
 

 

 

 

Dissertation 

 

 

 

 

Submitted to the 

Combined Faculty of Natural Sciences and Mathematics 

Heidelberg University, Germany 

for the degree of  

Doctor of Natural Sciences (Dr. rer. nat.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Presented by: Dipl. Chem. Yasaman Riahi 

from  Tabriz 

 

Oral examination: July 29th, 2016 

 



 

 

 

 

Synthesis and Characterization  

of five-coordinated  

indium amidinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reviewer: Prof. Dr. Gerald Linti 

  Prof. Dr. Dr. Hans-Jörg Himmel 

 

 



 

 

To my Parents, 

Siamak, and 

Arash. 

 

 

Two roads diverged in a yellow wood and I took the one less traveled by and 

that has made all the difference. 

“Robert Frost” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary: 

The focus of this work is synthesis, characterization and exploring the reactivity 

of new indium amidinate compounds of the type R2InX (R = R”NCR’NR”; R’ = 

Ph, R” = SiMe3, iPr, dipp; X = Br, Cl) with the coordination number of five and 

R3In (R = Me3SiNCPhNSiMe3) with the coordination number of six. By using 

amidinates as chelating ligands the electron deficiency of indium atom will be 

resolved. Additionally, by using different substituents the study of the different 

synthesized indium amidinates has become possible. The selected method for 

the synthesis allows the carbodiimides to react with organolithium compounds 

to get the corresponding lithium amidinates. Afterwards the resulting lithium 

amidinates take part in transmetalation reactions with InBr3 and InCl3. The 

study of the reactivity of indium amidinate complexes including nucleophilic 

reactions as well as their reduction were also examined. Beside crystal 

structure analysis, nuclear magnetic resonance spectroscopy as well as 

elemental analysis has been applied to characterize the compounds. 

 

Zusammenfassung: 

Die vorliegende Arbeit befasst sich mit der Synthese und Strukturuntersuchung 

neuartiger Indiumamidinate von der Typ R2InX (R = R”NCR’NR”; R’ = Ph, R” = 

SiMe3, iPr, dipp; X = Br, Cl) mit der Koordinationsnummer 5 sowie R3In (R = 

Me3SiNCPhNSiMe3) mit der Koordinationsnummer 6. Durch die bereits 

verwendeten Synthesemethoden sollen Carbodiimiden mit Organo-Lithium-

Verbindungen die entsprechenden Lithiumamidinate erhalten und mittels 

Transmetallierung mit InBr3 and InCl3 in Indiumamidinate überführt werden. Alle 

erfassten Strukturen wurden durch Kristallstrukturanalyse, NMR-

Spektroskopie, sowie Elementaranalyse geprüft. 
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1. Introduction 

Indium, the fourth element in the third main group of the periodic system, was 

first discovered by German chemists Ferdinand Reich and Theodor Richter in 

1863 in Freiberg, Saxony. By seeing an indigo blue spectral line at the 

absorption spectrum of sphalerite, they noticed the presence of an unknown 

element, which was later called Indium. Indium is a silvery white soft metal that 

comes with the lighter homologous boron, aluminium and gallium and the 

heavier thallium in the same group. With atomic number of 49, indium 

crystallizes in the tetragonal crystal system and exists in two natural isotopes 

𝐼𝑛49
113  (with abundance of 4.4%) and 𝐼𝑛49

115  (with abundance of 95.7%). The 

latter with a half-life time of 600 billion years has a very weak radioactivity.[1][2]  

The concentration of indium in the continental earth’s crust is 50 ppb, which 

makes its late discovery reasonable. Most commonly, indium occurs together 

with zinc deposits (e.g. 0.03% of zinc blende). So it is a by-product the of the 

zinc production. By electrolysis of its salt solutions the purified indium could be 

later isolated.[3] 

Indium is among the world’s shortest natural sources with about 11000 tons. 

Simultaneously its high demand has made it one of the most expensive metals 

ever. 

The leading producer of indium is China with 390 tons in 2012, followed by 

canada, Japan and South Korea each with 70 tons. Its price ranges from 94 

US$ per kg in 2002 to 382 US$ in 2006 and 918 US$ in 2009 per kg. In 2014 

the price per kg was about 750 US$. The fluctuation in prices is due to 

differences in supply and demand. [4] 

Because of the low melting point of indium (156.6 °C), lower than thallium and 

tin but higher than gallium, it was highly used in bearing alloys in aircraft 

engines, specially during the world war II. But the most important industrial use 

of indium is in indium tin oxide (ITO) as transparent conductive coatings in liquid 

crystal displays (LCDs) and in solar panels. The semi conductively 

characteristic of indium in III/V compounds such as indium (III)phosphides and 

aresenides makes it an important part of the photo voltaic cells.[5] Indiumnitrid 

plays a significant role in LEDs by altering the wavelength of the radiated light  

range from ultra violet to infra red.[6] 
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Although indium has a very wide industrial application, it can be also useful in 

medicine. Indium leukocyte scintigraphy is a medical imaging technique, which 

can help to find areas localized with white blood cells, to chose the better 

antibiotic therapy. By taking the patient’s white cells, labeling them with 111In 

and then re-inject them back, gamma radiation will be emitted and the 

monitoring of white blood cells will be possible.[7] 

Because of the vast demand of indium in many fields and lack of indium natural 

resources, which are rarely enough for the next 14 years, it is necessary to 

produce the needed indium by efficient recycling, which is mainly done in 

Japan.[5] 

 

                                             

                                            Figure 1: indium metal [8] 
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atomic number 49 

stable isotopes  𝐼𝑛49
113  (4.4%) 

 𝐼𝑛49
115  (95.7%) 

relative atomic weight 114,818 

Oxidation numbers +/-0, +1, +2, +3 

ionization energies (kJ/mol) 1st:  558.3  
2nd: 1820.7  
3rd: 2704  

Electronegativity Pauli scale 1.78 

atomic  radius empirical (pm) 167 

covalent radius (pm) 142 

Van der Waals radius (pm) 193 

melting point (K(°C)) 429.75 (156.60) 

boiling point (K(°C)) 2345 (2072)  

 

                                Table 1: some selected characteristics of indium [9] 

 

There are two important oxidation states for indium: ±0 and +3. As a matter of 

fact indium occurs in its most compounds as In(III)-ion by losing its electrons in 

the outer shells. By losing just one electron from the p-orbital, indium(I)-ion will 

be stabilized by the relativistic effect. This effect is higher in the heavier 

homologues of the group 13 as seen in the following sequence: 

                                      Stability:                AlI < GaI < InI < TlI 

 

The indium (I)-halogenides are very temperature resistant but they will 

disproportionate to metallic indium and indium (III) by solvation in water. 

Normally, Indium (II) compounds are compoundswith mixed oxidation states, 

containing indium (I) and indium (III). For example in In2Cl4 in which In-In are 

not directly connected to each other and the correct formulation will be as 

In+(InCl4)-.[3] 

On the other hand gallium (I) compounds are very instable and disproportionate 
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in metallic gallium and gallium (III). However thallium (III) compounds act as 

oxidizing agents and thallium (I) compounds are very stable. The only 

exceptions in this case are arene complexes such as 

pentamethylcyclopentadienyl –derivates (ECp*, E= In, Ga). In this case InCp* 

is more stable than GaCp* and undergoes a variety of reactions for synthesis 

of indium clusters. [10][11][12]  

1.1 Amidinates and guanidinates, NCN ligands: 

The NCN ligands, amidinates and guanidinates, possess two nitrogen donor 

atoms and a delocalized lone electron pair. 

 

 

 

 

These ligands possess one single bridging carbon atom. The ligand acts as a 

N, N’-chelate and by coordination of two nitrogen atoms to one metal atom the 

four-membered ring is formed. The bite angles in the four-membered rings will 

be smaller than those in five and six-membered rings. It should be mentioned 

that the steric properties of these ligands are affected by the smaller bite angles. 

That means that the substituents on the nitrogen atoms will be oriented bit 

further away from the di-coordinate center in comparison with five and six-

membered rings.[13] By using bulky aryl groups such as dipp, the coordinated 

chelate site is stabilized. By altering the substituents different ligands with 

different properties are obtained.  
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Figure 2: it is guanidinate, if R is amino-based analogous. It is amidinate 

analogous, if R is not amino-based or if the substituent is another pnictogen. 

 

 

 

The guanidinates are more electron rich than the amidinates because of the 

amino substituent on the bridging position of the NCN.  

As reported the synthesis and isolation of the univalent 

In[(dipp)NC{N(Cy)2}N(dipp)][14] and Ga[(dipp)NC{N(Cy)2}N(dipp [14] complexes 

possessing four membered ring with NCN chelating ligands is only possible 

by using the bulky guanidinate ligands.[15] In thallium guanidinates, a different 

structure is obtained in which the metal atom is connected to the one of the 

dipp ligands by one of the nitrogen atoms. This kind of coordination (pseudo-

5-membered ring coordination) is seen by larger size cations like thallium (I) 

and indium (I). (compound 1.1) This kind of coordination allows the complex 

be less strained. This effect is also observed by indium (I) amidinates when 

the NCN ligand is less electron rich or sterically demanding. [14][15] [16]  

 

E

R

R' R'

R' = SiMe3, iPr, dipp
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1.1 

 

The group 13 amidinates and guanidinates act as precursors to group 13 

nitrides. They are novel catalysts and in the case of aluminium precursors 

they can act as precursors to thin metal films.[17] The group 13 nitrides, such 

as mixed aluminium/gallium nitrides, are direct band gap semiconductors and 

are applied in the high-frequency LEDs and diode lasers.[18] 

The first amidinates of group 13 elements were described by Hausen et. al. in 

1978.[19] They were  dimethylaluminum-N,N'-dimethylethyl und 

dimethylgallium-N,N'-dimethylethyl amidinates as shown in figure 4: 

 

 

N

HN M

Pri

Pri
Bu t

Pri

Pri

N

NH

Ar

Bu t

M = In, Tl
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      Figure 4 

The next amidinate was synthesized and characterized in 1994 by Geoffrey et 

al.[20] This first boron amidinate was prepared by treating 

[Cp(CO)2Mn≡CCH2CH3]+BCl4- with 1.1 eq. ditertbutylcarbodiimide and 2.2 eq. 

Et3N in dichloromethane, unexpectedly. (equation 1) 

 

           (1) 

             

In 1996 while searching for a new starting material for semi-conductors, 

Richeson et al. got the first indium amidinate (figure 5) by treating 

indium(III)chloride and two eq. of lithiumdicyclohexylneopentylamidinate by 

salt elimination.[21] 

 

Figure 5 
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N
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N
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Cl
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N

N N

N
Cl
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t-Bu
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Shortly after that a bis(amidinato) chloro complex is synthesized by Richeson 

et al. In this indium amidinate the two indium atoms were connected through 

four bridging dicyclohexylmethyl amidinates and there is one chlor atom on 

each indium atom. (figure 6) [22] 

 

 

Figure 6 

In 1996 Wallbridge et al. synthesized and characterized the new crystals of 

alkyl gallium amidinates.[23] Depending on stoichiometry of the reaction different 

mono-, bis- and trisamidinatogallium compounds were yielded (figure 7).  

