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Motion-Compensated Image Reconstruction for Magnetic Resonance (MR)
Imaging and for Simultaneous Positron Emission Tomography /MR Imaging

In this work, novel algorithms for 4D (3D + respiratory) and 5D (3D + respiratory +
cardiac) motion-compensated (MoCo) magnetic resonance (MR) and positron emission
tomography (PET) image reconstruction were developed. The focus of all methods was set
on short MR acquisition times. Therefore, respiratory and cardiac patient motion were
estimated on the basis of strongly undersampled radial MR data employing joint motion
estimation and MR image reconstruction. In case of simultaneous PET /MR acquisitions,
motion information derived from MR was incorporated into the MoCo PET reconstruction.
4D respiratory MoCo MR image reconstructions with acquisition times of 40s achieved
an image quality comparable to standard motion handling approaches, which require one
order of magnitude longer MR acquisition times. Respiratory MoCo PET images using
1min of the MR acquisition time for motion estimation revealed improved PET image
quality and quantification accuracy when compared to standard reconstruction methods.
Additional compensation of cardiac motion resulted in increased image sharpness of MR
and PET images in the heart region and enabled time-resolved 5D imaging allowing for
reconstruction of any arbitrary combination of respiratory and cardiac motion phases. The
proposed methods for MoCo image reconstruction may be integrated into clinical routine,
reducing MR acquisition times for improved patient comfort and increasing the diagnostic
value of MR and simultaneous PET /MR examinations of the thorax and abdomen.

Bewegungskompensierte Bildrekonstruktion fiir Magnetresonanz (MR)-Bild-
gebung und fiir simultane Positronen-Emissions-Tomographie/MR-Bildgebung

In der vorliegenden Arbeit wurden neuartige Algorithmen fiir die 4D (3D + Atmung)
und 5D (3D 4+ Atmung + Herz) bewegungskompensierte Magnetresonanz (MR)- und
Positronen-Emissions-Tomographie (PET)-Bildrekonstruktion entwickelt. Schwerpunkt
aller Methoden waren kurze MR-Aufnahmezeiten. Aus diesem Grund wurde die Atem- und
Herzbewegung der Patienten auf Basis von stark unterabgetasteten radialen MR-Daten mit
einem Verfahren geschitzt, welches die Bewegungsschétzung mit der MR-Bildrekonstruktion
verkniipft. Bei simultaner PET /MR Datenaufnahme wurde die von MR-Daten abgeleitete
Bewegungsinformation in die bewegungskompensierte PET-Rekonstruktion integriert. 4D
atemkompensierte MR-Bildrekonstruktionen mit einer Aufnahmezeit von 40s erzielten eine
vergleichbare Bildqualitdt wie Standardverfahren zur Bewegungsreduktion, die jedoch eine
Groflenordnung langere Aufnahmezeiten benétigen. Atemkompensierte PET-Bilder, fiir die
1 min MR-Aufnahmezeit zur Bewegungsschitzung verwendet wurde, zeigten eine verbesserte
visuelle Bildqualitat und Quantifizierung im Vergleich zu Standardrekonstruktionsverfahren.
Die zusétzliche Kompensation der Herzbewegung ergab eine erhohte Bildscharfe der MR-
und PET-Bilder im Bereich des Herzens und ermoglichte zeitaufgeloste 5D Bildgebung,
womit beliebige Kombinationen aus Atem- und Herzphasen rekonstruiert werden konnten.
Die vorgeschlagenen Methoden zur bewegungskompensierten Bildrekonstruktion kénnen an
die klinische Routine angepasst werden und damit durch kiirzere MR-Aufnahmezeiten den
Patientenkomfort verbessern sowie den diagnostischen Nutzen von MR- und simultanen
PET /MR-Untersuchungen des Thorax und Abdomens erhéhen.
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1 | Introduction

Magnetic resonance imaging (MRI) and positron emission tomography (PET) represent
two common imaging modalities employed in modern radiology and nuclear medicine to
diagnose and assess a wide range of diseases covering all parts of the human body. While
sequential imaging of a patient with these devices has been available for many years, a novel
hybrid device combining both modalities was introduced in the year 2011 (Delso et al.,
2011). This device allows for simultaneous acquisition of PET and magnetic resonance (MR)
data delivering an intrinsic spatial and temporal correlation of the resulting PET and MR
images. While PET offers molecular imaging with high sensitivity but limited resolution,
MRI provides high-resolution morphological imaging. This complementary information
is very promising for applications in the fields of oncology, neurology, cardiology and
pediatric imaging (Quick, 2014) and there is ongoing research to define and establish key
applications of simultaneous PET/MR imaging (Nensa et al., 2014; Bailey et al., 2015a,b).
Advantages over combined PET /computed tomography (CT) are an enhanced soft tissue
contrast and reduced radiation dose when using MRI instead of CT (Jadvar and Colletti,
2014). A disadvantage of MRI and PET are the relatively long acquisition times in the
range of several minutes, e.g. required for examination of the complete thorax. Due to
this property, a major challenge in PET and MR image reconstruction is to deal with
patient motion during measurements, especially when imaging the thorax and abdomen,
which are affected by respiratory and cardiac motion. As a consequence, reconstructed
images reveal motion blurring if no motion handling strategy is applied (Schultz et al.,
1984; Visvikis et al., 2006) as demonstrated in Fig. 1.1. Besides reducing motion blur in
static MRI, dynamic time-resolved imaging is of high interest as it can provide valuable
information for radiotherapy (Blackall et al., 2006; Dinkel et al., 2009; Sawant et al., 2014)
or for studying physiology (von Siebenthal et al., 2007; Biederer et al., 2009, 2010; La
Gerche et al., 2013). In case of PET, motion blurring further leads to a degradation of
quantification accuracy. As reported by Kinahan and Fletcher (2010), respiratory motion
may lead to an underestimation of standardized uptake values (SUVs) in the range of 25%.
This effect may impede detection of small lesions or it may impair therapy monitoring and
a precise definition of tumor volumes for applications in radiation therapy and surgery
(Catana, 2015).
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Figure 1.1: Comparison of standard MR and PET reconstruction methods for the thorax
region. While motion average images reveal blurring due to respiratory and cardiac motion,
standard motion handling strategies usually suffer from increased artifact levels.

For both MRI and PET, standard motion handling strategies, such as gating, are limited in
many cases as they suffer from increased artifact levels (Fig. 1.1) or demand inappropriately
long acquisition times. In the field of MRI, more advanced methods use compressed
sensing—based reconstruction to reduce the artifact level of the images (Lustig et al., 2007,
2008; Hollingsworth, 2015). In addition, motion-compensated (MoCo) image reconstruction
has been proposed (Batchelor et al., 2005; Odille et al., 2008; Wang and Amini, 2012;
McClelland et al., 2013). This approach requires an estimation of patient motion, then
allowing for reconstruction of each individual motion phase from 100% of the measured
raw data. In addition, simultaneous PET /MR enables MoCo PET reconstruction using
MR-based motion estimation (Catana, 2015; Munoz et al., 2016). However, when applying
short MR acquisition times and thus high undersampling, artifacts may impair the quality

of motion estimation and the subsequent MoCo image reconstruction.

This work aims at developing novel algorithms for time-resolved 4D (3D + respiratory)
and 5D (3D + respiratory + cardiac) MoCo MR and PET image reconstruction. For all
methods, respiratory and cardiac patient motion shall be estimated on basis of MR data
acquired during free breathing. The focus of developments is set on reducing the MR
acquisition time necessary for motion estimation, which may help to improve patient comfort
in the scanner and to increase patient throughput in clinical practice. The resulting strong
undersampling of MR data requires to design the motion estimation to be robust against
artifacts arising from the undersampling. Enabling MoCo MR image reconstruction, the
novel methods shall allow for a reduction of MR acquisition time by one order of magnitude

in comparison to standard motion handling approaches while achieving comparable image
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quality. In case of simultaneous PET /MR acquisitions, motion information derived from
MR shall be incorporated into a MoCo PET reconstruction. To allow for clinical MR
examinations during the simultaneous PET /MR measurement, only a fraction of the MR

acquisition time shall be used for motion estimation, e.g. 1 min of a 5 min scan.

The following algorithmic developments are covered by this work:

o 4D respiratory time-resolved MRI. A novel algorithm combining a specifically-tailored
iterative MR image reconstruction with artifact-robust motion estimation is developed.
The method is embedded in a framework of joint motion estimation and image
reconstruction. This joint approach is supposed to provide high-quality respiratory
time-resolved 4D MR images and motion information of the patient when using MR

data with high undersampling and thus short acquisition times.

e 4D respiratory MoCo PET: To compensate for respiratory motion in PET, a MoCo
image reconstruction framework for simultaneous PET/MR data is implemented.
Motion estimation is based on MR data and resulting motion information is incorpo-
rated into the MoCo PET reconstruction algorithm. Compensating for respiratory
motion, MoCo PET images are supposed to exhibit improved quantification accuracy

when compared to the motion average.

e 5D respiratory and cardiac MoCo MRI: The algorithms developed for estimation
and compensation of respiratory patient motion are extended to enable additional
compensation of cardiac motion. For robust estimation of both motion types from
strongly undersampled MR data, respiratory and cardiac motion are estimated
sequentially. Compensation of full organ motion shall allow for the reconstruction of
any arbitrary combination of respiratory and cardiac motion phase with high image

sharpness using 100% of the measured MR raw data.

e 5D respiratory and cardiac MoCo PET: Likewise, the MoCo PET reconstruction
framework is extended to incorporate additional MR-based cardiac motion information

into the reconstruction process.






2 | Fundamentals

This chapter gives an overview of fundamentals underlying this work. In sections 2.1 and
2.2, basics of MR and PET imaging are presented. Image registration as a method for
motion estimation is explained in section 2.3. Section 2.4 provides an introduction to

respiratory and cardiac motion management in MRI and PET.

2.1 Magnetic Resonance Imaging

MRI is a tomographic imaging technique, which has a large spectrum of applications in
modern medicine ranging from orthopedics and cardiology to neurology and oncology.
This noninvasive technique generally provides anatomical or morphological images of inner
body structures, which can be acquired in vivo with a resolution in the range of 1 mm.
Advantages of MRI are an excellent soft tissue contrast and the fact that in contrast
to other imaging techniques such as CT or PET, no exposure of the patient to ionizing
radiation is necessary. Comprehensive descriptions of fundamentals and applications of
MRI are presented in Haacke et al. (1999), Liang and Lauterbur (1999), Bernstein et al.
(2004) and Reiser et al. (2008).

2.1.1 Nuclear Magnetic Resonance

Measuring MR signals is based on the effect of nuclear magnetic resonance, which was
discovered by Bloch (1946) and Purcell et al. (1946). Atomic nuclei with an odd number
of protons and/or neutrons possess a nonzero nuclear spin I that is related to a nuclear

magnetic moment pt;:
pr =1, (2.1)

with v as the gyromagnetic ratio of nuclei. In a constant magnetic field By, these magnetic
moments align, which lifts the degeneracy of energy levels (Fig. 2.1a). This phenomenon
is known as the nuclear Zeeman effect. As I = 1/2 for hydrogen, only two discrete states

exist (Fig. 2.1b). The energy difference AE between both states is proportional to the



6 2.1 Magnetic Resonance Imaging

magnetic field strength:
AFE =~ h By, (2.2)

with A as the reduced Planck constant. In the case of hydrogen, the probability of occupancy
is slightly higher for the parallel lower-energy state in comparison to the antiparallel higher-

energy state.

antiparallel

| )

¢
v

(a)

& & C H ’//,’_A.

By=0T

AE =127.7 MHz

parallel
By=3T

(b)

Figure 2.1: (a) Alignment of nuclear magnetic moments in the environment of a constant
magnetic field By. (b) Zeeman splitting for hydrogen that results in two discrete states lifting
the degeneracy of energy levels.

The excess of parallel states can be described by Boltzmann statistics and is very small
in the order of 107% at By ~ 1T, but generates a macroscopic magnetization M that is
defined as the vector sum of expectation values of nuclear magnetic moments per unit

volume V: .
M= > (up)i (2.3)

(2

Applying a radio frequency (RF) pulse with perpendicular orientation to the direction
of the magnetic field By and frequency wys = A—hE, the macroscopic magnetization M
can be tipped away from its parallel alignment to the Bg-field by exciting spins into the
higher-energy state. In this excited state the magnetization precesses about the direction

of the magnetic field By with the Larmor frequency wy:
wo =7 Bo. (2.4)

The precession of the transversal component of the magnetization M,, about the axis
of the magnetic field By leads to an induction of a current in a receiver coil, which is
proportional to the magnitude of the transversal component and can be measured as the
MR signal.

Spin—spin interactions and interactions of spins with their environment cause a relaxation

of the magnetization back to equilibrium. These relaxation processes can be described by
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the Bloch equations (Bloch, 1946):

dM, M,

— (M x vB), — =%, 2.
o — (M xyB) T, (2.5)
dM, M,

— (M x ~B), — =Y 2.
o = (M xaB), T, (2.6)
dM, Mo — M,

— (M x~yB), + 2% 2.7
iy (M xyB), + T (2.7)

where My represents the magnitude of the magnetization vector in equilibrium. The
spin—lattice relaxation time T; describes the recovery of the longitudinal component of
magnetization M,, which is caused by an energy transfer from the spin system to the
surrounding lattice restoring thermal equilibrium (Eq. (2.7) and Fig. 2.2a). In addition to
that process, the transversal component of magnetization M, decays with the spin-spin
relaxation time T5. Due to dipole—dipole interactions, local magnetic fields are disturbed
resulting in different precession frequencies and finally in an irreversible decay of phase
coherence of preceding spins (Eq. (2.5), Eq. (2.6) and Fig. 2.2b). Local inhomogeneities
of the static magnetic field By and a heterogeneous magnetic susceptibility of the probe
cause further dephasing of spins accelerating the decay of the transversal component of
magnetization M,,. This faster decay is described by the characteristic time T5. As the
disturbing magnetic fields are constant in time, this process can however be reversed,

e.g. by applying a RF pulse that flips the magnetization vector by 180°.

X 100 2 100 -
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f 80 S g4
k<) S

© =
N 60 8 60 -
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> (o)
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s ©
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5 20 S 20+
2 >
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o 0 = 0
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time/ T, time/ T,
(a) longitudinal relaxation (b) transversal relaxation

Figure 2.2: Temporal evolution of the magnitude of (a) the longitudinal and (b) the
transversal component of magnetization after excitation with a 90° RF pulse (in units of
T; and Ts). For hydrogen and in biological tissue, T; is approximately in the range of
300 — 2000 ms while Ty is about 30 — 150 ms (de Bazelaire et al., 2004; Stanisz et al., 2005).
The two curves represent solutions of the Bloch equations defined in Eq. (2.7) and Eq. (2.5),
(2.6), respectively.
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2.1.2 Signal Localization and k-Space Formalism

In order to obtain a spatial resolution of the MR signal, the constant magnetic field By is

superimposed with a time- and location-dependent gradient field:
Ba(r,t)=(G{t') r)e, = (Go(t')x+ G, y+ G,(') 2) e, (2.8)

with the gradient G(¢') and the unit vector e,. As a result, the magnetic field and the

Larmor frequency become dependent on the location 7:
w(r,t') =wy +v7G({')r. (2.9)

Applying the additional gradient G(t’) allows for either exciting only a selected slice by
tuning the RF to the Larmor frequency of that particular slice or encoding the MR signal

with a location-dependent phase or frequency ¢(r,t):

$(r,t) = /0 G rdt = 2mk(t) T (2.10)

with:
k(t) = %/0 G(t)dt. (2.11)

The variable k(t) corresponds to a spatial frequency and can be interpreted as a position
in the so-called k-space. Varying the strength and direction of the gradient G(t'), arbitrary
locations in k-space can be probed. Whereas low frequencies at the k-space center are
correlated with image contrast, high frequencies at outer areas yield image details and fine
structure. There exist different schemes for probing the k-space, e.g. Cartesian or radial
sampling (Fig. 2.3). In the Cartesian case, a rectilinear grid is sampled along lines defining
a particular readout direction. In contrast, for radial sampling each measured k-space line

has a different readout direction.

The measured MR signal for each point in k-space is composed of the integrated transversal
magnetization of the whole imaging volume. In a rotating frame about the z-direction

with frequency wy, the measured MR signal p(k) is then given as follows:
p(k) = /Mmy(r) e 2mikr gy, (2.12)

This equation demonstrates that the MR signal p(k) corresponds to the Fourier transform
of the spatial distribution of the transversal magnetization My, (r). Accordingly, the image
represented by the location-dependent transversal magnetization Mg, (r) can be obtained

by the inverse Fourier transform of the measured signal p(k).
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Figure 2.3: Different schemes for probing the k-space: gray lines represent trajectories
through k-space. The MR signal is then measured at discrete points along these trajectories
indicated in dark blue.

2.1.3 Sampling Requirements

During MR data acquisition, the continuous Fourier transform of the object is sampled on
a discrete grid with sampling distance Ak. While application of the sampling function in
k-space corresponds to a multiplication of the continuous signal with a comb function, the
object is convolved with a comb function with reciprocal period ﬁ in image space. This
convolution results in a periodic repetition of the object at a distance Aik. This distance
is commonly referred to as the field of view (FOV). To avoid aliasing, i.e. an overlap of
neighboring repetitions of the object as shown in Fig. 2.4, the sampling distance Ak has to
be chosen in such a way, that the FOV fully covers an object of size L to be imaged. This

requirement is known as the Nyquist sampling criterion (Nyquist, 1928):

1

L <FOV or Ak< I (2.13)

If Ak < % is chosen, a so-called readout oversampling is applied during the measurement.
In case of radial sampling, distances between measurement points along spokes and between
points of neighboring spokes (represented by Ar in Fig. 2.3b), have to satisfy the Nyquist

criterion. Thus the number of spokes Ngpokes can be chosen as follows:
T
Nspokes = 5 N, (214)

with N being the number of voxels along one spatial dimension in the reconstructed image.
Compared to Cartesian sampling, the number of required k-space lines is increased by about
57%. However, while aliasing in Cartesian sampling manifests in repetitions of the object,
radial undersampling is more benign resulting in streak artifacts in the reconstructed

images (Fig. 2.4).
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ground truth Cartesian sampling Cartesian sampling
256 k-space lines 128 k-space lines 32 k-space lines

radial sampling radial sampling
128 k-space lines 32 k-space lines

Figure 2.4: Comparison of undersampling artifacts of Cartesian and radial sampling. In the
Cartesian case, twofold (center) and eightfold undersampling (right) in the row direction are
shown. In the radial case, the same number of k-space lines as used for Cartesian sampling was
employed to simulate comparable acquisition times. This corresponds to radial undersampling
factors of 3.14 (center) and 12.57 (right), respectively.

2.1.4 Advantages and Disadvantages of Radial Sampling

One advantage of a radial acquisition scheme is its lower sensitivity to object motion. As
the center of k-space is sampled during each readout, ghosting is strongly reduced compared
to Cartesian patterns (Glover and Pauly, 1992; Block et al., 2014). As the radial plane
is sampled at different angles, readout oversampling can be employed in two dimensions,
which eliminates aliasing artifacts for large objects. In addition, radial acquisition reveals a
more benign undersampling behavior than Cartesian sampling. As shown in Fig. 2.4, radial
undersampling preserves a large amount of object information and spatial resolution in
contrast to Cartesian sampling, which yields either blurring or aliasing when reducing the
number of k-space lines. A further property of the radial geometry is that each spoke covers
the same amount of low and high frequencies. Thus the measured data can be subdivided
into arbitrary subsets of spokes without introducing ghosting or intensity variations, which
is attractive for dynamic applications (Rasche et al., 1995; Larson et al., 2004; Winkelmann
et al., 2007; Uecker et al., 2010; Zhang et al., 2010a; Feng et al., 2014).
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One disadvantage of radial sampling is the larger number of k-space lines required to satisfy
the Nyquist sampling criterion as discussed in section 2.1.3. This increase of about 57%
directly translates to longer acquisition times compared to Cartesian sampling. In addition,
radial schemes show increased sensitivity to off-resonance, which appears when the exciting
RF pulse does not exactly match the Larmor frequency of the spins, e.g. due to small
local variations of the magnetic field By. As each spoke is sampled at a different angle,
phase-modulations caused by off-resonance slightly shift each spoke in a different direction
resulting in blurring of the reconstructed image. Furthermore, radial data require a more

complex image reconstruction in comparison to Cartesian data as shown in section 2.1.6.

2.1.5 MRI Contrasts

The process of measuring an MR image is described by the MR sequence that controls the
RF excitation pulse, the gradients for spatial encoding and the signal acquisition. In MRI,
the intensity of a voxel depends on several parameters, mainly on its density of water and
fat protons and on its tissue-specific relaxation parameters T, Ty and T5. While many
other techniques exist (Bernstein et al., 2004), adjusting the echo time TFE and repetition
time TR in the sequence protocol typically determines which of the above-mentioned
parameters has the strongest influence on the signal intensity of the voxel and thus the
image contrast. Examples of different contrast weightings are shown in Fig. 2.5. A very
short echo time (TE < T%) and a long repetition time (TR > T1) yields a proton density—
weighted contrast. A To- or T5-weighting is achieved by an appropriate echo time and a
long repetition time (TR > T1). A very short echo time (TE < T5) and an appropriate

repetition time result in a T-weighted image.

