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1 Introduction 

Within the last 15 years, across diverse psychological subfields, a formal mathematical 

model of response times and accuracy called the diffusion model has become increasingly 

popular (Voss, Nagler, & Lerche, 2013). The diffusion model (sometimes also termed Ratcliff 

diffusion model or drift diffusion model) was originally mainly used to investigate the basic 

cognitive processes underlying memory and simple perceptual decision-making (e.g., Ratcliff, 

1978; Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999). While there remains 

substantial implementation of the diffusion model in these areas (e.g., Ratcliff & McKoon, 

2015; Ratcliff, Thompson, & McKoon, 2015; Starns, Ratcliff, & White, 2012), also 

researchers of other fields, such as clinical psychology, neuropsychology, or social 

psychology, are beginning to adopt the model to address their specific research questions 

(e.g., Aschenbrenner, Balota, Gordon, Ratcliff, & Morris, 2016; Germar, Schlemmer, Krug, 

Voss, & Mojzisch, 2014; Weigard & Huang-Pollock, 2014). There are two main reasons for 

this development. Firstly, more researchers are coming to appreciate the diffusion model’s 

facility to disentangle the cognitive processes involved in binary decision tasks, thereby 

allowing these researchers to suggest and investigate candidate cognitive mechanisms to 

explain the data that they observe. Secondly, in the last decade, several software solutions 

were developed (e.g., Vandekerckhove & Tuerlinckx, 2008; Voss & Voss, 2007) that made 

the implementation of the diffusion model simpler and more streamlined. In the past, the 

diffusion model has generally only been able to be used by researchers with ample experience 

in mathematical modeling and with rich programming skills. However, with the development 

of these new programs, it became simpler for less technically-minded researchers to reap the 

benefits of the diffusion model’s differential equations.  

The increase in use of the diffusion model is a positive development as, by means of 

the application of the model to diverse fields, more profound knowledge about the aspects 

underlying decision processes can be gained. However, this development also goes along with 

a certain risk: Researchers with restricted knowledge about the diffusion model might feel 

tempted to apply the model to their data without being sufficiently informed of the reliability 

of different approaches. Unfortunately, a lot of knowledge about procedures of diffusion 

modeling that experts have gained throughout the years has not been written down (or at least 

not in an easily comprehensible way), and is thus not accessible to newcomers. In addition, 

even experts differ largely in their strategies of modeling response time (RT) data as the 

variety of approaches taken by different research teams in a recent Open Science project 
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demonstrates (Dutilh et al., 2016; see Chapter 8.2 for a description of this project). As the 

varieties of modeling approaches used increases alongside the number of published studies of 

the diffusion model, it is imperative that best-practice recommendations are developed for the 

future implementation of the diffusion model in experimental paradigms. In this thesis, I aim 

to provide a first set of guidelines towards this purpose. These guidelines are intended both 

for researchers who are new to diffusion modeling, as well as for experienced researchers who 

are interested in ascertaining whether their approach truly leads to reliable parameter 

estimates. 

One core element that I tackle in my thesis concerns the minimum acceptable number of 

trials required for an experiment. Earlier studies were often based on a small number of 

participants and a large number of trials. For example, a study by Ratcliff (2002) was 

conducted with only three participants, who each worked on more than 10,000 trials (see also, 

for example, Ratcliff, 1981; Ratcliff & Rouder, 1998; Ratcliff et al., 1999). In contrast, now it 

is becoming more common to employ many fewer trials and many more participants (e.g., 

100 trials and 120 participants in a study by Metin et al., 2013). Indeed, for many research 

questions, trial numbers of several hundreds or even thousands are not feasible. For example, 

clinical populations may not have the capacity to participate in a response time task for an 

hour or more. In addition, cognitive processes might change with the time spent on the task 

(e.g., Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009). For example, attention 

might decrease, and people might become more distracted or more practiced. Moreover, in 

certain cases, it is difficult to generate a sufficient number of stimuli, since the material is 

specific and limited. In sum, it might not always be possible or beneficial to use very high 

trial numbers. In this thesis, I systematically tackle the question of whether such high trial 

numbers are truly necessary for reliable parameter estimation. 

As I previously mentioned, there are a variety of modeling methods, and there are 

already a few studies that have compared the performance of some of these different methods 

(e.g., Ratcliff & Childers, 2015; van Ravenzwaaij & Oberauer, 2009). However, these studies 

bear one major limitation: They compared methods that are implemented in different 

programs. Accordingly, in these studies, the results cannot be clearly attributed to the method 

applied, but might also be a result of program specifications. To avoid this potential 

confound, we employ a single program—fast-dm (Voss & Voss, 2007, 2008)—to analyze all 

different methods of implementing the diffusion model. In order to analyze a variety of 

different approaches, we added two further methods to this program: specifically, fast-dm-30 

(Voss, Voss, & Lerche, 2015) now includes the Kolmogorov-Smirnov approach (KS; 
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implemented also in the former versions of fast-dm), as well as a chi-square (CS) and a 

maximum likelihood based approach (ML). CS is probably the method that has been used 

most frequently in the diffusion model literature (e.g., Ratcliff & McKoon, 2008; 

Wagenmakers, Ratcliff, Gomez, & McKoon, 2008; White, Ratcliff, Vasey, & McKoon, 

2009). KS has also been applied in a number of studies (e.g., Aschenbrenner et al., 2016; 

Bowen, Spaniol, Patel, & Voss, 2016; Horn, Bayen, & Smith, 2011). ML, on the other hand, 

has been used only very rarely so far (for an exception, see Klauer, Voss, Schmitz, & Teige-

Mocigemba, 2007). In my thesis, I compare the estimation performance of these three 

different optimization criteria.  

Diffusion modelers do not only use different optimization criteria, but also models of 

different complexity. Whereas the so-called basic diffusion model consists of only four 

parameters, the full diffusion model further includes intertrial variabilities of three of the four 

main diffusion model parameters. In most applications, the full diffusion model is used (e.g., 

Allen, Lien, Ruthruff, & Voss, 2014; Dutilh et al., 2009; Ratcliff, Thapar, & McKoon, 2004; 

Ratcliff & Van Dongen, 2009). However, two of the intertrial variabilities are estimated very 

inaccurately as the results from simulation studies demonstrate (e.g., van Ravenzwaaij & 

Oberauer, 2009; Vandekerckhove & Tuerlinckx, 2007). This finding suggests that it might be 

better to fix these parameters to improve the estimation of the psychologically more 

interesting parameters. Accordingly, in some more recent studies, these intertrial variabilities 

have been fixed at zero (e.g., Germar, Albrecht, Voss, & Mojzisch, 2016; Hartanto & Yang, 

2016; Schubert, Frischkorn, Hagemann, & Voss, 2016). The necessity of the estimation of the 

intertrial variabilities has not yet been examined systematically. In my thesis, I therefore 

compared the estimation performance of models of different complexity (e.g., with fixations 

of intertrial variabilities) assuming that the data were generated based on a full diffusion 

model. That is, I analyzed whether false fixations (false because the true model included 

substantial intertrial variabilities) can lead to equally or even more reliable estimates of the 

four main diffusion model parameters. 

 

Thus, the focus of this thesis is on (a) the deduction of requisite trial numbers, and (b) 

a comparison of the performance of different estimation procedures (most importantly, 

different optimization criteria and models of different complexity) depending on the trial 

number. The estimation performance can be evaluated by means of different criteria, such as 

deviations or correlations between true (i.e., data generating) and re-estimated parameters in 

simulation studies. In addition to the more common simulation studies, I also present an 
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approach of using test-retest data for the evaluation of estimation accuracy. The aim of these 

analyses is to develop a set of guidelines on how to estimate diffusion model parameters 

reliably. 

The thesis is structured in the following way: First, a short introduction to the 

diffusion model is given which is complemented by Manuscript 1—an introductory article for 

newcomers to diffusion modeling. In the subsequent chapter, the extension of the program, 

fast-dm-30, is presented (Manuscript 2). After that, I will give an overview of criteria that can 

be used to evaluate the performance of parameter estimation procedures. This is followed by a 

presentation of the main results from simulation studies (Manuscript 3) and test-retest studies 

(Manuscript 4). A reanalysis of data from Manuscripts 3 and 4 using models of different 

complexity is presented in the subsequent chapter (Manuscript 5). More detailed information 

regarding the topics of these chapters can be found in the five manuscripts that are attached to 

the thesis. Finally, in the discussion, apart from summing up the main guidelines from this 

thesis, I will present ideas for future research projects aimed at extending the guidelines, 

including also some first new findings. 
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2 Introduction to Diffusion Modeling (Manuscript 1)1 

The diffusion model is a model of two-choice decision-making. It is part of the class 

of sequential sampling models (see Ratcliff & Smith, 2004; Ratcliff, Smith, Brown, & 

McKoon, 2016, for a comparison of different sequential sampling models). In this thesis, I 

will refer to the diffusion model that has been proposed by Roger Ratcliff for memory 

retrieval (Ratcliff, 1978) and that has been greatly influenced by earlier work by Laming 

(1968) and Link and Heath (1975). In the almost 40 years since the influential article by 

Roger Ratcliff, the literature on diffusion modeling has grown rapidly, especially in the last 

15 years, as the citation rates of this article in the PsycINFO database demonstrate (see Figure 

1, Voss et al., 2013). Currently, the citations have reached a total number of 1,0602. 

Manuscript 1 is an introductory paper addressed primarily to newcomers to diffusion model 

analyses. In the remainder of this chapter, a short introduction to diffusion modeling is given. 

The diffusion model is applicable to tasks that are comprised of two response 

alternatives, which is a very common type of task in psychology. Typical binary tasks that 

have been analyzed with the diffusion model are recognition memory tasks (e.g., Ratcliff, 

1978; Ratcliff, Thapar, & McKoon, 2011; Spaniol, Madden, & Voss, 2006), color 

discrimination tasks (e.g., Germar et al., 2016; Voss, Rothermund, & Voss, 2004), brightness 

discrimination tasks (e.g., Ratcliff, 2002; Ratcliff, Hasegawa, et al., 2011; Ratcliff, Thapar, & 

McKoon, 2003), numerosity discrimination tasks (e.g., Ratcliff, 2014; Ratcliff, Love, 

Thompson, & Opfer, 2012; Ratcliff & Van Dongen, 2009), motion discrimination tasks (e.g., 

Herz, Zavala, Bogacz, & Brown, 2016; Mulder, Wagenmakers, Ratcliff, Boekel, & 

Forstmann, 2012; Ratcliff & McKoon, 2008), and lexical decision tasks (e.g., Dutilh et al., 

2009; Ratcliff, Thapar, Gomez, & McKoon, 2004; Rummel, Kuhlmann, & Touron, 2013). 

The diffusion model is based on the assumption that information is accumulated 

continuously until one of two thresholds is reached. This accumulation process is also referred 

to as decisional process and is illustrated in Figure 1. In this example, one threshold is 

associated with the response “word” and the other threshold with the response “non-word” 

(i.e., the response options of a lexical decision task). In addition to the decisional process, the 

                                                 

1 Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: A practical 

introduction. Experimental Psychology, 60(6), 385-402. doi: 10.1027/1618-3169/a000218 

2 This search was conducted on July 27, 2016. Even if certainly not all studies applied the diffusion model, 

probably most of them did. 
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diffusion model includes time that the participant requires, for instance, to encode information 

and execute motor responses (e.g., a key press). One major advantage of the diffusion model 

is the fact that it does not only use the accuracy rate or mean RT of correct responses, but the 

distributions of both correct and error responses. This high information quantity allows for 

disentangling parameters that map different cognitive processes. For example, one problem 

that researchers often encounter in RT paradigms is speed-accuracy trade-offs. One group of 

participants (e.g., young adults) might respond faster than the other group (e.g., older adults), 

but might at the same time yield lower accuracy rates. Such findings are difficult to interpret 

based on only the behavioral data (i.e., mean RT or accuracy rate). For example, is the young 

adult group superior at the task, as they respond faster? Or alternatively, is the older adult 

group superior, as their accuracy rate is higher? The diffusion model provides both a 

parameter that maps speed-accuracy settings and a parameter that maps cognitive speed. 

Thus, the application of the diffusion model supplies a more process-pure measure of speed of 

information processing, not confounded by speed-accuracy settings. Interestingly, in several 

studies, it has been shown that older adults do not differ from young adults in their cognitive 

speed, but—amongst others—in their speed-accuracy settings featuring a more conservative 

criterion (e.g., Ratcliff, Thapar, Gomez, et al., 2004; Ratcliff, Thapar, & McKoon, 2004; but 

see Thapar, Ratcliff, & McKoon, 2003). 

The basic diffusion model comprises four main parameters: drift rate (ν), threshold 

separation (a), starting point (zr) and nondecision time (t0). The drift rate (ν) is a measure of 

the speed and direction of information accumulation. Easier tasks correspond to higher 

(absolute) drift rates than more difficult tasks as information is accumulated faster for these 

tasks (e.g., Voss et al., 2004). Similarly, more intelligent people have been shown to manifest 

higher drift rates than their less intelligent counterparts (e.g., Ratcliff, Thapar, & McKoon, 

2010). People can differ also in their decision criterion. If an individual wants to be certain 

about a decision, he or she will accumulate more information before taking a decision—

resulting in slower but more accurate responses—and will consequently have a higher 

threshold separation (a). Parameter a is therefore a measure of speed-accuracy trade-off.  

If an individual has a decisional bias for one of the two options (e.g., because one category 

appears more often; see for example Arnold, Bröder, & Bayen, 2015), they will be fast and 

correct in trials in which this option is the correct response. On the other hand, they will be 

slower in responding correctly and more prone to errors when the correct response is the non-

favored response option. Such a data pattern is reflected by the starting point (z, or the relative 

starting point zr = z/a). If, for example, people are biased in favor of the response “non-word”, 
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their starting point is shifted toward the non-word threshold. Finally, the time needed for 

extra-decisional processes—like encoding of information and execution of the motoric 

response—is termed nondecision time (t0). 

The four main diffusion model parameters are generally considered to be valid 

measures of psychological processes. Their validity is supported both by experimental 

validation studies that used several different binary tasks (e.g., Arnold et al., 2015; Gomez, 

Ratcliff, & Childers, 2015; Voss et al., 2004; Wagenmakers et al., 2008; see also chapter 8.4 

for an example of an experimental validation design) and by correlational studies that found 

relationships between, for instance, drift rate and intelligence (e.g., Ratcliff et al., 2010; 

Schulz-Zhecheva, Voelkle, Beauducel, Biscaldi, & Klein, 2016). 

In addition to the four main diffusion model parameters, the diffusion model includes 

one intratrial variability parameter and three intertrial variability parameters. The intratrial 

variability parameter (also termed diffusion constant, or scaling parameter) is set to a constant 

value (typically, 0.1 or 1) in the common applications of the model. It is a measure of the 

random noise of the Wiener process. Due to this noise, the decision process does not end at 

the same threshold after the same interval of time in each trial (even if the same stimulus was 

shown again). The three intertrial variabilities, namely the variability of starting point, drift 

rate (Ratcliff & Rouder, 1998) and nondecision time (Ratcliff & Tuerlinckx, 2002), reflect the 

assumption that processes may vary from trial to trial due to variability in the attention of the 

participant or heterogeneity of the stimulus material. The diffusion model, including all 

parameters described above, can be termed the full diffusion model3. 

By now, several software solutions for parameter estimation are available that make 

the model more accessible also to researchers with restricted programming experience. 

Examples of such programs are EZ (Wagenmakers, van der Maas, & Grasman, 2007), DMAT 

(Vandekerckhove & Tuerlinckx, 2007, 2008), HDDM (Wiecki, Sofer, & Frank, 2013), and 

fast-dm (Voss & Voss, 2007, 2008). The command-line program fast-dm has been recently 

extended; this extension is described in more detail in the subsequent chapter. 

 

                                                 

3 Note that more recently a further parameter has been introduced that maps a response-execution bias (Voss, 

Voss, & Klauer, 2010). 
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Figure 1. Illustration of a single trial of a decision process in a lexical decision task. The starting point z is here 

centrally positioned on the threshold distance a, indicating no bias for either of the two options (here, “word” or 

“non-word”). Information is accumulated with drift rate ν. The decision process ends as soon as one of the two 

thresholds (in this case, the upper threshold) is hit. The nondecision time and the intertrial variabilities are not 

depicted in this illustration. 
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3 Extension of a Program for Parameter Estimation: fast-dm-30 (Manuscript 2)4 

Fast-dm (Voss & Voss, 2007, 2008) is a command-line program (implemented in C) 

that estimates diffusion model parameters based on the optimization criterion KS. Manuscript 

2 introduces fast-dm-30, which is an extended version of fast-dm. The manuscript includes 

both information on the novel aspects of the program and a user’s manual. Fast-dm-30 

contains two major new features: First, it is now possible to estimate one further parameter, d, 

which is a measure of a response-execution bias (Voss et al., 2010). The second new feature 

is in the focus of this thesis. In the latest version of fast-dm, the user has the possibility to 

choose between one of three optimization criteria: KS (already implemented in the former 

versions of fast-dm), ML, and CS. The user can specify the optimization criterion he or she 

wishes to apply in an external control file, which also contains other model settings (e.g., 

fixation of parameters to constant values). Apart from giving the user the possibility to choose 

between the three criteria, fast-dm-30 also allows a better comparison of the performance of 

these criteria, because they can now be contrasted without confounding factors (i.e., 

differences in individual program specifications). In this chapter, the optimization criteria KS, 

ML and CS will be shortly described.  

All of the three optimization criteria KS, ML, and CS have previously been used for 

diffusion modeling. Nevertheless, there are clear differences in the frequencies of their usage: 

CS is the by far most commonly applied method (e.g., Ratcliff & McKoon, 2008; Ratcliff & 

Van Dongen, 2009; Wagenmakers et al., 2008; White et al., 2009). In the CS approach, the 

RT distributions of correct and error responses are each divided into a number of bins. A very 

common procedure is the use of six bins with the outer two bins each comprising 10 % of the 

data and the inner bins 20 % each (Ratcliff & Tuerlinckx, 2002). Over all bins, a chi-square 

value is computed, thereby comparing the expected number of trials of each bin to the 

empirically observed number. Parameters are adjusted in order to minimize the chi-square 

value. Notably, due to the binning, the ratio scale of the RTs is converted into a nominal 

scale. Thus, CS does not use the full information that has been collected. 

A criterion that—since the availability of fast-dm—has also been increasingly used, is 

KS (e.g., Aschenbrenner et al., 2016; Bowen et al., 2016; Boywitt & Rummel, 2012; Germar 

et al., 2014; Horn et al., 2011). This criterion is based on the maximum absolute vertical 

                                                 

4 Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with diffusion model analyses: a tutorial 

based on fast-dm-30. Frontiers in Psychology, 6(336). doi: 10.3389/fpsyg.2015.00336 
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distance between the expected and the empirical cumulative distribution functions (CDFs). 

Parameters are adjusted in order to minimize this maximum distance. In contrast to CS, the 

level of measurement of the RTs is not reduced. However, KS is based on only one single 

value, namely the maximum distance between the two curves. 

Finally, the ML criterion, utilizes the information provided on each trial. The density 

values predicted for each empirical RT are logarithmized and summed up. The parameters are 

adjusted in order to maximize the sum of logarithmized densities. As each single RT affects 

the ML criterion, the degree of information utilization is the highest of the three optimization 

methods. However, this is also accompanied by the possibility of a higher influence of 

contaminants. By contaminants, we mean responses that result from sources other than a 

diffusion process (e.g., guessing; Ratcliff & Tuerlinckx, 2002). Especially fast outliers have a 

major influence on parameter estimates, because the nondecision time estimate must be at 

least as small as the smallest RT observed; otherwise, the estimated density of the smallest RT 

observed would be zero. KS, on the other hand, is less sensitive to contaminants as single 

trials should have limited influence on the maximum distance between the CDFs. 

In Manuscripts 3-5, fast-dm-30 was employed in order to compare the performance of 

the three optimization criteria. In the presence of uncontaminated data (i.e., data with all trials 

resulting from a diffusion process), we expected ML to score best in parameter estimation, 

followed by KS and CS. However, in the presence of contaminated data (i.e., data with not all 

trials emanating from a diffusion process), ML would theoretically be substantially negatively 

impacted and should, therefore, provide less accurate parameter estimates than KS or CS. 

Before turning to a presentation of the main findings from Manuscripts 3-5, in the subsequent 

section, different evaluation criteria of estimation performance will be outlined. These criteria 

were used in the manuscripts for a comparison of estimation reliability of the different 

methods. 
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4 Criteria for Evaluation of Estimation Performance 

Different approaches can be used to assess the performance of estimation procedures. 

These approaches are not specific to diffusion modeling, but are also applicable in other 

forms of mathematical modeling. One very common strategy is the usage of simulation 

studies (e.g., Ratcliff & Childers, 2015; Ratcliff & Tuerlinckx, 2002; van Ravenzwaaij & 

Oberauer, 2009). As in simulated data sets the true (i.e., data generating) parameters are 

known, these can be compared to the re-estimated parameters, allowing an assessment of the 

accuracy of parameter recovery. For the comparison of true with re-estimated parameters, 

different statistics can be appropriate, depending on the aim of the researcher. First, 

correlations between the true and the re-estimated parameter values can be computed. 

Evidently, higher correlation coefficients indicate better parameter estimation. A correlational 

criterion can be useful if the aim of the researcher is the uncovering of relationships between 

diffusion model parameters and external criteria. For example, a researcher might be 

interested in the relationship between drift rate and intelligence. Arguably, however, this 

criterion is only valuable if there is substantial variance in the generating parameter values. 

Moreover, this criterion has a major disadvantage: It might conceal estimation biases, which 

are deviations between the true and re-estimated values. Imagine, for example, two 

individuals, Chris and Steve. Chris has a drift rate of ν = 1.5, and Steve has a higher drift rate 

of ν = 3. If Chris was estimated to have a drift rate of 2, and Steve a drift rate of 3.5, this 

bias—an overestimation of the true drift rate by 0.5—would not be detected by means of a 

correlational criterion. However, it would be detected if deviations between true and re-

estimated values were computed. 

One might argue that an over- or underestimation does not constitute a severe 

problem, assuming that the deviation is the same for all participants. But this is very unlikely 

as, for example, the number of errors influences the accuracy of parameter estimation with 

more errors resulting in more reliable parameter estimates (e.g., Voss et al., 2004; White, 

Ratcliff, Vasey, & McKoon, 2010). Most problematic is a scenario in which there is a 

substantial negative relationship between the true parameter and its estimation bias. Using the 

above example, imagine that for Chris a drift rate of 2 was estimated, whereas the drift rate 

estimate for Steve was 2.5. Although Chris and Steve differ considerably in their true drift 

values (difftrue = 1.5), this difference is not so apparent if the estimated parameters are 

compared (diffestimated = 0.5). Whereas negative relationships between the true values of a 

parameter and the estimation bias lead to an underestimation of the true effect, positive 
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relationships lead to an overestimation. For researchers striving for significant results, such a 

positive relationship might be seen as advantageous. However, if, for example, one aims at 

assessing the value of an intervention program, it is certainly important to get correct 

estimates of effect size. Thus, both positive and negative relationships between the true 

parameters and their respective biases can pose severe problems. 

Another criterion for evaluating the estimation performance is the power of detecting 

differences in parameters between groups or conditions. For example, Wiecki et al. (2013) 

analyzed the power to detect differences for a within-subjects design and van Ravenzwaaij, 

Donkin, and Vandekerckhove (2016) for a between-subjects design. Here, inaccuracies in 

parameter estimation can be compensated by an increase in the number of participants. If, 

however, the aim of the diffusion model analysis is not the detection of significant results, but 

the diagnostic assessment of one single individual, any inaccuracy in parameter estimation is 

problematic. As I mentioned earlier, in previous studies, relationships were found between 

drift rate and intelligence (e.g., Ratcliff et al., 2010; Schulz-Zhecheva et al., 2016). 

Accordingly, the drift rate could—in the long term—be a candidate for intelligence 

assessment. In fact, a diffusion model account might bare some advantages over traditional 

intelligence assessment, such as a restricted influence of training and a more restrained use of 

resources (e.g., less effort on the part of the investigator is required, since participants can 

work on the task independently, and the data collection can also be conducted in groups). 

Thus, for the diffusion model to be applied as diagnostic tool, it is important that 

parameters be estimated accurately. If, as a measure of estimation precision, averaged biases 

across participants were computed, inaccuracies in parameter estimation might remain 

concealed because positive and negative biases can cancel each other out. Imagine, for 

example, that for half of the participants a parameter was overestimated and for the other half 

it was underestimated by similar amounts, a mean bias close to zero would result. Thus, an 

alternative way to analyze estimation precision is the use of either absolute or squared 

deviations between true and re-estimated parameter values.  

Note that the diffusion model parameters have quite different scales and ranges. 

Therefore, the comparability of biases or absolute/squared deviations between parameters is 

restrained. For example, an absolute deviation of 0.1 would be small for drift rate estimates 

(given that the diffusion coefficient is set to 1), but would be large for nondecision time. To 

address this problem, from our simulation studies in Manuscript 3 we deducted parameter 

accuracies. This means that for each parameter, we estimated the smallest possible deviation 

that can be reached given optimal conditions (i.e., a high number of 5,000 trials, no 
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contaminants, ML estimation; for more details, please see Manuscript 3). Next, we 

standardized each parameter’s squared deviation, dividing it by its parameter accuracy. 

Whereas simulation studies are the common method of assessing the estimation 

performance in diffusion modeling, to my knowledge, no one has thus far considered the use 

of test-retest studies. Generally, few diffusion model studies analyze data from test-retest 

designs (for two exceptions, see Schubert et al., 2016; Yap, Balota, Sibley, & Ratcliff, 2012) 

and in none of these were different estimation procedures compared. In test-retest designs, the 

retest correlation coefficients (i.e., the correlations between the estimated parameters of 

Session 1 and Session 2), can be used as criteria of estimation performance. Certainly, the size 

of these correlations depends on the stability of the respective parameter. However, for the 

assessment of estimation performance, the absolute values of the correlations are of less 

interest than the differences in coefficients between methods (e.g., the size of the retest 

coefficient based on ML estimates compared to the size of the retest coefficient based on CS 

estimates). An advantage of empirical test-retest studies is that they have a high ecological 

validity. In contrast, simulation studies, for data generation require assumptions about, 

amongst others, the parameter ranges and type and amount of contamination. These 

assumptions might not always be realistic. 

The evaluation criteria presented above were used in the Manuscripts 3-5. In 

particular, Manuscript 3 is based on simulation studies and analyzes the data in terms of the 

correlational criterion, the bias criterion, the power of detection of within-subject differences 

and the estimation precision criterion. In Manuscript 4, test-retest studies were conducted and 

test-retest correlation coefficients served as measure of estimation performance. Finally, in 

Manuscript 5, data from Manuscript 3 and Manuscript 4 were reanalyzed to examine the 

influence of model complexity. 
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5 Evaluation of Estimation Performance: Simulation Studies (Manuscript 3)5 

In the past, it was common to conduct experiments on the basis of very few 

participants that performed a task for several sessions, comprising in total several hundreds or 

even thousands of trials (e.g., Ratcliff, 1981, 2002; Ratcliff & Rouder, 1998; Ratcliff, Thapar, 

Gomez, et al., 2004; Ratcliff et al., 1999). In recent years, however, often the diffusion model 

is applied to data sets with substantially fewer trials (e.g., Klauer et al., 2007; Metin et al., 

2013; Moustafa et al., 2015; Mueller & Kuchinke, 2016). Notably, there has been relatively 

little research on the influence of trial numbers on parameter estimation in diffusion 

modeling. The studies that analyzed different trial numbers indicate that—as expected—

higher trial numbers go along with better parameter estimation (e.g., Ratcliff & Tuerlinckx, 

2002; Vandekerckhove & Tuerlinckx, 2007; Wiecki et al., 2013). However, so far, no one has 

given indications on the minimum number of trials that can reasonably be used for diffusion 

modeling, or whether, at some point, the costs of a further increase in trial numbers might 

outweigh its benefits. In Manuscript 3, we tackled these issues using fast-dm-30. In contrast 

to other studies that have compared different programs (Ratcliff & Childers, 2015; van 

Ravenzwaaij & Oberauer, 2009), this is—to our knowledge—the first comparison of KS, CS 

and ML within the same program. In the remainder of this chapter, the method and results of 

Manuscript 3 will be summarized. 

For our simulations, we first generated parameter sets, using a uniform distribution for 

each parameter, assuming no intercorrelations between parameters and relying on parameter 

ranges typically observed in empirical studies. Next, on the basis of these parameter sets, data 

sets were generated using construct-samples, which is integrated in the fast-dm software. The 

data sets were composed of either 24, 48, 100, 200, 500, 1,000 or 5,000 trials. We also 

compared models of different complexity. One approach for the analysis of the influence of 

model complexity was the use of a one-drift and a two-drift design. A one-drift design can be 

applied when the two stimulus types (e.g., “orange” and “blue” in a color discrimination task) 

have identical (or, very similar) drift rates (in our simulation study, we assumed identical drift 

rates). In such cases, it is a common approach to collapse across the two stimulus types, so 

that one threshold is associated with correct responses and the other threshold with error 

                                                 

5 Lerche, V., Voss, A., & Nagler, M. (2016). How many trials are required for parameter estimation in diffusion 

modeling? A comparison of different optimization criteria. Behavior Research Methods, 1-25. doi: 

10.3758/s13428-016-0740-2 
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responses. The one-drift model can also be used if separate models are estimated for the two 

stimulus types. The two-drift design is based on two stimuli with different drift rates. That is, 

the drift rate for the stimulus at one threshold (e.g., “new” in a recognition memory paradigm) 

is higher (in absolute value) than the drift rate for the stimulus at the other threshold (e.g., 

“old” in the recognition paradigm). The influence of model complexity was also tackled by 

means of models with different parameter settings. In particular, in the full diffusion model 

(in this text, also termed the seven-parameter model6), for the generation of the data sets all 

parameters, including the three intertrial variability parameters, could vary. In the slightly 

more restricted six-parameter model, the starting point was fixed at the center between the 

two thresholds (i.e., zr = .5). In the four-parameter model, additionally, the intertrial 

variabilities of drift rate, starting point and nondecision time were fixed at zero. Finally, the 

three-parameter model differed from the four-parameter model in its fixed starting point (like 

in the six-parameter model, zr = .5). In all models, the parameters that were fixed for the 

generation of data sets were also fixed for re-estimation (e.g., in the six-parameter model the 

starting point was fixed both for generation of data and for re-estimation of the parameters). 

 In empirical data, there will always be a certain amount of contaminant trials. 

Accordingly, another independent variable was the type of contaminants. We used one 

condition without contaminants, one with 4 % of fast contaminants and one with 4 % of slow 

contaminants. The fast contaminants were responses with random accuracy that were 

positioned partly outside and partly overlapping with the leading edge of the RT distribution 

(simulating guesses). The slow contaminants were responses situated between 1.5 and 3 

interquartile ranges above the third quartile (simulating responses that are slow due to 

temporary distraction from the task). 

Parameters were re-estimated using the three optimization criteria implemented in 

fast-dm: KS, ML, and CS. In addition, we used a Bayesian method (the nonhierarchical 

approach of the software HDDM, see Wiecki et al., 2013) and, for the data of the three-

parameter model, EZ (Wagenmakers et al., 2007). EZ was applied solely to this restricted 

model because it is only able to estimate three parameters: threshold-separation, drift rate, and 

nondecision time. In contrast to fast-dm, EZ does not use an optimization procedure, but 

computes parameters by means of closed-form equations. Like CS and KS, both EZ (e.g., 

Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007; van Ravenzwaaij, Dutilh, & 

                                                 

6 Note that, in theory, the diffusion model comprises eight parameters. Parameter d that measures a bias in the 

response execution (Voss et al., 2010) was fixed at zero in all models. 
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Wagenmakers, 2012; van Vugt & Jha, 2011) and HDDM (e.g., Dunovan, Tremel, & Wheeler, 

2014; Herz et al., 2016; Jahfari, Ridderinkhof, & Scholte, 2013) have already been employed 

in several diffusion model studies. 

Parameter estimation performance was assessed in terms of correlations between true 

and re-estimated parameters, parameter biases and, for the two-drift design, the power to 

detect a drift rate difference between the two conditions. Our most important criterion was the 

estimation precision (the squared, standardized deviations between true and re-estimated 

parameter values; see Chapter 4 and the section on evaluation criteria in Manuscript 3, for a 

more detailed description of the criteria). This criterion was used for the deduction of 

requisite trial numbers. More specifically, we defined (arbitrary) critical values that must be 

reached for low or high precision. The requisite trial numbers (that is, the trial numbers at 

which these critical values were reached) were computed for all conditions. Notably, our 

critical values seem to have been rather strict, as the high correlations between true and re-

estimated parameters at the requisite trial numbers demonstrated. 

Most importantly, our findings lend support to the use of more limited trial numbers. 

Especially for the more restricted models (three- and four-parameter models), reliable 

parameter estimates can often be achieved with even fewer than 100 trials. More complex 

models (six- and seven-parameter models), on the other hand, require more trials. However, 

in many cases reliable estimates necessitate still fewer than 300 trials7. The higher trial 

numbers of the more complex models seem to be attributable mostly to two parameters that 

are recovered very poorly: the intertrial variabilities of drift rate and starting point. This issue 

was investigated further in Manuscript 5. 

In the condition with no contaminants, ML and HDDM showed the best estimation 

precision and CS performed worst. However, ML and HDDM suffered the most from fast 

contaminants. Here, often our criteria for the required trial numbers could not be reached (not 

even with 5,000 trials). Slow contaminants, on the other hand, did not cause severe problems. 

KS and EZ were quite robust to the presence of fast contaminants (however, EZ was affected 

by the presence of slow contaminants). While in the past mostly CS was used for parameter 

estimation, our results suggest that this is not the best strategy, as CS usually requires the 

highest trial numbers, and also clearly suffered from the addition of contaminants. 

                                                 

7 For detailed information on the requisite trial numbers, see tables 4-6 in Manuscript 3. 
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Importantly, the comparison of the estimation methods showed very similar results for 

all different evaluation criteria (correlational criterion, biases, power of difference detection 

and estimation precision). Here, I will shortly describe two additional findings that concern 

the bias measure. The most notable result was a consistent negative correlation between 

starting point and its bias (for all methods and trial numbers), indicating that it is difficult to 

discover significant differences in starting points between conditions as the true effect may 

often be underestimated. Another finding was that the number of trials had an influence not 

only on estimation precision, but also on biases. Often, biases decreased with an increase in 

the trial numbers. This contradicts the hypothesis stated by van Ravenzwaaij and Oberauer 

(2009) that trial numbers do not influence biases. The pattern that we found might not yet 

have been observed in all earlier studies, because in these studies mostly high trial numbers 

were analyzed and our results indicate that biases get stable from around 500 trials onward. 

Whereas Manuscript 3 was exclusively based on simulated data sets, in Manuscript 4 

we examined empirical data from test-retest studies. In addition, the manuscript includes a 

simulation study in which data were generated relying on the parameter ranges observed in 

the experiments. 
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6 Evaluation of Estimation Performance: Test-Retest Studies (Manuscript 4)8 

Manuscript 4 extends the findings from Manuscript 3 by using empirical data 

(accompanied by a simulation study). For empirical data, one single point in time cannot 

provide reliable information on the accuracy of parameter estimation as, unlike with 

simulated data sets, the true, underlying parameter values are not known 9. However, repeated 

measures designs, allow a computation of test-retest correlation coefficients. The size of these 

coefficients depends on the stability of the measure and on error variances. Procedures with 

small estimation errors lead to higher test-retest correlation coefficients and give a better 

estimate of the trait characteristics. In Manuscript 4, we conducted two test-retest studies 

based on large samples (Study 1: N = 105 and Study 2: N = 128), both with a test-retest 

interval of one week. In Study 1, the participants worked on a lexical decision task and a 

recognition memory task. In Study 2, the participants had to perform a lexical decision task 

based on associative priming. 

For parameter estimation, the three optimization criteria implemented in fast-dm-30 

were used, in addition to the EZ method (Wagenmakers et al., 2007). For parameter 

estimation with fast-dm-30, we employed a five-parameter model in which the intertrial 

variabilities of drift rate and starting point were fixed at zero. We decided to use this approach 

because the intertrial variabilities of these two parameters were estimated very poorly in the 

studies of Manuscript 3 (see also Chapter 7 for a further discussion). The parameter 

estimation was based on different trial numbers (the first 32, 48, 100, 200, and 400 trials). In 

addition to the analysis of empirical data (Studies 1 and 2 of the manuscript), in Study 3 we 

simulated data sets based on the parameter means, standard deviations and intercorrelations 

from Study 1, allowing us to test whether a different simulation strategy (using a multivariate 

                                                 

8 Lerche, V., & Voss, A. (2016). Retest reliability of the parameters of the Ratcliff diffusion model. 

Psychological Research, 1-24. doi: 10.1007/s00426-016-0770-5 

9 If data from only one single point in time are collected, parameter estimation performance can only be assessed 

via the analysis of model fit between the empirical and estimated distributions. For example, the p-value of the 

KS or CS statistic gives an indication of model fit. Note, however, that this p-value depends on the number of 

conditions and trials (see also Voss et al., 2013, p. 398, for a more detailed discussion). Furthermore, due to 

model mimicry (specifically, when different parameter combinations produce similar predicted RT 

distributions), a satisfactory fit value may result even if the parameters of the true (data generating) model were 

not correctly recovered (see Wagenmakers, Ratcliff, Gomez, & Iverson, 2004, for a procedure of quantifying 

model mimicry). 
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normal distribution and parameter values based on empirical data of specific experiments) 

results in similar findings as the simulation studies reported in Manuscript 3. In addition, we 

obtained estimates of maximal values of retest coefficients, because we simulated data sets for 

both “sessions” based on the same parameter sets (i.e., without state influences). 

The data yielded by the empirical studies showed a consistent pattern regarding the 

performance of the different parameters. In all three paradigms, both drift rate and threshold 

separation had acceptable test-retest correlations (rs > .70), whereas nondecision time and 

starting point featured lower coefficients.10 We also found that ML and EZ consistently 

outperformed the other methods in all of the three tasks, and akin to Manuscript 3, the 

simulation studies revealed that using more than 400 trials did not notably improve the 

reliability coefficients. Finally, the comparison of reliability coefficients from the simulated 

data (i.e., the maximal possible retest coefficients when there are no state influences) with the 

empirical data allowed an approximate estimation of state and trait proportions of parameters. 

These analyses indicated that drift rate is the parameter with the highest trait proportion. This 

is also corroborated by current analyses from a test-retest study with a longer interval of 8 

months (Schubert et al., 2016). 

While the focus of Manuscripts 3 and 4 is on the comparison of different optimization 

criteria and trial numbers, Manuscript 5 addresses more explicitly the issue of model 

complexity. Manuscript 3 has shown that the intertrial variabilities of starting point and drift 

rate cannot be recovered well. This suggests that the basic diffusion model parameters might 

be recovered better if these parameters are not estimated, but fixed to constant values. This 

comparison of models of different complexity is the topic of Manuscript 5. 

  

                                                 

10 The worse performance of starting point and nondecision time might be attributable to a lack of interindividual 

variance or a lack of temporal stability in the specific paradigms used. In fact, in the priming paradigm, the 

nondecision time showed a better reliability than in the other paradigms. It is plausible that the handling of the 

prime influenced the encoding of the target stimulus. To an open-framed question, participants responded having 

used different strategies to deal with the prime (e.g., counting the primes, “ignoring” them, or explicitly paying 

attention to them) that might have been used consistently at both sessions. 
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7 Evaluation of the Influence of Model Complexity (Manuscript 5)11 

The four parameters of the basic diffusion model (i.e., drift rate, threshold separation, 

nondecision time, and starting point) have proven to be valid measures of psychological 

processes (e.g., Voss et al., 2004) and one or more of these parameters have been in the focus 

of probably all diffusion model studies. The intertrial variabilities, on the other hand, are—

from a psychological point of view—typically of less interest. These parameters are mostly 

included in order to improve model fit and to account for specific patterns of speed of correct 

and error trials. More specifically, faster errors than correct responses are mapped by the 

intertrial variability of starting point, while slower errors than correct responses are mapped 

by the intertrial variability of drift rate (Ratcliff & Rouder, 1998). Finally, the intertrial 

variability of nondecision time produces a more gradual rise of the leading edge of the RT 

distribution (Ratcliff & Tuerlinckx, 2002). 

To date, in most diffusion model studies, the full diffusion model (i.e., including all 

three intertrial variabilities) is estimated (see Germar et al., 2016; Hartanto & Yang, 2016; 

Schubert et al., 2016, for some exceptions). However, is this procedure actually justified? As 

the results from Manuscript 3 revealed, the intertrial variabilities of starting point and drift 

rate cannot be recovered well, not even for an optimal estimation condition (5,000 trials, no 

contaminants, ML estimation). In this condition, correlations of estimates with true values 

were still smaller than .50. The intertrial variability of nondecision time, on the other hand, 

was estimated much better (r = .97) and so were the main diffusion model parameters (with 

all rs ≥ .99). The poor recovery of the intertrial variabilities of drift rate and starting point is 

also in line with findings from previous simulation studies (van Ravenzwaaij & Oberauer, 

2009; Vandekerckhove & Tuerlinckx, 2007).  

The studies from Manuscript 3 further indicated that parameter estimation was better 

for less complex models: Three- and four-parameter models that do without the intertrial 

variabilities required smaller trial numbers than more complex models with intertrial 

variabilities. Note, however, that in Manuscript 3 we made assumptions that will not always 

be met. For example, in the case of the four-parameter model, we assumed that there is no 

variability across trials in drift rate, starting point, and nondecision time. In contrast, in 

Manuscript 5, we explicitly assumed the presence of substantial intertrial variabilities and 

                                                 

11 Lerche, V., & Voss, A. (2016). Model Complexity in Diffusion Modeling: Benefits of Making the Model 

More Parsimonious. Frontiers in Psychology, 7(1324). doi: 10.3389/fpsyg.2016.01324 
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examined the impact of false fixations. By false fixations, we mean the fixation of parameters 

to values that are different from the data generating values. To examine the influence of false 

fixations, in Manuscript 5, we reanalyzed data sets from the Manuscripts 3 and 4. 

In Manuscript 3, the data were always generated and estimated in the same manner 

(e.g., generated and estimated with a seven-parameter model or generated and estimated with 

a four-parameter model). In Manuscript 5 (Study 1), on the other hand, we reanalyzed the data 

from Manuscript 3 that were generated from the seven-parameter model, using models of 

different complexity. In particular, we compared the full diffusion model estimation to five-, 

four- and three-parameter models. In the five-parameter model, the intertrial variabilities of 

starting point and drift rate were fixed at zero; and in the four-parameter model, the intertrial 

variability of the nondecision time was also fixed at zero. Finally, in the three-parameter 

model we further fixed the starting point at the center between the two thresholds. 

For the data from Manuscript 4 (see Study 2 in Manuscript 5), we applied the same 

procedure. Again, we estimated parameters using three-, four-, five-, and seven-parameter 

models. In contrast to the simulation studies of Manuscript 3, here we did not know for sure 

whether there were substantial intertrial variabilities in the data (even though the estimation 

with the seven-parameter model indicated that there might have been substantial intertrial 

variabilities). However, since we analyzed paradigms that have often been used in diffusion 

model studies (lexical decision task and recognition memory task), the ecological validity of 

these analyses is high. In addition, we also reanalyzed the data from the accompanying 

simulation study (Study 3 in Manuscript 4). Importantly, these data sets had been generated 

based on the means, standard deviations and intercorrelations of the parameter estimates from 

the seven-parameter model estimation. Thus, the simulated data sets featured substantial 

intertrial variabilities. 

The most important finding from our reanalyses is that in most cases, a less complex 

model outperformed the full diffusion model. Interestingly, sometimes it took 5,000 trials for 

the seven-parameter model to outperform the other models (and even at this very high trial 

number, it did not always do so). For ML and CS, the five-parameter model won most often 

and for KS the four-parameter model showed the best performance. Note that the results by 

van Ravenzwaaij et al. (2016) go in a similar direction: They found EZ to be superior to a full 

diffusion model estimation even if the data were generated on the basis of the full diffusion 

model. Consistent with this, especially in Manuscript 4 of this thesis, EZ also provided very 

good parameter estimates. Thus, not only false fixations of the intertrial variabilities can 

improve parameter estimation. Sometimes, also a further fixation of the starting point might 
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be advised. Note that in our test-retest studies on lexical decision and recognition memory we 

did not expect large deviations from a centered starting point. If a more biased decision 

process is to be expected, the fixation of the starting point to the center between the thresholds 

might essentially distort parameter estimates. 

Finally, I want to point out one further interesting finding of Manuscript 5, in regards 

to the condition with fast contaminants. While in Manuscript 3, ML was highly sensitive to 

fast contaminants in all models, this was not the case for the five-parameter model applied in 

Manuscript 5. The inclusion of the intertrial variability of the nondecision time seemed to 

have absorbed the negative influences of these contaminants. This is plausible as the 

nondecision time leads to a more gradual rise of the leading edge of the estimated RT 

distribution and can thereby “capture” fast contaminants. If the intertrial variability of 

nondecision time was not included, the nondecision time estimated by ML would have to be 

adjusted to the smallest RT observed (see Chapter 3 for a more detailed explanation). Note 

that the five-parameter model showed a good performance for the condition with fast 

contaminants, whereas the seven-parameter model failed, even if it also includes the intertrial 

variability of nondecision time. It seems that here, the negative influence of the poorly 

estimated variabilities of starting point and drift was too large. To sum up this point, whereas 

in the past, it was recommended against using ML for parameter estimation due to its 

sensitivity to fast contaminants (e.g., Ratcliff & Tuerlinckx, 2002), our recent findings 

suggest that in combination with a five-parameter model, ML can supply reliable parameter 

estimates.  
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8 Discussion 

In this section, we will first outline some important guidelines for diffusion modeling 

that are based on the main results emanating from the manuscripts of this thesis. Second, I 

will present a recent validation project by Dutilh et al. (2016), accompanied by reanalyses of 

the data from their project. Third, I will discuss limitations of this thesis and sketch ideas for 

future studies. One of these ideas will be presented in more detail in the last chapter of this 

discussion. Specifically, I will outline an idea for an extension of the diffusion model to 

slower RT tasks. This extension is possible because—as the studies of this thesis 

demonstrate—small- to medium-sized trial numbers can be sufficient for diffusion modeling. 

8.1 Guidelines for Diffusion Modeling 

In the last 15 years, the diffusion model (Ratcliff, 1978) has risen steadily in popularity 

(Voss et al., 2013). By analyzing whole distributions of RT data (not only accuracy rates and 

mean RTs), the model can disentangle different processes involved in binary decision tasks. 

There are various methods for the estimation of diffusion model parameters. We extended 

fast-dm (Voss & Voss, 2007, 2008)—based on the KS optimization criterion—to include two 

further criteria, ML and CS. Accordingly, fast-dm-30 (Voss et al., 2015) gives the user the 

choice between these three criteria. The implementation in the same program also makes it 

possible to compare the estimation performance of the three criteria without confounding 

factors (i.e., program specifics). Using both simulation studies and empirical test-retest 

studies, we analyzed the performance of the three optimization criteria and of models of 

different complexity, using different trial numbers. Incorporating the knowledge gained from 

these studies, we developed a set of guidelines that can serve both as an assessment of the 

reliability of published findings, and as an aide when planning future diffusion model studies. 

In addition to the three fast-dm methods, in several analyses, we included two further 

estimation methods: the Bayesian approach HDDM (Wiecki et al., 2013) and the method EZ 

(Wagenmakers et al., 2007). 

 

First, we could clearly see that as the number of trials increases, the parameter 

estimation becomes more precise (Lerche & Voss, 2016b; Lerche, Voss, & Nagler, 2016). 

This has also been demonstrated by other studies (e.g., Ratcliff & Childers, 2015; Wiecki et 

al., 2013). More importantly, however, in our studies we observed substantial differences 

between optimization criteria regarding the relationship of trial number and precision of 
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parameter estimation. Namely, ML and KS had a steeper course, resulting in reliable 

parameter estimation even for small- to medium-sized trial numbers, and reached an 

asymptote earlier than CS. This is because CS reduces the information supplied, as the RTs 

are grouped into a number of bins. Thus, more trials are required to attain the amount of 

information that other methods reach already for smaller trial numbers. Accordingly, I 

recommend against using CS for small- to medium-sized trial numbers. 

As I mentioned in the introduction of this thesis, in the past mostly CS and KS have 

been used for diffusion modeling. Importantly, CS has almost always been applied in studies 

based on data sets with very high trial numbers. For these trial numbers, all three approaches 

yield satisfying results and thus, findings from CS-based studies are expected to be reliable. 

However, in recent years, often substantially lower trial numbers have been used in diffusion 

model analyses. For example, Moustafa et al. (2015) conducted a study based on only 160 

trials and still applied the CS criterion. In this case, ML or KS would probably have been a 

better choice, as these methods yield reliable results also for lower trial numbers (in some 

cases even for fewer than 100 trials; for more detailed information on requisite trial numbers, 

see tables 4-6 from manuscript 3). 

The prevalence of CS in the diffusion model literature has likely been fostered by 

Ratcliff and Tuerlinckx (2002) who, on the basis of several simulation studies, came to the 

conclusion that CS is the method of choice. More specifically, they argued for the use of CS 

with a correction for contaminant trials and the inclusion of the intertrial variability of 

nondecision time (in addition to the other two intertrial variabilities). Note, however, that this 

CS approach only performed well in the presence of contaminants if 1,000 trials per condition 

(and, thus a total of 4,000 trials) were used. Critically, the authors did not test the performance 

of ML for this condition, arguing that it would have taken too long to conduct the parameter 

estimation. Thus, a direct comparison of ML and CS for this condition is not available in their 

article. Importantly, for 250 trials per condition (i.e., a total of 1,000 trials), the performance 

of CS was “very poor” (p. 467). Despite this incomplete comparison of ML and CS, the 

authors concluded that CS is the method of choice and many articles have later referred to this 
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article (e.g., Moustafa et al., 2015; Ratcliff, 2008; Ratcliff & McKoon, 2008; Wagenmakers et 

al., 2008) 12. 

Whereas Ratcliff and Tuerlinckx cautioned against using ML, in the studies of the 

present thesis, ML (and HDDM which is also based on ML estimation) not only performed 

very well for uncontaminated data, but also for data with slow contaminants (Lerche et al., 

2016). Only in the presence of fast contaminants were there problems for the ML approach. 

