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Abstract

Since its introduction over 40 years ago algebraic K-theory, which provides powerful
invariants, still remains hard to compute. The subject of this work is the construction of an
isomorphism between relative algebraicK-groups and relative algebraic cyclic homology in
low dimensions, for certain nilpotent ideals. This isomorphism generalizes the Theorem of
Goodwillie [Goo86] concerning rational algebras and provides a more accessible alternative
to topological cyclic homology for the computation of algebraic K-groups.

Following roughly the strategy of Goodwillie, the proof is structured into several parts
of varying interdependencies.

First, we construct a natural isomorphism between group homology and Lie ring homol-
ogy of certain associated groups and Lie rings. This represents an integral generalization
of a Theorem of Pickel [Pic78] concerning nilpotent groups and also provides a strategy for
an integral version of the Theorem of Lazard [Laz65] concerning p-valued groups, which
both considered homology with rational coefficients. The theory provides a bridge in form
of a natural logarithm map from the homology of the multiplicative to that of the additive
K-theory.

Second, we prove that the low-dimensional homotopy groups of an E∞-space can be
identified with the primitive part of its homology by using an improved version of the
Hurewicz map. This represents a variant of a Theorem of Beilinson [Bei14] linking both
objects up to isogeny. We apply this to the E∞-space of relative K-theory.

Similarly by using an additive analogue we compute the primitive part of the homology
of the Lie algebra homology of matrices as cyclic homology. This can be considered as an
integral generalization of the Theorem of Loday, Quillen [LQ84] and Tsygan [Tsy83].

Combining the single steps we are constructing the desired isomorphism between K-
theory and cyclic homology and also compare it with the negative Chern character.

Alongside the proofs we provide a comprehensive collection of required abstract tools
of simplicial homotopy theory.

As an application of the main theorem we compute the lower relative K-groups of
truncated polynomial rings over a subring of the rationals. This shows that our Theorem
can be used to obtain new results in the computation of K-groups.



Zusammenfassung

Seit ihrer Einführung vor mehr als 40 Jahren bleibt dieK-Theorie, als Lieferant mächtiger
Invarianten, schwer zu berechnen. Thema der vorliegenden Arbeit ist die Konstruktion
eines Isomorphismus’ zwischen relativer algebraischer K-Theorie und relativer algebrais-
cher zyklischer Homologie in niedrigen Dimensionen für gewisse nilpotente Ideale. Dieser
Isomorphismus verallgemeinert den Satz von Goodwillie [Goo86] über rationale Algebren
und bietet eine einfacher zugängliche Alternative zur topologischen zyklischen Homologie
für die Berechnung algebraischer K-Gruppen.

Der Beweis orientiert sich grob an der Strategie von Goodwillie und kann in verschiedene
Teile gegliedert werden, die mehr oder weniger unabhängig voneinander sind.

Zunächst konstruieren wir einen natürlichen Isomorphismus zwischen Gruppen- und
Lie Ring-Homologie für gewisse assoziierte Gruppen und Lie Ringe. Dieser bildet eine
ganzzahlige Verallgemeinerung eines Satzes von Pickel [Pic78] über nilpotente Gruppen
und bietet gleichzeitig eine Beweisstrategie des Satzes von Lazard über p-bewertete Grup-
pen. Diese beiden Sätze treffen lediglich Aussagen für rationale Koeffizienten. Die Theorie
bildet eine Brücke in Form einer natürlichen Logarithmusabbildung von multiplikativer
in additive K-Theorie.

Darüber hinaus zeigen wir, dass die Homotopiegruppen eines E∞-Raums in niedrigen
Dimensionen mit dem primitiven Teil seiner Homologie identifiziert werden kann. Dies ist
eine Variante eines Satzes von Beilinson [Bei14], welcher beide Objekte bis auf Isogenie
in Verbindung setzt. Wir wenden dies für den E∞-Raum der relativen K-Theorie an.

Mittels einer additiven Version dieses Satzes berechnen wir, dass der primitive Teil der
Lie Algebren-Homologie von Matrizen mit der zyklischen Homologie übereinstimmt. Dies
bildet eine integrale Verallgemeinerung des Satzes von Loday, Quillen [LQ84] und Tsygan
[Tsy83].

Das Zusammenspiel der verschiedenen Teilschritte ermöglicht schließlich die Konstruk-
tion des gewünschten Isomorphismus zwischenK-Theorie und zyklischer Homologie. Weit-
erhin vergleichen wir diesen mit dem negativen Chern Charakter.

Im Rahmen der einzelnen Beweisschritte stellen wir außerdem eine beachtliche Samm-
lung abstrakter Werkzeuge aus der simplizialen Homotopietheorie zusammen.

Als Anwendungsbeispiel berechnen wir die ersten relativen K-Gruppen abgeschnittener
Polynomringe über einem Teilring der rationalen Zahlen. Dies zeigt, dass unser Satz neue
Möglichkeiten zur Berechnung der K-Gruppen eröffnet.
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1 Introduction

1.1 Algebraic K-theory

Algebraic K-theory appears in various mathematical fields, such as algebraic geometry,
number theory and algebraic topology. The subject arose from the construction of the
Grothendieck group K0 of the category of projective modules, which encodes important
information like the class group. While explicit algebraic constructions for lower K-groups
could be achieved quite soon, it was a long search for the right definition of higher K-
theory. It ended with Quillen’s introduction of the plus construction for the classifying
space of the general linear group, which required sophisticated topological techniques.
The optimism after Quillen’s computation of all the K-groups of a finite field [Qui72] did
not last very long, as one realized the difficulty of calculating higher K-groups. Like in
lower dimensions, there are strong links between higher K-groups and number theoretic
problems. The Vandiver conjecture for example is equivalent to the knowledge of certain
K-groups of the integers. Another example is the long exact localization sequence for alge-
braic K-theory, which is an important tool in Iwasawa theory. Starting with the sequence
in dimensions 0 and 1, also the higher K-groups become more and more important.

1.2 Comparison with cyclic homology

As the K-groups itself remained mysterious, one tried to compare K-theory to simpler
invariants. It began in 1965 with the Hattori-Stallings trace map K0(A) −→ A/[A,A],
that could be extended to a map from the whole K-theory to Hochschild homology by
Dennis in 1976. While it recovers some information for finite coefficients, e.g. when applied
to number rings [KL02], it is a poor invariant for rational coefficients. In 1985 Connes
[Con85] introduced cyclic homology as a non-commutative variant of de Rham cohomology
by taking account of the canonical action of the circle on the Hochschild complex. At
the same time Loday-Quillen [LQ84] and independently Tsygan [Tsy83] showed that the
primitive part of rational Lie algebra homology of matrices is cyclic homology. Guided
by Quillen’s [Qui69a] characterization of rational homotopy groups as the primitive part
of homology and the philosophy that the group homology is related to the homology of
its associated Lie algebra, Goodwillie proved in [Goo86] that the relative K-theory of a
nilpotent ideal in a rational algebra coincides with its cyclic homology.

While cyclic homology is built as the homotopy orbits of the circle action on the
Hochschild complex, one can similarly consider the homotopy fixed points, which leads to

1



Chapter 1. Introduction

the construction of negative cyclic homology. Karoubi [Kar87] constructed the negative
Chern character as a lift of Dennis’ trace map to negative cyclic homology, which canon-
ically maps to Hochschild homology. Moreover Connes operator B provides a natural
map from cyclic homology to negative cyclic homology, which can be imagined as a norm
map and is an isomorphism in Goodwillie’s setting. Cortiñas-Weibel [CW09] showed that
Goodwillie’s isomorphism composed with the negative Chern character coincides with B,
in other words there is a commutative diagram

K∗(A, I)

ch− ''

∼
HC∗−1(A, I)

Bo
��

HC−∗ (A, I)

While Goodwillie’s proof worked fine for rational algebras, there was still need for a
comparison theorem that worked for algebras over finite fields. This was the starting
point for a completely new theory.

1.3 Topological cyclic homology

Waldhausen [HKV+02] discovered a connection of stable A-theory, which is a generaliza-
tion of K-theory, and stable homotopy theory. Motivated by his “calculus of functors”,
Goodwillie conjectured that Dennis’ trace map lifts to a map to topological Hochschild
homology THH, which should be weakly equivalent to stable K-theory. Topological
Hochschild homology is constructed analogous to algebraic Hochschild homology by re-
placing the tensor products by smash products of spectra and in the context of the sym-
metric monoidal category of spectra, base change along the initial map from the sphere
spectrum to the Eilenberg-Maclane spectrum of the integers S −→ HZ yields a natural
map from topological Hochschild homology to algebraic Hochschild homology. Like in the
construction of negative cyclic homology, one tried to involve the circle action on THH to
provide a good technique to attack K-theory. This leads to the construction of topological
cyclic homology and the cyclotomic trace map by Bökstedt, Hsiang and Madsen [BHM93].
Finally McCarthy [McC97] proved that it induces an isomorphism from p-completed rel-
ative K-theory for a nilpotent ideal to relative topological cyclic homology.

It must be warned that topological cyclic homology is not obtained by simply taking the
homotopy fixed points of the circle action on THH, but involves a more careful treatment
and the theory of equivariant stable homotopy theory. There are several computations of
K-theory via the cyclotomic trace map leading also to a better understanding of topo-
logical cyclic homology, [HM03], [HM97a], [HM97b] among others, but the latter is still
much more complicated than algebraic cyclic homology and to work with it requires deep
understanding in (equivariant) stable homotopy theory.

2



1.4. Towards an integral version of Goodwillie’s Theorem

1.4 Towards an integral version of Goodwillie’s

Theorem

The reason, why rationally algebraic cyclic homology works fine for computing K-theory,
lies in the fact that the map S −→ HZ becomes an equivalence after rational localization.
In particular rationally we do not need to distinguish between topological Hochschild
homology and algebraic Hochschild homology. More precisely S −→ HZ becomes more
and more connected, the more successive primes we invert, beginning with 2. The same
holds for the map THH(A) −→ HH(A), provided that A is flat over Z. So it seems natural
to wonder, if integrally there is still a connection between K-theory and cyclic homology
in low dimensions. A first attempt into this direction was established by Brun [Bru01],
who used filtrations on topological cyclic homology to prove that after p-completion

Kn(A, I) ∼= HCn−1(A, I), 0 ≤ n < (p− 1)/m− 2,

for an ideal I�A with A and A/I flat over Z and Im = 0. By showing that after truncating
the filtration, the cyclotomic structure becomes trivial, he could establish a natural zig-
zag of weak equivalences to prove the statement. However due to this abstract approach
there is no hint of a direct map that induces this isomorphism.

The present work gives a positive answer to the proposed question in a more general
situation. The main goal of this work is to prove the following Theorem.

Theorem 1.4.1 (Theorem 6.3.22)
Let A be a ring with (p − 1)! ∈ A×, for some prime number p > 1. Suppose A carries a
finite ring filtration A = F0A ⊃ ... ⊃ FNA = 0, such that grFA is flat over Z. Suppose
that there is a subset Y ⊂ A, such that

(i) grFA =
∑

y∈Y Z · [y],

(ii) yn/n! ∈ F1A, for all y ∈ Y ∩ F1A and n ≥ 1.

Then for 1 ≤ n < p− 1 there are isomorphisms inducing a commutative diagram

Kn(A,F1A)

ch−

��

∼
HCn−1(A,F1A)

B
��

HC−n (A,F1A)
iA // HC−n (DF

0 A,D
F
1 A) HC−n (A,F1A),

iAoo

where ch− is the relative negative Chern character, B is Connes’ operator and the two

horizontal maps are induced by the canonical inclusion A
iA
↪−→ DF

0 A into the divisible
closure.

Note that Connes operator B has the same connectivity as Brun’s isomorphism, which
gives another proof for his result. It is moreover worth noting that by following (a mod-
ification of) Goodwillie’s strategy we are taking a completely different approach to the
result. The main improvement in comparison with Brun’s Theorem is, that we loose the

3



Chapter 1. Introduction

dependency of the degree of nilpotency of the given ideal. Apart from that there is no
need for p-completion in our setting.

Note further that every nilpotent ideal in a rational algebra satisfies the hypotheses of
our Theorem and hence Goodwillie’s Theorem is a direct Corollary.

1.5 Outline of the work

While proving the main result several generalizations had to be established, which partly
evolved into a new theory.

Notation and categorial foundations

In chapter 2 we fix the basic notation, that we will use throughout the thesis.

Homology of associated groups and Lie rings

In chapter 3 we are generalizing a Theorem of Pickel [Pic78] linking homology of nilpotent
groups and Lie rings. A lot of effort is required to set up the theory. The theory is inspired
by Lazard’s theory of p-valued groups [Laz65]. The main difference is, that we are using N0-
indexed filtrations and develop an abstract approach, while he is working with valuations
and his proofs have a more computational flavor. Despite that of course his axioms are
slightly different, as our theory is a zero characteristic variant of his mixed characteristic
theory.

The main result of this chapter can be summarized as follows.

Theorem 1.5.1 (Theorem 3.5.2)
Let G ∈ Grp and g ∈ Lie carrying filtrations F with grFG and grFg flat over Z.

If G and g are associated, then for every left/right module M over D̂F
0 (Z[G])

λ∼= D̂F
0 (UZ(g))

carrying a compatible module filtration F , there is a natural isomorphism

Ĥ∗(G,M) ∼= Ĥ∗(g,M).

We introduce the notion of associated groups and Lie rings in Definition 3.5.1 and also
give several examples of associated groups and Lie rings.

Proposition 1.5.2 (Proposition 3.5.5 and Remark 3.5.6)
For X ∈ Set, the free (abelian) group XZ and the free (abelian) Lie algebra Lie(ZX) are
associated via

λ : D̂Γ
0Z[XZ]

∼−→ D̂Γ
0UZ(Lie(ZX)), x 7−→ exp(x).

Proposition 1.5.3 (Proposition 3.5.7)
Let A ∈ Ass carrying a complete filtration F , such that grFA is flat and A = F1A.
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Then giving G = 1 +A ≤ (A+)× and g = A the induced filtrations, there is an isomor-
phism

λA : D̂F
0 Z[1 + A]

∼−→ D̂F
0 UZ(A), 1 + a 7−→ exp ◦sA ◦ log ◦iA(1 + a).

Moreover the following holds.

(i) λA is natural in A.

(ii) Let x ∈ A such that xn/n ∈ A, for all n ≥ 1. Then λA(1 + x) = 1 + x.

(iii) G = 1 + A and g = A are associated via λA, if there is a subset X ⊂ A, such that

a) grFA =
∑

x∈X Z · [x].

b) xn/n! ∈ A, for all x ∈ X and n ≥ 1.

We want to mention, that by our approach to develop the theory from scratch, we are
reproving several well-known results on the way. Worth mentioning is the Theorem of
Poincaré, Birkhoff and Witt for Lie algebras over the integers 3.3.6 or the Theorem of
Ado 3.3.16. Moreover there are a lot of slight generalizations of well-known results by
using well-known techniques (like e.g. the Artin-Rees theory for the proof of Proposition
3.1.8). We will point out at each single step, which parts are new and which are already
known.

E∞-spaces and their homotopy groups

Following Beilinson [Bei14], the main purpose of chapter 4 is to verify the two homotopy
theoretical tools below. We moreover introduce the category I of injections, that is used
to construct E∞-spaces as algebras over the I-operad of monoids that are commutative
up to homotopy and also plays an important role in the subsequent chapter.

Proposition 1.5.4 (Proposition 4.3.10)
Let k ∈ CRing with (p− 1)! ∈ k×, for some prime number p > 1.

Let X ∈ dg(k-Mod) with Xn = 0, for all n < c, for some c ≥ 0.
Then the map below is an isomorphism, for all 0 ≤ n < pc.

HnX
ι1−→ PHn(Com1X) := ker

(
Hn(Com1(X))

δ∗ //

(η×id)∗+(id×η)∗
// Hn(Com1(X ×X))

)
.

Here δ is the diagonal map and 0
η−→ X is the initial map of chain complexes.

Proposition 1.5.5 (Corollary 4.3.13)
Let X be a (c− 1)-connected E∞-space, for some c > 0.

Suppose H∗(X,Z)
∼−→ H∗(X, k), where k = Z[1/(p− 1)!], for some p > 1.

Then the Hurewicz map induces an isomorphism, for all 0 ≤ n ≤ min{cc,p, 2p+ c− 4}
(cf. Proposition 4.3.1),

h = ηX − 1 : πnX
∼−→ PHn(X, k) := ker

(
Hn(X, k)

δ∗ //

(η×id)∗+(id×η)∗
// Hn(X ×X, k)

)
,
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Chapter 1. Introduction

where X
δ−→ X ×X is the diagonal and 1

η−→ X is the unit map.

Beilinson proves this in every dimension but only up to isogeny. So his and our results
are generalizations in different directions of Quillen’s [Qui69a] description of the rational
homotopy groups as the primitive part of homology.

Cyclic homology and the Lie algebra homology of matrices

In chapter 5 we are first recalling the definition and most important facts of cyclic ho-
mology.

Roughly following Aboughazi-Ogle [AO94] the main result is to prove a generalization
of the Theorem of Loday-Quillen and Tsygan.

Theorem 1.5.6 (Theorem 5.4.20)
Let A ∈ k/Ring be flat with (p− 1)! ∈ A×.

Then the map φ induces isomorphisms in dimensions 0 ≤ n < p− 1

Hλ
n−1(A)

∼−→ PHn(gl∞A, k) = ker

(
Hn(gl∞A, k)

δ∗ //

(η×id)∗+(id×η)∗
// Hn(gl∞A× gl∞A, k)

)
.

Here gl∞A
δ−→ gl∞A × gl∞A is the diagonal and 0

η−→ gl∞A is the initial Lie algebra
homomorphism.

Moreover Connes’ operator B and the negative Chern character for Hopf algebras induce
a commutative diagram

HC∗−1(A)

��

B // HC−∗ (A)

Hλ
∗−1(A) ∼ // PH∗(gl∞A, k) �

� // H∗(B∗Uk(gl∞A)) ch−// HC−∗ (Uk(gl∞A)) // HC−∗ (M∞A)

trace

OO

Aboughai-Ogle give a rational proof of the Theorem of Loday-Quillen-Tsygan, which
is different from the original one and adapts better to an integral generalization. How-
ever there are several steps in their proof that are trivial rationally but require deeper
thoughts for the integral variant. The most important parts are the verification, that the
symmetric group action is trivial on homology in low dimensions (see Corollary 5.4.5) and
the following stability result, which uses the former result and explicit computations of
the homology of the symmetric groups.

Proposition 1.5.7 (Proposition 5.4.9)
Let A ∈ k/Ring be flat with (p− 1)! ∈ A×, for some p > 1.

Then H∗(glr−1A, k) −→ H∗(glrA, k) is (min(r, p)− 2)-connected, for all r ≥ 1.

It is also worth noting, that Theorem 5.4.20 is independent of the characteristic of the
ground ring k. As far as we know, there is no result for the positive characteristic case in
present literature.
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The commutativity of the square in Theorem 5.4.20 is established by following Cortiñas-
Weibel to construct the negative Chern character for Hopf algebras. While they were only
interested in the rational case, they did not care, if the proofs are also going through
integrally. In fact they do and so this section is more or less an import of their results
into our notation. In particular there is no claim for originality here.

Multiplicative vs. additive K-theory

Following Quillen [Qui71a] we begin chapter 6 by defining multiplicative and additive
K-theory via plus constructions for simplicial groups and for simplicial Lie algebras as
well. Using a slightly different technique this was already done by Pirashvili [Pir85] a
long time ago, but recently has found new interest in the context of operads (see [Liv99]
and [CRS04]). Following [Lod98] we are likewise constructing the Volodin constructions
parallel in the multiplicative and additive situation, which allows us to develop the two
theories in perfect analogy. In both cases the plus construction of the Volodin construction
can be identified with the relative K-theory and techniques of the multiplicative theory
can easily be adapted to the additive one. Using the category of injections, we explicitly
construct a plus-construction for BGL(A), that has a natural E∞-structure (however we
found out later, that this is not new). Finally the interplay of the tools established in the
chapters before allows us to prove the main theorem.

Appendix: Simplicial homotopy theory

In chapter 7 we are collecting the results of abstract simplicial homotopy theory and
fixing the notation, that we need. The few given proofs are due to ourselves, but they are
probably well-known in literature. Therefore let us emphasize at this point, that we do
not claim the presented results to ourselves. We unfortunately could not find a reference,
that takes account of everything we need.

Appendix: Simplicial homotopy theory

Same also holds for most parts of chapter 8. So let us point out, which parts are new. We
do not know any reference for

Proposition 1.5.8 (Proposition 8.1.10)
Let k ∈ CRing and A ∈ CAT(I, k-Ass), for some I ∈ Cat.

Then there is a natural map of simplicial k-modules

hocolim
I

B(k,A+, Y ) −→ B(k, hocolim
I

A+, Y ), Y ∈ (colim
I

A+)-Mod,

which is a weak equivalence, if BI is contractible and Ai is a flat k-module, for all i ∈ I.

It plays an important role in the identification of the relative additive Volodin con-
struction with the homology of the corresponding simplicial Lie algebra (cf. Proposition
6.2.8).
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Chapter 1. Introduction

Other important tools are the Whitehead Theorems for simplicial groups and Lie alge-
bras. We call it that way, because they are in perfect analogy to the well-known Theorem
of Whitehead for spaces/simplicial sets. Even the proof in the group case is not new as it
is adapted from a similar result of Quillen for profinite groups [Qui69b]. The innovation
in the case of simplicial Lie algebras is the observation that it works in exactly the same
way, when using derived Lie algebra homology, a definition of which we have not found
in current literature. The technical core of the Whitehead Theorems is the Connectivity
Proposition for spectral sequences 8.4.6. While it has strong similarity to Zeeman’s The-
orem [Zee57] and its generalizations [HR76], we do not know any reference, that states it
in this form.
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2 Notation and categorial
foundations

2.1 Categories

In this document a category C is a class of objects Obj(C) together with (homo-)morphism
sets C(X, Y ), for each pair of objects X, Y ∈ C. If X = Y , we also use the shorter notation
C(X) = C(X,X). A category is called small, if its objects form a set, otherwise it is called
large. We will abreviate large categories by curly letters and small ones by (capital) latin
letters.

Example 2.1.1
In what follows, we list the most important examples of categories, that appear here.

(i) Set, the category of sets with maps as homomorphisms. This may be the simplest
example of a category that is not small.

(ii) Grp (Ab), the category of (abelian) groups with group homomorphisms.

(iii) Ring (CRing), the category of (commutative) rings.

(iv) R-Mod,Mod-R = Rop-Mod, (R, S)-Mod = (R ⊗ Sop)-Mod with R, S ∈ Ring, the
categories of left, right and bimodules.

(v) The category Cat of small categories with functors as morphisms.

If the homomorphism “sets” carry more structure or more generally, if a particular
category C is enriched over another one, we will write C(X, Y ) the object of morphisms
from X to Y .

Example 2.1.2 (i) The category Ab is enriched over itself. For two abelian groups
X, Y ∈ Ab, we call Ab(X, Y ) the set of homomorphisms, while Ab(X, Y ) is the
abelian group of homomorphisms.

(ii) For two small categories X, Y ∈ Cat, we call Cat(X, Y ) the category of functors
from X to Y with natural transformations as morphisms.

For example Cat(1, Y ) is the category of morphisms Y0 −→ Y1, whose morphisms
are commuting squares.

9



Chapter 2. Notation and categorial foundations

We also want to talk about functor categories with target in a large category. To keep
notation simple and coherent with everything said before, we introduce CAT as the con-
glomerate of all (in particular the large) categories. Of course we want the morphisms
from one category to another to be functors between them. But these do not form a set,
so we cannot talk about CAT as a category 1. Using Grothendieck’s method one can come
around this problem by enlarging our universe and call CAT a category in our enlarged
universe. We do not want to go more in detail, but want to use this sloppy notation to
keep things simple. Further details about can be read in any book about category theory
(e.g. [ML98]). With this notation we can also talk about the following category.

Example 2.1.3
For I ∈ Cat and C ∈ CAT, we also denote by CAT(I, C) the category of functors from I
to C with natural transformations as morphisms.

If I was not small, the natural transformations would not form a set. In particular
CAT(I, C) would not be a category in this case.

2.2 Limits and colimits, ends and coends

We will also introduce some general notation for limits and colimits in arbitrary categories.
For I ∈ Cat and C ∈ CAT, let X ∈ CAT(I, C).

• We denote by limX = limi∈I X(i) its limit in C, if it exists. If the category Iop

is filtered, we will also use the notation lim←−i∈I X(i) = limX. We use the letters

limX
πi−→ X(i) for the canonical morphisms, where i ∈ I. If C is (finitely) com-

plete, i.e. has limits over small (finite) categories, and limits can be constructed
functorially, we have an adjunction

CAT(I, C)(constX, Y ) = C(X, limY ),

where constX is the constant functor, sending i ∈ I to X and every morphism to
the identity on X. Then the natural transformation (πi)i∈I defines the counit of

the adjunction. Moreover, given a natural transformation constX
f−→ Y , we call

(fi)i∈I = limi∈I fi : X −→ limY the morphism induced by the universal property of
the limit.

• If I ∈ Cat is discrete, i.e. has no non-trivial morphisms, then
∏

i∈I X(i) = limX
is called a product. A morphism in C is called a projection, if it is one of the
canonical morphisms corresponding to a product (i.e. to a limit over a discrete
category). The product of a functor X indexed by a finite discrete category (i.e. set)
{1, ..., n} will be denoted by X1 × ...×Xn or simply X1 ×X2, if n = 2. For a tuple

of morphisms (C
fi−→ Xi)1≤i≤n, its morphism induced by the universal property is

denoted by
(f1, ..., fn) : C −→ X1 × ...×Xn.

1Other authors avoid this problem by also allowing the morphisms to be proper classes. What we called
a category, they call a locally presentable category.
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We will also use “×” as a functor C × C −→ C. So in this notation we have

f1×f2 = (f1◦π1, f2◦π2) ∈ C(X1×X2, Y1×Y2), fi ∈ C(Xi, Yi), Xi, Yi ∈ C, i = 1, 2.

The product over a constant functor constX indexed by a discrete category S ∈ Set
is called power and denoted by XS. If C has functorial powers, we get a natural
adjunction

Setop(C(X,C), Y ) = C(X,CY ), C ∈ C.

• If I = 1→ 2← 3 and X ∈ CAT(I, C), then X1×X2X3 = limX is called a pullback
and a square

X4

��

// X1

��
X3

// X2

is called cartesian, if the canonical map X4
∼−→ X1 ×X2 X3 is an isomorphism.

• If I = 1 //// 2 , then kerX = limX is called a kernel of the morphism pair.

• A terminal object is a limit of the empty category and denoted by ∗, if it exists.
For X ∈ C we let X

ε−→ ∗ denote the unique morphism.

Dually we will also introduce analogous notation for colimits.

• We denote by colim X = colim i∈I X(i) its colimit in C, if it exists. If the category
I is filtered, we will also use the notation lim−→i∈I X(i) = colim X. We use the letters

X(i)
ιi−→ colim X for the canonical morphisms, where i ∈ I. If C is (finitely)

cocomplete, i.e. has colimits over small (finite) categories, and colimits can be
constructed functorially, we have an adjunction

C(colim X, Y ) = CAT(I, C)(X, constY ).

Then the natural transformation (ιi)i∈I defines the counit of the adjunction. More-

over, given a natural transformationX
f−→ constY , we call colim i∈I fi : colim X −→

Y the morphism induced by the universal property of the limit.

• If I ∈ Cat is discrete, i.e. has no non-trivial morphisms, then
∐

i∈I X(i) = colim X
is called a coproduct. A morphism in C is called a inclusion, if it is one of the
canonical morphisms corresponding to a coproduct (i.e. to a limit over a discrete
category). The coproduct of a functor X indexed by a finite discrete category (i.e.
set) {1, ..., n} will be denoted by X1+...+Xn or simply X1+X2, if n = 2. For a tuple

of morphisms (Xi
fi−→ C)1≤i≤n, its morphism induced by the universal property is

denoted by
f1 ∪ ... ∪ fn : X1 + ...+Xn −→ C.

We will also use “+” as a functor C × C −→ C. So in this notation we have

f1+f2 = (ι1◦f1)∪(ι2◦f2) ∈ C(X1×X2, Y1×Y2), fi ∈ C(Xi, Yi), Xi, Yi ∈ C, i = 1, 2.
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The coproduct over a constant functor constX indexed by a discrete category S ∈
Set is called a copower and denoted by SX. If C has functorial copowers, we get a
natural adjunction

C(XC, Y ) = Set(X, C(C, Y )), C ∈ C.

• If I = 1 ← 2 → 3 and X ∈ CAT(I, C), then X1 +X2 X3 = colim X is called a
pushout and a square

X2

��

// X1

��
X3

// X4

is called cocartesian, if the canonical map X1 +X2 X3
∼−→ X4 is an isomorphism.

• If I = 1 //// 2 , then coker X = colim X is called a cokernel of the morphism
pair.

• An initial object is a colimit of the empty category and denoted by ∅, if it exists.
For X ∈ C we let ∅ η−→ X denote the unique morphism.

If initial and terminal object coincide, it is called a zero object and denoted by 0. In
the context of an abelian category, finite products and coproducts coincide and are called
biproducts. These will be denoted with the symbol “⊕” and the symbol “+” will only
refer to the sum (i.e. the pushout over their intersection) of two subobjects of a third
object in this context.

We will also use the notion of ends and coends.

Definition 2.2.1
Let X ∈ CAT(I × Iop, C) with I ∈ Cat and C ∈ CAT.

(i) The end over X is defined (if existing) as an object
∫
i∈I X(i, i) ∈ C together with

morphisms ∫
i∈I

X(i, i)
πi−→ X(i, i), i ∈ I,

being terminal with the property, that it induces commutative diagrams 2

∫
i∈I

X(i, i)

πj

��

πi // X(i, i)

X(idi,f)

��
f ∈ I(i, j), i, j ∈ I.

X(j, j)
X(f,idj) // X(i, j).

2See also [ML98] IX.5 for more details.
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(ii) Dually the coend over X is defined (if existing) as an object
∫ i∈I

X(i, i) together
with morphisms

X(i, i)
ιi−→
∫
i∈I

X(i, i), i ∈ I,

being initial with the property, that it induces commutative diagrams

X(j, i)

X(idj ,f)

��

X(f,idi) // X(i, i)

ιi
��

f ∈ I(i, j), i, j ∈ I.

X(j, j)
ιj //
∫
i∈I

X(i, i).

Remark 2.2.2
Let X ∈ CAT(I × Iop, C) with I ∈ Cat and C ∈ CAT.

(i) If C is complete, then the end over X is given as the kernel∫
i∈I

X(i, i) �
� //

∏
i∈I

X(i, i)
X(f,-) //

X(-,f)
//
∏
i
f→j

X(i, j).

(ii) If C is cocomplete, then the coend is given as the cokernel

∏
i
f→j

X(i, j)
X(f,-) //

X(-,f)
//
∏
i∈I

X(i, i) // //
∫
i∈I

X(i, i).

Recall the Yoneda-Lemma and its consequences for (co-)ends.

Lemma 2.2.3 (Yoneda)
Let F ∈ CAT(I,Set) with i ∈ I ∈ Cat. Then naturally

F (i)
∼−→ CAT(I,Set)(I(i, -), F ), f 7−→ [I(i, j) 3 g 7−→ F (g)(f)].

Corollary 2.2.4
Let i ∈ I ∈ Cat and C ∈ CAT. Then naturally

(i) CAT(I, C)(X, Y ) =

∫
i

C(X(i), Y (i)), X, Y ∈ CAT(I, C),

(ii) ((X(f))f∈I(i,j))i∈I : X(i)
∼−→
∫
j

X(j)I(i,j), X ∈ CAT(I, C),

(iii)
∐
j∈I

∐
f∈I(j,i)

X(f) :

∫ j
I(j,i)X(j)

∼−→ X(i), X ∈ CAT(I, C).
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Proof.

(i) By definition of the end a tuple f ∈
∏

i∈I C(X(i), Y (i)) is a natural transformation,
if and only if it is an element of the end.

(ii) For every C ∈ C, applying C(C, -) to the given morphism induces a bijection by (i)
and the Yoneda-Lemma. Equivalenlty it is an isomorphism.

(iii) For every C ∈ C, applying C(-, C) to the given morphism induces a bijection by (i)
and the Yoneda-Lemma. Equivalenlty it is an isomorphism.

2

Corollary 2.2.5
Let C ∈ CAT and f ∈ Cat(I, J).

(i) Composition with f induces a functor CAT(J, C) f∗−→ CAT(I, C).

(ii) If C is complete f ∗ has a right adjoint

CAT(I, C)(f ∗X, Y ) = CAT(J, C)(X, f∗Y ),

where f∗Y =
∫
i∈I Y (i)I(-,f(i)) is called the right Kan extension of Y along f .

If f has a left adjoint e, then f∗ = e∗ and we do not require C to be complete.

(iii) If C is cocomplete f ∗ has a left adjoint

CAT(J, C)(f!X, Y ) = CAT(I, C)(X, f ∗Y ),

where f!Y =
∫ i∈I I(f(i),-)X(i) is called left Kan extension of X along f .

If f has a right adjoint g, then f! = g∗ and we do not require C to be cocomplete.

2.3 Symmetric monoidal categories

Definition 2.3.1
Let (C,⊗, E) be a (symmetric) monoidal category.

(i) We call C-Mag the category of C-magmas, whose objects are C-objects M together
with a binary operation µ ∈ C(M ⊗M,M) and whose morphisms are C-morphisms
being compatible with the multiplication morphisms.

(ii) Similarly we call C-Mag1 the category of unital C-magmas, whose objects are

magmas M together with a unit morphism E
η−→M such that µ◦(id⊗η) = µ◦(η⊗id)

is the identity on M and whose morphisms are C-morphisms being compatible with
µ and η.

(iii) We let C-Com ≤ C-Ass ≤ C-Mag and C-Com1 ≤ C-Ass1 ≤ C-Mag1 denote the full
subcategories of commutative magmas and associative magmas.
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(iv) Dually we define the category of (unital) (commutative, associative) C-comagmas as
C-Magop = ((Cop)-Mag)op, ...

(v) For a magma M ∈ C-Mag, we call M-C the category of objects X ∈ C with left

M-action M ⊗ X
λ−→ X whose morphisms are C-morphisms compatible with the

action. If M is unital we moreover require that λ ◦ (η ⊗ id) is the identity on X. In
analogy C-M is the category of objects with right M-action.

Remark 2.3.2
Let (C,⊗, E) be a monoidal category. Suppose C has functorial countable coproducts pre-
served by “⊗”.

Then the following holds.

(i) There is an adjunction

C-Mag(Mag(X), Y ) = C(X,U(Y )),

where Mag(X) =
∐

n>0Mag(n)(X) is the free C-magma, inductively defined by

Mag(1)(X) = X, Mag(n)(X) =
∐

0<i<n

Mag(i)(X)⊗Mag(n−i)(X), n > 1,

and multiplication Mag(X) ⊗ Mag(X)
µ−→ Mag(X) given by the union of the

cannical maps

Mag(p)(X)⊗Mag(q)(X) −→Mag(p+q)(X) −→Mag(X).

(ii) Similarly we have functorial free associative C-magmas, given by

Ass(X) =
∐
n≥1

Ass(n)(X), Ass(n)(X) = X⊗n, n ≥ 1, X ∈ C.

(iii) If (C,⊗, E) is symmetric monoidal, we have a functorial free commutative, associa-
tive C-magmas

Com(X) =
∐
n≥1

Com(n)(X), Com(n)(X) = X⊗n/Σn, n ≥ 1, X ∈ C,

where the symmetric group Σn acts by permutation of the factors using the symmetric
monoidal structure of C.

(iv) For the unital variants, note that there is an adjunction

C-Mag1(E +X︸ ︷︷ ︸
X+:=

, Y ) = C-Mag(X,U(Y )),

and similarly also for Ass and Com. Combining this with the free magma adjunction,
we get free unital functors by

Mag1(X) = E+Mag(X), Ass1(X) = E+Ass(X), Com1(X) = E+Com(X).
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Example 2.3.3
Consider the symmetric monoidal category (k-Mod,⊗k, k), for some k ∈ CRing. Then

(i) Ring = (Z-Mod)-Ass1 and CRing = (Z-Mod)-Com1.

(ii) For R ∈ k-Ass1 we have R-Mod = R-(k-Mod).

(iii) For X ∈ k-Mod the following holds.

a) Ass1(X) =
⊕

n≥0X
⊗n is the tensor algebra.

b) Com1(X) =
⊕

n≥0X
⊗n/Σn is the symmetric algebra.

(iv) We let k-Lie denote the category of Lie algebras over k.

(v) For each N ≥ 1 and each type of algebra we also define the N-nilpotent variants.

For example k-Ass<N ≤ k-Ass is the full subcategory of associative k-algebras A
with AN = 0.
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3 Homology of associated groups
and Lie rings

Goal of this chapter is to establish an isomorphism between integral group homology
and Lie ring homology (see Theorem 3.5.2). This will be the essential tool to link the
multiplicative and additive Volodin constructions in chapter 6. Following ideas of Pickel
[Pic78] and Lazard [Laz65] we are constructing canonical filtrations on group ring and
enveloping algebra and study the structure of the associated graded algebras. Contrary
to the case [Pic78] these filtrations cannot always be obtained as adic filtrations with
respect to the augmentation ideal, as we will later point out. By using Artin-Rees theory,
we use use these filtrations to identify group and Lie ring homology with their completed
variants and then identifying the latter ones.

In this chapter and in the context of k-modules over some commutative ring k ∈ CRing,
the (plain) symbol “⊗” will always stand for the tensor product “⊗k” over this ring k.
In the context of abelian groups, so modules over the integers, this is the tensor product
over Z. Similarly a flat k-module will always be a k-module, that is flat over the ring k,
if it is not explicitly declared flat over some other ring (e.g. the integers).

3.1 Filtered modules

Definition 3.1.1
Let k ∈ CRing.

(i) A (Z-indexed module) filtration F on a module M ∈ k-Mod is a Z-indexed
sequence of submodules

M ≥ ... ≥ F−1M ≥ F0M ≥ F1M ≥ ...

A filtered module is a module together with a distinguished filtration.

(ii) Let M,N ∈ k-Mod carrying filtrations F . A morphism f ∈ k-Mod(M,N) is called
m-equicontinuous, for some m ∈ Z, if

f(FnM) ⊂ Fn+mN, n ∈ Z.

We say f preserves the filtration, if it is 0-equicontinuous.
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Chapter 3. Homology of associated groups and Lie rings

Definition 3.1.2
Let k ∈ CRing and M ∈ k-Mod carrying a filtration F .

(i) F is called exhaustive, if X∞ :=
⋃
n≤0 FnM = M .

It is called negative, if F−1M = 0.

(ii) F is called Hausdorff or separating, if
⋂
n≥0 FnM = 0.

It is called positive, if F0M = M .

(iii) F is called complete, if M
∼−→ lim←−n≥0

M/FnM =: M̂ .

Many other authors define filtrations as sequences of submodules getting larger and
larger for growing index. As most of the filtrations appearing in this chapter are positive,
we decided to define a filtration as a sequence the other way round to reduce the amount
of minus signs.

Let us recall the following elementary result about module filtrations.

Proposition 3.1.3
Let k ∈ CRing and X, Y ∈ k-Mod carrying filtrations F .

Suppose f ∈ k-Mod(X, Y ) is m-equicontinuous, for some m ∈ Z.

(i) If grF∗X
grf
↪−→ grF∗+mY is injective, then X̂∞

f
↪−→ Ŷ∞ is injective.

(ii) If grF∗X
grf
−� grF∗+mY is surjective, then X̂∞

f
−� Ŷ∞ is surjective.

Proof. Let us write Xn = FnX and Yn = FnY for short.

(i) Let ` ∈ Z. Using the exact sequences

0 −→ grFnX −→ X`/Xn+1 −→ X`/Xn −→ 0, n > `,

by induction on n > ` and using the 5-Lemma one shows thatX`/Xn ↪−→ Y`+m/Yn+`

is injective, for all n > `. Hence X̂`

f
↪−→ Ŷ`+m is injective, because limits are left

exact, and thus X̂∞
f

↪−→ Ŷ∞ is injective, because filtered colimits are exact.

(ii) By a similar induction as in (i) one shows that X`/Xn ↪−→ Y`+m/Yn+` is surjective,
for all n > `. Giving the kernel K = ker f the submodule filtration induced by F ,
we get short exact sequences

0 −→ K`/Kn −→ X`/Xn
f−→ Y`/Yn −→ 0, n > `.

As (K`/Kn)n≥` consists of surjections and thus lim←−
1

n>`
K`/Kn = 0, we see that

X̂`

f
↪−→ Ŷ`+m is surjective, for all ` ∈ Z. Using that colimits are right exact it follows

that X̂∞
f
−� Ŷ∞ is surjective.

2

18



3.1. Filtered modules

3.1.1 Filtered algebras

Remark 3.1.4
Let k ∈ CRing.

(i) The discrete filtration on a module M ∈ k-Mod is defined as

FnM =

{
M, n ≤ 0,
0, n > 0.

(ii) If M,N ∈ k-Mod carry filtrations F , the tensor product filtration F ⊗ F on
M ⊗N is defined as

Fn(M ⊗N) =
∑
p+q=n

FpM ⊗ FqN, n ∈ Z,

where by FpM ⊗ Fq we mean its image in M ⊗N under the canonical map 1.

This defines a monoidal structure on the category of filtered k-modules with 0-
equicontinuous homomorphisms.

A crucial tool in the development of the theory is the following elementary observation.

Proposition 3.1.5
Let k ∈ CRing and M,N ∈ k-Mod carry filtrations F .

Then there is a natural epimorphism grFM ⊗ grFN −� grF (M ⊗N).
If moreover grFM or grFN is flat, then it is an isomorphism.

Proof. The natural epimorphism⊕
p+q=n

Mp ⊗Nq −�
∑
p+q=n

Mp ⊗Nq = Fn(M ⊗N), n ∈ Z,

maps Mp ⊗ Nq+1 + Mp+1 ⊗ Nq ⊂ Mp ⊗ Nq into Fn+1(M ⊗ N) and therefore induces the
epimorphism grFM ⊗ grFN −� grF (M ⊗N).

Suppose that grFM is flat and consider the diagram⊕
p+q=n

grFpM ⊗ grFq N

��

//
∏

p+q=n

M/Fp+1M ⊗N/Fq+1N,

grFn (M ⊗N) //
∏

p+q=n

grFn (M/Fp+1M ⊗N/Fq+1N).

OO

The left vertical map is the natural epimorphism just constructed. The lower horizontal
map on the factor (p, q) is induced by the quotient maps M −� M/Fp+1M and N −�

1As this map is not injective in general, this is a bit sloppy.
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Chapter 3. Homology of associated groups and Lie rings

N/Fq+1N with the targets carrying the quotient filtration. Since Fn+1(M/Fp+1M⊗N/Fq+1N) =
0, we also have maps

grFn (M/Fp+1M ⊗N/Fq+1N) −→M/Fp+1M ⊗N/Fq+1N, p+ q = n,

whose product is the right vertical map. The map c is defined as the composite. Let
p, q, p′, q′ ∈ Z with p+q = n = p′+q′. Then by construction the composite π(p′,q′) ◦c◦ ι(p,q)
is zero, if (p, q) 6= (p′, q′), and is induced by the canonical injections grFpM ↪−→M/Fp+1M
and grFq N ↪−→ N/Fq+1N , if (p, q) = (p′, q′). It follows that c is the direct sum over all
maps

grFpM ⊗ grFq N −→M/Fp+1M ⊗N/Fq+1N, p+ q = n,

followed by the natural monomorphism from the direct sum into the direct product. So
to prove that the left vertical map is injective, it suffices to check injectivity for all these
maps. Writing it as the composite

grFpM ⊗ grFq N −→ grFpM ⊗N/Fq+1N −→M/Fp+1M ⊗N/Fq+1N, p+ q = n,

the first map is injective, since grFq N ↪−→ N/Fq+1N is injective and grFpM is flat by as-
sumption. Corollary 3.6.2 (i) implies that also the second map is injective, since grFpM ↪−→
M/Fp+1M is injective and (M/Fp+1)/grFpM

∼= M/FpM is flat by Proposition 3.6.1 (i).
2

Definition 3.1.6
Let k ∈ CRing.

An algebra filtration on a k-algebra2 A is a module filtration, that is preserved by
all structure maps, where k carries the discrete and A ⊗ A carries the tensor product
filtration.

In other words A is an algebra (of the particular type) in the monoidal category of
filtered k-modules with 0-equicontinuous homomorphisms.

3.1.2 Completed Tor -groups

Using the well-known theory of Artin-Rees we compare the Tor groups with their com-
pletions. This is needed later, when we are identifying group and Lie ring homology by
comparing the saturation of group ring and enveloping algebra respecetively.

Definition 3.1.7
Let k ∈ CRing and A ∈ k-Ass1 carrying a positive filtration F with flat grFA. Let
X ∈ Mod-A and Y ∈ A-Mod carrying filtrations F complatible with F on A.

The completed Tor-functor T̂or
A

∗ (X, Y ) is defined as the homology of the completion
of the bar complex

B∗(X,A, Y ) = ( X ⊗ Y
0

X ⊗ A⊗ Y
1

µ⊗1
−1⊗µoo X ⊗ A⊗2 ⊗ Y

2

µ⊗1⊗1
−1⊗µ⊗1
+1⊗1⊗µoo ...oo )

2Here we allow any kind of algebra, e.g. (unital) associative algebras (with augmentation), Lie algebras,
etc.
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3.1. Filtered modules

carrying the tensor product filtration.

Proposition 3.1.8
Let k ∈ CRing and A ∈ k-Ass1 carrying a positive filtration F , such that the associated
Rees ring AF =

⊕
n≥0 FnA is left Noetherian.

Then the following holds.

(i) Â = lim←−n≥0
A/FnA is a flat right A-module.

So TorA∗ (X̂, Y )
∼−→ TorÂ∗ (X̂, Ŷ ), for X ∈ Mod-A and finitely generated Y ∈ A-Mod.

(ii) Suppose that grFA and Â are flat over k. Then

TorÂ∗ (X̂, Ŷ )
∼−→ T̂or

A

∗ (X, Y ), for X ∈ Mod-A and finitely generated Y ∈ A-Mod

with grFY and Ŷ flat over k.

For right Noetherian AF we can consider the opposite ring Aop to obtain the dual result.

Proof. With AF also the quotient AF −� A is left Noetherian.

(i) This is the usual argument. Let N ≤M ∈ A-Mod and suppose M = A·x1+...+A·xr.
We have to show that Â ⊗A N ↪−→ Â ⊗A M is injective. We give M the filtration
induced by F , i.e.

FnM = FnA ·M, n ≥ 0.

Then MF =
⊕

n≥0 FnM = AF ·x1 + ...+AF ·xr, and hence NF =
⊕

n≥0N ∩FnM ≤
MF is finitely generated, because AF is Noetherian. By replacing each such generator
by its homogeneous compronents, we get a finite set of homogeneous generators for
NF

yi ∈ N ∩ FniM, ni ≥ 0, 1 ≤ i ≤ s.

Setting m = max{n1, ..., nr} it follows that

N ∩ Fn+mM =
∑

1≤i≤r

Fn+m−niA · yi ⊂ FnA ·N, n ≥ 0,

which proves that the submodule filtration on N is equivalent to the filtration in-
duced by F . Hence in the commutative diagram

lim←−
n≥0

N/(FnA ·N) // lim←−
n≥0

N/N ∩ (FnA ·M) �
� // lim←−

n≥0

M/(FnA ·M)

Â⊗A N

OO

// Â⊗AM,

OO

the upper left horizontal map is an isomorphism. By using finite presentations (N ≤
M are finitely generated and A is Noetherian), one verifies that the two vertical maps

are isomorphisms. It follows that the lower horizontal map is injective and thus Â
is a flat right A-module.
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Chapter 3. Homology of associated groups and Lie rings

Let X ∈ Mod-A and choose a projective resolution P F
∗

'−→ Y for Y ∈ A-Mod.

Then X̂ ∈ Mod-Â and Â ⊗ P F
∗

'−→ Â ⊗ Y ∼−→ Ŷ is a projective resolution of left

Â-modules, because Â is a flat right A-module. In particular

TorA∗ (X̂, Y ) = H∗(X̂⊗AP F
∗ ) = H∗((X̂⊗ÂÂ)⊗AP F

∗ ) = H∗(X̂⊗Â(Â⊗AP F
∗ )) = TorÂ∗ (X̂, Ŷ ).

(ii) We define the big Rees ring as RFA =
⊕

n∈Z FnA. It is obtained by adjoining the
central element 1 ∈ F−1A = A to the usual Rees ring, which is equal to

⊕
n≥0 FnA

in this notation. In particular also RFA is Noetherian by Hilbert’s basis theorem
3.6.3.

As in (i) we give Y the (Z-indexed) filtration induced by F on A. We will inductively

construct a free resolution W∗
'−→ RFY =

⊕
n∈Z FnY of finitely generated, graded

left RFA-modules, meaning that in particular the differentials preserve the grading.
As Y is generated by some elements y0,1, ..., y0,r0 ∈ Y , we get a surjection

d : W0 := (RFA)r0 −� RFY =: W−1, a 7−→
∑
i

ai · y0,i.

Giving W0 the product filtration of F on each factor A, the map d preserves the

grading. Now having constructed Wm
d−→ Wm−1, for some m ≥ 0, we know that

ker d ≤ Wm is finitely generated, as Wm is finitely generated and RFA is Noetherian.
Replacing each generator by its homogeneous components, ker d is generated by a
finite set of homogeneous elements

ym,i ∈ (Wm)(sm+1,i), sm+1,i ∈ Z, 1 ≤ i ≤ rm+1.

We define Wm+1 = (RFA)rm+1 and give the i-th factor the grading shifted by sm+1,i,
for all 1 ≤ i ≤ rm+1. It follows that

d : Wm+1 −→ Wm, a 7−→
∑
i

ai · ym,i

is a homomorphism of graded left RFA-modules. So by construction W∗
'−→ RFY

is a free resolution as desired.

Now the union

E∗ =
⋃
k≥0

(W∗)
(k) = lim−→((W∗)

(0) ↪−→ (W∗)
(1) ↪−→ ...)

yields a free resolution E∗
'−→ Y of finitely generated left A-modules. Giving Em =

Arm the product filtration, where the i-th factor A carries the shifted filtration
F•+sm,i , we get a complex of filtered A-modules with RF (E∗) = W∗ as graded left
RF (A)-modules. Moreover there is an exact sequence of complexes

0 −→ W∗ −→ W∗ −→ grFW∗ −→ 0, n ∈ Z,

where the left map is induced by the inclusions FkE∗ ↪−→ Fk−1E∗, for k ∈ Z. As a
summary we record the following properties for E∗ −→ Y .
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3.1. Filtered modules

a) E∗
'−→ Y is a finitely generated, free resolution of left A-modules,

b) grFE∗
'−→ grFY is a finitely generated, free resolution of left grFA-modules,

c) Ê∗
'−→ Ŷ is a finitely generated, free resolution of left Â-modules.

Now consider the commutative diagram

B∗(X̂, Â, Ŷ )

��

Tot+B∗(X̂, Â, Ê∗)
'oo

��

' // X̂ ⊗Â Ê∗
o
��

B̂∗(X,A, Y ) Tot+B̂∗(X,A,E∗)
'oo ' // ̂X ⊗A E∗,

As Ŷ and Â are flat over k, B∗(Â, Â, Ŷ )
'−→ Ŷ is a flat resolution of left Â-modules

and so
TorÂ∗ (X̂, Ŷ ) = H∗(X̂ ⊗Â B∗(Â, Â, Ŷ )) = H∗(B∗(X̂, Â, Ŷ )).

As Êm is a free Â-module by c), it follows that B∗(Â, Â, Êm)
'−→ Êm is a homotopy

equivalence, for evey m ≥ 0. Hence the upper right horizontal map is a quasi-
isomorphism by a spectral sequence argument. Moreover, for all m ≥ 0, the map
Bm(X̂, Â, Ŷ )

'←− Tot+Bm(X̂, Â, Ê∗) is a quasi-isomorphism by the Künneth for-

mula, since Ŷ is flat over k. In particular also the upper left horizontal map is a quasi-
isomorphism. Similarly as grFY and grFA are flat over k, B∗(grFA, grFA, grFY )

'−→
grFY is a flat resolution of left grFA-modules and we get quasi-isomorphisms

B∗(grFX, grFA, grFY )
'←− Tot+B∗(grFX, grFA, grFE∗)

'−→ grFX ⊗grFA grFE∗.

Using that grFA and grFY are flat over k, it follows that these maps are isomorphic
to the associated graded of two lower horizontal maps in the diagram above. Hence
they also must be quasi-isomorphisms, as must also be the left vertical map, which
finally proves (ii).

2

3.1.3 Divisible closure and saturation

Following Lazard [Laz65] we introduce the notion of the divisible closure of a filtered
module. Similar to the construction of divided power algebras, this provides the necessary
structure to define logarithm and exponential maps.

Proposition 3.1.9
There is a (Z-indexed) ring filtration D on Q, given by

D0Q = Z, D−nQ =
∑

p prime

p−bn/(p−1)cZ, DnQ = 0, n > 0.

It is the intersection of the (shifted) p-adic filtrations on Q. In other words

DnQ = {x ∈ Q; (p− 1)vp(x) ≥ n, for all prime numbers p}, n ∈ Z.

We call it the divisble filtration.
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Chapter 3. Homology of associated groups and Lie rings

Proof. Let x, y ∈ Z be coprime. Then there are a, b ∈ Z, such that ax+ by = 1 and thus

(xy)−1 = (ax+ by)(xy)−1 = ay−1 + bx−1 ∈ x−1Z + y−1Z.

Hence by induction on r ≥ 1 we get

D−nQ =
∑

p1,...,pr
distinct primes

p
−bn/(p1−1)c
1 · · · p−bn/(pr−1)c

r · Z, n > 0,

= {x ∈ Q; (p− 1)vp(x) ≥ −n, for all primes p}.

Moreover it follows that DmQ ·DnQ = Dm+nQ, for all m,n < 0, proving that D is a ring
filtration with the desired properties.

2

Definition 3.1.10
Let A ∈ Ab carrying a positive filtration F with grFA flat over Z. The discrete filtration
F and the divisible filtration D on Q give rise to two positive tensor product filtrations
F := F ⊗ F and DF := F ⊗D on A⊗Q:

Fn(A⊗Q) = FnA⊗Q, DF
n (A⊗Q) =

∑
m≥0

FmA⊗Dn−mQ, n ≥ 0.

We also use the short notation DF
n (A) = DF

n (A⊗Q), for n ≥ 0.

(i) The divisible closure of A with respect to F is DF
0 (A) and

(ii) the saturation of A with respect to F is its completion with respect to the filtration
induced by F (not by DF ), i.e.

D̂F
0 (A) = lim←−

n≥1

DF
0 (A⊗Q)/DF

0 (A⊗Q) ∩ (FnA⊗Q).

More generally we define F̂n(A ⊗ Q) and D̂F
n (A) as the completions of Fn(A ⊗ Q)

and DF
n (A) with respect to the filtration induced by F , for all n ≥ 0.

Proposition 3.1.11
Let A ∈ Ab carrying a positive filtration F with grFA flat over Z. Defining Fn(grFA) as
the sum of all homogeneous components of degree ≥ n, we obtain a filtration F on grFA
and for all n ≥ 0 a natural isomorphism

DF
n (grFA)� _

��

∼ // grFDF
n (A)� _

��
(grFA)⊗Q ∼ // grF (A⊗Q).

Proof. By definition of the filtrations D on Q and on A ⊗ Q, the upper horizontal map
exists and is onto. The lower horizontal map is an isomorphism, since Q is flat over Z.
The left vertical map is injective by definition of the filtration D. Hence by commutativity
the upper horizontal map must be an isomorphism, too.

2
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3.1. Filtered modules

Proposition 3.1.12
Let A ∈ Ab carrying a filtration F with grFA flat over Z and A = FNA, for some N ≥ 0.

Then the natural map A = FNA⊗D0Q −→ DF
NA −→ D̂F

NA induces isomorphisms:

(i) DF
nA

∼−→ DF
nD

F
NA, for all n ≥ N .

(ii) D̂F
nA

∼−→ D̂F
n D̂

F
NA, for all n ≥ N .

Proof.

(i) Since D0Q = Z and D is a ring filtration, it follows that∑
p,q≥0,
p+q=n

D−pQ⊗D−qQ
∼−→

∑
p,q≥0,
p+q=n

D−pQ ·D−qQ = D−nQ, n ≥ 0, (3.1)

and thus, for all n ≥ N , the composition∑
m≥N

FmA⊗Dn−mQ −→
∑

m,m′≥N

FmA⊗Dm′−mQ⊗Dn−m′Q
∼−→
∑
m≥N

FmA⊗Dn−mQ

is the identity. Hence also the first map is an isomorphism, which is equal to the
map DF

nA −→ DF
nD

F
NA.

(ii) In the commutative diagram

grFDnA // grFDnD̂NA

DngrFDNA
∼ // DngrF D̂NA

o

OO

DngrFA

o

OO

// DnDNgrFA,

o

OO

the vertical isomorphisms are induced by Proposition 3.1.11 and the horizontal iso-
morphism comes from the observation that the graded of an object always coincides
with the graded of its completion. As the lower horizontal map is an isomorphism
by (i), it follows that the upper horizontal map is an isomorphism, which implies
(ii).

2

Proposition 3.1.13
Let A,B ∈ Ab carrying positive filtrations F with grFA, grFB flat over Z.

Then (DF
nA)⊗ (DF

nB)
∼−→ DF⊗F

n (A⊗B), for all n ≥ 0.

Proof. Using the isomorphism (3.1) the map∑
p+q+r+s=n

FrA⊗DpQ⊗ FsB ⊗DqQ
∼−→

∑
r+s+t=n

FrA⊗ FsB ⊗DtQ, n ≥ 0,

is an isomorphism. By definition this is the map (DF
nA)⊗ (DF

nB)
∼−→ DF⊗F

n (A⊗B).
2
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Chapter 3. Homology of associated groups and Lie rings

Lemma 3.1.14
Let p > 1 be a prime number and m ≥ 1.

If m = a0 + a1p+ ...+ arp
r with 0 ≤ ai < p is its unique p-adic expansion, then

vp(m!) =
∑

0≤i≤r

ai(p
i − 1)/(p− 1) = (m− (a0 + ...+ ar))/(p− 1).

In particular (p− 1)vp(1/m!) = a0 + ...+ ar −m ≥ 1−m and thus 1/m! ∈ D1−mQ.

Proof. Any book on number theory/local fields, e.g. [Neu90] Lem. II.5.6.
2

Proposition 3.1.15
Let A ∈ Ass carrying an algebra filtration F . Then logarithm and exponential series define
a natural bijection

log : 1 + F̂n(A⊗Q)
∼−→←− F̂n(A⊗Q) : exp, n ≥ 1,

restricting to a bijection 1 + D̂F
n (A)

∼−→←− D̂F
n (A), for all n ≥ 1.

Proof. Since F is a ring filtration Fn(A ⊗ Q)m ⊂ Fmn(A ⊗ Q), for all m ≥ 0, and thus
the serieses

log(1− x) = −
∑
m≥0

xm

m
, exp(x) =

∑
m≥0

xm

m!
, x ∈ F̂1(A⊗Q)

converge. For the formal power serieses log(1− t), exp(t) ∈ Q[[t]] we have log ◦ exp(t) = t

and exp ◦ log(1−t) = 1−t. Every x ∈ F̂1(A⊗Q) induces a ring homomorphism Q[[t]]
fx−→

F̂1(A⊗Q) sending t to x. By construction of the bijection maps, we get

• log ◦ exp(x) = log ◦ exp ◦fx(t) = fx ◦ log ◦ exp(t) = fx(t) = x,

• exp ◦ log(1− x) = exp ◦ log ◦fx(1− t) = fx ◦ exp ◦ log(1− t) = fx(1− t) = 1− x,

which proves the first part of the statement. By Lemma 3.1.14 we have 1/m! ∈ D1−mQ
and thus also 1/m ∈ D1−mQ and we get

xm/m!, xm/m ∈ DF
mn(A) ·DF

1−m(A) ⊂ DF
n+(m−1)(n−1)(A) ⊂ DF

n (A), x ∈ DF
n (A), n ≥ 1.

This proves that every summand in the serieses 1− exp(x) and log(1−x) is in DF
n (A), for

x ∈ DF
n (A). As we gave DF

n (A) the filtration induced by F (and not by D), convergence
follows from what was shown before.

2

Corollary 3.1.16
Let H ∈ Z-Grp carrying a positive Hopf algebra filtration F .

Then the natural bijection of Proposition 3.1.15 restricts to a bijection

log : ĜF
n (H)

∼−→←− P̂ F
n (H) : exp, n ≥ 1,

where
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• ĜF
n (H) are the degree-n completed group-like elements, given by

ĜF
n (H) = (1 + D̂nH) ∩ ker

(
D̂F

0 (H)
D̂F0 (δ)

//

D̂F0 (η⊗1)·D̂F0 (1⊗η)

// D̂F
0 (H ⊗H)

)
, n ≥ 0,

• P̂ F
n (H) are the degree-n completed primitive elements, given by

P̂ F
n (H) = (D̂nH) ∩ ker

(
D̂F

0 (H)
D̂F0 (δ)

//

D̂F0 (η⊗1)+D̂F0 (1⊗η)

// D̂F
0 (H ⊗H)

)
, n ≥ 0.

Proof. As H is a Hopf algebra, the maps d0 = D̂F
0 (η⊗1), d2 = D̂F

0 (1⊗η) and d1 = D̂F
0 (δ)

are compatible with the multiplication D̂F
0 (µ) on D̂F

0 (H). Hence for x ∈ ĜF
n (H) the

elements d0(x), d2(x) ∈ D̂F
0 (H ⊗H) commute, which implies that

d1(log(x)) = log(d1(x)) = log(d0(x) · d2(x))

= log(d0(x)) + log(d2(x)) = d0(log(x)) + d2(log(x)),

and thus log(x) ∈ P̂ F
n (H). Similarly for x ∈ P̂ F

n (H) also the elements d0(x), d2(x) ∈
D̂F

0 (H ⊗H) commute, which implies that

d1(exp(x)) = exp(d1(x)) = exp(d0(x) + d2(x))

= exp(d0(x)) · exp(d2(x)) = d0(exp(x)) · d2(exp(x)),

and thus exp(x) ∈ ĜF
n (H).

2

Proposition 3.1.17
Let A ∈ Ass carrying an algebra filtration F with A = F1A.

Then there is a natural isomorphism of Lie rings

`A : grF (1 + Â)
∼−→ grFA, [1 + a] 7−→ [a],

where the Lie bracket on the left is induced by the commutators in the group 1 + Â and
the Lie bracket on the right is induced by the Lie bracket on A.

Proof. In degree n ≥ 1 the map `A is given by the bijection

1 + FnA/Fn+1A
∼−→ FnA/Fn+1A, [1 + a] 7−→ [a].

It is a group homomorphism, because

[(1 + a) · (1 + b)] = [1 + (a+ b+ ab)] = [1 + (a+ b)], a, b ∈ FnA.

Now let [1 + a] ∈ grFm(1 + Â) and [1 + b] ∈ grFn (1 + Â) with a, b ∈ Â. Then using the
expansion (1 + a)−1 =

∑
i≥0(−a)i and m,n ≥ 1 we see that

[1 + a, 1 + b] = 1 + ((1 + a)(1 + b)− (1 + b)(1 + a)) · (1 + a)−1(1 + b)−1

= 1 + (ab− ba)(1 + a)−1(1 + b)−1 ≡ 1 + (ab− ba) mod Fm+n+1Â,

which proves that `A is an isomorphism of Lie rings.
2
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Chapter 3. Homology of associated groups and Lie rings

3.2 Hopf algebras

Let us recall the definition and most important basic properties of Hopf algebras.

Definition 3.2.1
A group object in a symmetric monoidal category (C,⊗, E) is an object G together with
5 structure maps

G⊗G µ−→ G, E
η−→ G, G

δ−→ G⊗G, G
ε−→ E, G

ι−→ G,

such that the following identities hold:

(i) µ(id⊗ µ) = µ(µ⊗ id) and µ(id⊗ η) = µ(η ⊗ id) = id, i.e. (G, µ, η) is a monoid.

(ii) (id⊗ δ)δ = (δ ⊗ id)δ and (id⊗ ε)δ = (ε⊗ id)δ = id, i.e. (G, δ, ε) is a comonoid.

(iii) δ and ε are monoid homomorphisms and µ and η are comonoid homomorphisms.

(iv) µ(id⊗ ι)δ = µ(ι⊗ id)δ = ηε.

A homomorphism of group objects consists of a morphism f ∈ C(G,H) being compatible
with all structure maps. We denote by C-Grp the category of group objects in C.

Definition 3.2.2 (i) A Hopf algebra over k ∈ CRing is a group object in the monoidal
category (k-Mod,⊗, k).

We denote by k-Grp = (k-Mod)-Grp the category of Hopf algebras over k.

(ii) A Hopf ring is a Hopf algebra over the integers, i.e. in (Ab,⊗,Z).

3.2.1 Canonical filtrations on Hopf algebras

We are introducing the lower and colower central series. We call them this way, because
they are closely linked to the particular series of groups and Lie rings, when applied to
the case of a group ring resp. enveloping algebra.

Remark 3.2.3
Let k ∈ CRing and H ∈ k-Grp be a Hopf algebra.

(i) As ε is a monoid homomorphism ker ε carries an induced multiplication.

(ii) As η is a comonoid homomorphism coker η carries an induced comultiplication.

(iii) The two operations on ker ε ∼= coker η are not compatible in the sense of Definition
3.2.1 (iii) in general.

Definition 3.2.4
Let H ∈ k-Grp be a Hopf algebra over k ∈ CRing.

(i) We define H̃ as the direct summand ker ε = coker η of H.
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3.2. Hopf algebras

(ii) The lower central series (ΓnH)n≥0 on H is defined as the positive filtration

Γ0H = H, ΓnH = H̃n = im (H̃⊗n
µn−1

−→ H) ⊂ H, n ≥ 1.

The indecomposables of H are defined as Q(H) = coker (H ⊗H ε⊗1−µ+1⊗ε−→ H).

(iii) The co-lower central series (LnH)n≤0 on H is defined as the negative filtration

L1H = 0, L−nH = ker(H
δn−→ H̃⊗n+1) ⊂ H, n ≥ 0.

The primitive elements of H are defined as P (H) = ker(H
η⊗1−δ+1⊗η−→ H ⊗H).

Proposition 3.2.5
Let k ∈ CRing and H ∈ k-Grp. Then naturally

(i) grΓ
1H = H̃/H̃2 ∼−→ Q(H),

(ii) P (H)
∼−→ grL

−1H.

Proof. Consider the two-sided bar construction B•(k,H, k) ∈ s(k-Mod), where k is con-
sidered as a left/right mondule over H via H

ε−→ k. Then the associated complex of alter-
nating face maps B∗(k,H, k) is quasi-isomorphic to the reduced bar complex B̃∗(k,H, k),
which is the quotient obtained by modding out the degenerate summands, so

B̃∗(k,H, k) = (k
ε−ε←− coker η

ε⊗1−µ+1⊗ε←− (coker η)⊗2 ←− ...).

Moroever there is a subcomplex B∗(H̃) ≤ B∗(k,H, k), given by

B∗(H̃) = (k
0←− ker ε

−µ←− (ker ε)⊗2 −µ⊗1+1⊗µ←− ...).

As the composition B∗(H̃) ↪−→ B∗(k,H, k) −� B̃∗(k,H, k) is an isomorphism, the inclu-
sion H̃ = ker ε ↪−→ H induces an isomorphism

grΓ
1H = H1(B∗(H̃))

∼−→ H1(B∗(k,H, k)) = Q(H).

Dually we have a two-sided cobar construction B•(k,H, k) ∈ c(k-Mod), obtained by

exchanging µ for δ and ε for η. Similarly we get quasi-isomorphisms B̃∗(k,H, k)
'
↪−→

B∗(k,H, k)
'
−� B∗(H̃), inducing the isomorphism

P (H) = H1(B∗(k,H, k))
∼−→ H1(B∗(H̃)) = grL

−1H.

2
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Chapter 3. Homology of associated groups and Lie rings

3.2.2 Detecting epimorphisms and monomorphisms

Using ideas of [MM65] Prop. 3.9 we are giving a criterion for a map of algebras and
coalgebras resp. to be surjective and injective resp.

Definition 3.2.6
Let k ∈ CRing. Then the lower and co-lower central series also make sense for associative
algebras/coalgebras.

(i) Let A ∈ k-Ass.
a) The lower central series (ΓnA)n≥0 on A ∈ k-Ass is defined as the positive

algebra filtration

ΓnA = An = im (A⊗n
µn−1

−→ A) ⊂ A, n ≥ 1.

b) A is called nilpotent, if ΓNA = AN = 0, for some N ≥ 0.

c) A is called complete, if A
∼−→ lim←−n≥1

A/ΓnA.

(ii) Dually let C ∈ k-Assop.

a) The co-lower central series (LnC)n≥0 on C ∈ k-Assop is defined as negative
coalgebra filtration

L−nC = ker(C
δn−→ C⊗n+1) ⊂ C, n ≥ 0.

b) C is called conilpotent, if LN C = C, for some N ≥ 0.

c) A is called cocomplete3, if
⋃
n≤1 LnC = lim−→n≤1

LnC
∼−→ C.

We let k-Âss
op
≤ k-Assop and k-Âss

op

1 ≤ k-Assop
1 denote the full subcategories of

cocomplete (unital) associative coalgebras over k.

Remark 3.2.7
For k ∈ CRing, there are adjunctions

k-Mod(U(X), Y ) = k-Âss
op

(X, Âss
op

(Y )) = k-Âss
op

1 (X, Âss
op

1 (Y )),

where Âss
op

(X) =
⊕

n≥1X
⊗n is the cofree cocomplete associative coalgebra.

Proposition 3.2.8
Let k ∈ CRing and f ∈ k-Ass(A,B) with complete A and B.

Then A
f
−� B, if and only if grΓ

1A
grΓ

1 f−� grΓ
1B.

3However some authors call this conilpotence.

30



3.2. Hopf algebras

Proof. If f is surjective, so is its induced map on the quotients of indecomposables

grΓ
1A

grΓ
1 f−� grΓ

1B. Vice versa suppose f̄ is surjective. Consider the commutative square

Ass(grΓ
1A)

��

Ass(grΓ
1 f)
// Ass(grΓ

1B)

��
grΓA

grΓf // grΓB,

where the graded object is taken with respect to the lower central series filtration. With
grΓ

1f also Ass(grΓ
1f) is epimorphic, because tensor powers and direct sums preserve epi-

morphisms. Moreover as grΓA =
⊕

n≥1A
n/An+1 is generated by grΓ

1A = A/A2 = grΓ
1A

and similar for B, the vertical maps are surjective. It follows that also grΓf is surjective.

Hence also A/An
f̄−→ B/Bn is surjective by induction on n ≥ 1, using the exact sequences

0 // grΓ
nA

��

// A/An+1

��

// A/An

��

// 0

0 // grΓ
nB // B/Bn+1 // B/Bn // 0.

By taking the inverse limit, it follows that Â
f̂
−� B̂. As A and B are complete, the

commutative square below implies that A
f
−� B.

A

o
��

f // B

o
��

Â
f̂ // B̂.

2

Remark 3.2.9
Let k ∈ CRing and f ∈ k-Assop(C,D) surjective.

If C is cocomplete, then so is D:

D = f(C) = f(
⋃
n≥1

Cn) =
⋃
n≥1

f(Cn) ⊂
⋃
n≥1

Dn.

Similarly the following proposition is a variant of [MM65] Prop. 3.9.

Proposition 3.2.10
Let k ∈ CRing and f ∈ k-Assop(C,D) with flat D, cocomplete C and flat LnC, for all
n ≤ 0.

Then C
f

↪−→ D, if and only if grL
−1C

grL
−1f

↪−→ grL
−1D.
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Chapter 3. Homology of associated groups and Lie rings

Proof. This is the dual statement to Proposition 3.2.8. If f is injective, so is its restriction
to grL

−1C = L−1C. Vice versa let n ≥ 1. By tensoring the exact sequence

0 −→ L−nC −→ C
δn−→ C⊗n+1,

with itself and using the flatness of L−nC and lim−→n≥0
L−nC

∼−→ C we get an exact

sequence as in the upper row of the diagram below.

0 // L−nC ⊗ L−nC // C ⊗ C (δn⊗id,id⊗δn) // C⊗n+1 ⊗ C × C ⊗ C⊗n+1

0 // L−(n+1) C

∃!δ|

OO

// C

δ

OO

δn+1
// C⊗(n+2).

(id,id)

OO

As the lower row is exact by definition of L−(n+1)C and the right square commutes, we

get a map δ| as on the left. The kernel of the right vertical map is trivial, so ker δ| ∼−→
ker δ = L−1C = grL

−1C. In particular we get a diagram with exact rows

0 // ker δ|

o
��

// L−(n+1) C

��

δ| // L−nC ⊗ L−nC

��
0 // grL

−1C

grL
−1f

��

// C

f

��

δ // C ⊗ C

f⊗f
��

0 // grL
−1D // D

δ| // D ⊗D.

By induction on n ≥ 1 we will prove injectivity of

f |L−n C : L−nC ↪−→ C
f−→ D, n ≥ 1.

This holds for n = 1 by assumption. If it holds for some n ≥ 1, then also

f |L−n C ⊗ f |L−n C : L−nC ⊗ L−nC −→ C ⊗ C f⊗f−→ D ⊗D

is injective, as L−nC and D are flat by assumption. Hence f |L−(n+1) C is injective by the
5-lemma applied to the above diagram, which proves the induction step. As f |L−n C factors

as L−nC
L−n(f)−→ L−nD ↪−→ D, this implies that L−n(f) is injective, for all n ≥ 1. Since

direct limits are exact, it follows that f is injective using the commutative square

lim−→
n≥0

L−nC

o
��

� � // lim−→
n≥0

L−nD

� _

��
C

f // D.

2
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3.3. Lie algebras and enveloping algebras

Corollary 3.2.11
Let k ∈ CRing be integral and f ∈ k-Assop(C,D) with cocomplete and flat C.

Then C
f

↪−→ D, if and only if grL
−1C

grL
−1f

↪−→ grL
−1D.

Proof. Let Q(k) denote the field of fractions of k. Then

0 −→ (grL
−1C)⊗Q(k) −→ C ⊗Q(k)

δ−→ C ⊗ C ⊗Q(k)

is exact, which proves that the vertical maps in the diagram below are isomorphisms

(grL
−1C)⊗Q(k)

o
��

� �
(grL
−1f)⊗Q(k)

// (grL
−1C)⊗Q(k)

o
��

grL
−1(C ⊗Q(k))

grL
−1(f⊗Q(k))

// grL
−1(D ⊗Q(k)).

