCGAGCACCA CCACCACCAC  
     961 CACTGA 
   

 
> PF11_0488 C-terminal-HA-glmS-PF11_04883’UTR 
 
In blue, 3xHA tag coding sequence; in grey, glmS sequence; in yellow, shield mutation guide 2; in red, shield 
mutation guide 1; in lower case, non coding sequences.  
 
     1 GAAATGTATG CAGCCAAAAT TCATAAAATT GAACCAAGTA TGTCCAATGA AATAAAAAAT  
      61 AAAATTATTC AAAGAGCAGA AAATGAAATA AATATACATA TACATTGTCA TAGACATATA  
     121 TTTATTGTTA AATTAGAATT CTTTTTTGTA TTTGGTTCAG CAACAAATTT ATTAGTTGGA  
     181 ATGGAATTAT GTGATATTGA TCTAGATAAA TATATTAAAT ATCATGGGCC AATTAATGAA  
     241 CTTTTAGCTT TATGTTGGAT TAAACAAATA TTATTAGGCT TATTATATAT GAAAAATTTA  
     301 CCAACTGGAA AAGTACACCA TTGTGATTTA AAACCTGCCA ACTTATTAAT CAAGGATGGA  
     361 ATTATAAAAA TATCCGACTT TGGACTAGCC AAACTAATTT TACCAGATAC ACATCAATAT  
     421 TACAATGGAG GTGGTACATT GTATTATCAA CCACCAGAAT GTTTAAAAAA TAAAAAAAAC  
     481 CTTCTTATCA CAGATAAAAT TGATATCTGG TCATTGGGAT GCATTCTTTA TGAAATGCTC  
     541 TTTTGTGAAA GACCTTTCCA ATTTAATTAT TTAGAAAAAT GTTCAAAAGA ATTATTAGTT  
     601 AACAAAATGA AAAATGGATT AACCTATCCA AAAATTAATC AAAAAATTTC TAATGCTACT  
     661 TTAAGTTACA TACAATATTT ACTAAATTTT GACTATGAAT TACGACCATC TATAGAAGAA  
     721 GCATTGAGCT ATCCAATTTT TAACTACTTT AATATACCAG GCGCGCCAGG CGGTGGATAC  
     781 CCTTACGATG TGCCTGATTA CGCGTATCCC TATGACGTAC CAGACTATGC ATACCCTTAT  
     841 GACGTTCCGG ATTATGCTCA CGGGGTGTAA GCGGCCGCGG TCTTGTTCTT ATTTTCTCAA  
     901 TAGGAAAAGA AGACGGGATT ATTGCTTTAC CTATAATTAT AGCGCCCGAA CTAAGCGCCC  
     961 GGAAAAAGGC TTAGTTGACG AGGATGGAGG TTATCGAATT TTCGGCGGAT GCCTCCCGGC  
    1021 TGAGTGTGCA GATCACAGCC GTAAGGATTT CTTCAAACCA AGGGGGTGAC TCCTTGAACA  
    1081 AAGAGAAATC ACATGATCTT CCAAAAAACA TGTAGGAGGG GAC ggcgcca gaaattatat  
    1141 atatatatca ttaaatattt tggggcacct attttttgta ttatataaat tggattattt  
    1201 cttataactc attgtaatac taatacatac ataaatatat atatatatat atatatacaa  
    1261 cattttgatt gttcttacat ttaaaaaagt aatatcattt tttattatat tcattaaaaa  
    1321 attttattca atattttctt atagatataa tatagattta tatatatata tatatatatt  
    1381 tatatattat aatattaata atattgaaat catttttata tattcatata catattatgt  
    1441 taactaatct cttccaaaag aaaatcaaaa aaaaaaaaaa aaaaatttaa cataaaaatt  
    1501 tatataatat aaacatacat tgttctttct ttattttttt tttttctcaa atgtatgaat  
    1561 aaaatatcat tttgataaat ttgaaggttt attatcctac tttttattgg gaaataaaaa  
    1621 tatcaaatgc gaacaatgaa ttctttaaaa ttc 
> PF11_0488 guide 1 
 
  1 GTTAAAAATT GGATAGCTTA 
 
> PF11_0488 guide 2 
 
  1 ATTCTTTTGA ACATTTTTCA 
 

11. PF11_0488 aligment between Plasmodium species 
 
In green, start codon of the C-terminal fragment.  
 
P. falciparum     PF3D7_1148000   
P. vivax  PVX_092985 
P. chabaudi         PCHAS_0702300 
P. berguei          PBANKA_0901100 
P. yoelii                 PY17X_0902500 
 
 
P.falciparum      MYDYTEDNSLNPYLRQRIYHIRETLRNENELPLIDQIFKYELKKNFEDINDLLHYVNGII 
P.vivax           MKDDNEDIISRNFLKQRIKNVKSILVKENEMPKIDQIFKYELKSNFTEINDLLYYVNGII 
P.chabaudi        ----MTENDPSNFLKQRISNLKNILAKENEMPKIDQIFKYELKTNFTEINDLLHYMNGII 
P.berghei         ----MTENDPSNFLKQRISNLKNILTKENEMPKIDQIFKYELKTNFTETNDLLHYMNGII 
P.yoelii          ----MTENDPSNFLKQRISNLKNILTKENEMPKIDQIFKYELKTNFTETNDLLHYMNGII 
                        :     :*:*** .::. * :***:* **********.** : ****:*:**** 
 
P.falciparum      YKGIDSFEKLTLLFTYDDKNDYDTTNLKQNDFIYLLRQKTKFRVKYKDENYIEYLRTNPL 
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P.vivax           YKNADTFQKLILLYSYDDNNDYNTSNVKQNTFVYLLKQKIKFREKYKNENYVDYLKTNPL 
P.chabaudi        YKNLDTFQKLKLLYSYDDNNCYNNTGINQNTFLFLLKQKSKFREKYINENYMDYLRTNPL 
P.berghei         YKNLDTFQKLKLLYSYDDKNCYNNSGINQNTFLFLLKQKSKFREKYINENYMEYLRTNPL 
P.yoelii          YKNLDTFQKLKLLYSYDDNNCYNNSGINQNTFLFLLKQKSKFREKYVNENYIDYLRTNPL 
                  **  *:*:** **::***:* *:.: ::** *::**:** *** ** :***::**:**** 
 
P.falciparum      IFIDTLNNLLIIPGINFEYRLHNFDTKNSKYFLKKSDTKVNSFYNPFFIRVKNTNLKKTH 
P.vivax           IFIDTLNKLLIVPGISFEFKVYNFDEKVNKYFIRKSDIKSNTLYNPCFIKSRNGHFKNII 
P.chabaudi        IFVDTLNQLLIIPGINFEFKVYNFDEKVNKFFVKKPDIKINSLYNPCFIKIKESNFKNIV 
P.berghei         IFVDTLNQLLIIPGINFEFKVYNFDEKVNKFFVKKSDIKINSLYNPCFIKIKESNFKNIV 
P.yoelii          IFVDTLNQLLIIPGINFEFKVYNFDEKVNKFFVKKPDIKINSLYNPCFIKIKESNFKNIV 
                  **:****:***:***.**::::*** * .*:*::* * * *::*** **: :: .:*:   
 
P.falciparum      KIYRRTAKNS---------------------------------------SSNKEHHIEHY 
P.vivax           KVSRKADKSSRKSDKKSDQKGEKQNDKQSGKQSGQPNGKQSGQPNGKQSGQPNEQHIESY 
P.chabaudi        KINRKVEKNPKKNEHQ----------------------------------------IEHY 
P.berghei         KINRKVEKNYKKNEHQ----------------------------------------IEHY 
P.yoelii          KINRKVEKNYKKNEHQ----------------------------------------IEHY 
                  *: *:. *.                                               ** * 
 
P.falciparum      FVKQNSIPLTKKLKTDDSTN-----------ADSNNTTIPINTICEENSSKEK-----TS 
P.vivax           FEKKNTLQNSKM--------LNTNLVSKEDVNSKNEQHIDHDNPCSEEAKCELEITHIDD 
P.chabaudi        FAKRNSVPSITQISKIECDSKEDNLISKDDLT------IATNSSCKND------DADLSS 
P.berghei         FAKRNSVPSITQKSKTECDSKEDNVISKDDLT------IAINSSCKNY------DAELSS 
P.yoelii          FAKRNSVPSITQKSKTECDSKEDNLISKDDLT------IPINSSCKNY------DPDLSS 
                  * *:*::   .                           *  :. *.:            . 
 
