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Behandlung von Artefakten in
dynamischen Sequenzen von Tiefenbildern

Bildsequenzen bewegter Szenen, aufgenommen mit verschiedenen
Tiefenkameras, die dabei auftretenden Artefakte und deren Handhabung
sind das iibergreifende Thema dieser Arbeit. Zunéchst wird ein Ver-
fahren zur Bestimmung des Tiefenflusses auf Daten der Kinect Kam-
era von Microsoft vorgestellt. Alle wichtigen Schritte, beginnend mit
der Kamerakalibrierung iiber die Ausrichtung der Tiefen- und Bilddaten
bis zur Einfithrung eines neuartigen multi-modalen Tiefenflussalgorith-
mus, der sich robust gegentiber typischen (technologiebedingten) Arte-
fakten verhéalt, werden dabei behandelt. Anschliefend werden Daten aus
Lichtlaufzeitkameras und die Bewegungsartefakte, die durch die sequen-
zielle Natur des Aufnahmeprozesses hervorgerufen werden, betrachtet.
Bisher wurden viele Methoden vorgeschlagen, solche Fehler zu beheben,
allerdings gibt es noch keinen aussagekriftigen Vergleich. Dies wird hier
behoben, indem nicht nur die Ergebnisse der vorhandenen Methoden
verglichen, sondern zusétzlich auch technische Eigenschaften und eine
notige Tiefenkorrektur der aufgenommenen Daten als Basis fiir zukiin-
ftige Forschung beleuchtet werden. Ein Austausch des Kalibrierungsmo-
dells der verschiedenen Aufnahmeeinheiten auf dem Sensor, das von den
vorgestellten Methoden gebraucht wird, durch ein anderes, das die Reali-
tat besser widerspiegelt, verbessert die Ergebnisse aller damit zusammen-
hdngenden Methoden ohne Leistungseinbufen.

Handling Artifacts in
Dynamic Depth Sequences

Image sequences of dynamic scenes recorded using various depth imaging
devices and handling the artifacts arising within are the main scope of
this work. First, a framework for range flow estimation from Microsoft’s
multi-modal imaging device Kinect is presented. All essential stages of
the flow computation pipeline, starting from camera calibration, followed
by the alignment of the range and color channels and finally the introduc-
tion of a novel multi-modal range flow algorithm which is robust against
typical (technology dependent) range estimation artifacts are discussed.
Second, regarding Time-of-Flight data, motion artifacts arise in record-
ings of dynamic scenes, caused by the sequential nature of the raw image
acquisition process. While many methods for compensation of such errors
have been proposed so far, there is still a lack of proper comparison. This
gap is bridged here by not only evaluating all proposed methods, but also
by providing additional insight in the technical properties and depth cor-
rection of the recorded data as base-line for future research. Exchanging
the tap calibration model necessary for these methods by a model closer
to reality improves the results of all related methods without any loss of
performance.
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Chapter 1.

Introduction

Figure 1.1.: Overview of the physical depth imaging devices used within this work:
Microsoft Kinect (left), PMD CamCube3 (center) and Fotonic E40 (right!)

Motion and 3D depth perception are essential key-concepts of human vision,
greatly enhancing it over classic photography. Starting in the 17th century, the
first stereoscopic images using image pairs drawn by hand or recorded with single
cameras shifted between exposures or with multiple lenses tried to simulate the im-
pression of three-dimensional vision to the viewer. For the field of computer vision,
things became interesting starting in the late 1960s with the introduction of digi-
tal photography based on CCD and CMOS imaging sensors [Nob68; DW68; BS70).
Roughly the same time, several techniques of capturing images with depth informa-
tion have been developed (cf. survey of the stereo methods also starting about 1968
[BF82]).

So called depth imaging devices, sometimes also depicted as range imaging de-
vices, are digital recording systems consisting of single or multiple digital cameras
and possibly software post-processing not only capable of capture images of objects
or scenes as in photography but also measure the distance between camera and the
surface of recorded objects. So ideally, the output consists of two dense images, a
gray scale or color image of the scene and a so called depth map with the measured
distances for each pixel. Depending on the context, this map is also called range
image, surface profile or topographic map. This information may be used to deter-
mine the 3D coordinates of the object surface pixels and visualize them as a 3D
point cloud (xyz point list). But it is important to note that this kind of data is
fundamentally different from volumetric data as recorded e.g. via computer tomo-

'Picture from the manufacturer’s data-sheet [Fot15]



graphy (CT) where information about the whole 3D space is available, not only the
object surfaces. So despite manufacturers promote depth imaging as “3D” technol-
ogy, one may argue that the recorded mapping R? — R3 of a 2D pixel space to 3D
point coordinates may be considered as “2.5D” technique.

During the last few years, several low cost depth imaging devices hit the consumer
market, most notably the Kinect sensor by Microsoft in 2010. Although intended to
be used with the video game console Xboz 360, the availability of an USB adapter
and drivers to access the device via PC made it attractive for the computer vision as
well as the robotics community and the field of human computer interaction. Based
on the structured light approach [Bes88] which is also related to stereo triangulation
it is a representative of a large class of devices with similar properties and artifacts
arising during usage.

After the Kinect hype, recently the trend moved to depth imaging devices based
on the Time-of-Flight (ToF) principle, where depth and intensity images may be
recorded with one single camera and hence the calibration step to align the images
of multiple sensors may be skipped. Especially the successor Kinect 2 for Xbox One
released 2014 is based on this principle. Recently, Lenovo and PMD TECHNOLOGIES
announced the release of a smart phone (“phablet”) with included ToF camera
[PMD16] in the curse of 2016. This shows, that this technology is not only used
for industrial applications but also present on the consumer market and available
at low cost. Since the mentioned devices do not provide access to the recorded raw
data, this work puts focus on the CamCube (V2 and V3) ToF-devices by PMD.
These are of special interest because the captured raw data is accessible using the
manufacturer’s SDK and so may be processed and analyzed. For comparison, data
recorded with a Fotonic E40 device has been considered as well, but due to the lack
of captured raw data, the presented methods could not be applied to this recorded
data.

In this thesis, the combination of depth imaging and motion is considered. With
the Kinect device, recorded sequences of moving objects like hands are used to apply
motion estimation methods from 2D optical flow to the depth sequences which is
called range flow. The artifacts in the depth maps caused by the Kinect principle
need special attention and adaption of the optical flow algorithms.

Using ToF devices, the multiple exposures needed by this camera principle leads
to strong artifacts when objects move in the time between. In the second part of this
thesis, an overview of the existing methods dealing with these artifacts is given as
well as a combination and enhancement of the different ideas to reduce or eliminate
the artifacts.



Chapter 1. Introduction

1.1. Related Work

1.1.1. Range Flow Estimation on Kinect Data

To best of the authors knowledge, there has not been any publication on range
flow estimation from Kinect before the conference paper [GFG11]. However, there
have been several approaches to solve some of the algorithmic steps in the presented
method independently. The open source driver [Mar10] is used to access and capture
Kinect data. Calibration and alignment of color and depth channels have been
addressed by [Bur]. The drawback of this method is, that the resulting data set still
contains large areas of invalid values which results in poor flow estimation results
(as shown later in Section 3.5). The proposed method for the computation of the
actual range flow is based on ideas introduced by [SJB02], combined with ideas from
[SRB10].

The conference paper [GFG11] has drawn a lot of attention in the community
because it was one of the first papers at all dealing with this topic. Based on this
work, Herbst et al. [HRF13] greatly improved the performance by application of
more state-of-the art optical flow methods like using a multi-scale approach and more
robust (Charbonnier) penalty terms. Recently, Jaimez et al. [Jai+15] took this even
further by proposing a real-time primal-dual variant with total variation (TV-L1!)
regularization.

1.1.2. Compensation of Motion Artifacts in ToF Data

To fix the motion artifacts arising in dynamic scenes, there are basically two kinds
of methods. The first kind works on the (computed) depth data which is provided
in some kind by all ToF devices or SDKs. Gokturk et al. [GYB04] assume all depth
values at object borders to be influenced by motion artifacts and uses morphologic
operations on foreground-/background segmented data to replace all depth values at
foreground borders with spatially near valid ones. Regarding this type of methods
it is difficult to fix artifact with the available depth data only, since in affected
regions, all depth information is lost. Spatial/temporal near valid depth values are
the only source of information so this is kind of an inpainting [Ber+00] or image
restoration [GG84] problem to replace the artifact regions, which is itself an own
field of research. This restoration is largely simplified since depth images are usually
not as structured as the texture of objects and scenes in 2D images.

If it is possible to access the raw data captured by the ToF device, even in the
case of motion artifacts, at least parts of these data are still valid so this is an
additional source of information which can be used by the second kind of methods
working directly on this raw data. Lottner et al. [Lot+07] combine edge detection of
a high resolution 2D sensor to identify regions affected by artifacts with a reduction
of used sub-exposures for depth computation within these regions. Hussmann and
Edler [HE10] call this pseudo-four-phase-shift algorithm. The latter explicitly applies
this method to difference images of the correlated data which may be extracted
from a larger number of ToF cameras, even if the individual raw frames are not
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1.1. Related Work

available. This approach was reformulated more generally as framerate increase
method by Schmidt [Sch11l] where the imaging hardware problems also mentioned
by Lottner et al. [Lot+07] as well as by Hussmann and Edler [HE10] (different tap
A /B behavior, later described in detail) is handled by a dynamic linear calibration
step. All methods mentioned so far have in common that motion artifacts are
reduced (affected regions by a factor of three) but not eliminated.

In order to really remove the artifacts, it is possible to replace the invalid raw
data with valid ones from the past as proposed by Schmidt [Sch1l]. In his stan-
dard approach, the last recorded frame is considered as source for valid old data
whereas the burst internal detection (BID) approach combines this with the fram-
erate increase or pseudo-four-phase-shift method to consider only data from one
single recorded frame. This correction fails, if there is more than one depth or
brightness change (called event) within two consecutive frames (standard) or within
a single frame (BID variant). Lee et al. [Lee+12; Han+12] propose artifact detection
and correction working on tap difference images and the recent paper of Jimenez
et al. [JPM14] gives a calibration of the discontinuity detection threshold, a combi-
nation of pseudo-four-phase-shift method extended by event detection with spatial
neighborhood information as well as a real-time C++ CPU implementation.

Another important subset of methods working on raw data uses optical flow to
compensate the motion occurring between the exposures. The specialized variant
proposed by Hussmann et al. [HHE11] assumes one-directional motion of objects on
a conveyor belt which may be detected by measuring the artifact stripe width and
so may be implemented efficiently in hardware. Lindner and Kolb [LK09] apply the
TV-L! dense optical low method (GPU implementation by Zach et al. [ZPBO07]) to
image pairs of the sub-frames ((I1, I2), (I1, I3), (I1, 14)) and warp the following sub-
frames to the first one to correct for lateral motion and then additionally apply a
axial motion correction step by extrapolation the depth differences of the preceding
frames. An extension of this method was proposed by Lefloch et al. [LHK13] reducing
the number of image pairs for optical flow computation ((I1,I3) and (I2,14)) to in-
crease stability and real-time performance. Based on this work, Hoegg et al. [HLK13]
propose a block matching (BM) variant of flow estimation restricted to artifact in-
fluenced regions to speed up computation to reach real-time performance with high
frame rates or additional post-processing steps.

11



Chapter 1. Introduction

1.2. Own Contributions

Regarding the Kinect data, the main contribution is twofold: First, a novel channel
alignment algorithm which largely reduces image areas without valid measurements
compared to previous methods. Secondly, an extension of existing range flow ap-
proaches to cope with invalid and unstable depth estimates. The proposed methods
are intended to be applied to data captured with the Kinect device, but should work
in any multi-modal (RGBD) setting where different cameras are used to capture
depth and color images. As stated above, this work was first dealing with this topic,
triggering numerous extensions and improvements in the meanwhile.

Considering motion artifacts on Time-of-Flight (ToF) data, this work gives a first
comparison of this class of methods and the algorithm implementations may act as
a baseline for future research.

During the investigations, an improved non-linear cross-tap-calibration model has
been developed. The usage of this new model leads to significantly improved motion
compensation results in all presented methods. The proposed combination of the
framerate increase with flow-based motion compensation gives improved results with
less computational effort. This work includes a rigorous qualitative and quantitative
evaluation on multiple real and synthetic ToF sequences.

By reverse-engineering of the computations in the black-box PMD SDK, it is
possible to fix the computed depth values after application of any kind of post-
processing the same way as the manufacturer, including correction of a systematic
shift and depth wiggling. An automated rotor position detection pipeline revealed
insight into technical details of the used recording hardware.

Publications Contributing to this Work

[GFG11]  Jens-Malte Gottfried, Janis Fehr, and Christoph S. Garbe. “Comput-
ing Range Flow from Multi-modal Kinect Data.” In: ISVC (1). Ed.
by George Bebis et al. Vol. 6938. Lecture Notes in Computer Science.
Springer, 2011, pp. 758-767. ISBN: 978-3-642-24027-0. poI: 10 .1007 /
978-3-642-24028-7_70.

[GK12] Jens-Malte Gottfried and Daniel Kondermann. “Charon Suite Software
Framework.” In: IPOL 2012 Meeting on Image Processing Libraries.
2012. URL: http://www.ipol.im/event/2012_imlib/.

[Got+14] Jens-Malte Gottfried et al. “Time of Flight Motion Compensation Re-
visited.” In: IEEE International Conference on Image Processing 2014
(ICIP 2014). Paris, France, Oct. 2014.
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Chapter 2.
Technical Background

In this chapter, an overview of the device principles considered in this work is pre-
sented. First, the structured light approach used by the Kinect is described in
Section 2.1, then a background on Time-of-Flight (ToF) imaging including a de-
scription of the sources of motion artifacts is given in Section 2.2.

2.1. Structured Light Imaging

Az 3D Point
P(x,y,2)

O projector

objective lens

camera sensor

Figure 2.1.: Base principle of a structured light imaging device. The position of a projected
point on the camera sensor depends on its z distance. Sketch based on [Bes88, Fig. 7],
extended to visualize derivation of the inverse-disparity formula (2.1d).

Measuring the depth of a 3D point by triangulation is a well-known vision tech-
nique and may be implemented as a passive variant using multiple cameras (stereo
vision, human eye) or by actively illuminating the recorded scene with a projector
and recording it with a single camera. The latter is called structured light imaging.

13



Chapter 2. Technical Background

A survey of the different variants developed in the 1970s and 1980s including pro-
jection of a single points or lines using a laser to multi stripe projection, binary
patterns and random textures is given in [Bes88, Sec. 4].

Regarding a single projected point under a known projection angle 8, using the
sensor coordinates (u,v) and a known focal length f of the camera (pin hole model)
it is possible to reconstruct the 3D coordinates (z,y, z) of the point P as visualized
in Figure 2.1:

T u U b+ x n
—=—-=r=z - cotd = = zcot@=b+z-— 2.1a
f f z f (2.1a)

b b-f b-u
— cotd —%  f-coth —u - f-cotd —u (2.1b)

!

Combining this with analogous terms in the orthogonal direction (y = z - %) yields
the triangulation formula given by [Bes88, Eq. 8]:

b

B focoth —u (2.1c)

INEI SO

f

Introducing a virtual quantity @ = f - cot 0, i.e. the sensor position of the 3D point

P of a virtual similar camera located at the projector position, the disparity d of

the projected point may be computed as d = @ — u which yields using (2.1b)
b-f b-f b f

z = = :> z
frcot—u Tw—u d

(2.1d)

which is known as inverse-disparity formula used in stereo-triangulation
(cf. [OK93, eqn. (1)] [Jah05, eqn. (8.4)]).

The used Microsoft Kinect device uses a static pattern of projected points which
seem to be distributed randomly (but repeated 3x3 by similar looking tiles). This
pattern is visible in Figure 3.1 (bottom right). By using such a pattern covering
the whole imaged area, it is possible to estimate the distance of all visible points
with only one exposure. The (pseudo-) random structure is needed to identify the
projected points and get their corresponding projection angles 6 or rather the vir-
tual value @ for disparity computation. This way an almost dense depth map of
the recorded scene may be generated. But note that obviously, this methods fails
in regions where foreground objects cast shadows since there are no points of the
projected pattern there.

One of the reasons to choose this device was the availability of multiple software
libraries to control the capturing process (adjust resolution and camera mode like
infrared (IR) or color (RGB) exposure) and provide access to the captured data.
The library actually used in this work is called OpenKinect [Marl0] and was the
first library developed by reverse engineering of the transferred USB data. It was

14



2.2. Time-of-Flight Imaging

published a few days after launch of the Kinect and one of the main reasons of the
hype to use this device for a large variety of applications, especially in the computer
vision, robotics and human-computer-interaction. Another promising project called
OpenNI by the manufacturer PrimeSense of the recording unit used within the
Kinect device provided a rich set of plug-ins including automated, real-time skeleton
tracking of persons in front of the camera. This project was discontinued 2014 after
an acquisition by another company. Some forks of the open source components
are still present but the proprietary plug-ins (including the tracking module) are
no longer available. Notably there is a software development kit (SDK) of the
vendor Microsoft [MKS13] which was not used because it was not yet available at
the beginning of this work and because of its proprietary license and limited target
platforms (Windows only).

2.2. Time-of-Flight Imaging

® light source

. camera

ﬂv recorded object

Figure 2.2.: Base principle of all Time-of-Flight imaging devices. Light is emitted from an
IR light source illuminating the object surface. Scattered light is traveling back from the
object surface to the camera. Surface distance is large compared to the distance between
sensor and emitter(s), so in reality, the rays are almost parallel. Distance is computed
from the measured Time-of-Flight spent travelling between emitter and sensor.

In contrast to the triangulation approach used by the Kinect device, another
technique to estimate the distance to recorded objects is to measure the runtime
of a light signal travelling from a light source to the object surface and back to
the camera. Usually, the light sources are located nearby the camera, sometimes
attached or even mounted in the same housing. Multiple light emitters arranged
on all sides of the camera reduce casting shadows. Measuring this round-trip-time
and using the known speed of light to retrieve the actual distance is called Time-of-
Flight (ToF) imaging, visualized in Figure 2.2.