Moreover (grL
−1f)⊗Q(k) is injective using flatness of Q(k) again. Hence by commutativity

also grL
−1(f ⊗ Q(k)) and thus C ⊗ Q(k)

f⊗Q(k)−→ D ⊗ Q(k) is injective by the preceding
Corollary. In the commutative square

C

��

f // D

��
C ⊗Q(k) �

� f⊗Q(k) // D ⊗Q(k),

the left vertical map is injective by flatness of C and because k ↪−→ Q(k) as k is integral.
Using commutativity f must be injective, too.

2

3.3 Lie algebras and enveloping algebras

We are now introducing the Hopf algebra of an enveloping algebra of a Lie algebra and
construct suitable filtrations.

3.3.1 The enveloping algebra as a Hopf algebra

Proposition 3.3.1
For every Lie algebra g ∈ k-Lie the enveloping algebra Uk(g) becomes a Hopf ring via

(i) δ : Uk(g) −→ Uk(g)⊗ Uk(g), g 7−→ g ⊗ 1 + 1⊗ g, g ∈ g.

(ii) ε : Uk(g) −→ k, g 7−→ 0, g ∈ g.

(iii) ι : Uk(g) −→ Uk(g)op, g 7−→ −g, g ∈ g.
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Chapter 3. Homology of associated groups and Lie rings

Proof. Using the universal property for enveloping algebras the given Lie ring homo-
morphisms on g uniquely extend to the desired ring homomorphisms. Moreover it follows
that

Uk(g× g)
∼−→ Uk(g)⊗ Uk(g), (g, h) 7−→ g ⊗ 1 + 1⊗ h, g, h ∈ g,

and it suffices to check all identities for elements in g.
2

Remark 3.3.2
Let k ∈ CRing. Taking primitive elements induces a functor

k-Grp −→ k-Lie, H 7−→ P (H),

which is the right adjoint of an adjunction k-Grp(Uk(X), Y ) = k-Lie(X,P (Y )), induced
by the adjunction k-Ass1(Uk(X), Y ) = k-Lie(X,U(Y )).

Indeed its unit g
ηg−→ Uk(g) sends g ∈ g to the generator g ∈ Uk(g), which lies in PUk(g)

by construction of the coalgebra structure on Uk(g).

3.3.2 The co-lower central series on the enveloping algebra

The colower central series on an enveloping algebra is closely related to the filtration used
in the Theorem of Poincaré, Birkhoff and Witt, as we will show in this section.

Definition 3.3.3
Let k ∈ CRing and g ∈ k-Lie. We define an negative (associative algebra) filtration E on
the enveloping algebra Uk(g) as the image of the the increasing algebra filtration

E−nAss1(g) = Ass≤n1 (g) :=
⊕

0≤k≤n

g⊗k ⊂ Ass1(g), n ≥ 0,

under the quotient map Ass1(g) −� Uk(g) defining Uk(g).

The following proposition is well-known [Bou98] Chapter I, §2.6. For the convenience
of the reader, we recall its simple proof.

Proposition 3.3.4
For k ∈ CRing and g ∈ k-Lie the following holds.

(i) The filtration E on Uk(g) is exhaustive, i.e. Uk(g) =
⋃
n≤0EnUk(g).

(ii) The natural map g
ηg−→ Uk(g) extends to an epimorphism of commutative k-algebras

ψg : Com1(g) −� grEUk(g).

Proof. Let Ass1(g)
q
−� Uk(g) denote the quotient map.
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3.3. Lie algebras and enveloping algebras

(i) As the filtration Ass≤n1 (g) is exhaustive on Ass1(g) so is E on Uk(g), because⋃
n≥1

E−nUk(g) =
⋃
n≥1

q(Ass≤n1 g) = q(
⋃
n≥1

Ass≤n1 g) = q(Ass1g) = Uk(g).

(ii) We have

η−1
g (E0Uk(g)) = η−1

g (k) = 0, ηg(g) = q(g) = E−1Uk(g),

hence ηg induces a map g −→ grE−1Uk(g), extending to a map of k-algebrasAss1(g) −→
grEUk(g). It can be identified with grEq under the natural isomorphism Ass1(g)

∼−→
grEAss1(g). Moreover

[q(x), q(y)] = [ηg(x), ηg(y)] = ηg[x, y] = q[x, y] ∈ E−1Uk(g), x, y ∈ g,

which implies that Ass1(g) −→ grEUk(g) factors over Com1(g), as Ass1(g) is gen-
erated by g.

2

Proposition 3.3.5
For k ∈ CRing and g ∈ k-Lie we have EnUk(g) ⊂ Ln Uk(g), for all n ≤ 0.

In particular Uk(g) is cocomplete and we get a natural map grEUk(g) −→ grLUk(g).

Proof. By abuse of notation we write δn for the composition

Uk(g)
δ−→ Uk(g)⊗2 δ⊗id−→ Uk(g)⊗3 δ⊗id−→ ...

δ⊗id−→ Uk(g)⊗n
δ⊗id−→ Uk(g)⊗(n+1),

which is a ring homomorphism as δ is one by definition of a Hopf algebra. For x ∈ g we
have

δn(x) =
∑

0≤i≤n

1⊗ ...⊗ x
i
⊗ ...⊗ 1, n ≥ 1,

and using that δn is a ring homomorphism it follows that the composition

Ass≤n1 (g)
q−→ Uk(g)

δn−→ Ũk(g)⊗(n+1),

is zero, for all n ≥ 1. In particular

E−nUk(g) ⊂ ker(Uk(g)
δn−→ Ũk(g)⊗(n+1)) = L-n Uk(g), n ≥ 1.

2

Proposition 3.3.6
Let k ∈ CRing be flat over Z and g ∈ k-Lie a flat Lie algebra, for which there is a
monomorphism into a flat associative k-algebra A ∈ k-Ass 4.

4Such an A always exists, for every flat Lie algebra g, even if k is not flat over Z. Indeed we may take
A = Uk(g), which is flat by Corollary 3.6.2 and the general Theorem of Poincaré, Birkhoff and Witt
3.3.10. However the latter is much more difficult to prove than the special case presented here.

35



Chapter 3. Homology of associated groups and Lie rings

(i) ψg : Com1(g)
∼−→ grEUk(g).

(ii) EnUk(g) = Ln Uk(g), for all n ≤ 0.

Moreover all these are flat k-modules. In particular also Uk(g) is flat over k.

(iii) ηg : g
∼−→ PUk(g).

Proof. By the universal property of the enveloping algebra the identity on A extends to
a surjection Uk(A) −� A+ −� A+/k = A, where A+ = k ⊕ A is the universal unital
k-algebra under A of Remark 2.3.2. By the universal property of cocomplete coalgebras

this map extends uniquely to a homomorphism of coalgebras Uk(A) −→ Âss
op

1 (A) =⊕
n≥0A

⊗n inducing a commuting square

Com1(A)

ψA
����

N // Âss
op

1 (A)

grEUk(A) // grLUk(A) // grLÂss
op

1 (A).

In homogeneous degree n ≥ 0 the map N can be computed as

N(x1 · · ·xn) =
∏

1≤i≤n

δn−1(xi) =
∏

1≤i≤n

(
∑

1≤j≤n

1⊗ ...⊗ xi
j
⊗ ...⊗ 1) =

∑
σ∈Σn

xσ(1) ⊗ ...⊗ xσ(n),

because all summands with at least one tensor factor equal to 1 vanish in A+/k = A.

Hence N is the direct sum of norm maps A⊗n/Σn
Nn−→ A⊗n. The composition (A⊗n)Σn

Nn−→
A⊗n −� (A⊗n)Σn is multiplication by n! and thus is injective, since A is flat over Z.
Hence N is injective and by commutativity we get that ψA : Com1(A)

∼−→ grEUk(A) is
an isomorphism and that grEUk(A) ↪−→ grLUk(A) is injective.

Bringing g into play we have a commutative diagram

Com1(g)� _

��

ψg // // grEUk(g)

��

// grLUk(g)

��
Com1(A)

ψA
∼
// grEUk(A) �

� // grLUk(A),

where the left vertical map is injective, because g ↪−→ A and both are flat k-modules.
Hence ψg is an isomorphism, which proves (i). Furthermore the middle vertical map is
injective. As also the lower right horizontal map is injective, so is the upper right horizontal
map.

Now we use the injectivity of grEUk(g) ↪−→ grLUk(g) to prove (ii). It is equivalent to

En−1Uk(g) ∩ Ln Uk(g) = EnUk(g), n ≤ 0,

which implies

EmUk(g) ∩ Ln Uk(g) = EmUk(g) ∩ Lm+1 Uk(g) ∩ Ln Uk(g) = Em+1Uk(g) ∩ Ln Uk(g)

= ... = En−1Uk(g) ∩ Ln Uk(g) = EnUk(g), m < n ≤ 0,
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3.3. Lie algebras and enveloping algebras

and hence Ln Uk(g) = EnUk(g), for all n ≤ 0, as E is exhaustive. As Com≤n1 (g) ∼=
grEnUk(g) is flat, so is also EnUk(g) by Corollary 3.6.2.

Finally consider the diagram

Com(1)
1 (g)

ψg

∼
// grE−1Uk(g) grL

−1Uk(g)

g
ηg // PUk(g).

o

OO

The upper horizontal map is an isomorphism by (i). The equality on the upper right holds
by (ii). The right vertical map is an isomorphism by Proposition 3.2.5 (ii). As the diagram
commutes, it follows that the lower horizontal map must be an isomorphism.

2

Remark 3.3.7
Proposition 3.3.6 (ii) is false, if k is not flat over Z.

For example let g ∈ Ep-Lie. Then in UEp(g) we have

δ(xp) = (x⊗ 1 + 1⊗ x)p = xp ⊗ 1 + 1⊗ xp, x ∈ g.

Hence xp ∈ PUEp(g)\g, for all 0 6= x ∈ g.

Corollary 3.3.8
Let k ∈ CRing be flat over Z and g ∈ k-Lie flat over k.

Then every g ↪−→ P (H) with flat H ∈ k-Grp extends to Uk(g) ↪−→ H.
If moreover k is integral, the flatness condition on H can be skipped.

Proof. As g maps to the primitive part of H, the unique extension Uk(g) −→ H is
a homomorphism of Hopf algebras. The map g ↪−→ H is a monomorphism into a flat
associative algebra and thus by Proposition 3.3.6 (ii) the underlying coalgebra of Uk(g)
satisfies the hypotheses of Proposition 3.2.10. Hence Uk(g) ↪−→ H is injective, since g =
grE−1Uk(g) = grL

−1Uk(g) = PUk(g) ↪−→ P (H) is injective by assumption.
If k is integral, then it injects into its field of fractions Q(k). By flatness of g and Q(k)

we get a monomorphism g ↪−→ g⊗Q(k) ↪−→ H⊗Q(k), which extends to a monomorphism
Uk(g) −→ H −→ H ⊗Q(k) by what we have just shown. In particular also the first map
Uk(g) ↪−→ H is injective.

2

Proposition 3.3.9
Let k ∈ CRing be integral and flat over Z.

Then every Z>0-graded, flat Lie algebra g ∈ k-Lie satisfies the hypothesis of Proposition
3.3.6

Proof. There is a derivation δ on g, sending an element of homogeneous degree m > 0 to
m · x. Indeed we get

δ[x, y] = (m+ n) · [x, y] = m · [x, y] + n · [x, y] = [m · x, y] + [x, n · y] = [δ(x), y] + [x, δ(y)],
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if x, y ∈ g have homogeneous degrees m,n > 0. Considering g as a bimodule over Uk(g),
acting by the adjoint action from the left and trivially from the right, this extends to a
derivation

Uk(g)
δ−→ g, x1 · · ·xn 7−→

∑
1≤i≤n

x1 · · · δ(xi) · · ·xn = ad(x1) ◦ ... ◦ ad(xn−1) ◦ δ(xn).

The composition g
ηg−→ Uk(g)

δ−→ g is again δ, which is injective as g is flat over k and
thus over Z. Hence also ηg is injective.

Now let Q(k) denote the field of fractions of k. For the composition

g −→ g⊗Q(k)
ηg⊗Q(k)−→ UQ(k)(g⊗Q(k))

the left map is injective, as k ↪−→ Q(k) is injective and g is flat over k, and the right map
is injective by the argument above. As UQ(k)(g ⊗ Q(k)) is a vector space over Q(k), it is
flat over k.

2

Proposition 3.3.6 (i) is better known as the Theorem of Poincaré, Birkhoff and Witt,
which also holds in a more general situation. We will state it here, although Proposition
3.3.6 will be enough for the purpose of this work.

Theorem 3.3.10 (Poincaré, Birkhoff, Witt, Higgins)
For k ∈ CRing and flat g ∈ k-Lie the map ψg : Com1(g)

∼−→ grEUk(g) is an isomorphism.

Proof. See [Hig69] Theorem 6, 7 and 8. The proof is far more involved than the proof of
the special case, given in Proposition 3.3.6.

2

3.3.3 Filtrations on a Lie algebra and its enveloping algebra

We are now defining filtrations on the enveloping algebra induced by that of a Lie algebra.
As a corollary we obtain the well-known Theorem of Ado.

Remark 3.3.11
Let k ∈ CRing and g ∈ k-Lie a Lie algebra.

(i) The commutator of two submodules X1, X2 ≤ g is defined as the submodule
[X1, X2] ≤ g generated by [x1, x2], for xi ∈ Xi.

(ii) Recall from Definition 3.1.6 that a Lie algebra filtration on g is a filtration F of
submodules, such that

[Fpg, Fqg] ⊂ Fp+qg, p, q ∈ Z.

Remark 3.3.12
Let k ∈ CRing and F a Lie algebra filtration on a Lie algebra g ∈ k-Lie.
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(i) The Lie bracket induces a Lie algebra structure on the associated graded module
grFg =

⊕
n≥1 Fng/Fn+1g.

(ii) There is an induced Hopf algebra filtration on the enveloping algebra Uk(g),
defined as the quotient filtration under Ass1(g) −� Uk(g), where the Hopf algebra
filtration on Ass1(g) =

⊕
n≥0 g

⊗n is the sum of the tensor product filtrations induced
by F .

(iii) If F1g = g, then the induced filtration F on Uk(g) is given by

F0Uk(g) = Uk(g), FnUk(g) =
∑

a1,...,ar≥1,
a1+...+ar≥n

F̃a1Uk(g) · ... · F̃arUk(g) n ≥ 1,

where F̃nUk(g) = Uk(g) · Fng is the kernel of Uk(g) −� Uk(g/Fng), for all n ≥ 1.

(iv) By construction the map ηg : g −→ Uk(g) preserves the filtrations and induces maps

grFηg : grFg −→ grFUk(g), φg : Uk(grFg) −→ grFUk(g).

Remark 3.3.13
Let k ∈ CRing.

(i) The lower central series (Γng)n≥0 on a Lie algebra g ∈ k-Lie is given by

Γ0g = Γ1g = g, Γn+1g = [g,Γng], n ≥ 0.

It is the initial Lie algebra filtration on g satisfying Γ1g = g.

(ii) The lower central series defines an epimorphism preserving endofunctor

grΓ : k-Lie −→ k-Lie, g 7−→ grΓg =
⊕
n≥1

Γng/Γn+1g.

(iii) By construction the induced filtration Γ on the enveloping algebra Uk(g) coincides
with the lower central series defined for Hopf algebras in Definition 3.2.4, so there
is no notational conflict occuring here.

Proposition 3.3.14
Let k ∈ CRing and F a Lie algebra filtration on a Lie algebra g ∈ k-Lie.

Then Uk(grFg)
φg
−� grFUk(g) is always an epimorphism.

Proof. The inclusion grFg −→ grFAss1(g) extends to a map Ass1(grFg) −� grFAss1(g),
which is surjective being the direct sum of the natural epimorphisms

(grFg)⊗r −� grF (g⊗r), r ≥ 0.
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Moreover by construction the surjectionAss1(g) −� Uk(g) maps FnAss1(g) onto FnUk(g),
for all n ∈ Z. So using the commutative square

Ass1(grFg)

����

// // Uk(grFg)

φg
��

grFAss1(g) // // grFUk(g),

it follows that also φg is surjective.
2

Proposition 3.3.15
Let k ∈ CRing and g ∈ k-Lie, carrying a Lie algebra filtration g = F1g ⊃ ... ⊃ Fng = 0
with grFg ∼= kd, for some n, d ≥ 1.

Then g ↪−→ Uk(g)/FnUk(g) is injective.

Proof. This is done by induction on the rank d ≥ 1. Let m ≥ 1 be minimal with grFmg 6= 0.
So we can assume n > m. If d = 1 then g is abelian and the composition

g −→ Uk(g) −� Uk(g)/Fm+1Uk(g) −� Uk(g)/Ũk(g)2

is injective, because by Proposition 3.2.5 we have

grΓ
1Uk(g) = Ũk(g)/Ũk(g)2 ∼−→ Q(Uk(g)) = H1(g, k) = g/[g, g] = g.

For d > 1 we take an element a ∈ g, such that [a] ∈ grFmg can be extended to a basis of

the k-module grFg. We let grFmg
πa−� k be the corresponding projection onto the direct

summand spanned by [a]. Since F is a Lie algebra filtration, the maps

q : g −� grFmg
πx−→ k

are homomorphisms of Lie algebras, the middle and the right one being abelian. The
induced filtration F on the kernel n� g of q is a Lie algebra filtration and grFn is a direct
summand of grFg and thus free of rank < d. Hence by the induction hypothesis we have
n ↪−→ Uk(n)/FnUk(n).

Now we have a ∈ q−1(1), the map ad(a) induces a derivation on n and on Uk(n) by the
universal property of the enveloping algebra. The map 1 7−→ a defines a section for q,
which is a Lie algebra homomorphism. In particular g ∼= nok and we get a unique action
of g on Uk(n) extending the action of n and k · a ⊂ g. Since a ·Fqn = ad(a)(Fqn) ⊂ Fq+1n
and g = n + k · a, we get

Fpg · FqUk(n) ⊂ Fp+qUk(n), p, q ≥ 0.

Let A denote the k-algebra of k-linear endomorphisms on Uk(n)/FnUk(n). Then A car-
ries a ring filtration, where FpA is the k-submodule of endomorphisms f , such that
f(FqUk(n)) ⊂ Fp+qUk(n), for all q ≥ 0. Moreover Ã = F1A is a nilpotent subalgebra

and left multiplication defines a representation g
λ−→ Ã+ = Ã⊕ k, mapping Fpg to FpA,
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for all p ≥ 1. It extends to an algebra homomorphisms Uk(g) −→ Ã+, mapping FpUk(g)
to FpA, for all p ≥ 1. In particular λ factors as g −→ Uk(g)/FnUk(g) −→ Ã+, because
Ãn = 0. The composition

k · a ↪−→ g −→ Uk(g)/FnUk(g)
q
−� Uk(k)/FnUk(k)

is injective by the case d = 1. Using the commutative diagram

n

��

� � // Uk(n)/FnUk(n)

��

� � // k-Mod(Uk(n)/FnUk(n))

g // Uk(g)/FnUk(g) // Ã+,

OO

it follows that also g ↪−→ Uk(g)/FnUk(g) is injective.
2

As a consequence we get the well-known Theorem of Ado.

Corollary 3.3.16 (Ado)
Let k be a field and g ∈ k-Lie nilpotent with d = dimk g <∞.

Then the lower central series satisfies the hypotheses of Proposition 3.3.15.
In particular we get a finite-dimensional nilpotent representation g ↪−→ Uk(g)/Ũk(g)n,

for n ≥ 1 with Γng = 0.

Proposition 3.3.17
Let k ∈ CRing be integral and g ∈ k-Lie, carrying a Lie algebra filtration F with F1g = g
and grFg flat over k.

Then grFg ↪−→ grFUk(g).
If moreover k is flat over Z, then grFUk(g) is flat and φg : Uk(grFg)

∼−→ grFUk(g).

Proof. The proof will be established in several steps.

(i) First we assume that k is a field and that g/Fng is a finitely generated k-module,
for all n ≥ 1. Then grF (g/Fng) = grF1 g⊕ ...⊕ grFn−1g

∼= kd, for some d ≥ 1, and thus
by Proposition 3.3.15 we get injections

g/Fng ↪−→ Uk(g)/FnUk(g)
∼−→ Uk(g/Fng)/FnUk(g/Fng), n ≥ 1,

where the latter is an isomorphism, because by definition FnUk(g) contains the
kernel of Uk(g) −� Uk(g/Fng). Equivalently grFg ↪−→ grFUk(g).

(ii) Next we only assume that k is a field. For every finitely generated Lie subalgebra g′ ≤
g we give g′ the subalgebra filtration. Then g′/Fng

′ is a finitely generated k-module,
for all n ≥ 1, and we get grFg′ ↪−→ grFUk(g

′) by case (i). In the commutative
diagram

lim−→
g′≤g f.g.

grFg′

��

// grF ( lim−→
g′≤g f.g.

g′)

��

// grFg

��
lim−→

g′≤g f.g.

grFUk(g
′) // grFUk( lim−→

g′≤g f.g.

g′) // grFUk(g),
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the horizontal maps are isomorphisms, because grF and Uk commute with filtered
colimits. Moreover the left vertical map is an isomorphism, because filtered colimits
are exact. Hence also the right vertical map is injective.

(iii) Finally suppose k ∈ CRing is an integral domain and let Q(k) denote its field of
fractions. We give g⊗Q(k) the filtration

Fn(g⊗Q(k)) = (Fng)⊗Q(k), n ≥ 1.

Then in the commutative diagram

grFg

��

// (grFg)⊗Q(k)

��

// grF (g⊗Q(k))

��
grFUk(g) // (grFUk(g))⊗Q(k) // grF (UQ(k)(g⊗Q(k))),

the upper left horizontal map is an injection, because grFg is flat and k injects into
its field of fractions. Moreover the upper right horizontal map is an isomorphism
by definition of the filtration on g ⊗ Q(k) and because Q(k) is flat over k. The
right vertical map is injective by (ii). Hence by commutativity grFg ↪−→ grFUk(g)
is injective.

Now suppose k is flat over Z. As grF (UQ(k)(g ⊗ Q(k))) is a Q(k)-vector space, it
must be flat over k. In particular

grF (UQ(k)(g⊗Q(k)))⊗grF (UQ(k)(g⊗Q(k)))
∼−→ grF (UQ(k)(g⊗Q(k))⊗UQ(k)(g⊗Q(k)))

is an isomorphism and thus the coalgebra structure on UQ(k)(g⊗Q(k)) induces a coal-
gebra structure on grF (UQ(k)(g⊗Q(k))). Since the image of grFg ↪−→ grF (UQ(k)(g⊗Q(k)))
lies in the primitive elements, Corollary 3.3.8 yields that Uk(g) ↪−→ grF (UQ(k)(g⊗Q(k)))
is a monomorphism. This map factors over grFUk(g) and hence also Uk(grFg) ↪−→
grFUk(g) is injective and so bijective by Proposition 3.3.14. Moreover using the in-
jection grFg ↪−→ grF (UQ(k)(g⊗Q(k))) with flat target, Proposition 3.3.6 yields that

Uk(grFg)
∼−→ grFUk(g) is flat over k.

2

3.3.4 A modified lower central series

Purpose of this section is to point out that the lower central series does not behave well
enough integrally.

Proposition 3.3.18
Let k ∈ CRing be integral with field of fractions Q(k) and g ∈ k-Lie.

Then grFg ↪−→ grFUk(g) and φg : Uk(grFg)
∼−→ grFUk(g), for F defined by

Fng = ker(g −→ (g⊗Q(k))/Γn(g⊗Q(k))), n ≥ 0.

Moreover the following holds.
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3.3. Lie algebras and enveloping algebras

(i) If grΓg is flat, then F = Γ.

(ii) If Γng = 0, for some n ≥ 1, then Fng = ker(g −→ g⊗Q(k)).

Proof. In the commutative diagrams

grFg

grF η
��

// grΓ(g⊗Q(k))

grΓη
��

grFUk(g) // grΓ(UQ(k)(g⊗Q(k))),

Uk(grFg)

����

// UQ(k)(grΓ(g⊗Q(k)))

��
grFUk(g) // grΓ(UQ(k)(g⊗Q(k))),

the upper horizontal maps are monomorphism by construction of F and Corollary 3.3.8,
respectively. The right vertical maps are injective by Proposition 3.3.17. Hence by com-
mutativity grFg ↪−→ grFUk(g) is injective and Uk(grFg)

∼−→ grFUk(g) is an isomorphism.
Now let n ≥ 1. The following diagram of forgetful and inclusion functors commutes

Q(k)-Lie<n

��

// k-Lie<n

��
Q(k)-Lie // k-Lie,

where Lie<n ≤ Lie is the full subcategory of n-nilpotent Lie algebras, i.e. Lie algebras
g with Γng = 0. Hence also the corresponding diagram of their left adjoints, which are
given by extension of scalars and truncation, commutes up to natural isomorphism. In
other words the natural map

(g/Γng)⊗Q(k)
∼−→ (g⊗Q(k))/Γn(g⊗Q(k)), n ≥ 1,

is an isomorphism.

(i) We have just proven that the right vertical map in the commutative square

g/Γng

����

// (g/Γng)⊗Q(k)

o
��

g/Fng
� � // (g⊗Q(k))/Γn(g⊗Q(k))

is an isomorphism. If grΓg is flat, so is also g/Γng by Corollary 3.6.2. Hence the
upper horizontal map is injective and by commuativity the left vertical map is an
isomorphism. Equivalently Γng = Fng.

(ii) Using the observation above and that Γng = 0, we get an isomorphism

g⊗Q(k)
∼−→ (g/Γng)⊗Q(k)

∼−→ (g⊗Q(k))/Γn(g⊗Q(k)),

which proves that

Fng = ker(g −→ (g⊗Q(k))/Γn(g⊗Q(k))) = ker(g −→ g⊗Q(k)).

43



Chapter 3. Homology of associated groups and Lie rings

2

Example 3.3.19
Let k ∈ CRing and g ∈ k-Lie nilpotent.

(i) Let k = Z and consider the Lie algebra of upper triangular (3× 3)-matrices

g = p · t3(Z) =

 0 pZ pZ
0 0 pZ
0 0 0

 , p > 1.

Then g is nilpotent and g ∼= Z3, but grΓ
1g = g/[g, g] ∼= Z2 ⊕ Z/p is not free.

However as Z is integral, grFg is free, for the filtration F of Proposition 3.3.18.

(ii) Let k = Q[t]/(t2) and g = sl2(t ·Q[t]/(t3)).

Then using that sl2(Q[t]/(t3)) is perfect (i.e. equals its commutator), we see that

Γ2g = t · g, Γ3g = t2 · g = 0.

In particular g is nilpotent and g ∼= k3, but grΓg is k-torsion.

In fact the only Lie algebra filtration F , such that grF is flat, is given by Fng = g,
for all n ≥ 0.

3.3.5 Free Lie algebras

Here we are showing that at least in the case of free Lie algebras, the lower central series
is good enough.

Proposition 3.3.20
Let k ∈ CRing and X ∈ k-Mod.

Then the free Lie algebra Lie(X) generated by X is Z>0-graded.
Moreover, if X is flat, so is also Lie(X) and thus Proposition 3.3.6 together with Propo-

sition 3.3.9 imply, that Lie(X)
∼−→ PUk(Lie(X)) = PAss1(X) is an isomorphism.

Proof. The free magmaMag(X) generated by X isMag(X) =
⊕

n≥1Mag(n)(X) where
the direct summands are inductively be constructed via

Mag(1)(X) = X, Mag(n)(X) =
⊕

0<i<n

Mag(i)(X)⊗Mag(n−i)(X), n > 1.

The product map Mag(X)⊗Mag(X)
µ−→Mag(X) is given as the sum of the maps

Mag(p)(X)⊗Mag(q)(X)
ιp−→Mag(p+q)(X).

In particular Mag(X) is a Z>0-graded k-magma. The free Lie algebra Lie(X) is the
quotient of the free magma Mag(X) by the ideal I(X) generated by

[x, x], [[x, y], z] + [[y, z], x] + [[z, x], y], x, y, z ∈Mag(X).
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By replacing x, y, z by its homogeneous components we see that I(X) is generated by
homogeneous elements. Hence also Lie(X) =Mag(X)/I(X) is Z>0-graded.

To prove that flatness of X implies flatness of Lie(X) we will use a well-known result
of Hall [Hal50], who explicitly constructed a basis for the free Lie ring generated by a
finite set of generators. In particular his result implies that Lie(kn) = k ⊗ Lie(Zn) is a
free k-module, for all n ≥ 1. Since every flat module X ∈ k-Mod is a filtered colimit of

finitely generated free modules and the functors k-Mod
Lie−→ k-Lie U−→ k-Mod commute

with filtered colimits, the statement follows.
2

Proposition 3.3.21
Let k ∈ CRing and let g be the free Lie algebra or free abelian Lie algebra generated by a
k-module X ∈ k-Mod.

Then φg : Uk(grΓg)
∼−→ grΓUk(g).

Proof. Let g = Lie(X) and consider the commutative square of ring homomorphisms
under k

Ass1(X)

��

// grΓAss1(X)

ϕX
��

Uk(grΓg)
φg // grΓUk(g),

where an x ∈ X is mapped to [x] under the upper horizontal and the left vertical map.
Then the upper horizontal map is an isomorphism by construction of the lower central
series. We have a factorization of forgetful functors

k-Ass1 −→ k-Lie −→ k-Mod,

which proves that also the composition of its left adjoints are isomorphic and hence
Ass1(X)

∼−→ Uk(Lie(X)) = Uk(g). In particular the right vertical map is an isomorphism
and thus the left vertical map is injective. It is also surjective, because the Lie algebra
grΓLie(X) and hence the ring Uk(grΓLie(X)) is generated by grΓ

1Lie(X) = X. It follows
that every map in the square and in particular φg is an isomorphism. The same arguments
also apply for the abelian Lie algebra g = X.

2

Corollary 3.3.22

For every k ∈ CRing and g ∈ k-Lie, the map Uk(grΓg)
φg
−� grΓUk(g) is surjective.

Proof. For every subset X ⊂ g we get a homomorphism Lie(kX) −→ g inducing a
commuting square

Uk(grΓLie(kX))

��

φLie(kX)

∼
// grΓUk(Lie(kX))

��
Uk(grΓg)

φg // grΓUk(g).
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If X generates g, then Lie(kX) −� g and the right vertical map is surjective, because
grΓ and Uk preserve epimorphisms. Hence by commutativity φg is surjective, too.

2

3.3.6 Completed Lie algebra homology

Applying the Artin-Rees theory of section 3.1.2 we are linking Lie algebra homlogy to its
completion.

Definition 3.3.23
Let k ∈ CRing. Let g ∈ k-Lie carrying a Lie algebra filtration F with grFUk(g) flat over
k. Let M ∈ Mod-Uk(g) carrying a filtration F , compatible with the induced filtration F
on Uk(g).

The completed Lie algebra homology is defined as Ĥ∗(g,M) = T̂or
Uk(g)

∗ (M,k), i.e.

the homology of the completion Ĉ∗(g,M) = B̂∗(M,Uk(g), k) of the standard complex

C∗(g,M) = B∗(M,Uk(g), k) = (M⊗Uk(g)←−M⊗Uk(g)⊗ ←−M⊗Uk(g)⊗Uk(g)←− ...).

Similarly we define Ĥ∗(g,M) = T̂or
Uk(g)

∗ (k,M) for M ∈ Uk(g)-Mod.

Proposition 3.3.24
Let k ∈ CRing be integral, Noetherian and g ∈ k-Lie carrying a Lie algebra filtration F ,
such that F1g = g and grFg ∈ k-Mod is finitely generated.

Then Uk(g) and the Rees ring
⊕

n≥0 FnUk(g) are left Noetherian.
Similarly one shows that both rings are also right Noetherian.

Proof. As grFg ∈ k-Mod is finitely generated, so is also g ∈ k-Mod. Using an epimorphism
kd −� g Proposition 3.3.4 yields is a surjective ring homomorphism

k[t1, ..., td] = Com1(kd) −� Com1(g)
ψ
−� grEUk(g).

Since k is Noetherian, so are also k[t1, ..., td] and grEUk(g). Hence Uk(g) is left Noetherian.
Now since grFg ∈ k-Mod is finitely generated, we have FNg = 0, for some N ≥ 1.

By replacing each generator of grFg by its homogeneous components, we can assume
that grFg is generated by a finite set of homogeneous elements. We choose elements
X = {x1, ..., xd} ⊂ g representing the homogeneous generators in grFg. We will construct
subrings Rm ≤

⊕
n≥0 FnUk(g) by descending induction on 1 ≤ m ≤ N . For m = N we

let RN = Uk(g), which is left Noetherian as we have just proven. Having constructed Rm

we adjoin the elements X ∩ Fm−1g ⊂ Fm−1Uk(g) to Rm and call this ring Rm−1. As F is
a Lie algebra filtration we have

• Rm · x+Rm = x ·Rm +Rm, x ∈ X ∩ Fm−1g,

• yx+Rm = xy +Rm, x, y ∈ X ∩ Fm−1g.
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So by the general version of Hilbert’s Basis Theorem 3.6.3, we can adjoin the elements of
X ∩Fm−1g to Rm one by one, to show that also Rm−1 is left Noetherian. By construction
of the filtration F on Uk(g) the ideal FnUk(g) is generated by products x1 · · ·xr, where
xi ∈ Faig, ai ≥ 0 and a1 + ... + ar ≥ n. We have proven that

⊕
n≥0 FnUk(g) = R1 is left

Noetherian.
2

Corollary 3.3.25

If, moreover, grFg ∈ k-Mod is free, then grFUk(g) is flat by Proposition 3.3.17 and Ûk(g)
is flat by Corollary 3.6.2 (ii). So Proposition 3.1.8 yields a natural isomorphism

H∗(g, M̂)
∼−→ Ĥ∗(g,M), M ∈ Mod-Uk(g) or M ∈ Uk(g)-Mod.

3.3.7 Divisible closure and saturation of Lie rings

In this section we introduce the notion of divisible closure and saturation of Lie rings and
show that they behave well with taking the enveloping algebra and the graded objects.

Definition 3.3.26
Let g ∈ Lie carrying a filtration F with grFg flat over Z.

(i) The divisible closure of g with respect to F is defined as DF
1 (g),

(ii) the saturation of g with resprect to F is defined as D̂F
1 (g).

Beware the index shift compared to the abelian group version of Definition 3.1.10!

Proposition 3.3.27
Let g ∈ Lie be a flat, Z>0-graded Lie ring. Defining Fng as the sum of all homogeneous
components of degree ≥ n, we obtain a Lie algebra filtration F on g.

Then the following holds.

(i) The map DF
0 g

DF0 (ηg)
−→ DF

0 UZ(g) extends to an isomorphism UZ(DF
0 g)

∼−→ DF
0 UZ(g).

(ii) Hn(g, DF
0 UZ(g)) = 0, for all n > 0, considering DF

0 (UZ(g)) as a left or right module.
In particular there are natural isomorphisms

• H∗(g,M)
∼−→ Tor

DF0 (UZ(g))
∗ (M,DF

0 (UZ(g))⊗UZ(g) Z), M ∈ Mod-DF
0 (UZ(g)),

• H∗(g,M)
∼−→ Tor

DF0 (UZ(g))
∗ (Z⊗UZ(g) D

F
0 (UZ(g)),M), M ∈ DF

0 (UZ(g))-Mod.

Proof.

(i) In the commutative square

Ass1(DF
0 g)

����

∼ // DF
0 Ass1(g)

����
UZ(DF

0 g) // DF
0 UZ(g),
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the vertical maps are induced by the canonical quotient maps. The upper horizontal
map is induced by the inclusion DF

0 g ↪−→ DF
0 Ass1(g) and thus an isomorphism by

Proposition 3.1.13. Hence the lower map induced by map DF
0 g

DF0 (η)
−→ DF

0 UZ(g) is
epimorphic as the diagram commutes.

In the commutative square

UZ(DF
0 g)

��

// // DF
0 UZ(g)

��
UZ(g⊗Q) // UZ(g)⊗Q,

the left vertical map is injective by Corollary 3.3.8, as DF
0 g ↪−→ g⊗Q ↪−→ UZ(g⊗Q)

is injective by definition of DF and Proposition 3.3.6, which is applicable by Propo-
sition 3.3.9, because g is Z>0-graded and flat over Z.

(ii) By (i) we have an isomorphism UZ(DF
0 g)

∼−→ DF
0 UZ(g). The homologyHn(g, DF

0 UZ(g)) =
Hn(g, UZ(DF

0 g)) is the n-th homology group of the Chevalley-Eilenberg complex
UZ(DF

0 g)⊗ Λ∗g, because g is flat over Z. Defining the usual filtration

F−nUZ(DF
0 g)⊗ Λ∗g =

∑
0≤i≤n

L−i UZ(DF
0 g)⊗ Λi−ng, n ≥ 0,

we get a spectral sequence

E1
p,q = Hp+q(grFp (UZ(DF

0 g)⊗ Λ∗g)) ⇒ Hp+q(g, UZ(DF
0 g)),

and it suffices to show that Hn(grF (UZ(DF
0 g) ⊗ Λ∗g)) = 0, for all n > 0. As g

is Z>0-graded by Proposition 3.3.9 we can apply Proposition 3.3.6 to obtain an
isomorphism

Com1(DF
0 g)⊗ Λ∗g

∼−→ grF (UZ(DF
0 g)⊗ Λ∗g).

The differential on the left object is given by

d(x0 ⊗ x1 ∧ ... ∧ xn) = −
∑

1≤i≤n

(−1)ix0xi ⊗ x1 ∧ ... ∧ xi−1 ∧ xi+1 ∧ ... ∧ xn,

and hence does not depend on the Lie algebra structure of g. As g is flat, it is a
filtered colimit of finitely generated free k-modules by Lazard-Gomorov. As filtered
colimits are exact, we may therefore assume that g is freely generated by some basis
elements x1, ..., xd ∈ g. But then Com1(DF

0 g)⊗Λ∗g is the Koszul complex associated
to the regular sequence x1, ..., xd ∈ Com1(DF

0 g), which is exact in dimensions ≥ 1.

Explicitly, if we denote by ei the generator 1 in dimension 1 of the Koszul complex

K∗(xi) = (0 −→ Com1(DF
0 g)

1

xi−→ Com1(DF
0 g)

0

−→ 0),

then we get an isomorphism of differential graded Com1(DF
0 g)-algebras

Com1(DF
0 g)⊗ Λ∗g

∼−→ K∗(x1)⊗Com1(DF0 g) ...⊗Com1(DF0 g) K∗(xd) =: K∗(x1, ..., xd),

1⊗ xi 7−→ 1⊗ ...⊗ ei
i
⊗ ...⊗ 1.

48



3.3. Lie algebras and enveloping algebras

By induction on d ≥ 1 we get

Hn(K∗(x1, ..., xd)) =

{
Com1(DF

0 g)/(x1, ..., xd), n = 0,
0, n > 0.

Indeed there is a spectral sequence

E2
p,q = Hp(K∗(x1)⊗Com1(DF0 g) Hq(K∗(x2, ..., xd))) ⇒ Hp+q(K∗(x1, ..., xd)),

and using the induction hypothesis for K∗(x2, ..., xd) and that

Com1(DF
0 g)/(x2, ..., xd)

x1
↪−→ Com1(DF

0 g)/(x2, ..., xd)

is injective, this proves the induction step.

2

Proposition 3.3.28
Let g ∈ Lie carrying a filtration F with F1g = g and grFg flat over Z.

Then g −→ D̂F
0 g induces an isomorphism D̂0UZ(g)

∼−→ D̂0UZ(D̂F
0 g).

Proof. In the diagram

UZ(DF
0 grFg)

o
��

∼ // DF
0 UZ(grFg)

DF0 (φ)

∼
// DF

0 grFUZ(g)

o
��

UZ(grF D̂F
0 g)

φ // // grFUZ(D̂F
0 g) // grF D̂F

0 UZ(g),

the lower right horizontal map is induced by the extension of D̂F
0 g

D̂F0 (η)
−→ D̂F

0 UZ(g) to its
enveloping algebra. By Proposition 3.3.17 the upper right horizontal map is an isomor-
phism of flat Z-modules and by Proposition 3.3.27 (i) the upper left horizontal map is an
isomorphism. Hence by Proposition 3.1.11 also the two vertical maps are isomorphisms.
The lower left horizontal map is surjective by Proposition 3.3.14 and thus an isomorphism
as the diagram commutes. Hence also the right horizontal map is an isomorphism, which
implies that the upper horizontal map in the diagram below is an isomorphism of flat
Z-modules.

DF
0 grFUZ(D̂F

0 g)

o
��

∼ // DF
0 grF D̂F

0 UZ(g)

o
��

grFDF
0 UZ(DF

0 g) // grFDF
0 D̂

F
0 UZ(g).

Again the vertical maps are isomorphisms by Proposition 3.1.11. As the diagram com-
mutes, also the lower horizontal map is an isomorphism, which implies that the right map
in the composition

D̂F
0 UZ(g) −→ D̂F

0 UZ(D̂F
0 g)

∼−→ D̂F
0 D̂

F
0 UZ(g)

is an isomorphism. As the composition is an isomorphism by Proposition 3.1.12, it follows
that also the left map is an isomorphism.

2
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Proposition 3.3.29
Let g ∈ Lie carrying a Lie algebra filtration F with F1g = g and grFg flat over Z.

Then D̂F
n (g)

∼−→ P̂ F
n UZ(g) is an isomorphism5, for all n ≥ 0.

In particular P̂ F
1 UZ(g) is the saturation of g.

Proof. The composition g
ηg−→ UZ(g)

η⊗1−δ+1⊗η−→ UZ(g)⊗ UZ(g) is zero by definition of the

coalgebra structure on UZ(g). Hence it is zero after applying D̂F
0 and we get a map

D̂F
0 g −→ P̂ F

0 UZ(g) = ker

(
D̂F

0 UZ(g)
D̂F0 (η⊗1−δ+1⊗η)

−→ D̂F
0 (UZ(g)⊗ UZ(g))

)
.

Taking the associated graded object we get Lie algebra homomorphisms

grF D̂F
0 g −→ grF P̂ F

0 UZ(g) ↪−→ P (grF D̂F
0 UZ(g)) ⊂ grF D̂F

0 UZ(g),

where the right map is injective, because we give P̂ F
0 UZ(g) ⊂ D̂F

0 UZ(g) the submodule
filtration. These Lie algebra maps extend to their enveloping algebras as in the lower row
of the diagram below.

UZ(DF
0 grFg)

o
��

∼ // DF
0 UZ(grFg)

DF0 (φ)

∼
// DF

0 grFUZ(g)

o
��

UZ(grF D̂F
0 g) // UZ(grF P̂ F

0 UZ(g)) // grF D̂F
0 UZ(g).

By exactly the same arguments as in the proof of Proposition 3.3.28, one shows that
the vertical maps and the upper horizontal maps are isomorphisms of flat Z-modules. In
particular grF D̂F

0 UZ(g) and thus also the submodule grF P̂ F
0 UZ(g) is flat, because to be flat

over Z is equivalent be torsion-free. So grF P̂ F
0 UZ(g) ↪−→ P (grF D̂F

0 UZ(g)) is an inclusion
of flat Z-modules and so the lower right horizontal map is injective by Corollary 3.3.8. As
the square commutes the lower right horizontal map is also surjective and so every map
in the diagram is an isomorphism.

In the commutative square

DF
0 grFg

o
��

// UZ(DF
0 grFg)

o
��

∼ // DF
0 UZ(grFg)

grF D̂F
0 g // UZ(grF D̂F

0 g),

the vertical maps are isomorphisms by Proposition 3.1.11 and the upper right horizontal
map is an isomorphism by Proposition 3.3.27. The upper row is equal to DF

0 applied to the

map grFg
η−→ UZ(grFg), which is injective by Proposition 3.3.9. As by construction DF

0

is a subfunctor of tensoring by Q, it is exact and so preserves monomorphisms. Hence the
upper left and also the lower horizontal map is injective. In particular in the commutative

5Here P̂F
n is meant as in Corollary 3.1.16
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square

Com1(grF D̂F
0 g)

ψ o
��

// Com1(grF P̂ F
0 UZ(g))

ψ o
��

grLUZ(grF D̂F
0 g) ∼ // grLUZ(grF P̂ F

0 UZ(g)),

the vertical maps are isomorphisms by Proposition 3.3.6, because grF D̂F
0 g ↪−→ UZ(grF D̂F

0 g)

and grF P̂ F
0 UZ(g) −→ UZ(grF P̂ F

0 UZ(g))
∼−→ grF D̂F

0 UZ(g) are monomorphisms of flat Z-

modules. It follows that the upper horizontal map and so also grF D̂F
0 g

∼−→ grF P̂ F
0 UZ(g)

is an isomorphism, which finally implies the assertion for n = 0 and thus for every n ≥ 0.

2

3.4 Groups and group rings

Parallel to the theory for Lie algebras, we are developing the analogous theory for groups.
The guideline for the single-steps is exactly the same as in the Lie algebra setting.

3.4.1 The group algebra as a Hopf algebra

Proposition 3.4.1
Let k ∈ CRing and G ∈ Grp.

Then the group algebra k[G] becomes a Hopf algebra via

(i) δ : k[G] −→ k[G]⊗ k[G], g 7−→ g ⊗ g, g ∈ G.

(ii) ε : k[G] −→ k, g 7−→ 1, g ∈ G.

(iii) ι : k[G] −→ k[G]op, g 7−→ g−1, g ∈ G.

Proof. Using the universal property for group rings the given group homomorphisms on
G uniquely extend to the desired ring homomorphisms. Moreover it follows that

k[G×G]
∼−→ k[G]⊗ k[G], (g, h) 7−→ g ⊗ h, g, h ∈ G,

and it suffices to check all identities for elements in G.
2

Remark 3.4.2
Let k ∈ CRing. Taking grouplike elements induces a functor

k-Grp −→ Grp, H 7−→ G(H) := {x ∈ H; ε(x) = 1, δ(x) = x⊗ x},

which is the right adjoint of an adjunction k-Grp(k[X], Y ) = Grp(X,G(Y )), induced by
the adjunction k-Ass1(k[X], Y ) = Grp(X, Y ×).

Indeed its unit G
ηg−→ k[G] sends g ∈ G to 1 · g, which lies in G(k[G]) by construction

of the coalgebra structure on k[G].
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3.4.2 Filtrations on a group and its group ring

Definition 3.4.3
Let G ∈ Grp.

(i) The conjugates of x ∈ G under y ∈ G are defined as yx = yxy−1 and xy = y−1xy.

(ii) The commutator of two elements x, y ∈ G is defined as [x, y] = xyx−1y−1.

(iii) The commutator of normal subgroups N1, N2 � G is defined as the smallest
normal subgroup [N1, N2] �G containing all elements [n1, n2], for ni ∈ Ni.

(iv) A (positive) group filtration on G is a positive filtration of normal subgroups
G = F0G = F1G ⊃ F2G ⊃ ..., such that

[FpG,FqG] ⊂ Fp+qG, p, q ≥ 0.

Lemma 3.4.4
Let G ∈ Grp and x, y, z ∈ G.

(i) [xy, z] = [x, yz] · [y, z] = x[y, z] · [x, z],

(ii) [zx, zy] = z[x, y],

(iii) [[x, y], yz] · [[y, z], zx] · [[z, x], xy] = 1

Proof. Direct computation.
2

Remark 3.4.5
Let k ∈ CRing and F a group filtration on a group G ∈ Grp.

(i) Using Lemma 3.4.4 the commutator bracket induces a Lie ring structure on the
associated graded abelian group grFG =

⊕
n≥1 FnG/Fn+1G.

(ii) There is an induced positive algebra filtration on the group ring k[G], given by

F0k[G] = k[G], Fnk[G] =
∑

a1,...,ar≥1,
a1+...+ar≥n

F̃a1k[G] · ... · F̃ark[G] n ≥ 1,

where F̃nk[G] = k[G] · k̃[FnG] is the kernel of k[G] −� k[G/FnG], for all n ≥ 1.

(iii) By construction the map ηG : G −→ k[G] preserves the filtrations and by Proposition
3.1.17 induces a (Lie) ring homomorphisms

grFηG : grFG −→ grFk[G], φG : Uk(grFG⊗ k) −→ grFk[G].

Proposition 3.4.6
Let k ∈ CRing and F a group filtration on a group G ∈ Grp.

Then Uk(grFG⊗ k)
φg
−� grFk[G] is always an epimorphism.
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Proof. By definition of F̃ we have

F̃nk[G] = ker(k[G] −� k[G/FnG]) = k[G] · k̃[FnG] =
∑
g∈FnG

k[G] · (g − 1), n ≥ 1.

Using this and the identity g(h− 1) = (g − 1)(h− 1) + (h− 1), for g, h ∈ G, we get

Fnk[G] =
∑

a1,...,ar≥1,
a1+...+ar≥n

F̃a1k[G] · ... · F̃ark[G] =
∑

a1,...,ar≥1,
a1+...+ar≥n,
gi∈FaiG

k · (g1 − 1) · · · (gr − 1), n ≥ 1.

In particular grFk[G] is generated as a k-algebra by the classes [g − 1] = grFηG[g], for
g ∈ FnG\Fn+1G and n ≥ 1. As Uk(grFG⊗ k) is generated by grFG, it follows that φG is
surjective.

2

The proof for the next proposition is inspired by [Swa67]. It is the group version of
Proposition 3.3.15 and modulo slight modifications the arguments are the same. For the
convenience of the reader, we have written down a complete proof again.

Proposition 3.4.7
Let k ∈ CRing with char k = 0 and G ∈ Grp carrying a group filtration F with FnG = 1
and grFg ∼= Zd, for some n, d ≥ 1.

Then G ↪−→ k[G]/Fnk[G] is injective.

Proof. This is done by induction on the rank d ≥ 1. Let m ≥ 1 be minimal with grFmG 6= 0.
So we can assume n > m. If d = 1 then G is abelian and the composition

G −→ k[G] −� k[G]/Fm+1k[G] −� k[G]/k̃[G]2,

is injective, because by Proposition 3.2.5 we have

grΓ
1k[G] = k̃[G]/k̃[G]2

∼−→ Q(k[G]) = H1(G, k) = G/[G,G]⊗ k,

and the characteristic of k is zero. For d > 1 we take an element a ∈ G, such that

[a] ∈ grFmG can be extended to a basis of the Z-module grFG. We let grFmG
πa−� Z be

the corresponding projection onto the direct summand spanned by [a]. Since F is a group
filtration, the maps

q : G −� grFmG
πx−→ Z

are group homomorphisms. The induced filtration F on the kernel N �G of q is a group
filtration and grFN is a direct summand of grFG and thus free of rank < d. Hence by the
induction hypothesis we have N ↪−→ k[N ]/Fnk[N ].

Now for a ∈ q−1(1), the conjugation map Ad(a) = a(-) induces an automorphism on N
and on k[N ]. The map 1 7−→ a defines a section for q, which is a group homomorphism.
In particular G ∼= N o Z and we get a unique action of G on k[N ] extending the action
of N and 〈a〉 ⊂ G. Since (a− 1) · x = ax− x = ([a, x]− 1)x ∈ F̃n+1k[N ], for all n ∈ FnN ,
we get

Fpk[G] · Fqk[N ] ⊂ Fp+qk[N ], p, q ≥ 0.

53



Chapter 3. Homology of associated groups and Lie rings

Let A denote the k-algebra of k-linear endomorphisms on k[N ]/Fnk[N ]. Then A carries a
ring filtration, where FpA is the k-submodule of endomorphisms f , such that f(Fqk[N ]) ⊂
Fp+qk[N ], for all q ≥ 0. Moreover Ã = F1A is a nilpotent subalgebra and left multiplication

defines a representation G
λ−→ Ã+ = Ã⊕k, mapping FpG to FpA, for all p ≥ 1. It extends

to a ring homomorphisms k[G] −→ Ã+, mapping Fpk[G] to FpA, for all p ≥ 1. In particular
λ factors as G −→ k[G]/Fnk[G] −→ Ã+, because Ãn = 0. The composition

〈a〉 ↪−→ G −→ k[G]/Fnk[G]
q
−� k[Z]/Fnk[Z]

is injective by the case d = 1. Using the commutative diagram

N

��

� � // k[N ]/Fnk[N ]

��

� � // k-Mod(k[N ]/Fnk[N ])

G // k[G]/Fnk[G] // Ã+,

OO

it follows that also G ↪−→ k[G]/Fnk[G] is injective.
2

Proposition 3.4.8
Let G ∈ Grp, carrying a group filtration F with grFG flat over Z.

Then grFG⊗ k ↪−→ grFk[G] and φG : Uk(grFG⊗ k)
∼−→ grFk[G], for every k ∈ CRing.

Moreover grFk[G] is flat over k.

Proof. The proof is similar to that of Proposition 3.3.17 and will be established in several
steps.

(i) First we assume that G/FnG is a finitely generated, free abelian group, for all
n ≥ 1. Then grF (G/FnG) = grF1 G⊕ ...⊕ grFn−1G

∼= Zd, for some d ≥ 1, and thus by
Proposition 3.4.7 we get injections

G/FnG ↪−→ Z[G]/FnZ[G]
∼−→ Z[G/FnG]/FnZ[G/FnG], n ≥ 1,

where the latter is an isomorphism, because by definition FnZ[G] contains the kernel
of Z[G] −� Z[G/FnG]. Equivalently grFG ↪−→ grFZ[G].

(ii) Now we drop the finiteness condition. For every finitely generated subgroup G′ ≤ G
we give G′ the subgroup filtration. Then G′/FnG

′ is a finitely generated abelian
group with no torsion and hence free, for all n ≥ 1. So we get grFG′ ↪−→ grFZ[G′]
by case (i). In the commutative diagram

lim−→
G′≤G f.g.

grFG′

��

// grF ( lim−→
G′≤G f.g.

G′)

��

// grFG

��
lim−→

G′≤G f.g.

grFZ[G′]) // grFZ[ lim−→
G′≤G f.g.

G′] // grFZ[G],
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the horizontal maps are isomorphisms, because grF and Z[-] commute with filtered
colimits. Moreover the left vertical map is injective, because filtered colimits are
exact. Hence also the right vertical map is injective. As grFG is flat, the map
grFG ↪−→ grFG ⊗ Q ↪−→ grFQ[G] is injective. As grFQ[G] is a a vector-space
over Q, it is flat over Z. In particular grFQ[G]⊗grFQ[G]

∼−→ grF (Q[G]⊗Q[G]) and
the coalgebra structure on Q[G] induces a coalgebra structure on grFQ[G]. As

δ(g − 1) = (g − 1)⊗ 1 + 1⊗ (g − 1) + (g − 1)⊗ (g − 1), g ∈ G,

the image of grFG ↪−→ grFQ[G] lies in the primitive elements and so UZ(grFG) ↪−→
grFQ[G] is a monomorphism by Corollary 3.3.8. As it factors over grFZ[G], it follows

that also UZ(grFG)
φG−→ grFZ[G] is injective and thus bijective by Proposition 3.4.6.

(iii) Finally for a general commutative ring k ∈ CRing, we have a commutative diagram

UZ(grFG)⊗ k

��

φG⊗id // (grFZ[G])⊗ k

��
Uk(grFG⊗ k)

φG // grFk[G].

(3.2)

As the following square of right adjoint forgetful functors commutes

k-Ass1

��

// k-Lie

��
Z-Ass1

// Z-Lie,

so does the corresponding square of left adjoints, which are given by the enveloping
algebra resp. extension of scalars. This means that the left vertical map in (3.2) is
an isomorphism.

Similarly, for every n ≥ 0, we have a commutative square of functors

k-Ass<n1,F

��

// k-Ass1,F

��
Z-Ass<n1,F

// Z-Ass1,F ,

where k-Ass1,F is the category of filtered unital associative algebras with 0-equicontinuous
homomorphisms and k-Ass<n1,F ≤ k-Ass1,F is the full subcategory of those objects
A with FnA = 0. The functors are forgetful and inclusion functors, which commute
and are right adjoints. Hence also the corresponding diagram of their left adjoints,
which are given by extension of scalars and truncation, commutes up to natural
isomorphism. Equivalently the natural map below is an isomorphism.

(Z[G]/FnZ[G])⊗ k ∼−→ k[G]/Fnk[G], n ≥ 0.
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Using the monomorphism grFG ↪−→ grFQ[G] Proposition 3.3.6 (ii) yields that
UZ(grFG)

∼−→ grFZ[G] is flat. Hence by Corollary 3.6.2 (i) Z[G]/FnZ[G] is flat,
for all n ≥ 0. So in the diagram

0 // (grFnZ[G])⊗ k

��

// (Z[G]/Fn+1Z[G])⊗ k
o
��

// (Z[G]/FnZ[G])⊗ k
o
��

// 0

0 // grFn k[G] // k[G]/Fn+1k[G] // k[G]/Fnk[G] // 0,

the upper sequence is exact by Proposition 3.6.1 (i). As the lower sequence is exact by
definition, it follows that with the two right vertical maps also the left vertical map is
an isomorphism. Equivalently also the right vertical map in (3.2) is an isomorphism.
As the upper horizontal map is an isomorphism by (ii), we get that Uk(grFG⊗k)

∼−→
grFk[G] is an isomorphism by commutativity.

It remains to prove that grFG ⊗ k ↪−→ Uk(grFG ⊗ k) is injective. This holds, if
grF≤nG⊗k ↪−→ Uk(grF≤nG⊗k) is injective, for all n ≥ 0. Again by taking the filtered
colimit over all finitely generated Lie subalgebras of grF≤nG we may assume that
grF≤nG

∼= Zd, for some d ≥ 0, and the statement follows from Proposition 3.3.15.
Alternatively the injectivity of grFG ⊗ k ↪−→ Uk(grFG ⊗ k) immediately follows
from the general Theorem of Poincaré, Birkhoff and Witt 3.3.10, because grFG⊗ k
is flat over k.

2

3.4.3 Torsion-free nilpotent groups

For torsion-free nilpotent groups we are constructing canonical filtrations having all the
good properties that we want. It is interesting to note that it is the upper central series
and not the lower one, that has the better behaviour.

Remark 3.4.9 (i) The lower central series (ΓnG)n≥0 on a group G is given by

Γ0G = Γ1G = G, Γn+1G = [G,ΓnG], n ≥ 1.

It is the initial positive group filtration on G.

(ii) The lower central series defines an epimorphism preserving endofunctor

grΓ : Grp −→ Lie, G 7−→ grΓG =
⊕
n≥1

ΓnG/Γn+1G.

(iii) For any k ∈ CRing, the induced filtration Γ on the group ring k[G] coincides with
the lower central series defined for Hopf algebras in Definition 3.2.4, because

[g, h]− 1 = (gh− hg)g−1h−1 = ((g − 1)(h− 1)− (h− 1)(g − 1))g−1h−1, g, h ∈ G.

So there is no notational conflict occuring here.
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(iv) The upper central series is defined by

Z0G = 1, Zn+1 = ker(G −� G/ZnG −� (G/Zn)/Z(G/Zn)), n ≥ 1.

In particular we have [G/ZnG,Zn+1G/ZnG] = 1 and thus [G,Zn+1G] ⊂ ZnG, for
all n ≥ 0.

Proposition 3.4.10
Let G ∈ Grp be torsion-free and nilpotent. Then the map below is injective.

Zn+1G/ZnG ↪−→ (Z1G)Ab(Zn+1G/ZnG,Z1G), x 7−→ (f(x))f , n ≥ 1.

In particular grZG is flat over Z.

Proof. For the convenience of the reader we recall the proof as it is also given in [War76]
Thm. 2.1. Let x ∈ Zn+1G with x /∈ ZnG. In particular [x] /∈ ZnG/Zn−1G = Z(G/Zn−1)
and we get a g1 ∈ G with 1 6= ad(g1)(x) = [g1, x] ∈ ZnG/Zn−1G. Using [G,Zn+1G] ⊂ ZnG

and Lemma 3.4.4 (i), we see that the map Zn+1G/ZnG
ad(g1)−→ ZnG/Zn−1G is a homo-

morphism of abelian groups. By repeating this argument, we get elements g1, ..., gn ∈ G
with 1 6= ad(gn) ◦ ... ◦ ad(g1)(x) ∈ Z1G/Z0G = Z1G. So the image of x is non-trivial in
coordinate ad(gn) ◦ ... ◦ ad(g1), which proves the statement.

Now if G is torsion-free, so is also Z1G and every power of Z1G. Using injectivity of
the maps, it follows that grZG is torsion-free.

2

Proposition 3.4.11
For G ∈ Grp we define a canonical group filtration F by setting

F0G = F1G = G, Fn+1G = ker(FnG −→ (FnG/[G,FnG])⊗Q), n ≥ 1.

Then grFG is flat over Z and moreover the following holds.

(i) If grΓG is flat, then F = Γ.

(ii) If G is torsion-free and ΓnG = 1, then also FnG = 1.

(iii) FnG = G ∩ (1 + Q̃[G]n) ⊂ Q[G]×, n ≥ 1.

In particular we have an injection grFG ↪−→ grΓQ[G] extending to the isomorphism
φG : UQ(grFG⊗Q)

∼−→ grΓQ[G].

Proof. By construction grFnG is the image of FnG in (FnG/[G,FnG]) ⊗ Q and thus
torsion-free, for all n ≥ 1.

(i) By construction we have ΓnG ⊂ FnG, for all n ≥ 1. If grΓG is flat, then the map

ΓnG/[G,ΓnG] ↪−→ (ΓnG/[G,ΓnG])⊗Q, n ≥ 1,

is injective, which proves that ΓnG = FnG, by induction on n ≥ 1.
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(ii) If ΓnG = 1, then G is nilpotent and we prove that Γn−iG ⊂ ZiG, by induction
on 0 ≤ i ≤ n. For i = 0 we have ΓnG = 1 = Z0G. Assuming that Γn−iG ⊂ ZiG
the surjection G/Γn−iG −� G/ZiG maps grΓ

n−i−1G ⊂ Z(G/Γn−iG) to Z(G/ZiG) =
grZi+1G and thus we get a surjection on the cokernels

1 // grΓ
n−i−1G

��

// G/Γn−iG

����

// G/Γn−i−1G

∃!
��

// 1

1 // grZi+1
// G/ZiG // G/Zi+1G // 1,

which proves that Γn−i−1G ⊂ Zi+1G. In particular Zn−1G = Γ1G = G.

Now turning everything around, we prove that FiG ⊂ Zn−iG, by induction on
1 ≤ i ≤ n. Assuming FiG ⊂ Zn−iG, we get [G,FiG] ⊂ [G,Zn−iG] ⊂ Zn−i−1G
and thus FiG −→ Zn−iG −� Zn−iG/Zn−i−1G factors over Fi/[G,FiG]. Using that
Zn−iG/Zn−i−1G = grZn−iG is flat by Proposition 3.4.10 it moreover factors over
FiG/Fi+1G = grFi G, so we get an injection on the kernels

1 // Fi+1G

��

// FiG� _

��

// grFi G

��

// 1

1 // Zn−i−1G // Zn−iG // grZn−iG // 1,

which proves that Fi+1G ⊂ Zn−i−1G. In particular FnG ⊂ Zn−nG = Z0G = 1.

(iii) We will prove that FnG ⊂ 1 + Q̃[G]n, by induction on n ≥ 1. The case n = 0 being
trivial, suppose the statement holds for some n ≥ 1. Then the composition

FnG ↪−→ 1 + Q̃[G]n −� (1 + Q̃[G]n)/(1 + Q̃[G]n+1) ∼= Q̃[G]n/Q̃[G]n+1

factors over FnG/[G,FnG], because for g ∈ G and h ∈ FnG we have

[g, h]− 1 = (gh− hg)g−1h−1 = ((g − 1)(h− 1)− (h− 1)(g − 1))g−1h−1 ∈ Q̃[G]n+1.

Since Q̃[G]n/Q̃[G]n+1 is a Q-vector space, it also factors over (FnG/[G,FnG])⊗Q,
hence over FnG/Fn+1G. Equivalently Fn+1G ⊂ 1 + Q̃[G]n+1, which proves the in-
duction step.

This shows that F = Γ on Q[G]. Using Proposition 3.4.8 we get an injection
grFG ↪−→ grFQ[G] = grΓQ[G] extending to the isomorphism φG : UQ(grFG⊗Q)

∼−→
grΓQ[G]. The former implies that FnG = G ∩ (1 + Q̃[G]n), for all n ≥ 1.

2

As a consequence we get a result, which was proven by several people before (for example
[Jen55] Theorem 5.2 or [Swa67])
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Corollary 3.4.12 (Hall, Jennings, Swan)
Let G ∈ Grp be finitely generated, torsion-free and nilpotent.

Then there is a monomorphism G ↪−→ Tr(Z) into the group of upper triangular (r× r)-
matrices with ones on the diagonal, for some r ≥ 1.

Proof. By Proposition 3.4.11 (ii) we get a filtration F onG, such that grF is flat and FnG =
1, for some n ≥ 1. Then grFG ↪−→ grFZ[G] and grFZ[G] is flat by Proposition 3.4.8.
In particular G ↪−→ Z[G]/FnZ[G] and Z[G]/FnZ[G] is flat. As G is finitely generated,
Z̃[G]/FnZ[G] is a finitely generated, nilpotent (non-unital) ring. In particular it is a finitely
generated Z-module, so Z[G]/FnZ[G] ∼= Zr, for some r ≥ 1. Left multiplcation induces a
representation

G ↪−→ Z[G]/FnZ[G] ↪−→ Z-Mod(Z[G]/FnZ[G]) ∼= Mr(Z).

Hence G is isomorphic to a nilpotent subgroup of GLr(Z). By a base change argument,
we get G ↪−→ Tr(Z).

2

3.4.4 Free groups

Lemma 3.4.13
For the free group XZ generated by a set X ∈ Set, there is an isomorphism of rings

ϕX : Ass1(ZX)/(X)n
∼−→←− Z[XZ]/Z̃[XZ]n : ψX , n ≥ 0,

x 7−→ x− 1,

1 + x←− [ x.

Furthermore after abelianization we get an induced isomorphism

ϕ̄X : Com1(ZX)/(X)n
∼−→←− Z[ZX]/Z̃[ZX]n : ψ̄X , n ≥ 0.

Proof. The map ϕX(x) = x− 1 induces a unique Z-linear map ZX −→ Z[XZ] extending

to a unique ring map Ass1(ZX)
ϕX−→ Z[XZ]. Since ϕX(X) ⊂ (g − 1; g ∈ XZ) = Z̃[XZ] we

get ϕX(X)n ⊂ Z̃[XZ]n, for all n ≥ 0. In particular we get a ring homomorphism ϕX as
desired.

In the left ring we have (1 + (−x) + ... + (−x)n−1)(1 + x) = 1 and hence (1 + x) is a
unit, for all x ∈ X. So ψX(x) = 1 + x extends to a unique group homomorphism XZ −→
(Ass1(ZX)/(X)n)× and a unique ring homomorphism Z[XZ]

ψX−→ Ass1(ZX)/(X)n. Using
the formulas

gh− 1 = (g− 1)(h− 1) + (g− 1) + (h− 1), g−1 − 1 = −(g− 1)g−1, g, h ∈ XZ, (3.3)

we see that Z̃[XZ] = (g − 1; g ∈ XZ) = (x − 1; x ∈ X) and thus ψX(Z̃[G]) ⊂ (X) and
ψX(Z̃[G]n) ⊂ (X)n, for all n ≥ 0.

This proves that ϕX and ψX are well-defined and since ϕX◦ψX(x) = x and ψX◦ϕX(x) =
x, for all x ∈ X, the unversal properties show that they are inverse to each other.

2
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Proposition 3.4.14
Suppose G is the free group or free abelian group generated by a set X ∈ Set.

Then φG : UZ(grΓG)
∼−→ grΓZ[G] is an isomorphism6.

Proof. Let G = XZ and consider the commutative square of ring homomorphisms

Ass1(ZX)

��

// grΓAss1(ZX)

ϕX
��

UZ(grΓG)
φG // grΓZ[G],

where an x ∈ X is mapped to [x] under the upper horizontal and the left vertical map.
Then the upper horizontal map is an isomorphism by construction and the right vertical
map is an isomorphism by Lemma 3.4.13. In particular the left vertical map is injective.
It is also surjective, because the Lie ring grΓG and hence the ring UZ(grΓG) is generated
by X ⊂ ZX = grΓ

1G. It follows that every map in the square and in particular φG is
an isomorphism. The same arguments also apply to the case of the free abelian group
G = ZX.

2

Corollary 3.4.15
For every G ∈ Grp, we have φG : UZ(grΓG) −� grΓZ[G].

Proof. For X ⊂ G we get a map XZ −→ G inducing a commuting square

UZ(grΓ(XZ))

��

φXZ
∼
// grΓZ[XZ]

��
UZ(grΓG)

φG // grΓZ[G].

If X generates G, then XZ −� G and the right vertical map is surjective, because
Z̃[XZ] −� Z̃[G] is surjective and by definition the lower central series filtration is given
by powers of these ideals. By commutativity φG is surjective, too.

2

3.4.5 Completed group homology

We are proving results analogous to the Lie algebra case.

Definition 3.4.16
Let k ∈ CRing. Let G ∈ Grp carrying a positive group filtration F with grFG flat over
Z. Let M ∈ Mod-k[G] carrying a filtration F , compatible with the induced filtration F on
k[G].

6Recall that by Remark 3.4.9 the filtration Γ on Z[G] induced by Γ on G, as well as the lower central
series filtration for Hopf algebras is given by the powers of the augmentation ideal Z̃[G].
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The completed group homology is defined as Ĥ∗(G,M) = T̂or
k[G]

∗ (M,k), i.e. the

homology of the completion Ĉ∗(G,M) = B̂∗(M,k[G], k) of the standard complex

C∗(G,M) = B∗(M,k[G], k) = (M ⊗ k[G]←−M ⊗ k[G]⊗ ←−M ⊗ k[G]⊗ k[G]←− ...).

Similarly we define Ĥ∗(G,M) = T̂or
k[G]

∗ (k,M) for M ∈ k[G]-Mod.

Proposition 3.4.17
Let k ∈ CRing be Noetherian and G ∈ Grp carrying a positive group filtration F , such
that grFG ∈ Z-Mod is finitely generated.

Then k[G] and the Rees ring
⊕

n≥0 Fnk[G] are left Noetherian.
Similarly one shows that both rings are also right Noetherian.

Proof. This is the group version of Proposition 3.3.24. We will carry it out, as there
are some differences. Since grFG ∈ k-Mod is finitely generated, we have FNG = 1, for
some N ≥ 1. By replacing each generator of grFG by its homogeneous components, we
can assume that grFG is generated by a finite set of homogeneous elements. We choose
elements X = {x1, ..., xd} ⊂ G representing the homogeneous generators in grFG.

We will construct subrings Sm ≤ k[G] by descending induction on 1 ≤ m ≤ N . For
m = N we let SN = k ≤ k[G], which is Noetherian by assumption. Having constructed
Sm we adjoin the elements X ∩ Fm−1G ⊂ k[G] and their inverses to Sm and call this ring
Sm−1. As F is a group filtration we have

• Sm · x+ Sm = x · Sm + Sm, x ∈ X ∩ Fm−1G,

• yx+ Sm = xy + Sm, x, y ∈ X ∩ Fm−1G.

So by the general version of Hilbert’s Basis Theorem 3.6.3, we can adjoin the elements of
X ∩Fm−1G to Sm one by one, to show that also Sm−1 is left Noetherian. We have proven
that k[G] = S1 is left Noetherian.

Next we will construct subrings Rm ≤
⊕

n≥0 Fnk[G] by descending induction on 1 ≤
m ≤ N . For m = N we let RN = k[G] = F0k[G], which is left Noetherian as we have just
proven. Having constructed Rm we adjoin the elements X ∩ Fm−1G ⊂ Fm−1k[G] to Rm

and call this ring Rm−1. As F is a Lie algebra filtration we have

• Rm · x+Rm = x ·Rm +Rm, x ∈ X ∩ Fm−1G,

• yx+Rm = xy +Rm, x, y ∈ X ∩ Fm−1G.

So by the general version of Hilbert’s Basis Theorem 3.6.3, we can adjoin the elements of
X ∩Fm−1G to Rm one by one, to show that also Rm−1 is left Noetherian. By construction
of the filtration F on k[G] the ideal Fnk[G] is generated by products (x1− 1) · · · (xr − 1),
where xi ∈ FaiG, ai ≥ 0 and a1 + ... + ar ≥ n (compare the proof of Proposition 3.4.6).
This implies that

⊕
n≥0 Fnk[G] = R1, which is left Noetherian as we have proven.

2
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Corollary 3.4.18

If moreover grFG ∈ Z-Mod is free, then grFk[G] is flat by Proposition 3.4.8 and k̂[G] is
flat by Corollary 3.6.2 (ii). So Proposition 3.1.8 yields a natural isomorphism

H∗(G, M̂)
∼−→ Ĥ∗(G,M), M ∈ Mod-k[G] or M ∈ k[G]-Mod.

3.5 Groups and Lie rings that are associated

The notion of associated groups and Lie rings is chosen in such a way that it allows a
comparison of their particular homology. We will later give some examples, satisfying this
property.

Definition 3.5.1
Let G ∈ Grp and g ∈ Lie carrying filtrations F .

Then G and g are called associated (via λ), if there is a commuting square of 0-
equicontinuous isomorphisms

D̂F
0 Z[G] λ

∼
// D̂F

0 UZ(g)

Î(G)
?�

OO

λ|
∼

// Î(g),
?�

OO

where Î(G) and Î(g) are the completions of the right ideals

I(G) = Z̃[G] ·DF
0 (Z[G]) ≤ DF

0 (Z[G]), I(g) = ŨZ(g) ·DF
0 (UZ(g)) ≤ DF

0 (UZ(g))

with respect to the submodule filtration.

3.5.1 Integral homology of associated groups and Lie rings

We are now able to prove an integral variant of Pickel’s [Pic78] isomorphism between
the completed group and Lie algebra homology. Note that with similar techniques it is
also possible to prove an integral variant of the p-adic version due to Lazard (in fact
he establishes an isomorphism on completed cohomology in [Laz65] Theorem 2.4.10).
Together with the p-adic analogue of Proposition 3.5.10 this will also imply an integral
variant of Lazard’s isomorphism for saturated p-valued groups established in [HKN09].

Theorem 3.5.2
Let G ∈ Grp and g ∈ Lie carrying filtrations F with grFG and grFg flat.

If G and g are associated, then for every left/right module M over D̂F
0 (Z[G])

λ∼= D̂F
0 (UZ(g))

carrying a compatible module filtration F , there is a natural zig-zag of quasi-isomorphisms
Ĉ∗(G,M) ' Ĉ∗(g,M).

