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Abstract

The relationship between genetic variability and individual phenotypes is usually investigated by testing for association
relying on called genotypes. Allele counts obtained from next-generation sequence data could be used for this
purpose too. Genetic association can be examined by treating alternative allele counts (AACs) as the response
variable in negative binomial regression. AACs from sequence data often contain an excess of zeros, thus motivating
the use of Hurdle and zero-inflated models. Here we examine rough type I error rates and the ability to pick
out variants with small probability values for 7 different testing approaches that incorporate AACs as an explanatory or
as a response variable. Model comparisons relied on chromosome 3 DNA sequence data from 407 Hispanic
participants in the Type 2 Diabetes Genetic Exploration by Next-generation sequencing in Ethnic Samples
(T2D-GENES) project 1 with complete information on diastolic blood pressure and related medication. Our
results suggest that in the investigation of the relationship between AAC as response variable and individual
phenotypes as explanatory variable, Hurdle-negative binomial regression has some advantages. This model
showed a good ability to discriminate strongly associated variants and controlled overall type I error rates.
However, probability values from Hurdle-negative binomial regression were not obtained for approximately
25 % of the investigated variants because of convergence problems, and the mass of the probability value
distribution was concentrated around 1.
Background
Diastolic blood pressure (DBP) measures the pressure
during heart relaxation. High DBP increases the risk of
heart attacks, stroke, and kidney failure. DBP is
dependent on the age, gender, and medication of an in-
dividual [1]. A genetic component has been identified
for high DBP [2].
The relationship between genetic variability and DBP

is commonly investigated by testing for association
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between called genotypes and phenotypes. In sequence
data, genotypes are called relying on sequence reads. Al-
ternatively, association tests without calling genotypes
have been suggested [3].
Depth in DNA sequence data refers to the number of

reads at a position. In next-generation sequence data
there are 2 counts of allelic depth, the number of refer-
ence alleles, and the number of alternative alleles. Here
we use the number of alternative allele counts (AACs)
and the total read depth. AACs are genotype measure-
ments that are more informative than called genotypes
in the sense that the 2 counts—“zero reference alleles
out of 100” and “1 reference allele out of 100”—would
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translate into the same called genotype. In other words,
after applying user-defined data quality filters, the uncer-
tainty in genotype calling is rarely taken into account in
statistical analyses.
Several statistical procedures can be used for testing as-

sociation between allele counts and a phenotype of inter-
est. When AAC is regarded as the response variable and
the total read depth as an offset, standard models for
count data can be used. The response variable can also be
defined as the ratio of the AAC to the total read depth. In
this case, linear regression can be used to investigate the
genotype–phenotype relationship. It is also possible to
model the phenotype as a response variable, and the ratio
“AAC/total read depth” as an explanatory variable.
We used data from the Genetic Analysis Workshop

(GAW) 19, which are provided for 1943 Hispanic
samples that have been whole-exome sequenced as part
of the Type 2 Diabetes Genetic Exploration by Next-
generation sequencing in Ethnic Samples (T2D-GENES)
Project 1 to compare different regression techniques.

Methods
Phenotype data were provided for 1943 Hispanics who
participated in the T2D-GENES Project 1, and included 4
variables: DBP, age, gender, and medication [4, 5]. We ex-
cluded individuals with missing information on medica-
tion; that is, the investigated data set included 407
patients. To be able to treat DBP both as response and as
explanatory variable, we regressed the measured DBP on
age, sex, and medication, and used the residuals as a new
phenotype variable that we denominated “adjusted-DBP.”
Regarding genotype measurements, exonic regions were

isolated using Agilent TruSeq capture reagents, and indi-
vidually barcoded samples sequenced in Illumina HiSeq
2000 instruments. Across the coding sequence of 18,281
genes, an average read depth of approximately 82-fold was
reached. We used VCFtools (version 0.1.4a) to extract the
data needed: counts of reference and alternative alleles
(AD field in the FORMAT tag of the variant call format
[vcf] file), genotype (GT field in the FORMAT tag), and
average genotype quality (GQ field in the FORMAT tag).
Total read depth was calculated as the sum of the counts
for the reference and the alternative alleles. We also used
VCFtools to calculate the minor allele frequency (MAF).
Our analysis focused on biallelic variants in chromosome
3. Variants with a MAF of less than 0.003 were excluded,
leaving a total of 8957 variants for analysis.
We compared different regression models and treated