In this work, continuous wave intensity modulation (CWIM) sensors are consi-
dered, as virtually all current ToF devices use this technique. The basic working
principle of this kind is depicted in Figure 2.3. It shows the phase shift estimation

15



Chapter 2. 'Technical Background

Subframe 1 Subframe 2 Subframe 3 Subframe 4 ¢
£\ 90T/ #180° /N 42700 /7

l/ I/ I/ l/ f

I/ / Vi I/ n

(a) Standard Case

) 900/ #1807 /TN 2700 /N -
®!®®!®®!®®!®

“Q“Q“Q“Q

(b) Error Case

—

Figure 2.3.: Working principle of a ToF camera. Each recorded frame consists of four
sub-frames (first four columns). For simplicity only one single tap is shown here. The
light source emits an intensity-modulated signal which is reflected back to the sensor
pixel (black and red dashed lines) with a phase shift ¢. This phase shift is determined
by measuring the correlation (bottom row colored areas) between the incident and the
reference signal shifted by a fixed phase angle (blue line). The correlation function (a
sine-wave) is fitted to the measured values (right column). The sub-frames are acquired
sequentially. Hence, if the depth changes between two sub-frames (lower figure), wrong
correlation values are obtained (last two columns). The standard reconstruction formulas
using these measurements lead to an erroneous estimation of ¢.
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2.2. Time-of-Flight Imaging

by correlation together with an example how moving objects cause wrong results.
Other sensors e.g. use a pule-based principle with flash-like light sources or even
more sophisticated patterns of the emitted light.

CWIM ToF devices measure the phase shift between a reference sinusoid signal
and the incident reflection of light emitted by an intensity modulated light source.
The brightness of this light source is modulated with the same reference signal. This
is done by sampling the correlation function between incident and reference signal on
at least four different phase shifts by recording four so called raw-frames containing
the correlation results.

Modern two-tap sensors measure two of these raw-frames during one single expo-
sure (sub-frame) in the following way [Sch+95; Spi+95]: Each pixel of such a sensor
collects the photo-electrons not only in one single potential well like usual CCD
sensors, but in two separate ones, called taps here. By applying an electric field the
photo-electrons may be deflected into one specific tap. Modulating this electric field
with a rectangular version of the sinusoidal reference signal, each pixel samples the
correlation of the incoming light signal ejecting the photo-electrons and the reference
with one tap (and its negative in the second tap) during the full integration time
and thus for a large numbers of periods ot the modulation frequency (modulation
period e.g. 50ns vs. integration times in a range from 100 ps up to 4 ms). Since the
electrons do not vanish, summing up the numbers of both taps yields an intensity
image as given by usual CCD sensors. Yet, as the taps usually have different re-
sponse curves [Erzl1] (cf. Figure 4.2), usually two more (redundant) sub-frames are
recorded (Table 2.1). Individual sub-frames are acquired in a sequential way. Mo-
tion artifacts occur when the static scene assumption between sub-frame exposures
does not hold. Examples for such artifacts are depicted in Figure 4.1.

2.2.1. ToF Depth Estimation

With the four correlated samples of the returning light {Io, Igo, I1s0, [270}, it is pos-
sible to reconstruct the Brightness Image Ip (intensity), the Amplitude Image I4
and the Phase Shift ¢ of the incoming modulated light (cf. [Spi+95; LK09; Sch11]):

Iy = \/(1270 — Io0)” + (Iiso — Io)” (2.2)
1

Ip = 7 (Io+Ioo+ Liso + I270) (2.3)

¢ = atan2(lyro — Igo, Liso — o) + 7 (2.4)

Using the phase shift ¢, the radial distance r between device and a recorded object

surface is computed by
c

(2.5)

T:SO.47TI/M
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Chapter 2. Technical Background

Since there are two taps (A/B) on the recording chip, there are eight correlated
raw images and hence several options what to use as I in the formulas above:
single-tap [, = Ay (tap A only) or I, = By, (tap B only)
average [ = (Ax+ By)/2
subset use S1 = {4y, Ago, Biso, Baro} or S2 = { By, Byo, A1s0, A270}

Note that the manufacturer’s SDKs usually use the average approach of depth es-
timation as shown later. In order to gain an impression how this choice influences
the estimated depth images, see Figure 4.8 and Figure 4.10.

time | to t to ts
tap A | Ay Ago Ao Az
tap B | Bigo Boro  Bo  Bgo

Table 2.1.: Overview of the eight captured raw-frames. Index denotes the phase shift
during correlation.

frame Capturing process of all images needed for ToF depth
estimation, usually this contains four exposures.

raw-frame Recorded data of one tap during one exposure.

sub-frame All data recorded during one exposure,
with a two-tap device this contains two raw-frames.

subset Certain selection of at least four raw-frames (out
of the usual eight available) used for depth estima-
tion. The different variants are depicted in Subsec-
tion 2.2.1.

Table 2.2.: Dictionary of used terms to describe ToF data
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Chapter 3.

Structured Light Sensor:
Multi-Modal Kinect Data

B PRy

Figure 3.1.: Kinect device and its raw data output. Top: Kinect device with projector
(A), color cam (B) and IR cam (C); color and depth channel overlayed. Bottom (left
to right): raw color image; pseudo-color coding of the 11bit depth image provided by the
on chip depth estimation; raw IR image showing the projected point pattern.

3.1. Introduction

This chapter, which has been published as conference paper [GFG11], contains
a framework for the estimation of range flow fields from multi-modal (color and
depth, RGBD) video sequences captured by Kinect. The computation of optical
flow [Bak+07] from 2D image sequences or range flow [SJB02] from depth image
sequences plays an important role in the middle layer of a wide range of computer
vision algorithms, such as object tracking, camera motion estimation or gesture
recognition. Flow estimation has been investigated for a long time and many sophis-
ticated algorithms (especially for optical flow) have been introduced so far [Bak+07].

However, due to the Kinect technology, standard range flow algorithms cannot
simply be used “out of the box” — which makes the computation of range flow fields
from this device a non-trivial task. The main difficulties result from the following two
facts: First, Kinect provides only uncalibrated data where color and depth channels
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(which are recorded by different cameras) are not aligned. Second, the depth channel
may contain large areas of invalid values and that edges in the depth-map are not
always stable as visible in Figure 3.1.

The remainder of this chapter is organized as follows: Section 3.2 provides a dis-
cussion of Kinect’s depth imaging technology and points out the main problems that
have to be solved in order to use the raw data for range flow estimation. Section 3.3
introduces the calibration process and a novel algorithm for the alignment of depth
and color channels, before the actual flow algorithm is discussed in Section 3.4.
Finally, results and experimental evaluations are presented in Section 3.5.

3.2. A Brief Introduction to the Kinect Imaging Hardware

Kinect’s depth imaging device is based on a structured-light illumination approach
[Bes88]. The range information is estimated from the distortion of a projected point
pattern which is captured with a camera placed at a certain baseline distance from
the projector.

Figure 3.1 shows the hardware setup: Kinect uses an IR laser diode to project
a fixed point pattern which is invisible to the human eye. In combination with an
IR camera, the estimation of the depth-map is computed directly in hardware at
approximately 30 frames per second at VGA resolution!. The depth resolution is
approximately lcm at 2m optimal operation range [Mar10].

The main advantage of the Kinect concept is, that it allows a more or less dense
depth estimation of a scene even if it contains objects with little or no texture.
Additionally, a second camera captures VGA color images from a third position.

3.2.1. Limitations of Kinect Data

The main problem, at least from a computer vision perspective, is the computation
in hardware which is neither user accessible nor can it be circumvented altogether.
Hence, the entire process is a “black-box”, with very little publicly known details on
the obviously extensive post-processing. It most likely includes some sort of edge
preserving smoothing and up-scaling of the depth-map. This has significant impact
on the noise characteristics and correlations.

The provided depth estimation is more or less dense, but there is a systematic
problem common to all structured-light approaches which use a camera offset: there
are regions where the projected pattern is shadowed by foreground objects — making
it impossible to estimate the depth at these positions (see Figure 3.1, depth and

! image). Another problem is that depth values tend to be unstable and inaccu-
rate at object boundaries. This is caused by the fact that the dense depth-map
is interpolated from discrete values measured at the positions of projected point
patterns.

!Note that VGA resolution is probably a result of the extensive on-chip post-processing. The true
hardware resolution is bounded by the number of projected points, which is much lower than
VGA.
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Finally, since there are two different cameras capturing color and depth images,
these images are not necessarily aligned to each other (Figure 3.1 top right). In
addition, the two cameras have slightly different focal length and the optical axes
are not perfectly parallel.

3.3. Kinect Calibration and Data Alignment

Proposing a multi-modal flow algorithm, it is essential that the color and depth
image information at a certain image location belong to the same object point. For
this, a novel alignment algorithm which is especially suitable for Kinect data is
introduced here.

It is based on previous methods by [Bur], but performs a more complex inverse
mapping from the depth image onto the color image — whereas [Bur| uses the straight
forward mapping of the color image onto the depth image. The advantage of this
proposed method is, that it is still possible to compute at least the xy-components
of the optical flow for areas with invalid depth values, whereas all information is lost
in such areas if one applies the original alignment approach by [Bur].

3.3.1. Camera Calibration

In a first step, a stereo-calibration of the cameras is needed. For this task a stan-
dard checkerboard target with good infrared (IR) reflection properties and extra
illumination in the IR spectrum is used followed by a standard stereo-calibration
procedure as provided by [Bra+00] (process similar to [Zha99]). To avoid influences
of the projected points, the projector has to be closed e.g. by covering it with black
tape. With the parameters estimated during this procedure it is possible to compute
epipolar images from the IR and RGB cameras, i.e. images corrected in a way that
objects visible in both images are located at the same y-position and show only a
shift in z-direction (disparity) depending on the z-distance of the sensors. Especially
different focal length and misalignment of the optical axes are eliminated as well as
some distortions caused by deviations of the ideal projection properties of the used
lenses.

3.3.2. Data Alignment

As discussed at the OpenKinect driver’s documentation? the Kinect does not com-
pute real z-depth values on the device but provides a map of raw disparity values
draw which may be computed from the shift of the projected point pattern. Several
different methods are proposed for computing z-values from this raw disparity map.
To avoid this issue, for the rest of this chapter, “depth image” Z(x, y) is used synony-
mously for these raw disparity images. If necessary, computing real z-values could
be implemented as a post-processing step of the output generated by the methods
presented here.

thtps ://openkinect.org/wiki/Imaging_Information
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The actual data alignment algorithm is based on the assumption that these raw
disparity values d,.y are linearly correlated with the point-wise disparity d between
pixels in the color image and their corresponding pixels in the raw disparity image. A
principal component analysis (PCA) over the positions of the checkerboard corners
from the calibration process is used to obtain a linear approximation d = a - dyaw + 0
of this dependency (cf. Figure 3.2).

34 T T T T T LI K T
calibration data
linear fit
32 E
30 E

28 |

disparity [pixels]
n
[«
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24 -
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raw disparity value [AU]

Figure 3.2.: Relation between raw disparity values given by the Kinect device and the mea-
sured disparity of the checkerboard corners in epipolar images after the stereo-calibration
step. Each data point represents one checkerboard corner. As visible, the assumption of
a linear dependency holds.

The original approach in [Bur] shows, that it is easy to warp the color image I(x, y)
such that it is aligned with the disparity image Z(z,y) by use of the disparity field

D(z,y) = d(Z(z,y)):

I(z,y) = I(x + D(x,y),y) (3.1)

where T (z,y) is the warped color image. Since z+d may be fractional pixels, one has
to interpolate the integer pixel values of I. For regions, where Z(z,y) has no valid
depth value, computation of I is impossible. Such regions are clearly visible e.g. at
the shadow of the hand shown in Figure 3.1. They have to be marked, e.g. setting
the color to black. As a consequence, the color image information in these regions
is completely lost. To avoid this, it is necessary not to modify the color image, but
to invert the mapping and align the depth image to the color image. This is done
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3.3. Kinect Calibration and Data Alignment

by computing the inverse disparity map D*(z,y) such that

This problem is similar to the computation of the inverse optical flow h* as proposed
in [SS06, appendix A]. Because the disparity is known to be limited to the z-direction
only (i.e. the y-component of the optical flow field h vanishes) a simplification of
this approach may be used to reformulate the ideas of [SS06] (for the i-th pixel in
z-direction, i.e. at position (x;,y)) as

%ﬁD(wj,y) p(zi, zj + D(x5,y))

D*(z;,y) = — 3.3
e w) > plara, + Day.9) 33
J
where the weighting function p is computed using
p(x,2') = max{0,r — |z — 2'|}. (3.4)

The radius r specifies the region of influence of each pixel. Invalid depth values
D(xj,y) have to be excluded from summation. For some target positions, the de-
nominator can become very small (i.e. if no depth values would be warped to this
position). In this case D*(z;,y) is marked as invalid as well. Using D* the align-
ment of the depth map Z(z,%) to I(z,y) is computed in a similar way as before in
eqn. (3.1):

Z(z,y) = Z(x + D*(x,y),y) (3.5)

Figure 3.3 shows a qualitative comparison of the results of the proposed method and

the pure stereo calibration approach.

Figure 3.3.: Comparison of calibration results. In gray overlay regions, the depth values
are invalid. In black regions, there are neither valid color nor depth values.
Columns (left to right): uncalibrated; pure stereo calibration (epipolar); aligned warping
color image with D; aligned warping depth image with D*

b

Another approach to align the data could be a reprojection of the 3D data points
given from the IR camera using the projection matrix known from the calibration
step. As mentioned above, this would require a proper method to compute real z
values out of the given raw disparities which has been avoided here completely.
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3.4. Range Flow

Range flow (syn.: Scene flow [Ved+99)) is the established term for the 2.5D extension
of optical flow, describing the local 3D motion in an image sequence. Mathematically,
the range flow field is a 3D vector field hr which is defined on a 2D image plane, i.e.

FniB2o RS Bg(ey) = (wow)  hy) =)', (36)

where the first two components (u,v) are identical to the motion description in
standard 2D optical flow h and w encodes the motion in the depth direction.

Numerous algorithms have been proposed in literature to solve the standard optical
flow (u,v) (e.g. see [Bak+07]). For the sake of simplicity, the proposed method
is based on a standard method for global optical flow [SRB10] (which it self is a
reinterpretation of the classical flow paper by Horn and Schunk [HS81]). It should
be noted that the proposed algorithm (see section 3.4.1) should also work with most
other global methods (like [Pap-+06] or [Sun+08]). As most of the “more advanced”
techniques focus on increased sub-pixel accuracy, which is not very likely to be a
useful property given the accuracy of real world Kinect data a survey of the different
methods was out of scope of this chapter.

The method by [SRB10] applies a pixel-wise brightness constancy assumption
called optical flow constraint (OFC) (or BCCE) that may be formulated as

VI-(u,0)' + 1, =0 & (I, 1,,0, 1) - (u,v,w, 1) =0 (3.7)

where I is the 2D image data (here: color image converted to gray-scale) and the
indices denote derivation with respect to the specified variable.

As proposed by [SJB02], a similar term may be formulated for the depth data Z,
adding the motion in depth direction w:

VZ - (u,0)' +w+ 2 =05 (Zs, Zy, 1, Zy) - (u,0,w,1)T =0 (3.8)

This equation is called range flow motion constraint (RFMC). As one can see, the
2D terms in eqns. (3.7) and the depth term in (3.8) are based on the same principle.
Using this fact, range flow estimation using color (converted to gray-scale) images
and depth data may be performed using any optical flow estimation algorithm with
an additional data term incorporating eqn. (3.8).

3.4.1. Robust Flow Estimation

The multi-modal data which is computed using the proposed data alignment algo-
rithm (see Subsection 3.3.2) has a dense color channel. Still, there can be invalid
values in the depth channel and artifacts at object borders. Both artifact types do
not remain constant in time, resulting in estimated depth changes even if there is
no motion.

Therefore it is essential to exclude these regions for a robust flow computation.
Regions with invalid depth values may be recognized by simply thresholding the
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depth channel (in the raw depth output, these pixels are marked by the hardware
with a depth integer value of 2047 = 0x7FF, i.e. the largest 11 bit integer value).
Object borders may be recognized by thresholding the edge strength (Z2 + Z;)
If at least one of these threshold conditions is met, pixels are excluded from the
RFMC data term (3.8), i.e. only the color image data is used for computation at
this position.

Since the linear filters used to compute the derivatives of the depth image usually
have a width of 3 pixels (Sobel or Scharr filters [Sch00]), this exclusion region has
to be extended, e.g. using the morphologic dilation operator. A radius of 2 pixels
showed to be sufficient. In the excluded regions, the value of w is interpolated from
the valid neighbors by regularization of the range flow field.

Strong regularization leads to smooth flow fields but also causes blur effects at
motion edges. Since motion edges often correspond to edges in the depth image,
estimation results can be improved further by using the exclusion mask. Using
strong regularization in valid and weak regularization in excluded regions yields
much sharper motion edges and separation between fore- and background motion.
This adaptive regularization is another benefit of using the depth image information.

3.4.2. Algorithm Summary

The final implementation of the proposed method is realized in a standard pyramid
scheme with two levels of iterations. The outer iteration implements the multi-scale
image pyramid. The inner iteration (line 10 of Algorithm 1) recomputes the flow
increments on the given input image pairs (I1, I2, Z1, Z2), where the second has been
warped with the flow H% computed during the previous iteration.

This is done by minimizing the following energy functional:

// [(Ixu + Io+ L)+ Az(2, y) (Zou + Zyv +w + Z4)?
+ Ar(z,)([Vul? + [Vo]? + [Vol?)|de dy  (3.9)

where

c, >0 where M =0
AZ(I'?y) = {

0 else

cr1 >0 where M =0
cry >0 else

)\R(:U;y) = {

(3.10)
with cr1 > cpro.
Using weak regularization in invalid regions (where M = 1) may be counter-intuitive.
As stated above, the mask M is also used as edge detection so weak regularization
in invalid regions leads to sharper motion borders on edges.

3.5. Evaluation

Unfortunately, there is no publicly available data base with ground truth range flow
fields for Kinect data, as this is the case for 2D optical flow (e.g. as provided by
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Algorithm 1 Final Kinect Range Flow Algorithm
1: for all multi-modal image pairs Iy, Is, Z1, Z> do

2:  SCALE I, 1, Z1, Z5 and i_i% accordingly

3:  for all flow iterations do

4: WARP Iy, Zy with h% — Iy, Zy

5: if Z, or Z, invalid then

6: SET exclusion mask M =0

7 else

8: SET exclusion mask M =1

9: end if

10: COMPUTE FLOW hp using OFC (3.7) and REMC (3.8) data terms with
strong regularization where M = 1, but OFC only with weak regularization
where M = 0.

11: APPLY MEDIAN FILTER on h Rr to suppress outliers

12: SET E R — EDR

13:  end for

14: end for

[Bak+07]). Hence, no generally agreed and sufficiently accurate methodology for
quantitatively analyzing such algorithm is available. Therefore only a qualitative
discussion of the results is given.

3.5.1. Results
Qualitative results

Range flow estimation results are shown in Figure 3.4. A moving hand sequence has
been recorded for quantitative evaluation. The rows in this figure represent different
algorithm configurations, i.e. combinations of optional usage of the region validity
masks and usage of the forward or inverse disparity (D or D*) for warping.