In particular there is a natural isomorphism Ĥ∗(G,M) ∼= Ĥ∗(g,M).
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Proof. We give a proof in case of a left module M . The case of a right module is exactly
the same using the left ideal versions of I(G) and I(g) respectively. The zig-zag of quasi-
isomorphisms is given by

C
(
B̂∗(Z̃[G],Z[G],M) −→ B̂∗(Z[G],Z[G],M)

)
'
��

' // Ĉ∗(G,M)

C
(
B̂∗(I(G), DF

0 Z[G],M) −→ B̂∗(D
F
0 Z[G], DF

0 Z[G],M)
)

λ o
��

C
(
B̂∗(I(g), DF

0 UZ(g),M) −→ B̂∗(D
F
0 UZ(g), DF

0 UZ(g),M)
)

C
(
B̂∗(ŨZ(g), UZ(g),M) −→ B̂∗(UZ(g), UZ(g),M)

)'

OO

' // Ĉ∗(g,M),

which will be explained in the following.
The inclusion Z[G] ↪−→ DF

0 Z[G] induces a map of exact sequences

0 // Z̃[G]

��

// Z[G]

��

// Z

��

// 0

0 // I(G) // DF
0 Z[G] // Z⊗Z[G] ⊗DF

0 Z[G] // 0.

The upper left object in the zig-zag-diagram is the cone of the map induced by the
inclusion Z̃[G] ↪−→ Z[G], while the object beneath is the cone of the map induced by
the inclusion I(G) ↪−→ DF

0 Z[G]. The map between them is induced by the left two
vertical maps in the second diagram. As the upper sequence splits over Z, we see that
the upper horizontal map in the zig-zag-diagram, which is the canonical quotient map, is
a quasi-isomorphism. Similarly the inclusion UZ(g) ↪−→ DF

0 UZ(g) induces a map of exact
sequences

0 // ŨZ(g)

��

// UZ(g)

��

// Z

��

// 0

0 // I(g) // DF
0 UZ(g) // Z⊗UZ(g) ⊗DF

0 UZ(g) // 0,

which enables us to construct the remaining objects in the zig-zag-diagram in the same
way. Now all arguments in the completed bar constructions can be replaced by their
completions and it follows that by definition the isomorphism λ induces an isomorphism
as depicted.

So it remains to prove that the upper and the lower vertical maps in the zig-zag-diagram
are quasi-isomorphisms. To this aim we use the natural isomorphisms

ψG : UZ(grFG)
∼−→ grFZ[G], ψg : UZ(grFg)

∼−→ grFUZ(g)
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of Proposition 3.4.8 and Proposition 3.3.17 respectively. These two propositions also imply
that grF Z̃[G] ↪−→ grFZ[G] and grF ŨZ(g) ↪−→ grFUZ(g) are flat over Z. Moreover using
Proposition 3.1.11 we also get natural isomorphisms

• ϕG : DF
0 UZ(grFG)

DF0 (ψG)
−→ DF

0 grFZ[G]
∼−→ grFDF

0 Z[G],

• ϕg : DF
0 UZ(grFg)

DF0 (ψg)
−→ DF

0 grFUZ(g)
∼−→ grFDF

0 UZ(g).

In what follows we only check the group case, as the arguments for the Lie algebra case
are exactly the same. By definition of I(G) the map ϕG restricts to an isomorphism

I(grFG) = ŨZ(grFG) ·DF
0 UZ(grFG)

o
��

� � // DF
0 UZ(grFG)

ϕGo
��

grF I(G) = grF (Z̃[G] ·DF
0 Z[G]) �

� // grF (DF
0 Z[G]),

As the right objects are flat and thus torsion-free, so are also the left ones. Hence Propo-
sition 3.1.5 implies that the associated graded of the upper vertical map in the zig-zag-
diagram is isomorphic to

C(B∗(ŨZ(grFG), UZ(grFG), grFM) //

��

B∗(UZ(grFG), UZ(grFG), grFM))

C(B∗(I(grFG), DF
0 UZ(grFG), grFM) // B∗(D

F
0 UZ(grFG), DF

0 UZ(grFG), grFM))

and it suffices to check that this map is a quasi-isomorphism. The targets of the maps,
we are taking the cone of, are contractible. So by the long exact sequence for the cone,
we need to show that

B∗(ŨZ(grFG), UZ(grFG), grFM) −→ B∗(I(grFG), DF
0 UZ(grFG), grFM)

is a quasi-isomorphism. Taking homology yields the map

TorUZ(grFG)
∗ (ŨZ(grFG), grFM) −→ Tor

DF0 UZ(grFG)
∗ (I(grFG), grFM),

where we use the flatness of ŨZ(grFG), UZ(grFG), I(grFG) and DF
0 UZ(grFG) to show that

homology of the particular bar complex is the stated Tor-group. Using the map of the
long exact Tor-sequences associated to the map of exact sequences

0 // ŨZ(grFG)

��

// UZ(grFG)

��

// Z

��

// 0

0 // I(grFG) // DF
0 UZ(grFG) // Z⊗UZ(grFG) ⊗DF

0 UZ(grFG) // 0,

it suffices to check that

H∗(grFG,M) = TorUZ(grFG)
∗ (Z, grFM) −→ Tor

DF0 UZ(grFG)
∗ (Z⊗UZ(grFG)⊗DF

0 UZ(grFG), grFM)

is an isomorphism, which finally follows from Proposition 3.3.27 (ii).
2
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Corollary 3.5.3
Suppose that in the situation of Theorem 3.5.2 additionally grFG and grFg are finitely
generated and free.

Then there are natural isomorphisms H∗(G,M)
∼−→ Ĥ∗(G,M) ∼= Ĥ∗(g,M)

∼←− H∗(g,M).

Proof. This follows from Theorem 3.5.2 combined with Corollary 3.4.18 and Corollary
3.3.25 respectively.

2

Proposition 3.5.4
If in the situation of Theorem 3.5.2 also grFM is flat, then we have natural quasi-
isomorphisms

Ĉ∗(G,M)
'−→ Ĉ∗(G, g,M)

'←− Ĉ∗(g,M),

where we define

Ĉ∗(G, g,M) := coker
(
B̂∗(I(G), DF

0 Z[G],M) −→ B̂∗(D
F
0 Z[G], DF

0 Z[G],M)
)

λ∼= coker
(
B̂∗(I(g), DF

0 UZ(g),M) −→ B̂∗(D
F
0 UZ(g), DF

0 UZ(g),M)
)
.

Proof. It suffices to note that if grFM is flat, then

B∗(I(grFG), DF
0 UZ(grFG), grFM) ↪−→ B∗(D

F
0 UZ(grFG), DF

0 UZ(grFG), grFM)

and hence also

B̂∗(I(G), DF
0 Z[G],M) −→ B̂∗(D

F
0 Z[G], DF

0 Z[G],M)

is injective, which implies that the natural quotient map from the cone onto the cokernel
is a quasi-isomorphism. Hence by replacing cones by cokernels in the zig-zag-diagram of
Theorem 3.5.2 the assertion follows.

2

3.5.2 Free (abelian) groups and free (abelian) Lie rings are
associated

Proposition 3.5.5
For X ∈ Set, the free group XZ and the free Lie algebra Lie(ZX) are associated via

λ : D̂Γ
0Z[XZ]

∼−→ D̂Γ
0UZ(Lie(ZX)), x 7−→ exp(x).

Proof. We will start with the isomorphism

ψX : Ẑ[XZ]
∼−→ ̂UZ(Lie(ZX)) = ̂Ass1(ZX) = Ẑ[XN0], x 7−→ 1 + x,

which is the inverse limit of the isomorphisms ψX in Lemma 3.4.13. Again by Lemma 3.4.13
also its associated graded is an isomorphism grΓψX : grΓZ[XZ]

∼−→ grΓUZ(Lie(ZX)).
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Hence in the commutative square

D0grΓZ[XZ]

o
��

D0(grΓψX)

∼
// D0grΓUZ(Lie(ZX))

o
��

grΓD0(Z[XZ])
grΓD0(ψX) // grΓD0(UZ(Lie(ZX))),

the upper map is an isomorphism. As also the vertical maps are isomorphisms by Propo-
sition 3.1.11, it follows that grΓD0(ψX) is an isomorphism, too.

Now by Proposition 3.1.15 we have exp(x) ∈ 1 + D̂1Ass1(ZX). As exp(x) is a unit
with inverse exp(−x), the map x 7−→ exp(x) uniquely extends to a ring homomorphism

Z[XZ] −→ D̂Γ
0UZ(Lie(ZX)) mapping (x±1−1) into D̂1UZ(Lie(ZX)), for all x ∈ X. Using

the identity

gh− 1 = (g − 1)(h− 1) + (g − 1) + (h− 1), g, h ∈ XZ,

we see that it also maps (g − 1) into D̂1UZ(Lie(ZX)), for all g ∈ XZ. It follows that the
map x 7−→ exp(x) extends to the desired map λ. Since [(1 + x) − 1] = [exp(x) − 1] in

grΓD̂Γ
0UZ(Lie(ZX)), it follows that grΓλ = grΓD0(ψX) and thus also λ is an isomorphism.

Using the formulas (3.3) again, we see that I(XZ) ≤ DΓ
0Z[XZ] is generated by (x− 1),

for x ∈ X. By Lemma 3.1.14 we have 1/(m+ 1)! ∈ DmQ, for all m ≥ 0. It follows that

u(x) =
∑
m≥0

xm

(m+ 1)!
∈ D̂0UZ(Lie(ZX)),

which moreover is a unit as the series
∑

n≥0(1− u(x))n converges in D̂0UZ(Lie(ZX)) by
construction of the filtration. Since we have

λ(x− 1) = exp(x)− 1 =
∑
n≥0

xn+1

(n+ 1)!
= x · u(x),

it follows that λ(Î(XZ)) = Î(Lie(ZX)) and hence XZ and Lie(ZX) are associated via λ.

2

Remark 3.5.6
Let A be a free abelian group, considered as a group G and as an abelian Lie ring g.

Then one can prove in a similar way, that G and g are associated.
Note that the isomorphism H∗(G,Z) ∼= H∗(g,Z) = Λ∗A is functorial in A.

3.5.3 Rings inducing associated groups and Lie rings

Proposition 3.5.7
Let A ∈ Ass carrying a complete filtration F , such that grFA is flat and A = F1A. We
give A+ = k ⊕ A, the universal unital k-algebra of Remark 2.3.2, the algebra filtration
FnA+ = k ⊕ FnA, for n ≥ 0.
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Then giving G = 1 +A ≤ (A+)× and g = A the induced filtrations, there is an isomor-
phism

λA : D̂F
0 Z[1 + A]

∼−→ D̂F
0 UZ(A), 1 + a 7−→ exp ◦sA ◦ log ◦iA(1 + a),

where the underlined expression is meant as an element in 1 + A and the maps

1 + A
iA−→ 1 + D̂F

1 A
log−→ D̂F

1 A
sA−→ P̂ F

1 UZ(A)
exp−→ ĜF

1 UZ(A)

are those of Proposition 3.1.12, Proposition 3.1.15, Proposition 3.3.29 and Corollary
3.1.16 respectively. Moreover the following holds.

(i) λA is natural in A.

(ii) Let x ∈ A such that xn/n ∈ A, for all n ≥ 1. Then λA(1 + x) = 1 + x.

(iii) G = 1 + A and g = A are associated via λA, if there is a subset X ⊂ A, such that

a) grFA =
∑

x∈X Z · [x].

b) xn/n! ∈ A, for all x ∈ X and n ≥ 1.

Proof. To check that λA is well-defined, consider the diagram

1 + A
iA // 1 + D̂F

1 A

log o
��

ĜF
1 UZ(A) �

� // 1 + D̂F
1 UZ(A)

D̂F0 (qA)|
// 1 + D̂F

1 A

D̂F
1 A

sA
∼

// P̂ F
1 UZ(A)

exp o

OO

� � // D̂F
1 UZ(A)

exp o

OO

D̂F0 (qA)|
// D̂F

1 A,

exp o

OO

in which the map iA is induced by the canonical map

A = F1A⊗D0Q −→ DF
1 (A) −→ D̂F

1 A.

The map UZ(A)
qA−→ A+ = A ⊕ Z is the unique map extending the inclusion A ↪−→ A+.

We claim that the composition exp ◦sA ◦ log ◦iA is a group homomorphism.
By construction of sA and qA the composition D̂F

0 (qA) ◦ sA is the identity on D̂F
1 A,

which implies that D̂F
0 (qA) restricted to P̂ F

1 UZ(A) is an isomorphism and equals (sA)−1.
As the exponential map is natural in the ring, the two squares on the right commute,
which implies that D̂F

0 (qA)| : ĜF
1 UZ(A)

∼−→ 1 + D̂F
0 (A) is a group isomorphism. Hence it

suffices to check that the composition D̂F
0 (qA)◦exp ◦sA◦log ◦iA is a group homomorphism.

But using again that the exponential map is natural, we see that

D̂F
0 (qA) ◦ exp ◦sA ◦ log ◦iA = exp ◦D̂F

0 (qA) ◦ sA ◦ log ◦iA = exp ◦ log ◦iA = iA,

which indeed is a group homomorphism. It follows that exp ◦sA ◦ log ◦iA extends to ring

homomorphisms Z[1 + A] −→ D̂F
0 UZ(A) and D̂F

0 Z[1 + A]
λA−→ D̂F

0 UZ(A) by using Propo-
sition 3.1.12.
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We claim that λA is an isomorphism. Note that grFA and hence also grF (1 +A) is flat
over Z. Consider the diagram of rings

DF
0 UZ(grF (1 + A))

DF0 UZ(`A) o
��

DF0 (φ1+A)

∼
// DF

0 grFZ[1 + A] ∼ // grF D̂F
0 Z[1 + A]

grFλA
��

DF
0 UZ(grFA)

DF0 (φA)

∼
// DF

0 grFUZ(A) ∼ // grF D̂F
0 UZ(A),

where Proposition 3.4.8 and Proposition 3.1.11 yield the isomorphisms in the upper row,
and Proposition 3.3.17 and Proposition 3.1.11 yield those in the lower row. The isomor-
phism on the left is the one of Proposition 3.1.17. The diagram commutes, because

grFλA ◦DF
0 (φ1+A)[1 + a] = grFλA([1 + a− 1]) = [exp ◦sA ◦ log ◦iA(1 + a)− 1]

= [sA ◦ log ◦iA(1 + a)] = [sA ◦ iA(a)] = [a]

= DF
0 (φA) ◦DF

0 UZ(`A)[1 + a].

Hence grFλA and so λA is an isomorphism.

(i) By construction λA is natural in A.

(ii) As A is complete with respect to F , it follows that (xn/n)n≥1 converges to 0 in A
and thus

log(1− x) = −
∑
n≥1

xn/n ∈ A.

As the map A
iA−→ D̂F

1 A is a 0-equicontinuous ring homomorphism, we get that

λA(1 + x) = exp ◦sA ◦ log ◦iA(1 + x) = exp ◦sA ◦ iA ◦ log(1 + x)

= exp ◦ log(1 + x) = 1 + x.

(iii) We have to show that λA maps Î(1+A) onto Î(A). Let X ′ = X∪−X and note that

the two assumptions also hold for X replaced by X ′. Let Î(1 + X ′) ≤ D̂F
0 Z[1 + A]

and Î(X ′) ≤ DF
0 UZ(A) be the closed ideals generated by 1+X ′ and X ′ respectively.

We claim that Î(A) = Î(X ′) and Î(1 +A) = Î(1 +X ′). Therefore we let a ∈ A. We
will inductively construct sequences

• x1, x2, ... ∈ X ′, such that (x1 + ...+ xn)n≥1 converges to a, and

• y1, y2, ... ∈ X ′, such that ((1 + y1) · · · (1 + yn))n≥1 converges to 1 + a.

We may take arbitrary x1, y1 ∈ X ′. Suppose we have constructed x1, ..., xp ∈ X ′, such
that a ≡ x1 + ... + xp modulo FnA, for some n ≥ 1. Then by the first assumption
we find xp+1, ..., xq ∈ X ′ ∩ Fn+1A, such that a ≡ x1 + ... + xq modulo Fn+1A.
Similarly suppose we have constructed y1, ..., yr ∈ X ′ with 1+a ≡ (1+y1) · · · (1+yr)
modulo FnA, for some n ≥ 1. Then we find yr+1, ..., ys ∈ X ′, such that 1 + a ≡
(1 + y1) · · · (1 + yr) + yr+1 + ... + ys modulo Fn+1A. As F is a ring filtration and
F1A = A, this also implies that 1 + a ≡ (1 + y1) · · · (1 + ys) modulo Fn+1A.
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As Î(X ′) is complete and contains x1+...+xn, for all n ≥ 1, it follows that a ∈ Î(X ′).

Similarly as Î(1 + X ′) is complete and contains 1 + x1 · · · 1 + xn − 1 by using the

formula (3.3), it also follows that 1 + a ∈ Î(1 +X ′). As a ∈ A was arbitrary, we get

Î(A) = Î(X ′) and Î(1 + A) = Î(1 +X ′) as desired.

Now using (ii) for x ∈ X ′, this implies that λAÎ(1 + A) = λAÎ(1 + X ′) = Î(X) =

Î(A), which proves that 1 + A and A are associated via λA.

2

Remark 3.5.8
Proposition 3.5.7 shows that the group structure of 1 + A can be recovered from the Lie
algebra structure of A and vice versa. The difficulty lies in proving that the map λ is infact
a group homomorphism, which followed from the properties of logarithm and exponential
series stated in Corollary 3.1.16.

Historically this was proven by Lazard by using that the Hausdorff series log(exp(X)·exp(Y )),
being a rational power series in two noncommuting indeterminants X, Y , infact is a series
of interleaved commutator brackets in X and Y .

Proposition 3.5.9
Let A = t · Z[t]/(tm) ∈ Ass with m ≥ 3, that we give the (t)-adic filtration.

Then the following holds.

(i) There is no X ⊂ A satisfying the hypotheses of Proposition 3.5.7.

(ii) There is a non-canonical isomorphism 1 + A ∼= A and therefore non-canonically

Ĥ∗(1 + A,Z) = H∗(1 + A,Z) = Λ∗(1 + A) ∼= Λ∗A = H∗(A,Z) = Ĥ∗(A,Z).

Proof.

(i) Assuming the opposite, by assumption (i) there must be an element x ∈ X with
x = ±t + at2, for some a ∈ Z[t]/(tm). But then x2/2 = t2/2 + bt3, for some b ∈
Q[t]/(tm), contradicting assumption (ii).

(ii) There are exact sequences

1 −→ 1+ tn+1 ·Z[t]/(tm) −→ 1+ tn ·Z[t]/(tm) −→ grn(1+A) −→ 1, 1 ≤ n ≤ m,

which non-canonically split, because grn(1+A) ∼= tn ·Z[t]/(tn+1) ∼= Z is a free group.
Hence we get non-canonical isomorphisms 1 + tn ·Z[t]/(tm) ∼= Zm−n ∼= tn ·Z[t]/(tm),
by induction on 1 ≤ n ≤ m. The computation of the homology of an abelian finitely
generated free group and Lie ring respectively are standard and can be found in
any book about homological algebra. It follows from Corollary 3.4.18 and Corollary
3.3.25, that homology and completed homology are isomorphic.

2
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3.5.4 Associated saturated groups and Lie rings

Proposition 3.5.10
Let H ∈ Z-Grp carrying a Hopf algebra filtration F with grFH flat over Z.

Then ĜF
n (H) ≤ 1 + D̂F

1 (H) and P̂ F
n (H) ≤ D̂F

1 (H) with the induced filtrations are
associated, for all n ≥ 1, via

λ : D̂F
0 Z[ĜF

n (H)]
∼−→ D̂F

0 UZ(P̂ F
n (H)), g 7−→ exp ◦s ◦ i ◦ log(g),

where the the maps

ĜF
n (H)

log−→ P̂ F
n H

i−→ D̂F
n P̂

F
n H

s−→ P̂ F
n UZ(P̂ F

n H)
exp−→ ĜF

nUZ(P̂ F
n H)

are those of Corollary 3.1.16, Proposition 3.1.12 and Proposition 3.3.29 respectively.
Note that the isomorphism λ is natural in H and there is a commutative square

D̂F
0 Z[ĜF

n (H)]� _

��

λ // D̂F
0 UZ(P̂ F

n (H))� _

��

D̂F
0 Z[1 + D̂F

1 H]
λA // D̂F

0 UZ(D̂F
1 H),

where the lower map λA is that of Proposition 3.5.7 for A = D̂F
1 (H) and the vertical maps

are induced by the natural inclusions.

Proof. Since grFH is flat over Z, the natural map DF
0 grFH

∼−→ grF D̂F
0 H is an isomor-

phism by Proposition 3.1.11. As grFH ⊗Q is flat over Z, which means torsion-free, so is
also DF

0 grFH ≤ grFH ⊗Q. Giving P̂ F
n (H) ≤ D̂F

0 (H) the submodule filtration, we get an

injection grF P̂ F
n (H) ↪−→ grF D̂F

0 (H) and by the same argument as before also grF P̂ F
n (H)

is flat, for all n ≥ 0.
As DF

1 grFH
∼−→ grF D̂F

1 H is Z>0-graded and flat, Proposition 3.3.6 combined with

Proposition 3.3.9 yield that grF D̂F
1 H

η
↪−→ PUZ(grF D̂F

1 H) is injective. Hence by Corollary

3.3.8 the composition grF P̂ F
n H ↪−→ grF D̂F

1 H ↪−→ PUZ(grF D̂F
1 H) extends to an injection

UZ(grF P̂ F
n H) ↪−→ UZ(grF D̂F

1 H). As DF
0 is a subfunctor of tensoring with Q, it preserves

monomorphisms. Hence the left vertical map in the commutative diagram below is injec-
tive.

DF
0 UZ(grF P̂ F

n H)� _

��

DF0 (φ)

∼
// DF

0 grFUZ(P̂ F
n H)

��

∼ // grF D̂F
0 UZ(P̂ F

n H)

��

DF
0 UZ(grF D̂F

1 H)
DF0 (φ)

∼
// DF

0 grFUZ(D̂F
1 H) ∼ // grF D̂F

0 UZ(D̂F
1 H)

The horizontal maps are the isomorphisms of Proposition 3.3.17 and Proposition 3.1.11.
It follows that the right vertical map is injective, which implies injectivity of the right
vertical map in the diagram

ĜF
nH

��

log // P̂ F
n H� _

��

i // D̂F
n P̂

F
n H

��

s // P̂ F
n UZ(P̂ F

n H)

��

exp // ĜF
nUZ(P̂ F

n H)� _

��

1 + A
log // A i // D̂F

1 A
s // P̂ F

1 UZ(A)
exp // ĜF

1 UZ(A),
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where the vertical maps are induced by the inclusion P̂ F
n H ↪−→ D̂F

1 H = A. As the
logarithm map is natural, the lower row is

exp ◦s ◦ i ◦ log = exp ◦s ◦ log ◦i, (3.4)

which is a group homomorphism and extends to the map λA by Proposition 3.5.7. It
follows that also the upper row is a group homomorphism, extends to the map λ and
induces a commutative diagram as desired. By the same arguments as in Proposition
3.5.7 one checks that grFλ and hence λ is an isomorphism.

For every n ≥ 1 we have n−1 ∈ D1−nQ by Lemma 3.1.14 and thus

xn/n ∈ (F1H)n ⊗D1−nQ ⊂ FnH ⊗D1−nQ ⊂ D̂F
1 H, 1 + x ∈ ĜF

nH.

So by Proposition 3.5.7 (ii) the map λ = λA| sends the generator 1 + x − 1 ∈ Î(ĜF
nH)

to the generator 1 + x− 1 = x ∈ P̂ F
n H ⊂ Î(P̂ F

n H). It follows that λÎ(ĜF
nH) = Î(P̂ F

n H),

which proves that ĜF
nH and P̂ F

n H are associated via λ.
2

Corollary 3.5.11
Let g ∈ Lie carrying a positive Lie algebra filtration F with grFg flat over Z.

Then ĜF
1 UZ(g) and D̂F

1 (g) are associated.

In particular every saturated, filtered Lie ring g has an associated filtered group ĜF
1 UZ(g).

Proof. The ring grFUZ(g) is flat by Proposition 3.3.17 and by Proposition 3.3.29 we

have an isomorphism D̂F
1 g

∼−→ P̂ F
1 UZ(g). Hence ĜF

1 UZ(g) and D̂F
1 (g) are associated by

Proposition 3.5.10.

2

Corollary 3.5.12
Let G ∈ Grp carrying a positive group filtration F with grFG flat over Z.

Then ĜF
1 Z[G] and P̂ F

1 Z[G] are associated.

In particular every saturated, filtered group G has an associated filtered Lie ring P̂ F
1 Z[G].

3.6 Appendix

3.6.1 Flat modules

Recall some basic properties of flat modules, that can be found in any algebra book.

Proposition 3.6.1
Given k ∈ CRing and a short exact sequence of k-modules

0 −→ A −→ B −→ C −→ 0.

Then the following holds.
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(i) If C is flat, then A⊗D ↪−→ B ⊗D, for all D ∈ k-Mod.

(ii) If A and C are flat, so is B.

(iii) If B and C are flat, so is A.

(iv) If A and B are flat, then C must not be flat. Consider for example k = Z and

0 −→ Z p−→ Z −→ Z/p −→ 0.

Proof. For D ∈ k-Mod choose a surjection F −� D, where F ∈ k-Mod is free. Let K
denote its kernel. Applying the snake lemma to the following map of exact sequences

A⊗K

��

// B ⊗K

��

// C ⊗K

��

// 0

0 // A⊗ F // B ⊗ F // C ⊗ F // 0

yields a short exact sequence

ker(C ⊗K −→ C ⊗ F ) −→ A⊗D −→ B ⊗D.

As C is flat the left object is zero, which proves (i).
Now if C is flat, by (i) every monomorphism A′ ↪−→ B′ induces a map of exact sequences

0 // A⊗ A′

��

// B ⊗ A′

��

// C ⊗ A′

��

// 0

0 // A⊗B′ // B ⊗B′ // C ⊗B′ // 0.

If A and C are flat, the outer two vertical maps and thus also the middle vertical map is
injective by the 5-lemma. This shows (ii). Similarly if A is flat, the middle vertical map
and thus also the left vertical map is injective, which proves (iii).

2

Corollary 3.6.2
Let k ∈ CRing and suppose X ∈ k-Mod carries an exhaustive filtration F , such that grFX
is flat over k.

(i) If F is bounded below, then X is flat over k.

(ii) If k is coherent, then X̂ = lim←−n≤0
X/Xn is flat over k.

Proof. Let m ∈ Z. Using the exact sequences

0 −→ grFnX −→ Xm/Xn+1 −→ Xm/Xn −→ 0, n > m,

Proposition 3.6.1 (ii) yields that Xm/Xn is flat, by induction on n > m. By exactness of
direct limits also lim−→m>n

Xm/Xn
∼−→ X/Xn is flat, for all n ∈ Z. If F is bounded below,

there is an n ∈ Z with Xn = 0 and thus X = X/Xn is flat.
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Now suppose k is coherent and let I ≤ k be a finitely generated ideal. As X/Xn is flat,
the map X/Xn ⊗ I ↪−→ X/Xn ⊗ k is injective, for all n ∈ Z. In the commutative square

X̂ ⊗ I // X̂ ⊗ k

lim←−
n≤0

X/Xn ⊗ I

o

OO

// lim←−
n≤0

X/Xn ⊗ k,

o

OO

the vertical left map is an isomorphism, because I is finitely generated and thus finitely
presented as k is coherent. The lower horizontal map is injective by exactness of inverse
limits. Hence also the upper horizontal map is injective, which proves that X̂ is flat.

2

3.6.2 Hilbert’s basis theorem

Recall also the skew-commutative version of Hilbert’s basis Theorem.

Theorem 3.6.3
Let R ≤ S ∈ Ring and t ∈ S\R. Suppose R is left Noetherian.

(i) If Rt+R = tR +R, then R[t] ≤ S is left Noetherian.

(ii) If moreover t ∈ S×, then R[t, t−1] ≤ S is left Noetherian.

Proof. See for example [MR01] Theorem 1.2.10.
2
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4 E∞-spaces and their homotopy
groups

4.1 The category I of injections

We introduce tha category I of injections, which plays an an important role in this chapter
and will also appear in chapters 5 and 6.

Definition 4.1.1
We let I ≤ Set denote the subcategory of sets

n := {1, ..., n}, n ≥ 0,

whose morphisms are injections.

Remark 4.1.2
Considering the partial ordered set of natural numbers N0 as a category, we define a chain
of functors

N0
ν−→ ∆̂inj

α−→ I
τ−→ N0,

where

• ν is the inclusion functor, sending

– an object n ∈ N0 to n− 1, for all n ≥ 0,

– a morphism n ≤ n+ 1 to dn ∈ ∆̂inj(n− 1, n), for all n ≥ 0.

• α is the forgetful functor, sending n− 1 to n, for all n ≥ 0.

• τ is the terminal functor, sending n to n, for all n ≥ 0.

Remark 4.1.3
There is a symmetric monoidal structure on I, given by the disjoint union

I × I −→ I, (m,n) 7−→m + n.

Its neutral element is the empty set 0.
Moreover the forgetful functor is a strictly monoidal functor (∆̂inj,⊕,−1)

α−→ (I,+,0)

(see Remark 7.2.2 for the monoidal structure on ∆̂).
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Proposition 4.1.4
The following two functors are totally final1

I
τ−→ N0, ∆̂inj

α−→ I
τ−→ N0.

Proof. We only prove that τ is totally final. The other case can be shown in the same
way. Recall that by definition τ is totally final, if and only if B(n/τ) is contractible, for
all n ∈ N0. First note, that the forgetful functor

n/τ −→ I, (n ≤ τ(m)) 7−→m,

induces an isomorphism of n/τ with the full subcategory I≥n ≤ I, whose objects are all
m ∈ I with m ≥ n. To show that BI≥n is contractible, we define a shift functor

S : I≥m −→ I≥m, n 7−→ n + n.

For every f ∈ I(m,m′) we have a commutative diagram

m

f
��

ι1 //m + n

f+id
��

n
ι2oo

m′ ι1
//m′ + n n,ι2

oo

so the inclusions define natural transformations idI≥m
ι1−→ S

ι2←− constn. This shows that
the identity map on BI≥m is homotopic to the constant map or equivalently that BI≥m
is contractible.

2

4.1.1 Limits over connected, non-empty categories

A detailed study of the behaviour of functors on I with limits is needed to compare their
homotopy colimit with their colimit (cf. section 7.3.7). Here we are verifying the needed
categorial foundations.

Lemma 4.1.5
Let C be a category having arbitrary pullbacks, equalizers and sequential limits.

(i) Then C has limits over connected, non-empty indexing categories.

(ii) Suppose C F−→ D is a functor, which preserves pullbacks, equalizers and sequential
limits.

Then F preserves limits over connected, non-empty indexing categories.

1See Definition 7.3.26.
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(iii) Let G ↪−→ F be a natural monomorphism of functors C −→ D and suppose F
preserves pullbacks, equalizers and sequential limits. Moreover suppose that

G(C)

��

G(f) // G(D)

��
F (C)

F (f) // F (D)

is cartesian, for every morphism f ∈ C(C,D).

Then G preserves limits over connected, non-empty indexing categories.

Proof.

(i) Let X ∈ CAT(I, C) with connected, non-empty I ∈ Cat. Let U be the set of con-
nected, non-empty subcategories U ≤ I, such that limU X exists. As I is non-empty,
there is an i ∈ I and hence the discrete category with one object i lies in U . So U is
non-empty. Given a sequence of categories U1 ≤ U2 ≤ ... in U , we let U =

⋃
n≥1 Un.

Since C has sequential limits, the limit

lim
U
X = lim(... −→ lim

U2

X −→ lim
U1

X),

exists, which proves that U ∈ U . So by Zorn’s Lemma there is a maximal element
M ∈ U .

Suppose M ( I. Then there is a morphism f ∈ I(i, j) not contained in M . If
i, j /∈ M , we take an arbitrary m ∈ M . As I is connected, there is a zig-zag of
morphisms

m→ i1 ← i2 → ...← in → i.

As i /∈ M , there is a ik, such that ik ∈ M . So by replacing f by the adjacent
morphism, we may assume that i ∈ M or j ∈ M . Let M ′ ≤ I be the subcategory
generated by M and f . It is connected, as i ∈M or j ∈M .

• If i ∈M and j /∈M , then limM ′ X = limM X exists.

• If i /∈ M and j ∈ M , then limM ′ X = X(i) ×X(j) limM X exists, as C has
arbitrary pullbacks.

• If i, j ∈M , then

lim
M ′

= ker

(
limM X

X(f)◦πi //
πj

// X(j)

)
exists, because C has arbitrary equalizers.

Hence M ′ ∈ U , contradicting the maximality of M . It follows that I = M .

(ii) Replace “exists” by “is preserved by F” in the proof of (i).

(iii) By (ii) it suffices to check that G preserves pullbacks, equalizers and sequential
limits.
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• Given B −→ A←− C consider the commutative cube

G(B ×A C)

''

��

// G(C)

$$
F (B ×A C)

��

//

��

F (C)

��

G(B)

''

// G(A)

$$
F (B) // F (A).

As F preserves pullbacks, the front is cartesian. Moreover the left side is carte-
sian by assumption. Hence the composite of front and left side is cartesian.
Equivalently the composite of the back and the right side is cartesian. As
G(A) ↪−→ F (A) is a monomorphism, this implies that the back is cartesian. In
other words G(B ×A C)

∼−→ G(B)×G(A) G(C) and thus G preserves arbitrary
pullbacks.

• Given two morphisms f, g ∈ C(A,B), there is a commutative diagram

G(ker(f, g))

��

// G(A)

��

G(f) //

G(g)
// G(B)

��
F (ker(f, g)) // F (A)

F (f) //

F (g)
// F (B).

We have

G(ker(f, g))
∼−→ F (ker(f, g))×F (A) G(A)

∼−→ lim

(
G(A) // F (A)

F (f) //

F (g)
// F (B)

)

= lim

(
G(A)

G(f) //

G(g)
// G(B) �

� // F (B)

)
∼←− lim

(
G(A)

G(f) //

G(g)
// G(B)

)
= ker(G(f), G(g)),

where the first map is an isomorphism by assumption on G, the second is an
isomorphism, because F preserves equalizers, the third one is an equality by
commutativity and the fourth map is an isomorphism, because G(B) ↪−→ F (B)
is a monomorphism. In other words G(ker(f, g))

∼−→ ker(G(f), G(g)) is an
isomorphism and thus G preserves arbitrary equalizers.
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• Given a sequence ... → C3 → C2 → C1 of maps in C, by assumption on G we
have natural isomorphisms

G(lim
n≥1

Cn)
∼−→ F (lim

n≥1
Cn)×F (Cm) G(Cm), m ≥ 1.

In particular we obtain a sequence of isomorphisms

...
∼−→ F (lim

n≥1
Cn)×F (C2) G(C2)

∼−→ F (lim
n≥1

Cn)×F (C1) G(C1),

and thus the first map below is an isomorphism

G(lim
n≥1

Cn)
∼−→ lim

m≥1

(
F (lim

n≥1
Cn)×F (Cm) G(Cm)

)
∼−→ lim

m≥1

(
lim
n≥1

F (Cn)×F (Cm) G(Cm)

)
∼−→ lim

n≥m≥1

(
F (Cn)×F (Cm) G(Cm)

)
∼−→ lim

n≥1

(
F (Cn)×F (Cn) G(Cn)

)
∼−→ lim

n≥1
G(Cn).

The second map is an isomorphism, as F preserves sequential limits. The
third map is an isomorphism, because N≥m ⊂ N is final and limits com-
mute with pullbacks. The fourth map is an isomorphism, because the diag-
onal N ↪−→ N × N is final. And the last map is an isomorphism, because
F (Cn) ×F (Cn) G(Cn)

π−→ G(Cn) is an isomorphism. This proves that G pre-
serves sequential limits.

2

4.1.2 Limits of diagrams of injections

Here we are presenting some important functors on I, that preserve limits. We are mainly
interested in modified variants of these (cf. Proposition 6.3.1 and Proposition 5.4.10).

Lemma 4.1.6
Let X ∈ CAT(C,Set) with C ∈ Cat connected and non-empty.

Suppose X maps every morphism in C to an injection.
Then limC X

πc−→ X(c) is injective, for all c ∈ C.

Proof. Let c ∈ C and suppose xc = πcx = πcy = yc, where

x, y ∈ lim
C
X = {z ∈

∏
c∈C

; X(f)(zc) = zd, f ∈ C(c, d)}.

Let d ∈ C be arbitrary. As C is connected, there is a zigzag of morphisms in C

c = c1 → c2 ← ...→ cn = d, n ≥ 1.
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We can now check that xcm = ycm , by induction on 1 ≤ m ≤ n. Indeed by assumption
the statement holds for m = 1. Suppose it holds for some 1 ≤ m ≤ n and consider the
morphism f between cm and cm+1.

• If its target is cm+1, then

xm+1 = X(f)(xm) = X(f)(ym) = ym+1.

• If its target is im, then

X(f)(xm+1) = xm = ym = X(f)(ym+1),

and hence xm+1 = ym+1, since X(f) is injective.

As c ∈ C was arbitrary, it follows that x = y, which proves that πc is injective.
2

Corollary 4.1.7
The following categories have limits over connected non-empty categories.

(i) The wide2 subcategory category Setinj ≤ Set of sets with injections as morphisms.

(ii) The category I of the sets n = {1, ..., n}, for n ≥ 0, with injections.

(iii) The category ∆̂inj.

The functors ∆̂inj
α−→ I

ι−→ Setinj
J−→ Set preserve these limits.

Proof.

(i) Let X ∈ CAT(C,Setinj) with connected and non-empty C ∈ Cat. Then by Lemma

4.1.6 all the projection maps limC(JX)
πc−→ JX(c) are injective and so they are

morphisms in Setinj. Given a natural constS
s−→ X in CAT(C,Setinj) with S ∈

Setinj. Then using the universal property for limits in Set we get a unique map

U(S)
`−→ lim

C
JX, x 7−→ (sc(x))c∈C ,

such that πc◦` = sc, for all c ∈ C. As C is non-empty, we find a c ∈ C. As sc = πc◦`
is injective, so is also `. Hence ` is a morphism in Setinj and thus limC X = limC JX.

In particular Setinj
J−→ Set preserves limits over connected non-empty categories.

(ii) Let X ∈ CAT(C, I) with connected and non-empty C ∈ Cat. Then by (i) limC(ιX)
exists and limC(ιX)

πc−→ ιX(c) is injective, for all c ∈ C. As C is non-empty we find
a c ∈ C and so limC(ιX) is isomorphic to some subset of ιX(c). In particular there
is a m ∈ I with ι(m) ∼= limC(ιX) and it follows that m = limC X. By construction
I

ι−→ Setinj preserves limits over connected, non-empty categories.

2A subcategory is called wide, if it contains every object of the larger category.
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4.1. The category I of injections

(iii) Let X ∈ CAT(C, ∆̂inj) with connected and non-empty C ∈ Cat. Then by (i)
limC(ιαX) exists. As C is non-empty we find a c ∈ C and we give limC(ιαX)
the initial partial order with respect to the map limC(ιαX)

πc−→ ιαX(c), i.e.

x ≤ y :⇐⇒ πc(x) ≤ πc(y), x, y ∈ lim
C

(ιαX).

It is a total order, because πc is injective andX(c) ∈ ∆̂inj is totally ordered. Hence we

find an k ≥ −1 such that ια(k) ∼= limC(ιαX). We claim that ια(k) ∼= limC(ιαX)
πd−→

ιαX(d) is a morphism in ∆̂inj, for all d ∈ C. As C is connected, there is a zigzag of
morphisms in C

c = c1 → c2 ← ...→ cn = d, n ≥ 1.

We prove that ια(k) ∼= limC(ιαX)
πcm−→ ιαX(d) is a morphism in ∆̂inj, by induction

on 1 ≤ m ≤ k. Indeed by assumption the statement holds for m = 1. Suppose it
holds for some 1 ≤ m ≤ n and consider the morphism f between cm and cm+1.

• If its target is cm+1, then with X(f) and πcm also πcm+1 = X(f)πcm is order-
preserving.

• If its target is cm, then for every x, y ∈ k with x ≤ y we have

πcm(x) = X(f)πcm+1(x) ≤ X(f)πcm+1(y) = πcm(y),

and hence πcm+1(x) ≤ πcm+1(y), becauseX(cm+1) carries the initial partial order

to the map X(cm+1)
X(f)−→ X(cm). Indeed there is only one possible total order

on αX(cm+1), such that X(f) is order preserving, because X(f) is injective.

This proves the induction step and shows that k is a limit of X in ∆̂inj. By con-

struction ∆̂inj
α−→ I preserves this limit.

2

Lemma 4.1.8
Let X ∈ CAT(C,Setinj) with connected, non-empty C ∈ Cat. Moreover let c ∈ C and
a ∈ X(c).

Then there is a maximal connected subcategory c ∈ M ≤ C, such that a lies in the
image of limM X

πc−→ X(c).

Proof. By Corollary 4.1.7 we have J(limC X) = limC JX, where Setinj
J−→ Set is the

canonical inclusion functor. Given a chain c ∈ U1 ≤ U2 ≤ ... of such subcategories, then
also U =

⋃
n≥1 Un has this property. Indeed if d ∈ U , then there is an Un containing d

and we let ad ∈ X(d) be the d-th coordinate of a lift of a under limUn X
πc−→ X(c). Since

limUn X
πd−→ X(d) is injective, ad is unique. Moreover using uniqueness of the lifts and

the commutative diagram

limUn+1 X

πd %%

// limUn X

πdyy
X(d),

81
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it follows that ad does not depend on n ≥ 1. Every morphism f ∈ U(d, e) lies in some
Un and thus X(f)(ad) = ae, which proves that (ad)d∈U ∈ limU X is a lift for a under

limU X
πc−� X(c). So Zorn’s lemma yields a maximal connected subcategory M ≤ C of

the desired form.
2

Proposition 4.1.9
Every pointed set S ∈ Set∗ naturally induces an endofunctor E•S ∈ CAT(Setinj), given
by

EX(S) = SX , Ef (S)(s)y =

{
sx, y = f(x),
∗, y /∈ f(X),

f ∈ Setinj(X, Y ).

It preserves limits over connected non-empty categories.

Proof. For f ∈ Setinj(X, Y ) we see that X(f)(s) ∈ EY (S) = SY = Set(Y, S) is the
trivial extension of s ∈ EX(S) = SX = Set(X,S). In particular Ef (S) is again injective.
It follows that E•S ∈ CAT(Setinj).

Let X ∈ CAT(C,Setinj) with connected non-empty C ∈ Cat. We find a c ∈ C and
using the commutative diagram

ElimC X(S)

Eπc (S) ''

// limC E
X(S)

πc
��

EX(c)(S),

we see that the upper horizontal map is injective, as the diagonal map is so.
To check that it is also surjective, let s ∈ limC E

X(S). By Corollary 4.1.7 we have

J(limC E
X(S)) = limC JE

X(S), where Setinj
J−→ Set is the canonical inclusion functor.

So s is a certain tuple in
∏

c∈C E
X(c)(S) =

∏
c∈C S

X(c) and we have to prove that (sc)a = ∗,
for all c ∈ C and all a ∈ X(c) not in the image of the map limC X

πc−→ X(c). By Lemma
4.1.8 there is a maximal connected subcategory c ∈ M ≤ C, such that a is in the image
of limC X

πc−→ X(c). Let f ∈ C(d, e) be not contained in M . As C is connected, there
is a zig-zag of C-morphisms connecting c with d. So by replacing f by some morphism
of the zig-zag, we may assume that d or e is in M . If we had d ∈ M , then we could
set ae := X(f)(ad) to obtain a lift of a under limM∪{f}X

πc−→ X(c) contradicting the
maximality of M . Hence e ∈M . Let (ad)d∈M ∈ limM X be a lift of a. Similarly if ad had a

preimage ae under X(d)
X(f)−→ X(e), this would contradict the maximality of M . So as ad

has no preimage, we have (sd)ad = ∗ by definition of Ef (S). Using the zig-zag connecting
c and d, it follows that also (sc)a = ∗.

2

Proposition 4.1.10
For every n ≥ 1, the functor

pn : Setinj −→ Setinj, X 7−→ Xn,

preserves limits over connected, non-empty categories.
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Proof. By Corollary 4.1.7 the inclusion functor Setinj
J−→ Set preserves limits over

connected, non-empty categories. Let X ∈ CAT(I,Setinj) with connected ∅ 6= I ∈ Cat,
we have a commutative diagram

J((limI X)n)

o
��

// J(lim(Xn))

o
��

(limI JX)n ∼ // limI(JX)n,

where the vertical maps are bijections, because J preserves limits over connected, non-
empty categories by Corollary 4.1.7. Moreover the lower horizontal map is a bijection,
because limits and products always commute. Hence also the upper horizontal map is a
bijection, which proves that also pn(limI X) = (limI X)n

∼−→ limI(X
n) = limI pnX is a

bijection.
2

4.2 I-Operads

Here we are giving a very short introduction to I-operads with particular interest for the
Barratt-Eccles operad (cf. [BE74a]), that classifies E∞-spaces like the plus construction
in K-theory.

4.2.1 Algebras over monads

Definition 4.2.1
Let C be a category and M a monad on C, i.e. a monoid in (CAT(C), ◦, idC).

An M-algebra consists of an object X ∈ C and a morphism µX ∈ C(M(X), X), such
that the square below commutes.

M ◦M(X)

M(µX)

��

µM (X) //M(X)

µX

��
M(X)

µX // X.

A homomorphism of M-algebras X
f−→ Y is a map f ∈ C(X, Y ), such the square below

commutes.

M(X)

µX
��

M(f) //M(Y )

µY
��

X
f // Y.

We let C-M denote the category of M-algebras.

Remark 4.2.2 (i) Unit and counit of an adjunction D(F (X), Y ) = C(X,G(Y )) define
a monad GF on C with multiplication and unit

GFGF
G(εF )−→ GF, idC

η−→ GF.
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Moreover F induces a functor

D −→ C-M, X 7−→ (G(X), GFG(X)
G(εX)−→ G(X)).

(ii) Vice versa, given a monad M on a category C, the forgetful functor U fits in an
adjunction

C-M(F (X), Y ) = C(X,U(Y )),

where F is the free M-algebra, given by the object M(X) with multiplication

MM(X)
µM (X)−→ M(X).

4.2.2 I-operads

Remark 4.2.3
Let (C,⊗, k) be a monoidal category.

(i) There is a functor

E• : k/C −→ CAT(∆̂inj, k/C), (k
η−→ X) 7−→ E•(X) : [n 7−→ X⊗n],

where EdiX = (idX)⊗i ⊗ ηX ⊗ (idX)⊗(n−i), for all 0 ≤ i ≤ n.

(ii) If the monoidal structure is symmetric, (i) extends to a functor

E• : k/C −→ CAT(I, k/C), (k
η−→ X) 7−→ E•(X) : [n 7−→ X⊗n],

where EσX ∈ C(X⊗n) is given by permutation of the tensor factors, for all σ ∈
I(n)× = Σn and n ≥ 0.

Definition 4.2.4
Let (C,⊗, k) be a symmetric monoidal category.

An I-operad is a functor O ∈ CAT(Iop, C), such that the induced endofunctor

E/C −→ E/C, (E
ηX−→ X) 7−→ O ⊗I E•(X) =

∫ i∈I
O(i)⊗ Ei(X)

is a monad on E/C.

Remark 4.2.5
Let (C,⊗, k) be a symmetric monoidal category, which is cocomplete.

(i) The Day convolution on CAT(Iop, C) is defined as the bifunctor, given by the left
Kan extension

X ∗ Y = +!(X ⊗ Y ) =

∫ p,q
I(-,p+q)Xp ⊗ Yq, X, Y ∈ CAT(Iop, C).

Using that (I,+,0) and (C,⊗, k) are symmetric monoidal, it induces a symmetric
monoidal structure, whose neutral element is given by O = I(-,0)k.
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(ii) The substitution product on CAT(Iop, k/C) is defined as the bifunctor, given by

X ◦ Y = X ⊗I E•Y =

∫ n∈I
Xn ⊗ E•Y, X, Y ∈ CAT(Iop, C),

where canonically E•Y = Y ∗• ∈ CAT(I, CAT(Iop, k/C)), using that (I,+,0) and
(C,⊗, k) and hence (CAT(Iop, C), ∗, D) are symmetric monoidal.

It induces a monoidal structure, whose neutral element is given by I = I(-,1)k.

(iii) Then the functor (CAT(Iop, k/C), ◦, I) M−→ (CAT(k/C), ◦, id) is monoidal.

One could (and should!) define I-operads as monoids in (CAT(Iop, k/C), ◦, I). Although
this is the more elegant way to introduce I-operads, we will work with the shorter defini-
tion above. In general it differs from the definition here, but is enough for our purposes
and avoids much of the abstract nonsense required to make the definitions explicit.

In the most standard references (e.g. [JLL12] or [Fre09]) only Σ-operads are considered,
i.e. they use upper definitions for the subgroupoid of isomorphisms Σ = I× ≤ I instead
using the whole category I.

See also [MMSS01] Part III for a general treatment of Day convolution on functor
categories between symmetric monoidal categories.

4.2.3 Examples of I-operads

Proposition 4.2.6
Consider the category (Set,×, ∗).

(i) The associative I-operad Ass1 ∈ CAT(Iop,Set) is given by

Ass(n)
1 := Σn

∼= colim
∆̂inj

I(n, -), n ≥ 0.

Its multiplication map M(Ass1) ◦M(Ass1)
µ−→M(Ass1) is induced by

µ : Σk × (Σn1 × ...× Σnk) ↪−→ Σn1+...+nk , (f, g1, ..., gk) 7−→ f̄ ◦ (g1 + ...+ gn),

where f̄ ∈ Σn1+...+nk is given by permutation of the k blocks in n1 + ... + nk. The

unit map is induced by the isomorphism ∗ η−→ Ass(1)
1 .

Algebras over Ass1 are exactly the monoids, i.e. unital associative algebras in (Set,×, ∗).

(ii) The commutative operad Com1 ∈ CAT(Iop,Set) is given by

Com(n)
1 = ∗, n ≥ 0,

together with the canonical multiplication and unit maps.

Algebras over Com1 are precisely the commutative monoids.

There are canonical morphisms of operads Ass −� Com and Ass1 −� Com1.
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Proof. See [JLL12] 9.1.3 and 13.1.3 resp. for the corresponding Σ-operads. The proof is
exactly the same in our more general setting.

2

Remark 4.2.7
Let (C,⊗, E) be a symmetric monoidal category.

(i) The Ass1-fold coproduct of E defines the associative operad in (C,⊗, E), i.e.

Ass(n)
1 = Ass(n)

1 E = ΣnE, n ≥ 0.

(ii) The Com1-fold coproduct of E defines the commutative operad in (C,⊗, E), i.e.

Com(n)
1 = Com(n)

1 E = E, n ≥ 0.

Definition 4.2.8
Let (C,⊗, E) be a symmetric monoidal category.

Then we get an I-operad Com1,∞ in the symmetric monoidal category (sC,⊗, E) by
setting

Com(n)
1,∞ = E•ΣE ∈ sC, n ≥ 0.

It is usually called the E∞-operad.
There is a canonical factorization Ass1 −→ Com1,∞ −� Com1.

Example 4.2.9 (i) For (Set,×, ∗) we obtain the category sSet-Com1,∞ of simplicial
monoids, that are commutative up to homotopy.

The operad Com1,∞ on sSet is also denoted by Γ and called the Barratt-Eccles
operad after [BE74a]. The algebras sSet-Com1,∞ are also called E∞-spaces.

In [BE74b] it is shown, that E∞-spaces are infinite loop spaces, i.e. spaces being
homotopy equivalent to an n-fold loop space, for every n ≥ 0.

(ii) For (Ab,⊗,Z) we obtain the category sAb-Com1,∞ of simplicial rings, that are com-
mutative up to homotopy.

4.3 Homotopy groups of E∞-spaces

4.3.1 Abelianization of E∞-spaces

By considering infinite loop spaces as algebras over the E∞-operad, we are giving con-
nectivity results of the map from stable homotopy theory to the integral homology of a
space. We do not claim that the obtained result are new.

Proposition 4.3.1 (Dold, Puppe)
Let X ∈ sAb be dimensionwise free.
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If X is (k − 1)-connected, the object Com(r)X = X⊗rΣr
is ck,r-connected, where

ck,r =

{
kr − 1, 0 ≤ k ≤ 2,
2r + k − 3, k ≥ 2.

Proof. See [DP61] Satz 12.1.
2

Lemma 4.3.2
Let G ∈ Grp be finite with |G| ∈ k×.

Let M ∈ dg(k[G]-Mod), such that G acts trivially on Hn(M), for all n < m.
Then M −�MG is (m− 1)-connected and Hm(M)G = Hm(MG).

Proof. There is a spectral sequence

E2
p,q = Hp(G,Hq(M)) ⇒ Hp+q(G,M),

which by Remark 5.1.8 can be computed as

E2
p,q =

{
Hq(M)G = Hq(M), p = 0, q < m,
0, p > 0, q < m.

It follows that E∞p,q = E2
p,q, for all q < m, and hence Hn(M)

∼−→ Hn(G,M), for all n < m.
Moreover

Hm(G,M) = E∞0,m = E2
0,m = H0(G,Hm(M)) = Hm(M)G,

and thus Hm(M) −� Hm(G,M), which proves that H∗(M) −→ H∗(G,M) is (m − 1)-
connected.

There is another spectral sequence

E1
p,q = Hq(G,Mp) ⇒ Hp+q(G,M),

which by the same argument collapses at the second page, because

E1
p,q =

{
(Mp)G, q = 0,
0, q > 0.

E2
p,q =

{
Hp(MG), q = 0,
0, q > 0.

Hence H∗(G,M)
∼−→ H∗(MG) and H∗(M) −→ H∗(G,M)

∼−→ H∗(MG) is (m − 1)-
connected.

2

Lemma 4.3.3
Let S ∈ sSet∗ be (c−1)-connected with c ≥ 1 and suppose H∗(S,Z)

∼−→ H∗(S,Z[1/(p−1)!]),
for some prime number p > 1.

Then πnZ[Com1,∞(S)]
∼−→ πnZ[Com1(S)], for all 0 ≤ n ≤ cc,p.

Proof. For a commutative ring k ∈ CRing we define k̃S as the kernel in

0 −→ k̃S −→ kS −→ k −→ 0,
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where the middle term is the free k-module generated by S and the right map is induced
by the terminal map S −→ ∗. Then the composition⊕

n≥0

B•(k, k[Σn], (k̃S)⊗n) ↪−→
⊕
n≥0

B•(k, k[Σn], (kS)⊗n) −� k(colim
n∈I

E•Σn × Sn)

is an isomorphism of simplicial k-modules, so we have naturally have k[Com1,∞(S)] ∼=
Com1,∞(k̃S), where Com1,∞ on the right is considered as the Σ-operad on the symmetric
monoidal category of simplicial k-modules. Now we let k = Z[1/(p− 1)!] and consider the
commutative diagram

Com1,∞(Z̃S)

��

// Com1,∞(k̃S)

��

// Com<p
1,∞(k̃S)

��

Com1(Z̃S) // Com1(k̃S) // Com<p
1 (k̃S),

where an upper index < p means that we only take the summands 0 ≤ r < p. By assump-
tion the map Z̃S '−→ k̃S is a weak equivalence. In particular it is a cofibrant resolution of
simplicial abelian groups and Lemma 8.3.10 implies that the lower left horizontal map is
a weak equivalence. Moreover the Künneth formula implies that (Z̃S)⊗r

'−→ (k̃S)⊗r is a
weak equivalence, for all r ≥ 0. Using the spectral sequence of Remark 8.2.2 for the group
Σr, we see that also (Z̃S)⊗rhΣr

'−→ (k̃S)⊗rhΣr
is a weak equivalence, for all r ≥ 0. Summing

up over all r ≥ 0, we get that also the upper left horizontal map is a weak equivalence.
As r! ∈ k×, for all 0 ≤ r < p, the right vertical map is a weak equivalence, because by
Remark 5.1.8 we have

Com(r)
1,∞(k̃S) = (k̃S)⊗rhΣr

= B•(k, k[Σr], (k̃S)⊗r)
'
−� k⊗k[Σr](k̃S)⊗r = (k̃S)⊗rΣr

= Com(r)
1 (k̃S).

Moreover the Künneth formula implies that (k̃S)⊗r and hence Com(r)
1,∞(k̃S) = (k̃S)⊗rhΣr

is (cp − 1)-connected, for all r ≥ p. It follows that the upper right horizontal map is
(cp − 1)-connected. Similarly Proposition 4.3.1 implies that the lower right horizontal
map is cc,p-connected. It follows that πn of the left vertical map is an isomorphism, for all
0 ≤ n ≤ cc,p ≤ cp− 1.

2

Proposition 4.3.4
Let S ∈ sSet∗ be (c − 1)-connected and suppose H∗(S,Z)

∼−→ H∗(S,Z[1/(p − 1)!]), for
some prime number p > 1.

Then the map BCom1,∞(S) −→ BCom1(S) is (2p+ c− 3)-connected.
If S is connected, then Com1,∞(S) −→ Com1(S) is (2p+ c− 4)-connected.

Proof. By using the map of I-operads Ass1 −→ Com1,∞ induced by th inclusion of
the 0-skeleton Ass1 = (Com1,∞)0 ↪−→ Com1,∞, we can consider Com1,∞(S) as a simpli-
cial monoid, which moreover is free in every dimension. Hence by Proposition 7.3.33 the
map to the group completion Com1,∞(S) −→ Grp(Com1,∞(S)) induces a weak equiva-

lence BCom1,∞(S)
'−→ BGrp(Com1,∞(S)). Similarly by Proposition 7.3.33 we get a weak

equivalence BCom1(S)
'−→ BGrp(Com1(S)). Hence, once we have shown that

H∗(BCom1,∞(S),Z) −→ H∗(BCom1(S),Z)
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is (2p+ c− 3)-connected, the Whitehead Theorem for simplicial groups 8.2.6 implies that
Grp(Com1,∞(S)) −→ Grp(Com1(S)) is (2p+ c− 4)-connected and thus BCom1,∞(S) −→
BCom1(S) is (2p + c− 3)-connected. Moreover, if S is connected, so are also Com1,∞(S)
and Com1(S), and thus by Proposition 7.3.33 (ii) the vertical maps in the commutative
square

Com1,∞(S)

'
��

// Com1(S)

'
��

Grp(Com1,∞(S)) // Grp(Com1(S)),

are weak equivalences, which proves that also Com1,∞(S) −→ Com1(S) is (2p + c − 4)-
connected.

Now there is a commutative diagram

Com1,∞(ΣS)

��

' // BCom1,∞(S)

��
Com1(ΣS) ∼ // BCom1(S),

(4.1)

where the horizontal maps are induced by the terminal maps S
t−→ ∗ via

(O(t∨(i−1)∨id∨t∨(n−i)))1≤i≤n : O(S∨n) = O((S1)n∧S) −→ O(X)×n = BnO(X), n ≥ 0,

for O = Com1,∞ and O = Com1 respectively. The lower map is an isomorphism, while the
upper map is a weak equivalence by [BE74a] Lem. 4.6 or [Sch07] Lem. 3.2 combined with
Prop. 4.5 loc. cit.

(i) If c ≥ 1, then ΣS is (c+1)-connected and hence Z[Com1,∞(ΣS)] −→ Z[Com1(ΣS)] is
(cc+1,p−1)-connected by Lemma 4.3.3. Using (4.1) it follows that ZBCom1,∞(S) −→
ZBCom1(S) is (cc+1,p−1)-connected, which proves the result in this case as cc+1,p−1 =
2p+ c− 3.

(ii) If c = 0, then ΣS is connected and thus Com1,∞(ΣS) −→ Com1(ΣS) is (2p+ c− 3)-
connected by (i). By taking the loop space we get that Com1,∞(ΣS) −→ Com1(ΣS)
is (2p + c − 4)-connected. Then (4.1) implies that equivalently BCom1,∞(S) −→
BCom1(S) is (2p+ c− 4)-connected.

2

Corollary 4.3.5
Let k ∈ CRing with (p− 1)! ∈ k×, for some prime number p > 1.

Suppose X ∈ s(k-Mod) is free in every dimension and (c− 1)-connected with c ≥ 0.
Then BCom1,∞(X) −→ BCom1(X) is (2p+ c− 3)-connected.

Proof. Let E•X
'−→ X be the functorial cofibrant replacement of Corollary 7.2.32 induced

by the free/forgetful functor adjunction

s(k-Mod)(kX, Y ) = sSet∗(X,U(Y )).
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Then using the Quillen spectral sequence of Theorem 7.3.18 it suffices to check that
BCom1,∞(EpX) −→ BCom1(EpX) is (2p + c− 3)-connected, for all p ≥ 0. Since EpX =
k̃U(Ep−1X), this map is isomorphic to

kBCom1,∞U(Ep−1X) −→ kBCom1U(Ep−1X), p ≥ 0.

As the functor k̃◦U preserves connectivity and X is (c−1)-connected, so is also UEp−1X.
Moreover H∗(UEp−1X,Z)

∼−→ H∗(UEp−1X, k) is an isomorphism by Lemma 4.3.6, be-
cause Ep−1X ∈ s(k-Mod). So we can apply Proposition 4.3.4 to conclude the proof.

2

4.3.2 Homology of simplicial abelian groups

Purpose of this section is to verify that homology behaves well with localization. Again
we do not claim the results are new. We assume that all the given statements also arise
in Bousfield’s theory of localizations [BK72].

Lemma 4.3.6
Let k ≤ Q be a subring and X ∈ sAb.

Then H∗(X, k)
∼−→ H∗(X ⊗ k, k)

∼←− H∗(X ⊗ k,Z), considered as simplicial groups.

Proof. Let F
'−→ X be a dimensionwise free replacement of X as we would get from

Corollary 7.2.32 using the free/forgetful functor adjunction

Ab(kX, Y ) = sSet(X,U(Y )).

As homology is a homotopy invariant, it suffices to prove the Lemma for F .
For M = Z or M = k, Remark 8.2.2 (i) provides a spectral sequence

E2
p,q = πpHq(F,M) ⇒ Hp+q(X,M),

where Hq(F,M)p = Hq(Fp,M), for all p, q ≥ 0. Thus we can assume that F is a constant
free abelian group. Since k ≤ Q, the module F ⊗ k is flat over Z and thus we have
isomorphisms

H∗(F, k) // H∗(F ⊗ k, k) H∗(F ⊗ k,Z)oo

(Λ∗F )⊗ k ∼ // (Λ∗(F ⊗ k))⊗ k Λ∗(F ⊗ k),∼oo

which proves the Lemma.
2

Proposition 4.3.7
Let k ≤ Q be a subring and X ∈ sSet∗ be connected with H∗(X,Z)

∼−→ H∗(X, k).
Then we have natural weak equivalences

Com1(X)
'−→ Grp(Com1(X))

'−→ Grp(Com1(X))⊗ k = k̃X.
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Proof. As X is connected, so is Com1X and thus Com1X
'−→ Grp(Com1X) is a weak

equivalence by Proposition 7.3.33. The proof for the second map takes a bit longer. Defin-
ing k̃X as the kernel in

0 −→ k̃X −→ kX −→ k −→ 0,

we get a weak equivalence Z̃X '−→ k̃X by assumption on X and thus the left map in the
commutative diagram

Com1(k̃X)

'
��

� � // Com1(kX)

��

// // k[Com1X]

��
Com1(Z̃X) �

� // Com1(ZX) // // Z[Com1X]

is a weak equivalence by Lemma 8.3.10. As the horizontal compositions are isomorphisms,
it follows that the right vertical map is a weak equivalence. Hence by the Künneth formula
we get weak equivalences

ZBnCom1X = Z[Com1X]⊗n
'−→ k[Com1X]⊗n = kBnCom1X, n ≥ 0,

and Corollary 7.3.19 implies that ZBCom1X
'−→ kBCom1X is a weak equivalence. Equiv-

alently the left vertical map in the commutative diagram

H∗(BCom1X,Z)

o
��

∼ // H∗(BGrp(Com1X),Z)

��

// H∗(BGrp(Com1X)⊗ k,Z)

o
��

H∗(BCom1X, k) ∼ // H∗(BGrp(Com1X), k) ∼ // H∗(BGrp(Com1X)⊗ k, k)

is an isomorphism. Using the weak equivalence Com1X
'−→ Grp(Com1X) we see that the

two left horizontal maps are isomorphisms, while by Lemma 4.3.6 again also the lower
right horizontal map and right vertical map are isomorphisms. Hence also the upper right
horizontal map is an isomorphism and the Whitehead Theorem for simplicial groups 8.2.6
implies that Grp(Com1X)

'−→ Grp(Com1X)⊗k is a weak equivalence, because again both
objects are connected.

2

Corollary 4.3.8
Let k ≤ Q be a subring and X ∈ s(k-Mod) be connected.

Considering (X, 0) as a pointed simplicial set, we have natural weak equivalences

Com1(X, 0)
'−→ Grp(Com1(X, 0))

'−→ Grp(Com1(X, 0))⊗ k.

Proof. As X is connected, the adjunction counit (see Proposition 7.2.9) is a weak equiv-
alence

εX : S1 ∧ sSet∗(S1, X)
'−→ X.

Hence in the commutative square of simplicial group rings

k[BsSet∗(S1, X)]

��

k[S1 ∧ sSet∗(S1, X)]

��

ε
'
// k[X]

��
Z[BsSet∗(S1, X)] Z[S1 ∧ sSet∗(S1, X)] ε

'
// Z[X]
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the left vertical map is a weak equivalence by Lemma 4.3.6, because sSet∗(S1, X) ∈
s(k-Mod). It follows that the right vertical map is a weak equivalence and we can apply
Proposition 4.3.7.

2

4.3.3 Homotopy groups of connected simplicial k-modules

Finally we are able to prove the advertised link between homotopy and homology using
the Hurewicz map.

Proposition 4.3.9
Let k ∈ CRing with (p− 1)! ∈ k×, for some prime number p > 1.

Suppose X ∈ s(k-Mod) is (c− 1)-connected and free in every dimension.
Then the map below is an isomorphism, for all 0 ≤ n ≤ cc,r (cf. Proposition 4.3.1).

πnX
ι1−→ Pπn(Com1X) := ker

(
πn(Com1(X))

δ∗ //

(η×id)∗+(id×η)∗
// πn(Com1(X ×X))

)
.

Here δ is the diagonal map and 0
η−→ X is the initial map of chain complexes.

Proof. First note that the inclusion

X ×X = X ⊕X ι1+ι2−→ Com1(X)⊗ Com1(X),

extends to a natural isomorphism of simplicial commutative k-algebras Com1(X×X)
∼−→

Com1(X)⊗Com1(X), because Com1 as a left adjoint commutes with coproducts, which are
given by the tensor product in the category of commutative rings. Under this isomorphism,
the map δ corresponds to the map Com1(X) −→ Com1(X) ⊗ Com1(X), given by δ =
η ⊗ id + id⊗ η on X. Using the commutative square

π∗X
ι1 // Pπ∗(Com1X)� _

��
π∗X Com1(X),

π1oo

it suffices to check that Pπn(Com1X)
π1−→ πnX is injective, for all 0 ≤ n ≤ cc,p. Let

a ∈ Pπn(Com1X) and 0 ≤ n ≤ cc,p. Then there are elements ar ∈ πnCom(r)
1 (X), for r ≥ 0,

such that a =
∑

r≥0 ar. For every r ≥ p we have ar = 0, because 0 ≤ n ≤ cc,p ≤ cc,r and

Com(r)
1 (X) is cc,r-connected by Proposition 4.3.1. So a = a0 + ... + ap−1. By definition of

the map δ, the following diagram commutes

πnCom1(X)

δ
��

r·πr // πnCom(r)
1 (X)

πn(Com1(X)⊗ Com1(X))

⊕
r,s≥0

πn(Com(r)
1 (X)⊗ Com(s)

1 (X))
π1,r−1 // πn(Com(1)

1 (X)⊗ Com(r−1)
1 (X)).

µ|

OO
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So we get

r · ar = r · πr(a) = µ| ◦ π1,r−1 ◦ δ(a) = µ| ◦ π1,r−1 ◦ (1⊗ a+ a⊗ 1) = 0,

which proves that a2, ..., ap−1 = 0, because (p− 1)! ∈ k×. Hence a = a0 + a1 and

2a = µ ◦ (η ⊗ id + id⊗ η)(a) = µ ◦ δ(a) = a0 + 2a1 = 2a− a0

implies a0 = 0. It follows that π1a = a1 = 0 implies a = 0, which finally proves injectivity
of the maps

Pπn(Com1X)
π1
↪−→ πnX, 0 ≤ n ≤ cc,r.

2

There is a similar result in the setting of chain complexes.

Proposition 4.3.10
Let k ∈ CRing with (p− 1)! ∈ k×, for some prime number p > 1.

Let X ∈ dg(k-Mod) with Xn = 0, for all n < c, for some c ≥ 0.
Then the map below is an isomorphism, for all 0 ≤ n < pc.

HnX
ι1−→ PHn(Com1X) := ker

(
Hn(Com1(X))

δ∗ //

(η×id)∗+(id×η)∗
// Hn(Com1(X ×X))

)
.

Here δ is the diagonal map and 0
η−→ X is the initial map of chain complexes.

Proof. The assumption on X implies that Com(r)(X) = X⊗rΣr
is not only cc,r-connected,

but even trivial in dimensions < rc. The rest of the proof is exactly the same as that of
Proposition 4.3.9.

2

4.3.4 Homotopy groups of connected E∞-spaces

We are giving a analogous results in the case of E∞-spaces. Like those in the preceding
section, the following results are inspired by Beilinson’s first Theorem in [Bei14]. According
to Beilinson, integral statements like these have not been present in literature before.

Proposition 4.3.11
Let G ∈ sGrp and k ∈ CRing.

Then the Hurewicz map induces a map

h = ηG − 1 : π∗G −→ Pπ∗(k[G]) := ker

(
π∗k[G]

δ∗ //

(η×id)∗+(id×η)∗
// π∗k[G×G]

)
,

where G
δ−→ G×G is the diagonal and 1

η−→ G is the unit map.
The same holds for connected G ∈ sSet-Ass1.

93



Chapter 4. E∞-spaces and their homotopy groups

Proof. Let [g] ∈ πnG, i.e. g ∈ ker(NnG
d−→ Nn−1G), for some n ≥ 0. Then

δ(g − 1) = (g, g)− (1, 1) = ((g, 1)− 1) + ((1, g)− 1) + ((g, 1)− 1) · ((1, g)− 1).

Since g is a cycle in NnG, so are the first two summands

(id× η)(g − 1) = (g, 1)− 1, (η × id)(g − 1) = (1, g)− 1

in Nnk[G×G]. Hence by Proposition 8.1.3 (i) the third summand is zero in πnk[G×G].
It follows that δ∗ ◦ h = ((η × id)∗ + (id× η)∗) ◦ h, which proves the assertion.

When G ∈ sSet-Ass1 is connected, then can take a dimensionwise free replacement
E•G

'−→ G like in Corollary 7.2.32 using the free/forgetful functor adjunction

sSet-Ass1(Ass1(X), Y ) = sSet(X,U(Y )),

and Proposition 7.3.33 yields a weak equivalence to its group completion E•G
'−→ Grp(E•G).

Hence using the commutative diagram

π∗G

h
��

π∗E•(X)∼oo

h
��

∼ // π∗Grp(E•G)

h
��

H∗(G, k) H∗(E•G, k)∼oo ∼ // H∗(Grp(E•), k),

it follows that since the right vertical map maps into the primitive part, so do the middle
and the left vertical maps.

2

Proposition 4.3.12
Let X ∈ sSet∗-Com1 be (c− 1)-connected, for some c > 0.

Suppose H∗(X,Z)
∼−→ H∗(X, k), where k = Z[1/(p− 1)!], for some p > 1.

Then the Hurewicz map induces an isomorphism, for all 0 ≤ n ≤ cc,p,

h = ηX − 1 : πnX
∼−→ PHn(X, k) := ker

(
Hn(X, k)

δ∗ //

(η×id)∗+(id×η)∗
// Hn(X ×X, k)

)
,

where X
δ−→ X ×X is the diagonal and 1

η−→ X is the unit map.

Proof. For n = 0, the maps δ∗, (η × id)∗ and (id × η)∗ coincide and are isomorphisms,
which proves the statement for n = 0. So we can assume n > 0. As the statement is void,
for c = 0, we may further assume c > 0. Let 1 ∈ X be the unit and considering (X, 1) as
a pointed simplicial set, we let k̃X be defined as the kernel in

0 −→ k̃X −→ kX −→ k −→ 0,

where kX in the middle means the free k-module generated by X. Then the composition

Com1(k̃X) =
⊕
r≥0

(k̃X)⊗rΣr
↪−→

⊕
r≥0

(kX)⊗rΣr
= k

∐
r≥0

Xr
Σr −� k colim

r∈I
ErX = kCom1X
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is an isomorphism and using Proposition 4.3.11 we get commutative diagram

πnCom1X

π1◦h
,,

h // PHn(Com1X, k) �
� // πnCom1(k̃X)

π1

��

πnk̃X.

We claim that Com1X
π1◦h−→ k̃X is a weak equivalence and that π1 induces isomorphisms

π1| : PHn(Com1X, k)
∼−→ πnk̃X, 1 ≤ n ≤ cc,p.

This implies that also h is an isomorphism in that range and using the free/forgetful
functor adjunction

sSet∗-Com1(Com1(X), Y ) = sSet∗(X,U(Y )),

the commutative diagram

πnX

h
��

� �
ηU(X) // πnCom1X

h o
��

U(εX) // // πnX

h
��

PHn(X, k) �
� ηU(X) // PHn(Com1X, k)

U(εX) // // PHn(X, k)

then implies the assertion. Indeed since X
ηU(X)

↪−→ Com1X
U(εX)
−� X is the identity on X, the

right vertical map is a retract of the middle one and thus also an isomorphism.

• First we prove that π1 ◦ h is a weak equivalence. For every tuple (x1, ..., xn) ∈ Xn,
we have in Com1(k̃X)

h(x1, ..., xn) = x1 · ... · xn − 1 = ((x1 − 1) + 1) · ... · ((xn − 1) + 1)− 1

=
∑

a∈{0,1}n
(x1 − 1)a1 · ... · (xn − 1)an − 1

=
∑

∅6={i1<...<im}⊂n

(xi1 − 1)⊗ ...⊗ (xim − 1),

where in the last term 1 ∈ X is the unit (which coincides with the unit in Com1(X̃)).
Hence we have

π1 ◦ h(x1, ..., xn) = (x1 − 1) + ...+ (xn − 1) ∈ k̃X, (x1, ..., xn) ∈ Xn, n ≥ 0,

showing that Com1X
π◦h−→ k̃X is a homomorphism of simplicial monoids. Using that

k̃X ∈ s(k-Mod), it factors as

Com1X −→ Grp(Com1X) −→ Grp(Com1X)⊗ k = kX/k · 1X
id−1X−→ k̃X,

where we write 1X = 1 ∈ X to avoid confusion. Since X is connected, the first two
maps are weak equivalences by Proposition 4.3.7 and the third map is an isomor-
phism with inverse given by the canonical composition k̃X ↪−→ kX −� kX/k · 1X .
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• Similarly as in the proof of Proposition 4.3.9 one shows that π1 is an isomorphism
in the range 1 ≤ n ≤ cc,p. However the diagonal δ here is slightly different, what
requires some attention. Let

a ∈ kerπ1 ⊂ PHn(Com1X, k) ⊂ Hn(Com1X, k) ∼=
⊕
r≥0

πn(Com(r)
1 (k̃X)).

