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Abstract

Background: RNA editing is a co-transcriptional modification that increases the molecular diversity, alters secondary
structure and protein coding sequences by changing the sequence of transcripts. The most common RNA editing
modification is the single base substitution (A → I) that is catalyzed by the members of the Adenosine deaminases
that act on RNA (ADAR) family. Typically, editing sites are identified as RNA-DNA-differences (RDDs) in a comparison of
genome and transcriptome data from next-generation sequencing experiments. However, a method for robust
detection of site-specific editing events from replicate RNA-seq data has not been published so far. Even more
surprising, condition-specific editing events, which would show up as differences in RNA-RNA comparisons (RRDs)
and depend on particular cellular states, are rarely discussed in the literature.

Results: We present JACUSA, a versatile one-stop solution to detect single nucleotide variant positions from
comparing RNA-DNA and/or RNA-RNA sequencing samples. The performance of JACUSA has been carefully
evaluated and compared to other variant callers in an in silico benchmark. JACUSA outperforms other algorithms in
terms of the F measure, which combines precision and recall, in all benchmark scenarios. This performance margin is
highest for the RNA-RNA comparison scenario.
We further validated JACUSA’s performance by testing its ability to detect A → I events using sequencing data from a
human cell culture experiment and publicly available RNA-seq data from Drosophila melanogaster heads. To this end,
we performed whole genome and RNA sequencing of HEK-293 cells on samples with lowered activity of candidate
RNA editing enzymes. JACUSA has a higher recall and comparable precision for detecting true editing sites in RDD
comparisons of HEK-293 data. Intriguingly, JACUSA captures most A → I events from RRD comparisons of RNA
sequencing data derived from Drosophila and HEK-293 data sets.

Conclusion: Our software JACUSA detects single nucleotide variants by comparing data from next-generation
sequencing experiments (RNA-DNA or RNA-RNA). In practice, JACUSA shows higher recall and comparable precision
in detecting A → I sites from RNA-DNA comparisons, while showing higher precision and recall in RNA-RNA
comparisons.
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Background
RNA editing refers to co-transcriptional RNA base modi-
fications that increase transcript sequence diversity with-
out changing the underlying genome. Two types of single
base modifications, namely adenosine to inosine conver-
sions (A → I) and cytidin to uridine (C → U) conver-
sions, have been characterised in detail over decades of
research [1]. Both conversions are executed by two spe-
cific classes of RNA binding proteins (RBPs) that interact
with their respective RNA targets: Adenosine deaminase
acting on RNA (ADAR) catalyses A → I conversions,
whereas APOBEC1 family members catalyse C → U
conversions.
ADAR mediates the more frequent A → I edit-

ing by binding to double-stranded RNA and subsequent
hydrolytic deamination of adenosine residues [1]. Most
functional editing sites described so far are found in tran-
scripts for neuronal transporters and channel proteins in
the brain [2]. Herein, editing is critical for normal brain
development and function. Specifically, ADAR-mediated
editing of the GluA2 subunit of the mammalian AMPA
receptor is an essential event [3]. Generally, inosine is
interpreted as guanosine by the translation machinery,
which may lead to codon substitutions in protein-coding
sequences. Almost 100% of the human GluA2 transcripts
are edited at codon position 607 which leads to a substitu-
tion of glutamine (CAG codon) with arginine (CIG codon)
in the polypeptide chain. The introduction of a positive
charge reduces calcium permeability in the mammalian
AMPA receptor. In human, aberrant editing of the Q/R
sites has been associated with death of motor neurons [4].
However, the vast majority of editing events takes places

outside of coding regions [2]. Repetitive elements as well
as 5’ and 3’ untranslated regions (UTRs) are the most fre-
quent targets of RNA editing [5]. Especially Alu elements
are targets of positionally unspecific abundant editing
events [5, 6]. Alu repeats are short (≈ 300bp) mobile
elements that are widespread in primates. Alu elements
often co-occur in inverted pairs and form double-stranded
RNA molecules after transcription, which constitute a
favourable substrate for ADAR family members.
Taken together, site-specific RNA editing events may

lead to amino acid substitutions by changing codons in
coding sequences. Apart from its role in coding regions,
RNA editing may also influence transcript splicing and
structure and could have an effect on mRNA stability and
nuclear export [2].

Identification of RNA editing sites
The previously introduced RNA editing events are single
nucleotide variants that can be detected from compar-
ing genomic and transcriptomic sequencing data. RNA-
DNA differences (RDDs) of the nucleotide frequency
spectrum at a given location are the most direct way of

identifying editing sites, whereas RNA-RNA comparison
may pinpoint differential editing events across samples
and conditions (RNA-RNA differences, in short RRDs).
The availability of deep next-generation sequencing data
enabled the transcriptome-wide discovery of RNA editing
events. A direct comparison of gDNA and cDNA sequenc-
ing data has been proposed early on [7]. However, these
early attempts suffered from the inherent artefacts of
short read sequencing data and ambiguities in read map-
ping. For example, a re-analysis of the primary data of [7]
revealed that close to 90% of the reported sites were false
positives due to mapping and sequencing artifacts [8]. It
was noted specifically that false editing calls were pre-
dominantly originating from base calls close to the start
or end of reads, whereas true positives did not show this
positional bias. Sequencing errors, read mapping errors
and library preparation biases, which were introduced by
ligation or amplification steps, all contribute to the high
false positive rate. It is therefore essential to take these
confounding factors into account or to remove them in a
pre-processing step.
Several software solutions have been suggested for call-

ing SNV sites: SAMtools/BCFtools [9], REDItools [10]
and others (e.g. [11] and [12]). One particular common
procedure for the identification of RNA editing is based
on arbitrary thresholds for the number of minimal variant
reads and minimal variant frequency (=10%) while at least
a coverage of 10 reads is required [13].
Based on our previous experience from developing