 

Figure 7 

NN

In In

N N

Cy Cy

CyCy

N N

N N
ClCl

Cy Cy
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The first dialkylaluminium amidinate and dichloroaluminium amidinate were 

characterized by Jordan et al. one year later in 1997. They were synthesized 

either by adding aluminium alkyl to the carbodiimides or through treatment of 

the aluminium(III)chloride with one lithiumamidinate and subsequent alkylation 

(equation 2).[24] The same reaction was done by Jordan et al. with gallium 

instead of aluminium.[25] 

         (2)  

             

There are also subvalent compounds of gallium such as alkylated gallium(II)-

amidinate which was described by Uhl et al.[26] (equation 3) 

   (3) 

            

In this way of synthesis the digallane Ga2[CH(SiMe3)2]4 was treated with 

acetic acid and Lithium-N,N’-diphenylbenzylamidinate yielding the alkylated 

amidinate.[26]  

NN

Ga Ga

N N

Ph

PhPh

Ph Ph

Ph

(SiMe3)2HC CH(Me3Si)2Ga Ga

(Me3Si)2HC CH(SiMe3)2

(Me3Si)2HC CH(SiMe3)2

LiN2Cph3

CH3COOH
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In the same year the synthesis and characterization of dialkyl gallium 

amidinate was performed by Jordan et. al by adding gallium 

gallium(III)chloride to the corresponding lithium amidinate and subsequent 

Grignard or organo lithium reaction. (equation 4)[25] 

 

  (4)

           

 

In 2000 the cationic gallium and aluminium amidinate complexes were 

synthesized by Jordan et al. using [Ph3C]+[B(C6F5)4]-.[27] 

In this reaction one methyl anion was eliminated from the methyl triel 

amidinate and Ph3CCH3 and the corresponding triel amidinate cation were 

formed. In the next step another methyl triel amidinate was coordinated to 

these cations. By applying an appropriate donor group the desired amidinate 

was yielded. (equation 5) 

Li

N

N

R

R'

R'

Ga

N

N

Cl

Cl

R

R'

R'

GaCl3

-LiCl
Ga

N

N

R"

R"

R

R'

R'

"R"Li

-2LiCl
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 (5) 

 

In 2002 the synthesis of a bridiging tetramethyldialuminium diamidinate was 

performed by Coles et al.[28]  

In the 2004 the first indium hydride, which was stabilized through amidinate 

ligands, was produced by Jones et al. By treating lithium indium hydride with 

two eq. Bis(2,6-Diisopropylphenyl)formamidine the product was yielded This 

product was not air sensitive in comparison to other sensitive indium hydrides 

before (equation 6).[29]  
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              (6) 

                      E= Al, Ga, In                        

 

In 2005 this experiment was transferred to gallium and aliminium 

successfully.[30] In the same year Cowley et al. produced a range of this kind 

of boron amidinates through different reactions shown bellow. (equations 

7,8,9)[31] 

 

 

 

(7) 

   Salt elimination from lithium amidinates and bor halogenides 
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         (8) 

 

  insertion of carbodiimides in bor-ferrocene binding 

 

 

        (9) 

elimination of trimethylsilyl halogenides from N,N,N’-tris(trimethylsilyl)-

benzamidine with bor halogenides 

In 2005 the synthesis of two gallium amidinate compounds with the 

oxidation state of +II was reported by Jones et al.[32] By using bulky groups 

such as 2,6-Diisopropylphenyl (dipp) and GaI as gallium source the new 

gallium amidinate was yielded. (equation 10) 
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         (10) 

 

In 2006 the first aluminium-, gallium- and indium amidinate with one E-Fe 

binding were characterized by Jones et al. (equation 11)[33] 

 

 (11) 

In 2006 the first hexa-indium complex were synthesized by Hitchcock et al. By 

treating indium(I)iodide with a protonated N-xylyl β-diketiminate and 

potassium base in THF, a hexa-indium chain was yielded. In this chain there 

are five indium-indium single bonds. The terminal indium atoms were 

connected to iodides and one β-diketiminate was bound to each indium atom. 

(figure 8)[34] 
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Figure 8 

In 2011 Linti and Zessin characterized the new crystals of trigallanes with 

different substituents which were the first trigallanes stabilized through 

amidinate ligands. (figure 9)[35][36]  

 

 

Figure 9: structure of the trigallane amidinate 
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1. 2 Abstract 

The focus of this work is synthesis, characterization and exploring the reactivity 

of new indium amidinate compounds of the type R2InX (R = R”NCR’NR”; R’ = 

Ph, R” = SiMe3, iPr, dipp; X = Br, Cl) with the coordination number of five and 

R3In (R = Me3SiNCPhNSiMe3) with the coordination number of six. By using 

amidinates as chelating ligands the electron deficiency of indium atom will be 

resolved, in addition by using different substituents the study of the different 

synthesized indium amidinates has become possible.  

The selected method for the synthesis allows the carbodiimides to react with 

organolithium compounds to get the corresponding lithium amidinates. 

Afterwards the resulting lithium amidinates take part in transmetalation 

reactions with InBr3 and InCl3.  

Since the obtained indium amidinate compounds are very sensitive to the air 

moisture and hydrolysis, all the reactions were performed under argon flow and 

in vacuum to avoid the air moisture. In some experiments the reaction flask had 

to be protected towards light.  

The study of the reactivity of indium amidinate complexes including nucleophilic 

reactions as well as their reduction were also examined. 

Beside crystal structure analysis, nuclear magnetic resonance spectroscopy as 

well as elemental analysis has been applied to chracterize the compounds. 
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2 Five and six coordinated Indium (III) amidinates  

 2.1 Introduction 

 Because of the big demand in organic and inorganic complexes of the group 

13 elements such as aluminium, gallium and indium in the industry and 

electronics, there is a rising interest in preparing and synthesizing them, as well 

as in characterization of these complexes.[37] The reason of the comprehensive 

study of using bidentate ligands in synthesis of indium compounds is to find out 

the relation between the geometry of indium amidinate ligands and the 

coordination surroundings of indium. These ligands have been applied in 

synthesis of a large number of mono and dinuclear transition metal 

complexes.[38]  

An ideal system is created for studying the impact of the steric bulky groups on 

the product by changing the organic substituents on the nitrogen atoms and on 

the carbon atom of the bridging position (NCN). By using tBu groups as 

substituent new bulky indium amidinates were obtained. 

In 1996 Richeson et al. synthesized and characterized the first monomeric 

In(III) complexes of the formula In[RNC(R’)NR]2Cl (R = Cyclohexyl, SiMe3; R’ 

= Me, tBu)[21][22] with the coordination number of five. (equation 12) 

 

 (12) 

 

 

By reacting dicyclohexylcarbodiimide and 1,3-bis(trimethylsily)carbodiimide 

with MeLi in two different experiments the corresponding lithium salts of 

Li[CyN(CMe)NCy] and Li[Me3SiN(CMe)NSiMe3] are prepared. By treating 
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these ligands with InCl3 in 2:1 stoichiometry the new indium amidinate species 

shown in equation 12 are yielded. 

In order to have a bigger range of indium amidinate ligands and to be able to 

study the influence of different substituents positioned on the bridging site, tBu 

groups are being used as new substituents. The reaction yielded in two new 

bulky members of indium amidinate ligands, In[CyNC(CMe3)NCy]2Cl and 

In[SiMe3N(CMe3)NSiMe3]2Cl. (equation 12) 

By treating 3 equiv Li[CyNC(Me)NCy] with InCl3 the six coordinated indium 

complex of In{2[N(CH2C7H5)]NC5H4}3 was synthesized. (equation 13) 

 

                 (13) 

          

 

In another experiment Richeson et. al tried to reduce the 

In[CyNC(CMe3)NCy]2Cl complex with Na/C10H8 to study the stabilization effect 

of reduced indium center. The In[CyNC(Me)NCy]3 formula of this complex was 

confirmed by using microanalysis method and was likely the product of the 

disproportionation of the reduced indium complex. The results obtained from 

NMR spectroscopy showed that dicyclohexylamidinate ligands are all 

equivalent. (equation 14)  
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 (14) 

 

 

 

In this part of the work the indium amidinate complexes of type R2InX with 

coordination number of five and R3In with coordination number of six were 

synthesized. 

The five coordinated indium amidinates are divided into two groups: 

a) R2InX (R = Me3SiNCR’NSiMe3, R’ = Phenyl, X = Br, Cl) 

b) R2InX (R = R”NCR’NR”, R” = dipp, ipr, R’ = Phenyl, X = Br, Cl) 

The trisamidinate R3In (R = Me3SiNCR’NSiMe3, R’ = Phenyl) is the only 

complex synthesized that possess a six coordinated indium central.  

The spectroscopic characterization as well as the elemental analysis confirms 

the formula of these indium amidinate complexes. All the complexes are 

characterized by X-ray crystallography. 
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2.2 Synthesis of In[SiMe3NC(Ph)NSiMe3]3 

2.2.1 Reaction of Li[SiMe3NC(Ph)NSiMe3] with InCl3 

 

Li[SiMe3NC(Ph)NSiMe3 was prepared by dropwise addition of n-butyl lithium to 

the hexamethyldisilazanide in n–hexane at -78°C. The white-milky suspension 

was allowed to warm up to the room temperature and stirred over night. All the 

volatiles were removed and the white residue was used for the next step without 

any work up.  

At the next step lithium hexamethyldisilazanide was dissolved in diethyl ether 

and benzonitrile was added slowly to this solution at -78°C. (equation 15) The 

suspension was allowed to warm up to the room temperature and stirred over 

night.  

 

 (15) 

             1                                                                                             2 

 

According to Boere et al. the reaction mechanism is the nucleophilic addition 

of the lithium hexamethyldisilazanide to benzonitrile that yields the symmetric 

lithium amidinate. The obtained lithium amidinate was not detected directly. 

However the rearrangement reactions of this kind are well known. (equation 

16)[39] [40] [41]  
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The brown-orange solution of 2 was then treated without further work up with 

InCl3 in 3:1 stoichiometry in diethyl ether at -78 °C. (equation 17) The resulted 

suspension was allowed to warm up to the ambient temperature and stirred 

over night. An orange suspension with white precipitation of LiCl was observed 

the following day.  

 

 

 (17) 

                 2                                                                                3  

 

 

After removal of the all the volatiles under vacuum and extracting the white 

residue first with n-hexane solvent and then with toluene solvent, the pale 

yellow crystals of In[SiMe3NC(Ph)NSiMe3]3 (3) were formed in the n-hexane 

solvent with a yield of 43%. 
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2.2.2 Spectroscopic characterization of 3 

In the 1H-NMR-spectrum of In[SiMe3NC(Ph)NSiMe3]3 (3) the signals for the 6 

hydrogen atoms in ortho position of the phenyl groups are found at δ = 7.47 in 

form of a multiplet and for the 9 hydrogen atoms in the meta and para position 

of the phenyl groups are seen at the range of δ = 6.96-6.92 in form of a 

multiplet . Having 15 hydrogen atoms in the aromatic range confirms the 

existence of three phenyl rings in the complex. In addition a sharp singlet is 

seen at δ = 0.15 for the 54 hydrogen atoms of the SiMe3 groups that are all 

equivalent. 

In the 13C-NMR-spectrum there is a low field shift for the ring carbon atom of 

NCN at δ = 181.3. Four different peaks are found for the four different aryl-

carbon atoms at δ = 141.5 (ipso), δ = 128.3 (para), δ = 127.7 (meta) and δ = 

126.2 (ortho). A single peak for SiMe3 carbon atom is seen at δ = 2.9. All 

peaks correlate with the peaks seen in 1H-NMR spectroscopy and with data 

obtained from the similar gallium amidinates synthesized before.[42] The 

nuclear resonance magnetic spectroscopy data confirms that the molecule is 

symmetrical. The fact that only one peak is seen for SiMe3 groups shows that 

there is a free rotation around the N-Si bounding.  
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2.2.3 Crystal structure of 3 

 

Figure 10 Molecule structure and atom-numbering scheme of 3. Hydrogen 

atoms have been omitted for clarity. Selected bond lengths [Å] and angles [°]: 

In1-N1 2.25 (3), In1-N2 2.26 (4), In1-N3 2.30(3), In1-N4 2.25 (3), In1-N5 

2.26(4), In1-N6 2.27 (4), N1-C1 1.31 (5), N1-Si6 1.75 (3), N2-C1 1.32 (5), N2-

Si1 1.74 (4), N3-C2 1.32 (5), N3-Si2 1.76 (3), N4-C2 1.33 (5), N4-Si3 1.73 (4), 

N5-C3 1.34 (5), N5-Si4 1.75 (4), N6-C3 1.34 (7), N6-Si5 1.74 (2), C1-C4 

1.53(7), C2-C5 1.51 (6), C3-C6 1.51 (8).  