We write a =
∑

r≥0 ar corresponding to the direct sum decomposition. First note
that the maps δ, η×id and id×η are compatible with unit and counit of the bialgebra
Com1X, which implies that the induced maps preserve the direct decompotisition
k⊕Com(k̃X) −→ k⊕Com(k̃X ⊕ k̃X). As all of the three maps induce the identity
on k, it follows that a0 = 0. Moreover we have a1 = π1(a) = 0. Next we define a
filtration Γ on Com1(k̃X) by setting

ΓmCom1(k̃X) =
⊕
r≥m

Com(m)
1 (k̃X) = Com(k̃X)m, m ≥ 0,

and similarly on Com1(k̃X⊕X̃). Note that this is precisely the lower central series Γ
for the associative algebra Com(k̃X) of Definition 3.2.6. As the three maps preserve
the augmentation ideal Com(k̃X), they also preserve the filtration. Since we have

δ(x− 1) = x⊗ x− 1⊗ 1 = 1⊗ (x− 1) + (x− 1)⊗ 1 + (x− 1)⊗ (x− 1), x ∈ X,

it follows that the algebra homomorphism grΓCom1(k̃X)
grδ−→ grΓCom1(k̃X⊕ k̃X) ∼=

grΓCom1(k̃X)⊗ grΓCom1(k̃X) is isomorphic to the δ of Proposition 4.3.9. So using
the commutative diagram

πnΓmCom1(k̃X)

δ
��

m·πm // πnCom(m)
1 (X)

πnΓmCom1(k̃X ⊕ k̃X)

����

πngrΓ
mCom1(k̃X ⊕ k̃X)

⊕
r+s=m

πn(Com(r)
1 (k̃X)⊗ Com(s)

1 (k̃X))
π1,m−1 // πn(Com(1)

1 (X)⊗ Com(m−1)
1 (X)),

µ|

OO

we can prove that am = 0, by induction on 0 < m < p. Indeed the statement
holds for m = 1 and supposing it holds for some 0 < m < p, then

∑
r≥m ar = a ∈

PHn(Com1X, k) ∩ ΓmHn(Com1X, k) and the upper diagram shows

m · am = m · πm(a) = µ ◦ π1,m−1 ◦ δ(a) = µ ◦ π1,m−1(1⊗ a+ a⊗ 1) = 0,

which implies am = 0, as m ∈ k×. We have proven that

a ∈ ΓmHn(Com1X, k) = πn
⊕
r≥p

Com(p)
1 (k̃X),
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which by Propostion 4.3.1 is zero in the range 1 ≤ n ≤ cc,p, because with X also

k̃X is (c− 1)-connected. This concludes the proof that PHn(Com1X, k)
π1−→ k̃X is

injective.

2

Corollary 4.3.13
Let X ∈ sSet∗-Com1,∞ be (c− 1)-connected, for some c > 0.

Suppose H∗(X,Z)
∼−→ H∗(X, k), where k = Z[1/(p− 1)!], for some p > 1.

Then the Hurewicz map induces an isomorphism, for all 0 ≤ n ≤ min{cc,p, 2p+ c− 4},

h = ηX − 1 : πnX
∼−→ PHn(X, k) := ker

(
Hn(X, k)

δ∗ //

(η×id)∗+(id×η)∗
// Hn(X ×X, k)

)
,

where X
δ−→ X ×X is the diagonal and 1

η−→ X is the unit map.

Proof. Consider the commutative diagram

πnCom1X

h o
��

πnCom1,∞Xoo

h
��

U(εX) // // πnX

h
��

PHn(Com1X, k) PHn(Com1,∞X, k)oo U(εX) // // PHn(X, k),

where the left vertical map is an isomorphism, for 0 ≤ n ≤ cc,p by Proposition 4.3.12. The
left two horizontal maps are isomorphisms in the range 0 ≤ n ≤ 2p + c − 4, as they are
induces by the (2p + c − 4)-connected map Com1,∞X −� Com1X of Proposition 4.3.4.
Hence the middle vertical map is an isomorphism in the range 0 ≤ n ≤ min{cc,p, 2p+c−4}.
Using the free/forgetful functor adjunction

sSet∗-Com1,∞(Com1,∞X, Y ) = sSet∗(X,U(Y )),

we see that the right two horizontal maps are induced by the retraction Com1,∞X
U(εX)
−� X

with section X
ηU(X)−→ Com1,∞(X). Hence the right vertical map is a retract of the middle

one and thus also an isomorphism in the desired range.
2
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5 Cyclic homology and the Lie
algebra homology of matrices

Goal of this chapter is the integral generalization of the well-known Theorem of Loday-
Quillen [LQ84] and Tsygan [Tsy83]. Alongside its proof we are giving a streamlined in-
troduction to cyclic homology.

5.1 Cyclic homology

Nothing of this chapter is new. We are just recollecting the required definitions and
elementary properties from [Lod98] that we need.

5.1.1 Variants of cyclic homology of cyclic modules

Definition 5.1.1
Let C be a category.

A cyclic C-object is a simplicial C-object X ∈ sC together with endomorphisms tn ∈
C(Xn), for all n ≥ 0, such that

(i) tn+1
n = idXn , n ≥ 0,

(ii) ditn =

{
dn, i = 0,
tn−1di, 1 ≤ i ≤ n,

(iii) sitn =

{
t2n+1sn, i = 0,
tn+1si−1, 1 ≤ i ≤ n.

Remark 5.1.2
Let (C,⊗, E) be a symmetric monoidal category, A ∈ C-Ass1.

(i) For a A-bimodule M ∈ (A⊗Aop)-C, there is a functorial simplicial C-object C•(A,M),
given by Cn(A,M) = M ⊗ A⊗n and

a) di =

{
id⊗i ⊗ µ⊗ id⊗(n−i−1), 0 ≤ i ≤ n− 1,
d0tn, i = n,

b) si = id⊗(i+1) ⊗ η ⊗ id⊗(n−i), 0 ≤ i ≤ n,
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where µ denotes the multiplication map of A and M respectively, E
η−→ A is the

unit morphism and tn is the cyclic permutation X ⊗ A⊗n ∼−→ A⊗X ⊗ A⊗(n−1).

We call H∗(A,M) = H∗(C∗(A,M)) the homology of the associative algebra
A with coefficients M .

(ii) For M = A we obtain a cyclic C-object C•(A) = (C•(A,A), t).

We call HH∗(A) = H∗(C∗(A)) the Hochschild homology of A.

Proposition 5.1.3
Let k ∈ CRing and X a cyclic k-module.

(i) The maps t′ = (−1)ntn induce an action of the cyclic group Cn = 〈t′〉 ∼= Z/(n+ 1)Z
on Xn, for each n ≥ 0.

(ii) There is a bicomplex

CP (X) = (...
N←− X∗

−2

1−t′←− X ′∗
−1

N←− X∗
0

1−t′←− X ′∗
1

N←− X∗
2

1−t′←− ...),

where

a) X∗ is the complex X with differential b =
∑

0≤i≤n(−1)idi : Xn −→ Xn−1,

b) X ′∗ is the complex X with differential b′ =
∑

0≤i<n(−1)idi : Xn −→ Xn−1,

c) N =
∑

0≤i≤n(−1)intin is the norm map with respect to the Cn-action on Xn.

Proof. By computation one checks b(1− t′) = (1− t′)b′ and b′N = Nb.
2

Definition 5.1.4
Let k ∈ CRing and X a cyclic k-module.

(i) The cyclic homology of X is defined as the homology HC∗(X) = H∗(Tot×CC(X)),
where

CC(X) = (X∗
0

1−t′←− X ′∗
1

N←− X∗
2

1−t′←− ...).

(ii) The negative cyclic homology of X is defined as HC−∗ (X) = H∗(Tot×CC−(X)),
where

CC−(X) = (...
N←− X∗

−2

1−t′←− X ′∗
−1

N←− X∗
0

1−t′←− X ′∗
1

).

(iii) The periodic cyclic homology of X is defined as HP∗(X) = H∗(Tot×CP (X)),
where

CP (X) = (...
N←− X∗

−2

1−t′←− X ′∗
−1

N←− X∗
0

1−t′←− X ′∗
1

N←− X∗
2

1−t′←− ...).

(iv) The Connes homology of X is defined as the homology Hλ
∗ (X) = H∗(C

λ(X))
of the Connes complex Cλ(X), which is the quotient complex of X given by
Cλ
n(X) = Xn/(1− (−1)ntn), for all n ≥ 0.
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5.1.2 Connes’ operator and mixed complexes

Definition 5.1.5
Let k ∈ CRing.

A mixed complex is a chain complex X ∈ dg(k-Mod) together with a second differ-

ential X∗
B−→ ΣX∗ = (X∗+1,−d) with B2 = 0.

Proposition 5.1.6
Let k ∈ CRing. Then every cyclic module X becomes a mixed complex via

Bn : Xn
N−→ Xn

s−→ Xn+1
1−t′−→ Xn+1, n ≥ 0,

where s = tn+1sn. It is called Connes’ operator after A. Connes, who introduced it
first.

Proof. Using the formula b(1− t′) = (1− t′)b′ of Proposition 5.1.3 one checks

bB +Bb = b(1− t′)sN + (1− t′)sNb = (1− t′)(b′s+ sb′)N = (1− t′)N = 0.

2

Definition 5.1.7
For k ∈ CRing and X a mixed complex, we define the following double complexes.

(i) M(X) = (X∗
0

B←− ΣX∗
1

ΣB←− Σ2X∗
2

Σ2B←− ...),

(ii) M−(X) = (...
Σ−2B←− Σ−2X∗

−2

Σ−1B←− Σ−1X∗
−1

B←− X∗
0

),

(iii) MP (X) = (...
Σ−1B←− Σ−1X∗

−1

B←− X∗
0

ΣB←− ΣX∗
1

Σ2B←− ...),

Remark 5.1.8
Let k ∈ CRing and G ∈ Grp be finite with |G| ∈ k×.

Then the augmentation map k[G]
ε
−� k is a retraction with section

s =
1

|G|
∑
g∈G

1 · g.

In particular k ∈ k[G]-Mod is projective, showing that for every X ∈ k[G]-Mod we have

Hn(G,X) = Tork[G]
n (k,X) =

{
XG, n = 0,
0, n > 0.

Proposition 5.1.9
Let k ∈ CRing and X a cyclic k-module. Then
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(i) There is a quasi-isomorphism Tot×M(X)
'−→ Tot×CC(X), given by

Mp,q(X) ↪−→ CCp,q(X)× CCp−1,q+1(X), x 7−→ (x, sNx).

Similarly we get quasi-isomorphisms

Tot×M−(X)
'−→ Tot×CC−(X), Tot×MP (X)

'−→ Tot×CP (X).

(ii) If p > 1 with (p− 1)! ∈ k×, then Tot×CC(X) −� Cλ(X) is (p− 1)-connected.

Proof.

(i) Using the formulas b(1 − t′) = (1 − t′)b′ and b′N = Nb one checks that the given
map is a map of chain complexes. By filtering

FnM(X) =
∏

0≤p<n

Mp,∗(X), FnCC(X) =
∏

0≤p<2n

CCp,∗(X), n ≥ 0,

it suffices to check that the map induces a quasi-isomorphism on the associated
graded complexes. But the map

grFn+1Tot×M(X) �
� // grFn+1Tot×CC(X) n ≥ 0

Tot×(ΣnX∗
n

) �
� // Tot×(X∗

2n

1−t′←− X ′∗
2n+1

)

is a quasi-isomorphism, because the extra-degeneracy s = tn+1sn+1 induces a con-
traction for its cokernel X ′∗+2n+1.

(ii) By filtering CC(X) and Cλ(X) by

FrCC(X) =
∏

0≤n≤r

CC∗,n(X), FrC
λ(X) =

∏
0≤n≤r

Cλ
n(X), r ≥ 0,

we obtain spectral sequences

• E1
r,s = Hs(Xr

1−t′←− Xr
N←− ...) = Hs(Cr, Xr) ⇒ HCr+s(X),

• Ē1
r,∗ = Xr/(1− t′) ⇒ Hλ

r+s(X),

and the map E1
r,∗ −→ Ē1

r,∗ is an isomorphism, for 0 ≤ r < p − 1, by Remark 5.1.8.

Since also E1
∗,0

∼−→ Ē1
∗,0 is an isomorphism and E1

∗,1 −� Ē1
∗,1 = 0 is surjective,

it follows that E1 −→ Ē1 and hence E∞ −→ Ē∞ and HC∗(X) −→ Hλ
∗ (X) are

(p− 1)-connected.

2
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5.2. The negative Chern character for Hopf algebras

Remark 5.1.10
Let k ∈ CRing and X a cyclic k-module.

Then there are maps of short exact sequences of bicomplexes

0 //M−(X) S //M−
∗−1,∗+1(X)

� _

��

P // X∗−2� _

��

// 0

0 //M−(X)

P ����

I //MP (X)

����

S //M∗−1,∗+1(X) // 0

0 // X∗
I //M(X) S //M∗−1,∗+1(X) // 0,

inducing maps of long exact sequences

...
S // Hn−1(X)

I
��

B // HC−n (X) S // HC−n−2(X)

��

P // Hn−2(X)

I
��

B // ...

...
S // HCn−1(X) B // HC−n (X)

P
��

I // HPn(X)

��

S // HCn−2(X) B // ...

... S // HCn−1(X) B // Hn(X) I // HCn(X) S // HCn−2(X) B // ...

5.2 The negative Chern character for Hopf algebras

By examination of the cyclic structure on the bar complex, we are following [CW09] to
construct the negative Chern character. As we have mentioned before, the key ideas go
back to them. Our essential task is a streamlined presentation of the required results we
and to pay attention that everything works integrally in the same manner as rationally.

5.2.1 Cyclic modules induced by group objects

Remark 5.2.1
Let (C,⊗, E) be a monoidal category and C ∈ C-Assop

1 .

(i) Then there is a simplicial C-object E•(C) ∈ sC, given by

En(C) = C⊗(n+1), di = id⊗i⊗ε⊗ id⊗(n−i), si = id⊗i⊗δ⊗ id⊗(n−i), 0 ≤ i ≤ n.

(ii) If (C,⊗, E) is symmetric monoidal, then E•(C) is a cyclic C-object with tn ∈
C(C⊗(n+1))× the cyclic permutation mapping the last factor to the first one.

Proposition 5.2.2
Let (C,⊗, k) be a symmetric monoidal category and G ∈ C-Grp be cocommutative.

Then E•(G) is a cyclic left G-module by the diagonal action

G⊗ En(G)
δn⊗id−→ (G⊗(n+1))⊗ (G⊗(n+1))

µ−→ G⊗(n+1) = En(G), n ≥ 0,
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where by abuse of notation δn denotes the map G
δ−→ G⊗2 δ⊗id−→ ...

δ⊗id−→ G⊗n
δ⊗id−→ G⊗(n+1),

and G⊗(n+1) ∈ C-Ass1 via factorwise G-multiplication.
Moreover there is a natural isomorphism of simplicial left G-modules E•G ∼= B•(G,G, k).
In particular B•(G,G, k) is a cyclic left G-module.

Proof. Using that G
δ−→ G⊗G is a homomorphism of unital C-magmas, it follows that

the diagonal action defines a left G-module structure on En(G), for all n ≥ 0. By the
same argument, we see that E•(G) ∈ s(G-C) is a simplicial left G-module. Using that G
is cocommutative, it follows that t is G-linear and hence E•(G) is a cyclic left G-module.
It remains to check that E•(G) ∼= B•(G,G, k). First note that there is an adjunction

G-C(G⊗X, Y ) = C(X,U(Y )),

where U is the forgetful functor. In particular we get a comonad, that is an associative
comagma B ∈ (CAT(G-C), ◦, id)-Ass1, given by B(X) = G⊗X, for X ∈ G-C. Its counit
and comultiplication can be computed as

B(X) = G⊗X µ−→ X, B(X) = G⊗X id⊗η⊗id−→ G⊗G⊗X = BB(X).

Associated to B there is a functorial simplicial resolution E•(B)(X) −→ X and by con-

struction E•(B)(k) = B•(G,G, k), where k ∈ G-C via G⊗ k ε⊗id−→ k.
Now there is another comonad C ∈ (CAT(G-C), ◦, id)-Ass1 with G acting diagonally

on C(X) := G⊗X, for X ∈ G-C. Its counit and comultiplication are given by

C(X) = G⊗X ε⊗id−→ X, C(X) = G⊗X δ⊗id−→ G⊗G⊗X = CC(X),

and again by construction E•(C)(k) = E•(G). Using the axioms of a group object, we see
that the maps

(id⊗ µ) ◦ (δ⊗ id) : B(X) = G⊗X
∼−→←− G⊗X = C(X) : (id⊗ µ) ◦ (id⊗ ι⊗ id) ◦ (δ⊗ id),

induce an isomorphism of comonads B ∼= C, which proves the second assertion.
2

Proposition 5.2.3
Let (C,⊗, k) be a symmetric monoidal category, G ∈ C-Grp and M a G-bimodule.

Then there is an isomorphism B•(Ad(M), G, k) ∼= H•(G,M), where Ad(M) = M with
the right conjugation action

Ad(M)⊗G id⊗δ−→M ⊗G⊗2 γ⊗id−→ G⊗M ⊗G ι⊗id⊗id−→ G⊗M ⊗G µ−→M = Ad(M),

and γ is the isomorphism twisting the two tensor factors.
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5.2. The negative Chern character for Hopf algebras

Proof. We consider G⊗n ∈ C-Assop
1 by factorwise comultiplication and define the maps

in the middle of the diagram

M ⊗ (G⊗n)⊗ (G⊗n)
γ⊗id // G⊗n ⊗M ⊗G⊗n

µn⊗id
��

Hn(G,M) M ⊗G⊗n
id⊗δ

OO

∼ //M ⊗G⊗noo

id⊗δ
��

Bn(G,M)

G⊗M ⊗G⊗n
µ⊗id

OO

M ⊗ (G⊗n)⊗ (G⊗n)

γ⊗id
��

G⊗M ⊗G⊗n
ι⊗id

OO

G⊗n ⊗M ⊗G⊗n,µn−1⊗idoo

as the composites of the upper and lower path. Using the axioms of a group object, one
checks that they are inverse to each other and that the maps from left to right assemble
to an isomorphism of simplicial objects.

2

Example 5.2.4
Consider the case (C,⊗, k) = (Set,×, ∗) and G ∈ Grp.

(i) The isomorphism of Proposition 5.2.2 is given by

Bn(G,G, ∗)
∼−→←− En(G),

(x0, ..., xn) 7−→ (x0, x0x1, ..., x0 · · ·xn)

(x0, x
−1
0 x1, ..., x

−1
n−1xn)←− [ (x0, ..., xn).

Moreover the cyclic operator tn on Bn(G,G, ∗) is given by

tn(x0, ..., xn) = (x0 · · ·xn, (x1 · · ·xn)−1, x1, ..., xn−1),

which is quite complicated compared to the simple cyclic permutation on En(G).

(ii) The isomorphism of Proposition 5.2.3 is given by

Bn(Ad(M), G, ∗)
∼−→←− Cn(G,M),

(x0, ..., xn) 7−→ ((x1 · · ·xn)−1x0, x1, ..., xn)

((x1 · · · xn)x0, x1, ..., xn)←− [ (x0, ..., xn).

In particular, for M = G, this isomorphism maps the element tn(x0, ..., xn) =
(xx1···xn

0 , (x1 · · ·xn)−1, x1, ..., xn−1) ∈ Bn(Ad(G), G, ∗) to

(xn · xx1···xn
0 , (x1 · · · xn)−1, x1, ..., xn−1),

which is unequal to

tn((x1 · · · xn)−1x0, x1, ..., xn) = (xn, (x1 · · ·xn)−1x0, x1, ..., xn−1),
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unless x0 = 1.

In particular the upper isomorphism is not a homomorphism of cyclic objects in
general unless we restrict it to B•(∗, G, ∗) = B•(Ad(1), G, ∗) ↪−→ B•(Ad(G), G, ∗).

Proposition 5.2.5
Let (C,⊗, k) be a symmetric monoidal category and G ∈ C-Grp be cocommutative.

Then the inclusion k
η

↪−→ Ad(G) and the isomorphism of Proposition 5.2.3 induce a
homomorphism of cyclic C-objects

c : B•(k,G, k) ↪−→ B•(Ad(G), G, k)
∼−→ H•(G,G) = C•(G).

Proof. By explicit computation we have already seen in example 5.2.4, that this holds
in the case (C,⊗, k) = (Set,×, ∗). Of course one could also verify this in the general
setting by direct computation using the axioms of group objects. However by a more
conceptual approach the case (C,⊗, k) = (Set,×, ∗) already implies the general case, as
we will demonstrate in the following. We have to show that the square

Bn(k,G, k)

tn
��

// Cn(G)

tn
��

Bn(k,G, k) // Cn(G)

commutes, for every n ≥ 0. Note that by construction these are built by compositions
and tensor products of the structure maps of G and the natural isomorphism twisting
the tensor factors. Since G is cocommutative, these maps are homomorphisms of counital
comagmas. Now by Lemma 5.2.6 below the functor C-Comop

1 (G⊗n, -) is strict monoidal
and hence the upper square under C-Comop

1 (G⊗n, -) is isomorphic to the corresponding
square in the category of sets

Bn(∗, C-Comop
1 (G⊗n, G), ∗)

tn
��

// Cn(C-Comop
1 (G⊗n, G))

tn
��

Bn(∗, C-Comop
1 (G⊗n, G), ∗) // Cn(C-Comop

1 (G⊗n, G)),

which commutes by example 5.2.4. Now on the set of homomorphisms C-Comop
1 (G⊗n, G⊗(n+1))

the map induced by the functor C-Comop
1 (G⊗n, -) is injective, because evaluation at the

identity is a retraction. Hence also the square in C-Comop
1 commutes.

Note that this technique also provides an alternative proof for Proposition 5.2.3.
2

Lemma 5.2.6
Let (C,⊗, k) be a symmetric monoidal category and C ∈ C-Assop

1 . Then

(i) There is an adjunction

C-Assop
1 (XC, Y ) = Set(X, C-Assop

1 (C, Y )),

where the left adjoint is given the X-fold coproduct of C, for X ∈ Set.
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(ii) There is a natural map∏
1≤i≤n

(ε⊗(i−1) ⊗ id⊗ ε⊗(n−i))︸ ︷︷ ︸
=:πi

: C-Assop
1 (C,X1 ⊗ ...⊗ Yn) −→

∏
1≤i≤n

C-Assop
1 (C,Xi),

which is a bijection, if C is cocommutative.

In particular the functor C-Assop
1 (C, -) is strict monoidal in this case via

C-Assop
1 (C,X ⊗ Y )

∼−→ C-Assop
1 (C,X)× C-Assop

1 (C, Y ), C-Assop
1 (C, k)

∼−→ ∗.

Proof.

(i) By the universal property of coproducts, we have a natural bijection

C-Assop
1 (XC, Y ) =

∏
x∈X

C-Ass1(C, Y ) = Set(X, C-Assop
1 (C, Y )).

(ii) If C is cocommutative, then C
δ−→ C ⊗ C is a homomorphism of comagmas and

hence
(fi)1≤i≤n 7−→ (f1 ⊗ ...⊗ fn) ◦ δn−1

is well-defined and forms an inverse:

• Using that f1, ..., fn are homomorphisms of comagmas and by the axioms of
comagmas, we have, for all 1 ≤ i ≤ n, that

πi ◦ (f1 ⊗ ...⊗ fn) ◦ δn−1 = ((εf1)⊗ ...⊗ fi ⊗ ...⊗ (εfn)) ◦ δn−1 1 ≤ i ≤ n

= (ε⊗ ...⊗ fi ⊗ ...⊗ ε) ◦ δn−1 = fi.

• Again by the axioms of comagmas there is a commutative diagram

(X1 ⊗ ...⊗Xn)
δn−1⊗...⊗δn−1

// X⊗n1 ⊗ ...⊗X⊗nn
π1⊗...⊗πn
��

∼ (X1 ⊗ ...⊗Xn)⊗n

π1⊗...⊗πnss
X1 ⊗ ...⊗Xn.

If the upper right map is the unique isomorphism induced by the natural
isomorphism permuting the tensor factors, preserving the order of X⊗ni , for
each 1 ≤ i ≤ n, then the upper row is δn−1 for the comagma X1⊗ ...⊗Xn and
it follows that

((π1f)⊗ ...⊗ (πnf)) ◦ δn−1 = (π1 ⊗ ...⊗ πn) ◦ δn−1 ◦ f = f.

2

Remark 5.2.7
Let (C,⊗, k) be a symmetric monoidal category.

Then Lemma 5.2.6 (ii) implies that X1⊗ ...⊗Xn is a product of X1, ..., Xn in C-Comop
1 .

In particular for (C,⊗, k) = (Abop,⊗,Z) this proves that the coproduct of commutative
rings is given by the tensor product.
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5.2.2 Construction of the negative Chern character

The following results can also be found in [CW09]. As their notation is different from ours
and they assumed the algebra to be rational, we recall their proofs, for the convenience
of the reader (without the sign that has unfortunately slipped in).

Lemma 5.2.8
Let k ∈ CRing and A ∈ k-Ass1 a unital associative k-algebra. Given a homomorphism of

chain complexes of left A-modules C
f−→ D, such that

(i) C is N-connected, for some N ∈ Z, i.e. Cn = 0, for all n ≤ N .

(ii) For all n ∈ Z, we have Cn = A⊗Xn, for some Xn ∈ k-Mod.

(iii) There is a k-linear contraction s for D.

Then f and 0 are chain homotopic via sf , inductively defined by sfN = sfN−1 = ... = 0 and

Cn = A⊗Xn
sfn−→ Dn+1, a⊗ x 7−→ a · s(fn − sfn−1d)(1⊗ x), n > N.

Proof. We have to check that fn−dsfn = sfn−1d, for all n ∈ Z. For n ≤ N , we have Cn = 0
and there is nothing to check. Suppose the statement is true for some n − 1 ≥ N . Then
the induction hypothesis implies

d(fn − sfn−1d) = (fn−1 − dsfn−1)d = sfn−2d
2 = 0.

Using this, sd+ ds = 1, the definition of sfn and its A-linearity, we get

dsfn(a⊗ x) = d(a · s(fn − sfn−1d)(1⊗ x)) = a · ds(fn − sfn−1d)(1⊗ x)

= a · (1− sd)(fn − sfn−1d)(1⊗ x) = a · (fn − sfn−1d)(1⊗ x)

= fn(a⊗ x)− sfn−1(a⊗ x),

for all a⊗ x ∈ A⊗Xn, proving the induction step.
2

Lemma 5.2.9
Let k ∈ CRing and H ∈ k-Grp a Hopf algebra over k.

Then there are H-linear maps E∗(H)
jn−→ E∗+2n(H), for n ≥ 0, such that

j0 = id, jnb = bjn +Bjn−1, n ≥ 1.

Proof. By setting j−1 = 0, the formula holds for j0. Suppose we have constructed jn,
for some n ≥ 0, satisfying jnb = bjn + Bjn−1. Using this assumption and the formula
bB +Bb = 0 of Proposition 5.1.6, we see that the map

f = Bjn : E∗(H) −→ Σ2n+1E∗(H) = (E∗+2n+1,−b)
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defines a homomorphism of chain complexes:

fb = Bjnb = B(bjn +Bjn−1) = Bbjn = −bBjn = (−b)f

As E∗(H) is zero in negative dimensions, f maps into the kernel of Σ2n+1E∗(H) −�
Σ2n+1k, which has a k-linear contraction s induced by the extra-degeneracy s−1 = η⊗id⊗n.
So we can apply Lemma 5.2.8 to obtain an H-linear contraction jn+1 := sf for f . The
contraction condition sfb+ (−b)sf = f readily implies

jn+1b = sfb = bsf + f = bjn+1 +Bjn.

2

Proposition 5.2.10
Let k ∈ CRing and H ∈ k-Grp a Hopf algebra over k.

Then the map Tot×M−(B•(M,H, k))
P
−� B∗(M,H, k) of Remark 5.1.10 has a natural

section J , for all right H-modules M ∈ Mod-H.

Proof. For n ≥ 0, we define Jn as the composition

B∗(M,H, k) Jn // B∗+2n(k,H, k)

M ⊗H B∗(H,H, k)
o

M ⊗H B∗+2n(H,H, k)
o

M ⊗H E∗(H)
M⊗jn //M ⊗H E∗+2n(H),

where the vertical isomorphisms are those of Proposition 5.2.2 and jn is the map of the
preceding lemma. We define

J = (J0, J1, ...) : B∗(M,H, k) ↪−→ Tot×M−(B•(M,H, k)) = (
∏
n≥0

B∗+2n(M,H, k), b+B).

Then using the relations for (jn)n≥0 we get

(b+B)J = (bJ0, bJ1 +BJ0, bJ2 +BJ1, ...) = (J0b, J1b, ...) = Jb,

which proves that J is a homomorphism of chain complexes. By construction PJ = id.
2

Definition 5.2.11
For k ∈ CRing and H ∈ k-Grp the negative Chern character is defined as the com-
position

B∗(k,H, k)

J
��

ch− // Tot×M−(H)

Tot×M−(B•(k,H, k)) // Tot×M−(B•(Ad(H), H, k)) ∼ // Tot×M−(C•(H)).
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Remark 5.2.12
For k ∈ CRing and H ∈ k-Grp.

Then by construction the diagram below is commutative.

B•(k,H, k)� _

J
��

ch−

--

// B•(Ad(H), H, k) ∼ // C•(H)

Tot×M−(B•(k,H, k))

P

@@

// Tot×M−(B•(Ad(H), H, k)) ∼
// Tot×M−(C•(H))

P

OOOO

5.2.3 Restriction to the Chevalley-Eilenberg complex

Proposition 5.2.13
Let k ∈ CRing and g ∈ k-Lie.

Then the antisymmetrisation map

e : Λ∗g −→ B̃∗Uk(g), x1 ∧ ... ∧ xn 7−→
∑
σ∈Σn

sgn(σ) · xσ(1) ⊗ ...⊗ xσ(n)

is a homomorphism of mixed complexes with the second differential B = 0 on Λ∗g.

Proof. Recall that by Proposition 5.2.5 there is a monomorphism of cyclic objects

c : B•(k,G, k) ↪−→ B•(Ad(G), G, k)
∼−→ H•(G,Ad(G)) = C•(G),

which in the case G ∈ Grp is given by

c(x1, ..., xn) = ((x1 · · ·xn)−1, x1, ..., xn−1), x1, ..., xn ∈ G.

As j is injective, so is the map on the associated reduced complexes B̃∗Uk(g)
c

↪−→ C̃∗Uk(g)

and it suffices to show that the composition Λ∗g
e−→ B̃∗Uk(g)

c
↪−→ C̃∗Uk(g) is a homo-

morphism of mixed complexes. Recall that comultiplication and convolution on Uk(g) are
given by

δ(x) = 1⊗ x+ x⊗ 1, ι(x) = −x, x ∈ g.

So translating the formula for i to the setting G = Uk(g) (see also the abstract definition
in Proposition 5.2.5), we get

c(x1 ⊗ ...⊗ xn) =
∑

a∈{0,1}n
(−1)a1+...+an · (xa1

1 · · ·xann )⊗ x1−a1
1 ⊗ ...⊗ x1−an

n , x1, ..., xn ∈ g

= 1⊗ x1 ⊗ ...⊗ xn,

where the last equality holds, because all terms with values in k in any of the last n tensor
factors vanish in the reduced complex C̃∗Uk(g). Moreover it follows that

Bc(x1 ⊗ ...⊗ xn) = (1− (−1)ntn)sN(1⊗ x1 ⊗ ...⊗ xn), x1, ..., xn ∈ g,

= (1− (−1)ntn)(1⊗N(1⊗ x1 ⊗ ...⊗ xn)) = 0,

because at least two tensor factors of every appearing summand lie in k. This proves
Bce = 0 and thus ce and e are homomorphisms of mixed complexes.

2
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Proposition 5.2.14

Let k ∈ CRing and g ∈ k-Lie. The map M−(Λ∗g) =
∏

n≤0 Λ∗−2ng
P−→ Λ∗g of Remark

5.1.10 has a canonical section J = (1, 0, 0, ...) and we get a diagram

Λ∗g

id

))

e

��

J // Tot×M−(Λ∗g)

e
��

P // Λ∗g

e

��
B∗Uk(g)

id

44
J // Tot×M−(B∗Uk(g)) P // B∗Uk(g).

Then the right square commutes and the left one commutes up to homotopy.

Proof. The right square commutes, because the map Λ∗g
e−→ B∗Uk(g) is a homomorphism

of mixed complexes by Proposition 5.2.13 and P is natural in mixed complexes. To see
that eJ and Je are homotopic, consider their lifts

Uk(g)⊗ Λ∗g

id⊗e
��

j // Tot×M−(Uk(g)⊗ Λ∗g)

id⊗e
��

B∗(Uk(g), Uk(g), k)
j // Tot×M−(B∗(Uk(g), Uk(g), k)),

and the differences

Dn = B(id⊗ e)jn −Bjn(id⊗ e) : Uk(g)⊗ Λ∗g −→ B∗+2n+1(Uk(g), Uk(g), k), n ≥ 0.

Like in the proof of Lemma 5.2.9 we will construct Uk(g)-linear maps Uk(g) ⊗ Λ∗g
hn−→

B∗+2n+1(Uk(g), Uk(g), k), such that

Bhn−1 + bhn + hnb = Dn =

{
0, n = 0,
jne, n > 0.

Setting h0 = h−1 = 0, the equality holds for n = 0. Suppose we have constructed hn, for
some n ≥ 0, satisfying the equality. Then using the induction hypothesis, the relations
for jn of Lemma 5.2.9 and the formula bB + Bb = 0 of Proposition 5.1.6, we see that
f = jn+1e−Bhn : Λ∗g −→ Σ2(n+1)B∗(Uk(g), Uk(g), k) is a chain map:

fb = jn+1eb−B(hnb) = (bjn+1 +Bjn)e+B(bhn − jne+Bhn−1) = bjn+1e− bBhn = bf

As f maps into the kernel of Σ2(n+1)B∗(Uk(g), Uk(g), k) ∼= Σ2(n+1)E∗Uk(g) −� Σ2(n+1)k,
which is k-linearly contractible, we get a Uk(g)-linear contraction hn+1 for f . In other
words

bhn+1 + hn+1b = jn+1e−Bhn,
which proves the induction step. By construction the map

(k ⊗Uk(g) h
0, k ⊗Uk(g) h

1, ...) : Λ∗g −→ Tot×M−(B∗Uk(g))

is a contraction for D, proving that Je and eJ are chain homotopic.
2
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Corollary 5.2.15
Let k ∈ CRing and g ∈ k-Lie.

Then the diagram below commutes up to homotopy

Λ∗g

e

��

θ // ΣCλ
∗Uk(g) (Cλ

∗−1Uk(g),−b)

B

��

B∗Uk(g)

J
��

Tot×M−(B∗Uk(g)) c // Tot×M−
∗ (C∗Uk(g)) Tot×M−

∗ (Uk(g)),

where θ is the antisymmetrisation map given by

θ(x0 ∧ ... ∧ xn) = (−1)n ·
∑
σ∈Σn

sgn(σ) · [x0 ⊗ xσ(1) ⊗ ...⊗ xσ(n)].

Proof. Since in C̃∗Uk(g) we have

Bθ(x1 ∧ ... ∧ xn) = (1− (−1)ntn)sNθ(x1 ∧ ... ∧ xn) = (1− (−1)ntn)se(x1 ∧ ... ∧ xn)

= 1⊗ e(x1 ∧ ... ∧ xn) = ce(x1 ∧ ... ∧ xn),

which shows that the square commutes up to homotopy when we replace Je by eJ . Since
these two maps are homotopic by Proposition 5.2.14 the statement follows.

2

5.3 Comparing cyclic homologies

We are comparing cyclic homology and negative cyclic homology by using Connes’ op-
erator B. We show that it has poor connectivity properties integrally contrarily to the
rational case. We are giving an upper bound for the connectivity and prove that essentially
it is sharp by giving an example. It is remarkable that Brun [Bru01] gets exactly the same
upper bounds for connectivity in his comparison of cyclic homology to topological cyclic
homology. Although their construction is not comparable it seems that the “distance” of
cyclic homology to both “negative cyclic homologies” is the same (called this way as they
both involve taking fixed points of the circle action).

5.3.1 Homomorphisms induced by derivations

Proposition 5.3.1
Let k ∈ CRing and A ∈ k-Ass1 together with a k-linear derivation δ on A.

Then δ induces an endomorphism δ̄ on the cyclic module C•(A), given by

Lδ =
∑

0≤i≤n

id⊗i ⊗ δ ⊗ id⊗(n−i) : Cn(A) −→ Cn(A),

a0 ⊗ ...⊗ an 7−→
∑

0≤i≤n

a0 ⊗ ...⊗ δ(ai)⊗ ...⊗ an.
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Moreover the induced map on periodic cyclic homology HP∗(A)
Lδ−→ HP∗(A) is zero.

Proof. One checks that Lδ commutes with all the face maps di, degeneracies si and cyclic
operators tn. In [Goo85a] Thm. II.4.2 Goodwillie constructed maps C̃n(A)

eδ−→ C̃n−1(A)

and C̃n(A)
Eδ−→ C̃n+1(A), for all n ≥ 0, linearly depending on δ, satisfying the forumulas

[eδ, b] = 0, [eδ, B] + [E, b] = δ̄, [Eδ, B] = 0.

In Cor. II.4.3 he used them to define a contraction

h :
∏
m∈Z

C̃n−2mA = Tot×MP (C̃∗A)m −→ Tot×MP (C̃∗A)m−1 =
∏
n∈Z

C̃n−2m−1A,

(xm)m∈Z 7−→ (e(xm) + E(xm+1))m∈Z,

for the composition Tot×MP (C̃∗A)
δ̄◦S−→ Tot×MP (C̃∗A)∗−2. As the shift map HP∗(A)

S−→
HP∗−2(A) is an isomorphism on the underlying complexes, it follows that also Lδ = 0 on
HP∗(A).

2

5.3.2 Cyclic homology and filtrations

Proposition 5.3.2
Let k ∈ CRing and A ∈ k-Ass1 carrying a (descending) algebra filtration F (see Definition
3.1.6) with F0A = A.

Then the tensor product filtration (see Remark 3.1.4) defines an induced filtration F on
the cyclic module C•(A). Moreover the following holds.

(i) F1C•(A) = C•(A,F1A) = ker(C•(A) −� C•(A/F1A)).

(ii) If Fr+1A = 0, then C•(A,F1A) −� C•(A,F1A)/FpC•(A,F1A) is (p/r−2)-connected.

(iii) If grFA is flat and (p− 1)! ∈ grFA, then HP∗(C•(A,F1A)/FpC•(A,F1A)) = 0.

Proof. As F is an algebra filtration, multiplication A ⊗ A
µ−→ A and k

η−→ A are 0-
equicontinuous for the tensor product filtration on A ⊗ A and the discrete filtration on
k (i.e. k = F0k ⊃ F1k = 0). Hence face maps and degeneracies are 0-equicontinuous
by definition of C•(A). By construction of the tensor product filtration also the cyclic
operator is 0-equicontinuous, so C•(A) is a filtered cyclic module.

(i) Since F0A = A, by construction of the tensor product filtration we have

F1Cn(A) =
∑

0≤i≤n

A⊗i ⊗ F1A⊗ A⊗(n−i) = ker(Cn(A) −� Cn(A/F1A)), n ≥ 0.

(ii) It suffices to prove that the given map is an isomorphism in dimensions < p/r − 1
or equivalently that FpCn(A,F1A) = FpCn(A) = 0, for n < p/r − 1. Suppose
FpCn(A) 6= 0. Then there is a tuple m0, ...,mn ≥ 0 with m0 + ...+mn ≥ p, such that
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Fm1A ⊗ ... ⊗ Fmn 6= 0. As Fr+1A = 0, we can assume m0, ...,mn ≤ r and it follows
that

p ≤ m0 + ...+mn ≤ (n+ 1)r < p,

a contradiction.

(iii) As grFA is flat we have grFC•(A) = C•(grFA) by Proposition 3.1.5 and (i) implies

grFMP (C•(A,F1A)/Fp) =
⊕

1≤m≤p−1

MP (C•(grFA)(m)),

where the upper index i refers to the i-th graded part of the graded complex. There
is a k-linear derivation δ on grFA, given by δ(x) = m · x, for homogeneous x ∈
grFmA (like in the proof of Proposition 3.3.9). By Proposition 5.3.1 it induces an
endomorphism on the cyclic k-module C•(A). As

Lδ(x0⊗...⊗xn) =
∑

0≤i≤n

x0⊗...⊗mi·xi⊗...⊗xn = (m0+...+mn)·x0⊗...⊗xn, xi ∈ grFmiA,

we see that Lδ is multiplication by m on C•(grFA)(m). As by assumption (p− 1)! ∈
grFA, the map Lδ is an isomorphism on grFMP (C•(A,F1A)/Fp). As Lδ is homotopic
to zero by Proposition 5.3.1, it follows that grFMP (C•(A,F1A)/Fp) is acyclic and
thus also MP (C•(A,F1A)/Fm) is acyclic by induction on 1 ≤ m ≤ p using the long
exact sequence. This proves (iii).

2

Corollary 5.3.3
Let k ∈ CRing and A ∈ k-Ass1 carrying a (descending) algebra filtration F with (p−1)! ∈
A = F0A and flat grFA.

Then the map below is (p/r − 1)-connected

HC∗−1(A,F1A) −→ HC∗−1(C•(A,F1A)/Fp)
B−→ HC−∗ (C•(A,F1A)/Fp).

Proof. By Proposition 5.3.2 (ii) the map C•(A,F1A) −� C•(A,F1)/Fp is (p/r − 2)-
connected. Using the bottom long exact sequence of Remark 5.1.10 it follows that also
HC∗(A,F1A) −→ HC∗(C•(A,F1A)/Fp) is (p/r − 2)-connected. Since the periodic cyclic
homology HP∗(C•(A,F1A)/FpC•(A,F1A)) vanishes by Proposition 5.3.2, the map B is
an isomorphism by the middle long exact sequence of Remark 5.1.10.

2

The connectivity of the map given in the preceding corollary depends inversely propor-
tionally on r. As this is the bottleneck for the connectivity in comparing relative K-groups
and cyclic homology via the negative Chern character, it would be desirable to construct a
(p−1)-connected map to (some modified) negative cyclic homology. However the following
example demonstrates that this seems to be impossible in general.
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Proposition 5.3.4
Let k ∈ CRing and A = Ass<r1 (k) = Z[t]/(tr), for some r ≥ 2.

Then the (t)-adic filtration F is an algebra filtration on A and grFA ∼= A is flat. For
k = Z, we have

HHn(A,F1A) = HHn(Z[t]/(tr), (t)) =

{
Zr−1, n ∈ 2N0,
Zr−2 ⊕ Z/r, n ∈ 1 + 2N0.

More precisely the non-zero homology groups of the homogenous parts are given by

H2d(grFmC•(A)) = H2d+1(grFmC•(A)) = Z, m /∈ rN,
H2d+1(grFmC•(A)) = Z/r, m ∈ rN,

where is the integer part d = bm−1
r
c. Connes operator B on H∗(grFmC•(A)) is given by

B : H2d(grFmC•(A))
−m−→ H2d+1(grFmC•(A)).

Proof. See [HM97a] section 2.1. See also [Gro94] for the original reference.
2

Remark 5.3.5
Let p > 1 be a prime number, k = Z[(p− 1)!−1] and A = Ass<r1 (k) = Z[t]/(tr), for some
2 ≤ r - p.

Then the preceding proposition implies the following facts.

(i) H∗(grFp C•(A)) has a non-trivial generator in dimension 1 + 2 · bp−1
r
c. The same

holds for HC∗(grFp C•(A)) by inspection of the middle long exact sequence of Remark
5.1.10.

In particular the map HC∗(A,F1A) −→ HC∗(C•(A,F1A)/Fp) is not 2 · (1 + bp−1
r
c)-

connected.

(ii) One might try to come around this problem by considering C∗(A,F1A) −� C∗(A,F1A)/Fq
with q > p. For q = pr for example, this map is (p − 2)-connected by Proposition
5.3.2.

But this ruins the connectivity of the second map

HC∗−1(C•(A,F1A)/Fq)
B−→ HC−∗ (C•(A,F1A)/Fq).

Indeed using the spectral sequence for the double complex MP (grFp C•(A)), we get

HPn(grFp C•(A)) =

{ ∏
i∈Z Z/p, n ∈ 1 + 2Z,

0, n ∈ 2Z,

which implies that B is no isomorphism in any dimension as we can see from the
bottom long exact sequence of Remark 5.1.10.
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5.4 Homology of matrix Lie algebras

Following ideas of [AO94] we are now generalizing the Theorem of Loday-Quillen and
Tsygan to the integral situation.

5.4.1 Adjoint actions on matrix Lie algebras

The main ideas for the proofs of Proposition 5.4.2 and Proposition 5.4.3 are due to
Aboughazi-Ogle [AO94], who worked them out mainly in the rational setting. We will
recall them to point out the technical differences in the integral setting. Moreover we
need more precise statements later on.

Proposition 5.4.1
For g ∈ k-Lie and V ∈ Mod-Uk(g), the adjoint action of g on H∗(g, V ) is trivial.

Proof. For y ∈ g, the maps

sy : V ⊗ Λng −→ V ⊗ Λn+1g, v ⊗ x1 ∧ ... ∧ xn 7−→ v ⊗ y ∧ x1 ∧ ... ∧ xn

define a chain homotopy [-, y] ' 0 on the Chevalley-Eilenberg complex V ⊗ Λ∗g.
If the Chevalley-Eilenberg complex does not compute Lie algebra homology, one can

argue by induction on n ≥ 0, that [-, y] induces the zero map on homology. Indeed, for
n = 0, this follows from the fact, that H0(g, V ) = V/[V, g]. Suppose it holds for some n ≥ 0

and all V ∈ Mod-Uk(g). Take an epimorphism F
f
−� V , where F is a free g-module. We

have a commutative diagram of long exact sequences

... // Hn+1(g, F )

[-,y]

��

f // Hn+1(g, V )

[-,y]

��

∂ // Hn(g, ker f)

[-,y]

��

// ...

... // Hn+1(g, F )
f // Hn+1(g, V ) ∂ // Hn(g, ker f) // ...

As F is free Hn+1(g, F ) = 0 and so ∂ is injective. Hence [-, y] vanishes on Hn+1(g, V ) as
it vanishes on Hn(g, ker f) by induction hypothesis.

2

Proposition 5.4.2 (Aboughazi-Ogle)
Let A ∈ k/Ring and r ≥ 1. Then the matrix ring Mr(A) is totally Zr-graded via

Mr(A)(v) =
⊕

1≤i,j≤r,
v(i,j):=ej−ei=v

A · ei,j, v ∈ Zr.

In particular:

(i) It induces a total Zr-grading on the bar construction B∗Mr(A).

(ii) With the same grading glr(A) becomes a totally Zr-graded Lie algebra.
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(iii) We get a total Zr-grading on the Chevalley-Eilenberg complex Λ∗glr(A) = B∗Mr(A)Σ∗.

Proof. Let 1 ≤ i, j, k, ` ≤ r and a, b ∈ A. We have

(a · ei,j) · (b · ek,`) = δj,k · (ab) · ei,`,

where δj,k is the Kronecker delta. Moreover, if j = k, then

v(i, `) = e` − ei = e` − ek + ej − ei = v(k, `) + v(i, j).

In particular, whenever the right term does not vanish, it lies in degree v(i, j) + v(k, `).
This proves

Mr(A)(v) ·Mr(A)(w) ⊂Mr(A)(v+w), v, w ∈ Zr,

i.e. Mr(A) is a totally graded ring.
2

Proposition 5.4.3 (Aboughazi-Ogle)
Let A ∈ k/Ring be flat over k and let r ≥ 1.

(i) H∗(Λ∗glrA)(v) is gcd(v1, ..., vr)-torsion, for every v ∈ Zr.

(ii) If (p− 1)! ∈ A×, then Λ∗glr(A) −� (Λ∗glr(A))(0) is (p− 1)-connected.

Proof.

(i) For 1 ≤ i, j, k ≤ r and a ∈ A we have

[a · ei,j, ek,k] = (δj,k − δi,k) · (a · ei,j) = v(i, j)k · (a · ei,j),

where δ is the Kronecker delta. In particular the adjoint action of ek,k on (Λ∗glrA)(v)

is multiplication by vk. As [-, ek,k] is homotopic to 0 on homology by Proposition
5.4.1, it follows that H∗(Λ∗glrA)(v) is vk-torsion and thus is gcd(v1, ..., vr)-torsion by
varying 1 ≤ k ≤ r.

(ii) Consider an arbitrary generator

(a1 · ei1,j1) ∧ ... ∧ (an · ein,jn) ∈ ΛnglrA, n ≥ 0.

It lives in degree v = v(i1, j1) + ... + v(in, jn) and so we have |vk| ≤ n, for all
1 ≤ k ≤ r. In particular we get gcd(v1, ..., vr) ≤ n and n ≤ p − 1 implies v = 0 or
gcd(v1, ..., vr) ∈ A×. Hence in the chain of projections

Λ∗glrA −�
⊕
v∈Zr,

gcd(v1,...,vr)/∈A×

(Λ∗glrA)(v) −� (Λ∗glrA)(0),

the first map is a quasi-isomorphism by (ii) and the the second map is an isomor-
phism on chains in dimensions n ≤ p− 1 and an epimorphism in dimension n = p.

2
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Proposition 5.4.4
Let A ∈ k/Ring be flat with (p− 1)! ∈ A×, for some p > 1, and r ≥ 1.

Then conjugation by Er(A) induces the identity on H∗(glrA, k) in dimensions < p.

Proof. The group Er(A) is generated by elementary matrices 1+a·ei,j, for some a ∈ A and
1 ≤ i, j ≤ r with i 6= j. Let α denote the automorphism of glrA induced by conjugation
with 1 + a · ei,j. It extends to an automorphism ᾱ of chain complexes Λ∗glrA. We claim
that the following composition is zero

(Λ∗glrA)(0) ι
↪−→ Λ∗glrA

1−ᾱ−→ Λ∗glrA
π
−� (Λ∗glrA)(0), n ≥ 1,

where the first map is the canonical inclusion and the last map the projection. As π is
(p− 1)-connected by Proposition 5.4.3 and ι is a section for π, we get that 1− ᾱ is zero
on all homology groups H∗(glrA, k) in dimension (p − 1), which will imply the desired
statement.

(i) First suppose charA = 0. For b ∈ A and 1 ≤ k, ` ≤ r we have

(b · ek,`)1+a·ei,j = (1− a · ei,j)(b · ek,`)(1 + a · ei,j)
= b · ek,` + δ`,i · ba · ek,j − δj,k · ab · ei,` − δj,k · δ`,i · aba · ei,j
= b · ek,` + [b · ek,`, a · ei,j] + 1/2 · [[b · ek,`, a · ei,j], a · ei,j],

where δ is the Kronecker delta. So α = exp(β), where β := [-, a · ei,j]. The inner
derivation β also induces an endomorphism of chain complexes β̄ on Λ∗glrA, which is
a derivation with respect to the underlying exterior algebra. Since β3 = 0, it follows
that β̄2n+1 = 0, when restricted to ΛnglrA. Hence the series exp(β̄) converges in
Q⊗Λ∗glrA. As β̄ is a derivation exp(β̄) is an algebra endomorphism of Q⊗Λ∗glrA.
Moreover also ᾱ is an algebra automorphism. As α = exp(β) on the generators
Q⊗glrA ⊂ Q⊗Λ∗glrA, we thus have ᾱ = exp(β̄). Now using that i 6= j we see that
β̄(Λ∗glrA)(0) ⊂ (Λ∗glrA)(6=0) and hence the composition

(Λ∗glrA)(0) ι
↪−→ Λ∗glrA

β̄−→ Λ∗glrA
π
−� (Λ∗glrA)(0),

is zero. It follows that also π(1/n!β̄n)ι = 0, for all n ≥ 1, and so π(1 − ᾱ)ι =
π(1 − exp(β̄))ι = 0 on Q ⊗ (Λ∗glrA)(0). This implies π(1 − ᾱ)ι = 0 on (Λ∗glrA)(0),
because we assumed that charA = 0 and that A is flat over k.

(ii) If charA 6= 0 consider the ring epimorphisms from the monoid rings

k′ := Z[(k, ·, 1)] −� k, A′ := Z[(A, ·, 1)] −� A,

As A ∈ k/Ring we have A′ ∈ k′/Ring by construction. For a ∈ A we take a lift
a′ ∈ A′, which induces a lift α′ = (-)1+a′·ei,j for α = (-)1+a·ei,j , meaning that we get
a commuting diagram

(Λ∗glrA
′)(0)

1−ᾱ′
��

// // (Λ∗glrA)(0)

1−ᾱ
��

(Λ∗glrA
′)(0) // // (Λ∗glrA)(0).

Since charA′ = 0, by (i) the left map and thus also the right map is zero.
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2

Corollary 5.4.5
Let A ∈ k/Ring be flat with (p− 1)! ∈ A×, for some p > 1, and r ≥ 1.

Then conjugation by Σr induces the identity on H∗(glrA, k) in dimensions < p.

Proof. Given a transposition τ = (k `) ∈ Σr, where 1 ≤ k < ` ≤ r, we have to show that
conugation by τ is the identity on homology. Let T ∈ GLrA which is equal to(

0 −1
1 0

)
on the summand A2 ∼= A · ek ⊕ A · e` and the identity on the complement. Since(

0 −1
1 0

)
=

(
1 0
1 1

)
·
(

1 −1
0 1

)
·
(

1 0
1 1

)
it follows that T ∈ ErA and thus by Proposition 5.4.4 conjugation by T induces the
identity on H∗(Λ∗glrA) in dimensions < p. Moreover conjugation by T respects the direct
sum decomposition Λ∗glrA = (Λ∗glrA)(0) ⊕ (Λ∗glrA)( 6=0), because

Tei,jT
−1 = (−1)δk,i+δk,j · eτ(i),τ(j), 1 ≤ i, j ≤ r,

where δ is the Kronecker delta. By construction of the Zr-grading, (ΛnglrA)(0) is spanned
by

a1 · ei1,j1 ∧ ... ∧ an · ein,jn , v(i1, j1) + ...+ v(in, jn) = 0,

which under conjugation by T equals

(−1)δk,i1+δk,j1+...+δk,in+δk,jn · a1 · eτ(i1),τ(j1) ∧ ... ∧ an · eτ(in),τ(jn).

Now 0 = v(i1, j1) + ...+ v(in, jn) = ei1 − ej1 + ...+ ein − ejn ∈ Zr implies that

|{1 ≤ m ≤ r; im = k}| = |{1 ≤ m ≤ r; jm = k}|,

and hence δk,i1 + δk,j1 + ...+ δk,in + δk,jn is even. This proves that conjugation by τ equals
conjugation by T on (Λ∗glrA)(0) and thus is trivial on homology.

2

Remark 5.4.6
Note that the conjugation action by Σr ≤ GLr(A) respects the decomposition

Λ∗glrA = (Λ∗glrA)(0) ⊕ (Λ∗glrA)(6=0),

and thus determines an action on (Λ∗glrA)(6=0).
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5.4.2 Stability in the Lie algebra homology of matrices

The following Proposition is well-known from the computation of the homology groups
of the symmetric groups (see e.g. [Nak60] or [AM04]). However there is no reference for
precisely the statement that we are interested in. For the convenience of the reader we
will give a short proof.

The computation is essential in the verification of the stability results. Like the integral
version of the Theorem of Loday-Quillen and Tsygan, these cannot be found in present
litarture.

Proposition 5.4.7
Let k ∈ CRing with (p− 1)! ∈ k×, for some p > 1.

Then Hn(Σr, k) = 0, for all r ≥ 1 and 0 < n < p.
In particular this also holds for r =∞.

Proof. For 1 ≤ r < p we have |Σr| = r! ∈ k× and Remark 5.1.8 yields Hn(Σr, k) = 0, for
all n ≥ 1. For r = p, let Cp be the cyclic group with p elements, which we consider as a
subgroup of Σp by the regular representation

Cp ↪−→ Set(Cp)× ∼= Σp.

The Cp-orbits Σp/Cp under the left Cp-action have a canonical right Σp-action and the
quotient map k[Σp/Cp] −� k has Σp-linear section

k −→ k[Σp/Cp], a 7−→ a/(p− 1)! ·
∑

x∈Σp/Cp

x,

because by assumption (p− 1)! ∈ k×. So we get a retraction

H∗(Cp, k) // H∗(Σp, k)

Tork[Σp](k[Σp/Cp], k) // // Tork[Σp](k, k).
ll

Now Cp is normal in Grp(Cp)× ↪−→ Set(Cp)× ∼= Σp, which acts trivially on H∗(Σp, k).
Hence the upper retraction factors as

H∗(Cp, k) −� H∗(Cp, k)Grp(Cp)× −� H∗(Σp, k).

Using the standard resolution of k ∈ k[Cp]-Mod, given by

k �− k[Cp]
1−t←− k[Cp]

N←− k[Cp]
1−t←− ...,

where t ∈ Cp is a generator, we compute

Hn(Cp, k) =


k, n = 0,
k ⊗ Fp, n ∈ 2 · N0 + 1,
Ab(Fp, k), n ∈ 2 · N0 + 2.

120



5.4. Homology of matrix Lie algebras

with the canonical action of Grp(Cp) ∼= F×p . It follows that 0 = Hn(Cp, k)Grp(Cp)× −�
Hn(Σp, k), for all n ≥ 1, which proves the case r = p.

For p < r < 2p, we can use the same argument as before, to prove that the canonical
inclusion Σp ↪−→ Σr induces an isomorphism

H∗(Σp, k)
∼−→ H∗(Σr, k).

Finally we use Nakaoka’s stability Theorem [Nak60] (see also [Ker05] for a shorter proof)
to see that

Hn(Σ2p−1, k)
∼−→ Hn(Σ2p, k)

∼−→ Hn(Σ2p+1, k)
∼−→ ...

∼−→ H∗(Σ∞, k), 0 ≤ n < p.

2

Proposition 5.4.8
Let A ∈ k/Ring be flat with (p− 1)! ∈ k×, for some p > 1.

Then Hn(Λ∗glrA)
∼−→ Hn((Λ∗glrA)Σr), for 0 ≤ n < p and all r ≥ 1.

Note that the proof even works for r =∞, i.e. r = N.

Proof. First we claim that

Hm(Σr, (glrA)⊗n) = 0, 0 < m < p, n ≥ 0.

This is independent of the ring structure of A and as the functor commutes with filtered
colimits in A, we can assume that A ∈ k-Mod is free, because by assumption A is flat
over k. If Ā ⊂ A is a k-basis, then we obtain an isomorphism of k-modules

ϕ : k(Ā× r× r)n
∼−→ (glrA)⊗n, (a`, i`, j`)1≤`≤n 7−→ a1 · ei1,j1 ⊗ ...⊗ an · ein,jn ,

which becomes Σr-linear, when we define a Σr-action on (Ā× r× r)n ∼= Set(n, Ā× r× r)
by setting

σ · f = (id× σ × σ) ◦ f, σ ∈ Σr, f ∈ Set(n, Ā× r× r).

For f ∈ Set(n, Ā× r× r) we define its support as

supp f = π1 ◦ f(n) ∪ π2 ◦ f(n),

where π1, π2 : Ā× r× r −→ r are the projections onto the first and second factor r. Then
the isotropy group Σf of f with respect to the Σr-action is given by

Σf = Σr\ supp f = Set(r\ supp f)× ≤ Set(r)× = Σr.

Using Shapiro’s Lemma and Proposition 5.4.7 we can compute the homology of Σr with
the free k-module generated by the orbit Σr · f as coefficients as

Hm(Σr, k(Σr · f)) = Hm(Σr, k(Σr/Σf )) = Hm(Σf , k) = 0, 0 < m < p.
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Taking the union over all orbits and using the upper isomorphism ϕ it follows that

Hm(Σr, (glrA)⊗n)
∼←− Hm(Σr, kSet(n, Ā× r× r)) = 0, 0 < m < p,

which proves the claim.
Now for n < p we have n! ∈ k× by assumption and thus the quotient map (glrA)⊗n −�

ΛnglrA has a Σr-linear section given by

ΛnglrA ↪−→ (glrA)⊗n, a1 ∧ ... ∧ an 7−→ 1/n! ·
∑
σ∈Σn

sgn(σ) · aσ(1) ⊗ ...⊗ aσ(n).

So our claim implies that

Hm(Σr,ΛnglrA) �− Hm(Σr, (glrA)⊗n) = 0, 0 < m < p, 0 ≤ n < p.

In other words the spectral sequence of Remark 8.2.2 (i) for the constant group Σr

E1
n,m = Hm(Σr,ΛnglrA) ⇒ Hn+m(Σr,Λ∗glrA),

collapses in low dimensions and it follows that the edge map is an isomorphism

Hn(Σr,Λ∗glrA)
∼−→ E2

n,0 = Hn((Λ∗glrA)Σr), 0 ≤ n < p.

Now Corollary 5.4.5 states that Σr acts trivially on Hn(glrA, k) = Hn(Λ∗glrA), for all
0 ≤ n < p, and so Proposition 5.4.7 implies that

Hm(Σr, Hn(Λ∗glrA)) =

{
Hn(Λ∗glrA), m = 0, 0 ≤ n < p,
0, 0 < m < p, 0 ≤ n < p,

which is the second page of the other spectral sequence of Remark 8.2.2 (ii) converging
to Hm+n(Σr,Λ∗glrA). It follows that also the edge map

Hn(Λ∗glrA) = E2
0,n

∼−→ Hn(Σr,Λ∗glrA), 0 ≤ n < p

is an isomorphism and it remains to note that the composition

Hn(Λ∗glrA)
∼−→ Hn(Σr,Λ∗glrA)

∼−→ Hn((Λ∗glrA)Σr), 0 ≤ n < p

is induced by the quotient map Λ∗glrA −� (Λ∗glrA)Σr , which finally proves the Proposi-
tion.

2

Proposition 5.4.9 (Homology stability)
Let A ∈ k/Ring be flat with (p− 1)! ∈ A×, for some p > 1.

Then H∗(glr−1A, k) −→ H∗(glrA, k) is (min(r, p)− 2)-connected, for all r ≥ 1.

Proof. The conjugation action by Σr ≤ GLr(A) respects the decomposition

Λ∗glrA = (Λ∗glrA)(0) ⊕ (Λ∗glrA)(6=0),
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hence in the commutative diagram

Λ∗glrA

��

// // (Λ∗glrA)(0)
vv

��

(Λ∗glrA)Σr
// // (Λ∗glrA)

(0)
Σrhh

the horizontal maps are retractions. Moreover the upper horizontal map is (p − 1)-
connected by Proposition 5.4.3 (ii), while the left vertical map is an isomorphism in
homology in dimensions < p by Propposition 5.4.8. It follows that the same holds for the
right vertical map and hence also for the lower horizontal map.

As this observation was independent of r ≥ 0, we see that all the horizontal maps
induce isomorphisms on homology in dimensions < p in the commutative diagram

Λ∗glr−1A

��

// (Λ∗glr−1A)(0)

��

// (Λ∗glr−1A)
(0)
Σr

��

Λ∗glrA // (Λ∗glrA)(0) // (Λ∗glrA)
(0)
Σr
.

Now by construction of the Zr-grading we have

(ΛnglrA)(0) =
⊕

1≤i1,j1,...,in,jn≤r,
v(i1,j1)+...+v(in,jn)=0

A · ei1,j1 ∧ ... ∧ A · ein,jn , r, n ≥ 0.

Moreover multiplication by an element σ ∈ Σr identifies summands corresponding to
tuples

((i1, j1), ..., (in, jn)) ∼ ((σ(i1), σ(j1)), ..., (σ(in), σ(jn))).

Using that 0 = v(i1, j1) + ...+ v(in, jn) = ei1 − ej1 + ...+ ein − ejn ∈ Zr, it follows that

{i1, j1, ..., in, jn} = {i1, ..., in},

whose cardinality is n at most. Thus (ΛnglrA)
(0)
Σr

is spanned by the summands corre-
sponding to tuples with (im, jm) ∈ n × n, for all 1 ≤ m ≤ n. This proves that the right
vertical map in the diagram above is an isomorphism in dimensions < r and thus is
(r − 2)-connected.

2

5.4.3 The differential graded Hopf algebra of matrices

Recall from Remark 4.1.2 that there are functors

N0
ν−→ ∆̂inj

α−→ I
τ−→ N0,

where we consider the partially ordered set (N0,≤) as a category and I is the category of
injections on the sets

n = {1, ..., n}, n ≥ 0.
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Proposition 5.4.10
For A ∈ k/Ring, the following holds.

(i) There is a functor

M•A : I −→ k-Ass, r 7−→MrA = MrA = Ar×r,

sending a morphism f ∈ I(r, s) to the map MrA = Ar×r Af×f−→ As×s = MsA.

(ii) The block sum of matrices induces a multiplication map

µ : MrA×MsA −→Mr+sA, (X, Y ) 7−→ X ⊕ Y :=

(
X 0
0 Y

)
.

and the canonical morphism η : 0
∼−→ M0A a unit map, making M•A into a sym-

metric monoidal functor.

(iii) Composing with k-Ass −→ k-Lie Λ∗−→ dg(k-Ĉom
op

1 ), we get a functor

Λ∗gl•A : I −→ dg(k-Ĉom
op

1 ), n 7−→ Λ∗glnA,

which is symmetric monoidal, when giving dg(k-Ĉom
op

1 ) the monoidal structure in-
duced by the tensor product of chain complexes.

Proof.

(i) For f ∈ I(r, s) the element Mf (A)(X) ∈ Ms(A) = As×s is obtained from X ∈
Mr(A) = by filling up with zeroes elsewhere. Hence M•(A) is a functor I −→Mon
and maps morphisms to injections.

(ii) By construction the two maps

µ ◦ (µ× id), µ ◦ (id× µ) : Mr(A)×Ms(A)×Mt(A) −→Mr+s+t(A)

are equal and similarly the diagrams commute

1×Mr(A)

λ o
��

η×id //M0(A)×Mr(A)

µ

��
Mr(A) M0+r(A),

Mλ(A)

∼
oo

Mr(A)× 1

ρ o
��

η×id //Mr(A)×M0(A)

µ

��
Mr(A) Mr+0(A),

Mρ(A)

∼
oo

where λ and ρ are the structure isomorphisms of the particular monoidal category.
Hence M•(A) is a monoidal functor. Moreover the diagram below commutes

Mr(A)×Ms(A)

µ

��

γ

∼
//Ms(A)×Mr(A)

µ

��
Mr+s(A)

Mγ(A)

∼
//Ms+r(A),

where γ is the braiding isomorphism of the particular monoidal category. This proves
that M•(A) is infact symmetric monoidal.
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5.4. Homology of matrix Lie algebras

(iii) As the functor Λ∗ is a right adjoint, it preserves products and in particular is sym-
metric monoidal.

2

Proposition 5.4.11
Let k ∈ CRing and A ∈ k/Ring.

(i) The subcomplexes (Λ∗gl•A)(0) i
↪−→ Λ∗gl•A define a monoidal subfunctor (I,+,0) −→

(dg(k-Mod),⊗, k).

(ii) With the monoidal structure of (i) also the quotient map is monoidal

Λ∗gl•A
q
−� (Λ∗gl•A)(0),

which therefore is a retraction of monoidal functors.

(iii) There is an induced coalgebra structure on the quotient (Λ∗gl•A)(0).

Proof. By definition of the Zr-grading on Λ∗glrA, the multiplication of Λ∗gl•A restricts
to maps

(Λ∗glrA)(a) ⊗ (Λ∗glsA)(b) −→ (Λ∗glr+sA)(a,b),

(a1 ∧ ... ∧ an)⊗ (b1 ∧ ... ∧ bm) 7−→ a1 ∧ ... ∧ an ∧ b1 ∧ ... ∧ bm,

where a ∈ Zr, b ∈ Zs and (a, b) ∈ Zr+s.

(i) In particular this proves that the multiplication of Λ∗gl•A restricts to (Λ∗gl•A)(0),
which therefore is a monoidal subfunctor.

(ii) Moreover this shows that (Λ∗glrA)(6=0) is an ideal of Λ∗gl•A, which proves (ii).

(iii) Recall that the coalgebra structure on L := Λ∗glrA is induced by the norm map

Λ∗glr(A) = Com1(glr(A)[1])
N
↪−→ Âss

op

1 (Mr(A)) = B∗Mr(A).

In particular it is given by

δ(x1 ∧ ... ∧ xn) =
∑

p+q=n,
σ∈Shp,q

sgn(σ) · (xσ(1) ∧ ... ∧ xσ(p))⊗ (xσ(p+1) ∧ ... ∧ xσ(n)),

where Shp,q ⊂ Σp+q is the subset of (p, q)-shuffles, i.e. permutations σ ∈ Σp+q with

σ(1) < ... < σ(p), σ(p+ 1) < ... < σ(p+ q).

It follows that

δ(L(6=0)) ⊂ L(0) ⊗ L(6=0) + L(6=0) ⊗ L(0) + L(6=0) ⊗ L( 6=0),

which proves, that (Λ∗gl•A)( 6=0) is a coideal of Λ∗gl•A. Explicitly δ(x1 ∧ ... ∧ xn) is
the sum taken only over all possible decompositions lying in L(0) ⊗ L(0).
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2

Remark 5.4.12
The colimit maps (symmetric) monoidal functors to (commutative) monoids in the target

category. As a monoid in dg(k-Ĉom
op

1 ) is a dg bialgebra, we get a commutative diagram
of dg bialgebras

d(A) := colim
∆̂inj

α∗(Λ∗gl•A)

����

q // // colim
∆̂inj

α∗(Λ∗gl•A)(0) = d(A)(0)

����

i(A) := colim
I

Λ∗gl•A
q // // colim

I
(Λ∗gl•A)(0) = i(A)(0),

where the horizontal maps are retractions in the category of dg algebras.

Note that the forgetful functor dg(k-Ĉom
op

1 ) −→ dg(k-Mod) is a left adjoint and there-
fore commutes with colimits. So all the objects are also colimits in dg(k-Mod).

Proposition 5.4.13
For flat A ∈ k/Ring and (p−1)! ∈ A×, every map below is (p−2)-connected (cf. Remark
5.4.12)

Λ∗gl∞A = colim
N0

(αν)∗Λ∗gl•A

����

// // colim
N0

(αν)∗(Λ∗gl•A)(0) = (Λ∗gl∞A)(0)

����

d(A) = colim
∆̂inj

α∗(Λ∗gl•A)

����

// // colim
∆̂inj

α∗(Λ∗gl•A)(0) = d(A)(0)

����

i(A) = colim
I

Λ∗gl•A // // colim
I

(Λ∗gl•A)(0) = i(A)(0),

Moreover the underlying d(A) ∈ k-Ass1 is a filtered colimit of free k-algebras.

Proof. The upper horizontal map is a (p−1)-connected by Propostion 5.4.3 (ii). Moreover
by Proposition 5.4.8 the left vertical composition is (p − 2)-connected, because i(A) =
(Λ∗gl∞A)Σ∞ . As all the horizontal maps are retractions, it follows that also the right
vertical composition and hence also the lower horizontal map is (p− 2)-connected. Thus
by a similar argument for the upper vertical maps, it remains to check that the upper
left vertical map is (p− 2)-connected. Let us remark here, that the proof of this fact is a
product of an early stage of the work, but finally did not find an application in the later
theory. So it may be interesting, but can also be skipped.

The forgetful functor dg(k-Ĉom
op

1 )
U−→ dg(k-Mod) is left adjoint to the free functor

and thus preserves colimits. Thus it suffices to check that the lower horizontal map in the

126



5.4. Homology of matrix Lie algebras

commuting diagam of chain complexes

hocolim
N0

(να)∗Λ∗gl•A

����

// // hocolim
∆̂inj

α∗Λ∗gl•A

����
colim

N0

(να)∗Λ∗gl•A // // colim
∆̂inj

α∗Λ∗gl•A

is (p − 1)-connected. This will be done by showing that the vertical maps are quasi-
isomorphisms and the upper horizontal map is (p− 1)-connected.

• The left vertical map is a quasi-isomorphism, because N0 is a filtered category and
filtered colimits are exact.

• To see that the upper horizontal map is (p − 1)-connected, we use the spectral
sequence for homotopy colimits. It suffices to show that the induced map of the
E2-pages

πr hocolim
N0

(αν)∗Hs(Λ∗gl•A) −→ πr hocolim
∆̂inj

α∗Hs(Λ∗gl•A), r, s ≥ 0, (5.1)

has the desired connectivity. By Corollary 5.4.5 conjugation by Σr induces the iden-
tity on Hs(glrA, k), for all 0 ≤ s < p and all r ≥ 0. It follows that the maps

di : Λ∗glr−1A −→ Λ∗glrA, 0 ≤ i ≤ r,

for varying i, induce the same map on homology in dimensions 0 ≤ s < p. Hence
the functors

α∗Hs(gl•A, k) : ∆̂inj
α−→ I −→ k-Mod, 0 ≤ s < p,

factor over the functor ∆̂inj
α−→ I

τ−→ N0, which by Proposition 4.1.4 is totally
final. Thus by Remark 7.3.27 the maps

hocolim
N0

(αν)∗Hs(gl•A, k)
'−→ hocolim

∆̂inj

α∗Hs(gl•A, k), 0 ≤ s < p,

are weak equivalences. In particular the map (5.1) is an isomorphism, for r ≥ 0
and 0 ≤ s < p, and surjective, for r = 0 and s = p, which proves that the map of
E2-pages is (p− 1)-connected.

• The hardest part is to show that the right vertical map is a quasi-isomorphism. To
that aim we filter Λ∗gl•A by dimensions, i.e.

FnΛ∗gl•A =
⊕
k≤n

Λngl•A, n ≥ 0.

It follows that the differential d is (−1)-equicontinuous and therefore is zero on the
associated graded object. Moreover the I-structure maps are 0-equicontinuous, so
grΛ∗gl•A ∈ CAT(I, dg(k-Mod)) and we get

hocolim
N0

grΛ∗gl•A = gr hocolim
N0

Λ∗gl•A −→ gr colim
∆̂inj

Λ∗gl•A = hocolim
∆̂inj

grΛ∗gl•A.
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By a spectral sequence argument, it suffices to check that this map is a quasi-
isomorphism. As the differential of grΛ∗gl•A is zero, we may write

grΛ∗glrA = Λ∗A
(r×r) = (Λ∗A)⊗(r×r) = (Λ∗A)⊗r ⊗ (Λ∗A)⊗r, r ≥ 0,

as a differential graded coalgebra and we can ignore the grading of Λ∗. As A is
supposed to be flat, by a filtered colimit argument, we may further assume that A
is finitely generated and free. Hence also Λ∗A is free, say Λ∗A = kX, for some finite
set X, and we can assume that ∗ := 1 ∈ k = Λ0A is a base point for X. Then by
construction the isomorphisms

k(Xr×r) = (kX)⊗(r×r) ∼−→ (Λ∗A)⊗(r×r) = Λ∗glrA, r ≥ 0,

induce an isomorphism of functors kq∗(E•X)
∼−→ Λ∗glrA, where

q : I −→ I, r 7−→ r2,

and E•X is defined as in Proposition 4.1.9, i.e. for f ∈ I(m,n) and x ∈ ErX = Xr

we have

EfX(x)k =

{
xi, f(i) = k,
∗, k /∈ f(m).