2.1.6 Analytic Image Reconstruction

The aim of MR image reconstruction is to resolve the spatial distribution of the transversal
magnetization Mg, (r), which mainly depends on proton density and tissue relaxation
characteristics. In case of Cartesian sampling, analytic image reconstruction corresponds to
a discrete inverse Fourier transform along the lines of encoding. In accordance to Eq. (2.12),
replacing M, (7) by the reconstructed image f(x) yields the following equation for the

one-dimensional case:

f(z) = an e?mizhn, (2.15)

As the measured raw data p are equally distributed on a regular grid, the fast Fourier
transform (FFT) algorithm can be employed to reduce computational complexity from
N2 to Nlog N. Due to its geometry, direct application of the FFT to radial data is
not possible. Two reconstruction techniques for radial data are available: The filtered
backprojection (FBP) (Kak and Slaney, 1988) and regridding or gridding (O’Sullivan, 1985;
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Figure 2.5: Dependence of the MRI contrast on the sequence parameters echo time TFE and
repetition time TR. The parameter p, represents the proton density.

Jackson et al., 1991). Both approaches are closely related and linked by the projection-slice
theorem, or central slice theorem. For FBP reconstruction, a one-dimensional Fourier
transform along the spoke dimension is performed and the resulting projections are filtered
and backprojected. Interpolation from radial geometry onto the regular grid of the image
is calculated in image space. In contrast, the gridding approach interpolates radial data
points in k-space onto the Cartesian grid. This allows for application of a two-dimensional
FFT for conversion to image space. To account for the property that low frequencies at
the k-space center are sampled more densely than high frequencies, a density compensation
of sampling points has to be performed, which equals the filtering for the FBP. As
small-scale variations in the frequency domain lead to large-scale changes in the image
domain, interpolation in k-space has to be constructed in such a way, that effects in image
space can be removed. Hence, gridding can be interpreted as a source-driven interpolation.
As illustrated in Fig. 2.6, each measured data point is convolved with an interpolation
kernel W and its contribution is added to neighboring grid points k. The inverse Fourier

transform for image reconstruction can then be formulated as follows:
F(x) w(z) = /dk (p * W) (k) 2717k, (2.16)

Dividing by the inverse Fourier transform of the gridding kernel w(x), any modulation
of the image f(z) can be removed, which is called roll-off correction. However, discrete
sampling in k-space during interpolation, which corresponds to a multiplication with a comb

function, introduces periodic repetitions of the object in image space. Thus an interpolation
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Figure 2.6: Schematic illustration of source-driven gridding interpolation in k-space. The
measured data points of radial spokes (dark blue points) are typically not distributed on a
regular Cartesian grid (white points). To make use of a two-dimensional FFT for reconstruction,
each measured data point is convolved with an interpolation kernel and its contribution is
added to neighboring grid points that are located within a specified kernel width D.

kernel with small-valued side-lobes in image domain has to be chosen. In addition, finite
support in the frequency domain is required to achieve reasonable computation times.
To further reduce aliasing effects, an oversampling in readout direction can be applied
in practice. This approach increases the distance between repetitions of the object. An

appropriate function for interpolation is the Kaiser-Bessel window (Kaiser, 1974):

Wkg(d) = (2.17)

£ Iy(6\/1—(2d/D)?) for |d| < 2
b
2

0 for |d| >

The parameter D denotes the desired kernel width and Iy(-) represents the zero-order
modified Bessel function of first kind. Depending on the chosen oversampling in readout
direction, the artifact energy in the reconstructed image can be minimized by tuning the
shape parameter § (Beatty et al., 2005). The inverse Fourier transform of W for roll-off

correction is given by:

wgp(z) = F1{Wkg}(z) = sinc < (rDx)? — 52> . (2.18)

2.1.7 Iterative Image Reconstruction

Analytic image reconstruction of undersampled radial data leads to streak artifacts in
the image as illustrated in Fig. 2.4 and is thus limited at high undersampling factors.
The streak artifacts arise from missing data in k-space in regions between the measured
spokes. Therefore, more sophisticated reconstruction techniques are required to reduce

streak artifacts on the one hand and to recover object information on the other hand.
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Inverse Problem and Incorporation of Prior Knowledge

Based on a vector of measured raw data p, image reconstruction seeks to find the corre-
sponding image vector f. For undersampled data, the size of p is usually smaller than the
size of f, i.e. the problem is underdetermined. However, the measurement process can be

described as a forward problem:
p =Xf. (2.19)

For a given image f, the measured raw data can be obtained by linear operation applying
the system matrix X. This matrix represents a mathematical description of the image
acquisition process. In MRI, it includes a Fourier transform and in case of radial data an
interpolation onto radial spoke positions. Image reconstruction then corresponds to solving
the inverse problem to Eq. (2.19) by finding the image f* that optimizes raw data fidelity

and minimizes the following cost function:

C(f) = 5 IXF -l (220)

This equation can be solved by conjugate gradient methods (Hestenes and Stiefel, 1952;
Boyd and Vandenberghe, 2004). For iterative optimization, the following steps are repeated
in an alternating manner: In a first step, the search direction is estimated by calculating
the gradient of the cost function. In the second step, a line search into that direction is
carried out until the minimum of the cost function along this direction is reached. The

gradient of the cost function of Eq. (2.20) can be calculated as follows:
VC(f) = XTXf — XTp = XT(Xf - p), (2.21)

with XT representing the complex conjugated transposed matrix of X. While for radial
data, the operator X applies a forward Fourier transform and an interpolation to radial
spokes, XT describes gridding to a Cartesian grid without density compensation followed
by an inverse Fourier transform. The iterative process of image reconstruction is then
explained by the right part of Eq. (2.21). During each iteration, the current image estimate
f is forward transformed to k-space and compared to the measured raw data. To update
the image estimate, the residuum is then backward transformed to image space and added

to the estimate of the previous iteration.

Optimizing the cost function in Eq. 2.20 evaluates data only at the measured spoke positions.
While the reconstructed image might have a perfect match with the measured raw data,
missing information in k-space is not recovered and the reconstructed image still reveals

streak artifacts. However, Eq. 2.20 can be extended incorporating prior knowledge about
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the image estimate into the reconstruction process:

O(F) = 5 IXF ~ Pl + X mi Rilf) (222)

——
raw data fidelity .
regularization

In addition to the raw data fidelity term, penalties R;(f) on certain properties of the
reconstructed object f are added, which is called regularization. To allow for optimization of
the cost function, these regularization terms have to be defined by convex functions. Using
the parameters 7;, each regularization term can be weighted relative to the raw data fidelity
term. Hence, the optimization is driven towards solutions that agree with the measured
raw data and with prior knowledge about the reconstructed object. Thus it becomes
possible to recover missing information in k-space and to remove streak artifacts from the
reconstructed images. A schematic illustration of the complete iterative reconstruction

process is shown in Fig. 2.7.
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Figure 2.7: Schematic illustration of iterative MR image reconstruction. A standard conjugate
gradient method can be used to find an image estimate that agrees with the measured raw
data and with prior knowledge about the reconstructed object. Adopted from Block (2008).

One example of prior knowledge that can be incorporated into reconstruction is that
intensity outside an object has to be zero. In addition, assuming that the measured
physical quantity in MRI is a positive value, negative values in the image can be penalized.
A further type of regularization, which is well-known for image denoising, is minimization
of the total variation (TV) of the image (Rudin et al., 1992). Application of TV assumes
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piecewise constant intensities in the image, which matches the properties of a wide range
of medical images quite well. The TV of an image f is defined as the sum of its first order

derivatives. In two dimensions, it can be calculated as follows:

Rey(f) =Y V(Vafi)? + (V)2 (2.23)

The operators V, and V, denote the finite differences along the respective spatial directions
x and y, respectively. For dynamic image series, the TV can also be calculated for the
temporal dimension. The representation of an image in the TV domain reveals entries only
at edges of the original image while homogeneous regions are zero-filled. As a result, the
TV image typically contains less nonzero entries than the original image. The TV operator
thus serves as a sparsity transform of the image, which is in compliance with the theory of

compressed sensing.

Relation to the Theory of Compressed Sensing

In clinical routine and especially in MRI, it is highly desirable to keep acquisition times as
low as possible. Employing parallel imaging, complementary information of different coil
channels allows for suppression of aliasing artifacts (Larkman and Nunes, 2007; Deshmane
et al., 2012). In addition, partial Fourier methods exploit the symmetry of k-space
(McGibney et al., 1993). For radial data acquisitions, filtering high frequencies reduces
streak artifacts, but also decreases image resolution. A further opportunity for the reduction
of acquisition times is provided by the theory of compressed sensing. This mathematical
theory was developed for the recovery of signals from highly incomplete data (Candes et al.,
2006; Donoho, 2006) and represents the theoretical foundation of regularized iterative
image reconstruction. The first application to MRI was reported in Block et al. (2007),
Lustig et al. (2007) and Lustig et al. (2008). Three conditions have to be fulfilled for the

successful implementation of compressed sensing:

1. The true image has to be compressible, i.e. a sparse representation of the image in a

known transform domain W(f) is required.

2. Artifacts arising from undersampling of k-space should be incoherent in this transform

domain, i. e. they should have a noise-like appearance.

3. For image reconstruction, nonlinear methods should be applied, which enforce both

raw data fidelity and sparsity of the image in the transform domain.

For highly undersampled raw data, Eq. (2.19) is underdetermined, i. e. there exists a whole
set of images f*, which are in compliance with the measured raw data p. To find an
appropriate solution from this set of images, the image with the highest sparsity in the

transform domain W(f) can be selected, which is in correspondence to the image property
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demanded by condition 1. Typical sparsity transforms may be the TV or wavelet transform
(Lustig et al., 2007, 2008), for instance. To prevent the selection of unreasonable solutions,
condition 2 assures that undersampling artifacts do not have a sparse representation in the
transform domain unlike the true signal. Image reconstruction can then be formulated as

a constrained optimization problem with convex behavior:

f* = argmin||[W(f)|l1 subject to | Xf —p|3 <e. (2.24)
I

The parameter € > 0 is chosen to relax the raw data fidelity constraint accounting for noise
and the incomplete description of the measurement process by the system matrix X. For
optimization of Eq. (2.24), an unconstrained formulation can be used (Song et al., 2007).
This allows for optimizing both parts of the equation in an alternating manner employing

a standard conjugate gradient algorithm (Boyd and Vandenberghe, 2004).

2.2 Positron Emission Tomography

PET is an imaging modality in the field of nuclear medicine, which allows for noninvasive
measurement of the spatial distribution of a radioactive substance in vivo. This substance
called tracer is injected into the patient prior to the examination. It is composed of a
biomolecule labeled with a radioisotope. The tracer is intended to participate in physio-
logical or functional processes mimicking the specific behavior of the original biomolecule.
Thus it becomes possible to gain information about biochemical reactions at a molecu-
lar level or about physiology, such as metabolism and blood flow. In clinical practice,
this physiological or functional information is a valuable complement to the anatomical
or morphological information primarily provided by MRI or CT. The glucose analog
fluorodeoxyglucose ('8 F-FDG) labeled with the radioisotope '®F is the most commonly
applied tracer in PET imaging providing information about the local glucose metabolism.
A detailed overview of PET is given in Bailey et al. (2005), Saha (2010) and Kim et al.
(2013).

2.2.1 Positron Decay and Positron—Electron Annihilation

PET imaging is based on the emission of radiation from unstable isotopes, which decay by
emission of a positron. This 3T-decay occurs for proton-rich radionuclides when a proton is
converted to a neutron emitting a positron and an electron neutrino. For a nucleus X with
mass number A and Z protons, the ST-decay to a daughter nucleus Y can be formulated
as follows:

A4X — 4 Y+et+v.+0Q. (2.25)



18 2.2 Positron Emission Tomography

The decay products et and v, denote the positron and the electron neutrino, respectively,
while @ represents the released energy. This energy is distributed continuously between
positron and neutrino as kinetic energy and depends on the decaying isotope. Traversing
matter, the positron interacts with atomic electrons and loses its kinetic energy. Almost
at rest, it combines with an electron representing its antiparticle. This process is called

positron—electron annihilation:
et +e  —y+1. (2.26)

According to the law of conservation of momentum, the annihilation most likely produces
two photons -y, which carry the same amount of energy and are emitted in opposite direction
under an angle of about 180°. Due to conservation of energy, the photon energy equals
511 keV each, which in total is equivalent to the rest mass of the positron—electron pair.

The physical processes important for PET imaging are illustrated in Fig. 2.8.

Figure 2.8: Principle of PET: A radioactive isotope is injected to the patient (green) and
disperses in the body. The substance decays via 8T-decay generating a positron and an electron
neutrino. When the positron is almost at rest, it annihilates with an electron emitting two
photons in opposite directions. These photons can be detected and assigned to the annihilation
event by the coincidence measurement (red).

As the positron originating from the 37-decay carries kinetic energy, it travels a certain
range through matter before annihilation. This range depends on the kinetic energy and
thus the emitting isotope on the one hand and on the electron density of the traversed
material on the other hand. Mean ranges in water of typical isotopes used in PET are
approximately 1 to 3mm. This effect causes a disagreement between isotope distribution
and the distribution of annihilation events. Besides, positrons may still carry a small
momentum at annihilation. To conserve momentum, the created photons are thus emitted
at angles slightly varying around the 180° with a standard deviation of 0.25° (DeBenedetti

et al., 1950), which is called non-collinearity. Both effects, the positron range and the
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non-collinearity, induce a physical limit of the intrinsic spatial resolution obtained by
PET. However, for common tracers, these errors are typically below the resolution of PET

detectors used in clinical practice.

Radioactive decay is a statistical process, i.e. prediction of individual events is limited to
probability. Common probability distributions to model decay processes are the binomial
distribution and for a large concentration of isotope the Poisson distribution. The activity
A is proportional to the number of isotopes in the sample and defines the number of
disintegrations per time interval. The unit is 1s~! = 1 Bq (Becquerel). For a given activity

Ap at time ¢t = 0, the activity at time ¢ can be expressed as:
A(t) = Age L. (2.27)

The decay constant A is directly related to the half-life of an isotope, which specifies the

time interval reducing the initial activity to one-half:

In2

2.2.2 Photon Interaction with Matter

Photons originating from positron—electron annihilation are monoenergetic with an energy
of 511keV. At this energy, interactions when traversing matter can be described by
contributions of two major interaction processes, namely (i) the photoelectric effect and
(ii) inelastic Compton scattering. When the incident photon interacts with an atom by the
photoelectric effect, it is absorbed and transfers its entire energy to an inner shell electron,
which is then ejected. In case of inelastic Compton scattering, the photon interacts with
a weakly bound outer shell electron and transfers only part of its energy to the electron.
While the electron is ejected, a photon of lower energy is emitted escaping at a different
angle than the original photon as the momentum of the system has to be conserved. Other
interaction processes, such as Rayleigh scattering and the nuclear photoelectric effect, can
be neglected at 511 keV. Furthermore, pair production is not possible due to the insufficient
photon energy. The interaction processes result in an attenuation of photons and, at a
fixed energy, they are solely influenced by the material composition of the traversed object.

The attenuation is characterized by the linear attenuation coefficient:

L= peo, (2.29)

with the electron density p. and the total cross-section of interaction processes o. A plot
of linear attenuation coefficients of water for different energies is shown in Fig. 2.9. It

demonstrates that attenuation of 511keV photons is dominated by Compton scattering.
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Figure 2.9: Linear attenuation coefficient of water for different photon energies.

The reduction of photon intensity after traversing an object of length L can be described

by the Beer-Lambert law that has the following form for an inhomogeneous object:
L
I(L) = Ie Jo O, (2.30)

with Iy as the initial photon intensity.

2.2.3 Detection of Annihilation Photons

In PET, the distribution of positron annihilations is measured as it is closely related to the
desired tracer distribution within the imaged object. If not attenuated within the object,
two photons originating from an annihilation event can be detected nearly simultaneously.
This property forms the basis of PET and the measurement is called coincidence detection.
Photons detected within a certain timing window are assigned to the same annihilation
event. This allows for distinguishing annihilation events occurring at slightly different
times. Furthermore, it yields the information that the annihilation event took place along
a line connecting both detectors. This line is called line of response (LOR). For measuring
annihilation photons, modern PET scanners typically use a detector ring. The detectors
employ scintillators to convert the incident 511 keV photons into visible light. Besides a
high stopping power for the incident photons, scintillators are required to provide a high
energy resolution and a short signal decay time. The visible light is then transformed into
an electronic signal by a photodetector. The most common device for conversion is the
photomultiplier tube (Kim et al., 2013). Here, the scintillator photons create electrons
that are amplified towards an electrode with positive charge. In strong magnetic fields,

e.g. in simultaneous PET /MR, robust operation of photomultiplier tubes is not possible.
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Hence, semiconductor-based photodiodes, such as avalanche photodiodes (Pichler et al.,
2006; Catana et al., 2006) or silicon photomultipliers (Roncali and Cherry, 2011), can be
employed. Here, incident scintillator photons create electron—hole pairs in the diodes that

can be amplified to generate an electronic signal.

2.2.4 Image Reconstruction

The aim of PET image reconstruction is the calculation of the activity distribution within
the measured object. The measured counts per LOR represent estimates of the line
integrals through this distribution. Thus for analytic reconstruction, a FBP (Kak and
Slaney, 1988) can be employed. Due to the statistical nature of PET, measured data
typically contain considerable noise levels in practice. Therefore, algebraic reconstruction
techniques, which model these statistical fluctuations, usually provide better image quality
than FBP. They seek to find an activity distribution that reproduces the measured data
with highest probability. Similar to the iterative MR image reconstruction, this inverse
problem is solved by optimizing some kind of cost function. For a given initial activity
distribution Ay, a forward transform to raw data space and comparison to the measured raw
data p is performed. As a result, an update of the activity distribution can be calculated.

These steps are repeated until improvement of the cost function reaches a specific stopping

criterion. For a discrete representation of the desired activity distribution A = (A1,..., Af),
the expected raw data p = (p1,...,ps) are given in the forward model as follows:
p=MA (2.31)

The system matrix M models the measurement process and gives the probability that an
annihilation event in voxel 7 is detected at LOR j of the expected raw data p. Assuming a
Poisson distribution as statistical model, the probability P(p;) of observing p; when p;

represents the expectation value is defined by:

e P g

P(p;) = ol

(2.32)
Combining all measured LORs, which possess independent probabilities P(p;), yields the
likelihood function P(p|\):

—p; #Pi
b

o (2.33)

P(px) =[P =11
J J
Instead of the function in Eq. (2.33), its logarithm I(p|A) is often used for image recon-

struction:

I(p|A) =In P(p|A) = > (pjInp; — p; — In(p;!)). (2.34)

J
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The desired solution is then represented by the activity distribution A*, which maximizes
the likelihood function I(p|A) (Rockmore and Macovski, 1976). This solution can be found
by iterative approaches, e.g. using the expectation maximization algorithm (Dempster
et al., 1977; Shepp and Vardi, 1982; Lange and Carson, 1984), which yields in its most

basic form the following update equation:

A — A MlT TP (2.35)
The matrix MT denotes the transpose of the system matrix M and n represents the
iteration index. To account for nonlinear physical effects biasing the measurement, such as
scatter and randoms as described in section 2.2.5, data correction terms can be added to
the denominator of the last term of Eq. (2.35). Furthermore, to decrease computational
effort, the ordered subset expectation maximization (OSEM) algorithm was introduced
(Hudson and Larkin, 1994). This modification of the expectation maximization algorithm
employs only a subset of the measured LORs for each image update reducing the total
number of required forward and backprojections. The modified update equation with

additional data correction terms is explained in section 3.2.1.

2.2.5 Data Corrections

Attenuation

Starting at the annihilation location, the emitted photons traverse the body of the patient
before reaching the detector ring. Due to interaction processes, the number of photons is
decreased by up to two orders of magnitude. Thus correction of this attenuation is required
for reconstruction of quantitatively correct activity distributions. Employing Eq. (2.30),
the probability P of detecting two photons emitted at location r at a given LOR is the
product of the individual probabilities P, and Ps:

T

P=Pi Py =e Jondl = [Tud _ = [ u0d (2.36)

This demonstrates that for coincidence detection, attenuation along a LOR is independent
of the annihilation location. Hence, attenuation correction factors can be determined from
an external radioactive source, which is rotated around the patient. For hybrid devices,
attenuation correction factors are usually obtained by forward projection of a so-called
attenuation map, which describes the distribution of linear attenuation coefficients in
the FOV. In PET/CT, this attenuation map can be calculated directly by conversion
of the measured CT values into attenuation coefficients. In PET /MR, the derivation of
the attenuation map is more difficult as there is no direct correlation between the MR

signal and photon attenuation coefficients. Several approaches exist, which are based on



2 Fundamentals 23

PET emission data, segmentation-based and atlas-based methods as discussed in detail by
Bezrukov et al. (2013), Keereman et al. (2013) and Mehranian et al. (2016).

Normalization

To account for differences in the characteristics of individual detectors, such as geometrical
efficiency or detector sensitivity, the measured raw data have to be corrected by LOR—-
specific normalization coefficients. These coefficients can be derived from a calibration

measurement with a homogeneous activity distribution.