ACCUSA2 [14], we implemented a new software pack-
age, the JAVA framework for accurate SNV assessment
(JACUSA). JACUSA is a fast and precise solution for
quantitative single nucleotide variant detection in RNA-
DNA or RNA-RNA comparisons. JACUSA is primarily
designed for the detection of position-specific editing
events and readily integrates information from replicate
experiments.
In the next sections, we will present our statisti-

cal framework and data processing steps in detail. We
benchmark JACUSA on simulated data sets and com-
pare its performance to other available and popular
variant callers: REDItools [10], MuTect [15], and SAM-
tools/BCFtools [9]. We will then discuss the performance
of JACUSA and the other tested variants callers in a
controlled biological setting using sequencing data from
ADAR knockdown experiments with human embryonic
kidney (HEK-293) cells. Herein, several gDNA and cDNA
libraries were sequenced to facilitate RNA-DNA and
RNA-RNA comparisons based on Illumina sequencing
data. Moreover, we made use of published RNA-seq data
from Drosophila melanogaster fly brains that either orig-
inate from a wild type strain or a strain with a genetically
ablated dADAR gene. With the Drosophila samples, we
specifically look at the identifiability of editing events in
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protein coding exons in neuronal tissue where they have
been reported previously [16].

Implementation
In the following, we present the JACUSA software in
detail, discuss the test statistics that supports replicate
experiments and a set of positional filters that enable
the pruning of false positive variants for a more accurate
detection of SNVs. Equally important, we have imple-
mented parallel and memory-efficient read processing
routines for better performance and usability.

Objective
The JACUSA software predicts single-nucleotide
variant positions from head-to-head comparisons of
read stacks/pileups from Illumina sequencing. In this
manuscript, we focus on identifying nucleotide-level dif-
ferences in RNA-DNA and RNA-RNA comparisons (see
Fig. 1a). Our method is robust to differences in read cov-
erage, takes replicate information into account and avoids
false calls by removing typical artifacts from short read
data. We discuss the power of our approach specifically
in the context of RNA editing.

Statistical model
Previously, it has been shown that allele frequen-
cies/counts are not accurately modeled by over-simplistic
statistical models (e.g. a multinomial distribution) [17].
Typically, the observed variance will be higher than the
theoretically expected variance in a multinomial model.
This phenomenon is called overdispersion and will lead
to false positive calls in variant detection. Therefore, we
model DNA and RNA sequencing data with the Dirichlet-
Multinomial distribution that accounts for overdispersion
[18]. In the following, we use formulas and nomencla-
ture defined in [19] adjusted to the alphabet of nucleotides
� = {A,C,G,T}. We define p = (pA, pC , pG, pT ) to be a
random probability vector, such that pk : k ∈ � represents
the base or allele probability for base k and the elements
sum to 1. We can model p with a Dirichlet distribution D
that has the parameter vector α = (αA,αC ,αG,αT ):

p(p) ∼ D(αA,αC ,αG,αT ) (1)

= �(
∑

k αk)∏
k �(αk)

∏
k
pαk−1
k (2)

where pk > 0 (3)

In [14], we estimated α from base calls and their respec-
tive base call quality score using an empirical Bayesian
method. The Dirichlet distributionD is a conjugate of the
multinomial distributionM. Let x = (xA, xC , xG, xT ) rep-
resent the sum of base calls at some location and let x fol-
low a multinomial distribution M(n,p) = p(x|p) where

n = ∑
k xk is the total number of observed bases. By inte-

grating over pwe can combine x and p into the compound
distribution that is called the Dirichlet-Multinomial:

DirMult(x,α) := p(x|α) =
∫

p(x|p)p(p|α)dp

= (n! )�(α0)

�(n + α0)

∏
k∈�

�(xk + αk)

�(xk + 1)�(αk)
,

(4)

where α0 = ∑
k∈� αk .

