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Abstract

Non-local electronic decay mechanisms constitute important pathways for the relaxation
of cations produced by the action of ionizing radiation in van-der-Waals or hydrogen
bonded chemical environment. Electronically excited cations may undergo the ultrafast
Interatomic Coulombic Decay or ICD process, whereby the excess electronic energy is
transferred to the environment and used to ionize it. It has been extensively studied by
computational and experimental techniques during the last two decades and shown to
operate in a variety of systems from rare gas dimers to large biomolecules. In this thesis
we investigate using ab initio methods the Electron Transfer Mediated Decay or ETMD
process which is responsible for the charge redistribution in environment, whenever
atomic cations with a low excess energy and high electron affinity are produced. In
ETMD electron transfer to the cation leads to the emission of an electron from the
neighboring species. The net result is partial neutralization of the cation and the increase
of the charge of the environment by two.

The light rare gas atoms He and Ne have a high ionization potential and, in the
presence of a suitable neighbor are likely to undergo ETMD when they are singly ionized,
e.g. by photoionization. In particular, we showed that a He·Mg cluster efficiently
decays by ETMD whenever He is photoionized and a ground state He+ ion is produced.
The joint process of photoionization and ETMD corresponds to a one-photon double
ionization of Mg. Remarkably, we found that the cross section of this process is three
orders of magnitude higher than the cross section of the atomic one-photon double
ionization, which demonstrates the prominent role of the neighboring He species in the
double ionization. This mechanism of the ETMD driven one-photon double ionization
was recently demonstrated experimentally in doped He nanodroplets and is proposed as
a method for the experimental production of cold molecular dications.

Multiply charged rare gas cations have higher electron affinities and undergo ETMD
with a larger variety of neighboring atoms or molecules. Such cations are naturally pro-
duced by the Auger decay following core ionization of rare gases in the X-Ray absorption.
The ETMD process reduces their positive charge by one, i.e. leads to their partial neu-
tralization and serves as a purely electronic alternative to neutralization mechanisms
driven by the movement of the nuclei. Our calculations show that in small Ne2+·Xe
and Ne2+·Kr2 clusters the ETMD process takes place on a picosecond timescale. The
ETMD in these systems is accompanied by nuclear dynamics which in turn enhance the
rate of the electronic decay. We show that for such systems ETMD is an important
mechanism responsible for the fast redistribution of the localized charge produced in
the Auger decay process.

We also demonstrated that multiply charged hydrated metal cations are likely to decay
via complicated cascades comprising both ETMD and ICD steps. Our calculations
in the Mg2+·(H2O)6 microsolvated cluster showed that such a cascade proceeds on a
timescale of few hundreds of femtoseconds and leads to a massive degradation of the
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metal’s solvation shell through its multiple ionization and emission of slow electrons.
Repulsive nuclear dynamics at later stages of the cascade, which were not taken into
account explicitly, are expected to considerably reduce its duration. We expect that
studying interatomic decay cascades of metal cations is important for understanding
mechanisms of the damage caused by X-Rays to metal containing biomolecules such as
DNA, metalloproteins etc. For the latter of particular importance is the knowledge of
the duration of different interatomic decay steps, since it determines the timescale at
which proteins become damaged by X-Rays and beyond which their structure becomes
compromised.

These considerations led us to investigate the dependence of ICD lifetimes on atomic
charge in excited microhydrated Na2+ and Mg3+ cations. Our ab initio results reproduce
within the numerical error the experimental ICD lifetimes of the respective ions in
aqueous solutions. We show that the microsolvated Mg3+ cations decay faster than
the Na2+ ones, in accordance with experiments on aqueous solutions. The detailed
analysis reveals that at characteristic metal-water separations the polarization of the
water neighbor enhances ICD the stronger the higher the charge of the metal is. This,
together with the shorter Mg-water equilibrium distances, leads to the observed ordering
of the ICD rates. We also showed that polarizing the neighbors causes sub-linear growth
of ICD rates with the number of water molecules in the first solvation shell. This
investigation of ICD in microsolvated metal cations demonstrated the prominent role
the cation’s charge and the consequent polarization of the medium have on the decay
rate. It also leads to a reasonable expectation that even faster, sub-femtosecond decay
lifetimes might be achieved for highly charged solvated metals ions.
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Kurzfassung

Nichtlokale elektronische Zefallsmechanismen stellen wichtige Relaxationswege für Ka-
tionen dar, die durch Einwirkung der ionisierenden Strahlung entstehen und in eine
durch van-der-Waals Kräfte oder Wasserstoffbrücken gebundene chemische Umgebung
eingebettet sind. So können elektronisch angeregte Kationen nach dem Mechanismus
des interatomaren Coulombschen Zerfalls (ICD) relaxieren, wobei die überschüssige
Energie auf die chemische Umgebung übertragen und zu deren Ionisierung verwertet
wird. Dieser Zerfallsmechanismus wurde in den vergangenen zwei Jahrzehnten mittels
computergestützter und experimenteller Methoden ausgiebig erforscht. Die Vielfalt der
Systeme, in welchen er nachweislich auftritt, reicht von kleinen Edelgasdimeren bis zu
großen biologischen Molekülen. In der vorliegenden Arbeit untersuchten wir mittels ab
initio Methoden den Elektronentransfer-vermittelten Zerfall (ETMD), welcher für die
Umverteilung der positiven Ladung in chemischer Umgebung sorgt, sobald atomare Ka-
tionen mit einer niedrigen Überschussenergie und hoher Elektronenaffinität auftreten.
Die Übertragung eines Elektrons auf das Kation im Zuge des ETMD hat die Emission
eines weiteren Elektrons von der benachbarten Spezies zur Folge. Insgesamt wird das
Kation partiell neutralisiert und seine chemische Umgebung zweifach positiv geladen.

Die leichten Edelgasatome He und Ne besitzen ein hohes Ionisierungspotential und
können daher nach der Einfachionisierung (bspw. durch Photoionisation) in der Anwe-
senheit einer geeigneten Nachbarspezies durch ETMD zerfallen. So konnten wir zeigen,
dass der He·Mg Cluster effizient durch ETMD zerfällt, falls ein He+ Ion im Grundzustand
durch Photoionisierung von He erzeugt wird. Die Gesamtsequenz der Photoionisierung
und des darauffolgenden ETMD entspricht einer Ein-Photonen-Doppelionisierung von
Mg. Überraschenderweise ist der von uns ermittelte zugehörige Querschnitt der Dop-
pelionisierung um drei Größenordnungen höher als der atomare Querschnitt der Ein-
Photonen-Doppelionisierung. Dies unterstreicht die bedeutende Rolle der He Nach-
barspezies in der Doppelionisierung. Der Mechanismus der durch ETMD vermittelten
Ein-Photonen-Doppelionisierung wurde kürzlich experimentell in Helium Nanotröpfchen
nachgewiesen und als eine Methode für die Erzeugung von kalten molekularen Dikatio-
nen vorgeschlagen.

Mehrfach geladene Edelgaskationen besitzen höhere Elektronenaffinitäten, folglich
steht eine breitere Auswahl an Atomen und Molekülen als Nachbarspezies für ETMD
zur Verfügung. Solche Kationen werden naturgemäß durch den Auger-Zerfall erzeugt,
welcher bei Edelgasen nach dem Entfernen der kernnahen Elektronen durch Röntgen-
strahlung auftritt. Der ETMD Prozess reduziert ihre positive Ladung um eins, d.h. er
führt zu deren partiellen Neutralisation und stellt eine rein elektronische Alternative
zu Neutralisationsmechanismen dar, die durch die Bewegung der Atomkerne vermittelt
werden. Unsere Berechnungen zeigen, dass in kleinen Ne2+·Xe und Ne2+·Kr2 Clustern
ETMD auf einer Pikosekundenzeitskala abläuft. Der Prozess wird von einer Kerndy-
namik begleitet, die im Umkehrschluss dessen Rate erhöht. Wir zeigen, dass in solchen
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Systemen ETMD für eine schnelle Umverteilung der lokalisierten Ladung sorgt, welche
durch den Auger-Zerfall erzeugt wird.

Weiterhin konnten wir demonstrieren, dass mehrfach geladene Metallkationen durch
komplizierte Kaskaden bestehend aus ICD und ETMD Schritten zerfallen können. Un-
sere Berechnungen im mikrosolvatisierten Mg2+·(H2O)6 Cluster zeigten, dass eine solche
Kaskade auf einer Zeitskala von wenigen hundert Femtosekunden ablaufen kann und
aufgrund der mehrfachen Ionisierung und Emission langsamer Elektronen eine erhe-
bliche Schädigung der Solvatationshülle des Metalls verursacht. Wir erwarten eine weit-
ere Verkürzung der Kaskadendauer durch repulsive Kerndynamik, welche im späten
Stadium der Kaskade auftritt und nicht explizit berücksichtigt werden konnte. Wir
nehmen an, dass die Untersuchung interatomarer Zerfallskaskaden von Metallkationen
relevant für das Verständnis der Mechanismen der Schädigung von metallhaltigen bi-
ologischen Molekülen wie bspw. DNA, Metalloproteinen etc. durch Röntgenstrahlung
ist. Für Metalloproteine ist die Kenntnis der Dauer unterschiedlicher interatomarer Zer-
fallsschritte von besonderer Bedeutung: diese Dauer legt die Zeitskala ihrer Schädigung
durch Röntgenstrahlung fest und somit auch den Zeitpunkt, von dem an die ermittelte
Struktur nicht mehr aussagekräftig ist.

Diese Überlegungen veranlassten uns, die Abhängigkeit der ICD Lebensdauern von der
Ladung der angeregten, mikrohydrierten Na2+ and Mg3+ Kationen zu untersuchen. Die
Ergebnisse unserer ab initio Berechnungen stimmen innerhalb des numerischen Fehlers
mit den experimentellen ICD Lebensdauern der entsprechenden Ionen in wässriger Lösung
überein. Wir zeigen, dass mikrosolvatisierte Mg3+ Kationen schneller zerfallen als Na2+

Kationen, im Einklang mit den Ergebnissen der Experimente in wässrigen Lösungen.
Die detaillierte Analyse demonstriert, dass bei typischen Metall-Wasser Abständen die
Polarisation des benachbarten Wassers ICD umso mehr verstärkt, je höher die Ladung
des Metalls ist. Dies, zusammen mit kürzeren Mg-Wasser Gleichgewichtsabständen,
führt zu der genannten Reihenfolge der ICD Raten. Es wurde weiterhin gezeigt, dass
die Polarisation der Nachbarn ein nichtlineares Wachstum der ICD Raten in Abhngigkeit
von der Anzahl der Wassermoleküle in der ersten Solvatationshülle verursacht. Somit
demonstriert die Studie des ICD in mikrosolvatisierten Metallkationen den ausgeprägten
Einfluss der Ladung des Kations und der dadurch bedingten Polarisation des Mediums
auf die Zerfallsrate. Dieses Ergebnis begründet die Annahme, dass bei hoch gelade-
nen, solvatisierten Metallionen ICD Lebensdauern unterhalb einer Femtosekunde erre-
icht werden können.
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1 Introduction

Detailed investigation of energy and charge transfer processes [1, 2] is a prerequisite for
understanding such important phenomena as conversion of solar energy into electricity,
photosynthesis, or redox reactions. The transfer processes typically proceed in an ex-
tended chemical environment, e.g. a solvent or a solid, which bears several important
functions. The environment has an impact on the energetics of the process; a polar or a
polarizable medium may stabilize or destabilize the electronic states involved, therefore,
making the processes thermodynamically allowed or forbidden. It furthermore acts as a
thermal bath dissipating the excess energy, and thus, steering the process in a certain
direction. Finally, the kinetics of the process are largely influenced by the electronic and
nuclear reorganization of the medium in its course [3].

For highly electronically excited species the role of the chemical environment is aug-
mented by a further important aspect: it provides an electronic continuum which can
efficiently couple to the excitation. As a result, a new mechanism of energy transfer
becomes available, where the excess energy brought to the environment is dissipated via
electron emission. This mechanism (see Fig. 1.1), known as the Interatomic Coulombic
Decay (ICD) [4], has been demonstrated to be highly efficient for electronically excited
atoms and molecules embedded in a host chemical environment. Due to the high effi-
ciency, ICD was shown to quench competing relaxation pathways such as fluorescence [5]
and dissociative nuclear dynamics [6, 7].

Figure 1.1: Schematic description of the ICD relaxation mechanism of an inner-valence ionized
atom A embedded into a non-covalent environment. Excess energy is released by the relaxation
of an outer-valence electron into a singly occupied inner-valence orbital (red circle). This excess
energy (red line) is utilized to ionize the neighbor B.

Charge transfer processes can be coupled to the electronic continuum of the chemical
environment as well, giving rise to the Electron Transfer Mediated Decay (ETMD)
mechanism [8]. The mechanism is operative for positively charged ions embedded non-
covalently into a weakly bound chemical environment (see Fig. 1.2). If the electron
affinity of the ion is sufficiently high, a considerable excess energy is released in an
electron transfer from the environment. This excess energy is utilized for the ionization
of the latter, which in total loses two electrons in the course of the ETMD process. In an
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1. Introduction

environment consisting of weakly interacting units (see. Fig. 1.2), two distinct variants
of ETMD can be defined. In the case where the electron donor is ionized, the process
is assigned as ETMD(2) while the ionization of a different neighbor is described by the
ETMD(3) process.

Figure 1.2: Schematic description of the ETMD relaxation mechanism of a doubly outer-
valence ionized atom A embedded into a non-covalent environment. An electron transfer from
a neighboring species B (gray line) provides an excess energy (red line) which is utilized to
ionize either the electron donor(ETMD(2) process) or a different neighbor (ETMD(3) process).

ICD as a novel electronic decay process has gained increasing attention of experimen-
talists and theorists since its theoretical formulation in the year 1997 [4]. The first exper-
imental evidence of ICD after the inner-valence ionization of neon clusters was provided
by means of electron spectroscopy [9]. Being an interatomic electronic process, ICD
produces pairs of positive ions (often denoted as nuclei in ion detection experiments),
which undergo Coulomb explosions. This feature was utilized for the unambiguous ex-
perimental proof of the ICD mechanism, where pairs of ions stemming from the Coulomb
explosions of neon dimers were identified together with the ICD electrons by coincidence
spectroscopy [10]. Measurements in the coincident regime allow to discriminate groups
of particles (electrons, ions) produced in a specific physical event (e.g. electronic decay
producing electrons and ions) from the uncorrelated signal background. Since then ICD
has been investigated experimentally both by electron and ion spectroscopy in different
classes of systems such as rare gas and hydrogen bonded clusters, interfaces, aqueous
solutions etc. [11–14]. ICD represents a characteristic probe of a pair of atoms and
molecules in which it takes place. For each pair the ICD electrons have characteristic
energies which depend on the excited state and are, otherwise, independent of the energy
of the pumping photon. Moreover, since it occurs predominantly between the nearest
neighbors, the observation of these electrons gives us information about the mutual ar-
rangement of the atoms or molecules in a medium. Therefore, ICD was utilized as a
spectroscopic tool to study structure of mixed rare gas clusters [15, 16]. As such it can
be considered a complementary technique to the Auger electron spectroscopy - a routine
spectroscopic tool in surface science [17].

The main subject of computational studies of ICD has been the accurate prediction
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1. Introduction

of the observables, i.e. the kinetic energy spectra of the electrons and the nuclei [18]. A
further major issue of these studies has been the computation of the ICD lifetimes. On
the one hand, these quantities are required for the computation of the ICD observables
- on the other hand, the ICD lifetimes are of great interest by themselves. For a pro-
cess to be efficient, its lifetime has to be shorter than the lifetimes of its competitors.
Several theoretical approaches with different levels of accuracy have been developed for
determining this notoriously difficult to compute quantity [19–22]. Experimental ICD
lifetimes were extracted from the signal broadening in the photoelectron spectra of large
rare gas clusters and solutions [14, 23]. They confirmed the femtosecond timescale of
ICD predicted by computational approaches. Recently, time-resolved ICD experiments
enabled to obtain the timescale of ICD in rare gas dimers by a direct measurement and
produced results in good agreement with theory [24,25].

Overall, a solid knowledge of the ICD process has been acquired during the last two
decades, owing to the development of the experimental and computational methods. In
contrast to ICD, the knowledge of the ETMD process is limited, which is mainly due to
its original formulation as an inferior competitor of ICD in ionized-excited systems where
both processes may occur simultaneously. This inferiority of ETMD is a consequence
of the low efficiency of the electron transfer compared to the transfer of energy in ICD.
Hence, first experimental observations of ETMD were provided only recently by specific
kinds of inner-valence ionized rare gas dimers and clusters, where ICD was forbidden
either due to energy conservation or due to spin conservation rules [26, 27].

We were able to find a broad class of systems which decay predominantly by ETMD
when embedded into a weakly bound environment. Singly or multiply ionized atoms
with holes in the outermost occupied orbitals possess none or only a little excess energy.
Therefore, a relaxation of these cations via ICD is not possible. However, they may have
very large electron affinity and may therefore undergo ETMD. In this thesis we present a
comprehensive study of ETMD in cations with holes in the outermost occupied orbitals.
We studied both its fundamental properties and its role in more complicated electronic
processes unleashed by X-ray photoabsorption. On a technical level this work includes
computing the corresponding lifetimes and experimentally available observables, such
as kinetic energies of the emitted electrons and of the nuclei. We selected the systems
for investigation with a view for collaborating with the experimentalists. Indeed, com-
parison with the experimental results would allow us to verify the quality of the utilized
models and to benchmark the numerical methods. On the other hand, the computed
observables could be used for the interpretation of the experimental data. The ab ini-
tio electronic structure methods, which are required for the computation of the decay
lifetimes and the kinetic energy spectra of the decay products, are described in the
chapter 2.

The most obvious way to create an atomic cation with holes in the outermost orbitals
is the photoemission, i.e. emission of an electron due to the interaction with highly
energetic light. Consider, for example, the helium atom, whose already singly charged
cation has considerable electron affinity of 24.6 eV. It is larger than the double ionization
energy of a magnesium atom. Therefore, in the presence of a magnesium neighbor
electronic relaxation of He+ via ETMD(2) takes place, leading to the double ionization
of the metal and the production of the Mg2+ ion. The joint process of the helium
photoionization and the subsequent ETMD(2) can be viewed as a one-photon double
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1. Introduction

ionization of magnesium. This double ionization mechanism can be applied not only
to atoms but also to molecules having low double ionization energies. For example,
polyaromatic hydrocarbons such as anthracene, phenanthrene and larger polyacenes
have double ionization energies of less than 20 eV [28]. Embedding these molecules into
a helium environment would allow to produce by a soft ionization molecular dications
and to investigate them spectroscopically.

A specific sort of helium environment is readily available experimentally in the form
of helium nanodroplets [29]. These ultracold, superfluid clusters of helium atoms have
been used as nanoscopic matrices for the spectroscopic characterization of the embedded
atoms and molecules [30]. In our study of the double ionization driven by ETMD, we
first investigated the double ionization process in the He·Mg diatomic by means of ab
initio methods. Later on, in collaboration with the research group of PD M. Mudrich
from the Freiburg University we participated in an experiment investigating the same
mechanism of double ionization in helium nanodroplets doped with magnesium clusters.

Another way to produce atomic cations with holes in the outermost orbitals and a
high electron affinity, which is applicable to a significantly broader range of systems, is
given by the atomic Auger decay. It is initiated by the core ionization of an atom, which
results in highly energetic ionic states. The energy is released by filling the core hole
with an electron from an energetically higher shell and emitting a second such electron
into the continuum. In light elements this process mostly leads to the production of
doubly charged cations. In heavier elements creation of holes in deep lying electronic
levels results in cascades of Auger steps and multiply charged products. The relaxation
mechanism for the products of Auger decay in an environment depends on their excess
energy. The cations with a sufficiently high excess energy decay by ICD, as was proposed
by Santra et al. [31]. The existence of this Auger-ICD cascade was verified in numerous
experiments [32, 33]. For the cations with holes in the outermost orbitals embedded in
a suitable environment ETMD becomes the dominant relaxation mechanism.

A good starting point for studying this Auger-ETMD cascade is the Ne·Xe model
cluster. The majority of the outer-valence doubly ionized states produced in the Auger
decay of neon fulfills the energetic criteria to undergo ETMD(2) in the presence of a
xenon neighbor. The simplicity of this system, possessing only a single internal nuclear
degree of freedom, permitted a detailed study of ETMD(2) by applying accurate ab
initio quantum chemical methods both for the description of the electronic structure
and of the nuclear dynamics. This approach was proven to be successful in the studies of
ICD in the neon dimer [10,34], where a close collaboration between the theoreticians and
experimentalists helped to understand basic features of ICD and to improve the accuracy
of the computational methods. Hence, with our study we also aimed to motivate future
experiments on the Auger-ETMD(2) cascade in Ne·Xe.