Scatter and Randoms

Besides the detection of desired true coincidence events, measured PET data may contain
several other events as illustrated in Fig. 2.10, which impair reconstruction of the true
activity distribution. If one of the photons is deflected by Compton scattering before
detection, the assigned LOR will not pass through the origin of the annihilation event.
As photons loose energy during the scattering process, detection of these scatter events
can be reduced considerably by analyzing only photons with energies close to 511 keV.
Furthermore, the remaining scatter distribution can be estimated incorporating a single
scatter model into image reconstruction (Watson, 2000). If two annihilation events occur
nearly at the same time and in each case one photon is absorbed in the object, the two
remaining photons may generate a random event and the assigned LOR is generally not
related to the two annihilation origins. To reduce random events, the timing window of the
coincidence detection can be narrowed. Using a second coincidence circuit with delayed
timing window enables direct measurement of the statistical distribution of random events

allowing for correction of PET data (Brasse et al., 2005).

(a) true event (b) scatter event (c) random event

Figure 2.10: Overview of different types of events measured in PET.
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2.3 Image Registration

Image registration describes the process of aligning two or more images. It aims at finding
a geometric transformation that matches selected structures of these images. The image
to be deformed by this transformation is defined as the source image fg while the static
image is called destination image fp. Comprehensive surveys of image registration are
given in Gottesfeld Brown (1992), Hill et al. (2001), Zitové and Flusser (2003), Wyawahare
et al. (2009) and Oliveira and Tavares (2014). In the field of medical imaging, typical

applications of image registration comprise:

e Alignment of images of the same patient acquired with different FOVs or image

orientations.
e Detection of changes between images of the same patient examined at different times.
e Fusion of information from different imaging modalities, such as CT, MRI and PET.

o Description of transformations between different motion states, e. g. in case of images

affected by respiratory or cardiac motion.

o Transfer of information between two different patients, e.g. to add bone information
to attenuation maps in simultaneous PET /MR imaging (Burgos et al., 2014; Paulus
et al., 2015).

As medical image registration is employed for a wide range of applications, methods are
typically adapted to specific requirements and body regions (Wyawahare et al., 2009;
Oliveira and Tavares, 2014). However, most methods can be subdivided into a set of
similar steps. In a first step, certain features are extracted from the source and destination
images. These features may be defined in the image domain and may e.g. describe voxel
intensities, edges, contours, landmark points or regions with closed boundaries. In general,
feature space can also be defined in the projection or frequency domain. In a second
step, a similarity metric is chosen that correlates information from the source and the
destination image. This metric may quantify the physical distance of features in the two
images or it may compare voxel intensities of the images. For the latter, typical approaches
seek to minimize the sum of squared differences or to maximize the cross-correlation or
mutual information, respectively. The third step estimates the transformation of the source
image to match the destination image. Several types of transformations exist. Figure 2.11
illustrates two examples. While rigid transformations are restricted to translation and
rotation in all spatial dimensions, affine transformations allow for additional shearing and
scaling of the source image. Moreover, deformable transformations assign each voxel with
an individual displacement and thus enable more complex deformation models. The type
of transformation has to be chosen specifically for a given problem. This selection usually

represents a trade-off between a high degree of freedom of the transformation and the
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robustness of the registration process. In many algorithms, the transformation parameters
are estimated iteratively optimizing a cost function, which contains the similarity metric
chosen in step two. In the fourth step, the source image may be transformed to the
geometry of the destination image. As medical images are typically of discrete nature,
interpolation has to be applied to compute values at defined grid positions. Common

methods comprise linear or cubic spline interpolation.

[T11

(a) original image (b) rigid transformation (c) deformable transformation

Figure 2.11: Examples of two different types of image transformations. While rigid transfor-
mations (b) are restricted to translation and rotation in all spatial dimensions, deformable
transformations (c) assign each voxel with an individual displacement enabling more complex
deformations.

In this work, image registration is employed to estimate transformations that describe
motion between different respiratory or cardiac phases. Due to their complexity, these
types of motion are modeled with deformable transformations. The resulting voxel-specific
motion vector fields (MVFs) are defined by a transformation operator 7' that is composed

of the identity mapping and a displacement vector field d:
T:(z,y,2) = (2,9, 2) + d(z,y, 2). (2.37)

Applying the transformation operator 7' to a source image fgq results in the destination

image fp. This procedure can be described by a destination-driven deformation:

fD(«T,y,Z) = TfS(xvyvz) = fS((x7y7 Z) + d(:l),y, Z)) (238)

To find a suitable transformation operator T', a cost function similar to the following is
optimized:

Creg(T) = || fp — T£sll3 + R(T). (2.39)

The first term of the cost function optimizes the similarity between the destination image
and the deformed source image. While Eq. (2.39) employs the sum of squared distances
as similarity metric, other measures such as mutual information can be implemented as

well. Similar to the iterative image reconstruction in Eq. (2.22), the second term imposes
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penalties on the properties of the transformation operator T'. This regularization ensures

smoothness of the resulting deformation vector field, for instance.

2.4 Respiratory and Cardiac Motion Management

Patient motion during measurements is one major challenge for data acquisition and image
reconstruction. Depending on the body region, different motion types and corresponding
correction techniques exist. This work has a focus on thoracic and abdominal imaging, for
which respiratory and cardiac motion is most important. In contrast to random motion,
such as coughing, these motion types describe cyclic patterns. Although different motion
cycles slightly vary, preservation of this property can be assumed in most cases when
averaging over several motion cycles. For respiratory motion, common peak to peak
amplitudes in the two main directions of motion were reported to be in the range of 6 to
20 mm in superior-to-inferior direction and 1 to 11 mm in anterior-to-posterior direction,
respectively (Ionascu et al., 2007). Typical breathing periods are approximately 2.6 to
4.8s (Quirk et al., 2013), which translates into frequencies of 0.4 to 0.2 Hz. An additional
property of respiratory physiology is called hysteresis inducing that internal structures
follow different motion paths during inhalation and during exhalation (McClelland et al.,
2013). For cardiac motion, typical heart rates at rest are in the range of 60 to 100 Hz. A
mean displacement of about 3 to 8 mm between end-diastole and end-systole was reported
for cardiac structures and coronary arteries in Tan et al. (2013). However, these values as
well as left and right ventricular volumes depend on the respiratory motion phase due to

coupling of respiratory and cardiac motion (Claessen et al., 2014).

A general overview of motion correction methods for MRI is given in Wang and Amini
(2012) and McClelland et al. (2013) while techniques for simultaneous PET /MR imaging
are discussed in Catana (2015) and Munoz et al. (2016).

2.4.1 Prospective Approaches

Prospective motion management aims at controlling data acquisition to reduce motion arti-
facts and blurring in the reconstructed images. In case of MRI, several different approaches
are available. Regarding k-space sampling, non-Cartesian trajectories, e.g. radial patterns,
can be employed. As described in section 2.1.4, ghosting can be strongly reduced compared
to Cartesian patterns. One option to minimize respiratory motion blurring is MR data
acquisition in breath-hold (Paling and Brookeman, 1986). This, however, limits acquisition
times to about 10 to 15 s making the acquisition of 3D volumes with a large number of slices
difficult. Moreover, respiratory time-resolved MRI cannot be realized using breath-hold

acquisitions. Triggered MR acquisition represents a technique, which can be applied to
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reduce either respiratory or cardiac motion blur. With this technique, data are acquired
only when the subject is in a predefined motion state. To estimate this motion state, a
motion surrogate signal has to be acquired during the measurement. For that purpose,
external devices such as compressible cushions or pneumatic belts for respiratory signals
(Arnold et al., 2007) and electrocardiography (ECG) for cardiac signals (Rokey et al., 1988;
Fischer et al., 1999) can be employed. In addition, MRI allows for intrinsic estimation of
motion amplitudes using navigators (McClelland et al., 2013) or from the k-space center
signal when using radial acquisitions (Larson et al., 2004, 2005). A disadvantage of triggered
acquisition is the reduced efficiency of the measurement prolonging acquisition times. In
clinical practice, cardiac examinations are generally performed during breath-hold or with
triggered respiratory gating. Data acquisition is then synchronized with the heartbeat of
the patient (Earls et al., 2002). Thus several k-space lines can be acquired for predefined
phases of the cardiac cycle during each heartbeat. The position of k-space lines is chosen

in such a way, that after several heartbeats the full specified k-space is filled with data.

In addition to these segmented k-space acquisition strategies, real-time MRI represents
another state-of-the-art technique providing high temporal resolution (Zhang et al., 2010b;
Uecker et al., 2012; Feng et al., 2013; Zhang et al., 2014). However, image acquisition
is typically limited to a single slice with reduced spatial resolution due to the ultrafast
acquisition. When repeating the acquisition at varying slice locations, temporal consistency
of the imaged motion cycles is not preserved. In contrast to the variety of methods for MR
data acquisition, the nature of PET data acquisition does not allow for prospective motion

management, but retrospective approaches can be applied.

2.4.2 Retrospective Approaches

Retrospective approaches for motion handling are quite similar between the different
imaging modalities MRI, PET and CT, as they are less dependent on the data acquisition
process. The most widely used strategy is gating. As shown in Fig. 2.12, the motion
cycle is divided into several motion phases and the acquired data are sorted into these
different motion bins. This sorting requires that the acquired data can be subdivided
into small subsets. Furthermore, a motion surrogate signal has to be acquired during the
measurement or it has to be estimated intrinsically from the measured data as described
in the previous section 2.4.1. After sorting, images are reconstructed from the data of
each individual phase separately. Hence, gating typically represents a trade-off between
acquisition time and an appropriate signal-to-noise ratio (SNR), contrast and artifact level
of the reconstructed images. To reduce artifact levels of gated images in MRI, iterative
compressed sensing—based approaches as explained in section 2.1.7 are typically applied
(Lustig et al., 2007, 2008; Hollingsworth, 2015). Furthermore, MoCo image reconstruction

has been proposed to overcome limitations of gating (Batchelor et al., 2005; Odille et al.,
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Figure 2.12: Schematic illustration of two approaches for retrospective motion handling: (a)
For gated reconstructions, the acquired data are sorted into different motion phase bins and
images are reconstructed from the data of each individual phase separately. (b) For MoCo
reconstructions, the gated images corresponding to different motion phases are deformed to a
desired motion phase and averaged. Thus 100% of the measured data can be employed for
reconstruction of each individual phase. For convenience, MoCo reconstruction is only shown
for a single motion phase.

2008; Wang and Amini, 2012; McClelland et al., 2013). In contrast to gated reconstructions,
this approach uses 100% of the measured data for the reconstruction of each individual
phase. For that purpose, gated images of the different motion phase are deformed to the
desired motion phase and averaged as illustrated in Fig. 2.12. For this procedure, estimation
of MVFs, which specify the displacement in the three spatial dimensions between motion
phases for each voxel, is required. To obtain the MVFs, image registrations between
reconstructions of the different motion phases are typically performed. The quality of
resulting MoCo images directly depends on the accuracy of MVFs and therefore robust
motion estimation methods are required, especially when using undersampled data and

thus artifact-contaminated images for registration.
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In this chapter, important methods used for image reconstruction and data generation and
processing are introduced. Sections 3.1 and 3.2 describe algorithms for MR and PET image
reconstruction developed in this work. Section 3.3 presents methods for simulation of MR
and PET data. Furthermore, it specifies the protocols used for acquisition of volunteer
and patient data. In section 3.4, preprocessing of MR and PET data is illustrated. An

overview of the studies conducted in this work is given in section 3.5.

3.1 MR Image Reconstruction Algorithms

3.1.1 Gridding Reconstruction

For analytic reconstruction of radial MR data, gridding of these data onto a rectilinear
grid as described in section 2.1.6 is performed. Using all acquired data, reconstruction of

the image f corresponds to the 3D motion average and is described as follows:
f=SXp. (3.1)

The vector p = (py,Ps,---,ps)! describes the measured raw data of all coil channels J.
The pseudo-inverse operator X corresponds to the gridding operation. A Kaiser-Bessel
window (Kaiser, 1974) was used as gridding kernel. For density compensation, a Ram-Lak
kernel (Ramachandran and Lakshminarayanan, 1971) was employed. The transformation
to image space was obtained by an inverse Cartesian FFT. The operator ST describes the
combination of the different coil channels and is defined in Eq. (3.24) (Bydder et al., 2002).

Taking temporal dimensions into account, the 5D double-gated reconstruction f, . of

respiratory motion phase r and cardiac motion phase c is obtained as follows:
f=SXG,G.p. (3.2)

The operators G, and G, act as respiratory and cardiac gating operators on the raw data.

Thus radial spokes not belonging to the current respiratory phase r or cardiac phase ¢

29
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are excluded from the reconstruction. In case only respiratory gating is desired, e. g. for
4D respiratory gated reconstructions, the cardiac gating operator G, becomes the identity

matrix. Setting both operators to identity leads to results identical to Eq. (3.1).

3.1.2 Joint Motion Estimation and Image Reconstruction: 4D joint
MoCo-HDTV

The 4D joint motion-compensated high-dimensional total variation (joint MoCo-HDTYV)
algorithm represents the basis of all studies conducted in this work. It is derived from the
high-dimensional total variation (HDTV) algorithm originally developed for time-resolved
reconstruction of undersampled CT data (Ritschl et al., 2012). The original HDTV
algorithm shares similarities with many compressed sensing—based MR reconstruction
algorithms exploiting sparsity of the image in spatial and/or temporal TV domain, such as
proposed by Block et al. (2007), Lustig et al. (2007), Feng et al. (2014), Montesinos et al.
(2014), Cruz et al. (2016) and Feng et al. (2016a).

The novelty of this work is the extension of this algorithm using MoCo MR image re-
construction in conjunction with artifact-robust motion estimation. These methods are
embedded in a framework of joint motion estimation and image reconstruction. An illustra-
tion of the algorithm is given in Fig. 3.1. The algorithm alternates between estimation of
the desired image and the MVF's using a multiresolution strategy. The motivation behind
the alternating estimation is that the updated image of a given resolution level improves
the quality of motion estimation, resulting in more accurate MVFs, which in turn improve
the image reconstruction of the next resolution level. The algorithm has been developed to
resolve a single temporal dimension, which can be either the respiratory dimension r or
the cardiac dimension c. Thus for generalization, the variable ¢ represents the temporal

dimension in the following.

Cost Function and Update Equation

As described in section 2.1.7, image reconstruction is considered as an inverse problem and

the following cost function is optimized in an alternating manner for each resolution level:

Cuprv(f) = |XpcSF — p||3 + nHDTV f. (3.3)

The operator Xpc represents a sparse matrix. Its diagonal elements Xpc; describe the
motion phase—correlated forward transform of each component of the 4D image volume
f=0,f0 - f Nt)T to its corresponding radial spoke positions in k-space. Applying a
Cartesian FFT to each component of the 4D image volume, raw data values at radial spoke

positions are calculated by resampling with bilinear interpolation in k-space. The operator
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Figure 3.1: Overview of the 4D joint MoCo-HDTYV algorithm alternating between image
reconstruction and motion estimation at different resolution levels. The MVFs of the highest
resolution level can be employed for MR or PET MoCo image reconstructions.

S performs a multiplication of the complex-valued sensitivity profiles defined by Eq. (3.23)
for each coil channel with the image volume f creating complex-valued volumes for each
combination of motion phase t and coil channel j. While the vector p = (py,py,...,p;)"
denotes the measured raw data of the different coil channels, the parameter 1 weights the
regularization term, which is defined as the spatio-temporal total variation HDTV f. The
first term of Eq. (3.3) corresponds to the raw data comparison and leads to the following

update u,ﬁ”*” of motion phase t for iteration n + 1:

u"™ = §™Xbe ,(Xp SF — Gep). (3.4)

Instead of using the complex conjugated transposed transform ch’t, the pseudoinverse
X};C ; is used instead, which is called preconditioning. In correspondence to Eq. (3.2),
application of X;Ct performs a motion phase—correlated gridding reconstruction with

(n+1)
t

density compensation. Employing Eq. (3.4), the updated image volume f of motion

phase t is then obtained as follows:

n n n 1 n
Y= +a ((1 — Byuf" + ﬂﬁt ZDZU; H)) : (3:5)
t/
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The parameter o defines the update step size and it was set to 0.5 in this work, which
ensures a smooth convergence over several iterations. The weighting of both update terms
is specified by the parameter 5. The first update term represents a direct update from the
raw data comparison and it is independent of the quality of the estimated MVFs. However,
it might introduce streak artifacts caused by undersampling, as only raw data of motion
phase t are employed for the update. In contrast, the second update term performs a MoCo
update using 100% of raw data for the update and therefore produces less streak artifacts.
The operator D}, is defined in Eq. (3.9) and describes a deformation of the volume from
motion phase ' to motion phase t. For this deformation, tricubic interpolation is employed
applying the dedicated MVFs. Thus the second update term describes a superimposition
of the updates of all Ny motion phases warped to phase .

As demonstrated in Fig. 3.2, the MoCo update improves sparsity in the HDTV domain
as streak artifacts and noise are reduced resulting in a more compact representation in
this domain. However, for inaccurate MVF's, the update volume of the second term might
introduce blurring and spurious motion. This requires a careful choice of the parameter .

As described below, a multiresolution strategy can be pursued to overcome this problem.

update image (8 = 0)
.

gradientimage (8= 1)

gradient image (8 = 0)

Figure 3.2: Example of image updates employing Eq. (3.5) for 8 =0 (left) and 8 = 1 (right)
and corresponding spatio-temporal gradient images in the HDTV domain applying Eq. (3.6)
to the update images. The image updates were computed for a zero-filled initial image using
the constant value vy, ,Ar = 1.0mm in Eq. (3.6) for calculation of both gradient images.
The lower intensities in the gradient image for 8 = 1 demonstrate that employing the MoCo
update in the update equation (Eq. (3.5)) improves sparsity of the update image in the HDTV
domain. Note that both gradient images are displayed at equal intensity windows. Adopted
from Rank et al. (2016a).

Multiresolution Strategy

Starting at an initial low-resolution level, at which streak artifacts are less pronounced, an
image estimate is reconstructed as illustrated in Fig. 3.1 employing the weight 5 = 0 in
Eq. (3.5). After convergence of this first image reconstruction step, an initial estimation
of MVFs is performed. The next higher resolution level is treated separately and image

reconstruction is initialized with a smoothed version of the image estimate of the previous
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resolution level. The MVF's are upsampled to the new resolution and to ensure convergence
of the cost function, they are kept constant during the image reconstruction. For each step
in resolution, the weighting parameter [ is increased gradually. This is motivated by an
improvement of the accuracy of MVFs on the one hand and increased streak artifact levels
on the other hand for high-resolution levels. In this work, five resolution levels with base
resolutions of 16, 32, 64, 128 and 256 px were used for the alternating approach shown in
Fig. 3.1. The parameter 8 was varied linearly between 0 and 0.65. For the reconstructions
conducted in this work, the upper limit of 0.65 represented an appropriate trade-off between
the appearance of streak artifacts caused by low values and error propagation through

resolution levels caused by large values.

Adaptive Spatio-Temporal Regularization

After calculating the image update from the raw data comparison described in Eq. (3.5),
the spatio-temporal sparsity of the image is optimized, which corresponds to the second
term of Eq. (3.3). For that purpose, a conjugate gradient descent algorithm with 15 to 20
gradient steps was employed, which is described in more detail in Ritschl et al. (2011) and
Ritschl et al. (2012). The HDTV operator specifies the weighted spatio-temporal gradient

of the image volume f(z,y,z,t) at position (z,y,z,t):

HDTV f = ||[Vayzt f

12

1 1
= 7(]0,,,t_f—l,,,t)2+7(f,,,t_f,—1,,t)2
myZZt(sz z,Y,2 x Y,z Ay2 x,Y,2 x,Y z (36)
1 2 %2 2 12
+ @(fx,y,z,t — foyz—14)" + W(fx,y,z,t — fayzt-1) ) .

The parameters Ax, Ay, Az are defined as the spatial distances between neighboring voxels
and At denotes the interval between motion phases in temporal dimension. The factor
~¢ scales the contribution of the temporal TV. To increase the influence of the temporal
regularization, it was set to 1.2 for all reconstructions. The parameter v,, . can be

interpreted as the average motion velocity and it is derived as follows:

1
Vpyz = N, Al Z \/(Aaz2 MVF,(z,y,2,t)? + Ay? MVF, (z,y,2,t)?) + Az2 MVF,(2,y,2,t)?.
¢

(3.7)
The variable N; specifies the total number of motion phases and the vector MVF . (z,y,2,t)
contains the voxel displacement in the three spatial dimensions between adjacent motion
phases. Hence, the larger the average motion velocity at a voxel position, the smaller the
weighting of the temporal TV and vice versa. Examples of spatio-temporal gradient images
in the HDTV domain are given in Fig. 3.2. Applying the HDTV regularization results in

denoising and in a reduction of streak artifacts by spatio-temporal smoothing of the image.
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Furthermore, the regularization may correct for local errors induced by inaccurate MVFs.
At the end of each iteration, the combination weight between the update of the raw data
comparison and the spatio-temporal image regularization is calculated adaptively (Ritschl
et al., 2011). This prevents overregularization of the image and ensures a convex behavior
of the image reconstruction. The iterative optimization of Eq. (3.3) at a given resolution
level will stop if the improvement of raw data fidelity ¢ between adjacent iterations is

smaller than a threshold:

™) — D] < 0.005 €™ with €™ = |[XpcSf — pl|2. (3.8)

Cyclic Motion Estimation

After performing the image reconstruction step of one resolution level, an update of the
MVFs is calculated employing the recent image estimate for motion estimation (Fig. 3.1).
The registration process is initialized using the MVFs from the previous resolution level.
Instead of using a standard motion estimation approach, which estimates MVF's between any
combination of motion phases (Fig. 3.3a), a cyclic motion pattern is assumed and therefore
MVFs are only estimated between adjacent motion phases (Brehm et al., 2012) (Fig. 3.3b).
The image registration is based on the demons algorithm (Thirion, 1998; Vercauteren et al.,
2009) optimizing a cost function similar to Eq. (2.39). This algorithm allows for deformable
transformations and employs the sum of squared differences as similarity metric. During
each iteration of the registration process, a fluid-like and diffusion-like regularization,
implemented as a binomial filtering, is applied to the MVFs. To improve robustness of the
image registration, the demons algorithm pursues a hierarchical approach using different
resolution levels, not to be confused with the multiresolution strategy used for joint motion

estimation and image reconstruction.