P.falciparum      NTQYNYTNHICEKPT----------------------NQNISIHSQTKYEPKKERRKRRS 
P.vivax           DTDKKQNGEISRKMELTGDGNCK--------NDHNSAAPAAASDDEMKEGDKRERKKRKS 
P.chabaudi        NNETKIYNEACDKGELDDSLNSIKQDSNSTTKKHSNESVNTIDDKEIKYDCRKEKKPRRS 
P.berghei         NNETKIYNGICDKGELNDNLNTIKHDINNITKKHSNESINTIDNKGIKYECRKEKRARRS 
P.yoelii          NNETKIYNEVCDKGELNGNLNTIKHDINNTTKKHSNESINTIDDKEIKYECRKEKRPRRS 
                  :.: :     . *                              ..  *   ::*:: *:* 
 
P.falciparum      LNTSTISDANNTDLGKNSKR--NISRCLKRKASQSNSTKQSKCEEDAQQEDEETTIEEEN 
P.vivax           VNTTCILERNSSAQYNKKYKTNNTSNGVN------KESSETVCSNGLKGKAEDG------ 
P.chabaudi        FSISTNAESN------IK---------TN------TKKTKGNYNNSVKRKYDKV------ 
P.berghei         FSISTNPESN------KK---------TS------TKKNKGSYNSSVKRKYDKV------ 
P.yoelii          FSISTNAESN------NK---------TS------TKKTKGNCNSSVKRKYDKV------ 
                  .. :   : *       .          .      ....:   ..  : : :.        
 
P.falciparum      KKMKEVEKEQMM-DKEKEIEKEKIKEESNLNEKNDQYNEDYGDNIDQEDYSSLNNYSSST 
P.vivax           EGVEDVEVTEVTAEDEGEGEEEQED----------EEEEK----EREEEY---EYESSRN 
P.chabaudi        SGCKKL----------KKGDEEEID----------ECEE--------EDD---EEGNSLN 
P.berghei         SSCKKL----------KKGEEEEID----------EFEE--------EGD---EEDNSLN 
P.yoelii          SSCKKL----------KKGEEEEID----------EFEE--------EGD---EEDNSLN 
                  .  :.:           : ::*: .          : :*        *     :  .* . 
 
P.falciparum      NSPKNTKSTYFFYDLINEYEIYINHAKCYIIFDIKSYYKNLDIMKKLKKNLEELKKPNNL 
P.vivax           DDSGSGKSTHFFYNLVNEYEVYINNVKCYLVFDLMSCYKNLDIMKKLKKNLEELKKPNNV 
P.chabaudi        NDGSTKQSIHTFYDLINEYEIYINNAKCYIIFDLKGYYKNLDIMKKLKKNLEDLKRPTND 
P.berghei         NDGVPQKSIHTFYDLINEYEIYINNAKCYIIFDLKGYYKNLDIMKKLKKNLEDLKRPTND 
P.yoelii          NDGVPPKSIHTFYDLINEYEIYINNAKCYIIFDLKGYYKNLDIMKKLKKNLEDLKRPTND 
                  :.    :* : **:*:****:***..***::**: . ***************:**:*.*  
 
P.falciparum      FKEITQKKTFKSSRDKMEFIKRFKKMIIPNFRLEKIRKQRNHLVIIELMSKIQNSLIIKR 
P.vivax           FKEIINKKTFKSSRDKIEFIKRFKKMIIPNFRIEKIRKQRNHLIIIELMSKIQNSLIIKR 
P.chabaudi        FKKIIDKKTFKSYRDKIEFVKRFKKFIIPNFRLEKIRKQRNHLIIVELMSKIQNRLIIKR 
P.berghei         FKKIIDKKTFKSYRDKIEFVKRFKKFIIPNFRLEKIRKQRNHLIIVELMSKIQNRLIIKR 
P.yoelii          FKKIIDKKTFKSYRDKIEFVKRFKKFIIPNFRLEKIRKQRNHLIIVELMSKIQNRLIIKR 
                  **:* :****** ***:**:*****:******:**********:*:******** ***** 
 
P.falciparum      LYKELLEKVNIEELIKNMVVLFEKCVYNMKEEEIKNFYLRMIHTYFRSKDVKEIDFRKLI 
P.vivax           LYQELTNKVNLHDLIKNAVQLFTKSVENMKNESVKKFYLSMINTYFQNNNLSAVDFKNLV 
P.chabaudi        LNQELTNKVNLENLINDVLKMFSVFVENMKDENVKKFYTNMINTYFRNKNISSVDFKNLI 
P.berghei         LNQELTNKVNLENLINDVLKMFSNFVENMKDENVKKFYMNMINIYFRNKNLSSIDFKNLI 
P.yoelii          LNQELTNKVNLENLINDVLNMFSEFVENMKDENVKKFYTNMINTYFRNKNLSSVDFKNLI 
                  * :** :***:.:**:: : :*   * ***:*.:*:**  **. **:.:::. :**::*: 
 
P.falciparum      QQFKKIEEYRKNQEFYNLFQNDLNYLEKNKRECQEIDEKIHSLKYLILESILKEKQLERS 
P.vivax           QLFKKKEEHLKNEEFYNLFQNDLNYLEKNKKQCDEIEAKINSLKYLILESILKEKQLERS 
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P.chabaudi        QLFKKKEEHEKSQEFYDLFQNDLNYLDKNKTQCDEIEEKISSLKYLILESILKEKQLERS 
P.berghei         QLFKKKEEHEKNQEFYDLFQNDLNYLDKNKTQCDEIEEKISSLKYLILESILKEKQLERS 
P.yoelii          QLFKKKEEHEKNQEFYDLFQNDLNYLDKNKTQRDEIEEKISSLKYLILESILKEKQLERS 
                  * *** **: *.:***:*********:*** : :**: ** ******************* 
 
P.falciparum      VNRLLLNHEQSKYGYFYKIDQSDENNLDTTEYGKLLENFSKEPVNFYTILNKRNLDKHAY 
P.vivax           VNRLLLNHEQSKYGYFYKVDQSDENTLDTTEYGKLLENFSKEPINFYTILNKRNLDKHAY 
P.chabaudi        VNRLLLNHEQSKYGYFYKIDQSDENTLDTTEYGKLLENFSKEPINFYTILSKRNLDKHAY 
P.berghei         VNRLLLNHEQSKYGYFYKIEQSDENTLDTTEYGKLLENFSKEPINFYTILSKRNLDKHAY 
P.yoelii          VNRLLLNHEQSKYGYFYKIDQSDENTLDTTEYGKLLENFSKEPINFYTILSKRNLDKHAY 
                  ******************::*****.*****************:******.********* 
 
P.falciparum      HDIRNFNYKKKNNEEEQTKHVVNTALINNQANNNENKYAINKGEQNNIPLEQAKQVNNNN 
P.vivax           HDIRNFNYKKKNNDEEALKHDATTSSPNQVNKS-IRTS-CENC-KLDAEGEEENQTEDKS 
P.chabaudi        HDIRNFNYKKKDIDM--SKHDATNSSNNQGNYKKNKQF-LDNC-KFNMDCNQRKDENNNY 
P.berghei         HDIRNFNYKKKNIDI--SKHDATNS----------------------------------- 
P.yoelii          HDIRNFNYKKKNIDI--SKHDATNSSINQGNYKRNKQF-LGNC-KFNMDCNQRKNENNNY 
                  ***********: :    ** ...:                                    
 
P.falciparum      YNNVKI-NGGDPHINNKNLNEEKHASQRIGKNEKEHIIKTNAQKEK-------------- 
P.vivax           KKNEHASSGAKDQKRDS---------NSSG----------NAKKSPNNQCANLKEKIKKG 
P.chabaudi        NINGQITSSNNPENNDN---------NSSC-NIKDSVLITSDKKTNNSDCQII------- 
P.berghei         --------SNNPENNDN---------NSSC-NIKDSVLITNDKKTNNNDCQII------- 
P.yoelii          NINEQITSSNNPENNDN---------NSLC-NIKDSILVTSDKKTNNSDCQII------- 
                          . . . .:.         :             . :*                 
 
P.falciparum      -EKEKENKISNIKEKQTPKDNNANKNDNINKEYYKCKIKQMNNEKKNDEEKEKNVVLKKK 
P.vivax           INKNDNRNMPK-QEAQNGEKEPPD-NCNNQGDHYKGKIKKTNGDDKNQENN--------Q 
P.chabaudi        -DNN---NMLN-CQKYIGQNKPQNENNYNTNEYYKCKIKKIQTDTSNEKNNEKNFVPKYD 
P.berghei         -DN----NMFN-CPKKIAQNQPQNENNYNTDEYYKCKIKKIQTDTPNEKNNENNSVLEYD 
P.yoelii          -DNNNNNNMFN-CQKNIGQNQPRNENNYNTNEYYKCKIKKIQTDTPNEKNNENNSVLEYD 
                   ::    :: :       :.:  : *     ::** ***: : :  *::::        . 
 