An alternative interpretation of the Dirichlet-
Multinomial is that of a hierarchical model:

p ∼ D(α)

x ∼ M(p)

Let D = {x1, xi, . . . , xN } : i ∈ {1, · · · ,N} represent the
base count vectors in N replicates and let xi be identically
and independently distributed. Then α can be estimated
from D by maximum likelihood estimation of L:

L(α;D) = p(D|α) =
∏
i
p(xi|α)

In order to model uncertainty of α we add a pseudo-
count term xP to the base call count vector: x̃ = x + xP .
The pseudocount term xP is calculated as a sum from
observed quality score qBC (i.e. variable terms) and a
fixed noise term ε (=0.01) which models sequencing inde-
pendent errors, which were derived empirically. qBC is
reported per base call as Phred quality score qBC , which is
logarithmically related to the base-calling error probabil-
ity eBC [20]:

eBC = Pr{wrong BC} (5)
qBC = −10 log10 eBC (6)

1 − eBC = pBC = Pr{called base} (7)

In JACUSA, we assume that the error probability eBC
is independent of the called base. That is why, the error
probability of an uncalled base is given by:

eBC
3

= Pr{uncalled base} (8)

Using these considerations and referring to a specific
base call by l, we define xP as:

xP =
∑
1≥l≥n

{
ε + elBC

3 for each uncalled base
0 otherwise.

(9)

Statistical test
We define our test statistic as a likelihood ratio of two
samples j ∈ {I, II} where the data of each sample is
defined as the pseudocount adjusted base call vectors
D̃j =

{
x̃j1, x̃

j
i, . . . , x̃

j
Nj

}
. We use the Dirichlet-Multinomial

distribution to model D̃j and estimate αj as explained in
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a

b

Fig. 1 Possible nucleotide comparisons and implemented JACUSA filter. a Graphical representation of RNA-DNA differences (RDDs) and
RNA-RNA-differences (RRDs) in head-to-head comparisons of sequencing data. b Possible sequencing artifacts and their respective JACUSA filters

the previous section. We test against the null hypothesis
H0 that both samples originate from the same underlying
distribution. The log-likelihood score function z (Eq. 10)
will have higher values, the better each of the parameter
vectors αI and αII represent the underlying data imply-
ing that each sample I and II has a different underlying
distribution.

z = log
DirMult(αI ; D̃I) · DirMult(αII ; D̃II)

DirMult(αI,II ; D̃I) · DirMult(αI,II ; D̃II)
(10)

The coverage between two pileups may differ extremely
between RNA-seq samples. This will sometimes lead to
an overestimation of confidence in the base call vec-
tor x̃ for the sample with higher coverage. We mitigate

this phenomenon by adjusting the underlying read stacks.
In essence, large coverage differences between a single
nucleotide count vector D̃homo and count vectors with two
or more nucleotides D̃hetero are evened out by replacing
the original D̃homo with a copy of D̃hetero where all variant
positions have been replaced by the reference nucleotide.
Depending on the encountered read stacks, JACUSA
automatically switches to the optimal comparison mode.

Implemented filters
Many false positive RDD calls in RNA editing studies are
related to mapping artefacts [8]. Short read mappers tend
to produce incorrect alignments around INDEL positions
that may be falsely identified as variant sites. Tools such
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as GATK [21] allow to adjust for this effect by sensitive
local realignment of reads that contain INDELs. Other
false variant calls originate from uneven base call error
distributions along short reads. This may be related to
sequencing technology where base calls at read ends are
less reliable. In JACUSA, we have implemented a panel
of simple threshold based filters to remove the afore-
mentioned and other artefacts (see Fig. 1). Our filters
(D,B,I,Y) monitor the distance d of a given candidate site
to relevant read features such as start/end, INDEL posi-
tions, homopolymeric regions, and splice sites and remove
the candidate site from further consideration if a propor-
tion r of all reads falls below the given distance cutoff
≤ d.
Generally, it is common practice to define RDDs for

homozygous genomic positions (filter H) and with less
than three distinct base types (filter M). Moreover, we
strongly recommend to remove PCR-duplicate reads from
the input read sets to minimize biases, which are intro-
duced by PCR amplification biases, before the actual
JACUSA run (see Additional file 1: Section 4.4).

In silico benchmark
We define two benchmark scenarios (Fig. 2): 1) gDNA
vs. cDNA simulates data for the identification of RNA-
DNA differences (RDDs) and 2) cDNA vs. cDNA gener-
ates data for the identification of RNA-RNA differences
(RRDs). The gDNA vs. cDNA represents the typical setup

for the detection of RNA editing sites. In this scenario,
editing sites have been only implanted into the cDNA
BAM file(s). In the cDNA vs. cDNA data setup, both
data sources may contain base substitutions at different
frequencies. This scenario can be interpreted as allele-
specific expression or dynamic RNA editing changes.
Herein, variants with pairwise different base frequencies
(� > 0.1) have been implanted into each corresponding
cDNA BAM file. Additionally, to make the identification
of variants more challenging, SNPs with pairwise simi-
lar base frequencies have been included into each cDNA
BAM file (see Fig. 2).We use the human reference genome
(hg19, chromosome 1) as a template to simulate genomic
DNA (gDNA) and RNA-Seq reads. In total, 60,000 non-
overlapping sites have been randomly chosen based on
sufficient read coverage 5 ≥ c ≥ 1000 and read map-
ping quality ≥ 20 in all simulated BAM files. The initial
candidate set of non-overlapping sites has been divided
into 30,000 variant and SNP sites, respectively. Each site
is modeled with a variant target frequency as shown in
Tables 1 and 2.
Moreover, we introduce additional variability

by sampling the target variant frequencies from
a Beta-Distribution with concentration parameter
β ∈ {10, 50, 100} representing sites with high, medium,
and low variability around the expected target frequen-
cies. Another parameter of our benchmark is the number
of RNA-seq replicates. We benchmarked all scenarios