However, importantly, this problem could be counteracted if a model with one freely-varying 

intertrial variability—nondecision time variability—was included. This is because this 

parameter helps to capture fast contaminants. The other two intertrial variabilities, on the 

other hand, generally cannot be estimated well, and often even deteriorate the estimation of 

the main diffusion model parameters (Lerche & Voss, 2016a). Therefore, it will mostly be 

better to fix them at constant values. 

To sum up, while I advise against using CS for parameter estimation (especially, for 

smaller trial numbers), both KS and ML can supply very good results. Interestingly, often 

more restricted models with false fixations (in particular, of szr and sν) can produce more 

reliable results. This finding is also in line with the good performance of EZ, a three-

parameter model with threshold separation, drift rate and nondecision time (Wagenmakers et 

al., 2007), in the test-retest studies (Lerche & Voss, 2016b) and in power studies (van 

Ravenzwaaij et al., 2016).  

Especially in earlier diffusion model studies, often extremely high trial numbers were 

used (e.g., Ratcliff, 1981, 2002; Ratcliff & Rouder, 1998; Ratcliff, Thapar, Gomez, et al., 

2004; Ratcliff et al., 1999). For example, in the study by Ratcliff (2002) participants 

completed more than 10,000 trials. First, such high trial numbers are expensive, often 

requiring several sessions of data collection, which may limit the number of participants able 

to complete the study (e.g., only three in the study by Ratcliff, 2002). Obviously, in such 

studies, interindividual differences cannot be examined. Second, such high trial numbers 

might actually be detrimental to the validity of study results, as individuals may become more 

bored or distracted, resulting in higher percentages of contaminants and, even more critically, 

a change of processes (e.g., learning effects). Third, it is not possible to use high trial numbers 

                                                 

12 Note that in the references to the article by Ratcliff and Tuerlinckx (2002) important details are often omitted. 

For example, it is only stated that CS “provided the best balance between accurate recovery of parameter values 

[…] and robustness to contaminant RTs” (Ratcliff & McKoon, 2008, p. 885). However, in the presence of 

contaminants, CS in fact only performed well when the additional parameters (intertrial variability of 

nondecision time and contaminant correction parameter) were included and very high trial numbers were used. 
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for all paradigms, because the stimulus material is restricted. Finally, clinical populations 

might not be capable of undergoing long and frequent sessions. In sum, there are several 

reasons why the use of very high trial numbers might not be possible or suitable. Importantly, 

the results from our studies (Lerche & Voss, 2016b; Lerche et al., 2016) reveal that using trial 

numbers above 500 is mostly not necessary, as parameter estimation improves only 

marginally (or indeed, it might even deteriorate if more contaminants occur). 

To sum up, the three top guidelines of this thesis are the following:  

(1) CS should not be used for small- to medium-sized trial numbers. 

(2) It is advisable to fix the intertrial variabilities of starting point and drift rate (e.g., at zero) 

to obtain more reliable estimates of the four main diffusion model parameters (in 

particular, for smaller trial numbers). If such a “five-parameter model” is used (i.e., a 

model based on the four main diffusion model parameters plus the intertrial variability of 

nondecision time), different from previous indications (Ratcliff & Tuerlinckx, 2002), ML 

can also be applied to data with fast contaminants. 

(3) Increasing trial numbers to more than 500 is of limited advantage for the precision of 

parameter estimation. 

8.2 Collaborative Project on Validity of Results from RT Analyses 

In 2015, Gilles Dutilh and Christopher Donkin started an interesting validation project 

(Dutilh et al., 2016). They contacted various researchers from the field of RT modeling and 

invited them to analyze data from “pseudo experiments”, with the task of detecting eventual 

differences in parameters between two conditions (left vs. right moving dots in a dot motion 

task). Seventeen teams (each including one or two researchers) participated in the data 

analyses. Among the 14 pseudo experiments, there was one in which the authors did not use 

any manipulation. In three experiments, one single parameter was manipulated. For example, 

in Condition A, participants had a more difficult task than in Condition B, which would 

theoretically lead to a difference in drift rates between the two conditions. Furthermore, there 

were six experiments with manipulations of two parameters at the same time (e.g., drift rate 

and threshold separation). Finally, in four experiments, the three parameters of drift rate, 

threshold separation, and starting point were all manipulated simultaneously. The authors did 

not manipulate nondecision time and did not inform the teams about any details of their 

manipulations. In particular, they did not give any information on which parameter was 

manipulated in which experiment. 
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The project gives, in general, quite an optimistic view on analyses based on RT data. 

Specifically, for two of the four main diffusion model parameters, the results obtained by the 

different groups of researchers were very accurate, with 71 % and 86 % of correct 

classifications for drift rate and threshold separation, respectively. However, the percentages 

were lower for starting point (68 %) and nondecision time (62 %).  

Interestingly, the different research teams employed diverse analysis approaches, 

demonstrating that there is not one single way of analyzing RT data. For example, some 

groups used the diffusion model while some the linear ballistic accumulator model (LBA; 

Brown & Heathcote, 2008); and there were more sophisticated approaches based on 

hierarchical Bayesian analyses, as well as model-free approaches relying on summary 

statistics. Interestingly, only half of the diffusion modelers employed the full diffusion model. 

Notably, the team that showed the highest percentage of correct classifications based their 

inferences on EZ2 (Grasman, Wagenmakers, & van der Maas, 2009), which is an extension of 

EZ that additionally permits the estimation of the starting point. Generally, teams that used 

the full diffusion model did not reach better results than teams that based their analyses on 

simplified versions of the model. Also of interest is that the hierarchical Bayesian analyses 

did not outperform the non-hierarchical analyses (in fact, they even performed slightly 

worse). Furthermore, there was no clear “winner” regarding the comparison of LBA and 

diffusion model—if at all, the LBA model seemed to have more serious difficulties. 

One problem with this project is that the differences found cannot be clearly attributed, 

because the approaches taken by the different teams vary in several aspects at the same time. 

For example, different estimation methods were used (e.g., KS, CS, and ML), hierarchical and 

non-hierarchical analyses were conducted, and the statistical inferences were based on 

different strategies. Therefore, I reanalyzed the experimental data, varying only the 

optimization criterion used for parameter estimation (KS, ML, or CS) and the model 

complexity (four-, five-, or seven-parameter models). I estimated parameters separately for 

each participant and for the two conditions. For the drift rate, I computed νtotal as a measure of 

the overall speed of information accumulation (νtotal = νupper threshold – νlower threshold). The 

inferences were based on a t test (two-sided, with an alpha level of .05).  

The results are presented in Figure 2. Two main findings emerged: (1) The detection of 

parameter differences in threshold separation, drift rate, and starting point was very effective, 

and (2) in line with the findings from Manuscript 5, the seven-parameter model was not 

superior to the less complex models. The four- and five-parameter models often outperformed 
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the seven-parameter model. In fact, using ML or KS, the seven-parameter model did not show 

better performance than the less complex models for any of the parameters. 

 

Figure 2. Frequencies of correct classifications depending on the optimization criterion, parameter and model 

complexity. 

 

Striking are the low percentages of correct classifications for the nondecision time. 

Remember that Dutilh and Donkin did not explicitly manipulate the nondecision time in their 

experiments (i.e., “no effect” is the correct response for all experiments). However, it is 

plausible that they implicitly manipulated this parameter. In their manipulation of the 

threshold separation, they employed speed-accuracy instructions. In the accuracy blocks, 

participants were informed about erroneous responses, whereas in the speed blocks they got 

the feedback “too slow” if their response took longer than 0.8 s. It is possible that in the speed 

blocks, participants did not only speed up their decision process (which should result in a 

lower threshold separation), but also their motor response (and possibly the encoding of 

information, as participants may have been responding before completely encoding all 

information). In the accuracy blocks, on the other hand, they might have taken more time to 

execute the actual key press (and encoding). A more detailed analysis of the results reported 

by Dutilh et al. (2016) revealed the following pattern: If there was a manipulation of speed-

accuracy settings, on average 62.7 % of the teams found an effect on nondecision time (in the 

direction of the speed-accuracy manipulation). In contrast, only 12.9 % of the teams detected 

an effect on nondecision time if the speed-accuracy settings had not been manipulated. These 

findings are in line with results from previous experimental studies (Arnold et al., 2015; 

Rinkenauer, Osman, Ulrich, Müller-Gethmann, & Mattes, 2004; Voss et al., 2004; but see 

Ratcliff, 2006). In these studies, speed-accuracy instructions also influenced both threshold 

separation and nondecision time. 
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The fact that several research teams found unexpected differences in nondecision time 

could be due to parameter estimation problems of the methods employed, or it could be 

attributable to a lack of discriminant validity of the experimental manipulation. To further 

explore this issue, I conducted a simulation study with two conditions, each with a different 

threshold separation (with dz = 0.35, using a similar simulation strategy as in the two-drift 

model of Manuscript 3). One thousand parameter sets with 400 trials each (200 trials per 

condition, like in the study by Dutilh et al., 2016) were generated and the parameters were re-

estimated. More specifically, parameters were estimated separately for the two conditions 

using the ML criterion and a five-parameter model. If I found no effect on nondecision time, 

this would support the idea that the lack of discriminant validity observed in the experimental 

validation studies was merely an effect of the type of manipulation. If, on the other hand, 

there was (also) an effect on nondecision time, this would suggest that there might (also) be a 

trade-off in the estimation of these two parameters. 

Turning to the results, I found an effect size of dz = 0.26 for threshold separation and an 

effect size of dz = 0.12 for nondecision time (the effect sizes of the other parameters were at 

maximum 0.07). Thus, even if there was no “true effect” in nondecision time, a small 

difference still appeared. This supports the view that the unexpected effects in nondecision 

time observed in several studies (e.g., Arnold et al., 2015; Voss et al., 2004) may have been at 

least partly a problem of the estimation procedure, and not only of the experimental 

manipulation. The positive message here is that the effect on threshold separation was still 

larger than the effect on nondecision time. 

If future experimental manipulation studies were accompanied by simulation studies 

based on characteristics of the empirical studies (e.g., in terms of trial numbers and parameter 

ranges), one could better disentangle manipulation problems from estimation problems. To 

estimate the influence of these problems, one could, for example, compare ratios of effect 

sizes between simulated and empirical data (such as the effect size of threshold separation 

compared to the sum of absolute effect sizes of threshold separation and nondecision time). If, 

for instance, this ratio was essentially smaller than 1 for both types of data, and at the same 

time clearly larger for the simulated data than for the empirical data, this would indicate that 

there is both a lack of discriminant validity of the manipulation and a trade-off issue in 

parameter estimation. In addition, one could simulate data with an effect only in nondecision 

time (and none in threshold separation) to find out more about trade-offs between these two 

parameters. 
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The approach presented in the preceding section could also be used for the analysis of 

other unexpected findings. For example, it has been found that if speed is highly emphasized, 

participants will feature lower drift rates compared to an accuracy condition (e.g., Rae, 

Heathcote, Donkin, Averell, & Brown, 2014; Starns, Ratcliff, & McKoon, 2012). 

Accordingly, one could analyze whether the influence of speed-accuracy instructions on the 

drift rate is a problem of the manipulation or the parameter estimation. In the above 

simulation study, I used a threshold separation of 1.65 (speed-condition) vs. 2 (accuracy-

condition) and a standard deviation of 1, representing a small to medium sized effect size, and 

found no relevant drift rate difference between the two conditions (dz = 0.02). However, the 

pattern might be different if the threshold separation in the speed condition was even smaller. 

A systematic analysis of different mean threshold separations and effect sizes could be a topic 

for future studies. In addition, it would be interesting to analyze the influence of the trial 

number on possible parameter trade-offs. Generally, trade-offs will likely be smaller for 

higher trial numbers. However, as far as I know, the number of trials required to clearly 

separate different effects has not yet been systematically examined. 

8.3 Limitations and Ideas for Future Research 

The greatest limitation of the studies of this thesis may be the restriction to relatively 

simple designs. To test the generalizability of the results and to extend the set of guidelines, 

analyses of additional experimental designs are necessary. To give an example, in the two-

drift model of Manuscript 3, we generated a difference in drift rates between two conditions. 

Similarly, one could generate differences in other parameters. In Chapter 8.2, I demonstrated 

this approach for the threshold separation parameter. Furthermore, whereas in Manuscript 3, 

in parameter re-estimation, we only let drift rate vary between conditions, one could also let 

more parameters vary, or estimate parameters separately for the different conditions. In 

addition, for data generation, one might vary more than one parameter between conditions 

simultaneously and/or have more than two conditions. Indeed, in probably most diffusion 

model studies, the authors analyze which out of two or even more diffusion model parameters 

is influenced by the experimental manipulation. Therefore, it is important to know how many 

trials are required for the disentangling of influences on different parameters. 

So far, we only analyzed three types of contamination (no contaminants, 4 % of fast or 

slow contaminants). However, it is plausible that also a combination of fast and slow 

contaminants can occur, and that the percentages will sometimes be higher than 4 %. This 

will depend, for example, on the type of task with more exhausting, long-lasting tasks 
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featuring higher percentages of contaminants. It is an open question whether KS would 

continue to be so robust to contamination in this condition. Whereas Ratcliff and Tuerlinckx 

(2002) assumed that data with more than 5 % of contaminants are “unusable for model 

fitting” (p. 462), this still needs to be investigated systematically. 

One further limitation of the studies of this thesis is that, until now, we only analyzed 

non-hierarchical models. It would be interesting, for the future, to also compare the 

performance of non-hierarchical analyses to hierarchical (Bayesian) analyses. Even though 

the collaborative project by Dutilh et al. (2016) provides some first insight that more 

complicated analyses may not be necessary, this still needs to be analyzed in a more 

systematic way because as I already noted in the previous chapter, the comparability of the 

approaches taken by the different research teams was limited.  

One notable result from the project by Dutilh et al. (2016) was the strong performance 

of the very simple method EZ2 (Grasman et al., 2009), which performed best of all 

approaches. It would be interesting to further examine the performance of EZ2 that up to date 

has been rarely applied in diffusion model studies (for some exceptions, see Lee & Chabris, 

2013; Schmittmann, van der Maas, & Raijmakers, 2012; Whitson et al., 2014). EZ, in 

Manuscript 3, was found to be robust to the presence of fast contaminants, but was clearly 

affected by slow contaminants (likely because slow contaminants have a greater effect on the 

mean RT, which is used for parameter computation). In my eyes, it would be interesting to 

apply EZ2 to the data from the studies of this thesis and to new studies with more complex 

designs to test its performance under different conditions of model complexity and 

contamination. 

Both EZ and EZ2 do not allow an estimation of intertrial variabilities. Thus, these 

variabilities are implicitly fixed at zero. In contrast, in fast-dm, the intertrial variabilities can 

be fixed at user-specified values. In Manuscript 5, we explicitly fixed the intertrial 

variabilities at zero even though data had been generated on the basis of a full diffusion 

model. This often resulted in better estimates of the basic diffusion model parameters than the 

full diffusion model estimation. Note that it is possible that the fixation to specific values 

other than zero might result in even better estimates. For example, the intertrial variabilities 

could be fixed at values that have been observed in other diffusion model studies. In line with 

this possibility, I reanalyzed the data sets from the no contamination condition of the one-drift 

model of Manuscript 3, fixing intertrial variabilities of starting point, drift rate and 

nondecision time at 0.25, 0.5 and 0.1, respectively. These values are each half of the 

maximum values used for the generation of the data sets. Whereas with fixation at zero, 
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models with restrictions (three-, four- or five-parameter models) performed best in 61 % of all 

conditions, for the new fixation strategy the percentage increased to 76 %. Thus, as expected, 

the performance of the more restricted models improved with the different fixation strategy. 

Certainly, the choice of fixation values was, in this case, informed by knowledge about the 

true parameter ranges, and thus the increase in best-fitting models to 76 % presents an upper 

limit. For empirical data with unknown true values, one has to make guesses that can be more 

or less appropriate. The guesses could be based on previous studies with the same or a similar 

paradigm and, ideally, very high trials numbers (so that the estimates of the intertrial 

variabilities are reasonably reliable). 

In summary, there are plenty of possible extensions of the approaches taken in this 

thesis, and our analyses can be seen as first important step in the developing of more general 

guidelines for diffusion modeling. Generally, I am in favor of the combination of empirical 

studies with simulation studies. First, simulation studies can be useful to assess fit values of 

empirical studies (see Manuscript 1). For example, the p-value of the KS statistic depends on 

the number of trials, the number of conditions, and the parameter ranges. Thus, the general 

use of .05 as exclusion criterion is questionable. Rather, for each empirical study, the specific 

fit criterion should be deduced based on the distribution of fit values of a simulation study 

(with the simulation study based on the characteristics of the empirical study, e.g., using the 

same trial number, number of conditions, and parameter ranges). In addition, the combination 

of empirical and simulation approaches can help to disentangle estimation problems from 

other influences. In Manuscript 4 of this thesis, data were simulated based on the empirical 

test-retest data observed. This allowed a disentangling of estimation problems from state 

influences of parameters, thereby allowing us to see that drift rate is a particularly stable 

parameter. A further field of application has been outlined in more detail in Chapter 8.2. Here, 

the combination of empirical studies and simulation studies was suggested to disentangle 

influences of the experimental manipulation from estimation trade-offs between parameters 

(e.g., the influence of speed-accuracy instructions on nondecision time). 

Finally, I would like to add a more general, reflective point. First, I think that the 

availability of different software solutions for diffusion modeling and the newly implemented 

choice of different criteria within fast-dm-30 is a great improvement. In the past, researchers 

had to write their own code for modeling RT data with a diffusion model, which is no longer 

necessary now, thereby expanding the usership and the fields of application of the model. 

However, the amount of choices that users are now faced with also introduces complications. 

Carrying out additional analyses with, for example, ML instead of KS, requires the user of 
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fast-dm-30 to modify solely two letters in the control file. In addition, the computation time 

required by fast-dm-30 is very low for any of the three optimization criteria (even ML 

estimation usually takes much less than 1 hour per data set). Therefore, it might become 

somehow tempting to researchers to try out all three different optimization criteria (and, 

possibly different complex models) and report the “best” results.  

Ideally, effects are very stable and different methods come to the same conclusions as 

was the case, for example, for threshold separation and drift rate in most experiments of the 

project by Dutilh et al. (2016). If effects are large (like in their project), they will probably be 

correctly detected in most cases. However, if effects are small- to medium-sized, trade-offs 

between parameters can play a critical role, and such effects should thus be interpreted 

cautiously. In a future project, empirical data of diffusion model studies already published 

could be reanalyzed using different optimization criteria and models of different complexity 

to test the stability in face of different estimation procedures. 

Certainly, the abundance of choices that researchers are faced with as a result of user-

friendly software solutions is not an issue specific to diffusion modeling, but of more 

advanced mathematical models or statistical analyses in general. One important approach of 

counteracting the “fishing” for the best results is preregistration (e.g., Wagenmakers, Wetzels, 

Borsboom, van der Maas, & Kievit, 2012). Additionally, in my eyes, it is very important that 

software solutions be accompanied by well-founded guidelines on how to use the software. 

As the variety of approaches of the project by Dutilh et al. (2016) demonstrates, even experts 

do not agree on which method to use. The more that interest in diffusion modeling grows, the 

more important it becomes to further investigate the reliability and validity of diffusion model 

parameters. If guidelines on the use of the diffusion model (and also of other RT models) 

exist and, importantly, are known by a wide community, both researchers and reviewers can 

make better informed decisions. 

8.4 Extension of the Diffusion Model to “Slow” RT Tasks 

Ratcliff has repeatedly stressed that the diffusion model should only be applied to the 

analysis of very fast RT tasks that require on average at maximum 1.5 s per trial (e.g., Ratcliff 

& Frank, 2012; Ratcliff & McKoon, 2008; Ratcliff, Thapar, Gomez, et al., 2004). This “1.5 s 

rule” clearly restricts the field of applications and the external validity of the diffusion model 

as in many tasks, decisions will take more time than 1.5 s (e.g., Dummel, Rummel, & Voss, 

2016; Johnson, 1996; Kahane et al., 2012). Besides, the value of 1.5 is arbitrary and cannot, to 

my knowledge, be justified by any empirical finding. 
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If large numbers of trials (e.g., several thousands) were required to reliably fit the data 

of a participant, the diffusion model would be restricted to very fast response time tasks. For 

paradigms with longer RTs, the experiment would take too long, potentially resulting in 

changes in processes (e.g., owing to fatigue). However, as the results of this thesis 

demonstrate, small to moderate trial numbers can already supply satisfactory parameter 

estimates. This renders the application of the model to slower RT tasks possible from a 

practical point of view. However, what about the theoretical reasoning behind the 1.5 s rule? 

On principle, the diffusion model formula could be used for any period (whether for 

milliseconds or for years). However, it is questionable whether the theoretical assumptions 

underlying the diffusion model are still met if periods are longer. Two critical assumptions are 

that (a) there is a single stage of processing, and (b) that parameters are constant over time. 

For example, imagine a very basic task that has been frequently used for diffusion 

model analyses: a lexical decision task. In this task, participants have to judge whether the 

presented letter string is a word or not. Here, the assumption of a single-stage process (in 

comparison to a multiple-stage process) and of constant parameter values is very plausible.  

In a slightly different task, the letter strings presented might be adjectives each describing an 

individual that has to be judged according to their likeability. This decision will probably take 

longer and the single-stage assumption might be violated in some trials. For instance, an 

adjective like “pious” might be judged differently depending on the context. The participant 

might think of a good friend who is very pious and likeable in their eyes, and might want to 

decide in favor of “positive”. Thus, he or she might have almost already reached a threshold. 

Then, however, he or she might think of another context, such as religious fanatics, and 

might, in the end, press the “negative” key. Other examples of ambiguous words might be 

“sensitive” or “talkative”. Thus, in this simple example, there might already be more than one 

processing step.  

Imagine further a task that requires the judgment of likeability of a person that is 

described by not one single adjective, but by a number of different adjectives. There will be 

terms described that are part of the everyday language of the participant, and can thus be 

assessed easily; and others that have a lower familiarity. There will be adjectives that in the 

eyes of the participant are clearly positive or negative, and others that are more ambiguous. In 

other words, the adjectives will have a different informative quality with adjectives with a 

higher quality going along with faster information accumulation (i.e., higher drift rates) than 

adjectives that are less familiar or more ambiguous. In this task, the assumption of one single 

constant drift rate is not very likely. In such tasks with a number of simultaneously presented 
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stimuli, it is also very plausible that participants do not encode all stimuli before starting the 

decision process. One might illustrate such tasks by a chain of diffusion models (e.g., one for 

each adjective) that can have, for example, different drift rates and nondecision components. 

To sum up, as these examples illustrate, in more realistic and complex tasks, the assumptions 

of single-stage processing and constancy of parameters could be regularly violated. 

In Manuscript 5, we demonstrated that a simplified modeling of the underlying 

processes (here, in terms of the false fixation of intertrial variabilities) can result in good or 

even better estimates of the main diffusion model parameters. Similarly, one might wonder 

whether a violation of the assumptions of single-stage processing and parameter constancy 

poses a severe problem for model fitting. In fact, the diffusion model has already been applied 

to tasks that took longer than 1.5 seconds and model fit remained satisfactory (e.g., 

Aschenbrenner et al., 2016). In addition, in a simulation study by Ratcliff (2002), data were 

generated so that drift rates increased with the time, thus violating the assumption of 

parameter constancy. Interestingly, the diffusion model with one constant drift still displayed 

a good performance. Thus, there is already preliminary support that the violation of 

assumptions does not necessarily have negative effects on model fitting. 

The analysis of model fit of empirical data or simulation studies that explicitly make 

“false” assumptions are ways of analyzing conditions of the applicability of the diffusion 

model. We recently took a further approach and conducted an experimental validation study. 

Whereas there are several experimental validation studies based on fast RT tasks (e.g., Arnold 

et al., 2015; Voss et al., 2004), as far as I know, none has been conducted with slower RT 

tasks. In our study, participants had to work on a figural task. Eight rectangles were presented 

in each trial, with half of them surrounded by a blue and red border, respectively. The 

participants had to mentally sum up the sizes of the rectangles separately for each color and 

decide which size was larger. The task had a mean trial duration of 7.43 s (in the baseline 

condition), and can thus clearly be considered a “slow” RT task. In this task, very different 

strategies can be taken, as also the responses to an open-framed question demonstrated. For 

example, one common strategy was the search for pairs of similar-sized rectangles. Another 

was the mental collapsing of same-colored rectangles. In this task, it is also very likely that 

participants changed strategy during a trial, or that they used one strategy but restarted the 

decision process to check the accuracy of their decision (e.g., building different pairs). Thus, 

it is likely that the task violates basic assumptions of the diffusion model. 

We experimentally manipulated the four main diffusion model parameters, using a 

similar approach as Voss et al. (2004). Threshold separation was addressed by means of 
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speed-accuracy instructions. Drift rate was supposed to be affected by differences in the 

difficulty of the task. For the manipulation of nondecision time, participants had to press a 

key not only once, but three times in a row. Finally, the starting point was manipulated by the 

use of an asymmetric payoff matrix. Both convergent and discriminant validity of drift rate, 

threshold separation and nondecision time were comparable to those in experimental 

validation studies with fast RTs. The manipulation of the starting point had an effect on drift 

rate (more specifically, the drift criterion) instead of starting point. This was probably mainly 

due to the fact that the manipulation only had an influence on the percentages of key presses 

(with the favored key pressed more often), but not on RT. Of interest are also the results of a 

study by Leite and Ratcliff (2011). They compared the effects of the manipulation of stimulus 

frequency and a payoff matrix (for a fast RT task). The study revealed that a manipulation of 

stimulus frequency affected the starting point, whereas an asymmetric payoff matrix affected 

the drift rate. This is in line with our finding (but in contrast with the study by Voss et al., 

2004). Thus, our finding for the starting point manipulation does not seem to challenge our 

hypothesis that the diffusion model is also applicable to slower RT tasks. For a subsequent 

study, we could use a manipulation of stimulus frequency, which might then be more likely to 

influence the starting point instead of the drift criterion. 

To sum up, this thesis has rebutted one “myth” regarding diffusion modeling, namely, 

the assumption that very high trial numbers are necessarily required for diffusion modeling. 

Thereby, it has opened the field for other types of diffusion model tasks and for the challenge 

of another possible “myth”: The assumption that the diffusion model can only be applied to 

very fast response time tasks. The first results from our experimental validation study based 

on a figural task are promising and suggest that the model might also be applicable to tasks 

that require more than 1.5 s, even if assumptions might be violated. Nevertheless, it is still 

necessary to investigate whether this also generalizes to different types of tasks (e.g., 

numerical tasks or judgement tasks like the one presented as introductory example) and to 

even longer trial durations (e.g., of up to 30 seconds per trial). 
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9 Conclusions 

To date, substantiated knowledge about requisites of diffusion modeling is rather 

sparse. Indeed, not even experts agree on which method to use for parameter estimation. In 

this thesis, I compared different estimation procedures and trial numbers in order to deduce a 

set of guidelines for newcomers as well as for more experienced diffusion modelers. The 

guidelines are intended both for assessing the reliability of previous findings and for planning 

new experiments and analyses. 

Most importantly, our studies based on fast-dm-30, the newest version of fast-dm, could 

show that reliable parameter estimates can often be attained on the basis of small- to medium-

sized trial numbers. In fact, it is even likely that with very high trial numbers—of, for 

example, more than 10,000 per participant, as in the study by Ratcliff (2002)—the motivation 

of the participants decreases substantially, resulting in higher percentages of contaminants. 

Additionally, parameters might change over time. Whereas only three participants took part in 

the study by Ratcliff (2002), nowadays, researchers are often interested in interindividual 

differences in diffusion model parameters, and thus apply research designs with more 

participants, but significantly fewer trial numbers. Additionally, in the future, the diffusion 

model might also be applied to slower RT tasks (i.e., with RTs > 1.5 s) that—owing to their 

longer trial durations—will often be limited in trial numbers. Importantly, as the studies of 

this thesis demonstrate, for such small- to medium-sized trial numbers, CS—which used to be 

the standard procedure for diffusion modeling—is not recommended. Alternatively, ML and 

KS can supply reliable estimates even for lower trial numbers. 

In this thesis, I also argue for the use of less complex models, in particular of models 

with fixations of intertrial variabilities (specifically, of the intertrial variabilities of starting 

point and drift rate). In making this guideline, I do not question the reasons for which these 

parameters have been introduced (e.g., for modeling differences in speed between correct and 

erroneous responses). However, in particular for lower trial numbers, the full diffusion model 

that includes all three intertrial variabilities cannot be estimated reliably. The “false” fixation 

of the intertrial variabilities of starting point and drift rate can improve the estimation of the 

main diffusion model parameters (threshold separation, drift rate, starting point, and 

nondecision time) that are in the center of interest of probably all diffusion model studies.  

To conclude, even if the guidelines offered by this thesis are still limited in 

generalizability (e.g., based on rather simple designs), they do provide a first step and will, 

hopefully, be extended within the course of the next years.  
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ABSTRACT 

Stochastic diffusion models (Ratcliff, 1978) can be used to analyze response time data from 

binary decision tasks. They provide detailed information about cognitive processes underlying 

the performance in such tasks. Most importantly, different parameters are estimated from the 

response time distributions of correct responses and errors that map (1) the speed of 

information uptake, (2) the amount of information used to make a decision, (3) possible 

decision biases, and (4) the duration of non-decisional processes. Although this kind of model 

can be applied to many experimental paradigms and provides much more insight than the 

analysis of mean response times can, it is still rarely used in cognitive psychology. In the 

present paper, we provide comprehensive information on the theory of the diffusion model, as 

well as on practical issues that have to be considered for implementing the model.  

 

Keywords: Diffusion Model, Mathematical Model, Response Times, fast-dm, EZ, DMAT 
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Diffusion models in experimental psychology:  

A practical introduction 

Experimental research in cognitive psychology is often based on speeded response time tasks: 

In most paradigms, participants have to classify stimuli according to category membership, 

like valence (positive vs. negative), lexical status (word vs. non-word), or familiarity (“old” 

vs. “new” words in a memory experiment), according to superficial stimulus properties (e.g., 

color or location), or according to stimulus identity (e.g., in the Eriksen flanker task, Eriksen 

& Eriksen, 1974). Performance in such tasks is then compared between conditions (e.g., 

primed vs. non-primed words), stimulus types (e.g., high frequency vs. low frequency words), 

or between groups of participants (e.g., younger vs. older adults).  

Depending on research tradition either mean response time (RT) or accuracy of 

responses is used as measure of performance. This traditional approach to data analysis has 

two major drawbacks: Firstly, there is the problem of a missing common metric for 

performance (Spaniol, Madden, & Voss, 2006; Wagenmakers, 2009) and, secondly, the 

degree of information usage is poor. We will discuss both problems below before introducing 

the diffusion model approach (Ratcliff, 1978) and its special advantages. 

No Common Metric for Performance 

 The problem of a (missing) common metric refers to the fact that the performance in 

response time tasks can be measured in terms of response times or in terms of accuracy (or 

using both measures). As mentioned above, research traditions differ whether mean latencies 

or accuracy is considered the most important dependent variable. For example, sequential 

priming effects are more often analyzed in terms of response times, whereas in memory 

research typically the percentage of correct responses is used. The availability of two 

measures of performance poses two problems: On the one hand, there is the risk of the 

accumulation of Type I error probability:  It might be tempting to interpret and report a 

significant effect on one metric (e.g., mean latencies), and ignore non-significant results on 

the alternative metric (e.g., accuracy), without making a priori predictions (Wagenmakers, 

Wetzels, Borsboom, van der Maas, & Kievit, 2012). On the other hand, statistical power 

might also be reduced, whenever differences in performance spread over the two metrics, 

possibly resulting in non-significant effects for both mean RTs and accuracy. Researchers 

tried to respond to this latter problem by introducing response window techniques (e.g., 

Greenwald, Draine, & Abrams, 1996) that force the complete effect of an experimental 

manipulation on the accuracy dimension.  However, the extreme time pressure introduced by 

a response window might change the ongoing cognitive strategies and processes, thus 
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impairing comparability of tasks with and without response windows and endangering 

external validity of experiments. Finally, the most important problem of the two metrics is 

based on the possibility of speed-accuracy trade-offs. Whenever directions of effects on RTs 

and accuracy diverge (i.e., responses in one condition are faster but less accurate or vice 

versa), it is no longer possible to interpret results in terms of overall performance. In this case, 

the manipulation (or group membership, etc.) influences decisional style rather than 

performance (see Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010, for a neural 

explanation of the speed-accuracy trade-off). 

Poor Degree of Utilization of Information 

The second weakness of using only mean response time or only accuracy as dependent 

measure for performance is the relatively poor degree of utilization of the available 

information. The performance of a participant working through several hundred trials of a 

response time task is described poorly by one single number (i.e., the mean RT). The 

available data comprise two RT distributions for the two alternative responses that are 

characterized by their position (e.g., mean), by their specific forms (e.g., standard deviations, 

skewness) and by their relative sizes representing the percentage of each response. If we use 

all this information we might get a better understanding of what is going on while the 

participant performs the experimental task. That is, the information from RT distributions can 

help to disentangle not only whether performance differs between conditions, but also in what 

ways it differs, and how this difference in performance can be explained in cognitive terms. 

The Diffusion Model as a Theory for Binary Choice Decisions 

 To utilize the full information provided by position, shapes, and sizes of empirical 

response time distributions of a speeded response time task, it is essential to draw upon a 

theory explaining the composition of response time distributions from such tasks. Such a 

theory is provided by the diffusion model (e.g., Ratcliff, 1978; Ratcliff & McKoon, 2008; 

Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999). The basic assumptions of 

the diffusion model approach are that during a binary decision information accumulates 

continuously and that this accumulation of information can be described by a Wiener 

diffusion process. This Wiener diffusion process is characterized by a constant systematic 

component, the so-called drift, and by normally distributed random noise. The drift rate 

determines the average slope of the information accumulation process, that is, the speed and 

direction of information accumulation. The assumption of random noise explains that the 

processing of the same stimulus—or the same type of stimulus—results in different response 

times, and sometimes in different (i.e., erroneous) responses. Most important, the diffusion 
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model can explain the skew that is typically found in empirical response time distributions 

(Ratcliff, 2002). 

Advantages of the diffusion model approach 

The full diffusion model is characterized by several parameters that are discussed 

below. In a diffusion model analysis, values for these parameters are estimated from empirical 

response time distributions. Although there are different ready-to-use software solutions for 

diffusion model analyses (Vandekerckhove & Tuerlinckx, 2007b; Voss & Voss, 2007), 

analyses are still more complex compared to simply entering mean response times into an 

ANOVA analysis. Therefore, the question arises which benefits come along with the costs of 

doing this kind of analysis. 

The major advantage of the diffusion model approach is that different cognitive 

processes are mapped on different psychological meaningful parameters.  Therefore, the 

diffusion model provides a solution to the above mentioned problem of the missing common 

metric of traditional analyses of response time tasks: Effects do not longer spread over 

different measures. For example, the influence of differences in performance is disentangled 

from the influence of decisional styles, because these processes are mapped on separate 

parameters.  

The estimation of different process-pure measures for different cognitive processes 

makes it possible to test specific theories. We get information not only whether participants 

are slower (or less accurate) in an experimental condition, but also why this is so. Imagine—

for example—that there is a significant difference in mean RTs between two experimental 

conditions. This deceleration of responses can be explained (1) by slowdown of information 

uptake or processing, (2) by a more conservative response criterion, or (3) by a delayed 

(motoric) response execution. With the diffusion model, it is possible to distinguish 

empirically between these alternative explanations. In a recent study from our own lab (Voss, 

Rothermund, Gast, & Wentura, 2012) we found, for example, priming effects for associative 

and affective priming tasks that were nearly identical in terms of response times (about 10 

ms). However, diffusion model analyses revealed that these effects were based on completely 

different mechanisms: While semantically associated primes caused a faster identification of 

the target word, affectively matching primes increased the speed of response execution. 

Besides the fact that the diffusion model provides more specific measures, it will in 

many cases also provide more valid measures for specific research questions. It can also be 

argued that parameter estimates are less noisy measures compared to response time means, 
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which could also improve reliability. However, this latter question needs to be addressed 

empirically. 

The Prevalence of Diffusion Model Analyses in Psychological Research 

The diffusion model approach was introduced as a tool for analyzing data from speeded 

response time tasks three and a half decades ago by Roger Ratcliff (1978). Nonetheless, the 

usage of this kind of modeling was restricted for quite a long time to a small number of 

researchers who invested a lot of effort in programming their own software solution. 

Recently, however, different tools were published simultaneously that allow applying the 

diffusion model without extensive programming skills. These tools comprise the EZ-diffusion 

model (Grasman, Wagenmakers, & van der Maas, 2009; Wagenmakers, van der Maas, Dolan, 

& Grasman, 2008; Wagenmakers, van der Maas, & Grasman, 2007), DMAT 

(Vandekerckhove & Tuerlinckx, 2007a, 2008), and fast-dm (Voss & Voss, 2007, 2008). We 

will discuss these programs below in the section on parameter estimation procedures. The 

availability of programs for diffusion model analyses answers to a strong increase in interest 

for diffusion model analyses in different fields of psychology. This increase of interest is 

reflected by an exponential increase in the number of citations of the original publication 

introducing the diffusion model to psychology (Figure 1). We hasten to add that obviously not 

all articles citing Ratcliff (1978) are concerned with the diffusion model; however, clearly the 

vast majority of them will be. 

Although the interest in diffusion modeling has grown considerably, this method is far 

from being a standard method in cognitive psychology. The aim of the present article is to 

introduce the possibilities and limitations of this form of analysis to a broader audience of 

researchers that are not yet experts in this field. 

The Rationale of the Diffusion Model 

In this section, we start with a description of a simplified four-parameter model before 

introducing several model extensions, followed by a short discussion on how to model 

performance in different experimental conditions simultaneously. 

The Simple Diffusion Model 

The diffusion model approach assumes that while performing a binary choice task 

information accumulates continuously. The accumulated information is represented by an 

internal counter which is driven in opposite directions by information supporting the different 

decisional outcomes. For example, in an evaluation task the counter might be increased by 

positive information and decreased by negative information. The change of the counter over 

time is modeled as a diffusion process that runs in a corridor between two thresholds. As soon 
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as the upper or lower threshold is hit the decision is reached and response A or B, 

respectively, is initiated. 

Originally, the diffusion model was introduced as a four parameter model (Ratcliff, 

1978). In this model, performance is described by the average slope of the diffusion process 

(drift rate: v), threshold separation (a), starting-point (z), and duration of non-decisional 

processes (t0). The basic model is depicted in Figure 2. The Figure shows three sample paths 

for the diffusion process. The course of these paths varies from trial to trial—even if identical 

information is available—because of random noise1. This variability of process paths leads to 

different process durations and different process outcomes. Thus, it is possible to predict 

decision time distributions for both possible responses from the model parameters (Figure 2).  

The most important question in a diffusion model analysis is what psychological 

processes are mapped by the parameters. There are straightforward interpretations for all 

parameters of the diffusion model: The drift rate (v) maps the speed of information uptake and 

thus provides a measure of performance. In the comparison of conditions the drift reflects task 

difficulty (with more difficult tasks represented by smaller drift rates). In the comparison of 

participants drift is a measure for individual cognitive or perceptual speed of information 

processing (Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007). 

Threshold separation (a) is defined by the amount of information that is considered for 

a decision. A conservative decisional style that is characterized by slow but accurate 

responding leads to large estimates for a, while liberal responding implies small threshold 

separations. Different studies have shown that the parameter a is sensitive to speed vs. 

accuracy instructions (e.g., Voss, Rothermund, & Voss, 2004). Additionally, there is a large 

body of research showing that age related slowing in response time tasks can be partially 

explained by more conservative styles of responding (e.g., Ratcliff, Spieler, & McKoon, 

2000; Ratcliff, Thapar, & McKoon, 2006, 2010, 2011). 

The third parameter of the simple diffusion model, the starting point (z), can map a 

priori biases in the decision thresholds. Since z can only be interpreted in its relation to a, we 

prefer reporting the relative starting point zr=z/a. If z differs from a/2 (i.e., zr≠0.5), different 

amounts of information are required before deciding on option A or B. Such differences might 

reflect situations with asymmetric pay-off matrices: For example, Voss et al. (2004) showed 

that the starting point is moved towards a response threshold when the corresponding 

                                                           
1 The amount of noise is determined by the so-called diffusion constant (s) which is a scaling parameter that 

cannot be estimated but has to be chosen. Fast-dm (Voss & Voss, 2007) uses a diffusion constant of s=1 while 

Roger Ratcliff usually uses a diffusion constant of s=0.1. Estimates for a, z, and v depend on the chosen 

diffusion constant. These parameters can be transformed to the case of s=1 by dividing the estimated values by 

the diffusion constant used for the estimation procedure. 
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response leads to greater rewards. Similarly, in the domain of motivated perception, it has 

been found that the starting point is closer to the “positive” threshold than to the “negative 

threshold” in an evaluation task, even when expectancy values for both responses were 

symmetric (Voss, Rothermund, & Brandtstädter, 2008). 

Finally, diffusion model analyses take into account the duration of non-decisional 

processes (t0 or terr). Such processes may comprise basic encoding processes, the 

configuration of working memory for a task, and processes of response execution (i.e., motor 

activity). The estimated duration of these processes is added to the decision times predicted by 

the diffusion process, resulting in a shift of the predicted RT distributions. A common finding 

is that extra-decisional processes are slowed in elder participants (e.g., Ratcliff et al., 2000). 

Recently, Schmitz and Voss (2012) showed that task switching costs are partially mapped 

onto t0, at least when task-switches cannot be predicted. In this case, obviously, the working 

memory has to be configured for the actual task, before the decision process can start.  

Inter-Trial Variability 

To accurately accommodate different shapes of RT distributions of correct responses 

and errors,  Ratcliff suggested extending the model to allow for so-called inter-trial variability 

in performance (e.g., Ratcliff & Rouder, 1998). This extension permits variability of the 

parameters of the simple model across trials of an experiment. For example, the drift might 

not be exactly the same for each trial of one condition of an experiment, either because of 

fluctuations of the participant’s attention, or because of differences in stimuli. 

Specifically, it has been proposed to model inter-trial variability of drift, starting point, 

and of the non-decisional parameter. The drift is assumed to be normally distributed with 

mean v and standard deviation sv (or η). For the sake of simplicity, for starting point and non-

decisional component, uniform distributions around z and t0 with the width sz and st0 are 

adopted. Recently Ratcliff (2012) showed that these distributional assumptions still lead to 

valid results if the true distributions differ. 

For most applications of the diffusion model, inter-trial variability will be of minor 

interest. However, sometimes adopting these parameters increases model fit notably. For 

example, Ratcliff and Rouder (1998) showed that large variability of drift can explain slow 

errors and large variability of starting point can explain fast errors. Nonetheless, the influence 

of sv and sz on predicted response time distributions is rather limited and thus can only be 

estimated with any reliability from huge data sets. This is different for st0, which shows a 

greater effect on the shape of response time distributions (i.e., reducing the skewness). 
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Differences in Speed of Response-Execution  

Another suggestion to extend the diffusion model relates to the non-decisional 

component (Voss, Voss, & Klauer, 2010). Typically, it is assumed that t0 is equal for both 

responses. However, this assumption might be wrong whenever motor-response programs 

differ in level of pre-activation. For example, when one response occurs more frequently, is 

more urgent, or is more likely in a given situation, it is highly plausible that this response will 

be executed with more vigor, resulting in a faster motor response.  Voss et al. (2012) showed 

that categorical priming (e.g., affective priming) can be explained by a faster execution of the 

primed response. According to this argument, the prime stimulus (pre-) activates a specific 

response program, which leads to a faster execution of this response, when it is finally 

triggered by the target stimulus.2 

Complex Models: Mapping Different Conditions 

Experimental RT-paradigms typically comprise different stimulus types or 

experimental conditions. When modeling such data with the diffusion model, the researcher 

has to decide whether completely independent models should be estimated for each condition, 

or whether certain parameters are restricted to be equal across conditions. Especially when 

data sets are small to medium size (i.e., trial numbers below 200) models will be more stable 

when all data is fitted simultaneously. 

Imagine, as an example, the case of a lexical decision task. In this case, you have—

minimally—two types of stimuli (i.e., words and non-words) that require opposite responses. 

For this task the upper and lower thresholds of the model represent the responses “word” and 

“non-word”, respectively. Obviously two different drift rates are necessary, because for word 

stimuli the diffusion process will mostly rise to the upper threshold (positive drift), while non-

words will have a negative drift. Also, inter-trial variability of drift may vary when stimuli 

from one class are more similar than those from the other class. However, it is unlikely that 

the remaining parameters of the model differ between stimulus types, because participants 

have no information on the next stimulus before it is presented, and consequently cannot 

adopt starting point or threshold separation to the stimulus of the next trial. 

 If, however, a task is considered in which participants do have information about the 

upcoming trial, it is possible that other parameters but the drift also have to be estimated for 

each condition separately: For example, in a task switching paradigm, participants may be 

aware that switching trials are more difficult to process. Therefore, the threshold separation 

might be increased, if task switches can be predicted (Schmitz & Voss, 2012). 

                                                           
2 The possibility to map differences in t0 between responses will be included in the forthcoming version of fast-

dm (Voss & Voss, 2007), which will be published soon. 
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 Finally, there are cases where—even in the presence of different stimulus types—

simple models can be adopted that do not at all differ between different stimuli. To make this 

possible, data has to be recoded in terms of accuracy: Then, the upper threshold reflects 

correct responses, and the lower threshold corresponds to error responses. Because there 

cannot be an a priori bias for or against the correct response, the starting point should be fixed 

to a/2 in this case. Recoding your data in terms of accuracy allows for a more parsimonious 

model (with only six parameters) at the price of the implicit assumptions that (1) drift rates for 

different stimulus types are identical in absolute magnitude and (2) that there is no bias in 

starting point. This assumption can be assumed to be met when both stimulus types lead to the 

same performance, that is, accuracy, as well as position and shape of RT distributions are 

similar. 

 

Theoretical Assumptions and Prerequisites of Diffusion Model Analyses 

To decide whether a task is suited for diffusion model analyses, it is important to explicitly 

review the theoretical assumptions and task prerequisites that have to be met.  We will 

address all important prerequisites in the following section. 

Binary Decisions 

Firstly, the applicability of the diffusion model is limited by the fact that it is a model 

of binary decision making. Therefore, the diffusion model as presented here cannot account 

for performance of multiple responses (for a similar multiple response approach see Brown & 

Heathcote, 2008; Donkin, Brown, Heathcote, & Wagenmakers, 2011). However, even in the 

case of a multiple choice task, the diffusion model might be applied: When it is reasonable to 

assume that the same processes underlie the different responses, it is appropriate to recode 

responses as correct (upper threshold) vs. error (lower threshold). Consider, for example, the 

Stroop task (Stroop, 1935). Although there are multiple responses (one for each color), one 

might try to model accuracy data with the diffusion model, allowing for different drift rates 

for congruent and incongruent trials. This approach averages performance over different color 

responses. This procedure is obviously only valid if performance (i.e., response times and 

accuracy) is similar across trials demanding different responses for both congruent and 

incongruent trials (see above). 

Continuous Sampling 

A second basic assumption is that decisions are based on a continuous sampling 

process. This assumption is obviously plausible for ambivalent visual stimuli that contain 

information supporting both possible responses, like fields of pixels with different colors that 
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have been used in brightness or color discrimination tasks (Ratcliff, 2002; Ratcliff, Thapar, & 

McKoon, 2003; Spaniol, Voss, Bowen, & Grady, 2011; Voss et al., 2008; Voss et al., 2004). 

However, the successful fitting of data from lexical decision tasks (Ratcliff, Gomez, & 

McKoon, 2004; Ratcliff, Thapar, Gomez, & McKoon, 2004) demonstrates that even the 

identification of words is no sudden insight but is based on a continuous—albeit rapid—

increase in familiarity. In this case the information entering the decision process comes from 

long-term memory rather than from an extern visual stimulus. The same argument applies to 

diffusion model accounts on recognition memory (Ratcliff, 1978; Ratcliff, Thapar, & 

McKoon, 2004; Spaniol et al., 2006; Spaniol, Voss, & Grady, 2008): Here, after encoding the 

stimuli, memory is the source of information driving the decision process. To sum up, we are 

confident that in many simple decision tasks information sampling can be conceived as a 

continuous process. 

Single Stage Decisions 

More problematic might be the implicit assumption that decisions are based on a 

single-stage processing. Whenever participants adopt more complex strategies (e.g., double-

check their solutions with an alternative strategy after an initial threshold is reached), the 

decision process might be divided in multiple steps with cognitive processes varying between 

steps. Such multiple-stage decisions cannot be mapped with a simple diffusion model as 

presented in this paper, although more complex models including diffusion processes for 

separate stages of information processing have been developed, for example, for the visual 

search paradigm (Guided Search 4.0, Wolfe, 2007) or for the flanker task (Hübner, 

Steinhauser, & Lehle, 2010; White, Ratcliff, & Starns, 2011). 

Constancy of Parameter Values over Time 

Another crucial prerequisite that is related to the single-stage assumption is the 

assumption of constancy of parameter values across time. Imagine, for example, a very 

difficult task where a stimulus contains little or no useful information. In this case participants 

might be tempted to reduce threshold separation when the information accumulation did not 

reach the a priori set thresholds after a couple of seconds. Also, in some tasks drift might not 

be constant over time, for example, when the decision process starts prior to fully encoding a 

stimulus. In this case, the process might start with a small drift rate that increases in later 

stages of information processing. Therefore, paradigms with stimuli that are easy to encode 

are optimal for a diffusion model analysis. 
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Decision Times 

From the assumptions described above it is often derived that diffusion model analyses 

apply primarily for tasks with latencies below one second (e.g., Ratcliff & Rouder, 1998). If 

decisions take notably longer, information processing might comprise qualitatively different 

stages or parameter values might differ over time. However, this arbitrary limit artificially 

restricts the area of application for diffusion models. There is no empirical evidence stating 

that diffusion models cannot be successfully applied for longer decisions (e.g., RT ≈ 10s). For 

such applications obviously test for model fit and parameter validity are of crucial 

importance. 

Numbers of Trials and Percentage of Errors 

Next to the theoretic assumptions summed above that might restrict applicability there 

is one practical limitation of the diffusion model analysis: To get reliable estimates for 

seven—or more, in case of multiple conditions—diffusion model parameters a high number 

of decisions per participant is essential. For example, in a recent experiment by  Leite and 

Ratcliff (2011, Exp. 2), participants had to complete 5 sessions of 64 blocks with 36 trials 

each (i.e., 11,520 trials per participant). However, diffusion models have been applied 

successfully to experiments with notably smaller number of trials: Klauer, Voss, Schmitz, and 

Teige-Mocigemba (2007, Exp. 2) report diffusion model results that are based on 72 trials per 

participant.  