The first column shows the first frame of the image pair as used for range flow
estimation. In the second column, the first two components of the range flow result
i_iR, i.e. the standard optical flow field h is visualized. The distance between the
arrows is 16 pixels, an arrow length of 5 pixels corresponds to a flow magnitude of 1.
For better visualization of the flow contours, a HSV representation using flow angle
as hue and flow magnitude as saturation has been drawn in the background. The
third column shows the depth dimension of h R, i.e. w. The last column shows the
raw depth data with exclusion mask. Since the depth value of invalid depth pixels
is OxX7FF, these pixels appear bright. Note that the exclusion mask also consists of
edges in the depth image, the contours of the hand are reproduced well.

Since strong regularization is applied within connected valid depth regions, the
flow result in the first two rows is smooth over the hand area as well as in the
background. The hand contours are reproduced well, only low blurring effects at
the borders are visible. Without usage of the masks, outliers as well in the (u,v) as
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in the depth channel w show up as visible in the last two rows.

The algorithms have not been tuned to be highly parallelized or using GPU com-
puting, so the runtime is currently about half a minute per frame pair. Significant
speed improvements are expected from such an optimized implementation.

For testing, a very simple sequence that simulates the targeting application area
of gesture recognition has been used. Future research should focus on generating
more realistic test sequences with given ground truth such that quantitative analysis
becomes possible.
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Figure 3.4.: Range flow estimation result of an image pair of a moving hand sequence.
Rows (top to bottom): warp depth with D*, using masks; warping color with D, using
masks; warp depth with D*  no masks; warping color with D, no masks; cf. Algorithm 1
Columns (left to right): gray image; optical flow h (HSV visualization with quiver);
range flow depth component w (blue: positive, red: negative values); depth image with
exclusion mask (red/bright=excluded)

The exclusion mask is shown even if it has not been used to compute the flow.
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Time-of-Flight Data

Figure 4.1.: Example depth map with motion artifacts (left) and results of presented meth-
ods (Schmidt’s BID method (right, upper), Lindner&Kolb (right, lower)).

4.1. Introduction

Today, Time-of-Flight (ToF) imaging is a mature technology, being frequently de-
ployed in industrial applications such as optical inspection, robot control and surveil-
lance. With the new generation of low-cost sensors such as Microsoft’s Kinect 2 it
has also hit the mass consumer market and therefore impact human computer in-
teraction, artistic expression and citizen sciences. Yet, like any other depth imaging
modality, ToF data does have its own set of issues such as flying pixels, depth wig-
gling, multi-path and motion artifacts. In this chapter motion artifacts and existing
methods designed to deal with them are of specific concern. These artifacts occur
in dynamic scenes due to the sequential nature of the measurement process and are
a problem inherent to all current ToF cameras.

This is the first comparison of this class of methods and the implementations given
here may act as a baseline for future research.
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By identifying common building blocks used in many of the methods, it is possible
to implement them in a modular way. Thus, this framework is not only a benchmark
of the proposed methods but may also be used for evaluation of the sensitivity of the
proposed pipeline towards the choice of different subcomponents (e.g. the optical
flow algorithm some systems use).

Finally, during the investigations, an improved cross-tap-calibration model has
been developed. The usage of this new model leads to significantly improved motion
compensation results in all presented methods.

Parts of this work have been published in a conference paper [Got+14]. Compared
to the paper, this chapter is enhanced by much more extensive experiments including
real and synthetic test sequences, a quantitative evaluation and finally a decision
guide for users on how to select the algorithm appropriate for the application in
Figure 5.1. Additional details e.g. comparison of the optical flow result using a
variety of optical flow methods are given in Appendix A.

The rest of this chapter is organized as follows: Since the technical background
of ToF imaging was described above in Section 2.2, this chapter continues with the
needed preprocessing steps including a novel inter-tap calibration in Section 4.2.
Since this is common to all subsequent methods it needs special attention. Detailed
descriptions of the considered motion compensation methods are given in Section 4.3.
During the experiments, some issues of wrong depth values computed using the stan-
dard formulas have been discovered which is described and solved in Section 4.5. As
a prerequisite for the quantitative evaluation, an automated rotor position detec-
tion is presented in Section 4.6 which is also used to discover some of the technical
properties of the used CamCube3 device in Section 4.7. Finally an evaluation and
comparison of the motion compensation methods is given qualitatively in Section 4.4
and quantitatively in Section 4.8.

4.2. Preprocessing and Calibration

Before discussing the performance of the framerate increase, detect and repair and
flow based motion compensation methods on real and synthetic datasets in the next
section, it is important to first revisit the preprocessing steps needed by most of
the algorithms, i.e. tap calibration and image homogenization. As the linear fitting
approach proposed in literature did not work well on the captured datasets with
the used device, a non-linear fitting approach which shows improved results on all
compensation methods has been developed. Tap calibration is also a prerequisite for
framerate increase. During the experiments, a CamCube3 device by PMDTECH-
NOLOGIES has been used. The emitted infrared light is modulated with an adjustable
frequency around vy = 20 MHz resulting in a non-ambiguity range

c 3.108m
Ry = R s
N oo 2-2-107

T =75m (4.1)
f
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Objects further than Ry cause the measured phase to wrap around 27 causing
ambiguities in the measured distance. Exposure times may be adjusted between
tmin = 10ps and tpax = 4ms, the modulation frequency v, may be selected from
the values {18 MHz, 19 MHz, 20 MHz, 21 MHz} resulting in slightly smaller or larger
values of Ry. Using different frequencies it is possible to work with multiple Cam-
Cube devices on the same scene simultaneously or to disambiguate the measured
depth of objects with a distance larger than Ry.

4.2.1. Tap Calibration

In the subsequent methods, it is essential that the two record units (taps) of each
pixel behave similarly. Especially the framerate increase does not work at all without
this property since it mixes values from both taps to estimate the phase shift of
the returning light. Without any calibration one would take samples out of two
different sine functions (with different offsets and amplitudes) leading to wrong phase
estimation results. So as a first step the photo response of the taps of each pixel is
investigated.

As stated by [Sch11], one should expect a linear dependency between the responses
of the two taps of an individual pixel. To check this, an exposure ramp of a flat white
wall has been recorded. The camera was mounted fixed to assure a static scene.
Integration times were chosen in a range from the lowest possible value to saturation
of the center pixels (0.1 ms to 3ms in steps of 0.1 ms). To avoid random noise, the
average of 128 exposures with the same integration time has been computed. As
visible in Figure 4.2, the assumption of linearity does not hold for low intensities.
Pixel values are given in digital units (DU), i.e. the integer values as provided by
the device. The pixel shown at the left side shows a strong curvature in the raw
pixel values below 1 - 10* DU. For medium and high intensities, the behavior is quite
linear. At some other pixels, the curved region extends over the whole value range
as visible at the right plot. One may argue that the regions of non-linearity are small
compared with the intensity value range. As visible in Figure 4.3 (left), estimated
phases in regions of low intensity cover almost the whole value range after linear
correction using r1. This shows that under the condition of low intensities, this
linear method is not able to provide stable results.

To overcome this issue, a new reconstruction formula is proposed to cope with
nonlinear behavior at low intensities but linear extrapolation at high intensities. A
polynomial fit of higher degree is able to adapt the curved data (d = 5 showed to
be a good choice) whereas a linear fit has good extrapolation properties. The final
reconstruction formula is constructed by using a combination:

re(b) = ©(b) - r1(b) + (1 — O(b)) - r5(b) (4.2)

with the polynomials r4 of degree d and a sigmoid switching function ©:

ra(b) = kzi%ak We) =, (erf (b;(,“ ) + 1) (43)
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x10* Tap sensitivities of pixel [58,193] X 10“ Tap sensitivities of pixel [193,193]
T T T T T

251

Tap B

1 L -+ 000
- © 090
180
<270
— D

Tap A

Figure 4.2.: Comparison of photo response of the different taps of two individual pixels.
Each dot represents a single exposure, the colors encode the sub frames with different
phase shifts. Values in digital units (DU) as given by the device. The left plot shows
strong non-linear behavior at low intensities, the right plot shows curvature over the
whole value range. So linear calibration is not sufficient.

© generates a smooth transition between the fitted linear and polynomial functions
with the following properties:

Oz p)=0 Ox>pu)=1 (4.4)

The transition region where values of 1 and r5 are mixed may be adjusted via the
parameter o. Since the central pixels get saturated at large integration times, the
value range below 1.8-10*DU has been used for fitting. Higher values cannot be
trusted for all pixels. The parameters of the transition function © were chosen such
that 75 is used for interpolation within the fit range and ry for extrapolation:

1 =15-10"DU o =100DU (4.5)

The effect of applying the reconstruction r. to the pixel values of tap B is shown
in Figure 4.4. Since the phase is proportional to the radial distance, the flat wall
generates a pattern with circles of equal radial distance from the camera. The
estimated phase of tap B after application of r. looks the same as the reference tap
A. This shows that reconstructing the behavior of tap A in the other taps works as
expected. At the backside, this also causes artifacts of tap A to appear also in tap
B like the horizontal line structures which are slightly shifted and more weak in the
original tap B picture.

Regarding the averaged phase using the raw pixel values of tap A and B together,
application of the reconstruction r. to the tap B values decreases the quality of the
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after correction
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Figure 4.3.: This scatter plot shows the estimated phases using all eight available raw

frames (averaging approach) with tap B values without correction (z-axis) and with
r1 correction (y-axis). The color encodes pixel intensity. Only the 10% with lowest
intensities have been shown, points for brighter pixels are lying almost on a straight
line (identity). left: linear reconstruction r; right: proposed reconstruction 7. In the
left plot, dark pixels cover a large value range after reconstruction causing bad phase
estimation results in dark regions. The proposed method works more robust for low
intensities.

Fhase before Tap Calibration (&) Fhase before Tap Calibration (B) Fhase after Tap Calibration (B)

Figure 4.4.: Influence of the tap calibration on the estimated phase. Reference Tap A
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(left), Tap B before (center) and after application of the reconstruction r. (right).
Right picture looks almost like the left one (shape and noise pattern). Independent
behavior of the two taps is lost after correction.
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Fhase before Tap Calibration (both) Fhase after Tap Calibration (both)
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Figure 4.5.: Influence of the tap calibration on combined phase (averaging A and B). Shown
using Tap A and B before (left) and after (right) application of r. to B. Zoomed region
is magnified by four. Right picture shows line artifacts (marked by blue ellipses).

results as visible in Figure 4.5. Averaging the raw values of the two taps reduces
the effects of artifacts of the individual taps whereas the reconstruction of tap B
introduces the artifacts of tap A also to the tap B values. So the reconstruction
cancels the advantages of the averaging approach.

So tap calibration has advantages and disadvantages. Both taps of each pixel
show different behavior which is helpful to average out pixel artifacts using all eight
available uncalibrated raw data for phase estimation. So on static scenes, this av-
eraging approach should be used without any reconstruction applied. At the other
hand, decreasing the number of consecutive sub-frames to be captured to get all
needed four phase shifts would decrease motion artifacts a lot. So assimilating the
behavior of the taps is an important goal. An ideal (yet hypothetic) ToF device ca-
pable to record depth images without motion artifacts would use (at least) four taps
per pixel and capture correlations with all four phase shifts simultaneously. But di-
viding the size of the surface on chip available to each tap even further, non-uniform
behavior of these taps would even be stronger. Instead of picking one physical tap
as a reference and assimilating the others one should use a ground truth photo re-
sponse which would also tackle the problem of fixed-pattern-noise (DSNU/PRNU).
But this ground truth is hard to estimate on the fly. Temperature and integration
time dependency of the dark signal make this problem even harder and additionally
impossible to calibrate this ground truth once and use it when record real sequences
later. So the calibration approach presented here is the best one can do under the
conditions of present ToF devices.
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4.2.2. Image Homogenization

To be able to estimate the optical flow between the captured intensity images (sum
of tap A and B of the individual sub-frames), one has to use tap-calibrated data
(after application of 7. to the tap B records) to avoid effects of different behavior of
the taps. Second, there is a strong fixed pattern noise in the captured pictures as well
as inhomogeneous lighting. Most optical flow methods do not work well under such
conditions. Lindner and Kolb [LK09] propose a homogenization approach which is
an inter-pizel calibration to avoid these issues. Experiments showed that using the
proposed form f

f(Rz) =avR;,+b+cR;+d Q(Rz) =cR; +d (4.6)

performs equally well as a simple linear formulation g (setting a, b to zero). R; are
the captured raw frames. The latter has the additional advantage that it does not
change the value of the calculated phase since the parameters cancel out in the phase
calculation formula and thus may be considered as being orthogonal to the inter-tap
calibration presented before.

4.3. Motion Compensation Methods

This section contains a detailed description of the considered motion compensation
methods. Starting with Schmidt’s framerate increase able to reduce the artifacts
by a fixed factor, this leads to the detect-and-repair methods and the optical-flow
based methods working on raw intensity images.

4.3.1. Framerate Increase

As presented in Subsection 2.2.1, there are several options to choose the data used
for depth estimation.

Whereas usually (i.e. querying the depth from the manufacturer’s software de-
velopment kit (SDK), possibly computed on device depending on the used camera
model), all available data is used for depth estimation by selecting the averaging
approach. To reduce random noise and the influence of the individual taps, this is
the best method when recording static scenes.

Under the conditions of a non-static scene, e.g. a scene with moving objects
and/or a scene recorded with a moving camera, Schmidt proposes a method he
called framerate increase [Schll, section 5.3.3.2] which aims to keep the number of
used exposures as small as possible, i.e. in the case of the present two-tap sensor two
instead of four. This is done by selecting the subsets S1 or S2 and hence discarding
the first or last two exposures. At the other hand, this allows to compute two
independent depth maps from ToF data of a single frame, so this may be considered
as an effective doubling of the number of depth maps available per time interval
which leads to the name framerate increase. But note that depending on how the
ToF device is configured, the time delay between the exposures within a single frame
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may be different from what could be expected from the rate of multiple frames and
so this method’s name may be misleading. In case of the used CamCube device in
triggered mode (adjustable frame rate), the exposures of a single frame are recorded
as fast as possible (burst), then the device waits for the next trigger event. In a so-
called freerun mode (high frame rate dictated by the device, depends on integration
time), the delay between exposures stays constant even across frames. These details
are analyzed in Section 4.7.

4.3.2. Detect-and-Repair Methods by Schmidt

Additionally to the framerate increase method reducing but not eliminating the
motion artifacts, Schmidt proposes two variants of a method capable to detect such
artifacts under certain circumstances and to repair them by using data recorded
earlier if needed [Schll, section 6.2]

First, during the detection step, differences of the recorded raw data over time
are determined (may be considered as a temporal derivative). The standard method
works on an inter-frame basis, i.e. comparing the values of all eight raw frames
with corresponding ones from the preceding frame and hence may be used with all
variants of ToF depth computation presented in Subsection 2.2.1. The burst internal
detection (BID) variant works within a single frame and compares the raw values
from the second subset (S2) with the corresponding ones from the preceding subset
(S1). Thus, this variant restricts the depth computation to the S2 variant, using
only the (possibly corrected) values from the second subset.

A raw value change above a certain (fixed) threshold is considered as an event
which may cause motion artifacts. Motion artifacts arise if the event happens be-
tween the exposures needed for depth computation, i.e. in the open interval (to,t3)
for the standard and (¢, t3) for the BID variant (cf. Table 2.1 for definition of the
t;).

In case such a condition is detected, a second step is neccessary to repair this
artifact affected data. All raw data of the particular channel recorded after that
event is discarded and replaced by old data from the preceding time period, i.e.
using data from the preceding frame (standard) or the preceding subset (BID).

The method is capable to handle at most one single event within two consecutive
time periods, i.e. at most one event per two frames (standard variant) or at most
one event per frame (BID variant). If multiple events fall into the mentioned time
windows, detection still works, but correction will fail because the data used to
repair the discarded values is wrong as well.

This method has been implemented as a CPU-based C++ application first con-
structing a discontinuity map (thresholding the raw data differences with a con-
figurable fixed threshold) followed by a correction step if necessary as described
above. Since computations are identical for all pixels, a GPU parallelization should
be feasible but the implementation used here is already quite fast (and possibly 1/O
bound).
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4.3.3. Optical Flow Based Motion Compensation

In contrast to the methods of Schmidt which strictly work on a per-pixel basis with
a discontinuity threshold, Lindner and Kolb [LK09] try to revert the motion causing
the artifacts. Here, the detection step consists of application of a 2D optical flow
algorithm to the preprocessed intensity images (sum of tap data collected during
one exposure). The needed image homogenization is described in Subsection 4.2.2.
Pairs of the first intensity image and all three consecutive ones are used as input for
the flow algorithm.

As repair step, all raw frames despite the ones from the first exposure are warped
with the computed flow field effectively reverting the detected motion process. The
warped raw frames are then used as input for the usual depth computation variants
(cf. Subsection 2.2.1). Note that this does not only mix raw values from different
taps of a single pixel but also from different pixels which may require additional
calibration steps.

4.3.4. Combinations

Additionally to the provided implementations and comparison of the methods pre-
sented so far, it is possible to further enhance the results by combining the ideas
of individual methods to create new variants. Especially the framerate increase ap-
proach may be used to enhance computational and algorithmic performance of the
flow based motion compensation method by Lindner and Kolb. The former alone
does not eliminate artifacts but reduce them by a factor of three. Since only data
from two exposures is used for depth computation (subset S2), this is only one image
pair which needs optical flow estimation (instead of three as proposed by Lindner
and Kolb). As optical flow estimation works better when displacements are small, it
is an additional benefit that this combination avoids flow estimation on raw image
pairs spanning more than two consecutive exposures.

The detect-and-repair methods by Schmidt and the flow based method are incom-
patible with each other since one has to decide if the detected artifact affected values
should be replaced by values from the past or from the neighborhood. But at least,
the detection step of Schmidt’s methods may be used to check the quality of the
results from the flow based method. Since this pixel-based detection is quite fast, in
a post-processing step this could be used to mark regions where discontinuities are
a hint to failed correction based on warping with the flow results.

4.4. Qualitative Evaluation

All methods have been evaluated on multiple real and synthetic test sequences. As
a real-life example, a short office sequence of 256 frames has been recorded heavily
moving and rotating the camera to obtain strong motion artifacts. The sequence
contains diffuse as well as transparent and specular reflecting objects which are all
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within the non-ambiguity range. The camera position itself was almost kept constant
so motion is only in the lateral and not in the depth direction.