Fig. 2 Summary of data generation for in silico benchmark. Description of the data generation for in silico RDD and RRD detection. In total 1 DNA
sample and 2x15 RNA samples (I+II) are simulated. DNA and RNA reads are simulated from chromosome 1 of human genome. Candidate SNPs and
variant sites are created in regions that are covered by all simulated BAM files. Depending on the comparison, SNPs and variant sites are inserted
into BAM files. SNPs are only implanted in the cDNA vs. cDNA setup and function there as noise
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Table 1 Detailed statistics of the implanted sites for
RNA-DNA-difference (RDD) benchmark setup

gDNA cDNA

Variants 0 30,000 positions

� variant freq. ≥ 0.01

with cDNA samples from 1 to 5 replicates. Each repli-
cate setup is simulated 3 times, which amounts to 15
RNA-seq FASTQ files per benchmark (see Table 3 for
details).
Additional details on the benchmark setup are given in

Additional file 1: Section 3 and Table 4.

Sequencing the HEK-293 genome and transcriptome
HEK-293 genome sequencing
Genomic DNA was isolated from Flp-In T-REx HEK-
293 cells (Invitrogen) using the GenElute Mammalian
Genomic DNA Miniprep Kit (Sigma-Aldrich). DNA was
fragmented in the BioRuptor Plus (Diagenode, setting
“high” in a total volume of 150μl (concentration 25ng/μl),
with 24 cycles (30 seconds on, 30 seconds off ) in a
4 ◦C water bath, including a brief centrifugation after 12
cycles. The resulting fragmented DNA was converted to
a sequencing library using the TruSeq DNA kit (Illumina)
with PCR enrichment and sequenced on a Illumina HiSeq
2500 machine. In total > 109 reads have been sequenced
(see Additional file 1: Table S3). The gDNA-seq data
have been deposited in the NCBI SRA under accession
SRP050149.

HEK-293 transcriptome sequencing
HEK-293 strand-specific RNA-Seq data from [22] has
been downloaded and processed as explained in Fig. 5.We
used the hg19 human genome and ENSEMBL 75 annota-
tion for mapping. The TopHat2 [23] mismatch parameter
was set to 10 and reads with more than 5mismatches were
filtered subsequently (see Additional file 1: Section 4.3).
Alu regions have been download and extracted from
RepeatMasker annotation Ver. 4.0.2. [24].

RNA-seq data from Drosophila fly heads
We obtained published replicate paired-end RNA-seq
data from Drosophila fly heads [25] (2 x 100nt,
unstranded, accessions codes: NCBI SRA SRR485862-5).

Table 2 Detailed statistics of the implanted sites for
RNA-RNA-difference (RRD) benchmark setup

cDNA (I) cDNA (II)

SNPs 30,000 positions

� variant freq. ≈ 0

Variants 30,000 positions

� variant freq. ≥ 0.1

Table 3 Description of in silico samples

gDNA cDNA (I) cDNA (II)

Library type gDNA, paired-end RNA-Seq, paired-end

Read length 2x100nt 2x100nt

Read count/coverage 30x 15,000,000 raw reads

# of FASTQ files 1 3x5

TheDrosophilamelanogaster genome carries only a single
copy dADAR gene. Two replicate RNA samples were gen-
erated from flies with wildtype and null alleles of dADAR
(2 replicates each, FM7a strain background). We pro-
cessed the data in the same way as the HEK-293 data sets
using the Ensembl 75 Drosophila genome and annota-
tions.

Results
In silico benchmark
We use two benchmark scenarios (Fig. 2) to compare
JACUSA with other popular variant callers: REDItools,
SAMtools/BCFtools, and MuTect. The gDNA vs. cDNA
scenario works with all variant callers while the cDNA
vs. cDNA comparison scenario could be only tested
with SAMtools/BCFtools and JACUSA. Equally impor-
tant, SAMtools/BCFtools and JACUSA are the only two
variant callers that support replicates in our benchmark.
More details on the benchmark setup and how others and
our software were used are given in section 3.1 of the
Additional file 1.

Detection of SNVs in RNA-DNA comparisons
When no replicates are used, JACUSA shows a 6 − 10%
higher true positive rate (TPR) as compared to the other
tested methods while being competitive at the level of
precision (see Fig. 3a, b). The single replicate scenario is
highly relevant in practice, as RNA-seq replicate counts
are typically low in RDD studies in the clinics. We specif-
ically used the accuracy measure and the F-score to eval-
uate the balance between precision and true positive rate
(see Additional file 1: Section 3.2). The main difference

Table 4 Summary of variant callers used for available
benchmarks and their support for replicates