As will be discussed below, the required trial number depends strongly on the 

estimation procedure (i.e., the adopted optimization criterion), the percentage of errors, and 

the complexity of the model. Rough estimates of the minimum number of trials that we 

consider essential for a sound analysis are presented in Table 1. 

 

Parameter Estimation 

In a diffusion model analysis, typically data from each participant are modeled separately, 

resulting in separate sets of estimates for all parameters, which subsequently can be entered in 

inferential statistical analyses. It is also possible to collapse data from all participants or from 

groups of participants with similar performance (so-called “super subjects“; e.g., Ratcliff, 

Perea, Colangelo, & Buchanan, 2004) for the analyses to increase the data base for parameter 

estimation. 

 The estimation procedure is based on a multidimensional search for the parameter 

estimates that lead to an optimal fit of predicted and empirical response time distributions. 

This search can be computationally costly because of the high number of parameters and 
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because the calculation of predicted distributions takes some time, even for modern high-

speed computers.  

 Figure 3 shows the predicted response time distributions from 8 different parameter 

sets. Model A (with a=1, zr=0.5, v=2, t0=0.5, sz=0, sv=0, st0=0) serves as a comparison 

standard, and the following 7 panels show how the distributions change when the value of a 

single parameter is modified (Panel B: increased threshold separation; C: increased starting 

point; D: increased drift; E: increased non-decisional parameter; F: increased variability of 

starting point; G: increased variability of drift; H: increased variability of the non-decisional 

parameter). To facilitate comparison, predicted distributions from the comparison model (A) 

are presented in each panel as hatched areas. A closer look on Figure 3 might help to 

understand the problems of parameter estimation. Firstly, there is the problem of model 

mimicry: If you compare, for example, the models with increased starting point (panel C) and 

increased drift rate (panel D), it is evident that predictions are fairly similar. The main 

difference lies in the prediction of somewhat faster error responses in the high-drift model. 

Therefore, you need a high number of error responses in the empirical data to be able to 

reliably differentiate between these two models. 

A second problem is that some parameters have only minor influence on the 

predictions. This is especially true for inter-trial variabilities of starting point and drift rate: 

Although quite extreme values were chosen for the figure (the starting point follows a 

uniform distribution from 0.2 to 0.8 in panel F and drift follows a normal distribution with 

mean 2 and standard deviation 2 in panel G), the influence on the RT distributions is limited. 

Obviously, one needs large empirical distributions (large trial numbers) to estimate these 

parameters with any accuracy. In the case of small to medium trial numbers one might decide 

to fix these parameters to 0 to make the model more parsimonious and to enhance stability of 

the estimation procedure. 

Comparison of Optimization Criteria 

For the multidimensional search for the optimal vector of parameter values, an 

optimization criterion has to be defined that quantifies the fit between predicted and empirical 

RT distributions. Because the choice of these criteria has influence on the speed, precision 

and robustness of the estimation procedure (Ratcliff & Tuerlinckx, 2002), we will briefly 

discuss three different approaches in the following sections. 

 Maximum Likelihood. Mathematically most efficient are maximum likelihood (ML) 

approaches (cf. Klauer et al., 2007, for an example adopting this method). For this approach, 

the logarithmized density of predicted RT distributions is summed over all responses, and this 



Guidelines on Parameter Estimation in Diffusion Modeling A 1-15 
 

sum is maximized in the search. The drawback of this method is that results can be strongly 

biased by single outliers: For example, when using a ML approach, a single fast guessing 

response (that does not result from a diffusion process) might force t0 to be very small, 

because otherwise this fast response would lead to a density of zero, rendering the total 

likelihood to be zero as well (log-likelihood is no longer defined in this case). Another 

disadvantage is that calculation can be very slow in case of large trial numbers. Consequently, 

we recommend using a ML based search only if data sets are so small that other optimization 

criteria fail and if a careful outlier analysis was conducted. 

 Chi Square. Most frequently used are searching algorithms based on the χ² statistic 

(e.g., Ratcliff & McKoon, 2008; Ratcliff & Tuerlinckx, 2002). This procedure uses quantiles 

from the empirical RT distributions to define bins on the RT axis. Ratcliff suggests using 6 

bins that are defined by the .1, .3, .5, .7, and .9 quantiles of the empirical RT distributions. 

The outer (open) bins contain 10 percent of data each, while all inner bins comprise 20% of 

trials. From the predicted cumulative distribution function it is calculated how many trials are 

predicted for each bin (by multiplying the portion of the predicted distribution for each bin by 

the total number of trials). Then, a χ² value is calculated from the numbers of observed and 

predicted responses from the 12 bins (6 for the upper and 6 for the lower threshold): 
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Advantages of the χ² approach are the fast calculation (independent of trial numbers), 

and the robustness against outliers. Since the first and last bin are open bins, only the numbers 

of responses within these bins are important, not the actual latencies of each response. 

Therefore, even an outlier of 0 ms would not distort results dramatically. However, these 

advantages come at a cost as well: Due to the binning, information is lost, and in case of small 

trial numbers, the identification of empirical quantiles might be inaccurate. This is especially 

problematic in experiments with high accuracy and hence few error responses. Therefore, we 

recommend using a χ² approach only for studies with large trial numbers (i.e., at least 500 

trials), and enough error trials (the smaller distribution should have at least 20 responses for 

each participant, so that the first and last bin comprises at least 2 responses). If there are fewer 

errors, results of the estimation procedure tend to depend strongly on the handling of these 

(e.g., ignoring error information, collapsing all errors in one bin, or nonetheless using six error 

bins). 

 Kolmogorov-Smirnov. A third possibility for the optimization criterion is based on the 

Kolmogorov-Smirnov (KS) statistic (Voss et al., 2004; Voss & Voss, 2007). This statistic is 
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the maximum vertical distance between predicted and empiric cumulative response time 

distributions. In the case of the parameter search for the diffusion model there are always two 

empirical and two theoretic distributions (as there are two thresholds) that have to be 

compared simultaneously. This problem has been solved by Voss et al. (2004) by multiplying 

all RTs from the lower threshold by -1. Thus, both distributions can be combined on a single 

dimension without overlapping each other (Figure 4). The KS approach can be considered as 

a compromise between the highly efficient ML method and the more robust χ² method. The 

KS approach—like the χ² method—provides robust estimates in the presence of outliers and 

simultaneously—like the ML method—considers the exact shape of the response time 

distribution without categorizing responses. 

 Table 1 sums the strengths and weaknesses of the three optimization criteria. 

Efficiency reflects the ability to accurately recover true parameter values from small data sets, 

robustness reflects the stability of estimates in the presence of outliers, and calculation speed 

points to the duration of the complete parameter estimation procedure. 

It is very difficult to provide a recommendation for a minimum number of trials that is 

required for robust parameter estimations. Generally, estimations will be more precise for data 

sets comprising a high percentage of error responses (i.e., when there are distributions of 

reasonable size at both thresholds). Secondly, the estimation procedure tends to be more 

robust when the number of free parameters is reduced. Especially fixing the starting point to 

z=a/2 notably increases the stability of results. Most important, when there are participants 

with virtually no error responses, fixing the starting point is indispensable, because then the 

distance from starting point to the lower threshold is no longer defined. Finally, the necessary 

trial number depends on the number of experimental conditions, that is, models might be 

more stable when different conditions are modeled simultaneously, while some parameters 

are fixed across conditions. 

Although the exact dependency of the required number of trials on these factors is still 

unclear, we decided to give rough recommendations for the minimum trial numbers we 

consider to be necessary for an acceptable diffusion model analysis, because this is one of the 

most frequent questions posed by cognitive researchers who think about applying the 

diffusion model to their data. Note however, that larger trial numbers are strongly 

recommended. 

Existing Software Solutions 

In order to facilitate the application of diffusion model analyses different software 

solutions have been developed allowing parameter estimation also to researchers with limited 
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programming experience. Important differences between these programs regard the degree of 

information used for parameter estimation and the number of model parameters that can be 

estimated.  

For the EZ-diffusion model  (Grasman et al., 2009; Wagenmakers et al., 2008; 

Wagenmakers et al., 2007) a JavaScript, an Excel sheet, R code, and a MATLAB 

implementation are available (see http://www.ejwagenmakers.com/papers.html for links to the 

respective implementations). The EZ-diffusion model makes use of a limited degree of 

information of the observed RT distributions. Only the mean and variance of the correct 

responses and the accuracy rate are used for parameter estimation. The estimation procedure 

is—as the name of the program implies— easy as parameter estimates can be immediately 

obtained by entering the three calculated values (mean, variance, and accuracy) into three 

equations. Thereby parameter estimates for the simple diffusion model can be obtained, that 

is, for drift rate, threshold separation and duration of non-decisional processes. The parameter 

calculation via these closed-form equations is very fast as no time-consuming iterative 

optimization process has to be applied. However, the restrained use of information (especially 

about the error trials—only the percentage of observed errors is considered) do not allow the 

estimation of inter-trial variabilities. These are implicitly assumed to be equal to zero. In the 

standard EZ model the starting point cannot be calculated either. It is fixed to the mid-point of 

the threshold separation (z = a/2) while EZ2 (Grasman et al., 2009)—a more recent, extended 

version of EZ—allows the calculation of an estimate for the starting point. Furthermore EZ2, 

in contrast to EZ, allows the estimation of different values for a parameter depending on 

diverse conditions (e.g., one drift rate for words, another for non-words) while at the same 

time the other parameters are held constant over conditions. Another extension of EZ, so 

called robust-EZ (Wagenmakers et al., 2008) deals with contaminant data. 

In contrast to EZ, the Diffusion Model Analysis Toolbox  (DMAT: Vandekerckhove & 

Tuerlinckx, 2007a, 2008) and fast-dm (Voss & Voss, 2007, 2008) utilize more information 

from the RT distributions to draw conclusions about the decision processes. DMAT is a 

MATLAB toolbox which is available from the website 

http://ppw.kuleuven.be/okp/software/dmat/. Fast-dm is a command-line program 

implemented in C that can be downloaded from the website http://www.psychologie.uni-

heidelberg.de/ae/meth/fast-dm/. While EZ only requires the mean and variance of correct 

responses and the accuracy rate, for the use of fast-dm and DMAT all correct and error 

response times have to be supplied to the program.  A file with at least two columns is 

needed: one coding the accuracy of the response (error vs. correct response), the other 
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containing the response times.  Considering accuracy rate and distribution of correct as well 

as error responses DMAT and fast-dm allow the estimation of all of the diffusion model 

parameters, i.e. inclusive of starting point and inter-trial variabilities. Like EZ2 both DMAT 

and fast-dm comprise the option of restricting parameters across conditions while letting other 

parameters vary between these conditions.  

Fast-dm and DMAT use the parameters v, a and t0 as estimated by EZ as starting points 

for an iterative optimization routine.  The principal difference between DMAT and fast-dm 

lies in the optimization criterion used for parameter estimation. While DMAT is based on the 

χ² statistic fast-dm uses the Kolmogorov-Smirnov (KS) approach. Therefore, fast-dm is 

characterized by the usage of the complete distributional information, while DMAT draws 

upon the number of RTs in different “bins” on the RT axis. As outlined above (see 

Comparison of Optimization Criteria) the higher degree of information usage of the KS 

method implies longer calculation times but on the same time might lead to higher efficiency 

of parameter estimation.  

To compare performance and results of different diffusion model programs it has to be 

considered that fast-dm uses a diffusion constant of s=1 while DMAT and EZ fix s to 0.1. 

Therefore DMAT and EZ estimates for all parameters except for t0 and st0 have to be divided 

by 0.1 to establish comparability with fast-dm results (see Footnote 1). First simulation 

studies in order to compare the parameter recovery of fast-dm, DMAT and EZ have been 

conducted by van Ravenzwaaij and Oberauer (2009). Regarding the correlation between the 

true parameter values (on which the simulated data were based) and the estimated parameter 

values EZ and fast-dm emerged as superior to DMAT. EZ and DMAT performed better than 

fast-dm in terms of the recovery of the mean true values. However, more studies 

systematically varying trial numbers, parameter ranges, and contamination by outliers are 

necessary to determine which algorithms are superior for which data and which research 

questions. 

 

Typical Experimental Paradigms for Diffusion Model Analyses 

In the following section, we will present short overviews of three experimental paradigms that 

have been frequently and successfully used for diffusion model analyses.  Specifically, these 

typical diffusion model paradigms comprise brightness- or color-discrimination tasks, 

recognition memory tasks, and the lexical decision task. For studies employing the diffusion 

model approach to analyze general principals of information processing (e.g., age related 

differences in information processing: Ratcliff et al., 2000; Ratcliff, Thapar, Gomez, et al., 
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2004; Ratcliff, Thapar, & McKoon, 2001; Ratcliff et al., 2003; Ratcliff, Thapar, & McKoon, 

2004; Spaniol et al., 2006; Thapar, Ratcliff, & McKoon, 2003) these well-tested paradigms 

are recommended, because a good validity of parameters can be assumed.  

Brightness, Color, or Numerosity Discrimination 

 Diffusion model analyses have been applied in numerous studies requiring the 

classification of ambiguous stimuli with respect to brightness (Ratcliff, 2002; Ratcliff & 

Smith, 2010; Ratcliff et al., 2003, 2006) or color (e.g., Spaniol et al., 2011; Voss et al., 2008; 

Voss et al., 2004). In these experiments, participants see squares that are composed of a 

random pixel pattern of two different brightness or hue values (e.g., black vs. white or orange 

vs. blue). The task is to classify stimuli according to the dominating color, that is, to judge 

which kind of pixels appears in greater number. Across trials the frequency of occurrence of 

colors is varied (e.g., 44%, 48%, 52%, or 56% of pixels are white). Structurally very similar 

are numerosity discrimination tasks that require participants to judge whether a high or low 

number of stimuli (e.g., asterisks) is presented (e.g., Leite, 2012; Ratcliff, 2008). 

 Such color, brightness, or numerosity discrimination tasks are very well suited for 

diffusion model analyses because they meet the theoretical assumptions of the model 

particularly well: It is highly plausible that performance in these tasks is based on a one-stage 

continuous information accumulation process, where drift is determined, for instance, by the 

ratio of presented colors.  Another advantage is that stimuli are artificial and initially 

meaningless, thus making a priory biases unlikely. Therefore, stimuli can be assigned with 

values or meanings experimentally to study biases in decision making (Voss et al., 2008). 

Finally, such discrimination tasks are very easy to learn, making it a flexible tool for many 

research questions and even rendering possible the application in animal research (Ratcliff, 

Hasegawa, et al., 2011; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves, 2007). 

Recognition Memory 

 Recognition memory is the paradigm for which the diffusion model was originally 

conceived (Ratcliff, 1978) and where it is still frequently applied (e.g., McKoon & Ratcliff, 

2012; Ratcliff, Thapar, & McKoon, 2004; Spaniol et al., 2006; Spaniol et al., 2008; White, 

Ratcliff, Vasey, & McKoon, 2010). The task comprises a study-test paradigm, with stimuli—

usually words—being presented once or more in an acquisition phase. In a later recognition 

phase participants have to judge whether presented stimuli are “old” or “new”. Other memory 

tasks can be used as well: For example, participants can be asked to decide whether a pair of 

stimuli has been shown together before in the same way ("intact pair") or whether it has been 

rearranged. For recognition memory, like for the brightness discrimination paradigm, the 
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theoretical assumptions of the model can be considered to be well met, in that there is a single 

fast binary decision, and presumably an isolated, recently formed trace in memory which 

supplies the evidence that is accumulated. 

In recent applications, Starns, Ratcliff, and White (2012) and Starns, White, and 

Ratcliff (in press) use the diffusion model to decide between accounts of the strength-based 

mirror effect, that is, better recognition performance for stronger memories (e.g., from 

repeatedly presented stimuli) compared to weaker memories (e.g., stimuli presented only 

once). Starns and colleagues  show that empirical findings are more consistent with a change 

in the drift criterion, than with a differentiation account according to which stronger 

memories produce at the same time weaker familiarity of “lure” items, which would predict 

changes in drift rates for both targets and lures (Criss, 2009, 2010). This is particularly 

relevant for future applications of the diffusion model as it demonstrates that the drift rate can 

be affected by decision processes. 

For the effect of age on recognition memory Ratcliff, Thapar, et al. (2011) and 

McKoon and Ratcliff (2012) find that in item recognition non-decision time and boundary 

separation increase with age, whereas drift remains fairly constant (but see Spaniol et al., 

2006). In contrast, for associative recognition—i.e., the ability to tell whether a particular pair 

of word stimuli was presented jointly previously—drift rate decreased with age. Some studies 

also investigate the influence of intelligence on diffusion model results from recognition 

memory: Drift rate is generally positively associated with intelligence, but in the associative 

memory task this was much less the case for elder compared to younger participants 

(McKoon & Ratcliff, 2012).  

Lexical Decision 

Several studies used the diffusion model to analyze performance in lexical decision 

tasks (e.g., Ratcliff, Gomez, et al., 2004; Ratcliff, Thapar, Gomez, et al., 2004). This task 

requires participants to decide quickly whether presented letter strings are valid words. The 

diffusion model account of the lexical decision task is silent on the details of lexical access 

and offers a—poorly defined—concept of “wordiness” in its stead (Norris, 2009; Ratcliff, 

Thapar, Gomez, et al., 2004). Following this concept, words (and non-words) differ in their 

degree of wordiness, that is, in their typicality for the category “word”. One main finding of 

the diffusion model approach to the lexical decision task is that many aspects of stimuli 

reliably map onto drift rate. For example, high frequency words show larger drift rates 

compared to low frequency words, and random letter strings have stronger (negative) drift 

rates compared to word-like non-words (Ratcliff, Gomez, et al., 2004). 
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Recently, the lexical decision task has also been applied in diffusion model studies 

analyzing different forms of sequential priming (Voss et al., 2012; Yap, Balota, & Tan, 2012). 

Voss et al. (2012) show that semantic (associative) priming increases drift rate (i.e., facilitates 

lexical access), while categorical priming reduces the non-decisional component (i.e., speeds 

response execution).  Yap, Balota, and Tan (2012) obtain a more complicated pattern of 

results for priming: priming mapped onto non-decisional time when stimuli were presented 

clearly visible and influenced drift and non-decisional time when stimuli were degraded (cf. 

also Gomez, Perea, & Ratcliff, in press).  

Yap, Balota, Sibley, and Ratcliff (2012) found that participants' ability is reflected in 

drift and that those participants who do well in the lexical decision task show less pronounced 

effects of lexical variables such as length/structure, neighborhood and frequency/semantics. 

For reading impaired children diffusion model analyses revealed a difference both in drift 

(lower rates for the impaired participants) and a smaller effect on non-decision time, in that 

the reading impaired use a larger boundary separation (Zeguers et al., 2011).  

 

A Practical Guide to the Application of Diffusion Models 

In the following section we give some important practical advice on how to conduct a state-

of-the-art diffusion model study. Specifically, we will address issues of experimental design, 

data pre-treatment, model specifications, and tests of model-fit and parameter validity. 

Experimental Design: Which task should be implemented? 

In a first step, an adequate experimental response time paradigm must be chosen. It is 

always preferable to draw upon tasks that have already been tested for diffusion model 

analyses before. If a new task has to be used, the theoretical assumptions of the model have to 

be considered carefully, and the validity of the model should be analyzed empirically in 

elaborate pre-studies that should be conducted independently of an application question; we 

will address the issue of empirical parameter validation below (see Voss et al., 2004, for an 

example of a parameter validation study). 

 Once an apt task has been identified, the researcher has to decide how many conditions 

or stimulus types should be used in the experiment. In our experience, the inclusion of 

different stimulus types that differ in task-difficulty (e.g., four types: easy and difficult stimuli 

requiring response A or B) often increase robustness of the estimation procedure.  

Finally, the number of trials has to be chosen. Generally large trial numbers (e.g., 

N>200) are preferable. However, such massive testing is not only costly in terms of time and 

money, but extensive practice might also change the underlying cognitive processes in the 
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later blocks or sessions of an experiment (Dutilh, Krypotos, & Wagenmakers, 2011). 

Therefore a compromise between highly accurate parameter estimation and the practical 

possibilities has to be adopted. Generally, trial numbers need to be high when the model test 

is of key importance (i.e., when new paradigms are tested) or when parameters need to be 

estimated with high precision (e.g., for correlative research). Lower trial numbers might be 

sufficient when parameters are tested for group differences and when simplified versions of 

the model are applied. 

Analyzing your data 

In this paper, we cannot give a comprehensive tutorial on the different computer 

programs for diffusion model analysis (see section Existing Software Solutions). However, 

we will present an overview of the typical procedural steps and associated decisions that have 

to be made. 

Data Pre-Treatment. Although the diffusion model is designed to predict the complete 

response time distribution, the removal of outliers from the individual response-time 

distribution is highly recommended. For the analyses, fast outliers (e.g., fast guesses) are 

generally more problematic than slow outliers. Since χ² and KS based estimation procedures 

are relatively robust, liberal criteria for lower and upper outliers (e.g., fast outliers: RT<200 

ms; slow outliers: RT>5000 ms) will often be sufficient. For the ML method, stricter criteria 

that are derived from individual response time distributions are preferable. For example, all 

responses 1.5 interquartile distances below the first quartile or above the third quartile of the 

individual RT distributions might be excluded (outliers sensu Tukey, 1977). Finally, Ratcliff 

and Tuerlinckx (2002) suggest a highly sophisticated procedure to remove fast outliers: They 

suggest starting with a fixed upper limit for fast outliers (e.g., 300 ms) and increasing this 

limit continuously until performance rises above change, that is, until more correct than 

erroneous responses are made. All trials with RTs below the so found limit are discarded. 

However, this procedure is only feasible for easy tasks with generally low numbers of errors. 

Grouping of Data. Typically, data is modeled for each participant separately. This 

will require saving data in separate date files. If the individual data sets are too small for a 

sound parameter estimation, one might consider collapsing data across the complete sample or 

across so-called super-subjects (Ratcliff, Perea, et al., 2004), that is, across participants with 

similar response time distributions and error percentages. Grouping has always the 

disadvantage that it is unclear whether the estimated parameters are valid measures, 

because—possibly—cognitive processes differ between participants, even if overall 
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performance is similar. Another problem is that subsequent statistical comparisons are 

impossible or lack power. 

Mapping Actual Responses vs. Accuracy. For the diffusion model analysis, responses 

have to be linked to thresholds. In a binary choice task, this can be done by maintaining the 

actual responses (e.g., upper threshold = “word”, lower threshold = “non-word” in a lexical 

decision task), or by linking thresholds to accuracy (i.e., upper threshold = correct response, 

lower threshold = error). In the first case, one has to use separate drift rates for alternate 

stimulus types, and drift for the stimuli requiring the response linked to the lower threshold 

will be negative. To compare speed of information uptake between stimulus types, absolute 

values of the drift have to be checked against each other. In the second case—that is when 

accuracy data is modeled—one drift rate is sufficient, and implicitly the assumption is made 

that performance is equal across stimulus types.3 When thresholds are linked to accuracy the 

starting point should always be fixed to z=a/2, because—logically—there cannot be an a 

priori bias towards (or against) the correct response. 

Varying Parameters between Stimuli or Conditions. Often, diffusion model analyses 

are employed to test empirically which parameters account for the effect of an experimental 

manipulation. To answer this question, different parameters must be allowed to vary between 

conditions or stimulus types. If only one parameter is allowed to vary, trivially any present 

effect will map on this parameter. One possibility is to split the data and estimate completely 

independent models for each condition.4 Thus, all parameters could possibly account for an 

effect of the manipulation. Often more parsimonious models can and should be chosen. For 

example, it might make sense to assume that threshold separation and starting point are 

constant across trials. Also, for the sake of simplicity, it might often be helpful to fix 

variability parameters across conditions and stimulus types. 

Selection of an Optimization Criterion. As discussed in the section Comparison of 

Optimization Criteria, the criteria have different advantages (see Table 1 for a comparison): 

We recommend using the ML approach for small, the KS approach for medium, and the χ² 

approach for large trial numbers. Until now, these criteria are implemented in different 

                                                           
3 Obviously, different drift rates could be used in the model on accuracy data as well. However, then recoding 

will not make the model more parsimonious and parameter estimation will be less stable because the distribution 

at the lower (error-) threshold will be rather small. 
4 If all parameters are allowed to vary between stimulus types it is highly recommended to use separate data files 

and thus separate runs of the estimation program. Theoretically fast-dm or DMAT could estimate all parameters 

for all conditions in one search. However, the multidimensional search procedure (the SIMPLEX algorithm, 

Nelder & Mead, 1965) has problems finding the optimal solution when too many parameters are optimized 

simultaneously. 
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software solutions. In the forthcoming version of fast-dm it will be possible to choose between 

the three optimization criteria discussed above (ML, KS, or χ²).  

Interpretation of Parameter Values. In the last step, the estimated parameter values 

are entered as dependent variables into statistical analyses. Thus, it is possible to check which 

parameters account for differences in performance between groups (e.g., younger vs. elder 

participants, Ratcliff et al., 2000), stimulus types (e.g., high frequency vs. low frequency 

words in lexical decisions, Ratcliff, Gomez, et al., 2004), experimental manipulations (e.g., 

speed vs. accuracy instructions, Voss et al., 2004), and so on. Another strategy is to use 

parameter estimates for correlational analyses (e.g., predicting intelligence scores, Schmiedek 

et al., 2007). However, there are two caveats that should be considered prior to the 

interpretation of diffusion model results. Results can only be considered valid if, firstly, the 

chosen model fits the data well, and, secondly, if one can be sure about the psychological 

meaning of the parameters. Both issues will be discussed in the following sections on Model 

Fit and on Empirical Validation Studies, respectively. 

Model Fit 

A crucial precondition for the interpretation of diffusion model results is an acceptable 

model fit. Only if the model can recover response time distributions and accuracy rates 

adequately, results might reflect the ongoing cognitive processes. Different strategies have 

been developed to assess model fit. 

 Statistical Tests of Model Fit. Firstly, it is possible to assess model fit via statistical 

tests: The χ² statistic as well as the KS statistic can be directly translated into p-values from 

the corresponding statistical test for the comparison of predicted vs. empirical response time 

distributions. Small values of p (e.g., p<.05) indicate that the diffusion model cannot account 

for the data.  However, the interpretation of these p-values has several problems: (1) Firstly, 

because the shapes of the predicted RT distributions are fitted flexibly to the empirical 

distributions the tests will tend to be too conservative, that is, models will be rejected too 

seldom (D'Agostino, 1986).  (2) Secondly, if several conditions are fitted simultaneously (i.e., 

if at least one parameter is free to vary between conditions), fast-dm reports the product of all 

p-values from the different conditions. Therefore, the displayed p-values might be very small 

in case of multiple conditions. (3) Thirdly, results from statistical tests depend strongly on the 

number of trials: In case of small or medium trial numbers, on the one hand, the power of 

both χ² test and KS tests are small and— consequently—misfits will often not be detected. 

One the other hand, an exact model fit cannot be expected, because—albeit being quite 

sophisticated—diffusion models as any theory propose a simplified model of reality. 
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Therefore, statistically significant misfits are to be expected in case of large trial numbers and 

might be considered rather unproblematic. 

 Graphical Displays of Model Fit. Because of the problems related to the statistical 

tests of model fit, graphical displays of concordance of predictions with data have been 

proposed. A good way to do this is to present a display of fit for each person and each 

condition separately by plotting the predicted and empirical cumulative distribution functions 

(CDF) in the same graph.5 Another possibility is provided by so-called quantile probability 

plots that display quantiles of the RT distributions as a function of response probabilities for 

different conditions or stimulus types (e.g., Ratcliff & Smith, 2010). However, in many 

studies there are too many participants to present separate figures for each model. In this case 

it might be helpful to average CDFs across participants (Schmitz & Voss, 2012, Appendix A). 

Another possibility to present model fit for many participants simultaneously is to display 

scatter plots plotting empirical values (x-axis) against predicted values (y-axis) for accuracy, 

and quartiles of the RT distributions (Voss et al., 2012, Appendix B). The main problem of all 

types of graphical display of model fit is the ambiguity of interpretation: There is no clear 

criterion on how much deviance of data from predictions is acceptable.  

 Monte-Carlo-Simulations. Monte Carlo simulations provide a highly sophisticated 

possibility of overcoming the discussed biases of p-values from statistical model tests 

(Clauset, Shalizi, & Newman, 2009). For this purpose, many (e.g., 1,000) data sets have to be 

simulated from the diffusion model, matching the characteristics of the empirical data. That 

is, parameter values for the simulation should be based on the estimated parameter values, and 

the numbers of trials, conditions, etc. should be equivalent to those used in the experiment. To 

accomplish this, parameter values for the simulation study might be generated following the 

multivariate normal distribution defined by the mean values and the variance-covariance 

matrix from the estimated parameters (e.g., using the mvrnorm routine from the MASS R-

package). For the simulation, the construct-samples routine from fast-dm (Voss & Voss, 

2007) can be used.6 These simulated data sets are then re-analyzed with the diffusion model. 

From the results a distribution of fit-values (e.g., p-values provided by fast-dm) can be 

obtained, and the 5% quantile of this distribution can be taken as a critical value to assess 

model fit of the empirical models. 

                                                           
5 Predicted CDFs can be computed, for example, by the plotCDF routine from the fast-dm software (Voss & 

Voss, 2007). 
6 If there are multiple conditions, data sets have to be simulated separately for each condition, and afterwards 

combined into one file. 
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 Interpretation of Model Fit. If a low percentage of models (e.g., less than 5 percent) 

shows suspicious fit-indices, it can be assumed that the diffusion-model generally describes 

data well. Obviously, a good model fit does not prove that the diffusion model is the “correct” 

model. Especially for small samples, non-significant results have to be interpreted with great 

caution. In any case, it is recommended to discard data from participants with bad model fit 

before running further analyses.  

If data from a substantially larger portion of participants cannot be fitted, the diffusion 

model in the applied form has to be discarded. Possibly, a stricter exclusion of outliers or a 

more complex model with fewer restrictions can fit the data in this case. Often, however, bad 

model fit indicates that the theoretical assumptions of the model are not met. 

Empirical Validations 

 Since it is difficult to assess the adequacy of the diffusion model with an analysis of 

model fit alone, empirical validations of the parameters are often a useful addition. For such 

validation studies, face-valid experimental manipulations have to be adopted for each 

parameter of the diffusion model. Then, independent models are estimated for each 

experimental condition, where manipulations theoretically could map on all parameters.  If 

each manipulation successfully and exclusively influences the expected parameter(s), the 

validation can be considered successful. An example for an elaborated validation study for the 

color-discrimination task is provided by Voss et al. (2004): In a series of experimental 

manipulations with high face-validity the authors showed that it is possible to manipulate 

single parameters in the proposed way: For example, task-difficulty exclusively mapped on 

the drift parameter while speed-accuracy instructions did influence threshold separation. 

 We recommend employing such validation studies whenever the diffusion model is 

applied to a new task. A successful validation might even be considered to be more important 

than the demonstration of an excellent model fit, because model fit will often be good in case 

of small trial numbers. 

 

Conclusions and Perspectives 

The diffusion model is not a new approach in psychology. However, in the first two decades 

after its initial proposal (Ratcliff, 1978), it was used rather rarely. This slow increase in 

popularity has several reasons: Firstly, the implementation of this method was difficult, before 

software solutions like fast-dm or DMAT were published. Secondly, access to computational 

power, which is necessary for this kind of analyses, was limited. And finally, there is still a 

general lack of knowledge about the possibilities and problems of diffusion model analyses.  
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With the present paper we hope to address this last hurdle, and help to clear the way to 

diffusion model analyses for a broad community of cognitive researchers. 

In recent years, applications of the diffusion model have greatly increased both in 

number as well as in broadness of addressed research areas. Such new fields of application 

comprise, for example, research on intelligence (Ratcliff et al., 2010; Schmiedek et al., 2007), 

or clinical psychology (White, Ratcliff, Vasey, & McKoon, 2009; White et al., 2010). We are 

confident that future diffusion model analyses will provide interesting insights in many other 

fields of psychology as well. 
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Table 1 

Comparison of Optimization Criteria 

 Optimization Criterion 

 Maximum  

Likelihood 

Chi- 

Square 

Kolmogorov- 

Smirnov 

Efficiency High Low High 

Robustness Low High High 

Computational Speed Low High Low 

Required Number of Trials Small 

(N>40) 

Large 

(N>500) 

Medium 

(N>100) 

Note. The values for the required numbers of trials are just rough estimates for the lower bound of 

acceptable trial numbers. See text for further explanations. 
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Figure 1. Number of annual citations of the original publication introducing the diffusion model 

account in psychology (Ratcliff, 1978). Data includes all papers listed in PsycINFO Database until 

October 2012 (Light grey bar: Estimation for Nov. and Dec. 2012). 
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Figure 2. Simplified version of the diffusion model: An information accumulation process starts at 

starting point z and runs over time with the mean slope v until it hits an upper (a) or lower (0) 

threshold. Because of random noise, the process durations and outcomes vary from trial to trial. 

Outside the thresholds decision-time distributions are shown. 
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Figure 3. Predicted RT distributions from different parameter sets. Panel A shows predictions from a 

comparison model with a=1, zr=0.5, v=2, t0=0.5, sz=0, sv=0, st0=0. In the following panels, always one 

parameter is increased. To facilitate comparison, the distributions from Panel A are presented as 

hatched shapes in each display. 
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Figure 4. Illustration of the Kolmogorov-Smirnov approach. Distributions from both thresholds are 

combined in one distribution function by multiplying all times from the lower threshold by -1. The 

upper panel shows the comparison of empirical (histogram) and predicted (lines) density functions. 

The lower panel shows the cumulative distribution functions (CDF; data: grey line; predictions: black 

line). In the parameter search, the maximum vertical distance (T) between both CDFs is minimized. 
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Appendix A 2 

Manuscript 2: Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with 

diffusion model analyses: a tutorial based on fast-dm-30. Frontiers in Psychology, 6(336).  
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ABSTRACT 

Diffusion models can be used to infer cognitive processes involved in fast binary decision 

tasks. The model assumes that information is accumulated continuously until one of two 

thresholds is hit. In the analysis, response time distributions from numerous trials of the deci-

sion task are used to estimate a set of parameters mapping distinct cognitive processes. In 

recent years, diffusion model analyses have become more and more popular in different fields 

of psychology. This increased popularity is based on the recent development of several soft-

ware solutions for the parameter estimation. Although these programs make the application of 

the model relatively easy, there is a shortage of knowledge about different steps of a state-of-

the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modelling, 

and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software 

(Voss & Voss, 2007) for diffusion model data analysis. The most important improvement of 

the fast-dm version is the possibility to choose between different optimization criteria (i.e., 

Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability 

for different data sets. 

 

Keywords: fast-dm, diffusion model, parameter estimation, response time distribution 
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Assessing cognitive processes with diffusion model analyses: 

a tutorial based on fast-dm-30 

Six years ago, we published fast-dm-26 (Voss & Voss, 2007). Since then, applications of dif-

fusion models have thrived in different domains of psychology (Voss, Nagler, & Lerche, 

2013): Although diffusion models are still far from being a standard method in the cognitive 

sciences, they are now successfully applied by many different researchers addressing a wide 

variety of research questions. Different aims of the application of diffusion models can rough-

ly be grouped into three groups. 

A first type of diffusion model studies is interested in the development of cognitive 

models, and—specifically—in demonstrating that the diffusion model adequately describes 

the ongoing cognitive processes (e.g., Ratcliff, 1978; Ratcliff, Gomez, & McKoon, 2004). For 

such studies, the key objective is demonstration of a good model fit, because a satisfactory 

model fit supports the assumption that actual cognitive processes are similar to the processes 

presumed by the model. 

Secondly, diffusion models can be used to test predictions from psychological theories 

(e.g., Voss, Rothermund, Gast, & Wentura, 2013). For such studies the validity of the diffu-

sion model for the applied task should be undisputed. The application of the diffusion model 

aims at getting valid measures for specific cognitive processes, which then are entered into 

further statistical analyses as dependent variables. With this technique it becomes possible to 

explain why response latencies are shorter in one condition compared to another condition. As 

detailed below, in the diffusion model framework, faster responses can be based on (1) fast 

information processing, (2) low response thresholds, or (3) fast response execution.  

Recently, a third—related—type of question has been addressed by diffusion model 

accounts: These are studies that use diffusion models as a diagnostic tool (e.g., Schmiedek, 

Oberauer, Wilhelm, Suess, & Wittmann, 2007; White, Ratcliff, Vasey, & McKoon, 2010). 

Diffusion models provide valid criteria for cognitive processes which, subsequently, can be 

related to other measures. For example, speed of information processing might be a proxy for 

intelligence (Ratcliff, Schmiedek, & McKoon, 2008; Ratcliff, Thapar, & McKoon, 2010; 

Schmiedek et al., 2007) and a low response threshold might predict impulsive behaviour. 

In parallel to these applications of the model, many important theoretical and method-

ological advances helped to promote diffusion modelling in psychology. Most important, the 

development of user-friendly software solutions cleared the path for this kind of analyses. 

Available solutions comprise the EZ-method (Grasman, Wagenmakers, & van der Maas, 

2009; Wagenmakers, van der Maas, Dolan, & Grasman, 2008; Wagenmakers, van der Maas, 
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& Grasman, 2007), DMAT for Matlab (Vandekerckhove & Tuerlinckx, 2007, 2008), fast-dm 

(version 29: Voss & Voss, 2007, 2008), and, most recently, two Bayesian implementations for 

(hierarchical) diffusion models (Vandekerckhove, Tuerlinckx, & Lee, 2011; Wiecki, Sofer, & 

Frank, 2013). All these programs have special advantages, because they differ in (a) the math-

ematical methods used for parameter estimation (e.g., optimization criteria), (b) their flexibil-

ity to adapt to different complex data (e.g., experiments with multiple conditions), and (c) the 

usability and handling of the programs.  

With this paper we want to introduce a new and extended version of fast-dm (fast-dm-

30). The new developments regard the following points: 

(1) The new version allows the user to choose between different optimization criteria (Kol-

mogorov-Smirnov, Chi-Square, and Maximum Likelihood). This allows optimizing pa-

rameter estimation for different data, because optimization criteria differ in robustness and 

efficiency depending on characteristics of data. 

(2) A new parameter measuring so-called response-execution biases has been implemented 

(Voss, Voss, & Klauer, 2010). This parameter allows for the non-decisional component to 

differ between the two possible responses. 

(3) The code was optimized and minor bugs have been removed, including problems of using 

command-line options on Windows systems. 

(4) The tools to simulate data (construct-samples), and to calculate predicted CDFs and densi-

ty functions (plot-cdf and plot-density) have been improved and are now better document-

ed. 

In the following we will provide a short introduction to diffusion model analysis  fol-

lowed by a discussion of advantages and disadvantages of different optimization criteria. 

Then, we give a step-by-step tutorial how to run a diffusion model project. The paper con-

cludes with a description of the handling of fast-dm-30 and its accompanying tools. 

 

The Basics: A Short Introduction to Diffusion Modelling 

Diffusion models are a formal model of decision making, that is, they provide a mathematical 

framework to understand decisional processes. They belong to the continuous sampling mod-

els (Ratcliff & Smith, 2004): These models assume that information is continuously sampled 

during a decision phase until evidence is sufficiently clear. As soon as one of two thresholds 

is reached, a response is initiated. The information sampling is described by a Wiener Diffu-

sion Process which is characterized by a constant systematic drift (v) and Gaussian noise. The 

drift determines the average slope of the diffusion process and can be interpreted as the speed 
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of information uptake. The standard deviation of the random noise (diffusion constant) is a 

scaling parameter in diffusion model analyses: It has to be fixed to a specific value that de-

fines the scale for all other diffusion model parameters1. Fast-dm uses a diffusion constant of 

s=1, while other researchers prefer to use s=0.1. To make solutions comparable, it is essential 

to transform estimates for drift (v) , threshold separation (a), starting point (z), and the so-

called intertrial variability of drift and starting point (sv and sz) by the following equation:  ݌௡௘௪ = ௦೙೐ೢ௦೚�೏  ௢�ௗ, (1)݌

where pnew and pold are the transformed and the original estimates, and snew and sold are the 

diffusion constants. 

A second characteristic of standard diffusion models is the assumption that the diffu-

sion process runs in a corridor between two thresholds, and it is terminated when one of them 

is hit. These thresholds represent two alternative outcomes of the decision process; depending 

on which threshold is hit, different responses are executed. By convention the lower threshold 

is positioned at 0 on the decision dimension and the upper threshold at a. Thus, a gives the 

amount of information that separates both possible decisional outcomes. Larger threshold 

separations lead—on average—to longer durations of the decision process. At the same time, 

an increasing distance between thresholds renders it more unlikely that random influences 

drive the process to the threshold opposite of the drift; that is, decision errors become rarer. 

Sometimes one decisional outcome might be preferred over the other. To reach the 

preferred decision less information might be needed than for the non-preferred decision. Such 

a bias is often denoted in psychology as response bias (e.g., in Signal Detection Theory, 

Green & Swets, 1966) to emphasize that this kind of bias is independent of the quality of in-

formation processing (or sensitivity). However, we prefer here the term decisional bias be-

cause this bias is also unrelated to processes of response execution. In diffusion modelling, 

such a decisional bias is mapped on the starting point (z), which is positioned between 0 and a 

on the decision dimension. The closer the starting point is positioned to one threshold, the less 

information is needed to decide for the associated option. The new version of fast-dm uses the 

relative starting point (zr) for input and output. The relative starting point is defined as zr=z/a 

(range: 0 to 1; zr=0.5 indicates unbiased decisions). 

Obviously, the diffusion process as described so far cannot account for the total chain 

of information processing. Depending on the task, there will be additional processes of pre-

paring for a task and encoding of stimuli that take place before a decision phase starts. After 

                                                           
1 Strictly speaking, it is also possible to use a different parameter (a or v) to define the scale; in this case, intra-

trial variability of the drift (s) can be estimated as a free parameter (Donkin, Brown, & Healthcote, 2009). 
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the decision is reached, motor processes have to be executed. The diffusion model sums the 

duration of all extra-decisional processes into one additional parameter, denoted as non-

decisional component t0 (or sometimes Ter, for time of encoding and response) measuring the 

total duration of those processes. Total response time is assumed to be the sum of the duration 

of the decisional processes (mapped the diffusion process) and the non-decisional processes 

(t0). 

The new version of fast-dm allows for different durations of motor processes for both 

outcomes (Voss et al., 2010). This might be relevant if one response is pre-activated (e.g., by 

response priming, Voss, Rothermund, et al., 2013), or if it is executed more (or less) frequent-

ly (e.g., in rare target search). In the implementation of the two execution times in fast-dm, a 

common t0 parameter is used, giving the average duration of non-decisional processes, and a 

difference parameter d, giving the difference of duration of non-decisional processes for the 

responses connected to the lower vs. upper threshold. These parameters can be re-transformed 

into separate t0 parameters with ݐ଴ሺݐ ݎ݁݌݌ݑℎݏ݁ݎℎ݈݀݋ሻ = ଴ݐ − Ͳ.ͷ ∙ ݀ (2a) ݐ଴ሺ݈ݐ ݎ݁ݓ݋ℎݏ݁ݎℎ݈݀݋ሻ = ଴ݐ + Ͳ.ͷ ∙ ݀. (2b) 

Most diffusion model analyses also take into account trial-to-trial fluctuations in cog-

nitive components. For example, it is implausible to assume that participants’ attention is 

equal throughout an experiment of several hundreds of trials; thus speed of information up-

take (i.e., the drift) might differ slightly from trial to trial. Fluctuations in drift may also arise 

from different stimuli that are employed in different trials of an experiment. Similar points 

can be made for the inter-trial variability of starting point and of duration of non-decisional 

processes. For these reasons, most applications of the diffusion model allow for inter-trial 

variability of the drift (v), starting point (z), and non-decision constant (t0). Specifically, the 

actual drift is assumed to follow a normal distribution with mean v and standard deviation sv. 

Starting point and non-decisional constant follow uniform distributions with mean z and width 

sz, and mean t0 and width st0, respectively. As for the starting point, fast-dm-30 uses a relative 

measure for inter-trial-variability of starting points, with szr=sz/a. 

The complete diffusion model as described above decomposes the decision process in-

to 8 parameters (Table 1). Of course, models need not to include all of these parameters. 

Sometimes it might be better to make models more parsimonious by fixing parameters to giv-

en values. This regards specifically the starting point that can be fixed to zr = 0.5 when no 

decision bias is expected (especially, when responses coded as false vs. correct), the response-

time difference d that should be fixed to d = 0 when there is no reason to expect differences in 
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speed of response execution, and the inter-trial variability parameters, that can be fixed to sv = 

szr = st0 = 0 when trial numbers are too small to allow for a robust estimation of these parame-

ters. 

On the other hand, diffusion models often comprise more than the 8 parameters de-

scribed above: Typically, different values for one parameter are estimated for different types 

of stimuli or different experimental conditions. 

 

How to Estimate Parameters: A Comparison of Different Optimization Criteria 

A diffusion model analysis is based on the multi-dimensional search for an optimal set of es-

timates for all free parameters, so that there is a close fit between predicted and observed re-

sponse time distributions. Since the RT distribution is split into two parts—for responses con-

nected to the upper and lower threshold—the probability of responses (e.g., the error rate) is 

implicitly contained by the RT distributions. For the parameter search an optimization criteri-

on has to be defined that quantifies the match between predicted and observed distributions. 

The most important improvement of fast-dm-30 is that the user can now choose between three 

different optimization criteria: In addition to the Kolmogorov-Smirnov (KS) criterion that was 

used exclusively in fast-dm-29, we now implemented the commonly used Chi-Square (CS) 

approach and a Maximum Likelihood (ML) based algorithm. Because all algorithms have 

specific advantages, we will consider each of them below. Further information on the tech-

nical implementation of the algorithms is given in the section on technical details. 

Maximum Likelihood (ML) 

ML algorithms are highly efficient and are broadly applied to optimization problems for dif-

ferent models. In the case of diffusion models, the natural logarithms of density values (g)—

calculated from predicted RT-distributions—are summed over all trials i (with response time 

RTi and response ki): ܮܮ = ∑ ݈݊(݃ሺܴ �ܶ, ݇�ሻ) (3) 

To make the algorithm more robust, a minimum value for density of g=10-6 is used in fast-dm, 

that is, g is set to 10-6, when the predicted density is smaller than this value. The parameter 

search procedure then maximizes the resulting log-likelihood value. Because the ML proce-

dure is highly efficient, it is especially useful in the case of small trial numbers. With the ML 

method parameters of parsimonious models may be estimated accurately from only 50 trials 

or less (Lerche, Voss, & Nagler, 2014). However, ML methods are especially sensitive to 

(fast) outliers. Even if only one (or very few) responses are added at the lower edge of the RT 

distribution, the accuracy of results will be derogated dramatically. 
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 An additional advantage of the ML approach is that it allows the calculation of infor-

mation criteria to compare different models. For example, the Bayesian Information Criteria 

(BIC) could be used here (Fific, Little, & Nosofsky, 2010): 

– = ܥ�ܤ  ʹ ݈݊ሺܮሻ +  � ∙  ݈݊ሺܯሻ, (4) 

where P is the number of free parameters and M is the number of observations (i.e., trials). 

Chi-Square (CS) 

Th CS criterion has been frequently used in diffusion model approaches (Ratcliff & 

Tuerlinckx, 2002). The main advantages are the very fast calculation and its robustness 

against outliers. The computed CS value is based on the comparison of the number of ob-

served and predicted responses in so-called bins of the RT-distributions. The borders of these 

bins are defined by convention by the .1, .3, .5, .7, and .9 quantiles of the empirical response 

time distributions, separately for the upper and lower threshold2. Thus, the optimization crite-

rion is calculated across the 2 x 6 bins as  ܵܥ = ∑ ሺ௢�−௣�ሻమ௣� , (5) 

with oi and pi being the observed and predicted, respectively, number of responses in bin i. 

The parameter search minimizes the CS value. If more experimental conditions are fitted sim-

ultaneously, CS values are added over conditions as well. Next to the advantages of fast cal-

culation and its robustness, the CS approach comes with the benefit that the CS value can be 

taken as a test statistic for model fit. The degrees of freedom are then given by  ݂݀ = ሺܰܭ − ͳሻ − �, (6) 

with K conditions of an experiment, N bins per condition (N=2∙6=12), and P free diffusion 

model parameters (White et al., 2010). A significant CS value indicates substantial misfit of 

the diffusion model. However, with large trial numbers, significant deviations are to be ex-

pected and other strategies of model tests might be preferable (Voss, Nagler, & Lerche, 2013). 

 Generally, CS based parameter estimations are only feasible for medium to large trial 

numbers (minimum 200 trials). It is especially problematic if empirical response distributions 

are small at one of the thresholds (e.g., less than 12 trials). In this case, the borders of bins are 

defined very unreliably. Unfortunately, this is often the case in diffusion model applications, 

where typically very easy tasks are used (e.g., lexical decision) and few errors occur. If in one 

                                                           
2 Strictly speaking, this is not an exact implementation of a chi-square criterion because bins are defined by the 

data (and not by predicted distributions). However, the resulting values approximate nonetheless a chi-square 

distribution, and parameter estimates do not differ substantially (Ratcliff & Childers, 2014), while computation 

is much faster. 
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experimental condition one response is given in less than 12 trials, fast-dm-30 ignores these 

responses for the calculation of the CS value. 

Kolmogorov-Smirnov 

Previous versions of fast-dm only implemented the KS criterion (Voss & Voss, 2007). We 

originally opted for this approach because its characteristics can be seen as a compromise 

between ML and CS based methods: On the one hand, the KS method is efficient, because it 

is not based on binning responses but utilizes the complete distribution; on the other hand, the 

KS criterion is not as sensitive to outliers as is the ML criterion (Lerche et al., 2014). 

 The KS criterion is defined as the maximum absolute vertical distance between the 

empirical and the predicted cumulative density functions (CDF) of the response time distribu-

tions. Over n responses of an experiment, it can be computed as  

ܵܭ  = max�=ଵ…௡ |eCDFሺRT�ሻ − pCDFሺRT�ሻ|, (7) 

where RTi is the response latency in trial i, and eCDF and pCDF are the empirical and pre-

dicted CDFs, respectively. In diffusion modelling there are always two empirical distributions 

to be compared with their predicted counterparts (i.e., the distributions linked to the two re-

sponses). In fast-dm this problem is solved by combining both distributions into one. This is 

achieved by multiplying all RTs from responses linked to the lower threshold with -1 (Voss, 

Rothermund, & Voss, 2004; Voss & Voss, 2007). Fast-dm transforms KS-values in associat-

ed p values (with df=number of responses), which are then maximized (Voss & Voss, 2007). 