From the point of view of the neon dications obtained in the Auger decay of Ne·Xe,
ETMD(2) facilitates their neutralization, reducing the positive charge by one. This
finding is in agreement with the above definition of ETMD as an electron transfer
mechanism enabled by the coupling to the electronic continuum of the medium. Hence,
studying the timescale of ETMD after Auger provides important information about
its relevance as a neutralization mechanism. In an extended chemical environment,
in addition to ETMD(2), the ETMD(3) mechanism is expected to play a significant
role in the charge neutralization. It benefits from the less strict energy conservation
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condition and the more favorable scaling of its efficiency on the size of the system. Thus,
replacing the xenon by a krypton neighbor prohibits the Auger-ETMD(2) cascade due
to the higher double ionization potential of krypton. However, adding a second krypton
neighbor offers a possibility to study the Auger-ETMD(3) cascade instead. The goal of
our study on Ne·Kr2 was to determine the ETMD(3) lifetimes in and to characterize the
impact of the nuclear dynamics on these lifetimes.

Cascades involving Auger decay and the subsequent interatomic electronic decay steps
are not of purely academic interest but have features which make them potentially
relevant for the damage of biological systems by X-Rays. The main physical effect of
the latter on the biological matter lies in the core ionization of the matter constituents.
For the light chemical elements (C, N, O, P), the largest portion of the energy stored
by the core ionization is taken away by the Auger electrons and utilized for secondary
electron impact ionizations and excitations of the environment. These events are well-
studied and considered as the main source of the damaging effect of the X-Rays [35].

The fate of the cations produced in the Auger decay depends on their structure.
Molecular cations in general may dissociate distributing the positive charge [36], while
for excited cations ICD is available as well, which was demonstrated by Stoychev et
al. for water dimers [37]. In the relaxation via ICD low-energy electrons are released
while stable neighboring molecules, such as water, are converted into radicals. Both
sorts of species are highly reactive and thus are able to damage the biomolecules in the
vicinity of the initial ionization site [38, 39]. Therefore, an enhancement of the X-Ray
induced radiation damage due to ICD can be anticipated. In this context, Gokhberg et
al. (theory) [40] and Trinter et al. (experiment) [41] introduced the resonant Auger-ICD
cascades initiated by X-Ray absorption as a tool for the production of low-energy ICD
electrons and control of their location and energy. The authors furthermore proposed
this scheme for the radiotherapeutic treatment of cancer cells.

For atomic cations produced by core ionization and subsequent Auger decay no dis-
sociative degrees of freedom are available, hence, not only the fast ICD but also the
slower ETMD mechanism is expected to play an important role in their relaxation. In
terms of radiation damage the impact of ETMD, which produces slow electrons and
pairs of radicals, is even higher than the impact of ICD. Nevertheless, the total number
of reactive species released after the Auger decay is considerably larger than the number
of those released by the interatomic decay since the Auger electron has a high kinetic
energy and dissipates it ionizing the environment many times. Therefore, the contri-
bution of the interatomic decay to the X-Ray induced radiation damage may at first
glance appear insignificant. However, the ionizations caused by the Auger electron are
randomly distributed along its path through the system. In contrast, reactive species
produced by both ICD and ETMD are localized in the vicinity of the core ionization site.
Taking into account the limited mean free path of radicals and electrons in biological
systems [42, 43], a prominent contribution of interatomic decay initiated in the vicinity
of biomolecules to the X-Ray induced radiation damage should be expected.

Interestingly, ETMD and ICD can be considered as complementary processes with re-
spect to the conditions under which they occur. Thus, for ICD the charge of the excited
species does not play a crucial role but a sufficient excess energy is necessary, whereas
ETMD does not require an excess energy but is possible only if the central atom bears
a sufficiently high charge. Therefore, while the low energy cations produced by Auger
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decay are expected to undergo ETMD, the excited cations are likely to lose their excess
energy in an ICD step and subsequently undergo ETMD, giving rise to an ICD-ETMD
cascade. If the cations produced by Auger decay are multiply charged, interatomic decay
will ensure the transfer of electronic energy to the environment and gradual neutraliza-
tion of the cation. Obviously, multiply charged atomic cations produced by Auger decay
can dissipate their excess energy and their excess positive charge to the environment in
multistep interatomic electronic decay cascades. Multiple ionizations of the neighboring
molecules take place all along these decay cascades.

We found a suitable class of chemical systems for the realization of this scenario in
microsolvated metal ions. Due to the presence of the initial positive charge on the
metal, we expect multiply charged metal cations to be produced already in the one-
step Auger decay process. We would like to answer the question - how much damage
a core ionization of the metal is able to cause to the metal’s environment by means of
a multistep electronic cascade involving Auger, ICD and ETMD steps? To investigate
such a cascade, we chose the Mg2+·(H2O)6 model system. In our study we concentrated
on the timescales and branching ratios of the interatomic decay, required to estimate
the distribution of the decay products. Nuclear dynamics are not taken into account
explicitly because of the numerical limitations, only a discussion of their influence on
the cascade duration is included.

Metal atoms are abundant in biological systems and appear mostly as cations bound
either by electrostatic or coordinative interactions. In the former case the metal ions
(Na, K, Mg, Ca) bear such important functions as signaling and stabilizing or controlling
the structure of the multiply negatively charged macromolecules, e.g. DNA or proteins.
In the metalloenzymes and metal cofactors the strongly bound metals (Fe, Zn, Cu etc.)
directly participate in the catalytic processes, acting as Lewis acids and facilitating elec-
trons transfer, group transfer and further important types of reaction steps [44]. The
structure of metalloenzymes is a subject of X-Ray crystallographic studies, where an
accumulation of the radiation damage is frequently observed in the course of the mea-
surement [45]. This damage is often non-random and involves specific functional groups,
e.g. carboxylates and disulfides [46]. The metal centers are one of the vulnerable spots
as well, becoming modified already at relatively low radiation doses [47, 48]. Typical
damage patterns are the reduction of the metal and modification of the metal-ligand
distances [47, 49]. The underlying mechanisms have not yet been sufficiently inves-
tigated, mainly addressing the attachment of the X-Ray photoelectrons to the metal
center [45, 48, 50]. Cascades of interatomic processes discussed above initiated by the
adsorption of X-Rays by the metal center may add to our understanding of crystal-
lographic radiation damage and in general, radiation damage of biological compounds
exposed to metal atoms (e.g. proteins, nucleic acids, cofactors etc.).

Recently, a new experimental technique was introduced to obtain damage-free crystal-
lographic structure of proteins [51]. The underlying idea is the application of extremely
intense, femtosecond X-Ray pulses which have become available due to the develop-
ment of X-Ray Free-Electron Lasers (XFEL) [52] over the last decade. Under such
conditions it is not the extent of the radiation damage which is relevant for the quality
of the recorded structure but rather the timescale on which it occurs. The goal is to
record a structure before the molecule is destroyed by the radiation and, therefore, the
measurement should take shorter time than the characteristic rates of damaging pro-
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cesses. Interatomic decay processes are able to induce repulsive nuclear dynamics on
a femtosecond timescale by ionizing the molecules in the vicinity of the metal center.
In this context, especially the very efficient ICD mechanism and the factors governing
its timescale are of great interest if one wishes to estimate the onset of the structural
modifications in metalloproteins.

ICD is driven by the Coulombic interaction between the relaxing electron on the
excited atom and the electron on the neighboring species which is transferred into the
continuum. Therefore, the ICD lifetime is sensitive to the average distance between
these electrons. A parameter directly influencing the average distance between the
electrons participating in ICD is the distance between the atoms on which they are
located. The ICD lifetimes in rare gas dimers, the most extensively studied systems, were
found to lie in the tens to hundreds of femtoseconds range at characteristic interatomic
distances between 3 Å and 4 Å [21, 24, 25, 53]. In water dimers, where the equilibrium
distance between the monomers is significantly smaller, the efficiency of ICD is enhanced
and the process becomes sufficiently fast to quench the proton transfer after inner-
valence ionization [12]. For positively charged species decaying by ICD an additional
enhancement may appear due to the polarization of the neighbor. Again, the effect of
the polarization is to bring the electrons on the neighbor closer to the electrons of the
decaying species without moving the nuclei to which these electrons are bound. Another
parameter which has strong effect on the ICD lifetime is the number of the neighbors,
since more electrons is available for the electronic decay. Thus, in the case of neon
clusters the ICD lifetime of the bulk atoms lies below 10 fs compared to about 100 fs in
the Ne dimer [14,54].

The ICD steps involved in the decay cascade of Mg2+·(H2O)6 exhibit ultrashort life-
times of only few femtoseconds at most. An experimental study by Öhrwall et al.
supports these findings. They determined an ICD lifetime of 1.5 fs for magnesium tri-
cations in aqueous solution [14]. The authors furthermore determined the ICD lifetimes
of sodium and aluminum ions to lie at 3.0 and 0.9 fs, respectively. To rationalize the
reduction of the ICD lifetime with the growing charge of the metal, they proposed de-
creasing metal-oxygen distances in the equilibrium solvation structures and the growing
polarization of the water molecules by an ion as the relevant parameters which depend
on the ionic charge. By means of ab initio methods we were able to disentangle the
effects of these parameters. To do that we calculated ICD lifetimes switching off the
polarization effects in the ionized state and varying the distance between the metal ion
and the water ligands.

The thesis is organized as follows. In the next chapter the ab initio methods for
computations of electronic decay widths and energies of the initial states and products
of electronic decay are introduced. The third chapter contains the methodological and
computational details of the conducted ab initio studies. In the fourth chapter we dis-
cuss the double ionization process mediated by ETMD in the He·Mg cluster and analyze
the results of the experiment dealing with double ionization of magnesium clusters in
helium nanodroplets. In the fifth chapter we characterize the timescales of the Auger-
ETMD cascades in the Ne·Xe and Ne·Kr2 clusters, leading to the neutralization of the
neon dication. For the Ne·Xe cluster, kinetic energy spectra of the ETMD electrons and
nuclei are presented. Chapter six contains a detailed discussion of the interatomic decay
cascade in the Mg2+·(H2O)6 cluster with the focus on the cascade duration and yields
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of the reactive products of decay, i.e. electrons and ionized water molecules. In chapter
seven the dependence of ICD lifetimes on metal-oxygen equilibrium distances, coordi-
nation number and polarization effects in Na+·(H2O)m (m = 1 − 4) and Mg2+·(H2O)n
(m = 1 − 6) clusters is investigated. In chapter eight we present an overview of the
obtained results and make suggestions for future studies on the interatomic electronic
decay processes and the required methodological development.
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2 Electronic structure methods

The major goal of the present work lies in the quantitative characterization of inter-
atomic electronic decay processes and cascades of such processes. The initial step within
a computational study of electronic decay is computing the initial and final states and
identify open channels from the energy conservation. The efficiency of a decay process,
directly related to its relevance, is determined by the decay lifetime. Since the lifetimes
corresponding to the electronic decay mechanisms discussed in the present work are
non-trivial quantities to compute and not common in the literature, they constitute the
main quantity of interest.

For a decay process, a comprehensive study of the decay products is instructive. Ide-
ally, their distribution can also be recorded experimentally and used for the evaluation
of the numerical results. In the case of interatomic electronic decay processes the prod-
ucts include released electrons and positively charged atoms or molecules. An accurate
theoretical description of the product energy distributions requires nuclear dynamics
simulations which rely on the potential energy surfaces of the initial and final states
of decay as well as electronic decay lifetimes and branching ratios. In specific cases,
where an electronic decay process is faster than the nuclear dynamics, a few calculations
around the equilibrium geometries approximately reproduce the product distributions
sufficiently well.

All electronic structure calculations presented in this work were performed at the ab
initio level. Since the systems under investigation had a closed shell character in the elec-
tronic ground state, Møller-Plesset perturbation theory (MP2) and and coupled cluster
approach including single, double and perturbative triple excitations (CCSD(T)) were
used for the determination of equilibrium structures. For the computation of the singly
and doubly ionized states involved in the electronic decay we employed the Algebraic
Diagrammatic Construction (ADC(n)) method complete up to the perturbational order
n. Triply ionized states were obtained by the Multi-Reference Configuration Interaction
(MRCI) approach. All correlated electronic structure methods we used rely on molecular
orbitals and orbital energies calculated by means of the Restricted Hartree-Fock (RHF)
approach. The most elaborate task within the present work involved the computation
of electronic decay widths of the singly and doubly ionized states. The investigated
resonance states belong to the class of Feshbach resonances, the corresponding decay
widths were computed by the Fano-ADC-Stieltjes approach utilizing square integrable
L2 basis sets.

This chapter is organized as follows. In the first section we introduce the electronic
structure methods for the computation of the neutral and ionized electronic states. In
the second section we explain the concept of the electronic resonance and derive the
Fano-ADC-Stieltjes method for the computation of the electronic decay widths. All
expressions are given in atomic units.
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2.1 Ab initio methods for electronic structure
calculations

Quantum chemistry deals with the solution of many-body problems in systems consisting
of nuclei and electrons. The quantum mechanical description of such a system of M
nuclei and N electrons is given by the many-body wavefunction Ψ(R, r) which depends
on the sets of coordinates R for the nuclei and r for the electrons. This wavefunction
satisfies the Schrödinger equation:

ĤfΨ(R, r) = EΨ(R, r). (2.1)

The full Hamilton operator Ĥf has the following form:

Ĥf = −1

2

∑
A

1

mA

∇2
R,A−

1

2

∑
i

∇2
r,i−
∑
iA

1

|ri −RA|
+
∑
i<j

1

|ri − rj|
+
∑
A<B

1

|RA −RB|
. (2.2)

It includes the kinetic energy operators of the nuclei (first term) and electrons (sec-
ond term) as well as the potential energy operators describing electron-nuclei, electron-
electron and nuclei-nuclei interactions (last three terms), respectively. Here, the indices
i and j denote the electrons, the indices A and B the nuclei while the indices mA denote
the nuclear masses.

Due to the different magnitudes of the electron and nuclei masses, the motion of the
electrons is assumed to adjust instantaneously to the position of the nuclei (the Born-
Oppenheimer approximation [55]). In this case, the total wavefunction Ψ(R, r) can be
factorized:

Ψ(R, r) = F (R)Φ(R, r), (2.3)

where F (R) denotes the nuclear wavefunction and Φ(R, r) the so-called adiabatic elec-
tronic wavefunction. The latter depends parametrically on the position of the nuclei
and satisfies the electronic Schrödinger equation:

Ĥel(R)Φ(R, r) = Eel(R)Φ(R, r), (2.4)

where the corresponding electronic Hamiltonian is defined as:

Ĥel(R) = −1

2

∑
i

∇2
i −

∑
iA

1

|ri −RA|
+
∑
i<j

1

|ri − rj|
+
∑
A<B

1

|RA −RB|
. (2.5)

For the brevity of notation, in the following we will denote the electronic Hamiltonian
as Ĥ. The motion of the nuclei takes place on an adiabatic potential energy surface
Eel(R), generated by the electrons:

ĤnucF (R) = EF (R), (2.6)

Ĥnuc = −1

2

∑
A

1

mA

∇2
R,A + Eel(R). (2.7)

The Born-Oppenheimer approximation is valid only if the energy difference for neigh-
boring adiabatic states is sufficiently large, otherwise the timescales of the electronic
and nuclear motions become comparable and the motion of the nuclei may couple the
adiabatic electronic states. This phenomenon is assigned as the non-adiabatic coupling
and plays an important role for the dynamics of systems where the adiabatic electronic
states become quasi-degenerate.
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2.1.1 Hartree-Fock approximation

The solution of the electronic Schrödinger equation (2.4) is the central problem of the
quantum chemical electronic structure methods. The most primitive description of a
system containing N electrons is given by the model of independent electrons. Within
this model, the approximate electronic wavefunction |Φ0〉 is a product of one-electron
spin orbitals χi(i) accommodating the i-th electron, the so-called Hartree product:

|Φ0〉 = χ1(1)χ2(2) · · · χN(N), (2.8)

Due to the fermionic properties of the electrons, the Hartree product has to be antisym-
metrized with respect to electron permutations. The corresponding compact notation
is assigned as the Slater determinant [56]:

|Φ0〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)
...

...
. . .

...

χ1(N) χ2(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣
(2.9)

The optimal set of one-electron spin orbitals is defined by the variational solution of the
energy functional 〈Φ̃0|Ĥ|Φ̃0〉:

δE = δ〈Φ̃0|Ĥ|Φ̃0〉 − δ(〈Φ̃0|Φ̃0〉 − 1) = 0, (2.10)

where |Φ̃0〉 is the Slater determinant constructed from a trial set of one-electron spin
orbitals. It can be demonstrated that the optimal one-electron spin orbitals are solutions
of the so-called Hartree-Fock (HF) equations:

F̂χi = εiχi, (2.11)

〈χ∗i |χj〉 = δij, (2.12)

F̂ being the Fock operator and εi the energy of spin orbital χi. The Fock operator is a
one-particle operator and has the following explicit form:

F̂ (1) = −1

2
∇2

1 −
∑
A

ZA
r1A

+
∑
j 6=i

∫
χj(2)

1

|r1 − r2|
χj(2)dr2

−
∑
j 6=i

∫
χj(2)

1

|r1 − r2|
P12χj(2)dr2,

(2.13)

where r1 and r2 are the coordinates of the considered electron and one of the remaining
electrons in the system, respectively. The first term of the Fock operator denotes the
kinetic energy operator of the considered electron, the second term the Coulomb interac-
tion between the considered electron and the nuclei. The third term can be interpreted
classically as the interaction between the electron and an averaged Coulomb potential
created by the remaining electrons. Finally, the last term has no classical meaning as
it contains the operator P12 exchanging the electrons one and two. The exchange term
appears due to the antisymmetric properties of the electronic wave function.
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For an efficient computational implementation of the HF method, aimed to determine
solutions of the Fock equations, spin orbitals χi are expanded in a finite basis of functions
φµ:

χi =
∑
µ

ciµφµ. (2.14)

This expansion leads to the HF equations in the matrix form (the Roothaan equations):

FC = SCE, (2.15)

where F is the representation of the Fock operator in the basis φµ (the Fock matrix),
C the matrix of spin orbital coefficients and E the diagonal matrix of orbital energies,
respectively. The overlap matrix S is non-diagonal due to the non-orthonormality of the
primary basis φµ. The Roothaan equations are solved iteratively, converging to a total
electronic energy which typically covers a large portion of the exact value.

The difference between the HF total energy EHF
0 and the exact energy of the electronic

ground state E0 is termed the correlation energy:

Ecorr = E0 − EHF
0 = 〈Ψ0|Ĥ|Ψ0〉 − 〈Φ0|Ĥ|Φ0〉, (2.16)

|Ψ0〉 being the exact ground state electronic wave function. The correlation energy
usually amounts to few percents of the total electronic energy for atoms and molecules
at equilibrium geometries [57]. This energy, which is rather large in absolute terms
(e.g. 5.9 eV for the water molecule in the cc-pVDZ basis set) appears due to the
fact that the Slater determinant |Φ0〉 is not able to describe the correlated motion of
the electrons with opposite spins. Therefore, it does not constitute the best solution
for the N -electron system. The correlation energy is crucial to accurately describe
energetics of chemical reactions, non-covalent interactions etc. Furthermore, correlated
electronic wave functions are necessary to obtain accurate properties of the system.
Hence, methods including electronic correlation play a prominent role in the electronic
structure theory. The main purpose of the HF method is to provide a set of one-
electron orbitals and energies, based on which systematic improvement of the electronic
wavefunction and the electronic energy can be achieved.