After the cyclic registration process, the MVFs are further regularized by cyclic constraints
demanding that each voxel returns to its initial position after passing one full motion cycle.
This cyclic self-consistency criterion increases the robustness of the registration against
streak artifacts in the image considerably as demonstrated in Brehm et al. (2012). Having
ensured cyclic consistency of MVFs, a deformation operator D{V  between any nonadjacent
motion phases t = 1 and ¢/ = N; can be generated by noncommutative concatenation of

adjacent transformation operators Ttt‘H:
Ne—1

D{Vt — H Ttt'"1 = T12 o T23 0...0 T]]\\ff:_l. (3-9)
t=1

When using the estimated MVFs for MoCo PET reconstructions, the resulting images are
referred to as 4D motion-compensated PET based on joint MoCo-HDTV (jMoCo PET).
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(b) cyclic motion estimation

Figure 3.3: Comparison of two motion estimation strategies: For the standard approach (a),
MVFs are estimated between all possible combinations of motion phases ¢ and ¢'. For the
cyclic approach (b), MVFs are calculated only between adjacent motion phases t and ¢ + 1
assuming a cyclic motion pattern.

Final Reconstruction

After estimation of MVFs at the highest resolution level (Fig. 3.1), a further image
reconstruction step is performed using the weight g = 1 and thus only the MoCo update
term in Eq. (3.5). Furthermore, the HDTV regularization term is disabled employing n = 0
in Eq. (3.3) to increase image sharpness. The resulting final image volume is then referred
to as 4D joint MoCo-HDTV.

3.1.3 4D Respiratory Time-Resolved MRI from Literature

For comparison purposes, additional image reconstructions using the original HDTV
algorithm were performed. For that purpose, only the first update term of Eq. (3.5) with
8 = 0 was considered and the motion estimation step was omitted, thus employing a
constant velocity map v, . At = 1.0mm in Eq. (3.6). All other parameters were identical
to the 4D joint MoCo-HDTYV reconstructions.

Furthermore, the motion-adaptive spatio-temporal regularization (MASTeR) algorithm
(Asif et al., 2013) was implemented. This algorithm combines iterative image reconstruction

and motion compensation and it was specifically developed for time-resolved MRI with
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strong undersampling. In the initialization step, a first image estimate has to be computed.
For this purpose, the 4D HDTV reconstruction was used. In the motion adaptation step,
estimation of interframe motion and image reconstruction are performed in an alternating
manner. Interframe motion was estimated with the same registration methods as used for
4D joint MoCo-HDTYV employing the cyclic motion estimation described in section 3.1.2.

For reconstruction of the image f, the following cost function is optimized:
CumasTer(f) = D _IXpci S — Geplls + (| Feet Fr1 — Filli + | Besr frpn — Fill1)- (3.10)
t

The operators and variables are defined in accordance to Eq. (3.3). The operator Xpc
denotes the motion phase—correlated forward transform of the image f, for motion phase ¢
while the operator S performs a multiplication of the complex-valued sensitivity profiles
as defined in Eq. (3.23) with the image volume f, creating complex-valued volumes for
each coil channel j. The regularization terms are weighted by n while the operators F; and
B, describe forward and backward motion operators, respectively. These operators warp
an image f, from motion phase t to ¢t + 1 and vice versa. In this work, the cost function
in Eq. (3.10) was optimized with identical optimization methods as employed for HDTV
and joint MoCo-HDTYV. As proposed in the original publication, three motion-adaptation
iterations of MASTeR were performed. Resulting images are referred to as 4D MASTeR.

3.1.4 5D Respiratory and Cardiac Motion Compensation
Estimation of Respiratory Motion

Respiratory and cardiac motion are estimated sequentially as proposed in Brehm et al.
(2015) and Sauppe et al. (2016). For estimation of respiratory motion, the MR raw data are
divided into N, respiratory motion phases while cardiac motion is neglected as illustrated
in Fig. 3.4a. With this gating scheme, each respiratory motion phase consists of raw
data from all cardiac phases assuming an approximately uniform distribution among the
different respiratory phases. The respiratory MVF's are obtained from reconstructions with
the 4D joint MoCo-HDTV algorithm as described in section 3.1.2.

Estimation of Cardiac Motion

To allow for robust estimation of MVFs in the cardiac dimension, MR data originating
from all respiratory phases have to be employed due to the high artifact and noise level of
double-gated images. The studies in Brehm et al. (2015) and in Sauppe et al. (2016) have
utilized the respiratory MVFs to create respiratory MoCo and cardiac gated images and

have used these images for registration.
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Figure 3.4: Sequential estimation of respiratory and cardiac patient motion: (a) Gating
scheme used for estimation of respiratory motion. The black arrows illustrate motion estimation
between adjacent motion phases. (b) Respiratory MoCo raw data are generated for a respiratory
reference phase and cardiac MVFs are estimated between adjacent cardiac phases. (c¢) For 5D
respiratory and cardiac MoCo reconstruction, any source phase (red) is transformed along the
deformation path indicated by the black arrows to the destination phase (green) in passing
the respiratory reference phase (gray). Adopted from Rank et al. (2016b).
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To make use of 100% of the available information for cardiac motion estimation, the
generation of respiratory MoCo raw data is proposed as an alternative approach in this
work (Fig. 3.4b). For this purpose, double-gated gridding reconstructions are carried out
for all coil channels j. Corresponding to the estimation of respiratory motion, MR raw
data are sorted into NN, respiratory motion bins and into N, cardiac motion bins. For a
given cardiac phase ¢, all related combinations (r, ¢) are deformed to a respiratory reference
motion phase (7f, ¢) and averaged. In this work, an end-exhale motion phase was chosen
as respiratory reference in order to provide the lowest respiratory intraphase blurring. The
resulting respiratory MoCo and cardiac gated complex-valued coil images are then forward

transformed to k-space in the following manner:

JsTref,C

presp MoCo _ xNyq Z D;’:refXTGch p;j- (311)
r

The raw data of coil channel j are represented by p,;. The operator Xnyq performs a
forward transform of the respiratory MoCo and cardiac gated complex-valued coil images
to generate radial k-space data. The number of spokes used for the forward transform
was chosen to satisfy the Nyquist criterion for radial MR acquisitions using a uniform
angular distribution of radial spokes. This approach prevents the introduction of sampling-
related artifacts in contrast to a forward transform using the measured spoke angles, which
generally do not satisfy the Nyquist criterion nor have a uniform angular distribution.
Based on the generated respiratory MoCo raw data of the different cardiac motion phases,
cardiac MVFs are estimated employing the 4D joint MoCo-HDTYV algorithm in the cardiac

dimension. The deformation operator Djrf is defined in Eq. (3.9).

Evaluation of Generation of Respiratory MoCo Raw Data

To demonstrate the advantage of generating respiratory MoCo raw data and applying the
4D joint MoCo-HDTYV algorithm for cardiac motion estimation, cardiac MVF's were also
estimated on basis of respiratory MoCo and cardiac gated images in the respiratory reference
motion phase without employing 4D joint MoCo-HDTYV. Both approaches employed the

cyclic image registration described in section 3.1.2 with identical parameter settings.

Representative results of cardiac MVFs estimated with both approaches are shown in
Fig. 3.5. The cardiac MVFs of the image-based approach reveal severe spurious motion
in regions outside the heart caused by residual streak artifacts in the respiratory MoCo
and cardiac gated images. As these artifacts change their position in each cardiac phase,
artificial motion is introduced during the registration process. Interfering with the true
cardiac motion, this also yields an underestimation of the latter. In contrast, results of the
approach with generated respiratory MoCo raw data are not affected by spurious motion

and cardiac MVFs show large entries only inside the heart.
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Figure 3.5: Comparison of cardiac MVFs estimated with the image-based approach and with
the approach using respiratory MoCo raw data. The mean motion magnitude represents the
motion magnitude averaged over all cardiac motion phases. The image-based approach reveals
spurious motion in regions outside the heart caused by residual streak artifacts in the image
while the approach using respiratory MoCo raw data for motion estimation is not affected by
these distortions.

5D MoCo Image Reconstruction

Having estimated respiratory and cardiac MVFs, MoCo image reconstruction can be
performed. Applying the estimated MVF's to gated or double-gated gridding reconstructions,
images of all motion phases are warped onto a desired reconstruction phase and averaged,
i.e. 100% of the measured raw data are employed for reconstruction. To perform a 4D
respiratory MoCo reconstruction, the image volume f, of respiratory phase r is calculated

as follows:
=Y D.SIXIG,p. (3.12)

r/
A 5D respiratory MoCo and cardiac gated image f,,,c of respiratory and cardiac phase

(r, ¢) is reconstructed as follows:

=Y DLSXIG.G.p. (3.13)

7‘/

Accordingly, 5D respiratory and cardiac MoCo images }m are obtained as follows:

=> D, SXIGLGup. (3.14)

r!c

The deformation operator D" o I8 generated in accordance to the following decomposition
proposed in Brehm et al. (2015) and Sauppe et al. (2016):

D', = DIt o DI, o D (3.15)

r!.c Tref,C Tref
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Figure 3.4 ¢ illustrates the virtual deformation path between the combination (', ¢/) and
the combination (r, ¢) as an example. In a first step, the source volume is warped along
the respiratory direction from (7, ¢’) to the respiratory reference phase (7, ¢’). While
remaining in this respiratory reference phase, the volume is deformed along the cardiac
direction in the second step to match the cardiac destination phase (ryf, ¢). In step three,
it is then warped to the respiratory destination phase (r, ¢). This deformation scheme
requires cardiac motion estimation to be performed only at the respiratory reference phase
while enabling MoCo image reconstruction of any arbitrary combination of respiratory and

cardiac motion phase employing 100% of the measured raw data.

3.1.5 Implementation

All algorithms were implemented in the programming language C+-+ and reconstructions
were performed on a two-socket Intel Xeon E5-2697v3 with a total of 28 cores at 2.60 GHz
and 256 GB of memory. For the nonoptimized code, joint motion estimation and image
reconstruction of 20 respiratory phases required computation times of about 4.0 h applying
the 4D joint MoCo-HDTV algorithm. Accordingly, computational effort for generation
of respiratory MoCo raw data and for reconstruction of 12 cardiac phases was about
3.0h. Reconstruction time of 5D respiratory and cardiac MoCo reconstructions of 240

combinations of respiratory and cardiac phases was about 2.0 h for nonoptimized code.

3.2 PET Image Reconstruction Algorithms

3.2.1 Standard OSEM

Reconstructions of 3D motion average, 4D respiratory gated and 5D respiratory and cardiac
gated PET images were performed with a 3D OSEM algorithm (Hudson and Larkin, 1994).

This algorithm represents a modification of the expectation maximization algorithm derived

n+1)

in section 2.2.4. The OSEM update equation of the image estimate Al at subiteration

n + 1 is given as follows:

p

A+ — N (n) )
ME(G) " (MAM) +a(dn + s)

(3.16)

The parameter x denotes the subset index and for a total number of subsets K, it is defined
as k =n mod K, i.e. execution of K subiterations yields a full iteration. The operators
M, and M represent the system matrix and its transpose, respectively, including forward
and backprojections along the LORs of subset x. The vector p contains the measured PET
raw data. Further variables are the randoms d, attenuation correction factors a and scatter

s. Note that all vector operations in Eq. (3.16) represent element-wise operations. For gated
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reconstruction schemes, raw data from each motion phase were reconstructed separately. All
PET images were reconstructed with 3 iterations, 21 subsets and the specified FOV covered
a volume of 534 x 534 x 258 mm? with a voxel size of 2.1 x 2.1 x 2.0mm?®. At the end of
each iteration, a 3D Gaussian smoothing filter with a full width at half maximum (FWHM)

of 3.2mm was applied to the image volume to reduce statistical noise in the image.

3.2.2 Motion-Compensated OSEM

For 4D respiratory MoCo PET and 5D respiratory and cardiac MoCo PET reconstructions,
the OSEM algorithm from Eq. (3.16) was extended incorporating MVFs into the system
matrix (Li et al., 2006; Qiao et al., 2006) as shown in Fig. 3.6. In mathematical notation,
the MoCo OSEM update equation of the image estimate )\g,’fjl) at subiteration n + 1 for

the combination of respiratory and cardiac motion phase (r, ¢) is defined as:

AL = A : > DM OGP .
DO (MDA + a(dn+ s)

T,C "N, > D:fC,MT(L) K

Kk \a,.n

(3.17)

r!.c!

The definition of variables and operators corresponds to Eq. (3.16). However, the attenua-
tion correction factors a, are respiratory motion phase-dependent. The gating operators
G, and G are applied in accordance to Eq. (3.2) nulling the contribution of raw data
not belonging to the current combination of respiratory and cardiac phase (r/, ¢). While
N, denotes the number of cardiac motion phases, the operator D:}?c, describes a warping
operation mapping the volume of motion phase (1, ¢) to (r, ¢) applying the dedicated
MVFs. It can be constructed using Eq. (3.9) for respiratory motion only or Eq. (3.15) for
both the respiratory and cardiac dimension. The same image reconstruction parameters as

used for the standard OSEM reconstruction were employed.

3.2.3 4D Respiratory Motion-Compensated PET from Literature

For comparison purposes, the motion estimation approach proposed in Wiirslin et al. (2013),
Fayad et al. (2015b), Fiirst et al. (2015) and Grimm et al. (2015) was implemented. In
these studies, respiratory time-resolved 4D gated MR images were used for registration.
In contrast to the cyclic registration described above, these studies estimated MVF's
between each combination of motion phases ¢ and t' as shown in Fig. 3.3a. In this
work, the same image registration algorithm with identical parameter settings as used
for 4D joint MoCo-HDTV was employed. To obtain 4D gated MR images, a gridding
reconstruction of the radially acquired MR raw data was performed (Eq. (3.2)). For MoCo
PET reconstruction, the approach described in section 3.2.2 was used. Implying that a
standard motion estimation method was employed, resulting MoCo PET images are referred

to as 4D motion-compensated PET based on standard motion estimation (sMoCo PET).
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Figure 3.6: Schematic overview of MoCo PET reconstruction (Li et al., 2006; Qiao et al.,
2006). The image estimate of a desired motion phase (r, ¢) is deformed to all other motion
phases, forward projected and compared to the raw data of these phases. This comparison
yields update sinograms, which are backprojected. The resulting update images are deformed
back to the desired motion phase and the average is used for updating the image estimate.
This process is repeated for several iterations.

3.2.4 Implementation

Similar to the MR reconstruction, all algorithms were implemented in C++. Using the
same workstation as described in section 3.1.5, the nonoptimized code required about
15 min per respiratory motion phase in case of 4D respiratory MoCo PET reconstruction
with 20 motion phases. For 5D respiratory and cardiac MoCo PET with 240 combinations
of respiratory and cardiac phases (r, ¢) in total, the reconstruction time of a volume from

a single combination was about 40 min for nonoptimized code.
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3.3 Generation of MR and PET Data

3.3.1 Radial Stack-of-Stars Sampling Scheme

In this work, a radial stack-of-stars sampling of k-space (Vigen et al., 2000; Larson et al.,
2002) was employed for all simulations and measurements. The sampling scheme is illus-
trated in Fig. 3.7. It combines radial sampling in the readout plane with Cartesian sampling
in slice direction. The angular increment between adjacent radial spokes corresponded to
the golden angle of approximately 111.25° as was proposed by Winkelmann et al. (2007)
for radial MRI. First all slices corresponding to one radial angle were sampled sequentially
before moving to the next angle. This sampling scheme leads to approximately uniform
coverage of the radial plane in retrospectively gated reconstructions (Lin et al., 2008;
Buerger and Clough, 2012). In addition, radial sampling improves the robustness against
motion during data acquisition as the k-space center is sampled during each readout (Glover
and Pauly, 1992; Block et al., 2014). As a further advantage, the k-space center signal
can be employed for intrinsic MR gating as explained in section 3.4.1 (Larson et al., 2005;
Grimm et al., 2015).

k,
119,250 TTTTTTT ¥

Figure 3.7: Radial stack-of-stars sampling scheme: The readout plane is sampled in a radial
manner while Cartesian slice encoding is employed. The angular spacing between adjacent
spokes is defined by the golden angle of approximately 111.25°. First all slices of one radial
angle are sampled sequentially before moving to the next angle as indicated by the numbers
in the illustration.
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3.3.2 Simulation of MR Data

A PET/MR acquisition of the free-breathing thorax was simulated to have a ground
truth available for comparison purposes (Fig. 3.8). To create a 4D MR motion phantom,
artificially generated deformation vector fields were applied to a static 3D MR thorax
volume of a patient. Motion in head—feet and anterior—posterior direction was considered
for the simulation setting the maximal motion magnitude of structures at the diaphragm
to approximately 20 mm. For this motion phantom, 100 different respiratory motion states

were generated.

3D MR volume 4D MR volume

forward
| transformation
-3 radial MR raw data

l segmentation

3D PET activity distribution 4D PET activity distribution

P L5 deformation . ‘ transformation
» i ‘ N S Y PET raw data
v7 *6 ) *2 . . X
. L] ) L]

3

Figure 3.8: Overview of PET/MR simulation: For MR simulation, artificially-generated
deformation vector fields are applied to a static 3D MR volume of a patient to create a 4D MR
motion phantom. Radial MR raw data are obtained by forward transformation of this motion
phantom. For PET simulation, a 3D activity distribution is constructed by segmenting the
static MR volume and deformation identical to the MR simulation is applied. The resulting
4D activity distribution is forward projected to gain the PET raw data.

To simulate a realistic MR measurement during free breathing, the temporal evolution of a
sinusoidal respiratory motion curve with varying breathing periods (3.50s £ 0.50s) and
varying breathing amplitude (100% + 3%) was incorporated into the simulation. Depending
on the chosen number of spokes and the specified temporal sampling distance, any arbitrary
acquisition time could be simulated. Moving along the motion curve with this specified
sampling distance, one of the 100 generated volumes was assigned to each simulated k-space

line according to the breathing amplitude at that time point.

To create MR raw data, the selected volume was forward transformed to k-space applying
a Cartesian FFT and the simulated k-space line was sampled at its desired location. In this
work, a 3D-encoded radial stack-of-stars sampling scheme with golden angle radial spacing
as described in section 3.3.1 was employed. Thus MR raw data values at radial spoke

positions were computed by bilinear interpolation in k-space. Gaussian noise individually
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calculated for real and imaginary parts was added to the simulated MR data. For gated
reconstructions, the respiratory motion curve used for simulation was employed as input
and data were sorted into IV, = 20 overlapping respiratory motion phase bins with a width

of 10.0% in accordance to section 3.4.1.

3.3.3 Simulation of PET Data

As proposed by Tsoumpas et al. (2011), a 3D PET activity distribution was created by
segmentation of the 3D MR volume employed for the MR simulation (Fig. 3.8). Seven
spherical lesions with a radius of 8 and 12mm were inserted in the lungs and upper
abdomen. Table 3.1 summarizes the activity values assigned to the different tissue classes.
To create a 4D activity distribution, respiratory motion was modeled in accordance to the
4D MR motion phantom.

tissue class  activity / (kBq/mL)

lungs 1.0
soft tissue 3.0
liver 7.5
heart 5.5
myocardium 20.0
lesions 20.0

Table 3.1: Activity values assigned to the 3D PET activity distribution used for simulation.

PET raw data were generated in correspondence to Heufler et al. (2016) by forward
projecting the volume of each motion phase. For scatter simulation, the noiseless emission
sinograms were smoothed in all spatial dimensions applying a Gaussian filter. Emission
data and simulated scatter were combined assuming a scatter fraction of 50% and Poisson
noise was added. For simplification, effects of tissue attenuation were excluded from the
PET simulation. To account for the noisy data, ten independent noise realizations each
having 60 x 10° counts in total were simulated. The PET detector geometry used for
simulation corresponded to the geometry of the Biograph mMR system (Delso et al., 2011)
(Siemens Healthineers, Erlangen, Germany). For generation of a 4D ground truth PET,
reference raw data were simulated in such a way that each reference motion phase was
composed of approximately 60 x 10% counts yielding noise levels comparable to 3D motion

average PET reconstructions.