Consider the commutative diagram

gr hocolim
∆̂inj

Λ∗gl•A

o

// gr colim
∆̂inj

Λ∗gl•A

o

hocolim
∆̂inj

grΛ∗gl•A // colim
∆̂inj

grΛ∗gl•A

hocolim
∆̂inj

kq∗(E•X)

o
OO

o ��

// colim
∆̂inj

kq∗(E•X)

o
OO

o��
k(hocolim

∆̂inj

q∗(E•X)) // k(colim
∆̂inj

q∗(E•X)),

where the lower vertical maps are isomorphisms, as the free k-module functor is a left
adjoint and therefore commutes with (homotopy) colimits. Moreover by Proposition

4.1.10 and Proposition 4.1.9 resp. the functors I
q−→ I

E•X−→ Set preserve limits over
connected, non-empty categories. Hence by Corollary 7.3.32 the lower horizontal
map is a quasi-isomorphism, which concludes the proof.

For every X ∈ Set∗ the monoid colim ∆̂inj
q∗E•X is freely generated by matrices M ∈

Xr×r, that cannot be written as a block sum

M =

(
M ′ ∗
∗ M ′′

)
.

Hence k[colim ∆̂inj
q∗E•X] is the free k-algebra generated by such X-matrices and d(A) =

colim ∆̂inj
Λ∗gl•A is a filtered colimit of these.

2
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5.4.4 Primitive elements and cyclic homology

We show that the primitive elements in the quotient Chevalley-Eilenberg complex are
closely related to cyclic homology and Connes homology.

Proposition 5.4.14
Let k ∈ CRing and A ∈ k/Ring be flat.

Then there is a monomorphism of chain complexes

φ : ΣCλ
∗ (A, Ir•) = (Cλ

∗−1(A, Ir•)) ↪−→ P (Λ∗glrA)(0),

[a1 ⊗ ...⊗ an ⊗ σ] 7−→ a1 · eσ(n),σ(1) ∧ ... ∧ an · eσ(n−1),σ(n)

which by definition is natural in r ∈ I. Here we define Cλ
∗ (A, Ir•) as the Connes complex

to the semi-cyclic set1 C•A⊗ k[Ir• ] = C•A⊗ k[I(•, r)].

Proof. Let r ≥ 1. We extend the valuation map r× r
v−→ Zr to a map

v : P(r× r) = {S ⊂ r× r} −→ Zr, S 7−→
∑

(i,j)∈S

v(i, j) =
∑

(i,j)∈S

ej − ei.

Then the induced comultiplication on (Λ∗glrA)(0) (cf. Proposition 5.4.11 and its proof) is
given by

δ(a1 · ei1,j1 ∧ ... ∧ an · ein,jn) =
∑

UtV={(i1,j1),...,(in,jn)},
v(U)=v(V )=0

sgn(U, V ) ·
∧
`∈U

a` · ei`,j` ⊗
∧
`∈V

a` · ei`,j` ,

where sgn(U, V ) is the sign of the shuffle σ ∈ Shp,q with

U = {σ(1), ..., σ(p)}, V = {σ(p+ 1), ..., σ(p+ q)}.

It follows that

P (Λ∗glrA)(0) =
∑

{(i1,j1),...,(in,jn)}⊂r×r
irreducible

A · ei1,j1 ∧ ... ∧ A · ein,jn ,

where we call a subset S ⊂ r× r irreducible, if

(i) v(S) = 0.

(ii) If S = U t V with v(U) = v(V ) = 0, then U = ∅ or V = ∅.

For injectivity, note that the definition of φ constitutes a lift

CnA⊗ k[Irn]

����

φ̄ // ((glrA)⊗n)(0)

����
Cλ
n(A, Ir•)

φ // ΛnglrA)(0),

1“Semi-cyclic” means, that we do not require to have degeneracy maps.
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and the lower map is obtained from the upper by taking coinvariants under canonical
actions of the cyclic group Cn and the symmetric group Σn. The upper horizontal map is
injective by construction, while two elements in the upper left object are identified under
the cyclic action, if and only if they are identified under the symmetric action on the
right. This proves that φ is injective.

Finally the maps φ define a homomorphism of chain complexes, because

dφ[a1 ⊗ ...⊗ an ⊗ σ] = d(a1 · eσ(n),σ(1) ∧ ... ∧ an · eσ(n−1),σ(n))

=
∑

1≤i<j≤n

(−1)i+j · [ai · eσ(i−1),σ(i), aj · eσ(j−1),σ(j)] ∧ a1 · eσ(n),σ(1) ∧ ... ∧ an · eσ(n−1),σ(n)

=
∑

1≤i≤n

(−1)i+(i+1) · (aiai+1) · eσ(i−1),σ(i+1) ∧ a1 · eσ(n),σ(1) ∧ ... ∧ an · eσ(n−1),σ(n)

=
∑

1≤i≤n

(−1)i · a1 · eσ(n),σ(1) ∧ ... ∧ (aiai+1) · eσ(i−1),σ(i+1) ∧ ... ∧ aσ(n−1),σ(n)

=
∑

1≤i≤n

(−1)i · φ[di(a1 ⊗ ...⊗ an)⊗ di(σ)] = −φd[a1 ⊗ ...⊗ an ⊗ σ].

2

Remark 5.4.15
The semi-cyclic set Σ• := α∗ colim r∈∆̂inj

Ir• canonically becomes a cyclic set, when we
define degeneracies by setting

si(σ)(k) =

{
dσ(i)σsi, k 6= i,
σ(i), k = i,

0 ≤ i ≤ n, σ ∈ Σn = Set(n)×.

Note that Σ• is augmented as a simplicial set and there are extra-degeneracies, given by
the block sums

s−1(σ) = σ + 1, sn+1(σ) = 1 + σ, σ ∈ Σn.

In particular Σ•
'−→ ∗ is a simplicial deformation retraction by Proposition 7.2.12.

Corollary 5.4.16
Let k ∈ CRing and A ∈ k/Ring be flat.

Then the homology of the canonical map

Cλ
∗ (A,Σ•) // Cλ

∗A

colim
r∈∆̂inj

Cλ
∗ (A, Ir•) // colim

r∈I
Cλ
∗ (A, Ir•)

naturally identifies with the map HC∗(A) −→ Hλ
∗ (A), which by Proposition 5.1.9 is (p−1)-

connected, if (p− 1)! ∈ A×.
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Proof. Note that the right equality holds, because colim r∈I I(-, r) = ∗ and Cλ
∗ (A, ∗) =

Cλ
∗A. Next consider the commutative square

CC∗(A,Σ•)

��

// CC∗A

��
Cλ
∗ (A,Σ•) // Cλ

∗A,

where similarly CC∗(A,Σ•) is defined as the cyclic complex to the cyclic module C•A⊗k[Σ•].
Then the spectral sequence of the proof of Proposition 5.1.9

E1
r,s = Hs(Cr, CrA⊗ k[Σr]) ⇒ HCr+s(C•A⊗ k[Σ•])

collapses, because Σr is a free Cr-set, for all r ≥ 0. It follows that the left vertical map is
a quasi-isomorphism.

Using the simplicial deformation retraction Σ•
'−→ ∗ of Remark 5.4.15, we see that also

C•A ⊗ k[Σ•] −� C•A is a simplicial deformation retraction. Hence by use of the other
spectral sequence for the double complex CC∗,∗(-) of a cyclic module

E2
r,s = Hr(Cs, Hs(-)) ⇒ HCr+s(-)

(or alternatively Connes’ long exact sequence of Remark 5.1.10) we see that also the upper
horizontal map is a quasi-isomorphism.

2

5.4.5 Generalizing the Theorem of Loday-Quillen-Tsygan

Having all tools in hand we are now able to prove the generalization.

Remark 5.4.17
For A ∈ k/Ring the composition of the following chain maps is the identity.

Cλ
∗−1A

φ−→ Λ∗gl∞A
θ−→ Cλ

∗−1(Uk(gl∞A))
ε−→ Cλ

∗−1M∞(A)
trace−→ Cλ

∗−1A,

where

(i) φ is the map induced by Proposition 5.4.14, i.e.

φ[a0 ⊗ ...⊗ an] = a0 · en,0 ∧ ... ∧ an · en−1,n.

(ii) θ is the map of [Lod98] 10.2.3, given by

θ(a0 ∧ ... ∧ an) =
∑
σ∈Σn

sgn(σ) · [a0 ⊗ aσ(1) ⊗ ...⊗ aσ(n)].

(iii) ε is the counit of the adjunction

k-Ass1(Uk(X), Y ) = k-Lie(X,L(Y )),

where L maps an associative algebra Y to the Lie algebra A with Lie bracket

[x, y] = xy − yx, a, b ∈ Y.
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(iv) trace is the trace map on Connes homology of [Lod98] Def. 1.2.1, given by

trace[a(0) ⊗ ...⊗ a(n)] =
∑

f∈Set(n,N)

[a
(0)
f(n),f(0) ⊗ a

(1)
f(0),f(1) ⊗ ...⊗ a

(n)
f(n−1),f(n)].

Proposition 5.4.18
Let A ∈ k/Ring be flat with (p− 1)! ∈ A×.

Then φ extends to a map of dg bialgebras, which is an isomorphism in dimensions < p

φ : Com1(Cλ
∗−1A) −→ i(A)(0) = (Λ∗gl∞A

(0))Σ∞ .

Proof. As φ is the colimit of the maps φ of Proposition 5.4.14, it maps Cλ
∗−1(A) into the

primitive elements of i(A)(0), which proves that φ is also a homomorphism of coalgebras.
By construction θ and the trace map are Σ∞-invariant, so trace ◦θ is well-defined on
(Λ∗gl∞A

(0))Σ∞ . Consider the following diagram

Cλ
∗−1A

id

((

ι

��

φ // i(A)(0) trace ◦θ //

∃!T ''

Cλ
∗−1A

Com1(Cλ
∗−1A)

∃!φ

88

Ĉom
op

1 (Cλ
∗−1A).

π

OO

By the universal properties of algebras resp. coalgebras the extensions φ and T exist and
by Proposition 7.4.11 the composition T ◦ φ must be a direct sum of norm maps. As A
is flat, T ◦ φ is an isomorphism in dimensions < p by Corollary 7.4.12, since Cλ

∗−1(A) is
trivial in dimension 0. It follows that T is surjective and φ is injective in dimensions < p
and so it remains to check surjectivity for φ.

Like in the proof of Proposition 5.4.4 we consider the ring epimorphisms from the
monoid rings

k′ := Z[(k, ·, 1)] −� k, A′ := Z[(A, ·, 1)] −� A.

As A ∈ k/Ring we have A′ ∈ k′/Ring by construction. Writing φ′ and T ′ for the particular
map in the situation of A′, Aboughazi-Ogle proved in [AO94] Thm. 1.1.12 that φ′ ⊗Q is
an isomorphism. It follows that also T ′⊗Q is an isomorphism and using the commutative
diagram

i(A′)(0)

��

T ′ // Ĉom
op

1 (Cλ
∗−1A)

��

i(A′)(0) ⊗Q T ′⊗Q // Ĉom
op

1 (Cλ
∗−1A)⊗Q,

flatness of A′ implies that the left vertical map and hence also T ′ is injective. As T ′ was
already surjective in dimensions < p, it follows that T ′ and hence also φ′ is an isomorphism
in this range. Using the commutative diagram

Com1(Cλ
∗−1A

′)

����

φ′

∼
// d(A′)(0)

����
Com1(Cλ

∗−1A)
φ // d(A)(0),
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we see that φ is surjective in dimensions < p, which concludes the proof.
2

Corollary 5.4.19
Let A ∈ k/Ring be flat with (p− 1)! ∈ A×.

Then there is a zig-zag of (p− 2)-connected homomorphisms of dg commutative coalge-
bras

Λ∗gl∞A −� (Λ∗gl∞A)
(0)
Σ∞

= i(A)(0) φ←− Com1(Cλ
∗−1A).

Proof. The first map is (p − 2)-connected by Proposition 5.4.13 and the second one by
Proposition 5.4.18.

2

Theorem 5.4.20
Let A ∈ k/Ring be flat with (p− 1)! ∈ A×.

Then the map φ induces isomorphisms in dimensions 0 ≤ n < p− 1

Hλ
n−1(A)

∼−→ PHn(gl∞A, k) = ker

(
Hn(gl∞A, k)

δ∗ //

(η×id)∗+(id×η)∗
// Hn(gl∞A× gl∞A, k)

)
.

Here gl∞A
δ−→ gl∞A × gl∞A is the diagonal and 0

η−→ gl∞A is the initial Lie algebra
homomorphism.

Moreover Connes’ operator B of Remark 5.1.10, the negative Chern character for the
Hopf algebra Uk(gl∞A) of Definition 5.2.11 and the antisymmetrisation map e of Propo-
sition 5.2.13 induce a commutative diagram

HC∗−1(A)

��

B // HC−∗ (A)

Hλ
∗−1(A)

φ

∼
// PH∗(gl∞A, k) �

� e // H∗(B∗Uk(gl∞A)) ch−// HC−∗ (Uk(gl∞A)) ε // HC−∗ (M∞A)

trace

OO

We call the composition trace ◦ε ◦ ch− the (additive) negative Chern character and
by abuse of notation also denote it by ch−.

Proof. For 0 ≤ n < p− 1, in the commutative diagram

Hλ
n(A)

vv �� ))
PHn(gl∞A, k) ∼

// PHn(i(A)(0)) PHn(Com1(Cλ
∗−1A)),

φ

∼
oo

the horizontal maps are isomorphisms by Corollary 5.4.19, while Proposition 4.3.10 implies
that the right vertical map is an isomorphism.
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In the diagram

Hλ
∗−1(A)

φ o
��

id

))
PH∗(gl∞A, k)� _

e

��

θ // Hλ
∗−1(Uk(gl∞A))

B
��

ε // Hλ
∗−1(M∞A)

B
��

trace // Hλ
∗−1(A)

B
��

H∗(B∗Uk(gl∞A)) ch− // HC−∗ (Uk(gl∞A)) ε // HC−∗ (M∞A) trace // HC−∗ (A)

the upper part commutes by Remark 5.4.17, while the left square commutes by Corollary
5.2.15 applied to the Lie algebra gl∞A. As Connes’ operator B is natural, also the right
two squares commute.

2
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6 Multiplicative vs. additive
K-theory

6.1 Quillen’s plus construction

By recalling the plus construction in the context of simplicial groups, we are following the
same guideline in the setting of simplicial Lie algebras to be ably to develop the additive
and multiplicative theory parallelly.

6.1.1 The plus construction for simplicial groups

Remark 6.1.1
Let c ∈ sGrp(G,H), such that in every dimension

cn ∼= ιGn : Gn −→ Gn + (H/G)n, n ≥ 0,

where H/G = H +G 1 ∈ sGrp.
Then by Proposition 8.1.11, every M ∈ Z[H/G]-Mod induces a long exact sequence

... −→ H2(H/G,M)
∂−→ H1(G,M) −→ H1(H,M) −→ H1(H/G,M) −→ 0.

Proposition 6.1.2
Let G ∈ sGrp and N � π0G be perfect, meaning that N = [N,N ].

Then there is cofibration G
i

�−→ G+, such that

(i) 1 −→ N −→ π0G
i∗−→ π0G

+ −→ 1 is exact,

(ii) H∗(G,Z[π0G/N ])
i∗−→ H∗(G

+,Z[π0G/N ]) is an isomorphism.

In particular by Proposition 8.1.2 the map H∗(G,M)
i∗−→ H∗(G

+,M) is an isomorphism,
for every M ∈ Z[π0G/N ]-Mod.

Proof. The proof is established in 2 steps.

• First we assume that N = π0G. We let K = ker(G0 −� π0G) and define G′ as the
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pushout on the left

F (KS0)

��

// G

��
F (KD1) // G′,

KZ

��

// π0G

��
1 // π0G

′,

where F is the left adjoint of the adjunction Grp(F (X), Y ) = Set∗(X,U(Y )) and
S0 ↪−→ D1 are suitable models in sSet∗. As π0 is a left adjoint, it preserves co-
products and pushouts. So applying π0 to the left pushout square yields a pushout
square as on the right, so π0G

′ = 1. The map G −→ G′ satisfies the hypothesis of
Remark 6.1.1. Since G′/G = F (KS1), we get a long exact sequence

... −→ H2(F (KS1),Z)
∂−→ H1(G,Z) −→ H1(G′,Z) −→ H1(F (KS1),Z).

Looking closer at the low dimensions we get an exact sequence

0 −→ H2(G,Z) −→ H2(G′,Z) −→ H2(F (KS1),Z)
∂−→ H1(G,Z) −→ H1(G′,Z) −→ 0.

The Hurewicz map induces a commuting square

(π0G)/N

h o
��

∼ // π0G
′

h o
��

H1(G,Z) // H1(G′,Z).

Hence H1(G,Z)
∼−→ H1(G′,Z) and

0 −→ H2(G,Z) −→ H2(G′,Z) −→ H2(F (KS1),Z) −→ 0

is non-canonically split exact, since the right object is the free abelian group gener-
ated by K. As π0G

′ = 1, the Hurewicz map is an isomorphism

h : π1G
′ ∼−→ H2(G′,Z) ∼= H2(G,Z)⊕ ZK.

Let L ⊂ G′1 be a subset of cycles, being sent to K under this map, and define G+

as the pushout

F (LS1)

��

// G′

��
F (LD2) // G+.

By the same argument as before we get a long exact sequence

... −→ H2(F (LS2),Z)
∂−→ H1(G′,Z) −→ H1(G+,Z) −→ H1(F (LS2),Z) −→ 0,

whose low dimensions are given by

H3(G′,Z) �
� // H3(G+,Z) // H3(F (LS2),Z) ∂ // H2(G′,Z) // // H2(G+,Z)

ZL ∼ // ZK.
?�

OO
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6.1. Quillen’s plus construction

In particular ∂ is injective, which proves Hn(G,Z)
∼−→ Hn(G′,Z)

∼−→ Hn(G+,Z),
for all n 6= 2. Moreover H2(G+,Z) = H2(G′,Z)/ZK = H2(G,Z), such that in all
dimensions H∗(G,Z)

∼−→ H∗(G
+,Z). As G+ is obtained from G by glueing cells, we

see that G −→ G+ is a cofibration. Since also π0G/N = π0G
′ ∼−→ π0G

+, this proves
the statement in the first case.

• For the general case let GN be a covering simplicial group for N , which can be
defined as the kernel in

1 −→ GN −→ G −→ (π0G)/N −→ 1.

Then GN satisfies the hypothesis of the first case and we find a cofibration GN

iN
�−→

G+
N . We define the plus construction for G as the pushout on the left

GN

iN
��

// G

i
��

G+
N

// G+.

π0GN

iN
��

// π0G

i
��

π0G
+
N

// π0G
+.

As π0 preserves pushouts, also the right square is cocartesian, which proves that
(π0G)/N

∼−→ π0G
+. As iN is a cofibration, so is also i and we can apply again

Remark 6.1.1 to the G+/G-module Z[π0G
+/G] = Z[π0G/N ] and get a natural map

of long exact sequences

... ∂ // H1(GN ,Z[π0G/N ])

��

// H1(G+
N ,Z[π0G/N ])

��

// // H1(G+
N/GN ,Z[π0G/N ])

...
∂ // H1(G,Z[π0G/N ]) // H1(G+,Z[π0G/N ]) // // H1(G+/G,Z[π0G/N ])

Since π0GN = N , the simplicial groups G+
N and GN act trivially on Z[π0G/N ],

which therefore can be considered as a direct sum of copies of Z. Hence by construc-
tion H∗(GN ,Z[π0G/N ])

∼−→ H∗(G
+
N ,Z[π0G/N ]). Equivalently using the long exact

sequence we get

Hn(G+/G,Z[π0G/N ]) = Hn(G+
N/GN ,Z[π0G/N ]) = 0, n ≥ 1,

and hence Hn(G,Z[π0G/N ])
∼−→ Hn(G+,Z[π0G/N ]), for all n ≥ 1. Moreover by

Corollary 8.2.3 we have

H0(G,Z[π0G/N ]) = Z[π0G/N ]π0G = Z = Z[π0G/N ]π0G+ = H0(G+,Z[π0G/N ]),

which finally proves that G
i

�−→ G+ is a plus construction.
2

Remark 6.1.3
Let G ∈ sGrp and N � π0G be perfect.

Then BG
i−→ B(G+) is a plus construction in the sense of Quillen.

In particular, for A ∈ Ring we have

KGrpn (A) := πn−1GL(A)+ = πnB(GL(A)+) = πnBGL(A)+ = Kn(A), n ≥ 1.

In the context of what will follow, we call KGrp∗ (A) the multiplicative K-theory of A.
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6.1.2 The plus construction for simplicial Lie algebras

Remark 6.1.4
Let k ∈ CRing and c ∈ s(k-Lie)(g, h), such that in every dimension

cn ∼= ιgn : gn −→ gn ∗ (h/g)n, n ≥ 0,

where h/g = h ∗g 0 ∈ s(k-Lie) is a free k-module in every dimension.
Then by the Theorem of Poincaré, Birkhoff and Witt and Proposition 8.1.11, every

M ∈ Uk(h/g)-Mod induces a long exact sequence

... −→ H2(h/g,M)
∂−→ H1(g,M) −→ H1(h,M) −→ H1(h/g,M) −→ 0.

Proposition 6.1.5
Let k ∈ CRing and g ∈ s(k-Lie) and n� π0g be perfect, meaning that n = [n, n].

Then there is cofibration g
i

�−→ g+, such that

(i) 1 −→ n −→ π0g
i∗−→ π0g

+ −→ 1 is exact,

(ii) HL
∗ (g, Uk(π0g/n))

i∗−→ HL
∗ (g+, Uk(π0g/n)) is an isomorphism.

In particular HL
∗ (g,M)

i∗−→ HL
∗ (g+,M), for M ∈ Uk(π0g/n)-Mod, by Proposition 8.1.2.

Proof. Replace group homology by derived Lie algebra homology in the proof of Propo-
sition 6.1.2.

2

In [Pir85] Pirashvili constructed a plus construction for Lie algebras. His construction
is (like ours) inspired by Quillen’s original proof of the plus construction for spaces. He
defines homology for Lie algebras by using the total left derived of the abelianization
functor s(k-Lie) −→ s(k-Mod). As this is isomorphic to our Definition 8.3.7 of derived
Lie algebra homology by Proposition 8.3.16, the two constructions coincide up to weak
equlivalence.

Definition 6.1.6
Let k ∈ CRing and A ∈ k-Ass1.

Then the additive K-theory of A is defined as KLien (A) := πn−1gl(A)+, for all n ≥ 1.

6.2 The Volodin construction

We are introducing the well-known Volodin constructions and also provide simplicial
groups and Lie algebras that up to homotopy equivalence can be identified with the
two variants of the Volodin construction.

Definition 6.2.1
Let k ∈ CRing and A ∈ k/Ring and r ≥ 1.
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(i) For a partial order γ on r we define a non-unital subring

tγrA = {a ∈MrA; ai,j 6= 0 ⇒ i
γ
< j} ≤MrA.

We define induced subgroups and Lie subalgebras.

a) T γr A := 1 + tγA ≤ GLrA,

b) tγrA ≤ glrA.

(ii) We define the multiplicative/additive Volodin constructions:

a) XrA =
⋃
γ BT

γ
r A ≤ BGLrA, X(A) =

⋃
r≥1Xr(A) ≤ BGL(A),

b) xrA =
∑

γ Λ∗t
γ
rA ≤ Λ∗glrA, x(A) =

∑
r≥1 xr(A) ≤ Λ∗gl(A).

(iii) We also define the simplicial groups/Lie algebras

a) YrA = hocolim γ E•(T
γ
r A) ∈ sGrp, Y (A) = lim−→r≥0

YrA,

b) yrA = hocolim γ E•(t
γ
rA) ∈ s(k-Lie), y(A) = lim−→r≥0

yrA,

where E is the functorial cofibrant replacement functor in sGrp and sLie resp. (cf.
Corollary 7.2.32).

Remark 6.2.2
Let k ∈ CRing and A ∈ k/Ring and r ≥ 1.

(i) If γ is the usual total order on r, then tr(A) := tγr (A) is the associative k-algebra of
upper triangular matrices with zeroes on the diagonal.

(ii) Str(A) = colim γ T
γ
r (A) = π0Yr(A) is the unstable Steinberg group, i.e. the free

group generated by the symbols

xi,j(a), 1 ≤ i, j ≤ r, i 6= j, a ∈ A,

modulo the relations

a) xi,j(a) · xi,j(b) = xi,j(a+ b), 1 ≤ i, j ≤ r, i 6= j, a, b ∈ A,

b) [xi,j(a), xk,`(b)] =

{
xi,k(ab), i 6= `, j = k,
1, i 6= `, j 6= k.

The (stable) Steinberg group is St(A) = colim r≥1 Str(A) = π0Y (A).

(iii) str(A) = colim γ t
γ
r (A) = π0yr(A) is the Steinberg Lie algebra, i.e. the free Lie

algebra generated by the symbols

xi,j(a), 1 ≤ i, j ≤ r, i 6= j, a ∈ A,

modulo the relations

a) cxi,j(a)+dxi,j(b) = xi,j(ca+db), 1 ≤ i, j ≤ r, i 6= j, a, b ∈ A, c, d ∈ k,

b) [xi,j(a), xk,`(b)] =

{
xi,k(ab), i 6= `, j = k,
1, i 6= `, j 6= k.
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The (stable) Steinberg Lie algebra is st(A) = colim r≥1 str(A) = π0y(A).

Definition 6.2.3
Let k ∈ CRing and I � A ∈ k/Ring and r ≥ 1.

(i) For a partial order γ on r we define a non-unital subring as the pullback

tγr (A, I) = tγr (A/I)×Mr(A/I) Mr(A) ≤Mr(A).

We define induced subgroups and Lie subalgebras.

a) T γr (A, I) := 1 + tγr (A, I) ≤ GLrA,

b) tγr (A, I) := tγr (A, I) ≤ glrA.

(ii) We define the multiplicative/additive relative Volodin constructions:

a) Xr(A, I) =
⋃
γ BT

γ
r (A, I) ≤ BGLrA, X(A, I) =

⋃
r≥1Xr(A, I) ≤ BGL(A),

b) xr(A, I) =
∑

γ Λ∗t
γ
r (A, I) ≤ Λ∗glrA, x(A, I) =

∑
r≥1 xr(A, I) ≤ Λ∗gl(A).

(iii) We also define the homotopy pullback simplicial groups/Lie algebras

a) Yr(A, I) = Yr(A)×hGLr(A/I) GLr(A), Y (A) = lim−→r≥0
Yr(A, I),

b) yr(A, I) = yr(A)×hglr(A/I) glr(A), y(A) = lim−→r≥0
yr(A, I).

Remark 6.2.4
Let k ∈ CRing and I � A ∈ k/Ring and r ≥ 1.

(i) If γ is the usual total order on r, then tr(A, I) := tγr (A, I) is the associative k-algebra
of matrices with values in A above the diagonal and in I elsewhere.

(ii) We define the relative Steinberg group

St(A, I) = colim
r≥0

Str(A, I) = π0Y (A, I), Str(A, I) = colim
γ

T γr (A, I) = π0Y (A, I).

and the relative Steinberg Lie algebra

st(A, I) = colim
r≥0

str(A, I) = π0y(A, I), str(A, I) = colim
γ

tγr (A, I) = π0y(A, I).

(iii) Each construction relative to I = 0 of Definition 6.2.3 is exactly the particular
absolute construction of Definition 6.2.1.

6.2.1 The Volodin constructions as bar constructions

Proposition 6.2.5
Let k ∈ CRing and A ∈ k/Ring and r ≥ 1.

Then the canonical maps induce weak equivalences of pointed simplicial sets

Xr(A) = colim
γ

BT γr A
'←− hocolim

γ
BT γr A

'−→ B hocolim
γ

T γr A = BYr(A).

In particular X(A) ' BY (A).
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Proof. The functor sending a partial order γ on r to the pointed simplicial set BT γr (A)
preserves pullbacks. Hence the first map is a weak equivalence by Corollary 7.3.32. The

second map is a weak equivalence, since the nerve functor sGrp B−→ sSet∗ preserves
homotopy colimits by Proposition 7.3.34.

2

Lemma 6.2.6
For I �A ∈ Ring with A

∼−→ lim←−n≥0
A/In, the map GLr(A) −→ GLr(A/I) is surjective.

Proof. Let a ∈ GLr(A/I) and take lifts x, y ∈Mr(A) with a = [x] and a−1 = [y]. It follows
that [xy] = [x][y] = aa−1 = 1 and thus xy ∈ 1 + Mr(I). Since A is I-adically complete,
we see that xy is a unit in Mr(A) with inverse

∑
n≥0(xy − 1)n. Hence x(y(xy)−1) = 1,

showing that x ∈ GLr(A). As a ∈ GL(A/I) was arbitrary this proves the surjectivity of
GLr(A) −→ GLr(A/I) resp. GL(A) −→ GL(A/I).

2

Proposition 6.2.7
Let k ∈ CRing and I � A ∈ k/Ring with I-adically complete A and r ≥ 1.

Then naturally Xr(A, I) ' BYr(A, I). In particular naturally X(A, I) ' BY (A, I).

Proof. As the map GLr(A) −→ GLr(A/I) is surjective by Lemma 6.2.6, its nerve is a
Kan fibration and it follows that the natural map induces a weak equivalence

Xr(A, I) = Xr(A/I)×BGLr(A/I) BGLr(A)
'−→ Xr(A/I)×hBGLr(A/I) BGLr(A).

Using Proposition 6.2.5 we get a natural weak equivalence

Xr(A/I)×hBGLr(A/I) BGLr(A) ' BYr(A/I)×hBGLr(A/I) BGLr(A).

As the nerve B is a right adjoint it preserves homotopy limits and thus we get a natural
weak equivalence

BYr(A/I)×hBGLr(A/I) BGLr(A)
'←− B

(
Yr(A/I)×hGLr(A/I) GLr(A)

)
= BYr(A, I).

2

Proposition 6.2.8
Let k ∈ CRing and I � A ∈ k/Ring with A and A/I flat over k, as well as r ≥ 1.

Then there is a natural chain of weak equivalences

Γxr(A, I) ' B•Uk(yr(A, I)).

where Γ is the Dold-Kan functor sending a chain complex to its associated simplicial
module and E•y(A, I)

'−→ y(A, I) is a cofibrant replacement in the sense of Corollary
7.2.32.

In particular naturally HL
∗ (y(A, I), k) = H∗(x(A, I)).
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Proof. There natural are weak equivalences

Γxr(A, I) = colim
γ

ΓΛ∗t
γ
r (A, I)

'←− hocolim
I

ΓΛ∗t
γ
r (A, I)

'−→ hocolim
γ

B•Uk(t
γ
r (A, I)).

Indeed the first equality holds, because Γ is part of an equivalence of categories. The left
map is a weak equivalence by Proposition 7.3.29, because the functor γ 7−→ ΓΛ∗t

γ
r (A, I)

preserves pullbacks. Alternatively one can argue with an induction using the Mayer-
Vietoris sequence as in [Goo85b] Claim III.9. The right map is induced by the antisym-
metrisation map of chain complexes

Λ∗g −→ B∗Uk(g), x1 ∧ ... ∧ xn 7−→
∑
σ∈Σn

sgn(σ) · xσ(1) ⊗ ...⊗ xσ(n), g ∈ k-Lie,

which is a quasi-isomorphism, because in our case g = tγr (A, I) is flat over k. Next using
the short notation

X ⊗hA Y := B•(X,A, Y ), A ∈ s(k-Ass), X ∈ sAb-A, Y ∈ A-sAb,

consider the diagram

hocolim
γ

k ⊗hUk(tγr (A,I)) k k ⊗hUk(E•yr(A,I))
k

hocolim
γ

k ⊗hUk(tγr (A/I)) Uk(t
γ
r (A/I))⊗hUk(tγr (A,I) k

'
OO

'
��

k ⊗hUk(yr(A/I))
Uk(yr(A/I))⊗hUk(yr(A,I)

k

'

OO

'
��

hocolim
γ

k ⊗hUk(tγr (A/I)) Uk(str(A/I))⊗hUk(str(A,I) k
' // k ⊗hUk(yr(A/I))

Uk(str(A/I))⊗hUk(str(A,I)
k.

Note that by assumption A/I and hence tγr (A/I) is also flat, so that by Proposition 8.3.11
we do not need cofibrant replacements. The upper vertical maps are the canonical quotient
maps, which are weak equivalences, because

k ⊗hUk(tγr (A/I)) Uk(t
γ
r (A/I))

'−→ k, k ⊗hUk(yr(A/I)) Uk(yr(A/I))
'−→ k

are simplicial homotopy equivalences induced by the extra-degeneracy s−1 = id⊗ η. The
lower vertical maps are induced by the natural maps

tγr (A, I)
ιγ−→ colim

γ
tγr (A, I) = str(A, I) = π0y(A, I) �− y(A, I).

The proof of Proposition 8.3.14 provides natural weak equivalences from k ⊗hUk(gl(I)) k to
each of the three objects

Uk(t
γ
r (A/I))⊗hUk(tγr (A,I) k, Uk(str(A/I))⊗hUk(str(A,I) k, Uk(yr(A/I))⊗hUk(yr(A,I)) k,

which therefore must be weakly equivalent. Hence the two lower vertical maps are weak
equivalences. Finally the lower horizontal map is the weak equivalence of Proposition
8.1.10, where the category of partial orders on r is contractible, because the discrete order
“≤” = “=” is an initial object.

2
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6.2. The Volodin construction

6.2.2 The Steinberg action on the Volodin construction

Here we are adapting well-known results of the multiplicative setting to the additive one.

Proposition 6.2.9
Let k ∈ CRing and I � A ∈ k/Ring.

Then, for all g ∈ Str+1(A) = π0Yr+1(A), the two maps below are equal.

H∗(Yr(A, I),Z)
ι

↪−→ H∗(Yr+1(A, I),Z),

H∗(Yr(A, I),Z)
ι

↪−→ H∗(Yr+1(A, I),Z)
(-)g−→ H∗(Yr+1(A, I),Z),

where Yr(A, I)
ι

↪−→ Yr+1(A, I) is the canonical inclusion and g acts via π0Yr+1(A) −→
π0Yr+1(A).

In particular St(A) acts trivially on H∗(Y (A, I),Z).

Proof. The Steinberg group Str+1(A) is generated by elements xi,j(a) with a ∈ A and
either i or j is equal to r + 1. Under the weak equivalence Xr(A, I) ' BYr(A, I) of
Proposition 6.2.7 the map (-)g ◦ ι with g = xi,r+1(a) corresponds to the map

Xr(A, I) =
⋃
γ on r

BT γr (A, I) ↪−→
⋃
γ on r

BT γ
′

r+1(A, I) ⊂ Xr+1(A, I),

(x1, ..., xn) 7−→ (xg1, ..., x
g
n),

where γ′ is the extension of γ to r + 1 given by i
γ′

< r + 1. On the restriction to the
simplicial subset an explicit homotopy is given by

∆1
n ×

⋃
γ on r

BnT
γ′

r+1(A, I) −→
⋃
γ on r

BnT
γ′

r+1(A, I),

(c≥j, (x1, ..., xn)) 7−→ (x1, ..., xjg, x
g
j+1, ..., x

g
n),

where c≥j is the map being equal to 1 precisely on the elements j ≤ k ≤ n. The other
case is similar. See also [Sus81] (1.3).

2

Theorem 6.2.10 (Vaserstein, Suslin)
The simplicial abelian group Z̃Xr(A) is b r−1

2
c-connected, for all r ≥ 2.

In particular X(A) and Y (A) are acyclic.

Corollary 6.2.11

For A ∈ Ring flat over Z, we have x(A)
'
−� Z.

Proof. Giving A the discrete filtration A = F0A ⊃ F1A = 0, this follows from Theorem
6.3.19 and the Theorem of Vaserstein-Suslin 6.2.10.

2
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Proposition 6.2.12
Let k ∈ CRing and I � A ∈ k/Ring with A and A/I flat over k.

Then, for all g ∈ str+1(A) = π0yr+1(A), the map below is zero.

HL
∗ (yr(A, I), k)

ι
↪−→ HL

∗ (yr+1(A, I), k)
[-,g]−→ HL

∗ (yr+1(A, I), k),

where yr(A, I)
ι

↪−→ yr+1(A, I) is the canonical inclusion and g acts via π0yr+1(A) −→
π0yr+1(A, I).

In particular st(A) acts trivially on HL
∗ (y(A, I), k) ∼= H∗(x(A, I)).

Proof. This is completely analogous. The Steinberg Lie algebra str+1(A) is generated
by elements xi,j(a) with a ∈ A and either i or j is equal to r + 1. Under the weak
equivalence Γxr(A, I) ' BUk(yr(A, I)) of Proposition 6.2.8 the map [-, g] ◦ ι with g =
xi,r+1(a) corresponds to the map

xr(A, I) =
∑
γ on r

Λ∗t
γ
r (A, I) ↪−→

∑
γ on r

Λ∗t
γ′

r+1(A, I) ⊂ xr+1(A, I),

x1 ∧ ... ∧ xn 7−→
n∑
i=1

x1 ∧ ... ∧ [xi, g] ∧ ... ∧ xn,

where γ′ is the extension of γ to r + 1 given by i
γ′

< r + 1. On the restriction to the
particular subset an explicit chain homotopy can be given by∑
γ on r

Λnt
γ′

r+1(A, I) −→
∑
γ on r

Λn+1t
γ′

r+1(A, I), x1 ∧ ... ∧ xn 7−→ (−1)nx1 ∧ ... ∧ xn ∧ g.

The other case is similar.
2

Proposition 6.2.13
Let k ∈ CRing and A ∈ k/Ring flat with (p− 1)! ∈ A×.

Then x(A) −� k is (p− 1)-connected.

Proof. By Proposition 6.2.12 st(A) acts trivially on H∗(y(A), k). Under the weak equiva-
lence Γx(A) ' B•Uk(E•y(A)) the adjoint action of [xi,j(1), xj,i(1)], for i 6= j corresponds
to the adjoint action of

[ei,j, ej,i] = ei,i − ej,j ∈ gl(A).

The Zr-grading on Λ∗glr(A) of Proposition 5.4.2 induces grading of Z∞ = lim−→r≥1
Zr

on x(A) ≤ Λ∗gl(A). So by the arguments of Proposition 5.4.3 the map ad([ei,j, ej,i]) is
multiplication by vi− vj on the graded summand corresponding to v ∈ Z∞, and the proof
of Proposition 5.4.3 shows that x(A) −� x(A)(0) is (p − 1)-connected. For n, r ≥ 1, the
submodule (xrA)n ≤ ΛnglrA is spanned by all summands

A · ei1,j1 ∧ ... ∧ A · ein,jn ,
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6.2. The Volodin construction

such that for some partial order γ on r we have

i1
γ
< j1, i2

γ
< j2, ... in

γ
< jn.

But for any such sequence with v(i1, j1) + ... + v(in, jn) = 0, every pair (ik, jk) is part of
a cycle

ik
γ
< jk = ik1

γ
< jk1 = .... = ikm

γ
< jkm = ik,

contradicting the antisymmetry of γ, if n ≥ 1. It follows that (xr(A)(0))n = 0, for n ≥ 1,
and hence x(A)(0) = xr(A)(0) = k.

2

6.2.3 Relating Volodin’s and Quillen’s K-Theory

Like in Suslin’s comparison [Sus81] we are linking the Volodin construction to Quillen’s
K-theory. Again we are copying ideas from the multiplicative to the additive situation.

Lemma 6.2.14
A commutative diagram of simplicial groups

E1

��

f1 // B1

��
E2

f2 // B2

with the properties below is homotopy cartesian.

(i) The fibres Fi = fib fi are simple and π0F1
∼−→ π0F2.

(ii) The fundamental group π0Bi acts trivially on H∗(Fi,Z), for i = 1, 2.

(iii) H∗(E1,Z[π0E2])
∼−→ H∗(E2,Z[π0E2]) and H∗(B1,Z[π0B2])

∼−→ H∗(B2,Z[π0B2]).

Proof. Using (ii) the edges of the second page of the Serre Spectral sequences

E2
p,q = Hp(Bi, Hq(Fi,Z)) ⇒ Hp+q(Ei,Z),

are given by

E2
0,q = H0(Bi, Hq(Fi,Z)) = Hq(Fi,Z), q ≥ 0,

E2
p,0 = Hp(Bi, H0(Fi,Z)) = Hp(Bi,Z), p ≥ 0.

Using (iii) Proposition 8.1.2 implies

H∗(B1,Z)
∼−→ H∗(B2,Z), H∗(E1,Z)

∼−→ H∗(E2,Z),

and thus the Comparison Theorem yields H∗(F1,Z)
∼−→ H∗(F2,Z). Hence by (i) and

the Whitehead Theorem, we get π∗F1
∼−→ π∗F2. Equivalently the square is homotopy

cartesian.
2
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Proposition 6.2.15
For k ∈ CRing and A ∈ k/Ring, The canonical maps induce homotopy fibration sequences

(i) Y (A) −→ GL(A) −→ GL(A)+,

(ii) Y (A) −→ E(A) −→ E(A)+,

(iii) Y (A) −→ St(A) −→ St(A)+.

Proof. Consider the diagram

Y (A)

��

// St(A)

��

// E(A)

��

// GL(A)

��
Y (A)+ // St(A)+ // E(A)+ // GL(A)+.

We will show that each square satisfies the hypotheses of Lemma 6.2.14 and thus is
homotopy cartesian. By definition of the plus construction all the vertical maps induce
isomorphisms on homology with local coefficients.

• Since π0Y (A)
∼−→ π0St(A) = St(A) the homotopy fibre of Y (A) −→ St(A) is

connected. Moreover St(A) = π0Y (A) acts trivially on H∗(Y (A),Z) by Proposition
6.2.9.

• The map St(A) −� E(A) is a fibration with fibre K2(A).

• As source and target are constant simplicial groups the map E(A) ↪−→ GL(A) is a
fibration with trivial fibre.

So each of the three squares is homotopy cartesian and the induced map on the vertical
homotopy fibres is a weak equivalence. Since

π0Y (A)+ = π0Y (A)/[π0Y (A), π0Y (A)] = St(A)/[St(A), St(A)] = 1,

and H̃∗(Y (A)+,Z) = H̃∗(Y (A),Z) = H̃∗(X(A),Z) = 0 by Proposition 6.2.5 and Theorem
6.2.10 the Whitehead Theorem implies that Y (A)+ is contractible, which finally proves
the proposition.

2

Lemma 6.2.16
A commutative diagram of simplicial Lie algebras over k ∈ CRing

E1

��

f1 // B1

��
E2

f2 // B2

with the properties below is homotopy cartesian.

(i) The fibres Fi = fib fi are simple and π0F1
∼−→ π0F2.
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(ii) The fundamental group π0Bi acts trivially on H∗(Fi, k), for i = 1, 2.

(iii) H∗(E1, Uk(π0E2))
∼−→ H∗(E2, Uk(π0E2)) and H∗(B1, Uk(π0B2))

∼−→ H∗(B2, Uk(π0B2)).

Proof. Replace groups by Lie algebras in the proof of Lemma 6.2.14.
2

Proposition 6.2.17
For k ∈ CRing and flat A ∈ k/Ring with (p − 1)! ∈ A×, the canonical maps induce
homotopy fibration sequences up to the (p− 2)-nd dimension1.

(i) y(A) −→ gl(A) −→ gl(A)+,

(ii) y(A) −→ sl(A) −→ sl(A)+,

(iii) y(A) −→ st(A) −→ st(A)+.

Proof. Replace groups by Lie algebras in the proof of Proposition 6.2.15.
2

6.2.4 K-theory and the relative Volodin construction

Like in [Lod98] Prop. 11.3.6 we use the results of the preceding section to link the plus
construction of the relative Volodin construction to relative K-theory.

Proposition 6.2.18
Let I � A ∈ Ring and A be I-adically complete.

Then the composite Y (A, I) −→ GL(A) −→ GL(A)+ induces a homotopy fibration
sequence

Y (A, I)+ −→ GL(A)+ −→ GL(A/I)+.

Proof. Consider the diagram

Y (A, I)

��

// GL(A)

��
Y (A/I)

��

// GL(A/I)

��
∗ // GL(A/I)+.

The upper resp. lower square is homotopy cartesian by Definition 6.2.3 and Lemma 6.2.6
resp. Proposition 6.2.17. Next consider the diagram

Y (A, I)

��

// K(A, I)

��

// ∗

��
GL(A) // GL(A)+ // GL(A/I)+,

1This means, that there is a (p− 2)-connected map from the homotopy fibre of the right map to the left
object.
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where K(A, I) is defined as the homotopy fibre of GL(A)+ −→ GL(A/I)+. We have just
shown that the outer square is homotopy cartesian. Since by definition also the right
square is homotopy cartesian, the left square must be homotopy cartesian, too. This can
be seen for example by comparison of the vertical fibres and the 2-of-3 axiom for weak
equivalences. So the homotopy fibre of Y (A, I) −→ K(A, I) is weakly equivalent to the
acylic space Y (A) being the homotopy fibre of GL(A) −→ GL(A)+ by Proposition 6.2.17.
Thus the Serre spectral sequence for Y (A, I) −→ K(A, I) collapses, proving that this map
induces an isomorphism on homology. Since K(A, I) is simple we get

Y (A, I)+ '−→ K(A, I)+ '←− K(A, I).

2

Proposition 6.2.19
Let k ∈ CRing and I � A ∈ k/Ring with A and A/I flat over k with (p− 1)! ∈ A×.

Then the composite y(A, I) −→ gl(A) −→ gl(A)+ induces a homotopy fibration sequence
up to dimension p− 2.

y(A, I)+ −→ gl(A)+ −→ gl(A/I)+.

Proof. Replace group by Lie algebra in the proof of Proposition 6.2.18.
2

6.3 K-theory and group homology of matrices

6.3.1 The plus construction as an E∞-space

Using the category of injection we explicitly construct an E∞-structure on the plus con-
struction of the classifying space of the general linear group. Let us point out that this
idea is not new.

Proposition 6.3.1
Let A ∈ Ring.

(i) There is a functor on the category I of injections (cf. Definition 4.1.1)

MM•A : I −→Mon, s 7−→MMsA = (MsA, ·),

sending a morphism f ∈ I(r, s) to the map MMfA, which associates to an element
X ∈MrA the unique automorphism of Ar, such that the square

A(r)

X
��

A(f)
// A(s)

MMf (A)(X)
��

A(r) A(f)
// A(s)

commutes and MMf (A)(X) is the identity on the complement A(s\f(r)) ≤ A(s).
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(ii) Moreover there is a multiplication homomorphism induced by the block sum

µ : MMrA×MMsA −→MMr+sA, (X, Y ) 7−→ X ⊕ Y :=

(
X 0
0 Y

)
,

and a canonical unit morphism η : 1
∼−→ MM0A, making M•A into a symmetric

monoidal functor (I,+,0) −→ (Mon,×, 1).

(iii) As the functors (-)× −→ Grp B−→ sSet are strictly symmetric monoidal, we also get
symmetric monoidal functors

GL•A : I
MM•A−→ Mon

(-)×−→ Grp, BGL•A : I
GL•A−→ sSet.

For an ideal J � A, all the structure maps of BGL•A restrict to a symmetric
monoidal functor

X•(A, J) : I −→ sSet, r 7−→ Xr(A, J).

All functors preserve limits over connected non-empty categories.

Proof.

(i) For f ∈ I(r, s) the element MMf (A)(X) ∈ Ms(A) = As×s is obtained from X ∈
MMr(A) = by filling up with ones on the diagonal and zeroes elsewhere. Hence
M•(A) is a functor I −→Mon and maps morphisms to injections.

(ii) See Proposition 5.4.10 (ii).

(iii) As the functors (-)× and B are right adjoints, they preserve products and in par-
ticular are symmetric monoidal. Hence the compositions GL•A = (MM•A)× and
BGL•A are symmetric monoidal. Given two partial orders γ on r and γ′ on r′ we
give r + r′ the disjoint union partial order γ + γ′. Then the multiplication of M•(A)
restricts to a map

µ : T γr (A)× T γ
′

r′ (A) −→ T γ+γ′

r+r′ (A),

which defines the monoidal structure of X•(A, J).

Following the arguments in the proof of Proposition 4.1.9, one similarly uses Lemma 4.1.8
to check that MM•(A) preserves limits over connected non-empty categories. Since every
map f ∈ I(r, s) induces cartesian squares

GLrA� _

��

� � GLfA // GLsA� _

��
MrA

� � MfA //MsA,

Xr(A, J)� _

��

� �Xf (A,J)
// Xs(A, J)� _

��
BGLrA

� � BGLfA // BGLsA,

and since B is a right adjoint and therefore preserves limits, we can apply Lemma 4.1.5 to
check that also GL•A, BGL•A and X•(A, J) preserve limits over connected, non-empty
indexing categories.

2
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Remark 6.3.2
Let (C,⊗, e) M−→ (C,⊗, E) be monoidal functor.

Then canonically colim CM ∈ (C,⊗, E)-Ass1.
Moreover colim CM ∈ (C,⊗, E)-Com1, if M is symmetric monoidal.

Proposition 6.3.3
For A ∈ Ring, the map of simplicial groups

hocolim
N0

GL•A −→ hocolim
∆̂inj

GL•A

is a plus construction for hocolim N0 GL•A
'−→ colim N0 GL•A = GL∞A.

Proof. This was already noted in [SS12] Ex. 1.5, as the auther found out after writing
down this proof. By the Whitehead Theorem for simplicial groups 8.2.6 it suffices to check
that the map induces an isomorphism on homology and that

GL∞(A) = π0 hocolim
N0

GL•A −� π0 hocolim
∆̂inj

GL•A = colim
∆̂inj

GL•(A)

is isomorphic to the abelianization map GL∞A −� (GL∞A)ab. For the latter, note that
in colim ∆̂inj

GL•(A) we have(
XY 0
0 1

)
=

(
X 0
0 1

)
·
(
Y 0
0 1

)
=

(
X 0
0 1

)
·
(

1 0
0 Y

)
=

(
1 0
0 Y

)
·
(
X 0
0 1

)
=

(
Y 0
0 1

)
·
(
X 0
0 1

)
=

(
Y X 0
0 1

)
,

for all X, Y ∈ GLrA. This proves that the group colim ∆̂inj
GL•(A) is abelian. Hence in

the commutative diagram

colim
N0

GL•A

��

// // colim
N0

(GL•A)ab

��

∼ // (colim
N0

GL•A)ab

��
colim

∆̂inj

GL•A // // colim
∆̂inj

(GL•A)ab ∼ // (colim
∆̂inj

GL•A)ab

the two horizontal maps on the right are isomorphisms, because abelianization is a left
adjoint and therefore commutes with colimits. The middle vertical map is an isomorphism,
because maps in ∆̂inj with same domain and codomain induce the same maps under
(GL•A)ab. It follows that also the right vertical map is an isomorphism. Moreover the
lower horizontal composition is an isomorphism, because colim ∆̂inj

GL•A is abelian, as
we have just proven. It follows that also the lower left horizontal map is an isomorphism.
This proves that colim ∆̂inj

GL•A is the abelianization of GL∞A.
To see that

H∗(hocolim
N0

GL•A,Z) −→ H∗(hocolim
∆̂inj

GL•A,Z)
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is an isomorphism, note that the bar construction sGrp B−→ sSet∗ commutes with ho-

motopy colimits by Proposition 7.3.34. As sSet∗
Z̃−→ sAb is a left adjoint and thus also

commutes with homotopy colimits, it suffices to prove that the map

hocolim
N0

Z̃BGL•A −→ hocolim
∆̂inj

Z̃BGL•A

is a weak equivalence. Using the spectral sequence for homotopy colimits of Proposition
7.3.23 it suffices to check that all the maps

πp hocolim
N0

Hq(GL•A,Z)
∼−→ πp hocolim

∆̂inj

Hq(GL•A,Z), p, q ≥ 0

are isomorphisms. As the adjoint action of a group on its homology is trivial, the functor

Hq(GL•A,Z) : ∆̂inj −→ Ab

maps morphisms in ∆̂inj with equal domain and codomain to the same maps. In particular

Hq(GL•A,Z) factors over ∆̂inj −� N0 and hence the maps

hocolim
N0

Hq(GL•A,Z)
'−→ hocolim

∆̂inj

Hq(GL•A,Z), q ≥ 0,

are weak equivalences by Corollary 7.3.24 and Remark 7.3.25, because ∆̂inj
δ−→ I

τ−→ N0

is totally final by Proposition 4.1.4.
2

Corollary 6.3.4
For A ∈ Ring, the map

BGL∞A = colim
N0

BGL•A −� colim
∆̂inj

BGL•A =: D(A)

is a plus construction (for BGL∞A in the sense of Quillen).
In particular the group completion Grp(D(A)) ∈ sGrp is a delooping of GL∞(A)+.

Proof. Consider the commutative diagram of pointed simplicial sets

colim
N0

BGL•A

��

hocolim
N0

BGL•Aoo

��

// B hocolim
N0

GL•A

��
colim

∆̂inj

BGL•A hocolim
∆̂inj

BGL•Aoo // B hocolim
∆̂inj

GL•A.

The right vertical map is a weak equivalence by Proposition 6.3.3. The right two horizontal
maps are weak equivalences by Proposition 7.3.34. The upper left horizontal map is a
weak equivalence, as N0 is a filtered category and filtered colimits are exact. The lower
left horizontal map is a weak equivalence by Corollary 7.3.31, as by Corollary 4.1.7 and
Proposition 6.3.1 the composite functor

∆̂inj
δ−→ I

GL•A−→ Grp B−→ sSet
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preserves limits over connected non-empty categories. As the diagram commutes, it follows
that every map is a weak equivalence of pointed simplicial sets. As the categories N0 and
∆̂inj are connected, it follows that the colimits of pointed simplicial sets on the left are
also colimits of the underlying simplicial sets. This concludes the proof for the first part.

For the second statement, note that the simplicial monoid D(A) is free in every dimen-
sion. Indeed in dimension 1 it is freely generated by matrices X ∈ GLrA, that cannot be
written as a block sum X ′ ⊕ X ′′. Similarly in dimension n > 1 it is freely generated by
tuples (X1, ..., Xn) ∈ GLrAn, that cannot be written as a block sum

(X1, ..., Xn) = (X ′1⊕X ′′1 , ..., X ′n⊕X ′′n), (X ′1, ..., X
′
n) ∈ GLr′A, (X ′′1 , ..., X

′′
n) ∈ GLr′′A.

HenceD(A)
'−→ Grp(D(A)) is a weak equivalence by Proposition 7.3.33, because π0D(A) =

1.
2

Proposition 6.3.5
For every ring A ∈ Ring, the simplicial monoid D(A) ∈ sSet-Ass1 is an E∞-space, i.e.
there is a multiplication map

Com1,∞D(A)
µ−→ D(A),

making D(A) into an algebra over the I-operad Com1,∞ ∈ CAT(I, sSet) of Definition
4.2.8.

Proof. Like in the construction of the associative operad in Proposition 4.2.6 we can
define multiplication maps

Σk× (GLn1A× ...×GLnkA)
µ−→ GLn1+...+nkA, (σ, (X1, ..., Xk)) 7−→ σ̄ ◦ (X1⊕ ...⊕Xk),

where σ̄ ∈ GLn1+...+nkA is the matrix corresponding to the permutation of the k blocks
in n1 + ...+ nk. By composition with the functor

E : Set −→ CAT(∆op,Set), X 7−→ E•X = Set(-, X),

we obtain multiplication maps

EΣk × (E•GLn1A× ...× EGLnkA)
µ−→ EGLn1+...+nkA,

which define an algebra structure on colim ∆̂inj
EGL•A ∈ sSet over the operad Com1,∞ =

EΣ ∈ CAT(Iop, sSet). By construction the maps µ respect the right action byGLn1A×...×GLnkA
and thus induce maps

EΣk × (E•GLn1A/GLn1A× ...× EGLnkA/GLnkA)
µ−→ EGLn1+...+nkA/GLn1+...+nkA,

which define an algebra structure onD(A) = colim ∆̂inj
BGL•A ∼= colim ∆̂inj

EGL•A/GL•A.

2

Using Corollary 4.3.13 we obtain the following result. We will not need it later, so we
will only sketch the proof.
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Corollary 6.3.6
Let A ∈ Ring and k ≤ Q with (p− 1)! ∈ k×, for some prime number p > 1.

Then the Hurewicz map induces isomorphisms, for all 1 ≤ n < p

k⊗Kn(A)
∼−→ PHn(GL(A), k) = ker

(
Hn(GL(A), k)

δ∗ //

(η×id)∗+(id×η)∗
// Hn(GL(A)×GL(A), k)

)
,

where GL(A)
δ−→ GL(A) × GL(A) is the diagonal and 1

η−→ GL(A) is the initial group
homomorphism.

Proof. (Sketch) Let k∞D(A) be the k-completion of the space D(A) in the sense of
Bousfield-Kan [BK72] I. Then it can be seen that with D(A) also k∞D(A) is an infinite
loop space and thus by [BE74b] Prop. 3.1 lies in sSet∗-Com1,∞ up to weak equivalence.
As D(A) is an H-space, it is simple and thus nilpotent in the sense of [BK72] I.4.3. Hence
by [BK72] Prop. V.3.1 we have isomorphisms

k ⊗ π∗D(A)
∼−→ π∗(k∞D(A)), k ⊗ H̃∗(k∞D(A),Z)

∼−→ H̃∗(k∞D(A),Z),

which together with Corollary 4.3.13 imply the result.
2

Corollary 6.3.7
Let J � A ∈ Ring.

Then X(A, J)+ ∈ sSet∗-Com1,∞ up to weak equivalence.

Proof. By Proposition 6.2.7 and by construction of the plus construction we have

X(A, J)+ ' (BY (A, J))+ ' B(Y (A, J)+)

Moreover by Proposition 7.3.33 and Corollary 6.3.4 there are weak equivalences

D(A) ' BGL(A)+ ' B(GL(A)+).

Since Y (A, J)+ is the homotopy fibre of GL(A)+ −� GL(A/J)+ by Proposition 6.2.18,
we get a homotopy fibration

X(A, J)+ −→ D(A) −→ D(A/J).

By [BE74b] Thm. A every X ∈ sSet∗-Com1,∞ is an infinite loop space (i.e. for every n ≥ 0
there is a space Y ∈ sSet∗, such that X ' ΩnY ). Hence D(A) and D(A/J) are infinite
loop spaces and by the long exact sequence also X(A, J)+ is an infinite loop space. Then
[BE74b] Prop. 3.1. implies that X(A, J)+ is weakly equivalent to an E∞-space.

2
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6.3.2 Cyclic homology and the relative Volodin construction

In the same way as in the absolute setting we can prove a relative variant of the Theorem
of Loday-Quillen and Tsygan.

Proposition 6.3.8
Let k ∈ CRing and I�A ∈ k/Ring with A and A/I flat over k and suppose (p−1)! ∈ A×,
for some p > 1.

Then Z∞-grading on Λ∗gl∞A restricts to a grading on the subcomplex x(A, I) ≤ Λ∗gl∞A
and the canonical quotient map onto the 0-homogeneous summand is (p− 1)-connected

x(A, I) −� x(A, I)(0).

Proof. Using the trivial action of st(A) on H∗(x(A, I)) in dimensions < p from Proposition
6.2.12, this is proven in exactly the same way as Proposition 5.4.3. See also the proof of
Proposition 6.2.13.

2

Proposition 6.3.9
Let k ∈ CRing and I�A ∈ k/Ring with A and A/I flat over k and suppose (p−1)! ∈ A×,
for some p > 1.

Then there is an action of the Steinberg group St(A) on H∗(x(A, I)), which is trivial
in dimensions < p.

Proof. Using Proposition 6.3.8, the proof is the same as that of Proposition 5.4.4.
2

Corollary 6.3.10
Let k ∈ CRing and I�A ∈ k/Ring with A and A/I flat over k and suppose (p−1)! ∈ A×,
for some p > 1.

Then the action of Σ∞ on Λ∗gl∞A restricts to an action on x(A, I), which is trivial
under Hn, for all 0 ≤ n < p.

Proof. Writing a product τ of two transpositions in Σ∞ as composition of elementary
matrices similarly as in the proof of Corollary 5.4.5, one can identify the action of τ with
the conjugation action by some element of the Steinberg group, which is trivial on the
particular homology groups by the preceding Proposition. So again similar arguments as in
Corollary 5.4.5 imply that the infinite alternating group A∞ acts trivially on H∗(x(A, I)).
To see that also Σ∞ acts trivially, let σ ∈ Σ∞ and take a class x ∈ Hn(x(A, I)). Then
infact x ∈ Hn(xr(A, I)), for some finite r ≥ 0, and we can modify σ by a transposition
being trivial on r to show that also σx = x.

2

Proposition 6.3.11
Let k ∈ CRing and I�A ∈ k/Ring with A and A/I flat over k and suppose (p−1)! ∈ A×,
for some p > 1.

Then the map Hn(x(A, I))
∼−→ Hn(x(A, I)Σ∞) is an isomorphism, for all 0 ≤ n < p.
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Proof. Using Proposition 6.3.8 and Corollary 6.3.10 we again want to adapt the proof
of Proposition 5.4.8. However the module structure of xn(A, I) is more complicated than
that of ΛnglrA. The critical point is the claim that

Hm(Σr, xr(A, I)n) = 0, 0 < m < p, 0 ≤ n < p, r ≥ 1,

where we have to pay more attention. Note that by a cofiltered limit argument, this also
implies the case r =∞, which we are really interested in. Considering the colimit over γ
of the retractions

(tγr (A, I))⊗n −� Λnt
γ
r (A, I), r ≥ 1,

it suffices to check that

Hm(Σr,
∑
γ

(tγr (A, I))⊗n) = 0, 0 < m < p, 0 ≤ n < p, r ≥ 1.

Now since A and A/I are flat over k, we can write the morphism A
q
−� A/I as a filtered

colimit of epimorphisms A′
q′

−� B′ with free A′, B′ ∈ k-Mod. It follows that tγr (A, I) is
the filtered colimit of tγr (A

′, I ′), where I ′ := ker q′. In particular this argument shows that
we may assume that A and A/I are free. In this case, note that A −� A/I has a k-linear
section and thus I is a direct summand of A. So we may choose a basis Ī ⊂ I and extend
it to a basis Ā ⊂ A. Defining

t̄γr (Ā, Ī) := {(a, i, j) ∈ Ā× r× r; a ∈ Ī ⇒ i
γ
< j}, x̄r(Ā, Ī) :=

⋃
γ

t̄γr (Ā, Ī),

the Σr-action on Ā × r × r restricts to an action on x̄(Ā, Ī) and the isomorphism ϕ of
Proposition 5.4.8 restricts to a k[Σr]-linear isomorphism ϕ : k(x̄r(Ā, Ī))n

∼−→ xr(A, I)⊗n.
Now by the same arguments as in Proposition 5.4.8 we can verify the claim.

2

Remark 6.3.12
For I � A ∈ k/Ring the composition of the following chain maps is the identity.

Cλ
∗−1(A, I)

φ−→ x(A, I)
θ−→

∑
γ, r≥1

Cλ
∗−1(Uk(t

γ
r (A, I))

ε−→
∑
γ, r≥1

Cλ
∗−1t

γ
r (A, I)

trace−→ Cλ
∗−1(A, I),

where the maps are the restrictions of those in Remark 5.4.17.

Proposition 6.3.13
Let k ∈ CRing and I�A ∈ k/Ring with A and A/I flat over k and suppose (p−1)! ∈ A×,
for some p > 1.

Then φ extends to the map of dg bialgebras, which is an isomorphism in dimensions
< p

φ : Com1(Cλ
∗−1(A, I) −→ i(A, I)(0) := x(A, I)

(0)
Σ∞
.

Proof. By the same arguments as in Proposition 5.4.18 using Remark 6.3.12 and the
proof for the rational case, given in [AO94] 1.2, implies the statement.

2
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Definition 6.3.14
Let I � A ∈ Ring.

The relative (additive) negative Chern character is defined as the sum over γ
and r of the compositions

Λ∗t
γ
r (A, I)

e
��

// Tot×M−(A, I)

B̃∗UZ(T γr (A, I)) ch− // Tot×M−(UZ(T γr (A, I))) ε // Tot×M−(tγrA)

trace

OO

where e is the antisymmetrization map of Proposition 5.2.13, ch− is the negative Chern
character for the Hopf algebras UZ(tγr (A, I)) of Definition 5.2.11, UZ(tγr (A, I))

ε−→ tγr (A, I)
is the fusion map and trace is the trace map for negative cyclic homology (see Remark
5.4.17).

By abuse of notation we will denote it also by ch−.

Theorem 6.3.15
Let k ∈ CRing and I�A ∈ k/Ring with A and A/I flat over k and suppose (p−1)! ∈ A×,
for some p > 1.

Then the map φ induces isomorphisms in dimensions 0 ≤ n < p− 1

Hλ
n−1(A, I)

∼−→ PHn(x(A, I)) = ker

(
Hn(x(A, I))

δ∗ //

(η⊗id)∗+(id⊗η)∗
// Hn(x(A, I)⊗ x(A, I))

)
.

Here x(A, I)
δ−→ x(A, I)⊗x(A, I) is the comultiplication and η : k = x(A, I)0 ↪−→ x(A, I)

is the inclusion of the zeroth dimension.
Moreover Connes’ operator B of Remark 5.1.10 and the negative Chern character of

Definition 6.3.14 induce a commutative diagram

HC∗−1(A, I)

��

B // HC−∗ (A, I)

Hλ
∗−1(A, I)

φ // H∗(x(A, I))

ch−

OO

Proof. See the proof of Theorem 5.4.20.
2

The original plan was to link KLien (A) and HCn−1(A) via as stated in Conjecture 9.0.7
and then use the absolute version Theorem 5.4.20 and the long exact sequence to prove
Theorem 6.3.15. However we do not know yet how to do that and so we had to reprove
the Theorem in the relative setting.

6.3.3 Comparing multiplicative and additive relative K-theory

Finally we have all tools in hand to verify the main result of this work.
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Proposition 6.3.16
Let A ∈ Ring carrying a ring filtration F , such that Z and A = F0A.

Then there is an induced filtration F on tr(A,F1A) ∈ Ass, for every r ≥ 1, (see
Definition 6.2.3 and Remark 6.2.4), given by

Fntr(A,F1A) =
∑

1≤i,j≤r

Fd(n+i−j)/reA · ei,j, n ≥ 1,

such that F1tr(A,F1A) = tr(A,F1A) and that grF tr(A,F1A) = tr(grFA, grF (F1A)).
Moreover suppose that grFA is flat, A is complete with respect to F and that there is a

subset Y ⊂ A, such that

(i) grFA =
∑

y∈Y Z · [y],

(ii) yn/n! ∈ F1A, for all y ∈ Y ∩ F1A and n ≥ 1.

Then tr(A, I) satisfies the hypotheses of Proposition 3.5.7.

Proof. As ⌈
1 + i− j

r

⌉
=

{
0, 1 ≤ i < j ≤ r,
1, 1 ≤ j ≤ i ≤ r,

it follows that F1tr(A,F1A) = tr(A,F1A). Since⌈
n+ i− j

r

⌉
+

⌈
m+ j − k

r

⌉
≥
⌈
n+m+ i− k

r

⌉
, 1 ≤ i, j, k ≤ r, m, n ≥ 1,

it follows that Fntr(A,F1A) · Fmtr(A,F1A) ⊂ Fn+mtr(A,F1A), for all m,n ≥ 1, proving
that F is a ring filtration. Moreover we have

grFn tr(A,F1A) =
∑

1≤i,j≤r,
r|(n+i−j)

grF(n+i−j)/rA · ei,j, n ≥ 1,

which shows that grF tr(A,F1A) = tr(grFA, grF (F1A)). In particular grF tr(A,F1A) is flat,
if grFA is flat. We define

X = tr(A,F1A) ∩
⋃

1≤i,j≤r

Y · ei,j.

Then (i) implies grF tr(A,F1A) = tr(grFA, grF (F1A)) =
∑

x∈X Z · [x] and (ii) implies

(y · ei,j)n/n! =

{
yn/n! · ei,j ∈ F1A · ei,j, i = j,
0, i 6= j,

for all y · ei,j ∈ tr(A,F1A). Hence xn/n! ∈ tr(A,F1A), for all x ∈ X and n ≥ 1.
2

Remark 6.3.17
Let A ∈ Ring carrying a finite ring filtration A = F0A ⊃ ... ⊃ FNA = 0 with grFA flat
over Z.

If (N − 1)! ∈ A×, then Y := A satisfies the hypothesis of Proposition 6.3.16.
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Corollary 6.3.18
Let A ∈ Ring carrying a ring filtration F , such that Z and A = F0A.

Then for every partial order γ on r = {1, ..., r}, there is an induced filtration F on
tγr (A,F1A), satisfying the hypothesis of Proposition 3.5.7.

These filtrations can be chosen in a way, such that tγr (A,F1A) ↪−→ tγ
′
r (A,F1A) is 2r-

equicontinuous, for every γ ⊂ γ′.

Proof. Then γ is isomorphic to the usual total order on r by a permutation σγ ∈ Σr. So by
Proposition 6.3.16 the initial filtration along the isomorphism tγr (A,F1A)

∼−→ tr(A,F1A)
induced by σγ satisfies the hypothesis of Proposition 3.5.7. Now by the order extension
principle any partial order γ on r can be extended to a total order γ and the result follows
by giving tγr (A,F1A) the initial filtration along tγr (A,F1A) ↪−→ tγr (A,F1A). Of course the
filtration depends on the chosen total extension γ. However, if γ1 ⊂ γ2 and γ1 6= γ2, then
the filtration on tγkr (A,F1A) is given by

Fnt
γk
r (A,F1A) = tγkr (A,F1A) ∩

∑
1≤i,j≤r

Fd(n+σk(i)−σk(j))/reA · ei,j, n ≥ 1,

where σk = σγk ∈ Σr, for k = 1, 2. Since

(σ2(i)− σ2(j))− (σ1(i)− σ1(j)) ≤ (r − 1)− (1− r) < 2r, 1 ≤ i, j ≤ r,

it follows that the induced map tγ1
r (A,F1A) ↪−→ tγ2

r (A,F1A) is at least 2r-equicontinous.

2

Theorem 6.3.19
Let A ∈ Ring carrying a finite ring filtration A = F0A ⊃ ... ⊃ FNA = 0, such that grFA
is flat over Z. Suppose there is a subset Y ⊂ A, such that

(i) grFA =
∑

y∈Y Z · [y],

(ii) yn/n! ∈ F1A, for all y ∈ Y ∩ F1A and n ≥ 1.

Then there is a natural zig-zag of weak equivalences

ZX(A,F1A) ' Γx(A,F1A), ZXr(A,F1A) ' Γxr(A,F1A), r ≥ 1,

where X(A,F1A) and x(A,F1A) are the relative Volodin constructions of Definition 6.2.3.

Proof. Suppose γ is a total order. Then by Corollary 6.3.18 and Proposition 3.5.7 the
group T γr (A,F1A) = 1 + tγr (A,F1A) and the Lie ring tγr (A,F1A) are associated via some
isomorphism

λγ : D̂F
0 Z[T γr (A,F1A)]

∼−→ D̂F
0 UZ(tγr (A,F1A)),

which is natural in the underlying associative non-unital algebra tγr (A,F1A). So by Propo-
sition 3.5.4 λγ induces natural quasi-isomorphisms as in the lower row in the diagram
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below.

ZBT γr (A,F1A)

o
��

Λ∗t
γ
r (A,F1A)

'
��

C∗(T
γ
r (A,F1A),Z)

��

C∗(t
γ
r (A,F1A))

��

Ĉ∗(T
γ
r (A,F1A),Z) ' // Ĉ∗(T

γ
r (A,F1A), tγr (A,F1A),Z) Ĉ∗(t

γ
r (A,F1A)).'oo

Now tγr (A,F1A) is flat, because grFA and hence also A and F1A are flat by Corollary
3.6.2 using FnA = 0. It follows that the upper right vertical map is a quasi-isomorphism.
Moreover also grF tγr (A,F1A) = tγr (grFA, grF (F1A)) is flat. Assuming that grF tγr (A, I) is
a finitely generated free abelian group for the moment, also the lower two vertical maps
are quasi-isomorphisms by Proposition 3.4.17 and Proposition 3.3.24 respectively.

Note that by Corollary 6.3.18 the topology on tγr (A,F1A) and hence on Z[T γr (A,F1A)]
and UZ(tγr (A,F1A)) is functorial in γ in contrast to the chosen filtration F . Using this and
that λ is natural in the algebra tγr (A,F1A), all the maps in the diagram above are natural
in γ and we can take the homotopy colimit over all γ we obtain a natural zig-zag

ZXr(A,F1A) Γxr(A,F1A)

colim
γ

ZBT γr (A,F1A) colim
γ

ΓΛ∗t
γ
r (A,F1A)

hocolim
γ

ZBT γr (A,F1A)

'
OO

'
))

hocolim
γ

ΓΛ∗t
γ
r (A,F1A)

'
uu

'
OO

hocolim
γ

Ĉ∗(T
γ
r (A,F1A), tγr (A,F1A),Z),

where the upper vertical maps are the canonical quotient maps, which are quasi-isomorphisms
by Proposition 6.2.7 and (the proof of) Proposition 6.2.8 respectively. This proves the as-
sertion in the unstable situation, if grFA is a finitely generated and free abelian group. By
checking that the inclusions tγr (A,F1A) −→ tγr+1(A,F1) are continuous, one can take the
colimit over r ≥ 1 to get a quasi-isomorphism ZX(A,F1A) ' x(A,F1A) in this situation.