Variant caller Support for gDNA vs. cDNA cDNA vs. cDNA
replicates

SAMtools/BCFtools x x x

REDItools xa

MuTect x

JACUSA x x x

aThe REDItools package supplies multiple methods to identify RNAediting sites. We
employed the REDItoolDenovo.py script because it provides a test-statistic. This
method only utilizes RNA-Seq reads
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a b

c d

Fig. 3 Benchmark results for in silico RDD detection. a True positive rate, b Precision, c Accuracy plot, and d F-measure

between these performance measures is that the accuracy
measure includes the number of true negatives.
Of all tested methods, JACUSA scores the highest in

terms of accuracy and F-score (see Fig. 3). The trade-
off between TPs and FPs can be nicely observed for
the comparison of MuTect and REDItools. While REDI-
tools shows a higher TPR (87, 45% compared to 83, 73%
of MuTect, Fig. 3a), the precision is slightly higher
for MuTect (99, 99% compared to 99.96% forREDItools,
Fig. 3b). SAMtools/BCFtools scores third in terms of TPR
and achieves together with MuTect the highest precision
of 99, 99%.
JACUSA takes advantage of replicate information and

shows a steady increase in performance with the num-
ber of employed replicates. SAMtools/BCFtools on the
other hand displays only growing precision with increas-
ing number of replicates and the remaining performance
measures are decreasing. The drop in performance is
highest for 5 replicates and amounts to more than 15%
of TRP. JACUSA consistently performs better than SAM-
tools/BCFtools in terms of TPR, F-score, and accuracy
(see Fig. 3a-d).

Additional results and details are given in Additional
file 1: Section 3.3.

Detection of SNVs in RNA-RNA comparisons
In the cDNA vs. cDNA scenario we replace the single
gDNA sample by one or more cDNA samples with variant
sites where the target frequency differs by more than 10%
between both cDNA pools. We introduce polymorphic
positions of equal target frequency into both samples. The
goal of this benchmark is to test the ability of the respec-
tive variant caller to distinguish between variant sites with
a target frequency difference of � > 0.1 and polymorphic
positions with equal target frequency.
As before, we evaluate the variant callers by comparing

overall performance measures such as F-score and accu-
racy. A general observation is the lower accuracy in Fig. 4a
for calling variant sites in cDNA vs cDNA comparisons. In
essence, it is a much harder task than contrasting gDNA
vs. cDNA samples. In terms of true positive rate, JACUSA
outperforms SAMtools/BCFtools in this scenario by at
least 40% when replicates are available and by over 35%
when no replicates are available (see Fig. 4a).
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Fig. 4 Benchmark results for in silico RRD detection. a True positive rate, b Precision, c Accuracy plot, and d F-measure

Next, we combined true positives (TPs) and false
positives (FPs) into composite measures and observed
10−16% better average accuracy for JACUSA (see Fig. 4c).
This is even more pronounced for the F-score measure,
where JACUSA is performing at least 20% better in all
tested replicate scenarios (see Fig. 4d).
Additional results and details are given in Additional

file 1: Section 3.4. A general overview on the single thread
runtime of each tested software is shown in Additional
file 1: Section 3.6.

Editing in HEK-293 cells
To assess the performance of JACUSA in practice, we
designed a controlled experiment to generate sequenc-
ing input data from cell culture experiments (see Fig. 5a).
Briefly, we resequenced the genome of HEK-293 cells to
an average coverage of 30x (gDNA data). We obtained
matching cDNA data from our previously published study
[22]. Cells were either untreated or have been subjected
to siRNA knockdown experiments targeting either ADAR
1+2 (siADAR) or APOBEC3 B,C, and F (siAPOBEC3).
The ADAR and APOBEC3 family members have been
previously observed as mRNA-binding proteins in a

transcriptome-wide proteomics screen of the same cell
type [26]. However, the APOBEC3 familiy members did
not show significant C-to-U RNA editing activity in our
assays.
Subsequently, we conducted gDNA vs. cDNA com-

parisons on the aforementioned data sets and predicted
RNA editing sites with SAMtools/BCFtools, MuTect, and
JACUSA. For each variant caller, we selected optimal
thresholds for the HEK-293 data set based on our results
from the in silico data set: gDNA vs. cDNA score thresh-
old is 1.15 and cDNA vs. cDNA threshold is 1.56. Addi-
tional details on selecting score thresholds are given in
Additional file 1: Section 3.5.
For MuTect and REDItools we adopted a strategy pre-

sented in [12] to utilize replicate information by first
calling variants on pooled biological replicates and finally
filtering and requiring that the primarily identified vari-
ants are present in all replicates. We used JACUSA
as explained in Fig. 5b to detect RNA editing sites
utilizing replicates. Additional details on the workflow
and results are given in Additional file 1: Section 4
and following. All editing site predictions are listed in
Additional file 2.
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a

b

Fig. 5 Analysis workflow to identify RNA editing sites in matched gDNA and cDNA HEK-293 samples. a Sequenced reads are mapped and
PCR-duplicates are removed. b Single nucleotide variants are called for all sensible combinations of gDNA vs. cDNA and cDNA vs. cDNA BAM files