P.falciparum      K--KYNTFNLFPKNNKNDSNESYDKNYFRKEEKLLSTINLRKRLAEIDKNPYSK--SDDN 
P.vivax           HNKKINCSQIV------------------------ESKNTQNSSTTINNGKKNEACKEEN 
P.chabaudi        FDKKQNCAQID------------------------ENKSIDKSVTTNDSDPVTQHCSHQN 
P.berghei         FDKKLNCLQID------------------------ENKNIDKSVTTNDSDVVNQQCSRQN 
P.yoelii          FDKKRNCPQID------------------------ENKNIDKSVTTNDSDAVNQQCSHQN 
                     * *  ::                         .. .  :  :  :.   .:  . :* 
 
P.falciparum      NNNNDNDNNNNSNNNNNNDNDNNNNSNNNNNDNNDNNELSGEGRLSSTGMYKTEEYLNEI 
P.vivax           GRNKKKDSAKNCTHKGKKEA-AFKKS----SSCENKKQANFKEKYKNHEEEMPSEYETEC 
P.chabaudi        TSQIN---GCIDTNKNIKES-HFKKS----NSYEDKRQINPKTKHKFERDDPVIECGYEL 
P.berghei         TRQIN---FCIDTNKNIKES-HLKKS----NSYEEKRQINPKAKHKFEREDPIIECGYEP 
P.yoelii          TSQIN---CCIDTNKNIKES-HFKKS----NSYEDKRQINPKAKHKFERDDPVIECGYEP 
                    : .       ..:  ::    ::*    .. :::.: . : : .        *   *  
 
P.falciparum      KKDIVRCICEKKNYNFINEKQEKINNEIFYKVFEQYPYSFFSKSVKNYKIILNENEEESE 
P.vivax           ERDIIRSTCEKKNFTFANDKQEKINNEIFYKVFEQYPYSFFSKSVKNYNLILNENKEESE 
P.chabaudi        ETDIIRSICEKKKFTFANEKQEKINNEIFYKVFEQYPYSFFSKSVKNYNAILNENEEESE 
P.berghei         ETDIIRSICEKKKFTFANEKQEKINNEIFYKVFEQYPYSFFSKSVKNYNAILNENEEESE 
P.yoelii          ETDIIRSICEKKKFTFANEKQEKINNEIFYKVFEQYPYSFFSKSVKNYNAILNENEEESE 
                  : **:*. ****::.* *:*****************************: *****:**** 
 
P.falciparum      LSWLTMLKKKSHNRSILPPSRDTFRDGTHFSNCRATEHTLKFFLSLLTLLRKGPIDLNLK 
P.vivax           LSWLTMLKKKTHNKSILPPSRDTFRDGTHFSNCRATEHTLKFFLSLLSLLTKSDIDINLK 
P.chabaudi        LSWLTMLKKKSHNRSILPPSRDTFRDGTHFSNCRATEHTLKFFLSLLSLLTKGDIDINLK 
P.berghei         LSWLTMLKKKSHNRSILPPSRDTFRDGTHFSNCRATEHTLKFFLSLLSLLKKGDIDINLK 
P.yoelii          LSWLTMLKKKSHNRSILPPSRDTFRDGTHFSNCRATEHTLKFFLSLLSLLTKGDIDINLK 
                  **********:**:*********************************:** *. **:*** 
 
P.falciparum      KYLKKNIQFLNTELFSMKLNLDKKRAILEKRLDHFNFQENSEFSFYNPLKINIRMMNLIG 
P.vivax           QYLKKNIQFLNTELFSMKLNLDKKRAILEKRLDHFNFQENSEFSFYNPLKMNIRMMNLIG 
P.chabaudi        KYLKKNIQFLNTELFSMKLNLDKKRAILEKRLDHFNFQENSEFSFYNPLKMNIRMMNLIG 
P.berghei         KYLKKNIQFLNTELFSMKLNLDKKRAILEKRLDHFNFQENSEFSFYNPLKMNIRMMNLIG 
P.yoelii          KYLKKNIQFLNTELFSMKLNLDKKRAILEKRLDHFNFQENSEFSFYNPLKMNIRMMNLIG 
                  :*************************************************:********* 
 
P.falciparum      RGGFAEVWEVFDSINLEMYAAKIHKIEPSMSNEIKNKIIQRAENEINIHIHCHRHIFIVK 
P.vivax           RGGFAEVWEVFDSINLEMYAAKIHKIEPSMTNEIKNKIIQRAENEINIHIHCHRHIFIVK 
P.chabaudi        RGGFAEVWEVFDSINLEMYAAKIHKIEPSMTNEIKNKIIQRAENEINIHIHCHRHIFIVK 
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P.berghei         RGGFAEVWEVFDSINLEMYAAKIHKIEPSMTNEIKNKIIQRAENEINIHIHCHRHIFIVK 
P.yoelii          RGGFAEVWEVFDSINLEMYAAKIHKIEPSMTNEIKNKIIQRAENEINIHIHCHRHIFIVK 
                  ******************************:***************************** 
 
P.falciparum      LEFFFVFGSATNLLVGMELCDIDLDKYIKYHGPINELLALCWIKQILLGLLYMKNLPTGK 
P.vivax           LEFFFVFGSATNLLVGMELCDIDLDKYIKYHGPINELLALCWVKQILLGLLYMKTLPTGK 
P.chabaudi        LEFFFVFGSATNLLVGMELCDVDLDKYIKYHGPINELLALSWIKQILLGLLYMKNLPTGK 
P.berghei         LEFFFVFGSATNLLVGMELCDVDLDKYIKYHGPINELLALSWIKQILLGLLYMKNLPTGK 
P.yoelii          LEFFFVFGSATNLLVGMELCDVDLDKYIKYHGPINELLALSWIKQILLGLLYMKNLPTGK 
                  *********************:******************.*:***********.***** 
 
P.falciparum      VHHCDLKPANLLIKDGIIKISDFGLAKLILPDTHQYYNGGGTLYYQPPECLKNKKNLLIT 
P.vivax           VHHCDLKPANLLIKDGIIKISDFGLAKLILPDTYQYYNGGGTLYYQPPECLRNKKNLLIT 
P.chabaudi        VHHCDLKPANLLIKDGIIKISDFGLAKLILPDTYQYYNGGGTLYYQPPECLKPKRNLLIT 
P.berghei         VHHCDLKPANLLIKDGIIKISDFGLAKLILPDTYQYYNGGGTLYYQPPECLKPKRNLLIT 
P.yoelii          VHHCDLKPANLLIKDGIIKISDFGLAKLILPDTYQYYNGGGTLYYQPPECLKPKRNLLIT 
                  *********************************:*****************: *:***** 
 
P.falciparum      DKIDIWSLGCILYEMLFCERPFQFNYLEKCSKELLVNKMKNGLTYPKINQKISNATLSYI 
P.vivax           DKIDIWSLGCILYEMLFCERPFQFNYLEKCSKELLVNKMKRGLSYPKINQQISEVTLNYI 
P.chabaudi        DKIDIWSLGCILYEMIFCERPFQFNYLEKCSKELLVNKMKRGLSYPKINQHISKITLNYI 
P.berghei         DKIDIWSLGCILYEMIFCERPFQFNYLEKCSKELLVNKMKRGLSYPKINQHISKITLNYI 
P.yoelii          DKIDIWSLGCILYEMIFCERPFQFNYLEKCSKELLVNKMKRGLSYPKINQHISKITLNYI 
                  ***************:************************.**:******:**: **.** 
 
P.falciparum      QYLLNFDYELRPSIEEALSYPIFNYFNIP 
P.vivax           QYLLNFDYEFRPSIEEALAYPIFNFFRIP 
P.chabaudi        EYLLNFDHESRPSIEEALSYPIFNYFNIP 
P.berghei         EYLLNFDHECRPSIEEALSYPIFNYFNVP 
P.yoelii          EYLLNFDHECRPSIEEALSYPIFNYFNIP 
                  :******:* ********:*****:*.:* 
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Appendix III: PFE0825w uptake conditions 