2.1.2 Perturbational approach to the ground state electronic
correlation energy

Calculation of electronic correlation energies at a moderate computational cost is pro-
vided by the Many-Body Perturbation Theory (MBPT). The basic idea of the MBPT
lies in the separation of the full electronic Hamiltionian into an unperturbed contribution
Ĥ0 and a perturbation V̂ [57]:

Ĥ = Ĥ0 + λV̂ , (2.17)

the strength of the latter being λ. The exact ground state solution |Ψ0〉 satisfies the
Schrödinger equation for the full electronic Hamiltionian:

(Ĥ0 + λV̂ )|Ψ0〉 = E0|Ψ0〉, (2.18)
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Assuming that a perturbation is weak (i.e. λ is small), both the ground state |Ψ0〉 and
the corresponding energy E0 can be expanded in a Taylor series in λ:

|Ψ0〉 = |Ψ(0)
0 〉+ λ|Ψ(1)

0 〉+ ...+ λn|Ψ(n)
0 〉 (2.19)

E0 = E
(0)
0 + λE

(1)
0 + ...+ λnE

(n)
0 , (2.20)

where |Ψ(0)
0 〉 and E

(0)
0 assign the wavefunction and the energy of the unperturbed ground

state, respectively. It has to be remarked, that in contrast to variational methods such
as the HF approach, the energy calculated to a given perturbational order does not
constitute an upper bound to the exact energy. Inserting the expansions 2.19 and 2.20
into the Schrödinger equation 2.18 and equating the λn coefficients, the first-order energy
correction can be determined:

E
(1)
0 = 〈Ψ(0)

0 |V̂ |Ψ
(0)
0 〉. (2.21)

For the second-order energy correction one obtains:

E
(2)
0 = 〈Ψ(0)

0 |V̂ |Ψ
(1)
0 〉 =

∑
i

|〈Ψ(0)
0 |V̂ |Ψ

(0)
i 〉|2

E
(0)
0 − E

(0)
i

, (2.22)

where E
(0)
i is the zeroth-order energy of the unperturbed state |Ψ(0)

i 〉.
According to Møller and Plesset [58] the electronic correlation energy can be obtained

utilizing the following partitioning of the electronic Hamiltonian:

V̂ = Ĥ − Ĥ0 (2.23)

Ĥ0 =
∑
i

F̂i, (2.24)

F̂i being a Fock operator acting on the i-th electron. The unperturbed wave function is
given by the Hartree-Fock ground state determinant:

|Ψ(0)
0 〉 = |Φ0〉. (2.25)

The correlation energy can be considered as an energy correction appearing due to
the small perturbation of the non-correlated wavefunction by electron-electron interac-
tions included in the full electronic Hamiltonian. Within the Møller-Plesset partitioning
scheme the sum of the zeroth and first-order energies yields the ground state Hartree-
Fock energy:

E
(0)
0 + E

(1)
0 = 〈Φ0|Ĥ0 + V̂ |Φ0〉 = 〈Φ0|Ĥ|Φ0〉 = EHF . (2.26)

Therefore, the second-order correction is the first contribution to the ground state cor-
relation energy:

E
(2)
0 =

∑
i<j
a<b

〈ij||ab〉2

εi + εj − εa − εb
, (2.27)
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where the indices i, j belong to the occupied (hole) and a, b to the unoccupied (particle)
Hartree-Fock orbitals, respectively. The numerator contains the antisymmetrized two-
electron integrals:

〈ij||ab〉 =

∫
χi(1)χj(2)

1

|r1 − r2|
(1− P12)χa(1)χb(2)dr1dr2. (2.28)

The correlation energy recovered by the Møller-Plesset perturbation theory has its phys-
ical origin in the correlated motion of electrons, influenced by the mutual repulsive in-
teraction. This type of electronic correlation energy is denoted as dynamic correlation
energy [57]. The Møller-Plesset correlation energies are size extensive, scaling properly
with the size of the system.

As is shown by the Eq. 2.27, the perturbational calculation of the electronic correlation
energy involves only integral transformation from the atomic to the molecular orbital
basis and summations over the transformed integrals. For higher perturbational orders,
however, the product structure of the numerators becomes more complicated, increasing
the computational demand. Furthermore, in general, the convergence of a perturbation
expansion can not be ensured due to interactions with other unperturbed states [57].
Therefore, it is the lowest order scheme, the Møller-Plesset second-order perturbation
theory (MP2), which is the most widely used in practice for the computation of the
correlation energies, offering a good compromise between the accuracy and the numerical
demand. A general drawback of all methods based on the perturbation theory is the
non-variationality of the energy corrections, making these methods unfeasible for high-
accuracy electronic structure calculations. In the present work, the MP2 method was
utilized to compute non-degenerate closed shell ground state energies and to determine
the ground state equilibrium geometries.

2.1.3 Configuration interaction approaches for computation of
ionized states

The many-body perturbation theory as formulated in the previous chapter is suited only
for computing the electronic ground state of non-degenerate closed shell systems. Strong
static correlation, i.e. the near degeneracy of electronic configurations [57], is a typical
feature of excited and ionized states. A conceptually simple way to treat both static
and dynamic correlation effects is given by the Configuration Interaction (CI) methods.

Before discussing the more general Multi-Reference CI (MRCI) method, we will briefly
introduce the Single-Reference CI (SRCI) method for computation of ground state prop-
erties of closed shell systems. Within this method the ground state electronic wavefunc-
tion |Ψ0〉is linearly expanded within a basis of electronic configurations |ΦI〉:

|Ψ0〉 =
∑
I

CI0|ΦI〉 (2.29)

created by promotion of electrons from the hole (here j,k) into the particle spin orbitals
(here a,b,c) of a ground state Hartree-Fock reference |Φ0〉 :

|ΦI〉 = ĈI |Φ0〉. (2.30)
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ĈI = {c†acj, c†ac
†
bcjck, c

†
ac
†
bc
†
bcjckcl, ...}. (2.31)

The coefficients CI0 are determined by the variational condition:

δE = δ〈Ψ̃0|Ĥ|Ψ̃0〉 − δ(〈Ψ̃0|Ψ̃0〉 − 1) = 0, (2.32)

where |Ψ̃0〉 is a trial ground state CI wavefunction. In the matrix formulation determin-
ing CI0 coefficients is equivalent to solving the eigenvalue problem:

HC = EC, (2.33)

where H is the matrix representation of the Hamiltonian in the |ΦI〉 basis, C the ma-
trix of coefficients CIn and E the diagonal matrix of the electronic energy eigenvalues
En = 〈Ψn|Ĥ|Ψn〉. Including all excitations in ĈI leads to the so called Full CI (FCI)
wavefunction, being exact within the given one-electron basis. Due to the

(
2K
N

)
depen-

dence of the configuration space size on the number of electrons N and one-electron
basis functions K, FCI is feasible only for systems containing few electrons. Truncation
of the excitation level at low values, e.g. at Singles and Doubles (CI-SD) results in a
tractable size of the CI problem, recovering a large portion of the correlation energy
for ground states of small systems. The truncated CI approaches suffer from the not
size-extensive behavior, i.e. the portion of recovered correlation energy does not scale
properly with the size of the system.

The truncated single-reference CI schemes are suited for the description of ground
state wavefunctions with a high contribution of the reference configuration. Excited
and ionized states, which typically exhibit a strong mixing of electronic configurations,
require a different construction scheme for the configuration space. Here, we will visu-
alize such a construction scheme for singly ionized states. The wave function of a singly
ionized state |ΨN−1

n 〉 is expanded within a space of ionic configurations |ΨN−1
J 〉:

|ΨN−1
n 〉 =

∑
Jn

CJn|ΦN−1
J 〉, (2.34)

which are generated by applying the ionization operators ĈJ to the Hartree-Fock ground
state reference:

|ΦN−1
J 〉 = ĈJ |Φ0〉. (2.35)

The operators ĈJ can be divided into 1h(one-hole), 2h1p (two-hole one-particle), 3h2p
(three-hole two-particle) etc. classes of excitations:

ĈJ = {ck, c†ackcl, c†ac
†
bckclcm, ...; }. (2.36)

The resulting configuration space can be formally classified as MRCI if the manifold
of the ionic 1h configurations is considered as the so-called reference space, replacing
the single reference utilized in the SRCI approach. The higher 2h1p, 3h2p, 4h3p etc.
configurations correspond to single, double, triple excitations from the reference into the
virtual space and give rise to the MRCI-S, MRCI-SD, MRCI-SDT etc. schemes. The
flexibility of the reference space permits an inclusion of the static correlation effects while
the excitations into the virtual space provide a description of the dynamic correlation.
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The ionic states are obtained by solving the eigenvalue problem as defined in Eq. 2.33,
however, the larger reference space leads to a higher computational demand compared
to the SRCI method. Due to the truncation of the excitation levels the MRCI schemes
remain not size-extensive, limiting their application to small systems. Nevertheless, the
MRCI approach has the advantage of being universal, i.e. the formulation of the CI
wavefunction as shown in Eq. 2.34 is applicable to doubly, triply, etc. ionized and
excited states. We made use of this property to compute triply ionized states, for which
no Green’s function based approaches are available.

2.1.4 Green’s function approach for computation of the ionized
states

For computing ionized (excited) states a particularly efficient approach, with charac-
teristics complementary to those of the CI methods, is given by the electronic propa-
gator. We will introduce the one-particle propagator for ionization in detail, whereas
the description of the two-particle propagator for double ionization can be found in the
literature [59].

The electronic particle propagator describes the propagation of a particle which is
added to the ground state of the system at a time t1 and is characterized by a spe-
cific initial state. Within a basis of one-electron basis functions, the electronic particle
propagator, also termed as the many-body Green’s function, is given by the following
expression [60]:

G(t1, t2)pq = −i〈Ψ0|T̂ [cp(t1)c†q(t2)]|Ψ0〉, (2.37)

where |Ψ0〉 denotes the exact electronic ground state of a system containing N electrons
and p,q are the indices of one-electron basis functions. The time dependent creation and
annihilation operators have the explicit form:

cp(t1) = eiĤt1cpe
−iĤt1 (2.38)

c†q(t2) = eiĤt2c†qe
−iĤt2 , (2.39)

Ĥ being the time-independent electronic Hamiltonian of the many-body system. The
Wick’s time-ordering operator T̂ defines the explicit dependence of the matrix element
on the times t1 and t2:

T̂ [ap(t1)a†q(t2)] = θ(t2 − t1)ap(t1)a†q(t2)− θ(t1 − t2)a†q(t2)ap(t1) (2.40)

θ being the Heavyside step function. The first (second) term of the one-particle Green’s
function G(t1, t2)pq is equal to the probability amplitude to find a particle (a hole) added
at the time t1 into the orbital χp in the orbital χq at the time t2. The fact that a forward
propagation (t1 < t2) of a particle is equivalent to the backward propagation (t1 < t2)
of a hole, is taken into account by the Heavyside step functions in Eq. 2.40. Due to
the time-independence of the Hamiltonian the dynamics of the system are defined by
the relative time variable t = t1 − t2. The energy domain representation of the Green’s
function is obtained via a Fourier transformation of G(t)pq:

Gpq(ω) =

∫ ∞
−∞

G(t)pqe
iωte−iηtdt, (2.41)
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where η is a positive infinitesimal required for the convergence of the integral. The
resulting expression contains two contributions:

Gpq(ω) = G+
pq(ω) +G−pq(ω) (2.42)

G+
pq(ω)pq = 〈Ψ0|cp[ω + E0 −H + iη]−1c†q|Ψ0〉 (2.43)

G−pq(ω)pq = 〈Ψ0|c†p[ω − E0 +H − iη]−1cq|Ψ0〉, (2.44)

describing the attachment (Eq. 2.43) and the detachment (Eq. 2.44) of an electron,
respectively. Here, E0 denotes the energy of the electronic ground state and ω is the
energy variable. Inserting complete sets of (N + 1) and (N − 1) electronic states into
the first and second terms of Eq. 2.42, respectively, leads to the so-called spectral
representation of the Green’s function:

Gpq(ω) =
∑

m∈(N+1)

XpmX
∗
qm

ω − ωm + iη
+

∑
n∈(N−1)

XpnX
∗
qn

ω − ωn − iη
. (2.45)

The Green’s function has its poles at electron affinities ωm and ionization potentials ωn:

ωm = EN+1
n − E0, (2.46)

ωn = EN−1
n − E0. (2.47)

The squares of the associated transition amplitudes:

X∗pm = 〈ΨN+1
m |c†p|Ψ0〉 (2.48)

Xpn = 〈ΨN−1
n |cp|Ψ0〉 (2.49)

contribute to the relative strengths of the electron attachement and detachement tran-
sitions:

T (m) =
∑
p

|Xpm|2. (2.50)

T (n) =
∑
p

|Xpn|2. (2.51)

from the ground state |ΨN
0 〉 to the anionic state |ΨN+1

m 〉 and the cationic state |ΨN−1
n 〉,

respectively. The expression 2.45 reads in matrix formulation as:

G(ω) = X†(ω1−Ω)X, (2.52)

where Ω is the diagonal matrix of the ionization energies and electron affinities. The
construction of the exact Green’s function requires explicit knowledge of the electronic
many-body interactions in the neutral and charged states of the system and is thus
equivalent to the exact solution of the corresponding electronic Schrödinger equations. In
analogy to the Schrödinger equation, a perturbational expansion of the Green’s function
leads to approximate solutions for the ionization energies and electron affinities as well
as transition amplitudes.
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The perturbational non-Dyson Algebraic Diagrammatic Construction (ADC) scheme
for the one-particle Green’s function [61,62] decouples the ionization and electron attach-
ment contributions, allowing separate treatments of both. In the following discussion we
will focus on the ionization contribution, the mathematical description of the attache-
ment contribution being analogous. Within the non-Dyson ADC scheme the ionization
part of the one-particle Green’s function is represented in the following way:

G−(ω) = F†(ω1−K−C)F, (2.53)

where K + C is the non-diagonal effective interaction matrix and F the matrix of effec-
tive transition amplitudes:

FpJ = 〈Ψ̃J |cp|Ψ0〉. (2.54)

The representation of the Green’s function as shown in the Eq. 2.53 is assigned as the
Intermediate State Representation (ISR) [63]. The basis of “intermediate states” |Ψ̃N−1

J 〉
is constructed by the orthonormalization of the correlated excited states |ΨJ〉:

|ΨJ〉 = ĈJ |Ψ0〉, (2.55)

ĈJ = {ck, c†ackcl, c†ac
†
bckclcm, ...; }, (2.56)

i,j,k denoting the indices of the occupied and a,b,c of the virtual orbitals, respectively.
The correlated excited states include 1h (one-hole), 2h1p (two-hole one-particle), 3h2p
(three-hole two-particle) etc. excitation classes. In the recursive orthogonalization pro-
cedure, the correlated excited states belonging to an excitation class [J ] are first or-
thogonalized to intermediate states |Ψ̃K〉 of lower excitation classes [K] < [J ] in a
Gram-Schmidt procedure:

|Ψ#
J 〉 = |ΨJ〉 −

∑
K

|Ψ̃K〉〈Ψ̃K |Ψ#
J 〉. (2.57)

In the next step the precursor states |Ψ#
J 〉 are orthonormalized within the excitation

class [J ]:

|Ψ̃J〉 =
∑
J ′

|Ψ#
J ′〉(ρ#− 1

2 )J ′J , (2.58)

ρ#
J ′J = 〈Ψ#

J ′|Ψ#
J 〉. (2.59)

In contrast to CI approaches, where the operators ĈJ are applied to the uncorrelated
ground state of the system, the intermediate states are in general not equivalent to the
1h, 2h1p, 3h2p etc. configurations but rather are linear combinations of these, depending
on the level of description of the correlated ground state |Ψ0〉. The intermediate states
include correlation effects which are present in the neutral ground state and which are
expected to be modified only weakly by the removal of an electron. Therefore, the level
of the correlation description at a given excitation class is higher for intermediate states
than for CI configurations.
The solution of the eigenvalue problem for the effective interaction matrix K + C:

(K + C)Y = YΩ, Y†Y = 1 (2.60)
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delivers the ionization potentials ωn, the corresponding eigenvectors transform the ef-
fective transition amplitudes into the transition amplitudes Xpn via:

Xpn =
∑
J

Y ∗JnFpJ . (2.61)

The ADC schemes used in this work rely on the Möller-Plesset partitioning of the
electronic Hamiltonian (see Eq. 2.24), expanding both the K + C and F matrices up to
the perturbational order n:

K + C = K + C1 + C2 + ...+ Cn (2.62)

F = F0 + F1 + F2 + ...+ Fn. (2.63)

The expansion space is augmented by a (n/2+1)h(n/2)p excitation class at each even or-
der n. Hence, both the ADC(2) and the ADC(3) schemes, used throughout the present
work, require only 1h and 2h1p excitation classes. The explicit expressions for the
expansions of the effective interaction matrix elements and the effective transition am-
plitudes are obtained by comparison with the diagrammatic series for G−. It must
be remarked that the complexity of the expressions defining the ADC matrix elements
increases noticeably with the growing maximum perturbational order n.

The ADC(n) approaches for computation of ionization energies combines a Hermitian
eigenvalue problem with the perturbational expansion of the matrix elements, leading to
the favorable characteristics of size-consistency and compactness. The size-consistency
ensures that ionizations occurring at a constituent of the system are decoupled from
the excitations on other constituents if there are no interactions with the latter. Due
to the compactness property, the maximum excitation class required for a consistent
treatment of the ionized states at a given order n is smaller than the corresponding
configuration interaction excitation class. Therefore, the computational demand for
storing and diagonalizing the interaction matrix is substantially reduced in the case of
the ADC approach. Both characteristics are crucial for the ADC(n) approaches to be
applicable to medium size systems. The most essential drawback of the ADC(n) methods
is the restriction to systems with single-determinant character of the neutral electronic
ground state. Furthermore, relying on a perturbational expansion scheme, the ADC
ionization energies typically do not converge smoothly with the growing perturbational
order but rather exhibit an oscillatory behavior [62]. In the present work ADC(n)
methods were used for the computation of single and double ionization energies as
well as for constructing the bound and continuum components of the resonance wave
functions (see chapter 2.2.2).

2.2 Ab initio methods for computation of electronic
decay widths

2.2.1 Fano approach to electronic resonance widths

Resonance phenomena play an important role in the field of scattering physics, describ-
ing enhancement of scattering cross sections at specific energy values of the scattered
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particles [64]. Thus, an incoming particle (e.g. an electron) is temporarily captured
by the target (e.g. an atom) in a metastable state, assigned as a resonance. After a
characteristic time, the metastable state decays, releasing a particle into the continuum
again.

According to the mechanism of their occurrence, the majority of the resonances can
be classified either as shape or as Feshbach resonances [65], which we will visualize for
the case of the electron scattering. The electronic shape resonances occur due to the
temporary capture of an electron in a potential with a barrier, e.g. a centrifugal barrier.
The energy of the captured electron is typically lower than the barrier height, therefore
the electron leaves the potential via the tunneling mechanism. Feshbach electronic
resonances occur due to the coupling of the incoming electron to a bound state of the
target via electron-electron interactions. The emission of the captured electron from a
Feshbach resonance proceeds via the autoionization mechanism.

The electronic resonances can be populated not only in an electron scattering process
but furthermore by optical excitations of a compound system consisting of the target
with an additional electron. In the present work, we investigate metastable electronic
states formed by photoionization and decaying via two-electron autoionization mecha-
nisms such as Auger decay, ICD and ETMD. According to the criteria mentioned above
these metastable states belong to the class of Feshbach resonances.

An important characteristic of a resonance state is the so-called resonance width Γ. As
we will demonstrate in the following, it is directly related to the lifetime of the resonance
state and determines the timescale of electronic decay in the systems considered in this
work. A formulation of the resonance width in terms of a configuration interaction
scheme was given by Fano [66]. The corresponding resonance wave function |ΦE〉 is
obtained by solving the electronic Schrödinger equation:

Ĥ|ΨE〉 = E|ΨE〉. (2.64)

The underlying basis for the construction of the resonance wavefunction comprises zeroth
order states with bound (|Φ〉) and continuum (|ΨE′〉) properties:

〈Φ|Ĥ|Φ〉 = EΦ (2.65)

〈ΨE′ |Ĥ|ΨE′′〉 = E ′δ(E ′ − E ′′). (2.66)

At large separations from the bound component the continuum components |ΨE′〉 repre-
sent unperturbed scattering states. The electronic Hamiltonian Ĥ introduces a coupling
between the bound and continuum components:

〈Φ|Ĥ|ΨE′〉 = VE′ (2.67)

In a specific case, where only one bound component |Φ〉 and one continuum configuration
|ΨE′〉 are present, the resonance wave function has the following explicit form:

|ΨE〉 = a(E)|Φ〉+

∫
bE′(E)|ΨE′〉 dE ′. (2.68)

The coefficients a(E), bE′(E) as well as the resonance energy E can be determined by a
solving the following system of equations:

EΦa(E) +

∫
V ∗E′bE′(E) dE ′ = Ea(E) (2.69)
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VE′a(E) + E ′bE′(E) = EbE′(E). (2.70)

These equations are constructed by the scalar multiplication of the 〈Φ|Ĥ and 〈ΨE′|Ĥ
vectors with the resonance wave function (2.68). For the determination of the coefficient
a(E) it is sufficient to rely on the normalization condition of the resonance wavefunction:

〈ΨĒ|ΨE〉 = a∗(Ē)a(E) +

∫
b∗E′(Ē)bE′(E) dE ′ = δ(Ē − E) (2.71)

and to insert for bE′ the solution of Eq. 2.70:

bE′ = [
1

E − E ′
+ z(E)δ(E − E ′)]VE′a. (2.72)

Here, the formal Dirac solution [67] for bE′ is used due to the singularity appearing at
E = E ′. The factor z(E) has to be chosen according to the desired boundary condition
(e.g. z(E) = iπ in the case of scattering problems). The explicit normalization condition
(2.71) reads as:

〈ΨĒ|ΨE〉 =a∗(Ē)a(E)(1 +

∫
[

1

Ē − E ′
+ z(Ē)δ(Ē − E ′)]

∗ [
1

E − E ′
+ z(E)δ(E − E ′)] |VE′ |2 dE ′ = δ(Ē − E).