Calling RDDs fromHEK-293 data
In total, 2 biological replicates have been created per
condition and were sequenced twice to assess the bio-
logical and technical variability. By computing RDDs on
each replicate with JACUSA, we could show an excellent
agreement among replicates from the same condition (see
Fig. 6a). Subsequently, we merged all technical replicates
and identified our definite list of RDDs from comparing
one gDNA vs. two biological replicate samples for each
condition.
Our comparison of gDNA vs. RNA from untreated cells

yielded 15,461 variant sites for JACUSA (with a propor-
tion of 92.2% A → G sites, see Fig. 6b and Table 5). This
number drops to 8722 for the siAPOBEC3 RNA samples
(91.2% A → G) and, as expected, to 3371 sites for the
siADAR RNA samples.
The siAPOBEC3 transfection experiment (mock)

already leads to a reduction of editing sites. Editing levels

are further reduced by targeting the correct enzyme class
(siADAR experiment).
Interestingly, the non A → G sites identified by

JACUSA (1203 in total, Fig. 6c) consist mainly of three
base substitutions: C → T (24.7%) editing is a known but
rare modification that is mediated by APOBEC1 [27] and
T → C andG → A variants (39.2%), which are the reverse
complement versions of the canonical editing events.
JACUSA identified the highest number of RDDs (15,461

vs 11,191 for SAMtools/BCFtools) and showed a com-
parable fraction of A → G sites (92.2% vs 93.3% for
SAMtools/BCFtools) among all tested variant callers (see
Table 5).
MuTect identified far fewer RDDs (≈ 25% less) in com-

parison to the other variant callers while achieving second
highest fraction of A → G sites (92.5%). This is in line
with the in silico benchmark results on MuTect indicating
a high precision but a lower recall. In summary, all variant
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a b

c

Fig. 6 Results for RDD predictions in HEK-293 cells. a Comparison of editing frequency between biological and technical replicates of all samples.
b Detected SNVs stratified by base changes in the HEK-293 RDD comparison. c Same as b but dominating A → G base transitions have been
removed to focus on other lower-level base changes

callers identify RDDs with a fraction of A → G sites in the
range of 90.1 and 93.3%, while the total number of variants
varies greatly from 7605 (MuTect) up to 15,461 (JACUSA).

Agreement between RDD calls
All four software solutions report a set of 6064 shared
RDD sites for the untreated RNA sample, which show a
high proportion of A → G sites (94.6%) (see Fig. 7a). The
second largest overlap of 3314 RDD predictions is seen
for SAMtools/BCFtools, REDItools, and JACUSA (94.2%
A → G sites). Strikingly, JACUSA identifies 2,634 addi-
tional RDDs, which are not reported by any other software
tool and yet attain a proportion of 87.9%A → G sites. This
is far more than for sites that were exclusively reported

Table 5 Predicted RDDs for each treatment of HEK-293 cells.
Fraction of A → G RNA editing sites is provided in parenthesis

gDNA vs. treatment

Variant caller untreated siADAR siAPOBEC3

SAMtools/BCFtools 11,191 (93.3%) 2117 (68.9%) 6423 (92%)

MuTect 7605 (92.5%) 1793 (69.4%) 4181 (90.2%)

REDItools 11,900 (90.1%) 2729 (59.7%) 6985 (88.6%)

JACUSA 15,461 (92.2%) 3371 (68.3%) 8722 (91.2%)

by SAMtools/BCFtools (59.5% A → G sites), REDItools
(35.8%) or MuTect (42.3%).
Moreover, a detailed assessment of RDDs sites, which

have been exclusively reported by JACUSA, shows a low
mean editing level and mean coverage (see Fig. 7b and c).

Response of RDD calls in ADAR knockdown
To control the effect of any siRNA knockdown treatment
on RNA editing levels (see Fig. 6b), we contrast editing
levels of RDDs between siAPOBEC3 and siADAR sam-
ples. As mentioned earlier, JACUSA had identified 8722
RDDs in cells treated with siAPOBEC3 (siApo) of which
7953 were A → G substitutions. We classify these A → G
sites as true positives if they show a drop in their editing
frequency in an siADAR vs. siAPOBEC3 knockdown.
As shown in Table 6, we could assess editing level

changes on 7084 RDD sites that had sufficient read cover-
age in both siRNA knockdown data sets (5 reads per posi-
tion per replicate in siAPOBEC3 and siADAR samples).
JACUSA identifies the highest number of RNA editing
sites (6,466) out of which ≈ 98% show lower editing lev-
els in siADAR samples than in samples from siAPOBEC3
treated cells. This means that JACUSA reports 6375 true
positive A → G sites out of a set of 6,466 predicted sites,
the highest among all tested variant callers. Figure 8a and
c depict this important result for each individual site. The
clear shift of editing frequency was specific to A → G
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Fig. 7 Comparison of variant callers in HEK-293 cells. a Overlap of RDD variants identified on HEK-293 untreated cells by all tested variant callers. The
fraction of A → G is given in the parenthesis in each segment. b Distribution of average editing level of A → G sites that are exclusively identified by
tested variant caller. c Distribution of average RNA coverage at exclusively predicted A → G sites

and could not be observed for any other base substitu-
tion (see Table c in Fig. 8). In summary, JACUSA identifies
at least > 20% more editing sites than any tested variant
caller while its editing sites show an equal responsiveness
to ADAR knockdown treatment.