In case of multiple experimental conditions, the product of all p values from the different 

conditions is maximized. 

 Simulations from our lab (Lerche et al., 2014) show that—for uncontaminated data—

the KS method tends to be slightly less efficient compared to the ML method but reveals no-

tably more accurate results compared to the CS approach. For contaminated data, KS per-

forms best in most cases. 

 

Some Technical Details 

The Calculation of Cumulative Density Functions (CDF) 

The optimization routines based on the KS or CS statistics require the calculation of predicted 

CDFs. For the basic diffusion model (without inter-trial variabilities) the CDF for decision 

time t for responses at the upper threshold can be calculated as the solution of the following 

partial differential equation (PDE; see Voss & Voss, 2008): 

 
��௧ �+ሺݐ, �ሻ = ଵଶ �మ��మ �+ሺݐ, �ሻ + ݒ ��� �+ሺݐ, �ሻ (8a) 

with boundary conditions 
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 �+ሺݐ, Ͳሻ = Ͳ, �+ሺݐ, �ሻ = ͳ, for all ݐ > Ͳ (8b) 

and initial condition 

 �+ሺͲ, �ሻ = {Ͳ �݂ Ͳ ≤ � < �ͳ �݂ � = �  (8c) 

It is possible to derive an explicit solution to this PDE that allows the direct calculation of the 

CDF (Blurton, Kesselmeier, & Gondan, 2012; Ratcliff, 1978). However, a numerical solution 

of the PDE introduced by Voss and Voss (2008) proved to be much faster while yielding the 

same accuracy, especially if inter-trial variability of starting point and non-decisional compo-

nent are included in calculations. The PDE is solved numerically using a finite difference 

scheme, by discretizing the ranges of the starting point z and decision time t (see Press, 

Teukolsky, & Vetterling, 1992, Ch. 19, for an introduction to numerical solutions of PDEs). 

The accuracy of the solution depends on discretization step sizes for z and t. In fast-dm a 

“precision” parameter allows to control step sizes used in the calculation of CDFs (see be-

low). 

The Calculation of Density Functions 

For the ML approach, density functions have to be calculated. For the basic diffusion model 

(without inter-trial variabilities) there are two different representations of the density g+ for 

the first-passage time t of a diffusion process with starting point z and threshold separation a 

(Navarro & Fuss, 2009; Van Zandt, Colonius, & Proctor, 2000; Voss et al., 2004): 

 ݃+ሺݐ, �, �, ሻݒ = ௘௫௣[ሺ�−�ሻ௩−଴.5௩మ௧]√ଶ�௧య ∑ ݌ݔ݁ ቀ− [ሺଵ+ଶ௡ሻ�−�]మଶ௧ ቁ∞௡=−∞ ∙ [ሺͳ + ʹ݊ሻ� − �] (9a) 

and 

 ݃+ሺݐ, �, �, ሻݒ = ��మ exp[ሺ� − �ሻݒ] ∑ ݊ ∙ sin ቀ�ሺ�−�ሻ௡� ቁ ݌ݔ݁ [−Ͳ.ͷ ቀݒଶ + �మ௡మ�మ ቁ]∞௡=ଵݐ . (9b) 

Navarro and Fuss (2009) show that Equation (9a) converges quickly for small t and Equation 

(9b) converges quickly for large t. In fast-dm-30, we implemented this finding and calculate 

densities always with the equation that converges faster. The numbers of terms used to ap-

proximate the infinite series are chosen to keep a maximum error bound of 1e-6 (Navarro & 

Fuss, 2009). 

 The value t in Equations (9a) and (9b) is the decision time. The non-decision parame-

ter t0 has to be subtracted from all empirical response times, before the densities are computed 

(t = RT-t0). The density of the distribution at the lower threshold (g-) can be easily obtained by 

replacing v with -v and z with a-z, respectively. To include inter-trial variabilities, g+ has to be 

integrated over v, z, and t0. 

 ݃′ሺݐ, �, �, ,ݒ ௩ሻݏ = ∫ ݃+ሺݐ, �, �, ∞−∞ሻ′ݒ ∙ ଵ√ଶ�௦ೡమ ݁−(ೡ′−ೡ)మమೞೡమ  (10) ′ݒ݀
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 ݃′′ሺݐ, �, �, ,ݒ ௩ݏ , ሻ�ݏ = ∫ �′ሺ௧,�′,�,௩,௦ೡሻ௦��+଴.5௦��−଴.5௦� ݀�′ (11) 

 ݃′′′ሺݐ, �, �, ,ݒ ௩ݏ , ,�ݏ ௧଴ሻݏ = ∫ �′′ሺ௧′,�,�,௩,௦ೡ,௦�ሻ௦೟0௧+଴.5௦೟0௧−଴.5௦೟0  (12) ′ݐ݀

 

The integral of Equation (10) can be solved analytically. Equations (11) and (12) are comput-

ed numerically in fast-dm; the discretization step size is controlled again by the precision set-

tings (minimum number of steps is 4). Thus, the precision settings take influence on the re-

sults (and calculation time) for the ML method only if inter-trial variability of z and/or t0 is 

greater than 0. 

Optimization Routine 

The optimization procedure is based on a multidimensional search for the optimal set of pa-

rameters that maximizes p(KS) or minimizes CS or -LL. For this procedure, we use an im-

plementation of the SIMPLEX downhill algorithm (Nelder & Mead, 1965). This method is 

based on a simplex that comprises of n+1 vectors of parameter values when n parameters are 

optimized. For the starting simplex, we use results from the EZ-method (Wagenmakers et al., 

2007) for the first vector (with zr = 0.5, and sv = sz = st0 =0), and variations where values for 

one parameter are increased by a small amount for the remaining vectors.  

 In our implementation of the simplex, we use two criteria simultaneously. Firstly, we 

penalize theoretically impossible parameter constellations (e.g., zr<0, zr>1, a<0, etc.). For 

these cases, the optimization criteria cannot be calculated; solutions with penalty are always 

assumed to fit worse than any solution without penalty. The second criterion is the optimiza-

tion criterion (p(KS), CS, or -LL). This second criterion is only used when no penalty is as-

signed to a solution. In case of KS, the corresponding p-value is minimized to allow the opti-

mization of multiple experimental conditions. 

 Because the simplex algorithm is known to be unreliable in case of multidimensional 

search, we repeat the simplex search three times with different starting points and consecu-

tively stricter stopping criteria. 

 

Planning, Running, and Interpreting Diffusion Model-Analyses: 

A Step-by-Step Guide 

The following sections describe some important steps in a typical diffusion model analysis 

and provide some help on crucial choices that have to be made. An excellent general introduc-

tion in cognitive modelling is provided by Heathcote, Brown, and Wagenmakers (in press). 

Specific advices on fitting parameters to the related ballistic-accumulator model can be found 
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in other tutorials (Donkin, Averell, Brown, & Heathcote, 2009; Donkin, Brown, & Heathcote, 

2011). 

Step 1: Choosing an Experimental Paradigm 

If a study aims at a general investigation of cognitive processes (e.g., cognitive aging or prac-

tice effects), it is often to choose between different paradigms (i.e., experimental tasks) for a 

study. If this is the case, paradigms should be selected that have already been validated for 

diffusion model analyses. Such well-tested paradigms comprise—for example—recognition 

memory tasks (e.g., Ratcliff, 1978; Spaniol, Madden, & Voss, 2006), numerosity or colour-

judgment tasks (e.g., Ratcliff, 2002; Voss, Rothermund, & Brandtstädter, 2008; Voss et al., 

2004), and lexical decision tasks (e.g., Ratcliff et al., 2004; Wagenmakers, Ratcliff, Gomez, & 

McKoon, 2008). 

Sometimes, however, it may be the aim of a project to investigate whether a specific 

(new) paradigm is apt for diffusion modelling. If this paradigm has not yet been validated for 

a diffusion model analysis before, it should be verified first that all theoretical prerequisites 

and assumptions of the model are met. We will explicate these assumptions below. Secondly, 

it needs to be shown empirically that model fit is satisfactorily (see Step 6), and finally, an 

empirical validation of model parameters is essential (Voss, Nagler, & Lerche, 2013). For 

example, in such a validation study it can be tested whether face-valid manipulations map on 

single parameters as expected (see Voss et al., 2004, for an example of an empirical 

validation).  

Theoretical prerequisites of diffusion models are often neglected or addressed only 

implicitly. In the following, we give a short overview of basic assumptions (Voss, Nagler, & 

Lerche, 2013): Firstly, diffusion models assume a continuous sampling of information. This 

makes the model more suitable for tasks using stimuli containing conflicting information. A 

prototypical example is a field of pixels with two different colours. Here, it can be argued that 

colour information is continuously sampled. In recognition tasks, not the stimuli itself are 

ambiguous; rather the familiarity (or the absence of familiarity) can be assumed to cumulate 

until a response is made.  

Secondly, diffusion models require typically binary decision tasks. Optimally, diffu-

sion model tasks should comprise two response keys that are linked in the analyses to the up-

per vs. lower threshold. It is also possible to recode responses as correct (upper threshold) vs. 

incorrect (lower threshold). However, this mapping requires some attention: (a) One needs to 

be sure that drift rates do not differ between stimulus types; (b) there should be no decision 

bias, and the relative starting point has to be fixed to 0.5; and (c) it has to be considered that 
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results might be less robust in case of low error numbers (because then the distribution of re-

sponses at the lower threshold is absent or small). If these requirements are not met, the linear 

ballistic accumulator model should be preferred because it allows mapping data with multiple 

responses (Donkin, Averell, et al., 2009). 

 A third prerequisite refers to the assumption of constancy of parameter values over 

time. The Wiener diffusion model as described in this paper assumes that drift and threshold 

separation are constant over the time of a decision (and independent of the accumulated 

amount of evidence). The assumption of constant threshold separation might be violated when 

sparse information is present or decision times are long. In this case, shifts in criterion are 

highly plausible. However, the direction of such shifts remains rather unclear: It could be ar-

gued that participants will set more liberal criteria when they notice that they do not reach the 

conservative criteria after several seconds. On the other hand, it is possible that threshold sep-

aration is increased to avoid errors when the decision is really difficult. The assumption of 

constant drift could be violated when a stimulus changes over time (e.g., a hidden stimulus is 

continuously unmasked), or when it is removed from screen before a decision is reached (the 

drift might be stronger while the stimulus is present and weaker when it is only remembered).  

Changes of drift rate over time might also occur in interference tasks like the stroop 

task or the flanker task, when distracting information has to be inhibited. The inhibition of 

irrelevant information might take some time, which results in an increase of drift rate during 

the decision phase. 

 A fourth assumption regards the required components of a task. The diffusion model is 

apt only for relatively simple single-stage decisions. More complex tasks that are composed 

of different steps (or insights) might again challenge the assumptions of continuous infor-

mation sampling and constant drift. 

Step 2: How many Trials should be used? 

The number of trials of an experiment determines the accuracy of parameter estimation: The 

more data are entered into an analysis the more accurate all parameters can be estimated. In a 

recent set of simulation studies, Lerche et al. (2014) found that for parsimonious models with 

few parameters reasonably accurate estimations were possible with only 48 trials or some-

times even less. In most situations, a good accuracy is reached with 200 trials. 

 The recommended trial number depends on several aspects of the present data (Lerche 

et al., 2014): Firstly, if data is contaminated by trials in which participants do not use a con-

tinuous information sampling (but, e.g., a guess), more data are required. This is even the 

case, when these contaminants are no outliers in a statistical sense. Imagine, for example, a 
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participant that uses a diffusion-like information sampling strategy in 95% of all trials, but 

bases his responses on guesses in the remaining 5%. Because guesses involves other (and 

probably faster) cognitive processes, the RT distribution from the guess trials will differ from 

the RT distribution of the judgement trials. If, however, both distributions overlap it will not 

be possible so identify the guessing trials on basis of RTs.  

A second determinant of the required trial number lies in the scientific question that is 

addressed: If estimates need to have a high reliability (e.g., because inter-individual differ-

ences are in the focus of a study) larger trial numbers might be necessary. Thirdly, if data are 

mapped as correct vs. incorrect (see above) the absence of error responses will make a precise 

estimation of parameters difficult. Therefore, enough trials should be used so that each partic-

ipant makes several errors. Finally, one has to consider that some parameters are more diffi-

cult to estimate than others: While, for example, the duration of non-decision-times can be 

estimated with high accuracy from medium trial numbers (n≈100),  very large trial numbers 

(n>1000) are often required to estimate the inter-trial-variability parameters of drift and start-

ing point with satisfactory accuracy. 

Step 3: Data Pre-Treatment 

Results from diffusion model analyses can be biased strongly when data is contaminated 

(Lerche et al., 2014; Ratcliff & Tuerlinckx, 2002). Especially fast outliers have a strong im-

pact and should be removed. Because of the positive skew of RT distributions fast outliers 

might be missed with typical procedures (e.g., inspecting box plots or z-scores). Therefore, 

RTs should be log transformed before an outlier analysis (for the diffusion model analyses, of 

course, the untransformed data has to be used). Another possibility is to find a point at the 

lower edge of the RT distributions where performance rises above chance level (Ratcliff & 

Tuerlinckx, 2002). 

 A careful outlier analysis is of special importance when the parameter estimation is 

based on a maximum-likelihood procedure; on the contrary, the KS method proved to be very 

robust (Lerche et al., 2014). 

Step 4: Defining your Model: Choosing free Parameters 

The degree of complexity of a model depends on several factors. On the one hand, a model 

should not oversimplify reality: When important parameters are neglected (i.e., fixed to a spe-

cific but wrong value), effects will be forced on other parameters and thus results become 

invalid. Imagine, for example, a situation where there is a decision bias but the relative start-

ing point is fixed to zr=0.5 (indicating an absence of a decision bias). The decision bias would 

make responses at the preferred threshold faster; to account for this, the drift for “preferred” 
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(“unwanted”) stimuli would be overestimated (underestimated). Thus, results from the re-

stricted model would erroneously indicate a bias in terms of information processing. 

 On the other hand, models should be defined as parsimonious as possible, because 

many free parameters might lead to overfitting and make results unstable, especially if not 

enough trials are used. For example, model fit might be excellent no matter if you allow for a 

decision bias (i.e., asymmetric starting points) or for a perceptual bias (i.e., different drift for 

different stimulus types). In our experience, for small and medium trials numbers (<500) set-

ting inter-trial-variability of drift (sv) and starting point (szr) to zero makes the estimation of 

the remaining parameters more robust, even if there is an inter-trial-variability in data. Note 

that this is not the case for inter-trial-variability of non-decision time (st0). Because st0 has a 

great impact on the shape of the RT-distribution it is often harmful to neglect this parameter. 

Additionally, the difference in non-decision time for upper and lower threshold (d) can usual-

ly not be estimated simultaneously with starting point (Voss et al., 2010); therefore you 

should set either d=0 or zr=0.5, whatever seems theoretically more plausible (large trial num-

bers might allow to estimate both parameters simultaneously). 

Decisions of model complexity get more complicated when different types of stimuli 

or different experimental manipulations are compared. In this case, the researcher has to de-

cide which parameters are allowed to vary between conditions. If, for example, an experiment 

comprises “easy” and “difficult” trials, it is plausible that this affects the drift, and different 

drift parameters should be estimated for different trial types. However, decisions on this mat-

ter need careful consideration, because false fixations will again lead to invalid results. When-

ever it is the aim of a study to check on which parameters a manipulation maps, we recom-

mend to model data from the different conditions completely independently (allowing for all 

parameters to vary between conditions). A disadvantage of estimating completely independ-

ent models for all conditions is than not all available information is used, and power to find 

relevant differences might be reduced. A discussion of this problem is given by Donkin and 

colleagues (Donkin et al., 2011; Donkin, Tran, & Nosofsky, 2014). 

Step 5: Choosing an Optimization Criterion 

On this step, the researcher needs to decide which software or algorithm to use for the param-

eter estimation. This decision may depend on the number of trials and the quality of data 

(Lerche et al., 2014). For large data sets (>500), always robust procedures (like KS or CS) are 

recommended. For small data sets (<100) chi-square based approaches will not work proper-

ly, and maximum likelihood procedures may be a good option if one is confident that data are 
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not contaminated, and the Kolmogorov-Smirnov approach should be used, when a more ro-

bust procedure is required. 

Step 6: Assessing Model Fit 

In diffusion model application, the assessment of model fit should be a mandatory step. It is 

problematic to use the standard statistical tests associated with the chi square or Kolmogorov 

Smirnov criteria here, because results strongly depend on numbers of trials: For small data 

sets the power is too small to reliably detect misfit, and for large data sets deviations will 

nearly always be significant. Therefore, either graphical inspection or Monte Carlo simula-

tions provide better alternatives.  

Graphical inspection can be done for each individual by so-called quantile-probability 

plots (e.g., Ratcliff & Smith, 2010). These graphs show different quantiles of the empirical 

and predicted RT distributions as a function of the probability of correct (or erroneous) re-

sponses (for different stimulus types). If an experiment comprises data from many partici-

pants, we recommend using scatter plots that plot predicted values against empirical values 

for the 25, 50 and 75 quantiles of the RT distributions and for accuracy of responses 

(e.g.,Voss, Rothermund, et al., 2013, Appendix B). When all data points are positioned near 

the main diagonal, a good fit can be assumed. 

The assessment of model fit with Monto Carlo simulations has the advantage that it 

leads to a clear criterion for which participants there is a satisfactory model fit. To this end, a 

critical value for an acceptable fit has to be determined. This critical value will depend on the 

number of trials, conditions, and parameters, on the estimation procedure, and possibly as 

well on the observed range of parameter values. Therefore, data sets have to be simulated that 

match the empirical data sets as closely as possible. It is recommended to draw at least 1,000 

parameter sets from a multidimensional normal distribution defined by the covariance matrix 

of the estimated parameter values. This can be accomplished, for example, by the mvtnorm 

library from the R environment. Then, for each of the 1,000 parameter-sets one data set is 

simulated. The construct-sample tool of fast-dm can be used for this purpose (see below; note 

that each condition must be simulated separately and combined later into one file). In the next 

step, simulated parameter sets are entered into a diffusion model analysis with the same set-

tings as used for the analysis of empirical data. From the results, only the fit indices are of 

importance: The 5% quantile of the distribution of fit indices is then used as critical value to 

assess fit of empirical results: All data-sets performing worse than this 5% criterion should be 

regarded as bad fitting. If notably more than 5% of data sets show bad fit, it should be ques-

tioned critically whether the diffusion model is suitable for the task.  
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Step 7: Interpretation of Results 

The last step of the diffusion model analysis is the interpretation of results. Typically, parame-

ters are estimated for each individual; in this case estimates can be entered as dependent 

measures into statistical analyses (e.g., ANOVA) to check for differences between conditions. 

Alternatively, it is possible to compare model fit (e.g., BIC) between models with different 

restrictions to see which restrictions lead to a notable decrease of model fit.  

 

Using fast-dm-30: A User’s Manual 

Overview 

When fast-dm is started, it reads commands from an external control file (named by default 

experiment.ctl). Commands in the control file control program settings, specify parameters 

that are estimated or fixed to given values, and set file names for input and output. Fast-dm 

can be started by double clicking on the program icon; in this case, the control file experi-

ment.ctl will be read from the directory in which fast-dm is started. If no such file exists, fast-

dm terminates immediately. Generally, we recommend starting fast-dm from a command con-

sole.3 Otherwise, error or warning messages can be lost because these are presented only on 

the screen in a window that closes as soon as fast-dm terminates. From a command window, 

the program is started by typing “fast-dm” (within the correct directory). You can add the file 

name of a control file as command line option: For example, “fast-dm exp1.ctl” will start fast-

dm with the control file exp1.ctl. 

Generally, the following steps are necessary to use fast-dm.  

(1) Create a directory for your analyses. 

(2) Save all data files and a copy of fast-dm in this directory  

(3) Create a control file with a text editor (see below) 

(4) Start fast-dm (optimally from a command window) 

(5) Read results into your favourite statistics software for further analysis 

License, Source Code, and Compiled Binaries 

Fast-dm is free software; you can use, redistribute it and or modify it under the terms of the 

GNU General Public License. Details are given in the file COPYING that is included in the 

download archives. In the Downloads section of the fast-dm homepage 

(http://www.psychologie.uni-heidelberg.de/ae/meth/fast-dm/index.html) we provide three 

different zip-files. The first, labelled as “Windows Binaries”, contains the precompiled exe-

                                                           
3 Windows users can open a command window by typing “cmd” in the start menu. 

http://www.psychologie.uni-heidelberg.de/ae/meth/fast-dm-30/index.html
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cutable files for Microsoft Windows systems. Specifically, we provide the programs fast-

dm.exe (for parameter estimation), construct-samples.exe (for the simulation of data samples), 

plot-cdf.exe (for generating a cumulative distribution function from a set of parameter values), 

and plot-density.exe (for the generation of the density function from a set of parameter val-

ues). You may need to install the Microsoft Visual C++ Redistributable package for Visual 

Studio 2012 (http://www.microsoft.com/en-us/download/details.aspx?id=30679) to get these 

programs running. 

Secondly, we provide the complete C source code of fast-dm in the “source” archive. 

Together with the source code files, this archive contains short instructions (file INSTALL) 

on compiling fast-dm on Unix-like systems (e.g., Linux and MacOS), and a short manual (file 

MANUAL). 

 Finally, we provide a Visual Studio 2012 Project (including source code files and rea-

sonable project setting) for Windows users who want to modify the software. To make use of 

this, Microsoft Visual Studio 2012 needs to be installed, which is freely available in the Ex-

press edition (http://www.microsoft.com/en-us/download/details.aspx?id=34673). 

Data Files 

Data is read from plain text files. Each line of a data file contains information from one trial, 

and data columns have to be separated by blanks or tabs (see Figure 1 for an example of a 

data file). Lines starting with a hash mark (#) are considered as comments and are ignored. 

Each data file needs to comprise at least two columns: One column—referred to as “RE-

SPONSE” column in the control file—contains information about responses coded as 0 and 1 

for the lower and upper threshold, respectively. The second required column—labelled as 

“TIME” column in the control file—gives response times in seconds. Optionally, further col-

umns can be added containing information about stimulus types (e.g., “word” vs. “non-word”) 

and/or the experimental conditions (e.g., “speed instruction” vs. “accuracy instruction”). In 

these additional columns either words or numbers can be used for coding different conditions. 

Fast-dm estimates parameters independently for separate data files. Usually, each data 

file will contain data from one participant. However, sometimes it may be a good idea to split 

data from one participant into separate files, so that independent models are estimated for dif-

ferent conditions.  

Control Files 

To run fast-dm, a control file is required containing commands that specify settings for the 

parameter estimation process. This control file is a plain text file that can be constructed with 

any text editor (see Figure 2 for an example of a control file). Each line of a control file con-
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tains a fast-dm command and additional values specifying the chosen settings (separated by 

blanks). As in data files, lines starting with a hash mark (#) are ignored. Table 2 gives an 

overview of all commands with explanations and examples. Some commands are required 

(format, load, and save or log), while others are optional. In the command file, the definition 

of the model (depends and set commands) have to precede the format command, and load and 

save/log commands must come after. All other commands can be placed anywhere in the con-

trol file. 

The method command specifies the optimization criterion. Possible values are “ml” for 

Maximum Likelihood, “ks” for Kolmogorov-Smirnov, and “cs” for Chi-Square. Depending 

on the chosen method, the appropriate criterion is given in the output. If no method is speci-

fied, KS is chosen by default. 

The precision command controls the accuracy of calculation of predicted CDFs (for 

the KS and CS method) or DFs (for the ML method). Any positive real numbers can be used 

as arguments, with higher precision values leading to a higher accuracy and longer duration of 

calculation. Reasonable values range from about 2.0 to 5.0. We tuned the calculation routines 

to achieve an error in calculated values that is approximately ε=10-precision (however, we can-

not guarantee that this bound is always strictly observed). The command is optional; if no 

precision is specified, a default value of precision = 3 is used. 

With the set command, parameters are fixed to given values. The command requires 2 

arguments (separated by blanks): First, the name of the parameter is given (see Table 1 for the 

fast-dm notation for all parameters), followed by the desired value. For example, “set zr 0.5” 

fixes the relative starting point to 0.5, that is, the process starts at Ͳ.ͷ ∙ � and is thus assumed 

to be unbiased. Parameters that are fixed to a value are not estimated by fast-dm. Generally, 

we recommend fixing either d to 0 or zr to 0.5 because it is difficult to estimate both parame-

ters simultaneously (Voss et al., 2010). In case of small trial numbers, it often makes sense to 

make a model as parsimonious as possible. For this purpose it might help to additionally fix sz 

and sv to 0 because these parameters have only minor impact on the predicted distributions 

and can only be reliably estimated from huge data sets (Voss, Nagler, & Lerche, 2013). The 

set command is optional; by default all parameters are estimated. The set command can be 

used repeatedly to fix different parameters. 

With the depends command parameters can be specified that are estimated separately 

for different types of stimuli or different experimental conditions. The depends command 

must be followed by a parameter name and by user-chosen labels for the conditions. Parame-

ters can depend on different factors (e.g., type of stimulus and block of the experiment); in 
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this case, labels for each factor are specified one after another (separated by blanks). For each 

parameter that can vary between conditions, a separate depends command must be specified. 

All condition labels that are used in any depends command must be specified as a column in 

the data file(s) with the format command (see below). The depends command is optional. By 

default, all parameters are assumed to be equal across all experimental conditions. 

The format command defines the columns of the data file(s). The labels RESPONSE 

and TIME are mandatory (capital letters are required for these). Additionally, all factor labels 

used in depends commands have to be named here as well (capitalization must be identical in 

the format command and the depends commands). Columns that shall be ignored by fast-dm 

can be assigned with any new name or with an asterisk (*). The format command is required 

and needs to be placed after all set and depends commands but before load, save, and log. 

The load command specifies the file name(s) of data files. Fast-dm tries to load data 

from the directory in which it is started, unless a path is given. File names may contain aster-

isks (e.g., “participant_*.dat”); in this case, the asterisk is a wildcard character that can be 

replaced by any number of characters. Any matching files within the chosen directory will be 

loaded. The load command is required. 

To save results, the save or the log command (or both) have to be used. With the save 

command, separate output files are generated for each data file. When the data file name as 

specified in the load command contains an asterisk, an asterisk is also required in file name 

defined in the save command, so that multiple file names for output can be generated. With 

the log command, one common output file is generated that contains estimated parameter val-

ues as a table that can be read from any statistical software for further analyses of results.  

Output 

The output of the estimation procedure is shown directly in the console (Figure 3). First, the 

name of the control file and central characteristics of the estimation procedure are presented 

(precision, method of estimation, format of data files, estimated and fixed parameters). Then, 

parameters that are estimated within each condition of an experiment are listed (numbers rep-

resent fixed parameters). For parameters that depend on conditions the labels of conditions as 

found in the appropriate columns of the data files are attached to the parameter identifier. At 

the end of these lines, the number of observed responses at lower and upper threshold (coded 

with 0 or 1 in the data file, respectively) within each condition are presented.  

Following the model specifications, fit values resulting from each of the three consec-

utive runs of the parameter search are displayed. If the KS criterion has been selected, the 

(combined) p-values of the KS distances will be presented. We warn not to take these p-
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values as a direct indicator of significant model misfit (Voss, Nagler, & Lerche, 2013): First-

ly, if multiple conditions are used the presented p-value is the product of p-values from all 

conditions, which may lead to very small combined values, even if the single KS statistics 

from all conditions are not significant (e.g., ݌ =  Ͳ.ͳͲ ∙ Ͳ.͵ͷ ∙ Ͳ.ͳʹ ∙ Ͳ.͸Ͳ = Ͳ.ͲͲʹͷ). On the 

other hand, p-values would be too liberal, if—as is done here—the forms of predicted func-

tions are fit to the empirical functions before the KS statistic is determined, which may possi-

bly prevent statistical significance. If the ML method is chosen the presented fit index is –LL. 

Small values indicate a good fit. Finally, when selecting CS as optimization criterion the chi-

square values will be displayed; here smaller values again indicate better fitting. If no valid 

model is found (e.g., if the likelihood for at least one RT is zero), a penalty value is presented 

instead of the fitting index. 

After the third run of the parameter search is finished the resulting estimates for all pa-

rameters are shown. If multiple data sets are processed, the estimates will be presented one 

after the other. Finally, the total computation time is presented. 

If the user wrongly defines a command (e.g., a condition is named in the depends 

command which has not been assigned to a data column in the format command) an error 

message appears and the program is aborted. Furthermore, a warning message will be pre-

sented and the estimation process stopped if the number of trials is not sufficient for parame-

ter estimation. For the ML and KS methods, for each experimental condition at least 10 trials 

are required (no matter whether responses vary between trials or not). For the estimation with 

CS as optimization criterion at least 12 trials sharing the same response are required (i.e., 12 

trials with all 12 responses at the upper threshold would be ok, while 20 trials with 10 re-

sponses at each threshold cannot be analysed using the CS method). 

Besides the output on the screen the results are also saved in files, either separately for 

each data file (using the save command in the control file; see Figure 4) and/or in one sum-

mary file including the estimates of all data files (using the log command; see Figure 5).  

Additional Tools 

Construct-samples, plot-cdf, and plot-density are command-line tools which can be down-

loaded from the “fast-dm Downloads” section (archive “Windows binaries”; source code is 

also available in the “source” archive). The programs need to be started from the command 

console, and all settings are entered directly as command line arguments. 

Making Simulations with construct-samples. Construct-samples allows simulating 

data sets for a given parameter set. This is useful (1) to evaluate the quality of parameter re-

covery of fast-dm and (2) to get a distribution of fit-values that allows assessing the fit of 
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models estimated from empirical data. For these purposes data sets have to be simulated from 

known parameter values. Then, fast-dm is applied to the simulated data sets and the estimated 

parameter values are compared to the true values from the simulation.  

If this tool is started by just typing construct-samples into the command line, all de-

fault settings are used (see Table 3). Typically, however multiple command line options will 

be entered at starting construct-samples. Options start with a minus sign, followed by a letter 

and in most cases by an additional argument, typically a number (exceptions: -r has no addi-

tional argument and -o needs a string determining the file name).  

Command-line options are used to set parameter values for the simulation. Please note 

that notation differs here slightly from the usual fast-dm labels. This is because only one-letter 

commands can be used here. Therefore, “-z” is used for zr, “-t” for t0, and capital letters “-Z”, 

“-V”, and “-T”, for the intertrial variabilities szr, sv, and st0, respectively. The “-r” argument 

ensures that random samples are generated. This is what normally is needed for simulations. 

If “-r” is not present, a deterministic data set is calculated, where response times reflect direct-

ly the quantiles of the predicted distributions. With “-p” the precision of calculation can be 

adapted as in fast-dm. The number of trials within each simulated data set is set by “-n”, and 

the number of data sets is defined by “-N”. The file name(s) for output are determined with 

the “-o” command. If multiple data sets are generated, it is necessary to include “%d” in the 

name, which is then replaced by a different number for each data set (from 0 to N-1). If “-o” is 

not used, results are presented in the console only. Results always comprise two columns: The 

first is coding simulated responses (0 vs. 1) and the second gives the response times in sec-

onds. Finally, a short help page can be opened by typing “construct-samples –h”. 

For example, construct-samples could be started by typing the following command: 

construct-samples -a 2 -z 0.5 -v 3 -t 0.5 -r -n 250 -N 1000 -o %d.sim  

With this command, 1,000 data sets named 0.sim to 999.sim are generated containing random 

samples of 250 trials simulated from parameter values a=2, zr=0.5, v=3, and t0=0.5 (for d and 

intertrial variabilities the default values of 0 are assumed). 

Often, you will need to simulate data sets for more complex situations. Imagine, for 

example, that multiple conditions with different parameter values should be simulated. To do 

so, you need to simulate data separately for each condition and then combine data sets into 

common files. This can be done automatically—for example—using R. The application of 

construct-samples (and fast-dm) from the R environment is illustrated in the examples that 

can be downloaded from the fast-dm website.  
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Plotting (combined) CDFs with plot-cdf and plotting DFs with plot-density 

Plot-cdf can be used to calculate values of predicted CDFs of a certain parameter set. This can 

be useful to demonstrate model fit graphically: If predicted and empirical CDFs are plotted in 

the same diagram, it is possible to assess whether both curves match sufficiently well, and—if 

not—where the main differences are (see Voss et al., 2008, for an example of this strategy). 

Note that plot-cdf generates so-called combined CDFs, where distributions from lower and 

upper threshold are merged by multiplying all RTs from the lower threshold by -1 (Voss et 

al., 2004; Voss & Voss, 2007).  

Command line options are very similar to those of construct-samples (see Table 3). 

The only differences are that -r, -n, and -N cannot be used with plot-cdf. For example, 

plot-cdf -a 2 -z 0.5 -v 3 -t 0.5 -o cdf.dat 

generates values for a predicted CDF with a=2, zr=0.5, v=3, and t0=0.5 and saves these values 

into a file named “cdf.dat”. Output consists of two columns: The first contains the reaction 

times (with negative values indicating responses at the lower threshold). The second column 

displays the cumulative probability values. For graphic diagrams output from plot-cdf has to 

be entered in other programs like R or Excel. 

The plot-density tool can be used to get values for the density functions at upper and 

lower threshold. Command line options are identical to those in plot-cdf. Therefore, 

plot-density -a 2 -z 0.5 -v 3 -t 0.5 -o density.dat 

will save the density functions for the same settings as used in the CDF example. Here, the 

output comprises three columns that contain values for predicted response times and density 

functions at upper and lower threshold (densities at the lower threshold get a negative sign 

here). 

 

Concluding Remarks 

After six years of using fast-dm, several optimizations have been made improving the 

performance and functionality of the program. The most important extension is the inclusion 

of different optimization criteria (Maximum Likelihood, Kolmogorov-Smirnov, and Chi-

Square). This can potentially improve results from diffusion model analyses greatly, because 

all criteria have different advantages and shortcomings, and now the criterion that is best for a 

given data set can be chosen. Obviously, the number of trials is an important factor for this 

choice. Often, ML will outperform the other methods at small data sets. Secondly, purity of 

data will influence quality of results as well: When RTs are contaminated, ML can be strongly 

biased (Ratcliff & Tuerlinckx, 2002), while both other methods will probably be more robust. 



Guidelines on Parameter Estimation in Diffusion Modeling A 2-25 

Further factors, like the number of estimated parameters, the number of experimental condi-

tions, the task difficulty (i.e., percentage of errors) will also influence the accuracy of parame-

ter recovery. However, it is less clear how these factors influence performance of the different 

criteria. Future simulation studies are essential to allow an informed choice of the best criteri-

on. 

In the development of fast-dm we did not (yet) program a graphical user interface. We 

are aware that this might be seen by some as a barrier to the application of the program. The 

main reason for us to develop fast-dm without graphical user interface was to ensure that the 

program can be compiled within any operating system. We hope that many users of fast-dm 

find it usable and helpful and that fast-dm thus helps to promote diffusion model analyses as a 

powerful method to infer cognitive processes.  
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Table 1  

Parameters of the Diffusion Model, typical ranges of values, and cognitive interpretation 

Parameter Fast-

dm  

Typical 

Range 

Interpretation 

Drift v -4 to +4 average speed of information uptake 

Threshold Separation  a 0.6 to 2 response caution 

Starting Point zr 0.4 to 0.6 decision bias 

Non-Decisional Constant t0 0.2  to 1.0 duration of non-decisional processes 

Difference in Non-Decisional Constant d -0.1 to 

+0.1 

response preparation / response inhi-

bition 

Intertrial Variability of Drift sv 0 to 1 differences in stimulus properties or 

fluctuations in attention 

Intertrial Variability of Starting Point szr 0.0 to 0.5 differences in expectations 

Intertrial Variability of Non-Decisional 

Constant 

st0 0 to 1 differences in speed of response 

execution 

Note. Ranges for parameters refer to a diffusion constant of s=1. 
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Table 2  

Commands of the control file 

Command Description Examples 

method CRITERION determines the optimization criterion (ml=Maximum Likelihood; ks=Kolmogorov-

Smirnov; cs=Chi-Square); default setting: method=ks 
 method ml 

 method cs  

precision VALUE defines the precision of the calculation; default setting: precision=3   precision 2.5 

 precision 5 

set PARAMETER VALUE fixes a parameter to a specific value; default setting: no fixations  set d 0 

 set zr 0.5 

 set szr 0 

depends PARAMETER 

CONDITION 

denotes that a parameter may vary between different conditions; default setting: 

parameters do not depend on conditions 
 depends t0 block  

 depends v stimulus difficulty 

format CONDITION ... defines columns of the data file(s). The command requires the variables RE-

SPONSE and TIME 
 format RESPONSE TIME  

 format RESPONSE TIME stimulus diffi-

culty 

 format * RESPONSE TIME 

load FILE_NAME  declares the names of the input files  

 
 load participant_1.dat 

 load participant_*.dat 

save FILE_NAME defines the names of separate output files (one output file for each data set)  save parameters_participant_1.dat 

 save parameters_participant_*.dat 

log FILE_NAME defines the name of a common output file (one output file for all data sets)   log all_participants.dat 

Note. Commands in bold font are required while the other commands are optional. 
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Table 3 

Command-Line Options for construct-samples, plot-cdf and plot-density 

Option Description Default 

-a VALUE VALUE is assigned to parameter a 1 

-z VALUE VALUE is assigned to parameter zr 0.5 

-v VALUE VALUE is assigned to parameter v 0 

-t VALUE VALUE is assigned to parameter t0 0.3 

-d VALUE VALUE is assigned to parameter d 0 

-Z VALUE VALUE is assigned to parameter szr 0 

-V VALUE VALUE is assigned to parameter sv 0 

-T VALUE VALUE is assigned to parameter st0 0 

-p VALUE the computational precision is set to VALUE 4 

-n VALUE a VALUE defines the trial number per data set 100 

-r a a random data set is generated a deterministic data set is gener-

ated 

-N VALUE a VALUE defines the number of random data 

sets 

1 

-o FILE_NAME the generated data is not presented in the con-

sole but saved to FILE_NAME 

the generated data is presented in 

the console window but not saved 

Note. a expression cannot be applied for plot-cdf and plot-density. 
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# RESPONSE TIME stimulus difficulty 
0 0.424 0 easy 
1 0.667 1 difficult 
0 0.598 0 easy 
1 0.713 1 difficult 
1 0.701 1 difficult 
1 
1 
0 

0.655 
0.452 
0.577 

0 
1 
0 

easy 
difficult 
easy 

 

 

Figure 1. Example of the first lines of a data file. Lines starting with “#” are ignored. The RESPONSE 
(0=”lower threshold”, 1=”upper threshold”) and TIME column (response time in seconds) are manda-
tory. Further columns can be added to give information about the stimulus (e.g., 0 = “word” vs. 1 = 
“non-word”) or experimental condition (e.g., “easy” vs. “difficult”). 
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method ml 
precision 2.5 
set d 0 
set zr 0.5 
set szr 0 
set sv 0 
depends v stimulus difficulty 
format RESPONSE TIME stimulus difficulty 
load participant_*.dat 
save parameters_participant_*.dat 
log D:/fast-dm/all_participants.dat 

 

Figure 2. Example of a control file. The maximum likelihood criterion is used with (reduced) preci-

sion 2.5. Four parameters (d, zr, szr, sv) are fixed to given values. Drift is free to differ depending on 

stimulus and difficulty. If both conditions have 2 values (see Figure 1), 2 x 2 = 4 different values for 

the drift will be estimated, whereas for the remaining parameters (a, t0, st0) one value is estimated for 

all conditions (resulting in 7 free parameters). The remaining commands specify the format of data 

files, and file names for data, save, and log files. 
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experiment experiment.ctl (1 data sets): 
precision: 3 
maximizing the likelihood 
format of “participant_*.dat”: RESPONSE TIME stimulus difficulty 
optimized parameters: a, v_stimulus_difficulty, t0 
fixed parameters: zr=0.5, d=0, szr=0, sv=0, st0=0 
dataset participant_1.dat: 
a, 0.5, v_0_easy, t0, 0, 0, 0, 0 (10+25 samples) 
a, 0.5, v_1_difficult, t0, 0, 0, 0, 0 (29+12 samples) 
a, 0.5, v_0_difficult, t0, 0, 0, 0, 0 (10+2 samples) 
a, 0.5, v_1_easy, t0, 0, 0, 0, 0 (11+1 samples) 
–LL = 22.202 
–LL = 14.236 
–LL = 14.2359 
a = 1.800419 
v_0_easy = -2.920849 
t0 = 0.154514 
v_1_difficult = 1.154768 
v_0_difficult = -0.825825 
v_1_easy = 3.219171 
1 dataset processed, total CPU time used: 0.0s 

 

Figure 3. Example of the console output. First, information on the selected control file, the precision 

and method of estimation, the format of the data files and the estimated and fixed parameters are giv-

en. Any parameter depending on a condition is indexed with the name of the condition variable(s). 

Estimated parameters and numbers of responses at lower and upper threshold are presented separately 

for each condition. The three “-LL” values result from the three consecutive runs of the simplex algo-

rithm. In the following lines the estimated values for all parameters are displayed. Finally, the number 

of processed data sets and the required computational time is given.  
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a = 1.800419 
v_0_easy = -2.920849 
t0 = 0.154514 
v_1_difficult = 1.154768 
v_0_difficult = -0.825825 
v_1_easy = 3.219171 
precision = 3.000000 
method = ML 
penalty = 0.000000 
fit index = -14.235880 
time = 0.047000 

 

Figure 4. Example of a save file. When the save command is used for each data file a separate output 

file is generated containing a short version of the screen output (see Figure 3). 
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dataset a v_0_easy t0 v_1_difficult v_0_difficult v_1_easy  penalty fit time method 
1 1.8004 -2.9208 0.1545 1.1548 -0.8258 3.2192   0.0000 -14.2359 0.0470 ML 
2 2.0001 -2.5112 0.1953 1.3414 -0.7276 2.850    0.0000 -17.332  0.0320 ML 

 

Figure 5. Example of the beginning of a log file. When the log command is used, one common file 

containing the estimates from all data files is generated. This is especially convenient for further statis-

tical analyses. 
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Appendix A 3 

Manuscript 3: Lerche, V., Voss, A., & Nagler, M. (2016). How many trials are required for 

parameter estimation in diffusion modeling? A comparison of different optimization criteria. 

Behavior Research Methods, 1-25.  
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ABSTRACT 

Diffusion models (Ratcliff, 1978) make it possible to identify and separate different cognitive 

processes underlying responses in binary decision tasks (e.g., the speed of information 

accumulation vs. the degree of response conservatism). This becomes possible because of the 

high degree of information utilization involved. Not only mean response times or error rates 

are used for parameter estimation but also the response time distributions of both correct and 

error responses. In a series of simulation studies, the efficiency and robustness of parameter 

recovery were compared for models differing in complexity (i.e., in numbers of free 

parameters) and trial numbers (ranging from 24 to 5,000) using three different optimization 

criteria (maximum likelihood, Kolmogorov-Smirnov, and chi-square) that are all implemented 

in the latest version of fast-dm (Voss, Voss, & Lerche, 2015). The results revealed that 

maximum likelihood is superior for uncontaminated data, but in the presence of fast 

contaminants, Kolmogorov-Smirnov outperforms the two other methods. For most conditions, 

chi-square-based parameter estimations lead to less precise results than the other optimization 

criteria. The performance of the fast-dm methods was compared to the EZ approach 

(Wagenmakers, van der Maas, & Grasman, 2007) and to a Bayesian implementation (Wiecki, 

Sofer, & Frank, 2013). Recommendations for trial numbers are derived from the results for 

models of different complexities. Interestingly, under certain conditions even small numbers 

of trials (N < 100) are sufficient for robust parameter estimation. 

 

Keywords: diffusion model, fast-dm, mathematical models, reaction time methods 



Guidelines on Parameter Estimation in Diffusion Modeling A 3-4 

How many trials are required for parameter estimation in diffusion modeling?  

A comparison of different optimization criteria 

The diffusion model was introduced almost four decades ago by Roger Ratcliff (1978) as a 

model for cognitive processes in memory retrieval. Since then, it has been shown that the 

model can map cognitive processes from a multitude of different cognitive tasks that require 

fast binary decisions, including—for example—color or numerosity classifications, or lexical 

decision tasks (see Voss, Nagler, & Lerche, 2013, for a recent review). Thus, the diffusion 

model can be seen as a generic model for binary decisions. Why have accumulator models 

like the diffusion model become so popular in recent years? The advantage over traditional 

analyses of response time (RT) means (or error rates) is that different aspects of cognitive 

processing can be measured separately. Imagine a study on cognitive aging that analyzes the 

stability (or decline) of cognitive performance in a specific task at high age. If the mean RT is 

used as the dependent measure, you cannot be sure whether the longer RTs are really based on 

slower information processing, because older adults may be more cautious—that is, they may 

respond only if they are really sure about the correct response (e.g., Forstmann et al., 2011; 

Ratcliff, Thapar, Gomez, & McKoon, 2004). Additionally, older adults may be slower in 

motor response execution (e.g., Ratcliff, Thapar, & McKoon, 2004). Thus, it is important to 

get a valid measure for speed of information processing that is not confounded by speed-

accuracy settings or the speed of motor response. In the diffusion model framework, the drift 

parameter provides such a measure of cognitive speed (see Voss, Rothermund, & Voss, 2004, 

for an experimental validation study). 

In the first three decades following its introduction in psychological research, 

Ratcliff’s diffusion model (1978) was used primarily by researchers with a profound interest 

in, and knowledge of, mathematical psychology. In recent years, however, the diffusion 

model has increasingly attracted the attention of researchers from various other fields of 

psychology. Examples indicating the wide range of applications for the diffusion model 

include analyses of cognitive processes in such typical experimental paradigms as the lexical 

decision task (e.g., Yap, Balota, & Tan, 2013), sequential priming paradigms (e.g., Voss, 

Rothermund, Gast, & Wentura, 2013), task switching (Schmitz & Voss, 2012, 2014), or 

prospective memory paradigms (e.g., Boywitt & Rummel, 2012). Other applications 

encompass social cognitive research (e.g., Germar, Schlemmer, Krug, Voss, & Mojzisch, 

2014; Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007; Voss, Rothermund, & 

Brandtstädter, 2008), cognitive aging (e.g., McKoon & Ratcliff, 2013; Spaniol, Madden, & 

Voss, 2006), cognitive processes related to psychological disorders (e.g., Metin et al., 2013; 
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Pe, Vandekerckhove, & Kuppens, 2013; White, Ratcliff, Vasey, & McKoon, 2010b), and 

other fields of psychology. 

So far, the diffusion model has often been applied for the detection of differences 

between groups or conditions (e.g., Boywitt & Rummel, 2012). More recently, the 

correlations between diffusion model parameters and external criteria have also constituted a 

research field (e.g., between drift rate and general intelligence; see Ratcliff, Thapar, & 

McKoon, 2010). On the basis of such observations, lately, the idea has been expressed that the 

diffusion model might also be used as diagnostic tool (e.g., Aschenbrenner, Balota, Gordon, 

Ratcliff, & Morris, 2016; Ratcliff & Childers, 2015). 

These different types of applications of the diffusion model go along with different 

requirements regarding parameter estimation accuracy. For example, for the detection of 

differences between conditions, biases in parameter estimation are not necessarily a problem. 

Imagine an estimation procedure that results in a systematic overestimation of the drift rates 

in both of two conditions. If the estimation bias is similar over conditions, it will not affect the 

power of difference detection. If, however, the estimation bias depends on the experimental 

condition (e.g., via the number of error responses), the power to detect differences between 

the conditions might be affected. In another scenario, there might be no systematic estimation 

bias, but imprecise measurement could lead to large average deviations between the true and 

reestimated parameter values. The increased error variance would directly diminish the power 

of difference detection. In this case, an increase in the number of participants can reestablish 

the power to detect any effects on parameters. Finally, if the diffusion model is applied for the 

diagnosis of interindividual differences in cognitive functioning, it is important that the 

relevant parameter be estimated very accurately (i.e., reliably) for each single individual. 

Thus, depending on the aim of the researcher, more or less strict criteria would have to be 

applied. 

One important methodological factor that directly influences the precision of results is 

the number of trials. There has been a huge variation in the numbers of trials used for 

previous diffusion model experiments, ranging from less than 100 to several thousands of 

trials per participant. The choice of trial numbers typically seems to be rather arbitrary. It is 

remarkable that the required trial numbers have rarely been analyzed systematically so far 

(see Lerche & Voss, 2016b; Ratcliff & Childers, 2015; Wiecki et al., 2013, for some 

exceptions). 

The main aim of the present article is to provide well-founded recommendations 

regarding the requisite trial numbers for robust diffusion modeling. As we discussed above, 
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the question of requisite trial numbers is closely related to the precision that is necessary for a 

specific research question. In a series of simulation studies, we tested the precision of 

parameter estimation procedures for very small to very high trials numbers. This allowed us to 

derive conclusions for minimally required trial numbers (i.e., a number below which diffusion 

modeling becomes virtually meaningless), as well as “maximum” trial numbers (above which 

increases in precision become negligible). 

A factor influencing the required number of trials is the efficiency of the applied 

estimation procedure. Accordingly, a second objective of this article is the comparison of the 

efficiency of different optimization criteria for the parameter search procedure for diffusion 

modeling. The simulations in this article were carried out using fast-dm-30 (Voss et al., 2015), 

which is the newest version of fast-dm (Voss & Voss, 2007, 2008). Besides the Kolmogorov-

Smirnov criterion that was implemented in former versions, fast-dm-30 now includes 

implementations of the chi-square and maximum likelihood criteria. The implementation of 

these within the same program facilitates comparisons of the criteria’s performance. Thus, in 

contrast to studies that have compared different programs (e.g., van Ravenzwaaij & Oberauer, 

2009), we can exclude the possibility that any differences between optimization criteria are 

due to program specifics. 

Finally, a third focus is the influence of model complexity on the required numbers of 

trials. Typically, diffusion model analyses allow for intertrial variations of diffusion model 

parameters (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002). Although estimates of 

intertrial variability seldom allow meaningful psychological interpretations, they often do 

improve model fit. However, it remains unclear how this increase in model complexity would 

influence the precision of estimates for the more meaningful diffusion model parameters. To 

investigate the influence of model complexity, we analyzed four differently complex models. 