N1InN2 60.1(1), N3In1N4 59.9(1), N6In1N5 60.6(1), N1C1N2 117.8 (3), 

N3C2N4 117.9(4), N6C3N5 117.1(4), N1In1N4 155.5 (1), N1In1N6 93.3 (1), 

N2In1N4 101.8(1), N2In1N6 101.7 (1), N3In1N5 105.7 (1), N4In1N5 96.6 (1), 

In1N1Si6 136.9 (2), In1N2Si1 136.0(2), In1N3Si2 139.3(12), In1N4Si3 

137.5(2), In1N5Si4 139.4(2), In1N6Si5 140.1(2), C1N2Si1 133.0(3), C1N1Si6 

131.4 (3), C2N4Si3 129.6(3), C2N3Si2 129.4 (3), C3N6Si5 128.2 (3), 

N1In1N3 102.7(1), N1In1N5 105.1 (1), N2In1N3 94.2 (1), N2In1N5 157.8 (1), 

N3In1N6 161.6(1), N4In1N6 107.3(1), In1N1C1 91.5(3). 
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The molecular structure of In[SiMe3NC(Ph)NSiMe3]3 (3) as well as the atom 

numbering scheme are shown in figure 10. The selected bond lengths and 

angles are also described above. The complex 3 crystallized in the monoclinic 

space group C 1/c. The structural analysis showed that the complex has a 

distorted octahedral symmetry possessing one unique amidinate ligand as 

seen and discussed by NMR data. The central indium atom is surrounded 

with six nitrogen atoms. The In-N bond distances do not differ significantly 

from each other (In1-N1 [2.25(3) Å ], In1-N2 [2.26(4) Å ], In1-N3 [2.30(3) Å ], 

In1-N4 [2.25(3) Å ], In1-N5 [2.26(4) Å ], In1-N6 [2.27(4) Å ]). These bond 

distances are almost similar to those In-N bonds in six coordinated In(dpt)3 

synthesized by Barron etal. (In1-N1 [2.259(9) Å ], In1-N3 [2.22(1) Å ], In1-N5 

[2.24(1) Å ], In1-N2 [2.26(1) Å ], In1N4 [2.23(9) Å ], In1-N6 [2.21(1) Å ]).[43] 

The slight difference in In-N bond distances is because of the bulky 

substituents in the complex 3.The (N1In1N4 155.5(1)°, N2In1N5 (157.84(2)°) 

and N3In1N6 (161.58(13)°) angles show the distorted geometry. This 

distortion is less than distortion seen for the six coordinated In(dpt)3 (N1In1N4 

(148.9(4)°), N2In1N5 (144.1(4)°) and N3In1N6 (151.5(4)°)).[43] The phenyl 

groups are all planar. (Σ angles = 359, 359.9 and 359.9 for the three phenyl 

rings). The three-bite angles are almost the same N1In1N2 (60.1(1)°), 

N3In1N4 (59.9(1)°), N5In1N6 (60.6(1)°). The N-Si bond distances are all the 

same and the bonds are all equivalent (N1Si6 [1.75(3) Å], N2Si1 [1.74(4) Å], 

N3Si2 [1.76(3) Å ], N4Si3 [1.73(4) Å ], N5Si4 [1.75(4) Å], N6Si5 [1.74(2) Å]) 

which correlates with the data resulted from 1H-NMR spectroscopy. 

 

 

 

 

 

 



 26 

2.3 Synthesis of In[SiMe3NC(Ph)NSiMe3]2Br 

2.3.1 Reaction of Li[SiMe3NC(Ph)NSiMe3] with InBr3 

By treating lithium hexamethyldisilazanide (prepared by combination of the 

hexamethyldisilazanide with n-butyl lithium) with benzonitrile an orange solution 

of Li[SiMe3NC(Ph)NSiMe3] was formed. This was treated with 1 equivalent 

InBr3 in diethyl ether at -78 °C. (equation 18) By allowing the suspension to be 

warmed up to the room temperature and stirring it over night an orange solution 

with white precipitation of LiBr was obtained. 

 

  (18) 

                2                                                                             4 

 

 

Then all the volatiles were removed and the remaining white residue was 

extracted first with n-hexane and then with toluene solvent. The crystals of 4 

were obtained from the toluene fraction with the yield of 15%. 

 

 

 

 

 

 

 

N

Li

N

Ph

SiMe3

SiMe3

+ InBr3
-78 °C In

N

N N

N

Ph Ph

SiMe3 SiMe3

SiMe3 SiMe3

Br

-2 LiBr

Et2O



 27 

2.3.2 Spectroscopic characterization of 4 

The 1H-NMR-spectrum of 4 shows two peaks for the aromatic hydrogens of the 

phenyl groups. The multiplet peak for the 4 hydrogens in ortho-position of 

phenyl groups is seen at δ = 7.36. The 6 hydrogen atoms in meta- and para- 

positions are found at δ = 6.96 in form of a multiplet peak. A sharp singlet is 

found at δ = 0.12 for the 36 hydrogen atoms of SiMe3 groups. This reveals that 

all the hydrogens of the SiMe3 groups are equivalent. 

In the 13C-NMR-spectrum the signal for the NCN carbon atom is seen at δ = 

173.4 and for the ipso-carbon atom it is found at δ = 149.2. There are 3 peaks 

found for the aromatic ortho-, meta- and para carbon atoms at δ = 127.0, δ = 

127.7 and δ = 128.2 respectively. A single peak is seen for the carbon atoms 

of the SiMe3 groups at δ = 2.86 as expected from the 1H-NMR-spectrum.  

The 1H-NMR and 13C-NMR spectrum data correlates with the spectrum of the 

3. 
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2.3.3 Crystal structure of 4 

 

 

 

Figure 11 Molecule structure and atom-numbering scheme of 4. Hydrogen 

atoms have been omitted for clarity. Selected bond lengths [Å] and angles [°]: 

In1-N1 2.22 (2), In1-N2 2.24(2), In1-N3 2.20(2), In1-N4 2.23(2), In1-Br1 

2.539(2), N1-C1 1.411(19), N1-Si1 1.752(18), N2-C1 1.280(2), N2-Si8 1.726 

(18), N3-C2 1.35 (2), N3-Si4 1.753(14), N4-C2 1.351(19), N4-Si2 1.728(15), 

N5-C3 1.340(5), N5-Si4 1.752(4), N6-C3 1.340(7), N6-Si5 1.745(2), C1-C4 

1.49(2), C2-C3 1.44(2). 

N1InN2 61.5(6), N3In1N4 62.1(5), N2In1N4 167.7(5), Br1In1N2 97.7(4), 

Br1In1N4 94.3(4), Br1In1N1 136.5(4), Br1In1N3 114.5(4), In1N2Si8 

136.2(10), In1N1Si1 134.0(8), In1N3Si4 134.2(9), In1N4Si2 136.2(8), 

N2C1N1 115.8(13), N4C2N3 115.4(15), N4C2C3 122.6(14), N2C1C4 

125.4(13). 

The complex of 4 crystallized in the triclinic space group P1̅ with two molecules 

in the unit cell. The molecule geometry as well as the atom-numbering scheme 

is shown in figure 11. Through structural analysis it is released that the complex 

has distorted trigonal bipyramidal structure (TBP) with an indium atom in center 

and two amidinates and one bromide group. The selected bond distances and 
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angles are shown above. The NIn1Br1 part deviates from an ideal trigonal 

bipyramid with N2In1N4 (167.7(5)°) and N2In1Br1 (97.7(4)°) and N4In1Br1 

(94.3(4)°) angles. As seen the In-N bond distances are slightly different from 

each other. (In1-N2 [2.24 (2) Å], In1-N1 [2.22(2) Å], In1-N3 [2.20(2) Å], In1-N4 

[2.23(2) Å ]). The In1N2 and In1N4 bond distances (bonds in axial positions) 

are slightly larger than In1N2 and In1N3 bond distances (bonds in equatorial 

positions), which is expected for the distorted trigonal bipyramidal symmetry. 

The bonds in axial position have p hybridization therefore are longer than bonds 

in equatorial position with sp2 hybridization.[45] The bond distances are in good 

agreement with those in InCl[C6H11NC(CH3)NC6H11]2 complex In1N1 [2.198(3) 

Å ] and In1N4 [2.188(3) Å ] (bonds in equatorial positions) and In1N2 [2.236(3) 

Å ] and InN3 [2.239(3) Å ] (bonds in axial positions).[21] The In1Br1 bond 

distance [2.539(2) Å ] is in good agreement with the In-Br bond distance in 3 

[2.567(4) Å ] and with the In-Br bond distance in o-[C6H4(InBr(THF)2)]2 [2.547(1) 

Å ].[46] The bite angles are almost the same with N1In1N2 (61.5(6)°) and 

N3In1N4 (62.1(5)°). By comparing these values with the bite angles in 

InCl[C6H11NC(CH3)NC6H11]2 (N1In1N2 60.2(1)° and N3In1N4 (59.8(1)°)[21], it is 

noticed that these angles are a slightly larger in complex 4.  
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2.4 Synthesis of In[SiMe3NC(Ph)NSiMe3]2Cl 

2.4.1 Reaction of Li[SiMe3NC(Ph)NSiMe3] with InCl3 

By treating lithium hexamethyldisilazanide with benzonitrile a pale yellow 

solution of 2 was formed. This product was treated with InCl3 in 2:1 ratio in THF 

at -78 °C (equation 19). By allowing the suspension to warm up to ambient 

temperature and stirring it further over night a yellow solution with white 

precipitation of LiCl was obtained. After extracting the yellow solution with n-

hexane, toluene and THF, the crystals of 5 were obtained from the toluene 

fraction with the yield of 22%. 

 

 

 

(19) 

                  2                                                                          5 

 

 

2.4.2 Spectroscopic characterization of 5 

The 1H-NMR-spectrum of 5 shows two peaks for the aromatic hydrogens of 

phenyl groups. The peak seen for the ortho-position of the aromatic ring is at 

the range of δ = 7.12-7.13 with the intensity of 4 in form of multiplets. For the 

meta- and para- positions of the aromatic ring the peak found is at the range of 

δ = 6.93 - 6.99 in form of a multiplet peak with the intensity of 6. This reveals 

that 2 phenyl groups attached to carbon atoms of NCN are equivalent. A singlet 

is found at δ = 0.13 for the 36 hydrogen atoms of the SiMe3 groups. Finding just 

one peak for the SiMe3 groups proves the equality of these groups on both 

amidinate ligands of the complex. Analyzing the crystal structure of the complex 

can also prove this fact. 

The 13C-NMR-spectrum of 5 shows one signal for the NCN carbon atom at δ = 

177.8 and one for ipso-carbon at δ = 137.6. The aromatic ortho-, meta- and 
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para carbon atoms are found at δ = 126.2, δ = 126.4 and δ = 126.5 respectively. 

A single peak for the carbon atoms of the SiMe3-groups is found at δ = 1.3. All 

these 13C-NMR data correlate with the data resulted from the peaks of 1H-NMR-

spectrum and proves that the phenyl and SiMe3 groups on both amidinate 

groups are equivalent. 

Comparing these spectra with those obtained from the analogous 

In[SiMe3NC(Ph)NSiMe3]2Br(4) no significant differences are seen except the 

chemical shifts of hydrogen atoms of SiMe3 groups are slightly different. This is 

because of the difference in the electronegativity of Br and Cl that causes the 

chemical shifts occur in lower field region in case of complex 5.  
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2.4.3 Crystal structure of 5 

 

 

 

Figure 12 Molecule structure and atom-numbering scheme of 5. Hydrogen 

atoms have been omitted for clarity. Selected bond lengths [Å] and angles [°]: 

In1Cl1 2.376(2), In1N1 2.24(4), In1N2 2.20(5), In1N3 2.20(4), In1N4 2.24(4), 

N1C1 1.322(8), N2C1 1.343(7), N3C2 1.336(6), N4C2 1.327(7), N1Si1 

1.749(5), N2Si2 1.744(5), N3Si3 1.746(5), N4Si4 1.747(5), C1C3 1.499(7), 

C2C4 1.491(7). 