Detection of differential RNA editing from RNA-RNA
comparisons
Another JACUSA application is to detect sites of differen-
tial RNA editing from RNA-seq data only. This could be
effected through a direct assessment of RNA-RNA differ-
ences (RRD) in the absence of genomic sequencing data.
We reasoned that one way to validate RRD site detection
and ultimately differential A → G editing is to use our
available RNA/DNA-seq data in the following way:

We screen our samples from siADAR and siAPOBEC3
knockdowns for RRDs. Our assumption is that APOBEC3
family members do not influence A → G editing and
siRNA transfection effects cancel out in this comparison.
“True” A → G editing sites should show a lower edit-
ing frequency in the siADAR knockdown. For the siADAR
vs. siAPOBEC3 comparison, SAMtools/BCFtools pre-
dicts 6368 RRD sites and JACUSA predicts 5366 RRD
sites (see Table 7). Out of these, 3352 RRDs are pre-
dicted by both SAMtools/BCFtools (52.6% of all SAM-
tools/BCFtools predictions) and JACUSA (64.5% of all
JACUSA predictions) (see Fig. 9a).
Subsequently, we retained RRDs that had at least 10x

read coverage in the gDNA sample and checked if pre-
dicted sites are homozygous in the genome.

Table 6 Comparison of average editing levels of detected RDDs on siADAR and siAPOBEC3 (siApo) treated HEK-293 cells

RDDs in Covered in A → G Avg. Editing level
Variant caller gDNA vs. siApo siADAR vs. siApo Editing Sites siADAR < siApo

SAMtools/BCFtools 6423 5066 (78.87%) 4691 (92.60%) 4630 (98.700%)

MuTect 4181 3415 (81.68%) 3087 (90.40%) 3043 (98.575%)

REDItools 6985 5823 (83.36%) 5180 (88.96%) 5099 (98.436%)

JACUSA 8722 7084 (81.22%) 6466 (91.28%) 6375 (98.593%)
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Fig. 8 Properties of RDDs in HEK-293 cells. a Comparison of editing frequency of siADAR samples and RDDs detected in siAPOBEC3 (siApo) treated
cells. (Dashed line(s) correspond(s) to regression line(s)) b Editing frequency of sites that are identified as divergent in RRD comparison of treatments.
Tables c + d show details of editing frequencies statistics for scatterplots a and d, respectively

Sites that are not homozygous in DNA represent puta-
tive SNPs and are typically removed from the candidate
set when identifying RNA editing sites in RDD com-
parisons. As this information is not visible to SAM-
tools/BCFtools and JACUSA, we reasoned that a lower
fraction of SNP sites among identified RRDs would indi-
cate a better performance on calling differential RNA
editing events. In essence, JACUSA precision is at 83.0%
(4284 true sites vs 5161 candidate sites) Table 8 while
SAMtools/BCFtools attains only 67.8% (4088 true sites vs.
6026 candidate sites).
We compared the fraction of RRDs that after cover-

age filtering were potential SNPs and found that SAM-
tools/BCFtools predictions contained 15% more putative
polymorphic sites than JACUSA (see Fig. 9b).
In summary, RRDs predicted by JACUSA showed a

lower overlap with potential polymorphic sites and the
fraction of A → G editing sites was higher than the
candidates called by SAMtools/BCFtools. The editing fre-
quency of 4,043 A → G sites was smaller in siADAR
treated cells whereas only 8 would show a higher editing
frequency in siADAR treated cells (see Fig. 8b). The clear
shift of editing frequency was specific toA → G and could
not be observed for any other base substitution (see Tables
in Fig. 8b+d).

Table 7 Summary of all detected RRDs for all possible treatment
combinations on HEK-293 cells

Variant caller siADAR vs. siADAR vs. siApo vs.
siApo untreated untreated

SAMtools/BCFtools 6368 8195 7462

JACUSA 5366 6977 2701

Editing events across genomic features
Another important aspect is the genomic distribution
of our editing predictions. We stratified our RDD and
RRD predictions by gene-centric (exon, introns, etc.) and
repeat-centric categories (Alu, non-Alu and no repeat
regions). As expected, most RDD predictions are made
in regions that are annotated as Alu repeats. Prediction
accuracy drops dramatically for non-Alu repeat regions
and even more so for non-repeat regions. For details see
Additional file 1: Tables S5-S8. This holds true for all
four tested SNV callers. This effect seems to be indepen-
dent of gene-centric features and strongly correlates with
repeat type. We observed that most RDD sites in non-
repeat regions cannot be explained by A → G editing.
We also cannot exclude the possibility that HEK-293 cells
generally show very little RNA editing in non-Alu regions.
Nevertheless, JACUSA identifies most A → G sites in
absolute numbers.
The same phenomenon becomes more evident for the

RRD comparisons (see Additional file 1: Tables S9 and
S10). Herein, hardly any A → G sites are predicted in non
repeat regions, by both SAMtools and JACUSA.