Note that in the present article only models for simple experimental designs are considered. If 

data from more complex designs with different conditions were mapped, models would 

probably be more stable (and hence, the requisite trial numbers lower) if it were known on 

which parameters the manipulation would map; if not, the increasing number of model 

parameters might make the model even more unstable. 

In the following sections, we first give a short introduction to diffusion modeling. This 

is followed by the presentation of the main properties of the different optimization criteria 

(i.e., chi-square, maximum likelihood, and Kolmogorov-Smirnov). In the subsequent section, 

the available computer programs for diffusion model analyses are briefly presented. After 

this, we go into the main research issues, giving an overview of initial simulation studies 
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comparing different optimization criteria and different trial numbers. Finally, we outline and 

discuss the methods and results of our simulation studies. 

The rationale of the diffusion model 

Researchers dealing with data from binary decision tasks often use either the percentage of 

correct responses or the mean RTs as dependent measures. However, some research questions 

cannot be properly addressed on the sole basis of (one of) these measures. For instance, 

different speed-accuracy settings can make it difficult to interpret an observed difference in 

mean RTs between two groups or conditions. Are the longer RTs in one of these conditions 

due to slower information uptake, or rather the result of a conservative response style? The 

diffusion model helps solve this problem, because it maps speed-accuracy settings and the 

speed of information processing on independent parameters. This decomposition becomes 

possible by taking into account the complete distributions of both correct and error responses 

(and thus, implicitly, also the error rate). Thereby, several cognitive components are identified 

that have clear psychological interpretations (Voss et al., 2008; Voss et al., 2004). This makes 

it possible to answer not only the question of whether or not people (or tasks) differ in their 

performance in a cognitive task, but also to determine in what way they differ (e.g., why one 

person is faster than another). Note that several mathematical models allow such a separation 

of the different components involved in decision tasks. One prominent example is the linear 

ballistic accumulator model (Brown & Heathcote, 2008). In this article, we focus on the 

diffusion model (Ratcliff, 1978). 

The basic assumption of the diffusion model is that decisions are based on a 

continuous information-sampling process that is described by a Wiener diffusion process (i.e., 

a diffusion process with constant drift) running in a corridor between two thresholds (see 

Figure 1). The current information drives the decision process toward the upper or the lower 

threshold, representing two possible decisional outcomes. As soon as the upper or lower 

threshold is hit, the decision is reached, and a corresponding motor program is initiated. 

Because the diffusion process is a stochastic (i.e., noisy) process, durations and outcomes may 

vary from trial to trial, even if identical stimulus information is presented. 

 In the following paragraphs, we shortly present the parameters of the diffusion model. 

The drift rate (parameter ν) indicates the average speed (and direction) of information uptake. 

High (absolute) drift rates lead to fast responses and few errors, whereas a drift around zero 

indicates chance performance with long RTs. Thus, high drift rates indicate higher cognitive 

speed or easy tasks. 
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A second model parameter is the distance between the two thresholds (parameter a). 

This parameter defines how much information is considered before a decision is made. A 

large threshold separation means that a lot of information needs to be sampled before the 

decision is made, which will result in large RTs with a low error rate. Thus, conservative 

decision-makers will have large threshold separations, and liberal decision-makers small ones. 

The starting point (parameter z) defines the position at which information 

accumulation begins. If z is not centered between the thresholds, there is a decision bias in 

favor of the threshold that is closer to the starting point. To reach this “preferred” threshold, 

the process needs less information, and the corresponding responses will therefore be more 

frequent and faster. Instead of the absolute value z, often the relative starting point zr = z/a is 

reported (e.g., Voss et al., 2015), with zr = .5 reflecting an unbiased decision process. Note 

that decision bias mapped by the starting point is conceptually similar to response bias in the 

signal detection framework. We prefer the term decision bias because it influences the 

decision process, and not merely response execution. 

In addition to the decision times, in the analysis of RT data the duration of 

nondecisional processes (parameter t0 or Ter, not shown in Figure 1) also needs to be 

considered. These nondecisional processes can temporally precede (e.g., encoding of 

information) or follow (motoric execution of the response) the accumulation process. 

Furthermore, the diffusion model can also explain trial-to-trial fluctuations in 

performance that arise—for example—from variability in the stimulus information or in the 

attention of the participant. For this purpose, intertrial variability parameters have to be 

included (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002; see also Laming, 1968). 

Specifically, it is assumed that the drift across trials follows a normal distribution with mean v 

and standard deviation sv. The starting point and nondecision time are assumed to be normally 

distributed, with means zr and t0 and widths szr and st0, respectively. More recently, the 

diffusion model has been expanded to include a response bias parameter (parameter d) that 

maps differences in the duration of nondecisional processes between the two responses (Voss, 

Voss, & Klauer, 2010; Voss et al., 2015). 

Finally, the diffusion model includes the diffusion coefficient—that is, the amount of 

noise in the diffusion process (sometimes called the intratrial variability of drift). The 

diffusion coefficient is typically not estimated but instead used as a scaling parameter 

(theoretically, either v or a could be used as the scaling parameter, and then the diffusion 

coefficient could be estimated). We set the diffusion coefficient to s = 1 (and thus held it 

constant across conditions; see Donkin, Brown, & Heathcote, 2009, for a different 
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suggestion). If another value is used, all diffusion parameters (except t0 and st0) are rescaled 

by the factor s (e.g., Ratcliff usually sets s to .1 in his applications). 

Optimization Criteria 

One common aim in diffusion model analysis is to find a set of parameters that optimally 

describes the empirical data. To achieve this, deviations between the observed data and the 

data predicted from a certain set of parameters are minimized by adjusting the parameter 

values. For this purpose, different optimization criteria quantifying the goodness of fit 

between the observed and expected data have been used in the diffusion model literature. In 

the following discussion, we present three criteria that have frequently been applied in the 

context of diffusion modeling: chi-square (CS), maximum likelihood (ML), and Kolmogorov-

Smirnov (KS) (see also Table 1). 

Chi-Square 

The CS criterion has often been used for parameter estimation (Ratcliff & McKoon, 

2008; Ratcliff & Tuerlinckx, 2002; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). To 

calculate CS, responses are grouped into bins according to latency. This is done separately for 

the responses at the upper and lower thresholds. The borders of the bins are based on quantiles 

of the RTs observed. Ratcliff and Tuerlinckx (2002) proposed the use of six bins, with the two 

outer bins each comprising 10 % of the observed RTs, and the other four bins 20 % each. 

Accordingly, the borders of the RT bins are defined by the .1, .3, .5, .7, and .9 percentiles of 

the empirical RT distributions. These bins are then applied to the predicted distributions. 

From the deviations between the numbers of predicted and observed responses for each bin, a 

CS value is computed.1 In an iterative parameter search process, this CS sum is minimized. 

Because the predicted (cumulative) distributions only need to be evaluated at the borders of 

the bins, computation is fast and independent of the number of trials. 

Maximum likelihood 

The ML criterion is used in various mathematical modeling approaches. In contrast to 

the CS approach (e.g., Ratcliff & Tuerlinckx, 2002), the ML approach uses every RT, and no 

binning is necessary. A set of parameters is sought to maximize the likelihood of the 

empirical data. For technical reasons (see Ratcliff & Tuerlinckx, 2002), typically the sum of 

logarithmized density values is maximized rather than the product of densities. Unlike CS, the 

                                                           
1 Strictly speaking, the resulting value is not exactly a chi-square value, because the borders of the bins are 

determined from the empirical distributions and not from the predicted distributions (Speckman & Rouder, 

2004). However, the values approximate a chi-square distribution (Fific, Little, & Nosofsky, 2010). In diffusion 

model analyses, CS is usually calculated in this way, because it is computationally much easier and faster. 
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computation time required by ML depends strongly on the number of trials per data set, 

because the predicted density has to be computed for each trial. 

Kolmogorov-Smirnov 

The KS criterion was introduced as an optimization criterion for diffusion modeling by 

Voss et al. (2004) and has been applied in numerous studies (e.g., Horn, Bayen, & Smith, 

2011; Metin et al., 2013; Voss, Rothermund, et al., 2013). The criterion is based on the 

cumulative distribution functions (CDFs) of RTs. To calculate the KS criterion, the 

distributions at the upper and lower thresholds are combined by multiplying all RTs from the 

lower threshold by -1 (a procedure first proposed by Voss et al., 2004; see also Voss & Voss, 

2007). This creates a cumulative density function for the whole data set. The KS criterion is 

the maximum absolute vertical distance between the observed and predicted CDFs. 

Accordingly, for each observed RT the distance between the two CDFs needs to be computed 

to identify the maximum. The iterative search for parameter estimates then aims at 

minimizing this maximum distance. 

Estimation Programs 

For many years researchers had to develop parameter search implementations of their own for 

the diffusion model analyses. In recent years, several programs were published for this 

purpose. Among them is the EZ-diffusion model (Grasman, Wagenmakers, & van der Maas, 

2009; Wagenmakers, van der Maas, Dolan, & Grasman, 2008; Wagenmakers et al., 2007), 

which is available as JavaScript, R code, a MATLAB implementation, and an Excel 

spreadsheet. In comparison with search procedures based on the three optimization criteria 

presented in the last section, EZ uses a more limited amount of information. In the original 

version of EZ (Wagenmakers et al., 2007), parameters were estimated from error rates and the 

mean and variance of the correct responses. Closed-form equations are utilized for the 

parameter calculation. In this way, estimates for three parameters can be obtained (a, ν, t0). In 

the extended versions of EZ (Grasman et al., 2009; Wagenmakers, van der Maas, et al., 2008) 

further parameter options are available, such as estimation of parameter z and the 

consideration of contaminant data.  

The Diffusion Model Analysis Toolbox (DMAT; Vandekerckhove & Tuerlinckx, 2007, 

2008) is a MATLAB toolbox. In DMAT, the CS method is implemented. Furthermore, the 

toolbox offers the possibility of using quantile maximum probability estimation (see also 

Heathcote & Brown, 2004; Speckman & Rouder, 2004). 

A third program, fast-dm (Voss & Voss, 2007, 2008), is a command-line program. In 

fast-dm-29 and all earlier versions, parameter search was generally based on KS as the 
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optimization criterion. The newest version, fast-dm-30 (Voss et al., 2015), offers a choice 

between a KS, ML, and CS approaches. 

The last few years have seen the advent of software solutions for hierarchical diffusion 

model analyses. Vandekerckhove, Tuerlinckx, and Lee (2011) proposed a plug-in to the 

WinBUGS software. A platform-independent solution HDDM (for hierarchical drift diffusion 

model) has been presented by Wiecki et al. (2013). HDDM is a toolbox based on Python and 

uses a Bayesian method for parameter estimation. It can be used either for fitting a 

hierarchical model or for fitting parameters for each individual subject. Recently, another 

platform-independent software option was introduced by Wabersich and Vandekerckhove 

(2014). 

Literature on comparison of optimization criteria 

There is a lack of systematic research on the performance of different optimization criteria for 

diffusion modeling. One exception is the study by van Ravenzwaaij and Oberauer (2009), 

who compare the performance of EZ, fast-dm, and DMAT (using the multinomial log-

likelihood function, MLF). They find KS to be superior to MLF in terms of the correlations 

between the true and recovered parameter values. However, MLF performed better than KS in 

recovering the mean true values. Since the comparison of the optimization criteria KS and 

MLF was based on different software solutions, however, program details may have been the 

factor behind the resulting differences, which were not necessarily based on the different 

optimization criteria. Interestingly, EZ performed very well in this study. Especially in the 

event of a reduction in the number of trials (80 instead of 800), EZ outperformed fast-dm in 

the correlations (DMAT could not even be applied in this condition, since it needs a minimum 

of 11 errors in each RT quantile). However, EZ (even in the more recent versions) does not 

allow for the estimation of intertrial variabilities, so full comparability with KS and MLF 

cannot be established. Note that the estimation of intertrial variabilities (especially sz and sν) 

posed serious problems for fast-dm and DMAT. This may have had a negative influence on 

the recovery of the other parameters. EZ, on the other hand, circumvents the estimation 

difficulties associated with intertrial variabilities by providing estimates for only three 

parameters (a, ν, t0). Besides, no contaminated trials were included in the simulation studies. 

Contaminants are responses resulting from sources other than a diffusion process. In several 

simulation studies, Ratcliff (2008) demonstrated the sensitivity of EZ to the presence of 

contaminants (but see Wagenmakers, van der Maas, et al., 2008). 

 Ratcliff and Tuerlinckx (2002) compared ML, CS, and a weighted least squares 

(WLS) fitting method, both with and without the inclusion of contaminants. They showed that 
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for a model consisting of eight parameters (a, t0, four drift rates, sz, and sν; z was assumed to 

be centered between the thresholds) and data without contaminants, ML outperformed CS and 

WLS. When contaminants were added, ML’s performance deteriorated dramatically. CS was 

also impaired by the presence of contaminant trials, whereas the performance of WLS 

deteriorated only slightly. Ratcliff and Tuerlinckx (2002) counteracted the deterioration of 

ML and CS by explicitly modeling the contaminants with a uniform distribution. 

Consequently, parameter recovery improved. Furthermore, they included the intertrial 

variability of t0 into the model (st0), and with both this additional parameter and the modeling 

of contaminants, CS resulted in precise and unbiased estimation when 1,000 trials per 

condition were used. For 250 trials per condition the performance was significantly worse. 

The authors recommended using CS with the correction for contaminant trials and st0 included 

in the model. Note, however, that for 250 trials per condition, the performance of CS in this 

model was “very poor” (p. 467). Subsequently, many researchers have used CS, referring to 

the studies by Ratcliff and Tuerlinckx (2002) stating that CS “provides the best balance 

between robustness and the ability to recover parameter values” (Wagenmakers, Ratcliff, et 

al., 2008, p. 146).  

Recently, the performance of newly developed hierarchical diffusion models has been 

tested. Wiecki et al. (2013) compared CS- and ML-based algorithms to HDDM, their software 

solution for a hierarchical Bayesian estimation of parameters. Their work revealed the 

superiority of HDDM, especially for small trial numbers. Besides, ML often outperformed 

CS. 

Ratcliff and Childers (2015) ran a series of simulation studies in which they compared 

eight different estimation methods and programs. DMAT cut a poor figure, and EZ did not 

perform very well in the presence of contaminants. However, CS (based on either ten or six 

bins), ML, and KS generally recovered the parameters quite well. Some of the findings for 

HDDM were inconsistent. For example, in Simulation Study 1, in one design (with four drift 

rates) HDDM featured high correlations between the true and re-estimated parameter values 

even for small trial numbers, outperforming the other methods. In another design (with two 

drift rates) for smaller numbers of trials, it performed worse than most of the other methods. 

Besides, in another simulation study (Simulation Study 2), unexpectedly, high biases were 

found for a large trial number, whereas the biases for a small trial number were smaller than 

those in the other methods. 

With the availability of fast-dm-30 (Voss et al., 2015), the three criteria CS (based on 

six bins), ML, and KS can be compared to each other independently of confounding factors 
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(i.e., program specifics). As we outlined in the section on optimization criteria, CS, ML, and 

KS differ in the amounts of information used for the fitting process. Whereas CS reduces the 

available information by dividing the distributions into bins, ML and KS consider the exact 

value of each RT observed. This is why we expected our simulation studies to reveal that the 

number of trials required for efficient parameter estimation was higher for the CS criterion 

than for ML and KS. KS requires calculation of the vertical distance for each RT observed; 

the criterion itself, however, is based on only one of these distances (the maximum distance). 

Accordingly, ML may be a more efficient estimator than KS. 

However, we also expected the optimization criteria to differ in terms of robustness in 

the presence of “contaminants”.2 Because the (log-)likelihood can be strongly influenced by 

single RTs, we assumed that results from the ML method would be most strongly biased 

when RT distributions were contaminated, whereas the CS and KS criteria were expected to 

be more robust. Therefore we expected ML to require the lowest number of trials, followed by 

KS and CS, with uncontaminated data. In the presence of contaminants, however, ML should 

perform worse than KS.  

Number of trials required 

Is diffusion modeling restricted to experimental designs with more than 1,000 trials per 

participant? After receiving regular inquiries from researchers greatly interested in diffusion 

modeling but uncertain about the number of trials required for robust analysis, we decided to 

address this issue systematically. Conventionally, high numbers of trials are used for diffusion 

modeling. For instance, Ratcliff, Thapar, Gomez, et al. (2004) used 2,100 trials in their 

experimental session (see also Leite & Ratcliff, 2011; Ratcliff & Rouder, 1998; Ratcliff & 

Van Dongen, 2009; Wagenmakers, Ratcliff, et al., 2008; but see Klauer et al., 2007). 

Although generally a large data base makes the fitting of mathematical models more stable, 

obviously using extraordinarily large trial numbers can cause problems of its own. First, the 

experimental sessions require more time and effort. More importantly, psychological effects 

may change over time due to practice effects, and after several hundred trials, some effects of 

interest may be diminished or even disappear completely. Additionally, it may often be 

difficult to find sufficient stimuli, if they are not supposed to be repeated. 

One interesting approach to addressing the issue of trial numbers by way of 

experimental design has been proposed by White, Ratcliff, Vasey, and McKoon (2009), who 

used filler trials (see also White et al., 2010b) to achieve higher accuracy in parameter 

                                                           
2 We consider an estimation procedure to be “robust” when its results are not biased by contaminants. 
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estimation. Some parameters (response criteria and non-decisional processes) were estimated 

on the basis of both target and filler trials. In this way, the authors could use several hundred 

trials for the parameter estimation, resulting in more stable estimates for the drift rates, which 

were the actual focus of their studies. Although this approach addresses the problem of sparse 

stimulus material, the authors were still using several hundred trials, and the question remains 

unanswered whether these high trial numbers are actually necessary. 

 There is a general consensus that higher trial numbers lead to higher accuracy in 

parameter estimation. This has been confirmed by several simulation studies (e.g., Ratcliff & 

Tuerlinckx, 2002; Vandekerckhove & Tuerlinckx, 2007). In these studies, however, trial 

numbers were manipulated only in a limited range. A more systematic comparison of 

different trial numbers was done by Wiecki et al. (2013; see also Ratcliff & Childers, 2015). 

They varied the number of trials from 20 to 150 per condition (in a design with two drift rates 

and st and sz fixed at zero) and analyzed the mean absolute errors of the single parameters and 

the probability of detecting a significant difference between the two drift rates. Their results 

revealed an improvement in parameter estimation when the number of trials was increased.  

Although these studies clearly demonstrated that parameter estimation improves with 

the number of trials, they did not focus on the inference of guidelines for the trial numbers 

required. 

Method 

To compare the performance of different parameter estimation methods (CS, KS, ML) and 

programs (HDDM and EZ) and to infer guidelines for the numbers of trials necessary for 

efficient and robust parameter estimation, a set of simulation studies was carried out. In the 

following sections, we first describe the design of these studies, proceeding from there to 

present our criteria for evaluating the performance of the optimization criteria. 

Design 

In our studies, we tackled two different designs, in which one drift rate or two drift 

rates were estimated. Diffusion models with one drift rate are mostly used to analyze data that 

has been coded as correct (e.g., upper threshold) vs. error (e.g., lower threshold). This kind of 

analysis allows collapsing data across different stimulus types. Alternatively, one-drift models 

might be applied for subsets of data based on the same stimulus types. The one-drift design 

was used in a first series of simulations. Both for simulation and parameter reestimation, we 

used models that differed in the number of free parameters. The seven-parameter model was 

composed of all seven parameters typically used in diffusion model analyses (a, ν, t0, zr, sν, st0, 

and szr); in the six-, four-, and three-parameter models, certain parameters were fixed at 
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constant values. In the six-parameter model, the relative starting point zr was fixed to .5 (the 

process starts centered between the two thresholds); in the four-parameter model the three 

intertrial variabilities (sν, st0, and szr) were fixed at zero; and in the three-parameter model both 

the intertrial variabilities and the starting point were fixed. For each model (i.e., three-, four-, 

six-, and seven-parameter models) 1,000 random parameter sets were generated with typical 

parameter values observed in previous applications. The parameter values were drawn from 

uniform distributions with the minimum and maximum values shown in Table 2. 

Subsequently, for each parameter set, seven random data sets with different numbers of trials 

(24, 48, 100, 200, 500, 1,000, and 5,000) were simulated with construct-samples3, resulting in 

a total number of 4 (models) × 1,000 (parameter sets) × 7 (trial numbers) = 28,000 simulated 

data sets. 

Whenever performance differs between the stimulus types, or when there is an a priori 

bias in favor of one of the responses, a more complex model using two drift rates is needed. 

Typically, thresholds are associated with responses for the two stimulus types, and drift rates 

are estimated separately for each stimulus type in one model (e.g., White, Ratcliff, Vasey, & 

McKoon, 2010a; Yap, Balota, Sibley, & Ratcliff, 2012). This results in a drift with positive 

sign for the stimulus at the upper threshold and a drift with negative sign for the stimulus at 

the lower threshold. In our simulations, this procedure was mapped by a “two-drift design”. In 

particular, we simulated data sets with two stimulus types, using one positive and one 

negative drift that were allowed to vary in absolute values (i.e., difficulty). The drift values 

were drawn from a multivariate normal distribution. They were generated to represent a 

difference of dz = 0.35 (Cohen, 1988).4 All other parameters were equivalent to those in the 

one-drift design. We also used the same numbers of trials as in the one-drift design, with, for 

example, 24 trials composed of 12 trials of one stimulus and 12 trials of the other.5 A total of 

1,000 data sets were constructed for each of the four models (with different numbers of 

parameters) and for each trial number, resulting in another 28,000 data sets (4 models × 7 

trial numbers × 1,000 parameter sets). In the remainder of this study, we will refer to the 

models as the three-, four-, six- and seven-parameter models, so as to use the same terms as in 

                                                           
3 construct-samples is part of the fast-dm software. It simulates response time data by applying a random-walk 

with very small time steps. 
4 Effect size formula: dz = 

�భ−�మ������ , with dz = 0.35, M1 = 2.00, M2 = 2.35, SD1 = SD2 = 1, and r = .50. 

5 CS, as implemented in fast-dm, only allows for parameter estimation if in each condition at least 12 trials are 

observed for one of the two responses. Accordingly, in the condition with 24 trials, the comparability of the CS 

method to the other estimation methods is limited, because not all data sets met this precondition. 
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the one-drift design, even if each model actually contains one further parameter (i.e., the 

second drift rate). 

We also performed robustness tests for both the one-drift and two-drift designs. In 

particular, 4 % of the trials of each data set were randomly chosen and substituted for by 

either fast or slow contaminants. Fast contaminants were used to simulate fast guesses, that is, 

trials in which participants respond quickly without processing the target stimulus. Since fast-

guess response is situated on the level of chance (Swensson, 1972), the response of each 

selected trial was randomly set to either 0 (lower threshold) or 1 (upper threshold). In terms 

of RTs, we used latencies at the left-hand edge of the original distribution for fast 

contaminants, thus ensuring that these values cannot be easily identified as outliers; real 

“statistical” outliers farther from the original distribution would bias the result more severely 

but would at the same time be easier to detect prior to analysis. More specifically, latencies 

for fast contaminants were drawn randomly from a uniform distribution with a range of 200 

ms centered around the fastest theoretically possible time for each parameter set (i.e., using an 

interval from tmin - 100 ms to tmin + 100 ms, with tmin = t0 - st0/2). Secondly, we were interested 

in the influence of slow contaminants resulting from temporary distraction of participants 

from the task in hand. In this condition, only the RTs of the selected trials were changed, but 

not the respective types of response. Latencies for these types of contaminants were randomly 

chosen from a uniform distribution ranging from 1.5 to 5 interquartile ranges above the third 

quartile of the original data.  

Parameter estimation 

Parameter values were recovered using fast-dm-30 (Voss et al., 2015) from 

uncontaminated and contaminated data sets.6 This was done using each of the three 

optimization criteria (CS, KS, ML). Furthermore, we analyzed all data sets with HDDM 

(Wiecki et al., 2013) and the data sets of the three-parameter model additionally with the EZ 

method (Wagenmakers et al., 2007).7 As with our settings for HDDM (version: 0.5.3), we 

used 2,000 samples, a 20-sample burn-in and the proportion of outliers was fixed at zero.8 

                                                           
6 Fast-dm was executed with the precision parameter set to 3. Setting the precision to 4 significantly slows down 

the estimation process without having any relevant positive impact on the parameter recovery achieved. 
7 EZ cannot be applied to data sets with an accuracy rate of 0 %, 50 % or 100 %. For data sets with an accuracy 

of 100 %, we applied an edge correction method that has also been used by Wagenmakers et al. (2007):  

accuracy = ͳ −  ଵଶ×�, with n being the number of trials. We used similar approaches for 0 % (accuracy = 
ଵଶ×�) and 

50 % (accuracy = Ͳ.5 +  ଵଶ×�) accuracy rates. In the two-drift design, EZ was applied separately to the trials of 

each response type. We then computed the means over the two threshold separations and the two nondecision 

components. 
8 The prior distributions in HDDM are a Gamma distribution (threshold separation, nondecision time), a normal 

distribution (drift rate, starting point), a half normal distribution (intertrial variability of drift rate and 

nondecision time) and a Beta distribution (intertrial variability of starting point; see also Wiecki et al., 2013). 
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In total, for both the one-drift and the two-drift designs we used 28,000 data sets (4 

models × 1,000 parameter sets × 7 trial numbers) with three types of contamination (none, 

fast, slow) analyzed with four methods (CS, KS, ML, and HDDM) requiring 672,000 runs ( + 

21,000 runs of EZ) of the parameter estimation procedure.9 

As we mentioned before, the number of parameters reestimated was equivalent to 

those of the parameter model on which the simulation was based. For instance, in the case of 

the three-parameter model in the one-drift design only the three parameters a, ν, and t0 were 

estimated, whereas the remaining four parameters were each fixed at the correct constant 

value (st0 = szr = sν = 0, zr = .5). The four- and seven-parameter models includes the estimation 

of starting point zr. This is only possible if there are two distributions of responses (at the 

upper and lower thresholds). If no data are available for one of the two thresholds, the 

distance from the starting point to the “empty” threshold is not defined. Accordingly, for the 

models that estimated a starting point, we excluded all data sets in which the smaller 

distribution (response 0 or response 1) comprised fewer than 4 % of all trials (i.e., at least one 

trial at each threshold in the smallest data sets with 24 trials). The number of remaining data 

sets ranged from 689 to 801 out of 1,000 for the different conditions in the one-drift design. In 

the two-drift design, only in one condition did one data set have to be excluded due to the “4 

% criterion”. Because in the three- and six-parameter models the starting point is fixed (and 

thus the distance from a threshold without trials to the starting point is also defined), the 

estimation was carried out for all data sets. 

Evaluation Criteria 

The evaluation of parameter estimation performance was based on four main criteria: 

(1) correlations between the true and reestimated parameter values, (2) parameter estimation 

biases (i.e., deviations of the reestimated from true parameter values), (3) the numbers of 

participants required for detection of a drift rate difference in the two-drift design, and (4) the 

estimation precision, assessed as squared deviations of the reestimated from the true 

parameter values. In the following discussion, we present the rationale for the choice of these 

criteria (see also Table 3 for a summary) and give details on the computation. Additionally, 

(5) we evaluated the computation time required for parameter estimation. 

 

                                                                                                                                                                                     

Note that these distributions differ from the one (uniform distribution for all parameters) that we used to create 

the parameter values, which could deteriorate the performance of HDDM. 
9 The estimations with fast-dm and HDDM were carried out using the computational resource bwUniCluster, 

funded by the Ministry of Science, Research and Arts and the Universities of the State of Baden-Württemberg, 

Germany, within the framework program bwHPC. 
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First, parameter recovery performance was assessed by the correlations of each 

parameter’s true values with the reestimated values. This criterion is of relevance if the focus 

of the researcher lies in the detection of relationships between diffusion model parameters and 

external criteria (e.g., the relationship between the drift rate and general intelligence; e.g., 

Ratcliff et al., 2010). One weakness of correlation coefficients is that they fail to reveal 

systematic biases in parameter recovery. Often, such a systematic bias might be 

unproblematic, because it does not invalidate the interpretation of the results. However, there 

might be cases in which an estimation bias is related to the true parameter values (e.g., an 

estimation bias might be stronger when fewer error data are present—i.e., when drift is 

strong). In such a case, biased parameter estimation might challenge the internal validity of 

results. 

Thus, our second criterion was a measure of parameter biases. For each parameter, we 

computed the differences between the estimated and the true parameter values. Accordingly, a 

positive value indicated that the parameter was overestimated, whereas a negative value 

showed a parameter underestimation. Besides, we computed the mean bias for each parameter 

quartile (i.e., the mean of all data sets lying in the first, second, third and fourth quartiles of 

the true parameter values), to graphically depict possible dependencies between the parameter 

values and biases. We also computed Pearson correlation coefficients between the true 

parameter values and the respective biases. 

Note that a parameter might be estimated without bias, but still with low precision. For 

some participants the parameter might be overestimated, and for some underestimated, with 

no clear pattern. This can be a problem for difference detection, due to higher variability of 

the values within groups/conditions. Using a higher number of trials is one way to enhance 

the power of a statistical test, as parameters are estimated with less of a noise variance. 

Another way is to enhance the number of participants. Our third criterion was the number of 

participants required for the detection of a drift rate difference between two conditions. 

Specifically, for the two-drift model we calculated the effect sizes resulting from the 

recovered drift rates. Using pwr.t.test from the pwr R package (Champely, 2012; R 

Development Core Team, 2014) for the observed effect sizes between the two drift estimates, 

we obtained the numbers of participants required for a power of 80 % (in a two-sided paired t 

test with a significance level of 5 %). If the drift parameters were estimated perfectly (i.e., 

with no deviations of the estimated from the true parameter values), 66 participants would be 

required to detect this difference with a power of 80 % (two-sided testing). 
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Although an increase in the sample increases the power to detect differences between 

conditions, no such compensation of low precision is possible, when the aim of the researcher 

lies in a diagnostic application of the diffusion model (Aschenbrenner et al., 2016; Ratcliff & 

Childers, 2015). For this purpose, it is of great importance that parameters be estimated 

precisely for all individuals, thus minimizing deviations between the true and estimated 

values. Accordingly, our fourth evaluation criterion was the precision of parameter estimates, 

calculated as the squared deviations of the reestimated from the true parameter values. In 

contrast to the bias measure, here we do not differentiate between over- and underestimation 

of a parameter (using squared values, any deviation would contribute equally). Note that the 

diffusion model parameters have quite different scales, and the accuracy of recovery varies 

appreciably between parameters. Whereas, for example, t0 can be estimated very precisely 

(e.g., to the third decimal place), the deviation of true and recovered values is often much 

greater for the drift. Accordingly, to enhance the comparability of parameters, we 

standardized each parameter’s bias by its respective “possible accuracy”. These “possible 

accuracies” were deducted from an optimal parameter recovery condition—that is, from the 

parameter reestimations using the ML approach for data sets in the one-drift design with 

5,000 trials, a minimum of 4 % of trials at each threshold, and no contaminants. From the 

results of these analyses, the 95 % quantiles of the absolute differences between the true and 

estimated parameter values were used as the “possible accuracies” for all parameters (see 

Table 2 for each parameter’s “possible accuracy”). 

Finally, our last criterion—of minor importance relative to the four evaluation criteria 

previously presented—was computation time, which was the time required for the estimation 

process. An efficient optimization criterion should not only recover the true parameter values 

with high efficacy, but also require only a short time for the estimation process. 

Results 

In the following sections, we report our results structured by our five evaluation criteria: (1) 

correlations between the true and reestimated parameter values; (2) parameter estimation 

biases; (3) the number of participants required for detection of drift rate differences; (4) 

estimation precision—that is, squared deviations of the reestimated from the true parameter 

values; and (5) computation time. 

Evaluation Criterion 1: Correlations between true and reestimated parameter values 

Figure 2 shows the results obtained for our first evaluation criterion—that is, the 

correlations between the true and reestimated parameter values. The dependent variable in the 

figure is the mean correlation averaged across all parameters of the respective model using 
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Fisher’s Z transformation. The figure shows that—as expected—with higher trial numbers, 

higher correlation coefficients were reached. Two main aspects emanate from these 

correlational analyses: (1) The CS estimation criterion mostly showed lower correlation 

coefficients than the other estimation methods, and (2) the six- and seven-parameter models 

performed worse than the more restrained three- and four-parameter models. Responsible for 

the latter finding is the poor parameter recovery of the intertrial variability parameters szr and 

sν, which generally cannot be recovered well. Even under the “optimal” condition (no 

contamination, 5,000 trials, and ML as the optimization criterion), for szr and sν only moderate 

correlations of .31 and .47, respectively, are found. The performance of st0 (.97) in this 

optimal condition is much better and, most importantly, the correlation coefficients of 

parameters a (1.00), t0 (.99), ν (1.00), and zr (.99)—which are usually of greater interest than 

the intertrial variabilities because of their high psychological validity (Voss et al., 2004)—are 

excellent. 

Evaluation Criterion 2: Parameter estimation biases 

Second, we analyzed parameter estimation biases. Figures 3, 4, 5, and 6 present results 

of the one-drift design for the four psychologically most interesting diffusion model 

parameters a, ν, t0 and zr, respectively10. We will sum up the main findings from the figures, 

always starting with the mean bias of each parameter (indicated by the large symbols 

connected by lines) passing on to an examination of the relationship between the true 

parameter values and the biases. 

As can been seen in Figure 3, CS clearly overestimated parameter a. This 

overestimation decreased with the number of trials and, in the condition with no 

contaminants, becomes negligible at about 200 trials in the three- and four-parameter models, 

and at approximately 500 trials in the six- and seven-parameter models. The biases of the 

other methods were smaller and—akin to CS— became stable from around 200 to 500 trials 

on. In the case of slow or fast contaminants, often a notable bias in threshold separation 

remained even at large trial numbers. An interesting finding is observed for ML and HDDM 

for the condition with fast contaminants in the three- and four-parameter models. Whereas the 

biases of the other methods decreased with the number of trials, their biases increased (again, 

getting stable from around 200 to 500 trials on). This reveals that the absolute number of fast 

contaminants (the relative frequency was stable, with 4 % for all trial numbers) has an 

influence on the recovery of parameter a. We want to anticipate that a similar pattern emerged 

for parameter t0, which was systematically underestimated by ML and HDDM, with this bias 
                                                           
10 We also analyzed biases for the two-drift design. The findings were very similar to those from the one-drift 

design. 
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increasing with the number of trials. This makes sense, because these methods try to account 

for all RTs and adapt t0 to the smallest observed time. With the inclusion of st0—as in the six- 

and seven-parameter models—the biases were much smaller, because st0 helps to explain very 

fast RTs. 

Next, we analyzed whether and how the bias depends on the true value of the 

parameter. For the condition with no contaminants, there were at maximum small 

relationships with no clear pattern (|r| < .30). For the condition with slow contaminants, 

however, the relationship of true parameter value a to the bias increased with the number of 

trials. For example, for the three-parameter model estimated by ML the correlation rose from 

r = -.07 to r = .89 for n = 24 and n = 5,000, respectively. This increase with the number of 

trials was less pronounced for the more complex models (e.g., for the seven-parameter model 

and ML: r = .15 at n = 24 and r = .46 at n = 5,000). In the condition with fast contaminants, 

the pattern was less clear-cut. For KS and CS, there were mostly no relationships or very 

small relationships. For ML and HDDM, on the other hand, especially in the three- and four-

parameter models, a (negative) relation of the true value and the bias increased with the trial 

number (e.g., for the four-parameter model and HDDM: r = -.08 at n = 24 and r = -.64 at n = 

5,000). 

Akin to parameter a, for the drift rate, biases (mostly overestimation, especially in the 

six- and seven-parameter models) got stable at approximately 200-500 trials. Relationships 

between the true drift value (with negative true values were transformed into positive 

values11) and the respective bias were very small for data with no contaminants in basically all 

conditions. For data with slow contaminants, the (negative) relationship increased with the 

number of trials, especially in the three- and four-parameter models (e.g., for the four-

parameter model and ML: r = -.30 for n = 24 and r = -.95 for n = 5,000). A similar increase 

was observed for the condition with fast contaminants for the three-parameter model, and for 

ML and HDDM in the six-parameter models. In the four- and seven-parameter models, the 

relationships were mostly positive, with a smaller influence of the number of trials. 

The nondecision time was estimated quite precisely in the conditions with no or slow 

contaminants. Again, stability of the biases was reached at 200-500 trials. In the condition 

with fast contaminants, we observed a systematic underestimation, which is plausible given 

the added fast outliers. As we mentioned before, for ML and HDDM in the three- and four-

parameter models, this bias increases essentially with the number of trials. Importantly, there 

                                                           
11 This transformation was used so that the four quartiles would span a range from a very slow to a very high 

speed of information accumulation. Note that the results were very similar if positive and negative true drift 

rates were analyzed separately. 
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was no relevant relationship between the true value of t0 and the sign and size of the bias 

(with the exception of HDDM showing negative correlations of at maximum r = -.28; these 

relationships decreased with the number of trials). 

Finally, the pattern for zr revealed that this parameter was more often under- than 

overestimated. More importantly, we found a negative relationship between the size of zr and 

the bias present for almost all conditions. There was also no clear improvement with the 

number of trials. Sometimes the relationship decreased in absolute value (e.g., for no 

contaminants in the seven-parameter model and HDDM: r = -.70 for n = 24 and r = -.10 for n 

= 5,000); often, however, it did not change or even increased (e.g., for no contaminants in the 

seven-parameter model and KS: r = -.29 for n = 24 and r = -.38 for n = 5,000). The method 

with the smallest absolute correlation was ML. However, in the condition with fast 

contaminants, all methods featured essential negative relationships (e.g., for the seven-

parameter model and ML: r = -.45 for n = 5,000). 

Evaluation Criterion 3: Number of participants required for detection of a drift rate 

difference 

 Figure 7 shows the numbers of participants required for detecting a difference in drift 

rates (dz = 0.35) in a two-sided paired t test with a power of .80 conditional on the number of 

trials. If parameters were recovered perfectly (i.e., the estimated drift rates were equivalent to 

the true drift rates), 66 participants were needed for the detection of this difference 

(represented by the horizontal line in the figure). Obviously, parameters are estimated less 

precisely from small than from higher trial numbers. Thus, more participants are required in 

order to compensate for the inflated error variance. Figure 7 shows that an increase of trial 

numbers above 200-500 did not further reduce the required sample size. In most conditions, 

ML outperformed the other methods. Interestingly, even for data sets with fast contaminants, 

ML showed a good performance. Furthermore, HDDM failed to outperform the non-Bayesian 

ML approach in either condition. A further finding is that the performance of EZ was 

generally very good. 

Evaluation Criterion 4: Estimation precision—squared deviations of reestimated from true 

parameter values 

Akin to the mean correlation coefficient over all parameters, we also computed an 

average measure for the squared deviations. Figure 8 shows the 95 % quantiles of these mean 

squared deviations for each condition, depending on the number of trials in the one-drift 

design. The use of the 95 % quantiles makes it possible to compare the worst cases for each 

condition, since deviations are smaller for most data sets. If the parameters are to be used for 
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diagnostic purposes, it is important that the parameters be estimated accurately for all 

individuals. 

One central aim of this article is to provide guidelines on the numbers of trials 

required for diffusion model analyses. Because the squared deviation criterion is the strictest 

criterion, we used this criterion for the definition of required trial numbers. 

In the subsequent section, we first specify our procedure for identifying the trial 

numbers required. Then we report the results for data sets without contaminants, followed by 

the results observed in the conditions with contaminants. Whereas Figure 8 shows the “mean 

deviations” (averaged over all parameters of the respective model), in the following sections 

we present results separately for the four main diffusion model parameters (i.e., a, ν, t0, and 

zr). 

Criteria for trial numbers required 

As can be seen from Figure 8, for the one-drift design, the higher the number of trials, 

the better the estimation usually is12. For uncontaminated data, the relation of deviations to 

trial numbers is mostly described well by power functions13. To find the requisite trial 

numbers, the fitted power functions were used whenever they fitted well (i.e., when the 

adjusted R2 was at minimum .80); otherwise, linear interpolation was used. 

We defined a squared deviation of 15 as a criterion for the minimal number of trials 

required, indicating that the 95 % quantiles of the deviations should be no more than 15 times 

as large as in the “optimal” condition. This value is obviously quite high (allowing for large 

deviations) and at least in part arbitrary. For interpretation, one has to bear in mind that 95 % 

of data sets would fit better (i.e., have a squared deviation below 15). We further determined 

the number of trials at which the stricter criterion of deviations of 5 was reached for 95 % of 

the data sets, thereby deriving guidelines on the trial numbers needed for low (15) and high 

(5) precision. 

As the asymptotic courses of the fitted functions describing the relation of trial 

numbers to mean deviations in Figure 8 illustrate, adding further trials is very helpful when 

the number of trials is small, but for higher trial numbers further increases bring only 

marginal gains in accuracy. Accordingly, we also defined the number of trials above which a 

                                                           
12 Some exceptions have been found. We observed that the performance of KS deteriorated from the condition 

with 1,000 to that with 5,000 trials in the four- and seven-parameter models. So did the performance of HDDM 

in the six- and seven-parameter models. We had similar findings using the two-drift design. 

 
13 � = �଴ ⋅ ݊�భ, where D is the 95 % quantile of squared deviations and n is the number of trials. 
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further increase had only a minimal impact on the quality of parameter recovery. As a 

criterion, we used the point at which the functions describing the relation of deviations to trial 

numbers had a slope of -0.01. The trial numbers required for low and for high precision and 

the limit at which a further increase made little sense are presented in Table 4 (one-drift 

model; at least 4 % of trials at each threshold), Table 5 (one-drift model; less than 4 % of 

trials at one threshold) and Table 6 (two-drift model; at least 4 % of trials at each threshold). 

Trial numbers are given separately for the four main diffusion model parameters (a, ν, t0, and 

zr), depending on the complexity of the parameter model (three-/four-/six-/seven-parameter 

models), the type of contamination (none/fast/slow) and the estimation method 

(KS/ML/CS/HDDM/EZ). 

Trial numbers required for uncontaminated data 

In the three- and four-parameter models of the one-drift design, using ML or HDDM, 

low precision could be reached with fewer than 60 trials, and high precision with fewer than 

160 trials. KS also performed well, with fewer than 200 trials for low precision. EZ applied to 

the three-parameter model was competitive with ML, HDDM and KS in terms of drift rate 

estimation, with approximately 70 trials for low and 200 trials for high precision. Parameters 

a and t0, on the other hand, were estimated worse. CS showed the poorest performance 

requiring still fewer than 290 trials for low precision. The comparison of the different 

parameters reveals that with the exception of EZ, the nondecision time required the least 

number of trials, followed by the drift rate and the threshold separation. Parameter zr was 

estimated very well by ML and HDDM (requiring fewer than 40 trials for low precision), 

whereas KS and CS required more trials (< 170). 

In the six- and seven-parameter models, more trials were required than in the three- 

and four-parameter models. Again, the lowest trial numbers were always needed for the 

nondecision time, and the highest numbers were usually required for the threshold separation. 

The drift rate was estimated best by KS with fewer than 200 trials for low precision in both 

models. CS, on the other hand, required more than 700 trials in the six-, and more than 400 

trials in the seven-parameter model. In fact, CS is usually applied with such trial numbers (or 

even higher trial ones), and should thus give reliable results. However, our results also show 

that other methods can supply satisfying reliability already with smaller trial numbers. 

For data sets with fewer than 4 % of trials at one of the two thresholds, the estimation 

of parameters a and ν requires higher trial numbers (see Table 5). Only t0 was estimated with 

a performance similar to that for the other data sets. 
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The numbers of trials required by the two-drift design are depicted in Table 6, 

analogous to Table 4 for the one-drift design.14 The parameter that suffered most from the 

more complex design was the threshold separation. The drift rate was also estimated worse, 

whereas there was no deterioration (and sometimes even an improvement) for the nondecision 

time. Besides, the starting point was estimated better in the two-drift design. As for the 

comparison of the different optimization criteria, the pattern was similar to the one observed 

for the one-drift design. Most importantly, HDDM in sum showed the best performance, 

followed by ML, KS, and CS. EZ also performed very well, even beating ML for the 

estimation of the drift rate. 

For a better understanding of the precision of the results for trial numbers derived from 

the criteria for low and high precision, we also calculated the correlations of the true and 

recovered parameters at these points. Toward this aim, power functions15 or linear 

interpolation (if the adjusted R2 was beneath .80) were used. Importantly, the correlations 

were generally very high (most of them above .90), and therefore do not imply that even 

stricter criteria should be applied for the trial numbers required. The correlation coefficients 

were lowest for parameter t0 (ranging from .79 to .97) and zr (.76 - .96). Note that the trial 

numbers required for t0 were often very low (even n < 24). Because usually many more trials 

will be used, even higher correlation coefficients may be reached.  

Besides the requisite trial numbers, Tables 4, 5, and 6 also show the maximum trial 

numbers based on the slope criterion. For instance, in the three- and four-parameter models 

with uncontaminated data and at least 4 % of trials at each threshold, HDDM and ML reached 

this criterion for all parameters after fewer than 300 trials in the one-drift design, and after 

fewer than 600 trials in the two-drift design. In the six- and seven-parameter models, the 

criterion was reached after fewer than either 700 trials (one-drift design) or 1,000 trials (two-

drift design). Generally, the criterion was reached earlier for nondecision time, drift rate, and 

starting point than for threshold separation. 

Trial numbers required for contaminated data 

Up to this point, we have only presented results for the condition without contaminant 

trials. The middle and right columns of Figure 8 show the mean deviations of the recovered 

parameters from contaminated data. As can be seen in Tables 4 (one-drift design) and 6 (two-

drift design), in the condition with slow contaminants, parameter a was estimated much 

worse, requiring more trials in almost all conditions. The drift rate did not suffer much in the 

three- and four-parameter models, but it often required many more trials in the six- and seven-
                                                           
14 The requisite trial numbers for the drift rate are based on the mean squared deviations of the two drift rates. 
15 That is, correlation = b0 + b1/n, where n is the number of trials. 
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parameter models. The nondecision time and starting point often did not suffer from the 

addition of slow contaminants. Finally, EZ estimated the drift rate quite well, but nondecision 

time and, especially, threshold separation required much higher trial numbers than in the 

condition with no contaminants and than the other methods. 

 In the presence of fast contaminants, KS continued to display good parameter 

recovery. By contrast, the results from both ML and HDDM were affected strongly by the 

occurrence of fast contaminants. This applied to both the threshold separation and 

nondecision component in the three- and four-parameter models, and to all parameters in the 

four-parameter model. Here, ML and HDDM stayed above the critical value of 15. In the 

more complex models, nondecision time was estimated better (probably due to the intertrial 

variability of nondecision time; see also the findings for the bias measure). Besides, in the six-

parameter model, especially, HDDM turned in a good performance for the other parameters as 

well. Across the different parameter models, the performance of CS was often better than that 

of ML and HDDM, but still worse than that of KS. Interestingly, EZ showed a good 

performance for drift rate and nondecision time despite the presence of fast contaminants. For 

the data sets in which the smaller response distribution comprised fewer than 4 % of the data, 

the pattern of results was similar. 

Since the added contaminant trials were situated partly outside, partly overlapping 

with the RT distribution, they could not all be identified and excluded before parameter 

estimation. Applying the frequently used criterion of 200 ms as the lower limit for the 

condition with fast contaminants to the one-drift design led to the exclusion of 0.6 % of the 

trials on average (so only a small part of the 4 % contaminants were identified). We 

additionally applied the Tukey criterion (Tukey, 1977) to exclude further possible 

contaminants. In the condition with fast contaminants, this led to a total exclusion of 5.5 % of 

the trials on average. The average percentage of trials correctly identified as fast contaminants 

was 98.4 %. However, also 4.7 % of the trials were falsely identified as slow contaminants. In 

the condition with slow contaminants, 7.1 % of the slow trials were excluded, but only 56.3 % 

of these were “true” slow contaminants (the percentage of falsely identified fast contaminants 

was very small). 

To see whether the exclusion of trials led to an improvement in parameter recovery, we 

reestimated the parameters for the adjusted data sets. This procedure led to basically the same 

results as when all trials were used for parameter estimation. For almost all cases in the 

condition with fast contaminants, the numbers of trials required were equal or higher than the 

values with the full data set. For data sets with slow contaminants, an improvement was 
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observed for some conditions (mostly in the six- and seven-parameter models), but a 

deterioration or equal performance in most conditions. In sum, no systematic overall 

improvement pattern could be identified from the exclusion of trials according to the standard 

procedure of identifying outliers. 

Another option for dealing with possible contaminant trials would be including in the 

model a further parameter to explicitly estimate the percentage of contaminant trials. To 

exemplify the effect of this additional parameter, we implemented the approach proposed by 

Ratcliff and Tuerlinckx (2002) to the ML criterion. The requisite trial numbers resulting from 

the inclusion of this further parameter were compared to the trial numbers shown in Tables 4 

and 5. For the data sets with slow contaminants, we observed improvements for some 

conditions (almost all of them in the six- and seven-parameter models), but deteriorations in 

other conditions (in the three- and four-parameter models). For the conditions with fast 

contaminants, the criteria for low and high precision were—as for the data without 

adjustments—mostly not reached.16 In total, the inclusion of this further parameter, at least for 

the range of trial numbers analyzed in our study, did not have a clear positive effect. The 

positive effect possibly resulting from the estimation of the proportion of contaminants might 

have been undermined by the negative effect of adding a further parameter calling for 

estimation. 

Criterion 5: Computation time 

Our final evaluation criterion was the computation time needed for parameter 

estimation, averaged across individual data sets. In the three- and four-parameter models, no 

relevant time difference was apparent between the three optimization criteria KS, ML, and 

CS. On average, parameter estimation took less than 5 s per individual data set for all 

methods. Only after inclusion of the intertrial variabilities did the three optimization criteria 

differ substantially in terms of computation time, with ML for large trial numbers taking 

considerably longer than KS and CS. Even then, however, the computation process took no 

longer than 30 min per data set in the one-drift design, and 40 min in the two-drift design. 

Accordingly, as long as the traditional methods are used, computation time will probably not 

affect a researcher’s choice of optimization criterion. The HDDM approach, however, 

involved longer computation times, requiring anything up to 5 h per data set. As EZ is based 

on closed-form equations, the computation time was negligibly small. 