Substrate PFE0825w variant Concentration (µM)* pH Temperature (°C) 

TEA 

V1-his 

20 

7.4 

19 6 

5 

6 25 

20 + 200 6 25 

20 + 20 

6 19 

20 + 60 

20 + 140 

20 + 200 

20 + 300 

V1 

50+150 6 25 

50+150 7.4 25 

50+150 6 30 

V0-his 

20 6 

19 

20+480 

7.4 

20 

50 

200 

250 

500 

50 

7.4 25 

100 

250 

500 

V0 

50+150 

50+150 6 25 

50+150 6 30 

MPP 

V1-his 

100 

7.4 
25 

6 V1 
30 

V0 
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Choline 

V1-his 

10 

7.4 

19 

50 

150 

10 

6 50 

150 

10 

5 50 

150 

10 5 25 

V0-his 

10 

7.4 

19 

50 

150 

10 

6 50 

150 

10 

5 50 

150 

T3 
V0 

200 6 30 
V1 

CQ V1-his 10 6 19 

 

* All the concentrations for TEA correspond to [14C]-TEA + TEA; the concentrations for Choline, MPP and CQ correspond to 
the concentration of unlabeled compound and the concentration for T3 correspond to the concentration of radiolabelled 
compound. The uptake buffer in the case of Choline, MPP and CQ only contains tracing amounts of radiolabelled 
compounds: CQ 40 nM; Choline 12 nM; MPP 25 nM. 
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Appendix IV: Compounds structures 
 

> Compounds used on uptake experiments 

TEA 
 

 
 
 

MPP 
 

 

Choline 
 
 
 

T3 

CQ 
 

 
 
 
 
 
 

QN 
 

 
 
 
 
 
 
 
 

 
> Compounds used on the CQ accumulation screen 

 
Tyrphostin A25 

 
 
 
 
 
 

 
KN-93 
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Neomycin  

 
Chelerythrine 

 

 
 
 
 

Thapsigargin 
 
 
 
 

 
 
 
 

GTP-gamma-S 
 
 
 
 
 
 
 
 
 
 

 
Okadaic acid 

 
Forskolin 

 
 
 
 

PMA 

 
 
 
 

SQ22,536 
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CTP-cAMP  

 
 
 
 

 
KT-5720TBB 

 
 
 
 

 
 
 
 
 

TBB 
 

 
 
 
 
 

Emodin 
 
 
 

 
 
 
 

CPA 

 
 
 
 

ET-18-OCH3 

 
 
 
 

W16 

 
 
 
 

POM 
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> ML-7 Analogs 
 
 
 

K100018565 
 

 

 
 
 

 K100025569 
 

 
 
 
 

K100027117 
 

 

 
 
 

 K100027120 
 

 

 
 
 

K100027139 
 

 
 

 
 
 

K20034774 
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K20034808 

 

 

 
K20035017 

 

 

 
K20035244 

 

 

 
K20037423 

 
 

 
 

K20037526 

 

 
K20037657 
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Appendix V: Y2H prey sequences 
1. PF3D7_1427900 - PF14_0257 + PF3D7_0707300 - MAL7P1.208 (2x) 

Bait: PfCRT N-terminal 

In frame? Two sequences on the same plasmid.  

PF3D7_1427900 is in frame and PF3D7_0707300 is not.  

Sequence: 

ORF 1 (In frame) 

EEEEYEEDNTLKNFYEADFKDEDDEDEEFVPNDNEDDDEDDEMKDEVMIMQIVLLRQTIMKITMIKMKKKKNIMI
KIMIMDITF 

ORF 2 

RRRRRI*RR*YFKKFL*S*L*R*R**R*RICTQ***R**RR*RDER*SDDYADSFIETDHYENNDDKNEEEEEYNDQD
NDYGYNFLETDEYDDSEEYDYDDKEYGESFLEKEEGEEMKDEEMKDEEMEDVEMKDEEMKDEEMKYDEMKNEE
MKYDEMKDEVM 

Full plasmid sequenced. The underlined sequences are the ones found in the BLAST search.  

BLAST ORF 1: 

          Score     E 

PF3D7_1427900 | organism = Plasmodium_falciparum_3D7 |     35.8    4e-04 

PF3D7_1468100 | organism = Plasmodium_falciparum_3D7 |     23.5    8.7 

>PF3D7_1427900 

Score = 35.8 bits (81), Expect = 4e-04, Method: Compositional matrix adjust.Identities = 29/29 
(100%), Positives = 29/29 (100%), Gaps = 0/29 (0%). 

Query  9    DNTLKNFYEADFKDEDDEDEEFVPNDNED  37 
            DNTLKNFYEADFKDEDDEDEEFVPNDNED 
Sbjct  186  DNTLKNFYEADFKDEDDEDEEFVPNDNED  214 

 

 

 

 

            Y2H prey sequence 

 

No predicted domains by Prosite. 

Annotation: Conserved protein, unknown function.  

 

(281 aa) PF3D7_14279
 

186-214 

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1427900
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1427900
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1468100
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1427900
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BLAST ORF 2: 

         Score      E 

PF3D7_0707300 | organism = Plasmodium_falciparum_3D7 |     113     2e-28 

PF3D7_0406500 | organism = Plasmodium_falciparum_3D7 |     40.0    3e-04 

PF3D7_0405200 | organism = Plasmodium_falciparum_3D7 |     32.7    0.055 

PF3D7_0918700 | organism = Plasmodium_falciparum_3D7 |     32.7    0.074 

PF3D7_1140700 | organism = Plasmodium_falciparum_3D7 |     32.7    0.078 

PF3D7_1251600 | organism = Plasmodium_falciparum_3D7 |     31.2    0.22 

PF3D7_1410300 | organism = Plasmodium_falciparum_3D7 |     31.2    0.24 

PF3D7_1149000 | organism = Plasmodium_falciparum_3D7 |     30.0    0.46 

PF3D7_1313500 | organism = Plasmodium_falciparum_3D7 |     30.0    0.53 

PF3D7_0506500 | organism = Plasmodium_falciparum_3D7 |     29.3    0.97 

PF3D7_1123100 | organism = Plasmodium_falciparum_3D7 |     27.3    4.1 

PF3D7_1032700 | organism = Plasmodium_falciparum_3D7 |     26.9    4.2 

PF3D7_1359700 | organism = Plasmodium_falciparum_3D7 |     26.9    5.6 

PF3D7_1133700 | organism = Plasmodium_falciparum_3D7 |     26.2    8.8 

>PF3D7_0707300 

Score = 113 bits (283), Expect = 2e-28, Method: Compositional matrix adjust. Identities = 112/114 
(98%), Positives = 113/114 (99%), Gaps = 0/114 (0%) 

Query  49   DDYADSFIETDHYENNDDKNEEEEEYNDQDNDYGYNFLETDEYDDSEEYDYDDKEYGESF  108 
            DDY DSFIETDHYENNDDKNEEEEEYNDQDNDYGYNFLETDEYDDSEEYDYDDKEYGESF 
Sbjct  193  DDYTDSFIETDHYENNDDKNEEEEEYNDQDNDYGYNFLETDEYDDSEEYDYDDKEYGESF  252 
 
Query  109  LEKEEGEEMKDEEMKDEEMEDVEMKDEEMKDEEMKYDEMKNEEMKYDEMKDEVM  162 
            LEKEEGEEMKDEEMKDEEM+DVEMKDEEMKDEEMKYDEMKNEEMKYDEMKDEVM 
Sbjct  253  LEKEEGEEMKDEEMKDEEMKDVEMKDEEMKDEEMKYDEMKNEEMKYDEMKDEVM  306 

 

 

 

 

                Y2H prey sequence 

No predicted domains by Prosite. 

Annotation: Rhoptry-associated membrane antigen (RAMA). 