3.3.4 Acquisition of MR Data

To demonstrate the application of the different MR reconstruction algorithms, MR data
of three healthy volunteers (2 female, 1 male, aged 26 to 29 years) and thirteen patients
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(7 female, 6 male, aged 42 to 79 years) with fibrosing lung disease were acquired during
free breathing. Data acquisition and evaluation was in accordance with the declaration of
Helsinki (World Medical Association, 2013) including study approval by the local ethics
committee and informed consent was obtained from each patient. Table 3.2 lists the
individual subjects and their assignment to the different studies conducted in this work.
MR data were acquired at a 1.5 T MR scanner (Magnetom Aera, Siemens Healthineers,
Erlangen, Germany, Fig. 3.9a). A vendor-provided 3D-encoded Ti-weighted prototype
gradient echo sequence was employed. This sequence type generates a gradient echo by
applying a pair of bipolar gradients in contrast to spin echo sequences, which use a 180°
RF pulse for refocusing the signal. For sampling k-space, a radial stack-of-stars scheme
with golden angle radial spacing as described in section 3.3.1 was used. The base resolution
in the radial plane was set to 256 px, which yields the Nyquist sampling criterion for radial
MR acquisitions of 256 x /2 =~ 402. To reduce aliasing artifacts, the readout plane was
oversampled by a factor of two, i.e. 512 sampling points were measured along each spoke.
Volunteer data were acquired in coronal orientation to fully cover the thorax requiring
as few slice encoding steps as possible. Note that acquisition of patient data was not for
the purpose of this work, but for clinical analysis of respiratory motion patterns. Thus,
data acquisition was oriented in sagittal view with the intention of capturing the primary
motion directions in the readout plane. Table 3.3 gives an overview of further acquisition

parameters.

SIEMENS ’

SIEMENS

(a) 1.5T MR scanner (Magnetom Aera) (b) 3.0T PET/MR scanner (Biograph mMR)

Figure 3.9: MR and fully-integrated PET /MR, scanners employed for patient measurements
in this work (Siemens Healthineers, Erlangen, Germany)l.

1 .

The images were adopted from
https://www.healthcare.siemens.de/magnetic-resonance-imaging/0-35-to-1-5t-mri-scanner/magnetom-aera,
https://www.healthcare.siemens.de/magnetic-resonance-imaging/mr-pet-scanner/biograph-mmr on August
10, 2016.


https://www.healthcare.siemens.de/magnetic-resonance-imaging/0-35-to-1-5t-mri-scanner/magnetom-aera
https://www.healthcare.siemens.de/magnetic-resonance-imaging/mr-pet-scanner/biograph-mmr
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3.3.5 Acquisition of PET/MR Data

To assess the performance of MoCo PET reconstruction algorithms, simultaneous PET /MR
data of six patients (2 female and 4 male, aged 32 to 81 years) with diagnosed bronchial
carcinoma were acquired during free breathing at a 3T PET /MR system (Delso et al., 2011)
(Biograph mMR, Siemens Healthineers, Erlangen, Germany, Fig. 3.9b). Data acquisition
and evaluation was in accordance with the local ethics committee and informed consent
was obtained from each patient. The individual subjects are listed in Table 3.2. For
MR imaging, a similar prototype MR sequence with radial stack-of-stars sampling in the
sagittal plane and a base resolution of 256 px as explained in section 3.3.4 was applied.
The acquisition parameters are shown in Table 3.3. For PET imaging, the radionuclide
agent *F-FDG was employed. Injected activities were (209 4= 19) MBq and the tracer was

administered (141 + 14) min prior to data acquisition.

subject ID  gender age / scanner 4D MRI 4D PET 5D MRI 5D PET
years model study study study study
volunteer data (MR)
v01 female 27 Magnetom Aera X — — —
v02 male 26 Magnetom Aera X — — —
v03 female 29 Magnetom Aera X — — —
patient data (MR)
p01 female 60 Magnetom Aera X — -b —
p02 male 43 Magnetom Aera X — b —
p03 female 45 Magnetom Aera X — X —
p04 male 76 Magnetom Aera X — X —
p05 female 78 Magnetom Aera X — X —
p06 female 58 Magnetom Aera X — X —
p07 female 78 Magnetom Aera X — X —
p08 female 73 Magnetom Aera X — X —
p09 male 72 Magnetom Aera X — X —
pl0 male 73 Magnetom Aera —a — X —
pll male 64 Magnetom Aera —2 — X —
pl2 female 79 Magnetom Aera —a — X —
pl3 male 71 Magnetom Aera —a — X —
patient data (PET/MR)
s01 male 57 Biograph mMR - X - —b
s02 female 56 Biograph mMR - X — X
s03 male 32 Biograph mMR — X — X
s04 female 48 Biograph mMR — X — X
s05 male 75 Biograph mMR - X — b
s06 male 81 Biograph mMR — X — X

2 Data set was not available at the time the 4D MRI study was conducted
b Derivation of cardiac self-gating signal failed

Table 3.2: List of acquired volunteer and patient data sets and assignment to the different
studies that were conducted in this work and that are described in section 3.5.
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parameter simulation volunteer data (MR) patient data (MR) patient data (PET/MR)
scanner model - Magnetom Aera Magnetom Aera Biograph mMR
number of subjects 1 3 (v01 to v03) 13 (p01 to pl3) 6 (s01 to s06)
body region thorax thorax and upper abdomen thorax and upper abdomen thorax
contrast-enhanced - no yes no
orientation of radial plane transversal coronal sagittal sagittal
sampling points per readout 512 512 (2xoversampling) 512 (2xoversampling) 512 (2xoversampling)
number of partitions 80 48 to 52 80 (interpolated) 88 (interpolated)
partial Fourier encoding (slices) 7/8 no 6/8 6/8

slice resolution 100% 100% 60% 55%

slice oversampling 0% 0% 33% 0%

active receiving coil channels 1 32 to 34 30 to 34 7 to 20

total acquisition time 20 to 60s 4min 4s to 6 min 51s 5 min 5min 508

field of view

voxel size

echo time TE

repetition time TR

effective temporal resolution
flip angle

fat suppression

400 x 400 x 188 mm
0.8 x 0.8 x 2.4mm?*

400 x 400 x 192 to 208 mm?3
1.6 x 1.6 x 4.0 mm?
1.23ms
2.48 ms
153 to 162 ms
12°

yes

385 x 385 x 300 mm?
1.5 x 1.5 x 5.0mm?
1.69 ms
3.77ms
172 ms
12°

yes

400 x 400 x 396 mm?>
1.6 x 1.6 x 4.5 mm?
1.70 ms
3.75ms
162 ms
10°
yes

Table 3.3: Parameters of MR simulation and MR data acquisitions.
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3.4 Preprocessing of Acquired MR and PET Data

This section describes methods applied to the acquired MR and PET data as preprocessing
steps before image reconstruction is performed. An overview of the complete PET/MR
MoCo reconstruction framework developed in this work, which illustrates the connections

between the individual components, is shown in Fig. 3.10.

3D end-inhale

attenuation map PET raw data MR raw data
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(vendor-provided, PET/MR console)
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motion phase-correlated sinograms
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4 MR data conversion script
e7-tools (Matlab, offline)
(vendor-provided, offline)
binning > derivation of MR self-gating signal
> PET data conversion table > selection of coil channels with low artifact ratio

> compression of coil channels

motion phase-correlated prompts,
motion phase-correlated randoms,
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Figure 3.10: Overview of the PET/MR MoCo reconstruction framework developed in this
work. For MR image reconstruction, proprietary MR raw data are converted and preprocessed
employing a Matlab (The Mathworks, Inc., Natick, USA) script. Subsequently, joint motion
estimation and MR image reconstruction of processed data can be performed. For PET
reconstruction, a binning table generated during the MR reconstruction is employed for
histogramming of proprietary PET list-mode data. Motion phase—correlated sinograms and
data correction sinograms are extracted using the e7-tools for offline reconstruction. Applying
the MVFs derived from MR, MoCo PET images can be reconstructed.
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3.4.1 MR Self-Gating

The signal used for intrinsic MR gating was obtained from the magnitude of the k-space
data averaged over the nine central points for each acquired spoke. The data were corrected
for an angle-dependence of the signal baseline in accordance to Grimm et al. (2011). The
corrected data were sorted into a matrix {2 such that the rows of {2 corresponded to the
different acquisition angles and the columns of 2 represented data from different partitions
and coil channels. As the different coil channels and partitions contain varying amounts of
information on the motion signal, a principal component analysis of 2 was performed to
obtain the self-gating signal as the principal eigenvector of the covariance matrix of 2. To
correct for baseline drifts of the self-gating signal, e.g. due to contrast agent dynamics,
a cubic spline interpolation between the points of maximal exhalation was calculated to
estimate the correction signal. To distinguish between respiratory and cardiac self-gating
signals, a bandpass filter was applied before the principal component analysis was carried
out. Filter ranges of 0.1 to 0.5 Hz and 0.5 to 2.0 Hz were used for respiratory and cardiac

motion, respectively. Examples of the resulting signals are shown in Fig. 3.11.

|
A

(b) cardiac self-gating signal

Figure 3.11: Examples of MR self-gating signals obtained from the magnitude of k-space
center values for a patient with fibrosing lung disease. For the respiratory signal, the upper
and lower peaks can be interpreted as the relative breathing amplitudes at end-exhale and
end-inhale, respectively. For the cardiac signal, the distance between upper or lower peaks is
used to obtain the cardiac motion phase.

Employing the self-gating signals, the respiratory and cardiac gating operators G, and G,

were constructed. These operators act as raw data masks and remove entries not belonging
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to the current respiratory phase r or cardiac phase ¢ from the raw data. For all studies
conducted in this work, GG, and G. were defined in such a way that MR and PET raw
data were assigned to NV, = 20 overlapping respiratory motion phase bins with a width of
10.0% and N, = 12 overlapping cardiac bins with a width of 16.7%. Each bin represented a
specific motion state averaged over several motion cycles. For respiratory gating, inhalation
and exhalation was distinguished accounting for hysteresis effects, i. e. intracycle breathing
variations were considered (McClelland et al., 2013). The sorting of data was based on the
respiratory amplitude. The amplitude range was chosen individually for each respiratory
bin to ensure that each bin contained 10.0% of the data. For cardiac gating, the cardiac
phase defined by the lower and upper peaks of the cardiac self-gating signal was used for
sorting of data. Assuming normal heart rates of about 60 beats per minute, the number of
N, = 12 cardiac phases with a width of 16.7% was chosen to match the effective temporal

resolution of the MR data acquisition of about 160 to 170 ms.

3.4.2 MR Raw Data Preprocessing
Selection of Coil Channels With Low Artifact Ratio

To reduce streak artifacts in the reconstructed images, data from coil channels with high
artifact ratios were discarded and thus excluded from the reconstruction as proposed in

Grimm et al. (2013). For each coil channel j, a streak artifact ratio R}g was calculated:

s _ Ilhjll2
Tl

(3.18)

The vectors I; and h; correspond to low and high frequency components of the measured
raw data p of coil channel j. To obtain the low and high frequency components, the N

data points of each spoke were weighted with a Hann window WH and with (1 — W),

WHn) =05 (1 — cos < 2mn )> . (3.19)

respectively:

N -1
A k-means clustering with two classes was applied to the calculated values RJS to assign
the J coil channels to classes with either low or high streak artifact level. The J; channels

with low streak artifact levels, i.e. low values R}S , were employed for image reconstruction

while the channels with high artifact levels were discarded.

Compression of Coil Channels

To reduce computational effort, coil channels were compressed by creating new virtual coil
channels in a lower-dimensional subspace of the original data. Coil data were sorted into

a matrix B, such that the rows of B contained the data of each coil channel j and the
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columns of B represented the J; different coil channels. This matrix B can be represented

by a singular value decomposition:
B=UxVT (3.20)

The columns of the unitary matrices U and V are called the left and right singular vectors,
respectively. The diagonal matrix X' contains the singular values ¢; in nonincreasing order
with j = 1,...,J;. As the right singular vectors represent an orthonormal basis for the
rows of B, each row of B can be written as a linear combination of these vectors. Utilizing
this property, virtual coil channels By, in a lower-dimensional space can be generated by

projecting B onto a subspace spanned by the first L < J; singular vectors:
B, =BVr. (3.21)

As the total energy of the matrix B is defined as the sum of squares of its singular values,
an energy ratio R¥ (L) between the truncated virtual coil data By, and the full-rank original
coil data B can be calculated as follows:

RE(L) = Zi=19 (3.22)

J, ~

2521 0;
This energy ratio can be interpreted as a measure of the information content of the new
virtual coil channels relative to the original coils. In this work, L was chosen in such a way
that RF(L) > 0.96, i.e. at least 96% of the information of the original coil channels was
kept. In this way, the number of coil channels was reduced approximately by a factor of

two depending on the data set.

Estimation and Combination of Coil Channels

The complex-valued coil sensitivity profiles b; of coil channels j were estimated on basis of
low-resolution 3D reconstructions of the measured raw data as proposed in Bydder et al.
(2002):

XfwH D;

- \/Ek(XTWH p)?

The operator WH represents a Hann window as defined in Eq. (3.19) selecting the low

(3.23)

frequency components of the measured raw data p; j, of coil channels j, k.

For combination of different coil channels during the reconstruction, a method similar to
the real-SUPER approach proposed in Bydder et al. (2002) was used. The combination

is described by the operator ST in the equations of this work. The real-valued composite
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image f is then obtained using the coil sensitivity profiles b; from Eq. (3.23) as follows:

(3.24)

£ = 5XTp = Re (Ej(Xij) b;) .

> b

Generation of Highly-Undersampled Raw Data

To create MR raw data sets with high undersampling, only a subset of the acquired raw data
sets was used for reconstruction. For this purpose, the first Nypores consecutively measured
spoke angles were kept and all further spoke angles were discarded. This procedure allowed
for retrospective generation of highly undersampled raw data sets with arbitrary acquisition
times being equal to measurements, which stop after the acquisition of Ngpokes radial spokes.
In this work, the number of spoke angles Ngpokes varied between the different studies and

is described in more detail in section 3.5 below.

3.4.3 PET Raw Data Preprocessing
Histogramming of PET List-Mode Data

Prior to the PET image reconstruction, PET list-mode data acquired at the scanner were
sorted into sinograms of different motion phases applying a vendor-provided histogramming
script. This script was carried out at the console of the PET /MR scanner synchronizing
the clocks of PET and MR computers. For sorting, a motion phase binning table defined
by the intrinsic MR gating was used.

Extraction of Normalization and Attenuation Factors, Scatter, and Randoms

For estimation of scatter and the extraction of normalization and randoms sinograms,
the vendor-provided e7-tools for offline reconstruction were employed. For attenuation
correction, the standard attenuation map available at the scanner was used. It was based
on a two-point Dixon method (Martinez-Moller et al., 2009), which segments an acquired
MR image into four tissue classes, in particular into soft tissue, fat, lung tissue and air. As
the standard attenuation map was acquired in breath-hold end-exhale, MVF's derived from
MR were applied to deform this map to all other respiratory motion phases to create a
4D attenuation map. This respiratory time-resolved attenuation map was employed for
all MoCo PET reconstructions while the static attenuation map was used for 3D and 4D
gated PET reconstructions, for which no MVFs are available in practice. To generate
attenuation correction factors, the selected attenuation map was forward projected along
all LORs.
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3.5 Overview of Studies

3.5.1 4D Respiratory Time-Resolved MRI

The 4D MRI study aimed at investigating the performance of the 4D joint MoCo-HDTV
algorithm developed in this work for 4D respiratory time-resolved MR image reconstruction
of highly undersampled data in comparison to other methods from the literature. This
evaluation of reconstruction algorithms comprised simulated data and acquired data of three
volunteers (vl to v3) and nine patients (pl to p9) of the thorax and upper abdomen. A list
of the individual subjects is given in Table 3.2. Employing the MR simulation described
in section 3.3.2, highly undersampled MR data for acquisition times of 20, 40 and 60s
were simulated corresponding to 12, 24 and 36 spokes per slice and motion phase. For the
acquired volunteer and patient data, highly undersampled data sets consisting of 24 spokes
per slice and motion phase were generated for all twelve subjects as described in section 3.4.2.
These data sets corresponded to acquisition times of 37 to 41 s and radial undersampling
factors of 16.8. As shown in Fig. 3.12, the following reconstructions were performed for the
highly undersampled data sets of simulated and acquired data: 3D motion average and
4D gated reconstructions serving as standard methods (section 3.1.1), 4D MASTeR and
4D HDTYV representing state-of-the-art methods from literature (section 3.1.3) and 4D
joint MoCo-HDTYV reconstructions as proposed in this work (section 3.1.2). In addition,
4D gated images of the reference raw data sets were reconstructed for the acquired data
employing all available data from acquisition times of 4 to 7min. Equal parameter settings

were used for all reconstructions.
simulation / acquisition of radial MR raw data

self-gating and binning to respiratory motion phases

& 00 Suba 2 ‘, ¢ AN S
3D motion average 4D gated 4D MASTeR 4D HDTV 4D joint MoCo-HDTV

Figure 3.12: Overview of 4D MRI study: Radial MR data of the free-breathing thorax are
either simulated or acquired. After self-gating, MR data are sorted into different respiratory
motion phases and several MR image reconstructions are performed.



3 Materials and Methods 55

Assessment of Image Quality

To quantify the performance of the different algorithms described above, reconstruction
results for the highly undersampled raw data sets were compared. For this comparison,
the 4D ground truth was used in case of simulated data while for acquired data, 4D gated
reconstructions of the reference raw data sets were employed. The 4D gated reconstructions
were selected as reference, since they represent the clinical standard today and provide high
temporal fidelity employing no temporal regularization during reconstruction. Different
image similarity metrics between the reconstructed images f and reference or ground
truth images g were calculated. A well-known and simple metric is the mean squared

error (MSE), which represents a voxel-wise comparison of image intensities:

N—
MSE(f, g) (3.25)
z:O

)_l

with the voxel index ¢ and the total number of voxels N. For the acquired data, the
reference images contained slight streak artifacts and the voxel-specific metric MSE was

therefore excluded from evaluation as it may be biased by these artifacts.

To account for the human visual perception, which is adapted for the extraction of structural
information from an image, Wang et al. (2004) introduced the structural similarity (SSIM)
metric. This measure compares luminance, contrast and structure of two images and can

be calculated as follows:

1Nl
SSIM(f,g) = NZ

1=

2ﬁf1ﬂgz + Cl) (2 6-sz7. + 62)
uf + [, + 1) (6]2@1_ +02 +c2)

(3.26)

The contribution of each voxel i is evaluated within a two-dimensional patch of 9 x 9 px?.
While fif, and fi4, describe mean values of these patches for the voxels f; and g;, respectively,
6’%_ and 5;_ represent corresponding variances. The covariance between the patches of f;
and g; is given by Gy,,. The two variables ¢; = (k1L3) and co = (k2L}) stabilize the
division. They are calculated from the dynamic range Lp defined by the difference of
maximum and minimum intensity of the images and from the parameters k; = 0.01 and
k2 = 0.03 chosen in accordance to Wang et al. (2004).

Furthermore, the normalized cross-correlation (NCC) of f and g, which is commonly used
in image registration, was computed:
1 N— 1 _

NCC(f, g) — Ay) (9 = ig). (3.27)
=0 Uf Ug

The parameters iy and iy correspond to mean values of the images and o and 7, denote

standard deviations, respectively.
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Besides the intensity-based metrics MSE, SSIM and NCC, the normalized mutual infor-
mation (NMI) was evaluated as a statistical metric for image similarity (Collignon et al.,
1995; Viola and Wells, W. M., 1995; Wells et al., 1996). The NMI can be interpreted as a
measure of the information content both images f and g contain mutually. It is closely

connected to the Shannon entropy (Shannon, 1948):
H(f)=Hy=—)_ P, log(P). (3.28)
b

The variable P, defines the probability that the intensity of a voxel matches the intensity
range of bin b. In this work, 32 bins with equal width were employed for evaluation. Using
Py, », as the joint probability that voxels of the images f and g correspond to bin b; and

bin by, respectively, joint entropy of two images is defined accordingly:

H(f.g)=Hy by ==Y Py, 108(Py, p,)- (3.29)
b1 b

Employing the definitions of Eq. (3.28) and Eq. (3.29), the NMI can be expressed by:

H(f)+H(g)— H(f,qg)

A )

. (3.30)

In addition to the calculation of quantitative image similarity metrics, reconstructed images
of the acquired data were evaluated independently by two radiologists. Both had at least
five years of experience in thoracic and abdominal MR, imaging. 4D gated images of
the highly undersampled raw data sets were excluded from this evaluation due to their
severe streak artifact levels. To assess different motion phases, the end-exhale phase and a
mid-ventilation phase were selected. The evaluation was blinded, i.e. type and order of
reconstruction algorithms were unknown to the radiologists. Using the five-point Likert
scale, each image was rated using the following overall score levels: 1 (nondiagnostic), 2
(poor), 3 (adequate), 4 (good), and 5 (excellent). The first criterion for image quality
was overall image sharpness, e. g. sharpness of the edge of the diaphragm, the lung and
liver parenchyma and the spine, and identification and sharpness of lung and liver vessels.
The second criterion was overall artifact level, i.e. streak artifact and noise level of the
images. For each reconstruction algorithm, mean and standard deviation of the ratings

were calculated.