                                                           
16 HDDM also permits estimation of the proportion of contaminants, using an approach similar to the one by 

Ratcliff and Tuerlinckx (2002). We applied this approach to our data and found results very similar to those 

observed for the non-Bayesian ML approach. Most importantly, the inclusion of the additional parameter did not 

have a consistent positive effect on parameter estimation. 
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Discussion 

As demonstrated by the increasing number of research articles applying Ratcliff’s diffusion 

model (Ratcliff, 1978), the interest in diffusion modeling is growing in various fields of 

psychology (Voss, Nagler, et al., 2013). This development can be attributed to a recognition 

of the main benefit of the diffusion model, that is, its capacity to disentangle several latent 

cognitive processes. The recent increase in popularity of the diffusion model is further 

fostered by the availability of user-friendly software solutions. Due to these programs the 

growing interest in diffusion modeling is not hampered by any lack of mathematical or 

programming skills (Vandekerckhove & Tuerlinckx, 2008; Voss & Voss, 2007; 

Wagenmakers et al., 2007). However, knowledge is still scarce about the preconditions of 

diffusion modeling. In any diffusion model study, the probably most important issue that a 

researcher has to examine is validity of parameters. In recent years, several experimental 

validation studies (e.g., Arnold, Bröder, & Bayen, 2015; Voss et al., 2004; Wagenmakers, 

Ratcliff, et al., 2008) and correlational analyses (e.g., Ratcliff, Thapar, & McKoon, 2011; 

Schubert, Hagemann, Voss, Schankin, & Bergmann, 2015) have supplied promising results 

regarding parameter validity. However, for any new paradigm, the validity has to be first 

examined. 

A second prerequisite for diffusion modeling is robustness of parameter estimation. 

One important question here regards the amount of data that are required. Typically, very 

large numbers of trials (> 1,000) have been used in diffusion model analyses (e.g., Ratcliff & 

Rouder, 1998; Wagenmakers, Ratcliff, et al., 2008). The present article aimed at clarifying 

whether this convention could be corroborated by data. Only very few studies have 

systematically analyzed the effects of different numbers of trials on the precision of parameter 

estimation (e.g., Ratcliff & Tuerlinckx, 2002; van Ravenzwaaij & Oberauer, 2009). To fill 

this gap, we ran a set of simulation studies using different numbers of trials with the aim of 

deducing guidelines for the necessary trial numbers. In these studies, the precision of 

parameter estimation was compared for models differing with regard to the number of 

parameters while using different optimization criteria. In particular, we analyzed parameter 

recovery for three-parameter (a, ν, t0), four-parameter (a, ν, t0, zr), six-parameter (a, ν, t0, sν, 

st0, szr), and seven-parameter (a, ν, t0, zr, sν, st0, szr) models, with either one drift rate or two 

different drift rates. Data sets were simulated either without contaminated trials or with 4 % of 

slow or fast contaminants. Then, parameters were reestimated using the KS, ML, and CS 

methods, as well as a Bayesian approach (HDDM; Wiecki et al., 2013). Besides, the EZ-
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diffusion model (Wagenmakers et al., 2007) was applied to the data of the three-parameter 

model. 

Parameter estimation performance was evaluated using different criteria. (1) First, we 

analyzed correlations between true and reestimated parameters, which is of relevance for 

researchers interested in relationships between diffusion model parameters and external 

criteria. (2) Second, biases (i.e., deviations between true and reestimated parameters) were 

examined. We were also interested in the influence of the true value of the parameter on the 

bias, as a positive (negative) relationship can lead to overestimation (underestimation) of a 

difference between conditions. (3) Third, for the design with two drift rates, we additionally 

performed power analyses to elicit indications on the number of participants required for the 

detection of a drift rate difference. (4) The precision of estimation was our fourth criterion. 

Recently, the idea of using diffusion model parameters for individual diagnostics has been 

introduced (Aschenbrenner et al., 2016; Ratcliff & Childers, 2015). Certainly, with such an 

aim it is crucial that parameters be estimated precisely for each person. As a measure of 

precision, we computed squared deviations of the recovered parameter values from the true 

values. Thereby—in contrast to the bias measure—over- and underestimations would not 

cancel each other out. In addition, each parameter’s squared deviation was standardized, 

thereby taking into account the different scales of the different parameters. As a standard 

value for each parameter, best-possible accuracy was used, which was defined from an 

optimal condition of parameter recovery (5,000 trials, at least 4 % of trials at each threshold, 

no contaminants, using ML for parameter recovery). On the basis of this measure of 

parameter recovery, we propose guidelines for how many trials are required for low or high 

precision in parameter recovery. 

Criterion 1: Correlations between true and reestimated parameter values 

Regarding the correlations between true and reestimated parameters, all methods 

turned in a satisfying performance, with the exception of CS performing worse in small 

samples. 

Criterion 2: Parameter estimation biases 

In terms of biases, it is noteworthy that biases sometimes decrease with the number of 

trials. In contrast, for the three- and four-parameter models with fast contaminants, ML and 

HDDM showed increasing overestimation of the threshold separation and an increasing 

underestimation of nondecision times. This pattern was not observed for the more complex 

models. We suppose that the intertrial variability of the nondecision time (present in both the 

six- and seven-parameter models) helped to capture the negative effects of fast contaminants. 
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Note that the decreasing and increasing biases are in contradiction with the hypothesis that 

only the standard deviation, but not the bias, changes with trial numbers (van Ravenzwaaij & 

Oberauer, 2009). Importantly, the biases get stable at around 200 to 500 trials. Thus, a further 

increase in trial numbers does not have a notable influence on the size of the bias. 

The trial numbers also sometimes had an influence on the relationship between the 

true parameter value and the bias. For example, for data with slow contaminants, the 

relationship between the true value of the threshold separation and the bias increased notably 

with the number of trials (e.g., from r = -.07 for n = 24 up to r = .89 for n = 5,000 for ML 

estimation in the three-parameter model). While positive relationships between true parameter 

values and bias lead to an overestimation of the true effect, negative relationships make it 

more difficult to detect a true difference in parameters. The starting point reveals a consistent 

pattern of such negative relationships. Thus, the detection of a significant difference in zr 

between conditions would be impeded. For the nondecision time, on the other hand, there 

were no relationships between the size of the true value and the bias. 

Criterion 3: Number of participants required for detection of a drift rate difference 

The most important finding in terms of our power analyses is that an increase in trial 

numbers beyond 500 trials does not lead to essential further reductions in the requisite number 

of participants. Interestingly, EZ-based model fits proved to have a high power to detect 

differences between drift rates. For small trial numbers, EZ outperformed KS, CS, and 

HDDM. Only ML performed better than EZ. 

Criterion 4: Estimation precision 

On the basis of the squared deviations between the true and reestimated values, we 

defined criteria for requisite trial numbers. The results reveal that in the absence of 

contaminants, parameters can be accurately recovered even with small trials numbers. 

Analyses for the separate parameters showed that the required trial number was lowest for 

nondecision times, whereas a precise estimation of the threshold separation required 

especially high trial numbers. For the condition with no contaminants, HDDM usually led to 

the most precise estimates, followed by ML and KS. CS showed the worst results. Again, for 

the three-parameter model EZ could recover especially the drift rates very precisely. In the 

three- and six-parameter models, due to the fixed starting point, parameters were estimated 

also for data sets with fewer than 4 % of trials at one of the two thresholds. However, in this 

case more trials were required to achieve the same precision. 

We now turn to the question of precision of parameter estimation in the presence of 

contaminants. When contaminants are slow, both ML and HDDM still provide better results 



Guidelines on Parameter Estimation in Diffusion Modeling A 3-31 

than the other criteria. With fast contaminants, however, KS outperforms the other criteria in 

almost all conditions. In particular, ML and HDDM are generally affected strongly by fast 

contaminants. Even our criterion for low precision was in many conditions never reached—

that is, even very high trial numbers could not compensate for the presence of fast 

contaminants. Interestingly, similar to KS, EZ was barely affected by fast contaminants. 

We also investigated up to which point additional trials appreciably increase the 

accuracy of the results. As the slope of the relationship of trial number on precision decreases, 

increasing the trial number becomes less and less advantageous. Therefore, exceeding a 

certain number of trials is of limited utility, because the costs will probably be greater than the 

benefits. For example, it is plausible for the number and percentage of contaminants to 

increase when participants get tired or bored in long experimental sessions. Splitting sessions 

over a number of days may also cause problems, since performance may vary from one day to 

another depending on fatigue, motivation, mood, and so forth. A slope of -0.01 was used to 

define the point at which more trials did not increase precision notably. Most importantly, the 

results revealed that it is usually not advisable to increase the number of trials to many 

hundreds or even thousands, as this improves parameter recovery only marginally. 

Number of parameters 

The results of our study also provide some insights into the role of additional free 

parameters. From the three- to the seven-parameter models, there was mostly an increase in 

the trial numbers required. These results are in line with our finding that the inclusion of a 

parameter modeling the proportion of contaminants did not lead to any consistent 

improvement in parameter recovery. In the comparison of the design with one drift rate to the 

design with two drift rates the additional parameter had a negative effect on threshold 

separation and drift rate. However, nondecision time was estimated very similarly in both 

designs, and the starting point was estimated even better in the two-drift design. 

One topic urgently calling for further exploration is the poor estimation of the intertrial 

variabilities szr and sν. Even in the condition with 5,000 trials, parameter estimates of szr and sν 

displayed correlations with true values lower than .50 (for similar results, see Ratcliff & 

Tuerlinckx, 2002; van Ravenzwaaij & Oberauer, 2009; Vandekerckhove & Tuerlinckx, 

2007). Typically, these parameters are included in the model to explain fast (szr) or slow (sv) 

error RTs. One study in which the role of the intertrial variabilities has been explicitly tackled 

was conducted by Lerche and Voss (2016a). They examined the question of whether fixing 

these parameters at zero might result in better overall estimation of the remaining parameters, 

even if there is moderate variability in the true parameter values. To this end, they compared 
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differently complex parameter models analyzing both simulated and empirical data sets. The 

results showed that the seven-parameter model often provides poorer results than less 

complex models. In line with these findings is a study by van Ravenzwaaij, Donkin, and 

Vandekerckhove (in press), who compared the power to detect parameter differences between 

EZ (Wagenmakers et al., 2007) and a full diffusion model estimation (i.e., inclusive of all 

three intertrial variabilities). Although the data-generating model included intertrial 

variabilities, the EZ model (ignoring these variabilities) led to better power than the more 

complex model for the detection of differences in drift rate and threshold separation. Note that 

in our analyses, EZ also proved to be very good at estimating drift rates. 

Choice of estimation procedure 

It is important to note that our results cannot provide one clear-cut answer to the 

questions of which estimation method should be used and how many trials are required. 

Several aspects (e.g., type of contamination, presence of intertrial variabilities) have an 

influence on which method will produce the most reliable results. In the following, we shortly 

sketch some guidelines that can help researchers to make qualified decisions for their 

analyses. 

Firstly, researchers have to think about an appropriate experimental paradigm to 

analyze their research question. Several experimental paradigms have already been analyzed 

in terms of validity (experimentally or by means of correlations with external criteria). 

Completely new paradigms should first be validated before applying them to analyze new 

research questions. Note that in our study we only analyzed two rather simple experimental 

designs (one-drift and two-drift designs). We suppose, however, that the main patterns of 

results will remain similar (e.g., best performance of HDDM/ML for uncontaminated data and 

of KS in the presence of fast contaminants).  

Second, the number of trials of an experiment has to be defined. This question will 

often be related to the chosen paradigm. Especially, if material is restricted, it might be 

difficult to compose high trial numbers. The homogeneity of the material also influences the 

decision process, with more heterogeneous material resulting in higher intertrial variability of 

the drift. Besides, the researcher has to consider the fatigue that the type of task might cause. 

For tasks that are very demanding and that take very long, a higher percentage of 

contaminants is to be expected. 

Third, after collecting the data, the researcher should analyze the data quality before 

applying a diffusion model. This means, for example, figuring out whether there are 

supposedly many contaminants. If, for example, the RT distributions include many statistical 
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outliers according to typical outlier detection procedures (e.g., Tukey, 1977), this might 

indicate a high level of contaminants. Note that the exclusion of outliers does not necessarily 

lead to better parameter estimates, as our additional analyses showed. The problem is that not 

all contaminants will be detected (especially not if they are situated overlapping with the true 

RT distribution), and “real” RTs might be accidentally removed from the distribution (false 

positives). Thus, an estimation method that is robust to contaminants (like KS) is in such 

cases more adequate than an overly strict data cleaning. Besides, estimation of the intertrial 

variability of the nondecision time (but not of the rather poorly estimated other two variability 

parameters) can help to counteract the influence of fast contaminants.  

Furthermore, one can analyze whether there might be a response bias for one of the 

two stimuli. If, for example, correct responses to stimulus A are faster than errors, whereas for 

stimulus B the errors are faster than the correct responses, the starting point might be 

positioned closer to stimulus A than to B. In such a case, the researcher should not collapse 

over the two stimuli by estimation of a model with correct and error responses at the two 

thresholds. Rather, he or she should use a model with the two different stimuli at the 

thresholds and freely estimate the starting point. Besides, an analysis of the mean RTs of 

correct and error responses can give a hint as to whether there might be high intertrial 

variability in the data. Finally, on the basis of these analyses, the researcher can decide which 

parameters to estimate and which estimation method to use. 

 Thus, one main message of this article is that there is no single type of diffusion model 

analysis. Several aspects influence the parameter estimation, and thus, the estimation 

procedure has to be carefully selected. Our work is intended as a first step in the development 

of general guidelines for diffusion modeling. 

Conclusions 

Whereas several hundred or even several thousand trials are often used in the application of 

the Ratcliff diffusion model (Ratcliff, 1978), our simulation studies—executed with the 

newest version of fast-dm (Voss et al., 2015)—indicate that in most cases considerably lower 

trial numbers are sufficient. Using a lot more than the necessary number of trials can also be 

more detrimental than useful. It leads to higher costs (e.g., longer preparation and execution 

time of the experiment, or fatigue of the participants) without clearly improving parameter 

estimation performance. In this article, we give guidelines for the number of trials required, 

depending on the optimization criterion applied, the number of parameters estimated, and the 

presence of contaminants.  
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Our simulations provide the following stable patterns of results: (1) CS is generally 

not advisable for small to moderate trial numbers; (2) parameter recovery often does not 

improve much if more than around 500 trials are used; (3) for less complex models (i.e., 

exclusive of intertrial variabilities), notably smaller trial numbers are sufficient; (4) ML and 

HDDM perform best for uncontaminated data; and (5) KS and EZ are the methods least 

affected by fast contaminants. 
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Table 1 

Comparison of optimization criteria 

 Chi-Square Maximum Likelihood Kolmogorov-Smirnov 

Term to be minimized 

in the optimization 

process 

 

 

∑ ሺ݋� − �݌ሻଶ�݌  

 

Note: oi /pi correspond to the 

numbers of responses 

observed/predicted in bin i 

− ∑ ݈݊ ቀ�(���,݇�)ቁ 

 

Note: d(RTi, ki) corresponds to 

the density value of the RT 

observed in trial i with 

response ki  

 max�=ଵ…� |eCDFሺ���ሻ– pCDFሺ���ሻ | 
 

Note: n is the number of 

responses observed; 

eCDF/pCDF are the 

empirical/predicted 

cumulative distribution 

functions; RTi is the RT in 

trial i  

Information utilization low high medium 

 

Computation time 

 

low 

 

high 

 

medium 
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Table 2 

Minimum and maximum values of each diffusion model parameter used for the creation of parameter sets, and ”possible 
accuracy” of each parameter 

Parameter Minimum Maximum Possible Accuracya 

a 0.5 2.0 0.054 

ν -4.0 4.0 0.270 

t0 0.2 0.5 0.032 

zr 0.3 0.7 0.035 

sν 0.0 1.0 0.849 

st0 0.0 0.2 0.031 

szr 0.0 0.5 0.402 

Note. The diffusion coefficient in fast-dm is set to 1. To compare parameter ranges and accuracies with parameter values 

cited in studies using a coefficient of .1, the parameters a, ν, zr, sν, and szr need to be multiplied by .1. 
a95 % quantile of absolute deviations of true values and reestimated values using the ML criterion for uncontaminated 

simulated data sets with 5,000 trials and at least 4 % of trials at each threshold. 
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Table 3 

Juxtaposition of the four evaluation criteria of parameter estimation performance 

Evaluation Criterion Aim of Researcher 

 

Correlations between true and reestimated parameter 

values 

 

Detection of relationships between diffusion model 

parameters and external criteria (e.g., between drift rate 

and intelligence) 

 

Parameter estimation biases 

(i.e., deviations of reestimated from true parameter 

values) 

Detection of parameter differences between conditions; 

interpretation of effect sizes (over- or underestimation 

of true effect?) 

 

Number of participants required for detection of drift 

rate difference 

Sample size computation for detection of parameter 

differences between conditions 

 
Estimation precision—squared deviations of reestimated 

from true parameter values 

Diagnostic use of diffusion model parameters (e.g., drift 

rate for the measurement of intelligence) 
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Table 4 

Number of trials required in the one-drift design for data sets with at least 4 % of trials at each threshold, depending on the parameter model, estimated parameter, type of contamination, and 

estimation method 

   Three-Parameter Model Four-Parameter Model Six-Parameter Model Seven-Parameter Model 

  a ν t0 a ν t0 zr a ν t0 a ν t0 zr 

N
o

 c
o

n
ta

m
in

an
ts

 

KS 
125; 403 

436 

37; 119 

241 

26; 83 

203 

199; 589 

546 

94; > 5,000 

500 

< 24; 78 

195 

163; > 5,000 

500 

223; 1,122 

551 

102; 479 

402 

< 24; 91 

199 

650; 3,616 

824 

195; > 5,000 

500 

< 24; 310 

217 

> 5,000 

500 

ML 
55; 158 

283 

26; 78 

197 

< 24; < 24 

89 

57; 158 

286 

42; 126 

251 

< 24; < 24 

99 

38; 109 

235 

272; 783 

641 

277; 727 

649 

56; 223 

309 

318; 1,012 

687 

300; 944 

668 

54; 335 

313 

132; 548 

449 

CS 
287; 498 

628 

105; 219 

358 

50; 104 

229 

259; 478 

599 

149; 352 

457 

56; 117 

246 

146; 348 

452 

759; 1,693 

1,156 

713; 1,609 

1,112 

94; 421 

388 

592; 1,397 

992 

453; 1,276 

833 

124; 517 

438 

278; 816 

647 

HDDM 
48; 142 

267 

26; 79 

198 

< 24; < 24 

86 

53; 152 

277 

35; 112 

235 

< 24; < 24 

86 

26; 85 

206 

> 5,000 

500 

94; > 5,000 

500 

< 24; 35 

134 

378; 2,788 

626 

288; 4,488 

486 

< 24; 51 

150 

41; 290 

284 

EZ 
272; 836 

638 
68; 201 

318 
109; 354 

408 
           

S
lo

w
 c

o
n

ta
m

in
an

ts
 KS 

555; > 5,000 

644 

28; 128 

234 

38; 147 

200 

1,031;>5,000 

997 

81; > 5,000 

200 

< 24; 106 

188 

> 5,000 

500 

> 5,000 

968 

94; 605 

385 

28; 253 

100 

> 5,000 

1,411 

> 5,000 

200 

39; 195 

200 

> 5,000 

1,000 

ML 
116; 1,945 

372 
< 24; 116 

201 
< 24; < 24 

74 
135; 1,963 

395 
39; 508 

278 
< 24; < 24 

75 
41; 224 

281 
> 5,000 
1,987 

1,493;>5,000 
1,047 

30; 257 
256 

> 5,000 
1,925 

> 5,000 
1,019 

< 24; 350 
215 

218; 2,801 
465 

CS 
192; > 5,000 

500 

83; 292 

362 

47; 91 

200 

719; 1,870 

1,081 

186; 722 

525 

57; 96 

200 

211; 564 

562 

> 5,000 

4,593 

1,329; 4,032 

1,405 

84; 1,310 

342 

> 5,000 

3,202 

791; 3,355 

973 

146; 1,074 

446 

375; 1,150 

748 

HDDM 
143; 2,230 

398 
< 24; 121 

204 
< 24; < 24 

86 
146; 1,881 

413 
24; 427 

238 
< 24; < 24 

78 
< 24; 133 

211 
> 5,000 
1,000 

68; > 5,000 
200 

< 24; 30 
100 

> 5,000 
500 

> 5,000 
200 

< 24; 40 
100 

29; 1,475 
234 

EZ 
> 5,000 

1,208 

69; 475 

343 

1,246;>5,000 

587 
           

F
as

t 
co

n
ta

m
in

an
ts

 KS 
109; 402 

412 
26; 133 

231 
29; 92 

200 
144; 540 

467 
89; > 5,000 

500 
< 24; 99 

200 
> 5,000 

500 
232; 1,407 

544 
69; 302 

340 
< 24; 110 

205 
199; > 5,000 

500 
245; > 5,000 

500 
29; 149 

100 
> 5,000 

500 

ML 
> 5,000 

48 

45; > 5,000 

100 

> 5,000 

100 

> 5,000 

100 

> 5,000 

500 

> 5,000 

200 

> 5,000 

100 

578; 2,659 

831 

287; 1,155 

634 

28; 341 

252 

> 5,000 

1,841 

> 5,000 

1,814 

< 24; > 5,000 

100 

> 5,000 

200 

CS 
418; > 5,000 

500 

146; > 5,000 

200 

694; > 5,000 

100 

217; > 5,000 

500 

100; > 5,000 

200 

87; > 5,000 

100 

> 5,000 

500 

> 5,000 

1,000 

> 5,000 

500 

132; 3,040 

367 

> 5,000 

1,000 

> 5,000 

1,000 

97; > 5,000 

200 

> 5,000 

100 

HDDM 
> 5,000 

24 

47; > 5,000 

100 

> 5,000 

100 

> 5,000 

100 

> 5,000 

500 

> 5,000 

200 

> 5,000 

24 

177; > 5,000 

500 

57; > 5,000 

200 

< 24; 38 

100 

> 5,000 

500 

> 5,000 

200 

< 24; > 5,000 

100 

> 5,000 

24 

EZ 
257; 923 

612 

46; 269 

294 

296; > 5,000 

409 
           

Note. The cells comprise the requisite trial numbers for low and high precision (first row) and the limit (i.e., the number of trials not worth exceeding, since performance then improves only 

marginally; second row). 
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Table 5 

Number of trials required in the one-drift design for data sets with fewer than 4 % of trials at one threshold, depending on 

the parameter model, estimated parameter, type of contamination, and estimation method 

   Three-Parameter Model Six-Parameter Model 

  a ν t0 a ν t0 

N
o

 c
o

n
ta

m
in

an
ts

 

KS 
> 5,000 

2,086 

101; 473 

400 

35; 147 

253 

3,813;>5,000 

1,316 

213; 1,918 

493 

< 24; 94 

202 

ML 
463; 1,003 

870 

74; 183 

314 

< 24; 47 

148 

1,584; 3,491 

1,777 

760; 1,516 

1,182 

41; 126 

250 

CS 
1,703; 3,492 

1,916 

206; 502 

550 

102; 221 

358 

4,988;>5,000 

> 5,000 

4,949;>5,000 

> 5,000 

36; 163 

259 

HDDM 
439; 1,275 

816 

48; 142 

267 

< 24; 25 

112 

> 5,000 

1,000 

> 5,000 

500 

< 24; 32 

130 

EZ > 5,000 
4,087;>5,000 

500 
< 24; 4,544 

1,000 
   

S
lo

w
 c

o
n

ta
m

in
an

ts
 KS 

> 5,000 

500 

98; > 5,000 

200 

< 24; 102 

192 

> 5,000 

1,000 

316; > 5,000 

492 

33; 76 

100 

ML 
603; 2,965 

830 
44; 420 

100 
< 24; < 24 

91 
4,821;>5,000 

2,397 
505; 1,114 

914 
< 24; 142 

214 

CS 
> 5,000 

500 

298; > 5,000 

500 

87; 100 

200 
> 5,000 

4,938; 4,997 

> 5,000 

< 24; 175 

229 

HDDM 
568; 2,928 

799 
32; 356 

100 
< 24; < 24 

91 
> 5,000 
1,000 

> 5,000 
500 

< 24; < 24 
77 

EZ 
> 5,000 

1,000 

4,295;>5,000 

500 

< 24; > 5,000 

500 
   

F
as

t 
co

n
ta

m
in

an
ts

 KS 
> 5,000 

500 
124; > 5,000 

200 
< 24; 175 

200 
> 5,000 

500 
180; 1,547 

469 
< 24; 113 

182 

ML 
> 5,000 

1,000 

100; 3,465 

200 

> 5,000 

200 
> 5,000 > 5,000 

71; 99 

200 

CS 
3,417;>5,000 

2,653 

> 5,000 

200 

> 5,000 

200 

> 5,000 

1,000 

> 5,000 

1,000 

46; 394 

100 

HDDM 
> 5,000 

4,762 

80; 1,840 

322 

> 5,000 

283 

> 5,000 

1,000 

> 5,000 

200 

< 24; 28 

98 

EZ 
> 5,000 

1,000 

498; > 5,000 

1,000 

< 24; > 5,000 

500 
   

Note. The cells comprise the requisite trial numbers for low and high precision (first row) and the limit (i.e., the number of 

trials not worth exceeding, since performance then improves only marginally; second row).  



Guidelines on Parameter Estimation in Diffusion Modeling       A 3-46 

Table 6 

Number of trials required in the two-drift design for data sets with at least 4 % of trials at each threshold, depending on the parameter model, estimated parameter, type of contamination, and 

estimation method  

   Three-Parameter Model Four-Parameter Model Six-Parameter Model Seven-Parameter Model 

  a ν t0 a ν t0 zr a ν t0 a ν t0 zr 

N
o

 c
o

n
ta

m
in

an
ts

 

KS 
1,056; 3,680 

1,189 

121; 389 

429 

39; 122 

245 

1,010;>5,000 

791 

152; > 5,000 

500 

< 24; 52 

157 

95; > 5,000 

200 

1,234;>5,000 

1,122 

341; 1,240 

695 

41; 156 

266 

863; > 5,000 

848 

295; > 5,000 

500 

< 24; 103 

210 

175; > 5,000 

500 

ML 
201; 509 

545 

59; 161 

289 

< 24; < 24 

100 

171; 434 

500 

83; 226 

345 

< 24; < 24 

93 

29; 85 

207 

536; 1,348 

928 

498; 1,091 

907 

43; 135 

258 

412; 1,149 

794 

454; 1,043 

856 

32; 101 

223 

64; 175 

301 

CS 
816; 1,535 

1,248 

183; 398 

505 

72; 150 

286 

677; 1,255 

1,109 

226; 545 

579 

64; 129 

260 

53; 180 

292 

1,790; 3,443 

2,034 

1,504; 3,260 

1,736 

82; 280 

358 

894; 1,833 

1,298 

761; 1,582 

1,174 

45; 146 

266 

103; 289 

388 

HDDM 
155; 454 

481 

40; 124 

248 

< 24; < 24 

86 

143; 416 

462 

59; 182 

299 

< 24; < 24 

82 

< 24; 64 

179 

369; > 5,000 

500 

127; 479 

500 

< 24; 44 

150 

> 5,000 

500 

> 5,000 

500 

< 24; 34 

134 

28; 111 

227 

EZ 
295; 1,012 

655 
49; 160 

278 
28; 93 

214 
           

S
lo

w
 c

o
n

ta
m

in
an

ts
 KS 

1,974;>5,000 

1,318 

122; 736 

426 

26; 178 

240 

> 5,000 

200 

133; > 5,000 

200 

< 24; 48 

200 

96; > 5,000 

500 

> 5,000 

1,872 

350; 1,646 

671 

32; 331 

262 

> 5,000 

500 

402; 3,964 

596 

28; 84 

100 

276; 2,854 

522 

ML 
261; 1,452 

577 
47; 279 

200 
< 24; < 24 

80 
227; 1,263 

547 
90; > 5,000 

200 
< 24; < 24 

70 
26; 120 

226 
> 5,000 
2,214 

1,533;>5,000 
1,306 

< 24; 139 
223 

> 5,000 
1,896 

1,277;>5,000 
1,138 

< 24; 91 
195 

50; 216 
296 

CS 
1,039; 2,596 

1,334 

245; 907 

597 

42; 137 

258 

798; 1,847 

1,179 

288; 1,065 

642 

50; 91 

200 

52; 188 

292 

> 5,000 

4,357 

2,143;>5,000 

2,004 

79; 396 

362 

4,358;>5,000 

2,815 

1,083; 2,473 

1,407 

31; 155 

247 

101; 333 

394 

HDDM 
255; 1,692 

554 
34; 570 

264 
< 24; < 24 

85 
231; 1,320 

548 
82; 2,301 

317 
< 24; < 24 

78 
< 24; 71 

174 
> 5,000 
1,000 

> 5,000 
200 

< 24; < 24 
88 

> 5,000 
1,000 

> 5,000 
200 

< 24; < 24 
88 

< 24; 135 
216 

EZ 
> 5,000 

1,000 

93; 2,595 

327 

117; > 5,000 

195 
           

F
as

t 
co

n
ta

m
in

an
ts

 KS 
1,876;>5,000 

1,291 
126; 667 

437 
30; 132 

239 
1,142;>5,000 

780 
153; > 5,000 

500 
< 24; 49 

152 
96; > 5,000 

500 
1,991;>5,000 

1,110 
275; 970 

632 
38; 163 

264 
1,393;>5,000 

829 
388; 3,496 

602 
< 24; 75 

179 
170; > 5,000 

500 

ML 
> 5,000 

500 

86; > 5,000 

200 

> 5,000 

200 

> 5,000 

1,000 

> 5,000 

200 

> 5,000 

200 

> 5,000 

200 

2,254;>5,000 

1,839 

1,148; 3,301 

1,334 

< 24; 264 

229 

1,309; 4,322 

1,346 

1,329;>5,000 

1,256 

33; 94 

200 

378; > 5,000 

200 

CS 
2,425;>5,000 

2,163 

> 5,000 

200 

> 5,000 

200 

2,045; 4,857 

1,982 

> 5,000 

200 

> 5,000 

100 

> 5,000 

100 

> 5,000 

500 

> 5,000 

4,906 

87; 1,574 

340 

> 5,000 

200 

> 5,000 

500 

40; 136 

200 

> 5,000 

200 

HDDM 
> 5,000 

1,122 

90; > 5,000 

200 

> 5,000 

131 

> 5,000 

843 

> 5,000 

200 

> 5,000 

200 

> 5,000 

200 

> 5,000 

500 

78; > 5,000 

200 

< 24; 44 

100 

294; > 5,000 

500 

193; > 5,000 

200 

< 24; 57 

100 

408; > 5,000 

329 

EZ 
> 5,000 

500 

48; 473 

200 

< 24; 102 

194 
          

 

Note. The cells comprise the requisite trial numbers for low and high precision (first row) and the limit (i.e., the number of trials not worth exceeding, since performance then improves only 

marginally; second row).
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Figure 1. Example illustration of the decision process of the diffusion model. The process starts at z (here situated in the 

middle of threshold distance a) and moves with mean drift rate v until a threshold is hit (here the upper threshold). In the 

following, the motoric execution of the associated response (here Response A) is initiated. 
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Figure 2. Scatter plot of mean correlation between true and reestimated parameters in the one-drift design, for uncontaminated data sets (left column), data sets with slow contaminants (middle 

column) and data sets with fast contaminants (right column). On the basis of data sets with at least 4 % of trials at each threshold. Power functions were fitted to the data. Whenever the curve 

was a poor fit (R2 < .80), lines were drawn between adjacent trial numbers. 
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Figure 3. Mean differences between estimated and true values of parameter a for each quartile of the true parameter values (numbers 1-4; small symbols) and for all datasets (larger symbols 

connected by lines) depending on the contamination condition, parameter model, estimation method and number of trials. On the basis of data sets with at least 4 % of trials at each threshold. 

Few values are not depicted as they fall outside the y-axis limits.  
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Figure 4. Mean differences between estimated and true values of parameter ν for each quartile of the true parameter values (numbers 1-4; small symbols) and for all datasets (larger symbols 

connected by lines) depending on the contamination condition, parameter model, estimation method and number of trials. All negative drift values were transformed to positive values so that the 

true values are all located between 0 and 4. On the basis of data sets with at least 4 % of trials at each threshold.  
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Figure 5. Mean differences between estimated and true values of parameter t0 for each quartile of the true parameter values (numbers 1-4; small symbols) and for all datasets (larger symbols 

connected by lines) depending on the contamination condition, parameter model, estimation method and number of trials. On the basis of data sets with at least 4 % of trials at each threshold. 

Few values are not depicted as they fall outside the y-axis limits.  
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Figure 6. Mean differences between estimated and true values of parameter zr for each quartile of the true parameter values (numbers 1-4; small symbols) and for all datasets (larger symbols 

connected by lines) depending on the contamination condition, parameter model, estimation method and number of trials. On the basis of data sets with at least 4 % of trials at each threshold. 

Few values are not depicted as they fall outside the y-axis limits.  
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Figure 7. Scatterplot of the number of participants required for the detection of a difference in reestimated drift rates, depending on the number of trials and the estimation method. The 

horizontal line indicates the number of participants required for the original effect size (n = 66 for dz = 0.35). On the basis of data sets with at least 4 % of trials at each threshold. Required 

numbers of participants exceeding 300 are not depicted.
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Figure 8. Scatterplot of 95 % quantiles of mean deviation between true and reestimated parameters in the one-drift design, for uncontaminated data sets (left column), data sets with slow 

contaminants (middle column) and data sets with fast contaminants (right column). On the basis of data sets with at least 4 % of trials at each threshold. Quantiles exceeding a mean 

deviation of 25 are not depicted. Power functions were fitted to the data. Whenever the curve was a poor fit (R2 < .80), lines were drawn between adjacent trial numbers. 
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Appendix A 4 

Manuscript 4: Lerche, V., & Voss, A. (2016). Retest reliability of the parameters of the 

Ratcliff diffusion model. Psychological Research, 1-24.  

 

Printed by permission from Psychological Research 

© Springer-Verlag Berlin Heidelberg 2016   doi: 10.1007/s00426-016-0770-5 
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ABSTRACT 

In the recent years, there is a growing interest to use the Ratcliff Diffusion Model (1978) for 

diagnostic purposes as the parameters of the model capture interindividual differences in 

specific cognitive processes. The parameters are estimated using reaction time data from 

binary classification tasks. For a potential diagnostic application of parameter values 

sufficient reliability is a necessary precondition. In two studies, each with two sessions 

separated by one week, the retest reliability of the diffusion model parameters was assessed. 

In Study 1, 105 participants completed a lexical decision task and a recognition memory task. 

In Study 2, 128 participants worked on an associative priming task. Results show that the 

reliability of the main parameters of the Ratcliff Diffusion Model (in particular of the speed 

of information accumulation and the threshold separation with rs > .70 for all three tasks) is 

satisfying. Besides, we analyzed the influence of the number of trials on the retest reliability 

using different estimation methods (Kolmogorov-Smirnov, Maximum Likelihood, Chi-

Square and EZ) and both empirical and simulated data sets. 

 

Keywords: diffusion model, test-retest reliability, fast-dm, EZ, mathematical models, reaction 

time methods  
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Retest reliability of the parameters of the Ratcliff diffusion model 

While so far the Ratcliff Diffusion Model (1978) has mostly been employed for the analysis 

of group differences, recently the aim of employing the model as a diagnostic tool has been 

expressed (Aschenbrenner, Balota, Gordon, Ratcliff, & Morris, 2015; Ratcliff & Childers, 

2015). Regarding the validity for the measurement of specific cognitive functions, several 

approaches supply promising results. Experimental validation studies (e.g., Voss, 

Rothermund, & Voss, 2004) indicate that the parameters of the Diffusion Model have clear 

psychological interpretations. Other studies investigated criterion validity. For example, it has 

been shown that the drift parameter correlates with general intelligence (e.g., Ratcliff, 

Thapar, & McKoon, 2010; Ratcliff, Thapar, & McKoon, 2011; Schmiedek, Oberauer, 

Wilhelm, Süß, & Wittmann, 2007) and with neurophysiological correlates of information-

processing speed (Schubert, Hagemann, Voss, Schankin, & Bergmann, 2015), and that 

threshold separation is related to response inhibition (Stahl et al., 2014). Besides, differences 

in parameter values between groups of individuals differing in variables like anxiety (White, 

Ratcliff, Vasey, & McKoon, 2010a, 2010b), ADHD (e.g., Metin et al., 2013; Weigard & 

Huang-Pollock, 2014) or depression (e.g., Pe, Vandekerckhove, & Kuppens, 2013; Vallesi, 

Canalaz, Balestrieri, & Brambilla, 2015) have been observed. This gives rise to the idea that 

parameters of the Ratcliff Diffusion Model might also be used as diagnostic variables, for 

example in the clinical field. While there are convincing arguments for the validity of the 

parameters of the diffusion model, the reliability, however, has rarely been investigated (for 

an exception, see Yap, Balota, Sibley, & Ratcliff, 2012). Prior to further proponing the use of 

the diffusion model as diagnostic tool, the reliability and stability of its parameters need to be 

ascertained. 

In the following, we first give a brief introduction to the Ratcliff Diffusion Model 

including information on the estimation of the model parameters and on their validity (for a 

more expanded introduction, see for example Voss, Nagler, & Lerche, 2013). Then, we sum 

up previous findings regarding the retest reliability of the diffusion model parameters. This is 

followed by Study 1 in which we present retest reliability coefficients for a lexical decision 

task and a recognition memory task. In Study 2, retest reliability coefficients for an 

associative priming task are given. Finally, in Study 3, we analyze the influence of the 

number of trials on retest reliability using both empirical and simulated data sets. 

Introduction to the diffusion model 

The Diffusion Model (Ratcliff, 1978) is a mathematical model that allows for disentangling 

different cognitive processes involved in decision making. In particular, the model is applied 
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to response time (RT) data from decision tasks with two possible responses. An example of 

such a binary decision task is a lexical decision task (LDT) in which participants have to 

decide whether a presented letter string is a word (response 1) or a non-word (response 2). 

One important assumption of the Diffusion Model is that decisions are based on continuous 

information sampling that stops when one of two thresholds (e.g., the word- or the non-word-

threshold) is reached. Figure 1 depicts a decision process according to the Diffusion Model as 

it might occur in an LDT after the presentation of a word-stimulus. In this example, the 

information accumulation process starts centered (starting point: parameter z) between both 

thresholds (distance of thresholds: parameter a) and moves with a certain speed in a certain 

direction (drift parameter ν). To the linear trend of the mean drift rate—which is here directed 

to the upper threshold, i.e., the word-threshold—adds Gaussian noise. When a threshold is 

hit, the decision has been taken and a corresponding motoric response is initiated (e.g., press 

of a response key). The duration of pre-decisional encoding processes and post-decisional 

motoric processes is captured by the model with an additional parameter (non-decision time 

t0; not depicted in Figure 1). Three of the four main parameters of the Ratcliff Diffusion 

Model are assumed to vary from trial to trial, namely, the drift rate ν, the starting point z 

(Ratcliff & Rouder, 1998) and the non-decision time t0 (Ratcliff & Tuerlinckx, 2002). 

Psychological interpretation of the diffusion model parameters 

For most applications, the drift rate, the threshold separation, the starting point or the 

non-decision time are of interest, because these parameters have straightforward 

psychological interpretations. Experimental validation studies have been conducted 

supporting the validity of some or all of these four parameters using a color-discrimination 

task (Voss et al., 2004), a lexical-decision task (Wagenmakers, Ratcliff, Gomez, & McKoon, 

2008), a motion discrimination task (Ratcliff & McKoon, 2008), brightness discrimination 

tasks (Ratcliff & Rouder, 1998) and—recently—also a recognition memory task (RMT; 

Arnold, Bröder, & Bayen, 2015). Furthermore, in correlational studies relationships between 

parameters and external criteria such as intelligence have been observed (e.g., Ratcliff et al., 

2011). In the following, we shortly present some important findings regarding these four 

parameters. 

The drift rate (v) maps the speed with which information is gathered and is thus a 

measure of speed of information processing. High absolute values of the drift result in short 

decision times and high accuracy. Empirically, it has been shown for different experimental 

paradigms that easier tasks (or easier trials) cause higher drift rates than more difficult tasks 

or trials (e.g., Ratcliff & McKoon, 2008; Voss et al., 2004). Furthermore, the drift rate 
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correlates with general intelligence, with individuals higher in intelligence manifesting higher 

(absolute) drift rates (Ratcliff et al., 2010, 2011). This is interesting as it suggests the 

possibility to assess intelligence via the diffusion model’s drift rate. Besides, it has been 

shown that the drift rate is also related to working memory (Schmiedek et al., 2007). 

The threshold separation (a) reveals whether more or less information is accumulated 

before a decision is made. Accordingly, an accuracy- (speed-) instruction causes higher 

(lower) threshold separations (e.g., Ratcliff & McKoon, 2008; Voss et al., 2004). 

Correlational findings show that threshold separation is related to age (e.g., Ratcliff, Spieler, 

& McKoon, 2000; Ratcliff, Thapar, & McKoon, 2001) and to performance in tasks requiring 

response inhibition (Stahl et al., 2014).1 Recently, it has also been shown that task-switching 

costs are based in large parts on high threshold separation in switch trials (Schmitz & Voss, 

2012, 2014). 

The starting point (z) reveals whether there is a bias in favor of one of the two 

responses. In the example illustrated in Figure 1, the starting point is centrally aligned 

between the two thresholds (i.e., the relative starting point zr = z/a = .5). In this case, the 

decision maker manifests no decision bias for words or non-words. A bias (i.e., zr < .5 or zr > 

.5) can result from unequally rewarded responses (e.g., Voss et al., 2004), valence of stimuli 

(Voss, Rothermund, & Brandtstädter, 2008), or a manipulation of stimulus frequency (Leite 

& Ratcliff, 2011). 

Finally, the non-decision time (t0) informs about the time required for processes taking 

place before and after the decision process (specifically, the encoding of information and the 

motoric execution of the response). It is higher if the required motoric response is prolonged 

(movement of finger vs. direct key press, see Voss et al., 2004). An example for the 

manipulation of pre-decision time is provided by Schmitz and Voss (2012): They show that 

non-decision time is increased in task switch trials for unexpected task switches (cf. also 

Schmitz & Voss, 2014). Presumably, the reconfiguring of the task set in working memory 

takes time that is captured in t0. Besides, non-decision time is generally related to age (e.g., 

Ratcliff et al., 2010; Spaniol, Madden, & Voss, 2006; Spaniol, Voss, & Grady, 2008), and—

in an LDT—to vocabulary knowledge: Individuals higher in vocabulary knowledge show 

smaller non-decision times (Yap et al., 2012). 

                                                           
1Noteworthy, in unpublished studies from our lab, we failed to find correlations of threshold separation with 
self-reported impulsivity using standard speeded response time tasks (cf. also Stahl et al., 2014). However, when 
using more difficult tasks that required a long duration of information accumulation (RT > 5 sec) weak to 
moderate correlations emerged. 
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Estimation of the diffusion model parameters 

For the estimation of the parameters of the Ratcliff Diffusion Model, several software 

implementations are available, amongst them DMAT (e.g., Vandekerckhove & Tuerlinckx, 

2007, 2008) and fast-dm (Voss & Voss, 2007, 2008). Both programs allow the estimation of 

all seven parameters of the Ratcliff Diffusion Model. Besides, parameters can be estimated 

depending on conditions. For example, within the same model separate drift rates for words 

and non-words can be estimated. In the latest version of fast-dm (Voss, Voss, & Lerche, 

2015), the user can choose between three different optimization criteria for parameter 

estimation: Kolmogorov-Smirnov (KS), a Maximum Likelihood (ML) and a Chi-Square 

based criterion (CS). Lerche, Voss, and Nagler (2015) compared the accuracy of parameter 

recovery between these three criteria for different trial numbers and different levels of model 

complexity. In addition, in their simulation study, data were either uncontaminated (i.e., all 

trials emanated from a diffusion process), or contaminated with 4 % of either fast or slow 

contaminants. Their main criterion of estimation performance was a bias measure based on 

deviations between true and estimated parameter values. The analyses revealed that in some 

conditions even for small trial numbers (n < 100) acceptable parameter estimates can be 

obtained. Specifically, ML outperformed KS and CS for uncontaminated data whereas for 

data contaminated by fast contaminants KS showed best performance. 

Wagenmakers, van der Maas, and Grasman (2007) proposed an easy option for 

parameter estimation termed EZ which is based on closed-form equations. Entering accuracy 

rate and mean and variance of correct responses, these equations allow the computation of 

three parameters of the diffusion model: drift rate, threshold-separation and non-decision time 

(for extensions of EZ, see also Wagenmakers, Grasman, & Molenaar, 2005; Wagenmakers, 

van der Maas, Dolan, & Grasman, 2008). EZ assumes a fixed starting point (zr = 0.5) and no 

intertrial variability (i.e., all three intertrial variabilities are fixed to zero). As a simulation 

study by van Ravenzwaaij and Oberauer (2009) demonstrates, EZ—despite using less 

information than other estimation procedures—allows a good recovery of the three main 

diffusion model parameters (see also Arnold et al., 2015). 

Test-retest reliability 

While the validity of the diffusion model parameters has been tested in several studies, to our 

knowledge the test-retest reliability has been examined only once, namely by (Yap et al., 

2012) (see also Yap, Sibley, Balota, Ratcliff, & Rueckl, 2015). They re-analyzed data from 

an LDT of the English Lexicon Project (Balota et al., 2007) based on two sessions with at 

most one week in between. Their number of participants (N = 819) was very high as well as 
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their number of trials per person (n = 3,374). All parameters of the Ratcliff Diffusion Model 

were estimated (with one drift rate for words and one for non-words) and CS was used as 

optimization criterion. Both between-session and within-session reliability were examined. 

Within-session reliability was assessed via split-half correlations of estimates for odd- and 

even-numbered trials. The psychologically most interesting parameters showed a high within-

session reliability (threshold separation: .906; drift: .814/.827; starting point: .910; non-

decision time: .930) and between-session reliability was acceptable (threshold separation: 

.708; drift: .692/.645; starting point: .720; non-decision time: .736). The intertrial variabilities 

performed more poorly in terms of within-session reliability (st0: .647; sν: .649; but szr: .812) 

and especially between-session reliability (st0: .497; sν: .403; szr: .388). 

In the following, we first report the method and results of Study 1, in which 

participants worked on two classification tasks (a lexical decision task and a recognition 

memory task) at two different sessions. We display retest correlation coefficients (i.e., 

between-session reliability) for the parameters of the Ratcliff Diffusion Model, separately for 

both tasks and for four estimation methods (KS, ML, CS and EZ). In contrast to standard 

diagnostic procedures (e.g., personality questionnaires), a diffusion model analysis requires a 

complex parameter estimation process (with the exception of EZ which is based on closed-

form equations). Therefore, any inaccuracies in parameter estimation (in the following 

termed “parameter estimation error”) add to the unsystematic “measurement error” of any test 

procedure. Thus, we expect test-retest reliability coefficients to be smaller for the diffusion 

model parameters than for statistical measures that can be directly computed like the mean 

reaction time. Support for this reasoning supply the findings by Yap et al. (2012). In their 

study, the reliability of the mean RT was higher (within-session: .997; between-session: .871) 

than the reliability coefficients of the diffusion model parameters (within-session: .647-.930; 

between-session: .388-.736). 

In Study 2, the test-retest reliability of a further classification task (an associative 

priming task) was analyzed. Finally, in Study 3, we simulated data sets with different trial 

numbers assuming perfect parameter stability. These simulations allow to estimate (1) the 

influence of the number of trials on the “parameter estimation error” and (2) the maximally 

possible retest reliability under perfect conditions (i.e., assuming that there is no change in 

cognitive processes across sessions). They also allow (3) to get rough estimates of the trait- 

and state-proportions of parameters comparing the reliability of the empirical data (most 

likely, with state influences) with the reliability of the simulated data (without state 

influences due to the simulation procedure). 
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Study 1: test-retest reliability of the diffusion model parameters in a lexical decision 

task and a recognition memory task 

An important prerequisite for the interpretation of the diffusion model parameters as 

measures of trait-like cognitive styles and abilities is the test-retest reliability of these 

parameters. However, there is little information available on the reliability and stability of the 

parameters (see Yap et al., 2012, for an exception). In Study 1, at two sessions separated by 

one week, participants had to work on two experimental tasks, an LDT and an RMT. 

The LDT is an experimental paradigm that has often been analyzed with the Diffusion 

Model (e.g., Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009; Ratcliff, Gomez, 

& McKoon, 2004; Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, & McKoon, 

2007; Ratcliff et al., 2010; Wagenmakers, Ratcliff, et al., 2008). The study of Yap et al. 

(2012) provides first information on the retest reliability of the different cognitive processes 

involved in an LDT. 

The diffusion model has also been frequently applied to data from RMTs, both for 

words (e.g., Ratcliff, Thapar, & McKoon, 2004; Ratcliff et al., 2007; Spaniol et al., 2006; 

White, Ratcliff, Vasey, & McKoon, 2009; White et al., 2010b) and pictures (Bowen, Spaniol, 

Patel, & Voss, 2015; Ratcliff & McKoon, 2015; Spaniol et al., 2008). We opted for an RMT 

based on picture stimuli. Thus, we examine two tasks that differ in the paradigm and in the 

material (LDT: words vs. RMT: pictures). Besides, for both tasks, experimental validation 

studies have been performed (Arnold et al., 2015; Wagenmakers, Ratcliff, et al., 2008). 

Method 

Participants 

One-hundred-and-five native German speakers participated in Study 1. They were 

recruited from the participants’ pool of the Psychological Institute of the University of 

Heidelberg, Germany using the hroot software (Bock, Baetge, & Nicklisch, 2014). From all 

participants informed consent was obtained. After the second session participants received 

either course credit or 20€ (approx. 22 US $). The participants were mostly female (80 %) 

and were on average 22.0 years old (min = 18, max = 32, SD = 2.9). Forty percent of the 

participants studied psychology or worked as psychologists and the proportion of students 

added up to 97 %. 
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Stimuli 

For the LDT we used 200 German nouns with 1 or 2 syllables and 4-6 letters. All 

word stimuli had a low frequency in German language.2 For each word stimulus, a non-word 

was created by random vocal replacement. 

For the RMT we used 200 pictures from the IAPS (International Affective Picture 

System; Lang, Bradley, & Cuthbert, 2008) and the Emotional Picture Set (EmoPics; Wessa et 

al., 2010) with neutral valence (range: 4-6 on a scale ranging from 1 to 9) and low arousal 

(max. 5, scale: 1-9). Furthermore, only pictures showing humans were selected to have a 

relatively homogeneous set of stimuli, thus making the task more demanding. In the retention 

phase, items of three questionnaires were presented as filler task, namely the Personality 

Research Form (PRF, Stumpf, Angleitner, Wieck, Jackson, & Beloch-Till, 1985), the UPPS 

Impulsive Behavior Scale (Whiteside & Lynam, 2001) and the NEO Five Factor Inventory 

(Borkenau & Ostendorf, 2008); different items from these tests were presented in the two 

sessions. 