 

 

 

 

(861 aa) PF3D7_0707300 

 

193-306 

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0707300
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0406500
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0405200
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0918700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1140700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1251600
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1410300
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1149000
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1313500
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0506500
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1123100
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1032700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1359700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1133700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0707300
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2. PF3D7_0609000 - PFF0445w -MAL6P1.93 

Bait: Putative Calmodulin Binding Site 

In Frame? Yes 

Sequence: 

TINNTNTGGNIFSSPLSNSLNQGITNANANTITNTNANNIFNISSNSALLNNSSNKLFGTTTNTASSSNLLGNNNISSG
MFSPLSNNINNKPNLFSGANQNNLFSNTNMSSSPSLSLNNTTNTIGGNINSSGQNFIQNQNNILTNQTLSNSIYNN
NSNLNSNNLLLPGQQQNNTSPFLTNMGTNASSPTSSIFNQSKDLISSNNLNIGTSTTNIFGTTSSNNMNNMNSMN
SMNSMNNMNSMNSMNSMNSMNNMNSMNSLFLGLQQQTQSTTTTT 

The full insert was not sequenced. The underlined sequence is the ones found in the BLAST search. 

BLAST: 
        Score            E 

PF3D7_0609000 | organism = Plasmodium_falciparum_3D7 |     310         9e-95 

PF3D7_1228800 | organism = Plasmodium_falciparum_3D7 |     32.3        0.14 

PF3D7_0629400 | organism = Plasmodium_falciparum_3D7 |     28.1        2.7 

>PF3D7_0609000 

Score =  310 bits (793),  Expect = 9e-95, Method: Compositional matrix adjust. Identities = 263/302 
(87%), Positives = 265/302 (88%), Gaps = 22/302 (7%) 
 
Query  8     GGNIFSSPLSNSLNQGITNANANTITNTNANNI--FNISSNSALLNNSSNKLFGTTTNTA  65 
             GGNIFSSPLSNSLNQGITNANAN  T TN N    FNISSNSALLNNSSNKLFGTTTNTA 
Sbjct  2477  GGNIFSSPLSNSLNQGITNANANANTITNTNANNIFNISSNSALLNNSSNKLFGTTTNTA  2536 
 
Query  66    SSSNLLGNNNISSGMFSPLSNNINNKPNLFSGANQNNLFSNTNMSSSPSLSLNNTTNTIG  125 
             SSSNLLGNNNISSGMFSPLSNNINNKPNLFSGANQNNLFSNTNMSSSPSLSLNNTTNTIG 
Sbjct  2537  SSSNLLGNNNISSGMFSPLSNNINNKPNLFSGANQNNLFSNTNMSSSPSLSLNNTTNTIG  2596 
 
Query  126   GNINSSGQNFIQNQNNILTNQTLSNSIYNNNSNLNSNNLLLPGQQQNNTSPFLTNMGTNA  185 
             GNINSSGQNFIQNQNNILTNQTLSNSIYNNNSNLNSNNLLLPGQQQNNTSPFLTNMGTNA 
Sbjct  2597  GNINSSGQNFIQNQNNILTNQTLSNSIYNNNSNLNSNNLLLPGQQQNNTSPFLTNMGTNA  2656 
 
Query  186   SSPTSSIFNQSKDLISSNNLNIGTSTTNIFGTTSSNNMNNMNSMNSMNSMNNMNSMNSMN  245 
             SSPTSSIFNQSKDLISSNNLNIGTSTTNIFGTTSS               NNMN+MNSMN 
Sbjct  2657  SSPTSSIFNQSKDLISSNNLNIGTSTTNIFGTTSS---------------NNMNNMNSMN  2701 
 
Query  246   SMNSMNNMNSMNSLFLGLQQQTQSTTTTT  274 
             SMNSMNNMNSMNSLFLGLQQQTQSTTTTT 
Sbjct  2702  SMNSMNNMNSMNSLFLGLQQQTQSTTTTT  2730 

 

 

 

 

             Y2H prey sequence 

            Phosphopantetheine attachment site 

            Flagella basal body rod proteins signature 

Annotation: Conserved Plasmodium protein, unknown function. 

(6077aa) PF3D7_0609000 

 

2477-2730 

231-246  671-691                           2679-2699 

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0609000
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1228800
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0629400
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0609000
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3. PF3D7_0106900 - PFA0340w 

Bait: OUT loop 

In Frame? No 

Sequence: 

GKKRKRKK*TLFFFFPCI*DLFKYT*YFFMYLMMIFSFYHIC*INMLIFIYLFFFFL*EWHKYMHTQKKKKKNNNLERM
HFVHTFIRCVLLIYFIKWNGYNFHMLKRQFFKNGKNIIERSIRKCKKNNFSKSYHSIVYIKNGVTQYMCKNKKRGRGE
QKKNIIINNKYLFLLNNFIDKNKDKTYLSTSLERKYLKNQKDDAHKIWKNRIKNYKSINIYMSKIEEKSTKEIENKDDILN
KDNINNKHIYDNNKENDIFYKYNTK 

Full insert sequenced. The underlined sequence is the one found in the BLAST search. 

BLAST: 
                                                                                                                  Score             E 

PF3D7_0106900 | organism = Plasmodium_falciparum_3D7 |     360         1e-119 

PF3D7_1325500 | organism = Plasmodium_falciparum_3D7 |     35.4        0.010 

>PF3D7_0106900 

Score =  360 bits (925),  Expect = 1e-119, Method: Compositional matrix adjust. Identities = 184/185 
(99%), Positives = 184/185 (99%), Gaps = 0/185 (0%) 
 

Query  79   MHFVHTFIRCVLLIYFIKWNGYNFHMLKRQFFKNGKNIIERSIRKCKKNNFSKSYHSIVY  138 

            MHFVHTFIRCVLLIYFIKWNGYNFHMLKRQFFKNGKNIIERSIRKCKKNNFSKSYHSIVY 

Sbjct  1    MHFVHTFIRCVLLIYFIKWNGYNFHMLKRQFFKNGKNIIERSIRKCKKNNFSKSYHSIVY  60 
 

Query  139  IKNGVTQYMCKNKKRGRGEQKKNIIINNKYLFLLNNFIDKNKDKTYLSTSLERKYLKNQK  198 

            IKNGVTQYMCKNKKRGRGEQKKNIIINNKYLFLLNNFIDKNKDKTYLSTSLERKYLKNQK 

Sbjct  61   IKNGVTQYMCKNKKRGRGEQKKNIIINNKYLFLLNNFIDKNKDKTYLSTSLERKYLKNQK  120 
 

Query  199  DDAHKIWKNRIKNYKSINIYMSKIEEKSTKEIENKDDILNKDNINNKHIYDNNKENDIFY  258 

            DDAHKIWKNRIKNYKSINIYMSKIEEKSTKEIENKDDILNKDNINNKHIYDNNKENDIF  

Sbjct  121  DDAHKIWKNRIKNYKSINIYMSKIEEKSTKEIENKDDILNKDNINNKHIYDNNKENDIFN  180 
 

Query  259  KYNTK  263 

            KYNTK 

Sbjct  181  KYNTK  185 

 

 

 

            Y2H prey sequence 

            4-diphosphocytidyl-2C-methyl-D-erythritol synthase signature 

Annotation: 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, putative (IspD). 

(734aa) PF3D7_0106900 

 

1-185 

512-519 

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0106900
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1325500
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0106900
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4. PF3D7_0907000 - PFI0336w 

Bait: Putative Calmodulin Binding Site 

In Frame? No 

Sequence: 

CSYIFLVFSFVLSV*K*KKMSNDQDLKSSFLQDLKEYSTNDDKKFPEVLKNYITQNIEDQNEAERFLKEFNDSYLKEMN
LDELELLCSMILKKKNLSAN*GGTNKTIKIIINKLYKLN*NKINTYIYHIYHTIHFPYIFFFLFFFFIFFFFFIFYFFSYFLFFHIL
FFFIFYF*IFIVR*MLNICFIYS*DRESLSCFILFDI*FMTFS*YS*IS*F*FFKI*NI 

Full insert was sequenced. The underlined sequences are the ones found in the BLAST search. 