For the general case, let S ⊂ A be a finite subset and let tγ,Sr (A,F1A) ≤ tγr (A,F1A) be
the subring generated by Sγ := Sr×r ∩ tγr (A,F1A). Now FnA = 0 implies

F(n+1)rtr(A,F1A) =
∑

1≤i,j≤r

Fd((n+1)r+i−j)/reA · ei,j ⊂
∑

1≤i,j≤r

Fn+1A · ei,j = 0,

and by construction F1t
γ
r (A,F1A) = tγr (A,F1A). So as F is a ring filtration on tγr (A,F1A),

the abelian group underlying tγ,Sr (A,F1A) is generated by the finite set of Sγ-monomials
of total degree less than (n + 1)r. In particular grF tγ,Sr (A,F1A) is finitely generated as
an abelian group. Giving tγ,Sr (A,F1A) ≤ tγr (A,F1A) the subring filtration F , we see that
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grF tγr (A,F1A) is a finitely generated abelian subgroup of the torsion-free grF tγ,Sr (A,F1A)
and hence free. Now as A is the union of its finitely generated subrings, every of the maps
in the diagram above is natural in A and S and filtered colimits are exact, we get a zig-zag
of quasi-isomorphisms

ZXr(A,F1A) = colim
S⊂A finite,γ

ZBT γ,Sr (A,F1A) ' colim
S⊂A finite,γ

ΓΛ∗t
γ,S
r (A,F1A) = Γxr(A,F1A),

and similarly in the stable situation.
2

Definition 6.3.20
Let A ∈ Ring.

(i) The (absolute) negative Chern character is defined as the composition of

K∗(A) = π∗GL(A)+ −→ H∗(GL(A)+,Z)
∼←− H∗(GL(A),Z)

with the negative Chern character for the Hopf algebra Z[GL(A)] of Definition
5.2.11, the fusion map Z[GL(A)]

ε−→ M∞(A) and the trace map of negative cyclic
homology (see Remark 5.4.17)

H∗(GL(A),Z) = H∗(B∗Z[GL(A)])
ch−−→ HC−∗ (Z[GL(A)])

ε−→ HC−∗ (M∞A)
trace−→ HC−∗ (A).

(ii) Similarly, for I � A, the relative negative Chern character is defined as the
composition of

K∗(A, I) = π∗X(A, I)+ −→ H∗(X(A, I)+,Z)
∼←− H∗(X(A, I),Z)

with the map induced by the sum of the compositions of the negative Chern character
for the Hopf algebras Z[T γr (A, I)] of Definition 5.2.11, the fusion map Z[T γr (A, I)]

ε−→
tγr (A, I) and the trace map

B̃∗Z[T γr (A, I)]
ch−−→ Tot×M−(Z[T γr (A, I)])

ε−→ Tot×M−(tγrA)
trace−→ Tot×M−(A, I).

See also Definition 6.3.14

By abuse of notation we will denote the two maps also by ch−.

Lemma 6.3.21
In the situation of Theorem 6.3.19 the following holds.

(i) After taking homotopy groups (which is homology under the Dold-Kan correspon-
dence) the isomorphism induced by the zig-zag of Theorem 6.3.19 (ii) fits into com-
mutative squares

H∗(X(A,F1A),Z)

di

��

∼ H∗(x(A, I))

di

��
H∗(X(A,F1A)×X(A,F1A),Z) ∼ H∗(x(A, I)⊗ x(A, I)),

where the maps di are given as follows
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a) On the left d0 is induced by the map η× id, where η is the inclusion of the base

point, and on the right by id⊗ η, where k = x(A,F1A)0

η
↪−→ x(A,F1A).

b) On the left d1 is induced by the diagonal and on the right by the comultiplication
on the x(A, I).

c) On the left d2 is induced by id× η and on the right by id⊗ η, where the maps
η are like in a).

(ii) The isomorphism induced by the zig-zag of Theorem 6.3.19 (ii) is compatible with
the relative negative Chern character, i.e. there is a commutative diagram

H∗(X(A,F1A),Z)

ch−

��

∼
H∗(x(A, I))

ch−

��
HC−∗ (A,F1)

iA // HC−∗ (DF
0 A,D

F
1 A) HC−∗ (A,F1A),

iAoo

where the vertical maps are given by the relative negative Chern character (see Defi-
nition 6.3.20 and Definition 6.3.14) and the two horizontal maps are induced by the

canonical map into the divisible closure A
iA−→ DF

0 A (cf. Definition 3.1.10).

Proof.

(i) Let γ be a total order on r. Then the isomorphism

λγ : D̂F
0 Z[T γr (A,F1A)]

∼−→ D̂F
0 UZ(tγr (A,F1A))

is natural in the underlying associative non-unital algebra tγr (A,F1A). So if

0
η−→ tγr (A,F1A), tγr (A,F1A)

δ−→ tγr (A,F1A)× tγr (A,F1A)

are the initial and diagonal algebra homomorphisms, the maps d0 = η × id, d1 = δ
and d2 = id× η induce commutative diagrams

D̂F
0 Z[T γr (A,F1A)]

di

��

∼ // D̂F
0 UZ(tγr (A,F1A))

di

��

D̂F
0 Z[T γr (A,F1A)× T γr (A,F1A)] ∼ // D̂F

0 UZ(tγr (A,F1A)× tγr (A,F1A)),

which are moreover natural in γ. So by taking the (homotopy) colimit over γ as in
the proof of Theorem 6.3.19, we see that all the maps in the zig-zag are compatible
with the di. As the di are natural in the underlying associative algebra tγr (A,F1A),
the same holds when restricted to the subalgebras tγ,Sr (A,F1A). It remains to note
that the maps di defined here in the proof induce the desired maps on X(A,F1A)
and x(A,F1A).

161



Chapter 6. Multiplicative vs. additive K-theory

(ii) There is a natural way to construct the negative Chern character for every object
in the zig-zag except possibly for the middle one (cf. Proposition 3.5.4)

Ĉ∗(1 + T, T,Z)

= coker
(
B̂∗(I(1 + T ), DF

0 Z[1 + T ],Z) −→ B̂∗(D
F
0 Z[1 + T ], DF

0 Z[1 + T ],Z)
)

λ∼= coker
(
B̂∗(I(T ), DF

0 UZ(T ),Z) −→ B̂∗(D
F
0 UZ(T ), DF

0 UZ(T ),Z)
)
,

where T = tγr (A,F1A) ∈ Z-Ass. Since the ideals I(1 + T ) and I(T ) are contained
in the particular augmentation ideals, we have a quotient map

Ĉ∗(1 + T, T,Z) −� B̂∗(D
F
0 Z[1 + T ])

λ∼= B̂∗(D
F
0 UZ(T )),

and completion of the composition with the negative Chern character map yields
the desired map

Ĉ∗(1 + T, T,Z) −→ Tot×M̂−(T )
trace−→ Tot×M̂−(DF

0 A,D
F
1 A).

Since An = 0, for some n ≥ 0, the object M−(DF
0 A,D

F
1 A) is complete, if A is

finitely generated over k. As we are taking the filtered colimit over finitely generated
subalgebras of A, we therefore land in M−(DF

0 A,D
F
1 A) as desired.

2

Theorem 6.3.22
Let A ∈ Ring with (p− 1)! ∈ A×, for some prime p > 1. Suppose A carries a finite ring
filtration A = F0A ⊃ ... ⊃ FNA = 0, such that grFA is flat over Z. Suppose that there is
a subset Y ⊂ A, such that

(i) grFA =
∑

y∈Y Z · [y],

(ii) yn/n! ∈ F1A, for all y ∈ Y ∩ F1A and n ≥ 1.

Then for 1 ≤ n < p− 1 there are isomorphisms inducing a commutative diagram

Kn(A,F1A)

ch−

��

∼ HCn−1(A,F1A)

B
��

HC−n (A,F1A)
iA // HC−n (DF

0 A,D
F
1 A) HC−n (A,F1A),

iAoo

where ch− is the relative negative Chern character of Definition 6.3.20, B is Connes’
operator (see Remark 5.1.10), and the two horizontal maps are induced by the canonical

inclusion A
iA
↪−→ DF

0 A.
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6.3. K-theory and group homology of matrices

Proof. Consider the diagram

PHn(X(A,F1A),Z)

o

� � // Hn(X(A,F1A),Z)

o ch−

))
PHn(x(A,F1A)) �

� // Hn(x(A,F1A))
ch−

// HC−n (DF
0 A,D

F
1 A)

HCn−1(A,F1A)

φ o

OO

B // HC−n (A,F1A).

iA

OO

Then the upper right triangle commutes by Lemma 6.3.21 (ii), while (i) loc. cit. implies
that the upper middle vertical isomorphism restricts to the isomorphism on the left.
Moreover the lower right square commutes by Theorem 6.3.15, while the left one commutes
by Remark 6.3.12. Let k = Z[1/(p− 1)!] and consider the commutative diagram

H∗(x(A,F1A))

o

∼ // H∗(x(A,F1A))⊗ k
o

∼ // H∗(x(A,F1A)⊗ k)

o

H∗(X(A,F1A),Z)

o
��

// H∗(X(A,F1A),Z)⊗ k
o
��

// H∗(X(A,F1A), k)

o
��

H∗(X(A,F1A)+,Z) // H∗(X(A,F1A)+,Z)⊗ k // H∗(X(A,F1A)+, k).

Since (p− 1)! ∈ A×, the upper horizontal maps are isomorphisms, which implies that also
the lower horizontal maps are isomorphisms. Since by Corollary 6.3.7 X(A,F1A)+ is a
connected E∞-space, Corollary 4.3.13 implies that

πnX(A,F1A)+ ∼−→ PHn(X(A,F1A)+, k)
∼←− PHn(X(A,F1A), k)

∼←− PHn(X(A,F1A),Z),

and the result follows, because by Proposition 6.2.18 and Proposition 6.2.7 we have

K∗(A,F1A) ∼= π∗−1Y (A,F1A)+ ∼= π∗X(A,F1A)+.

2

Corollary 6.3.23 (Goodwillie)
Let I � A ∈ Q/Ring be nilpotent.

Then ch− : K∗(A, I)
∼−→ HC−∗ (A, I).

Proof. Since Q ≤ A, the I-adic filtration satisfies the hypotheses of Theorem 6.3.22. Since
(p− 1)! ∈ A×, for all p > 1, the result follows.

This was first proven by Goodwillie [Goo86], but it was not clear that the isomorphism
is induced by the negative Chern character. This was later verified by Cortinas-Weibel in
[CW09].

2
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Theorem 6.3.24 (Brun)
Let I � A ∈ sRing with A and A/I flat over Z, and Im = 0, for some m ≥ 1.

Then after p-completion in the sense of Bousfield-Kan [BK72], there is a (p/(m−1)−2)-
connected map

K∗(A, I) −→ HC∗(A, I).

Proof. This was proven by Brun in [Bru01] using the cyclotomic trace map to topological
cyclic homology. Note that he only requires A and A/I to be flat and does not make any
restrictions on In/In+1, for n > 0. But our Theorem 6.3.22 is more general in some cases.

2

6.3.4 Applications of the Theorem

Proposition 6.3.25
Let k ≤ Q with (p− 1)! ∈ k× and 1 ≤ r ≤ p.

Then, for 0 ≤ n < p− 1, we have

Kn(k[t]/(tr), (t)) ∼= HCn−1(k[t]/(tr), (t)) ∼=


⊕

0≤j≤m,
0<a<r

k/(a+ jr), n = 2m+ 1,

kr, n = 2m.

Proof. The k-algebra k[t]/(tr) with the (t)-adic-filtration satisfies the hypothesis of The-
orem 6.3.22. Indeed r ≤ p implies (t)p = 0 in k[t]/(tr), while 1/n! · (t)n ⊂ (t), for all
1 ≤ n < p, because (p−1)! ∈ k× by assumption. The computation of the cyclic homology
is due to [Gro94]. See also Proposition 5.3.4.

2

Remark 6.3.26 (i) Brun [Bru01] used almost free simplicial replacements, Theorem
6.3.24 and Quillen’s [Qui72] computation of K∗(Fp) to deduce

Kn(Z/pr) =

{
0, n ∈ 2N0,
Z/pm(r−1)(pm − 1), n = 2m− 1.

We may use our Theorem to at least compute also Kp−2.

(ii) Similarly one could maybe reproduce Hesselholt-Madsen’s [HM97a] computation of

K∗(Fp[t]/(tr), (t)) =

{
Wmr(Fp)/VrWm(Fp), n = 2m− 1,
0, n ∈ 2N0,

r ≥ 1,

here Wm(Fp) are the big Witt vectors of length m ≥ 1 and Vr is the Verschiebung.
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7 Appendix: Simplicial homotopy
theory

7.1 Model categories

7.1.1 Localizations of categories

Definition 7.1.1
Let C ∈ CAT and S ⊂ Mor(C) a subclass of morphisms.

A category C γ−→ S−1C under C is called a localization of C at S, if

(i) γ(S) ⊂ Mor(S−1C)×, i.e. γ sends S to isomorphisms.

(ii) It is universal w.r.t. to functors satisfying (i), i.e.

C
γ
��

F // D

S−1C,
∃!F̃

<< ∀F : F (S) ⊂ Mor(D)×.

Sometimes this diagram is just required commutative up to unique natural isomor-
phism.

Example 7.1.2
Let M ∈Mon be a monoid, S ⊂M .

• Let I(M) denote the category with one object, whose morphisms are the elements of
M .

• Let S−1M be the monoid obtained by formally adjoining inverses for all elements in
S.

Then the canonical morphism M −→ S−1M induces a functor I(M) −→ I(S−1M), which
is a localization for M .

Remark 7.1.3
If C is not small, then localizations are very hard to construct and do not exist in general.
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Definition 7.1.4
A category with weak equivalences consists of a category C ∈ CAT and a subclass of
morphisms wC ⊂ Mor(C), so-called weak equivalences (written “

'−→”), such that:

(i) Mor(C)× ⊂ wC.

(ii) The 2-of-3 axiom holds, i.e. for all A,B,C ∈ C and every commutative triangle

A

gf ��

f // B

g

��
C,

if 2 of the 3 morphisms are wes., so is the third.

Its derived category or homotopy category is denoted by D(C) := Ho(C) := wC−1C,
provided that it exists.

7.1.2 Lifting properties

Definition 7.1.5
Let C ∈ CAT and ` ∈ C(A,B), r ∈ C(C,D).

If for any commutative square

A

`
��

// C

r
��

B //

∃d
99

D

there exists a (not-necessarily unique) diagonal d making the diagram commutative, then
one says, that

(i) ` has the left lifting property (LLP) with respect to r and

(ii) r has the right lifting property (RLP) with respect to `.

For a subclass S ⊂ Mor(C) define

(i) LLP (S) := {f ∈ Mor(C); f has the LLP w.r.t. all s ∈ S},

(ii) RLP (S) := {f ∈ Mor(C); f has the RLP w.r.t. all s ∈ S}.

Definition 7.1.6
A weak factorization system on a category C consists of two subclasses L,R ⊂ Mor(C),
such that

(i) Mor(C) = R ◦ L,

(ii) L = LLP (R) and R = RLP (L).
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We also say that C is (L,R)-structured.

Proposition 7.1.7
Let C ∈ CAT and L,R ⊂ Mor(C).

Then (L,R) is a weak factorization system, if and only if the following holds.

(i) Mor(C) = R ◦ L,

(ii) L ⊂ LLP (R).

(iii) L and R are closed under retracts, where a retract of a morphism f ∈ C(A,B) is
a morphism f ′ ∈ C(A′, B′) inducing a commutative diagam

A′

f ′

��

idA′

((// A

f
��

// A′

f ′

��
B′

idB′

66// B // B′.

Proof. Suppose (L,R) is a weak factorization system. Then (i) and (ii) hold, because
L = LLP (R). For proving (ii), consider a commutative diagram

A

`
��

idA

**
sA

// A′

`′

��

rA
// A

`
��

u // X

r∈R
��

B

idB

44
sB // B′

rB // B v // Y,

where `′ ∈ LLP (R). We want to show, that there is a diagonal d ∈ C(B,X), making the
right square commute. Since `′ ∈ LLP (R), we have a diagonal d′, such that

A′

`′

��

rA // A u // X

r∈R
��

B′

∃d′
77

rB
// B v

// Y

commutes. Define d = d′sB and compute

d` = d′sB` = d′`′sA = urAsA = u, rd = rd′sB = vrBsB = v,

hence d is a diagonal of the desired form. By duality also R is closed under retracts.
Vice versa assume the hypotheses for (L,R) given above. We have to show, that L =

LLP (R) and R = RLP (L). Let c ∈ C(X, Y )∩ ∈ LLP (R) be arbitrary. Then c can be

factored as X
`

�−→ Z
r−_ Y , where ` ∈ L and r ∈ R. Since ` ∈ LLP (R) we find a diagonal

X

c
��

// ` // Z

r
_��

Y

d

>>

Y,
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showing that c is a retract of `. Hence LLP (R) ⊂ L ⊂ LLP (R) and so L = LLP (R).
Dually one shows R = RLP (L).

2

Remark 7.1.8
Given two categories D and C with an adjunction

D(F (X), Y ) = C(X,G(Y )).

Let ` ∈ C(C,C ′) and r ∈ D(D,D′).
Then the following lifting propblems are equivalent

F (C)

F (`)
��

a // D

r

��
F (C ′)

d

<<

b
// D′,

C

`
��

a′ // G(D)

G(r)
��

C ′

d′
<<

b′
// G(D′),

where a′, b′ and d′ corresponds to a, b and d under the adjunction bijection.
In particular the two axioms for structured adjunctions are equivalent.

Corollary 7.1.9
Given an adjunction D(F (X), Y ) = C(X,G(Y )), the following holds.

(i) For every subclass C ⊂ Mor(C), we have G−1RLP (C) = RLP (F (C)).

(ii) For every subclass D ⊂ Mor(D), we have F−1LLP (C) = LLP (G(D)).

Remark 7.1.10
Given categories A,B and C and adjunctions

A(A,F (B,C)) = C(A⊗B,C) = B(B,G(A,C)), A ∈ A, B ∈ B, C ∈ C.

Let a ∈ A(A,A′), b ∈ B(B,B′) and c ∈ C(C,C ′).
Then the following three lifting problems are equivalent.

A

a

��

u′1 // F (B′, C)

(b∗,c∗)
��

A′

d′
44

(u′2,u
′
3)

// F (B,C)×F (B,C′) F (B′, C ′),

(A⊗B′) +(A⊗B) (A′ ⊗B)

(a⊗id)∪(id⊗b)
��

u1∪u2 // C

c

��
A′ ⊗B′

d

44

u3

// C ′.

B

b
��

u′′2 // G(A′, C)

(a∗,c∗)
��

B′

d′′
33

(u′′1 ,u
′′
3 )

// G(A,C)×G(A,C′) G(A′, C ′).

where
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• u′1, u′2, u′3 correspond to u1, u2, u3 under the first bijection and

• u′′1, u′′2, u′′3 correspond to u1, u2, u3 under the second bijection.

In particular the three axioms for structured adjoint triples are equivalent.

Proposition 7.1.11
Given an adjunction

D(F (X), Y ) = C(X,G(Y )).

Then there is a canonical weak factorization system (L,R) on D, where

(i) L is the class of retracts of inclusions X
ιX
↪−→ X + F (Y ), where X ∈ D and Y ∈ C,

(ii) R is the class of morphisms r, such that G(r) is a retraction in C.

Proof. Recall that the adjunction bijection is given by

D(F (X), Y )
∼−→←− C(X,G(Y )),

f 7−→ G(f) ◦ ηX ,
εY ◦ F (g)←− [ g,

where the unit idC
η−→ GF and counit FG

ε−→ idD are natural transformations. Every

morphism X
f−→ Y can be factored as

X

ιX &&

f // Y

X + FG(Y ),
f∪εY

99

and G(f ∪ εY ) is a retraction having a section

G(Y )
ηG(Y )−→ GFG(Y )

G(ιFG(Y ))−→ G(X + FG(Y )).

Consider a general lifting problem

X

ιX
��

a // A

r

��

G(A)

G(r)
����

X + F (Y )

d

66

(ra)∪b
// B, G(B).

s

^^

Let d′ be the composition

F (Y )
F (ηY )−→ FGF (Y )

FG(b)−→ FG(B)
F (s)−→ FG(A)

εA−→ A.

Then

rd′ = r ◦ εA ◦ F (s) ◦ FG(b) ◦ F (ηY ) = εB ◦ FG(r) ◦ F (s) ◦ FG(b) ◦ F (ηY )

= εB ◦ F (G(r) ◦ s)︸ ︷︷ ︸
=id

◦ FG(b) ◦ F (ηY ) = εB ◦ FG(b) ◦ F (ηY ) = b ◦ εF (A) ◦ F (ηY ) = b,
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and hence d = a ∪ d′ is a solution to the lifting problem, because

dιX = a, rd = (ra) ∪ (rd′) = (ra) ∪ b.

Next we show, that R is closed under retracts. Suppose we are given a commutative
diagram

A′

r′

��

idA′

((
sA
// A

r

��

rA
// A′

r′

��

G(A)

G(r)
����

B′

idB′

66
sB // B

rB // B′, G(B).

s

^^

Define s′ = G(rA)sG(sB) ∈ C(B′, A′). Then we have

r′s′ = r′G(rA)sG(sB) = G(rB)rsG(sB) = G(rB)G(sB) = idG(B′),

showing that G(r′) is a retraction with section s′.
Now we can apply Proposition 7.1.7 to show, that (L,R) is a weak factorization system

for D.
2

Example 7.1.12
Let R ∈ Ring and consider the adjunction

R-Mod(RX, Y ) = Set(X,U(Y )).

Then for the induced weak factorization system (L,R) of Proposition 7.1.11 we have

(i) L the class of monomorphisms with projective cokernel.

(ii) R is the class of epimorphisms.

7.1.3 The small object argument

Definition 7.1.13 (i) A cardinal number is an ordinal having greater cardinality
than all its smaller ordinals.

(ii) We define ω as the smallest infinite cardinal.

(iii) A functor C F−→ D preserves κ-indexed colimits, for some cardinal number κ,
if

colim
n<κ

F (Yn)
∼−→ F (colim

n<κ
Yn),

for all sequences (Y0 −→ Y1 −→ ...) indexed by ordinals n < κ in C.

(iv) An object X ∈ C is called κ-small, if C(X, -) preserves κ-indexed colimits.
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Proposition 7.1.14 (Small object argument)
Let C be a cocomplete category and S ⊂ Mor(C) a set of morphisms with κ-small domains,
for some cardinal number κ.

Then (LLP (RLP (S)), RLP (S)) is a weak factorization system on C.

Proof. We have to prove that Mor(C) = RLP (S) ◦ LLP (RLP (S)). By [Hir03] Prop.
10.5.16 every morphism in C is the composition of a relative S-cell complex followed by a
map in RLP (S) (called the class of S-injectives there). We do not need to know what a
relative S-cell complex is, it suffices to know that it is in LLP (RLP (S)) (called the class
of S-cofibrations there) by Proposition 10.5.10 loc. cit.

2

Corollary 7.1.15
Let C be a category with a factorization system (L,R). Given an adjunction

D(F (X), Y ) = C(X,G(Y )).

Suppose there is an ordinal κ, such that:

(i) There is a subset C ⊂ Mor(C) of morphisms with κ-small domains and (L,R) =
(LLP (RLP (C)), RLP (C)).

(ii) F preserves κ-small objects.

Then (LLP (G−1(R)), G−1(R)) is a factorization system on D.

Proof. For all (D
c−→ E) ∈ C the functor D(F (D), -) preserves κ-inductive limits by

(ii), since C is κ-small. By Proposition 7.1.14 we obtain a weak factorization system
(LLP (RLP (F (C))), RLP (F (C))) on D. As RLP (F (C)) = G−1RLP (C) by Corollary
7.1.9, this is the factorization system we wanted.

2

7.1.4 Model categories

Definition 7.1.16
A model category consists of a finitely complete and cocomplete category C together with
a model structure. That is three classes of morphisms wC, fib C, cof C ⊂ Mor(C), such
that:

(i) (C, wC) is a category with weak equivalences.

(ii) (cof C ∩ wC, fib C) and (cof C, wC ∩ fib C) are weak factorization systems.

We fix the following notation.

• The morphisms in fib C are called fibrations and written as “−_”.

• The morphisms in cof C are called cofibrations and written as “�−→”.

• A (co-)fibration is called trivial, if it is also a weak equivalence.
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Proposition 7.1.17
Let C be a category together with three classes of morphisms wC, fib C, cof C ⊂ Mor(C).

Then C is a model category, if and only if the following holds.

(M1) C is closed under finite limits and colimits.

(M2) wC satisfies the 2-of-3 axiom.

(M3) The classes wC, fib C, cof C are closed under retracts.

(M4) cof C ⊂ LLP (fib C ∩ wC) and cof C ∩ wC ⊂ LLP (fib C).

(M5) MorC = fib C ◦ (cof C ∩ wC) = (fib C ∩ wC) ◦ cof C.

Proof. (CM1) is part of both descriptions. (CM2) is equivalent to (C, wC) being a cate-
gory with weak equivalences. By Proposition 7.1.7 (cof C∩wC, fib C) and (cof C, wC∩fib C)
are weak factorization systems, if and only if (CM3) - (CM5) hold. Indeed (CM5) and
(CM3) imply that (trivial) (co-)fibrations are closed under retracts. Vice versa if trivial
fibrations and cofibrations are closed under retracts, so are weak equivalences, since they
can be factored into a trivial cofibration followed by a trivial cofibration.

2

Remark 7.1.18
Probably the four most important references for model categories are Quillen’s original
paper [Qui67] and the books of Goerss-Jardine [GJ09], Hirschhorn [Hir03] and Hovey
[Hov99]. Unfortunately there are slight differences in their definition of a closed model
category, that we will point out below.

(i) Our definition is equivalent to Quillen’s [Qui67] Definition I.5.1 of a closed model
category by Remark I.5.1 loc. cit.

(ii) Our definition is equivalent to Goerss-Jardine’s definition of a closed model category
in [GJ09] II.1.1, which are precisely the axioms listed in Proposition 7.1.17.

(iii) Hovey [Hov99] Def. 1.1.3 and Hirschhorn [Hir03] Def. 7.1.3 require that C is even
complete and cocomplete, i.e. has limits and colimits over all small index categories.

7.1.5 The derived category of a model category

Definition 7.1.19
Let C be a model category and X ∈ C.

(i) An object X is called fibrant, if the unique map into the terminal object X −→ ∗
is a fibration.

(ii) A fibrant replacement of X is a weak equivalence X
'−→ Xf with fibrant Xf ∈ C.

Every object has a fibrant replacement, given by a factorization of the terminal map

X
'
�−→ Xf −_ ∗.
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(iii) A cylinder object for X ∈ C is a factorization of the fold map

∇ = idX t idX : X +X
i0ti1
�−→ I ·X '−→ X.

Note that every object has a cylinder object.

(iv) Two morphisms f, g ∈ C(X, Y ) are called (left) homotopic via h, short f
h' g, if

there is a map h ∈ C(I ·X, Y ) inducing a commutative diagram

X +X
idXtidX=∇

ww

��

��

ftg

''
X I ·X'oo h // Y.

Dually we also define cofibrant objects, replacements (denoted by a lower index “c”),

path objects (denoted by ∆ = (idX , idY ) : X
'−→ XI (p0,p1)−→ X×X) and right homotopies.

Proposition 7.1.20
Let C be a model category, X ∈ C cofibrant and Y ∈ C fibrant.

Then left-homotopy “'” is an equivalence relation on C(X, Y ) and is independent of
the chosen cylinder object I ·X for X.

Proof. See [Qui67] Lem. I.1.4 and Lem. I.1.5. Alternatively [Hir03] Prop. 7.4.5 and 7.4.7.

2

Theorem 7.1.21
Let C be a model category.

Then C has a derived category D(C), whose objects are the same as C and

D(C)(X, Y ) := C(Xc, Yf )/ ', for all X, Y ∈ C.

Moreover wC = γ−1D(C)×, i.e. a C-morphism is a weak equivalence, if and only if it maps
to an isomorphism in the derived category.

Proof. [Qui67] Thm. I.1.1’ and Cor. I.1.1. Alternatively [GJ09] II.1.
2

7.1.6 Derived functors

Definition 7.1.22
Let C be a category with weak equivalence having a derived category C γ−→ D(C). Suppose

C G−→ D is a functor into an arbitrary category D.

(i) The left derived functor LG is defined as the right Kan extension of G along

C γ−→ D(C), it it exists.
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(ii) The right derived functor RG is defined as the left Kan extension of G along

C γ−→ D(C), if it exists.

Lemma 7.1.23 (K. Brown)
In every model category C the following holds.

(i) Every weak equivalence w : X
'−→ Y between cofibrant X, Y ∈ C can be factored as

X %%
'

%%

w
'

// Y��

'ooZ,

'
3 5>

meaning that Y
'
�−→ Z

'−_ Y is the identity on Y .

(ii) Every weak equivalence w : X
'−→ Y between fibrant X, Y ∈ C can be factored as

X %%
'

%%

w
'

// Y

Z,'

oS[
'

3 5>

meaning that X
'
�−→ Z

'−_ X is the identity on X.

Proof. Since X and Y are cofibrant and cofibrations are stable under pushouts, we have

X�−→ X +Y ←−�Y . Take a factorization X +Y �−→ Z
'−_ Y and let X�−→ X +Y �−→ Z

be the composition. This is a trivial cofibration by the 2-of-3 axiom. Moreover Y �−→
X + Y �−→ Z is a section for Z

'−_ Y and so is also a trivial cofibration.
Statement (ii) is dual to (i).

2

Theorem 7.1.24
Let C be a model category and C F−→ D a functor into an arbitrary category D.

(i) Suppose F maps trivial cofibrations between cofibrants to isomorphisms.

Then LF exists and is given by

ηF : LF (X) = F (Xc) −→ F (X), ∅�−→ Xc
'−→ X.

(ii) Suppose F maps trivial fibrations between fibrants to isomorphisms.

Then RF exists and is given by

εF : F (X) −→ F (Xf ) = RF (X), X
'−→ Xf −_ ∗.

Proof. Brown’s Lemma 7.1.23 implies that F maps weak equivalences between cofibrants
to isomorphisms. Hence we can apply [Qui67] Prop. I.4.1 to prove (i). Statement (ii) is
dual.

2
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Definition 7.1.25
Let C F−→ D be a functor between categories with weak equivalences. Suppose C and D
have derived categories and F preserves weak equivalences.

(i) The total left derived functor of F is defined as LF = L(γF ).

(ii) The total right derived functor of F is defined as RF = R(γF ).

Theorem 7.1.26 (Quillen’s adjoint functor theorem)
An adjunction between model categories C and D

D(F (X), Y ) = C(X,G(Y )),

subject to the following (equivalent) hypotheses.

• F preserves trivial cofibrations between cofibrants and cofibrations.

• G preserves trivial fibrations between fibrants and fibrations.

Then the following holds.

(i) The total derived functors of F and G exist and induce an adjunction

D(D)(LF (X), Y ) = D(C)(X,RG(Y )).

(ii) (LF,RG) form an equivalence of categories, if and only if

a) X
ηX−→ GF (X) −→ G(F (X)f ) is a weak equivalence, for all cofibrant X ∈ C,

b) F (G(Y )c) −→ FG(Y )
εY−→ Y is a weak equivalence, for all fibrant Y ∈ D.

Proof. The existence of LF and RG follows from Theorem 7.1.24. Let X ∈ C and Y ∈ D.
Then by construction of the derived category in Theorem 7.1.21, we have a chain of
natural bijections

D(D)(LF (X), γY ) = D(D)(γF (Xc), γY ) = D(F (Xc)c, Yf )/ '
= D(F (Xc), Yf )/ '= C(Xc, G(Yf ))/ '
= C(Xc, C(G(Yf )f ))/ '= D(C)(γX, γG(Yf ))/ '= D(C)(γX,RG(Y )),

where the third and fifth equality hold by assumption on F and G. The middle bijection
is induced by the adjunction and the arguments for the rest are dual to those given before.

By construction of the adjunction between the derived categories we see that its unit
resp. counit is an isomorphism, if and only if the conditions a) and b) hold.

2

Definition 7.1.27
Let C and D be model categories.
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(i) A Quillen adjunction between C and D is an adjunction

C(F (X), Y ) = D(X,G(Y ))

subject to the following (equivalent) hypotheses.

• F preserves trivial cofibrations and cofibrations.

• G preserves trivial fibrations and fibrations.

(ii) A Quillen equivalence is a Quillen adjunction inducing an equivalence of the
derived categories.

7.1.7 Model categories induced by adjunctions

Definition 7.1.28
Let κ be a cardinal. A model category C is called κ-cofibrantly generated, if there are
subsets of C ⊂ cof C and T ⊂ cof C ∩ wC, such that

• fib C ∩ wC = RLP (C), fib C = RLP (T ),

• All domains X of morphisms in C and T are κ-small in C.

We call C (resp. T ) the set of generating (trivial) cofibrations.

Theorem 7.1.29
Let C a κ-cofibrantly generated model category. Given an adjunction

D(F (X), Y ) = C(X,G(Y )),

where D is an arbitrary cocomplete, finitely complete category. Suppose that:

(i) F preserves κ-small objects.

(ii) LLP (G−1(fib C)) ⊂ G−1(wC).

Then D is a κ-cofibrantly generated model category, where

wD = G−1(wC), fibD = G−1(fib C), cof D = LLP (fibD ∩ wD).

Moreover (F,G) form a Quillen adjunction, which is a Quillen equivalence, if and only if

ηX : X
'−→ GF (X), for all cofibrant X ∈ C.

Proof. As a functor G preserves isomorphisms. Furthermore the 2-of-3-axiom holds for
wD, hence (D, wD) is a category with weak equivalences. Let C, T ⊂ Mor(C) be subsets
of generating cofibrations and trivial cofibrations with κ-small domains. As G preserves
κ-indexed colimits, it follows that the morphisms F (C) and F (T ) have κ-small domains.
By Corollary 7.1.15 we obtain the two weak factorization systems on D

• (cof D, fibD ∩ wD) = (LLP (G−1(fib C ∩ wC)), G−1(fib C ∩ wC)),
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• (LLP (fibD), fibD) = (LLP (G−1(fib C)), G−1(fib C)).

It remains to show, that LLP (fibD) = cof D∩wD. On the one hand we have by assump-
tion on LLP (fibD), that

LLP (fibD) ⊂ LLP (fibD) ∩ wD ⊂ LLP (fibD ∩ wD) ∩ wD = cof D ∩ wD.

On the other hand suppose c ∈ cof (D) ∩ wD. Then c can be factored as

X

LLP (fib D)3`   

c // Y

Z.
f∈fib D

>>

As c and ` are weak equivalences, so is f by the 2-of-3 axiom. Since by definition cof D =
LLP (fibD ∩ wD) ⊂ LLP (f) we find a diagonal

X

c
��

` // Z

f
��

Y

∃d
>>

Y,

showing that c is a retraction of ` ∈ LLP (fibD). By Proposition 7.1.7 the class LLP (fibD)
is closed under retracts, so finally c ∈ LLP (fibD).

By construction G preserves (trivial) fibrations and thus (F,G) form a Quillen adjunc-

tion. Since G preserves weak equivalences the composition X
ηX−→ GF (X) −→ G(F (X)f )

is a weak equivalence, if and only if ηX is a weak equivalence. Thus condition (ii) a) of
Quillen’s adjoint functor Theorem 7.1.26 is equivalent to the given assumption. We have
to prove, that it also implies condition b). Therefore let Y ∈ D be fibrant and consider
the commutative diagram

GF (G(Y )c) // GFG(Y )
G(εY ) // G(Y )

∅ // // G(Y )c

ηG(Y )c '

OO

' // G(Y ).

ηG(Y )

OO

idG(Y )

99

Since G(Y )c is cofibrant, the left vertical morphism is a weak equivalence by our as-
sumption and hence the upper row is a weak equivalence by the 2-of-3 axiom. Since
wD = G−1wC, it follows that F (G(Y )c) −→ FG(Y )

εY−→ Y is a weak equivalence.
2

Corollary 7.1.30
Let κ be an ordinal and C a κ-cofibrantly generated model category. Given an adjunction

D(F (X), Y ) = C(X,G(Y )),

where D is an arbitrary cocomplete, finitely complete category. Suppose that:
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(i) G is a left adjoint functor.

(ii) GF (T ) ⊂ cof C∩wC, where T ⊂ cof C∩wC is a set of generating trivial cofibrations.

Then D is a κ-cofibrantly generated model category with

wD = G−1(wC), fibD = G−1(fib C), cof D = LLP (fibD ∩ wD).

Moreover (F,G) form a Quillen adjunction, which is a Quillen equivalence, if and only if

ηX : X
'−→ GF (X), for all cofibrant X ∈ C.

Proof. Assumption (i) implies that G preserves arbitrary colimits. Hence for every κ-small
object X ∈ C, the functor C(F (X), -) ∼= C(X,G(-)) preserves κ-filtered colimits, which
means that also F (X) is κ-small. To check (ii), we let H denote the right adjoint of G.
Applying RLP , which by definition reverses inclusions, to assumption (ii) yields

H−1RLP (F (T )) = RLP (GF (T )) ⊃ RLP (cof C ∩ wC) = fib C,

where we used the adjunction C(G(X), Y ) = D(X,H(Y )) for the first equality. Equiva-
lently we have

G−1(fib C) = G−1(RLP (T )) = RLP (F (T )) ⊃ H(fib C),

where we used the adjunction D(F (X), Y ) = C(X,G(Y )) for the second equality. Finally
applying LLP yields

LLP (G−1(fib C)) ⊂ LLP (H(fib C)) = G−1LLP (fib C) = G−1(cof C ∩ wC),

where again we used the adjunction C(G(X), Y ) = D(X,H(Y )) for the first equality. So
we can apply the preceding theorem to conclude the proof.

2

Theorem 7.1.31
Let κ be an ordinal and C a κ-cofibrantly generated model category. Given an adjunction

D(F (X), Y ) = C(X,G(Y )),

where D is an arbitrary cocomplete, finitely complete category. Suppose that

(i) F preserves κ-small objects.

(ii) There is a functorial fibrant replacement functor qD : D
'−→ Q(D), for all D ∈ D.

(iii) There is a path object D
'−→ DI

(p0,p1)
−_ D ×D, for all fibrant D ∈ D.

Then Theorem 7.1.29 (ii) holds and so D is a κ-cofibrantly generated model category via

wD = G−1(wC), fibD = G−1(fib C), cof D = LLP (fibD ∩ wD).

Moreover (F,G) form a Quillen adjunction, which is a Quillen equivalence, if and only if

ηX : X
'−→ GF (X), for all cofibrant X ∈ C.
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Proof. According to Theorem 7.1.29 we have to show that LLP (fibD) ⊂ wD. Therefore
let ` ∈ D(X, Y ) ∩ LLP (fibD). Using the fibrant replacement functor for X we get a
diagonal d as on the left and using the path object for the fibrant Q(Y ) we get a right
homotopy as on the right.

X

`
��

qX // Q(X)

_��
Y

d
<<

// ∗,

X

`

��

` // Y
qY // Q(Y )

sQ(Y ) // Q(Y )I

(p0,p1)
_��

Y

h

33

(qY ,Q(`)d)
// Q(Y )×Q(Y ),

where the right square commutes, since Q(`)d` = Q(`)qX = qY ` as idD
q−→ Q is natural.

Now since G is a right adjoint and preserves fibrations and weak equivalences, we see that
GQ(X), GQ(Y ) are fibrant and that

GQ(Y )
'−→ GQ(Y I)

(p0,p1)
−_ GQ(Y )×GQ(Y )

is a path object for GQ(Y ). It follows that

G(d)G(`) = G(qX), GQ(`)G(d) 'G(h) G(qY ).

From Theorem 7.1.21 we know that the preimage of the isomorphisms inD(C) are precisely
the weak equivalences in C. It follows that γG(d)γG(`) = γG(qX) is an isomorphism
and thus γG(d) is a retraction. By construction of the derived category in Theorem
7.1.21 we have that γG(Q(`)d) = γG(qY ), because GQ(Y ) is fibrant. This implies that
γGQ(`)γG(d) = γG(Q(`)d) = γG(qY ) is an isomorphism, showing that γG(d) is also a
section and thus an isomorphism. Since d` = qX with isomorphisms γG(d) and γG(qX), it
follows that γG(`) is an isomorphism. i.e. G(`) is a weak equivalence by Theorem 7.1.21,
showing that ` ∈ wD by definition.

2

7.2 Homotopy theory of simplicial objects

7.2.1 The category ∆

Definition 7.2.1
The category ∆ is the category of the totally ordered sets

n = {0 < ... < n}, n ∈ N0,

together with order-preserving maps as morphisms. For this category we also use the no-
tation ∆m

n = ∆(n,m), so that the hom-functor ∆m is the m-th standard simplex of
simplicial sets. For 0 ≤ i ≤ n we let

• di ∈ ∆(n− 1, n) be the unique injection, whose image does not contain i,

• si ∈ ∆(n+ 1, n) be the unique surjection, sending i and i+ 1 to i.
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Remark 7.2.2
The category ∆̂ also contains the empty set −1 = ∅ and has a (non-symmetric) monoidal
structure given by the functor

⊕ : ∆̂× ∆̂ −→ ∆̂, (m,n) 7−→ m⊕ n = m+ n+ 1,

which maps a pair of morphisms fi ∈ ∆(mi, ni), for i = 1, 2, to the morphism f1 ⊕ f2 ∈
∆(m1 +m2 + 1, n1 + n2 + 1), given by

(f1 ⊕ f2)(k) =

{
f1(k), 0 ≤ k ≤ m1,
f2(k −m1 − 1) + n1 + 1, m1 + 1 ≤ k ≤ n1 + n2 + 1.

Remark 7.2.3
We also consider n as a category, for each n ≥ 0, with morphisms “≤”. This means, that
there is precisely one morphism from i to j, if i ≤ j, and otherwise there is none. The
category n is small.

In particular ∆ ≤ Cat is the full (2-)subcategory1 of objects n.

Definition 7.2.4
For C ∈ CAT, we denote by sC = CAT(∆op, C) and cC = CAT(∆, C) the categories of
simplicial and cosimplicial objects in C. In consistence with the notation for the m-th
standard simplex ∆m ∈ sSet we will write

• Xn := X(n), for X ∈ sC.

Moreover we abreviate di := X(di) and si := X(si), for 0 ≤ i ≤ n.

• Xn := X(n), for X ∈ cC.

Moreover we abreviate di := X(di) and si := X(si), for 0 ≤ i ≤ n.

We consider C ≤ sC as the subcategory of constant simplicial objects. So by abuse of
notation X ∈ C will also stand for the constant simplicial object.

7.2.2 (Co-)skeletons

Definition 7.2.5
For any n ≥ 0 we define the full subcategory and its inclusion functor

∆≤n := {0, ..., n} in
↪−→ ∆.

Definition 7.2.6
Let C ∈ CAT be finitley complete and cocomplete and n ≥ 0.

(i) The n-skeleton of a simplicial object X ∈ sC is the left Kan extension

sknX := (in)!(in)∗X.

1We will note make precise what this means, as we will not need the notation later on.
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(ii) The n-coskeleton of a simplicial object X ∈ sC is the right Kan extension

cosknX := (in)∗(in)∗X.

Note that unit and counit of the adjunctions induce natural maps skn
εX−→ X

ηX−→ cosknX.

Definition 7.2.7
Let n ≥ 0.

(i) The boundary of the n-simplex ∆n is defined as ∂∆n = skn−1∆n.

(ii) For 0 ≤ k ≤ n the k-th horn of ∆n is defined as

Λn,k =
⋃

0≤i≤n,
i 6=k

di∆n−1 ⊂ ∂∆n.

(iii) The n-sphere is defined as Sn = ∆n/∂∆n.

7.2.3 Function objects and simplicial homotopies

Proposition 7.2.8
For every complete and cocomplete category C there is an adjunction

sSet(S, sC(X, Y )) = sC(SX, Y ) = sC(X, sSet(S, Y )),

where

(i) sC(X, Y ) =
∫
n
C(Xn, Yn)∆•n = sC(∆•X, Y ),

(ii) SX : n 7−→ SnXn is the S-fold coproduct of X,

(iii) sSet(S, Y ) =
∫
n
Y

∆•n×S
n .

Note that sC(X, Y ) also exists for categories C that are neither complete nor cocomplete.

Proof. This follows from the fact that hom-functors preserve limits/colimits and the
Yoneda lemmas.

2

Proposition 7.2.9
For every complete and cocomplete category C with a zero object ∗, there is an adjunction

Set∗(S, C∗(X, Y )) = C(S ∧X, Y ) = C(X,Set∗(S, Y )),

where

C∗(X, Y ) = (C(X, Y ), (X
0−→ Y )), S ∧X := SX +∗X ∗ Set∗(S, Y ) = Y S ×Y ∗ ∗.

It induces an adjunction

sC(S ∧X, Y ) = sSet∗(S, sC∗(X, Y )) = sC(X, sSet∗(S, Y )),

where
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(i) sC∗(X, Y ) = (sC(X, Y ), 0) =
∫
n
Set∗((∆•n)+, C∗(Xn, Yn)),

(ii) S ∧X : n 7−→ Sn ∧Xn,

(iii) sSet∗(S, Y ) =
∫
n
Set∗((∆•)+ ∧ S, Y ).

Proof. Similarly this follows from the fact that hom-functors preserve limits/colimits and
the Yoneda lemmas.

2

Definition 7.2.10
Let C be a category.

(i) For finitely cocomplete C, we define

π0X := coker

(
X1

d0 //

d1

// X0

)
= colim X, X ∈ sC.

(ii) A simplicial homotopy between two maps f0, f1 ∈ sC(X, Y ) is a map h ∈
sC(∆1

X, Y ) = sC(X, Y )1 with di(h) = fi.

(iii) Two maps f0, f1 ∈ sC(X, Y ) are simplicially homotopic, if [f0] = [f1] in π0sC(X, Y ).

Lemma 7.2.11
Let sC carrying the canonical simplicial structure and f, g ∈ sC(X, Y ).

Then f ' g, if and only if there are maps ki ∈ C(Xn, Yn), for 0 ≤ i ≤ n+ 1, satisfying
in every dimension n ≥ 0 the properties below.

(i) dihj =

{
hj−1di, i < j,
hjdi, i ≥ j,

sihj =

{
hj+1si, i < j,
hjsi, i ≥ j.

(ii) h0 = fn, hn+1 = gn.

Proof. Defining

ti : n −→ 1, k 7−→
{

0, 0 ≤ k < i,
1, i ≤ k ≤ n,

there are bijections
Tn : n+ 2

∼−→ ∆1
n, i 7−→ ti,

which induce commutative squares

n+ 2

si

��

Tn // ∆1
n

di
��

n+ 1
Tn−1 // ∆1

n−1

n+ 2

di+1

��

Tn // ∆1
n

si
��

n+ 3
Tn+1 // ∆1

n+1

0 ≤ i ≤ n.

By checking the simplicial identities, one proves that the injection

sC(X, Y )1 =

∫
n

C(Xn, Yn)∆1
n ↪−→

∏
n≥0

C(Xn, Yn)∆1
n

T−→
∼

∏
n≥0

C(Xn, Yn)n+1
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surjects onto the set of tuples ((h0, ..., hn+1))n≥0 satisfying the relations (i). The maps

sC(X, Y )0
d0←− sC(X, Y )1

d0−→ sC(X, Y )0

correspond to the projections onto the factors associated to the constant maps in ∆1
n.

Hence the tuples ((h0, ..., hn+1))n≥0 define a homotopy from f to g, if and only if (ii)
holds.

2

Proposition 7.2.12
Let C be a category and X ∈ ŝC. Suppose there are maps s−1 ∈ C(Xn−1, Xn) (resp.
sn+1 ∈ C(Xn−1, Xn)), for all n ≥ 0, extending the simplicial identities2.

Then X
d0−� X−1 is a simplicial deformation retraction with homotopy inverse s−1

(resp. sn+1), i.e. d0s−1 = idX−1 and the maps idX and s−1d0 are simplicially homotopic.

Proof. One checks that the maps

hi := (s−1)i(d0)i ∈ C(Xn), 0 ≤ i ≤ n+ 1,

satisfy the relations of Lemma 7.2.11 and so define a homotopy h ∈ sC(X) from idX to
s−1d0. The other statement is dual. Unfortunately we could not find a reference for this
elementary but crucial fact.

2

7.2.4 Reedy factorization systems

Proposition 7.2.13
Let C be a categroy carrying a weak factorization system (L,R).

Then there is weak factorization system (L,R) on sC, given by

(i) ` ∈ sC(X, Y ) ∩ L, if (Xn +(skn−1X)n (skn−1Y )n
`n∪εY−→ Yn) ∈ L, for all n ≥ 0.

(ii) r ∈ sC(X, Y ) ∩R, if (Xn
(rn,ηX)−→ Yn ×(coskn−1Y )n (coskn−1X)n) ∈ R, for all n ≥ 0.

It is called Reedy factorization system after Reedy, who constructed it first.

Proof. There are proofs in the context of model categories given in [GJ09] 7.2., [Hir03]
15.3 and [Hov99] 5.2. The latter two also consider more generally Reedy categories and
not just ∆op. We present a short proof for the special case we will need later on. It suffices
to check that (i) to (iii) of Proposition 7.1.7 hold. For (i), let f ∈ sC(X, Y ) and recall that

∆≤n = {0, ..., n} in
↪−→ ∆, n ≥ 0,

is the full inclusion functor. Following the same pattern we will inductively construct a

factorization (in)∗X
`(n)−→ Z(n)

r(n)−→ (in)∗Y in CAT(∆op
≤n, C), in a way that

Zn := Z(n)n = Z(n+1)n = ..., `n := `(n)n = `(n+1)n = ..., rn := r(n)n = r(n+1)n = ...,

2See [GJ09] I.1.3.
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for all n ≥ 0. Let n ≥ 0 and suppose the construction has been established, for 0 ≤ m < n.

Using the canonical inclusion functor ∆≤n−1

j
↪−→ ∆≤n we get a commutative diagram

(skn−1X)n

εX
��

(j!(in−1)∗X)n
j!`(n−1) // j!Z(n− 1)

j!r(n−1)// (j!(in−1)∗Y )n (skn−1Y )n

εY
��

Xn

ηY
��

// Yn

ηY
��

(coskn−1X)n (j∗(in−1)∗X)n
j∗`(n−1) // j∗Z(n− 1)

j!r(n−1)// (j∗(in−1)∗Y )n (coskn−1Y )n,

giving rise to a map that we can factor as

Xn +(skn−1X)n (j!Z(n− 1))n
`n−→ Zn

rn−→ Yn ×(coskn−1Y )n (j∗Z(n− 1))n,

where `n ∈ L and rn ∈ R. Defining face maps and degeneracies by

(i) (d0, ..., dn) : Zn
rn−→ Yn ×(coskn−1Y )n (j∗Z(n− 1))n

π−→ (j∗Z(n− 1))n ↪−→ (Zn−1)n+1,

(ii) s0 ∪ ... ∪ sn−1 : nZn−1 −� (j!Z(n− 1))n
ι−→ Xn +(skn−1X)n (j!Z(n− 1))n

`n−→ Zn,

this constitutes an object Z(n) = (Z0, ..., Zn) ∈ CAT(∆op
≤n, C) with skn−1Z(n) = j!Z(n−1)

and coskn−1Z(n) = j∗Z(n− 1). Moreover `(n) = (`0, ..., `n) and (r0, ..., rn) are morphisms

in CAT(∆op
≤n, C) by construction. In the limit we obtain a factorization X

`−→ Z
r−→ Y

with

Xn +(skn−1Z)n (skn−1Z)n
`n∪εZ−→ Zn

(rn,ηZ)−→ Yn ×(coskn−1Z)n (coskn−1Z)n, n ≥ 0,

lying in L and R of C respectively. This proves (i).
For (ii) consider a lifting problem

A

L3`
��

u // X

r∈R
��

B

D

>>

v
// Y.

Again we will construct a diagonal D inductively. Let n ≥ 0, such that Dm has been
constructed, for all 0 ≤ m < n, being compatible with face maps and degeneracies in that
range. Then these Dm induce a map D in

sC(skn−1B,X) = sC(B, coskn−1X),

and by assumption on ` and r the lifting problem

An +(skn−1A)n (skn−1B)n

��

u∪D // Xn

r

��
Bn

Dn

33

(u,D)
// Yn ×(coskn−1Y )n (coskn−1X)n
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has a solution Dn, which by construction induces commutative diagrams

An

`n
��

un // Xn

rn
��

Bn

Dn

88

vn
// Yn,

(skn−1B)n

��

D // Xn

��
Bn

Dn

55

D
// (coskn−1X)n.

Note that for n = 0, the left square provides a diagonal as desired. For n > 0 we have

• s0 ∪ ... ∪ sn−1 : n(Bn−1) −� (skn−1B)n
εB−→ Bn,

• (d0, ..., dn) : Xn
ηX−→ (coskn−1X)n ↪−→ (Xn)n+1,

hence commutativity of the right square is equivalent to the conditions

Dnsi = siDn−1, 0 ≤ i ≤ n− 1, diDn = Dn−1di, 0 ≤ i ≤ n,

which proves that D0, ..., Dn are compatible with all face maps and degeneracies in that
range. By construction (D0, D1, ...) constitutes a morphism sC(B,X) solving the lifting
problem from the beginning. So we have shown L ⊂ LLP (R) or R ⊂ RLP (L) respectively,
which proves (ii).

Finally as L and R on C are closed under retractions by Proposition 7.1.7, so are also
L and R on sC. This proves (iii) and therefore concludes the proof.

2

7.2.5 Topological spaces and simplicial sets

Definition 7.2.14
A topological space X is called compactly generated, if U ⊂ X is closed, if and only if
U ∩ C ⊂ C is closed, for every compact subspace C ⊂ X.

Let Sp ≤ T op denote the category of compactly generated, Hausdorff topological spaces.

Definition 7.2.15 (i) The topological standard simplex |∆•| ∈ cSp is defined as

the fibre |∆•| = (d0)−1(1) of the map Set(∆•0,R≥0)
d0

−→ Set(∆•−1,R≥0) = R, induced

by −1
d0

↪−→ 0.

(ii) The singular nerve functor is defined as the functor

S : Sp −→ sSet, X 7−→ Sp(|∆•|, X).

(iii) The geometric realization is defined as the left adjoint in the adjunction

Sp(|X|, Y ) = sSet(X,S(Y )),

which exists as Sp is cocomplete.
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Theorem 7.2.16 (Quillen)
The category Sp of compactly generated Hausdorff spaces is a model category with the
definitions below.

(i) Weak equivalences are π∗-isomorphisms, i.e. maps X
f−→ Y , such that

π0f : π0X
∼−→ π0Y, πnf : πn(X, ∗) ∼−→ πn(Y, f(∗)), n > 0

are isomorphisms, for all ∗ ∈ X.

(ii) Fibrations are Serre fibrations, i.e. maps in RLP{|Λn,k| ↪−→ |∆n|; 0 ≤ k ≤ n}.

(iii) Cofibrations are maps in LLP (fibSp ∩ wSp).

It is ω-cofibrantly generated, because fibSp ∩ wSp = RLP{|∂∆n| ↪−→ |∆n|;n ≥ 0}.

Proof. See [Qui67] Thm II.3.1. We have fibSp∩wSp = RLP{|∂∆n| ↪−→ |∆n|;n ≥ 0} by
[Qui67] Lem. II.3.2.

2

Theorem 7.2.17 (Quillen)
The category sSet of simplicial sets is a model category, where

(i) Weak equivalences are the maps, whose topological realization is a π∗-isomorphism.

(ii) Fibrations are Kan fibrations, i.e. maps in RLP{Λn,k ↪−→ ∆n; 0 ≤ k ≤ n}.

(iii) Cofibrations are monomorphisms.

It is ω-cofibrantly generated, because fib (sSet) ∩ w(sSet) = RLP{∂∆n ↪−→ ∆n;n ≥ 0}.

Proof. By [Qui67] Thm II.3.3 sSet is a model category with weak equivalences defined
as RLP (cof (sSet)) ◦ LLP (fib (sSet)). In [Qui67] Prop. II.3.4 he shows that a map f ∈
sSet(X, Y ) is in RLP (cof (sSet))◦LLP (fib (sSet)), if and only if |f | is a weak equivalence.
We have fib (sSet) ∩ w(sSet) = RLP{∂∆n ↪−→ ∆n;n ≥ 0} by [Qui67] Prop. II.2.2.

2

Theorem 7.2.18 (Quillen)
The adjunction Sp(|X|, Y ) = sSet(X,S(Y )) is a Quillen equivalence.

Proof. Corollary 7.1.9 implies readily that S preserves fibrations and trivial fibrations,
hence the adjunction is Quillen by Theorem 7.1.26. The proof that it is a Quillen equiv-
alence is implicit in [Qui67] II.3. For an explicit reference, see [Hov99] Thm. 3.6.7.

2

Proposition 7.2.19
The geometric realization functor sSet −→ Sp preserves finite limits.

In particular every simplicial homotopy induces a homotopy after geometric realization.
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Proof. See [Hov99] Lemma 3.2.4. It follows that

|∆1

X| = |∆1 ×X| ∼−→ |∆1| × |X|, X ∈ sSet,

and thus every simplicial homotopy induces a homotopy of spaces.
2

Proposition 7.2.20
Let X ∈ sSet. Then naturally

(i) π0X = π0|X|,

(ii) πn(X, ∗) := π0sSet∗(Sn, X) = πn(|X|, ∗), for all n > 0 and ∗ ∈ X, if X is fibrant.

Proof. See [Hov99] Lem. 3.4.3 and Prop. 3.6.3.
2

7.2.6 Model categories of simplicial objects

Definition 7.2.21
A model category of simplicial objects consists of a category C, together with a model
structure on sC, such that the following holds.

(SM) For every cofibration x ∈ sC(X,X ′) and every fibration y ∈ sC(Y, Y ′), the map

(x∗, y∗) : sC(X ′, Y ) −→ sC(X, Y )×sC(X,Y ′) sC(X ′, Y ′)

is a Kan fibration of simplicial sets, which is a weak equivalence, if x or y is a
weak equivalence.

In [Qui67] II.2 Quillen more generally introduced the notion of a closed simplicial model
category. In II.1 loc. cit. he defined a simplicial category as a category C, which is en-
riched, powered and copowered over the category of simplicial sets. In particular there are
adjunctions like in Proposition 7.2.8. He then defined a closed simplicial model category
as a simplicial category, which is a model category and satisfies (SM) with respect to the
function objects. In particular the following holds.

Remark 7.2.22
A model category of simplicial objects is precisely a simplicial model category sC, whose
enriched, powered and copowered structure is the canonical one of Proposition 7.2.8.

We decided to restrict ourselves to model categories of simplicial objects, because this is
the only form of closed simplicial model categories we need and so we can avoid introducing
the calculus of enriched categories.

Proposition 7.2.23
if b ∈ sSet(B,B′) is a cofibration (injection) and c ∈ sSet(C,C ′) a Kan fibration, then

(b∗, c∗) : sSet(B′, C) −→ sSet(B,C)×sSet(B,C′) sSet(B′, C ′)
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is a fibration. If b or c is a weak equivalence, so is also (b∗, c∗).
In particular sSet is a model category of simplicial objects.

Proof. This is axiom SM7 in [Qui67] Def. II.2.2. Hence the statement follows from [Qui67]
Thm. II.3.3.

2

Proposition 7.2.24
Let sC be a model category of simplicial objects.

Let s ∈ sSet(S, S ′), x ∈ sC(X,X ′) be cofibrations and y ∈ sC(Y, Y ′) a fibration. Then

(i) (sid) ∪ (idx) : (SX ′) +(SX) (S
′
X) −→ S′X ′ is a cofibration,

which is a weak equivalence, if a or b are weak equivalences.

(ii) (s∗, y∗) : sSet(S ′, Y ) −→ sSet(S, Y )×sSet(S,Y ′) sSet(S ′, Y ′) is a fibration,

which is a weak equivalence, if a or c are weak equivalences.

More precisely axiom (SM), (ii) and (iii) are equivalent.

Proof. Using the adjunctions of Proposition 7.2.8

sSet(S, sC(X, Y )) = sC(SX, Y ) = sC(X, sSet(S, Y )),

by Remark 7.1.10 the three lifting problems

S

s

��

// sSet(X ′, Y )

(x∗,y∗)
��

S ′

d′
44

// sSet(X, Y )×sSet(X,Y ′) sSet(X ′, Y ′),

(SX ′) +(SX) (S
′
X)

(sid)∪(idx)
��

// Y

y

��
S′X ′

d

66

// Y ′,

X

b
��

// sC(S ′, Y )

(s∗,y∗)
��

X ′

d′′
33

// sC(S, Y )×sC(S,Y ′) sC(S ′, Y ′)

are equivalent. To prove (i), we need to check that the first problem can be solved, for
every (trivial) cofibration s. So it suffices to solve the third problem, which is possible
as the right vertical map is a (trivial) fibration by axiom (SM) of a model category of
simplicial objects. Similarly one checks (ii).

2

Theorem 7.2.25
Given a model category of simplicial objects sC and an adjunction

sD(F (X), Y ) = sC(X,U(Y )),

where D is an arbitrary cocomplete, finitely complete category. Suppose that:
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(i) F preserves κ-small objects.

(ii) LLP (U−1(fib (sC)) ⊂ U−1(w(sC)).

Then sD is a κ-cofibrantly generated model category of simplicial objects with

w(sD) = U−1(w(sD)), fib C = U−1(fib (sC)), cof (sD) = LLP (fib (sD) ∩ w(sD)).

Proof. By Theorem 7.1.29 the category sD is a model category of simplicial objects. Let
s ∈ sSet(S, S ′) be a cofibration and y ∈ sD(Y, Y ′) a fibration. Applying U to the map

(s∗, y∗) : sSet(S ′, Y ) −→ sSet(S, Y )×sSet(S,Y ′) sSet(S ′, Y ′)

we get

U(sSet(S ′, Y ))

o
��

U(s∗,y∗) // U
(
sSet(S, Y )×sSet(S,Y ′) sSet(S ′, Y ′)

)
o
��

sSet(S ′, U(Y ))
(U(s)∗,U(y)∗)// sSet(S, U(Y ))×sSet(S,U(Y ′)) sSet(S ′, U(Y ′)),

where the vertical maps are isomorphisms, because U is a right adjoint and therefore
preserves arbitrary limits and ends. Since sC is a model category of simplicial objects,
the lower map is a fibration by Proposition 7.2.24 (ii). Hence (s∗, y∗) is a fibration by
definition of a fibration in sD, which is a weak equivalence, if s or y is a weak equivalence.
Equivalently axiom (SM) holds by Proposition 7.2.24.

2

Corollary 7.2.26
Let κ be an ordinal and sC a κ-cofibrantly generated model category of simplicial objects.
Given an adjunction

sD(F (X), Y ) = sC(X,G(Y )),

where D is an arbitrary cocomplete, finitely complete category. Suppose that:

(i) G is a left adjoint functor.

(ii) GF (T ) ⊂ cof (sC)∩w(sC), where T ⊂ cof (sC)∩w(sC) is a set of generating trivial
cofibrations.

Then sD is a κ-cofibrantly generated model category with

w(sD) = G−1(w(sC)), fib (sD) = G−1(fib (sC)), cof (sD) = LLP (fib (sD) ∩ w(sD)).

Moreover (F,G) form a Quillen adjunction, which is a Quillen equivalence, if and only if

ηX : X
'−→ GF (X), for all cofibrant X ∈ C.

Proof. The follows readily from Corollary 7.1.30 and Theorem 7.2.25.
2
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Theorem 7.2.27
Given a set J ∈ Set and an adjunction

sD(F (X), Y ) = sC(X,G(Y )),

where D is an arbitrary cocomplete, finitely complete category. Suppose that

(i) U preserves κ-small objects,

(ii) There is a functorial fibrant replacement qD : D
'−→ Q(D), for all D ∈ sD.

Then Theorem 7.2.25 (ii) holds and so sD is a κ-cofibrantly generated model category of
simplicial objects via

w(sD) = G−1(w(sC)), fib (sD) = G−1(fib (sC)), cof (sD) = LLP (fib (sD) ∩ w(sD)).

Proof. For every fibrant simplicial object X ∈ sD, the construction (cf. Proposition 7.2.8)

∆ = (idX , idX) : X = sSet(∆0, X)
s0−→ sSet(∆1, X)

(d0,d1)−→ sSet(∆0, X)2 = X2, X ∈ sD,

is a path object. Indeed, the left map is a simplicial homotopy equivalence, since ∆1 s1−→
∆0 is a simplicial homotopy equivalence, being the left adjoint in the adjunction

0(s1(x), y) = 1(x, d0(y)),

it is also weak equivalence by Proposition 7.2.19. As ∆1 and ∆0 are cofibrant in sSet,
Brown’s lemma implies that the map

sSet(∆0, G(X))
s0−→ sSet(∆1, G(X))

is a weak equivalence by Proposition 7.2.24 (ii). Using that G is a right adjoint and there-
fore commutes with limits and ends, this map is isomorphic toG applied to sSet(∆0, X))

s0−→
sSet(∆1, X), which therefore is a weak equivalence, too.

Similarly, as ∂∆1 ↪−→ ∆1 is a cofibration, X ∈ sD and hence G(X) ∈ sC is fibrant, the
map

(d0, d1)∗ : sSet(∆1, G(X)) = G(sSet(∆1, X))
(d0,d1)−→ G(sSet(∆0, X)2) = sSet(∂∆1, G(X))

is a fibration, where for the equalities we again used that U is a right adjoint. So we can
apply Theorem 7.1.31 to conclude the proof.

2

7.2.7 Cofibrations of simplicial objects in categories over Set
Remark 7.2.28
Given a set J ∈ Set and for each j ∈ J a model category Cj.

Then the product C :=
∏

j∈J Cj is a model category, when we define weak equiva-
lences/fibrations/cofibrations to be maps f ∈ C(X, Y ), such that fj ∈ Cj(Xj, Yj) are weak
equivalences/fibrations/cofibrations, for all j ∈ J .
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Proposition 7.2.29
Suppose sC is a model category of simplicial objects by an adjunction

sC(F (X), Y ) = sSetJ(X,U(Y )), J ∈ Set.

Let f ∈ sC(X, Y ) be almost free, i.e. there are S ∈ CAT(∆op
surj,SetJ), satisfying

(i) Yn = Xn + F (Sn), for all n ≥ 0,

(ii) Every s ∈ ∆surj(n,m) induces a commutative square

F (Sm)

F (s∗)
��

ιF (Sm) // F (Sm) +Xm Ym

s∗

��
F (Sn)

ιF (Sn+1)
// F (Sn) +Xn Yn.

(iii) fn : Xn
ιXn−→ F (Sn) +Xn = Yn, for all n ≥ 0.

Then f is a cofibration.

Proof. By Theorem 7.2.17 the trivial fibrations in sSet are given by

fib (sSet) ∩ w(sSet) = RLP{∂∆n ↪−→ ∆n;n ≥ 0}.

Hence by construction the trivial cofibrations in sC are precisely those maps f ∈ sC(X, Y )
solving the lifting problems

∂∆n
� _

��

// Uj(X)

f

��
n ≥ 0, j ∈ J.

∆n

<<

// Uj(Y ),

where Uj : sC U−→ sSetJ πj−→ sSet, for all j ∈ J . This is equivalent to surjectivity of the
maps

Uj(Xn) // Uj(Yn ×(coskn−1Y )n (coskn−1X)n)
o��

Uj(Yn)×(coskn−1Uj(Y ))n (coskn−1Uj(X))n

sSet(∆n, Uj(X)) // sSet(∆n, Uj(Y ))×sSet(∂∆n,Uj(Y )) sSet(∂∆n, Uj(Y )),

where the upper right vertical map is an isomorphism, since the coskeleton can be written
as an end, which is preserved by Uj being a right adjoint. Since in Set (hence in SetJ)
the retractions are precisely the surjections, it follows that (cof (sC), fib (sC) ∩ w(sC)) is
the Reedy factorization system (see Proposition 7.2.13) to the weak factorization system
of Proposition 7.1.11 induced by the adjunction

C(F (X), Y ) = SetJ(X,U(Y )).
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Now let f ∈ sC(X, Y ) be almost free. Then, for each n ≥ 0, we have

(skn−1Y )n = (skn−1X)n + F (skn−1S)n,

and thus

Xn +(skn−1X)n (skn−1Y )n
ιXn∪εYn // Yn

Xn + F (skn−1S)n
ι // Xn + F (skn−1S)n + F (Sn\(skn−1S)n),

which proves that f is in L of the Reedy model structure and thus is a cofibration.
2

Corollary 7.2.30
Suppose sC is a model category of simplicial objects by an adjunction

sC(F (X), Y ) = sSetJ(X,U(Y )), J ∈ Set.

Let Y ∈ sC be almost free, i.e.

Y = F (S) in CAT(∆op
surj, C), for some S ∈ CAT(∆op

surj,SetJ).

Then Y is cofibrant.

Remark 7.2.31
Let C,D ∈ CAT and given an adjunction

sC(F (X), Y ) = sD(X,G(Y )), X ∈ D, Y ∈ C.

Then the following holds.

(i) FG is a comonad on C, i.e. a comonoid in the monoidal category (CAT(C), ◦, idC),
with comultiplication and counit given by

(δFG)X : FG(X)
F (ηG(X))−→ FG ◦ FG(X), (εFG)X : FG(X)

εX−→ X, X ∈ C.

(ii) The comonad structure induces a simplicial resolution E•(FG)
d0−→ idC, for every

X ∈ C a natural

X FG(X)
εXoo

F (ηG(X))

77
(FG)2(X)oo

εFG(X),

FG(εX)oo

77

F (ηGFG(X)),

FGF (ηG(X))

77

(FG)3(X)

ε(FG)2(X),

FG(εFG(X)),

(FG)2(εX)oooooo ::::::

...oooo
oooo

192



7.2. Homotopy theory of simplicial objects

(iii) When composed with G the unit idD −→ GF induces an extra-degeneracy

s−1 = η(GF )n+1F ∈ CAT(C,D)(G ◦ (En(FG)), G ◦ (En+1(FG))), n ≥ 0.

In particular G(E•(FG))
d0−→ G is a natural simplicial deformation retraction by

Proposition 7.2.12.

Corollary 7.2.32
Suppose sC is a model category of simplicial objects by an adjunction

sC(F (X), Y ) = sSetJ(X,U(Y )), J ∈ Set.

Then E•(X) := diagE•(FU)(X)
d0−→ X is a functorial cofibrant replacement for X ∈ sC.

Proof. We have j∗E•(X) = F (diagS•(X)) in CAT(∆op
surj, C) with

S•(X) = ( U(X) ηU(X)

// UFU(X) //
ηUFU(X),

UF (ηU(X))

// UFUFU(X)
////// ... ) ∈ CAT(∆op

surj, sSet),

which proves that E•(X) is almost free and hence cofibrant by Corollary 7.2.30. Moreover

U(E•(X))
d0−→ U(X) is a simplicial deformation retraction by the preceding Remark.

Hence using Proposition 7.2.19 the map Uj(E•(X))
d0−→ Uj(X) is a weak equivalence, for

all j ∈ J . Equivalently E•(X)
d0−→ X is a weak equivalence, which concludes the proof.

2

Remark 7.2.33
Dually we can also consider the monad UF ∈ (CAT(sSetJ), ◦, id)-Mon.

Then E•(FU) = B•(F,UF, U) is a bar construction, where U is a left resp. F is a right
UF -module by the adjunction counit resp. unit.

In particular, if sC G−→ D is a functor mapping trivial cofibrations to isomorphisms,
then by Theorem 7.1.24 we have

LG(Y ) = B•(GF,UF, U(Y )) := diagB•(GF,UF, U)(Y ), Y ∈ sC.

7.2.8 Simplicial groups

Definition 7.2.34
Let G ∈ sGrp.

The Moore complex associated to G is defined as the chain complex N∗G (of possibly
noncommutative groups), given by

NnG =
⋂

1≤i≤n

ker(Gn
di−→ Gn−1), d = d0| : NnG −→ Nn−1G, n ≥ 0.

Note that the subgroups dNnG ≤ Gn+1 are normal, being the image of a normal subgroup
under the epimorphism d0.

In particular Hn(N∗G) := ker(NnG
d−→ Nn+1G)/dNn−1G is a group, for all n ≥ 0.
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Proposition 7.2.35
For f ∈ sGrp(G,H) the following is equivalent.

(i) f ∈ sSet(G,H) is a Kan fibration.

(ii) NnG
Nnf−� NnH is surjective, for all n > 0.

(iii) Gn

fn−� Hn ×π0H π0G is surjective, for all n ≥ 0.

In particular every simplicial group is fibrant, when considered as a simplicial set.

Proof. See [Qui67] Prop. II.3.1.
2

Remark 7.2.36
Every (dimensionwise) short exact sequence of simplicial groups

1 −→ N −→ G −→ H −→ 1

induces a fibration sequence under realization and so gives rise to a long exact sequence
of homotopy groups

...
∂−→ πnN −→ πnG −→ πnH

∂−→ πn−1N −→ ...
∂−→ π0N −→ π0G −→ π0H.

where we consider the neutral element 1 as a base point.

Remark 7.2.37
Recall that the natural bijection n+ 0 −→ n+ 1, for n ≥ 0, induces natural retractions

X+1

pX−� X, d0 : X+1

d0−� X0, X ∈ sC,

where C is an arbitrary category, and the second map is a simplicial deformation retraction
by Proposition 7.2.12, since s0 defines an extra degeneracy.

Proposition 7.2.38
For every simplicial group G ∈ sGrp, there is a natural exact sequence

1 −→ ΩG −→ FG
pG−→ G −→ π0G −→ 1,

splitting up into the shorter exact sequences

1 −→ ΩG −→ FG −→ G̃ −→ 1, 1 −→ G̃ −→ G −→ π0G −→ 1,

where

(i) FG = ker(G+1

d0−� G0) is the cocone of G, which is contractible by the long exact

sequence as G+1

'
−� G0 is a deformation retraction.
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(ii) G̃ = ker(G −→ π0G) is the universal cover for G, since by the long exact sequence

πnG̃ =

{
1, n = 0,
πnG, n ≥ 1.

(iii) ΩG = ker(FG −� G̃) is the loop “space” of G, since by the long exact sequence

∂ : πn+1G ∼= πn+1G̃
∼−→ πnΩG, n ≥ 0.

Proof. We claim that

G0/d0 ker(G1
d1−→ G0) = coker ( G1

d0 //

d1

// G0 ) = π0G, (7.1)

where the cokernel is constructed in the category of sets. Therefore let y, y′ ∈ G0.

• If [y] = [y′] in the cokernel, then y′ = yd0(x), for some x ∈ ker d1 ⊂ G1. Setting
z = s0(y)x, we see that

d0(z) = d0s0(y)d0(x) = yd0(x), d1(z) = yd1(x) = y,

and thus also [y] = [y′] in π0G.

• Vice versa, suppose y = d0(z) and y′ = d1(z), for some z ∈ G1. Then setting
x = z−1 · s0d1(z), we see that

d0(x) = d0(z)−1d1(z), d1(x) = d1(z)−1d1(z) = 1,

and so y′ = yd0(x), proving that also [y] = [y′] in the cokernel.

As the relation on G0 defined by d0(ker d1) is transitive, this proves the assertion.
Now the (noncommutative) snake lemma applied to the map of short exact sequences

1 // ker(pG)

d0|
��

// G+1

d0

��

pG // G

��

// 1

1 // G0
= // G0

// 1 // 1,

induces the desired short exact sequence.
2

Proposition 7.2.39
For every G ∈ sGrp, the following holds.