To avoid influence of the sensor characteristics such as dark signal non-uniformity
(DSNU) and photo response non-uniformity (PRNU) a synthetic moving plane
sequence consisting of two frames with four sub-frames each has been created. A
plane centered in the camera’s field of view was moved from a distance of 1.6m
in frame 1 to 4m in frame 2. It moves with a speed of 5cm per sub-frame in the
first and 10cm per sub-frame in the second frame. The dark background has a
distance of 4.2m. The used point light source is located exactly at the origin at the
camera position. Hence, complementary to the rotating scene, this sequence is ideal
to analyze the influence of motion along depth direction. The setup generated with
the Blender software is visualized in Figure 4.6. To generate the ToF raw frame
output the simulator by Meister et al. [MNK13] has been used.

Figure 4.6.: Setup of the rendered synthetic moving plane sequence. Sub-frames are printed
simultaneously. left: framel right: frame2

Figure 4.7.: Rotor test target: left: sketch of the target shape, center: CamCube3 inten-
sity image with overlay of radii R, R and estimated position ¢, right: corresponding
depth image with motion artifacts
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Additionally, for quantitative evaluation, the rotating target proposed in the work
of Schmidt [Schll] shown in Figure 4.7 has been used. This sequence has been
recorded as real ToF sequence as well as simulated with the ToF simulator. Since
optical flow estimation on a non-textured surface only yields interpolated results
(due to regularization), the target has been recorded plain white as well as with a
more or less randomly textured pattern (structure with low and high frequencies).

4.4.1. Framerate Increase

Figure 4.8.: Phase estimation of a dynamic scene using different subsets of the captured
raw data. Top row: All data as given by the device, without tap calibration. Depth of
all eight raw images using averaging approach (tl), all four tap A frames (tc), all four
tap B frames (tr). Bottom row: All data with application of 7. to the tap B records.
Averaged depth of all eight raw frames (bl), first subset of A and B raw frames (bc),
second subset of A and B frames (br). S2 results (bottom right) look best.

Using the tap calibration presented before, it is possible to compute the phase of
the returning light with less than all four acquired exposures. As visible in Figure 4.8,
the estimated phase results differ significantly depending on which data have been
used to compute it. Using uncalibrated data, there are three options that are shown
in the top row. All four exposures taken consecutively are needed. Only taking
one tap for phase estimation shows strong artifacts (top center and right image),
averaging them decreases the effects but fine structures have still up to four halo-
like artifacts. The top left and bottom left image both use all eight raw frames but
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at the bottom row, all tap B data are corrected using r. from the tap calibration.
Using corrected tap B data and averaging it with tap A decreases the quality benefit
provided by the averaging process. So the bottom left image looks slightly worse
than the top left one. But using calibrated Tap B data, it is possible to compute the
phase using the raw images Ao, Ago, Biso, Baro (subset S1) which are taken during
the first two acquisitions. Also a second subset consisting of By, Bgg, A1s0, A270
(subset S2) which are captured during the last two exposures is available. Phase
computed using these subsets are shown in the last two bottom pictures. Since there
is only one delay between the exposures (instead of three delays using the standard
approaches), this reduces the motion artifacts by a factor of three. Results clearly
outperform the phase estimation methods using all four sub-frames, only a doubling
effect at edges and fine structures remains.

4.4.2. Detect and Repair Methods by Schmidt

Figure 4.9.: Motion compensation method by Schmidt (Standard approach). All pictures
show computed phases using the four tap A raw frames. Value range is the full non-
ambiguity range Ry (4.1). Top row: before correction. Bottom row: after correction
with marks of good (green) and bad (red) results. The columns show three different
frames from the captured dynamic sequence with large motion speeds (left), first moved
frame (center) and only small displacements (right). In all cases this method fails and
causes strong artifacts. It is not suitable for moving cameras.

Figure 4.9 shows the results of the standard motion compensation approach by
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Schmidt [Sch11]. The top row (uncorrected) corresponds to the top center picture
of Figure 4.8 as the input to the standard method are the raw frames from all four
exposures. For simplicity, only the tap A phase images have been printed. Applied
to the dynamic office scene, the results look really poor, the method fails completely
on this sequence. The algorithm assumes that at most one discontinuity (called event
in [Sch1l]) within two consecutive frames. This assumption is heavily violated in
this real-world sequence. It may be fulfilled using a mounted camera in front of a
almost static scene with only a few objects moving in lateral direction e.g. object
inspection at a conveyor belt.

5
B

-
0

El

Figure 4.10.: Motion compensation method by Schmidt (Standard approach) on a synthetic
sequence. Pictures show the estimated phase. Value range is the full non-ambiguity range
Ry (4.1) (color-map and plots on the right). The top right edge was enlarged by four.
rowl: frame 1 (no correction possible) row2: frame 2 (uncorrected) row3: frame 2
(standard correction) coll: only using tap A col2: only using tap B col3: averaging
tap A and B col4: graph of row 99 values of the preceding pictures (see red mark).
Correction does not work well since replacing values of frame2 by some from framel
causes new artifacts.

To test the performance in cases where the assumption of at most one event per two
frames holds, the moving plane test sequence has been designed. In first experiments,
Schmidt’s standard approach did not perform any corrections at all. The used point
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light source causes the plane moved far away from the camera to appear darker
than closer to the light source. So the whole plane was detected to be discontinuous
and so be kept uncorrected. To avoid influence of brightness change between the
frames, one should use a light source without intensity decrease depending on the
object distance (sun light source). The used simulator only supports point light
sources with a light decrease proportional to %2 (radial distance r). The object
brightness had to be fixed by multiplying all intensities of the moving plane in the
second frame by the average of 22/z? (with the z-distance of the plane from the
camera, in the considered case this fraction yields a factor of 4.908). After this
preprocessing step, detection works as expected, only the object borders are marked
as discontinuities. Results are shown in Figure 4.10. The first two rows show the
phases before correction, last row the corrected frame 2. The first frame cannot be
fixed since there is no preceding frame to check for discontinuities. Correction takes
place at pixels where at least the first sub-frame (A and Big) is still continuous
but values one of the subsequent phase shifts shows change between the two frames.
So regions where the object moved away in all four channels are not touched and
correctly estimated as background. Corrections are only necessary Discontinuous
regions are fixed by replacing their raw values by old ones of the first frame (for the
discontinuous raw channels only, the first raw channel is never changed). So after
correction, the phase is estimated using mixed values from both frames. Since the
plane moved a lot in depth direction between the frames, arbitrary depth values
may occur. This explains why the phase results in the third row look worse than the
uncorrected values. This shows that Schmidt’s standard method is also not suitable
for objects moving in depth direction.

Burst Internal Detection (BID) The main problem using Schmidt’s standard ap-
proach is that there are large displacements between two frames of the dynamic
sequence violating the assumption of a most one discontinuity within two frames.
The improved variant called burst internal detection (BID) does not use two frames
but two subsets of one frame to detect and fix the discontinuities. This allows
one event per frame without violating the assumptions. It also decreases the con-
sidered time window since the delay between all consecutive exposures to capture
the sub-frames is much shorter than the delay between frames (in this case, all four
sub-frames are captured in about % of the time between two frames).
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Figure 4.11.: Motion compensation method by Schmidt (BID approach). All pictures show
phases computed using second subset. Value range is the full non-ambiguity range Ry.
rowl: before correction. row2: with BID correction and marks of good/bad (green/red)
results. The columns show the same selected frames as in Figure 4.9. In the left pictures,
the horizontal boards are sharper and with less halo-like artifacts. Same applies to the
vertical boards in the center pictures. Very few correction in the right ones. In all cases
new artifacts appear, at least at the bottles. But at least it works much better than
standard approach (Figure 4.9).

52—
S2 IBID -

Figure 4.12.: Motion compensation method by Schmidt (BID approach) on a synthetic
sequence. Pictures show the estimated phase. Value range is the full non-ambiguity
range Ry (4.1) (color-map and plots on the right). The top right edge was enlarged
by four. left: first subset (no correction possible) second: second subset (uncorrected)
third: second subset (BID corrected) right: graph of row 99 values of the preceding
pictures (see red mark). Correction worked well, only boarder of one pixel shows flying-
pixel artifacts (blue/green) that are also present on static scenes.
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Applied to the dynamic office sequence, the BID method gives the results shown
in Figure 4.11. The top row (uncorrected) corresponds to the bottom right picture
of Figure 4.8 as the input to the BID algorithm are the two subsets of one single
frame of the sequence and only the second subset is corrected (by values from the
first one). This is clearly an improvement compared to the standard method. There
are still regions with artifacts, especially on translucent or reflecting objects but the
doubling artifact occurring at depth edges in the uncorrected images is removed in
most cases.

Applied to the moving plane test sequence, Schmidt’s BID method gives very
accurate results. Brightness changes between the two considered subsets, caused
by the point light source are small enough and did not need for any correction like
above. Only a border of one pixel with wrong depth values remains which can be
considered as a flying pixel artifact which is also present in ToF records of static
scenes at depth edges. So the BID approach solves the motion-artifact problem at
this simple synthetic test sequence.

4.4.3. Optical Flow to Warp the Sub-frames

Since the presented system is intended to work in real-time, only reference imple-
mentations of optical flow methods working on a graphics processing unit (GPU)
have been investigated. Recently, many state-of-the-art methods have been imple-
mented using CUDA and OpenCL in the OpenCV [Bra+00] library. Especially
the following algorithms are available: The algorithm by Brox et al. [Bro+04], the
duality-based total variation (TV-L') method by Zach et al. [ZPB07], the method
by Farneback [Far00], a pyramid variant of the method by Lucas and Kanade
[LK81] (PyrLK) [LK81], as well as block matching (BM) algorithms. To sim-
plify testing the different algorithms, the OpenCV methods have been wrapped into
charon-suite modules [GK12; GMK]. This way, the common pre- and postprocessing
parts could be performed using existing code.

As presented in the Appendix A, optical flow result vary heavily depending on
the used method. All local methods give unusable flow fields since they do not
produce dense results (i.e. zero flow e.g. where structure was too low). TV-L!
and Brox Algorithm perform nearly equally well but regarding the residual image,
TV-L! results are slightly better (even if there are two artifacts at the top of the
image).

Figure 4.13 shows the computed phase images using the raw frames warped with
the TV-L! flow results. As an interesting observation one should note that the
quality strongly depends on the choice of phase computation method. Selecting all
data from one single tap gives bad results (top row). Especially the object edges
show misalignment effects that look like aliasing. Combining images from both taps
removes this kind of artifacts.

Averaging all tap A and B exposures gives sharp edges and low noise in homoge-
neous regions. Only parts where the intensity was low (floor and box in the front)
show high noise as well as the reflecting/translucent objects in the shelf. For some
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reason the noise in the low-intensity parts seems to be much higher in the first two
exposures causing the depth maps computed using the first subset (bottom center)
to be nearly useless there. Using the second subset only, results look drastically
better. Edges are much sharper, even the bottles and dark objects in the shelf have
been estimated correctly. Only at the horizontal wooden boards there are still some
small halo-like artifacts that are not visible in the averaged image.

Figure 4.13.: Same Phase Visualizations as in Figure 4.8 but after warping the raw frames
(r. corrected) with the calculated optical flow computed using the TV-L! method. Top:
phase using tap A (center) and B (right) records. Bottom: phase using all raw frames
(averaging, left), first subset (center) and second subset (right). A combination of
warping with computed flow and using framerate increase (S2, bottom right) gives the
best results.

44



4.5. PMD Depth estimation

4.5. PMD Depth estimation

Working with the raw data provided by the PMD CamCube devices, one should note
that the depth values computed using the usual formulas found in literature and the
depth values computed by the SDK provided by the manufacturer differ heavily.

4.5.1. PMD SDK

During experiments with the CamCube3 device SDK provided by the manufacturer
(PMDSDK 2.2.1) has been used to connect to the device and as reference for raw
data processing. This software library provides options to configure the device (e.g.
set/get integration time, modulation frequency) and the capability of raw data cap-
turing. Additionally, it is possible to compute

o aplitudes (cf. (2.2))

o intensities (cf. (2.3))

o radial distances (cf. (2.4) and (2.5))
o flags (e.g. saturated pixels)

e 3D coordinates

This post processing works on-line (while capturing data with the device) and off-
line (given the captured raw data stored on disk) but requires data be exactly in
the format as captured from the device. This means that it is not easily possible to
apply this post processing pipeline to processed raw data, i.e. after application of
the algorithms described in this work.

4.5.2. Comparison of the Computed Values

As a first step, a comparison the computed phase shift of the returned light by
using (2.4) and the distance values computed by the SDK converted to a phase
shift via (2.5) is given. To sample the whole range of phases ([0,27)), a out of the
window scene where an inclined wall covers most of the image has been recorded.
It also includes regions with high amplitude of the returned light as well as low
amplitudes in regions far away. The computed values and their difference are shown
in Figure 4.14.

The best match of the computed values was computed using the average approach
of phase reconstruction. This is reasonable because it uses all available captured
data and reduces tap artifacts. But nevertheless there is a systematic offset, some
sinusoidal structure and the values do not lie on a straight line but cover a range
of about 0.1rad (Figure 4.14, right). Zooming in to one of the extrema of the sine
structure reveals that the values are not scattered randomly but show equidistant
sine waves. By only selecting the values of one of those parallel structures, it is
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Figure 4.14.: Comparison of Phase values computed on raw data with usual formula and
provided by the PMD SDK. Each pixel data is represented by a single small point. The
line width in the left picture is caused by the variations better visible in the difference
view on the right. Fitted correction function shown in red.
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Figure 4.15.: left: zoom to an extremum of the sine shape of phase difference (marked
rectangle in Figure 4.14), values in [rad]. Best fit of a single stripe plotted in red. right:
remaining radial depth difference (in [m]) after correction of shift and sine wave structure
(by applying the correction function plotted in red in left plot).

VM ‘ Poff ‘ a ‘ Pshift
18 MHz | 1.2207064820469rad | 0.0349066rad | —7
19MHz | 0.978259 187887 76rad | 0.034906 6rad | —7
20MHz | 0.774375510153 79rad | 0.034906 6 rad —%
21 MHz | 0.5118498392795rad | 0.0349066rad | —7

Table 4.1.: Fitted parameters of the correction function in (4.7).
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Figure 4.16.: Phase images computed with PMD SDK (top left), using atan2-formula
(top right), after correction using (4.7) (bottom left) and the remaining difference
pattern in units of meter after correction (bottom right)

possible to fit a sine wave to these filtered data perfectly. After application of the
correction function

Peorr = Patan2 T Poff T - sin (4 " Patan2 + Spshift) (4-7)

the remaining distances after correction are in range of float/double precision.

There are exactly four periods of the sine wave within the value range, which is the
most dominant mode of the wiggling artifact occurring on CWIM ToF devices with
non-perfect sinusoidal modulation of the emitted light [Sch11]. The fitted parameter
©ofs depends on the used modulation frequency v/, amplitude a and shift g,z
are constant (cf. Table 4.1).

After correction of offset and sine wave, the remaining difference are horizontal
parallel lines. After computing the distance (in [m] using (2.5)), these lines have
distances of exactly 1 mm. This fact occurs independent of the captured scene, the
used integration time and modulation frequency (regarding (2.5), the phase distance
(in [rad]) changes with modulation frequency, but the radial distance (in [m]) keeps
constant).
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Additionally, this remaining correction pattern has not only mm values but also
really stays the same and so must be hard-coded into the processing pipeline. Also
note, that this could not be the result of a camera calibration process since this
processing pipeline was applied offline to recorded raw data without communication
to the device. The only possible calibration would be a live-calibration using the
recorded data which would yield different correction patterns when applied to dif-
ferent recorded files, which is not the case. Regarding the data format of the stored
raw data, it does only contain the recorded raw data, some meta data like used
modulation frequency, integration time, device type but there is not enough space
to pass a whole calibration image. So this hard-coded pattern may be specific to the
used device type but not to the actually used camera. The structure of this pattern
is shown in Figure 4.16. Also note that this correction is really relevant since the
depth difference is up to 10 cm.

Using this described processing pipeline, it is possible to compute exactly the
same depth values from the raw data as given by the black-box function provided
by the PMD SDK up to floating point number precision.

4.5.3. Provided 3D Point Coordinates

With computed values of the radial distance, it is possible to compute the 3D point
coordinates (z,y, z) for each pixel using the intrinsic camera parameters:

r r u u u u
= . | v with =7 4.8
Z /u + 02 + f2 f <v> (vp — vc> (4.8)

This formula may directly be derived from the sketch in Figure 2.1 regarding the used
pinhole camera model. The radial distance r should be equal to the norm (lenght)
of the vector (z,y,2)T. So by rescaling the vector (u,v, f)T pointing in the same
direction, the 3D coordinates may be retrieved. The coordinates in the camera
system (u,v)” have to be computed by calculation of the difference of the pixel
position (up,v,)T (e.g. values in [0,...,199] for a 200 pixel sensor) and the sensor
center (ue,ve)” on the optical axis. By shortening f, u and v may be replaced by
ratios u/fy,v/f, and thus f,, f, may be specified in multiples of the pixel lattice
periods in z,y directions instead of real length values. For non-quadratic pixels, the
values of f, and f, differ.

If there are pre-computed values of the 3D coordinates as well as radial distances,
as given by the black-box PMD SDK, this may be inverted to determine the built-
in camera parameters. This has been implemented in Listing A.3 and yields the
following results when applied to some recorded CamCube3 dataset:

$ getCamParams.py fast-1700.h5
fx = 278.876505 fy = 278.876396 cx = 101.500000 cy = 101.499999

This shows that the built-in parameters are set to the ideal values of a camera
with a field of view (FOV) of 40° and a sensor size of 204 x 204 pixels, which are
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the properties of the CamCube2 device:

204 —1 101.5
= =101.5 =
2 / tan(40°/2)

/2 278.868 958 074 (4.9)

Ue = Ve

Although the used CamCube3 device has other sensor properties (200 x 200 pixels,
but same FOV), the SDK applies these fixed values nevertheless (even despite the
fact that the used camera model is stored in the meta-data recorded by the SDK
and present during the 3D point coordinate computations by the same SDK).

4.6. Automated Rotor Position and Velocity Detection

For the further experiments and quantitative analysis, the orientation and speed of
the used test target are important quantities. To detect them on large number of
frames in various sequences and using different ToF devices, it is useful to be able
to determine them in an automated way. Hence a processing pipeline for automatic
rotor position detection had to be developed.