To analyze statistics, the paired Wilcoxon signed-rank test (Wilcoxon, 1945) was employed.
It represents a non-parametric statistical hypothesis test to decide whether two data
population distributions are identical. A statistical significant difference was assumed for
P values smaller than 0.05. In addition to the absolute ranking, both radiologists chose
the best reconstruction algorithm for each subject relative to the others using the same

assessment criteria as above.
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3.5.2 4D Respiratory Motion-Compensated PET

The purpose of the 4D PET study was to evaluate the potential of reducing the MR
acquisition time used for motion estimation in simultaneous PET /MR respiratory motion
compensation. Employing only a fraction of the MR acquisition time would allow for
additional clinical MR examinations during the PET measurement as shown in Fig. 3.13 a.
Simultaneous PET /MR data were simulated as illustrated in sections 3.3.2 and 3.3.3. The
simulated MR data corresponded to a 1 min MR acquisition with 36 spokes per slice and
motion phase. For the acquired data of six patients (sO1 to s06, listed in Table 3.2), MR
data with acquisition times of 1 min and 5min were used (Fig. 3.13a). An overview of
the 4D PET study is given in Fig. 3.13b. Respiratory MVFs were estimated from the

MR data
acquisition
for motion
estimation

additional clinical MR examinations

MR data acquisition for motion estimation

PET data acquisition
1 1 1 >
time / min 5

(a)

simulation / acquisition of PET raw data

simulation / acquisition of radial MR raw data

)

self-gating and binning to respiratory motion phases

!

binning to respiratory
motion phases

standard respiratory
motion estimation using
4D gated MR images

respiratory motion
estimation employing
4D joint MoCo-HDTV

1l

i, ST - - %
3% z e 4 ) 2 33
o $: o o:
»$ 7 GAS S w »5
}. 5 e . L
Yo P :'\,E . . 2 o S PR 2. o
3D motion average 4D gate 4D sMoCo 4D jMoCo

Figure 3.13: Overview of 4D PET study: (a) Simultaneous PET/MR data are either
simulated or acquired and a variable amount of the MR acquisition time is used for respiratory
motion estimation. In case of the 1 min acquisition block at the beginning, the remaining time
may be employed for clinical MR examinations. (b) MR self-gating is carried out assigning
the PET/MR data to different respiratory motion phases. Respiratory patient motion is
estimated either using a standard method based on 4D gated MR images (4D sMoCo PET)
or employing the 4D joint MoCo-HDTV algorithm (4D jMoCo PET). Subsequently, different
PET reconstructions are performed.
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simulated and acquired MR data either using the proposed 4D joint MoCo-HDTV, which
is described in section 3.1.2 (4D jMoCo PET) or employing the standard motion estimation
method from section 3.2.3 (4D sMoCo PET). 3D motion average and 4D gated PET
images were reconstructed as indicated in section 3.2.1. Furthermore, 4D sMoCo PET and
4D jMoCo PET reconstructions were performed employing the MoCo OSEM algorithm
(section 3.2.2). For both MoCo PET methods, the corresponding respiratory MVFs derived
from MR were applied.

Quantitative Evaluation of Image Reconstructions

To evaluate the different PET reconstruction methods for motion handling quantitatively,
lung lesions revealing high tracer uptake were analyzed. For the simulated PET data,
the regions of interest used for analysis were isolated from the ground truth. For the
acquired patient data, lung lesions were selected in end-exhale. An automatic isocontour
segmentation was employed for analyzing each selected volume of interest (VOI). Starting
from the voxel with the highest activity value within the VOI, a region growing was carried
out until no connected voxels with activity values larger than a specified threshold were
found. Using values between 20 and 50% of the maximum, thresholds were adjusted
for each lesion individually depending on its homogeneity and contrast to surrounding
tissue. To measure background activity values, manually selected VOIs were used, which
were identical for the different PET reconstruction methods. From the local activity
concentration values c4(r) obtained from the reconstructed PET images, SUVs were

calculated for the segmented voxels:

ca(r)
Am’

SUV(r) = (3.31)
While A denotes the decay-corrected total injected activity, m represents the patient
weight. For each lesion, the mean standardized uptake value (SUVyyean) and the maximum
standardized uptake value (SUVax) were determined. In addition, contrast and SNR were
calculated, defined similarly to previous studies (Kinahan and Karp, 1994; Fiirst et al.,

201 5) : - B
Hlesion — Mbackground

contrast = — ) (3.32)
Mbackground
SNR — ,alesioil - ﬂbackground ) (333)
Obackground

While iz denotes the mean value of a VOI, & represents its standard deviation. As a further
parameter for evaluation, the FWHM of lesions was calculated for simulated data. For
that purpose, a Gaussian fit along the head—feet direction was performed for each spherical
lesion. For patient data, lesion volume was evaluated instead due to the inhomogeneity and

non-spherical shape of several lesions. For statistical analysis, the paired Wilcoxon signed-
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rank test (Wilcoxon, 1945) was applied and P values smaller than 0.05 were considered to

indicate a statistically significant difference.

3.5.3 5D Respiratory and Cardiac Motion-Compensated MRI

In the 5D MRI study, the extension of MoCo image reconstruction considering both the
respiratory and the cardiac dimension was investigated. For this purpose, 5D reconstructions
of contrast-enhanced MR data of eleven patients (p03 to pl3 as listed in Table 3.2) were
evaluated. For all subjects, highly undersampled data sets with an acquisition time of
1min 55s were created (section 3.4.2). In case of 5D reconstructions, these data revealed
radial undersampling factors of 36. As illustrated in Fig. 3.14, the following images were
reconstructed for all subjects: 3D motion average and 5D double-gated reconstructions,
which represent standard methods (section 3.1.1), 4D respiratory MoCo, 5D respiratory
MoCo and cardiac gated, and 5D respiratory and cardiac MoCo images as described in

section 3.1.4.

radial MR raw data of free-breathing patient

'

self-gating and binning to respiratory and cardiac motion phases

'

generation of respiratory
 EEE—
MoCo raw data

'

respiratory motion cardiac motion
estimation employing ——\—— estimation employing
4D joint MoCo-HDTV 4D joint MoCo-HDTV
| 7T\

3D motion 4D respiratory 5D double- 5D respiratory 5D respiratory
average MoCo gated MoCo and and cardiac
cardiac gated MoCo

Figure 3.14: Overview of 5D MRI study: Radial MR data of free-breathing patients are
acquired. After self-gating, MR data are binned to different combinations of respiratory and
cardiac motion phases. Respiratory motion is estimated and respiratory MoCo raw data are
generated. These raw data are used for estimation of cardiac motion. Using the respiratory
and cardiac MVFs, several MR image reconstructions are performed.
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Assessment of Image Sharpness

For quantitative assessment of potential improvements in image sharpness in MoCo re-
constructions, reconstructed images of all patients were analyzed. For that purpose, the
image gradient TV (f) was employed as a metric for image sharpness (McGee et al., 2000;
Kingston et al., 2011):

TV(F) = 3\ (Ve J? + (Y 1) + (V2 £ (3.34)

The index i represents the voxel position and, instead of finite differences, the gradient
operators V. correspond to 3D Sobel operators in the respective spatial direction. The
comparison included 3D motion average, 4D respiratory MoCo, and 5D respiratory and
cardiac MoCo reconstructions. These methods were chosen as they showed similar streak
artifact and noise levels in contrast to the 5D respiratory and cardiac gated and 5D
respiratory MoCo and cardiac gated images. The latter reconstructions were excluded due
to their increased noise and artifact levels, which introduce artificial edges to the images

and would bias the gradient calculation.

In addition, the three methods with similar streak artifact and noise levels selected above
were evaluated independently by two board-certified radiologists. Both radiologists had
at least five years of experience in reading thoracic MR images. The evaluation was
blinded and the order of reconstruction methods was randomized for each patient so that
the reconstruction method of each image was unknown to the readers. Criteria for the
assessment were the following: sharpness of the edge of the diaphragm and of the lung
parenchyma, sharpness of the borders and walls of the heart, and delineation and sharpness
of the papillary muscles. Both radiologists defined a relative order of image sharpness
for each patient assigning the values —1 (worst), 0, and +1 (best) to the reconstructed
images. From the resulting values, mean and standard deviation were calculated for each
reconstruction method. Applying the paired Wilcoxon signed-rank test (Wilcoxon, 1945), a
statistically significant difference was assumed for P values smaller than 0.05. To determine
the interrater agreement, Cohen’s kappa coefficient (McHugh, 2012) was calculated with

equal weights.

3.5.4 5D Respiratory and Cardiac Motion-Compensated PET

The 5D PET study was intended to assess potential improvements in image sharpness
and quantification accuracy when applying respiratory and cardiac MVF's estimated from
MR data to MoCo PET reconstruction of the heart. The evaluation comprised acquired
simultaneous PET /MR data of four patients (s02 to s04 and s06 as listed in Table 3.2).

As illustrated in Fig. 3.15, respiratory and cardiac MVFs were estimated on basis of
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5min MR acquisitions using the methods described in section 3.1.4. Besides the standard
PET reconstruction methods 3D motion average and 5D double-gated (section 3.2.1), 5D

respiratory and cardiac MoCo PET reconstructions employing respiratory and cardiac

MVFs estimated from MR (section 3.2.2) were performed.

acquisition of PET raw data

binning to respiratory
and cardiac
motion phases

acquisition of radial MR raw data

!
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Figure 3.15: Overview of 5D PET study: Simultaneous PET/MR data of patients during
free breathing are acquired. MR self-gating signals are derived and MR and PET data are
sorted into different combinations of respiratory and cardiac motion phases. Respiratory and
cardiac MVFs are estimated on basis of MR data and several PET image reconstructions are

carried out.

Quantitative Evaluation of Image Reconstructions

For quantitative analysis of the reconstructed images of the four patients, the parameters

SUVinean, SUVnax, volume, contrast and SNR of the myocardium were determined in a

diastolic and a systolic cardiac motion phase and compared to 3D motion average images.

The quantitative parameters were calculated in a similar manner as defined in section 3.5.2.

5D double-gated images were excluded from evaluation as robust segmentation of the

myocardium was not possible due to the very high noise level of the images.






4 | Results

In this chapter, results of the different studies conducted in this work are presented. In
accordance to the description of these studies in section 3.5, the chapter is divided into
four main parts: In section 4.1, results of the 4D respiratory time-resolved MRI study are
shown. Section 4.2 illustrates outcomes of the 4D respiratory MoCo PET study. Results
obtained in the 5D respiratory and cardiac MoCo MRI study can be found in section 4.3.
An evaluation of 5D respiratory and cardiac MoCo PET is carried out in section 4.4. Parts
of the results presented in this chapter have been published in Rank et al. (2016a), Rank
et al. (2016b), Rank et al. (2016¢c) and Rank et al. (2016d).

4.1 4D Respiratory Time-Resolved MRI

4.1.1 Qualitative Comparison of Images

To assess image quality of thoracic and abdominal structures employing the MR recon-
struction methods described in Fig. 3.12, several examples are depicted in the following:
Figure 4.1 shows MR image reconstructions of the end-exhale motion phase of simulated
data with acquisition times as short as 20s and 40s. Results of acquired data of the
end-exhale motion phase and a mid-ventilation phase are given in Fig. 4.2 and Fig. 4.3,
respectively. In Fig. 4.4, reconstructions of different respiratory motion phases are pre-
sented. For acquired data, the respiratory motion states of the reference and of the
highly undersampled raw data were slightly different, which was caused by the nonuniform
breathing patterns of volunteers and patients. While the references were created from full
acquisitions, the highly undersampled reconstructions corresponded to the first 37 to 41s

of these measurements only.

For simulated and acquired data, 3D motion average reconstructions showed strong blurring
of structures in the lungs, in the liver and in the diaphragm region, which was caused by
respiratory motion. Due to the strong undersampling, 4D gated reconstructions revealed
severe streak artifacts and increased noise levels. Analyzing 4D MASTeR and 4D HDTV

reconstructions, streak artifacts were reduced considerably in comparison to the 4D gated

63
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reconstruction residual reconstruction residual
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3D motion average
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Figure 4.1: 4D MRI study: Ground truth and MR image reconstructions of highly undersam-
pled raw data sets for simulated raw data in transversal slice orientation. Only the end-exhale
motion phase is shown. The residuals represent difference images in comparison to the 4D
ground truth amplified by a factor of two.
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2: 4D MRI study: MR image reconstructions of reference and highly undersampled

Figure 4.
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Figure 4.3: 4D MRI study: MR image reconstructions of reference and highly undersampled

raw data sets from a 58-year-old female patient (p06,

patient (p08

and from a 73-year-old female

)

left
right) in a mid-ventilation motion phase. Images were acquired in sagittal view

b

and upsampled to isotropic resolution for visualization. Adopted from Rank et al. (2016a).
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Figure 4.4: 4D MRI study: MR image reconstructions of different motion phases of reference
and highly undersampled raw data sets from a 76-year-old male patient (p04) in sagittal view.
Adopted from Rank et al. (2016a).
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images. However, image sharpness was diminished in comparison to the ground truth
and when compared to the reference reconstructions. Due to the strong regularization,
patch-like and grainy textures were created in the images (Fig. 4.1b, Fig. 4.3 and Fig. 4.4).
4D MASTeR yielded a slightly better image sharpness than 4D HDTV. Furthermore,
grainy edges in motion phases with a high degree of motion were reduced as a result of the
motion-adaptive regularization of MASTeR, which is illustrated for mid-inhalation phases
in Fig 4.3 and Fig. 4.4. However, motion fidelity was reduced at very short acquisition times
as can be seen in Fig. 4.1b. The 4D joint MoCo-HDTV algorithm achieved lower streak
artifact levels and higher image sharpness than 3D motion average, 4D gated, 4D HDTV
and 4D MASTeR reconstructions of the highly undersampled data sets. For the simulated
data, residual images showed the lowest differences to the ground truth when compared
to the other techniques regardless of the acquisition time. For the acquired data, streak
artifacts were less apparent for some subjects in 4D joint MoCo-HDTV reconstructions
when compared to 4D gated images of the reference raw data sets, which were reconstructed
from 6.6 to 11.1 times longer acquisition times (Fig. 4.2a and Fig. 4.4). For the latter
reconstruction technique, each motion phase was reconstructed from a different subset
of spokes. As volunteers and patients exhibited nonideal breathing patterns, the angular
spoke distributions of these subsets were not perfectly uniform in all cases. For some motion
phases, this circumstance produced larger angular gaps between adjacent spokes and thus
increased streak artifacts in the corresponding images. In contrast, 4D joint MoCo-HDTV
reconstructions of the highly undersampled data sets were based on the same consecutively
measured radial spokes for all motion phases resulting in nearly uniform angular spoke
distributions. Furthermore, 4D joint MoCo-HDTV images revealed a slight decrease of
motion fidelity when compared to the 4D ground truth or to the 4D reference gated
images, especially when looking at structures at the interface of the lungs and the thorax.
These regions exhibit abrupt changes in motion magnitude. This sliding lung motion was
not modeled correctly by the image registration due to the fluid-like and diffusion-like
regularization of MVFs. As a result, moving organs showed a slight underestimation of

motion while some stationary structures were slightly affected by spurious motion.

4.1.2 Assessment of Image Quality

The evaluation of image similarity metrics for the different reconstruction algorithms
is shown in Table 4.1 and in Fig. 4.5 for simulated and acquired data, respectively.
For simulated data, 4D joint MoCo-HDTV outperformed 4D gated, 4D HDTV and 4D
MASTeR reconstructions for all acquisition times yielding smaller MSEs and larger SSIM,
NCC and NMI values when compared to the ground truth. In case of acquired data,
the comparison to 4D reference gated reconstructions yielded the largest SSIM, NCC
and NMI values for 4D joint MoCo-HDTV. These results demonstrate that the 4D
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joint MoCo-HDTYV algorithm was able to restore a larger amount of image information

from highly undersampled data than the other reconstruction techniques.

reconstruction simulated MSE SSIM NCC NMI
algorithm acquisition time / s

4D gated 60 1381 0.510 0.900 0.153
4D MASTeR 60 54 0.962 0.997  0.523
4D HDTV 60 83 0.931 0.993  0.465
4D joint MoCo-HDTV 60 30 0.978 0.998 0.583
4D gated 40 2552 0.391 0.834 0.107
4D MASTeR 40 81 0.941 0.995 0.470
4D HDTV 40 110 0.912 0.991 0.429
4D joint MoCo-HDTV 40 39 0.970 0.997 0.537
4D gated 20 6000 0.230 0.702  0.059
4D MASTeR 20 1104 0.722 0.985 0.225
4D HDTV 20 227 0.848 0.981 0.341
4D joint MoCo-HDTV 20 72 0.944 0.994 0.479

Table 4.1: 4D MRI study: Quantitative evaluation of simulated MR data: Image similarity

metrics of the different reconstruction algorithms for several acquisition times when compared
with 4D ground truth images. As described in section 3.5.1, the metrics mean squared
error (MSE), structural similarity (SSIM), normalized cross-correlation (NCC) and normalized

mutual information (NMI) were evaluated.

reconstruction algorithm type of data set score

4D gated reference 3.29 +0.82
4D MASTeR highly undersampled 2.63 &+ 0.67
4D HDTV highly undersampled 2.04 +0.74
4D joint MoCo-HDTV highly undersampled 4.60 % 0.49

Table 4.2: 4D MRI study: Qualitative assessment of image quality of acquired MR data:

The values represent mean + standard deviation of the scores given by two radiologists in a

blinded study for a total number of twelve subjects (listed in Table 3.2). Adopted from Rank

et al. (2016a).

Results of the qualitative assessment of image quality scores for acquired data by two

radiologists are given in Table 4.2. 4D joint MoCo-HDTV images reconstructed from the

highly undersampled raw data sets achieved significantly higher (P < 0.05) overall image

quality scores when compared to 4D HDTV and 4D MASTeR reconstructions at the same

undersampling factor and when compared to 4D gated reconstructions of the reference raw

data sets. The lower scores of 4D reference gated images might be explained by residual

streak artifacts being more apparent than for 4D joint MoCo-HDTV reconstructions as

explained above. In the relative comparison of reconstruction algorithms, both radiologists

agreed in 91.7% of cases (22 of 24 cases) and attributed the best image quality to 4D

joint MoCo-HDTV.
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Figure 4.5: 4D MRI study: Quantitative evaluation of acquired MR data: Image similarity
metrics of the different reconstruction algorithms when compared with reference 4D gated
reconstructions. Adopted from Rank et al. (2016a).
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Figure 4.6: 4D PET study: PET reconstructions of an end-exhale motion phase of simulated
data in coronal slice orientation. The positions of line profiles are indicated by arrows in the
left column of the corresponding reconstructions. While green arrows in the central column
imply visually appropriate quantification, red arrows demonstrate reduced accuracy of the
latter. Adopted from Rank et al. (2016d).

4.2 4D Respiratory Motion-Compensated PET

4.2.1 Qualitative Comparison of Images

To evaluate the delineation of lung lesions using the PET reconstruction techniques depicted
in Fig. 3.13, Fig. 4.6 shows reconstruction results of the PET /MR simulation while Fig. 4.7,
Fig. 4.8 and Fig. 4.9 present PET images of three patients. 3D motion average images
exhibited a blurring of structures affected by respiratory motion. 4D gated reconstructions
showed increased noise levels due to the low statistics. All MoCo PET methods provided
noise levels similar to the 3D motion average as 100% of the measured PET raw data were
employed for reconstruction of each motion phase. 4D sMoCo PET images corresponding
to the standard motion estimation technique yielded a decrease of motion blur for some
lesions (Fig. 4.6 and Fig. 4.7) while blurring of other lesions was increased when using
the 1 min MR acquisition for motion estimation (Fig. 4.8 and Fig. 4.9). In contrast, 4D
jMoCo PET images employing the proposed 4D joint MoCo-HDTYV algorithm were not
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Figure 4.7: 4D PET study: PET reconstructions of an end-exhale motion phase of a 57-year-
old male patient (s01) in coronal slice orientation. The positions of line profiles are indicated
by arrows in the left column of the corresponding reconstructions. While green arrows in the
central column imply visually appropriate quantification, red arrows demonstrate reduced
accuracy of the latter. Adopted from Rank et al. (2016d).

affected by this degradation of image quality. Motion blurring of lesions was reduced
regardless of the MR acquisition time used for motion estimation resulting in steeper line
profiles with higher SUVs than 3D motion average images (Fig. 4.6, Fig. 4.8 and Fig. 4.9).