(i) πn(|G|, 1) ∼= πn(G, 1) ∼= Hn(N∗G), for all n ≥ 0.

Moreover s map f ∈ sGrp(G,H) is a weak equivalence (in sSet), if and only if
H∗(Nf) is an isomorphism.

(ii) πnG is an abelian group, for all n ≥ 1.
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(iii) The adjoint action of G0 on Gn induces an action of π0G on πnG, for n ≥ 1.

Proof. Using the simplicial identities we have

did0(x) = d0di+1(x) = d0(1) = 1, x ∈ NnG =
⋂

1≤i≤n

ker di, 0 ≤ i ≤ n− 1, n ≥ 2,

proving that d0 restricts to a map NnG
d−→ Nn−1G and moreover that d ◦ d is constant 1.

(i) The first isomorphism follows from Proposition 7.2.20, because every simplicial
group is fibrant by Proposition 7.2.35. By definition of the loop space, we have

(ΩnG)0 = ker d0 ∩
⋂

1≤i≤n

ker di = NnG, (ΩnG)1 =
⋂

2≤i≤n+1

ker di, n ≥ 0.

Hence by 7.1 we have

πnG = π0ΩnG = H0(N∗Ω
nG) = Hn(N∗G), n ≥ 0,

where we used the long exact sequence for homotopy groups for the first equation
and the long exact sequence for homology groups for the last equation.

As geometric realization preserves finite limits by Proposition 7.2.19, the geometric
realization |G| of a simplicial group G is a topological group and multplication
by a base point g ∈ |G| induces an isomorphism πn(|G|, 1)

∼−→ πn(|G|, g). Hence
f ∈ sGrp(G,H) is a weak equivalence of simplicial sets, if and only if π∗(|f |, 1) is
an isomorphism, if and only if H∗(Nf) is an isomorphism.

(ii) Let x, y ∈ ker(NnG
d−→ Nn−1G) =

⋂
0≤i≤n ker di and define

z = [s0(x), s0(y)] · [s0(x), s1(y)]−1.

Then using the simplicial identities, we get

di(z) =


[x, y] · [x, s0d0(y)]−1 = [x, y] · [x, 1]−1 = [x, y], i = 0,
[x, y] · [x, y]−1 = 1, i = 1,
[s0d1(x), s0d1(y)] · [s0d1(x), y]−1 = [1, 1] · [1, y]−1 = 1, i = 2,
[s0di−1(x), s0di−1(y)] · [s0di−1(x), s1di−1(y)]−1 = 1, 3 ≤ i ≤ n.

It follows that z ∈ Nn+1G and d(z) = [x, y], which proves that all commutators in
πnG are zero, or equivalently πnG is abelian.

(iii) Conjugation induces an adjoint action

ad : G0 −→ sGrp(G)
πn−→ Ab(πnG), x 7−→ ad(x) = πn

x(-).

Moreover, for every z ∈ G1, there is a simplicial homotopy d0z(-) ' d1z(-), given by

∆1
n ×Gn −→ Gn, (s, y) 7−→ s∗(z)(y).

In particular G0
ad−→ Ab(πnG) factors over π0G.
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2

Theorem 7.2.40
Let sC G−→ sGrp be a cocomplete, finitely complete category over sGrp. Suppose that the

composition with the forgetful functor sC G−→ sGrp U−→ sSet is part of an adjunction

sC(F (X), Y ) = sSet(X,UG(Y )).

Then the category sC becomes a model category of simplicial objects, if we define:

(i) Weak equivalences are maps, that are weak equivalences of underlying simplicial sets.

(ii) Fibrations are maps, which are Kan fibrations of simplicial sets.

(iii) Cofibrations are maps in LLP (fib (sC) ∩ w(sC)).

Proposition 7.2.39 (i) implies that weak equivalences in sC are precisely the π∗-isomorphisms,
if we define

π∗X := H∗(NG(X)) ∼= π∗(|UG(X)|, 1), X ∈ sC.

Moreover every simplicial object in sC is fibrant.

Proof. As every simplicial group is fibrant by Proposition 7.2.35, so is also every simplicial
object in sC, because G is a right adjoint and therefore preserves the terminal object.
Hence the identity functor on sC is a functorial fibrant replacement and we can apply
Theorem 7.2.27 to conclude the proof.

2

Remark 7.2.41
The preceding Theorem provides canonical model structures on the categories

(i) sGrp, sAb, sRing, sCRing,

(ii) R-sAb, for R ∈ sRing,

(iii) k-sAb, (k-sAb)-Lie, (k-sAb)-Ass, (k-Ab)-Ass1, ..., for k ∈ sCRing.

Weak equivalences/fibrations/cofibrations in these categories will always refer to this model
structure, as we will not need any other model structure on these categories.

7.3 Homotopy limits and colimits

Remark 7.3.1
Let C be a category with weak equivalences and I ∈ Cat a small category.

(i) Then CAT(I, C) is a category with weak equivalence by saying that a map f ∈
CAT(I, C) is a weak equivalence, if fi ∈ C(Xi, Yi) is a weak equivalence, for all
i ∈ I.
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(ii) Suppose C and CAT(I, C) have derived categories, such that wC = γ−1D(C)×, i.e.
weak equivalences in C are precisely the maps becoming isomorphisms in D(C).

Then by construction the constant functor C const−→ CAT(I, C) preserves weak equiva-
lences and therefore extends to a functor C inducing a commutative diagram

C
γ

��

const // CAT(I, C)
γ

��
D(C) C // D(CAT(I, C)).

In particular R const = C = L const is the right and left derived of const.

Definition 7.3.2
Let C be a category with weak equivalences and I ∈ Cat a small category.

(i) The homotopy limit is defined as the total right derived functor (if it exists)

R lim
I

: D(CAT(I, C)) −→ D(C).

(ii) The homotopy colimit is defined as the total left derived functor (if it exists)

L colim
I

: D(CAT(I, C)) −→ D(C).

Remark 7.3.3
The existence of homotopy (co-)limits is quite hard to achieve in general.

(i) In the context of model categories, the difficulty lies in constructing a suitable model
structure on functor categories. While this is easy for homotopy colimits in κ-
cofibrantly generated model categories (using the projective model structure3), it is
comparably hard for homotopy limits in this situation and requires more assumptions
on the category of question (to construct the analogous injective model structure).

(ii) However, in the context of simplicial objects, one can use the projective model struc-
ture to construct homotopy limits, too.

7.3.1 The projective and injective model structures

Definition 7.3.4
Let C be a model category and I ∈ Cat.

(i) A map f ∈ CAT(I, C)(X, Y ) is a projective weak equivalence/fibration, if
fi ∈ C(Xi, Yi) is a weak equivalence/fibration, for all i ∈ I.

Moreover f is a projective cofibration, if f has the left lifting property to all
trivial projective fibrations.

If these classes of maps form a model structure on CAT(I, C), we call it the pro-
jective model structure.

3See Definition 7.3.4.
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(ii) A map f ∈ CAT(I, C)(X, Y ) is an injective weak equivalence/cofibration, if
fi ∈ C(Xi, Yi) is a weak equivalence/cofibration, for all i ∈ I.

Moreover f is an injective fibration, if f has the right lifting property to all trivial
projective cofibrations.

If these classes of maps form a model structure on CAT(I, C), we call it the injective
model structure.

Remark 7.3.5
Let C be a model category and I ∈ Cat.

(i) Supposing that C has functorial I-indexed limits, there is an adjunction

CAT(I, C)(constX, Y ) = C(X, lim
I
Y ),

where constX is the constant functor, sending every map to the identity on X.

By definition the functor const preserves weak equivalences and injective cofibrations.

In particular by Theorem 7.1.26 the total derived functors exist and induces a Quillen
adjunction

D(CAT(I, C))(L constX, Y ) = D(C)(X,R lim
I
Y ),

provided that the injective model structure on CAT(I, C) exists.

(ii) Dually supposing that C has functorial I-indexed colimits, there is an adjunction

C(colim
I

X, Y ) = CAT(I, C)(X, constY ).

By definition the functor const preserves weak equivalences and projective fibrations.

In particular by Theorem 7.1.26 the total derived functors exist and induces a Quillen
adjunction

D(C)(L colim
I

X, Y ) = D(CAT(I, C))(X,R constY ).

provided that the projective model structure on CAT(I, C) exists.

Proposition 7.3.6
Let C be a complete model category and I ∈ Cat.

Then every (trivial) projective cofibration is a (trivial) injective cofibration.

Proof. Consider the functor DObj(I)
εI−→ I. Then

(εI)
∗(εI)∗(X)j =

∏
i∈I

X
I(j,i)
i , X ∈ CAT(DObj(I), C) = CObj(i).

Since (trivial) fibrations are stable under arbitrary products, as they are the right mor-
phisms of a weak factorization system, the functor (εI)

∗(εI)∗ preserves (trivial) fibrations,
which we will denote by R. In other words

((εI)
∗)−1R ⊃ (εI)∗(R).
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Applying LLP , which reverses inclusions, yields

((εI)
∗)−1R ⊂ LLP ((εI)∗(R)) = ((εI)

∗)−1LLP (R),

where the equality follows from Corollary 7.1.9. By definition, the left is the class of
projective and the right is the class of injective (trivial) cofibrations on CAT(I, C).

2

Theorem 7.3.7
Let C be a cocomplete κ-cofibrantly generated model category.

Then the projective model structure exists, for every small category I ∈ Cat.
Moreoever it is λ-cofibrantly generated, where λ is a cardinal number with cardinality

greater than κ and I.
If C = sD is a model category of simplicial objects, so is also CAT(I, C) = CAT(I, sD) =

sCAT(I,D).

Proof. We will use the adjunction

CAT(I, C)((εI)!X, Y ) = CAT(DObj(I), C)(X, (εI)∗Y ) = CObj(I)(X, (Yi)i∈I)

of Remark 7.3.8 to construct the model structure. The category CAT(DObj(I), C) = CObjI

is a λ-cofibrantly generated model category with

w(CObj(I)) = (wC)Obj(I), fib (CObj(I)) = (fib C)Obj(I), cof (CObj(I)) = (cof C)Obj(I).

Because colimits commute, the functor (εI)
∗ preserves arbitrary colimits. From the de-

scription of (εI)! we see that the functor (εI)!(εI)
∗ pointwise takes a morphism to a

copower. Therefore it preserves pointwise trivial cofibrations, since trivial cofibrations in
a model category are closed under coproducts. In particular we can apply Corollary 7.1.30
and see that CAT(I, C) is a λ-cofibrantly generated model category. By construction it is
the projective model structure.

In the context of model categories of simplicial objects, we apply Corollary 7.2.26
instead.

2

Remark 7.3.8
Let C be a category with arbitrary coproducts and I ∈ Cat. Let DObj(I) denote the discrete
category with objects I, i.e. the identities are the only morphisms.

Then there is a functor DObj(I)
εI−→ I inducing an adjunction

CAT(I, C)((εI)!X, Y ) = CAT(DObj(I), C)(X, (εI)∗Y ) = CObj(I)(X, (Yi)i∈I),

where by Yoneda’s lemma (εI)!X =
∐

i∈I
I(i,-)Xi, for X ∈ CObj(I).

(i) Remark 7.2.31 provides a canonical resolution functor

E•(I) : CAT(I, C) −→ CAT(I, C), X 7−→ E•(I)(X),

such that E•(I)(X)i
d0−→ Xi is a simplicial homotopy equivalence, for all i ∈ I.
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(ii) For ∗ ∈ CAT(I,Set) by Corollary 7.2.32 the map

B•(I/-) = E•(I)(∗) −→ ∗

is a natural projective cofibrant replacement in CAT(I, sSet).

Theorem 7.3.9
The injective model structure on CAT(I, sSet) exists, for every I ∈ Cat.

Proof. See [Lur09] A.3.3 or [GJ09] Prop. VIII.2.4.
2

7.3.2 Homotopy limits in model categories of simplicial objects

Proposition 7.3.10
For I ∈ Cat and every complete and cocomplete category C there are adjunctions

CAT(I, sSet)(S, sC(X, Y )) = CAT(I, sC)(SX, Y ) = sC(X, CAT(I, sSet)(S, Y )),

where

sC(X, Y ) := sC(X, -) ◦ Y, SX : i 7−→ SiX, CAT(I, sSet)(S, Y ) :=

∫
i∈I

sSet(Si, Yi).

Dually there are also adjunctions

CAT(Iop, sSet)(S, sC(X, Y )) = sC(S ⊗I X, Y ) = CAT(I, sC)(X, sSet(S, Y )),

where

sC(X, Y ) := sC(-, Y ) ◦X, S ⊗I X =

∫ i∈I
SiXi, sSet(S, Y ) := sSet(-, Y ) ◦ S.

Proof. Using Proposition 7.2.8 this follows from the Yoneda lemmas and the fact that
hom-functors commute with limits/ends.

2

Proposition 7.3.11
Let sC be a complete and cocomplete model category of simplicial objects and I ∈ Cat.

(i) Given a projective cofibration s ∈ CAT(I, sSet)(S, S ′), a cofibration x ∈ sC(X, Y )
and a projective fibration y ∈ CAT(I, sC)(Y, Y ′), the following holds.

a) (x∗, y∗) : sC(X ′, Y ) −→ sC(X, Y )×sC(X,Y ′) sC(X ′, Y ′) is a projective fibration,

which is a (projective) weak equivalence, if x or y are weak equivalences.

b) (sid) ∪ (idx) : (SX ′) +(SX) (S
′
X) −→ S′X ′ is a projective cofibration,

which is a (projective) weak equivalence, if s or x are weak equivalences.
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c) CAT(I, sSet)(S ′, Y ) −→ CAT(I, sSet)(S, Y )×CAT(I,sSet)(S,Y ′)CAT(I, sSet)(S ′, Y ′)
is a fibration,

which is a weak equivalence, if s or y are weak equivalences.

(ii) Dually given injective cofibrations s ∈ CAT(Iop, sSet)(S, S ′) and x ∈ CAT(I, sC)(X,X ′)
and a fibration y ∈ sC(Y, Y ′), the following holds.

a) (x∗, y∗) : sC(X ′, Y ) −→ sC(X, Y )×sC(X,Y ′) sC(X ′, Y ′) is a projective fibration,

which is a (projective) weak equivalence, if x or y are weak equivalences.

b) (s⊗I id)∪ (id⊗I x) : (S⊗I X ′) +(S⊗IX) (S ′⊗I X) −→ S ′⊗I X ′ is a cofibration,

which is a weak equivalence, if s or x are weak equivalences.

c) (s∗, y∗) : sSet(X ′, Y ) −→ sSet(X, Y ) ×sSet(X,Y ′) sSet(X ′, Y ′) is a projective
fibration,

which is a (projective) weak equivalence, if s or y are weak equivalences.

Since every projective (trivial) cofibration is also an injective (trivial) cofibration by
Proposition 7.3.6, the same holds if we replace the word “injective” by “projective”.
Note that we do not require existence of the injective model structure here.

Proof. We can write down exactly the same proof for (i) and (ii):
By definition of sC(-, -) statement a) follows from Propostion 7.2.24 (ii) for the model

category of simplicial objects sC. By the same arguments as in Propostion 7.2.24 state-
ments b) and c) are equivalent to a).

2

Proposition 7.3.12
Let sC be a complete and cocomplete, κ-cofibrantly generated model category of simplicial
objects. Let I ∈ Cat and V

'−→ ∗ be a projective cofibrant replacement in CAT(I, sSet).
Then there is a Quillen adjunction

CAT(I, sC)(V const(X), Y ) = sC(X, CAT(I, sSet)(V, Y )).

As there is a natural isomorphism L(V const)
∼−→ L const, we get an isomorphism

R lim
I

∼−→ RCAT(I, sSet)(V, -)

proving in particular the existence of the left object.

Proof. By Proposition 7.3.11 (i) b) the functor V const preserves (trivial) cofibrations
and thus the adjunction is Quillen by Theorem 7.1.26. Moreover the left derived functor
L const is given by

L(V const)(X) = VXc,

where Xc
'−→ X is a cofibrant replacement for X. Using Brown’s lemma and Proposition

7.2.24, it follows that ViX −→ X is a weak equivalence, for every cofibrant X ∈ sC and
every i ∈ I. Hence in the derived category D(sC) we have

L(V const)(X) = VXc
∼−→ Xc

∼←− X = L const(X), X ∈ sC,
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proving that naturally L(V const)
∼−→ L const. Again by Quillen’s adjoint functor The-

orem 7.1.26 the functor RCAT(I, sSet)(V, -) is right adjoint to LV ∼= L const. As also
R limI is right adjoint to L const, they must coincide up to natural isomorphism.

2

7.3.3 Simplicial models for homotopy (co-)limits

Proposition 7.3.13
Let sC be a κ-cofibrantly generated model category of simplicial objects and X ∈ CAT(I, sC)
with I ∈ Cat. Let V ∈ CAT(I, sSet) and W ∈ CAT(Iop, sSet) be projective cofibrant re-
placements of the constant functor ∗.

(i) If Xi ∈ sC is fibrant, for all i ∈ I, then R limI X = CAT(I, sSet)(V,X) in D(sC).

If X
'−→ F (X) is a funtorial fibrant replacement in sC, then

R lim
I
X = CAT(I, sSet)(V, F (X)), X ∈ CAT(I, sC).

(ii) If Xi ∈ sC is cofibrant, for all i ∈ I, then W ⊗I X = L colim I X in D(sC).

If E(X)
'−→ X is a funtorial cofibrant replacement in sC, then

W ⊗I E(X) = L colim
I

X, X ∈ CAT(I, sC).

Proof.

(i) As X is projective fibrant, using Proposition 7.3.12 we get

R lim
I
X = RCAT(I, sSet)(V, -)(X) = CAT(I, sSet)(V,X).

If X
'−→ F (X) is a functorial fibrant replacement, for X ∈ sC, it induces a functorial

projective fibrant replacement on CAT(I, sC), which proves (i).

(ii) As the injective model structure on CAT(I, sSet) exists by Theorem 7.3.9, the map

W
'−→ ∗ can be factored as in Brown’s Lemma 7.1.23 (i). So Proposition 7.3.11 (ii)

b) yields a weak equivalence

W ⊗I X
'−→ ∗ ⊗I X = colim

I
X,

because X ∈ CAT(I, sC) is injective cofibrant. If E(X)
'−→ X is a funtorial cofibrant

replacement, for X ∈ sC, it induces a functorial injective cofibrant replacement on
CAT(I, sC), which proves (ii).

2

Using the canonical cofibrant replacements B(I/-)
'−→ ∗ and dually B(-/I)

'−→ ∗ of
Remark 7.3.8, we can define canonical simplicial models.
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Definition 7.3.14
Let C be a category with arbitrary products and coproducts and I ∈ Cat.

(i) The simplicial homotopy limit of Y ∈ CAT(I, sC) is defined as

holim
I

X := CAT(I, sSet)(B(I/-), X) ∈ sC.

(ii) The simplicial homotopy colimit of Y ∈ CAT(I, sC) is defined as

hocolim
I

X := B(-/I)⊗I X ∈ sC.

Corollary 7.3.15
Let I ∈ Cat.

(i) Since every simplicial set is cofibrant, in the derived category D(sSet) we have

L colim
I

X = hocolim
I

X, X ∈ CAT(I, sSet).

(ii) Let sC be a model category of simplicial objects, induced by an adjunction (cf. The-
orem 7.2.40)

sC(F (X), Y ) = sSet(X,UG(Y )), sC G−→ sGrp U−→ sSet.

Since every simplicial object in sC is fibrant, in the derived category D(sC) we have

R lim
I
X = holim

I
X, X ∈ CAT(I, sC).

7.3.4 Homotopy pullbacks and pushouts

Proposition 7.3.16
Let P be the category with three objects a, b, c and the only non-trivial morphisms b ←
a→ c.

Then there is a projective cofibrant replacement of ∗ ∈ CAT(P op, sSet)

W•(P ) = P (-, b) +P (-,a)
∆1

P (-, a) +P (-,a) P (-, c) −→ ∗.

Proof. We have

Wn(P ) = P (-, b) +P (-,a)
∆1
nP (-, a) +P (-,a) P (-, c), n ≥ 0

= P (-, b) +P (-,a)
n+2P (-, a) +P (-,a) P (-, c)

= P (-, b) + nP (-, a) + P (-, c),

which is free in CAT(P op,Set), for all n ≥ 0. Moreover the degeneracies correspond to
inclusion maps under this isomorphism. Hence W•(P ) is almost free in CAT(P op, sSet)
and thus projective cofibrant by Corollary 7.2.30. As the three objects

W•(P )(a) ∼= ∆1, W•(P )(b) = ∗ = W•(P )(c)

are contractible, W•(P ) −→ ∗ is a dimensionwise homotopy equivalence.
2
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Definition 7.3.17
Let C be a category with arbitrary finite products and coproducts.

(i) The homotopy pullback of an X = (B → A← C) ∈ CAT(P, sC) is defined as

B ×hA C = CAT(P op, sSet)(W•(P ), X) = B ×A sSet(∆1, A)×A C.

(ii) The homotopy pushout of an X = (B ← A→ C) ∈ CAT(P op, sC) is defined as

B +h
A C = W•(P )⊗P X = B +A

∆1

A+A C.

7.3.5 Bisimplicial objects

Theorem 7.3.18 (Quillen)
For a bisimplicial group G ∈ ssGrp there are two converging spectral sequences

(i) E2
p,q = πhpπ

v
qG ⇒ πp+qdiagG,

(ii) E2
p,q = πvpπ

h
qG ⇒ πp+qdiagG,

where πh∗ resp. πv∗ means horizontal resp. vertical homotopy groups.

Proof. See [Qui66].
2

Corollary 7.3.19
Let sC be a model category of simplicial objects, induced by an adjunction (cf. Theorem
7.2.40)

sC(F (X), Y ) = sSet(X,UG(Y )), sC G−→ sGrp U−→ sSet.

Let f ∈ ssC(X, Y ), such that fp,• : π∗Xp,• −→ π∗Yp,• is c-connected, for all p ≥ 0.
Then diagf is c-connected.

Proposition 7.3.20
There is a natural weak equivalence of simplicial sets

Bφn : B∆/n
'−→ Bn = ∆n, n ≥ 0,

which is induced by the natural functor

φn : ∆/n
'−→ n, (m

α−→ n) 7−→ α(m), n ≥ 0.

Proof. Let m
f−→ m′

α′−→ n be a map in ∆/n i.e. α′f = α. Then we have f(m) ≤ m′ and
hence α(m) = α′f(m) ≤ α′(m′) and clearly α(m) = α′(m), if f = id. This shows φn is a
functor. By construction it is natural in n. Next consider the functors φn defined by

ψn : n −→ ∆/n, k 7−→ (k
ιk,n
↪−→ n),
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where ιk,n is the canonical inclusion. The image of a “morphism” k ≤ ` in n is defined as

the canonical inclusion k
ιk,`
↪−→ `.

By construction ιk,n = ι`,n ◦ ιk,`, so ιk,` is indeed a morphism in ∆/n. By construction

φn ◦ ψn = idn and for any (m
α−→ n) ∈ ∆/n the restriction m

α̃
−� α(m) of α defines

a homomorphism (m
α−→ n)

α̃−→ (α(m)
ια(m),n

↪−→ n). This defines a natural transformation
η : id∆/n −→ ψn ◦ φn:

m

f

��

α̃ // // α(m)

ια(m),α′(m′)

��

ια(m),n

)) n

m′
α̃′ // // α′(m′)

ια′(m′),n

55

Indeed the left square commutes, because the right triangle commutes and the outer does

by assumption on f being a morphism α
f−→ α′. In particular we get an adjunction

∆/n(φn(k), α) = n(k, ψn(α)), n ≥ 0,

inducing a homotopy equivalence between B∆/n and n. Note that in contrast to φn the
functor ψn is not(!) natural in n ≥ 0.

2

Corollary 7.3.21
Let sC be a κ-cofibrantly generated model category of simplicial objects.

(i) For injective fibrant X ∈ CAT(∆, sC) = csC the natural weak equivalence φ induces

φ∗ : CAT(∆, sSet)(∆, X)
'−→ CAT(∆, sSet)(B(∆/-), X) = holim

∆
X.

(ii) For injective cofibrant X ∈ CAT(∆op, sC) = ssC the natural weak equivalence φ
induces

φ∗ : hocolim
∆op

X = B(-/∆op)⊗∆op X
'−→ ∆⊗∆op X = diagX.

Proof. By Proposition 7.3.20 the map B(-/I)
d0−→ ∗ is a weak equivalence of injective

cofibrant functors in CAT(Iop, sSet). As the injective model structure on CAT(I, sSet)
exists by Theorem 7.3.9, it can be factored as in Brown’s Lemma 7.1.23. So Proposition
7.2.24 yields the desired weak equivalences.

2

Corollary 7.3.22
Let f ∈ ssSet(X, Y ), such that fp,• : Xp,•

'−→ Yp,• is a weak equivalence, for all p ≥ 0.
Then diagf is a weak equivalence.
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Proof. There is a commutative diagram

hocolim ∆op X

hocolim f

��

' // diagX

diagf

��
hocolim ∆op Y

' // diagY.

As the horizontal maps are weak equivalences by Corollary 7.3.21 it suffices to check that
the left vertical map is a weak equivalence. Since f is a weak equivalence of injective
cofibrants in CAT(∆op, sSet) this follows from Proposition 7.3.11 (ii) b) by using Brown’s
Lemma 7.1.23 and the existence of the injective model structure by Theorem 7.3.9.

2

Proposition 7.3.23
Let sA be a model category of simplicial objects, induced by an adjunction (cf. Theorem
7.2.40)

sA(F (X), Y ) = sSet(X,UG(Y )), sA G−→ sAb U−→ sSet.

Suppose that A is an abelian category and that sA G−→ sAb preserves filtered colimits.
Then, for every I ∈ Cat and X ∈ CAT(I, sA), there is a converging spectral sequence

E2
p,q = πp hocolim

I
πqX ⇒ πp+q hocolim

I
X.

Proof. By definition we have

hocolim
I

X = B(-/I)⊗I X = diag

∫ i∈I
B•(i/I)(Xi)•,

and moreover∫ i∈I
Bp(i/I)(Xi)• =

∐
i0,...,in∈I

I(i0,i1)×...×I(ip−1,ip)(Xi0)•, p ≥ 0.

By assumption the functor sA G−→ sGrp πq−→ Grp preserves filtered colimits and moreover
arbitrary products. Hence it preserves arbitrary coproducts, as A is an abelian category
and thus finite products and coproducts coincide. It follows that the first of Quillen’s
spectral sequences (cf. Theorem 7.3.18) is precisely

E2
p,q = πp hocolim

I
πqG(X) ⇒ πp+q hocolim

I
G(X).

2

Corollary 7.3.24
In the situation of Proposition 7.3.23, we have

holim
I

X = R lim
I
X, L colim

I
X = hocolim

I
X, X ∈ CAT(I, sA), I ∈ Cat.
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Proof. The first identity was already proven in Corollary 7.3.15. For the second identity
let E•

'−→ idsA be a functorial cofibrant resolution like in Corollary 7.2.32. Then it induces
a functorial injective cofibrant resolution on CAT(I, sA) and we get a map

L colim
I

X = B(-/I)⊗I E•(X) = hocolim
I

E•(X) −→ hocolim
I

X.

where the first equality holds by Proposition 7.3.13. Now the right map induces an isomor-
phism on the second page of the spectral sequence for homotopy colimits of Proposition
7.3.23. In particular it is a weak equivalence of simplicial A-objects.

2

7.3.6 Free resolutions induced by totally final functors

Remark 7.3.25
For every functor f ∈ Cat(I, J), the inclusion the nerve of the comma category j/f is
given by

Bn(j/f) =
∐

i0,...,in∈I

J(j, f(i0))× I(i0, i1)× ...× I(in−1, in) ∈ CAT(Jop,Set), n ≥ 0.

In particular we have B•(-/f) ∼= f!B•(-/I) and the inclusion (-/f) −→ (-/J) induces a
natural map

hocolim
I

f ∗X = B•(-/I)⊗I f ∗X ∼= B•(-/f)⊗J X −→ B•(-/J)⊗J X = hocolim
J

X,

where the first isomorphism is induced by the (co-)Yoneda lemma.

Definition 7.3.26
Given a functor f ∈ Cat(I, J).

(i) f is called totally final, if for all j ∈ J , the comma category j/f is contractible4.

(ii) f is called totally cofinal, if for all j ∈ J , the comma category f/j is contractible.

Remark 7.3.27
By definition, every totally final functor f ∈ Cat(I, J) induces a cofibrant resolution

B•(-/f)
'−→ ∗ of functors in CAT(Jop, sSet).

In particular, for a cofibrantly generated model category of simplicial objects sC, by
Proposition 7.3.13 we get a natural weak equivalence

hocolim
I

f ∗X = B•(-/f)⊗J X
'−→ B•(-/J)⊗J X = hocolim

J
X, X ∈ CAT(I, sC).

Remark 7.3.28
Consider an adjunction I(f(j), i) = J(j, g(i)).

4It is called final, we one only require non-empty and connected instead of contractible.
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(i) The right adjoint g is totally final, because there is a contraction on B•(i/g) induced

by the natural transformation (i
ηi−→ gf(i)) −→ idi/g given by

i

ηi
��

i

gf(f)ηi= ηg(j)f
��

i

f
��

gf(i)
gf(f)

// gfg(j)
g(εj)

// g(j).

(ii) The left adjoint f is totally cofinal, there is a contraction on B•(f/j) induced by the

natural transformation idf/j −→ (fg(j)
εj−→ j) given by

f(i)

f

��

f(ηi)// fgf(i)

fεf(i)= εjfg(f)

��

fg(f) // fg(j)

εj

��
j j j.

7.3.7 Homotopy colimits being colimits

Proposition 7.3.29
Let I ∈ Cat and F ∈ CAT(I,Set), such that for every functor G ∈ Cat(J, I) with connected

non-empty BJ there is an object m ∈ I and a natural transformation constm
h−→ G

inducing a surjection

F (m) −� lim
J

(F ◦G), x 7−→ (F (hj)(x))j∈J .

Then hocolim
I

F −� colim
I

F is a simplicial deformation retraction.

Proof. Let C(F ) denote the category of elements of F , whose objects are given by the
set
∐

i∈I F (i) and whose morphisms are given by

C(F )(x, y) = {f ∈ I(i, j); y = F (f)(x)}, x ∈ F (i), y ∈ F (j), i, j ∈ I.

Then we have BC(F ) = B(-/I)⊗I F = hocolim I F . For α ∈ colim I F we let C(F, α) ≤
C(F ) denote the full subcategory of objects x ∈

∐
i F (i) = Obj(C(F )) with α = [x] under

the canonical surjection
∐

i F (i) −� colim I F . By construction BC(F, α) ≤ BC(F ) is
the connected component corresponding to α ∈ colim I F = π0 hocolim I F . Now using
the hypothesis for the functor

Gα : C(F, α) −→ I, F (i) 3 x 7−→ i,

we get an element mα ∈ I and a natural constmα
hα−→ Gα inducing a surjection

F (mα) −� lim
C(F,α)

(F ◦Gα), x 7−→ (F (hα,y)(x))y∈C(F,α).

Let zα ∈ F (mα) be a preimage of the tuple (y)y∈C(F,α). We define C̃(F )
S
↪−→ C(F ) as the

inclusion of the discrete subcategory with objects zα, for α ∈ colim I F . For all x, y ∈ C(F )
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and f ∈ C(F )(x, y) we have [x] = [y] in colim I F and hence z[x] = z[y]. As h[x] is natural,
we get a commuting square

z[x]
� F (h[x],x)

// x_

F (f)

��
z[y]

� F (h[y],y)
// y.

In other words the maps (F (h[x],x))x∈C(F ) define a natural transformation SR −→ idC(F ),
where

R : C(F ) −� C̃(F ), x 7−→ z[x].

In particular BC(F )
R
−� BC̃(F ) is a deformation retraction with homotopy inverse S.

As the composition

BC̃(F )
S
↪−→ BC(F ) ∼= hocolim

I
F −� colim

I
F

is an isomorphism, it follows that also hocolim I F −� colim I F is a deformation retrac-
tion.

2

Remark 7.3.30
Let I ∈ Cat and F ∈ CAT(I,Set). If I has limits over connected categories, which are
preserved by F , i.e.

F (limG)
∼−→ lim(F ◦G), for all G ∈ Cat(J, I), J ∈ Cat, π0BJ = ∗,

then the hypothesis of Proposition 7.3.29 is satisfied via

m := lim
J
G, hj = πj : lim

J
G −→ G(j), j ∈ J.

Corollary 7.3.31
Let I ∈ Cat and F ∈ CAT(I,Set), such that BI is contractible, X ↪−→ F (i), for all i ∈ I,

and I
F−→ X/Set U−→ Set satisfies the hypothesis of Proposition 7.3.29.

Then hocolim
I

F −� colim
I

F is a weak equivalence of simplicial sets under X.

Proof. We can consider (X ↪−→ F (i))i as a natural injection constX ↪−→ F of Set-valued
functors. Consider the diagram

hocolim I constX

'
��

� � // hocolim I UF

'
��

' // // colim I UF

o
��

X �
� // U(hocolim I F ) // U(colim I F ).

The uppper right horizontal map is a weak equivalence by Proposition 7.3.29. A (homo-
topy) colimit in X/Set can be constructed by taking a colimit in Set and then identifying
the images of each x ∈ X. So the left and the outer square is cocartesian. Moreover the

210



7.3. Homotopy limits and colimits

right vertical map is an isomorphism, because BI is connected. The left vertical map can
be identified with the projection BI × X −→ X, which is a weak equivalence as I is
contractible. As the upper left map is injective, the left square is also homotopy cartesian,
which implies that the middle vertical map is a weak equivalence. Hence by commutativity
the lower right horizontal map is a weak equivalence.

2

Corollary 7.3.32
Let I ∈ Cat and F ∈ CAT(I,Set∗), such that BI is connected, X ↪−→ F (i), for all i ∈ I,

and I
F−→ Set∗

U−→ Set satisfies the hypothesis of Proposition 7.3.29, e.g. if it preserves
limits over connected, non-empty categories (c.f. Remark 7.3.30).

Then hocolim
I

F
'
−� colim

I
F is a weak equivalence of pointed simplicial sets.

7.3.8 Homotopy colimits of monoids

Proposition 7.3.33
Let M ∈ sSet-Ass1 be a simplicial monoid, free or free abelian in every dimension.

Then the map from M into its group completion Grp(M) induces weak equivalences

(i) BM
'−→ BGrp(M), and

(ii) M
'−→ Grp(M), if π0M = 1.

Proof. In [Qui71b] Q.5. Quillen calls simplicial monoids satisfying (i) good and proves

in Prop. Q.1 that free monoids are good. It follows that also BNn
0

'−→ BZn are weak
equivalences, for all n ≥ 0. Hence free abelian monoids are good by exactness of filtered
colimits. So in our situation Mn is good, for all n ≥ 0, and thus by Prop. Q.2. loc. cit.
also M is good.

For the second statement, note that by Thm. Q.4 loc. cit. the inclusion M ↪−→ Grp(M)
induces an isomorphism

H∗(M,Z) = H∗(M,Z)[π0M
−1]

∼−→ H∗(Grp(M),Z),

and thus M
'−→ Grp(M) is a weak equivalence by the Whitehead Theorem for simplicial

sets/spaces (cf. [Sri08] Cor. A.54).
2

Proposition 7.3.34

The nerve functor sMon
B−→ sSet∗ preserves coproducts up to weak equvivalence.

In particular it also preserves homotopy colimits.

Proof. First suppose we are given a family Mi ∈ Mon of free constant monoids. So

Mi = F (Si), for some Si ∈ Set. Here Set F−→ Mon denotes the free functor being the
left adjoint to the forgetful functor. The Hurewicz map induces a weak equivalence

S1 '−→ Z̃(S1) ∼= BZ.
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which restricts to a weak equivalence h : S1 '−→ BN0 = BF (∗). More generally we get a
natural weak equivalence of pointed simplicial sets

S1 ∧ S+ = SS1 '−→ F (S∗) = F (S), S ∈ Set.

Hence in the commutative diagram of pointed simplicial sets∐
i S

1 ∧ (Si)+

'
��

∼ // S1 ∧ (
∐

i Si)+

'
��∐

iBF (Si) // B
∐

i F (Si)
∼ // BF (

∐
i Si),

the vertical maps are weak equivalences, because weak equivalences are preserved by
coproducts. Hence also the lower left horizontal map is a weak equivalence, which proves
the statement in the free case.

For the case of general constant monoids Mi ∈Mon, consider the commtutative square∐
iBE•(Mi)

��

// B
∐

iE•(Mi)

��∐
iBMi

// B
∐

iMi,

where E• is the free resolution functor obtained from the adjunction Mon(F (X), Y ) =
Set(X,U(Y )). As B and coproducts preserve weak equivalence, the vertical maps are
weak equivalences. By commutativity it suffices to prove that the upper horizontal map is
a weak equivalence. This follows once we have shown that

∐
iBEn(Mi)

'−→ B
∐

iEn(Mi),
for all n ≥ 0. As En(Mi) is free, for all n ≥ 0, we are done.

The general case follows from the constant case, because the map of bisimplicial pointed
sets ∐

i

B•(Mi)•
'−→ B•

∐
i

(Mi)•

is a weak equivalence in every dimension of Mi by the constant case.
2

Corollary 7.3.35
Let k ∈ sCRing and Ai ∈ k-Ass be flat in every dimension.

Then
∐

iB(Ai)+
'−→ B

∐
i(Ai)+ is a weak equivalence of simplicial k-modules under k.

Proof. For Ai = k[Mi] and Mi ∈ sMon, there is a commuting diagram∐
iB
⊗k[Mi] // B⊗

∐
i k[Mi]

k
∐

iB
×Mi

o

OO

' // kB×
∐

iMi,

o

OO

where B⊗ resp. B× refers to the bar construction in algebras resp. monoids. The right
verical maps are isomorphisms, because the free module functor k preserves coproducts
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and kB×
∼−→ B⊗k. As lower map is a weak equivalence by Proposition 7.3.34 it follows

that also the lower map is a weak equivalence.
For the general case, consider the diagram∐

iBE•(Ai)+

'
��

// B
∐

iE•(Ai)+

'
��∐

iB(Ai)+
// B
∐

i(Ai)+,

where E• is the free resolution functor induced by the adjunction k-Ass(k[X], Y ) =
s(Set-Ass)(X,U(Y )). Again it suffices to show that in every E-dimension the upper map
is a weak equivalence. But for every n ≥ 0 there are simplicial semigroups Si ∈ s(Set-Ass)
with En(Ai)+ = k[Si]+ = k[(Si)+]. As (Si)+ ∈ sMon we are done by the first case.

2

7.4 Homological algebra

7.4.1 Differential graded objects aka chain complexes

Definition 7.4.1
Let A be an abelian category.

(i) We call dgA the category of differential graded objects or (Z-indexed) chain
complexes in A, moreover dg≥mA is the full subcategory of chain complexes X
with Xn = 0, for all n < m.

(ii) By abuse of notation every object X ∈ A will also be considered as the object in
dgA, which is equal to X in dimension 0 and trivial elsewhere

7.4.2 The induced symmetric monoidal structure

Remark 7.4.2
Let A be an abelian category with countable direct sums.

(i) There is a functor dgdgA Tot+

−→ dgA, sending a bicomplex X ∈ dgA to its total
complex Tot+X with

(Tot+X)n =
⊕
p+q=n

Xp,q, Xp,q
d(1)+(−1)pd(2)

−→ (Tot+X)p+q, p, q ∈ Z,

where d(i) is the differential in coordinate i = 1, 2.

(ii) Similarly, if A has countable products, we define Tot× by replacing direct sums by
direct products.

Note that they coincide on bicomplexes, that are bounded below in both coordinates.
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(iii) If A carries a monoidal structure (A,⊗, k), there is an induced tensor product on
dgA, given as the composite of Tot+ with the functor

dgA× dgA −→ dgdgA, (X, Y ) 7−→ (X ⊗ Y, d⊗ id, id⊗ d),

and (dgA,⊗, k) is also monoidal.

(iv) If (A,⊗, k) is symmetric monoidal, so is also (dgA,⊗, k) by the braiding X⊗Y γ−→
Y ⊗X given by the direct sum over all isomorphisms

Xp ⊗ Yq
∼−→ Yq ⊗Xp, x⊗ y 7−→ (−1)pqy ⊗ x, p, q ∈ Z.

Remark 7.4.3
With this symmetric monoidal structure in hand we define the categories

(i) dg(k-Ass1) = dg(k-Mod)-Ass1,

(ii) dg(k-Com1) = dg(k-Mod)-Com1,

(iii) dg(k-Lie) = dg(k-Mod)-Lie, ...

(cf. section 2.3).

7.4.3 The model structure

Theorem 7.4.4
Let A be a finitely complete and cocomplete category.

Then dg≥0A is a model category with the following structure.

(i) Weak equivalences are quasi-isomorphisms, i.e. chain maps inducing isomorphisms
under homology.

(ii) Fibrations are epimorphisms.

(iii) Cofibrations are monomorphisms, having projective cokernel in every dimension.

Proof. See [Hov99] 2.3
2

Proposition 7.4.5 (i) On the same way one can define a model structure on the cate-
gory of chain complexes, that are bounded below.

(ii) There is also a model structure on the whole category dgA with weak equivalences
and fibrations as before.

However the cofibrations are more complicated.

Proof. See [Hov99] 2.3 for a detailed discussion.
2
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7.4.4 The Dold-Kan correspondence

Proposition 7.4.6 (Dold-Kan correspondence)
For every finitely complete abelian category A there is an equivalence adjunction of cate-
gories

sA(ΓX, Y ) = dg≥0A(X,NY ),

where NX is the Moore complex of X (cf. Definition 7.2.34), given by

NnX = ker(Xn
(d1,...,dn)−→ (Xn−1)n), d = d0|.

There is an isomorphism NX ↪−→ X −� X̃, where X̃ is the reduced complex, given
by

X̃n = coker ((Xn−1)n−1
∑
i si−→ Xn), d =

∑
0≤i≤n

(−1)idi, n ≥ 0.

Moreover there natural maps

(i) The Alexander-Whitney map

∆ : NdiagX −→ Tot+N (1)N (2)X,

(d0(NdiagX)n ⊂ Xn,n −→
∏

p+q=n

N (1)N (2)
p,q = (Tot×N (1)N (2))n = (Tot+N (1)N (2))n.

(ii) The shuffle map, being a section for ∆

∇ : Tot+N (1)N (2)X ↪−→ NdiagX,∑
σ∈Shp,q

sgn(σ) · s(1)
σ(p+q)−1 ◦ ... ◦ s

(1)
σ(p+1)−1 ◦ s

(2)
σ(p) ◦ ... ◦ s

(2)
σ(1)−1 : N (1)

p N (2)
q X −→ (NdiagX)p+q,

where Shp,q ⊂ Σp+q denotes the subset of (p, q)-shuffles, which are permutations
σ ∈ Σp+q with

σ(1) < ... < σ(p), σ(p+ 1) < ... < σ(p+ q).

If A carries a monoidal structure, then using ∆ and ∇ the functors N and Γ are monoidal
and comonoidal.

If (A,⊗, k) is symmetric monoidal, the following holds.

(i) The functor N is symmetric monoidal and Γ is symmetric comonoidal via ∇.

(ii) The functors N is not symmetric comonoidal and Γ is not symmetric monoidal, as
∆ in contrast to ∇ does not behave well with the braidings.

Proof. See e.g. [GJ09] III.2. and/or [Wei94] 8.4 and 8.5. Note that there is a sign twist,
because of the slightly different definition of the Moore complex in [Wei94] Def. 8.3.6.

2
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Proposition 7.4.7
Suppose A = k-Mod, for some k ∈ Ring.

Then the model structure on dg≥0(k-Mod) “almost” coincides with the model structure,
obtained by the adjunction

dg≥0(NkX, Y ) = sSet(X,UΓ(Y )).

Moreover the monoidal structure maps ∆ and ∇ of the functors N and Γ are weak equiv-
alences by the Theorem of Eilenberg-Zilber (see [Wei94] 8.5).

Proof. By Proposition 7.2.39 the weak equivalences are the same, while Proposition 7.2.35
implies that also the fibrations are the same modulo the little difference in dimension 0.

2

7.4.5 Differential graded algebras and coalgebras

Proposition 7.4.8
For X ∈ dg(k-Mod) let X = X+ ⊕X−, where

X+ =
⊕
n∈Z

X2n, X− =
⊕
n∈Z

X2n+1.

Then there is a ring isomorphism S(X+) ⊗ Λ(X−)
∼−→ Com1(X) induced by the ring

monomorphisms

S(X+) := Com1(X+) ↪−→ Com1(X), Λ(X−) := Com1(X−) ↪−→ Com1(X),

where here S is the symmetric and Λ the exterior algebra functor.

Proof. By forgetting the differentials, we also get a symmetric monoidal structure on
g(k-Mod) = (k-Mod)Z and we have X = X+ ⊕ X− in g(k-Mod). The coproduct in
g(k-Mod)-Com1 is induced by the tensor product. As Com1 is left adjoint to the forgetful
functor, it preserves coproducts and hence

Com1(X+)⊗ Com1(X−)
∼−→ Com1(X+ ⊕X−) = Com1(X).

Now the following holds.

• As X+ only has even dimensions the Σn-action on (X+)⊗n is just permutation of
the tensor factors, hence Com1(X+) = S(X+), the symmetric algebra.

• As X− only has odd dimensions the Σn-action on (X−)⊗n is permutation tensored
with the sign representation, hence Com1(X−) = Λ(X−), the exterior algebra.

Similarly Com1(X+) only has even dimensions, such that the tensor product of the graded
rings Com1(X+) and Com1(X−) coincides with the usual tensor product of rings.

2
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Proposition 7.4.9
For X ∈ dg(k-Mod) there are cocomplete, cocommutative bialgebra structures on Ass1(X)
and Com1(X), whose comultiplication and counit are determined by

δ(x) = x⊗ 1 + 1⊗ x, ε(x) = 0, x ∈ X.

Moreover the following holds.

(i) The comultiplication on Com1(X+) = S(X+) is given by

δ(x1 · · ·xn) =
∑

p+q=n,
σ∈Shp,q

xσ−1 · · ·xσ−1(p) ⊗ xσ−1(p+1) · · ·xσ−1(n), x1, ..., xn ∈ X+.

(ii) The comultiplication on Com1(X−) = Λ(X−) is given by

δ(x1 ∧ ... ∧ xn) =
∑

p+q=n,
σ∈Shp,q

sgn(σ) · xσ−1 ∧ ... ∧ xσ−1(p) ⊗ xσ−1(p+1) ∧ ... ∧ xσ−1(n).

Here Shp,q ≤ Σp+q denotes the subset of (p, q)-shuffles (c.f. Remark 7.4.6). The comulti-
plication is therefore also called shuffle (co-)product.

Proof. As comultiplication and counit are algebra homomorphisms, they are completely
determined by their restriction to X by the universal property. Similarly the cocommuta-
tivitiy, coassociativity and counit axiom only needs to hold when restricted to X, where it
holds by construction. Arguing via the universal property again it suffices to check this on
X+ ⊗ k + k⊗X− ⊂ S(X+)⊗Λ(X−). The comultiplication restricts to the reduced coal-

gebra Ass(X) = coker (k
η−→ Ass1(X)), such that Ass1(X) −� Ass(X) is a coalgebra

homomorphism. For cocompleteness we have to prove that

Ass(X) =
⋃
n≥0

ker(Ass(X)
δn−→ Ass(X)⊗(n+1)).

The iterated comultiplication Ass1(X)
δn−→ Ass1(X)⊗(n+1) is induced by its restriction to

X, where we have

δn(x) =
∑

0≤i≤n

1⊗ ...⊗ x
i
⊗ ...⊗ 1. (7.2)

Hence it maps Ass(n)(X) = X⊗n into∑
0≤i≤n

Ass1(X)⊗i ⊗ k ⊗Ass1(X)⊗(n−i) ⊂ ker(Ass1(X)⊗(n+1) −� Ass(X)⊗(n+1)),

which proves that Ass(n)(X) ⊂ ker(Ass(X)
δn−→ Ass(X)⊗(n+1)). The case Com is similar.

Properties (i) and (ii) can be verified by induction on n ≥ 1. Note that Λ(X−)⊗Λ(X−)
is not the usual tensor product of rings here. Whenever moving two generators past each
other we will get a sign twist. More precisely

(x⊗ y) · (x′ ⊗ y′) = −(x ∧ x′)⊗ (y ∧ y′), x, y ∈ X−.

This is the reason why we get the additional sign twist sgn(σ), for a shuffle σ.
2
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Corollary 7.4.10
Dually for X ∈ dg(k-Mod) there is a commutative bialgebra structures on Âss1(X), whose
multiplication and unit are completely determined by the projection

πX◦µ : Âss
op

1 (X)⊗Âss
op

1 (X) −→ (X⊗k)⊕(k⊗X) ∼= X⊕X ∇−→ X, πX◦η : k
0−→ X.

The product is also called the shuffle product and is explicitly given by

(x1 ⊗ ...⊗ xm) tt(xm+1 ⊗ ...⊗ xm+n) :=
∑

σ∈Shm,n

(x1 ⊗ ...⊗ xm+n)σ.

Keep in mind that σ is permutation of the tensor factors plus a possible sign twist depend-
ing on the dimension of the permuted elements.

Proof. By the universal property of coalgebras the projection πX ◦ µ extends as desired
and is given by

µ = ε+
∑
k≥0

(πX ◦ µ)⊗(k+1) ◦ δ̄k,

where δ̄ denotes the comultiplication on Âss
op

1 (X)⊗ Âss
op

1 (X). On Âss
op

1 (X) we have

δk(x1⊗ ...⊗xm) =
∑

0≤p0≤...≤pk≤m

(x1⊗ ...⊗xp0)⊗(xp0+1⊗ ...⊗xp1)⊗ ...⊗(xpk−1+1⊗ ...⊗xpk).

(7.3)
Moreover δ̄⊗k is δ⊗k ⊗ δ⊗k composed with the braiding bringing the tensor factors in the
right order. By definition under πX ◦ µ only those summands of

δ⊗k ⊗ δ⊗k((x1 ⊗ ...⊗ xm)⊗ (xm+1 ⊗ ...⊗ xm+n))

survive, which correspond to partitions p−1 := 0 ≤ p0 ≤ ... ≤ pk ≤ m =: pk+1 and
q−1 := 0 ≤ q0 ≤ ... ≤ qk ≤ n =: qk+1 with

pi − pi−1 ≤ 1, qi − qi−1 ≤ 1, (pi − pi−1) + (qi − qi−1) = 1, 0 ≤ i ≤ k + 1.

It follows that

(πX ◦ µ)⊗(k+1) ◦ δ̄k((x1 ⊗ ...⊗ xm)⊗ (xm+1 ⊗ ...⊗ xm+n)

is zero, if m+ n 6= k + 1 and is equal to the given formula otherwise.
2

Proposition 7.4.11
For X ∈ dg(k-Mod) the following holds.

(i) The projection Com1(X)
πX−→ X extends to a coalgebra map

Com1(X)
N−→ Âss

op

1 (X),

which is induced by the norm maps

Com(n)(X) = (X⊗n)Σn
N−→ X⊗n = Ass(n)(X), n ≥ 0.

218



7.4. Homological algebra

(ii) Dually the inclusion X −→ Âss
op

1 (X) extends to an algebra map, which again is N .

In particular Com1(X)
N−→ Âss

op

1 (X) is a bialgebra homomorphism.

Proof.

(i) By the universal property of coalgebras the projection extends as desired and is
given by

N = ε+
∑
n≥0

(πX)⊗(n+1) ◦ δn.

Using 7.2 we see that

(πX)⊗(n+1) ◦ δn(x1 · · ·xm) =

{ ∑
σ∈Σm

(x1 ⊗ ...⊗ xm)σ, m = n+ 1,
0, m 6= n+ 1,

which is precisely the norm map.

(ii) The map N restricts to the inclusion of X and is an algebra homomorphism by the
explicit formula of the shuffle product, because

Shp,q × (Σp × Σq)
∼−→ Σp+q, (σ, (α, β)) 7−→ σ ◦ (α⊕ β), p, q ≥ 0.

2

Corollary 7.4.12
For X ∈ dg(k-Mod) the norm homomorphism restricts to a map

Com1(X)
N−→
⊕
n≥0

(X⊗n)Σn =: Ĉom
op

1 (X) ⊂ Âss
op

1 (X),

which is an isomorphism in dimensions < p, if the following properties are satisfied.

(i) X is reduced, i.e. X0 = 0,

(ii) (p− 1)! ∈ k×,

(iii) X is flat over k in every dimension.

Proof. When X is flat in every dimension, then Ĉom
op

1 (X) is the cofree cocommutative
coalgebra generated by X, because the maps

(X⊗n)Σn ↪−→ (X⊗p ⊗X⊗q)Σp×Σq ∼←− (X⊗p)Σp ⊗ (X⊗q)Σq , p, q ≥ 0,

induce a coalgebra structure on Ĉom
op

1 (X). Hence by the dual statement of Proposition
7.4.8 we get an isomorphism

Ĉom
op

1 (X)
∼−→ Ĉom

op

1 (X+)⊗ Ĉom
op

1 (X−).
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Consider the following diagram

(X+ ⊗ k)⊕ (k ⊗X−)

��

(X+ ⊗ k)⊕ (k ⊗X−)

Com1(X+)⊗ Com1(X−)

o
��

N⊗N // Ĉom
op

1 (X+)⊗ Ĉom
op

1 (X−)

OO

Com1(X) N // Ĉom
op

1 (X).

o

OO

The upper and the outer square commute. As N is a bialgebra homomorphism, the uni-
versal property of algebras resp. coalgebras implies that also the lower square commutes.

Since (p − 1)! ∈ k×, the norm map Com1(X+)
N−→ Ĉom

op

1 (X+) is an isomorphism in
homogeneous degrees 0 ≤ r < p with inverse given by the composition

(Ĉom
op

1 )(r)(X±) = ((X±)⊗r)Σr

**

// Com(r)
1 (X±)

1/r!−→ Com(r)
1 (X±)

(Âss
op

1 )(r)(X±) = ((X±)⊗r) = Ass(r)
1 (X±)

44 44

The first appearence of a p-th tensor power in Com1(X±) resp. Ĉom
op

1 (X±) is in dimension
p, because X0 = 0 and hence the lowest possibly non-zero dimension of X− is 1 and of
X+ is 2. Hence N is an isomorphism in dimensions < p.

2
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8 Appendix: Tor-groups and
homology for simplicial objects

8.1 Simplicial rings and modules

Throughout this chapter we give sRing = s(Z-Ass1) the model structure induced by
Theorem 7.2.40 using the adjunction

Ass1(Ass1(ZX), Y ) = Set(X,UG(Y )),

where Z-Ass1
G−→ Grp sends a ring to underlying additive group. Similarly, for a simplicial

ring R ∈ sRing, we give R-sAb and sAb-R resp. the model structure induced by the
adjunctions

R-sAb(R⊗ ZX, Y ) = sGrp(X,U(Y )), sAb-R(ZX ⊗R, Y ) = sGrp(X,U(Y ))

where the forgetful functor R-sAb G−→ sSet resp. sAb-R G−→ sSet sends a module to its
underlying additive simplicial group.

For a simplicial object X we will denote by E•(X) −→ X the canonical functorial
almost free replacement of Corollary 7.2.32.

Definition 8.1.1
Let R ∈ sRing and X ∈ sAb-R as well as Y, Z ∈ R-sAb.

(i) TorR∗ (X, Y ) = π∗L(X ⊗R -)(Y ) = π∗L(-⊗R Y )(X) = π∗(X ⊗LR Y ) ∈ Ab,

(ii) Ext∗R(Y, Z) = π−∗RR-sAb(Y, -)(Z) = π−∗LR-sAb(-, Z)(Y ) ∈ Ab.

Proposition 8.1.2
Let k ∈ sCRing and f ∈ k-Ass(A,B), such that

f∗ : TorA+
∗ (k, π0B)

∼−→ TorB+
∗ (k, π0B).

Then f∗ : TorA+
∗ (k,M)

∼−→ TorB+
∗ (k,M) is an isomorphism, for all M ∈ π0B-Mod.

Proof. We will show by induction on n ≥ 0 that TorA+
∗ (k,M) −→ TorB+

∗ (k,M) is (n−1)-
connected, for all M ∈ π0B-Mod. Let K denote the kernel of F := π0B

(M) −� M and
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consider the associated long exact sequences

... ∂ // Tor
A+

0 (k,K)

��

// Tor
A+

0 (k, F )

o
��

// // Tor
A+

0 (k,M)

��

...
∂ // Tor

B+

0 (k,K) // Tor
B+

0 (k, F ) // // Tor
B+

0 (k,M).

It follows that Tor
A+

0 (k,M) −� Tor
B+

0 (k,M), which proves the case n = 0. Suppose the
statement holds for some n ≥ 0 and all M . Then using the induction hypothesis, for K
and M , the 5-lemma for the sequence

TorA+
n (k,K)

����

// TorA+
n (k, F )

o
��

// TorA+
n (k,M)

����

∂ // Tor
A+

n−1(k,K)

o
��

// Tor
A+

n−1(k, F )

o
��

TorB+
n (k,K) // TorB+

n (k, F ) // TorB+
n (k,M) ∂ // Tor

B+

n−1(k,K) // Tor
B+

n−1(k, F )

yields TorA+
n (k,M)

∼−→ TorB+
n (k,M). By applying the same argument for M = K, we

also get TorA+
n (k,K)

∼−→ TorB+
n (k,K). Applying the 5-lemma again for the sequence

Tor
A+

n+1(k,K)

��

// Tor
A+

n+1(k, F )

o
��

// Tor
A+

n+1(k,M)

��

∂ // TorA+
n (k,K)

o
��

// TorA+
n (k, F )

o
��

Tor
B+

n+1(k,K) // Tor
B+

n+1(k, F ) // Tor
B+

n+1(k,M) ∂ // TorB+
n (k,K) // TorB+

n (k, F )

we also get Tor
A+

n+1(k,M) −� Tor
B+

n+1(k,M), proving that TorA+
∗ (k,M) −→ TorB+

∗ (k,M)
is n-connected.

2

8.1.1 Tor-spectral sequences

Proposition 8.1.3
Let R ∈ sRing and Y ∈ R-sAb.

(i) The action R⊗Y −→ Y defines an action πnR⊗πnY −→ πn(R⊗Y ) −→ πnY, n ≥ 0.

We have [ry] = 0 in πnY , for all [r] ∈ πnR and [y] ∈ πnY , when n > 0.

(ii) The action R0⊗Y −→ R⊗Y −→ Y defines an action π0R⊗πnY −→ πnY, n ≥ 0.

Proof. The proof is exactly the same as in Proposition 7.2.39.

(i) Let r ∈ ker(NnR
d−→ Nn−1R) =

⋂
0≤i≤n ker di and y ∈ ker(NnY

d−→ Nn−1Y ). As
n > 0, we can define

z = s0(r) · s0(y)− s0(r) · s1(y) ∈ Yn+1.
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Then using the simplicial identities, we get

di(z) =


r · y − r · s0d0(y) = r · y − r · 0 = r · y, i = 0,
r · y − r · y = 0, i = 1,
s0d1(r) · s0d1(y)− s0d1(r) · y = 0 · 0− 0 · y = 0, i = 2,
s0di−1(r) · s0di−1(y)− s0di−1(r) · s1di−1(y) = 0, 3 ≤ i ≤ n.

It follows that z ∈ Nn+1Y and hence [ry] = [d(z)] = 0 in πnY .

(ii) The constant simplicial ring of zero vertices R0 ≤ R acts on πnY via

R0 −→ sAb(Y )
πn−→ Ab(πnY ), r 7−→ πn(r · -).

Moreover, for every z ∈ R1, there is a simplicial homotopy (d0z · -) ' (d1z · -) of
homomorphisms of simplicial abelian groups, given by

∆1
nYn −→ Yn, ιs(y) 7−→ s∗(r) · y.

In particular the action R0 −→ k-Mod(πnY ) factors over π0R.

2

Proposition 8.1.4 (Quillen)
For R ∈ sRing and X ∈ sAb-R as well as Y ∈ R-sAb, there are natural spectral sequences

(i) E2
p,q = πp TorR•q (X•, Y•) ⇒ TorRp+q(X, Y ),

where TorR•q (X•, Y•) means taking the Tor-group dimensionwise.

(ii) E2
p,q = Torπ∗Rp (π∗X, π∗Y )q ⇒ TorRp+q(X, Y ),

the left object being the q-th homogeneous component of the graded Torπ∗Rp (π∗X, π∗Y ).

(iii) E2
p,q = TorRp (X, πqY ) ⇒ TorRp+q(X, Y ),

where πqY ∈ R-sAb via R⊗ πqY −� π0R⊗ πqY
µ−→ πqY using Proposition 8.1.3.

(iv) E2
p,q = TorRp (πqX, Y ) ⇒ TorRp+q(X, Y ).

Proof. See [Qui67] II, §6: Theorem 6.
2

The next corollary demonstrates that a dimensionwise flat replacement will be sufficient
to compute Tor-groups.

Corollary 8.1.5
Let k ∈ CRing and R ∈ s(k-Ab), as well as X ∈ sAb-R and Y ∈ R-sAb. Suppose
Xn ∈ Ab-Rn is flat, for all n ≥ 0.

Then the natural map X ⊗LR Y
'−→ X ⊗R Y is a weak equivalence.

In particular, if Yn, Rn ∈ k-Mod are flat, for all n ≥ 0, then B•(X,R, Y ) ' X ⊗LR Y .
By symmetry the same also holds, if we interchange the roles of X and Y .
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Proof. Let E −→ id be the functorial almost free replacement in R-sAb of Corollary
7.2.32. Then X ⊗R E(Y ) is the diagonal of the bisimplicial k-module

Xp ⊗Rp Eq(Yp), p, q ≥ 0.

where E −→ id is the almost free replacement in Rp-Ab. The associated spectral sequence
(cf. Theorem 7.3.18) is the first one of Proposition 8.1.4

E2
p,q = πpπq(X ⊗R E(Y )) = πp TorR•q (X•, Y•) ⇒ TorRp+q(X, Y ).

Hence by assumption on X we get

E2
p,q =

{
πp(X ⊗R Y ), q = 0,
0, q > 0,

which proves that the spectral sequence collapses, so that the natural map X ⊗LR Y =
X ⊗R E(Y ) −→ X ⊗R Y is a weak equivalence.

Now if Yn, Rn ∈ k-Mod are flat, for all n ≥ 0, then the free/forgetful functor adjunction

R-Ab(R⊗M,N) = s(k-Mod)(M,U(N))

induces a weak equivalence F (Y )
'−→ Y with F (Y )n = (Rn)⊗n+1 ⊗ Yn being flat over

Rn, for all n ≥ 0. Hence the maps X ⊗LR Y
'←− X ⊗LR F (Y )

'−→ X ⊗R F (Y ) are weak
equivalences. As X ⊗R F (Y ) = B•(X,R, Y ), this finishes the proof.

2

The following Corollary will be crucial to construct the generalized Hochschild-Serre
spectral sequences in the situation of simplicial groups and Lie algebras.

Corollary 8.1.6
For f ∈ sRing(R, S), X ∈ sAb-S and Y ∈ R-sAb there is a converging spectral sequence

E2
p,q = TorSp (X,TorRq (S, Y )) ⇒ TorRp+q(X, Y ).

Proof. Let EY
'−→ Y be an almost free replacement in R-sAb. Then S ⊗R EY is almost

free in S-sAb, implying that

TorS∗ (X,S ⊗R EY ) = π∗(X ⊗S S ⊗R EY ) = π∗(X ⊗R EY ) = TorR∗ (X, Y ).

Thus the Tor spectral sequence of Proposition 8.1.4 (iii) is

TorSp (X,TorRq (S, Y )) +3 TorRp+q(X, Y )

TorSp (X, πq(S ⊗R EY )) +3 TorSp+q(X,S ⊗R EY ).

2
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8.1.2 Tor-groups and homotopy colimits

We need the following generalization of Shapiro’s lemma.

Proposition 8.1.7
Let k ∈ CRing and c ∈ k-Ass1(A,B), such that B is flat over A.

Then, for all X ∈ Mod-A and Y ∈ B-Mod, there is a natural weak equivalence

X ⊗A E•c∗(Y )
'−→ X ⊗A c∗(E•Y ) = (X ⊗A B)⊗B E•Y.

In particular TorA∗ (X, Y ) = TorB∗ (X ⊗A B, Y ).

Proof. For S ∈ k-Ass1 consider the free/forgetful functor adjunction

S-Ab(FS(X), Y ) = Set(X,US(Y )).

Moreover we let (c!, c
∗) denote the adjunction

B-sAb(c!X, Y ) = A-sAb(X, c∗Y ),

i.e. c! = (B ⊗A -) and c∗ is the forgetful functor. Then c induces a map of monads

(UAFA) −→ (UBFB) and a map of right (UAFA)-modules FA
η−→ c∗c!FA = c∗FB (cf.

Remark 7.2.33). In particular we obtain a weak equivalence

E•c
∗Y = B•(FA, UAFA, UB(Y ))

'−→ B•(c
∗FB, UBFB, UB(Y )) = c∗E•Y,

inducing the desired map. By Corollary 8.1.5 it is also a weak equivalence, because B is
flat over A and thus c∗E•Y

'−→ c∗Y is a dimensionwise flat replacement.

2

Proposition 8.1.8
Let k ∈ CRing and Ai ∈ k-Ass and A =

∐
iAi.

Then the right (Ai)+-module inclusions Ai ↪−→ A extend to a right A+-module isomor-
phism ⊕

i∈I

Ai ⊗(Ai)+ A+
∼−→ A.

In particular, if Ai ∈ k-Mod is flat, for all i, then Proposition 8.1.7 yields a natural weak
equivalence ⊕

i

B•(Ai, (Ai)+, (ιi)
∗Y )

'−→ B•(A,A+, Y ), Y ∈ A+-Mod.

On homotopy groups, we thus have
⊕

i Tor(Ai)+
∗ (Ai, Y ) = TorA+

∗ (A, Y ) by Corollary 8.1.5.

Proof. The algebra A is the free algebra generated by the subalgebras Ai. Hence explicitly
we have

A+ =
⊕

i1 6=... 6=in,
n≥0

Ai1 ⊗ ...⊗ Ain = (Ai)+ ⊗
⊕

i 6=i1 6=... 6=in,
n≥0

Ai1 ⊗ ...⊗ Ain , i ∈ I.
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It follows that ⊕
i

Ai ⊗(Ai)+ A+ =
⊕

i 6=i1 6=... 6=in,
n≥0

Ai ⊗ Ai1 ⊗ ...⊗ Ain = A,

which is A+-linear from the right and induced by the inclusions Ai ↪−→ A. Now suppose
Ai is free over k, for all i. Then A+ is free over (Ai)+, for all i. Using Proposition 8.1.7
this proves

TorA+
∗ (A,M) =

⊕
i

TorA+
∗ (Ai ⊗(Ai)+ A+,M) =

⊕
i

Tor(Ai)+
∗ (Ai,M).

2

Proposition 8.1.9
Let k ∈ CRing and A ∈ CAT(I, k-Ass1), for some I ∈ Cat.

Then there is a natural map of bisimplicial k-modules

hocolim
I

C•(A,X) −→ C•(hocolim
I

A,X), X ∈ (colim
I

A, colim
I

A)-Mod,

where the homotopy colimits are taken dimensionwise.

Proof. Let k-Act be the category, whose objects are pairs (A,X), where A ∈ k-Ass1 and
X ∈ (A,A)-Mod. Its homomorphisms are given by

k-Act((A,X), (B, Y )) =
∐

f∈k-Ass1(A,B)

(A,A)-Mod(X, f ∗Y ) ⊂ k-Ass1(A,B)×k-Mod(X, Y ),

with composition (f, g) ◦ (f ′, g′) = (ff ′, gg′). Given a set of objects (Ai, Xi) ∈ k-Act,
define A =

∐
iAi ∈ k-Ass1 and X =

⊕
iA ⊗Ai Xi ⊗Ai A ∈ (A,A)-Mod. Then (A,X) =∐

i(Ai, Xi) in k-Act, because

k-Act((A,X), (B, Y ))

={(f, g) ∈ k-Ass1(A,B)× k-Mod(X, Y ); g(axa′) = f(a)g(x)f(a′)}

={(f, g) ∈
∏
i

k-Ass1(Ai, B)× k-Mod(Xi, Y ); gi(axa
′) = fi(a)gi(x)fi(a

′)}

=
∏
i

k-Act((Ai, Xi), (B, Y )).

In particular we can define homotopy colimits in A-Act and in our given situation we have
hocolim I(A,X) = (hocolim I A,X

′), for some bimodule X ′ over hocolim I A. As the inclu-

sion maps Ai
ιi−→ colim I A define a natural transformation (A,X) −→ const(colim I A,X)

in CAT(I, k-Act), we get a map

(hocolim
I

A,X ′) = hocolim
I

(A,X) −→ (colim
I

A,X).
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It factors over (hocolim I A,X), because the action of hocolim I A on X is induced by the
action of colim I A. Now using that the construction C• defines a functor

k-Act −→ s(k-Mod), (A,X) 7−→ C•(A,X),

we get the desired map as the composition

hocolim
I

C•(A,X) −→ C• hocolim
I

(A,X) −→ C•(hocolim
I

A,X).

2

Proposition 8.1.10
Let k ∈ CRing and A ∈ CAT(I, k-Ass), for some I ∈ Cat.

Then there is a natural map of simplicial k-modules

hocolim
I

B(k,A+, Y ) −→ B(k, hocolim
I

A+, Y ), Y ∈ (colim
I

A+)-Mod,

which is a weak equivalence, if BI is contractible and Ai is a flat k-module, for all i ∈ I.

Proof. Setting X = Y ⊗ k ∈ (colim I A+, colim I A+)-Mod, the map is the diagonal of
the map of Proposition 8.1.9. We claim that the diagonal of the following commutative
square of bisimplicial k-modules is homotopy cocartesian

BIY // Y

hocolim I B0(k,A+, Y )

��

// B0(k, hocolim I A+, Y )

��
hocolim I B•(k,A+, Y ) // B•(k, hocolim I A+, Y ).

This will imply the statement, because if BI is contractible, then the upper horizontal map
and thus also the lower horizontal map is a weak equivalence. As the diagonal perserves
weak equivalences by Corollary 7.3.19 or Corollary 7.3.22, it suffices to check that the
square is homotopy cocartesian in every dimension n ≥ 0 of the homotopy colimit. By
setting

S(i, n) :=
∐

i1,...,in∈I

I(i, i1)× ...× I(in−1, in), i ∈ I, n ≥ 0,

we see that the in an arbitrary category cocomplete category C, the simplicial homotopy
colimit is given by

(hocolim
I

C)n =
∐

i0,...,in∈I

I(i0,i1)×...×I(in−1,in)Ci0 =
∐
i∈I

S(i,n)Ci, C ∈ CAT(I, C), n ≥ 0.
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So in dimension n ≥ 0 (in homotopy colimit direction), the diagram from above can be
identified with the outer square of the diagram∐

i
S(i,n)Y

'
��

// Y

'
��∐

i
S(i,n)B•((Ai)+, (Ai)+, Y )

����

// B•(
∐

i
S(i,n)(Ai)+,

∐
i
S(i,n)(Ai)+, Y )

����∐
i
S(i,n)B•(k, (Ai)+, Y ) // B•(k,

∐
i
S(i,n)(Ai)+, Y ).

Here the lower vertical maps are induced by the augmentation maps and the upper vertical
maps are given by the extra-degeneracies s−1 = η ⊗ id for the bar constructions in the
middle. As the latter are weak equivalences, it suffices to check that the lower square is
homotopy cocartesian. As the two vertical maps are surjective, we can equivalently prove
that it is homotopy cartesian. But the induced map on their kernel is the map∐

i

S(i,n)B•(Ai, (Ai)+, Y )
'−→ B•(

∐
i

S(i,n)Ai,
∐
i

S(i,n)(Ai)+, Y ),

which by Proposition 8.1.8 is a weak equivalence, as by assumption Ai is flat over k, for
all i ∈ I. This concludes the proof.

2

Proposition 8.1.11
Let k ∈ sCRing and c ∈ k-Ass(A,B), such that in every dimension

cn ∼= ιAn : An −→ An ∗ (B/A)n, n ≥ 0,

and (B/A)n = Bn ∗An 0 ∈ k-Ass is a flat k-module, for all n ≥ 0.
Then, for all M ∈ (B/A)+-Mod, there is a natural long exact sequence

... −→ Tor
(B/A)+

2 (k,M)
∂−→ Tor

A+

1 (k,M) −→ Tor
B+

1 (k,M) −→ Tor
(B/A)+

1 (k,M).

Proof. There are two ways to prove this. One can either use the properties of the map
c+ ∈ k-Ass1(A+, B+) to show that the quotient map

hocolim (k ← A+
c→ B+)

'−→ (B/A)+

is a weak equivalence. Then applying Proposition 8.1.10 we obtain a homotopy cocartesian
square

B•(k,A+,M)

��

// B•(k,B+,M)

��
B•(k, k,M) // B•(k, (B/A)+,M).

As B•(k, k,M)
'−→M , this yields the long exact sequence.
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Alternatively one can use Proposition 8.1.8 to prove the result more directly, which
will be done in more detail in the following. First note that for any associative algebra
R ∈ k-Ass and M ∈ R-Mod, the long exact Tor-sequence to

0 −→ R −→ R+ −→ k −→ 0

yields natural maps ∂ : Tor
R+

n+1(k,M) −→ TorR+
n (R,M), being isomorphisms for n ≥ 1

and injective for n = 0. Now by Proposition 8.1.8 the inclusion A −→ B induces an exact
sequence of right B+-modules

0 −→ A⊗A+ B+ −→ B −→ C −→ 0,

where the cokernel C is isomorphic to (B/A)n⊗((B/A)n)+ (Bn)+, in every dimension n ≥ 0.
We get an induced long exact sequence by applying TorB+

∗ (-,M) and the statement follows
by identifying

TorB+
∗ (A⊗A+ B+,M) = TorA+

∗ (A,M), TorB+
∗ (C,M) = Tor(B/A)+

∗ (B/A,M).

By assumption (B/A)n is flat and Bn is the coproduct of An and (B/A)n in every
dimension n ≥ 0. So the first equality follows from Proposition 8.1.7. We denote by
ES
• (X)

'−→ X an almost free replacement of X ∈ S+-Mod, for S ∈ k-Ass. We have

C ⊗B+ E
B
• (M)

'←− C ⊗B+ E
B
• E

B/A
• (M)

'−→ C ⊗B+ E
B/A
• (M).

Indeed, since Bn
∼= An ∗ (B/A)n and Cn ∼= (B/A)n ⊗((B/A)n)+ (Bn)+ is free relative to

((B/A)n)+, in every dimension n ≥ 0, the right map is a weak equivalence. This proves
the second identity.