Design and procedure 

The experiment consisted of two sessions that were separated exactly by one week for 

almost all participants (for five participants, the second session had to be postponed, but took 

place no more than two weeks after the first session). The order of tasks (LDT and RMT) was 

counterbalanced across participants. For each participant the sequence of tasks was identical 

for both sessions. 

In the LDT, each session consisted of 400 trials which were presented in four blocks 

of 100 trials. Each block consisted of 50 word trials and 50 non-word trials. Between blocks 

participants could take short breaks. Stimuli were presented in a random order that was held 

constant for all participants and for both sessions. The mean duration of the task was 12 min. 

The RMT consisted of two blocks. Each block started with a study phase in which 52 

pictures were presented sequentially for 3 s each. The first and last presented picture 

(primacy and recency buffer) did not appear in the test list. The learning phase was followed 

by a retention phase in which participants had to fill in questionnaire items on the PC for at 

least 5 min. The test list of each block consisted of 50 pictures from the study list and 50 new 

pictures and started with one warm-up trial (a new picture) that was ignored for analyses. In 

                                                           
2Words had frequencies below 5 per million (CELEX; Baayen, Piepenbrock, & Gulikers, 1995) and – at the 
same time – a frequency class of 14 or 15 (online dictionary project of the university of Leipzig in November 
2014, see http://wortschatz.unileipzig.de), indicating that the word “der” (“the”) is used 214 or 215 times as often 
in German language as our stimuli. 

http://wortschatz.unileipzig.de/
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the learning phase, a random order of the stimuli was used that was identical for all 

participants and for both sessions. The order of stimuli in the test phase was also created 

randomly and was equivalent for all participants but varied from session 1 to session 2. Mean 

duration of the recognition task was 26 min. 

The procedure of each trial was equivalent for the two tasks: First, a fixation target (a 

black dot) was presented at the center of the screen for 500 ms. Then, the stimulus (a letter 

combination or a picture) was shown at the same position and the participants had to press 

either a left key (A) for non-words or new pictures or a right key (L) for words or old 

pictures. Labels at the bottom corners of the screen showed the mapping of stimulus types to 

keys throughout the experiment. As soon as a response was given the stimulus was removed 

from the screen and the next trial started after an intertrial interval of 500 ms. Participants 

were instructed to respond as fast as possible while avoiding errors at the same time. 

Parameter estimation 

In order to compare the performance of different estimation methods, we carried out 

parameter estimation using three different optimization criteria—KS, ML and CS as 

implemented in fast-dm-30 (Voss & Voss, 2007, 2008; Voss et al., 2015)—and using the 

method EZ (Wagenmakers et al., 2007). In our previous work we found that less complex 

models often provide more accurate and stable results even if some aspects of the true 

cognitive processes cannot be mapped (Lerche & Voss, 2016). Specifically, in our 

simulations the fixation of the intertrial variabilities of ν and zr to zero had a positive 

influence on the parameter estimation even when there was such variability in the data 

generating process. Apparently, the inclusion of these parameters can make the parameter 

estimation instable in the case of moderate or low trial numbers. Thus, for the fast-dm 

estimates we will present retest reliability coefficients based on a parameter model including 

the parameters threshold separation (a), starting point (zr), two drift rates for the two stimulus 

types (ν0 for non-words and new pictures associated with the lower threshold, ν1 for words 

and old pictures associated with the upper threshold), non-decision time (t0) and intertrial 

variability of non-decision time (st0). Note that for the KS method an even more restricted 

parameter model with additional fixation of the intertrial variability of t0 to zero would lead 

to slightly higher reliability coefficients. EZ was applied separately to the trials of each target 

type, resulting in two drift rates, two threshold separations and two non-decision 
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components3. For threshold separation and non-decision time, the mean over the two 

estimates was calculated. 

In addition, we computed retest reliabilities of the arcsine-transformed percentage of 

correct responses (accuracy) and the mean of the logarithmized response times of correct 

responses (mean RT). These are transformations that are regularly used for analyses on data 

from response time experiments to get more normally distributed variables (e.g., Greenwald, 

McGhee, & Schwartz, 1998; Hintzman & Curran, 1997; Klauer & Dittrich, 2010; Neumann 

& Strack, 2000). 

Results 

Due to a technical problem data from the RMT task from session 2 were missing for 

one participant. Data from another participant were excluded because his or her mean 

accuracy score was at chance level for the RMT (46 %) and was also the lowest in the 

complete sample for the LDT (75 %). Therefore, data from 104 participants for the LDT and 

from 103 participants for the RMT were entered into analyses. For each correlational 

analysis, bivariate outliers were identified via the Mahalanobis distance (D2) and participants 

with extreme values (p < .001) were excluded from the respective analysis. This led to an 

exclusion of at most 4 participants. Reaction times faster than 200 ms (on average 0.02 % for 

the LDT and 0.03 % for the RMT) were excluded as well as reaction times slower than 2,500 

ms (on average 0.38 % for the LDT and 1.11 % for the RMT). 

The test-retest reliability coefficients (Pearson correlation coefficients) were 

calculated between the two sessions for the diffusion model parameters, the accuracy rate and 

mean RT and are depicted in Figure 2. For the drift parameter, reliability coefficients are 

presented additionally for the difference and the sum of the two drift rates. As v1 is usually 

positive and v0 usually negative, the difference (νtotal = v1 - v0) can be seen as a measure of 

overall speed of information processing (i.e., the ability to discriminate between both 

stimulus types), while the sum (vbias = v1 + v0) maps a potential bias in drift rate, that is, a 

general preference in information accumulation for one type of information. 

As can be seen in Figure 2, νtotal (r > .70 for KS, ML and EZ) and the threshold 

separation a (r > .70 for ML and EZ) show an acceptable reliability for both tasks. The 

                                                           
3As EZ cannot be applied to data sets with an accuracy rate of 100%, we applied an edge correction method 

which has also been used by Wagenmakers et al. (2007): accuracy = ͳ −  ଵଶ×�, with n being the number of trials. 

Similarly, in Study 3 we additionally used a correction for a few data sets due to an observed accuracy of 50% 

in one condition (accuracy = Ͳ.5 +  ଵଶ×�). 
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reliabilities of the single drift rates are smaller than those of νtotal, but they are still in an 

acceptable range. A comparison of the diffusion model parameters with the “standard” 

variables mean RT and accuracy rate reveals that the accuracy rate outperforms the diffusion 

model parameters’ reliability, while the mean RT performs worse than some parameters 

(primarily, νtotal). The figure also allows for a comparison of the four methods that we used 

for parameter estimation. As expected, CS often shows the worst performance; ML and EZ 

manifest the best performance. One further finding is that parameters estimated from the LDT 

have higher reliability coefficients than those of the RMT. We will consider possible 

explanations for this finding in the Discussion. 

Besides the retest reliability of the parameters, we also analyzed practice effects from 

the first to the second session. Our findings indicate that several parameters changed 

significantly (Table 1). In particular, in both tasks, participants’ performance was better at the 

second session: drift rates (both the single drift rates and νtotal) increased and non-decision 

time decreased. Furthermore, the participants showed a more liberal response criterion, 

indicating that less information was accumulated at the second compared to the first session. 

In the LDT, there was also a significant change in the starting point. While in the first session 

the starting point was closer to the upper threshold (indicating a bias in favor of words), in the 

second session the starting point was unbiased. In the RMT, on the other hand, the starting 

point was closer to the upper threshold at both sessions (indicating a bias in favor of “old”-

responses). Finally, across both tasks participants showed a bias of drift for the stimulus 

associated with the lower threshold (non-words or new pictures). The absolute values of drift 

rates for these stimuli were higher compared to the drift rates for words and old pictures. This 

bias decreased significantly from the first to the second session. We also computed across-

task correlations of parameters within one session. These are essentially smaller than the test-

retest correlations (see Table 2). 

Discussion 

The present test-retest study shows consistent findings for retest reliabilities across 

both tasks: The main diffusion model parameters (specifically, the drift parameter and the 

threshold separation) have an acceptable retest reliability. These results suggest that these 

measures may be used for cognitive diagnostics. For example, the drift rate (or the difference 

of drift rates between stimulus types, i.e., νtotal) might be used for the assessment of general 

cognitive speed and—possibly—for intelligence. Threshold separation could be employed as 

a measure of impulsive decision making. The other main diffusion model parameters (zr and 



Guidelines on Parameter Estimation in Diffusion Modeling A 4-14 

 

t0) perform worse, but still manifest a robust retest correlation, indicating some trait-like 

component in these parameters. Besides, also the sum of drift rates manifests a certain 

reliability. This finding is interesting as it shows that this measure might be used for the 

diagnosis of a bias (e.g., "green bias", see Allen, Lien, Ruthruff, & Voss, 2014; or memory 

bias, see Bowen et al., 2015). In the interpretation of the retest reliabilities for the bias 

measures (zr and νbias) it is important to note that in our paradigms no interindividual variance 

was expected. When such biases are more meaningful (e.g., in social-cognitive studies on 

preferences), we expect retest reliability to be higher. 

Generally, we assume that the values of the retest coefficients depend on the paradigm 

at hand as well as on sample characteristics. Thus, the results reported are limited to the type 

of task used (lexical decision task and recognition memory task). In Study 2, we report a 

further test-retest study to challenge the generalizability of our results to a slightly different 

paradigm (an associative priming paradigm based on a lexical decision task). Here, in 

addition to the reliability of the single parameters, we also analyze the reliability of a priming 

effect (in particular, the difference in drift rates between associated and nonassociated prime-

target pairs). 

Besides the retest reliability of the different parameters, in Study 1 we were also 

interested in the performance of different optimization criteria. Our results are in line with 

findings from simulation studies (Lerche & Voss, 2016; Lerche et al., 2015): In these studies, 

—for small and medium trial numbers as employed in our LDT and RMT—a higher accuracy 

of parameter recovery for ML, compared to the widely used CS approach, was found. This 

more precise parameter estimation is assumingly also the reason for higher reliabilities for 

ML compared to CS in the present study. 

While the pattern of the two tasks is very similar (with drift rate and threshold 

separation manifesting acceptable retest reliability), the reliability coefficients of the RMT 

are, however, generally smaller than the respective coefficients of the LDT. As the parameter 

values show larger variances in the RMT compared to the LDT, the smaller retest reliability 

coefficients cannot be explained by means of limited variance. However, there are several 

other possible reasons for the differences in reliability coefficients: (1) Differences could be 

attributed to the higher trial number in the LDT (n = 400) compared to the RMT (n = 200). 

(2) They could be a consequence of differences in contamination of the RT distributions. It is 

possible that for the RMT in a higher percentage of trials performance is not based on a 

continuous information accumulation as assumed by the Diffusion Model, because the task 

took longer and might have been experienced as more exhausting. (3) Differences in 
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reliability could be due to differences in stability of the cognitive processes involved in 

recognition memory compared to lexical decision. In Study 3, we analyze the relationship of 

reliability and the number of trials of an experiment. This also allows for tackling the 

question of which of the three possible explanations might hold. 

Study 2: test-retest reliability of the diffusion model parameters in an associative 

priming task 

Study 2 is a further empirical test-retest study. In this study, we aimed at testing the 

generalizability of the results of Study 1 to another experimental paradigm. In particular, we 

used an associative priming task (APT). This type of task has already been analyzed with 

diffusion model analyses. In particular, Voss, Rothermund, Gast, and Wentura (2013; Study 

1a and Study 3a) used a lexical decision task with the targets (words or non-words) preceded 

by words that were either associated with the target or not (see also Study 3b for similar 

findings based on a semantic classification task). Trials with associated primes featured 

shorter response times for words and a lower error rate than trials with nonassociated primes. 

To figure out on which cognitive component(s) the priming manifests, Voss, Rothermund, et 

al. (2013) applied a diffusion model analysis. As expected, in trials with associated primes, 

drift rates for words were higher than in nonassociated trials. The manipulation did not have 

an influence on the response-execution bias (parameter d; see Voss, Voss, & Klauer, 2010). 

Less clear-cut were the findings regarding the non-decision time. While in Study 1a it was 

not affected, in Study 3a significantly shorter non-decision times emerged in the associated 

compared to the nonassociated condition. In Study 2, we applied a procedure similar to Study 

1a in Voss, Rothermund, et al. (2013). We were interested in the reliability of the single 

diffusion model parameters and in the reliability of a possible priming effect. 

Method 

Participants 

One-hundred-and-twenty-eight participants were recruited using the hroot software 

(Bock et al., 2014). Informed consent was obtained and participants were remunerated with 

course credit or 20€. Almost all participants were students (97 %), most of them female (77 

%) and they had an average age of 22.9 years (min = 17, max = 61, SD = 5.0). The 

percentage of participants that studied psychology or worked as psychologists was 27 %. 

Stimuli 

Both the primes and targets were taken from the study by Voss, Rothermund, et al. 

(2013). We used a total of 400 prime-target pairs. In half of these pairs, the prime was highly 

associated with the target which was either a word (e.g., “Kochtopf” [cooking pot]—“Essen” 
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[food]) or a non-word (”Banane” [banana]—“Affo” [“Affe” = monkey]). In the other half, 

the prime was not associated with the target (target is word: e.g., “Möbel” [furniture]—

“Füller” [pen]; target is non-word: e.g., “Gürtel” [belt]—“Alzt” [“Arzt” = doctor]). 

Design and procedure 

For almost all participants, the second session was held exactly one week after the 

first session (for one participant it had to be preponed and for another postponed by one day). 

The order of trials (with the order created randomly) and the stimulus-key-mapping (word: 

key “K”; non-word: key “S”) was identical for all participants and at both sessions. During 

the experiment, the mapping was shown with labels positioned at the bottom corners of the 

screen. 

The 400 prime-target pairs were divided upon 4 blocks of trials. Each block consisted 

of 25 associated prime-word pairs, 25 nonassociated prime-word pairs, 25 associated prime-

non-word pairs and 25 nonassociated prime-non-word pairs. The task was set in with a block 

of 30 practice trials without primes and with accuracy feedback. Besides, each block had two 

additional warm-up trials. The practice and warm-up trials were not part of the test list. 

Participants were instructed to respond as fast and accurate as possible. Each trial 

started with the presentation of a prime for 300 ms, followed by the appearance of the target. 

The discriminability of the target was hindered by a pixel mask. After the given response the 

target was removed and following an interval of 500 ms the next trial started. The task took 

on average 14 min. 

Parameter estimation 

The parameter estimation procedure was mainly equivalent to the procedure used in 

Study 1. The only difference was that in Study 1 we estimated two drift rates (one drift rate 

for each stimulus type: words vs. non-words in the LDT and old vs. new pictures in the 

RMT) and in Study 2 four drift rates and four non-decision times4 based on the combinations 

of prime type (associated vs. nonassociated) and target (word vs. non-word). 

Results 

The lower response time boundary (200 ms) led to an exclusion of 0.04 % trials on 

average, the higher boundary (2,500 ms) to an average exclusion of 0.64 %. The use of the 

                                                           
4Based on the findings by Voss, Rothermund, et al. (2013), we did not expect the d-parameter of the diffusion 
model (Voss et al., 2010) to be influenced by the prime type. Besides, estimation of this parameter requires very 
high trial numbers (Voss et al., 2010). 
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Mahalanobis distance for the bivariate correlation coefficients resulted in an exclusion of at 

most 3 participants. 

For word targets, as expected, in both sessions accuracy rate was higher for associated 

(e.g., Session 1: M = 95.31 %, SD = 3.69) than for nonassociated prime-target pairs (M = 

92.06 %, SD = 5.08; t[128] = 9.71, p <.001, dz = 0.90). Mean RT was lower (M = 789.97, SD 

= 110.85 vs. M = 814.84, SD = 105.70; t[128] = -9.84, p <.001, dz = -0.70) and drift rates 

were higher (M = 2.22, SD = 0.55 vs. M = 1.84, SD = 0.44; t[128] = 10.94, p <.001, dz = 0.97) 

(see also Table 3). Besides, the non-decision time was not significantly different between the 

two conditions (session 1: p = .06; session 2: p = .07).5 

Test-retest coefficients across-sessions are shown in Figure 2 (bottom row). 

Interestingly, the pattern is similar to the LDT and RMT from Study 1: in all three paradigms 

νtotal and a have satisfying correlation coefficients. In contrast to Study 1, in the priming 

paradigm t0 has a higher reliability. Similar to Study 1 is the performance of the four 

estimation methods with ML and EZ outperforming the other two methods for most 

parameters. While in both sessions the expected priming effect on the drift parameter 

emerged, the reliability of this effect (i.e., of the difference between associated and 

nonassociated prime-target pairs) is not very high (rs < .40). 

Information on changes in parameters from Session 1 to Session 2 can be retrieved 

from Table 4. Like in Study 1, drift rate increased and mean RT and non-decision time 

decreased from Session 1 to Session 2. Furthermore, participants responded more liberally 

(lower threshold separation) at Session 2 and the starting point (first closer to the word-

threshold) shifted to a more centered position (see also Study 1). Besides, variability in non-

decision time decreased from one session to the next. 

Discussion 

The findings from Study 2 are in line with the results reported by Voss, Rothermund, 

et al. (2013). For word targets, drift rates were significantly higher for associated compared to 

nonassociated primes (Cohen’s dzs > .95). For the non-decision component, there was no 

significant difference between these different prime-word pairings (dzs < .20). The priming 

effect on the drift rate did not manifest a high retest reliability coefficient. Note that this is not 

surprisable given the high correlation of drift rates for associated and nonassociated primes (r 

                                                           
5Results for non-word targets are also presented in Table 3. Note, that the findings are similar to those reported 
by Voss, Rothermund, et al. (2013). 
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= .71 at session 1 and r = .77 at session 2 for ML estimation). These correlation coefficients 

are higher than the retest reliability coefficients of associated (r = .59) and nonassociated 

prime-word pairs (r = .62) and thus, make a high retest reliability coefficient of the difference 

measure less likely (e.g., Guilford, 1954). Besides, our results are in line with findings by 

Stolz, Besner, and Carr (2005) who, using a semantic priming task, found retest reliability 

coefficients that were in most experiments smaller than r = .30.  

One important finding of Study 2 is that both drift rate and threshold separation 

revealed satisfying reliability coefficients. This is in line with the findings from Study 1. Note 

that in Study 2 the non-decisional component showed a higher reliability than in Study 1. 

This might have resulted from greater differences between individuals in encoding of 

information on the target stimulus due to the preceding prime stimulus. In fact, the 

participants seem to have used diverse approaches to deal with the prime as the answers to an 

open-framed question on their use of strategies revealed. Amongst these strategies were 

simply “ignoring”, counting the words, or even shortly closing the eyes. Others reported 

having tried to pay attention to the prime thinking that it might help them to identify the 

target. These different strategies could have had an influence on the subsequent encoding of 

the target stimulus. They can result in a higher variance and—assuming that the participants 

used similar strategies at both sessions—higher stability of the encoding process. Note that 

the closely following presentation of prime and target might also be interpreted as a form of 

task switching which can have an influence on the non-decision time (Schmitz & Voss, 

2012). 

As other studies (e.g., Lerche et al., 2015; Wiecki, Sofer, & Frank, 2013) demonstrate, 

the accuracy of parameter estimation depends on the number of trials. While in Study 1 and 

Study 2 only one trial number (200 for the RMT, 400 for the LDT and for the APT) was 

analyzed, in Study 3 we compared several different trial numbers. Besides, in Study 3, a 

simulation study was executed. One problem associated with empirical data is that we do not 

know the true parameter values of the participants and thus cannot separate error that results 

from inaccuracies in parameter estimation from instability of cognitive processes. In a 

simulation study, however, we know the true parameter values based on which we created the 

data sets. In sum, in Study 3 we had three main aims: (1) analyzing the influence of the 

number of trials on parameter estimation, (2) explaining the differences in retest reliability 

between the LDT and RMT from Study 1, and (3) getting a rough estimate of state 

proportions of parameters. 
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Study 3: Influence of the number of trials on test-retest reliability 

In Study 3, data from Study 1 and Study 2 were re-analyzed using different subsamples of 

trials. This allows us to check for the influence of the number of trials on retest coefficients. 

Besides, we extended the empirical data of Study 1 with simulated data. Retest reliability 

coefficients from the empirical data sets were compared to coefficients resulting from 

simulated data sets. Because data were simulated under “optimal” conditions—that is, 

without any changes in the data-generating process—the simulations provide an upper bound 

for the possible reliability coefficients for different trial numbers. This allows us to estimate 

the influence of changes in cognitive states. 

Method 

First, we estimated diffusion model parameters from subsamples of trials of each 

participant of Study 1 and Study 2. We used sample sizes of 32 (for LDT and RMT)6, 48 and 

100 trials (for all three tasks) and of 200 trials (for LDT and APT). For the subsamples, a 

sequence of trials from the beginning of each data set was used, thus mimicking complete 

data sets from shorter experiments. Like in Study 1 and 2, parameters were estimated with 

fast-dm-30. Using Fisher’s Z-transformation we calculated the mean over the retest reliability 

coefficients of the EZ diffusion model parameters (specifically, a, νtotal and t0) to obtain an 

overall measure of retest reliability (in the following termed “mean retest reliability”). 

Additionally, we report reliability coefficients within sessions. In particular, 

exemplarily, correlations between the first and second block of the RMT are contrasted with 

the correlation between the first and second session (using the first 100 trials to have equal 

trial numbers for the computation of all coefficients). Similarly, for the LDT and APT we 

calculated correlations between the first and second 200 trials (thus, blocks 1-2 vs. blocks 3-

4) within sessions and compared findings to across-session reliability (using the first 200 

trials). 

As a second approach, we simulated data sets under the assumption of perfect 

parameter stability. Specifically, we first created 1,000 parameter sets based on a multivariate 

normal distribution of the parameter sets from the real data from Study 1 (Table 5), using 

mvrnorm from the MASS R package (R Development Core Team, 2014; Venables & Ripley, 

2002). For each parameter set and each trial number (32; 48; 100; 200; 400; 1,000; 5,000), 

                                                           
6In each condition, fast-dm requires at least 10 trials (independent of the type of response) for ML and KS 
estimation and 12 trials (of the same response) for CS estimation (Voss et al., 2015). Thus, for the data of the 
APT due to the higher number of conditions no retest coefficients could be computed for 32 trials and for CS 
neither for 48 trials. 
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two data sets were simulated with construct-samples7. All differences within the simulated 

pairs of data sets are due to random noise in the diffusion process. Therefore, the correlation 

between the parameters re-estimated from the pairs deviates from a perfect reliability 

coefficient of r = 1 only by a “parameter estimation error“ (i.e., the error resulting from the 

complex multidimensional estimation procedure). In two further conditions, we made the 

data generation more realistic by adding contaminants, that is, trials in which the diffusion 

model is not the data generating process. For this purpose, we substituted 4 % of simulated 

trials by either fast or slow contaminants following the procedure described in Lerche et al. 

(2015). 

Results 

Unsurprisingly, for smaller trial numbers the retest reliability is lower than for higher trial 

numbers. This pattern can be observed for both the empirical (Figure 3 and Figure 4) and the 

simulated data sets (Figure 4). Interestingly, using more than about 200-400 trials does not 

have a substantial positive effect on retest reliability. The curve of the simulated data sets 

then still increases, but only to a very small degree. Figure 4 and Figure 5 show the influence 

of the number of trials on retest reliability of mean RT and accuracy rate. While for the 

accuracy rate, the curves clearly increase, for mean RT the number of trials seems to have a 

very small influence. This is plausible as the accuracy rate is based on data of a lower level of 

measurement (nominal) than the mean RT (metric). 

The data resulting from the simulation study also allows an assessment of the 

proportion of “parameter estimation error”. Interestingly, there is basically no systematic 

difference between uncontaminated data and data with fast or slow contaminants. The 

distance between the reliability of empirical data and the correspondingly simulated data 

reveals information on state influences on parameters. We want to add the caveat that other 

factors may also reduce reliability of empirical data (e.g., a higher percentage and/or different 

type of contamination). However, the distance of reliability graphs in Figure 3 provides an 

estimation of the maximal proportion of state influences. 

As evident from the figures, the higher the trial numbers, the smaller is the parameter 

estimation error and the higher the maximal proportion of state influences. For very small 

trial numbers (e.g., 48 trials), it is difficult to disentangle these two influences. From around 

100 or 200 trials on, however, the distance between the simulated and empirical lines remains 

                                                           
7Construct-samples is part of fast-dm (Voss et al., 2015). For the simulation of data sets we used a high 
precision setting of p = 4. 
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roughly stable (only increasing slightly due to further decrease in parameter estimation error). 

Thus, if, for example, we were interested in the moderation of practice effects by a 

personality trait, we should better use at least 200 trials. 

Figure 3 also allows for a comparison of parameter stability across the two tasks. 

Remember that in Study 1 we found lower reliability coefficients for the RMT compared to 

the LDT when using the total number of trials of each task (200 and 400 trials for RMT and 

LDT, respectively). As the increase in retest reliability with the number of trials indicates, the 

trial number does have an influence (even if this influence gets smaller with an increase in the 

trial number). Besides, for the simulated data, higher reliability coefficients are observed for 

the RMT compared to the LDT (which is probably due to the higher variability of parameters 

observed in the RMT). This results in slightly greater distances between the simulated data 

and the empirical data for the RMT than for the LDT. Taken together, these findings suggest 

that the differences found in Study 1 are not exclusively attributable to the different trial 

numbers, but also partly to differences in parameter stability. Specifically, the processes 

involved in the LDT result more stable than those involved in the RMT. This might be 

because memory processes are more influenced by situational factors or because the 

assessment is more contaminated (by sources of contamination not assumed for our 

simulation of data sets). We give more weight to the first proposed explanation as our 

simulation study reveals that contamination generally does not have a clear negative 

influence on correlation coefficients. 

While Figure 3 is based on the average of the four main parameters, Figure 6 

illustrates the patterns for the single parameters, exemplarily using ML as optimization 

criterion (the pattern is similar for the other two criteria). The comparison of the different 

parameters shows which cognitive processes are more or less stable. For example, we can see 

that the cognitive speed factor νtotal—in particular for the LDT—is very stable. The distance 

between the simulated and empirical lines is approximately zero meaning that there are 

basically no state influences on cognitive speed as measured with the drift rate.8 In line with 

these findings are also the results from the comparison of within- and across-session 

reliability coefficients. While for drift and threshold separation no systematic pattern of 

                                                           
8Note that, as already mentioned, it is possible that the contamination in the empiric data is different from the 
type and amount of contamination that we assumed for the simulation of data. Thus, it could be that the 
estimation of the drift rate suffers less from contamination than for example the estimation of t0 and that not 
(only) the stability of the parameters is responsible for the different distances between the lines of simulated and 
empiric data. Our study, thus, only allows getting an approximate idea of the state proportions. A clear 
disentangling of state and trait proportions would require larger samples of participants and data points. 
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differences between within- and across-session reliability coefficients emerges (within-

session reliability coefficients are not always higher and if they are higher, there is only a 

rather small difference), there is a clearer pattern for t0 and zr with the within-reliability 

coefficients being higher than the across-session reliability coefficients (see Table 6). This 

cautiously gives rise to the idea that interindividual differences in drift and threshold 

separation might be less influenced by situational characteristics than interindividual 

differences in non-decision time and starting point. 

 The analysis of the retest correlation coefficients is one way to examine differences 

between estimation methods. However, correlation coefficients can mask potential biases in 

parameter estimation. If a parameter is systematically over- or underestimated (i.e., this 

happens at both sessions), still high retest correlation coefficients can result. In order to 

examine the vulnerability of the different methods to estimation biases, we conducted further 

analyses. In particular, for the data of the simulation study, we compared the true parameter 

values (i.e., the values, the simulation was based on) with the estimated parameter values. In 

Figure 7 (for the LDT simulation study) and Figure 8 (for the RMT simulation study), 

boxplots of the residuals (i.e., the differences between estimated and true values) are 

presented, exemplarily for Session 19. Positive values indicate an overestimation and negative 

values an underestimation of the true parameter. The different diffusion model parameters 

have very different ranges. To enhance comparability of parameter biases, we weighted the 

differences between estimated and true values against parameter accuracies reported in 

Lerche et al. (2015). These accuracies are based on parameter estimation under perfect 

conditions (i.e., a very high trial number, no contaminants, ML estimation). 

First, it is apparent that both threshold separation and drift rate are often 

underestimated. The non-decisional component and the starting point are estimated without a 

notable, systematic bias by the fast-dm methods. EZ, however, underestimates the non-

decisional component (especially, in the RMT simulation study). The four methods also 

differ in that EZ has higher interquartile ranges in the RMT simulation study and, most 

importantly, in that CS has a higher number of outliers than the other methods. This is in line 

with the results from the retest coefficients that were mostly lower for CS than for the other 

methods. As for the retest coefficients, differences between types of contamination are 

negligible in size. Finally, Figure 9 exemplifies the influence of the number of trials on 

                                                           
9Results are very similar for Session 2. 
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parameter estimation bias (exemplarily, for data with no contaminants from the LDT 

simulation study). Importantly, from 400 trials on or even earlier any biases are very stable. 

Discussion 

We conducted Study 3 with three main objectives: Most importantly, we wanted to 

derive guidelines on the trial number required for reliable parameter estimation. As our 

results show, an increase in trial numbers has a positive effect up to about 100 or 200 trials. 

For higher trial numbers, however, the improvement in reliability is negligible. Additionally, 

biases in parameter recovery are also rather stable from this number of trials on. 

Our second aim was to explain the differences observed in retest reliability between 

the LDT and RMT from Study 1. In this regard, we could infer that the differences are not 

exclusively attributable to the different trial numbers. The cognitive processes involved in the 

RMT seem to be a bit less stable than those involved in the LDT. Finally, our third aim was 

to make a rough estimate of state proportions of the different parameters. These seem to be 

smaller for drift rate and threshold separation than for non-decision time and starting point. 

General discussion 

The retest reliability of the parameters of the Ratcliff Diffusion Model (1978) was evaluated 

using three different experimental paradigms. The lexical decision task (LDT) and the 

recognition memory task (RMT; Study 1) are both tasks that have been frequently used for 

diffusion model analyses. Besides in Study 2, an associative priming task (APT) was 

analyzed. In both studies, participants (Study 1: 105; Study 2: 128) worked on the tasks at 

two sessions separated by an intersession interval of one week. The analyses revealed 

satisfying reliability coefficients. In particular, the parameters with the highest reliability in 

all three tasks are the drift rate that is a measure of speed of information accumulation and the 

threshold separation that measures the amount of information required for decision making. 

Note that the accuracy rate (percentage of correct responses) showed higher retest 

correlations than drift rate and threshold separation. One might think that this challenges the 

applicability of the Ratcliff Diffusion Model. In this context, we want to point out that the 

great strength of the Diffusion Model is the discriminant validity of its parameters, that is, its 

capacity to separate different cognitive processes. For example, whenever accuracy and mean 

RT are unrelated (or even negatively related), both measures may lead to different 

conclusions. This trade-off can often be solved using more direct measures of cognitive 

processes as those provided by the Diffusion Model (e.g., Ratcliff, Thompson, & McKoon, 

2015). 
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Generalizability and stability 

In recent years, the interest in applying the diffusion model to measure interindividual 

differences is growing rapidly (e.g., Aschenbrenner et al., 2015). At the same time, strikingly 

little is known about the stability of the underlying processes and the reliability of different 

parameter estimation procedures. In view of this, the high similarity of the pattern of results 

(in terms of satisfying reliability coefficients of drift rate and threshold separation in all three 

paradigms) is in our eyes quite promising for a potential future diagnostic use. 

Note, however, that the lower reliability coefficients for the starting point in all three 

tasks do not necessarily imply that this parameter is much less stable in general. In fact, the 

comparison of the three paradigms demonstrated that the size of the retest coefficient of a 

parameter also depends on the type of paradigm. Specifically, we found a higher reliability of 

t0 in the APT than in the LDT and RMT. This might be a result of stability in strategy use 

across sessions (i.e., strategies to deal with the prime stimulus that influenced the encoding of 

the subsequently presented target). Similarly, there might be tasks in which the starting point 

has more variance and stability (e.g., in tasks based on emotional stimuli with the stimulus 

valence depending on characteristics of the individual). Thus, we cannot conclude that zr is 

less stable in general, but only in the specific paradigms that we analyzed. In this context, we 

also want to stress that the results of our studies only supply information on the reliability of 

diffusion model parameters in lexical decision (with and without priming) and recognition 

memory. They do not automatically generalize to any other type of task that the diffusion 

model has been applied to. The stability of parameters and the reliability of the parameter 

estimation procedure need to be carefully tested for each new paradigm. This also applies to 

the validity of diffusion model parameters in new paradigms that needs to be examined using 

experimental validation studies (e.g., Arnold et al., 2015; Voss et al., 2004) and analyses of 

criterion validity (e.g., Schubert et al., 2015). 

In addition to the collection of empirical data, we also conducted a simulation study 

(Study 3). For the generation of data sets we used the parameter ranges observed in the 

empirical data of Study 1 and assumed perfect stability of parameters. Thereby, we got the 

maximally possible retest coefficients (given a sample as used in our study). A comparison of 

the retest coefficients for the empirical data with the maximally possible retest coefficients 

allows an estimation of the “parameter estimation error” (i.e., the error resulting from the 

complex estimation procedure) and it allows a rough estimate of the maximal size of state 

influences. This analysis revealed that the processes involved in the LDT seem to be more 

stable than those in the RMT. 
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In line with these differences between the two tasks are also the across-task 

correlation coefficients that are essentially smaller than the retest reliability coefficients. 

Strikingly, the drift parameter has only rather small across-task correlations indicating that 

the two tasks do not measure a common speed of information accumulation. This contrasts 

previous studies in which large across-task correlations have been found. For example, 

Ratcliff et al. (2015) used four number-based tasks (number discrimination, numerosity 

discrimination and memory for numbers composed of either two or three digits) and report a 

mean correlation of r = .52 for the drift parameter. Ratcliff et al. (2010) even found a 

correlation of r = .63 between the drift in an RMT and an LDT. Their sample, however, was 

more heterogeneous than our sample and they used word stimuli in the RMT, so that the 

material was more similar in the two tasks compared to the material in our study. Note that 

we intentionally selected tasks differing in material (LDT/APT: words; RMT: pictures) to test 

the generalizability of our results. 

Influence of the estimation procedure 

One further aim of our study was a comparison of different estimation methods: 

Kolmogorov-Smirnov (KS), a Maximum Likelihood (ML) and a Chi-square based criterion 

(CS) and the method EZ (Wagenmakers et al., 2007) were used. Our results are mainly in line 

with findings from simulation studies by Lerche et al. (2015). Specifically, ML outperformed 

KS and CS. Of interest is the good performance of EZ (for similar findings see also van 

Ravenzwaaij, Donkin, & Vandekerckhove, 2016; van Ravenzwaaij & Oberauer, 2009). The 

retest coefficients achieved by EZ are comparable with those of ML. The fact that EZ 

performs so well despite its fixations of parameters (centered starting point; no intertrial 

variabilities) is in line with recent findings by van Ravenzwaaij et al. (2016). Note, however, 

the higher interquartile ranges in the estimation bias measure (Study 3). Regarding estimation 

bias, KS and ML show the best performance. 

In Study 3, we also varied the number of trials used for the estimation of parameters. 

As expected, with the number of trials increases the retest reliability. However, interestingly, 

using more than approximately 200-400 trials does not substantially increase retest reliability. 

This aligns well with the findings by Lerche et al. (2015) who also noted that from around 

500 trials on parameter estimation performance improves only marginally. High retest 

reliability coefficients do not necessarily imply that parameters are estimated perfectly. In 

fact, as our analyses on parameter recovery show, especially drift rate and threshold 

separation are estimated with a certain bias.  
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One limitation of our study is that we collected only 200 trials (for the RMT) and 400 

trials (for the LDT and APT). Note, however, that it is possible that an increase in trials 

beyond the total number of trials used in the experiments would have led to additional data 

contamination due to increasing fatigue, unwillingness to participate and distraction from the 

task. Therefore, retest reliability coefficients might have been even lower than for the 200 or 

400 trials used. 

To our knowledge, so far only one further published study has assessed the retest 

reliability of the diffusion model parameters: Yap et al. (2012) used a similar intersession 

interval and also an LDT (see also Yap et al., 2015). Interestingly, in their study, the four 

main diffusion model parameters showed a similar performance (across-session coefficients 

between .645 and .736) while in our LDT study drift rate and threshold separation 

outperformed the other parameters. 

These differences might be attributable to the differently complex models used for 

parameter estimation. Specifically, Yap et al. (2012) estimated all parameters of the Ratcliff 

Diffusion Model while we fixed the intertrial variability of ν and zr to zero. More restrained 

parameter models can—despite their wrong fixations of parameters—lead to better estimates 

of the main diffusion model parameters (Lerche & Voss, 2016; van Ravenzwaaij et al., 2016). 

Besides, Yap et al. (2012) had a very high number of trials (n > 3,000) while in our study the 

LDT was comprised of only 400 trials. As our findings and previous findings (Lerche et al., 

2015) demonstrate, the CS criterion—also employed by Yap and colleagues—requires higher 

numbers of trials in order to supply good parameter estimates than other estimation methods. 

Thus, the parameter estimation procedure employed by Yap and colleagues might not be 

adequate for moderately sized data sets as in our studies. Another difference between their 

study and our study lies in the employed stimulus material. In contrast to Yap et al. (2012), 

we used the same stimuli at both sessions. 

To exemplarily demonstrate the influence of model complexity, in a set of further 

analyses (see also Lerche & Voss, 2016) we used a more complex parameter model in which 

we estimated all intertrial variabilities (thus, all seven different diffusion model parameters 

were estimated instead of only five parameters) using both CS and ML. Besides, we 

estimated parameters both for the total number of trials of the Lexical Decision Task (i.e., 

400) and—in order to have a trial number comparable to the number of trials by Yap et al. 

(2012)—for the condition with 5,000 trials of the LDT simulation study. 

For 400 trials, using the seven-parameter model (7-PM) instead of the five-parameter 

model (5-PM) leads to mainly worse parameter estimates. Most importantly, the coefficient 
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of the drift parameter (νtotal) decreases to a large amount for both CS (.69 [5-PM] vs. .39 [7-

PM]) and ML (.86 [5-PM] vs. .52 [7-PM]). For the threshold separation also lower values 

were found for the seven-parameter model for CS (.70 [5-PM] vs. .64 [7-PM]) and ML (.79 

[5-PM] vs. .71 [7-PM]). For t0, only for ML the five-parameter model performed better than 

the seven-parameter model (.54 [5-PM] vs. .45 [7-PM]) and no difference was observed for 

CS. Finally, for zr there were negligible differences, with the seven-parameter model 

performing slightly better (.49 [5-PM] vs. .53[7-PM]) for CS and slightly worse for ML (.55 

[5-PM] vs. .52 [7-PM]). In sum, the five-parameter model performs better for the main 

diffusion model parameters than the full diffusion model. In particular, if one is interested in 

the drift rate, it is advisable to use the less complex model. 

While for small to moderate trial numbers the complexity of the parameter model is 

crucial, it is less for high trial numbers (see also Lerche & Voss, 2016). For the condition 

with 5,000 trials all retest coefficients were very high (min = .90, max = .99) and thus, there 

were smaller differences between parameters, estimation methods and between the two 

differently complex parameter models. Yet the biggest difference between models is 

observed for the drift rate estimated by CS. Here the five-parameter model performs better 

(.97) than the seven-parameter model (.91). 

Accordingly, the fact that Yap and colleagues observed similar retest coefficients for 

all four main diffusion model parameters might be mostly influenced by two aspects. (1) 

They used a higher number of trials (3,000 vs. 400). As we exemplarily demonstrated for our 

condition with 5,000 trials, differences between parameters and estimation procedures are 

clearly smaller for such high trial numbers. (2) They used a more complex parameter model 

inclusive of all three intertrial variabilities while we fixed two of them to zero. It might be 

that in the analysis of their data, drift rate and threshold separation would have had even 

higher values if they had used the less complex five-parameter model. 

As the previous sections demonstrate, there is no single procedure of diffusion 

modeling and different procedures can produce different results. To sum up, the three most 

important methodological findings resulting from our studies are the following: First, 

enhancing the number of trials seems only worthwhile up to around 200-400 trials. Second, 

ML and EZ showed the best retest reliability in all of our three tasks. Third, model 

complexity can influence results. Specifically, the fixation of the intertrial variabilities of 

starting point and drift seems to be a good strategy to obtain reliable parameter estimates. 
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Directions for future research 

In our studies, participants were mostly students and thus, the variance in vocabulary 

knowledge and memory performance was probably quite restricted. This homogeneity of our 

sample lowers the retest reliability coefficients we could reach. The coefficients observed 

must therefore rather be taken as a lower bound and higher correlation coefficients both 

between sessions and across tasks are to be expected for more heterogeneous samples. We 

hope that in future studies several other paradigms will be tested using different samples. One 

more aspect that might lower retest coefficients are differential learning effects. As a 

comparison of the first with the second session revealed, parameters changed over time (e.g., 

drift rate increased from the first to the second session). Our results are in line with findings 

from Dutilh et al. (2009) who also observed practice effects (see also Petrov, Van Horn, & 

Ratcliff, 2011). In addition to these general changes, interindividual differences in changes 

over sessions are plausible and they can contribute to lower retest coefficients. In future 

studies, it would be interesting to analyze learning effects in more detail (e.g., using more 

than two sessions). Importantly, despite these factors that can weaken the retest coefficients, 

drift rate and threshold separation still showed satisfying values in all three tasks (rs > .70). 

Conclusions 

The present test-retest studies analyzed reliability of diffusion model estimation and stability 

of cognitive processes using three experimental paradigms (lexical decision task, recognition 

memory task, associative priming task). Results show that the main parameters of the 

diffusion model (specifically, the drift rate and the threshold separation) reflect stable 

interindividual differences. Accordingly, a potential use of the diffusion model as diagnostic 

tool is further promoted. Besides, we present information on the applicability of the diffusion 

model (e.g., regarding optimization criteria and requisite trial numbers).  
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Table 1 
Comparison of parameters from Session 1 with Session 2 (Study 1) 

 Session 1  Session 2   95 % CI  

Parameter M SD  M SD ta p LL UL Cohen’s dz 

 Lexical decision task 

a 1.26 0.24  1.16 0.21 7.09 <.001 0.07 0.12 0.69 

νnon-word -2.86 0.54  -2.95 0.64 2.14 <.05 0.01 0.17 0.21 

νword 2.09 0.53  2.47 0.64 -8.48 <.001 -0.47 -0.29 -0.83 

νtotal 4.94 0.92  5.41 1.11 -8.26 <.001 -0.58 -0.36 -0.81 

νbias -0.77 0.55  -0.48 0.65 -4.47 <.001 -0.42 -0.16 -0.44 

t0 0.459 0.038  0.450 0.044 2.02 <.05 0.000 0.017 0.20 

zr 0.53 0.05  0.50 0.06 6.08 <.001 0.02 0.04 0.60 

st0 0.14 0.06  0.15 0.08 -0.90 .37 -0.02 0.01 -0.09 

Mean RT 694.69 87.82  651.27 87.18 7.41 <.001 31.45 55.40 0.71 

Accuracy 94.20 3.60  94.17 4.03 -0.51 .61 -0.30 0.35 0.02 

 Recognition memory task 

a 1.42 0.27  1.30 0.25 6.02 <.001 0.08 0.15 0.59 

νnew -2.03 0.59  -2.40 0.83 5.51 <.001 0.23 0.49 0.54 

νold 1.73 0.94  2.29 1.08 -6.71 <.001 -0.72 -0.39 -0.66 

νtotal 3.77 1.34  4.69 1.72 -8.03 <.001 -1.15 -0.69 -0.79 

νbias -0.30 0.83  -0.11 0.87 -2.00 <.05 -0.38 0.00 -0.20 

t0 0.588 0.048  0.536 0.044 10.43 <.001 0.042 0.062 1.03 

zr 0.54 0.07  0.54 0.07 -0.23 .82 -0.02 0.01 -0.02 

st0 0.14 0.08  0.13 0.08 0.98 .33 -0.01 0.02 0.10 

Mean RT 898.73 103.82  784.68 90.05 16.31 <.001 99.51 128.58 1.53 

Accuracy 90.17 7.82  91.88 7.63 -4.23 <.001 -2.66 -0.76 -0.35 

Note. Results are based on parameter estimation with ML. In fast-dm the diffusion coefficient is set to 1. Multiply a, ν and zr 

by 0.1 to compare parameter ranges with those in studies with constant 0.1. CI confidence interval; LL lower limit; UL upper 
limit. νtotal = v1 (word/old picture) - v0 (non-word/new picture) and νbias = v1 + v0. t test for mean RT (accuracy rate) is based 
on logarithmized (arcsine-transformed) values, but M, SD, 95 %-CI and Cohen’s dz are based on the untransformed values.  
a df = 103 for the lexical decision task and df = 102 for the recognition memory task. 
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Table 2 
Across-task correlations of the corresponding diffusion model parameters from the lexical decision and recognition memory 

task, separated for Session 1 and Session 2 

 a ν0 ν1 νtotal νbias t0 zr st0 

 Session 1 

KS .48*** -.03 .08 .06 .01 .25* .00 .25** 

ML .51*** .11 .20* .17 .04 .27** .24* .19 

CS .32*** .06 .11 .07 .14 .27** .16 .24* 

EZ .51*** .18 .32*** .30** .07 .20* – – 

 Session 2 

KS .44*** .18 .26** .22** .21* .54*** .16 .37*** 

ML .49*** .34*** .27** .35*** .12 .59*** .38*** .38*** 

CS .39*** .33*** .16 .27** .00 .44*** .31** .11 

EZ .47*** .34*** .39*** .42*** .18 .34*** – – 

Note. N = 104 for the first session and N = 103 for the second session. Non-words and new pictures were associated with the 
lower (ν0) and words and old pictures with the upper threshold (ν1). 
*p < .05; **p < .01; ***p < .001. 
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Table 3 
Priming effects (Study 2) 

 associated  nonassociated   95 % CI  

Parameter M SD  M SD t(127) p LL UL Cohen’s dz 

 Target = word 

mean RT 789.97 110.85  814.84 105.70 -9.84 <.001 -31.07 -18.66 -0.70 

723.18 86.99  745.01 90.14 -9.65 <.001 -26.95 -16.71 -0.75 

accuracy 95.31 3.69  92.06 5.08 9.71 <.001 2.62 3.89 0.90 

94.98 4.49  92.02 5.67 9.30 <.001 2.30 3.63 0.78 

ν 2.22 0.55  1.84 0.44 10.94 <.001 0.31 0.45 0.97 

2.53 0.61  2.14 0.55 10.91 <.001 0.31 0.45 0.96 

t0 0.526 0.041  0.529 0.043 -1.91 .06 -0.007 0.000 -0.17 

0.511 0.042  0.514 0.042 -1.84 .07 -0.007 0.000 -0.16 

 Target = non-Word 

mean RT 891.54 113.45  884.37 114.67 3.44 <.001 1.67 12.67 0.23 

793.82 92.00  785.07 90.76 4.87 <.001 4.18 13.31 0.34 

accuracy 92.43 6.31  93.84 4.74 -3.73 <.001 -2.04 -0.77 -0.39 

92.82 6.46  93.71 6.07 -3.22 <.01 -1.48 -0.29 -0.26 

ν -2.19 0.50  -2.30 0.52 3.62 <.001 0.05 0.16 0.32 

-2.42 0.58  -2.56 0.61 3.97 <.001 0.07 0.22 0.35 

t0 0.559 0.059  0.560 0.059 -0.28 .78 -0.008 0.006 -0.02 

0.536 0.052  0.540 0.048 -1.58 .12 -0.010 0.001 -0.14 

Note. The first row always refers to the first, the second row to the second session. Results are based on parameter estimation 
with ML. In fast-dm the diffusion coefficient is set to 1. Multiply ν by 0.1 to compare parameter values with those in studies 
with constant 0.1. CI confidence interval; LL lower limit; UL upper limit. t test for mean RT (accuracy rate) is based on 
logarithmized (arcsine-transformed) values, but M, SD, 95 %-CI and Cohen’s dz are based on the untransformed values. 
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Table 4 
Comparison of parameters from Session 1 with Session 2 (Study 2) 

 Session 1  Session 2  95 % CI  

Parameter M SD  M SD t(127) p LL UL Cohen’s 
dz 

a 1.39 0.26  1.24 0.24 10.43 <.001 0.13 0.19 0.92 

νnon-word, associated -2.19 0.50  -2.42 0.58 5.18 <.001 0.14 0.31 0.46 

νnon-word, nonassociated -2.30 0.52  -2.56 0.61 5.61 <.001 0.17 0.36 0.50 

νword, associated 2.22 0.55  2.53 0.61 -6.65 <.001 -0.40 -0.22 -0.59 

νword, nonassociated 1.84 0.44  2.14 0.55 -7.64 <.001 -0.38 -0.22 -0.67 

νtotal 4.27 0.82  4.82 0.96 -9.64 <.001 -0.67 -0.44 -0.85 

νbias -0.22 0.46  -0.16 0.53 -1.13 .26 -0.16 0.04 -0.10 

t0 non-word, associated 0.559 0.059  0.536 0.052 4.94 <.001 0.014 0.032 0.44 

t0 non-word, nonassociated 0.560 0.059  0.540 0.048 4.08 <.001 0.010 0.029 0.36 

t0 word, associated 0.526 0.041  0.511 0.041 4.35 <.001 0.008 0.021 0.38 

t0 word, nonassociated 0.529 0.043  0.514 0.042 4.27 <.001 0.008 0.021 0.38 

zr 0.56 0.06  0.54 0.06 3.01 <.01 0.01 0.03 0.27 

st0 0.14 0.08  0.12 0.06 3.26 <.01 0.01 0.03 0.29 

mean RT 844.64 107.08  761.41 86.69 15.88 <.001 72.46 94.00 1.35 

accuracy 93.41 4.19  93.38 4.99 -0.62 .54 -0.42 0.48 0.01 

Note. Results are based on parameter estimation with ML. In fast-dm the diffusion coefficient is set to 1. Multiply a, ν and zr 
by 0.1 to compare parameter ranges with those in studies with constant 0.1. CI confidence interval; LL lower limit; UL upper 
limit. νtotal = 0.5 × ((vword, associated + vword, nonassociated) - (vnon-word, associated + vnon-word, nonassociated)) and νbias = 0.5 × ((vword, associated + 
vword, nonassociated) + (vnon-word, associated + vnon-word, nonassociated)). t test for mean RT (accuracy rate) is based on logarithmized 
(arcsine-transformed) values, but M, SD, 95 %-CI and Cohen’s dz are based on the untransformed values.  
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Table 5 
Means, standard deviations and intercorrelations of parameters used for the simulation of data sets 

   Lexical decision task 

 

 M 
(SD) 

1 2 3 4 5 6 7 8 

R
ec

o
g

n
it

io
n
 m

em
o

ry
 t

as
k
 

M (SD) – 
1.42 

(0.32) 
-4.01 
(1.13) 

3.10 
(1.11) 

0.48 
(0.04) 

0.53 
(0.06) 

0.15 
(0.05) 

1.34 
(0.64) 

0.37 
(0.25) 

1. a 
1.60 

(0.36) 
– -.15 .16 .15 .11 -.14 .33 -.04 

2. ν0 
-3.07 
(1.14) 

-.17 – -.85 -.22 .00 .34 -.85 -.48 

3. ν1 
2.44 

(1.20) 
.39 -.59 – .08 -.18 -.36 .80 .58 

4. t0 
0.61 

(0.05) 
-.13 .04 -.16 – -.09 .00 .30 .19 

5. zr 
0.55 

(0.08) 
.17 -.26 -.01 -.05 – -.08 -.13 -.28 

6. st0 
0.17 

(0.08) 
-.38 -.05 -.21 .64 -.10 – -.31 -.18 

7. sν 
1.41 

(0.83) 
.15 -.72 .32 .17 .17 .25 – .49 

8. szr 
0.15 

(0.22) 
-.08 -.14 .09 .09 -.45 .09 .14 – 

Note. The values are based on the first session and an estimation of the 7-parameter model with ML (with exclusion of one 
participant due to a significant Mahalanobis distance computed based on all parameters). Values for the lexical decision task 
are presented above and for the recognition memory task below the diagonal. Words and old pictures were associated with 
the upper (ν1) and non-words and new pictures with the lower threshold (ν0). Multiply a, ν, zr, sν, and szr by 0.1 to compare 
parameter ranges with those in studies with constant 0.1. 
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Table 6 
Across-session and within-session reliability coefficients 

 a νtotal t0 zr 

 Lexical decision task 

Across-session .77 .82 .49 .44 

Within-session     

Session 1 .84 .82 .71 .52 

Session 2 .74 .78 .77 .61 

 Recognition memory task 

Across-session .53 .69 .44 .38 

Within-session     

Session 1 .65 .71 .59 .53 

Session 2 .67 .73 .65 .42 

 Associative Priming Task 

Across-session .74 .69 .56 .33 

Within-session     

Session 1 .81 .76 .70 .34 

Session 2 .82 .80 .79 .48 

Note. Results are based on parameter estimation with ML. N = 104 for the first session and N = 103 for the second session in 
Study 1, N = 128 in Study 2. The number of trials is 200 for the lexical decision task and associative priming task and 100 
for the recognition memory task. 
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Figure 1. Example of a decision process according to the Ratcliff Diffusion Model. The process starts at z, moves with drift 

v and ends at the upper threshold (associated with Response 1).
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Figure 2. Retest reliability of the diffusion model parameters depending on the task and the method and retest reliability of 
logarithmized mean RT of correct responses and of arcsine-transformed accuracy rate. For the drift rates the index 0 (1) is 
used for non-words (words) in the lexical decision task and associative priming task and new (old) pictures in the recognition 
memory task. In the associative priming task, the index a (na) refers to associated (nonassociated) prime-target pairs and the 
index “priming” refers to the difference between associated and nonassociated prime-target pairs. Reliability coefficients are 
based on 400 trials for the lexical decision task and associative priming task and 200 trials for the recognition memory task. 
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Figure 3. Mean retest reliability (over three of the main parameters of the Ratcliff Diffusion Model: a, νtotal, t0) for empiric 
data of Study 1 and simulated data sets, depending on the task, method and number of trials and—for the simulated data 
sets—the presence and type of contamination (no/fast/slow contamination).
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Figure 4. Mean retest reliability (over three of the main parameters of the Ratcliff Diffusion Model: a, νtotal and t0) for 
empiric data sets of Study 2, depending on the method and number of trials (top row) and retest reliability of mean RT and 
accuracy rate depending on the number of trials (bottom row).