(2.73)

Following form of the coefficient a(E) can be shown to satisfy this normalization condi-
tion:

|a(E)|2 =
|VE|2

(E − (EΦ + ∆(E)))2 + π2 |VE|4
, (2.74)

where the ∆(E) denotes the energy shift of the bound component energy due to the
interaction with the continuum:

∆(E) = P

∫
|V ′E|

2

E − E ′
dE ′. (2.75)

The symbol P denotes the principal value of the corresponding integral. Assuming a
slow variation of VE with the energy E in the vicinity of the resonance, a simple interpre-
tation of the expression 2.74 is possible. In the energy domain the interaction with the
continuum transforms the discrete state |Φ〉 into a continuous Lorentzian distribution
with the maximum located at Eres = EΦ + ∆(E) and the width Γ defined as follows:

Γ = 2π |VE|2 . (2.76)

In the time domain, the originally bound state |Φ〉 would decay exponentially, the decay
lifetime being:

τ =
1

Γ
. (2.77)

In a general case, the continuum subspace contains more than one zeroth order state,
therefore the specific definition of the decay width given in Eq. 2.76 has to be modified:

Γ = 2π
∑
f

∣∣∣〈Φ|Ĥ|χfE〉∣∣∣2 . (2.78)
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The state |χfE〉 denotes the decay channel f belonging to the continuum subspace,
which is assumed to be diagonal:

〈χfE|Ĥ|χgE′〉 = Eδfgδ(E − E ′). (2.79)

Calculation of decay widths according to the Fano approach involves explicit construc-
tion of continuum functions χfE. In contrast, the majority of the numerical electronic
structure methods rely on square integral basis sets. Therefore, numerous approaches
were introduced to adapt such methods for the computation of resonance widths [19].
Among the most prominent, the complex scaling approach transforms the electronic
Schrödinger equation into the coordinates r′ = reiθ, in which the resonance wave func-
tion is square integrable [68]. The same goal can be achieved by augmenting the elec-
tronic Hamiltonian by a Complex Absorbing Potential (CAP) [69,70]. Both approaches
comprise a parameter such as the scaling angle or the strength of the CAP which requires
an optimization via repeated numerical calculations.

It is evident from the Fano formula (Eq. 2.78) that the electronic interaction of the
bound component with the continuum is non-vanishing only in a restricted region of
space, given by the extension of the bound state. Therefore, in a decay width calcula-
tion the continuum component needs to be properly described only in this interaction
region. This can be achieved by an expansion of the continuum component within
a basis of so-called discretized continuum states [71], available in standard electronic
structure methods (CI, ADC etc.) dealing with square integrable basis sets. Compared
to complex scaling or CAP approaches such an implementation of the Fano method is
computationally less demanding since it does not involve an optimization of the internal
parameter.

2.2.2 Construction of the resonance components by the ADC
scheme

In the present work, the method of choice for constructing the disretized continuum
and the bound component of the resonance is the ADC approach implemented for L2

electronic basis sets. The basic idea lies in the separation of the available set of 1h, 2h1p
etc. intermediate states into the continuum subspace P , comprising final states of decay
and the subspace Q, comprising bound components:

P +Q = 1. (2.80)

More specifically, the projection of the ADC Hamiltonian onto these subspaces yields
interaction matrices PĤP and QĤQ, which after diagonalization deliver the bound
component |Φb〉 and a set of pseudocontinuum states |χ̃j〉, respectively. The diagonal-

ization of QĤQ furthermore provides the energy expectation value EΦ of the bound
component required to calculate the exact resonance energy Eres = EΦ + ∆(E). In
the present work the approximation Eres≈EΦ is made since the energy shift ∆(E) is
expected to be smaller than the error of EΦ within the ADC approach.

The adaptation of the ADC approach for the construction of the P and Q subspaces
will be exemplified for the ICD of singly ionized states. The corresponding definitions for
the doubly ionized decaying states are analogous and can be found in the literature [21].
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In a typical weakly bound dimer AB without inversion symmetry the initial state of
ICD is characterized by a hole in the inner-valence orbital ivA of A while in the final
state the holes are located in the outer-valence orbitals ovA of A and ovB of B:

A+(iv−1
A )B → A+(ov−1

A )B+(ov−1
B ) + eICD. (2.81)

In the hierarchy of the ADC(n) schemes, the excitation classes required for the construc-
tion of the resonance components are available already at the ADC(2) level. As was
demonstrated in the chapter 2.1.4, this level includes 1h and 2h1p excitation classes.
By applying c†pcovAcovB excitation operators to the neutral electronic ground state |Ψ0

N〉,
intermediate states |Ψ̃N−1

I 〉 are constructed:

|Ψ̃N−1
I 〉 = ĈI |Ψ0

N〉 = c†pcovAcovB |Ψ0
N〉, (2.82)

which mimic open ICD channels in the presence of a continuum electron by accommo-
dating the holes in the valence orbitals ovA, ovB and an electron in the virtual orbital
p. These states define the P subspace [20]. The initial subspace is constructed applying
local excitation operators ckA and c†pckAclA to |Ψ0

N〉, where kA, lA denote hole orbitals
localized on A and p a virtual orbital. The inclusion of the local 2h1p configurations
is meant to describe intraatomic relaxation and correlation effects in the initial state of
ICD. The described method allows a straightforward construction of the initial and final
subspaces, however, it can not be used if the states involved in the electronic decay are
delocalized due to small distances between A and B or due to inversion symmetry, e.g.
in homonuclear diatomics [53].

The procedure for the construction of the Q and P subspaces used in the present
work is based on the energy criterion for the open decay channels rather than on the
less strictly defined localization of molecular orbitals. The central assumption behind
this construction scheme is that the ordering of states within a 2h1p spectrum of the
final states for a fixed particle p reproduces the ordering within the 2h spectrum in the
same orbital space. Before the actual decay width calculation is performed, the number
of open decay channels nopen for each irreducible representation is determined in prelim-
inary ab initio calculations. Holding a particle index p and varying the hole indices, a
subset of intermediate states can be obtained. Using the ADC(2x) scheme, a first order
interaction within a subset is introduced. The diagonalization of the interaction matrix
yields so-called adapted states |Θ(p)

J 〉:

|Θ(p)
J 〉 =

∑
J

cIJ |Ψ̃N−1
I 〉. (2.83)

The lowest nopen adapted states are expected to represent the open decay channels
and are added to the P subspace. The remaining adapted states as well as the 1h
intermediate states represent closed decay channels and bound states, respectively, and
belong to the Q subspace. This procedure is repeated for all particles p. Compared to
the construction scheme based on the spatial characteristics of the intermediate states,
the scheme based on the energetic criteria is more general and permits a proper definition
of decay channels in systems with high symmetry by means of adapted states.
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2.2.3 Renormalization of the discretized ADC continuum by the
Stieljtes imaging technique

The pseudocontinuum states |χ̃j〉 constructed by the ADC scheme implemented for L2

electronic basis sets can not be directly inserted into the Fano formula for the decay
width (2.78). This can be deduced from the normalization conditions:

〈χiE|χjE′〉 = δijδ(E − E ′), (2.84)

〈χ̃i|χ̃j〉 = δij, (2.85)

indicating that the pseudocontinuum states |χ̃j〉 need to be renormalized to gain proper
amplitude and dimensionality.
The decay width Γ(E) in Fano’s formulation is a matrix element (see Eq. 2.78) non-
vanishing only in the region where the bound component |Φb〉 is located. In this region
the discrete pseudocontinuum function |χ̃j〉 reproduces the true continuum function
|χfEj

〉 apart from a normalization factor. Therefore, the pseudocontinuum couplings γ̃j
and energies Ẽj:

γ̃j = 2π
∣∣∣〈Φb| ˆQHP |χ̃j〉

∣∣∣2 (2.86)

Ẽj = 〈χ̃j|PĤP |χ̃j〉 (2.87)

can be used to construct an approximate cumulative function G̃(E) of the decay rate
Γ(E) [72]:

G̃(E) =
N∑
j=1

γ̃j ≈
∫ b

a

Γ(E) dE, a < Ej < b (2.88)

N being the size of the P subspace. The cumulative function G̃(E) has a staircase like
behavior with the points of increase located at energies Ẽj:

G̃(E) =


0, E < Ẽ1∑k

j=1 γ̃j, Ẽk < E < Ẽk+1∑N
j=1 γ̃j, ẼN < E.

(2.89)

A regularized version of G̃(E) can be obtained by defining its value at the points of
increase Ẽj as the average of two neighboring values:

G̃(Ẽj) =
1

2
(G̃(Ẽj−1) + G̃(Ẽj+1)). (2.90)

The regularized cumulative function can be differentiated numerically to yield the ap-
proximate decay rate function Γ̃(E) at the midpoints of the stairs Ēj:

Ēj =
1

2
(Ẽj + Ẽj+1), (2.91)

if the G̃(Ẽj) values are connected by straight lines:

Γ̃(Ēj) =
1

2

G̃(Ẽj+1)− G̃(Ẽj)

Ẽj+1 − Ẽj
=

1

2

γ̃j + γ̃j+1

Ẽj+1 − Ẽj
. (2.92)
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This operation, assigned as the Stieltjes differentiation, renormalizes the pseudocoupling
γ̃j by taking into account the density of pseudocontinuum states in the corresponding
spectral region. The continuous Γ̃(E) function, which can be obtained by a subsequent
interpolation, however, is sensitive to the electronic basis set and often exhibits a non-
regular behavior [72]. Relying on the lowest 2n moments of the decay rate function:

S(k) =

∫ ∞
0

EkΓ(E) dE ≈
N∑
j

Ẽk
j γ̃j, k = 0, 1, 2, ..., 2n , (2.93)

a different, so-called principal set containing n pairs of couplings gi and energies Ei
can be determined [71]. It has to be remarked that in the calculation of ionization
cross sections and decay rates only negative moments can be used since the positive
moments of the atomic ionization cross sections for k > 2 are known to diverge [73].
The corresponding cumulative function G(E):

G(E) =
n∑
i=1

gi(Ei) ≈
∫ b

a

Γ(E) dE, a < Ei < b (2.94)

has a regular shape and can be systematically improved using principal sets of increasing
order n. The inclusion of the lowest moments only, which exhibit a quick convergence
with the size of the electronic basis set [74], eliminates the strong dependence of the
cumulative function on the electronic basis.

The principal energies and couplings are computed using auxiliary polynomialsQn(1/E)
of order n [75]:

Qn(1/E) =
n∑
i=0

Qn
i (

1

E
)i, (2.95)

where Qn
i are the polynomial coefficients. The polynomials Qn(1/E) are orthogonal to

the decay rate function Γ(E):∫ b

a

Qn(1/E)Qm(1/E)Γ(E) dE = Nnδnm, (2.96)

the normalization constant Nn chosen in such a way that Qn
n = 1. The corresponding

principal energies and couplings are found according to:

Qn(1/Ei) = 0 (2.97)

gni =
n−1∑
m=0

[
(Qm( 1

Ei
))2

Nm

]−1. (2.98)

The polynomials Qn are generated recursively:

Qn(1/E) = (
1

E
− an)Qn−1(1/E)− bn−1Qn−2(1/E) (2.99)

with the lowest order functions defined as:

Q0(1/E) = 1; Q1(1/E) =
1

E
− a1. (2.100)
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The recurrent coefficients an and bn−1 are given by:

an =
1

b0b1...bn−1

∫
(

1

E
)nQn−1(1/E)Γ(E) dE −

n−1∑
l=1

al, (2.101)

bn−1 =
1

b0b1...bn−2

∫
(

1

E
)n−1Qn−1(1/E)Γ(E) dE =

Nn−1

Nn−2

. (2.102)

The integrals appearing on the right side can be reformulated inserting the expansion
(2.95): ∫

(
1

E
)n−1Qn−1(1/E)Γ(E) dE =

∫
(

1

E
)n−1

n−1∑
i=0

Qi
n−1(

1

E
)iΓ(E) dE

=
n−1∑
i=0

Qi
n−1

∫
(

1

E
)n+i−1Γ(E) dE.

(2.103)

The approximate moments (2.93) can be used to replace the resulting simplified integral,
yielding after reordering a discrete representation:∫

(
1

E
)n−1Qn−1(1/E)Γ(E) dE =

N∑
j

(
1

Ẽj
)n−1Qn−1(1/Ej)γ̃j (2.104)

involving the pseudocontinuum energies and couplings. The corresponding representa-
tions of the recurrent coefficients are:

an =
1

b0b1...bn−1

N∑
j

(
1

Ẽj
)nQn−1(1/Ej)γ̃j −

n−1∑
l=1

al, (2.105)

bn−1 =
1

b0b1...bn−2

N∑
j

(
1

Ẽj
)n−1Qn−1(1/Ej)γ̃j. (2.106)

The recursive scheme (2.99) can be reformulated by defining a modified set of polyno-
mials Rn(1/E):

Rn(1/E) =
(−1)nQn(1/E)√

Nn

(2.107)

(
1

E
)Rn−1(1/E) = −

√
bnRn(1/E) + anRn−1(1/E)−

√
bn−1Rn−2(1/E). (2.108)

This recursive scheme can be translated into the eigenvalue problem:

CR = E−1R, (2.109)

the tridiagonal matrix C containing the recurrent coefficients and diagonal matrix E
the principal energies En

i . The principal couplings are calculated using the eigenvectors
R:

gni = (Rn
0i)

2. (2.110)
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A Stieltjes derivative of the cumulative function Gn(E) finally returns the nth order
approximation to the decay rate Γ(E) at the midpoints of the “stairs” Ēn

i :

Γn(Ēn
i ) =

1

2

gni + gni+1

En
i+1 − En

i

. (2.111)

The joint numerical approach for calculating electronic decay widths relying on the
Fano formalism and the renormalization of the ADC pseudocontinuum by the Stieltjes
imaging technique is assigned as the Fano-ADC-Stieljtes approach.

The convergence of the Γn(E) function with the increasing order n results from the
specific charactericteristics of the cumulative function Gn(E), satisfying the so-called
Chebyshev inequalities:

Gn(Ei − 0) < Gn+1(Ei − 0) ≤ Gn+1(Ei + 0) < Gn(Ei + 0). (2.112)

Here, the energies Ei± 0 assign the limits from above (below), relatively to the abscissa
Ei. With the increasing order the Gn(E) function converges to a limit, given by the
inifinite order n. Furthermore, the limits E±0 of Gn(E) bracket the true G(E) function
at the points of increase Ei.

The analytical convergence behavior of the Gn(E) function can not be fully exploited
in numerical computations. The limited precision causes increasing errors at high Stielt-
jes orders as the substraction of large numbers is involved in the calculation of recurrence
coefficients. Therefore, the convergence of the numerical results has to be analyzed to
find optimal range of Stieltjes orders, typically lying at n<20 for quadruple precision.

2.2.4 Calculation of partial decay widths by the Fano-ADC-Stieltjes
method

Total electronic decay widths contain information about the timescale of the decay
and allow to estimate its efficiency relative to alternative relaxation processes. The
computation of partial decay widths (see Eq. 2.78), describing decay into individual
channels, is crucial for determining the branching ratios of the decay and hence the
distribution of the products (electrons and ionic species).

A true decay channel is defined by a set of quantum numbers, fully characterizing the
state of the system including the ionic core and the continuum electron after the decay
has happened. The determination of the corresponding partial widths is not possible
within the Fano-Stieljtes-ADC approach since the pseudocontinuum states |Θ(p)

J 〉 are
not identical to true continuum functions. In the present work we are interested in
the state of the ionic core, which can be associated with electronic decay mechanisms.
For instance, in a singly ionized heteronuclear dimer AB the holes are located on both
monomers in the final state of ICD while in the final state of ETMD they are located
on B:

A+(iv−1
A )B → A+(ov−1

A )B+(ov−1
B ) + eICD, (2.113)

A+(iv−1
A )B → AB2+(ov−2

B ) + eETMD. (2.114)

To determine the partial widths associated with different decay mechanisms, we use an
ad hoc scheme based on approximate channel projectors [20] in conjunction with the
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2. Electronic structure methods

Fano-ADC-Stieltjes method. Within this scheme the total final subspace is represented
as

P =
∑
f

Pf , (2.115)

where Pf is a projector on the channel f . The partial widths are obtained from the
auxiliary quantities

γ̃fj = 2π|〈Φb|QHelPf |χ̃j〉|2. (2.116)

similarly to the case of the total width. The construction scheme of the projectors Pf
will be visualized for the electronic decay of singly ionized states.
In constructing the projector operators Pf we rely on the fact that the intermediate
states spanning the subspace P are just the 2h1p configuration state functions. Thus,
a Hamiltonian matrix is built within the basis of 2h configurations

|ΦN−2
L 〉 = CL|Φ0〉 = ckcl|Φ0〉, (2.117)

whose diagonalization yields a set of doubly ionized states

|Φ̃N−2
f 〉 =

∑
L

cfL|ΦN−2
L 〉. (2.118)

Different decay channels can be clearly identified among the |Φ̃N−2
f 〉 states. A discretized

representation of a scattering state corresponding to the open decay channel f is then
obtained in the following series of steps. First, a continuum electron is added to a virtual
orbital p:

|Φ̃N−1
p,f 〉 = c†p|Φ̃N−2

f 〉. (2.119)

Second, the 2h1p states |Φ̃N−1
p,f 〉 are orthogonalized relative to the bound component Φb

|Φ̄N−1
p,f 〉 = |Φ̃N−1

p,f 〉 − |Φb〉〈Φ̌N−1
p,f |Φb〉, (2.120)

yielding a set of states |Φ̄N−1
p,f 〉. Finally, the latter are further orthonormalized among

themselves by a symmetric orthonormalization procedure:

|Ψ̄N−1
p,f 〉 =

∑
p′

|Φ̄N−1
p′,f 〉(ρ

− 1
2 )p′p (2.121)

ρp′,p = 〈Φ̄N−1
p′,f |Φ̄

N−1
p,f 〉. (2.122)

The 2h1p states |Ψ̄N−1
p,f 〉 are used to construct the projector onto the channel f :

Pf =
∑
p

|Ψ̄N−1
p,f 〉〈Ψ̄

N−1
p,f |. (2.123)

Separate computations of decay widths for each of the channels introduce numerical
errors, requiring a renormalization of the partial widths Γf with respect to the total
width:

Γrf =

∑
f Γf

Γ
. (2.124)
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3 Computational details

3.1 He·Mg

3.1.1 Energetics of the electronic decay

The He·Mg ground state potential energy curve has been computed by the coupled-
cluster method including singles, doubles and perturbative triples (CCSD(T)) as imple-
mented in the MOLPRO 2010.1 quantum chemistry package [76]. Aug-cc-pVQZ basis
sets [77, 78] at the atomic centers plus additional 3 s-type, 3 p-type, 2 d-type, 2 f-type,
1 g-type (3s3p2d2f 1g) mid-bond basis functions were utilized for an improved descrip-
tion of electronic density between the atoms [79]. The vibrational wavefunction in the
electronic ground state of He·Mg was obtained by solving the Schrödinger equation rep-
resented on a grid. The energy curves of the cationic and dicationic states were obtained
by means of the algebraic diagrammatic construction scheme ADC(n) for the one- [62]
and two-particle [59, 80] propagators. The ADC(3) scheme, complete up to third order
in perturbation theory, was used for the calculation of monocationic states of the He·Mg
cluster with the aug-cc-pVQZ basis set for He and aug-cc-pVTZ basis set augmented
by one diffuse d and one diffuse f Gaussian type orbitals (ζd = 0.0148, ζd = 0.0297) for
Mg. The energy curves of the dicationic states are more costly to compute and were
calculated by the second order ADC(2) method using the aug-cc-pVQZ basis sets for
both He and Mg. The restricted Hartree-Fock molecular orbitals and Coulomb integrals
which serve as the input for the ADC(n) calculations were determined by the MOLCAS
7.4 quantum chemistry package [81].

3.1.2 Electronic decay widths

The ETMD rates were calculated by means of Fano-ADC-Stieltjes method, with the
bound and continuum part of the corresponding resonance state constructed using the
ADC(2)-extended (ADC(2x)) scheme for the one-particle propagator [20]. For this pur-
pose we used on each atom a cc-pVQZ basis set augmented by 8s8p8d Kaufmann-
Baumeister-Jungen (KBJ) continuumlike functions [82] on the atoms and 4s4p4d KBJ
functions were added between the atomic centers to improve the convergence behavior
of the Stieltjes procedure.