2

8.2 Simplicial groups

8.2.1 Homology and cohomology

Definition 8.2.1
The homology and cohomology of a simplicial group G ∈ sGrp with coefficients M ∈
k[G]-sAb, where k ∈ sRing, are defined as

(i) H∗(G,M) = Tork[G]
∗ (k,M) = π∗(k ⊗Lk[G] M) = L∗(-⊗k[G] -)(k,M),

(ii) H∗(G,M) = Ext∗k[G](k,M) = R−∗k[G]-sAb(-, -)(M,k).

Remark 8.2.2
Let k ∈ sRing, G ∈ sGrp and M ∈ k[G]-sAb.

Then by Proposition 8.1.4 (i) and (iii) we have spectral sequences

(i) E2
p,q = πpHq(G,M) ⇒ Hp+q(G,M),

where Hq(G,M)p = Hq(Gp,Mp), for all p, q ≥ 0.
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(ii) E2
p,q = Hp(G,HqM) ⇒ Hp+q(G,M),

where HqM ∈ k[G]-sAb via k[G]⊗HqM −� π0k[G]⊗HqM
µ−→ HqM .

Corollary 8.2.3
Let k ∈ sRing, G ∈ sGrp and M ∈ k[G]-sAb.

(i) H0(G,M) = (π0M)π0G = (π0k)⊗(π0k)[π0G] (π0M),

(ii) H1(G,M) = (π0G)/[π0G, π0G]⊗M , if G acts trivially on a constant M ∈ Ab.
If G is (r − 1)-reduced, for some r ≥ 1, we also have Hr+1(G,M) = (πrG)⊗M .

Proof. In the notation of (i) of the preceding remark, we have natural isomorphisms

H0(G,M)p = H0(Gp,Mp) = Tor
kp[Gp]
0 (kp,Mp) = kp ⊗kp[Gp] Mp = (Mp)Gp , p ≥ 0.

(i) Using the spectral sequence loc. cit., we get an isomorphism

H0(G,M) = E2
0,0 = π0H0(G,M) = π0(k⊗k[G]M) = (π0k)⊗(π0k)[π0G](π0M) = (π0M)π0G,

where the fourth equality follows from the fact that tensor product are right exact
and for the sequence

µ⊗ id− id⊗ µ : k ⊗ k[G]⊗M −→ k ⊗M,

taking the cokernel, which is k⊗k[G]M , commutes with taking the colimit over ∆op,
which is application of π0.

(ii) If M ∈ Ab is constant and G acts trivially, then we have

H1(G,M)p = H1(Gp,M) = Gp/[Gp, Gp]⊗M, p ≥ 0,

proving that π0H1(G,M) = (π0G)/[π0G, π0G] ⊗M , as tensoring with M and the
abelianization functor of groups are left adjoints and thus commute with the colimit
over ∆op, which is application of π0. So the result follows from the low term exact
sequence for the spectral sequence

H2(G,M) −→ E2
2,0

d−→ E2
0,1 −→ H1(G,M) −→ E2

1,0 −→ 0,

since H0(G,M)p = MGp = M is constant and thus

E2
p,0 = πpH0(G,M) = 0, p ≥ 1.

Note that in the second case, the complex Hq(G•,M) is (r − 1)-reduced, for q ≥ 1,
and hence

E2
p,q = πpHq(G,M) = 0, 0 < p < r, q ≥ 1.

So we can deduce an exact sequence

Hr+2(G,M) −→ E2
r+2,0

d−→ E2
r,1 −→ Hr+1(G,M) −→ E2

r+1,0 −→ 0,

and the statement follows by using the isomorphism πrH1(G,M) = (πrG)⊗M .

2
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8.2.2 The Homology spectral sequence for a fibration

We may deduce the following Proposition, which is probably well-known.

Proposition 8.2.4
Let k ∈ sRing, N �G ∈ sGrp and M ∈ k[G]-sAb. Then there is a spectral sequence

E2
p,q = Hp(G/N,Hq(N,M)) ⇒ Hp+q(G,M),

where Hq(N,M) ∈ k[G/N ]-sAb via

k[G/N ]⊗Hq(N,M) −� π0k[G/N ]⊗Hq(N,M)
µ−→ Hq(N,M).

Proof. By Corollary 8.1.6 we have a spectral sequence

E2
p,q = Tork[G/N ]

p (k,Tork[G]
q (k[G/N ],M)) ⇒ Tor

k[G]
p+q (k,M) = Hp+q(G,M).

Since k[G] is free over k[N ] every almost free replacement of M in k[G]-sAb is also almost
free over k[N ]. This implies

Tork[G]
∗ (k[G/N ],M) = π∗(k[G/N ]⊗k[G] EM) ∼= π∗(k ⊗k[N ] k[G]⊗k[G] EM)

∼= π∗(k ⊗k[N ] EM) = Tork[N ]
∗ (k,M) = H∗(N,M),

and hence E2
p,q = Tork[G/N ]

p (k,Tork[G]
q (k[G/N ],M)) = Hp(G/N,Hq(N,M)).

2

8.2.3 Homology of free groups

Proposition 8.2.5
For every G ∈ sGrp there is a natural epimorphism of simplicial abelian groups

Z̃BG −� Z̃B(G/[G,G]) −� B(G/[G,G]).

It is a weak equivalence, if G is almost free.
In particular H∗+1(G,Z)

∼−→ π∗L(-/[-, -])(G), for all G ∈ sGrp.

Proof. The first map is induced by the natural epimorphism G −� G/[G,G]. Using the
B(G/[G,G]) ∈ sAb, the second map is the counit of the free/forgetful functor adjunction

sAb(Z̃X, Y ) = sSet∗(X, Y ).

Now suppose G is almost free and consider both objects as the diagonal of a bisimplicial
object, where the second dimension is induced by the functor B. We compute the first
pages of the associated spectral sequences (cf. Theorem 7.3.18) as

E1
p,q = H̃p(BGq ∧ Z) = H̃p(Gq,Z)

∼−→ πp(B(Gq/[Gq, Gq]) =

{
Gq/[Gq, Gq], p = 1,
0, p 6= 1.
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Moreover a generator x ∈ Gq induces elements [x − 1] = [x] ∈ H1(BGq ∧ Z), which is
mapped to [x] ⊗ a ∈ π1(Gq/[Gq, Gq]) = Gq/[Gq, Gq] ⊗ A, for all a ∈ A. This proves that
the given map induces an isomorphism.

We give sAb the model structure of Theorem 7.2.40, induced by the adjunction

sAb(X/[X,X], Y ) = sGrp(X, I(Y )),

where I is the inclusion functor. Since I preserves (trivial) fibrations, its left adjoint
preserves (trivial) cofibrations and so it has a total left derived functor by Theorem
7.1.26. Hence we have

BG ∧ Z '←− BE(G) ∧ Z '−→ B(EG/[EG,EG]) = BL(-/[-, -])(G), G ∈ sGrp,

where EG
'−→ G is an almost free replacement. As B shifts the homotopy groups by 1

dimension, we get

H∗+1(G,Z) = π∗+1BG ∧ Z = πn+1BL(-/[-, -])(G) = π∗L(-/[-, -])(G).

2

8.2.4 The Whitehead Theorem

The following proposition is completely analogous to the Whitehead Theorem for simpli-
cial profinite groups, presented in [Qui69b].

Proposition 8.2.6 (Whitehead-Quillen)
Let f ∈ sGrp(G,H) and c ≥ 0.

(i) Suppose π0G = 1.

Then G is c-connected, if and only if H̃∗(G,Z) is (c+ 1)-connected.

(ii) Suppose π0f is an isomorphism.

Then f is c-connected, if and only if H∗(f,Z[π0H]) is (c+ 1)-connected.

Proof.

(i) By Corollary 8.2.3 (ii) we have

H1(G,Z) = π0G/[π0G, π0G] = 0,

so there is nothing to show for the case c = 0.

Suppose we have proven the equivalence for all simplicial groups, for some c ≥ 0.
Let G ∈ sGrp be connected and suppose H̃∗(G,Z) is (c + 2)-connected. Since G is
connected, by Proposition 7.2.38 we have a short exact sequence of simplicial groups

1 −→ ΩG −→ FG
dn+1−→ G −→ 1.
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Since G is connected, the action of G on H∗(ΩG,Z) is trivial, implying that

H∗(G,H0(ΩG,Z)) = H∗(G,Z), H0(G,H∗(ΩG,Z)) = H∗(ΩG,Z),

by Corollary 8.2.3 (i). In particular the homology spectral sequence of Proposition
8.2.4

E2
p,q = Hp(G,Hq(ΩG,Z)) ⇒ Hp+q(FG,Z)

satisfies assumption (F) of Proposition 8.4.6 (i). As FG is contractible, H̃∗(FG,Z)
is acyclic. Hence the map H∗(FG,Z) −→ H∗(G,Z) is (c+ 1)-connected, because by
assumption H̃∗(G,Z) is (c + 2)-connected. So by Proposition 8.4.6 (i) we see that
H̃∗(ΩG,Z) is (c + 1)-connected. Moreover π0ΩG ∼= π1G is abelian by Proposition
7.2.39 (iii), implying that

π0ΩG = π0ΩG/[π0ΩG, π0ΩG] = H1(ΩG,Z),

by Corollary 8.2.3 (ii). But the first homology group is zero, because 1 ≤ (c+ 1). So
by induction hypothesis ΩG is c-connected or equivalently G is (c+ 1)-connected.

Vice versa, if G is (c + 1)-connected, then ΩG is c-connected and by induction hy-
pothesis H̃∗(ΩG,Z) is (c + 1)-connected. Equivalently H∗(FG,Z) −→ H∗(G,Z) is
(c + 1)-connected by Proposition 8.4.6 (i) again, proving that H̃∗(G,Z) is (c + 2)-
connected, as FG is contractible. Be aware that we still have a surjection in dimen-
sion (c+ 2).

(ii) In the model category of simplicial groups we can factor f into a trivial cofibration

followed by a fibration G
'
�−→ G′

f ′

−_ H. By replacing f by f ′ we can therefore
assume that f is a fibration. Then Proposition 7.2.35 implies that f is surjective,
because π0f is an isomorphism. Suppose H∗(f,Z[π0H]) is (c + 1)-connected. By
Corollary 8.2.3 we have

H0(H,H∗(N,Z[π0H])) = (H∗(N,Z)⊗ Z[π0H])π0H = H∗(N,Z),

H∗(H,H0(N,Z[π0H])) = H∗(H,Z[π0H]),

so again hypothesis (F) of Proposition 8.4.6 (i) holds for the homology spectral
sequence

E2
p,q = Hp(H,Hq(N,Z[π0H])) ⇒ Hp+q(G,Z[π0H]),

and it follows that H∗(N,Z) is (c+ 1)-connected. Since π0f is an isomorphism, the
long exact sequence yields an exact sequence

π1G
π1f−→ π1H

∂−→ π0N −→ 1,

proving that π0N is abelian. As 1 ≤ (c+ 1), we get

π0N = (π0N)/[π0N, π0N ] = H1(N,Z) = 0,

by Corollary 8.2.3 (ii). So N satisfies the hypothesis of (i) and therefore must be
c-connected. Equivalently f is c-connected.

Vice versa if f is c-connected, so is N and thus H∗(N,Z) is (c+ 1)-connected by (i).
Equivalently H∗(f,Z[π0H]) is (c+ 1)-connected by the argument using the spectral
sequence.

2
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8.3 Simplicial Lie algebras

Proposition 8.3.1
Let k ∈ CRing. For every g ∈ s(k-Lie), the following holds.

(i) πng is a subquotient Lie algebra of gn, for all n ≥ 0.

(ii) πng is abelian, for all n ≥ 1.

(iii) The adjoint action of g0 on gn induces a Lie algebra action of π0g on πng, for n ≥ 1.

Proof. The proof is exactly the same as its multiplicative analogue Proposition 7.2.39.

(i) The submodule Nng ≤ gn is normal, being the intersection of kernels. Since

[x, d0(y)] = [d0s0(x), d0(y)] = d0[s0(x), y] ∈ d0Nn+1g, x ∈ gn, y ∈ Nn+1g,

also d0Nn+1g is normal in gn. It follows that d0Nn+1g also is normal ker(Nng
d−→

Nn−1(g)), proving that πng is a subquotient Lie algebra of gn.

(ii) Taking the adjoint action in every dimension we get Ad(g) ∈ Uk(g)-sAb. By Propo-
sition 8.1.3 (i) we get an induced action

πng⊗ πng −→ πnUk(g)⊗ πng −→ πng, x⊗ y 7−→ [x, y],

which is trivial in dimension n > 0. Equivalently πng is abelian, for all n > 0.

(iii) By Proposition 8.1.3 (ii) we get an induced action of π0g −→ π0Uk(g) on πng, for
every n ≥ 0.

2

8.3.1 Homology and cohomology

Definition 8.3.2
For k ∈ CRing and g ∈ s(k-Lie) a simplicial Lie algebra, M ∈ Uk(g)-sAb.

The (dimensionwise) homology and cohomology of g with coefficients M is

(i) H∗(g,M) = TorUk(g)
∗ (k,M) = L∗(k ⊗Uk(g) -)(M) = π∗(k ⊗LUk(g) M),

(ii) H∗(g,M) = Ext∗Uk(g)(k,M) = R−∗Uk(g)-sAb(k, -)(M) = R−∗Uk(g)-sAb(-, -)(k,M).

Remark 8.3.3
For k ∈ CRing and g ∈ s(k-Lie) a simplicial Lie algebra, M ∈ Uk(g)-sAb.

(i) For constant g ∈ k-Lie its homology agrees with the usual Lie algebra homology.

(ii) If h −→ g is a homotopy equivalence, then so is Uk(h) −→ Uk(g) and hence
H∗(h,M)

∼−→ H∗(g,M) by Proposition 8.1.4 (ii).
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It is not clear right from the definition, wheather Uk preserves general weak equivalences
between Lie algebras. Therefore it is also not clear, if this dimensionwise homology is a
homotopy invariant for simplicial Lie algebas.

Remark 8.3.4
Let k ∈ CRing, g ∈ s(k-Lie) and M ∈ Uk(g)-sAb.

Then by Proposition 8.1.4 (i) and (iii) we have spectral sequences

(i) E2
p,q = πpHq(g,M) ⇒ Hp+q(g,M),

where Hq(g,M)p = Hq(gp,Mp), for all p, q ≥ 0.

(ii) E2
p,q = Hp(g, HqM) ⇒ Hp+q(g,M),

where HqM ∈ g-sAb via Uk(g)⊗HqM −� π0Uk(g)⊗HqM
µ−→ HqM .

Corollary 8.3.5
Let k ∈ CRing, g ∈ s(k-Lie) and M ∈ Uk(g)-sAb.

(i) H0(g,M) = H0(g,M) = (π0M)π0g = (π0k)⊗Uk(π0g) (π0M),

(ii) H1(g,M) = (π0g)/[π0g, π0g]⊗M , if g acts trivially on a constant M ∈ k-sAb.

Proof. In the notation of Remark 8.3.4 (i) we have natural isomorphisms

H0(g,M)p = H0(gp,Mp) = Tor
Uk(E•gp)
0 (k,Mp) = k ⊗Uk(gp) Mp = Mp/[gp,Mp], p ≥ 0.

(i) Using the spectral sequence loc. cit., we get an isomorphism

H0(G,M) = E2
0,0 = π0H0(g,M) = (π0M)/[π0gp, π0M ] = k ⊗Uk(π0g) (π0M).

(ii) If M ∈ k-sAb is constant and g acts trivially, then we have

H1(g,M)p = H1(gp,M) = gp/[gp, gp]⊗M, p ≥ 0,

proving that π0H1(g,M) = (π0g)/[π0g, π0g]⊗M . So the result follows from the low
term exact sequence for the spectral sequence

H2(g,M) −→ E2
2,0

d−→ E2
0,1 −→ H1(g,M) −→ E2

1,0 −→ 0,

since H0(g,M)p = M/[gp,M ] = M is constant and thus

E2
p,0 = πpH0(g,M) = 0, p ≥ 1.

2

Remark 8.3.6
Let k ∈ CRing, n� g ∈ s(k-Lie) and M ∈ Uk(g)-sAb.

Then by Corollary 8.1.6 there is a spectral sequence

E2
p,q = Hp(g/n,TorUk(g)

q (Uk(g/n),M)) ⇒ Hp+q(g,M).
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However it is unclear (at least to the author), wheatherH∗(n,M) −→ TorUk(g)
∗ (Uk(g/n),M)

is an isomorphism in general. We will later see by using the Theorem of Poincaré, Birkhoff
and Witt 3.3.10, that this is true, if g is flat over k in every dimension. For the non-
simplicial case this is better known as the Hochschild-Serre spectral sequence [GH53]. In
[Wei94] 7.5.2, the map of question is claimed to be an isomorphism without any hint of a
proof.

8.3.2 Derived homology and cohomology

We already pointed out two possible flaws of the (dimensionwise) homology of simplicial
Lie algebras, as it was introduced in the preceding section:

(i) It is unclear, wheather dimensionwise homology is a homotopy invariant.

(ii) The homology spectral sequence 8.3.6 may have a dissatisfactory form for later
applications.

In this section we therefore introduce derived homology and cohomology of simplicial
Lie algebras to fix these problems. It is also shown that it agrees with dimensionwise
homology in the most important cases.

Definition 8.3.7
For k ∈ CRing and g ∈ s(k-Lie) a simplicial Lie algebra, M ∈ Uk(g)-sAb.

The derived homology and derived cohomology of g with coefficients in M are
defined as

(i) HL
∗ (g,M) = H∗(E•g,M) = TorUk(E•g)

∗ (k,M),

(ii) H∗L(g,M) = H∗(E•g,M) = Ext∗Uk(E•g)(k,M).

where E•g
'−→ g is an almost free replacement of g.

Remark 8.3.8
Let k ∈ CRing, g ∈ s(k-Lie) and M ∈ Uk(g)-sAb.

Then by Proposition 8.1.4 (i) and (iii) we have spectral sequences

(i) E2
p,q = HpH

L
q (g,M) ⇒ HL

p+q(g,M),

where HL
q (g,M)p = HL

q (gp,Mp), for all p, q ≥ 0.

(ii) E2
p,q = HL

p (g, HqM) ⇒ HL
p+q(g,M),

where HqM ∈ g-sAb via Uk(E•g)⊗HqM −� π0Uk(g)⊗HqM
µ−→ HqM .

Remark 8.3.9
Let k ∈ CRing, g ∈ s(k-Lie) and M ∈ Uk(g)-sAb.

Then from Corollary 8.3.5 we get isomorphisms

(i) HL
0 (g,M) = H0(E•g,M) = H0(g,M) = (π0M)π0g = (π0k)⊗Uk(π0g) (π0M),
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(ii) HL
1 (g,M) = H1(E•g,M) = H1(g,M) = (π0g)/[π0g, π0g]⊗M , if g acts trivially on

a constant M ∈ k-Mod.

Lemma 8.3.10
Let k ∈ CRing and X ∈ s(k-Mod) flat over k.

Then every almost free replacement E•(X) −→ X in s(k-Mod) induces a weak equiva-
lence Com1(E•(X)) −→ Com1(X).

Proof. Considering E•(X) as a bisimplicial object and using Quillen’s spectral sequence

(cf. Theorem 7.3.18), it suffices to prove that Com1(E•Xn)
'−→ Com1(Xn) is a weak

equivalence, for all n ≥ 0. In other words, we can assume that X is a constant simplicial
k-module. As X is flat over k, it is a filtered colimit of free k-modules. As E•, π∗ and
Com1 commute with filtered colimits, we therefore can assume that X is a free k-module.
But then E•(X) −→ X and thus also Com1(E•X)

'−→ Com1(X) is a simplicial homotopy
equivalence. In particular it is a weak equivalence.

2

Proposition 8.3.11
Let k ∈ CRing and g ∈ s(k-Lie) with gn flat over k, for all 0 ≤ n < c.

Then HL
∗ (g,M) −→ H∗(g,M) is c-connected, for all M ∈ Uk(g)-sAb.

Proof. Suppose that g ∈ k-Lie is flat over k and take an almost free replacement of
k-modules E•(g) −→ g. Then by Lemma 8.3.10 the upper horizontal map is a weak
equivalence in the commutative diagram

Com1(E•g)

o
��

'
// Com1(g)

o
��

grLUk(E•g) '
// grLUk(g),

where L is the colower central series of Definition 3.2.4. Again by flatness the Theorem of
Poincaré, Birkhoff and Witt yields that the two vertical maps are isomorphisms. Hence
by commutativity the lower horizontal map is a weak equivalence. By induction on n ≥ 0
using the long exact sequence, it follows that Ln Uk(E•g)

'−→ Ln Uk(g) is a weak equiv-

alence, for all n ≥ 0, and hence Uk(E•g)
'−→ Uk(g) is a weak equivalence, since filtered

colimits are exact. If g is not flat, we still have

π0Uk(E•g)
∼−→ π0Uk(g) = Uk(g), π1Uk(E•g) −� π1Uk(g) = 0,

meaning that Uk(E•g) −→ Uk(g) is 0-connected. Now let g ∈ s(k-Lie) be flat in dimen-
sions < c. By considering Uk(E•g•) −→ Uk(g•) as a map of bisimplicial k-modules, the
right one constant in the first coordinate, the map on the first page of the associated
spectral sequences

π∗Uk(E•gp) −→ π∗Uk(gp), p ≥ 0,

is an isomorphism for 0 ≤ p < c and 0-connected, for p ≥ c. In particular it is c-connected,
implying that also Uk(E•g) −→ Uk(g) is c-connected. Using Tor-spectral sequence of
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Proposition 8.1.4 (ii), it follows that also

HL
∗ (g,M) = TorUk(E•)

∗ (k,M) −→ TorUk(g)
∗ (k,M) = H∗(g,M)

is c-connected.
2

Remark 8.3.12
We do not know, if the map HL

∗ (g,M) −→ H∗(g,M) is an isomorphism in general.
Since we definitely know that HL

∗ is a homotopy invariant (and H∗ maybe not), we will
work with derived Lie algebra homology.

8.3.3 The Homology spectral sequence for a fibration

Lemma 8.3.13
For k ∈ CRing and n� g ∈ k-Lie the following holds.

(i) Uk(g)n
∼−→ Uk(g/n) as Uk(g/n)-modules.

(ii) If g −� g/n is a retraction of Lie algebras, every section induces an isomorphism
of Uk(n)-modules Uk(n)⊗ Uk(g/n)

∼−→ Uk(g).

Proof.

(i) Let g
q
−� g/n and Uk(g)

r
−� Uk(g)n be the canonical quotient maps. Then q induces

a bijection natural in M ∈ Uk(g/n)-sAb

Uk(q)
∗ = (- ◦ Uk(q)) : Uk(g/n)-sAb(Uk(g/n),M)

∼−→ Uk(g)-sAb(Uk(g),M).

Similarly r induces a bijection natural in M ∈ Uk(g/n)-sAb

r∗ = (- ◦ r) : Uk(g/n)-sAb(Uk(g)n,M)
∼−→ Uk(g)-sAb(Uk(g),M),

because r is epimorphic and for all f ∈ Uk(g)-sAb(Uk(g),M) we have

f([n, Uk(g)]) = [q(n), f(Uk(g))] = [0, f(Uk(g))] = 0.

As [n, Uk(g/n)] = 0, the map Uk(q) factors as Uk(g)n
s
−� Uk(g/n), which therefore

induces a bijection natural in M ∈ Uk(g/n)-sAb

s∗ = (- ◦ s) : Uk(g/n)-sAb(Uk(g/n),M)
∼−→ Uk(g/n)-sAb(Uk(g)n,M).

Equivalently s is an isomorphism of Uk(g/n)-modules.

(ii) If g −� g/n is a retraction, then g ∼= nog/n and we have Uk(n)⊗θUk(g/n) for some
θ by Proposition 8.5.2. In particular Uk(g) ∼= Uk(n) ⊗θ Uk(g/n) = Uk(n) ⊗ Uk(g/n)
as Uk(n)-modules.

2

238



8.3. Simplicial Lie algebras

Proposition 8.3.14
Let k ∈ CRing, n� g ∈ s(k-Lie) and M ∈ Uk(g)-sAb. Then there is a spectral sequence

E2
p,q = HL

p (g/n, HL
q (n,M)) ⇒ HL

p+q(g,M),

where HL
q (N,M) ∈ Uk(g/n)-sAb via

Uk(g/n)⊗HL
q (n,M) −� π0Uk(g/n)⊗HL

q (n,M)
µ−→ HL

q (n,M).

Proof. By Corollary 7.2.32 there is a functorial almost free replacement E• induced by
the adjunction

k-Lie(Lie(kX), Y ) = Set(X,U(Y )).

It preserves epimorphisms and thus E•(g) −� E•(g/n). Let n′ denote its kernel and let us
write g′ = E•(g) for short. Then g′/n′ = E•(g/n) and the long exact sequence of homotopy
groups applied to the diagram of short exact sequences

0 // n′

��

// g′

'
��

// g′/n′

'
��

// 0

0 // n // g // g/n // 0,

implies that also n′
'−→ n. For every n ≥ 0 the map En(g) −� En(g/n) is of the form

Lie(kX) −� Lie(kY ), induced by some surjection r ∈ Set(X, Y ). For every section s of
r there is an isomorphism of k-modules

kX
∼−→ kY ⊕ kX̃, x 7−→ r(x) + (x− sr(x)),

where X̃ = X\sY . Under this isomorphism the map kX
kr
−� kY corresponds to the

projection kY ⊕ kX̃
id+0
−� kY . So En(g) −� En(g/n) is isomorphic to

Lie(kX̃) + Lie(kY )
id∪0
−� Lie(kY ),

whose kernel by Proposition 8.5.5 is the free Lie algebra

Lie(UkLie(kY )⊗ kX̃) = Lie(Ass1(kY )⊗ X̃) = Lie(k(Ass1(Y )× X̃)).

It follows that n′ is dimensionwise free.
Now by Corollary 8.1.6 we have a converging spectral sequence

E2
p,q = TorUk(g′/n′)

p (k,TorUk(g′)
q (Uk(g

′/n′),M)) ⇒ Tor
Uk(g′)
p+q (k,M).

As g′n/n
′
n ∈ k-Lie is free, the map g′n −� g′n/n

′
n has a section homomorphism, for all

n ≥ 0. So using the Uk(n
′
n)-module isomorphism Uk(g

′
n) ∼= Uk(n

′
n)⊗Uk(g′n/n′n) of Lemma

8.3.13 (ii) we see that Uk(g
′
n) is a free Uk(n

′
n)-module in every dimension n ≥ 0. In

particular every cofibrant replacement of M in Uk(g
′)-sAb is also cofibrant over Uk(n

′).
This implies

TorUk(g′)
∗ (Uk(g

′/n′),M) = π∗(Uk(g
′/n′)⊗Uk(g′) EM) ∼= π∗(k ⊗Uk(n′) Uk(g

′)⊗Uk(g′) EM)

∼= π∗(k ⊗Uk(n′) EM) = TorUk(n′)
∗ (k,M) = H∗(n

′,M),
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and hence the spectral sequence looks like

E2
p,q = Hp(g

′/n′, Hq(n
′,M)) = HL

p (g/n, HL
q (n,M)) ⇒ Hp+q(g

′,M) = HL
p+q(g,M).

2

8.3.4 The Whitehead Theorem

Proposition 8.3.15
Let k ∈ CRing, c ≥ 0 and f ∈ s(k-Lie)(g, h).

(i) Suppose π0g = 1.

Then g is c-connected, if and only if HL
∗ (g, k) is (c+ 1)-connected.

(ii) Suppose π0f is an isomorphism.

Then f is c-connected, if and only if HL
∗ (f, Uk(π0h)) is (c+ 1)-connected.

Proof. Using the Lie algebra analogues Proposition 8.3.1, Corollary 8.3.5 and the Hochschild-
Serre spectral sequence instead of the group versions, the proof is exactly the same as in
Proposition 8.2.6. Slightly more difficult is only the proof of the equivalence

Hq(n, k) = 0 ∀ 0 ≤ q ≤ c ⇐⇒ H0(h, Hq(n, Uk(π0n))) = 0 ∀ 0 ≤ q ≤ c.

Applying HL
∗ (h, -) to the short exact Künneth sequence yields a long exact sequence

... −→ HL
1 (h,Tork1(HL

q−1(n, k), Uk(π0h)))
∂−→ HL

0 (h, HL
q (n, k)⊗ Uk(π0h))

−→ HL
0 (h, HL

q (n, Uk(π0h))) −→ HL
0 (h,Tork1(HL

q−1(n, k), Uk(π0h))) −→ 0.

Hence if Hq(n, k) vanishes, for 0 ≤ q ≤ c, also H0(h, Hq(n, Uk(π0n))) vanishes in that
range. Vice versa, we will show by induction on 0 ≤ q ≤ c that Hq(n, k) = 0. Suppose
Hi(n, k) is zero for all 0 ≤ i < q and some 0 ≤ q ≤ c. Then in particular the first term of
the extract of the long exact sequence is zero. Hence with the third term also the second
term is zero, which by Remark 8.3.9 (i) can be computed as

HL
0 (h, HL

q (n, k)⊗ Uk(π0h)) = (HL
q (n, k)⊗ Uk(π0h))π0h = HL

q (n, k).

This proves the induction step.
2

8.3.5 Homology of free Lie algebras

Proposition 8.3.16
Let k ∈ CRing and g ∈ s(k-Lie).

Then there is a natural epimorphism of simplicial k-modules

B⊗Uk(g)/k −� B⊗Uk(g/[g, g])/k = Com(B×(g/[g, g])) −� B×(g/[g, g]).

It is a weak equivalence, if g is an almost free simplicial Lie algebra.
In particular HL

∗+1(g, k)
∼−→ π∗L(-/[-, -])(g), for all g ∈ s(k-Lie).
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Proof. The first map is induced by the quotient map g/[g, g], the equality middle is
induced by the equality Uk(g/[g, g]) = Com1(g/[g, g]), using that g/[g, g] is abelian, and
the identifications

B⊗n Com1(g/[g, g]) = Com1(g/[g, g])⊗n = Com1(g/[g, g]n) = Com1(B×n g/[g, g]), n ≥ 0.

The second map is the projection onto the particular summand. That the given map is a
weak equivalence, for almost free g is exactly the same as in the case of simplicial groups
(see Proposition 8.2.5).

2

8.4 Comparison theorems for homology spectral

sequences

8.4.1 Connectivity of graded objects

Definition 8.4.1
Let A be an abelian category and k ∈ Z.

(i) A Z-graded object X ∈ AZ is called k-connected, if: Xn = 0, for all n ≤ k.

(ii) A morphism f ∈ AZ(X, Y ) is called k-connected, if

Xn
fn−→ Yn is an

{
isomorphism, n ≤ k,
epimorphism, n = k + 1.

Remark 8.4.2
Let A be an abelian category and k ∈ Z.

(i) Every object X ∈ dgA is k-connected, if and only if H∗X ∈ AZ is k-connected.

(ii) For a morphism f ∈ dgA(X, Y ), the following is equivalent.

a) f is k-connected.

b) hofibf is k-connected.

c) H∗hofibf is k-connected.

d) H∗f ∈ AZ(H∗X,H∗Y ) is k-connected.

8.4.2 Basic comparison theorem

Proposition 8.4.3
Let A be an abelian category, k ≥ 0 and f ∈ dgA(X, Y ).

Suppose the underlying map of graded objects f ∈ AZ(X, Y ) is k-connected. Then

(i) The induced map on the cycles Z∗(f) ∈ AZ(Z∗X,Z∗Y ) is k-connected.

(ii) The induced map on the boundaries B∗(f) ∈ AZ(B∗X,B∗Y ) is (k − 1)-connected.
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(iii) The induced map on homology H∗(f) ∈ AZ(H∗X,H∗Y ) are k-connected.

Proof. This is well-known. As the proof is short, we will carry it out for the convenience of
the reader. Since U(f) is k-connected, the 5-lemma applied to the commutative diagram

0 // ZnX

Znf

��

// Xn

fn
��

d // Xn−1

fn−1

��
0 // ZnY // Yn

d // Yn−1

yields that Znf is an isomorphism, if n ≤ k and an epimorphism, if n = k + 1, meaning
that Z∗f is k-connected. Similarly the 5-lemma applied to the commutative diagram

0 // ZnX

Znf

��

// Xn

fn
��

d // Bn−1X

fn−1

��

// 1

0 // ZnY // Yn
d // Bn−1Y // 1

yields that B∗f is (k − 1)-connected. Finally the 5-lemma applied to the commutative
diagram

Xn+1

fn+1

��

d // ZnX

Znf

��

// HnX

Hnf

��

// 0

Yn+1
d // ZnY // HnY // 0

yields that H∗f is k-connected.
2

Corollary 8.4.4

Let E
f−→ Ē be a homomorphism of spectral sequences in an abelian category A.

If f r ∈ AZ(Er, Ēr) is k-connected, for some r, so is f s, for all s ≥ r.

Proof. Using Proposition 8.4.3 we see that also

f r+1 : Er+1 = H∗(E
r)

H∗(fr)−→ H∗(Ē
r) = Ēr+1

is k-connected. Hence by induction f s is k-connected, for all s ≥ r.
2

8.4.3 Connectivity of homology spectral sequences

Proposition 8.4.5
Let Er be a first quadrant spectral sequence with r ≥ 2, weakly converging to H.

Then there is a sequence of N0-graded objects

E2
0,∗ −� E∞0,∗ ↪−→ H∗ −� E∞∗,0 ↪−→ E2

∗,0.

Moreover all these maps are isomorphisms in dimension 0.
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Proof. Let n ≥ 0 and r ≥ 2. Since Er
0,n

d−→ Er
−r,n+r−1 = 0, for all r ≥ 1, we have exact

sequences

Er
r,n−r+1

d−→ Er
0,n −→ Er+1

0,n −→ 0, r ≥ 1,

where the left term is zero, if n− r + 1 < 0. Hence the first morphism can be defined as
the composite

E2
0,n −� E3

0,n −� ... −� En+2
0,n = E∞0,n ↪−→ Hn, n ≥ 0.

Similarly, since 0 = Er
n+r,1−r

d−→ Er
n,0, for all r ≥ 2, we have exact sequences

0 −→ Er+1
n,0 −→ Er

n,0
d−→ Er

n−r,r−1, r ≥ 2,

where the right term is zero, if n− r < 0. Hence the second morphism can be defined as
the composite

Hn −� E∞n,0 = En+1
n,0 ↪−→ ... ↪−→ E2

n,0, n ≥ 0.

Since Er lies in the first quadrant, we have E2
0,0 = E∞0,0 = (TotE∞∗,∗)0, showing that the

maps are isomorphisms in dimension 0.
2

Ideas for the proof of one direction in (i) of the proposition below are based on compu-
tations in spectral sequence as they were given in [Sri08] Prop. 2.5 a). We do not know,
wheather a proof in this generality is available in present literature. The statement is also
similar to Zeeman’s Comparison Theorem [Zee57], the proof of which uses similar tech-
niques but is slightly more complicated. Infact our proposition implies and even tightens
Zeemans comparison in some cases, as we will demonstrate in the subsequent section.
On the other hand it is probably implied by the generalized comparison theorem, whose
hardly readible proof is given in [HR76].

Proposition 8.4.6
Let Er be a first quadrant spectral sequence with r ≥ 2, weakly converging to H.

(i) Suppose, that for every q ≥ 0:

(F) E2
0,∗/E

2
0,0 q-connected =⇒ E2

p,∗/E
2
p,0 q-connected, for all p > 0.

Then the following is equivalent.

a) H∗ −→ E2
∗,0 is (k − 1)-connected.

b) E2
0,∗/E

2
0,0 is (k − 1)-connected.

(ii) Suppose, that for every p ≥ 0:

(B) E2
∗,0/E

2
0,0 p-connected =⇒ E2

∗,q/E
2
0,q p-connected, for all q > 0.

Then the following is equivalent.

a) E2
0,∗ −→ H∗ is (k − 1)-connected.
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b) E2
∗,0/E

2
0,0 is k-connected.

Proof.

(i) To see that a) implies b), we will show by induction on 0 < n ≤ k, that E2
0,∗/E

2
0,0

is (n − 1)-connected. There is nothing to check, for n = 1. Suppose the statement

holds for some 0 < n < k. Since Er
0,n

d−→ Er
−r,n+r−1 = 0, for all r ≥ 1, we have exact

sequences

Er
r,n−r+1

d−→ Er
0,n −→ Er+1

0,n −→ 0, r ≥ 1.

• For 2 ≤ r < n+1 we have 0 < n−r+1 < n and thus E2
0,n−r+1 = 0 by induction

hypothesis, which with (F) implies E2
r,n−r+1 = 0 and so Er

r,n−r+1 = 0.

• For r = n+ 1 we have an even longer exact sequence

0 −→ Er+1
n+1,0 −→ Er

n+1,0
d−→ Er

0,n −→ Er+1
0,n −→ 0, r ≥ 1.

Since r = n+1 ≤ k and thus E∞r,0
∼−→ E2

r,0 by a), the left map is an isomorphism
and so d = 0.

It follows that E2
0,n

∼−→ ...
∼−→ En+2

0,n = E∞0,n = gr0Hn = 0, because n > 0 and by a)

Hn
∼−→ grnHn = E∞n,0

∼−→ E2
n,0.

Vice versa, we assume b) and let 0 < n ≤ k. Since 0 = Er
n+r,1−r

d−→ Er
n,0, for all

r ≥ 2, we have exact sequences

0 −→ Er+1
n,0 −→ Er

n,0
d−→ Er

n−r,r−1, r ≥ 2.

• For 2 ≤ r ≤ k, we have 0 < r − 1 < k and thus E2
0,r−1 = 0 by b), which with

(F) implies E2
n−r,r−1 = 0 and so Er

n−r,r−1 = 0.

• For r > k, we have n− r ≤ k − r < 0 and thus again Er
n−r,r−1 = 0.

It follows that Hn −� grnHn = E∞n,0 = En+1
n,0

∼−→ ...
∼−→ E2

n,0.

Now suppose 0 < n < k. Since E2
0,∗/E

2
0,0 is (k − 1)-connected, so is Er

p,∗/E
2
p,0 by

(F), for all p > 0 and r ≥ 2. Then E∞n−q,q = 0, for all 0 < q ≤ n. Equivalently

Hn
∼−→ grnHn = E∞n,0 and thus

Hn
∼−→ grnHn = E∞n,0 = En+1

n,0
∼−→ ...

∼−→ E2
n,0.

(ii) To see that a) implies b), we will show by induction on 0 < n ≤ k+1, that E2
∗,0/E

2
0,0

is (n − 1)-connected. There is nothing to check, for n = 1. Suppose the statement

holds for some 0 < n < k + 1. Since 0 = Er
n+r,1−r

d−→ Er
n,0, for all r ≥ 2, we have

exact sequences

0 −→ Er+1
n,0 −→ Er

n,0
d−→ Er

n−r,r−1, r ≥ 2.
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• For 2 ≤ r < n we have 0 < n − r < n and thus E2
n−r,0 = 0 by induction

hypothesis, which with (B) implies E2
n−r,r−1 = 0 and so Er

n−r,r−1 = 0.

• For r = n we have an even longer exact sequence

0 −→ Er+1
n,0 −→ Er

n,0
d−→ Er

0,n−1 −→ Er+1
0,n−1 −→ 0.

Since r − 1 = n − 1 < k and thus E2
0,r−1

∼−→ E∞0,r−1 by a), it follows that the
right map is an isomorphism and so d = 0.

It follows that 0 = grnHn = E∞n,0 = En+1
n,0

∼−→ ...
∼−→ E2

n,0, because n > 0 and by a)

E2
0,n −� E∞0,n = gr0Hn

∼−→ Hn.

Vice versa, we assume b) and let 0 < n ≤ k. Since E2
∗,0/E

2
0,0 is k-connected, so is

Er
∗,q/E

2
0,q by (B), for all q > 0 and r ≥ 2. Then E∞p,n−p = 0, for all 0 < p ≤ n.

Equivalently E∞0,n = gr0Hn
∼−→ Hn and thus

E2
0,n −� ... −� En+2

0,n = E∞0,n = gr0Hn
∼−→ Hn.

Now suppose 0 < n < k. Since Er
0,n

d−→ Er
−r,n+r−1 = 0, for all r ≥ 1, we have exact

sequences

Er
r,n−r+1

d−→ Er
0,n −→ Er+1

0,n −→ 0, r ≥ 1.

• For 2 ≤ r ≤ k, we have E2
r,0 = 0 by b), which with (B) implies E2

r,n−r+1 = 0
and so Er

r,n−r+1 = 0.

• For r > k, we have n− r + 1 < k − r + 1 ≤ 0 and thus Er
r,n−r+1 = 0.

It follows that E2
0,n

∼−→ ...
∼−→ En+2

0,n = E∞0,n = gr0Hn
∼−→ Hn.

2

8.4.4 Comparison with Zeeman’s Theorem

Theorem 8.4.7 (Zeeman)

Let Er fr−→ Ēr be a map of first quadrant spectral sequences in abelian category, r ≥ 2,
each of which gives rise to an exact sequence

0 −→ E2
p,0 ⊗ E2

0,q −→ E2
p,q −→ Tor1(E2

p−1,0, E
2
0,q) −→ 0, p, q ≥ 0.

Then the following holds.

(i) If f 2
∗,0 is (p−1)- and f 2

0,∗ is (q−1)-connected, then f∞∗,∗ is min(p−2, q−1)-connected.

(ii) If f∞∗,∗ is (n−1)- and f 2
∗,0 is (p−1)-connected, then f 2

0,∗ is min(n−2, p−3)-connected.

(iii) If f∞∗,∗ is (n−1)- and f 2
0,∗ is (q−1)-connected, then f 2

∗,0 is min(n−1, q−1)-connected.
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Proof. See [Zee57].
2

We want to apply Zeeman’s Theorem to the Serre spectral sequence of a fibration to
be able to compare it with Proposition 8.4.6.

Corollary 8.4.8
Given a map of fibre sequences with 1-connected base spaces B and B̄

F

f
��

// E

e
��

� ,2B

b
��

F̄ // Ē � ,2B̄,

Then the following holds.

(i) If Z̃b is (p− 1)- and Z̃f is (q− 1)-connected, then Z̃e is min(p− 2, q− 1)-connected.

(ii) If Z̃e is (n−1)- and Z̃b is (p−1)-connected, then Z̃f is min(n−2, p−3)-connected.

(iii) If Z̃e is (n−1)- and Z̃f is (q−1)-connected, then Z̃b is min(n−1, q−1)-connected.

Note that we get similar implications on homotopy groups by applying the 5-Lemma to
the long exact sequence.

Proof. This follows immediately from Zeeman’s comparison Theorem 8.4.7 using the
induced maps between their Serre spectral sequences

Hp(b,Hq(f,Z)) : Hp(B,Hq(F,Z)) −→ Hp(B̄,Hq(F̄ ,Z)), p, q ≥ 0.

2

Now we will use Proposition 8.4.6.

Proposition 8.4.9
For a fibre sequence F −→ E −_ B with 1-connected base B, the following holds.

(i) Z̃E −→ Z̃B is (k − 1)-connected, if and only if Z̃F is (k − 1)-connected.

(ii) Z̃F −→ Z̃E is (k − 1)-connected, if and only if Z̃B is k-connected.

Note that we get similar implications on homotopy groups by applying the 5-Lemma to
the long exact sequence.

Proof. This follows by applying the Proposition 8.4.6 (i) to the Serre spectral sequence

E2
p,q = Hp(B,Hq(F,Z)) =⇒ Hp+q(E,Z).

2
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Proposition 8.4.10
Given a fibration between fibre sequences with 1-connected base spaces B and B̄

F

f
_��

// E

e
_��

� ,2B

b_��
F̄ // Ē � ,2B̄.

Then the following holds.

(i) If Z̃f is (q− 1)- and Z̃b is (p− 1)-connected, then Z̃e is min(p− 1, q− 1)-connected.

(ii) If Z̃e is (n−1)- and Z̃b is (p−1)-connected, then Z̃f is min(n−1, p−2)-connected.

(iii) If Z̃e is (n− 1)- and Z̃f is (q − 1)-connected, then Z̃b is min(n− 1, q)-connected.

Note that we get similar implications on homotopy groups by applying the 5-Lemma to
the long exact sequence.

Proof. Statement (i) follows from Corollary 8.4.4. For (ii) and (iii), consider the commu-
tative diagram

fib f

��

// fib e

��

� ,2fib b

��
F

f
_��

// E

e
_��

� ,2B

b_��
F̄ // Ē � ,2B̄.

Since limits preserve fibrations, the upper right horizontal map is a fibration. Moreover
fib f is its fibre.

Using Proposition 8.4.9 (i) we get the following implications.

Z̃f is (q − 1)- and Z̃b is (p− 1)-connected,

⇐⇒ Z̃fib f is (q − 1)-connected and Z̃fib b is (p− 1)-connected.

=⇒ Z̃fib f −→ Z̃fib e is (p− 2)-connected (or Z̃fib e −→ Z̃fib b is (q − 1)-connected).

⇐⇒ Z̃fib e is min(p− 1, q − 1)-connected.

⇐⇒ Z̃e is min(p− 1, q − 1)-connected.

Similarly using Proposition 8.4.9 (i) we get the following implications.

Z̃e is (n− 1)- and Z̃b is (p− 1)-connected,

⇐⇒ Z̃fib e is (n− 1)-connected and Z̃fib b is (p− 1)-connected.

=⇒ Z̃fib e −→ Z̃fib b is min(n− 1, p− 2)-connected.

⇐⇒ Z̃fib f is min(n− 1, p− 2)-connected.

⇐⇒ Z̃f is min(n− 1, p− 2)-connected.

And in the same way for (iii)
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Z̃e is (n− 1)- and Z̃f is (q − 1)-connected,

⇐⇒ Z̃fib e is (n− 1)-connected and Z̃fib f is (q − 1)-connected.

=⇒ Z̃fib f −→ Z̃fib e is min(n− 2, q − 1)-connected.

⇐⇒ Z̃fib b is min(n− 1, q)-connected.

⇐⇒ Z̃b is min(n− 1, q)-connected.
2

8.5 Appendix: Semi-direct tensor products of rings

Proposition 8.5.1
Let k ∈ CRing and R, S ∈ k-Ass. Suppose S is generated as a k-algebra by a k-submodule
X ≤ S. For θ ∈ k-Mod(S ⊗R,R⊗ S) we let R⊗θ S be the k-module R⊗ S together with
the multiplication map

µR⊗θS : (R⊗θ S)⊗ (R⊗θ S) −→ (R⊗θ S), (r ⊗ s)⊗ (r′ ⊗ s′) 7−→ r · θ(s⊗ r′) · s′,

where R⊗ S carries the canonical (R, S)-bimodule structure.
Then R⊗θ S is associative, if the following two squares commute

X ⊗R⊗R
id⊗µ

��

θ⊗id // R⊗ S ⊗R id⊗θ // R⊗R⊗ S
µ⊗id

��
X ⊗R θ // R⊗ S,

S ⊗R⊗R
id⊗µ

��

θ⊗id // R⊗ S ⊗R id⊗θ // R⊗R⊗ S
µ⊗id

��
S ⊗R θ // R⊗ S.

Moreover if R and S are unital and

θ(1⊗ r) = r ⊗ 1, θ(x⊗ 1) = 1⊗ x, r ∈ R, x ∈ X,

then 1⊗ 1 ∈ R⊗θ S is a unit and the canonical maps R −→ R⊗θ S ←− S are universal
algebra homomorphisms, meaning that there is a unique algebra homomorphism in

R

f ##

// R⊗θ S
∃!
��

Soo

g
{{

T,

for every pair of morphisms (f, g) ∈ k-Ass1(R, T )× k-Ass1(S, T ) with

µT (f ⊗ g)θ(x⊗ r) = g(x) · f(r), x ∈ X, r ∈ R.

Proof. In a canonical way M := R⊗θ S = R⊗ S ∈ (R, S)-Mod. Moreover if we define

1) (r⊗ s) · r′ = r · θ(s⊗ r′), s′ · (r⊗ s) = θ(s′ ⊗ r) · s, for all r, r′ ∈ R, s, s′ ∈ S.

then right from the definition we get

2) m · (r⊗ s) = (m · r) · s, (r⊗ s) ·m = r · (s ·m), for all r ∈ R, s ∈ S, m ∈M ,

3) r ·(m·r′) = (r ·m)·r′, s·(m·s′) = (s·m)·s′, for all r, r′ ∈ R, m ∈M, s, s′ ∈ S,

248



8.5. Appendix: Semi-direct tensor products of rings

and the two squares commute, if and only if

4) θ(s⊗ rr′) = θ(s⊗ r) · r′, θ(ss′ ⊗ r) = s · θ(s′ ⊗ r), for all r, r′ ∈ R, s, s′ ∈ S.

It suffices to check that M is associative under the weakened condition, that the left
equation of 4) only holds for x ∈ X. First of all, the right equation of 4) implies

(ss′) · (r′′⊗s′′) 1
= θ(ss′⊗r′′) ·s′′ 4

= (s ·θ(s′⊗r′′)) ·s′′ 3
= s · (θ(s′⊗r′′) ·s′′) 1

= s · (s′ · (r′′⊗s′′)),

for s, s′, s′′ ∈ S and r′′ ∈ R. Hence

5) (ss′) ·m = s · (s′ ·m), for all s, s′ ∈ S, m ∈M .

We will prove by induction on n ≥ 1, that

6) (s ·m) ·m′ = s · (m ·m′), for all s ∈ Sn =
∑

1≤i≤nX
i, m,m′ ∈M .

Let x ∈ X, r ∈ R, s ∈ S and m ∈ M . We have s ·m = r1 ⊗ s1 + ... + rn ⊗ sn, for some
ri ∈ R, si ∈ S and 1 ≤ i ≤ n. Hence

x · ((r ⊗ s) ·m)
2
= x · (r · (s ·m)) = x · (r · (

∑
i

ri ⊗ si)) =
∑
i

x · (rri ⊗ si)

1
=
∑
i

θ(x⊗ rri) · si
4
=
∑
i

(θ(x⊗ r) · ri) · si)

2
=
∑
i

θ(x⊗ r) · (ri ⊗ si) = θ(x⊗ r) · (s ·m).

Similarly we have θ(x⊗ r) = r1 ⊗ s1 + ...+ rn ⊗ sn, for some other ri ∈ R, si ∈ S, so

(x · (r ⊗ s)) ·m 1
= (θ(x⊗ r) · s) ·m = ((

∑
i

ri ⊗ si) · s) ·m =
∑
i

(ri ⊗ sis) ·m

2
=
∑
i

ri · ((sis) ·m)
5
=
∑
i

ri · (si · (s ·m))

2
=
∑
i

(ri ⊗ si) · (s⊗m) = θ(x⊗ r) · (s ·m).

Putting both together this proves x · ((r ⊗ s) ·m) = (x · (r ⊗ s)) ·m, which implies the
case n = 1. Suppose 6) holds for some n ≥ 1. Let s ∈ Sn, x ∈ X, m′,m′′ ∈ M with
m′ = r′ ⊗ s′ and use the induction hypothesis (I) two times to obtain

((sx) ·m′) ·m′′ = ((sx) · (r′ ⊗ s′)) ·m′′ 1
= (θ(sx⊗ r′) · s′) ·m′′

4
= ((s · θ(x⊗ r′)) · s′) ·m′′ 3

= (s · (θ(x⊗ r′) · s′)) ·m′′
1
= (s · (x · (r′ ⊗ s′))) ·m′′ = (s · (x ·m′)) ·m′′
I
= s · ((x ·m′) ·m′′) I

= s · (x · (m′ ·m′′)) 5
= (sx) · (m′ ·m′′).
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Since Sn+1 = Sn + Sn ·X, this proves the induction step. As S =
∑

n≥1 Sn statement 6)
holds for all s ∈ S. Now for r, r′′ ∈ R, s, s′′ ∈ S and m′ ∈M ′ we get

((r ⊗ s) ·m′) · (r′′ ⊗ s′′) 2
= (r · (s ·m′)) · (r′′ ⊗ s′′) 2

= ((r · (s ·m′)) · r′′) · s′′
3
= (r · ((s ·m′) · r′′)) · s′′ 5

= (r · (s · (m′ · r′′))) · s′′

= r · ((s · (m′ · r′′)) · s′′) 3
= r · (s · ((m′ · r′′) · s′′))

2
= r · (s · (m′ · (r′′ ⊗ s′′))) 2

= (r ⊗ s) · (m′ · (r′′ ⊗ s′′)),

which finally proves that M is associative.
If R and S are unital, we will prove that θ(s⊗ 1) = 1⊗ s, for all s ∈ Sn, by induction

on n ≥ 1. By hypothesis this is true for n = 1. Suppose it holds for some n ≥ 1 and let
s ∈ Sn and x ∈ X. Then applying the induction hypothesis (I) two times we get

θ(sx⊗ 1)
4
= s · θ(x⊗ 1)

I
= s · (1⊗ x)

1
= θ(s⊗ 1) · x I

= (1⊗ s) · x = 1⊗ sx,

which proves the induction step, as Sn+1 = Sn + Sn ·X. Now we can verify

7) 1S · (r ⊗ s) = θ(1S ⊗ r) · s = (r ⊗ 1S) · s = r ⊗ s, for all r ∈ R, s ∈ S.

8) (r ⊗ s) · 1R = r · θ(s⊗ 1R) = r · (1R ⊗ s) = r ⊗ s, for all r ∈ R, s ∈ S.

This implies that for all m ∈M we have

(1R ⊗ 1S) ·m 2
= 1R · (1S ·m)

7
= 1R ·m = m = m · 1S

8
= (m · 1R) · 1S

2
= m · (1R ⊗ 1S).

The canonical maps R −→ R⊗θ S ←− S are algebra homomorphisms, because

• (r ⊗ 1) · (r′ ⊗ 1) = r · θ(1⊗ r′) · 1 = r · (r′ ⊗ 1) · 1 = rr′ ⊗ 1, for all r, r′ ∈ R.

• (1⊗ s) · (1⊗ s′) = 1 · θ(s⊗ 1) · s′ = 1 · (1⊗ s) · s′ = 1⊗ ss′, for all s, s′ ∈ S.

Now let (f, g) ∈ k-Ass1(R, T )× k-Ass1(S, T ) with the given properties. Define f ⊗θ g =
µT (f ⊗ g) ∈ k-Mod(R⊗ S, T ). We will prove by induction on n ≥ 1 that

9) (f ⊗θ g)(s ·m) = g(s) · ((f ⊗θ g))(m), for all s ∈ Sn, m ∈M .

For x ∈ X, r ∈ R, s ∈ S we have by assumption

(f ⊗θ g)(x · (r ⊗ s)) 1
= (f ⊗θ g)(θ(x⊗ r) · s) = (f ⊗θ g)θ(x⊗ r) · g(s)

= g(x) · f(r) · g(s) = g(x) · (f ⊗θ g)(r ⊗ s),

which proves the case n = 1. Suppose it holds for some n ≥ 1. Let s ∈ Sn, x ∈ X and
r ∈ R. Then using the induction hypothesis (I) we get

(f ⊗θ g)((sx) ·m) = (f ⊗θ g)(s · (x ·m))
I
= g(s) · (f ⊗θ g)(x ·m)

I
= g(s) · (g(x) · (f ⊗θ g)(m)) = g(sx) · (f ⊗θ g)(m),
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which proves the induction step, because Sn+1 = Sn +Sn ·X. As S =
∑

n≥1 Sn statement
9) holds for all s ∈ S. Now let r ∈ R, s ∈ S and m ∈M . Then

(f ⊗θ g)((r ⊗ s) ·m)
2
= (f ⊗θ g)(r · (s ·m)) = f(r) · (f ⊗θ g)(s ·m)
9
= f(r) · (g(s) · (f ⊗θ g)(m)) = (f ⊗θ g)(r ⊗ s) · (f ⊗θ g)(m),

which proves that (f ⊗θ g) is an algeba homomorphism, since also (f ⊗θ g)(1 ⊗ 1) =
f(1) · g(1) = 1. It is the only one being compatible with f and g, because

(f ⊗θ g)(r ⊗ s) = (f ⊗θ g)(r ⊗ 1) · (f ⊗θ g)(1⊗ s) = f(r) · g(s), r ∈ R, s ∈ S.

2

Proposition 8.5.2
Let k ∈ CRing and h, n ∈ k-Lie. Suppose δ ∈ k-Lie(h, k-Der(n)), where k-Der(n) denotes
the Lie algebra of k-linear derivations on n.

Then h ↪−→ noδ h extends to an isomorphism of Uk(n)-modules

Uk(n)⊗ Uk(h)
∼−→ Uk(noδ h),

which becomes an algebra isomorphism Uk(n)⊗θ Uk(h)
∼−→ Uk(noδ h) for some θ.

Proof. For every derivation d on n the composition n
d−→ n

ηn−→ Uk(n) extends uniquely
to a k-linear derivation on Uk(n). So δ induces a homomorphism of Lie algebras

h
δ−→ k-Der(n) −→ k-Der(Uk(n)) ↪−→ k-Mod(Uk(n)),

where k-Mod(Uk(n)) is the associative algebra of k-linear endomorphisms on Uk(n). Using
this we get a homomorphism of Lie algebras

θ′ : h −→ k-Mod(Uk(n))⊗ Uk(h), h 7−→ δ(h)⊗ 1 + 1⊗ h,

where the tensor product on the right carries the canonical factorwise associative mul-
tiplication. By the universal property θ′ extends uniquely to an algebra homomorphism
Uk(h) −→ k-Mod(Uk(n)) ⊗ Uk(h), which we will denote by the same letter. Let θ be the
adjoint to θ′. In the notation of the proof of Proposition 8.5.1 this definition immediately
implies

• θ(ss′⊗r) = θ′(ss′)(r) = θ′(s)θ(s′)(r) = s ·θ(s′⊗r), for all s, s′ ∈ Uk(h), r ∈ Uk(n),

• θ(1⊗ r) = θ′(1)(r) = (id⊗ 1)(r) = r ⊗ 1, for all r ∈ Uk(n).

• θ(h⊗ 1) = δ(h)(1)⊗ 1 + 1⊗ h = 1⊗ h, for all h ∈ h,
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Moreover, for h ∈ h and r, r′ ∈ Uk(n) we have

θ(h⊗ r) · r′ = (δ(h)(r)⊗ 1 + r ⊗ h) · r′ = δ(h)(r) · θ(1⊗ r′) + r · θ(h⊗ r′)
= δ(h)(r) · (r′ ⊗ 1) + r · (δ(h)(r′)⊗ 1 + r′ ⊗ h)

= δ(h)(r)r′ ⊗ 1 + rδ(h)(r′)⊗ 1 + rr′ ⊗ h
= δ(h)(rr′)⊗ 1 + 1⊗ rr′ = θ(h⊗ rr′).

Hence Uk(h)⊗θ Uk(n) is a unital, associative k-algebra by Proposition 8.5.1. Moreover we
have natural Lie algebra homomorphisms

n −→ Uk(n) −→ Uk(n)⊗θ Uk(h)←− Uk(h)←− h,

and since for all h ∈ h and n ∈ n we have

[1⊗ h, n⊗ 1] = (1⊗ h) · (n⊗ 1)− (n⊗ 1) · (1⊗ h) = θ(h⊗ n)− n⊗ h
= δ(h)(n)⊗ 1 + n⊗ h− n⊗ h = δ(h)(n),

these extend uniquely to a Lie algebra homomorphism g −→ Uk(n)⊗θ Uk(h) and thus to
an algebra homomorphism Uk(g)

a−→ Uk(n)⊗θ Uk(h). The inclusion maps n −→ g←− h
induce a k-linear map

b : Uk(n)⊗θ Uk(h) −→ Uk(g)⊗ Uk(g)
µ−→ Uk(g),

which satisfies

bθ(h⊗ r) = δ(h)(r) · 1 + r · h = h · r, h ∈ h, r ∈ Uk(n).

Hence by Proposition 8.5.1 b is an algebra homomorphism being compatible with i and
j. We have ab(1 ⊗ s) = a(s) = 1 ⊗ s, for all s ∈ h and thus also for all s ∈ Uk(h) by the
universal property of the enveloping algebra using that ab is an algebra homomorphism.
As ab is left Uk(n)-linear, it follows that ab is the identity. Similarly we have

ba(n+ h) = b(n⊗ 1 + 1⊗ h) = n+ h, n+ h ∈ n + h = g,

which proves that also ba is the identity by the universal property of the enveloping
algebra. By construction b is precisely the Uk(n)-linear extension of Uk(h) −→ Uk(g).

2

8.5.1 Free products as semi-direct products

Proposition 8.5.3
For G,H ∈ Grp there is a short exact sequence1

1 −→ GH
i−→ G ∗H id∪0−→ G −→ 1,

where i =
∐

g∈G ig and H
ig−→ G+H sends h to ghg−1, for all g ∈ G.

1Note that the coproduct of groups is the free product, which usually is denoted by ’∗’.
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Proof. LetG be acting from the left on theG-fold copower GH by permuting the coproduct
factors, i.e.

σ : G −→ Grp(GH), x 7−→
∐
y∈G

ιxy.

The group homomorphisms H
ι1−→ GH −→ GH oσ G ←− G glue to a group homomor-

phism G ∗H a−→ GH oσ G. By construction we have

iσ(x)(ιyh) = i(ιxyh) = xyh(xy)−1 = x(yhy−1)x−1 = xi(ιyh)x−1, x, y ∈ G, h ∈ H,

hence i extends to a homomorphism of groups GH oσ G
b−→ G ∗ H. For all g ∈ G and

h ∈ H we have

• ab(1, g) = a(g) = (1, g),

• ab(ιgh, 1) = a(ghg−1) = a(g)a(h)a(g)−1 = a(g)(ι1h, 1)a(g)−1 = ιgh,

which proves that ab = id by the universal property of the semi-direct product. Similarly
we have

ba(g) = b(1, g) = g, ba(h) = b(ι1h, 1) = 1 · h = h, g ∈ G, h ∈ H,

and hence ba = id by the universal property of coproducts.
2

Remark 8.5.4
In particular for G ∈ Grp and a free group H = XZ generated by a set X ∈ Set, we get
an exact sequence

1 −→ G×XZ −→ G ∗ XZ id∪0−→ G −→ 1.

Proposition 8.5.5
Let k ∈ CRing. For g ∈ k-Lie and X ∈ k-Mod there is a natural exact sequence of Lie
algebras2

0 −→ Lie(Uk(g)⊗X)
i−→ g ∗ Lie(X)

id∪0−→ g −→ 0.

Proof. Using the adjoint action g ∗ Lie(X) becomes a Uk(g)-module and the inclusion
map X −→ Lie(X) −→ g∗Lie(X) extends uniquely to a Uk(g)-linear map Uk(g)⊗X −→
g ∗ Lie(X) and to the Lie algebra homomorphism i. Moreover left multiplication by an
element g ∈ g induces an endomorphism of Uk(g) ⊗ X extending uniquely to a k-linear
derivation on Lie(Uk(g)⊗X). This defines a k-linear map g −→ k-Der(Lie(Uk(g)⊗X).
Since

δ([g, h])(1⊗x) = [g, h]⊗x = g · (h⊗x)−h · (g⊗x) = [δ(g), δ(h)](x), g, h ∈ g, x ∈ X,

2To avoid confusion and to emphasize the similarity, we also denote the coproduct in the category of
Lie algebras by ’∗’ here.
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it follows that δ is a homomorphism of Lie algebras and we can form the semi-direct
product Lie(Uk(g)⊗X) oδ g. There are canonical Lie algebra homomorphisms

Lie(X) −→ Lie(Uk(g)⊗X) −→ Lie(Uk(g)⊗X) oδ g←− g,

which glue to a homomorphism of Lie algebras g +Lie(X)
a−→ Lie(Uk(g)⊗X) oδ g. For

all g0, ..., gn ∈ g and x ∈ X we have by construction

iδ(g0)((g1 · · · gn)⊗ x) = i((g0 · · · gn)⊗ x) = ad(g0) ◦ ... ◦ ad(gn)(x) = [g0, i((g1 · · · gn)⊗ x)],

hence i extends to a homomorphism Lie(Uk(g)⊗X)oδg
b−→ g+Lie(X). For all g0, ..., gn ∈

g and x ∈ X we have

• ab(0, g0) = a(g0) = (0, g0),

• ab((g1 · · · gn) ⊗ x, 0) = a(ad(g1) ◦ ... ◦ ad(gn)(x)) = ad(g1) ◦ ... ◦ ad(gn)(1 ⊗ x) =
(g1 · · · gn)⊗ x,

which proves that ab = id by the universal property of semi-direct products. Similarly

ba(g) = b(0, g) = g, ba(x) = b(1⊗ x) = i(1⊗ x) = x, g ∈ g, x ∈ X,

which proves that also ba = id by the universal property of coproducts.
2
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9 Conclusion and Outlook

First of all we want to mention that our strategy presented in chapter 3 can also be used
to analogously develop a theory for p-valued groups. Then the proof of Theorem 3.5.2
also provides a plan to prove a mixed characteristic version, which generalizes Lazard’s
rational isomorphism Ĥ∗(G,M) ∼= Ĥ∗(g,M) to integral coefficients. A first step in this
direction was made by [HKN09], but using our techniques could improve this result even
further. Working this out in detail could be a future project in close range.

A direct application could be a mixed characteristic version of the main Theorem 6.3.22,
which would be a variant of Beilinson’s Theorem [Bei14].

Conjecture 9.0.6
Let p > 1 be a prime number, p ∈ I � A ∈ Ring, such that A

∼−→ lim←−n≥0
A/In and

grA =
⊕

n≥0 I
n/In+1 is finitely generated and free over grZp = Fp[t].

If r is the maximum of 2 and the stable range of A, then there are natural isomorphisms

Kn(A, I;Zp) ∼= HCn−1(A, I;Zp), 1 ≤ n ≤ p− r.

The stable range condition on A is needed, because we cannot hope to be able to identify
the p-completed homology of Xr(A, I) with that of xr(A, I), for arbitrary large r ≥ 1.
Moreover the finite generation property is needed so that we can apply the Theorems of
Suslin [Sus84] and Suslin-Yufryakov [SY86] to verify that K-theory commutes with the
projective limits over all quotients A/In.

Although the main problem could be solved, we want to suggest some further possible
improvements. As we already mentioned in section 6.3.2 we originally wanted to identify
π∗−1gl(A)+ with PH∗(glA, k) ∼= HC∗−1(A) in low dimensions like in the multiplicative set-
ting, and then use the long exact sequence to prove the relative statement. This naturally
leads to the following

Conjecture 9.0.7
For k ∈ CRing and flat A ∈ k/Ring with p > 1, the following seems reasonable.

The Hurewicz map and the maps of Remark 5.4.17 below are isomorphisms

KLien (A) = πn−1gl(A)+ ∼−→ PHn(gl∞A, k)
∼−→ HCn−1(A), 0 ≤ n < p.

Now the map S −→ HZ is (2p − 3)-connected after inverting (p − 1)! (cf. Proposition
4.3.4), the natural question arises, if we could also extend our isomorphism up to this
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range. As the number p (up to a constant) appears as an upper bound several times, we
will discuss each of its appearances.

First, dimension p is the limit in the identification of the homotopy groups with the
primitive part of homology (cf. Corollary 4.3.13), which only works up to dimension p−1,
if the space of question is connected. Of course, if the first relative cyclic homology group
vanishes, so does the first relative algebraic K-group by the main Theorem 6.3.22. In this
case the map automatically gets (2p − 3)-connected by Corollary 4.3.13. Another idea
could be to deloop both constructions before taking homology. This could be done using
the bar construction to the monoid structure of

D(A, J) = colim
∆̂inj

X•(A, J), d(A, J) = colim
∆̂inj

x•(A, J).

However one should also be able to construct a zig-zag of space level maps between relative
multiplicative K-theory and relative additive K-theory.

Conjecture 9.0.8
Let k ∈ CRing and I � A ∈ k/Ring with A and A/I flat over k and (p − 1)! ∈ A×, for
some p > 1.

Then there is a zig-zag of simplicial sets linking Y (A, I)+ and y(A, I)+ and inducing
isomorphisms on homotopy groups in dimensions < 2p− 2.

Second, the upper bound p appears, when going down to the quotient

(Λ∗glrA)(0) −� (Λ∗glrA)
(0)
Σr
.

From Proposition 5.4.14 and Corollary 5.4.16 we know that on the primitive part this
map corresponds to the map

CC∗(A) ' Cλ
∗ (A,Σ•) −� Cλ

∗ (A),

which also is only (p − 1)-connected by Proposition 5.1.9. So one should maybe try to
prove the following conjecture to get better connectivity.

Conjecture 9.0.9
Let k ∈ CRing and I � A ∈ k/Ring with A and A/I flat over k and (p − 1)! ∈ A×, for
some p > 1.

Then the map Com1(Cλ
∗−1(A,Σ•)) −→ d(A)(0) = colim ∆̂inj

(Λ∗gl•A)(0) is (2p − 2)-
connected or even a weak equivalence.

Third, we only have connectivity < (p− 1), when going down to the quotient

Λ∗glrA −�
⊕
a∈Zr

(Λ∗glrA)(a) ⊗ k/ gcd(a1, ..., ar)k −� (Λ∗glrA)(0).

Using Proposition 5.4.3 (i) one can see that the first map is a quasi-isomorphism, while the
second one is only (p−1)-connected. If the right object corresponds to Com1(Cλ

∗−1(A,Σ•)),
then the left object may correspond to a variant of cyclic homology, maybe topological
cyclic homology. So it also seems natural to ask
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Question 9.0.10
Let k ∈ CRing and I � A ∈ k/Ring.

Are the groups KLie∗ (A, I) and HkTC∗(A, I) isomorphic in positive dimensions?
By the latter we mean the relative topological cyclic homology over the base ring spectrum

Hk (i.e. the Eilenberg-Maclane ring spectrum to the ring k) in the sense of [ABG+14].
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Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili

[LQ84] Loday, Jean-Louis ; Quillen, Daniel: Cyclic homology and the Lie algebra
homology of matrices. In: Comment. Math. Helv. 59 (1984), Nr. 4, 569–591.
http://dx.doi.org/10.1007/BF02566367. – DOI 10.1007/BF02566367. –
ISSN 0010–2571

[Lur09] Lurie, Jacob: Higher Topos Theory. 2009

[McC97] McCarthy, Randy: Relative algebraic K-theory and topological cyclic ho-
mology. In: Acta Math. 179 (1997), Nr. 2, 197–222. http://dx.doi.org/10.
1007/BF02392743. – DOI 10.1007/BF02392743. – ISSN 0001–5962

[ML98] Mac Lane, Saunders: Graduate Texts in Mathematics. Bd. 5: Categories
for the working mathematician. Second. Springer-Verlag, New York, 1998. –
xii+314 S. – ISBN 0–387–98403–8

[MM65] Milnor, John W. ; Moore, John C.: On the structure of Hopf algebras. In:
Ann. of Math. (2) 81 (1965), S. 211–264. – ISSN 0003–486X

264

http://projecteuclid.org/euclid.hha/1139839507
http://projecteuclid.org/euclid.hha/1139839507
http://dx.doi.org/10.1515/crll.2002.013
http://dx.doi.org/10.1023/A:1007857428747
http://dx.doi.org/10.1023/A:1007857428747
http://dx.doi.org/10.1007/978-3-662-11389-9
http://dx.doi.org/10.1007/978-3-662-11389-9
http://dx.doi.org/10.1007/978-3-662-11389-9
http://dx.doi.org/10.1007/978-3-662-11389-9
http://dx.doi.org/10.1007/BF02566367
http://dx.doi.org/10.1007/BF02392743
http://dx.doi.org/10.1007/BF02392743


Bibliography

[MMSS01] Mandell, M. A. ; May, J. P. ; Schwede, S. ; Shipley, B.: Model cat-
egories of diagram spectra. In: Proc. London Math. Soc. (3) 82 (2001),
Nr. 2, 441–512. http://dx.doi.org/10.1112/S0024611501012692. – DOI
10.1112/S0024611501012692. – ISSN 0024–6115

[MR01] McConnell, J. C. ; Robson, J. C.: Graduate Studies in Mathematics.
Bd. 30: Noncommutative Noetherian rings . Revised. American Mathematical
Society, Providence, RI, 2001. – xx+636 S. http://dx.doi.org/10.1090/

gsm/030. http://dx.doi.org/10.1090/gsm/030. – ISBN 0–8218–2169–5. –
With the cooperation of L. W. Small

[Nak60] Nakaoka, Minoru: Decomposition theorem for homology groups of symmet-
ric groups. In: Ann. of Math. (2) 71 (1960), S. 16–42. – ISSN 0003–486X

[Neu90] Neukirch, Jürgen: Algebraische Zahlentheorie. In: Ein Jahrhundert Mathe-
matik 1890–1990 Bd. 6. Vieweg, Braunschweig, 1990, S. 587–628

[Pic78] Pickel, P. F.: Rational cohomology of nilpotent groups and Lie algebras. In:
Comm. Algebra 6 (1978), Nr. 4, S. 409–419. – ISSN 0092–7872

[Pir85] Pirashvili, T. I.: Plus-construction for Lie algebras. In: Soobshch. Akad.
Nauk Gruzin. SSR 118 (1985), Nr. 2, S. 253–256. – ISSN 0132–1447

[Qui66] Quillen, D. G.: Spectral sequences of a double semi-simplicial group. In:
Topology 5 (1966), S. 155–157. – ISSN 0040–9383

[Qui67] Quillen, Daniel G.: Homotopical algebra. Springer-Verlag, Berlin-New York,
1967 (Lecture Notes in Mathematics, No. 43). – iv+156 pp. (not consecutively
paged) S.

[Qui69a] Quillen, Daniel: Rational homotopy theory. In: Ann. of Math. (2) 90 (1969),
S. 205–295. – ISSN 0003–486X

[Qui69b] Quillen, Daniel G.: An application of simplicial profinite groups. In: Com-
ment. Math. Helv. 44 (1969), S. 45–60. – ISSN 0010–2571

[Qui71a] Quillen, Daniel: Cohomology of groups. In: Actes du Congrès International
des Mathématiciens (Nice, 1970), Tome 2. Gauthier-Villars, Paris, 1971, S.
47–51

[Qui71b] Quillen, Daniel G.: On the group completion of a simplicial monoid. In:
Memoirs of the AMS 529 (1971), S. 89–105

[Qui72] Quillen, Daniel: On the cohomology and K-theory of the general linear
groups over a finite field. In: Ann. of Math. (2) 96 (1972), S. 552–586. – ISSN
0003–486X

265

http://dx.doi.org/10.1112/S0024611501012692
http://dx.doi.org/10.1090/gsm/030
http://dx.doi.org/10.1090/gsm/030
http://dx.doi.org/10.1090/gsm/030


Bibliography

[Sch07] Schlichtkrull, Christian: The homotopy infinite symmetric product repre-
sents stable homotopy. In: Algebr. Geom. Topol. 7 (2007), 1963–1977. http:

//dx.doi.org/10.2140/agt.2007.7.1963. – DOI 10.2140/agt.2007.7.1963.
– ISSN 1472–2747

[Sri08] Srinivas, V.: Algebraic K-theory. second. Birkhäuser Boston, Inc., Boston,
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