BLAST: 

          Score     E 

PF3D7_0907000 | organism = Plasmodium_falciparum_3D7 |     156    7e-51 

PF3D7_1034300 | organism = Plasmodium_falciparum_3D7 |      25.4    1.9 

PF3D7_1136100 | organism = Plasmodium_falciparum_3D7 |      25.4    1.9 

PF3D7_1220300 | organism = Plasmodium_falciparum_3D7 |      24.6    3.1 

PF3D7_0405700 | organism = Plasmodium_falciparum_3D7 |      23.9    5.4 

PF3D7_1422700 | organism = Plasmodium_falciparum_3D7 |      23.9    6.5 

PF3D7_1021900 | organism = Plasmodium_falciparum_3D7 |      23.5    9.6 

PF3D7_1122900 | organism = Plasmodium_falciparum_3D7 |      23.5    7.7 

>PF3D7_0907000 

Score =  156 bits (394),  Expect = 7e-51, Method: Compositional matrix adjust. Identities = 80/80 
(100%), Positives = 80/80 (100%), Gaps = 0/80 (0%) 
 

Query  3   MSNDQDLKSSFLQDLKEYSTNDDKKFPEVLKNYITQNIEDQNEAERFLKEFNDSYLKEMN  62 

           MSNDQDLKSSFLQDLKEYSTNDDKKFPEVLKNYITQNIEDQNEAERFLKEFNDSYLKEMN 

Sbjct  1   MSNDQDLKSSFLQDLKEYSTNDDKKFPEVLKNYITQNIEDQNEAERFLKEFNDSYLKEMN  60 

 

Query  63  LDELELLCSMILKKKNLSAN  82 

           LDELELLCSMILKKKNLSAN 

Sbjct  61  LDELELLCSMILKKKNLSAN  80 

 

 

 

 

              Y2H prey sequence 

No predicted domains by Prosite. 

Annotation: conserved Plasmodium protein, unknown function 

(80aa) PF3D7_0907000 

 

1-80 

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0907000
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1034300
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1136100
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1220300
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0405700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1422700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1021900
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1122900
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0907000
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5. PF3D7_0919800 - PFI09700c 

Bait: Putative Calmodulin Binding Site 

In Frame? No – Inverted sequence  

Sequence: 

IVIIKTFHEEKNKRSISYYKYIRKSLSYVLIRSATSFNYTPFKENKIDKVQNWKI*YPVFHSRGGKNI*FEGYTK*CK*CE*
CE*CKYCE*YK*CKRNK**FV*K*Y**V*RDNM*TSKK**CQ*YCLAE**T*T***IYFDMSTSYNNNHNNNIVDHL
HDRDLKIFQKINEINYSTVIPSYPDIT*KNSLNLVNSQSSRKDGLSSDCDKKNNNQFKKKNEHGRGNEKEK 

Poor sequence quality. The underlined sequence is the one found in the BLAST search. 

BLAST: 

        Score     E 

PF3D7_0919800 | organism = Plasmodium_falciparum_3D7 |     121    4e-31 

>PF3D7_0919800 

Score =  121 bits (303),  Expect = 4e-31, Method: Compositional matrix adjust. Identities = 79/88 
(90%), Positives = 82/88 (93%), Gaps = 0/88 (0%) 
 

Query  139  IYFDMSTSYNNNHNNNIVDHLHDRDLKIFQKINEINYSTVIPSYPDIT*KNSLNLVNSQS  198 

            + FDMSTSYNNNHNNNIVDHLHD DLKI+QKINEINYSTVIPSYPDIT KNSLNL NSQS 

Sbjct  333  LSFDMSTSYNNNHNNNIVDHLHDSDLKIYQKINEINYSTVIPSYPDITYKNSLNLANSQS  392 
 

Query  199  SRKDGLSSDCDKKNNNQFKKKNEHGRGN  226 

            S KD LSSDCDKKNNNQ+KKKNEHGRGN 

Sbjct  393  SLKDDLSSDCDKKNNNQYKKKNEHGRGN  420 

 

Score = 47.0 bits (110),  Expect = 2e-06, Method: Compositional matrix adjust. Identities = 34/67 
(51%), Positives = 40/67 (60%), Gaps = 4/67 (6%) 
 

Query  9    EEKNKRSISYYKYIRKSLSYV--LIRSATSFNYTPFKENKIDKVQNWK-I*YPVFHSRGG  65 

            +E  ++SISYYKYI KSLSYV  L +   + N T FKENK DKVQN + I   V    GG 

Sbjct  195  DENKQKSISYYKYISKSLSYVFNLAQPLVTTN-TTFKENKNDKVQNLEDIISDVSFKGGG  253 
   

Query  66   KNI*FEG  72 

                F G 

Sbjct  254  STYNFSG  260 
 

 

 

 

            Y2H prey sequence 

No predicted domains by Prosite. 

Annotation: TLD domain containing protein 

(1078aa) PF3D7_0919800 

 

195-260 333-420 

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0919800
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0919800
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6. PF3D7_1033200 - PF10_0323 

Bait: Putative Calmodulin Binding Site 

In Frame? No 

Sequence: 

STFFFFFFFFFFSFLFLLFFFFFLFF*F*F*F*FFFKMKVGKIFFLLNILVVCHFIISCLCRNGQTTRGNLLALKAIEQDLQQ
KKNRKRNLILYSLGSAALIAALVVTGIGLNMYMKKKNVDSEVQEIIDEKDEKVKEKPAEKKKTTVKIVSKRVPVKSKSS
NGKSKARTVNSEVSPKLDDEKKEDLLKFNDNDLLLAAESLKELNPKYDENTQGNDSFKNINEPRKLASFSLYDALADA
SEQNKNKDAESSTGQIPTPTESSHGISDGKKDTSTNDMDPLNPYGSSKRNSSENKPTSESKGTTPESNFDSKTPEIKEI
NEPIIVPSYYPTTGPNPNTHGPP 

The full insert was not sequenced. The underlined sequence is the one found in the BLAST search. 

BLAST: 

        Score     E 

PF3D7_1033200 | organism = Plasmodium_falciparum_3D7|     592     0.0 

PF3D7_1302200 | organism = Plasmodium_falciparum_3D7|     36.2    0.007 

PF3D7_1401400 | organism = Plasmodium_falciparum_3D7|     35.0    0.005 

PF3D7_1001500 | organism = Plasmodium_falciparum_3D7|     32.3    0.046 

PF3D7_1102800 | organism = Plasmodium_falciparum_3D7|     32.3    0.030 

PF3D7_0512500 | organism = Plasmodium_falciparum_3D7|     29.6    1.2 

PF3D7_1016900 | organism = Plasmodium_falciparum_3D7|     26.2    5.4 

>PF3D7_1033200 

Score =  592 bits (1527),  Expect = 0.0, Method: Compositional matrix adjust. Identities = 304/305 
(99%), Positives = 305/305 (100%), Gaps = 0/305 (0%) 

 
Query  38   MKVGKIFFLLNILVVCHFIISCLCRNGQTTRGNLLALKAIEQDLQQKKNRKRNLILYSLG  97 

            MKVGKIFFLLNILVVCHFIISCLCRNGQTTRGNLLALKAIEQDLQQKKNRKRNLILYSLG 

Sbjct  1    MKVGKIFFLLNILVVCHFIISCLCRNGQTTRGNLLALKAIEQDLQQKKNRKRNLILYSLG  60 

 

Query  98   SAALIAALVVTGIGLNMYMKKKNVDSEVQEIIDEKDEKVKEKPAEKKKTTVKIVSKRVPV  157 

            SAALIAALVVTGIGLNMYMKKKNVDSEVQEIIDEKDEKVKEKPAEKKKTTVKIVSKRVPV 

Sbjct  61   SAALIAALVVTGIGLNMYMKKKNVDSEVQEIIDEKDEKVKEKPAEKKKTTVKIVSKRVPV  120 

 

Query  158  KSKSSNGKSKARTVNSEVSPKLDDEKKEDLLKFNDNDLLLAAESLKELNPKYDENTQGND  217 

            KSKSSNGKSKARTVNSEVSPKLDDEKKEDLLKFNDNDLLLAAESLKELNPKYDENTQGND 

Sbjct  121  KSKSSNGKSKARTVNSEVSPKLDDEKKEDLLKFNDNDLLLAAESLKELNPKYDENTQGND  180 

 

Query  218  SFKNINEPRKLASFSLYDALADASEQNKNKDAESSTGQIPTPTESSHGISDGKKDTSTND  277 

            SFKNINEPRKLASFSLYDALADASEQNKNKDAESSTGQIPTPTESSHGISDGKKDTSTND 

Sbjct  181  SFKNINEPRKLASFSLYDALADASEQNKNKDAESSTGQIPTPTESSHGISDGKKDTSTND  240  

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1033200
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1302200
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1401400
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1001500
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1102800
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0512500
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1016900
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1033200
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Query  278  MDPLNPYGSSKRNSSENKPTSESKGTTPESNFDSKTPEIKEINEPIIVPSYYPTTGPNPN  337 