Guidelines on Parameter Estimation in Diffusion Modeling A 4-46 

 

 

Figure 5. Retest reliability of mean RT and accuracy rate for empiric data of Study 1 and simulated data sets, depending on 
the task and number of trials and—for the simulated data sets—the presence and type of contamination (no/fast/slow 
contamination).
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Figure 6. Retest reliability of the four main diffusion model parameters for empiric data sets of Study 1 and simulated data 
sets, depending on the task and number of trials and—for the simulated data sets—the presence and type of contamination 
(no/fast/slow contamination). The parameters were estimated with ML.
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Figure 7. Boxplots of the differences between estimated and true parameters values of the LDT simulation study, depending 
on the type of contamination, the parameter and method. Based on data from Session 1 and on the first 200 trials of the task. 
Boxplots show the first, second and third quartile. Outliers are any values greater than 1.5 times the interquartile range from 
either end of the box. For better comparability of parameters, we report ν (= νtotal × 0.5) and we weighted the differences 
between estimated and true parameter values against parameter accuracies reported in Lerche et al. (2015). Outliers 
exceeding a weighted difference of ± 40 are not depicted.  
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Figure 8. Boxplots of the differences between estimated and true parameters values of the RMT simulation study, depending 
on the type of contamination, the parameter and method. Based on data from Session 1. Boxplots show the first, second and 
third quartile. Outliers are any values greater than 1.5 times the interquartile range from either end of the box. For better 
comparability of parameters, we report ν (= νtotal × 0.5) and we weighted the differences between estimated and true 
parameter values against parameter accuracies reported in Lerche et al. (2015). Outliers exceeding a weighted difference of ± 
40 are not depicted.  
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Figure 9. Boxplots of the differences between estimated and true parameters values of the LDT simulation study, depending 
on the parameter, method and number of trials. Based on data from Session 1 and the condition with no contaminants. 
Boxplots show the first, second and third quartile. Outliers are any values greater than 1.5 times the interquartile range from 
either end of the box. For better comparability of parameters, we report ν (= νtotal × 0.5) and we weighted the differences 
between estimated and true parameter values against parameter accuracies reported in Lerche et al. (2015). Outliers 
exceeding a weighted difference of ± 40 are not depicted.  
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ABSTRACT 

The diffusion model (Ratcliff, 1978) takes into account the reaction time distributions of both 

correct and erroneous responses from binary decision tasks. This high degree of information 

usage allows the estimation of different parameters mapping cognitive components such as 

speed of information accumulation or decision bias. For three of the four main parameters 

(drift rate, starting point and non-decision time) trial-to-trial variability is allowed. We 

investigated the influence of these variability parameters both drawing on simulation studies 

and on data from an empirical test-retest study using different optimization criteria and 

different trial numbers. Our results suggest that less complex models (fixing intertrial 

variabilities of the drift rate and the starting point at zero) can improve the estimation of the 

psychologically most interesting parameters (drift rate, threshold separation, starting point 

and non-decision time). 

 

Keywords: diffusion model, fast-dm, parameter estimation, mathematical models, reaction 

time methods
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Model Complexity in Diffusion Modeling: Benefits of Making the Model More 

Parsimonious 

The diffusion model (Ratcliff, 1978) is a popular mathematical model that recently attracted 

the attention of researchers of diverse fields of psychology (see Voss, Nagler, & Lerche, 

2013, for a recent review; see for example Brown & Heathcote, 2008, for another popular 

sequential sampling model). The model provides information about the cognitive processes 

underlying binary decision tasks. This becomes possible because the diffusion model 

parameters validly map specific latent cognitive processes (e.g., speed of information 

accumulation, decision bias). Despite the increased popularity of the diffusion model, there is 

a lack of research investigating how different model specifications influence the quality of 

the parameter estimation (see Lerche, Voss, & Nagler, 2016, for an exception). In particular, 

little to no information is available on the costs and benefits of model complexity. While the 

basic diffusion model (Ratcliff, 1978) comprises only four parameters, Ratcliff and Rouder 

(1998) and Ratcliff and Tuerlinckx (2002) suggested that it may be necessary to allow for 

intertrial variability of parameter values, because psychological processes (such as 

expectations or attention) will shift from trial to trial. This led to the inclusion of three so-

called intertrial variability parameters. 

Since then, these additional parameters have been estimated in almost all published 

diffusion model studies (e.g., Allen, Lien, Ruthruff, & Voss, 2014; Ratcliff, Thapar, & 

McKoon, 2004; Spaniol, Voss, & Grady, 2008; van Ravenzwaaij, Boekel, Forstmann, 

Ratcliff, & Wagenmakers, 2014; Yap, Balota, Sibley, & Ratcliff, 2012), even if trial numbers 

were small to moderate (e.g., Metin et al., 2013). This might be problematic, because in this 

case the parameter estimation might become unstable. 

The aim of the present article is to compare the performance of more parsimonious 

with more complex models. In doing so, we do not question the theoretic rationale of the 

intertrial variabilities. We are aware that in all applications there will be fluctuations in 

psychological processes. Nonetheless, we argue that sometimes the available data might not 

suffice to get reliable estimates for the full diffusion model. Thus, neglecting these 

fluctuations might lead to more accurate and stable results. 

In the following sections, we first give a short introduction to the diffusion model. 

Then, we elaborate on necessary choices regarding estimation procedures and model 

specifications. Finally, we present data from a simulation study (Study 1) and from a test-

retest study (Study 2). 
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Parameters of the diffusion model 

The diffusion model can be applied to binary decision tasks (e.g., lexical decision tasks 

[LDTs], or perceptual tasks such as color discrimination). One central supposition is that 

information is accumulated continuously and that this accumulation process ends as soon as 

one of two thresholds is reached. Each threshold is associated with one of the two responses 

of the binary task (or, alternatively, with correct vs. erroneous responses). Figure 1 shows an 

example of such a decision process. 

The four parameters of the basic diffusion model are the (1) drift rate (ν), (2) threshold 

separation (a), (3) starting point (z), and (4) non-decision time (t0). The drift rate ν informs 

about the speed and direction of information accumulation. Positive (negative) drift rates 

indicate an average slope of information accumulation toward the upper (lower) threshold. 

The absolute value of the drift rate is a measure of the speed of information uptake with 

higher values indicating faster accumulation. The drift rate can be interpreted as a measure of 

subjective task difficulty: (absolute) drift rates will be higher for easier tasks. The diffusion 

model assumes that information uptake is a stochastic (i.e., noisy) process. Thus, the process 

does not necessarily end at the same time or at the same threshold, even if the same 

information is available.  

The threshold separation (a) represents the chosen response criterion. Higher 

distances go along with longer information uptake and fewer erroneous responses. While in 

Figure 1 the process is assumed to start in the center between the two thresholds, it might also 

start at a position closer to the upper or lower threshold. If the starting point z (or, zr = z/a) is 

located closer to one of two thresholds, less evidence needs to be accumulated before the 

participant decides for this option.  

Finally, to the time taken by the decision process (illustrated in Figure 1) adds the 

non-decision time t0. It includes the duration of all processes that take place before (e.g., 

encoding of information) and after (e.g., motoric response execution) the decisional process. 

In most diffusion model studies one or more of these four parameters are in the focus of the 

research questions. Importantly, in several validation studies it was demonstrated that these 

parameters are sensitive to specific experimental manipulations, which supports the 

parameters’ validity (e.g., Arnold, Bröder, & Bayen, 2015; Voss, Rothermund, & Voss, 2004; 

Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). 

Ratcliff and Rouder (1998) suggest the inclusion of intertrial variabilities for two 

parameters, namely for the drift rate (sν) and the starting point (szr) (see also Laming, 1968, 

for an earlier account on intertrial variability). An important advantage of including these 
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intertrial variability parameters in the model is that they provide an explanation for 

differences in speed of correct responses and errors. Specifically, if the drift rate varies from 

trial to trial, the model predicts slower errors than correct responses. Imagine trials with a 

drift rate that is higher than the average drift rate. In this case, all responses (including errors) 

are fast while the error rate is low. A drift rate that is lower than the average, on the other 

hand, results in a higher percentage of errors which are slow. Thus, the intertrial variability of 

the drift causes the majority of errors to be slow. A pattern of faster errors than correct 

responses can be explained by intertrial variability of the starting point. A starting point that 

is close to the lower (error) threshold increases the number of errors and decreases the 

decision time for those. If, on the other hand, the starting point is closer to the upper threshold 

(associated with correct responses), errors are slow but rare. 

Later, a third variability parameter was included into the model: the intertrial 

variability of the non-decision time (st0; Ratcliff & Tuerlinckx, 2002). A high intertrial 

variability of non-decision time accounts for a higher number of fast responses (i.e., the skew 

of the predicted RT distribution is reduced). Thereby, the model might also become less 

susceptible to the impact of fast contaminants. With the three intertrial variabilities, the 

diffusion model includes seven parameters (for a model with one further parameter, see Voss, 

Voss, & Klauer, 2010). 

In most diffusion model studies intertrial variabilities are included not because they 

are important to answer a psychological research question, but rather to improve model fit 

and, possibly, to avoid a bias in the other parameters. In the present article, we test whether 

excluding the intertrial parameters derogates the estimation of the four main diffusion model 

parameters. 

Necessary choices in estimation procedures and model specifications 

In the first decades after the introduction of the diffusion model in 1978, the parameter 

estimation was restricted to researchers with sound mathematical and programming skills. 

Now, several user-friendly software solutions exist that enable any researcher to apply a 

diffusion model to their data. Amongst these programs are EZ (Grasman, Wagenmakers, & 

van der Maas, 2009; Wagenmakers, van der Maas, Dolan, & Grasman, 2008; Wagenmakers, 

van der Maas, & Grasman, 2007), DMAT (Vandekerckhove & Tuerlinckx, 2007, 2008), fast-

dm (Voss & Voss, 2007, 2008; Voss, Voss, & Lerche, 2015), and HDDM (Wiecki, Sofer, & 

Frank, 2013). Even if these programs are easy to use, they require the users to make several 

choices in terms of the parameter estimation procedure (with the exception of EZ that works 

with closed-form equations and offers fewer degrees of freedom in model definition). One 
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such choice regards the optimization criterion, another the complexity of the model (i.e., the 

number of estimated parameters). 

Optimization Criterion 

The diffusion model programs allow the choice between different optimization 

criteria. Fast-dm-30 (Voss et al., 2015), for example, allows the choice between 

Kolmogorov-Smirnov (KS), a chi-square (CS) and a maximum likelihood (ML) based 

criterion. These criteria differ in the degree of usage of information with CS taking account of 

the least amount of information (RTs are grouped into bins) and ML using data from each 

single trial. On a continuum of information usage, with CS at the one end and ML at the 

other, KS can be positioned somewhere in between (see Voss et al., 2015, for a more detailed 

comparison of these three criteria). Related to information usage is the performance in 

parameter recovery. As a row of simulation studies by Lerche et al. (2016) shows, ML 

performs best, followed by KS and CS. The high efficiency of ML, however, comes with a 

cost: in the presence of fast contaminants (i.e., data not resulting from a diffusion process 

with the RTs situated at the lower tail of the distribution), the estimates obtained with ML are 

often severely biased. KS, on the other hand, turned out to be the least influenced by these 

contaminants. 

Model Complexity 

Most diffusion model programs allow an estimation of all seven parameters of the 

diffusion model. Furthermore, they also offer the possibility of fixing one or more of the 

parameters to a constant value, thereby specifying less complex models. As already 

mentioned, the intertrial variabilities are usually estimated not due to the theoretical interest 

in these parameters (see Ratcliff, 2008; Starns & Ratcliff, 2012, for an exception), but to 

avoid a biased estimation of the basic diffusion model parameters.  

However, several simulation studies show that these parameters (especially, the 

variability of drift rate and starting point) are estimated less accurately than the other 

parameters (e.g., Lerche et al., 2016; van Ravenzwaaij & Oberauer, 2009; Vandekerckhove & 

Tuerlinckx, 2007). This raises the question of whether the inclusion of intertrial variability 

parameters really improves the estimation of the other parameters. Based on such findings, in 

some recent studies the intertrial variabilities have been deliberately fixed. For example, 

Germar, Schlemmer, Krug, Voss, and Mojzisch (2014) fixed all three intertrial variabilities at 

zero (see also Ratcliff & Childers, 2015). Note that also in earlier work the intertrial 

variabilities have sometimes been fixed at zero, because the application of the EZ method 

does not allow to include these parameters (e.g., Dutilh, Forstmann, Vandekerckhove, & 
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Wagenmakers, 2013; Grasman et al., 2009; Schmiedek, Oberauer, Wilhelm, Süß, & 

Wittmann, 2007; van Ravenzwaaij, Dutilh, & Wagenmakers, 2012; Wagenmakers, van der 

Maas, et al., 2008; Wagenmakers et al., 2007). 

Whereas Ratcliff and Rouder (1998) and Ratcliff and Tuerlinckx (2002), who argued 

for the inclusion of intertrial variabilities, typically used very high trial numbers (at least 

1,000 trials per participant), more recently the model has also been applied to data sets with 

significantly smaller trial numbers (e.g., with only 100, see Metin et al., 2013). This raises the 

question of whether small data sets provide enough information to estimate the full (seven-

parameter) model. Lerche et al. (2016) systematically investigated the number of trials that 

allow for a precise estimation of the diffusion model parameters. They simulated data sets 

both on the basis of a seven-parameter model (i.e., with the assumption of intertrial 

variabilities) and on the basis of more restricted models. For example, in a four-parameter 

model the three intertrial variabilities were fixed at zero both for the generation of data and 

for the reestimation of parameters. The comparison of these models revealed that—as 

expected—for more complex models higher trial numbers are required. Besides, as Lerche et 

al. (2016) show, the required number of trials also depends on the used optimization criterion. 

The authors found that the three optimization criteria KS, ML and CS perform equally well 

for very high trial numbers. However, for small and moderate trial numbers, accuracy of 

estimates from CS based parameter search was inacceptable. 

The findings by Lerche et al. (2016) raise the issue of whether less complex models 

(i.e., models with fixations) also perform better when the true (data generating) model is 

more complex (i.e., includes variabilities). A study by van Ravenzwaaij, Donkin, and 

Vandekerckhove (in press) speaks in favor of this hypothesis. The authors compared the 

performance of EZ (Wagenmakers et al., 2007) with the performance of a diffusion model 

estimation including all three intertrial variability parameters (using Quantile Maximum 

Proportion Estimation, see Heathcote, Brown, & Mewhort, 2002). Interestingly, the power of 

between-group difference detection for both drift rate and threshold separation was higher for 

EZ than for the more complex model even if there were substantial intertrial variabilities in 

the data generating models. Thus, it seems that simpler models can outperform more complex 

models. 

We further tackled this question in two studies, a simulation study (Study 1) and a 

test-retest study (Study 2). In Study 1, the performance of the estimation procedure is 

measured by deviations and correlations between the true and the recovered parameter 
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values. In Study 2, the estimation performance is assessed by means of the correlations 

between the parameters of two different sessions. 

Study 1: Simulation study 

Study 1 is a simulation study in which we reanalyzed data sets of the seven-parameter model 

from Lerche et al. (2016). 

Method 

 Lerche et al. (2016) simulated data sets with different numbers of trials and 

reestimated parameters in order to deduce guidelines on requisite trial numbers. In Study 1, 

we reanalyzed a part of their data sets, namely the data sets that were created on the basis of 

the seven-parameter model (i.e., the model that includes intertrial variabilities and a bias in 

the starting point; see also Table 1). Here, we only briefly present their study design with a 

focus on the differences between the two studies. Please refer to Lerche et al. (2016) for more 

details on their simulation procedure. 

The authors constructed data sets for two different experimental designs: a one-drift 

design and a two-drift design. Whereas the one-drift design simulates choices between two 

stimuli with the same absolute drift rate value, in the two-drift design the drift rate for one 

stimulus is larger than for the other stimulus (dz = 0.35). Accordingly, in the one-drift design, 

only one drift rate was estimated. In the two-drift design, two drift rates (with opposite signs) 

were estimated simultaneously. One-thousand different parameter sets with random 

parameter values were used for each experimental design. For each parameter set seven data 

sets were created, using construct-samples1, with different trial numbers (24—48—100—

200—500—1,000—5,000). Then, 4 % of the simulated trials were randomly selected and 

substituted for by either fast or slow contaminants, resulting in three contamination 

conditions (no contaminants—fast contaminants—slow contaminants). More specifically, in 

the condition with fast contaminants, the responses of the contaminant trials were set by 

chance to 0 or 1 (simulating guesses) and the simulated RTs from these trials were substituted 

for by RTs situated at the lower edge of the original distribution (range: tmin – 100 msec to tmin 

+ 100 msec, with tmin = t0 – st0/2). In the condition with slow contaminants, only the response 

times were replaced, using values lying 1.5 - 5 interquartile ranges above the third quartile of 

the original RT distribution. 

                                                           
1 Construct-samples is part of fast-dm and offers the possibility of constructing data sets based on a diffusion 

process. 
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For each condition (stimulus design × trial number × contamination condition), 

Lerche et al. (2016) reestimated all seven parameters and compared them with their true 

values (in the remainder of this article termed “seven-parameter model”). In the present 

study, we additionally use more parsimonious models for parameter estimation. In particular, 

in the “five-parameter model”, two of the intertrial variabilities (sν and szr) were fixed at zero 

(i.e., we assumed that these two parameters do not vary from trial to trial). We fixed these 

two intertrial variabilities, because several studies have shown that they are recovered poorly 

(e.g., van Ravenzwaaij & Oberauer, 2009). The intertrial variability of the non-decision time, 

on the other hand, is estimated better and could counteract the negative influence of fast 

contaminants. Thus, this parameter was kept in the model even if it is psychologically less 

interesting than the main diffusion model parameters (a, ν, t0, zr). Furthermore, we used a 

“four-parameter model” (i.e., the “basic” model) with additional fixation of the intertrial 

variability of the non-decision time (i.e., st0 = 0). Note that these fixations are always false 

assumptions (“false fixations”), since the data generating model included all three intertrial 

variabilities. Finally, we estimated a “three-parameter model” in which we additionally fixed 

the starting point to the center between the two thresholds (i.e., zr = .5). For the parameter 

estimation, we used fast-dm-30 (Voss et al., 2015) and estimated the parameters with each of 

the three implemented optimization criteria (i.e., KS, ML and CS). 

Our evaluation criteria are similar to those by Lerche et al. (2016): We analyzed (1) 

correlations between the true and the reestimated parameter values, (2) biases (i.e., deviations 

between the true and the reestimated parameter values) and (3) estimation precision (i.e., 

squared deviations between the true and the reestimated parameter values). For criterion 1 

and criterion 3 we additionally computed an average measure across parameters. Specifically, 

for criterion 1, we calculated the mean correlation over the four main diffusion model 

parameters using Fisher’s Z-transformation.2 The mean estimation precision was calculated 

on the basis of the formula stated below. Most importantly, differences between the estimated 

and the true parameter values were computed and weighted against the best possible accuracy 

that can be reached by each parameter. In contrast to Lerche et al. (2016), we computed the 

mean based on only the four basic diffusion model parameters (i.e., a, ν, t0 and zr).
 2, 3 

                                                           
2 In the three-parameter model, the mean was based on a, ν and t0. In the two-drift design, first the mean for the 

criterion performance of the two drift rates was calculated. 
3 “Best possible accuracies“ of the main diffusion model parameters: a – 0.054; ν – 0.270; t0 – 0.032; zr – 0.035. 

These values are based on an optimal condition of parameter estimation (5,000 trials, no contaminants, ML 

estimation; for more details, please refer to Lerche et al., 2016). 
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݊݋�ݏ���ݎ݌ ݊݋�ݐ�݉�ݐݏ� ݊��݉ =  14 ∙ ∑ [ estimated�  −  true�best possible accuracy�]ଶ4
k=ଵ  

If the interest of the researcher lies in relationships between the diffusion model 

parameters and external criteria, the correlation criterion is of most relevance. A disadvantage 

of correlation coefficients is that they can mask possible biases in parameter estimation (e.g., 

if a parameter is systematically over- or underestimated, still high correlation coefficients 

result). The bias criterion tackles such systematical deviations in parameter estimation. 

Finally, the estimation precision criterion is the strictest criterion, since it takes into account 

any inaccuracy in parameter estimation. This criterion is of relevance if the diffusion model 

parameters are to be used as diagnostic measures. Such a potential future use of diffusion 

model parameters requires very accurate parameter estimates. 

 

Results 

In Figure 2, results are presented for the one-drift design for uncontaminated data. 

Figure 3 and Figure 4 show results for the conditions of slow and fast contaminants, 

respectively. In the left column, the 95 % quantiles of the mean estimation precision 

(criterion 3) are shown (thus, for most data sets, the mean estimation precision is smaller than 

the values from the figure). In the right column, mean correlation coefficients (criterion 1) are 

depicted. Results are presented as a function of number of trials, optimization criterion and 

model complexity.4 Additionally, Table 2 (for the one-drift design) and Table 3 (for the two-

drift design) sum up which model (model with 3, 4, 5, or 7 parameters) shows the best 

performance in terms of the correlations (first value), the mean bias across data sets (second 

value) and the 95 % quantiles of estimation precision (third value) depending on the 

optimization criterion (KS/ML/CS), type of contamination (none/fast/slow) and number of 

trials. Note that in some conditions, several models manifest almost identical performance 

                                                           

4
 Surprisingly, in some conditions, the estimation precision of KS decreased from 1,000 to 5,000 trials. This 

effect is based on a few models with very bad fit that strongly influence the reported 95 % quantiles. If medians 

are examined instead of the 95 % quantiles, the estimation precision—as expected—augments from 1,000 to 

5,000 trials, or decreases only marginally. The KS-based search is more prone to get stuck in local minima for 

larger data sets. Artificial local minima can arise when calculation precision is too low. Exemplarily, we 

selected the ten data sets that showed the worst performance in the condition with 5,000 trials in the one-drift 

model with no contaminants. We then reestimated parameters for these data sets with the seven-parameter 

model with increased precision of calculation (the fast-dm precision criterion was increased from 3 to 4). This 

improved parameter estimation notably for the condition with 5,000 trials. More specifically, the mean across 

these ten data sets dropped to less than half, whereas there was less improvement for the condition with 1,000 

trials. Accordingly, for higher trial numbers, we recommend using higher precision settings in fast-dm. 
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and that in these tables no information on the size of the differences between the models is 

given. 

One main finding is that in most conditions the seven-parameter model does not 

provide the most accurate or unbiased estimates, although this is the true model. For ML, the 

pattern is quite consistent: in most cases, the five-parameter model reveals the best results. 

For CS, the findings are similar: The five-parameter model shows the best performance. In 

contrast to the results from ML, the CS procedure more often gets best results from the full 

seven-parameter model, even for smaller trial numbers. Note, however, that for small trial 

numbers the performance of CS is generally so poor for all models that results cannot be 

reasonably interpreted. Therefore, we generally do not recommend using CS for small trial 

numbers (see also Lerche et al., 2016). For KS more often than for ML and CS, models less 

complex than the five-parameter model (i.e., the three- or four-parameter models) bring forth 

the best results. Furthermore, here, more often than for ML and CS, the seven-parameter 

model performs best. A comparison of the different parameters reveals that for a and t0 the 

five-parameter model and for v and zr the four-parameter model result in the best recovery. 

Discussion 

Study 1 demonstrates that even if the three parameters a, v and t0 vary from trial to 

trial (and the starting point is not situated centrally), the seven-parameter model does not 

always provide the most accurate results.  

For data sets with fast contaminants, Lerche et al. (2016) (focusing on the mean 

precision criterion) showed that a KS based parameter search generally recovers parameters 

better than ML and CS. Interestingly, in the present analyses, ML and CS show a good 

performance for data contaminated by fast contaminants, if the five-parameter model is used 

(see Figure 4). Thus, the inclusion of the intertrial variability of t0 seems to help to counteract 

the negative influence of fast contaminants. For KS, on the other hand, a similarly good 

performance is found for all applied models.  

To test the stability of our results, we conducted additional analyses in which the 

parameter search started with other initial values for the intertrial variabilities. The default 

initial values of the intertrial variabilities incorporated in fast-dm are the following: sν = 0.5; 

szr = 0.3; st0 = 0.2. In one of the additional estimation series, we set all three intertrial 

variabilities to zero. In another, we set them to the maximum values used for simulation of 

data sets (see Table 1). Finally, in a third series of parameter estimation, we set them to half 

of the maximum values. The main results are very similar for all series of analyses in that the 

seven-parameter model is mostly outperformed by less complex models. 
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A caveat of our simulation study is that we made assumptions about the proportion 

and type of contamination that might not accurately reflect the contamination of real data. We 

are also not sure about the true range of intertrial variabilities in empirical studies. Another 

way to analyze the performance of different estimation procedures is provided by a test-retest 

study. 

Study 2: Test-retest study 

The main aim of Study 2 was to test whether the conclusions from Study 1 also hold for 

empirical data. For this purpose, we reanalyzed data from a test-retest study by Lerche and 

Voss (2016). 

Method 

In Study 1 of Lerche and Voss (2016), 105 participants worked at two sessions—

separated by one week—on an Lexical Decision Task (LDT) and a Recognition Memory 

Task (with pictures as stimuli; RMT). As in Study 1 we used fast-dm-30 and fitted the model 

using KS, ML, and CS procedures. We also compared the four models differing in 

complexity as introduced in Study 1. One response (“words” in the LDT and “old pictures” in 

the RMT) was assigned to the upper threshold, the other response (“non-words” and “new 

pictures”) to the lower threshold. In each model, we estimated two drift rates (for the 

different stimulus types). Both drift rates were then combined to an overall measure of speed 

of information accumulation, termed νtotal by computing the difference between the drift for 

words (old pictures) and for non-words (new pictures). 

For each of the basic diffusion model parameters (a, νtotal, t0 and zr) the Pearson 

correlation between the two sessions was calculated.5 To make results more accessible, as in 

Study 1, the mean over these four coefficients (without zr in the three-parameter model) was 

computed using Fisher’s Z-transformation (in the remainder of this article termed “mean 

retest reliability”). Retest correlation coefficients were computed not only for parameters 

estimated from the actual data (i.e., 200 trials from the RMT, and 400 trials from the LDT), 

but also for parameters estimated from subsets of data with smaller trial numbers 

(specifically, for the first 32, 48, 100 and 200 trials of each participant). 

Additionally, we wanted to test whether our main findings from Study 1 hold for a 

different strategy of data simulation. The parameter sets by Lerche et al. (2016) were created 

using uniform distributions across value ranges typically observed in previous diffusion 

                                                           
5 Prior to the correlational analyses, we identified bivariate outliers with the Mahalanobis distance (D2) and 

excluded participants with extremely high values (p < .001) from the respective analysis (resulting in at most 4 

excluded participants). 
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model studies (only for the drift rates in the two-drift design a multivariate normal 

distribution was used). Lerche and Voss (2016), on the other hand, based their random 

parameter sets on multivariate normal distributions defined by the means, standard deviations 

and correlations of parameter estimates from the data of the LDT and RMT (Table 1). 

Importantly, as in the simulation study by Lerche et al. (2016), there were substantial 

intertrial variabilities. Data sets were created using different trial numbers (32—48—100—

200—400—1,000—5,000) and assuming equal parameter sets for both sessions (i.e., no state 

influences). This allows an estimation of the maximum retest reliability coefficients. Again, 

in contrast to Lerche and Voss (2016), we estimated parameters using models with different 

complexity. 

Results 

In Figure 5, the retest reliabilities are presented for the four main diffusion model 

parameters for both LDT and RMT as a function of model complexity (estimations are based 

on the complete data, i.e., 400 and 200 trials for LDT and RMT, respectively). Again, 

applying the full seven-parameter model does not result in the highest correlations; retest-

reliability is higher for less complex models. Whereas for non-decision time and starting 

point retest reliabilities for all models are similar, there are larger differences for drift rate and 

threshold separation. Notable is the poor estimation of drift rates from the seven-parameter 

model for estimations based on ML or CS. For ML and CS, the five-parameter shows the best 

performance, whereas for KS, the even more restricted four-parameter model mostly 

outperforms the other models. Figure 6 shows the influence of the number of trials on retest 

reliability. Mean reliability coefficients are shown both for the empirical data sets (depicted 

in black) and the data sets that were simulated on the basis of the parameter ranges observed 

in the empirical data (depicted in grey). Most importantly, for neither the empirical nor the 

simulated data does the seven-parameter model show the highest retest correlations. It is 

noteworthy that for CS and ML, even in the condition with 1,000 trials, the seven-parameter 

model be still worse than the other models.6 

Discussion 

The main findings from Study 2 are in line with those from Study 1 in that the seven-

parameter model does not always show the best performance (here, in terms of the test-retest 

correlation coefficients). In fact, it is mostly outperformed by less complex models such as 

                                                           
6 Note that we also analyzed the Associative Priming Task presented in Lerche and Voss (2016; Study 2) using 

models with different complexity. We found very similar results in that the seven-parameter model did not show 

the highest retest reliabilities. 
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the five-parameter model. In the simulation study—which was based on the multivariate 

distributions of estimated parameters—a similar pattern emerged. This suggests that the main 

findings do not depend on the particular simulation strategy of Study 1. 

Interestingly, using the CS or ML criterion, only at 5,000 trials does the seven-

parameter model catch up with the more restricted models. Note that sometimes CS has been 

used for data sets with such high trial numbers. In these studies, the use of a seven-parameter 

model is justified. Our results, however, suggest that it would be equally effective to use a 

more restricted model. In addition, it would be more efficient, since the time needed for 

parameter estimation is prolonged when models with intertrial variabilities are estimated. For 

smaller trial numbers, on the other hand, the use of the seven-parameter model can lead to 

worse parameter estimates than the use of more restricted models. 

 

General discussion 

In recent years, an increase in the number of researchers interested in the diffusion model and 

a higher variability regarding the addressed research topics and experimental designs is 

evident. For example, while in the past the diffusion model has almost exclusively been used 

for data sets with very large trial numbers (even > 1,000; e.g., Leite & Ratcliff, 2011; 

Ratcliff, Thapar, Gomez, & McKoon, 2004; Wagenmakers, Ratcliff, et al., 2008), more 

recently, it has also often been employed for studies with small to moderate trial numbers 

(e.g., Arnold et al., 2015; Boywitt & Rummel, 2012; Karalunas & Huang-Pollock, 2013; 

Karalunas, Huang-Pollock, & Nigg, 2012; Klauer, Voss, Schmitz, & Teige-Mocigemba, 

2007; Metin et al., 2013; Pe, Vandekerckhove, & Kuppens, 2013).  

Usually, complex models (i.e., with all seven distinct diffusion model parameters and, 

additionally, parameters varying between several conditions) are used. This has been done 

even if the number of trials is essentially smaller (e.g., 100 trials, see Metin et al., 2013) than 

in the studies that originally argued for the inclusion of intertrial variabilities (Ratcliff & 

Rouder, 1998; Ratcliff & Tuerlinckx, 2002). Especially for small to moderate trial numbers, 

the choices of model complexity and of optimization criteria for parameter estimation are 

crucial. Therefore a systematic comparison of different estimation procedures and a spreading 

of this knowledge is important in order to support a reasonable use of the diffusion model. 

With the studies reported here we make a step in this direction. 

With two diverse approaches, we analyzed the influence of the model complexity on 

the accuracy of parameter estimation. We were particularly interested in the influence of the 

intertrial variabilities (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002) that have 



Guidelines on Parameter Estimation in Diffusion Modeling  A 5-16 

proven to be more difficult to estimate than the other diffusion model parameters (e.g., van 

Ravenzwaaij & Oberauer, 2009). In Study 1, we reanalyzed data sets from a simulation study 

by Lerche et al. (2016). The data sets were created assuming the presence of intertrial 

variabilities and a starting point of the diffusion process that was allowed to differ from the 

center between the thresholds. In Study 2, data from a test-retest study and a further 

simulation study by Lerche and Voss (2016) were analyzed. While in Study 1 deviations and 

correlations between the true and the recovered parameter values served as the performance 

measures, in Study 2 we examined the retest reliability coefficients. In both studies, the 

parameters were estimated using differently complex models. 

Our results for both the simulated and the empirical data sets indicate that the most 

complex model (the “full” model comprising all seven parameters) is often not the best 

choice. A five-parameter model (with fixation of sν and szr to zero) generally provides 

accurate estimates, especially when the maximum likelihood (ML) or the chi-square (CS) 

criterion is applied. For ML and CS, an additional fixation of st0 is not advisable, since these 

two criteria are sensitive to the presence of fast contaminants (see also Lerche et al., 2016) 

and st0 helps to counteract the negative influence of this type of contamination. Thus, keeping 

st0 in the model can help to reach better estimation of the psychologically most interesting 

parameters (a, ν, t0 and zr). For Kolmogorov-Smirnov (KS)—a criterion that is generally less 

sensitive to fast contaminants—the even less complex four-parameter model (i.e., the basic 

diffusion model with all intertrial variabilities fixed at zero) often provides the most accurate 

results. 

Note that our results are in line with recent findings by van Ravenzwaaij et al. (in 

press). In their study, a model with fixed intertrial variabilities had a higher power to detect 

differences between conditions than a model including intertrial variabilities. Specifically, 

results from the EZ approach (Wagenmakers et al., 2007)—which fixes the starting point at 

the center between the two thresholds and the intertrial variabilities at zero—were compared 

to the application of a full diffusion model analysis. Even if the data were generated based on 

a full diffusion model, EZ outperformed the full diffusion model both for detection of drift 

rate and threshold separation differences. For non-decision time, the efficiency of both 

procedures was similar.  

For future research, it would be interesting to analyze further experimental paradigms 

using test-retest studies. Besides, one could use different fixation strategies (e.g., instead of 

fixation at zero, the intertrial variabilities could be fixed at values typically observed in 

previous studies). To sum up, our results generally speak in favor of the use of less complex 
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models. Thus, if the diffusion model is applied to get accurate estimates of cognitive 

processes (mapped by a, ν, t0, or zr), a less complex model will often supply more reliable 

estimates. In particular, it is helpful to fix the intertrial variabilities of starting point and drift 

rate (szr and sν) at zero.
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Table 1 

Parameter ranges (Study 1) and means and standard deviations (Study 2) used for generation of parameter sets 

 Study 1: ranges  Study 2: M (SD) 

parameter minimum maximum  Lexical Decision Task Recognition Memory Task 

a 0.5 2.0  1.42 (0.32) 1.60 (0.36) 

ν -4.0 4.0  - - 

ν0 -2.35 (1.0)a  -4.01 (1.13) -3.07 (1.14) 

ν1 2.00 (1.0)a  3.10 (1.11) 2.44 (1.20) 

t0 0.2 0.5  0.48 (0.04) 0.61 (0.05) 

zr 0.3 0.7  0.53 (0.06) 0.55 (0.08) 

sν 0.0 1.0  1.34 (0.64) 1.41 (0.83) 

st0 0.0 0.2  0.15 (0.05) 0.17 (0.08) 

szr 0.0 0.5  0.37 (0.25) 0.15 (0.22) 

Note. Parameter sets of Study 1/Study 2 were created on the basis of a uniform distribution/multivariate normal distribution, 

respectively. Fast-dm uses a diffusion coefficient of 1. For comparison with parameters used in studies with diffusion 

coefficient .1 multiply a, ν, zr, sν, and szr by .1. 
a The drift rates in the two-drift design were created on the basis of a multivariate normal distribution with the given means 

and standard deviations. 
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Table 2 

Model Superiority for the One-Drift Design, depending on the Type of Contamination, the Method, the Parameter and the 

Number of Trials 

   Number of Trials 

 Method Parameter 24 48 100 200 500 1,000 5,000 

n
o

n
e 

KS a 4/4/3 7/3/3 7/3/3 3/4/4 7/4/7 7/4/7 4/4/7 

 ν 3/7/3 4/7/3 4/7/4 4/7/4 4/7/4 4/7/4 4/7/4 

 t0 4/4/4 7/5/3 7/5/5 4/5/7 4/5/7 4/5/5 4/5/5 

 zr 7/4/4 4/4/4 4/4/4 7/4/4 7/4/7 7/4/7 4/4/4 

ML a 3/3/3 3/3/3 5/5/5 5/5/5 5/7/5 5/7/5 7/7/7 

 ν 4/4/3 4/5/4 4/4/4 5/4/5 5/4/5 5/4/5 7/7/7 

 t0 3/4/4 3/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/7/7 

 zr 4/7/4 5/4/4 5/5/5 5/4/5 5/4/5 5/5/5 5/7/7 

CS a 7/7/7 7/5/7 7/5/5 5/5/5 5/3/5 5/3/5 7/7/7 

 ν 3/5/5 4/5/5 5/3/5 5/4/5 5/5/5 5/7/5 7/7/7 

 t0 7/5/7 7/5/5 7/5/5 5/5/5 5/5/5 5/5/5 5/7/5 

 zr 7/7/7 7/4/7 7/4/7 5/4/5 5/4/7 5/4/5 5/4/7 

sl
o

w
 

KS a 7/5/3 7/7/3 7/4/3 5/4/7 7/4/7 7/3/7 4/3/7 

 ν 3/7/3 4/4/4 4/7/4 4/4/4 7/7/7 4/7/4 4/7/4 

 t0 7/5/7 7/5/5 4/7/7 4/7/5 7/7/7 7/7/7 5/7/7 

 zr 7/4/4 5/4/7 5/4/7 7/4/7 7/4/7 7/4/7 7/4/7 

ML a 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 

 ν 4/4/4 4/4/4 4/4/5 5/4/5 5/4/5 5/4/5 5/4/5 

 t0 7/7/7 5/7/7 5/7/7 5/7/7 5/7/5 5/7/5 5/7/5 

 zr 5/4/4 5/4/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 

CS a 7/7/7 7/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 

 ν 3/5/7 4/5/5 5/4/4 4/5/4 5/5/5 5/4/5 5/4/5 

 t0 7/5/7 7/5/7 5/5/5 5/7/5 5/7/7 5/7/5 5/7/5 

 zr 7/4/7 7/4/7 5/4/7 5/5/5 5/7/5 5/5/5 5/7/5 

fa
st

 

KS a 4/3/3 4/3/3 4/3/3 3/3/3 4/3/3 3/3/5 4/3/5 

 ν 3/7/3 4/4/4 4/7/4 4/7/4 7/7/4 4/7/4 4/7/4 

 t0 7/5/7 3/5/4 7/7/7 4/7/5 4/7/7 4/7/7 4/7/7 

 zr 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4 

ML a 3/5/3 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 

 ν 4/7/3 4/7/4 4/7/4 5/4/4 5/4/4 5/4/4 5/4/4 

 t0 4/5/4 4/5/5 5/7/5 5/7/5 5/7/5 5/7/5 5/7/5 

 zr 4/7/4 5/4/4 5/5/5 5/4/5 5/5/5 5/4/5 5/5/5 

CS a 7/5/7 7/5/5 7/5/5 5/5/3 5/5/5 5/5/5 5/5/5 

 ν 3/7/5 3/4/5 5/7/4 5/7/4 5/7/5 5/7/5 5/7/7 

 t0 7/5/7 7/5/7 5/5/5 4/5/5 5/7/5 5/7/5 5/7/5 

 zr 4/4/4 4/4/4 4/4/4 4/4/4 5/5/5 5/4/5 5/7/5 

Note. The first value is based on the correlation criterion, the second on the bias criterion, and the third on the estimation 

precision criterion. In the five-parameter model, the intertrial variabilities sν and szr are fixed at zero, in the four-parameter 

model additionally the intertrial variability st0 is fixed at zero and in the three-parameter model also the starting point zr is fixed 

(zr = 0.5). For conditions with 95 % quantiles of parameter estimation precision (weighted against the best possible accuracy) 

exceeding 25, values are depicted in grey. On the basis of data sets with at least 4 % of trials at each threshold. 
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Table 3 

Model Superiority for the Two-Drift Design, depending on the Type of Contamination, the Method, the Parameter and the 

Number of Trials 

   Number of Trials 

 Method Parameter 24 48 100 200 500 1,000 5,000 

n
o

n
e 

KS a 4/4/4  7/4/4  7/7/7  7/4/5  7/4/7 7/5/7 7/7/7 

 ν 4/3/4  4/3/4  4/5/4 7/3/4 7/3/5 5/3/5 7/7/4 

 t0 4/4/4 7/5/4 7/5/4 5/7/7 5/7/7 7/7/7 7/7/7 

 zr 7/4/4  7/4/4  7/4/4 7/7/7 7/7/7 7/7/7 7/4/7 

ML a 7/5/5  7/5/5  5/5/5  5/5/5 5/5/5 5/7/7 7/7/7 

 ν 4/4/4  4/4/4  4/5/4 5/5/5 5/5/5 5/7/5 7/7/7 

 t0 4/5/4 5/5/5 5/5/5 5/5/5 5/7/5 5/7/7 7/7/7 

 zr 4/4/4  4/7/4 5/7/4 5/5/5 5/7/5 5/5/7 7/7/7 

CS a 5/5/7  7/5/5  5/5/5  5/5/5  7/5/5 5/7/7 7/7/7 

 ν 3/4/3  3/5/3  4/5/5  5/3/5 5/5/5 5/7/5 7/7/7 

 t0 7/5/5  7/5/7 5/5/5 5/5/5 5/5/5 5/7/5 7/7/7 

 zr 4/4/4  7/7/4  7/7/4 7/7/5 7/7/7 7/4/7 7/5/7 

sl
o

w
 

KS a 4/4/4  7/7/4  7/7/4  7/4/7  5/7/7 5/7/7 5/4/7 

 ν 4/3/4  4/5/4  4/5/4 7/7/5 5/7/7 7/7/7 7/7/7 

 t0 4/4/4 7/5/5 4/7/7 7/7/7 7/7/7 7/7/7 7/7/7 

 zr 7/4/4  7/4/4  7/4/7 7/4/7 7/4/7 7/4/7 7/4/7 

ML a 4/5/5  5/5/5  7/5/5  5/5/5  5/5/5 5/5/7 5/5/7 

 ν 3/4/3  3/5/3  5/5/5 5/7/5 5/7/5 5/7/5 5/7/7 

 t0 7/5/7 7/7/7 5/7/7 5/7/7 5/7/7 5/7/7 5/7/7 

 zr 7/7/7  5/5/7  5/7/5 5/7/7 5/5/5 5/7/5 5/7/5 

CS a 7/5/4  7/5/5  5/5/5  5/5/5  5/5/5  5/5/5  5/5/4  

 ν 4/3/3  3/5/3  4/5/5  5/3/5 5/5/5 5/5/5 5/5/5 

 t0 7/5/7 7/5/7 7/5/7 5/7/7 5/7/7 7/7/7 7/7/7 

 zr 4/7/4  7/7/4  7/5/7 5/5/7 7/5/7 7/7/7 7/7/7 

fa
st

 

KS a 4/5/4  7/5/5  7/5/5  7/5/4  4/5/4 5/4/5 5/4/4 

 ν 7/5/4  7/7/4  5/7/5 7/7/7 5/7/7 5/7/7 5/7/7 

 t0 4/4/4 7/7/7 4/7/7 4/7/7 5/5/5 5/5/5 5/5/5 

 zr 4/4/4  7/7/4  5/4/4 5/7/4 5/7/5 5/7/5 7/4/7 

ML a 5/5/5  5/5/5  5/5/5  5/5/5 5/5/5 7/5/5 7/5/5 

 ν 3/5/3  4/5/4  4/5/4 4/7/5 5/7/5 5/7/7 5/7/7 

 t0 4/5/4 5/5/5 5/7/5 5/7/5 5/7/7 5/7/7 7/7/7 

 zr 4/7/4  5/4/4 7/7/4 7/4/5 5/4/5 7/4/7 7/4/7 

CS a 7/5/5  7/5/5  5/5/5  5/5/5  5/5/5 5/5/3 7/4/7 

 ν 3/3/3  3/5/3  4/4/5  5/3/5 4/7/5 7/7/7 7/7/7 

 t0 7/5/5  7/7/7 5/7/5 5/7/5 5/7/7 5/7/7 7/7/7 

 zr 4/5/4  7/5/4  7/7/7 7/4/7 7/7/7 7/7/7 7/7/7 

Note. The first value is based on the correlation criterion, the second on the bias criterion, and the third on the estimation 

precision criterion. In the five-parameter model, the intertrial variabilities sν and szr are fixed at zero, in the four-parameter 

model additionally the intertrial variability st0 is fixed at zero and in the three-parameter model also the starting point zr is fixed 

(zr = 0.5). For conditions with 95 % quantiles of parameter estimation precision (weighted against the best possible accuracy) 

exceeding 25, values are depicted in grey. On the basis of data sets with at least 4 % of trials at each threshold. 
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Figure 1. Illustration of the diffusion model with three of its four main parameters. The two thresholds that are associated 

with Response A (upper threshold; correct response in this illustration) and Response B (lower threshold; erroneous 

response) are separated by the distance a. The accumulation of information starts at starting point z, which is here centered 

between the thresholds. The mean drift rate (ν) is positive so that the upper threshold is reached more often than the lower 

threshold. In two of the three exemplary trials, the processes reach the upper threshold—resulting in one fast and one very 

slow correct response—and in one trial, the process reaches the lower threshold. The non-decisional component (t0) as well 

as the intertrial variabilities (st0, sν and szr) are not depicted. 
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Figure 2. Scatter plot of 95 % quantiles of mean estimation precision (left column) and mean correlation between true and 

reestimated parameters (right column) for uncontaminated data sets in the one-drift design. On the basis of data sets with at 

least 4 % of trials at each threshold. Quantiles exceeding the mean estimation precision of 25 are not depicted. 
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Figure 3. Scatter plot of 95 % quantiles of mean estimation precision (left column) and mean correlation between true and 

reestimated parameters (right column) for data sets with slow contaminants in the one-drift design. On the basis of data sets 

with at least 4 % of trials at each threshold. Quantiles exceeding the mean estimation precision of 25 are not depicted. 
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Figure 4. Scatter plot of 95 % quantiles of mean estimation precision (left column) and mean correlation between true and 

reestimated parameters (right column) for data sets with fast contaminants in the one-drift design. On the basis of data sets 

with at least 4 % of trials at each threshold. Quantiles exceeding the mean estimation precision of 25 are not depicted. 
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Figure 5. Retest reliability depending on model complexity and method. 
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Figure 6. Mean retest reliability depending on model complexity, method, type of data (empirical vs. simulated) and number 

of trials. 
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