N1In1N2 61.6(2), N3In1N4 61.4(2), Cl1In1N1 100.1(1), Cl1In1N3 120.2(1), 

Cl1In1N2 127.7(1), Cl1In1N4 95.2(1), In1N1Si1 139.2(3), In1N3Si3 132.8(2), 

In1N4Si4 136.1(3), In1N2Si2 137.4(2), N1C1N2 116.9(5), N3C2N4 116.4(5), 

N1In1N4 164.7(2), N3In1N2 112.2(2). 

 

The molecule geometry as well as the atom-numbering scheme is shown in 

figure 13. The selected bond distances and angles are also shown above. The 

complex of 5 crystalized from toluene in the monoclinic space group P21/n with 

four molecules in the unit cell. The indium atom of complex 5 is coordinated in 

a distorted trigonal bipyramidal manner by two amidinates and a chlorine atom. 

As expected for the trigonal bipyramidal symmetrythe In1N1 [2.24(4) Å ] and 

In1N4 [2.24(4) Å ] bond distances (bonds in axial positions) are longer than 
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In1N2 [2.20(5) Å ] and In1N3 [2.20(4) Å ] bond distances (bonds in equatorial 

positions).[46] The N2In1N3 (112.2(2)°) as well as N2In1Cl1 (127.7(1)°) and 

Cl1In1N3 (120.2(1)°) angles show the distortion of trigonal bipyramidal 

symmetry. The bite angles in 5, N1In1N2 (61.6(2)°) and N1In1N4 (61.4(2)°), 

are the same and very close to those in [PhCN2(SiMe3)2]2InBr (4). The In1Cl1 

bond distance 2.38(2) lies in the range of some other In(III) complexes such as 

InCl52- 2.415(12), [InCl4(H2O)2]- [2.485(2) Å ], [2.456(7) Å ] [49] and [2.417(3) Å 

]. [50] Comparing the In1Cl1 bond distance with that of in neutral adducts, it is 

noticed that the In-Cl bond distance is almost the same as in InCl3.2Ph3P 

[2.377(5) Å] and [2.382(5) Å] [51] and shorter than [2.396(5) Å ] and [2.465(1) Å 

] in InCl3.terpy.[52] 

Comparing the two indium amidinate complexes [PhCN2(SiMe3)2]2InBr and 

[PhCN2(SiMe3)2]2InCl it is noticed that both complexes do have distorted 

trigonal bipyramidal geometry. N2In1N4 (167.7(5)°) in 4 is about 3° larger than 

N1In1N4 (164.7(2)°) in 5. By comparing Br1In1N2 (97.7(4)°) Br1In1N4 

(94.3(4)°) angles and Cl1In1N1 (100.1(1)°) Cl1In1N4 (95.2(1)°) angles, we see 

that the deviation from 90° in 5 is more than in 4. The bite angles are almost 

the same. There are N1In1N2 (61.5(6)°) and N3In1N4 (62.1(5)° in 4 and 

N1In1N2 (61.6(2)°) and N3In1N4 (61.4(2)°) in 5. The In-N bond distances differ 

slightly one other.  
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2.5 Synthesis of In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br 

2.5.1. Reaction of Li[(CH(CH3)2NC(Ph)N(CH(CH3)2)] with InBr3 

By treating bis-2,6-diisopropylcarbodiimide with one equivalent phenyl lithium 

at -78 °C in n-hexane and stirring the solution over night, a yellow solution of 

Li[CH(CH3)2NC(Ph)N(CH(CH3)2)] (6) resulted. By treating 6 with one equivalent 

InBr3 at -78 °C and allowing the mixture to warm up to the room temperature 

and stir further, a yellow solution with a white precipitation was obtained. 

(equation 20) 

 

  (20) 

                                        6                                                       7 

 

 

After extracting the yellow solution with n-hexane and toluene, the crystals of 

In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br 7 were isolated from the n-hexane 

fraction at -25 °C with the yield of 20%. 
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2.5.2 Spectroscopic characterization of 7 

In the 1H-NMR-spectrum of 7 the characteristic signals for the hydrogen atoms 

of the phenyl ring are seen. For the 6 hydrogen atoms in meta- and para- 

positions a multiplet peak is seen in the range of δ = 6.95 - 6.64 and for the 4 

hydrogen atoms in the ortho-position the multiplet peak is found at the range of 

δ = 7.26-7.22. A symmetric septet peak occurred at δ = 3.5 with the intensity of 

4 which is characteristic for the hydrogen atom bound at tertiary carbon atom 

of isopropyl substituents. At δ = 1.24 a doublet with the intensity of 24 is seen 

that belongs to the hydrogen atoms of the methyl groups on the isopropyl 

substituents. Finding just one doublet and one septet proves that all the 

isopropyl substituents are equivalent and in the same chemical environment. 

These results are in a good agreement with the results obtained from the 1H-

NMR of the amido guanidinate with isopropyl substituents 

[Me2NC(NiPr)2]2AlCl.[53] 

The 13C-NMR-spectrum of 7 shows a signal for carbon atom of the NCN 

group of the amidinate at δ = 170.4 and one for the ipso-carbon at δ = 140.5. 

Three peaks are found for the aromatic ortho-, meta- and para carbon atoms 

of phenyl groups at δ = 127.7, δ = 126.8 and δ = 126.2 respectively. This 

proves that the phenyl groups are equivalent and the data correlates with the 

date revealed from 1H-NMR spectrum. The peaks for the CHMe2 and CHMe2 

carbon atoms are seen at δ = 46.6 and δ = 24.4 respectively which come in 

agreement with the similar compounds synthesized by Richeson et al.[21][22] 
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2.5.3 Crystal structure of 7 

 

Figure 13 Molecule structure and atom-numbering scheme of 7. Hydrogen 

atoms have been omitted for clarity. Selected bond lengths [Å] and angles [°]: 

In1-Br1 2.528(1), In1-N1 2.179(6), In1-N2 2.231(5), In1-N3 2.186(5), In1-N4 

2.227(5), N1-C1 1.327(8), N2-C1 1.343(10), N3-C2 1.344(8), N4-C2 1.342(9), 

N3-C4 1.470(8), N4-C3 1.469(8), N1-C7 1.473(10), N2-C6 1.450(9), C1-C8 

1.492(10), C2-C5 1.471(9). 

N1In1N2 60.8(2), N3In1N4 60.6(2), N1In1N3 115.7(2), N2In1Br1 98.5 (2), 

N4In1Br1 98.6(2), N1In1Br1 122.9(2), N3In1Br1 121.4(1), N1C1N2 113.4(6), 

N2C2N3 112.1(6), In1N4C3 141.4(5), In1N1C7 140.2(5), C1N1C7 124.3(6), 

C1N2C6 121.8(6), N2C1C8 123.3(7), N4C2C5 123.9(6). 

The molecule geometry as well as the atom-numbering scheme is shown in 

figure 14. The selected bond distances and angles are also shown above. 

The complex 7 crystalized from n-hexane in the triclinic space group P1 with 

two molecules in the unit cell. The indium atom is coordinated in a distorted 

trigonal bipyramidal manner by two amidinates and a bromine atom. The 



 37 

In1N1 [2.179(6) Å ] and In1N3 [2.186(5) Å ] do have shorter bond distances 

than the In1N2 [2.231(5) Å ] and In1N4 [2.227(5) Å ], so the first two In-N 

bonds are in equatorial position and the other two in axial, which correlates 

with the data obtained by similar complexes prepared yet.[45] The equatorial 

groups N2Br1N3 are coplanar with the sum of the angles equal to 360°. The 

In1-Br1 bond distance [2.528(1) Å ] is shorter than In1-Br1 bond distance in 4 

[(2.539(2) Å ]. Comparing the In-N bond distances in both amidinate 

complexes, it is seen that those bonds are also shorter in [PhCN2(iPr)2]2InBr 

(7). This is because of the steric effect of the bulky groups of SiMe3. The bite 

angles are almost the same, N1InN2 (60.8(2)°) and N3In1N4 (60.6(2)°). The 

N1In1N3 angle (115.7(2)°) deviate slightly from 120° which confirms the Bent 

rule.[54][55] The Br1In1N4 (122.9(2)°) and Br1In1N1 (121.4(2)°) are larger than 

expected. The reason is that nitrogen is more electronegative than brom atom 

and this causes less p-character in the indium-brom bond, which causes a 

larger BrInN angle. The nitrogen centers in amidinate rings deviate slightly 

from planarity, the sum of angles around N1 and N2 atoms are 358.9 and 

354.6 respectively due to the steric congestion around the metal center. 
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2.6 Synthesis of In[(dipp)NC(Ph)N(dipp)]2Br 

2.6.1 Reaction of Li[(dipp)NC(Ph)N(dipp)] with InBr3 

By treating bis-2,6-diisopropyphenylcarbodiimide with one equivalent phenyl 

lithium at -78 °C in n-hexane and stirring the solution over night, a pale yellow 

solution of [PhCN(dipp)2]Li was obtained. 8 was dissolved in toluene and 

treated with one equivalent InBr3 at -78 °C. (equation 21) The mixture was 

allowed to warm up to the room temperature and stirred over night. At the next 

day a yellow solution with white precipitation was obtained. After removing of 

all the volatiles under vacuum the residue is extracted once with 15 mL n-

hexane and once with 15 mL toluene. The pale yellow crystals of the 9 were 

isolated from the n-hexane fraction at -25 °C after a few weeks with the yield of 

41%. . 

 

     (21) 
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2.6.2 Spectroscopic characterization of 9 

In the 1H-NMR-spectrum of 9 the signal for the 10 hydrogen atoms of the 

phenyl rings are observed as a doublet peak for the hydrogens in para 

position with the intensity of two at δ = 7.69 and as multiplet peaks for 

hydrogens in ortho and meta positions at δ = 7.31 with the intensity of 8. The 

hydrogen peaks in the para positions of the aromatic ring of dipp groups are 

found at the range of δ = 7.06-7.03 with the intensity of 4 in a form of a 

multiplet. The hydrogen peaks in the meta positions of the aromatic ring of the 

dipp groups are seen at the range of δ = 6.94-6.92 with the intensity of 8 in a 

form of a doublet of doublets (dd). For the isopropyl groups the two 

characteristic peaks are seen as doublet and septet: The Septet peak occurs 

at δ = 3.40 with the intensity of 8. The doublet peak is found at the range of δ 

= 1.39-0.95 with the intensity of 48 H. The 1H-NMR data correlate with the 

data obtained from the similar indium amidinate complexes synthesized.[32] 

The signals for the NCN carbon atom and for the ipso-carbon in aromatic ring 

are seen at δ = 170.8 and δ = 151.7. There are several peaks shown for the 

carbon atoms of the aromatic rings, both for phenyl rings and the aromatic rings 

of the dipp groups. The peaks for the aromatic carbon atoms of the dipp groups 

are found at δ = 143.9, δ = 138.3 and δ = 134.3. There are three other peaks 

for the carbon atoms of the phenyl ring seen at δ = 128.3, δ = 127.3 and δ = 

126.6 for the para-, meta-, and ortho-carbon atoms respectively. The peaks for 

the CHMe2 are observed one at δ = 23.4 and the other one at δ = 23.7. For the 

CHMe2 two peaks are found, one at δ = 27.6 and the other one at δ = 27.9. 

Data obtained from C-NMR correlate with the data obtained from 1H-NMR and 

again with the data reported.[32] 
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2.6.3 Crystal structure of 9 

 

 

 

Figure 14 Molecule structure and atom-numbering scheme of 7. Hydrogen 

atoms have been omitted for clarity. Selected bond lengths [Å] and angles [°]: 

In1Br1 2.508(2), In1N1 2.249(3), In1N2 2.183(3), In1N4 2.249(3), In1N3 

2.183(3), N1C1 1.333(4), N2C1 1.348(4), N3C2 1.333(4), N4C2 1.348(4), 

N1C7 1.436(4), N2C6 1.423(4), N4C3 1.436(4), N3C4 1.423(4). 