The RCT rates were computed using the multi-reference configuration interaction
(MRCI) method implemented in the GAMESS-US 2011 quantum chemistry package [83].
Aug-cc-pVQZ basis sets at the atomic centers were utilized. The CI expansion comprised

Parts of this chapter have been already published in
V. Stumpf, N. V. Kryzhevoi, K. Gokhberg and L. S. Cederbaum, Phys. Rev. Lett. 112, 193001
(2014). Copyright 2014, American Physical Society.
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3. Computational details

all single, double, and triple excitations (MRCI-SDT) out of the reference configurations.
The reference space included the one-hole (1h) configurations resulting from all possible
occupations of the two highest occupied orbitals (1s of He and 3s of Mg) with three
electrons.

3.2 Hem·Mgn

3.2.1 Cluster geometries

The geometries of neutral, symmetric He·Mg3 and He2·Mgn (n = 1 − 3) clusters were
determined by means of the CCSD(T) method implemented in the MOLPRO 2010.1 [76]
quantum chemistry software package using aug-cc-pVQZ [78] basis sets for both He and
Mg atoms. The geometries at which ETMD shows the highest decay rate and contributes
at most to the electron spectra are classical turning points along the coordinates of He+

or He+
2 center of mass movement relative to the Mgn center of mass.

3.2.2 Energetics of the electronic decay

The energies of the initial states of ETMD were computed using the ADC(2x) scheme
for the particle propagator [62] and aug-cc-pVTZ basis sets [78] for both He and Mg
atoms. Similar basis sets and the ADC(2) scheme for the two-particle propagator [59,
80] were utilized to compute the energies of the doubly ionized final states of ETMD.
The restricted Hartree-Fock molecular orbitals and Coulomb integrals which serve as
the input for the ADC(n) calculations were computed by the MOLCAS 7.4 quantum
chemistry package [81].

3.3 Ne·Xe

3.3.1 Energetics of the electronic decay

The Ne·Xe ground state potential energy curve (PEC) was calculated by the CCSD(T)
method implemented in the GAMESS-US 2011 quantum chemistry package [83] using
the aug-cc-pVQZ basis set on neon and the aug-cc-pVQZ-PP basis set on xenon atoms.
The scalar relativistic effects on xenon were taken into account by a 28-electron effective
core potential [78]. An additional mid-bond basis set comprising 3s3p2d2f 1g basis
functions was used to improve the description of the electronic density between the
atoms [79]. The BSSE error was corrected by a counterpoise procedure.

The potential energies of the doubly ionized decaying states and the triply ionized
ETMD channels were obtained by adding the corresponding non-relativistic ionization

Parts of this chapter have been already published in
A. C. LaForge, V. Stumpf, K. Gokhberg, J. von Vangerow, F. Stienkemeier et al., Rev. Lett. 116,
203001 (2016). Copyright 2016, American Physical Society.
V. Stumpf, S. Scheit, P. Kolorenč and K. Gokhberg, Chem. Phys.,
http://dx.doi.org/10.1016/j.chemphys.2016.08.018 (2016). Copyright 2016, Elsevier.
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energies to the ground state energy of Ne·Xe. The double and triple ionization ener-
gies were computed within the framework of the Algebraic Diagrammatic Construction
(ADC) scheme based on the perturbational expansion of the two-particle and three-
particle propagator, respectively, complete up to second order in perturbation theory
(ADC(2)) [59, 84]. The double ionization energies were computed using the strict, the
triple ionization energies using the ADC(2x) scheme. In the Ne+(2p−1 2P)·Xe2+(5p−2

3P) ETMD channel a strong splitting due to the relativistic effects occurs. We per-
formed only nonrelativistic calculations since a phenomenological model derived from
non-relativistic results leads to the ETMD spectra of sufficient accuracy. More im-
portant, for the computation of electronic decay widths no relativistic methods were
available, prohibiting a fully relativistic calculation of the ETMD spectra.

3.3.2 Electronic decay widths

The ETMD widths were calculated by the Fano-ADC-Stieltjes method, with the bound
and continuum part of the corresponding resonance state constructed using the ADC(2)-
extended scheme for the two-particle propagator [21]. The 90 different
Ne+(2p−1 2P)·Xe2+(5p−2) non-relativistic states split into three groups derived from the
3P, 1D and 1S multiplets of Xe2+(5p−2). Among these states, only the spin-doublet
states are accessible in the electronic decay, since the Ne2+(2p−2)·Xe decaying states are
spin-singlet and the coupling term is spin free. At large interatomic distances, there
are 27 open Ne+(2p−1 2P)·Xe2+(5p−2) doublet channels, represented by 27 adapted
states in the P subspace of the Fano-ADC-Stieltjes scheme. Reducing the interatomic
distance leads to subsequent closing of the Ne+(2p−1 2P)·Xe2+(5p−2 1S) and Ne+(2p−1

2P)·Xe2+(5p−2 1D) groups of channels. We take the closing of these channels into account
by reducing the number of the adapted states to 24 and 9, respectively. The partial
ETMD widths describing decay into groups of channels given by the 3P, 1D and 1S
multiplets of Xe2+(5p−2) were determined by the projection operator approach described
in chapter 2.2.4. The decaying Ne2+(2p−2)·Xe states interact with other resonances in
the considered range of interatomic distances. The interaction with resonances of main
state character is discussed in chapter 5.1.3. Additionally, numerous satellite states
appear, which cross the decaying state and modify its wavefunction at the position
of the crossing. Lying in the electronic continuum, they populate the same states as
the ETMD of Ne2+(2p−2)·Xe but by a different mechanism such as ICD or atomic
autoionization. The charge transfer driven ETMD belongs to the slowest two-electron
relaxation mechanisms at intermediate and large internuclear distances. Therefore, any
interaction with a resonance decaying by ICD or autoionization mechanisms leads to a
clearly visible enhancement of the decay width and an irregular behavior of Γ along the
nuclear coordinate.

In the present case the satellites crossing the Ne2+(2p−2)·Xe states contain mostly
Ne+(2p−1)·Xe2+(5s−15p−1)nl and Ne·Xe3+(5p−3)nl configurations, where nl is a virtual
orbital. The nl series converge to the tricationic states with Ne+(2p−1)·Xe2+(5s−15p−1)
and Ne·Xe3+(5p−3) character, respectively. The behavior of the electronic decay widths
resulting from the interaction with the satellite states is exemplified for the Ne2+(2p−2)·Xe
1∆ state in Fig. 3.1. At distances larger than 4.55 Å, where all Ne+(2p−1 2P)·Xe2+(5p−2)
are open, the decay width is highly irregular although the weights of the coefficients
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Figure 3.1: Variation of the electronic decay width of the Ne2+(2p−2)·Xe 1Δ state with
the composition of the Q subspace. (Red line) Full Q subspace includes adapted states of
Ne+(2p−1)·Xe2+(5s−15p−1)nl and Ne·Xe3+(5p−3)nl character, which cross the decaying state
and cause an increase of the decay width at the position of the crossings. (Blue line) Minor
modification of the electronic basis set (removal of a diffuse basis function of Xe) changes
positions of certain crossings, weights of Ne+(2p−1)·Xe2+(5s−15p−1)nl and Ne·Xe3+(5p−3)nl
configurations and thus the decay widths. (Black line) Removal of the corresponding adapted
states from the Q subspace leads to a regular behavior of the decay width.

belonging to the satellite configurations are low (<10−4). The coupling of the
Ne+(2p−1)·Xe2+(5s−15p−1)nl and the Ne·Xe3+(5p−3)nl configurations to the
Ne+(2p−1 2P)·Xe2+(5p−2) final states is of ICD type and autoionization type, respec-
tively. Thus, in spite of the low weights of these configurations the decay width is
markedly increased.
To obtain a regular behavior of the ETMD width we removed adapted states with

the Ne+(2p−1)·Xe2+(5s−15p−1)nl and Ne·Xe3+(5p−3)nl character from the Q subspace.
Additionally, we removed adapted states of Ne+(2p−1)·Xe2+(5p−2)nl character describ-
ing the closed ETMD channels in the corresponding intervals of nuclear distances. One
has to keep in mind that the energies of the satellites crossing the decaying state are
treated at first perturbational order in the ADC(2x) scheme, hence the positions of the
crossings with the Ne2+(2p−2)·Xe states and the weights of the satellite configurations
are highly inaccurate. Moreover, these properties are mostly sensitive to the electronic
basis sets. The modification of the Q subspace provides decay widths which converge
with respect to the electronic basis and constitute a lower bound to the uncorrected
decay widths. We utilized the regularized ETMD width in further discussions and in
nuclear dynamics simulations.
For the decay width calculations we utilized the cc-pVQZ basis set on neon [78]
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and non-relativistic cc-pVQZ [85] basis set on xenon. To improve the description
of the discretized ADC continuum we added 5s5p5d3f continuum like Kaufmann-
BaumeisterJungen (KBJ) [82] basis functions on neon, 7s7p7d4f 1g basis functions on
xenon and 2s2p2d mid-bond basis functions.

3.3.3 Nuclear dynamics

The nuclear dynamics accompanying the electronic decay process is described by using
a theoretical framework based on the propagation of nuclear wave packets, described in
detail in Ref. [86] to which the reader is referred. The nuclear wave packets propagating
along the initial, decaying and final states PES are obtained by solving a system of
coupled time dependent Schrödinger equations. The Hamilton operator associated to
each of the electronic states is given by the sum of the nuclear kinetic energy operator
T̂N and the associated potential energy operators V̂i, V̂dj and V̂fk obtained as described
in 3.3.1, where i stays for initial, d for decaying and f for final state and the indices j
and k number the decaying and final states, respectively. Additionally, for the decaying

states the complex term iΓdj

2
has to be added, with Γdj being the corresponding total

decay width operator computed as in 3.3.2: this renders the Hamilton operator for the
ETMD states non-hermitian. The partial decay width operator Γ

dj
fk

associated to the
transition from a given decaying state to a specific final state fk, is responsible instead
for the coupling between the equations for the corresponding decaying and final wave
packets.

In principle, also the equations for the initial and the decaying wave packets are
coupled through the excitation operator, which typically contains the transition dipole
moment between the states. For the present study, however, the ionization process is
assumed to be instantaneous, and the excitation operator independent on the nuclear
coordinate. Furthermore, due to the much shorter Auger lifetime of the Ne+(1s−1)·Xe
state in comparison to the ETMD lifetime of the Ne2+(2p−2)·Xe states, the nuclear
dynamics is neglected also in the Auger decay step, so that the nuclear wave packet
propagation is started by a vertical transition of the initial wave packet to the PES
of the states decaying via ETMD, as done in similar dynamical studies of Auger-ICD
cascades (see e.g. Refs. [87, 88]). Therefore the initial condition is Ψdj(t0) = Ψi(t0),
where Ψdj is the wave packet propagating along the PES of the j-th decaying state
and Ψi is the wave packet associated to the initial electronic state. The initial wave
packet at time t0, Ψi(t0), is taken to coincide with the lowest vibrational eigenstate of
the electronic ground state of Ne·Xe: it is therefore gaussian-like and centered at about
3.9 Å, the equilibrium distance of the ground state PES. The numerical grid used starts
at 2 Å, ends at 11 Å and contains 1806 points, the wave packets are propagated for
about 200 ps before convergence for all decay channels is obtained.

All the spectroscopic information required for the computation of the ETMD electron
spectrum is contained in the wave packets for the final electronic states. In the absence
of non-adiabatic couplings between the decaying and final states, the total electron
spectrum is obtained as the sum of the partial spectra associated to the decay from each
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intermediate to each accessible final state,

σfin(EETMD) = lim
t→∞

σ(EETMD, t) = lim
t→∞

∑
j

∑
k

〈Ψdj
fk

(EETMD, t)|Ψ
dj
fk

(EETMD, t)〉, (3.1)

where EETMD is the energy of the emitted ETMD electron and Ψ
dj
fk

(EETMD) is the final
wave packet propagating along the k-th final state and resulting from the decay of the
j-th decaying state. Therefore, by the knowledge of the nuclear wave packets at each
time, it is possible to follow the time evolution of the spectrum, given by σ(EETMD, t).

The kinetic energy release spectrum for the fragments emitted after the decay is
obtained from the electron decay spectrum by making use of the reflection principle [34],
which is based on the principle of energy conservation and, therefore, exploits the relation
ETOT = EETMD+EKER+V ∞f , where V ∞f is the asymptotic value of the final state PES.
Note, however, that additional information about the different decay channels can be
extracted from the KER, which is instead hidden in the electron spectrum.

3.4 Ne·Kr2

3.4.1 Cluster geometry

The equilibrium geometry of the neutral Ne·Kr2 cluster was determined by means of the
CCSD(T) method as implemented in the MOLPRO 2010.1 quantum chemistry package
[76]. For both Ne and Kr aug-cc-pVQZ correlation consistent basis sets [78] located on
the corresponding atoms were used. Three sets of additional 3s3p2d2f1g mid-bond basis
functions were used to improve the description of the electronic density between the
pairs of atoms [79]. The optimized geometry of Ne·Kr2 has a C2v symmetry with Ne·Kr
interatomic distance r = 3.68 Å and KrNeKr angle θ = 67.01 ◦.

3.4.2 Energetics of the electronic decay

The energies of the Ne2+(2p−2 1D)·Kr2 electronic states decaying by ETMD were deter-
mined using the ADC(2) scheme for the two-particle propagator [59]. The aug-cc-pVQZ
basis sets located on the Ne and Kr atoms were used in this calculation. The restricted
Hartree-Fock orbitals and integrals needed as input data for ADC(2) were generated
by SCF routine implemented in MOLCAS 7.4 quantum chemistry package [81]. The
energies of the final states Ne+(2p−1 2P)·(Kr+(4p−1 2P))2 of ETMD(3) were calculated
by adding to the ground state potential energy of Ne·Kr2 the triple ionization potential
approximated analytically as IP (Ne) + 2IP (Kr) + 2/RNeKr + 1/RKrKr. The abbre-
viation IP(X) stands for the ionization potential of atom X and RXY is the distance
between atoms X and Y.

Parts of this chapter have been already published in
V. Stumpf, P. Kolorenč, K. Gokhberg and L. S. Cederbaum, Phys. Rev. Lett. 110, 258302 (2013).
Copyright 2013, American Physical Society.
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3.4.3 Electronic decay widths

The ETMD widths were obtained employing the Fano-ADC-Stieltjes approach [21].
Adapted states representing the closed Ne+(2p−1 2P)·(Kr)Kr2+(4p−2) ETMD(2) chan-
nels were removed from the Q subspace to ensure a regular behavior of the ETMD(3)
width (see chapter 3.3.2 for the description of this procedure). We used cc-pVTZ basis
set augmented by 4s4p4d for Ne, and cc-pVTZ basis set augmented by 5s5p5d KBJ [82]
continuum-like basis functions for Kr to improve the description of the ADC discretized
continuum.

3.4.4 Nuclear dynamics

For the Ne2+(2p−2 1D)·Kr2 decaying state classical nuclear dynamics calculations were
performed. We assumed that the Ne2+(2p−2 1D)·Kr2 cluster is in the rotational ground
state, hence the rotational degrees of freedom were neglected. We solved the classical
Hamilton equation of the nuclear motion, employing internal Jacobi coordinates: q1 is
given by the distance between the Kr atoms, q2 by the distance between Ne and the Kr2

center of mass while φ is given ..by the angle between q1 and q2. We only considered
the coordinates q1, q2, therefore preserving the C2v symmetry of the cluster; the angle
φ was kept constant (φ = 90◦). In these coordinates the representation of the nuclear
Hamiltonian H has a simple structure [89]:

H =
1

2µ1

P 2
1 +

1

2µ2

P 2
2 + V (q1, q2), (3.2)

where Pi denote the conjugate momenta and V (q1, q2) is the PES of the Ne2+(2p−2 1D)·Kr2

state of b1 symmetry. The reduced masses are defined as:

µ1 =
mKr

2
, µ2 =

2mKrmNe

2mKr +mNe

. (3.3)

The equilibrium geometry of the Ne·Kr2 cluster defined the initial values of q1 and
q2, while the initial momenta were set to zero. The numerical solution of the Hamilton
equation provided a trajectory for the nuclear motion on the two-dimensional, real PES.
We calculated the ETMD rate Γ(R) along this trajectory, which allowed us to reformu-
late this rate as a time dependent quantity Γ(t) which enters the following differential
equation for the population N(t) of the decaying state:

dN(t)

dt
= −Γ(t)N(t). (3.4)

The solution of this equation with the initial condition N(t = 0) = 1 yields the cumula-
tive ETMD yield P (t):

P (t) = 1−N(t) = 1− e−
∫ t
0 Γ(t′)dt′ . (3.5)
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3.5 Mg2+·(H2O)6

3.5.1 Cluster geometry

The geometry of the Mg2+·(H2O)6 cluster was obtained by symmetry constrained opti-
mization, relying on the Møller-Plesset second order perturbation theory (MP2) imple-
mented in the MOLPRO 2010.1 quantum chemistry package [76]. The Th symmetry of
the cluster was chosen according to Glendening et al. and represents the global minimum
geometry [90]. All electronic decay processes were studied at this cluster geometry.

3.5.2 Energetics of the electronic decay

Core ionization of the Mg2+·(H2O)6 cluster creates a highly energetic magnesium trica-
tion which decays by the Auger mechanism and accumulates positive charge. A series of
interatomic electronic decay steps leads to the reduction of magnesium to the original
Mg2+ state. We found that the cascade comprises the following steps:

Mg3+(1s−1) · (H2O)6
Auger−−−→ Mg4+([2p−2]/[2s−12p−1]/[2s−2]) · (H2O)6 + eAuger

Mg3+(1s−1) · (H2O)6
Core ICD−like−−−−−−−−−→ Mg3+(2p−1) · (H2O+)(H2O)5

(3.6)

Mg4+([2s−12p−1]/[2s−2]) · (H2O)6
ICD−−→ Mg4+([2p−2]/[2s−12p−1]) · (H2O+)(H2O)5

Mg4+([2p−2]/[2s−12p−1]) · (H2O)6
ETMD(2)−−−−−−→ Mg3+([2p−1]/[2s−1]) · (H2O2+)(H2O)5

Mg4+([2p−2]/[2s−12p−1]) · (H2O)6
ETMD(3)−−−−−−→ Mg3+([2p−1]/[2s−1]) · (H2O+)2(H2O)4

(3.7)

Mg3+(2s−1) · (H2O)6
ICD−−→ Mg3+(2p−1) · (H2O+)(H2O)5

Mg3+(2p−1) · (H2O)6
ETMD(2)−−−−−−→ Mg2+ − (H2O2+)(H2O)5

Mg3+(2p−1) · (H2O)6
ETMD(3)−−−−−−→ Mg2+ − (H2O+)2(H2O)4,

(3.8)

where for better readability we provided Mgq+ ions with the full complement of six
neutral water ligands. In complexes obtained during the cascade some of the water
ligands will be ionized in the previous steps. The number and charge of these ligands
will depend on a particular de-excitation route followed by the system.

To determine the electronic states of Mg involved in the decay cascade we computed
their energies. All electronic structure calculations were carried out at the equilibrium
geometry of the Mg2+·(H2O)6 cluster using the electronic configuration in the ground
electronic state of Mg2+·(H2O)6 as the reference. The initial Mg2+·(H2O)6 state energy
was determined by the Møller-Plesset second order perturbation theory (MP2).

Parts of this chapter have been already published in
V. Stumpf, K. Gokhberg and L. S. Cederbaum, Nat. Chem. 8, 237 (2016). Copyright 2016, Nature
Publishing Group.
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The electronic states of interest include tricationic, tetracationic and pentacationic
states. The energies of the tricationic states were obtained by the ADC(2x) method [62].
The energies of the tetracationic states were calculated by the ADC(2) method for the
two-particle propagator [59,80]. The electron integrals and molecular orbitals serving as
input for the propagator based computations were calculated by MOLCAS 7.4 software
package [81].

The ETMD and ICD of high lying tetracationic states lead to pentacationic states
(Eq. (3.6)), for which no propagator approach was available. Therefore, a multi-
reference configuration interaction (MRCI) method including single and double exci-
tations (DIRECT-CI) [91] implemented in the GAMESS-UK 8.0 quantum chemistry
package [92] was used. The final states of ETMD were constructed by selecting all
configurations having a hole in a 2s or 2p orbital of Mg2+ plus two additional holes in
the valence orbitals localized on water molecules. The final states of ICD were con-
structed by selecting all configurations having two holes in 2s, 2p orbitals of Mg2+ plus
an additional hole in the valence orbitals localized on water molecules. This method is
computationally demanding and not size extensive which limited the size of the model
system to the metal cation and two water neighbors. We estimated the effect of leaving
out four water molecules and found that the same ICD and ETMD channels are open in
Mg4+·(H2O)2 and Mg4+·(H2O)6. Addition of point charges simulating the ionized water
molecules in the first solvation shell lead to closing of some of ETMD(2) channels.