4.2.2 Quantitative Evaluation of Image Reconstructions

A graphical illustration of the parameters SUViean, SUVmax, FWHM/ lesion volume,
contrast and SNR for simulated data and for acquired patient data is presented in Fig. 4.10
and Fig. 4.11, respectively. In general, 3D motion average images showed the lowest
SUVinean, SUVmax and contrast and the largest FWHM and lesion sizes. In contrast, 4D

gated reconstructions exhibited the lowest SNR of all reconstruction methods. In case
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Figure 4.8: 4D PET study: PET reconstructions of an end-exhale motion phase of a 56-year-
old female patient (s02) in coronal slice orientation. The positions of line profiles are indicated
by arrows in the left column of the corresponding reconstructions. While green arrows in the
central column imply visually appropriate quantification, red arrows demonstrate reduced
accuracy of the latter.

of simulated data, 4D gated and 4D sMoCo PET images achieved increased SUV pean,
SUVnax and contrast when compared to the 3D motion average. Being an improvement
over motion average images, results did not fully match the values of 4D ground truth
images. Considerable reduction of the FWHM of simulated lesions was found for all 4D
PET reconstruction techniques. The proposed 4D jMoCo PET approach revealed the best
agreement of quantitative parameters having a mean absolute deviation of 2.3% when
compared to 4D ground truth images (Fig. 4.10). Relative to the 3D motion average,
SUVinean, SUVmax and contrast were increased by 32.7% on average. For the acquired
patient data, 4D gated images showed the highest values for SUVpean, SUVmax and contrast
(Fig. 4.11). Owing to the increased image noise, SUV ., was systematically overestimated

resulting in an underestimation of lesion volume when employing the automatic isocontour
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Figure 4.9: 4D PET study: PET reconstructions of an end-exhale motion phase of a 75-year-
old male patient (s05) in coronal slice orientation. The positions of line profiles are indicated
by arrows in the left column of the corresponding reconstructions. While green arrows in the
central column imply visually appropriate quantification, red arrows demonstrate reduced

accuracy of the latter. Adopted from Rank et al. (2016d).

segmentation described in section 3.5.2. This effect yielded an overestimation of SUVyean

and contrast. In comparison to 3D motion average images, 4D sMoCo PET showed an

average increase of the parameters SUV pean, SUVmax and contrast by 3.6% and 10.0% for

the 1min and 5min MR acquisition time, respectively. This result demonstrates a reduced

quantification accuracy for the short MR acquisition time. In contrast, the proposed 4D

jMoCo PET yielded an average increase of SUV nean, SUVax and contrast being similar
for both acquisition times. This gain was 12.7% (1 min MR) and 13.2% (5min MR) and
thus larger than for the 4D sMoCo PET approach regardless of the acquisition time. In

comparison to the 3D motion average and to 4D sMoCo PET (1 min MR), the increase was

statistically significant (P < 0.05) for both the simulated data and the acquired patient

data.
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for each patient. Adopted from Rank et al. (2016d).
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4.3 5D Respiratory and Cardiac Motion-Compensated MRI

4.3.1 Qualitative Comparison of Images

To compare image sharpness of cardiac structures applying the different MR reconstruction
methods illustrated in Fig. 3.14, the following examples are given: Figures 4.12 and 4.13
present MR image reconstructions of the combination of an end-exhale respiratory phase
and a diastolic cardiac phase in four patients. In addition, 5D respiratory and cardiac
MoCo reconstructions of different combinations of respiratory and cardiac motion phases
for two patients are shown in Fig. 4.15 and Fig. 4.14. In correspondence to the results in
section 4.1, 3D motion average images exhibited blurring in regions, which are affected by
respiratory and cardiac motion, e. g. at the lung parenchyma, at the edge of the diaphragm
or at the borders and walls of the heart (Fig. 4.12 and Fig. 4.13). 4D respiratory MoCo
reconstructions reduced respiratory blurring considerably when compared to the motion
average. However, cardiac structures, e.g. the cardiac walls and the papillary muscles,
were still affected by cardiac motion blur. While resolving both respiratory and cardiac
motion, 5D double-gated images were distorted by very severe streak artifacts and noise
due to the very high radial undersampling, such that the detection of cardiac structures
was not possible. The artifact level was decreased in 5D respiratory MoCo and cardiac
gated reconstructions and sharpness of cardiac structures was improved when compared to
4D respiratory MoCo images. Likewise, 5D respiratory and cardiac MoCo reconstructions
yielded a similar improvement of sharpness of these structures as the images were fully
compensated for organ motion (Fig. 4.12 and Fig. 4.13). Furthermore, this reconstruction
technique resulted in noise and streak artifacts comparable to the motion average as 100%
of the measured raw data were available for reconstruction of each motion phase. Analyzing
the cardiac motion cycle at different respiratory phases (Fig. 4.15 and Fig. 4.14), the

various cardiac phases were clearly resolved regardless of the respiratory motion state.

4.3.2 Assessment of Image Sharpness

Figure 4.16 shows image gradient values TV(f) as defined in Eq. (3.34) serving as quanti-
tative metric for image sharpness for the different MR image reconstruction methods. For
all eleven patients, 5D respiratory and cardiac MoCo images achieved the largest gradient
values and thus the best image sharpness, followed by 4D respiratory MoCo and 3D motion

average images.

Results of the relative assessment of image sharpness by two radiologists are shown in
Table 4.3. On the relative scale, 5D respiratory and cardiac MoCo reconstructions revealed
significantly higher scores for image sharpness than 3D motion average images and 4D

respiratory MoCo images, i.e. P values were smaller than 0.05. 3D motion average images
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Figure 4.13: 5D MRI study: MR image reconstructions of a 64-year-old male patient (pl1,

left) and of a 79-year-old female patient
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diastolic phase

systolic phase

end-exhale mid-inhalation end-inhale

Figure 4.14: 5D MRI study: MR image reconstruction of different combinations of respiratory
and cardiac motion phases from a 76-year-old male patient (p04). Images were acquired
in sagittal orientation and the slice direction was upsampled to isotropic resolution for
visualization.
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diastolic phase

systolic phase

end-exhale mid-inhalation end-inhale

Figure 4.15: 5D MRI study: MR image reconstruction of different combinations of respiratory
and cardiac motion phases from a 58-year-old female patient (p06). Images were acquired
in sagittal orientation and the slice direction was upsampled to isotropic resolution for
visualization.
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Figure 4.16: 5D MRI study: Quantitative evaluation of image sharpness metric for the
different reconstruction methods relative to the 3D motion average.

reconstruction algorithm score
3D motion average —1.00 £ 0.00
4D respiratory MoCo +0.27 +0.46

5D respiratory and cardiac MoCo  +0.73 4+ 0.46

Table 4.3: 5D MRI study: Qualitative assessment of image sharpness: The values represent
mean + standard deviation of the relative scores given by two radiologists in a blinded study
for a total number of eleven subjects (listed in Table 3.2).

were assigned with the lowest image sharpness scores for all subjects. The differences
between 4D respiratory MoCo and 5D respiratory and cardiac MoCo were less apparent.
The interrater agreement of the two radiologists, i.e. Cohen’s kappa coefficient, was

calculated as 0.73, which can be interpreted as a moderate agreement (McHugh, 2012).

4.4 5D Respiratory and Cardiac Motion-Compensated PET

4.4.1 Qualitative Comparison of Images

To investigate the feasibility of the methods developed in this work for cardiac PET imaging,
Fig 4.17 and Fig. 4.18 present reconstructions of two patients comparing three different
approaches. Similar to sections 4.2 and 4.3, 3D motion average images exhibited motion
blurring resulting from respiratory and cardiac motion. As gating was performed in two
temporal dimensions, 5D double-gated reconstructions showed very severe noise levels,
e. g. impairing the delineation of the myocardium. While having noise levels comparable to

the 3D motion average, 5D respiratory and cardiac MoCo reconstructions yielded reduced
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motion blurring revealing steeper line profiles through the myocardium than the former
(Fig 4.17 and Fig. 4.18). This improvement of edge sharpness was demonstrated for diastolic

and systolic motion phases.
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Figure 4.17: 5D PET study: PET reconstructions of different cardiac motion phases at
end-exhale from data of a 56-year-old female patient (s02) in coronal orientation. The magnified
views show the heart of the patient using a color scale to amplify differences between the images.
The position of line profiles is indicated by arrows in the left column of the corresponding
reconstructions. Adopted from Rank et al. (2016b).
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Figure 4.18: 5D PET study: PET reconstructions of different cardiac motion phases at
end-exhale from data of a 48-year-old female patient (s04) in coronal orientation. The magnified

views show the heart of the patient using a color scale to amplify differences between the images.

The position of line profiles is indicated by arrows in the left column of the corresponding
reconstructions. Adopted from Rank et al. (2016b).
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4.4.2 Quantitative Evaluation of Image Reconstructions

The average variation of the parameters SUV ean, SUVmax, volume, contrast and SNR
for the myocardium of four patients is given in Table 4.4. Comparing 5D respiratory
and cardiac MoCo images with the 3D motion average for the diastolic motion phase,
all parameters were slightly increased. This result might indicate a slight improvement
of quantification accuracy. As the left heart chamber is filled in the diastolic phase, an
increased volume of the myocardium is expected. Likewise, the reduced volume of the
systolic motion phase in 5D respiratory and cardiac MoCo images is in correspondence
to expectations from cardiac physiology. While SUV ean and contrast yielded a slight
increase for the systolic phase, SUV .« and SNR were decreased. Standard deviations of
systolic parameters were larger than the average variation of these parameters. As only

four patients were evaluated, statistical significance of parameter variations was not proven
by the data.

reconstruction algorithm SUV mean SUV max volume contrast SNR
/ %of3D /% of3D /%of3D /% of3D /% of 3D
3D motion average 100.0 100.0 100.0 100.0 100.0

5D MoCo (diastolic phase) 102.8 +1.1 101.3+3.3 105.0+3.5 104.8+2.0 102.7+2.4
5D MoCo (systolic phase) 100.2+3.7 97.1+4.7 98.7+5.3 101.2+4.8 98.8+5.1

Table 4.4: 5D PET study: Quantitative evaluation of PET images analyzing the myocardium.
Mean and standard deviation describe the variation of parameters relative to the 3D motion
average for a total number of four patients (listed in Table 3.2). The 5D MoCo algorithm
corresponds to 5D respiratory and cardiac MoCo PET reconstructions.
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In this chapter, sections 5.1 to 5.4 discuss findings of the four studies conducted in this
work. This includes evaluation and comparison of results of the different methods for MR
and PET image reconstruction developed in these studies. In addition, limitations and
potential clinical applications of the algorithms are illustrated. An outlook providing ideas
for improvement of MR and PET image reconstruction algorithms and data acquisition

schemes is given in section 5.5.

5.1 4D Respiratory Time-Resolved MRI

MR imaging of the lung and upper abdomen is impaired by respiratory motion yielding
motion blurring in case of 3D motion average reconstructions. As was shown in this
study, performing respiratory time-resolved image reconstruction considerably reduces
this blurring. However, standard motion handling strategies, e. g. breath-hold acquisition
or gating, exhibit limitations in either temporal or spatial resolution, SNR, contrast and
artifact level or demand inappropriately long acquisition times. For the highly undersampled
data sets with undersampling factors of 16.8 evaluated in this study, 4D gated images
revealed nondiagnostic image quality. To satisfy the Nyquist criterion for each respiratory
phase, acquisition times of 10.2 to 11.5 min would have been required. As demonstrated for
simulated and acquired MR data, the streak artifact and noise level of 4D images decreases
considerably when using iterative image reconstruction methods. These methods seek
to regularize the reconstructed images in such a way, that streak artifacts and noise are
suppressed on the one hand while image sharpness and temporal fidelity are maintained on
the other hand. To achieve an appropriate streak artifact level for the high undersampling
factors employed in this study, the regularization of the 4D HDTV algorithm generated
patch-like and grainy patterns in the images and decreased image sharpness. This behavior
represents a trade-off for TV-based regularization (Block et al., 2007). While these effects
were reduced in 4D MASTeR images (Asif et al., 2013), regularization of the image
only in temporal dimension did not fully suppress streak artifacts in the images. The

remaining streaks may generate spurious motion during the motion estimation step of the

87
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MASTeR algorithm, which then decreases the accuracy of the motion-adaptive temporal

regularization.

To address limitations of the other methods, the 4D joint MoCo-HDTYV algorithm was
proposed in this work. This algorithm combines advantages of motion compensation and
iterative image reconstruction. Although it uses a similar regularization as 4D HDTV,
the modified update equation described in Eq. (3.5) yields an improved sparsity of the
image in the HDTV domain reducing the disadvantages of this type of regularization. As
MVFs are estimated during the reconstruction process, the regularization within the final
MoCo reconstruction can be disabled, which reveals an image perception similar to analytic

gridding reconstructions.

To investigate the performance of the different reconstruction algorithms, the image similar-
ity metrics MSE, SSIM, NCC and NMI were evaluated in comparison to the ground truth
and in comparison to 4D gated reference reconstructions for simulated and acquired data,
respectively. For all similarity metrics and subjects, 4D joint MoCo-HDTV outperformed
4D gated, 4D MASTeR (Asif et al., 2013) and 4D HDTV reconstructions. In addition,
overall image quality in terms of image sharpness and artifact level was assessed by two
radiologists for the acquired data in a blinded reading test. This assessment yielded
significantly higher scores for 4D joint MoCo-HDTV than for 4D MASTeR and 4D HDTV
reconstructions as well as higher scores than for 4D reference gated reconstructions with
acquisition times being 6.6 to 11.1 times longer. The strong agreement of quantitative
and qualitative assessment of reconstructed images provides confidence that the proposed
4D joint MoCo-HDTYV algorithm achieved better image quality at high undersampling
factors than the other approaches used for comparison. Furthermore, results demonstrate
that 4D joint MoCo-HDTV enables reduction of acquisition times by about one order of
magnitude when compared to standard 4D gated reconstructions. The algorithm showed
a robust behavior for the thorax and upper abdomen region, for different subjects and
image orientations, and for non-contrast-enhanced and contrast-enhanced acquisitions.
Limitations of 4D joint MoCo-HDTV were found at describing sliding lung motion. This
limitation affects only small regions at the interface of the lungs and the thorax. To improve
results, either a segmentation of the lungs (Vandemeulebroucke et al., 2012) or a more

sophisticated regularization of respiratory MVFs (Vishnevskiy et al., 2014) might be used.

Compared to the literature, 4D joint MoCo-HDTV shows similarities with previous work
regarding the general approach of joint motion estimation and image reconstruction, in
particular with the MASTeR (Asif et al., 2013) and deformation-corrected compressed
sensing algorithm (Lingala et al., 2015). However, several major differences in initialization
and regularization among these algorithms exist. Whereas the algorithms in Asif et al. (2013)
and Lingala et al. (2015) required an initial guess for reconstruction, 4D joint MoCo-HDTV

uses a multiresolution strategy with variable weighting of direct update and MoCo update
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in the update equation (Eq. (3.5)) instead to circumvent the problem that no MVFs are
available at the initial reconstruction. In addition Asif et al. (2013) and Lingala et al.
(2015) employed regularization in a deformation-compensated domain, while the proposed
algorithm applies the HDTV regularization to the nondeformed image volume using a
motion-adaptive weighting of temporal and spatial TV to reduce temporal blurring between
adjacent motion phases with large differences in motion amplitude. Furthermore, this
study demonstrates image reconstruction of 4D (3D + time) volumes located in the thorax
and upper abdomen region. In contrast, Asif et al. (2013) and Lingala et al. (2015) did not
consider out of plane motion and presented results of 2D + time reconstructions of cardiac
MRI and myocardial perfusion MRI, respectively. With regard to data acquisition, the
MASTeR algorithm (Asif et al., 2013) was applied to MR data acquired with a pseudo-
random 2D Cartesian undersampling pattern while reconstruction of radial MR data was
not presented in the original publication. This pseudo-random undersampling pattern
might yield more incoherent undersampling artifacts, which might be better corrected for
than streak artifacts arising from radial undersampling. For the implementation and radial
undersampling factors used in this work, the MASTeR algorithm was found to be limited
in suppressing streak artifacts while 4D joint MoCo-HDTYV revealed better performance

here.

As demonstrated in this study, the 4D joint MoCo-HDTYV algorithm enables 4D respiratory
time-resolved MRI with high undersampling factors and thus appropriately short acquisition
times. Short acquisition times yield benefits, especially for pediatric examinations and for
patients with discomfort in the scanner, and may reduce time and costs of MR examinations
in general. Respiratory time-resolved 4D MRI with appropriate acquisition times might be
of interest for a wide range of applications requiring dynamic information. Besides reducing
motion blur in abdominal imaging, 4D MRI might be employed for the assessment of lung
function in pulmonary imaging (von Siebenthal et al., 2007; Biederer et al., 2009, 2010).
In the context of radiation oncology, potential applications are a patient-specific definition
of safety margins or motion-adapted radiotherapy planning (Blackall et al., 2006; Dinkel
et al., 2009; Hugo and Rosu, 2012; Sawant et al., 2014).

5.2 4D Respiratory Motion-Compensated PET

Similar to the 4D MRI study, respiratory motion represents a major challenge in PET
image reconstruction of the thorax and abdomen. In PET, motion blurring yields an
overestimation of lesion size or it leads to reduced SUVs, which may impede the detection
of small lesions. 4D gated reconstructions as a standard motion handling strategy exhibit
increased noise levels. The resulting local variations of SUVs might diminish the detectabil-

ity of true lesions on the one hand while they might produce false positive findings on
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the other hand. In addition, the low number of counts in gated PET sinograms bias the
reconstruction. In case of very low count numbers, the non-negativity constraint of the
maximum likelihood expectation maximization PET reconstruction algorithm yields an
overestimation of activity in regions with low uptake while regions with high uptake are
underestimated (Walker et al., 2011; Van Slambrouck et al., 2014). MoCo PET reconstruc-
tions keep noise levels comparable to 3D motion average PET and are supposed to reduce

motion blur in the images.

In this study, MR joint motion estimation and image reconstruction (4D jMoCo PET)
using the 4D joint MoCo-HDTYV algorithm was proposed for application to MoCo PET
in simultaneous PET /MR imaging. Results were compared to a standard motion estima-
tion method (4D sMoCo PET) employing 4D gated MR images for motion estimation.
Comparing different MR acquisition times for motion estimation, the 4D sMoCo PET ap-
proach showed substantial degradation of quantification accuracy in case of MR acquisition
times as low as 1min and undersampling factors of 11.2. This degradation for short MR
acquisition times can be explained by the strong undersampling producing severe streak
artifacts in the MR images used for registration. As positions of radial streaks vary between
motion phases, spurious motion is potentially introduced, which distorts the estimation
of the actual respiratory patient motion. These findings are in correspondence to Grimm
et al. (2015), who reported a decreased robustness of the standard motion estimation
approach for undersampling factors of about 2.3 and larger. In contrast, the proposed
4D jMoCo PET approach was shown to be robust against strong radial undersampling
of the MR acquisition. In a simulation study and in wvivo for six patients, it showed
significant improvements of PET image quality and quantification accuracy in terms of
SUViean, SUViax, FWHM/ lesion volume, contrast and SNR. The average increase of
the parameters SUV nean, SUVmax and contrast was 32.7% and 12.7% compared to 3D
motion average PET for simulated and patient data, respectively. These results are in
accordance to Kinahan and Fletcher (2010), who reported an underestimation of SUV due

to respiratory motion in the range of 25%.

Table 5.1 provides an overview of respiratory MoCo image reconstruction approaches for
simultaneous PET /MR proposed in literature and applied to real patient data. Most of
these approaches require several minutes of MR acquisition time per bed position for motion
estimation. Moreover, they use a small number of motion phases, reduce spatial resolution
or restrict the registration to only two dimensions, which improves robustness on the one
hand, but might decrease accuracy of motion estimation on the other hand. The methods
proposed in Wiirslin et al. (2013), Fayad et al. (2015b), Fiirst et al. (2015) and Grimm
et al. (2015) employ a standard motion estimation similar to the 4D sMoCo PET approach
tested in this work. Compared to the methods from literature, the motion estimation

method proposed in this study provides good temporal and spatial resolution (Table 5.1).
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author MR sequence MR acquisition voxel size # of motion
time / min / mm3 gates  estimation
Wiirslin et al. (2013) 2D multislice 3.0 2.0 x 2.0 x 10.0 4 3D
Petibon et al. (2014) 2D multislice 3.0 2.0 x2.0x8.0 7 3D
Dutta et al. (2015) 2D radial 5.5 to 7.0 2.0/2.3 x 2.0/2.3 x 5.0/8.0 6 3D
Fayad et al. (2015a) 2D multislice 1.5 2.0 X 2.0 x 10.0 4 3D
Fayad et al. (2015b) 2D multislice 3.0 2.0 x 2.0 x 10.0 4 3D
First et al. (2015) radial stack-of-stars 10.0 1.7 x 1.7 x 5.0 5 3D
Grimm et al. (2015)  radial stack-of-stars 3.0 to 10.0 1.7x 1.7 x 5.0 5 3D
Manber et al. (2015) 2D multislice 1.0 and 2.7 1.8 x 1.8 x 10.0* 10P 2D
proposed method radial stack-of-stars 1.0 1.6 x 1.6 x 4.5 20P:¢ 3D

225 mm gap between slice centers
b Discrimination between inhalation and exhalation
¢ Motion phases have an overlap of 50%

Table 5.1: Overview of related work on respiratory MoCo image reconstruction for simulta-
neous PET/MR.

In this study, robust estimation of respiratory patient motion from highly undersampled
MR data using acquisition times as short as 1 min per bed position was demonstrated. As
typical PET acquisition times are in the range of 5 min per bed, this yields the opportunity
to acquire a 1min block of MR data for motion estimation at the beginning of the
measurement and to spend the remaining 4 min of scan time for clinical MR examinations
as shown in Fig. 3.13. This approach might have limitations when the breathing pattern
and the maximum breathing amplitude of a patient vary considerably during the 5 min
PET acquisition. For such cases, the 1 min MR acquisition for motion estimation might be
subdivided into small data acquisition windows distributed uniformly over the full PET
acquisition time. For slightly varying breathing amplitudes and periods as implemented in

the simulation and for the six patients examined in this work, this problem did not occur.