AAC both as response and as explanatory variable. The
relationship between AAC as response variable (total
read depth was used as offset), and adjusted-DBP as
explanatory variable was first investigated by negative
binomial regression. Zero-inflated negative binomial
(ZI-NB) and Hurdle-negative binomial (Hu-NB) models
are more flexible than negative binomial regression in the
presence of zero inflation [6, 7]. Comparisons between the
complete model with adjusted-DBP, and a null model with
only the intercept relied on the deviance (minus twice the
difference of log null and complete model likelihoods) in-
vestigated with a chi-squared test.
We also investigated the genotype–phenotype relation-

ship based on the ratio “AAC/total read depth” and
adjusted-DBP, as response and explanatory variables in
standard linear and robust linear regression [8].
Type I error rates were roughly estimated assuming

that the large majority of the 8957 investigated variants
were under the null hypothesis of no genetic association.
Quantile–quantile (Q-Q) plots were used to explore
possible disparities between small probability values
(p values) from different regression models. These
analyses do not amount to a systematic model comparison
relying on extensive simulations, but they could be sug-
gestive of the most promising modeling approaches.
R-packages stats, pscl, and robust were used to fit

negative binomial/linear regression, ZI-NB/Hu-NB, and
robust linear regression models, respectively.

Results
Figure 1 shows the distribution of AACs for all 8957 in-
vestigated variants. Panel A shows the distribution of
mean AACs; panel B shows the distribution of median
AACs; and panel C, which represents the AAC distribu-
tion variant in position Ch3:391100, illustrates the fre-
quent large proportion of zero counts. Noteworthy is
that panel B revealed 105 variants with a median AAC
exactly equal to 254. This peak was not apparent when
mean AACs were represented. To investigate the pos-
sible origin of this peak, we plotted a histogram of AACs
for the variant in position Ch3:16249998, which pre-
sented a median (mean) AAC of 254 (40.03). This vari-
ant showed a MAF of 0.168 (panel D: 280 reference
allele homozygotes, 117 heterozygotes, and 10 alterna-
tive allele homozygotes). The presence of 35 variants
with a median AAC greater than 254 in panel B, com-
bined with panel (D), suggest that downsampling, if
present, was incomplete. A field with information on the
possible downsampling was not available. Panel E com-
pares the distribution of the “AAC/total read depth” ra-
tio with the distribution of called genotypes.
Table 1 shows rough type I error rates for the 8957 in-

vestigated variants in chromosome 3. For example, the
use of negative binomial regression to investigate the re-
lationship between AAC as response variable, and
adjusted-DBP as explanatory variable, resulted in 8871
nonmissing p values, 39 % of which were smaller than
0.05. No convergence was the principal cause of missing
p values and increasing the number of iterations did not
alleviate the problem. Consideration of zero inflation in



Fig. 1 (See legend on next page.)
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(See figure on previous page.)
Fig. 1 Distribution of AAC. a Mean AACs per variant. b Median AACs per variant. c Exemplary zero-inflated AACs distribution grouped by geno-
type for the variant in position Chr3:391100 with MAF equal to 0.0258. d Exemplary skewed AACs distribution grouped by genotype for the vari-
ant in position Chr3:16249998 with MAF equal to 0.1683. e Exemplary comparison of the ratios (AAC/total read depth) and called genotypes for
the variant in position Chr3:16249998
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negative binomial regression increased the percentage of
missing p values, which amounted to 26 % for both ZI-
NB and Hu-NB. The proportion of nonmissing p values
less than 0.05 was 6.4 % for ZI-NB and 3.5 % for Hu-NB
regression models.
Among the 7 investigated models, standard linear

regression generated the lowest proportion of missing
p values (approximately 1 per 1000 tested variants).
Note that treating the ratio “AAC/total read depth” as
a response or explanatory variable in standard linear
regression resulted in identical p values. In robust linear
regression, treating the ratio “AAC/total read depth” as a
response variable resulted in a high proportion of missing
p values (83 %). The reason was a perfect model fit after
downweighting outliers (observations with a large “AAC/
total read depth” ratio) by robust regression. Figure 2 illus-
trates this problem.
Motivated by this result, the rest of the manuscript fo-