            MDPLNPYGSSKRNSSE+KPTSESKGTTPESNFDSKTPEIKEINEPIIVPSYYPTTGPNPN 

Sbjct  241  MDPLNPYGSSKRNSSEDKPTSESKGTTPESNFDSKTPEIKEINEPIIVPSYYPTTGPNPN  300 

 

Query  338  THGPP  342 

            THGPP 

Sbjct  301  THGPP  305 

 

 

  

 

            Y2H prey sequence 

            Prokaryotic membrane lipoprotein lipid attachment site profile 

 

Annotation: early transcribed membrane protein 10.2 (ETRAMP10.2) 

PlasmoDB comments:  Integral parasitophorous vacuole membrane protein (Spielmann et al., 2003; 
Spielmann and Beck, 2000; Birago et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-305 

(355aa) PF3D7_1033200 

 
1-22 
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7. PF3D7_1233600 - PFL1620w 

Bait: Putative Calmodulin Binding Site 

In Frame? No 

Sequence: 

DGNNNNIINRCNNNNYYYDNMKHVDEKGGEGEGEDSEECQIKESYKKMSECNNKENIIFDSINVLRKNNIKRLKNY
MCKNKNCYIYYDDNNNKKKKNKKNVENQEKEFYVLNKIFVHNFINCINNINVNEDKCFQKVRSTILNRLKEMYSGN
YDCKNNNSNNEFIELAKKKQEDLLKSMKEQQSKFSHFLEEEYSSEENDSLPNGGTEDFEDVDFVDDASSYLDSNSNN
NSDGH 

The full insert was not sequenced. The underlined sequence is the ones found in the BLAST search. 

BLAST: 
         Score            E 

PF3D7_1233600 | organism = Plasmodium_falciparum_3D7 |     313         3e-97 

PF3D7_1019300 | organism = Plasmodium_falciparum_3D7 |     29.3         0.87 

>PF3D7_1233600 

Score =  313 bits (803),  Expect = 3e-97, Method: Compositional matrix adjust. Identities = 214/215 
(99%), Positives = 215/215 (100%), Gaps = 0/215 (0%) 
 

Query  21    MKHVDEKGGEGEGEDSEECQIKESYKKMSECNNKENIIFDSINVLRKNNIKRLKNYMCKN  80 

             MKHVDEKGGEGEGEDSEECQIKESYKKMSECNNKENIIFDSINVLRKNNIKRLKNYMCKN 

Sbjct  2122  MKHVDEKGGEGEGEDSEECQIKESYKKMSECNNKENIIFDSINVLRKNNIKRLKNYMCKN  2181 
 

Query  81    KNCYIYYDDNNNKKKKNKKNVENQEKEFYVLNKIFVHNFINCINNINVNEDKCFQKVRST  140 

             KNCYIYYDDNNNKKKKNKKNVENQEKEFYVLNKIFVHNFINCINNINVNEDKCFQKVRST 

Sbjct  2182  KNCYIYYDDNNNKKKKNKKNVENQEKEFYVLNKIFVHNFINCINNINVNEDKCFQKVRST  2241 
 

Query  141   ILNRLKEMYSGNYDCKNNNSNNEFIELAKKKQEDLLKSMKEQQSKFSHFLEEEYSSEEND  200 

             ILNRLKEMYSGNYDCKNNNSNNEFIELAKKKQEDLLKSMKEQQSKFSHFLEEEYSSEEND 

Sbjct  2242  ILNRLKEMYSGNYDCKNNNSNNEFIELAKKKQEDLLKSMKEQQSKFSHFLEEEYSSEEND  2301 
 

Query  201   SLPNGGTEDFEDVDFVDDASSYLDSNSNNNSDGH  234 

             SLPNGGTEDFEDVDFVDDASSYLDSNSNNNSDGH 

Sbjct  2302  SLPNGGTEDFEDVDFVDDASSYLDSNSNNNSDGH  2335 
 

 

 

 

  
 

            Y2H prey sequence 

            Zinc finger UBR-type profile 

Annotation: Asparagine and aspartate rich protein 1 (AARP1) 

Molecular function prediction: ubiquitin-protein ligase activity, protein binding, zinc ion binding. 

2122-2335 

(5439aa) PF3D7_1233600 

 72-141 

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1233600
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1019300
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1233600
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8. PF3D7_1324800 - PF13_0140 

Bait: Putative Calmodulin Binding Site 

In Frame? No 

Sequence: 

GLRATYNAFTL*TIFFFFFLRGSTIFT*TVHNFKLKKNKMEKNQNDKSNKNDIIHMNDKSGNYDKNNINNFIDKNDE
HDMSDILHKINNEEKKYEEIKSYSECLELLYKTHALKLGLDNPKKLNESFGHPCDKYKTIHIAGTNGKGSVCYKIYTCLKI
KKFKVGLFSSPHIFSLRERIIVNDEPISEKELIHLVNEVLNKAKKLYINPSFFEIITLVAFLHFLNKKVDYAIIETGIGGRLDA
TNILTKPEVIVITSIGYDHLNILGDNLPIICNEKIGIFKKDANVVIGPSVAIYKNVFDKAKELNCTIHTVVPEPRGERFNEE
NSRIALRTLEILNISIDYFLKSIIPIKPPLRI 

The full insert was not sequenced. The underlined sequence is the ones found in the BLAST search. 

BLAST: 
                             Score     E 

PF3D7_1324800     | organism = Plasmodium_falciparum_3D7|     644     0.0 

PF3D7_0910700     | organism = Plasmodium_falciparum_3D7|     34.7    0.031 

PF3D7_0215600     | organism = Plasmodium_falciparum_3D7|     33.9    0.054 

PF3D7_1107300     | organism = Plasmodium_falciparum_3D7|     30.8    0.71 

PF3D7_1219000     | organism = Plasmodium_falciparum_3D7|     30.8    0.62 

PF3D7_1327300     | organism = Plasmodium_falciparum_3D7|     30.0    0.93 

PF3D7_0934100     | organism = Plasmodium_falciparum_3D7|     28.9    2.1 

PF3D7_1035000     | organism = Plasmodium_falciparum_3D7|     28.5    3.4 

PF3D7_0619000.1 | organism = Plasmodium_falciparum_3D7|     28.1    4.4 

PF3D7_0619000.2 | organism = Plasmodium_falciparum_3D7|     28.1    4.5 

PF3D7_1324000     | organism = Plasmodium_falciparum_3D7|     26.9    9.9 

PF3D7_1352000     | organism = Plasmodium_falciparum_3D7|     26.9    9.4 

>PF3D7_1324800 

Score =  644 bits (1661),  Expect = 0.0, Method: Compositional matrix adjust. Identities = 325/340 
(96%), Positives = 329/340 (97%), Gaps = 1/340 (0%) 
 

Query  40   MEKNQNDKSNKNDIIHMNDKSGNYDKNNINNFIDKNDEHDMSDILHKINNEEKKYEEIKS  99 

            MEKNQNDKSNKNDIIHMNDKSGNYDKNNINNFIDKNDEHDMSDILHKINNEEKKYEEIKS 

Sbjct  1    MEKNQNDKSNKNDIIHMNDKSGNYDKNNINNFIDKNDEHDMSDILHKINNEEKKYEEIKS  60 

 

Query  100  YSECLELLYKTHALKLGLDNPKKLNESFGHPCDKYKTIHIAGTNGKGSVCYKIYTCLKIK  159 

            YSECLELLYKTHALKLGLDNPKKLNESFGHPCDKYKTIHIAGTNGKGSVCYKIYTCLKIK 

Sbjct  61   YSECLELLYKTHALKLGLDNPKKLNESFGHPCDKYKTIHIAGTNGKGSVCYKIYTCLKIK  120 

 

Query  160  KFKVGLFSSPHIFSLRERIIVNDEPISEKELIHLVNEVLNKAKKLYINPSFFEIITLVAF  219 

            KFKVGLFSSPHIFSLRERIIVNDEPISEKELIHLVNEVLNKAKKLYINPSFFEIITLVAF 

Sbjct  121  KFKVGLFSSPHIFSLRERIIVNDEPISEKELIHLVNEVLNKAKKLYINPSFFEIITLVAF  180 

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1324800
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0910700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0215600
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1107300
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1219000
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1327300
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0934100
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1035000
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0619000.1
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0619000.2
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1324000
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1352000
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1324800
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Query  220  LHFLNKKVDYAIIETGIGGRLDATNILTKPEVIVITSIGYDHLNILGDNLPIICNEKIGI  279 