To enable sorting of PET list-mode into gated sinograms, a motion surrogate signal has to
be acquired for the full PET measurement. While the MR self-gating signal of the 5 min
MR acquisition was used for gating in this work, an estimation of the motion surrogate
signal from PET data would be required in practice (He et al., 2008; Biither et al., 2009;
Schleyer et al., 2009; Fiirst et al., 2015; Manber et al., 2015).

In the clinical environment, a reduction of motion blurring in PET images might increase the
diagnostic value of simultaneous PET /MR when applied to regions affected by respiratory
motion, such as the thorax and the abdomen. The resulting gain in contrast yields benefits
for the detection of small tumor lesions or metastases. These small structures already exhibit
reduced activity values as a result of the partial volume effect (Soret et al., 2007), which
introduces image blurring due to the finite spatial resolution of the PET detector. Further
reduction of activity caused by motion leads to additional bias in quantification accuracy
and might prevent detection of the small structures. An improvement in quantification
accuracy might advance PET-based staging of tumors (Wahl et al., 1994) and follow-up

examinations to assess their response to therapy (Erdi et al., 2000).
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5.3 5D Respiratory and Cardiac Motion-Compensated MRI

Besides the effect of respiratory motion, thoracic MR examinations are also affected by
cardiac motion introducing blurring in the heart region. Accounting for two temporal
dimensions and producing 5D double-gated reconstructions lead to further amplification
of streak artifacts due to increased undersampling. For acquisition times as short as
2 min, image quality was nondiagnostic. For double-gated reconstructions satisfying the
Nyquist sampling criterion for radial data, an acquisition time of about 69 min would have
been required, which is not feasible in clinical routine. For MoCo image reconstruction,
respiratory and cardiac motion estimation was performed sequentially due to the high
undersampling of each combination of respiratory and cardiac motion phase. Respiratory
MVFs were estimated in a similar fashion as for the 4D respiratory time-resolved studies.
This allowed for 4D respiratory MoCo reconstruction, which already yielded a substantial
improvement of image sharpness when compared to the motion average. This finding
demonstrates that respiratory motion contributed most to motion blurring. While 5D
respiratory MoCo and cardiac gated reconstructions additionally resolved different cardiac
phases, images showed streak artifacts as only about 17% of the measured raw data were
available for each cardiac phase. To enable robust estimation of cardiac MVFs from the
highly undersampled MR, data, the generation of respiratory MoCo MR raw data was
required to have 100% of the measured information available for estimation of cardiac MVF's.
To analyze the image sharpness of all methods that used 100% of the measured raw data for
reconstruction, the image gradient was employed as image-based metric. In addition, images
were assessed in a blinded reading test by two radiologists to simulate a clinically more
relevant setting. Both evaluation methods were in strong agreement and demonstrated that
5D respiratory and cardiac MoCo images yielded increased image sharpness when compared
with the motion average and when compared with MoCo reconstruction accounting for the
respiratory dimension only. These results also show that the proposed method represents a
robust and efficient method for estimation of respiratory and cardiac motion from strongly
undersampled radial MR data. MR data can be acquired during free breathing without
the need of any prospective control of image acquisition. In addition, respiratory and
cardiac gating signals are derived intrinsically without the usage of navigators, ECG or
external devices. Instead of estimating MVF's between all different motion phases, which
would require NV, x N, image registrations for reconstruction of a single combination of
respiratory and cardiac phase (r, ¢), the proposed sequential motion estimation scheme
needs only N, + N, image registrations for reconstruction of any arbitrary combination.

This circumstance results in a substantial reduction of computation times.

Considering clinical applications, results presented in this work certainly do not reveal the
full potential of 5D MoCo reconstruction as MR data with parameters optimized for the

clinical analysis of fibrosing lung disease were employed. As a 3D-encoded sequence was used,
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data of all partitions of a fixed spoke angle were correlated, which resulted in an effective
temporal resolution of the data acquisition of about 170 ms. Especially for patients with
increased heart rates, this temporal resolution might be insufficient leading to intraphase
motion blurring. Moreover, spatial resolution of images was limited as the FOV was chosen
to cover the complete thorax. In general, these settings do not satisfy the requirements
of clinical applications in the field of cardiac MRI, which employ dedicated cardiac MR
sequences and parameter settings. Thus instead of demonstrating cardiac-specific clinical
applications, this work aimed at introducing a robust and efficient method for respiratory
and cardiac motion estimation enabling time-resolved 5D MoCo image reconstruction from
strongly undersampled MR data. To improve temporal resolution, state-of-the-art cardiac
imaging methods either acquire a lower number of partitions or employ 3D radial sampling
(Piccini et al., 2011; Feng et al., 2015; Monney et al., 2015; Piccini et al., 2016). The latter
intrinsically provides isotropic spatial resolution. Furthermore, temporal resolution in the
range of the repetition time can be achieved in theory as each acquired k-space line is

independent.

Dynamic time-resolved MRI of the heart can provide valuable information for studying
physiology (Francone et al., 2005; Muthurangu et al., 2008; Lurz et al., 2009; La Gerche
et al., 2013). For such investigations, real-time cine MRI serves as clinical standard today.
However, owing to the ultrafast data acquisition, only a single slice with reduced spatial
resolution can be captured. In addition, images at different slice locations generally describe
different motion cycles and a decoupled observation of respiratory and cardiac motion
is not possible. Hence, 5D time-resolved MRI with appropriate acquisition times might
overcome these limitations. If adapted to the cardiac-specific requirements, the proposed
5D MoCo reconstruction might develop high potential for clinical examinations. The
intrinsic gating and acquisition during free breathing would simplify the clinical workflow
and increase patient comfort. Furthermore, volumetric acquisition would require only a
single measurement covering the complete heart region and allowing for reconstruction of

any arbitrary combination of respiratory and cardiac motion phases.

5.4 5D Respiratory and Cardiac Motion-Compensated PET

In this study, the feasibility of 5D respiratory and cardiac MoCo PET image reconstruction
was demonstrated. 5D double-gated PET images suffered from very high noise levels
resulting in nondiagnostic image quality. In contrast, 5D MoCo PET images showed visual
improvements with increased image sharpness and steeper line profiles when compared
to 3D motion average PET reconstructions. The evaluation of quantitative parameters
of the myocardium revealed smaller differences between MoCo images and the motion

average than for lung lesions affected by respiratory motion. This can be explained by the
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smaller motion amplitude of the myocardium relative to its size when compared to lung
lesions leading to less severe motion blurring. A further reason for the smaller differences is
related to the cardiac MR self-gating. Unlike the data sets used in the 5D respiratory and
cardiac MoCo MRI study, non-contrast-enhanced MR, data were employed in this study.
This circumstance reduced the accuracy of cardiac gating as image contrast within the
heart was smaller than for contrast-enhanced data. As a result, measured MR and PET
data were potentially assigned to wrong cardiac motion phases in some cases. This lead
to a reduction of the cardiac motion amplitude and to an increase of intraphase motion
blurring. The limited temporal resolution of the MR acquisition in the range of 160 ms

might have further amplified these effects.

While visual improvements can be attributed to 5D MoCo PET images, the interpretation
of quantitative parameters is more difficult for the myocardium. Any reconstruction-related
changes of quantitative parameters interfere with physiologic changes of myocardial volume
and tracer concentration when assessing different cardiac motion phases. Due to the
technical limitations discussed previously, no distinct conclusions can be drawn. While
the increase of the myocardial volume in the diastolic phase and the decrease in the
systolic phase corresponds to the expectations from cardiac physiology, the small changes
of the other parameters SUV yean, SUVnax, contrast and SNR do not allow for proper
interpretation of results, especially as no ground truth is available for comparison. For
more accurate analysis, an improvement of cardiac MR gating for non-contrast-enhanced
MR data and an adaptation of the MR data acquisition to cardiac-specific requirements are
needed. Furthermore, preparation of patients with specific drug administration is required
for cardiac examinations to increase the myocardial tracer uptake. To proceed beyond
the stage of feasibility, further investigations on 5D respiratory and cardiac MoCo PET
with a larger number of patients are necessary to demonstrate distinct improvements in

quantification accuracy and clinical advantages of the proposed method.

5.5 Outlook

Future investigations should focus on improving the proposed methods on the one hand
and on simplifying workflows regarding clinical applications on the other hand. In case of
4D respiratory time-resolved MRI, the potential of further reduction of acquisition times
while keeping comparable image quality may be explored. For the implementation of 4D
joint MoCo-HDTYV used in this work, image noise and streak artifacts at borders of the FOV
limited further reduction. Future studies on 4D respiratory MoCo PET may investigate the
optimal number of respiratory motion phases for achieving the best quantification accuracy
in MoCo PET reconstructions. For both 5D respiratory and cardiac MoCo studies, an

adaptation to cardiac-specific requirements is desirable. This adaptation should include a
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careful choice of MR sequences as well as optimization of sequence parameters to improve
MR image contrast of cardiac structures and to increase spatial and temporal resolution.
In the following, a list of ideas is provided that might serve as a guidance to improve image

quality and workflows of the different methods presented in this work.

Regularization of 4D joint MoCo-HDTV

To improve motion fidelity of image reconstructions for subjects with large motion am-
plitudes, regularization in a deformation-compensated domain may be investigated as
proposed in Asif et al. (2013) and Lingala et al. (2015). In the current implementation
of 4D joint MoCo-HDTV, the temporal TV applies temporal smoothing to the 4D im-
age volume assuming small differences between adjacent motion phases. However, this
assumption does not comply with patients having large motion amplitudes resulting in
an underestimation of subject motion and in a blurring of structures strongly affected
by motion. In addition, different spatial sparsity priors as an alternative to the spatial
TV might be tested for regularization, for instance the wavelet transform. Instead of
using a velocity map for controlling the regularization, cluster analysis may be applied
to the MVFs to better distinguish between voxels affected by actual subject motion and
voxels with spurious motion induced by streak artifacts. This knowledge might allow for
region-dependent adaptation of the regularization improving the suppression of artifacts

while preserving subject motion.

Motion Estimation of 4D joint MoCo-HDTV

To improve the accuracy of respiratory and cardiac motion estimation, additional knowledge
may be incorporated into the registration process. In the current implementation, the
binomial smoothing filter used for regularization of MVFs represents a trade-off between
suppressing local errors caused by artifacts and inducing errors at regions with abrupt
changes in motion amplitude, e. g. at the interface of the lungs and the thorax. To reduce
errors caused by sliding lung motion, a segmentation of the thorax guiding an adaptive
bilateral smoothing filter may be employed in case of respiratory motion. In addition,
this segmentation might restrict the region of cardiac motion estimation. In the current
implementation, registration between adjacent motion phases is performed independently
and the cyclic regularization of MVFs is applied subsequently. Registration results might
be improved by direct integration of the cyclic regularization into the registration process
instead. Furthermore, knowledge about streak artifacts might be added to the image
registration (Brehm et al., 2013; Rank et al., 2014) or a 3D-2D registration might be
employed (Flach et al., 2014; Rank et al., 2015). For the latter, the image volume of the
source motion phase would be deformed in such a way that it matches the measured raw

data of the destination motion phase.
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Upsampling of Motion Vector Fields

For a given number of motion phases, i.e. a fixed temporal resolution, reduction of MR
acquisition time generally decreases robustness of MVF estimation. A lower number of
motion bins, however, increases intraphase motion blurring. To circumvent this blurring,
each motion phase may be subdivided into several subphases and intermediate MVFs
may be calculated to deform these subphases. During MoCo image reconstruction, each
subphase would then be deformed by an adapted MVF. In general, MVF's describe the
deformation between the centers of source and destination motion phase. To adapt a
MVF to a specific subphase, displacement might be scaled by considering mean motion
amplitudes of subphases relative to the full-width motion phase used for motion estimation.
This technique might allow for further reduction of acquisition time while preserving image
sharpness and robustness of motion estimation. Instead, the hierarchical approach for
image reconstruction may be extended to the temporal dimension. Starting at a low
temporal resolution with a small number of motion phases, several reconstruction steps

with an increasing number of motion bins may be performed.

k-Space Sampling

In this work, undersampling of the MR acquisition was only applied to the radial plane
of the stack-of-stars sampling. To either increase spatial resolution of the reconstructed
images or further reduce MR acquisition time, the Cartesian partition direction may be
undersampled as well. Figure 5.1 shows the k-space coverage in partition direction of the
current sampling method in comparison to a variable-density sampling as proposed by
Feng et al. (2016b). Both sampling schemes use an equal number of data points and thus
require the same acquisition time. However, employing variable-density sampling allows
for sampling of higher frequencies in the partition direction and therefore increases spatial
resolution of the reconstructed images. Instead, a comparable spatial resolution may be
achieved requiring only half of the acquisition time. In addition, Cartesian undersampling
would render radial streak artifacts in a less coherent fashion yielding benefits for iterative
image reconstruction of sparse data. To further gain incoherence, spoke angles might be
slightly disturbed for each partition. A disadvantage of additional undersampling in the
partition direction is the increase of noise in the reconstructed images, which has to be
balanced with the undersampling factor. Hence, SNR-efficient MR sequences, such as
balanced steady-state free precession sequences might be used in the future (Oppelt et al.,
1986). As these sequences are sensitive to rapidly changing eddy currents, the golden
angle radial spacing might be replaced by a small surrogate (Wundrak et al., 2015). As
an alternative to radial stack-of-stars sampling, 3D radial sampling may be considered as
it provides isotropic spatial resolution and high temporal resolution (Piccini et al., 2011;
Feng et al., 2015; Monney et al., 2015; Piccini et al., 2016).
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Figure 5.1: Comparison of standard k-space sampling in partition direction and variable

density sampling (Feng et al., 2016b). White pixels indicate sampled k-space data while black
areas are not measured.

Self-Gating

The derivation of cardiac self-gating signals may be improved as this procedure failed
for some data sets, especially when non-contrast-enhanced MR data was employed. In-
vestigations may focus on more optimal filters to increase robustness of the extraction
of the cardiac motion signal from MR raw data. Instead, external ECG data might be
acquired during the measurement. In case of simultaneous PET /MR acquisitions, intrinsic
PET gating as described in He et al. (2008), Biither et al. (2009), Schleyer et al. (2009),
Fiirst et al. (2015) and Manber et al. (2015) may be developed rather than using MR data
for gating. With regard to clinical application of PET/MR MoCo reconstruction, this
development would be necessary if only a part of the MR acquisition time was used for

motion estimation.

Incorporation of Contrast Dynamics into MR Reconstruction

Future developments may extend the existing MoCo MR reconstruction algorithms to a
further temporal dimension describing contrast dynamics of abdominal or cardiac perfusion
measurements. This would allow for reconstruction of 6D (3D + respiratory + cardiac
+ contrast dynamics) image volumes as proposed for micro-CT imaging of small animals
(Sawall et al., 2012). To achieve appropriate acquisition times and reduce artifacts and
noise in the images, additional regularization along the perfusion dimension, e. g. using TV

or bilateral filtering, would be required.
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PET Reconstruction

To increase image sharpness of PET images and thus improve detectability of small
structures, the OSEM reconstruction algorithm may be extended to a maximum a posteriori
formulation (Green, 1990; Qi et al., 1998; Dutta et al., 2015). Using this formulation,
additional knowledge about the reconstructed PET volume can be incorporated into the
cost function. For instance, the spatial smoothing operation can be included instead of
applying a smoothing filter with a fixed strength at the end of each iteration. Besides,

spatial TV regularization might be considered for PET reconstructions.

Practical Considerations

Although MR and PET/MR MoCo image reconstruction was tested with patient data in
this work, several practical problems have to be solved with regard to clinical implementation
of these methods. In this context, one important aspect is a considerable reduction of
computation times for motion estimation and image reconstruction. Computational effort
described in sections 3.1.5 and 3.2.4 was based on nonoptimized code and thus more
efficient implementation of algorithms is required, e. g. employing graphics processing units
for calculations. As the 4D joint MoCo-HDTYV algorithm formed the basis of all studies
conducted in this work, simplification of this algorithm and optimization of data processing
may help to further reduce computation times. To increase the performance of forward
and backward transforms during the iterative MR reconstruction process, a reduction of
the number of coil channels is desired. Besides applying more advanced coil compression
techniques as proposed in Zhang et al. (2013), the lower limit of compressed coil channels
that still enables robust motion estimation may be investigated. Thus only a small number
of channels may be employed for motion estimation while using a larger number of coils for
the final image reconstruction. In addition, one repetition of each resolution level during
4D joint MoCo-HDTV reconstruction might be sufficient for robust motion estimation and

image reconstruction.

A further step towards clinical application is a simplification of workflows. In this work,
both MR and PET data were processed and reconstructed offline at workstations not
directly connected to the scanners. Several manual steps for copying and processing data
were necessary until images could be reconstructed. For clinical routine, fully automated
workflows are desired, i.e. either a direct processing and reconstruction of data at the
scanner console or at servers connected to the scanner would be required. For the latter,
the Gadgetron framework providing features such as an extraction of MR raw data from
the scanner, processing and image reconstruction, and injection of reconstructed images
back to the scanner, might be suitable (Hansen and Sgrensen, 2013). As offline MR image

reconstruction was performed in this work, vendor-provided data correction methods were
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not available. Especially for applications in radiation oncology, a correction of geometric
distortions of MR images caused by nonlinear gradient fields is important. Furthermore, an
improved normalization of intensity inhomogeneities in MR images due to varying spatial

sensitivities of coil channels is desirable.

While several practical issues remain, this work demonstrated that employing respiratory
and cardiac MoCo MR and PET image reconstruction lead to considerable improvement
of image quality when compared to standard methods used in clinical routine today.
Furthermore, substantial reduction of MR, acquisition times at comparable image quality
was achieved, which can help to improve patient comfort in the scanner and to increase

patient throughput in clinical practice.
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The aim of this work was to develop novel algorithms for time-resolved 4D (3D + respiratory)
and 5D (3D + respiratory + cardiac) MoCo MR and PET image reconstruction with a
focus on short MR acquisition times. Shortening MR, acquisition times improves patient

comfort in the scanner and increases patient throughput in clinical practice.

In the 4D respiratory time-resolved MRI study, the 4D joint MoCo-HDTV algorithm was
proposed, which alternates between MoCo MR image reconstruction and artifact-robust
motion estimation at multiple resolution levels. It was shown that 4D joint MoCo-HDTV
reveals 4D respiratory time-resolved MR images with low streak artifact levels and high
image sharpness when using free-breathing radial MR data with acquisition times of 40s
and undersampling factors of 16.8. The achieved image quality was comparable to standard
4D gated reconstructions with acquisition times being about one order of magnitude longer.
The novel method may be employed for a wide range of clinical applications, which require

time-resolved 4D imaging acquired within appropriate acquisition times below 1 min.

In the 4D respiratory MoCo PET study, a framework for simultaneous PET /MR image
reconstruction was implemented incorporating motion information derived from MR into
the MoCo PET reconstruction. It was demonstrated that employing artifact-robust motion
estimation allows for MoCo PET reconstruction based on MR acquisition times as short as
1min per bed position yielding results comparable to 5 min MR acquisitions. The remaining
MR acquisition time can be used for clinical examinations. The proposed method may
be integrated into clinical PET/MR improving PET image quality and quantification
accuracy compared to 3D motion average PET and 4D gated PET and thus increasing the
diagnostic value of simultaneous PET/MR.

For the 5D respiratory and cardiac MoCo MRI study, a robust method for sequential
estimation of respiratory and cardiac motion was developed. Using this method, time-
resolved 5D MoCo image reconstruction of the complete thorax region from strongly
undersampled MR data with undersampling factors of 36 and acquisition times below 2 min
becomes possible. Any arbitrary combination of respiratory and cardiac motion phase can

be reconstructed using 100% of the measured MR data. Reconstructed images revealed

101
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increased image sharpness in the heart region when compared to the motion average and
to methods compensating for respiratory motion only. The proposed approach may be
directly adapted to cardiac-specific applications, for which time-resolved 5D MR imaging

offers new opportunities to study the interaction of respiration and cardiac motion.

In the 5D respiratory and cardiac MoCo PET study, employing the respiratory and cardiac
MVFs estimated from MR, for 5D MoCo PET reconstruction demonstrated basic feasibility
of the approach. While 5D MoCo PET images exhibited visual improvements compared

to the motion average, no distinct conclusions on quantification accuracy could be drawn.

The methods developed in this work were adapted to cyclic motion in the thorax region,
in particular to respiratory and cardiac motion. Other types of motion and body regions,
e.g. irregular head motion, were not considered and would require different compensation
methods. Results achieved for thoracic and abdominal imaging when using MoCo MR, and
PET image reconstruction represent distinct improvements of image quality in terms of
image sharpness, artifact level and quantification accuracy when compared to standard
methods used in clinical routine today. In comparison to these standard techniques, sub-
stantial reduction of MR acquisition times at comparable image quality can be realized
improving patient comfort and increasing patient throughput in clinical practice. How-
ever, these opportunities go along with increased complexity of reconstruction methods

demanding considerably longer computation times.

Besides improvements of motion estimation and image reconstruction, future work may
focus on a reduction of required computation times and a simplification of workflows. These
developments are inevitable for clinically feasible implementation of algorithms and they
can only be achieved by close cooperation with the vendor. This would allow for broad
application of MoCo image reconstruction in clinical routine and may help to improve the
diagnostic value of thoracic and abdominal MR and simultaneous PET /MR examinations

in the future.
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