cuses on the 4 regression models with the best calibrated
overall rough type I error rates: ZI-NB and Hu-NB,
standard linear regression, and robust linear regression
with the ratio “AAC/total read depth” as a response vari-
able. Table 2 shows rough type I error rates stratified by
3 characteristics of the variants: median AAC, MAF, and
the average genotype quality. Only 1.6 % of the variants
presented a median AAC equal to or larger than 254,
but this cutoff was chosen based on the observed peak
in Fig. 1, panel b. The proportion of p values of less than
0.05 from ZI-NB and Hu-NB regression models was
lower for variants with a median AAC of less than 60
than for variants with higher median AACs. By contrast,
this proportion did not depend on the median AAC for
standard and robust linear regression.
Interestingly, convergence problems and missing p values

from ZI-NB and Hu-NB regression were particularly rele-
vant for variants with a MAF greater than 0.05. The
Table 1 Overall type I error rates

Response variable Explanatory variable Regression model

AAC Adjusted DBP Negative binomial (NB)

Zero-inflated NB

Hurdle NB

AAC/total read depth Adjusted DBP Standard linear

Robust linear

Adjusted DBP AAC/total read depth Standard linear

Robust linear
relationship between rough type I error rates and the MAF
showed no clear pattern. For example, the proportion
of p values less than 0.05 from Hu-NB regression de-
creased with increasing the MAF, and showed a U-pattern
for standard linear regression. As expected, p values from
robust linear regression were practically not available for
variants with a MAF of less than 0.05.
Variants were also grouped into 3 balanced categories

according to their average genotype qualities (low: GQ
field in the vcf file from 30 to 60,000; medium: GQ from
60,000 to 210,000; and high: GQ >210,000). Rough type I
error rates slightly decreased with increasing average
genotype quality for ZI-NB and Hu-NB regression models.
By contrast, approximate type I error rates increased with
increasing average genotype quality for standard and for
robust linear regression. P values from robust linear re-
gression were practically not available for variants with an
average genotype quality of less than 60,000.
Figure 3 investigates the distributions of p values for

the 4 most promising regression models. To interpret
results, the proportion of missing p values and the prop-
erties of each model discussed above should be kept in
mind. Although 4 % of p values were smaller than 0.05
for Hu-NB and 6 % for ZI-NB regression, the mass of
the p value distributions was concentrated around 1
(87 % of the p values from the Hu-NB and 80 % of
the p values from the ZI-NB model were higher than
0.95). Hu-NB regression picked out variants with
small p values more clearly than the ZI-NB version
(A) with similar proportions of missing p values, and
similar dependence patterns of the rough type I error
rates on the median AACs and on the average genotype
quality. However, test statistics from ZI-NB regression
were likely not properly calibrated for variants with MAFs
in the interval (0.01, 0.05] (see Table 2 in which 14 % of
the p values were less than 0.05).
# p values # Nonmissing
p values

% Nonmissing
p values

% Nonmissing
p values under 0.05

8957 8871 99.0 0.388

8957 6608 73.8 0.064

8957 6585 73.5 0.035

8957 8947 99.9 0.062

8957 1509 16.8 0.068

8957 8947 99.9 0.062

8957 8917 99.6 0.127



Fig. 2 Scatter graph and fitted model for the variant in position Chr3:361487
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Figure 3b compares the standard and robust versions of
linear regression. The robust model, somewhat more
clearly, picked out variants with small p values, but p
values were within 95 % confidence bands. It should be
kept in mind that robust linear regression only generated
p values for variants with a MAF greater than 0.05, and
for variants with an average genotype quality greater than
60,000. Note the differential scales of the y-axis in Fig. 3a
and b. Based on these preliminary results, which should
be complemented with simulations in the future, Hu-NB
regression seems to be a good candidate to investigate the
relationship between AAC as a response variable, and in-
dividual phenotypes as an explanatory variable.
Discussion
The direct inspection of raw counts is an established ap-
proach to investigate differential expression based on
RNA sequence data (see, eg, the R-package DESeq2),
but the analysis of DNA sequence data almost always fo-
cuses on called genotypes. Satten et al [3] proposed
using the proportion of calls for the minor allele instead
of called genotypes. This proposal motivated the present
investigation, where we used the ratio “AAC/total read
depth.” A large proportion of false-positive associations
based on sequence data was reported in earlier versions
of the GAW [9]. Recommendations to address this prob-
lem usually rely on called genotypes; for example,