3.5.3 Electronic decay widths

We computed the energy widths of the decaying states in Eqs. (3.6-3.8) to determine the
timescales on which different electronic decay processes occur. To this end we used the
ab initio Fano-ADC-Stieltjes method [20, 21]. The bound and continuum parts of the
decaying tricationic and tetracationic states were constructed by means of the ADC(2)-
extended scheme for the one-particle and two-particle propagator, respectively [59, 62].
The renormalization of the pseudocontinuum generated by the ADC scheme in an L2

basis is done by the Stieltjes imaging technique [74]. The partial decay widths were
estimated by projecting the pseudocontinuum part of the resonance wave function onto
the configurations belonging to a channel of interest (e.g. the ETMD(2) channel, see
chapter 2.2.4).

The ICD and ETMD widths of the Mg3+ ion could be computed for the full solvation
shell of six water molecules. In the case of the Mg4+ ion we had to resort to an ap-
proximation, since it was not feasible to construct an accurate pseudocontinuum part of
the resonances in the Mg4+·(H2O)6 cluster. However, as was demonstrated in previous
studies on ETMD and ICD, a good approximation to the electronic decay widths in a
large system can be obtained by adding up the decay widths calculated for subunits of
a system [93,94]. Thus the total ICD width in a cluster with N water neighbors

ΓICD =
N∑
i=1

ΓICDi , (3.9)

where ΓICDi is the ICD width due to the i-th water neighbor. The total ETMD(2) width
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is obtained in a similar way

Γ(2) =
N∑
i=1

Γ
(2)
i , (3.10)

while for the determination of the total ETMD(3) width the system is divided into
subunits containing the metal ion and distinct pairs of neighbors

Γ(3) =
∑
i<j

Γ
(3)
ij . (3.11)

We verified the accuracy of this approximation by comparing the results of the full
calculation of Mg3+(2p−1 2P)·(H2O)6 widths with the ones obtained by the additive
approach. The ETMD lifetime obtained by the additive approach (15.6 fs) lies close to
the value obtained by the full calculation (17.3 fs). The branching ratio of ETMD(3)
to ETMD(2) product populations is 1.50 and 1.23, respectively. We conclude that the
approximate method is able to reproduce the total decay width and the branching ratio
fairly well.

The additive approach was also applied to calculate the width of the initially core
ionized Mg3+(1s−1 2S)·(H2O)6 state itself. It decays not only locally by the Auger process
but also interatomically in the core ICD-like process [95, 96] whereby the relaxation of
the core vacancy results in the ionization of the neighboring water molecule. The rate
of the core ICD-like processes was calculated for a subsystem with one water neighbor
and extrapolated to n = 6. The Auger rate in the Mg2+·(H2O)6 cluster is only weakly
modified compared to the atomic value computed by the Fano-ADC-Stieltjes method.

3.5.4 Cascade of electronic decay processes

The separate electronic decay processes discussed above constitute a decay cascade ini-
tiated by removing a 1s electron of Mg. One of the important characteristics of this
cascade is its overall duration which can be found if the decay rates of each individual
step of the cascade is known. The calculation of these rates is complicated by the fact
that interatomic processes occurring earlier in the cascade ionized the nearest neighbors.
Therefore, subsequent interatomic decay happens in the presence of water cations and is
accompanied by the Coulomb explosion of the cluster. The accumulation of the positive
charge in the vicinity of the metal has an impact on the electron energies and decay
rates. In general, the latter are expected to decrease due to the fact that fewer ionizable
water neighbors are available and the number of open decay channels per neighbor is
less than in the Mgq+(H2O)6 case.

We took this effect into account by replacing the ionized neighbors by point charges
in determining the open decay channels and the corresponding decay rates at each
individual step (see Tab. 3.1). The point charge model contains the leading term in the
multipole expansion of the charge distribution on the ionized water molecules; therefore,
the main part of the electrostatic interaction with the ionized water neighbors is taken
into account. Such calculations show that the whole cascade is energetically possible
even without removing ionized water molecules from the first solvation shell. To obtain
the overall duration of the decay cascade and the time dependent populations of the
species involved we solved the corresponding system of rate equations. The decreasing
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Table 3.1: Rates utilized in the kinetic model of the electronic decay cascade initiated by the
core ionization of Mg in the Mg2+·(H2O)6 cluster. The individual decay steps can be found
in the cascade scheme, Fig. 6.2. Repulsive nuclear dynamics occurring after the interatomic
electronic decay steps are not taken into account, all decay rates were determined at the
equilibrium geometry of the Mg2+·(H2O)6 cluster. Water neighbors ionized in a decay step
are not available for further interatomic electronic decay. The presence of water cations from
previous steps of the cascade may lead to the closing of open decay channels, which was
taken into account by using a point charge approximation of these cations. The numbers in
parentheses represent the decay rates for a given number of water neighbors with the water
cations/point charges removed.

Decay mode Decay step k [fs−1]

Auger

Mg3+(1s−1 2P)·(H2O)6 → Mg4+(2p−2 1D, 1S)·(H2O)6 0.3211

Mg3+(1s−1 2P)·(H2O)6 → Mg4+(2s−12p−1 3P)·(H2O)6 0.0442

Mg3+(1s−1 2P)·(H2O)6 → Mg4+(2s−12p−1 1P)·(H2O)6 0.1068

Mg3+(1s−1 2P)·(H2O)6 → Mg4+(2s−2 1S)·(H2O)6 0.0374

Core ICD-like Mg3+(1s−1 2P)·(H2O)6 → Mg4+(2s−2 1S)·(H2O+)(H2O)5 0.0168

ICD

Mg4+(2s−12p−1 1P)·(H2O)6 → Mg4+(2p−2 1D, 1S)·(H2O+)(H2O)5 1.2987

Mg4+(2s−2 1S)·(H2O)6 → Mg4+(2s−12p−1 3P)·(H2O+)(H2O)5 1.1111

Mg3+(2s−1 2S)·(H2O)5 → Mg3+(2p−1 2P)·(H2O+)(H2O)4 0.1190 (1.0417)

Mg3+(2s−1 2S)·(H2O)4 → Mg3+(2p−1 2P)·(H2O+)(H2O)3 0.0952 (0.8333)

Mg3+(2s−1 2S)·(H2O)3 → Mg3+(2p−1 2P)·(H2O+)(H2O)2 0.0066 (0.6250)

ETMD(2)

Mg4+(2p−2 1D, 1S)·(H2O)6 → Mg3+(2p−1 2P)·(H2O2+)(H2O)5 0.0240

Mg4+(2p−2 1D, 1S)·(H2O)5 → Mg3+(2p−1 2P)·(H2O2+)(H2O)4 0.0200

Mg4+(2s−12p−1 3P)·(H2O)6 → Mg3+(2p−1 2P)·(H2O2+)(H2O)5 0.0119

Mg4+(2s−12p−1 3P)·(H2O)6 → Mg3+(2s−1 2S)·(H2O2+)(H2O)5 0.0158

Mg4+(2s−12p−1 3P)·(H2O)5 → Mg3+(2p−1 2P)·(H2O2+)(H2O)4 0.0100

Mg4+(2s−12p−1 3P)·(H2O)5 → Mg3+(2s−1 2S)·(H2O2+)(H2O)4 0.0134

ETMD(3)

Mg4+(2p−2 1D, 1S)·(H2O)6 → Mg3+(2p−1 2P)·(H2O+)2(H2O)4 0.0388

Mg4+(2p−2 1D, 1S)·(H2O)5 → Mg3+(2p−1 2P)·(H2O+)2(H2O)2 0.0258

Mg4+(2s−12p−1 3P)·(H2O)6 → Mg3+(2p−1 2P)·(H2O+)2(H2O)4 0.0106

Mg4+(2s−12p−1 3P)·(H2O)6 → Mg3+(2s−1 2S)·(H2O+)2(H2O)4 0.0191

Mg4+(2s−12p−1 3P)·(H2O)5 → Mg3+(2p−1 2P)·(H2O+)2(H2O)3 0.0071

Mg4+(2s−12p−1 3P)·(H2O)5 → Mg3+(2s−1 2S)·(H2O+)2(H2O)3 0.0126

Mg3+(2p−1 2P)·(H2O)5 → Mg2+(1S)·(H2O+)2(H2O)3 0.0230 (0.0438)

Mg3+(2p−1 2P)·(H2O)4 → Mg2+(1S)·(H2O+)2(H2O)2 0.0140 (0.0299)

Mg3+(2p−1 2P)·(H2O)3 → Mg2+(1S)·(H2O+)2(H2O) 0.0070 (0.0188)

Mg3+(2p−1 2P)·(H2O)2 → Mg2+(1S)·(H2O+)2 0.0025 (0.0125)
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number of ionizable neighbors in the course of the cascade was taken into account by
calculating decay rates as described in Eqs. 3.9-3.11.

3.5.5 Basis sets for electronic structure calculations

The cc-pCVTZ basis set on magnesium and daug-cc-pVTZ basis set on oxygen and hy-
drogen atoms were utilized for geometry optimizations and calculations of energies of the
decaying states [78,97]. The calculation of the core ionization potential of Mg2+·(H2O)6

required an uncontraction of the atomic basis set on magnesium. In the final states
of the electronic decay additional positive charge on the neighboring water molecules
is created, therefore cc-pCVTZ basis set for oxygen and cc-pVTZ for hydrogen atoms
were used [98,99].

Decay width calculations required an augmentation of the standard atomic basis sets
by Kaufmann-Baumeister-Jungen (KBJ) continuum-like functions to improve the de-
scription of the pseudocontinuum [82]. In particular, cc-pCVTZ (magnesium and oxy-
gen) and cc-pVTZ atomic basis set (hydrogen) were augmented by 1s1p1d1f KBJ basis
functions on magnesium, 4s4p4d1f on oxygen and 2s2p2d on hydrogen. Additionally,
2s2p2d KBJ basis functions were located between the magnesium and oxygen atoms.
The atomic cc-pCV5Z (magnesium, oxygen) and cc-pV5Z (hydrogen) basis sets were
uncontracted for the computation of the Auger rate in order to better describe the fast
outgoing Auger electron [78,98].

3.6 Mq+·(H2O)n

3.6.1 Cluster geometries

We investigated the behavior of the ICD widths in microsolvated clusters as the function
of two parameters: the number of water neighbors, and the Mq+-O distance. To find
the width’s variation with the number of neighbors we constructed Na+·(H2O)m (m =
1-4), Mg2+·(H2O)n (n = 1-6) clusters starting from the equilibrium structures of the
parent Na+·(H2O)4, Mg2+·(H2O)6 clusters. The latter represent stable clusters with
the highest possible number of water molecules in the first coordination shell in the
gas phase. However, they also play an important role in the description of the metal
ions’ solvation shell in solution as we will discuss below. The symmetries of the parent
clusters were chosen following the structural studies of Glendening et al. [90] as S4 and
Th respectively. For the geometry optimization of the parent clusters we used Møller-
Plesset second order perturbation theory (MP2) implemented in the MOLPRO 2010.1
package [76] which provides accurate results for the systems with ion-permanent dipole
interactions [100]. To obtain the clusters with m < 4 and n < 6 we removed the water
ligands one by one from the parent clusters leaving the structure of the rest of the cluster
intact. There is no unique way to do that and we selected the procedure, whereby the
number of cis-pairs is maximized. The derived Na+·(H2O)m clusters belong to C2v, C1

Parts of this chapter have been already published in
V. Stumpf, C. Brunken and K. Gokhberg, J. Chem. Phys. 145, 104306 (2016). Copyright 2016,
American Institute of Physics.
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and C1 symmetry groups for m equaling 1, 2, or 3, respectively, while the Mg2+·(H2O)n
clusters belong to C2v, Cs, C3, Cs, C2v for n ranging from 1 to 5.

The parent Mg2+·(H2O)6 cluster bears close resemblance to the structure of the mag-
nesium ion and its first solvation shell in dilute solutions. The coordination number 6
is the most probable in solution due to the strong attractive interaction between Mg2+

and the water neighbors. The Mg2+-O distance of 2.08 Å obtained in the geometry
optimization lies within the range obtained in experimental studies of the aqueous so-
lutions (2.00-2.15 Å) [101]. In contrast, the interaction between the sodium cation and
the water molecules is considerably weaker resulting in a broad distribution of coordina-
tion numbers (mainly between 4 and 6 [101,102]) and average sodium-oxygen distances
in aqueous solutions (2.33-2.50 Å with the width at half-maximum being ca. 0.5 Å).
However, both the coordination number and the optimal Na+-O distance of 2.30 Å used
for the Na+·(H2O)4 cluster in this work are probable in dilute solutions.

To investigate the variation of ICD widths with the cation-oxygen distance we consid-
ered Na+·H2O and Mg2+·H2O mono-coordinated clusters. Their reference equilibrium
geometries which belong to the C2v point group were obtained from the parent six-
and four-coordinated structures structures by removing all but one water ligand. In
the width calculations the cation-oxygen distance, R, was varied, while the rest of the
coordinates were kept constant. We also considered ICD in the Ne·H2O cluster extend-
ing the isoelectronic Mq+·H2O series towards q = 0. To facilitate the comparison with
the metal - water clusters we constrained the Ne·H2O geometry to the C2v symmetry
and optimized the Ne·H2O geometry by using the CCSD(T) method implemented in
the MOLPRO 2010.1 package [76]. High-level CCSD(T) method was necessary for the
Ne·H2O cluster which is bound by the weak dipole-induced dipole interaction. After-
wards the Ne-oxygen distance was varied, while the rest of the coordinates were kept at
their equilibrium values.

The cluster models described above deserve a short discussion. First, the smaller
clusters constructed from the parent Na+·(H2O)4 and Mg2+·(H2O)6 ones do not represent
the equilibrium geometries for a given coordination number. Since we intended to study
the dependence of ICD widths on the coordination number, it was natural that the
second important parameter, the metal-oxygen distance, should have been kept constant.
Moreover, the dependence of the width on the symmetry of the particular arrangement
of the ligands around the ion is weak, as long as the coordination number and R are
kept constant. In addition, the internal geometry of water barely changes upon addition
of the ion (e.g. in the case of Mg2+·H2O ∆ROH = 0.007 Å and ∆θHOH = 1.5◦). Also,
the equilibrium geometry of the Ne·H2O cluster belongs to the Cs point group [103].
However, the C2v symmetry allows a direct comparison of the ICD widths as a function
of R with the widths in Na+·H2O and Mg2+·H2O clusters.

3.6.2 Energetics of the electronic decay

We determined the open ICD channels and the kinetic energies of the emitted ICD elec-
trons by computing the single and double ionization energies of the cluster in question.
The computations were done within the framework of the Algebraic Diagrammatic Con-
struction (ADC(n)) scheme based on the perturbational expansion of the one-particle
and two-particle propagators, respectively, complete up to second order [59, 61, 62, 80].
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For the one-particle propagator expansion the extended second-order scheme, for the
two-particle propagator the strict second-order scheme were used. The Na+·(H2O)m,
Mg2+·(H2O)n and Ne·H2O reference electronic states, molecular orbitals and electron
integrals required by the ADC calculations were computed by the RHF method imple-
mented in the MOLCAS 7.4 package [81].

3.6.3 Electronic decay widths

The electronic decay widths were calculated by means of the Fano-ADC-Stieltjes method
[20]. We constructed the matrix representation of Hel and both wave functions compo-
nents using the ADC(2x) scheme for the one-particle propagator [62]. The continuum
component corresponding to the M(q+1)+·H2O+ ICD final states and a free electron is
obtained by diagonalizing the ADC matrix projected on the 2h1p subspace (P) which
describes open decay channels. The P subspace comprises (2p−1

M ov−1
H2O

)b1 and (ov−2
H2O

)b1

configurations, where b refers to a virtual orbital. ADC matrix projected onto the initial
subspace (Q = 1−P) which includes the remaining 2h1p and all 1h configurations pro-
vides both the bound one-hole states of the system and the bound part of the resonance
function in question. The latter is characterized by a large contribution of the 2s-hole
on the metal atom and can be easily identified among the eigenvectors.

In addition to the ICD final states of M(q+1)+·H2O+ character the ETMD into the
states of Mq+·H2O2+ character is also energetically allowed. The branching ratio of the
ICD and ETMD processes was estimated using a projection operator approach described
in Ref. [104] and chapter 2.2.4. The ICD widths were shown to dominate the ETMD
ones even in the largest clusters by approximately two orders of magnitude for the
considered range of metal-oxygen distances. Therefore, the total decay width in all
calculations was considered to a high degree of accuracy equal to the ICD width and the
calculation of the partial decay widths was not carried out. In the calculations of the
sodium-water clusters the (iv−1

H2O
ov−1

H2O
)b1 and (iv−2

H2O
)b1 configurations corresponding to

the decay into the ETMD channels were omitted altogether. In the calculations of the
magnesium-water clusters they were added to the P subspace.

Interatomic relaxation following the sudden creation of a 2s-hole on the metal cations
has a large impact on the ICD widths. This relaxation can be described by the inter-
action between (2s−1

M ) and (2s−1
M ov−1

H2O
)b1 configurations. The physical effect expressed

by the interatomic relaxation falls between two limiting cases: dipole polarization of
the water molecule (if the virtual orbital b is localized on the water molecule), or the
transfer of an electron from water to the metal (if b is localized on the metal). Excluding
the (2s−1

M ov−1
H2O

)b1 configurations from the initial subspace Q eliminates the effect of the
polarization in a decay width calculation; it also eliminates the excited states of the
charge-transfer character, e.g. (2s−1

Mgov
−1
H2O

)3s1
Mg from the computed spectrum. Such

states are also electronically unstable and their interaction with the ICD state may lead
to irregular Γ(R) behavior. Therefore, to study the effect of the interatomic relaxation
in the ICD state as well as its interaction with other resonances present in the system
we carried out calculations both with and without the corresponding configurations.

The construction of the 2s-ionized state by the propagator based ADC method re-
lies on the closed shell single determinant representation of the Mq+·(H2O)n reference
state. This condition is fulfilled in Na+·(H2O)n for all sodium-oxygen distances and any
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number of neighbors. In the case of the Mg2+·H2O cluster the potential energy curve
of the Mg2+·H2O state crosses the curve of the Mg+(3s1)·H2O+ state at R ≈ 6 Å [105]
potentially invalidating the use of the one-particle ADC schemes around this geometry.
However, a single determinant RHF solution can still be obtained for the geometries
in question by defining the corresponding closed shell occupation pattern. To check
that the one-particle ADC(2x) calculation based on this determinant still leads to the
correct description of the (2s−1

Mg) state we computed the same state by the three-particle
ADC(2x) propagator [84] starting from the Mg·H2O closed shell reference. It could be
demonstrated that both methods provide a closely matching results for the energy of
this state and the character of its wave function for R ≈ 6.0 Å . Therefore, we expect
the widths obtained by the one-particle ADC(2x) method to be accurate even at the
geometries where the ground state of the clusters is of multi-reference character.

In the analysis of the performance of the Fano-ADC-Stieltjes method in the asymp-
totic regime a computation of transition energies and transition dipole moments for
the Mq+1(2s−1)→Mq+1(2p−1) and Ne+(2s−1)→Ne+(2p−1) transitions is required. We
performed this computations by means of the multi-reference configuration interaction
(MRCI) method implemented in the MOLPRO 2010.1 package [76]. We restricted the
configuration space for the initial state at the 1h plus 2h1p and for the final state at the
1h level with respect to the Mq+ and Ne Hartree-Fock references, respectively.

3.6.4 Basis sets for electronic structure calculatios

The cc-pCVTZ basis set on magnesium and aug-cc-pVTZ basis set on oxygen and hydro-
gen atoms were utilized for geometry optimization of the Na+·(H2O)4 and Mg2+·(H2O)6

clusters [78,106]. The aug-cc-pVQZ on all atoms were utilized for geometry optimization
of the Ne·H2O cluster [78]. In calculations of the ionization energies in Na+·(H2O)m,
Mg2+·(H2O)n and Ne·H2O clusters cc-pCVTZ basis sets on neon [78] and metal atoms
as well as aug-cc-pVTZ basis sets on oxygen and hydrogen atoms were used.