N4In1N3 60.07(9), N1In1N2 60.07(9), N1In1N4 156.7(1), Br1In1N2 109.31(6), 

N2In1N3 141.4(1), N3In1Br1 109.31(6).  

The complex 9 crystallized from n-hexane in the monoclinic space group C 1 

2/c1 with four molecules in the unit cell. The molecule geometry as well as the 

atom-numbering scheme is shown in figure 14. The selected bond distances 

and angles are also shown above. The indium atom is coordinated in a 

distorted trigonal bipyramidal manner by two amidinates and a bromine atom 
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possessing C2 symmetry. In Complex 9 the equatorial plane consists of three 

groups (e.g. N2, N3 and Br1) that are coplanar with the sum of appropriate 

angles equal to 360°. The axial In-N bonds [2.249(3) Å ] are larger than those 

in equatorial position [2.183(3) Å ] as expected. That is because the orbitals 

involved in the In-N bonds in axial position of five-coordinated indium 

amidinate complexes are p orbitals but those in equatorial position have sp2 

hybridization (more s character). Therefore they are shorter than axial ones. 

The angle between the axial groups N1In1N4 (156.7(1)°) shows the distorted 

geometry. The bite angle is (60.07(9)°) which is comparable with the bite 

angle in compound 10 (60.1(3)°). The In1Br1 bond distance is [2.508(2) Å ] 

which is smaller than that in In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br [2.528(2) Å ] 

and in In[SiMe3NC(Ph)NSiMe3]2Br [2.539(2) Å ]. This can be explained by the 

steric effects of the SiMe3 groups. 
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2.7 Synthesis of In[(dipp)NC(Ph)N(dipp)]2Cl 

2.7.1 Reaction of Li[(dipp)NC(Ph)N(dipp)] with InCl3 

By treating bis-2,6-diisopropyphenylcarbodiimide with one equivalent phenyl 

lithium at -78 °C in n-hexane and stirring the solution over night, a yellow 

suspension of Li[(dipp)NC(Ph)N(dipp)] (8) was obtained. 8 was dissolved in 15 

mL toluene and treated with one equivalent InCl3 at -78 °C. (equation 22) The 

mixture was allowed to warm up to the room temperature and stir over night. At 

the following day an orange-yellow solution with a white precipitation resulted. 

After removing of all the volatiles under vacuum the residue is extracted once 

with 15 mL n-hexane and once with 15 mL toluene. The pale yellow crystals of 

10 were isolated from the n-hexane fraction at -35 °C after few weeks. 
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2.7.2 Spectroscopic characterization of 10 

In the 1H-NMR-spectrum the hydrogen peaks for the phenyl ring are found at 

the range of δ = 7.68-7.29 with the intensity of 10 in form of a multiplet. The 

hydrogen peaks for the para and ortho positions of the aromatic ring of dipp 

group are found at the range of δ = 7.06-7.04 with the intensity of 4 in form of 

multiplet and the peaks for the hydrogens in the meta position of the aromatic 

ring of the dipp group are seen at the range of δ = 6.95-6.69 with the intensity 

of 8 in form of a multiplet. For the hydrogen atoms of the isopropyl substituents 

there are two doublets and two septets found. Two Septet peaks are seen at δ 

= 3.58 and δ = 3.26 each with the intensity of 4. This is because of the different 

distances of the amidinate backbones from the chlor atom and therefore being 

in two different chemical environment. The two doublet peaks are seen at δ = 

1.38 and at δ = 0.90 each with the intensity of 24.  

In the 13C-NMR spectrum of 10 there is a peak at δ = 168.7 which belongs to 

the NCN carbon atom. The peak at δ = 160.3 shows the ipso-carbon atom. The 

carbon atoms of the phenyl ring and the dipp substituents are responsible for 

the several peaks seen in the corresponding range. The peaks found for the 

carbon atoms of the dipp substituents are at δ = 145.5, δ = 138.0 and δ = 136.7. 

The peaks found for the carbon atoms of the phenyl rings are seen at δ = 128.4, 

δ = 128.0 and δ = 127.7 for the para-, meta-, and ortho- carbon atoms. These 

peaks are in a good agreement with the peaks found for the similar gallium[56] 

and indium compounds.[32] There are two peaks for at δ = 23.7 and δ = 23.4 

which belong to the carbon atoms of CHMe2 and two other peaks at δ = 27.6 

and δ = 27.9 for the carbon atoms of CHMe2. The data obtained correlates well 

with the data obtained from the 1H-NMR and 13C-NMR of 9. 
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2.7.3 Crystal structure of 10 

 

 

Figure 15 Molecule structure and atom-numbering scheme of 10. Hydrogen 

atoms have been omitted for clarity. Selected bond lengths [Å] and angles [°]: 

In1-Cl1 2.366(10), In1-N1 2.221(10), In1-N2 2.160(7), In1-N3 2.266(11), In1-

N4 2.205(10), N1-C1 1.314(14), N1-C6 1.375(13), N2-C1 1.335(14), N2-C7 

1.459(15), N3-C4 1.475(11), N4-C3 1.415(16), C1-C8 1.467(16), C2-C5 

1.506(15). 

N1In1N2 60.1(3), N3In1N4 60.5 (4), N1In1Cl1 109.2(3), N2In1Cl1 102.9(3), 

N3In1Cl1 108.9(3), N4In1Cl1 99.8(3), N1C1N2 116.1(10), N3C2N4 106.7(9), 

N1C1C8 123.8(10), N4C2C5 129.9(12). 

The complex of 10 crystalized from n-hexane in the monoclinic space group 

C1/c1 with four molecules in the unit cell. The molecule geometry as well as 

the atom-numbering scheme is shown in figure 15. The selected bond 

distances and angles are also shown above. The indium atom is a five-

coordinated center with two amidinates and one chlor atom. The In1Cl1 bond 

distance is [2.366(10) Å ], which can be comparable the with In-Cl bond 

distance in bis(amidinato)indium halide complexes [InCl([N(Cy)2CBut)2][21], 
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[2.405(10) Å ); and InCl[(N(C6H3Pri
2-2,6)2CH)2][32], [2.357(1) Å ]. Comparing 

the In1Cl1 bond distance with a number of inorganic In(III) complexes, we see 

that it is shorter than that in InCl52- [2.415(12) Å ][49], [InCl4(H2O)2]- [2.485(2) Å ] 

[50]. Comparing it with the In-Cl bond distance in neutral complexes, it is in a 

good agreement with InCl3.2Ph3P [2.377(5) Å ][51] and  [2.394(1) Å ].[57] In 

organoindium complexes, which are strongly distorted TBP, this value is 

higher for [(CH3)2InCl]2 [2.673(9) Å ], [2.954(6) Å ] and [3.450(9) Å ].[58] 

Comparing the In-N bond distances in two chelating amidinates, it is noticed 

that two of the In-N bond distances are longer that the others, which are in 

axial position, and the other two are in equatorial positions as expected. It 

seems that there is less delocalization of backbones of the amidinates, as the 

N-C distances among each of NCN groups apparently differ from each other. 

The In-N bonds distances as well as the N-C bond distances are slightly 

longer that those described in InCl[(N(C6H3Pri
2-2,6)2CH)2] ][32], due to using 

steric phenyl groups instead of hydrogen atom attaching to the NCN fragment. 

The bite angles are almost the same in both amidinate groups (N1In1N2 

(60.1(3)°), N3In1N4 (60.5 (4)°) and this value correlate with the values 

obtained from similar experiments.[32] The nitrogen centers of the amidinate 

groups are almost coplanar with the sum of the angles 359.9° and 352.4° for 

N1 and N2 respectively. The phenyl substituents are also coplanar with the 

sum of the angles 359.8° and 359.7°. The N1In1N4 angle (113.4(4)°) deviate 

from the 120° which can be explained by Bent rule. [54][55] The N1In1Cl1 

(109.2(3)°) and N4In1Cl1 (99.8(3)°) angles deviate from the ideal angle and 

are larger than expected.  
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3 Reactions of the five coordinated indium complexes of type R2InX (R = 

R”NCR’NR”, R” = dipp, ipr, R’ = Phenyl, X = Br, Cl) 

3.1 Reaction of, In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br,  

 In[(dipp)NC(Ph)N(dipp)]2Br  and In[(dipp)NC(Ph)N(dipp)]2Cl with 

potassium 

After synthesizing the five-coordinated indium amidinates and possessing 

different substituents on the nitrogen atoms, it was time to reduce these 

compounds with an appropriate reducing agent to obtain the corresponding 

indium clusters. In this project the selected reducing agent was potassium. 

Finely divided potassium metal was added to the indium amidinate compound 

and suspended in toluene and heated under reflux for several days.  

Unfortunately the attempts were unsuccessful. Using bulky substituents around 

the indium center made the approach of two indium atoms and the overlap of 

their orbitals impossible. (equations 23-25) 

By performing the 1H-NMR und 13C-NMR spectroscopy it is revealed that the 

products possess only the NMR resonance of the substrate five-coordinated 

indium complexes. 
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                 (25) 

 

 

There is still additional work to be performed in this field. Choosing other 

effective reducing agents such as potassium graphite or changing the 

substituents to the less bulky ones may affect the resulted products.   

 

3.2 Reaction of In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br,  

In[(dipp)NC(Ph)N(dipp)]2Br  and In[(dipp)NC(Ph)N(dipp)]2Cl with 

Ganacnac 

The ligands of β-diketiminates do have a large application in lots of the 

reactions in the field of chemistry. They can be easily synthesized by the 

condensation reaction of the acetyl acetone with aniline or diisopropylaniline 

derivates, they are soluble in the most of the organic solvents and can be 

crystalized very fast.[59] The metals of the group 13 have a special place in the 

developing the chemistry of the stabilized β-diketiminate trieles.[60][61] By 

reaction of the lithium-β-diketiminate with GaI and addition of the Potassium 

to the mixture for the reduction, the Ga (I)- β-diketiminate ligands are 

synthesized. The Ga (I) center is very reactive, though because of the 

shielding effect of the diisopropyl groups, it is well stabilized. These ligands 

and their orbitals are very similar to the N-heterocyclic carbenes (NHC) and 

can undergo the similar reactions. The Ga (I) heterocyclic ligands can 

undergo a series of the complex building reactions with transition metals. 

[62][63] 

In this part of the research the focus of the work was to isolate compounds 

with Ga-In binding by reacting Ganacnac and the five coordinated indium 

ligands having dipp or isopropyl groups. 
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The crystals of 7, 9 and 10 were suspended in toluene and were treated with 1 

equivalent Gananac dissolved in toluene at -78°C.) (equations 26-28)The 

mixtures were allowed to warm up to the room temperature and stir over night. 

After removing of all the volatiles under vacuum the residues were extracted 

once with n-hexane and once with toluene.  
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Unfortunately all the attempts were unsuccessful. One of the limitations on the 

synthesis was the bulky steric groups attaching to both of the ligands. By 

comparing the 1H-NMR and 13C-NMR of the resulted solutions with the 

substrates, it is revealed that the substrates remained unchanged and no new 

reaction has taken place. No new isolated crystals were obtained in all of 

these reactions. 
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3.3 Reaction of In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br (7) with AgCF3SO3 

The next step was to react the R2InX (R = R”NCR’NR”, R” = iPr, R’ = Phenyl, X 

= Br), which is less steric hindered, with silver trifluoromethanesulfonate or 

silver triflate.  

By reaction of In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br with AgCF3SO3 in 1:1 

stoichiometry in toluene at -78 °C and allowing the mixture to warm up to the 

room temperature and stir over night, a milky-yellow suspension with a grey-

black precipitation was obtained. The Schlenk flask was protected from light all 

the time. (equation 29) 

 

 

     (29) 

                 7                                                                            11 

After removing of all the volatiles under vacuum the residue was extracted 

with THF. Pale yellow crystals of the 11 were isolated from the THF fraction at 

-35 °C with the yield of 54%. 
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3.3.1 Spectroscopic characterization of 11 

There are two peaks found for the hydrogen atoms of the phenyl groups. The 

multiplet peak for the hydrogen atoms in ortho position are found at the range 

of δ = 7.26-7.24 with the intensity of 4. The peaks for the hydrogen atoms of 

the phenyl groups in meta- and para- positions are seen at the range of δ = 

7.08-7.07, which are characteristics for the aromatic groups. Characteristic 

peak for the isopropyl groups are seen as a septet peak at δ = 3.7 with the 

intensity of 4 and as a doublet peak for the CH(CH3)2 groups at δ = 1.52 with 

the intensity of 24. By comparing the resulted 1H-NMR with the data resulted 

from the 1H-NMR of the similar complex In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br 

we notice that the peaks are shifted to the high field in the complex with the 

triflate ligand. That is due to the different electronegativity of the triflate group 

in comparison with the bromide atom. 