Figure 4.17 shows a visualization of the used approach. A virtual rotor mask may
be generated for arbitrary angles ¢, € [0, 7). This boolean mask is described in 2D
polar coordinates (r, p) with origin located at the rotor center (rotation axis of the
fan) and constants R, Ro describing the inner and outer radius of the rotor:

2
U [‘PT_Z+]€7T7 ¢T+Z+lm]) 0[0,%)}

k=—1
(4.10)
The value sum of the pixel-wise product of this mask with the intensity image is used
as an objective function to be maximized with respect to the rotor angle (argmax).
In presence of rotor-artifacts, there may be steps or plateaus in the objective function
which yields to unstable optimization results. This may be avoided by pre-blurring
the intensity image by convolution with a Gaussian filter.

By computing the differences between rotor positions of consecutive frames, it is
possible to estimate the angular velocity of the rotor for each frame. This is shown
in Figure 4.18. The plots show data points with the computed position differences
between consecutive frames. Since all positions are within the interval [0,7) (note
the point symmetry of the rotor target), there may be negative differences when the
rotor crosses the ¢ = 0 angle. This may be fixed by adding a fixed value of 7 to all
negative difference values:

M<,0r = {(T’(P) S [R17R2]7 pe (

T if o <pn-

4.11
0 else ( )

A‘Pn = Pn — Pn-1 +{

Also note that with a rotor speed of about 6 revolutions per second and a recording
at 30 and 60 frames per second (and a four times larger rate of sub-frames), there
are no ambiguities (like rotor turned by 180 degrees), even in the case of single frame
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drops. The plots in Figure 4.18 show the data points Ay, their arithmetic mean
(red line in left plots), their standard deviation o (green range in left plots) and the
box-whisker-plots (more robust in presence of outliers) in the right column. These
box plots show the median value (red line), the quartiles (blue box spans the 25
to 75 percentiles, almost invisibly small in the first two rows), the whiskers span
the range of the 5 to 95 percentiles. Points outside of this range are considered as
outliers and marked by dots.

Intensity frame #000 Rotor

phi: 1.236

correlation

¢=1.235543

0.000 0.393 0.785 1.178 1.571 1.963 2.356 2.749 3.142
¢ [rad]

Figure 4.17.: Automated rotor position detection by correlating the intensity image (left)

with a virtual rotor mask (right). Using a scalar optimizer (from Python SciPy package)
the angle of maximal correlation (bottom) is determined.
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Figure 4.18.: Examples of estimated rotor velocity estimation on a fast rotor sequence
with different integration times. Rows: t; = 500ps (top), t; = 1500ps (middle),
t; = 1600ps (bottom). Columns: Individual angle difference between sub-frames
(left), box-whisker-plots to summarize the distribution of the values by quantiles (right).
When frame-drops occur, the estimated angle difference is five time as large as usual,
because the dropped frame contains four sub-frames which are skipped in this case. At
low integration times (top), there are many frame-drops, one single drop at the center
plot and no drops at all on the last plot (note the different y value range!).
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Chapter 4. Time-of-Flight Data

4.7. Technical Details on Recording Data with the
CamCube Device

The PMD CamCube software interface provided by the manufacturer’s SDK provides
three different modes to control the capturing process of the device:

Freerun Mode The device runs its exposures as fast as possible without additional
delays. The internal frame rate may not be adjusted. The internal frame rate
only depends on the configurable integration time. The recording software
is responsible to check for new available data and transfer it as fast as it
is recorded, otherwise data of some frames is dropped. Especially for short
integration times, data is generated too fast to be transferred using the USB
connection between computer and device. This may be avoided by selecting
a specific region of interest (ROI) (which will further shrink the already small
image size of 200x200 pixels) and thus reducing the data to be transferred per
frame.

Software Triggered Mode Each acquisition of a frame has to be started explicitly
by a function call in the recording software. All exposures for that frame
run then at the same internal sub-frame-rate as in freerun mode but after
all exposures for that frame, the device waits until the next acquisition is
requested by the software. Since the trigger command is also responsible to
initiate the data transfer, there will be no frame drops using this mode.

Hardware Triggered Mode Each acquisition of a frame has to be started using an
external hardware trigger signal. There will be frame drops if the data transfer
is slower than generation on the device.

Experiments with the CamCube3 device show that the delay between individual
exposures only depends on the selected integration time. If using the freerun mode,
this delay even stays constant across acquisition of multiple frames. Using the rotor
target designed for quantitative evaluation, it is possible to retrieve some of the
technical properties of the device. With a fast, fixed rotation speed, the target was
recorded at different integration times ¢;. To avoid pixel saturation at high integra-
tion times, a gray filter had to be placed in front of the camera objective. Then,
the rotor orientation in the recorded intensity images was estimated automatically
by maximizing the correlation of the image with a virtual rotor at arbitrary orien-
tations. By computing the differences of the rotor angles of consecutive sub-frames
(fixed when wrapping by 27 occurs), the rotor velocity may be estimated in units of
[radian/subframe]. Each of the recorded sequences contains 100 frames and hence
400 sub-frames. Using the median value of all those differences, this velocity may be
estimated accurately even in presence of frame-drops. The results of this experiment
with different integration times are given in Figure 4.19. Each plotted data point
represents such a median value. The individual computed angle differences of sam-
ple sequences are shown in Figure 4.18. Because of the high number of values used
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Figure 4.19.: Apparent angular speed of the rotor as visible in recorded sequences using
different integration times. Each data point is the median value of the angle difference
per sub-frame of sequences having 400 sub-frames each. Slope and offset of the linear fit
may be used to estimate the real rotor speed and the delay between exposures.
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Figure 4.20.: Integration-time dependency of the record frame rate reached by the rawCap-
tureFreerun camera application. Max frame rate is about 48 FPS. Framedrops occur up
to integration times of 1500 ps. The expected hyperbolic behavior is present for higher
integration times.
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for median computation and the small standard deviation of the individual samples
(without the frame-drop outliers), the error values of the data points are negligible
compared to the fitting error given later. E.g. the error of the value for ¢; = 1600 ps
is about

average(Ayp,) = 0.228 080 rad (4.12a)
median(Agp,) = 0.227 528 rad (4.12b)
o 0.002991rad
VN V400

which is about 0.066 % of the value.

Obviously, there is a linear dependency of the apparent rotor speed wsr per sub-
frame and the integration time. This may be explained by an exposure process of
two phases: integration time (with configured duration ¢;) and a fixed time delay
tq between exposures, e.g. caused by the readout time of the chip and potential
preparation/post processing (like adjusting the frequency shift of the correlation
signal). Fitting a linear function

Om

= 0.000 14955 rad (4.12¢)

WSF = W - (ti + td) (4.13)
yields the values

d
w = (40.72 £ 0.15) % tg = (3986.8 £ 23.8) s (4.14)

As an independent measurement, the size of the delay t; may also be estimated from
the recorded FPS rate: The number of frames recorded per second is reciprocal to
the duration to capture one frame. Since one frame consists of four exposures, this
yields

1

IOy (4.15)

VFPS =
This hyperbolic behavior is clearly visible in Figure 4.20. The shift ¢4 (in z-direction)
of this hyperbola gives:

tg = (3802.04 + 2.89) s (4.16)

The error values are the fitting errors and do not contain any systematic errors
that may have occurred. Especially the FPS rate has been computed by dividing
the total record time spent by the application by the number of recorded frames
which may not be very accurate and influenced by other processes running on the
computer. The accuracy of the first variant may be affected by the precision of the
device clock used to set up the proper integration times. Regarding those unknown
additional sources of errors, the different values computed for ¢4 should be considered
as compatible.
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4.8. Quantitative Evaluation

Additionally to the qualitative evaluation before, it is also important to compare
the algorithms quantitatively.

4.8.1. Used Measure

For a quantitative evaluation of the algorithms, in literature there is only one pro-
posed quantitative measure of artifact strength, the so called relative distorted area
by Schmidt [Sch1l]:

p= Aare [0,1] (4.17)
Ama:l:

where Ag+ is the detected number of artifact pixels and A, is the theoretical
maximal possible number of artifact pixels for the considered scene. In principle
Agrt could be any kind of artifact pixels, not only motion artifacts, but to be able to
quantify a maximum number of possible artifacts, the scene geometry and it’s motion
have to be known. To handle this, one needs a simple scene, e.g. with a foreground
and background layer and simple known geometry and motion. Foreground and
background are assumed to have a constant distance from the camera in z-direction.
Pixels differing from these distances are considered as artifacts. Additionally, the
brightness of the foreground is assumed to be light, background to be dark. Pixels
with brightness values between foreground and background level are also considered
as artifacts.

4.8.2. Test Scene

Figure 4.7 shows the used test setup. The circular shape with quarters of fore-
ground /background and rotation with constant angular velocity yields (cf. [Schll,
(6.3)], here with fixed angular velocity and revolutions per frame):

Amax = T(R5 — R?) -4n = (R3 — RY) - 2w (4.18)

where n is the number of revolutions per frame, and w = 27n is the angular velocity
(in [£247). Ry, Ry are the inner and outer rotor radius as in Section 4.6. The
maximal reasonable speed of the test target is n = ﬂf;;ﬁ or w= 7% frfrfle. In this
case, the maximal distorted area is the full rotor area Aq: = Arotor-

In principle, even higher rotor speeds could be considered, but Apyax as worst-case
scenario keeps constant in this case. The image regions which are hit by more than
one foreground /background change event in this case count only once in A,y which

may cause misleading results.

4.8.3. Discussion of the Measure

Regarding the design of the relative distorted area, there are some points to con-
sider. First, all pixels, that are not in foreground /background plane are detected as
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artifact pixels by thresholding as well the pixel intensity as well as the computed
z-distance. Of course, this detects pixels influenced by motion artifacts but also e.g.
flying pixels at object boundaries caused by mixing foreground /background signal at
border pixels. Therefore it is useful to set the rotor speed of the test target to high
values so that the area of motion artifacts becomes large compared to the border
pixels.

A theoretical ToF device with sub-frames captured in equidistant time steps At
and no but motion artifacts (i.e. without flying pixels) yields a relative distorted
area 9 = % because time distance between frames is 4At and there are three time
steps between the four used sub-frames for depth computing. Only using a subset of
two sub-frames (framerate increase) will reduce this to a value o = % because within
such a sub-frame, there is only one time step At.

The real ToF device (CamCube3) introduces some more parameters that influence
the measured values of 9. They vary heavily depending on the frame rate when using
the so called soft trigger mode, i.e. triggering the device using a software timer. In
this setup, the time steps between sub-frames keeps constant and depends only on
the selected exposure time. After acquiring the four sub-frames, the device waits
for the next software trigger signal. So especially if using low frame rates (e.g. 10-
30 FPS), this looks like sub-frames being acquired in bursts and yields low o values
because this waiting for next trigger artificially enlarges the rotor speed w from frame
to frame and so the A4, (cf. eqns. (4.18) and (4.17)). The higher the selected frame
rate (up to 50 FPS), the closer the g values approach to the theoretical value of %.
The assumption of sub-frames captured equidistant in time does never hold exactly
in soft trigger mode because there is always at least a short delay waiting for the
trigger signal. If used in so called freerun mode, the device avoids this waiting step
and so really reaches equidistant time steps between sub-frames. But at least for
low exposure times, this results in more captured data than can be transferred via
the USB2 connection and so causes frame drops. Selecting an exposure time of
1500 ps or higher, the internal frame rate of the device gets below 50 FPS and frame
drops almost disappear. In this setup, using the maximal exposure time of 4000 s
(and a gray filter to avoid too bright images), an average value of o = 0.785 £+ 0.011
has been determined which is close to the theoretical value of 0.75 for equidistant
subframes. The value higher than % is caused by border pixels and motion-blur
during exposure.

4.8.4. Algorithm Comparison

Using the rotor test target presented above, it is possible to reveal a large difference
between the two methods by Schmidt [Sch11] which demonstrate the importance of
the prerequisite of at most one events per two considered time periods which makes a
distinction between his standard and BID variant. Regarding the optical flow based
methods, it is interesting how the estimation is able to cope with non-textured and
textured targets in presence of large displacements and rotation, both making this
a tough task.
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Figure 4.21.: Fast Synthetic Rotor Sequence with Schmidt-Correction. w = fr%?;e. Left
pair: Phase computed using all eight raw images (average) before and after Schmidt’s
standard method. Correction does not improve the computed depth map. Right pair:
Phase computed using second subset (S2) before and after Schmidt’s BID method. Re-

gions affected by artifacts are fixed, only some artifacts at the borders remain.

Synthetic Sequences

Using an artificial rotor scene, rendered using the ToF simulator by Meister et
al. [MNK13], the influences of non-linear response curves and different pixel behavior
are not considered to focus on the scene prerequisites alone and neglect the non-ideal
sensor properties. Hence this synthetic case does not need any kind of tap calibration
or image homogenization.

With a rotor speed set to the maximum possible value of i rounds per frame, the
application of Schmidt’s detect-and-repair methods is shown in Figure 4.21. Images
show the computed phase using the maximal possible number of sub-frames for each
method, so average approach using all four sub-frames for the standard method (left
set of two images) and using the frame subset S2 for the BID method (right set of
two images). For each method, an image pair is given, with the uncorrected image
(left) and the corrected one (right). Color encoded, the computed phase (range
[0,27)) is visualized. Below each image, relative distorted area o is printed. This
number has been computed as defined above setting w to the known value used to
set up the simulated scene and choosing the radii R; = 15, Ry = 62 pixels. The
rotor center is located at 7= (99.5,99.5) pixels.

As visible, Schmidt’s standard methods (left) fails completely. No artifact-affected
regions are corrected at all. The “corrected” image looks almost like the uncorrected
one, there are some single pixels at the edges of the rotor target where the values
have changed, but the new values are worse than before. This visible behavior is not
reflected by the p number, since only the absolute number of artifact pixels matters
and this number keeps unchanged, even if some artifact pixels changed their value
but are still wrong. The value of g is slightly larger than the theoretical value
of 75% for equidistant exposures because of the border pixels where foreground
and background values are mixed and thus intensity and depth threshold yield a
classification as artifact affected. Also note, that there are three segments on each
wing of the rotor target, where the computed phase is in the correct foreground
range but only the central one is classified as not affected by artifacts because in
the intensity image there is an obvious mixture of foreground and background in
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the other two segments. The correct phase is caused by a canceling effect of the
raw-frame averaging shown here:

o = atan2(Ag7g — B + Baro — Ago, Aiso — Bo + Bigo — Ao) + 7 (4.19a)
¢1 = atan2( 90 + Baro — Ago, A1so — Bo + Bigo — Ao) + 7 (4.19b)
2 = atan2(Aoze—Boo + Boro — Ago, Awse—Bo + Bigo — Ag) + 7 (4.19¢)
w3 = atan2(Asze—DBoo + Borg—Ago, Arsg—Bo + Bigo — Ag) + 7 (4.19d)

The rotor turns counter-clockwise. The sequence itself is shown in Figure A.8. Note
that the first frame cannot be used for this detect-and-repair method since it needs
values of a preceding frame for correction. Regarding Figure 4.21, there are two seg-
ments with correctly computed background depth (yellow) and two segments with
correct foreground depth (blue, perpendicular to the yellow ones). These segments
are not affected at all by any discontinuity events. They stay foreground/back-
ground over the full four recorded sub-frames. To understand the behavior of the
artifact affected segments, the eqns. (4.19) show which values are used for depth
computation using the averaging approach. The sub-frames colored blue contain
foreground values, the canceled ones colored red contain background values. Note,
intensity values in the foreground are about Ipg =~ 6 AU, whereas the background
pixels have intensity values of Igg =~ 0.4 AU and hence Irg < Ipg (values given
in arbitrary units (AU)). (4.19a) denotes the central foreground segment, where
all sub-frames contain foreground values and hence computation works as expected.
The next segment in clockwise direction (dark blue), denoted by (4.19b), has fore-
ground values for the first three sub-frames and background values at the last ex-
posure. Since background values may be neglected, this leads to a numerator value
of the atan2 arguments divided by a factor of two whereas the denominator stays
the same. Hence the result of this computation gives no correct results. The next
segment (blue), denoted by (4.19c), contains two foreground and two background
sub-frames. The small background intensity values have almost no influence when
averaged with foreground ones which effectively turns this depth computation to
use the subset S1 only which yields correct foreground depth results. Regarding the
last segment (red), like in (4.19b), the numerator and denominator of the atan2 are
again unbalanced in (4.19d) which leads to wrong results. Similar arguments apply
to the three segments at the opposite side of the central foreground segment.

The next method presented in Figure 4.21 (right image pair) is Schmidt’s BID
approach. This image shows the result of two methods at once. Since this method
is based on the framerate enhancement, even the “uncorrected” image shows a much
less value of p (slightly larger than the theoretical value of 25 %) than the depth
computed using the averaging approach as before. This shows the expected behavior
of reduction of motion artifacts by a factor of three by selecting the subset S2 for
depth computation. On this data, application of the BID method recovers almost
all pixels still affected by motion artifacts. Only border pixels (again about 3 %)
with invalid depth values remain, but this effect is caused by foreground-background
mixing and not by motion.
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Figure 4.22.: Slower Synthetic Rotor Sequence with Schmidt-Correction. w = fr‘g;e. Left
pair: Phase computed using all eight raw images (average) before and after Schmidt’s
standard method. Right pair: Phase computed using second subset (S2) before and after

Schmidt’s BID method. With this slower rotor speed, both methods work well.

Reducing the rotor speed to half of this value, the precondition of at most one
discontinuity event per two frames also holds and so the standard approach works
too. With fast speed, there is one discontinuity per frame, so the precondition for
the standard approach is violated, but for the BID method, which is able to handle
up to one discontinuity within the four sub-exposures, the precondition holds for
fast and slow rotor speed. This is shown in Figure 4.22. The visualization is the
same as before in Figure 4.21, but the angular velocity is now % rounds per frame.
All other parameters are unchanged. Note that the total number of border pixels
is also the same as before, but since the rotor speed is reduced to half the value of
before, also the maximal possible area A,y is also halved, doubling the percentage
of border pixels. Despite the fact, that now, both variant of Schmidt’s detect-and-
repair methods visibly work as well as the BID variant with the fast rotor speed,
the values of o ~ 6 % are twice as large.

After Schmidt’s methods, the next class of detect-and-repair methods is based on
optical flow estimation between the sub-frame intensity images applied to the same
rotor sequence used before in this section (cf. Figure A.8). Lindner and Kolb [LK09]
estimate the flow on three image pairs consisting of the first sub-frame intensity
image and all others. The results of this estimation are given in Figure 4.23. The
leftmost column shows the ground truth optical flow of the first image pair which is a
pure rotation field on the rotor area and zero flow in the background. This field has
been exported directly from the Blender software used to design the synthetic test
scene. The visualization shows the magnitude and orientation of the flow vectors
encoded in HSV colors as well as with small vector arrows (quiver). Ideally, all
results of real flow estimations should look like this ground truth frame, identically
for the first image pair and with larger flow values but same shape for the other pairs
because of the larger angle difference. Note that e.g. doubling the angle difference
does not simply double the flow values but changes as well length and orientation
of the flow vectors. This field visualizes the effect of applying a rotation matrix to
the pixel coordinates.