Differential editing in Drosophila fly heads
We reasoned that our HEK-293 cell data sets could be
complemented by an independent data set with a con-
trolled experimental design for testing RRD site discovery.
To this end, we analysed published RNA-seq data from
Drosophila fly heads [25]. Rodriguez et al. use a genetic
approach to ablate the activity of the single copy dADAR
gene in the fruit fly (human ADARB1 homolog). This
is a favorable system for fine-mapping editing sites as
editing activity depends only on a single enzyme in the
fruit fly. Moreover, editing in coding exons, which are
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Fig. 9 Properties of RRDs in HEK-293 cells. a Overlap of RRDs identified on siADAR and siAPOBEC3 treated HEK-293 cells. b Fraction of RRDs that are
non homozygous in gDNA. c Gene location and repeat annotation of identified variants. d Fraction of A → G sites among identified variants

expressed in the fly brain, has been described previously
[16]. In summary, JACUSA detected 931 RRD candidate
sites (see Additional file 1: Tables S11 and S12) while
SAMtools/BCFtools predicted 781 RRD candidates. How-
ever, while the vast majority (92.1%) of JACUSA RRD sites
areA → G sites, just 86.3% of all SAMtools/BCFtools pre-
dictions are (see Fig. 10). Overall, JACUSA predicted 383
RDD sites in coding exons. A closer inspection showed
that 336 (87.7%) of these are bona fide A → G sites
(see Additional file 1: Tables S11 and S12). This anal-
ysis demonstrated that JACUSA is able to accurately
predict editing events in RNA-RNA comparisons on an

independent data set as well. All editing site predictions
are listed in Additional file 3.

Conclusion
In this manuscript, we have presented JACUSA as an
accurate and fast one-stop solution to identify site-specific
SNV events in matched sequencing samples. JACUSA
outperformed other SNV callers in an in silico benchmark
that assessed SNV calling performance in terms of iden-
tifying site-specific RNA-DNA differences (RDDs) and
RNA-RNA differences (RRDs). While the first benchmark
is the typical scenario for identifying RNA editing sites

Table 8 Comparison of average editing levels of RNA editing sites that have been identified as RRDs in siADAR and siAPOBEC3 (siApo)
treated HEK-293 cells

Variant RRDs in Covered Homozygous A → G Avg. Editing level
caller siADAR vs. siApo in gDNA in gDNA Editing Sites siADAR < siApo

SAMtools 6368 6026 (94.6%) 4088 (67.8%) 3838 (93.9%) 3731 (97.2%)

JACUSA 5366 5161 (96.2%) 4284 (83.0%) 4051 (94.6%) 4043 (99.8%)
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Fig. 10 Properties of RRDs identified in Drosophila melanogaster samples by comparing dADAR-/- and wildtype strains. a Gene location and repeat
annotation of RRDs. b Fraction of A → G sites among identified RRDs

from homozygous genomic positions, the second bench-
mark represents another interesting case of identifying
condition specific changes in editing frequencies.
JACUSA shows the best recall and competitive preci-

sion in comparison to all tested software solutions. The
performance gain over its competitors is especially visi-
ble for the detection of RNA-RNA differences. In terms
of recall, JACUSA outperforms SAMtools/BCFtools in
the RRD scenario by at least 40% when replicates are
available and by over 35% when no replicates are avail-
able. Intriguingly, this is not at the expense of precision
which is at least 10% better over all tested number of
replicates.
In practice, we tested JACUSA in a controlled experi-

mental setup where we generated DNA and RNA-seq data
from HEK-293 cells. Similar to the in silico benchmark,
we first identified candidate sites of RNA editing via RDD
comparisons and checked if their editing frequency would
respond to changes in ADAR protein levels by siRNA
knockdown experiments. With this setup, we could nicely
demonstrate that JACUSA has a better recall and compa-
rable precision to other tested variant callers in identifying
A → G editing sites in RNA-DNA comparisons.
Subsequently, we assessed the RRD or differential

editing scenario by predicting SNVs between replicate
siAPOBEC3 and siADAR RNA samples. Again, JACUSA
overall predicts more sites in homozygous DNA positions

and a greater proportion of A → G editing sites than
SAMtools (83.0% vs 67.8%) in this RNA-RNA comparison
scenario on HEK-293 RNA-seq data.
These results were further corroborated by looking

at an independent RNA-seq data set from Drosophila
melanogaster heads. Herein, JACUSA reports the high-
est number of RNA editing sites (857 vs 674) with much
higher precision (92.1% vs 86.3% of all RRD sites).
In summary, JACUSA is a versatile software for the

precise and sensitive detection of single nucleotide level
differences in DNA-RNA as well as RNA-RNA compar-
isons from Illumina sequencing data. In this manuscript,
we have specifically explored its excellent ability to detect
site-specific RNA editing events.

Availability and requirements
gDNA-seq data have been deposited in the NCBI SRA
under accession SRP050149.

Project name: JACUSA
Project home page: https://github.com/dieterich-
lab/JACUSA
Operating system(s): N/A
Programming language: JAVA 1.6
Other requirements: none
License: GPL-3.0

https://github.com/dieterich-lab/JACUSA
https://github.com/dieterich-lab/JACUSA
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