The 13C-NMR-spectrum of 11 shows two signals for the NCN carbon atom and 

for that of ipso-carbon in aromatic ring at δ = 173.8 and δ = 154.5 respectively. 

The aromatic ortho-, meta- and para carbon atoms are found at δ = 127.1, δ = 

126.9 and δ = 126.7. The peak for the CF3 group can not be seen properly and 

is hidden among the peaks of solvent (toluene) between δ = 125.2 and δ = 

128.1. Additionally one peak is found for the CHMe2 at δ = 46.9 and one peak 

for the CHMe2 at δ = 24.0 as expected for the 13C-NMR spectrum of the 

isopropyl groups. 
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3.3.2 Crystal structure of In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2SO3CF3 (11) 

 

Figure 16 Molecule structure and atom-numbering scheme of 11. Hydrogen 

atoms and solvent molecule have been omitted for clarity. Selected bond 

lengths [Å] and angles [°]: 

In1N1 2.240(5), In1N2 2.180(4), In1N3 2.175(4), In1N4 2.231(4), In1O1 

2.240(4), N1C1 1.323(7), N2C1 1.339(7), N3C2 1.328(7), N4C2 1.335(7), 

N1C7 1.465(7), N2C8 1.447(7), N3C6 1.473(7), N4C5 1.469(7), O1S1 1.469 

(7), O2S1 1.421(6), O3S1 1.418(5), S1C9 1.806(11), F1C9 1.315(11), F2C9 

1.321(12), F3C9 1.359(12). 

N1In1N2 60.6(2), N2In1N3 60.8 (2), N1In1N4 164.4(2), N1C1N2 113.7(5), 

N3C2N4 113.8(4), O1In1N1 95.3(2), O1In1N4 97.1(2)  

The In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2SO3CF3 (11)crystalized from THF in the 

monoclinic space group P 21/n with four molecules in the unit cell with one 

molecule THF per unit. The molecule geometry as well as the atom-

numbering scheme is shown in figure 16. The selected bond distances and 

angles are also shown above. The indium atom is coordinated in a distorted 

trigonal bipyramidal manner with two chelating amidinates and one triflate 

group. Studying the In-N bonds, it is seen that two of In-N bonds (In1N1 

[2.240(5) Å ], In1N4 [2.231(4) Å]) are longer than the other bonds (In1N2 
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[2.180(4) Å ], In1N3 [2.175(4) Å ]). The former are in axial position and the 

latter in equatorial one.[45]  

Comparing these bonds with those in 7, it is noticed that the bonds in 7 are 

slightly longer than in 11. The reason is likely due to more electronegativity of 

the triflate in comparison with the bromine atom. The elongation of the indium-

nitrogen bonding can be explained by the bent rule. [54][55] The s-character will 

be more distinctive towards electropositive atoms and therefore we notice 

more p-character towards In-N bindings. The In1O1 bond distance [2.240(4) Å 

] is shorter than In1Br1 bond distance in 7 [2.528(1) Å ] as expected. N1In1N4 

angle (164.4(2)°) in 11 is about 2° larger than that in 7 (162.9(2)°). The bite 

angles N1In1N2 (60.6(2)°) and N3In1N4 (60.8(2)°) are exactly the same as in 

the In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br complex (N1In1N2 (60.8(2)°) and 

N3In1N4 (60.6(2)°). The planarity of the phenyl groups are confirmed by the 

sum of the angles (360° and 359.9°).  
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4 Subvalent organic indium complexes 

 Subvalent organic indium complexes possess fascinating characteristics. Uhl 

and Cowley synthesized the alkyl substituted indium tetrahedranes In4R4 [(R 

= C(SiMe3)3, C(SiMe2Et)3, C(SiMe2 Bu)3, C(SiMe2 Pr)3, C(SiMe2Ph)3, 

C(SiMeEt2)3), Si(SiMe3)3, which was directly generated from the reaction of 

monovalent InCl or InBr with the corresponding Lithium compounds. (equation 

30) [64] [65] [66][67] 

         (30) 

 

 

In the same way pentamethylcyclopentadienyl indium (InCp*) was isolated. 

These complexes can be sublimated easily and occur as monomers in gas 

phase. (equation 31)[11] 

 

                              (31) 

These complexes act as very good precursors for the low valent indium 

compounds and can be used for new transition metal complexes.[68] 

 

In this part of the work the focus of the research is to react the InCp* with the 

6 and 8 to obtain the corresponding low valent Indium complexes.
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4.1 Reaction of InCp* with 6 and 8 

The InCp* was dissolved in toluene. 1 equivalent 6 was dissolved in toluene. 

The two solutions were added at -78 °C under argon flow. (equation 32) The 

mixture is then allowed to warm up to the ambient temperature and stir over 

night. At the next day the mixture was black which showed that 

disproportionation occurred and indium metal was precipitated. All the 

volatiles were then removed under vacuum and the remaining residue was 

first extracted with n-hexane and then with toluene solvents. The two resulted 

fractions were reduced and the pale-yellow solutions were kept at -35 °C for 

several months. The 1H-NMR and 13C-NMR spectroscopy were done with the 

n-hexane-fraction. 

 

 

    (32) 

                     6                                                                       12 

            

By comparing the 1H- NMR and 13C-NMR spectrum of the 12 with those of 7, 

it is noticed that the results are identical with a very slight low field shift for the 

spectrum of 12, which can be caused by having OH group instead of bromide 

at the indium atom. The peak for the OH group can be seen as a wide peak at 

δ = 4.38. Unfortunately the crystals of 12 could not be measured.  
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4.1.1 Spectroscopic characterization of 12  

The 1H-NMR-spectrum of 12 shows the characteristic signals for the hydrogen 

atoms of phenyl ring. For the hydrogen atoms in the ortho-position the peak is 

seen at the range of δ = 7.27-7.26 with the intensity of 4 in form of a multiplet. 

The other peak for the hydrogens in meta- and para- positions is found at the 

range of δ = 7.10- 7.04 in form of a multiplet with the intensity of 6. The peak 

for the OH group is found at δ = 4.38 as wide singlet with the intensity of one. 

The characteristic peaks for isopropyl groups are found as one septet and one 

doublet. The septet is found at δ = 3.50 with the intensity of 4 and the doublet 

is found at δ = 1.33 with the intensity of 24. The data resulted correlate well with 

the data obtained from 1H-NMR of 7. 

The 13C-NMR-spectrum of 12 shows a signal for NCN carbon atom at δ = 

167.4 and one for the ipso-carbon at δ = 140.5. The aromatic ortho-, meta- 

and para carbon atoms are found at δ = 125.7, δ = 126.9 and δ = 127.9. 

There is one peak found for CHMe2 at δ = 46.9 and one peak for the CHMe2 

at δ = 24.3.  
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In another reaction InCp* was dissolved in toluene. 1 equivalent of 8 was 

dissolved in toluene. The two solutions were added at -78 °C under argon 

flow. (equation 33) The mixture is then allowed to warm up to the ambient 

temperature and stir over night. All the volatiles were then removed under 

vacuum and the remaining residue was first extracted with n-hexane and then 

with toluene solvents. The two resulted fractions were reduced and the yellow 

solutions were kept at -35 °C for several months. The 1H-NMR and 13C-NMR 

spectroscopy were done with the both fractions. It is shown that the resulted 

products are the same as substrates and no new reaction has taken place. 

                      (33) 
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5 Conclusion 

By the reaction of lithium amidinates with InCl3 and InBr3 the new five and six 

coordinated indium amidinate complexes of type R2InX (R = R”NCR’NR”; R’ = 

Ph, R” = SiMe3, iPr, dipp; X = Br, Cl) and R3In(R = Me3SiNCPhNSiMe3) are 

synthesized and characterized.  

 

In[SiMe3NC(Ph)NSiMe3]3 (3) 

 

In[SiMe3NC(Ph)NSiMe3]2Br (4)                      In[SiMe3NC(Ph)NSiMe3]2Cl (5)                                      

       

 

In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br (7) 
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In[(dipp)NC(Ph)N(dipp)]2Br (9) 

 

 

 

 

In[(dipp)NC(Ph)N(dipp)]2Cl 10 

Figure 17 

Using different bulky substituents at the nitrogen atoms helps to stabilize the 

crystal structure of these indium amidinate complexes.  

By reacting silver triflate with the In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br (7) 

complex the bromide can be substituted with the triflate (SO3CF3) group 

through nucleophilic reaction by sustaining the oxidation state of the indium 

atom. (figure 18) 
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In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2SO3CF3 (11) 

Figure 18 

Trying to reduce the indium amidinates with potassium as well as reacting 

them with Ganacnac was unsuccesseful. In all the reactions the substrates 

stayed unchainged because of the steric hindrance of the bulky groups 

attached to the nitrogen atom. 

By trying to react the lithium amidinate with InCp* in the presence of moist the 

corresponding 5 coordinated indium amidinate 

In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2OH (12) is formed. However the crystals 

were not measurable. 

The chemistry of indium compounds offers an extensive and vast 

undiscovered research area. It would be a challenge to find a suitable 

reduction method for such complexes as well as to synthesize new subvalent 

indium sources. 
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6 Experimental Section 

6. 1 General experimenting conditions, measuring and analyzing methods  

All experiments were carried out under purified argon or in vacuum by using 

schlenk techniques, because of the high sensitivity of the most used 

substances towards air and/or moisture. All the used equipment were heated 

while applying a vacuum by a vacuum pump and then filled with argon. 

Solvents were dried by using usual lab techniques with sodium suspension (n-

hexane, toluene, THF, diethyl ether) and degassed and stored under Argon 

atmosphere prior to use. 

Solution NMR spectral data were collected on a Bruker Advance II 400 and a 

Bruker Advance III 600 with sample changer B-ACS 60. The standard solvent 

used was C6D6 (1H, 13C). Chemical shifts are reported in ppm downfield from 

SiMe4 and were calibrated to the residual proton signal of the deuterated 

solvent. 

For the single-crystal X-ray diffraction suitable crystals were mounted with 

perfluorated polyether oil on the tip of a glass fiber and cooled immediately on 

the goniometer head. Data were collected with Mo (K) radiation with STOE 

IPDS I Diffractometer. Structures were solved with the program SHELXTL (PC) 

and refined.[69] All non-hydrogen atoms were refined anisotropically. All 

hydrogen atoms bound to carbon atoms were included as riding model with 

fixed isotropic U values in the final refinement. Program Diamond 3.1f with the 

application POV-Ray for windows version 3.6 was used for graphic epictions. 
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6.1.1 Lithium hexamethyldisilazide [70] 

1.62 g (10.05 mmol) hexamethyldisilazanide was dissolved in 15 mL n-hexane 

in a schlenk flask and cooled to -78°C. 4.02 mL (10.05 mmol, 2.5 M in n-

hexane) n-butyl lithium was added drop wise with stirring. After warming up the 

mixture to the ambient temperature, the milky-white suspension was allowed to 

stir overnight. All the volatile components were removed under vacuum. 1 was 

used for the next experiment without further work-up. 
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6.1.2 Li[SiMe3NC(Ph)NSiMe3] [71][72] 

The white powder of 1 was suspended in 20 mL diethyl ether and 1.00 eq (1.04, 

10.05 mmol) benzonitril was added dropwise through a syringe at -78 °C with 

stirring. After warming up to the ambient temperature, the orange-brown 

mixture was allowed to stir over night. The solution was used directly for the 

next step. 