Table 2 Type I error rates stratified by variant-specific AAC, MAF, and average genotype quality

Response variable Regression model Median AAC # P values # Nonmissing
p values

% Nonmissing
p values

% Nonmissing
p values under 0.05

AAC ZI-NB [0,60] 4728 3598 76.1 0.050

(60,254) 4089 2917 71.3 0.080

254 105 84 80.0 0.083

(254,426] 35 9 25.7 0.000

Hu-NB [0,60] 4728 3580 75.7 0.029

(60,254) 4089 2912 71.2 0.043

254 105 84 80.0 0.036

(254,426] 35 9 25.7 0.111

AAC/total read depth Standard linear (SL) [0,60] 4728 4719 99.8 0.062

(60,254) 4089 4088 100.0 0.062

254 105 105 100.0 0.029

(254,426] 35 35 100.0 0.114

Robust linear (RL) [0,60] 4728 767 16.2 0.068

(60,254) 4089 708 17.3 0.068

254 105 10 9.5 0.100

(254,426] 35 24 68.6 0.083

Response variable Regression model MAF # P values # Nonmissing
p values

% Nonmissing
p values

% Nonmissing
p values under 0.05

AAC ZI-NB [0.003,0.01] 3707 3694 99.6 0.036

(0.01,0.05] 1927 1895 98.3 0.144

>0.05 3323 1019 30.7 0.016

Hu-NB [0.003,0.01] 3707 3695 99.7 0.044

(0.01,0.05] 1927 1886 97.9 0.031

>0.05 3323 1004 30.2 0.011

AAC/total read depth SL [0.003,0.01] 3707 3698 99.8 0.058

(0.01,0.05] 1927 1927 100.0 0.053

>0.05 3323 3322 100.0 0.072

RL [0.003,0.01] 3707 2 0.1 0.000

(0.01,0.05] 1927 0 0.0 0.000

>0.05 3323 1507 45.4 0.068

Response variable Regression model Average genotype quality # P values # Nonmissing
p values

% Nonmissing
p values

% Nonmissing
p values under 0.05

AAC ZI-NB Low 2985 2973 99.6 0.067

Medium 2986 2810 94.1 0.060

High 2986 825 27.6 0.058

Hu-NB Low 2985 2974 99.6 0.044

Medium 2986 2812 94.1 0.031

High 2986 799 26.7 0.016

AAC/total read depth SL Low 2985 2975 99.7 0.056

Medium 2986 2986 100.0 0.062

High 2986 2986 100.0 0.068

RL Low 2985 9 0.3 0.000

Medium 2986 96 3.2 0.031

High 2986 1404 47.0 0.071
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Fig. 3 QQ plots for ZI-NB and Hu-NB models treating the AACs as a response variable (a), and for standard and robust linear regression models
treating the ratio (AAC/total read depth) as a response variable (b). Gray shape represents the 95 % confidence bands regions
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accounting for population substructure and conducting
gene-based or collapsing association tests.
The possibility of using AAC instead of called genotypes

motivated the present research. The underlying distribu-
tion of AAC reflects the reliability of called genotypes, and
a direct analysis of AAC would permit integration of this
uncertainty into association results. However, next-
generation sequence data is noisy and the quality of the
called genotypes depends on the chromosomal position.
Lots of variants are artifactual and rely on small counts.
The exclusive use of real data without additional simu-

lations is a limitation of the present study. Nonparamet-
ric and quintile regression could be potential alternatives
to robust linear regression in the presence of outlying
AACs. We investigated the dependency of results on
AAC, but data was not available for variants with low-
quality genotype calls. It would be interesting to examine
the behavior of Hu-NB regression for these variants.

Conclusions
We took advantage of real data to compare different
models that investigate the relationship between se-
quence allele counts and the adjusted-DBP. The
methods with the best control of rough type I error rates
were ZI-NB and Hu-NB regression for the relationship
between AAC and adjusted-DBP, and standard and ro-
bust linear regression for the relationship between the
ratio “AAC/total read depth” as a response variable and
adjusted-DBP as an explanatory variable.
The simultaneous consideration of discriminative abil-

ity of variants with small p values, occurrence of conver-
gence problems, and robustness of p values against
departing DBP observations indicated that Hu-NB re-
gression constitutes a promising approach to assess the
association between AAC and individual phenotypes.
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