            LHFLNKKVDYAIIETGIGGRLDATNILTKPEVIVITSIGYDHLNILGDNLPIICNEKIGI 

Sbjct  181  LHFLNKKVDYAIIETGIGGRLDATNILTKPEVIVITSIGYDHLNILGDNLPIICNEKIGI  240 

 

Query  280  FKKDANVVIGPSVAIYKNVFDKAKELNCTIHTVVPEPRGERFNEENSRIALRTLEILNIS  339 

            FKKDANVVIGPSVAIYKNVFDKAKELNCTIHTVVPEPRGER+NEENSRIALRTLEILNIS 

Sbjct  241  FKKDANVVIGPSVAIYKNVFDKAKELNCTIHTVVPEPRGERYNEENSRIALRTLEILNIS  300 

 

Query  340  IDYFLKSIIPIKPPLRI  356 

            IDYFLKSIIPIKPPLRI 

Sbjct  301  IDYFLKSIIPIKPPLRI  317 

 

 

 

  

 

            Y2H prey sequence 

            Folylpolyglutamate synthase signature 2 

 

Annotation: dihydrofolate synthase/folylpolyglutamate synthase (DHFS-FPGS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(522aa) PF3D7_1324800 

 
192-207 

1-317 
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9. PF3D7_0220000 - PF02_0187 - PFB0915w 

Bait: PfCRT N-term 

In Frame? No 

Sequence: 

GEIFDNVKRIHYKLLTSPFLRIETNLKIQSEQKVDLNANEGSSIFYNIKKMK 

Poor sequence quality. The full insert was not sequenced. The underlined sequence is the one found 
in the BLAST search. 

BLAST:  

                                                                                                                  Score           E 

PF3D7_0220000 | organism = Plasmodium_falciparum_3D7|      58.5         8e-12 

PF3D7_1028700 | organism = Plasmodium_falciparum_3D7|      27.7         0.11 

PF3D7_1110500 | organism = Plasmodium_falciparum_3D7|      27.3         0.19 

PF3D7_1208200 | organism = Plasmodium_falciparum_3D7|      23.1         3.6 

PF3D7_0820000 | organism = Plasmodium_falciparum_3D7|      22.3         8.4 

>PF3D7_0220000 

 Score = 58.5 bits (140),  Expect = 8e-12, Method: Compositional matrix adjust.  Identities = 32/52 
(62%), Positives = 36/52 (69%), Gaps = 0/52 (0%) 
 

Query  1    GEIFDNVKRIHYKLLTSPFLRIETNLKIQSEQKVDLNANEGSSIFYNIKKMK  52 

             EIFDNVK I   LLT  F  IET++ IQSE+KVDLN N  SSI  NI+ MK 

Sbjct  776  SEIFDNVKGIQENLLTGMFRSIETSIVIQSEEKVDLNENVVSSILDNIENMK  827 

 

 

 

 

            Y2H prey sequence 

No predicted domains by Prosite. 

Annotation: Liver stage antigen 3 (LSA3) 

 

 

 

 

 

 

(1558aa) PF3D7_0220000 

 

776-827 

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0220000
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1028700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1110500
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1208200
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0820000
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0220000
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10. PF3D7_0406500 - PFD0320c 

Bait: PfCRT C-term 

In Frame? Yes 

Sequence: 

DKMTLEKEIKNFSNDKITLEKEIQNIRNEKITIEKEIKNFRNDKITLEKEIKNFRNDKMTLEKEIKNFSNDKITLEKEIQNIR
NEKITIEKEIQNISNDKMTLEKEIQNIRNDKIVFEEEKKKFLDNKETITYEIKKSILIDNLCVKEKQKFLNIKNEEIKLDLDKL
NIKDEREKLDKDKIEMENEKESFCKEKKAYELKKEDLELDVIIVDIQKKMIKENFEKIEDEKRDFRIEILKPIERLNRVTNY
LYYKKALKKYNKHGKEQNLKYNKYTNKNKDTEEENSNSDIYGDMFLKYSSNVNKSNKDTSKDVINKTI 

The full insert was not sequenced. The underlined sequence is the one found in the BLAST search. 

BLAST: 

                                                                                                                  Score       E 

PF3D7_0406500 | organism = Plasmodium_falciparum_3D7 |     573       0.0 

PF3D7_0423600 | organism = Plasmodium_falciparum_3D7 |     38.9      0.001 

PF3D7_1252400 | organism = Plasmodium_falciparum_3D7 |     36.2      0.011 

PF3D7_0322800 | organism = Plasmodium_falciparum_3D7 |     31.2      0.21 

PF3D7_0317300 | organism = Plasmodium_falciparum_3D7 |     28.5      2.8 

PF3D7_1021800 | organism = Plasmodium_falciparum_3D7 |     28.5      2.8 

PF3D7_0710200 | organism = Plasmodium_falciparum_3D7 |     28.1      3.4 

PF3D7_1126700 | organism = Plasmodium_falciparum_3D7 |     28.1      3.5 

PF3D7_0204300 | organism = Plasmodium_falciparum_3D7 |     27.3      5.9 

PF3D7_1117200 | organism = Plasmodium_falciparum_3D7 |     26.9      8.3 

>PF3D7_0406500 

 Score =  573 bits (1478),  Expect = 0.0, Method: Compositional matrix adjust.  Identities = 312/318 
(98%), Positives = 314/318 (99%), Gaps = 0/318 (0%) 
 

Query  1     DKMTLEKEIKNFSNDKITLEKEIQNIRNEKITIEKEIKNFRNDKITLEKEIKNFRNDKM  59 

             DKMTLEKEIKNFSNDKITLEKEIQNIRNEKITIEKEI+N  NDK+TLEKEIKNFRNDKM 

Sbjct  1061  DKMTLEKEIKNFSNDKITLEKEIQNIRNEKITIEKEIQNISNDKMTLEKEIKNFRNDKM  1119 

 

Query  60    TLEKEIKNFSNDKITLEKEIQNIRNEKITIEKEIQNISNDKMTLEKEIQNIRNDKIVFEE  119 

             TLEKEIKNFSNDKITLEKEIQNIRNEKITIEKEIQNISNDKMTLEKEIQNI NDKIVFEE 

Sbjct  1120  TLEKEIKNFSNDKITLEKEIQNIRNEKITIEKEIQNISNDKMTLEKEIQNISNDKIVFEE  1179 

 

Query  120   EKKKFLDNKETITYEIKKSILIDNLCVKEKQKFLNIKNEEIKLDLDKLNIKDEREKLDKD  179 

             EKKKFLDNKETITYEIKKSILIDNLCVKEKQKFLNIKNEEIKLDLDKLNIKDEREKLDKD 

Sbjct  1180  EKKKFLDNKETITYEIKKSILIDNLCVKEKQKFLNIKNEEIKLDLDKLNIKDEREKLDKD  1239  

http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0406500
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0423600
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1252400
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0322800
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0317300
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1021800
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0710200
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1126700
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0204300
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_1117200
http://www.plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=PlasmoDB&source_id=PF3D7_0406500
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Query  180   KIEMENEKESFCKEKKAYELKKEDLELDVIIVDIQKKMIKENFEKIEDEKRDFRIEILKP  239 

             KIEMENEKESFCKEKKAYELKKEDLELDVIIVDIQKKMIKENFEKIEDEKRDFRIEILKP 

Sbjct  1240  KIEMENEKESFCKEKKAYELKKEDLELDVIIVDIQKKMIKENFEKIEDEKRDFRIEILKP  1299 

 

Query  240   IERLNRVTNYLYYKKALKKYNKHGKEQNLKYNKYTNKNKDTEEENSNSDIYGDMFLKYSS  299 

             IERLNRVTNYLYYKKALKKYNKHGKEQNLKYNKYTNKNKDTEEENSNSDIYGDMFLKYSS 

Sbjct  1300  IERLNRVTNYLYYKKALKKYNKHGKEQNLKYNKYTNKNKDTEEENSNSDIYGDMFLKYSS  1359 

 

Query  300   NVNKSNKDTSKDVINKTI  317 

             NVNKSNKDTSKDVINKTI 

Sbjct  1360  NVNKSNKDTSKDVINKTI  1377 

 

 

 

 

 

             Y2H prey sequence 

No predicted domains by Prosite. 

Annotation: Conserved Plasmodium protein, unknown function 

 

(3211aa) PF3D7_0406500 

 

1061-1377 
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