 

 

 

           1                                                                                                       2 

                                                                                                       270.45 g/mol 
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6.1.3 In[SiMe3NC(Ph)NSiMe3]3 

 2.70 g (10.0 mmol) of 2 were dissolved in 15 mL of diethyl ether and cooled to 

-78 °C. 1/3 Equivalents of InCl3 (0.73 g, 3.35 mmol) were dissolved in 15 mL of 

diethyl ether and the solution was added drop wise with stirring to the cooled 

solution. After warming up to ambient temperature the orange suspension was 

allowed to stir overnight, further. All volatiles were removed under oil pump 

vacuum. The residue was first extracted with 15 mL n-hexane, then with 15 mL 

toluene. Pale yellow crystals of 3 formed from the n-hexane-fraction at -30°C; 

yield 3.16 g (0.4 mmol, 43 %) 

 

 

 

 

 

                   2                                                                                3 

                                                                                            

Elemental analysis for C39H69InN6Si6 (905.45 gmol-1): calcd (%) C 50.60, H 

7.57, N 9.57; found: C 50.17, H 6.76, N 10.97. 

1
H-NMR (400 MHz, C6D6): δ [ppm] = 7.47 (m, 6 H; o-Ph-H), 6.96 (m, 9 H; m-

Ph-H/p-Ph-H), 0.15 (s, 54 H; SiMe3)  

13
C NMR (100.56 MHz, C6D6) δ = 181.3 (NCN), 141.5 (ipso-Ph-C), 128.3 (p-

Ph-C), 127.7 (m-Ph-C), 126.2 (o-Ph-C), 2.9 (SiMe3). 
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6.1.4 In[SiMe3NC(Ph)NSiMe3]2Br  

2.70 g (10.0mmol) of 2 were dissolved in 15 mL of diethyl ether and cooled to 

-78 °C. 1.00 eq. (3.5 g, 10.05 mmol) of InBr3 was dissolved in 15 mL of diethyl 

ether and the solution was added dropwise with stirring to the cooled solution. 

After warming up to ambient temperature the orange suspension was allowed 

to stir overnight, further. All volatiles were removed in vacuum. The white 

residue was first extracted with 15 mL n-hexane, then with 15 mL toluene. Pale 

yellow crystals of 4 were formed from the toluene-fraction at -35°C, yield 1.4 g 

(1.9 mmol, 15 %) 
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Elemental analysis for C26H46BrInN4Si4 (721.74 gmol-1): calcd (%) C 31.79, H 

4.72, N 5.70; found: C 32.80, H 4.89, N 6.15. 

1
H NMR (400 MHz, C6D6): δ [ppm] = 7.36 (m, 4 H; o-Ph-H), 6.96 (m, 6 H; m-

Ph-H/p-Ph-H), 0.12 (s, 36 H; SiMe3)  

13
C NMR (100.56 MHz, C6D6) δ = 181.3 (NCN), 141.5 (ipso-Ph-C), 128.2 (p-

Ph-C), 127.7 (m-Ph-C), 127.0 (o-Ph-C), 2.9 (SiMe3). 
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6.1.5 In[SiMe3NC(Ph)NSiMe3]2Cl  

2.70 g (10.mmol) of 2 were dissolved in 15 mL of diethyl ether and cooled to -

78 °C. 0.5 equivalents (1.1 g, 5.04 mmol) of InCl3 were dissolved in 15 mL of 

diethyl ether and the solution was added dropwise with stirring to the cooled 

solution. After warming up to ambient temperature the orange suspension was 

allowed to stir overnight, further. All volatiles were removed under vacuum. The 

white residue was first extracted with 15 mL n-hexane, then with 15 mL toluene 

and finally with 15 mLTHF. Pale yellow crystals of 5 were formed from the THF-

fraction at -35°C, yield 1.5 g (2.2 mmol, 22.2 %) 

 

 

 

 

 

 

 

                   2                                                                               5 

 

Elemental analysis calcd (%) for C26H46ClInN4Si4 (676.15 gmol-1): C 36.70, H 

5.45, N 6.58; found: C 36.59, H 5.44, N 5.82. 

1
H NMR (400 MHz, C6D6): δ [ppm] = 7.13 – 7.12 (m, 4 H; o-Ph-H), 6.97- 6.95 

(m, 6 H; m-Ph-H/p-Ph-H), 0.13 (s, 36 H; SiMe3)  

13
C NMR (100.56 MHz, C6D6) δ = 177.8 (NCN), 137.6 (ipso-Ph-C), 126.5 (p-

Ph-C), 126.4 (m-Ph-C), 126.2 (o-Ph-C), 1.3 (SiMe3). 
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6.1.6 Li[(CH(CH3)2NC(Ph)N(CH(CH3)2)]
 

1.26 g (10.0 mmol) of bis-2,6-diisopropylcarbodiimide were dissolved in 20 mL 

n-hexane in a schlenk flask and cooled to -78°C. 6. mL (10 mmol) of phenyl 

lithium (2.5 M in n-hexane) were added to the solution dropwise with stirring. 

After warming up to the ambient temperature, the white mixture was allowed to 

stir overnight, further. All volatile components were removed under vacuum and 

6 was used for the next step without any work up. 
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CN N

H3C

H3C CH3

CH3

H H + PhLi
hexane

-78 °C

N

N

PhLi

H3C CH3

CH3H3C
H

H



 68 

6.1.7 In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br  

2.1 g (10 mmol) of 6 were suspended in 15 mL toluene and cooled to -78 °C in 

a schlenk flask. The mixture of 3.5 g (1.00 eq., 10.05 mmol) of InBr3 dissolved 

in 15 mL toluene was added dropwise with stirring to the cooled suspension. 

After warming up to ambient temperature the orange suspension was allowed 

to stir overnight, further. All volatiles were removed in vacuum. The white 

residue was first extracted with 15 mL n-hexane, then with 15 mL toluene. Pale 

yellow crystals of 7 were formed from the toluene-fraction at -35°C, yield 1.2 g 

(2.0 mmol, 20 %) 
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Elemental analysis for C26H40BrInN4 (601.34 gmol-1): calcd (%) C 51.76, H 6.68, 

N 9.29; found: C 49.81, H 6.06, N 8.52. 

1
H NMR (400 MHz, C6D6): δ [ppm] = 7.26 – 7.22 (m, 4 H; o-Ph-H), 6.95- 6.64 

(m, 6 H; m-Ph-H/p-Ph-H), 3.5 (sept, 3JH-H= 6.6 Hz, 4H; CHMe2), 1.24 (d, 3JH-

H= 6.4 Hz, 24 H; CH(CH3)2). 

13
C NMR (100.56 MHz, C6D6) δ = 170.4 (NCN), 140.5 (ipso-Ph-C), 127.7 (p-

Ph-C), 126.8 (m-Ph-C), 126.2 (o-Ph-C), 46.8 (CHMe2), 24.4 (CHMe2). 
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6.1.8 In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2SO3CF3 

1.3 mmol (0.78 g) of 7 were dissolved in 10 mL toluene. 1.3 mmol (0.33 g) 

silver trifluoromethanesulfonate were added to this solution at -78 °C. The 

flask was protected against light. The yellow suspension was allowed to warm 

up to room temperature and stir over night. All volatiles were removed from 

the grey-metallic suspension under vacuum. The residue was extracted with 

15 mL THF. By keeping the reduced solution at -30 °C for some days the 

yellow crystals of 11 were obtained, yield 0.5 g (0.7 mmol, 54%). 
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Elemental analysis for C27H38F3InN4O3S (685.19 gmol-1): calcd (%) C 43.59, H 

5.02, N 5.81; found: C 42.69, H 5.29, N 7.19. 

1
H NMR (400 MHz, C6D6): δ [ppm] = 7.26 – 7.24(m, 4 H; o-Ph-H), 7.08- 7.07 

(m, 6 H; m-APh-H/p-Ph-H), 3.7 (sept, 3JH,H = 6.4 H; CHMe2), 1.25 (d, 3JH,H= 

6.3 Hz, 24 H; CH(CH3)2). 

13
C NMR (100.56 MHz, C6D6) δ = 173.8 (NCN), 154.5 (ipso-Ph-C), 127.1 (p-

Ph-C), 126.9 (m-Ph-C), 126.7 (o-Ph-C), 46.9 (CHMe2), 24.6 (CHMe2). 
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6.1.9 Li[(dipp)NC(Ph)N(dipp)]  

1.82 g (5 mmol) of bis-2,6-diisopropylphenylcarbodiimide were dissolved in 20 

mL of n-hexane in a schlenk flask and cooled to -78°C. 4.02 mL (5 mmol) phenyl 

lithium (2.5 M in n-hexane) were added dropwise to the solution with stirring. 

After warming up to the ambient temperature, the mixture was allowed to stir 

overnight, further. All volatile components were removed in vacuum. White-pale 

yellow powder of 8 was used for the next reaction without any work out. 
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6.1.10 In[(dipp)NC(Ph)N(dipp)]2Br 

2.23 g (5 mmol) of 8 were suspended in 15 mL toluene and cooled to -78 °C in 

a schlenk flask. The mixture of 1.78 g (1.00 eq., 5 mmol) of InBr3 dissolved in 

15 mL toluene were added dropwise with stirring. After warming up to ambient 

temperature the orange suspension was allowed to stir overnight. All volatiles 

were removed in vacuum. The yellow residue was first extracted with 15 mL n-

hexane, then with 15 mL toluene. Pale yellow crystals of 9 were formed from 

the n-hexane-fraction at -35°C, yield 2.0 g (2.0 mmol, 41 %) 
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Elemental analysis for C56H73BrInN4 (995.41 gmol-1): calcd (%) C 69.20, H 7.49, 

N 5.21; found: C 68.77, H 8.22, N 4.98. 

1H-NMR (400 MHz, C6D6): δ = 7.69 (d, 3JH−H = 5.95 Hz, 2 H; p-CH(Ph)),  

7.31 (m,8 H, m-CH(Ph)/o-CH(Ph) ), 7.03-7.06 (m, 3JH−H = 7.8 Hz, 4 H; p-

CH(dipp)), 6.94-6.92 (dd, 3JH−H = 7.7 Hz, 8 H; m-CH(dipp)/o-CH(dipp)), 3.40 

(sept, 3JH−H =6.9 Hz, 8 H; CH Me2), 1.39 (d, 3JH−H =6.7Hz, 24 H; CHMe), 

0.95 (d, 3JH−H = 6.7 Hz, 24 H; CHMe). 
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13
C NMR (100.56 MHz, C6D6) δ = 170.8 (NCN), 151.7 (ipso-C), 143.8 (C-

dipp), 138.0 (C-dipp), 134.3 (C-dipp), 128.3 (p-C(Ph)), 127.3 (m-C(Ph)), 126.6 

(o-C(Ph)), 27,9 (CHMe2), 27.6 (CHMe2), 23.7 (CHMe
2
), 23.4 (CHMe2). 
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6.1.11 In[(dipp)NC(Ph)N(dipp)]2Cl 

2.7 g (6 mmol) of 8 were suspended in 15 mL of toluene and cooled to -78 °C 

in a schlenk flask. 1.35 g (6 mmol) of InCl3 were dissolved in 15 mL toluene and 

added to the cooled solution dropwise with stirring. After warming up to the 

ambient temperature the orange suspension was allowed to stir overnight, 

further. All volatiles were removed in vacuum. The yellow residue was first 

extracted with 15 mL n-hexane, then with 15 mL toluene. Pale yellow crystals 

of 10 were formed from the n-hexane-fraction at -35°C, yield 0.9 g (0.9 mmol, 

15 %) 
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Elemental analysis for C62H78BrInN4 (1029.66 gmol-1): calcd (%) C 72.19, H 

7.82, N 5.43; found: C 71.99, H 7.56, N 5.52. 