In decay width calculation cc-pCVTZ basis sets on neon, metal and oxygen atoms as
well as cc-pVTZ basis set [99] on hydrogen atoms were utilized. For an improved descrip-
tion of the ADC pseudocontinuum we added 2s2p2d1f KBJ basis functions [82] oxygen,
1s1p1d on hydrogen, and 2s2p2d1f on sodium in the case of Na+·(H2O)m clusters. In
the case of Mg2+·(H2O)n clusters 3s3p3d1f KBJ basis functions on oxygen, 1s1p1d on
hydrogen, and 1s1p1d1f basis on magnesium were added. In singly coordinated clus-
ters additional 4s4p4d (Na+·H2O) and 3s3p3d (Mg2+·H2O) KBJ basis functions were
placed midway between the metal and the oxygen atoms as well as at the geometrical
center of the water molecule to improve the convergence of the Stieltjes renormalization
procedure. The midway basis functions also improve the description of the electronic
density on the water molecule polarized by the metal cation [79]. For larger clusters,
the basis functions at the center of the water molecule were removed due to numerical
limitations. The calculation of decay widths in Ne·H2O included 5s5p5d1f KBJ basis
functions on neon and oxygen, 2s2p2d on hydrogen, and 2s2p2d midway between the
neon and oxygen atoms and at the geometrical center of the water molecule.
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4 One-photon double ionization via
ETMD

4.1 ETMD in the He·Mg cluster

One-photon double ionization is an important tool for studying electron correlation in
atomic and molecular physics [107]. This can be deduced from the fact that simultaneous
emission of two electrons via interaction with the one-electron dipole operator is not
possible and has to occur due to electron correlation. In this context, two mechanisms
representing different photon energy regimes, are used to visualize the double ionization
process [108]. The so-called knock-out mechanism, is operative at photon energies close
to the double ionization threshold. It involves emission of a slow first electron induced by
the interaction with the photon. The subsequent removal of the second electron occurs
due to the interaction between the leaving and the remaining electrons in the system. In
this regime it is the electron correlation in the final state of the double ionization which
plays the decisive role. In contrast, the so-called shake-off mechanism is operative at
high photon energies, where a sudden ionization of the first electron takes place. The
ionized system is not in in an eigenstate and there is a finite probability to populate an
ionic continuum state, i.e. to emit a second electron. Electron correlation present in the
system prior to the interaction with the photon facilitates the double ionization in this
regime.

The one-photon double ionization is a correlation driven two-electron process which
has to compete with the efficient one-electron process of single ionization. Therefore,
the double-to-single photoionization ratios lie at typically few percents only for metal
atoms such as magnesium [109,110]. Surprisingly, ETMD might be used to increase the
effectiveness of the double ionization process. In this chapter we will visualize the en-
hancement for the magnesium atom weakly bound to a helium neighbor. Removing an
electron from the helium atom by photoionization initiates a relaxation via ETMD(2),
which leads to the neutralization of the helium and the double ionization of the magne-
sium:

He ·Mg + hν → He+ ·Mg
ETMD(2)−−−−−−→ He ·Mg2+ + eETMD(2) (4.1)

The ETMD process is energetically allowed given the high electron affinity of the He+

cation (24.6 eV) and the low double ionization potential (DIP) of magnesium (22.7 eV).
The joint process shown by Eq. 4.1 can be considered as an one-photon double ionization
of magnesium. It is a sequence of an efficient one-electron helium photoionization and
a two-electron ETMD process. Hence, an increase of the double-to-single ionization

Parts of this chapter have been already published in
V. Stumpf, N. V. Kryzhevoi, K. Gokhberg and L. S. Cederbaum, Phys. Rev. Lett. 112, 193001
(2014). Copyright 2014, American Physical Society.
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4. One-photon double ionization via ETMD

ratio can be expected for magnesium atom attached to helium if ETMD has no strong
competitors. Again, it is the interatomic correlation between the transferred and the
emitted electrons in the ETMD process that drives the double ionization of magnesium.

The only process competing with ETMD after the photoionization of helium is the
radiative charge transfer (RCT):

He ·Mg + hν → He+ ·Mg
RCT−−−→ He ·Mg+ + hν

E
, (4.2)

accompanied by the emission of a photon with the frequency ν
E

. Both ETMD and RCT
processes involve an electron transfer and are expected to be slow at the equilibrium
geometry. Thus, we are interested in the ETMD-RCT branching ratio and its alteration
due to the impact of the nuclear dynamics. We consider the photoionization in the
photon energy range between 24.6 and 54 eV. There are no resonant excitations for the
isolated atoms in this range and the atomic electronic structure is assumed to be only
weakly modified by the presence of the neighbor [111].

4.1.1 Discussion

We start by inspecting the properties of the electronic ground state in the He·Mg cluster.
It is a typical weakly bound system, the binding energy being only 5.6 meV and the
equilibrium interatomic distance relatively large (REq = 5.15 Å, see Fig. 4.1). The
very weak attractive interaction leads to a broad probability density distribution of
interatomic distances which has a width of 2.7 Å while the distribution’s maximum is
shifted to the interatomic distance of 5.98 Å. Assuming instantaneous photoionization
the vibrational wave packet is vertically promoted from the He·Mg into the He+·Mg and
He·Mg+ states [112]. Additionally, a direct one-photon double ionization may populate
the He·Mg2+ state. We estimate the relative populations of the He+·Mg, He·Mg+ and
He·Mg2+ in the 24.6-54 eV photon energy range from the atomic photoionization cross
sections [109,113] as approximately 3000:100:1, given the weak interaction and the large
interatomic distance between the monomers.

The minimum of the He+·Mg potential energy curve (PEC) is shifted relatively to the
ground state towards a lower value of 3.15 Å, expressing the attractive charge-induced
dipole interaction of the hole on helium with the highly polarizable magnesium atom.
Hence, nuclear dynamics will set on immediately after the population of the He+·Mg
state and accompany the ETMD and RCT processes. At the equilibrium geometry
ETMD dominates RCT by approximately two orders of magnitude being by itself rather
slow with a lifetime of 4.8 ns−1. The comparison with the characteristic vibrational
frequency of 4.7 ps−1 shows that in contrast to ICD [6,34], ETMD is not able to compete
with nuclear dynamics. A reduction of the interatomic distance caused by the movement
of the nuclei increases the efficiency of both ETMD and RCT due to the exponentially
growing electronic overlap between the atomic centers [8]. Nevertheless, in the whole
classically allowed range of interatomic distances (i.e. up to the left classical turning
point RTP = 2.41 Å), ETMD remains the dominant electronic relaxation mechanism
(see Fig. 4.1, upper panel).

We expect ETMD to take place mostly at RTP , where the ETMD lifetime is reduced
to approximately 100 fs. In contrast to ICD, ETMD after single ionization does not
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4. One-photon double ionization via ETMD
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Figure 4.1: Potential energy curves and decay rates involved in the one-photon double ion-
ization of magnesium in the He·Mg cluster. In the photon energy range between 24.6 and 54
eV, the photoionization of the electronic ground state of He·Mg (black curve) predominantly
populates the He+·Mg state (as indicated by the size of the upwards pointing arrows). The
latter subsequently decays via competing ETMD and RCT mechanisms; the associated decay
rates are displayed by the full black and dashed red lines in the upper panel, respectively.
The equilibrium interatomic distance REq and the classical turning point RTP , where ETMD
is the most efficient, are indicated by dashed vertical lines. Reprinted with permission from
Ref. [114]. Copyright (2014) by the American Physical Society.

yield a pair of positively charged fragments. Hence, a characterization of the decay
process by ion-ion-electron coincidence techniques, as it has been performed for ICD
in van-der-Waals dimers [10, 115], is not possible. The energy of the emitted ETMD
electrons at the classical turning point lies at 2.1 eV, while in total an energy range
of 1.3-2.1 eV is covered. One should keep in mind that the energy sharing between
the two emitted electrons is significantly different in the direct and the ETMD-assisted
double ionization pathways. In the former case, the so-called knockout mechanism
implies emission of a first electron and a knockout of a second electron by the first,
the excess energy being shared by both electrons. In the latter case, the energy of the
photoelectron grows linearly with the photon energy, if the photoelectron is sufficiently
fast to avoid deceleration due to the so-called post-collision interaction [24]. Under the
same conditions, the energy of the ETMD electron is independent of the photon energy
and is determined by the energy difference between initial and final states at the classical
turning point. These features could be exploited in experiments recording ion-electron-
electron coincidences to distinguish both pathways of double ionization. To find how
efficient is the indirect mechanism, we define the double-to-single ionization ratio for
magnesium achieved in the photoionization of He·Mg by the following expression:

R(cluster) =
σMg2+ + σHe+ΓETMD/Γt
σMg+ + σHe+ΓRCT/Γt

, (4.3)
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Figure 4.2: One-photon ionization cross sections of magnesium being in the atomic state and
weakly bound to a helium neighbor. For the isolated atom, the double ionization cross section
is indicated by the solid black line. The single ionization cross section is assumed to be identical
for the isolated and bound states and is displayed by the green dashed-dotted line. The double
ionization cross section of the bound atom is indicated by the red dashed line. Note the
similarity of this cross section to the photoionization cross section of helium [113]. The inset
shows the one-photon double-to-single ionization ratio for bound magnesium computed using
the Eq. 4.3. Reprinted with permission from Ref. [114]. Copyright (2014) by the American
Physical Society.

where the atomic photoionization cross sections are denoted by σHe+ , σMg+ and σMg2+ .
The ETMD, RCT and the total decay widths of He+·Mg are given by ΓETMD, ΓRCT

and ΓT , respectively. Utilizing experimental values for the atomic photoionization cross
sections [109, 113], we calculated the R(cluster) value in the energy range of interest
(see the inset of Fig. 4.2). The enhancement of the double-to-single ionization ratio
relative to the isolated atoms sets on immediately above the helium ionization threshold
and is as large as three orders of magnitude. To explain this behavior, we plotted the
atomic photoionization cross sections together with the double ionization cross section
of magnesium in the He·Mg cluster (following the expression in the denominator of Eq.
4.3). We notice that because of the higher cross section helium is more likely to be
ionized by the photon than magnesium. Furthermore, due to the dominance of ETMD
over RCT the double ionization cross section of magnesium is virtually identical to the
photoionization cross section of helium. Applying the same argument, further enhance-
ment of double ionization can be achieved by attaching additional helium neighbors to
the magnesium atom.

The indirect double ionization mechanism discussed above is not restricted to metal
atoms. Molecules with a low double ionization potential, e.g. polyacenes fulfill the
requirements to undergo ETMD in the presence of the helium cation. Thus, naphtalene
has a DIP of 21.4 eV, in anthracene the DIP is decreased to 20.1 eV while for the larger
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4. One-photon double ionization via ETMD

polyacenes it is below 19 eV [28]. The double ionization enhancement is expected to be
weaker compared to the metal atoms since the double-to-single photoionization ratios
are higher for polyacenes and tend to grow with the size of the molecule. Increasing the
number of helium neighbors may remedy for this fact. Replacing helium neighbors with
neon atoms having a high ionization potential (IP) of 21.6 eV and up to 4-fold higher
photoionization cross section [113] would be another alternative for larger polyacenes.

4.2 ETMD of magnesium clusters embedded in helium
nanodroplets

To verify if the enhancement of the one-photon double ionization presented in the previ-
ous chapter takes place in large helium clusters, LaForge et al. performed an experiment
on photoionization of magnesium-doped helium nanodroplets [116]. The latter are ul-
tracold (T < 1 K), superfluid aggregates of helium atoms (103-108) which can be loaded
with atomic and molecular dopants [29]. The dopants are picked up from the gas phase
and cooled by evaporation of helium atoms from the nanodroplets. Sequential pickup
schemes provide complexes and molecules of specific composition [29, 117]. Being inert
and weakly perturbing, the nanodroplets serve as a unique matrix for spectroscopic and
photophysical studies of the embedded species [30]. In this context, the transparency in
the range from IR to photon energies of the lowest electronic excitations (20 eV) is of
great importance.

At higher photon energies, electronic excitation and ionization of the nanodroplets give
rise to electronic relaxation processes. In pure nanodroplets ICD occurs after multiple
excitation [118]. In doped nanodroplets ICD between the singly excited nanodroplets
and the dopant may occur [119]. Ionization of nanodroplets at photon energies above
24.6 eV has been shown to induce an electron transfer from the dopant [120]. In these
studies double ionization energy of the dopant was higher than the electron affinity of
the ionized droplet. LaForge et al. intended to initiate ETMD by the photoionization
of nanodroplets doped with magnesium atoms and clusters. We performed ab initio
calculations of ETMD electron energies in small He·Mgn and He2·Mgn (n =1-3) model
clusters to support the interpretation of the experimental spectra.

4.2.1 Discussion

In their experiment LaForge et al. generated nanodroplets of size 103-105 and sub-
sequently doped them with 1 to 25 magnesium atoms. The size of the droplets was
controlled via the temperature of the helium source while the amount of the dopant was
given by the droplet size and the temperature (i.e. vapor pressure) of the magnesium
oven. The doped droplets were ionized in a synchrotron beamline at photon energies
between 24.6 and 40 eV, the charged products of the ionization (electrons and ions) were
recorded. For the electrons the kinetic energy spectra, for the ions the mass spectra were
generated. Ion-ion and ion-electron coincidences were extracted from the raw data.

Parts of this chapter have been already published in
A. C. LaForge, V. Stumpf, K. Gokhberg, J. von Vangerow, F. Stienkemeier et al., Rev. Lett. 116,
203001 (2016). Copyright 2016, American Physical Society.
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4. One-photon double ionization via ETMD

Figure 4.3: Products recorded after excitation (hν =21.5 eV) and photoionization (hν =40
eV) of helium nanodroplets doped with magnesium clusters. (a) Mass spectra, indicating for-
mation of stable, doubly charged Mg2+

n ions after the photoionization of the droplet. (b) Kinetic
energy spectra of electrons measured in coincidence with these ions (black line). Reprinted
with permission from Ref. [116]. Copyright (2016) by the American Physical Society.

First evidence for double ionization via ETMD after the photoionization of the nan-
odroplet is given by the mass spectra (see Fig. 4.3) belonging to a nanodroplet doped
on average with six magnesium atoms. At even values of n the Mg2+

n signals can not be
distinguished from the Mg+

m series. For n = 7, 9, 11 a series of doubly ionized magnesium
clusters Mg2+

n is visible in the spectrum while for n = 5 the overlap with the HelMg+
2

series makes the interpretation of the signal at 60 amu ambiguous. These findings are
in agreement with a former study on the stability of doubly ionized magnesium clusters,
where five was the minimum cluster size detected by mass spectrometry [121]. The fact
that for photon energies lower than 20 eV no magnesium signal can be observed in the
mass spectra (see Fig. 1 in Ref. [116]) implies that the Mg2+

n ions are produced solely
after the ionization of the nanodroplet. Under such conditions, ETMD appears as the
most efficient mechanism to yield the Mg2+

n ions:

Hed ·Mgn + hν → He+
d ·Mgn

ETMD−−−−→ Hed ·Mg2+
n + eETMD, (4.4)

where Hed denotes the helium environment of the magnesium cluster in a nanodroplet.
Taking into account the lacking stability of the Mg2+

n clusters for n < 5, singly charged
Mg+

m fragments with m < 4 are likely to be produced by ETMD as well. An alterna-
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tive source of such fragments is the charge transfer from the dopant to the ionized
nanodroplet as has been demonstrated for alkali metals [120]. An ion-ion coincidence
measurement of the Mg+

m/Mg+
l ion pairs provides a possibility to discriminate between

the charge transfer and ETMD mechanisms since only the latter produces two ions si-
multaneously. In the Fig. 4.4, an ion-ion coincidence map for nanodroplets doped with
on average five to six magnesium atoms is shown. One can see that Mg+

m/Mg+
l ion pairs

are indeed readily produced by ETMD.
The experimental setup furthermore permits an extraction of electron-ion coincidences

for a desired ion signal. The electron spectrum recorded in coincidence with the intact
Mg2+

n ions is shown in the Fig. 4.3. Two energetically well separated peaks appear
in the spectrum. The high-energy peak at 15.4 eV can be clearly identified as the
helium photoelectron peak. The low-energy peak is centered around approximately
1.0 eV; no comparable signal can be observed for nanodroplets containing one or no
magnesium atoms inside (see Fig. 4.4). Hence, it can not be attributed to the scattering
of photoelectrons in the droplet and is likely to occur due to ETMD. The electron
spectrum correlated with the coincident Mg+

m/Mg+
l ion pairs (see Fig. 4.4) exhibits a

very similar structure. The only distinct feature is the shorter tail of the low-energy
peak. Keeping in mind that the parent magnesium clusters yielding the Mg+

m/Mg+
l ion

pairs are smaller than those yielding stable Mg2+
n ions, higher DIPs and slower ETMD

electrons can be anticipated for the ion pairs.
The intensity of the low-energy peak in the electron spectrum correlated to Mg+

m/Mg+
l

ion pairs amounts to approximately 80 percent of the photoelectron peak intensity.
If the ion-pairs are produced by ETMD only, equal number of ETMD electrons and
photoelectrons are expected to be recorded in coincidence. However, the photoelectrons
are highly abundant in the experiment as they are produced not only in coincidence with
the considered ions but in all droplet photoionization events. Hence, a small percentage
of the so-called false coincidences for the photoelectrons may be large in absolute terms
and contribute considerably to the high-energy peak in the coincident electron spectrum.
Taking into account this source of deviation, the electron spectrum seems to associate
the appearance of Mg+

m/Mg+
l ion pairs with the ETMD. To support these findings, we

performed ab initio calculations of ETMD electron energies in small, symmetric He·Mg3

clusters mimicking the corresponding Mg3 dopants in a helium nanodroplet. We aimed
to reproduce the low-energy peak in the electron spectra correlated with the Mg+/Mg+

2

ion pair (see Fig. 4.4). The chosen symmetries of the He·Mg3 clusters are displayed
in Fig. 4.5. Due to the weak interaction between the helium and the Mg3 unit, the
He·Mg interatomic distances are large and lie in the range of 4.2-5.2 Å. Therefore, we
assumed a picosecond timescale for ETMD as in the case of the He·Mg cluster (see
chapter 4.1). To account for the nuclear dynamics accompanying ETMD, we considered
a symmetric movement of the light helium cation towards the heavier Mg3 moiety after
the photoionization of helium. Along this coordinate we determined the classical turning
points, displayed by the structure in Fig. 4.5. The ETMD electron energies calculated
at the turning point geometries are compiled in the Tab. 4.1.

The large energy range of approx. 1.4-7.6 eV covered by the ETMD electrons results
from a band of doubly ionized main and satellite states of Mg2+

n with distinct localization
of the positive charge. The energies of the ETMD electrons are comparable for the
different geometries of He+·Mg3, which can be explained by the model used here. Within
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Figure 4.4: Products recorded in the ion-ion coincidence modus after photoionization (hν =40
eV) of helium nanodroplets doped with magnesium clusters. Nanodroplet size: 50000; average
magnesium cluster size: 6. (a) Mg+

m/Mg+
l ion pair coincidences (off-diagonal signals) indicating

Coulomb explosions of doubly ionized, unstable Mg2+ clusters. (b) Kinetic energy spectra of
electrons measured in coincidence with these ion pairs (black line). Note the difference to the
spectrum obtained by photoionization of nanodroplets doped with a single magnesium atom
and recorded in coincidence with the Mg+ ion (red line). Reprinted with permission from
Ref. [116]. Copyright (2016) by the American Physical Society.

our model, the energy of the initial ETMD state is determined at the turning point
geometry of He+·Mg3 and is per definition identical to the energy value at the equilibrium
geometry of He·Mg3. Due to the large He·Mg equilibrium distances, the dependence of
the initial state energy on the orientation of He+ relatively to the Mg3 unit is weak. On
the other hand, the final state energies depend weakly on the orientation of helium as
well, since it is only a weak perturber for the Mg2+

3 moiety.

The computed ETMD electron energies do not compare well with the experimental
values as there is no significant contribution from electrons with energies above 3 eV
in the experimental spectrum. Therefore, we have to reconsider our assumption of an
inert helium environment for the He+·Mg3 cluster embedded in the nanodroplet. It is
known from earlier photoionization studies on helium nanodroplets that relaxed He+

2

dimers can be formed in a time period as short as 60-80 fs [120]. To include such a
scenario in our model, we considered ETMD of the He+

2 ·Mg3 cluster (see Fig. 4.5) fixing
the distance between the helium atoms at the equilibrium value of He+

2 (RHeHe = 1.08
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Figure 4.5: Structures of He+
mMgn clusters representing the classical turning point geometries

for the movement of the light He+ and He+
2 ions towards the Mgn moieties. Due to the

high efficiency of ETMD, kinetic energies of the emitted electrons are determined at these
geometries.