The central part of the same Figure 4.23 shows the actual flow estimation results
in the three flow visualization images, one for each sub-frame intensity image pair.
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Figure 4.23.: Fast Synthetic Rotor Sequence with correction using Optical Flow based
method by Lindner & Kolb. top: flow ground truth of first pair (left), flow fields between
first and the other three intensity images (center). Phase computed after correction (av-
erage approach, right). bottom: first intensity image used as reference (left), following
three intensity images warped with estimated flow shown above (center). Sum of all
intensity images after correction (right). Ideally all warped images in this row should
look like the image on the left. After Correction: o = 26.90%. Using a non-textured
target, this method fails.

Obviously, the used non-textured fore- and background lead to non-zero flow also
in the background area because of regularization. Note that a pure rotational flow
field for the whole image (not only the rotor area) would perfectly solve the optical
flow constraint (cf. [Bro+04, eqn. (1)], reconstruction with this flow field would
work) because of this lack of texture. Visibly, the results look quite bad, only at the
rotor borders, there are areas with remarkable flow magnitudes. All other values are
only caused by regularization since all image derivatives usually needed in optical
flow data terms are vanishing inside the non-textured areas. Essential parts are
the segments affected by motion artifacts, but even the shape of these segments is
not covered well, especially at the corners. This fact may not be explained by the
aperture problem that may influence the results at straight borders. On the second
and third image pair, this behavior becomes even worse, the flow magnitude at some
of the corners are way too low and there are strange transitions within the artifact
affected segments introducing spikes and deforming the rotor shape when applying
these flow fields to correct the sub-frames. This is shown in the bottom images,
where the flow fields are used to warp the intensity images of sub-frame 1,2 and 3.
Ideally, this should look exactly like the reference sub-frame 0 shown in the leftmost
image of the second row (the input sequence with the sub-frame intensity images is
shown in Figure A.8, here, frame 0 is used). Using these results to compute ToF
depth and intensity images, the images in the rightmost column are generated, depth
image at the top and intensity image at the bottom. Although the flow results are
visibly bad, the computed quantity ¢ ~ 27 % is in the same range as the framerate
increase method.
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Figure 4.24.: Using a textured rotor target and background, zero flow in the background
is estimated correctly, but the foreground flow result (rotation) is still wrong. It is also
visible that the warped results of the last two subframes are especially bad as well as
with as without texture. Here, o = 42.28 %.

To add more hints to the optical flow estimation algorithms, the same analysis
has been conducted with additional texture applied to the fore- and background
in Figure 4.24. The ingrain wall paper texture of the background is hardly visible
because of the low light intensity but causes correct estimation of the zero optical
flow there. With the textured rotor, the area of perceptible low magnitudes is larger
than before, especially the result of the first image pair looks well. But the problems
at the rotor corners and the strange spikes and structures within the rotor area still
persist. Whereas the reconstructed intensity image (bottom right) looks acceptable,
the depth image (top right) also shows the spike shaped artifacts and additional
wrong results at dark texture regions. Since the amplitude of the returning ToF
signal is low there, averaging with values of the surrounding pixels happening during
the warping (which needs interpolation of float valued pixel coordinates and thus
positions between the regular pixel grid) may be considered as an additional source
of noise which has a strong impact there. The value o ~ 42 % reflects these effects
and is in the range between the uncorrected case (75 %) and the non-textured or
framerate increase case (25 %).

Since the flow estimation results get worse with larger displacements and larger
rotations as shown above, it seems to be promising to only use the first sub-frame
image pair for reconstruction. This is the idea of combining the framerate increase
method by Schmidt and the flow based method by Lindner and Kolb. Avoiding
the last two sub-frames restricts the available raw-frame data to the subset S1 for
depth computation. So starting with a value o &~ 25% for the uncorrected case,
warping the second sub-frame with the optical flow as estimated before should at
least improve the results. By only applying the optical flow estimation on one image
pair, this also dramatically speeds up this method by a factor of three. Additionally,
this is a really simple approach not needing any advanced techniques like proposed
by [LHK13] to get this speed benefit.
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Figure 4.25.: Combination of Lindner&Kolb method with Schmidt’s framerate enhance-
ment on rendered sequence with non-textured (left) and with textured surfaces (right).
Here, only the first image pair (subset S1) is used for depth computation, so only the flow
field between this pair is needed. This heavily reduces the artifact strength compared to
usage of all subframes above. Note: This does not include any of Schmidt’s correction
methods (standard/BID) mentioned above which are not applicable here.

The resulting intensity and depth images are shown in Figure 4.25. The used
flow fields are the same as in Figure 4.23 resp. Figure 4.24. As the values of
0 ~ 7% for the non-textured case and ¢ =~ 15% for the textured case show that this
combined method performs almost as well on this test target as the detect-and-repair
methods by Schmidt. But note that the flow based methods are not limited to the
assumption of at most one discontinuity event per two time periods. So potentially
they are applicable even on highly textured scenes with large displacements but at
the other hand, they introduce all the difficulties related to optical flow estimation
like aperture problem, occlusions etc. where wrong flow results are very likely.

Real Sequences

Simulated or rendered data avoid a lot of the disturbing effects present on real ToF
devices like sensor inhomogeneity and non-linear responses. Therefore it is also
necessary to compare the algorithms with sequences recorded by real devices.

To point out that motion artifacts are not a problem of particular hardware, it is
important to check if such artifacts are present in different ToF devices, ideally by
different manufacturers. As a reference camera serves a Fotonic E/0P device with
a resolution of 160 x 120 pixels. This device does not provide access to the recorded
raw data, so the algorithm presented above cannot be applied here. So this used
to demonstrate the artifact presence and strength in the data as provided by the
manufacturer’s SDK. As shown in Figure 4.26, there are similar staircases as visible
in the simulated data, but there seem to be more than four sub-exposures per frame
(and so steps at the borders). The average value g, = (29.87 £0.79) % may be
caused by a burst-like exposure scheme, as discussed above for the PMD device.

For analysis of the discussed methods, raw data access is needed. Therefore the
rotor test target has been recorded with the PMD CamCube3 device. To avoid arbi-
trary o values influenced by the requested FPS rate, the sequence has been recorded
in the freerun mode of the device. Using this mode, the recorded sequence should
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0=29.01%

Figure 4.26.: Artifacts occuring using Fotonic E40P device with Panasonic chip.
Median artifact strength of the whole sequence is o, = 29.75%. Note that staircase
effect at the borders is also present here but looks different than on PMD data.

have similar properties as the synthetic ones presented before, i.e. sub-exposures
captured in equidistant time steps, even across different frames. An integration time
of 1700 ns has been chosen such that no frame-drops occurred during the records.
The recorded sequence used for the following evaluations consists of 100 frames with
four sub-frames each. To get reasonable g values, only frames where the mount is
covered by the rotor have been used since this region is always classified as artifact
affected since it does not fall into the foreground or background thresholds. With
these criteria, about 33 of these 100 frames are considered as “good” frames. o,
values are the median of the g values of all these “good” frames.

Results of Schmidt’s standard approach are shown in Figure 4.27. Left image
pair shows an uncorrected frame of this recorded sequence. As already noticed in
the synthetic sequence, the artifact affected regions are slightly larger than expected
theoretically. As before, this is caused by mixing of foreground and background at
the border pixels but also by motion blur present in each sub-frame. Note that this
blur is caused by the movement during the integration time and is fundamentally
different from the motion artifacts caused by motion between exposures.

The right image pair shows the corrected frame. Even if the prerequisites for
this method are not strictly fulfilled by this sequence (determined angular veloc-
ity wp ~ 0.92 is a bit larger than 7 = 0.785), this method visibly does correctly
detect the affected segments and the corrected values are closer to the correct fore-
ground /background than before. The borders seem to be problematic, artifacts are
still visible there as well in the intensity as in the depth image. This is also reflected
in the value g, ~ 22.4%. Regarding the fact that the last time step of the eight has
no effect within the two considered frames, this leads to a slightly higher angular
velocity this method is able to handle:

T 8
WFmax = Z : ? ~
Since the determined velocity is only slightly higher, this could explain the still

0808 120 5143

" “frame  frame

(4.20)
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om = 80.30 % Om = 22.42%

Figure 4.27.: Schmidt’s standard correction on real rotor sequence recorded with the PMD
CamCube3 device. Before correction (left pair) and corrected (right pair). g,, values
are the median of the ¢ values of 33 good frames of the sequence. The depth images
show the z-distance in meters. This method works here, but correction of the artifacts
in the background area is not optimal.

present artifacts at the center of the foreground and background regions.

As a base of the subsequent methods, results of Schmidt’s framerate increase are
given in Figure 4.28. To show the importance of the preprocessing (tap calibration),
this method has been applied to the raw data as-is (second image). The computed
depth values are way off from expected results. Virtually all pixels have been classi-
fied as artifacts, even the ones not covered by any depth discontinuity event. This is
the reason of the high value g, =~ 165.6 %. Also note the different color-bar ranges.
Mixture of values of the different taps, as it is done here by selecting the raw data
subset S2 does not work at all without calibration.

With tap-calibration, there are the two methods presented in Subsection 4.3.1,
one using a linear approximation and the more sophisticated non-linear variant for
lower intensities. Linear is shown in the third image, the proposed non-linear variant
in the last image. The median g values of the variants (o, = (33.64 +0.25) % vs.
om = (32.86 £0.15) %) differ remarkably, but visually, the effect may be seen best
in the region of the mount, below the rotor center. In this region with low intensities
(which has been excluded for ¢ computation), the estimated depth values are closer
to reality using the non-linear variant. Using the linear method, the upper part
of the mount is mis-estimated in a distance of about 4m. To show this difference,
frame 4 of this sequence has been used for visualization, even if this is not considered
as “good” frame for ¢ computation. The values itself are higher than theoretically
expected (o = 0.25 %), caused by the effects already discussed (borders and motion-
blur). Also note that there is much more noise, visible with a striped pattern and
much stronger in the background area where intensities are low compared to depth
computation with the average approach using all captured raw data.

Results of Schmidt’s BID variant are given in Figure 4.29. Visibly, this method
works almost perfect for intensity image reconstruction, regarding the depth images,
some artifacts stay at the corrected background segment but values are better than
in the uncorrected case (tap calibration only, shown in Figure 4.28). Also mixing
values at borders and motion blur may not be eliminated by this method, explaining
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om = 165.56 % om = 33.64% om = 32.86%

Figure 4.28.: Real rotor sequence (CamCube3), framerate increase, all images computed
using the subset S2. Intensity image (left), depth in meters computed using no cal-
ibration (second), with linear calibration (third) and proposed combined calibration
(right). Proposed calibration works best at darker regions.

om = 12.26 %

Figure 4.29.: Real rotor sequence (CamCubed), with Schmidt BID correction, all images
computed using the subset S2. Image pairs representing frame 2 (left) and frame 4
(right, to compare with Figure 4.28). For each pair: Intensity image (left), depth in
meters (right). Correction works better than using the standard approach.

0=36.17% 0=11.80%
Figure 4.30.: Real rotor sequence (CamCube8), with applied flow based corrections. Depth
computation by averaging as proposed by Lindner and Kolb (left pair). Combined with

framerate increase i.e. depth computed using subset S1 (right pair). For each pair:
Intensity image (left), depth in meters (right). Proposed combination performs best.
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Figure 4.31.: Estimated optical flow results used in the artifact compensation method by
Lindner and Kolb and its combination with the framerate increase. First row gives
visualizations of the three computed flow fields with corresponding warped intensity
images below. Bottom left image is the reference sub-frame 0. Ideally, the subsequent
images should look like this reference which is obviously not the case. First sub-frame
pair works best.

the value ¢ ~ 12.3% (compared with 3%...6 % in the simulated case and expected
theoretical value of zero). The figure shows two different frames out of the same
sequence, frame 2 (left) is a “good” frame for ¢ computation, frame 4 (right) is
shown to compare with the previous method.

Flow based method by Lindner and Kolb applied to the real rotor sequence is
shown in Figure 4.30. The left image pair visualizes the unmodified implementation,
i.e. computation using all eight raw images and three optical flow estimations. The
actual visualizations of the flow images are given in Figure 4.31. Regarding these
flow results, with larger the time difference and so the rotation angle A, results get
worse. Interestingly, the brightness change from background to foreground performs
better than the opposite site of the rotor, but even there, spike-like artifacts occur.
After correction, the staircase-like artifacts present in uncorrected images are clearly
visible in intensity and depth images. This method fails there completely, but also
at the better side of the rotor, the depth results are not correct. Combined with the
framerate increase, i.e. dropping the worst two of the three estimated flow fields, this
method performs remarkably well. The value o ~ 11.8% is the best result of this
comparison working on the real sequence. Only results of Schmidt’s BID method
are in the same range. This is no surprise since they share the same tap calibration
and subset selection for depth computation. The also have in common that because
of not averaging all raw frames, the strong artifacts in the background area persists,
but seems to be a bit reduced using the flow method.
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Chapter 5.
Conclusion and Outlook

In this thesis, dynamic sequences recorded with depth imaging devices of different
kinds have been considered. Depending on the device principle, several kinds of
artifacts may be observed. On structured light data, the sequences are used to
estimate the 3D motion of recorded scenes, called range flow. The present artifacts
require special adaption of the proposed algorithms. On Time-of-Flight (ToF) data,
motion in the recorded scene is the source of errors in the computed depth maps that
may be reduced or even eliminated by the methods considered in the second part of
this work. This survey includes a qualitative and quantitative evaluation of existing
methods. Additionally a novel tap-calibration approach is introduced, improving
the results of existing methods and proposes a novel motion compensation approach
combining the different ideas of the methods compared before.

Regarding Kinect data in Chapter 3, a novel framework for robust range flow
estimation on sequences from multi-modal RGBD data has been presented. Artifacts
within this data are inherent to the device principle and consist of unstable depth
edges and holes with invalid depth information. Calibration with a novel alignment
algorithm with a back-ward mapping scheme provide a general and robust solution
to register the color and depth images provided by the hardware with means of
image processing (in contrast to dealing with 3D point clouds), which can also be
applied to a wide range of other applications. The presented range flow estimation
provides stable flow fields and is able to cope with the systematic errors induced
by the hardware setting. Hence, this framework provides a useful middle-layer for
the further development of high level algorithms for the Kinect, which has happened
in the meanwhile. The corresponding paper [GFG11] has drawn attention in the
community (at least 40 citations at the time of writing) since it was one of the first
dealing with this topic and especially the novel alignment approach made estimation
of motion on Kinect data feasible at all.

Future tasks could be generation of a ground truth dataset for Kinect data si-
milar to e.g. the Middlebury database [Bak+07] for a quantitative analysis of the
presented methods and development of more sophisticated range flow algorithms
incorporating state-of-the-art optical flow methods combined with data terms based
on the presented range flow motion constraint (RFMC). Especially the latter has
been addressed by more recent publications but there still lacks a ground truth
database.
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The good of Chapter 4 is a survey of all purpose methods to cope with motion
artifacts in Time-of-Flight images. This includes implementations of all methods and
an analysis on real and synthetic ToF sequences as well visually as quantitatively.
By combination of the methods a novel accurate and fast method is proposed.

Schmidt [Sch11] made an outstanding contribution to this field of research since
he proposed at least three different methods and the only existing measure for quan-
titative analysis. This explains why those cover large parts of the survey.

A central part is the tap calibration which has been extended by a novel variant
to work with the non-linear behavior of the present capturing device. An exposure
ramp analysis, sweeping the range of adjustable integration times revealed these
details of this inter-tap behavior invisible in the dynamic calibration proposal by
Schmidt. The novel calibration variant yields visibly better results, especially in the
dark regions since the deviations from linear behavior mostly occur at low intensities.

This calibration allows to use only two out of four exposures per frame reducing
motion artifacts by a factor of three (framerate increase). This method leads to
quite well results even in presence of strong motion and should be sufficient for
a large class of applications. Compared to the usual averaging approach of depth
computation, this method does cancel the benefit of averaging the values of both taps
and hence introduces additional noise in the depth maps, especially at dark regions.
The proposed non-linear calibration performs visibly better in these regions but the
heavy noise persists. If the remaining artifacts are still too strong, it should be used
at least as a base for further processing.

Schmidt’s detect-and-repair methods (proposed in two flavors) work well when
there are static background regions and low textured foreground object moving in
lateral direction. These conditions virtually enforce a statically mounted camera (or
a really non-textured background at constant distance from the camera). If this is
fulfilled, these methods yields almost perfect results using very cheap computations.
The standard variant requires image sequences of multiple frames and uses informa-
tion of the preceding frame for correction (hence the first recorded frame will always
stay uncorrected). The BID variant works more robust and is even applicable on
single frames since it only works on the individual sub-frames. It uses the tap cor-
rected data and replaces discontinuities in the second subset by values from the first
one. It is able to handle depth discontinuities occurring at a two times higher rate
than the standard variant can.

More expensive but better results are given by the flow method by Lindner and
Kolb applied to the sub-frames. Such flow based methods work better with more
textured scenes and are also able to cope with sequences recorded by a moving
camera. Combining this with the framerate increase, thus only considering the
first subset of raw-frames, causes small displacements which simplify optical flow
computation and yield good results. Additionally only one flow field has to be
computed instead of three (as in the traditional approach using all four exposures).

Pixel-based correction and the flow based methods both have pros and cons. Flow
based methods are able to cope with a moving camera but introduce expensive com-
putations (need for GPU to get real-time) and artifacts present in flow estimation.
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But combined with the framerate increase, this method outperformed Schmidt’s
BID variant on the real sequence and yields slightly worse results in the synthetic
sequence.

Regarding the design of the quantitative measure p reflecting the relative distorted
area, the segmentation of a foreground and background by thresholding intensity and
depth values enforces a test target with perfect preconditions for the pixel based
detect-and-repair methods. The benefit of the flow based methods like the ability
to handle textured scenes with heavy motion may not be reflected by this measure
but is clearly visible in the qualitative analysis. But even despite the fact that
the rotating test target infers additional difficulties to the optical flow estimation
the proposed combined framerate-increased flow method performs almost as well as
Schmidt’s BID variant on the test sequences.

During the experiments with real data provided by the PMD CamCube3 device
systematic differences between computed depth values by the manufacturer’s SDK
and using the formulas from literature have been discovered. By reverse-engineering,
the black-box SDK behavior could be recovered, enabling the possibility to apply
the same computations to processed raw data. This way it is possible to compare
the output of the presented motion compensation methods with values computed
by the SDK. Additionally, this gives inside into the corrections e.g. of the depth-
wiggling-effect taking place there but also reveals some questionable design decisions
of this pipeline that may be considered as bugs (e.g. application of the CamCube2
intrinsics to CamCube3 data).