1H-NMR (400 MHz, C6D6): δ = 7.68-7.29 (m, 10 H; CH(Ph)), 7.04-7.06 (m, 

3JH−H = 8.3 Hz, 4 H; p-CH(dipp)), 6.95-6.69 (d, 3JH−H = 6.3 Hz, 8 H; m-

CH(dipp)/o-CH(dipp)), 3.58 (sept, 3JH−H =7.7 Hz, 4 H; CH Me2), 3.26 (sept, 

3JH−H =6.8 Hz, 4 H; CH Me2), 1.38 (d, 3JH−H =6.0Hz, 24 H; CHMe), 0.90 
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(d, 3JH−H = 6.9 Hz, 24 H; CHMe). 

13
C NMR (100.56 MHz, C6D6) δ = 168.7 (NCN), 160.3 (ipso-C), 145.4 (C-

dipp), 138.0 (C-dipp), 136.7 (C-dipp), 128.4 (p-C(Ph)), 128.0 (m-C(Ph)), 127.7 

(o-C(Ph)), 27,9 (CHMe2), 27.6 (CHMe2), 24.0 (CHMe
2
), 22.4 (CHMe2). 
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6.1.12 In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2OH 

5 mmol (1.25 g) InCp* was dissolved in 15 mL toluene. 5 mmol (1.05 g) 

[PhCN2(dip)2]Li was dissolved in 15 mmol toluene (pale yellow solution) and 

added to the InCp* solution by stirring at -78 °C. The suspension was allowed 

to warm up to the room temperature and stir over night, further. All volatiles 

were removed from the grey suspension. The residue was then extracted once 

with 15 mL n-hexane and once with 5 mL toluene. The solvents of both fractions 

were reduced and the remaining solution were kept at -35 °C for several 

months.  
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                                                                                            538.22 g/Mol 

 

1
H NMR (400 MHz, C6D6): δ [ppm] = 7.26 – 7.22 (m, 4 H; o-Ph-H), 7.10- 7.04 

(m, 6 H; m-Ph-H/p-Ph-H), 4.38 (s, 1H; OH), 3.5 (sept, 3JH-H= 6.4 Hz 4H; 

CHMe2), 1.33 (d, 3JH-H= 6.3 Hz, 24 H; CH(CH3)2). 

13
C NMR (100.56 MHz, C6D6) δ = 167.4 (NCN), 140.5 (ipso-Ph-C), 127.9 (p-

Ph-C), 126.6 (m-Ph-C), 125.7 (o-Ph-C), 46.9 (CHMe2), 24.3 (CHMe2). 
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8. Crystallographic appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Compound: In[SiMe3NC(Ph)NSiMe3]3(3) 

Summenformel C39H69InN6Si6 

(YRV67a) 

Molare Masse [g/mol] 905.36 

Kristallsystem monoklin 

Kristallgröβe [mm3] 0.3 x 0.3 x 0.2 

Temperature [K] 200(2) 

Wellenlänge Mo Kα 0.71073 Å (Graphit Monochromator) 

Raumgruppe C 1/c 

Zelldimension [pm] a= 17.742(4) Å, b= 14.749 (3), c=39.506 (8) 

α= 90.00(0)°, β= 102.89(3)°, γ=90.00(0)° 

V [Å3] 10077.29 (387)  

Z 8 

ρ(calcd.)[g/cm3] 835.802 

μ[mm-1] 0.643 

F(000) 3824 

2Θmax[°] 28.13 

Refl. gemessen 41154 

Refl. unabhängig 23247 

Refl. beobachtet 17244 

Indexbereich   h 

                             k 

                             l 

-23 →23 

-19 →19 

-52 →52 

Daten/Parameter/Restraints 17244/973/2 

GOF 0.930 

Final R [I>2s(I)] 0.0525 

Final w R2 [I>2s(I)] 0.1275 

Final R [alle Daten] 0.0759 

Final w R2 [alle Daten] 0.1178 

max/min Restelektronendichte [e/ Å3] 0.816/-1.047 

 

Compound: In[SiMe3NC(Ph)NSiMe3]2Br (4) 

Summenformel C26H52BrInN4Si4 

(YRV60) 

Molare Masse [g/mol] 727.81 

Kristallsystem triklin 

Kristallgröβe [mm3] 0.37 x 0.30 x 0.15 

Temperature [K] 200(2) 



 2 

Wellenlänge Mo Kα 0.71073 Å (Graphit Monochromator) 

Raumgruppe P1̅ 

Zelldimension [pm] a= 12.161 (2), b= 13.014 (2), c=13.460 (3) 

α= 67.62(3)°, β= 75.13(3)°, γ=66.89(3)° 

V [Å3] 1797.26(83) 

Z 2 

ρ(calcd.)[g/cm3] 1.34481 

μ[mm-1] 1.923 

F(000) 752 

2Θmax[°] 30.43 

Refl. gemessen 21589 

Refl. unabhängig 17488 

Refl. beobachtet 11004 

Indexbereich   h 

                             k 

                             l 

-17 → 17 

-18 →18 

-19 →19 

Daten/Parameter/Restraints 17488/649/3 

GOOF 0.676 

Final R [I>2s(I)] 0.0426 

Final w R2 [I>2s(I)] 0.1007 

Final R [alle Daten] 0.0796 

Final w R2 [alle Daten] 0.1205 

max/min Restelektronendichte [e/ Å3] 1.101/-1.475 

 

 

Compound: In[SiMe3NC(Ph)NSiMe3]2Cl (5) 

Summenformel C26H46ClInN4Si4 

(YRV28) 

Molare Masse [g/mol] 677.3 

Kristallsystem monoklin 

Kristallgröβe [mm3] 0.36 x 0.26 x 0.12 

Temperature [K] 200(2) 

Wellenlänge Mo Kα 0.71073 Å (Graphit Monochromator) 

Raumgruppe P 21/n 

Zelldimension [pm] a= 10.689 (2), b= 31.922 (6), c=11.526 (2) 

α= °, β= 116.48(3)°, γ= (3)° 

V [Å3] 3520.24(144) 

Z 4 



 3 

ρ(calcd.)[g/cm3] 1.27788 

μ[mm-1] 0.904 

F(000) 1408 

2Θmax[°] 30.546 

Refl. gemessen 29179 

Refl. unabhängig 9957 

Refl. beobachtet 4802 

Indexbereich   h 

                             k 

                             l 

-17 → 15 

-45 →44 

-16 →16 

Daten/Parameter/Restraints 9957/338/0 

GOOF 0.799 

Final R [I>2s(I)] 0.0665 

Final w R2 [I>2s(I)] 0.1585 

Final R [alle Daten] 0.1253 

Final w R2 [alle Daten] 0.1844 

max/min Restelektronendichte [e/ Å3] 1.719/-3.351 

 

 

Compound: In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2Br (7) 

Summenformel C26H38BrInN4 

(YRV132) 

Molare Masse [g/mol] 601.33 

Kristallsystem triklin 

Kristallgröβe [mm3] 0.41 x 0.34 x 0.15 

Temperature [K] 200(2) 

Wellenlänge Mo Kα 0.71073 Å (Graphit Monochromator) 

Raumgruppe P1 

Zelldimension [pm] a= 10.144 (2), b= 10.670 (2), c=13.308 (4) 

α= 90.00(0)°, β= 95.7(3)°, γ=90.75(3)° 

V [Å3] 1425.82(52) 

Z 2 

ρ(calcd.)[g/cm3] 1.40056 

μ[mm-1] 0.696 

F(000) 612 

2Θmax[°] 30.51 

Refl. gemessen 17201 

Refl. unabhängig 7884 



 4 

Refl. beobachtet 3822 

Indexbereich   h 

                             k 

                             l 

-14 → 14 

-14 →15 

-18 →18 

Daten/Parameter/Restraints 7884/298/0 

GOOF 0.842 

Final R [I>2s(I)] 0.662 

Final w R2 [I>2s(I)] 0.1785 

Final R [alle Daten] 0.1276 

Final w R2 [alle Daten] 0.1497 

max/min Restelektronendichte [e/ Å3] 1.688/-2.096 

 

 

Compound: In[(dipp)NC(Ph)N(dipp)]2Br (9) 

Summenformel C62H78BrInN4 

(YRV101) 

Molare Masse [g/mol] 1074.01 

Kristallsystem monoklin 

Kristallgröβe [mm3] 0.34 x 0.26 x 0.20 

Temperature [K] 200(2) 

Wellenlänge Mo Kα 0.71073 Å (Graphit Monochromator) 

Raumgruppe C 1 2/c1 

Zelldimension [pm] a= 23.825 (5), b= 10.362 (2), c=26.225 (4) 

α= 90.00(0)°, β= 116.64(3)°, γ=90.00(0)° 

V [Å3] 5786.99(250) 

Z 4 

ρ(calcd.)[g/cm3] 1.23265 

μ[mm-1] 1.138 

F(000) 2248 

2Θmax[°] 30.54 

Refl. gemessen 33082 

Refl. unabhängig 8765 

Refl. beobachtet 5086 

Indexbereich   h 

                             k 

                             l 

-34 →34 

-14 →14 

-37 →37 

Daten/Parameter/Restraints 8765/316/0 

GOOF 0.844 



 5 

Final R [I>2s(I)] 0.0416 

Final w R2 [I>2s(I)] 0.0845 

Final R [alle Daten] 0.0877 

Final w R2 [alle Daten] 0.1000 

max/min Restelektronendichte [e/ Å3] 1.259/-1.611 

 

 

Compound: In[(dipp)NC(Ph)N(dipp)]2Cl (10) 

Summenformel C26H78ClInN4 

(YRV95) 

Molare Masse [g/mol] 1029.55 

Kristallsystem monoklin 

Kristallgröβe [mm3] 0.37 x 0.2 x 0.16 

Temperature [K] 200(2) 

Wellenlänge Mo Kα 0.71073 Å (Graphit Monochromator) 

Raumgruppe C 1/c1 

Zelldimension [pm] a= 23.927 (3), b= 10.3138 (13), c=26.1496(17) 

α= 90.00(=)°, β= 116.939(15)°, γ= 90.00(0)° 

V [Å3] 5752.92(133) 

Z 4 

ρ(calcd.)[g/cm3] 1.18862 

μ[mm-1] 0.497 

F(000) 2176 

2Θmax[°] 30.456 

Refl. gemessen 33733 

Refl. unabhängig 8697 

Refl. beobachtet 6478 

Indexbereich   h 

                             k 

                             l 

-34 → 34 

-14 →14 

-37 →35 

Daten/Parameter/Restraints 8697/316/0 

GOOF 0.966 



 6 

Final R [I>2s(I)] 0.0645 

Final w R2 [I>2s(I)] 0.1520 

Final R [alle Daten] 0.0855 

Final w R2 [alle Daten] 0.1621 

max/min Restelektronendichte [e/ Å3] 3.412/-1.519 

 

Compound: In[(CH(CH3)2NC(Ph)N(CH(CH3)2]2SO3CF3 (11) 

Summenformel C35H54F3InN4O5 

(YRV136) 

Molare Masse [g/mol] 814.7 

Kristallsystem monoklin 

Kristallgröβe [mm3] 0.520 x 0.380 x 0.202 

Temperature [K] 200(2) 

Wellenlänge Mo Kα 0.71073 Å (Graphit Monochromator) 

Raumgruppe P 21/n 

Zelldimension [pm] a= 9.7436 (14), b= 14.206 (2), c=29.265 (4) 

α= 90.00(=)°, β= 97.25(2)°, γ= 90.00(0)° 

V [Å3] 4018.40(99) 

Z 4 

ρ(calcd.)[g/cm3] 1.34656 

μ[mm-1] 0.696 

F(000) 1696 

2Θmax[°] 30.40 

Refl. gemessen 34391 

Refl. unabhängig 11072 

Refl. beobachtet 5308 

Indexbereich   h 

                             k 

                             l 

-13 → 13 

-20 →20 

-41 →41 

Daten/Parameter/Restraints 11072/450/0 

GOOF 0.886 
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Final R [I>2s(I)] 0.713 

Final w R2 [I>2s(I)] 0.1505 

Final R [alle Daten] 0.1464 

Final w R2 [alle Daten] 0.1778 

max/min Restelektronendichte [e/ Å3] 1.697/-0.706 
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