To automate the quantitative analysis using a rotor target as proposed by Schmidt,
an automated position detection and evaluation pipeline has been developed. As an
application, the exposure pattern of the CamCube3 device has been investigated re-
vealing different properties like a burst-like behavior in triggered mode and equidis-
tant time-steps in freerun mode. By developing a tuned variant of the recording
software, the high frame-rates present using this freerun mode could be handled
(up to 50 FPS), avoiding frame-drops for a large range of integration times. Using
this software, additional properties like the delay t; between exposures could be
determined.

These results provide additional insight in the used device and especially the
modeled PMD processing pipeline may act as a base for future research since it is
applicable to raw data which does not to reflect the manufacturers data format with
its specific and partially undocumented meta-data.

To summarize the results of various motion compensation methods discussed in
this work, a decision guide given in Figure 5.1 may help to select the right algorithm
for a specific application.
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Out of Scope/
Lack of Cameras

Raw
frame
access?

Filter based/Data
fusion methods

Dynamic
scene?

Average over
multiple frames/
No Motion
Artifacts

Proposed Tap
Calibration

v

Framerate
enhancement
(optional)*

Static
Camera?

Flow based
compensation

Detect and Repair
(Schmidt BID)*

Figure 5.1.: Selection guide on ToF motion compensation methods.
Methods marked with an asterisk (*) are real-time capable
(even without sophisticated GPU processing).
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Appendix A.
Time-of-Flight Data — Extended Details

In this chapter, further plots and results provide additional insight in the discussed
methods. The Section/Subsection numbers have been adjusted to match the corre-
sponding ones of Chapter 4, e.g. Subsection A.2.1 matches Subsection 4.2.1.
Additionally, the rendered rotor sequence used in Subsection 4.8.4 is shown in
Section A.4 and some of the used source code files are presented in Section A.5.

A.2. Preprocessing and Calibration

A.2.1. Tap Calibration

To show the difference between linear and proposed tap B reconstruction formula
(r1 vs. r.), Figure A.1 is an extended version of Figure 4.8. The second row shows
the same phase estimations as the third but with linear reconstruction. In the
averaged phase estimation, the regions with low intensity (floor, box at bottom
center) are reconstructed better using the combined approach than the linear one.
It also shows that least of all artifacts at dark regions occur without any of the
presented reconstruction formulas (top row). But in this case, the subsets may not
be used for phase computation (S1, S2). So one has to choose between motion
artifacts (averaging all raw frames) or reconstruction artifacts at low intensities
(using subset methods).

A.2.2. Image Homogenization

Application of the homogenization to the calibration frames from the exposure ramp
is shown in Figure A.2. How this homogenization affects the intensity frames I; =
A; 4+ Bit1so (used e.g. to compute the optical flow) is shown in Figure A.3. Before
homogenization, the intensity images show line artifacts (best visible in Figure A.2)
which are removed during homogenization. Also, the brightness change towards
the borders is decreased and almost removed applied to the calibration frames (as
expected). Since the brightness also depends on the object distance, this correction
does not work that well applied to the real-world office sequence. The remaining
brightness change (after homogenization, the borders look brighter) is still less than
before and does not influence the flow computation since it is of a much larger scale
than the object structures. The main benefit of the homogenization is the removal
of the fixed-pattern-noise.
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A.3. Evaluation of Motion Compensation

A.3.2. Detect and Repair Methods by Schmidt

To provide a deeper insight of the BID algorithm by Schmidt[Sch11], Figure A.4
shows the pixels, where pixel values from the second subset have been corrected. In
this variant of the algorithm, correction is a binary process, only values from the last
sub-frame (i.e. A9, Bgg) are replaced (by Barg, Agp from the same frame), others
are not touched at all. Using the standard approach, arbitrary combinations of the
sub-frames (except Ay, B1gp) may be replaced by values from the preceding frame.
So this Figure shows only the BID variant.

A.3.3. Optical Flow to Warp the Sub-frames

Results of the different optical low methods are given in Figure A.5 and Figure A.6.
Regarding the residual values and the smoothness of the computed flow fields, the
TV-L' method turns out to be the algorithm of choice.

Implementation Modules for GPU optical flow computing have been wrapped as
Charon-Suite modules|GK12]. Figure A.7 gives an impression how the flow method
by Lindner and Kolb [LKO09] has been implemented in a modular way. At the
left, cropl...crop4 select the intensity frames I;...I; (using given regions ROI).
The optical flow between these frames is then computed by estimate...estimate3.
The three flow results are then combined to a warping map by images2sequence4.
The raw frames (tapA/B at all four phase shifts) are then warped with the flow
result by simplewarp4. pmd_tapselectl chooses the phase estimation scheme (the
ones presented e.g. in Figure A.1) and pmd_phasefromrawl performs the phase
computation. The rest of the modules serves for displaying, data I/O or converting
between different image formats.

Runtime Information Since the images are of size 200 x 200, all tested algorithms
have no noticeable execution time using their Cuda/OpenCL implementations. The
full workflow used during the experiments takes about 0.86 s on a PC with an Intel 15-
2500 CPU and a NVIDIA GeForce GTX 560 Ti GPU, including the flow calculation
for all 3 time steps, warping the raw frames with the flow results, data rearrangement
and phase calculation. Note that only the optical flow computation itself has been
computed using the GPU. According to Lindner and Kolb [LK09], more than 10 FPS
should be possible, but this has not been of scope for this work.
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Figure A.1.: Phase estimation of a dynamic scene using different subsets of the captured
raw data. Rowl: All data as given by the device, without tap calibration. Depth of
all eight raw images using averaging approach (left), all four tap A frames (center), all
four tap B frames (right). Row2: All data with application of r (linear) to the tap B
records. Averaged depth of all eight raw frames (left), first subset of A and B raw frames
(center), second subset of A and B frames (right). Row3: All data with application of
e (combined poly5/linear) to the tap B records. Averaged depth of all eight raw frames
(left), first subset of A and B raw frames (center), second subset of A and B frames
(right). S2 results (bottom right) look best.
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Figure A.2.: raw-frame homogenization applied to intensity image of the exposure ramp
(frame 10). Both images use the same value visualization range (colormap). Line
artifacts and brightness decrease to the borders are almost completely removed after
homogenization.

20 40 60

Figure A.3.: Raw intensity frame I before (left) and after (right) homogenization. Like in
Figure A.2, the fixed pattern noise (stripes introduced by tap reconstruction) is removed.
Now the brightness even increases towards the edges. This is a slight over-correction
because of different distance of the scene objects and the flat wall of the calibration
frames but does not influence the flow computation.
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Figure A.4.: Motion compensation method by Schmidt (BID approach). All pictures show
phases computed using second subset. Value range is the full non-ambiguity range
Ry Rowl: before correction. Row2: with BID correction and marks of good/bad
(green/red) results. Row3: pixels changed by BID methods (white). Same picture as in
the paper but with additional correction marks (bottom row).
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Figure A.5.: Optical Flow between first (I; top left) and last (I, top center) sub-exposure
(homogenized tap A+B). Rows: Different optical flow methods: Rowl: used data
Row2: TV-L' [ZPB07] Row3: Brox [Bro+04] Colums: (except first row) warped
frame I (left) flow visualization (center) residual (difference between warped Iy and
I, right). TV-L! method works best (low residual). Continued in Figure A.6.



A.3. Evaluation of Motion Compensation

Figure A.6.: Continuing Figure A.5. Rows: Different optical flow methods: Rowl:
Farneback [Far00] Row2: PyrLK [LK81] Row3: Block Matching Colums: warped
frame I (left) flow visualization (center) residual (difference between warped I and
I, right). All results presented here have higher residual than in Figure A.5. Also,
the flow visualization show more discontinuities and regions without or with wrong flow
values.
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Figure A.7.: Visualization of the used charon workflow representing flow based motion
compensation method by Lindner and Kolb. Boxes represent computing nodes, i.e. parts
of the algorithm, lines visualize data flow. Important parts are grouped by red boxes.
Best viewed using zoom in the PDF version of this document.
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A.4. Rendered Rotor Sequence

A.4. Rendered Rotor Sequence

Figure A.8.: Rendered rotor sequence (without texture). Rows: Frame 0 (top) Frame 1

(bottom) Columns: Sub-frames 0 (left) to 3 (rlght) Rotor turns counter-clockwise

: : _m_rad _ 7 rad
with an angular velocity of w = § 27— = £ % —.

A.5. Code and Applications

In this section, there is a collection of some of the source code files of the applications
referred in the main part of this work.

A.5.1. PMD Freerun Capturing Software

This C-code file shows the OpenMP tuned command line capturing software able to
process up to 50 FPS in freerun mode. To compile it, an OpenMP capable compiler
(make sure it is enabled) and the PMD SDK (v2) are needed. The used preprocessor
definition PMDSDK2_MODULE_DIR has to point to the directory containing the needed
source and processing plugins from the SDK.

Listing A.1: rawCaptureFreerun.c

#include <string.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdio.h>
#include <omp.h>
#include <time.h>
#include <assert.h>
#include <pmdsdk2.h>

#define SOURCE_PLUGIN PMDSDK2_MODULE_DIR
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#define SOURCE_PARAM ""
#define PROC_PLUGIN PMDSDK2_MODULE_DIR"/camcubeproc"
#define PROC_PARAM ""

15 void pmdCheckCommand(int res, const charx errormsg, PMDHandle hnd) {
if (res != PMD_OK) {
const size_t _maxLen = 128u;
char err[_maxLen];
pmdGetLastError (hnd, err, _maxLen);
20 pmdClose (hnd);
fprintf(stderr, "%s\n", errormsg);
fprintf(stderr, "some error occurred: %s\n", err);
fprintf(stderr, "error code: %d", res);
exit (EXIT_FAILURE);
25 }

}
int errorcode = 0;

30 // record binary camera data as a sequence
int main (int argc, char =argv[]) {
assert(sizeof(struct PMDDataDescription)==128u);
if (argc < 4) {
fprintf(stderr, "Expected three arguments:
35 "’frames to capture’ "
"’output filename’
"’integration time in us’"
"[’modulation frequency in MHz’]\n");
return EXIT_FAILURE;
40 }

PMDHandle hnd;

unsigned int IntTime;

unsigned int modFreq = 20000000;
45 size_t frames=0;

char oFileName[255];

memset (oFileName,0,255u);

// parse arguments

50 {

frames=atol(argv[1l]);

if (strlen(argv[2])>=255u) {
fprintf(stderr, filename too long");
return EXIT_FAILURE;

}

strcpy(oFileName,argv[2]);

IntTime = atoi(argv[3]);

if (argc >= 5) {
modFreq = atol(argv[4]) * 1000000;

ut
at

60 }
}

if (!frames) {
fprintf(stderr, "zero frames requested, nothing to do\n");
65 return EXIT_SUCCESS;
}

char* buffer;
unsigned int bufSize;
70 unsigned int datSize;
const size_t bufFrames = 64u;
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struct PMDDataDescription dd[bufFrames];

75 int doWrite=1;
if (strlen(oFileName) == 0 || strcmp(oFileName, "0") == 0) {
printf("deactivated file output\n");

doWrite=0;
}
80
{
// establish connection
printf("initializing device\n");
pmdCheckCommand (
85 pmdOpen (&hnd,
SOURCE_PLUGIN, SOURCE_PARAM,
PROC_PLUGIN, PROC_PARAM),
"Could not connect to device.", hnd);
90 // set integration time
pmdCheckCommand (
pmdSetIntegrationTime (hnd, 0, IntTime),
"Could not set integration time", hnd);
pmdCheckCommand (
95 pmdGetIntegrationTime (hnd, &IntTime, 0),
"Could not check integration time.", hnd);
printf("integration time: %u\n", IntTime);
pmdCheckCommand (pmdUpdate (hnd), "Could transfer data."”, hnd);
100
pmdCheckCommand (
pmdGetSourceDataDescription (hnd, dd),
"Could get data description."”, hnd);
if (dd->subHeaderType != PMD_IMAGE_DATA) {
105 fprintf(stderr, 'Source data is not an image!");
pmdClose(hnd);
exit (EXIT_FAILURE);
}
110 // freerun mode to get max fps
pmdCheckCommand (
pmdSourceCommand (hnd, 0, 0, "SetTriggerMode Freerun"),
"Could not set trigger mode freerun.", hnd);
115 // normal frequency mode
pmdCheckCommand (
pmdSourceCommand (hnd, 0, 0, "SetFrequencyMode Normal™),
"Could not set normal frequency mode.", hnd);
pmdCheckCommand (
120 pmdSetModulationFrequency(hnd,0,modFreq),
"Could not set modulation frequency", hnd);
pmdCheckCommand (
pmdGetModulationFrequency(hnd,&modFreq,0),
"Could not read modulation frequency", hnd);
125 printf("using modulation frequency: %d\n", modFreq);
}
datSize = dd->size;
bufSize = datSizexbufFrames;
130 buffer = (charx) malloc(bufSize);

size_t bufRead=0;
size_t bufWrite=0;
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135 #pragma omp parallel sections num_threads(2) \
shared(errorcode,bufRead,bufiWrite)
{
printf("working using %d threads\n", omp_get_num_threads());
#pragma omp section
140 {
printf("start buffering (thread %d)...\n
struct timeval timel,time2;
size_t i=0;
gettimeofday(&timel,0);
145 pmdUpdate(hnd) ;

, omp_get_thread_num());

for(i=0; i<frames;i++) {
pmdUpdate(hnd) ;
pmdGetSourceDataDescription(hnd, dd+(i%bufFrames));
150 pmdGetSourceData(
hnd,buffer+(i%bufFrames)+datSize,datSize);
bufWrite=i;
#pragma omp flush(bufWrite, bufRead)
if(doWrite && ((bufWrite-bufRead) > bufFrames)) {
155 errorcode = 1;
#pragma omp flush(errorcode)
fprintf(stderr, "Buffer overflow at frame %zu\n",i);
break;
}
160 if (errorcode) {
printf("stopping capture (%zu frames buffered)\n",i);
break;
}
}
165 gettimeofday(&time2,0);
pmdClose(hnd);
printf("buffering done, closing connection\n");
long dTime=((long)time2.tv_sec-(long)timel.tv_sec)*1000000
+((long)time2.tv_usec-(long)timel.tv_usec);
170 printf("capture took %f sec, FPS=%f\n",
dTime/1.e6,1.e6%(frames-1)/dTime);
}

#pragma omp section
175 if (doWrite) {
printf("start writing (thread %d)...\n", omp_get_thread_num());
FILE+ oFile = fopen(oFileName, "'wh");
size_t i, bOut;
for (i=0; i < frames;i++) {
180 do {
#pragma omp flush(bufWrite, bufRead, errorcode)
}
while((bufRead==bufWrite) && !errorcode);
if (errorcode) {

185 printf("stopping writing (%zu frames written)\n",i);
break;
}
bOut = fwrite(
dd+(i%bufFrames),
190 sizeof(struct PMDDataDescription), 1, oFile);

if (bOut !'= 1u) {
fprintf(stderr, "failure writing data description\n");
exit(EXIT_FAILURE);
}
195 bOut = fwrite(
buffer+(i%bufFrames)+datSize,
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sizeof(char), datSize, oFile);
if (bOut != datSize) {
fprintf(stderr, );
exit (EXIT_FAILURE);
}
bufRead = i;
}
fclose(oFile);
printf( );
}
else {
printf( , omp_get_thread_num());
}
}
free(buffer);

if (errorcode) {
fprintf(stderr, );
return errorcode;

}

else {
printf( ,frames) ;

}

return EXIT_SUCCESS;

A.5.2. Unpacking the PMD Captured Binary Raw Data

This C-Code file shows the command line application used to unpack the binary data
written by the capturing tool presented above. Selection of the interleaved tap data
to write into a dedicated dataset is done in an elegant way using HDF5 hyperslabs.
This application needs the PMD SDK (v2) and the HDF5 libraries. Tap hyperslab
setup is at 1. 167f, sub-frame pointers at 1. 253ff, data writing into the tap datasets
happens at 1. 323ff.

Listing A.2: bin2h5.c

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <pmdsdk?2.h>
#include <hdf5.h>
#include <hdf5_hl.h>

#define PROC_PLUGIN PMDSDK2_MODULE_DIR
#define PROC_PARAM

void pmdCheckCommand(int res, const char* errormsg, PMDHandle hnd) {
if (res != PMD_OK) {
const size_t _maxLen = 128u;
char err[_maxLen];
pmdGetLastError(hnd, err, _maxLen);
pmdClose (hnd);
fprintf(stderr, , errormsg);
fprintf(stderr, , err);
fprintf(stderr, , res);
exit(EXIT_FAILURE);
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3
}

// convert binary camera data to raw and component data
int main (int argc, char =argv[]) {
if (argc < 3) {
printf("some arguments missing!\n");
printf("Usage: %s rawFile outFile [skip]\n", argv[0]);
exit(EXIT_FAILURE);
}
unsigned skip=0;
if (argc > 3) {
skip=atoi(argv[3]);
}

struct PMDDataDescription dd;
assert(sizeof(struct PMDDataDescription)==128u);

{
// read data description
printf('read data description...");
fflush(stdout);
FILE+ ddin = fopen(argv[1l], "rb");
size_t r = fread(&dd, sizeof(struct PMDDataDescription), 1, ddin);
fclose(ddin);
if (r !'= 1u) {
fprintf(stderr, "failure reading data description\n");
exit (EXIT_FAILURE);
}
if (dd.subHeaderType != PMD_IMAGE_DATA) {
fprintf(stderr, "invalid source data description\n");
exit (EXIT_FAILURE);
}
printf("done\n");
}

size_t imageWidth = dd.img.numColumns;
size_t imageHeight = dd.img.numRows;
size_t source_size = dd.size;

size_t imageSize = imageWidth+imageHeight;

printf("image size: %zux%zu\n', imageWidth, imageHeight);
printf("header size: %8zu (%8.3f kB)\n",
sizeof(struct PMDDataDescription),
sizeof(struct PMDDataDescription)/1024.f);
printf("source size: %8zu (%8.3f kB)\n", source_size, source_size/1024.f);
printf("data/frame : %8zu (%8.3f kB)\n",
source_size+sizeof(struct PMDDataDescription),
(source_size+sizeof (struct PMDDataDescription))/1024.f);
printf("exposures: %6u\n",dd.img.numSubImages) ;
if ((skip+1)*4 > dd.img.numSubImages) {
fprintf(stderr, "skip value too large!\n");
exit (EXIT_FAILURE);
}

char* source = (charx) malloc (source_size);

// initialize PMD processing plugin

printf("open processing plugin...");

fflush(stdout);

PMDHandle hnd;

pmdCheckCommand (pmdOpenProcessingPlugin (&hnd, PROC_PLUGIN, PROC_PARAM),
"Could not connect to processing plugin", hnd);
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printf("done\n");

printf("load binary data...");
fflush(stdout);

FILE+ dataB = fopen (argv[1l], "rb");
fseek(dataB, 0, SEEK_END);
printf("done\n");

if (dd.img.numSubImages > 4) {
printf("selected config:%2u/%2u\n", skip+l,dd.img.numSubImages/4);
}

long dataSize = ftell(dataB);

printf(“data size:%111d (%8.3f MB)\n", dataSize, dataSize/1024.f/1024.f);
size_t frames = dataSize/(source_size+128);

assert(dataSize % (source_size+128) == 0);

printf("frames:%14zu\n", frames);

fseek(dataB, 0, SEEK_SET);

assert(ftell(dataB) == 0);

// set up output file
hid_t h5file = HS5Fcreate(
argv[2],H5F_ACC_TRUNC,H5P_DEFAULT,H5P_DEFAULT);
if (h5file <= 0) {
fprintf(stderr, "Error creating output file.\n");
exit (EXIT_FAILURE);
}

hid_t gPmd=H5Gcreate(h5file, "pmd",H5P_DEFAULT,H5P_DEFAULT,H5P_DEFAULT);
H5LTset_attribute_string(
h5file, "pmd", "description",
"processed using the processing plugin from PMD SDK");
hid_t gRaw=H5Gcreate(h5file,"raw" ,H5P_DEFAULT,H5P_DEFAULT,H5P_DEFAULT);
H5LTset_attribute_string(
h5file, "raw", "description",
"data directly retrieved from cam raw data
"containing the raw frames (taps and phase shifts)");

n

H5LTset_attribute_string(

h5file,"/","description", "PMD CamCube ToF data");
H5LTset_attribute_int(

h5file,"/","integration time [us]",

dd.img.integrationTime,dd.img.numSubImages/4);
H5LTset_attribute_int(

h5file,"/","modulation frequency [Hz]",

dd.img.modulationFrequency,dd.img.numSubImages/4);
H5LTset_attribute_int(

h5file,"/raw","selected exposure config",&skip,1);

// set up data an memory spaces

hsize_t mDimsD[3] = {1, imageHeight, imageWidth};
hsize_t dDimsD[3] = {frames, imageHeight, imageWidth};
hsize_t dDimsT[2] = {frames, 2};

hsize_t mDimsT[2] = {1, 2};

hsize_t cDimsD[3] = {imageHeight,imageWidth,3};
hsize_t ¢S1abD[3] = {imageHeight,imageWidth,1};
hsize_t cO0ffs0[3] = {0, 0, 0};

hsize_t cOffsli[3] = {0, 0, 1};

hsize_t cOffs2[3] = {0, 0, 2};

hsize_t curOff[3] = {0, 0, 0};

hsize_t taDims[3] = {imageHeight,imageWidth,2};
size_t iSize = imageSizexsizeof(float);

and Applications
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float *vals = (float*) malloc (3*iSize);
if (!lvals) {
fprintf(stderr, "could not allocate memory");
fclose(dataB);
150 }

hid_t dSpace3 = H5Screate_simple(3, dDimsD, 0);
hid_t mSpace3 = H5Screate_simple(3, mDimsD, 0);
hid_t mSpaceX = HS5Screate_simple(3, cDimsD, 0);

155 hid_t mSpaceY = H5Screate_simple(3, cDimsD, 0);
hid_t mSpaceZ = H5Screate_simple(3, cDimsD, 0);
hid_t dSpacTr = H5Screate_simple(2, dDimsT, 0);
hid_t mSpacTr = H5Screate_simple(2, mDimsT, 0);
hid_t dSpacTf = H5Screate_simple(2, dDimsT, 0);

160 hid_t mSpacTf = H5Screate_simple(2, mDimsT, 0);
H5Sselect_hyperslab(mSpaceX,H5S_SELECT_SET,c0ffs0,0,cSlabD,0);
H5Sselect_hyperslab(mSpaceY,H5S_SELECT_SET,cOffsl,0,cSlabD,0);
H5Sselect_hyperslab(mSpaceZ,H5S_SELECT_SET,cOffs2,0,cS1labD,0);

165 hid_t mSpaceA = H5Screate_simple(3, taDims, 0);
hid_t mSpaceB = H5Screate_simple(3, taDims, 0);
H5Sselect_hyperslab(mSpaceA,H5S_SELECT_SET,cO0ffs0,0,cS1labD,0);
H5Sselect_hyperslab(mSpaceB,H5S_SELECT_SET,cOffsl,0,cSlabD,0);

170 hid_t prDC = H5Pcreate(H5P_DATASET_CREATE);
hid_t prDA = H5Pcreate(H5P_DATASET_ACCESS);
hid_t dsA = HS5Dcreate(

gPmd, "A", H5T_NATIVE_FLOAT,
dSpace3, HS5P_DEFAULT, prDC, prDA);

175 H5LTset_attribute_string(

gPmd, "A", "description",

"amplitude of the returned light");
hid_t dsB = H5Dcreate(

gPmd, "B", HS5T_NATIVE_FLOAT,

180 dSpace3, HS5P_DEFAULT, prDC, prDA);

H5LTset_attribute_string(
gPmd, "B", "description",
"brightness or intensity image");
hid_t dsR = H5Dcreate(

185 gPmd, "R", HS5T_NATIVE_FLOAT,

dSpace3, HS5P_DEFAULT, prDC, prDA);
H5LTset_attribute_string(

gPmd, "R", "description”,

"radial distance from camera");

190 hid_t dsX = HS5Dcreate(

gPmd, "X", H5T_NATIVE_FLOAT,

dSpace3, HS5P_DEFAULT, prDC, prDA);
H5LTset_attribute_string(

gPmd, "X", "description",

195 "X-value of pixel’s 3D point coordinate");

hid_t dsY = H5Dcreate(
gPmd, "V", HST_NATIVE_FLOAT,
dSpace3, H5P_DEFAULT, prDC, prDA);
H5LTset_attribute_string(
200 gPmd, "Y", "description",
"Y-value of pixel’s 3D point coordinate");
hid_t dsZ = HS5Dcreate(
gPmd, "Z", H5T_NATIVE_FLOAT,
dSpace3, HS5P_DEFAULT, prDC, prDA);
205 H5LTset_attribute_string(
gPmd, "7", "description”,
"Z-value of pixel’s 3D point coordinate,
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"i.e. distance parallel to view direction of camera");

// dataset for timestamps
hid_t dTstpR = H5Dcreate(

gRaw, "timestamps", HS5T_NATIVE_UINT32,

dSpacTr, HS5P_DEFAULT, HSP_DEFAULT, HS5P_DEFAULT);
H5LTset_attribute_string(

gRaw, "timestamps","description",

"unix time (seconds after epoch) and microseconds");
hid_t dTstpF = H5Dcreate(

gPmd, "timestamps", HS5T_NATIVE_UINT64,

dSpacTf, HS5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
H5LTset_attribute_string(

gPmd, "timestamps","description”,

"microseconds after first exposure and between exposures");

// datasets for raw data
hid_t dsA000 = HS5Dcreate(
gRaw, "A0", HS5T_NATIVE_UINT16,
dSpace3, HS5P_DEFAULT, prDC, prDA);
hid_t dsA090 = HS5Dcreate(
gRaw, "A90", HS5T_NATIVE_UINTI16,
dSpace3, HS5P_DEFAULT, prDC, prDA);
hid_t dsA180 = HS5Dcreate(
gRaw, "A180", HS5T_NATIVE_UINTI16,
dSpace3, HS5P_DEFAULT, prDC, prDA);
hid_t dsA270 = HS5Dcreate(
gRaw, "A270", H5T_NATIVE_UINT16,
dSpace3, HS5P_DEFAULT, prDC, prDA);
hid_t dsB000 = HS5Dcreate(
gRaw, "BO", HS5T_NATIVE_UINTI16,
dSpace3, HS5P_DEFAULT, prDC, prDA);
hid_t dsB090 = HS5Dcreate(
gRaw, "B90", HS5T_NATIVE_UINTI16,
dSpace3, HS5P_DEFAULT, prDC, prDA);
hid_t dsB180 = HS5Dcreate(
gRaw, "B180", HS5T_NATIVE_UINTI16,
dSpace3, HS5P_DEFAULT, prDC, prDA);
hid_t dsB270 = HS5Dcreate(
gRaw, "B270", HS5T_NATIVE_UINTI16,
dSpace3, HS5P_DEFAULT, prDC, prDA);

// pointers to subframe raw data:

// interleaved tapA/B uintl6 big endian values

// with a preceeding header of 0x200 bytes

void* const skipSrc = source+(0x200+imageSizex4)xskip=4;
void+ const sframel = skipSrc+0x200;

void+ const sframe2 = sframel+0x200+imageSizex4;

void+ const sframe3 = sframe2+0x200+imageSize=4;

void+ const sframe4 = sframe3+0x200+imageSizex4;

// process source binary data
size_t br;
int64_t fTimeStmpHi=dd.img.timeStampHi;
int64_t fTimeStmpLo=dd.img.timeStampLo;
int64_t curStampAndDiff[3]={0,0,0};
size_t ii;
for(ii=0;ii<frames;ii++) {
br = fread(&dd, sizeof(struct PMDDataDescription), 1, dataB);
if (br !'= 1u) {
fprintf(stderr, "read description failed at frame %zu\n", ii);
break;
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270 }
br = fread(source, sizeof(char), source_size, dataB);
if (br !'= source_size) {
fprintf(stderr, "read image data failed at frame %zu\n", ii);
break;
275 }

// select slice to write

curOff[0] = ii;

H5Sselect_hyperslab(dSpace3,H5S_SELECT_SET, curOff,0,mDimsD,0);
280 H5Sselect_hyperslab(dSpacTr,H5S_SELECT_SET, curOff,0,mDimsT,0);

H5Sselect_hyperslab(dSpacTf,H5S_SELECT_SET, curOff,0,mDimsT,0);

// write timestamp
H5Dwrite(
dTstpR,HS5T_NATIVE_UINT32,mSpacTr,dSpacTr,
H5P_DEFAULT, &(dd.img.timeStampHi));
curStampAndDiff[0]=((int64_t)dd.img.timeStampHi-fTimeStmpHi)«1e6
+((int64_t)dd.img.timeStampLo-fTimeStmpLo) ;
curStampAndDiff[1]=curStampAndDiff[0]-curStampAndDiff[2];
290 curStampAndDiff[2]=curStampAndDiff[0];
H5Dwrite(
dTstpF,H5T_NATIVE_INT64,mSpacTf,dSpacTf,
H5P_DEFAULT, &curStampAndDiff);

N
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295 // get Intensities
pmdCheckCommand (pmdCalcIntensities(hnd,vals,iSize,dd, source),
"Could not get intensities", hnd);
H5Dwrite(dsB,HS5T_NATIVE_FLOAT,mSpace3,dSpace3,H5P_DEFAULT,vals);

300 // get Amplitude
pmdCheckCommand (pmdCalcAmplitudes(hnd,vals,iSize,dd, source),
"Could get amplitude: %s\n", hnd);
H5Dwrite(
dsA,H5T_NATIVE_FLOAT,mSpace3,dSpace3,H5P_DEFAULT,vals);
305
// get Distances
pmdCheckCommand (pmdCalcDistances (hnd,vals,iSize,dd, source),
"Could get distances: %s\n", hnd);
H5Dwrite(
310 dsR,H5T_NATIVE_FLOAT,mSpace3,dSpace3,H5P_DEFAULT,vals);

// get 3D coordinates
pmdCheckCommand (pmdCalc3DCoordinates(hnd,vals,3*iSize,dd, source),
"Could get 3D coordinates: %s\n", hnd);
315 H5Dwrite(
dsX,H5T_NATIVE_FLOAT,mSpaceX,dSpace3,H5P_DEFAULT,vals);
H5Dwrite(
dsY,H5T_NATIVE_FLOAT,mSpaceY,dSpace3,H5P_DEFAULT,vals);
H5Dwrite(
320 dsZ,H5T_NATIVE_FLOAT,mSpaceZ,dSpace3,H5P_DEFAULT,vals);

// write raw data
H5Dwrite(dsA000,H5T_STD_U16BE,mSpaceA,dSpace3,H5P_DEFAULT, sframel);
H5Dwrite(dsB180,H5T_STD_U16BE,mSpaceB,dSpace3,H5P_DEFAULT, sframel) ;
325 H5Dwrite(dsA090,H5T_STD_U16BE,mSpaceA,dSpace3,H5P_DEFAULT, sframe2);
H5Dwrite(dsB270,H5T_STD_U16BE,mSpaceB,dSpace3,H5P_DEFAULT, sframe2);
H5Dwrite(dsA180,H5T_STD_U16BE,mSpaceA,dSpace3,H5P_DEFAULT, sframe3);
H5Dwrite(dsBO0O,H5T_STD_U16BE,mSpaceB,dSpace3,H5P_DEFAULT, sframe3);
H5Dwrite(dsA270,H5T_STD_U16BE,mSpaceA,dSpace3,H5P_DEFAULT, sframe4) ;
330 H5Dwrite(dsB090,H5T_STD_U16BE,mSpaceB,dSpace3,H5P_DEFAULT, sframe4);
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// cleanup

H5Dclose(dsA); H5Dclose(dsB); H5Dclose(dsR);
335 H5Dclose(dsX); H5Dclose(dsY); H5Dclose(dsZ);

H5Dclose(dTstpR);

H5Dclose(dsA000) ; H5Dclose(dsA090) ; H5Dclose(dsAl180); H5Dclose(dsA270);
H5Dclose(dsB000) ; H5Dclose(dsB090) ; H5Dclose(dsB180); H5Dclose(dsB270);
H5Sclose(mSpace3); H5Sclose(mSpaceX); H5Sclose(mSpaceY); H5Sclose(mSpaceZ);

340 H5Sclose(mSpaceA); H5Sclose(mSpaceB); H5Sclose(mSpacTr); H5Sclose(dSpacTr);
H5Pclose(prDC); H5Pclose(prDA);
H5Sclose(dSpace3);
H5Gclose(gPmd) ; H5Gclose(gRaw) ;
H5Fclose(h5file);
345 fclose(dataB);
free(source); free(vals);
pmdClose(hnd);

return EXIT_SUCCESS;
350 }

A.5.3. Estimation of Intrinsic Camera Parameters

This python script has been used to determine the camera parameters used by the
PMD SDK for computation of 3D coordinates. It depends on the python packages
numpy and h5py and runs with python2 and python3.

Listing A.3: getCamParams.py
1 #!/usr/bin/env python

non

retrieve camera parameters from pmd dataset

By reverse engineering of the radial distance and 3D coordinates,
this script tries to recover the camera parameters cx, cy, fx, fy

nun

10 from __future__ import print_function, division
import argparse
import textwrap

import h5py as h5
15 import numpy as np
from math import atan, pi

def parse_args():
"""parse command line args, use -h for help"""

20 parser = argparse.ArgumentParser(
description=textwrap.dedent(__doc__),
formatter_class=argparse.ArgumentDefaul tsHelpFormatter)

parser.add_argument (

“inputFile’, help="input hdf5 file’)
parser.add_argument (

’-i’, ’--inputGroup’, default=’/pmd’,

help="input group containing radial distance and 3D coordinate datasets’)
return parser.parse_args()

N
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30 def estimate_params(rr, xx, VY, zz):
sh = rr.shape
XX /= zz
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vy /= zz

fx = 1. / np.mean(np.diff(xx, axis=2))
fy = 1. / np.mean(np.diff(yy, axis=1))
xx = fx

vy #= fy

xc, yc = np.meshgrid(range(sh[1]), range(sh[2]))
Xc np.tile(xc, (sh[0], 1, 1))

yc = np.tile(yc, (sh[0], 1, 1))

cx = np.mean(xc-xx)

cy = np.mean(yc-vyy)

return fx, fy, cx, cy

def load_data(in_file, in_group):
with h5.File(in_file, 'r’) as h5f:

assert in_group in h5f, ’input group not found in %s’ % in_file
h5g = h5f[in_group]
assert 'R’ in h5g, ’input group has to contain a R dataset’
assert ’'X’ in h5g, ’input group has to contain a X dataset’
assert 'Y’ in hb5g, ’input group has to contain a Y dataset’
assert 'Z’ in h5g, ’input group has to contain a Z dataset’
return h5g[ 'R’ ][:], h5g[ X 1[:]1, h5g['Y'1[:1, h5g['Z 1[:]

def main():

args = parse_args()

rr, XX, Vy, zz = load_data(args.inputFile, args.inputGroup)

fx, fy, cx, cy = estimate_params(rr, xxX, VvV, zz)

print(’'fx =", fx, 'fy =", fy, 'cx =", ¢x, 'cv =’, cy)

print(
“fov: 7,
atan(0.5+(rr.shape[2]-1)/fx)*360/pi,
atan(0.5+(rr.shape[1]-1)/fy) * 360/pi

)

if __name__ == '_ main_ ’:

main()
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B.1. Used Abbreviations and Acronyms

AU
BCCE
BID
BM
CCD
CMOS
CPU
CT
CUDA

CWIM
DU
DSNU
FOV

FPS
GPU
HDF5
HSV
IR
OFC

arbitrary units

brightness constancy constraint equation
burst internal detection

block matching

charge-coupled device

complementary metal-oxide-semiconductor
central processing unit of a computer
computer tomography

compute unified device architecture,
parallel computing platform created by NVIDIA

continuous wave intensity modulation
digital units
dark signal non-uniformity

field of view, opening angle of the cone where objects are visible to the
camera

frames per second

graphics processing unit

hierarchical data format

color space with three channels (Hue, Saturation, Value)
infrared

optical flow constraint
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PCA principal component analysis

PMD photon mixing device,
PMDTECHNOLOGIES is the manufacturer of the used CamCube devices

PRNU photo response non-uniformity

PyrLK pyramid variant of the method by Lucas and Kanade [LK81]
RFMC range flow motion constraint, cf. eq. (3.8)

RGB color space with three channels (Red, Green, Blue)

RGBD  multi-modal color (RGB) and depth data

ROI region of interest

SDK software development kit

ToF Time-of-Flight

TV-L'  total variation regularizer with L'-norm data term

USB universal serial bus, a standard for connections e.g. between computers
and peripherals

VGA video graphics array, a graphics standard with a resolution of 640 x 480
pixels
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