Å) [122]. The classical turning geometry was identified along the coordinate of the He+
2

center of mass movement towards the center of mass of the Mg3 moiety (see Fig. 4.5).
The computed ETMD electron energies (see Tab. 4.1) are considerably lower compared
to those in the He+·Mg3 cluster. It is the very short distance between the helium atoms,
which causes this energy shift. The electron affinity of He+

2 is strongly reduced at such
interatomic distances due to the strong repulsion in the neutral helium dimer. The
scenario with the relaxation of the ionized helium dimer is in a better agreement to
the experimental electron spectrum and should be inspected also for other sizes of the
embedded magnesium clusters.

For the He+
2 ·Mg2 clusters (see Fig. 4.5) the ETMD channels are open and the cor-

responding electron energies lie below 1 eV. Unfortunately, a comparison with the ex-
perimental spectrum is not possible since only pairs of ions having different masses
can be detected in the coincidence experiment. For the He+

2 ·Mg cluster the ETMD
channel is closed, prohibiting the production of Mg2+ ions after the photoionization of
helium. In the absence of open electronic decay channels the charge transfer from the
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Table 4.1: ETMD electron energies of small, symmetric He+
mMgn clusters at geometries,

where ETMD is assumed to be most efficient. For the assignment of the structures see Fig.
4.5.

Cluster Geometry Ekin(ETMD) [eV]

He+·Mg3

1 1.4-7.3

2 1.8-7.6

3 1.7-7.2

He+
2 ·Mg2

1 0.6-1.0

2 0.6-0.9

He+
2 ·Mg3

1 0.4-2.3

2 0.2-2.2

magnesium to the relaxed He+
2 would result in a production of Mg+ without electron

emission. Interestingly, this finding explains why experimentally no low-energy electron
signal has been detected in coincidence with Mg+ ions produced by photoionization of
nanodroplets doped with a single magnesium atom (see Fig. 4.4).

4.3 Conclusions

In this chapter we investigated the enhancement of the one-photon double ionization
of a magnesium atom weakly bound to a helium neighbor. We demonstrated that the
helium species acts as antenna, absorbing the photon and efficiently doubly ionizing the
magnesium neighbor in an ETMD process. The indirect double ionization mechanism
increases the double-to-single ionization ratio for the magnesium atom by three orders
of magnitude.

An experimental verification of the enhanced one-photon double ionization was pro-
vided by the photoionization of helium nanodroplets doped with magnesium clusters.
Intact doubly ionized Mg2+

n clusters as well as coincident Mg+
m/Mg+

l pairs of ions were
detected above the photoionization threshold of the helium nanodroplets. Moreover,
neutralization of the ionized nanodroplet via ETMD provided information about the
structure of the charged helium species by measuring the kinetic energy of the emitted
electron. This is in contrast to previous charge transfer studies in ionized helium nan-
odroplets [120] where the species carrying the excess energy (e.g. a photon in RCT)
were not recorded.
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5 ETMD of multiply charged cations
produced via Auger decay in rare gas
clusters

5.1 ETMD of Ne cations after KLL Auger decay in
Ne·Xe

Interaction of X-Rays with atoms predominantly leads to the ionization of core electrons
if the energy of the photons exceeds the core ionization threshold. The preference for
the core ionization is a consequence of the low valence ionization cross sections at high
photon energies [123]. The core-ionized states are highly energetic, metastable and
undergo fast relaxation. For light chemical elements, the non-radiative Auger decay
is the dominant relaxation pathway. It involves a reorganization of electrons in the
occupied orbitals and the emission of a fast electron on a timescale of a typically few
femtoseconds. As the result a doubly charged cation is formed, although emission of
more than two electrons in the double Auger process is also possible [124]. In heavier
atoms with several electronic shells removal of a core electron may initiate a cascade
of Auger steps, where several electrons are emitted and a higher positive charge is
accumulated. A conspicuous feature of both X-ray absorption and the Auger decay is
that they are local in nature and occur mostly on a selected atom or molecule, even if
this atom or molecule is in a cluster or solution.

Most of the cationic states populated in the Auger decay have vacancies in the outer-
valence orbitals. We will inspect more closely the Auger decay in the neon atom which
takes place after its 1s ionization (see Tab. 5.1). We neglect the competing relaxation
of the core hole via photon emission due to the low branching ratio (≈ 1 % [126]). Both
the Auger (94%) and the double Auger (6%) processes occur resulting in Ne2+ and Ne3+

ions [126]. The dicationic ground state Ne2+(2p−2 3P) is not populated in the Auger
decay due to symmetry restrictions, therefore, the populated Ne2+ states possess excess
energy and are metastable. When isolated, these neon dications can only de-excite via
photon emission, which takes place on a timescale of 0.1 ns or slower [111]. The dications
embedded into a chemical environment, for example if produced them in a cluster, may
decay in an efficient, electronic pathway. Dications with a sufficiently high excess energy,
i.e. those being in the Ne2+(2s−12p−1 1P), Ne2+(2s−12p−1 3P) and Ne2+(2s−2 1S) states
may decay by ICD. ICD typically occurs on a femtosecond timescale and is able to

Parts of this chapter have been already published in
V. Stumpf, S. Scheit, P. Kolorenč and K. Gokhberg, Chem. Phys.,
http://dx.doi.org/10.1016/j.chemphys.2016.08.018 (2016). Copyright 2016, Elsevier.
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Table 5.1: Relative populations of the Neq+ cationic states produced in the KLL Auger [125]
and KLLL double Auger [124, 126] decay of Ne. For cations embedded into a chemical envi-
ronment the excess energies (EE) and maximum electron affinities (EA) provide information
about available interatomic relaxation mechanisms. Highly excited cations efficiently decay via
ICD, energetically low-lying dications may decay by ETMD due to the high electron affinity.

Neq+ El. State Auger Pop. [%] EE [eV] EA [eV] Decay mode

Ne3+

2p−3 (4S, 2D, 2P) 2.5 0.0-7.7 63.4-71.1 ETMD

2s−12p−2 (4P, 2D, 2S, 2P) 3.0 22.8-39.7 86.2-103.1 ETMD, ICD

2s−22p−1 2P 0.5 60.2 123.6 ICD

Ne2+

2p−2 3P 0.0 0.0 41.0 ETMD

2p−2 1D 57.5 3.2 44.1 ETMD

2p−2 1S 9.1 6.9 47.8 ETMD

2s−12p−1 3P 5.7 25.3 66.3 ICD

2s−12p−1 1P 16.0 35.9 76.8 ICD

2s−2 1S 5.7 59.3 73.4 ICD

quench the slower photon emission. The Auger-ICD cascade was theoretically predicted
by Santra et al. [31] and later verified in coincidence experiments in core-ionized rare
gas dimers [32].

For the majority of the dications which are in Ne2+(2p−2 1D) and Ne2+(2p−2 1S)
electronic states the excess energy is so small that the ICD channel is closed for any
realistic environment. Nevertheless, due to the high positive charge, these low-lying
states are characterized by a high electron affinity of more than 44 eV. Hence, in a
chemical environment an electron transfer to the dications follows the Auger decay. This
process releases an excess energy which has to be given to a third body to ensure energy
conservation and to render the process irreversible. Therefore, the electron transfer is
typically coupled either to the emission of a photon (radiative charge transfer [127]) or
to the movement of the nuclei (Marcus electron transfer [3]). An alternative, purely
electronic dissipation mechanism is provided by ETMD. The energy released by the
transfer of the first electron is utilized to remove a second electron from the environment
into the electronic continuum. From the dications’ point of view ETMD, as any other
electron transfer mechanism, leads to its partial neutralization reducing its charge by
one. For the system as a whole the total charge increases by one but it becomes less
localized.

To gain better understanding of this ETMD driven neutralization mechanism we
would like to study it in a system where it can be investigated in detail by both compu-
tational and experimental techniques. A suitable class of systems for this purpose are
the rare gas clusters which have been widely used in studies of the interatomic electronic
decay [128]. They are produced by the ultrasonic expansion of the pure gases or gas mix-
tures, a technique which allows to control the cluster size distribution and composition.
In contrast to molecular clusters, in rare gas clusters the products of Coulomb explo-
sions which follow the interatomic decay are mostly atomic, reducing the complexity of
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the coincidence spectra. Given the weak interactions between the rare gas atoms the
clusters largely retain the closed-shell electronic structure in the neutral ground state.
From the computational point of view, single-determinant based approaches, such as
the ADC method, can be efficiently applied to calculating ionized and excited states
involved in the electronic decay.

Rare gas dimers are the smallest such clusters and for them the observables of the
interatomic decay can be determined with the highest possible level of accuracy both
computationally and experimentally. The most prominent example is the investigation
of ICD in the neon dimer. A detailed theoretical study [86] motivated a coincidence
experiment [10], which verified the mechanism. On the other hand, the experimental
results revealed discrepancies with the computed spectra and led to refined calcula-
tions [34]. Thus, the collaboration between the experimentalists and the theoreticians
helped to understand basic features of ICD and to improve the computational meth-
ods. Importantly, this well studied dimer provided later an ideal system for complicated
optical pump-probe experiments designed to follow ICD as it progressed in time [25].

The only rare gas dimer where ETMD is energetically allowed after a single step Auger
decay is Ne·Xe:

Ne · Xe + hν → Ne+(1s−1) · Xe
Auger−−−→ Ne2+(2p−2) · Xe

ETMD−−−−→ Ne+(2p−1) · Xe2+(5p−2) + eETMD.
(5.1)

We do not wish to consider multistep Auger cascades in rare gas dimers since the cor-
responding product distribution is more complex. This would noticeably reduce the
populations of individual states and complicate the analysis of the experimental spec-
tra. From the computational point of view it also implies analysis of triply and higher
ionized states, for which no methods to compute the decay widths are currently avail-
able. Therefore, we think that the Ne·Xe dimer is the simplest system where ETMD
after Auger decay can be investigated in detail.

The products of ETMD in Ne2+·Xe undergo a Coulomb explosion and offer a possibil-
ity to detect in an experiment the charged Ne+ and Xe2+ nuclei in coincidence with the
ETMD and photoelectrons. In this way ETMD and ICD events which follow the Auger
decay can be discriminated since in the latter Ne2+/Xe+ pairs of ions are produced. Our
aim is to motivate an experimental study of the ETMD-driven neutralization. To this
end we compute the kinetic energy spectra of the ETMD electrons and the nuclei in
the Ne·Xe dimer. In our calculations presented below we disregard the ETMD of Ne3+

cations produced by the double Auger decay of the core ionized neon due to the low
population [126].

5.1.1 Potential energy curves

The non-relativistic PECs of the doubly ionized states of Ne·Xe which correlate with
the decaying Ne2+(2p−2 1D)·Xe and Ne2+(2p−2 1S)·Xe state multiplets are shown in
Fig. 5.1. The five PECs of Σ, Π and ∆ symmetries which correspond to the former
multiplet are virtually degenerate for all interatomic distances but the shortest. The
PECs are bound and have the binding energies of 0.92 eV to 0.95 eV and the equilibrium
distances ≈2.85 Å. The PEC of the Ne2+(2p−2 1S)·Xe (Σ) state has the binding energy
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Figure 5.1: Non-relativistic ab initio diabatic PECs of the decaying Ne2+(2p−2)·Xe states and
adiabatic PECs of the final Ne+·Xe2+ (dashed lines) and Ne·Xe3+ (dashed-dotted lines) states
of ETMD. The PECs of the decaying states were shifted so as to match the experimental atomic
energies as given in Ref. [111] at asymptotic separations. All final states were uniformly shifted
so that the PECs of the Ne+(2p−1 2P)·Xe2+(5p−2 1D) match the asymptotic value available
experimentally. The errors in the asymptotic energies of other states were < 0.54 eV. Note,
that ETMD of the Ne2+(2p−2 1D)·Xe state leads only to the appearance of the Ne+ and Xe2+

ions. The decay of the Ne2+(2p−2 1S)·Xe state can also produce the Ne, Xe3+ pair. The dotted
vertical line denotes the equilibrium distance R0 of the Ne·Xe ground state. Reprinted from
Ref. [129]. Copyright (2016), with permission from Elsevier.

of 0.95 eV at 2.90 Å. The photoionization and the subsequent Auger decay (τAuger = 2.7
fs [125]) promote the vibrational wavepacket of the neutral ground state vertically into
the decaying dicationic states. The minima of the PECs of both decaying state multiplets
lie at shorter interatomic distances than the equilibrium distance R0 = 3.90 Å in the
electronic ground state of Ne·Xe. Therefore, we expect ETMD to be accompanied by
nuclear dynamics leading to the contraction of the average interatomic distance.

The non-relativistic final states of ETMD correlate at large interatomic distances
with the Ne+(2p−1 2P)·Xe2+(5p−2 3P), Ne+(2p−1 2P)·Xe2+(5p−2 1D) and Ne+(2p−1

2P)·Xe2+(5p−2 1S) states. These states form three energetically well separated groups
(see Fig. 5.1). Both Ne2+(2p−2 1D)·Xe and Ne2+(2p−2 1S)·Xe states decay into this
manifold of final states emitting an electron and setting off the Coulomb explosion of
the Ne+ and Xe2+ nuclei. Under the effect of the spin-orbit coupling the lowest group
corresponding to the Ne+(2p−1 2P)·Xe2+(5p−2 3P) states splits into three corresponding
to the three atomic terms of Xe2+(5p−2): 3P2, 3P0 and 3P1 (see Fig. 5.2).

The manifold of the final states of ETMD is made complicated by the appearance of
the states of Ne·Xe3+(5p−3) character. Asymptotically these states lie only about 10
eV higher than the Ne+·Xe2+ states. Their PECs lie above the ones of the Ne2+(2p−2

1D)·Xe decaying state and are inaccessible from it in the electronic decay; however, the
Ne2+(2p−2 1S)·Xe state can electronically decay into these states. Such decay may be
termed double ETMD, since two electrons are transferred from Xe to Ne, while the
third one is emitted into continuum. Double ETMD which involves three electrons
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of which two are transferred between atoms should be much slower than the normal
ETMD which suggests that this channel might be neglected. However, the fast growing
repulsive Ne+·Xe2+ states states cross and interact with the Ne·Xe3+ states leading to
the appearance of a series of avoided crossings between 2 Å and 4 Å, i.e. exactly at
interatomic distances where ETMD takes place. Thus ETMD might efficiently proceed
into a Ne+·Xe2+ state to be followed by the separation of the nuclei on an adiabatic
PEC such that it is Ne and Xe3+ which are produced and not Ne+ and Xe2+.

This shows that if high precision is desired in the description of ETMD spectra of the
Ne2+(2p−2 1S)·Xe state one needs the accurate knowledge of the positions of and coupling
strengths at the avoided crossings between Ne+·Xe2+ and Ne·Xe3+ final states which
can be obtained only in high level relativistic calculations. Moreover, to find accurate
branching ratio of the decay into each of these two classes of final states calculation of
the non-adiabatic nuclear dynamics in the final state is necessary. However, the decay
of the Ne2+(2p−2 1S)·Xe state proceeds mostly into the Ne+·Xe2+ manifold; the decay
to the Ne·Xe3+ states remains weak. Therefore, in our computations of the spectra we
rely on a model Ne+·Xe2+ final state manifold introduced in the next paragraph, while
the decay into Ne·Xe3+ states will be discussed only qualitatively.

The PECs of the Ne+·Xe2+ final states behave very nearly as 2/R for the interatomic
distances at which ETMD of the Ne2+(2p−2 1D)·Xe multiplet takes place. Therefore,
we replace the respective PECs via the 2/R curves and shift the latter individually so
that each matches the respective experimental energies at the separated atoms limit
(see Fig. 5.2). For the interatomic distances where ETMD into the respective final
states is allowed the approximation works best for the PECs deriving from the Ne+(2p−1

2P)·Xe2+(5p−2 1S) states (cf. Figs. 5.1 and 5.2). The group of PECs corresponding to the
Ne+(2p−1 2P)·Xe2+(5p−2 1D) state, which are degenerate at large interatomic distances,
are not degenerate anymore at the distances where the ETMD of Ne2+(2p−2 1D)·Xe takes
place. However, the energy splitting amounts to a few hundred meV at most and will
result in small changes of the spectral shape. Finally, for the Ne+(2p−1 2P)·Xe2+(5p−2

3P) state a similar degeneracy lifting and the appearance of the avoided crossing with
a Ne·Xe3+ state should similarly have a small impact on the ETMD spectra. The spin-
orbit interaction in the Ne+(2p−1 2P)·Xe2+(5p−2 3P) multiplet is the most important
relativistic effect in the final states manifold. Since the overall shape of the PECs will
be mostly determined by the Coulomb repulsion between Ne+ and Xe2+ in the range of
R relevant for ETMD, the impact of this interaction will be to split the corresponding
group of states into three. We can also use this model to estimate the ETMD spectra
obtained in the decay of the Ne2+(2p−2 1S)·Xe state, although the expected result will
be less accurate due to the more complex structure of accessible final state manifold.

We can immediately use the phenomenological model of the ETMD final states in Fig.
5.2 for a qualitative discussion of the ETMD spectra. Thus, ETMD of the Ne2+(2p−2

1D)·Xe state into the Ne+(2p−1 2P)·Xe2+(5p−2 1S) channel becomes forbidden at R =
4.5 Å. Since the initial vibrational wavepacket is centered about R0 = 3.90 Å, and
the dynamics in the decaying state leads to the shortening of the average interatomic
distance, the ETMD into this channel will be limited only to the exponential tail of the
wavepacket and, thus, will be negligible. Therefore, ETMD proceeds mostly into the
Ne+(2p−1 2P)·Xe2+(5p−2 1D) and Ne+(2p−1 2P)·Xe2+(5p−2 3P) channels which become
closed at 3.45 Å and 3.05 Å, respectively. From the positions of the thresholds we
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Figure 5.2: (Solid lines) Non-relativistic diabatic PECs of the decaying Ne2+(2p−2)·Xe states
and the PECs of the final Ne+·Xe2+ states obtained using a phenomenological model. The
final states are approximated by 2/R curves which have correct non-relativistic energies at the
limit of the separated atoms. (Dashed lines) The 2/R curves corresponding to the spin-orbit
split Ne+(2p−1 2P)·Xe2+(5p−2 3P) states. The dotted vertical line denotes the equilibrium
distance R0 of the Ne·Xe ground state. Reprinted from Ref. [129]. Copyright (2016), with
permission from Elsevier.

conclude that the electron spectra cut-off lies at 0 eV, while the maximum kinetic energy
release (KER) for the nuclei available in the system is about 9.60 eV (10.10 eV if the
spin-orbit splitting of the Xe2+(5p−2 3P) term is taken into account).

The decay from the Ne2+(2p−2 1S)·Xe state is possible into all three ETMD channels.
Only the Ne+(2p−1 2P)·Xe2+(5p−2 1S) channel becomes closed at 3.05 Å, while the two
other channels remain open for all interatomic distances of interest. Therefore, a large
proportion of ETMD events will take place at the inner turning point Rin ≈ 2.45 Å.
The minimum electron energy expected in the decay of this state is, thus, about 0.55
eV, while the maximum KER is about 11.66 eV. The larger maximum KER in this case
indicates that ETMD might take place at shorter interatomic distances compared to the
case of the Ne2+(2p−2 1D)·Xe state.

5.1.2 Total and partial ETMD widths

To obtain the full shape of the electron and KER spectra we first need to know the
values of the total and partial ETMD widths for each decaying state. The total ETMD
widths of the 1Σ, 1Π and 1∆ terms which derive from the Ne2+(2p−2 1D)·Xe multiplet are
shown in Fig. 5.3. First we observe that for all but the shortest interatomic distances the
widths show exponential behavior characteristic for the charge transfer driven processes.
The sudden jumps at 4.55 Å, 3.45 Å, and 3.05 Å occur due to the closing of the
Ne+(2p−1 2P)·Xe2+(5p−2 1S), Ne+(2p−1 2P)·Xe2+(5p−2 1D) and Ne+(2p−1 2P)·Xe2+(5p−2

3P) channels. The total widths of the 1Σ and 1Π terms are very similar for all R in
question and are up to two orders of magnitude larger than the width of the 1∆ term.
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5. ETMD of multiply charged cations produced via Auger decay in rare gas clusters

This ordering of the total decay widths can be explained by the different extent of
the overlap between the hole density in Ne2+ and the valence electrons of Xe which
determines the efficiency of the charge transfer. Thus, Ne2+ (p−2

σ ) and (p−1
σ p−1

π ) are the
leading configurations in the 1Σ and 1Π terms, respectively. The hole in the pσ orbital
overlaps well with the valence electrons on Xe facilitating ETMD. On the contrary, the
hole density in the 1∆ term is described by the (p−2

π ) configuration and overlaps much
less with the electron density on Xe.

We next consider more closely the behavior of the total widths in the region where
the dynamics during ETMD takes place. The total widths of the three terms at R0

are 0.298 meV (2.18 ps), 0.308 meV (2.11 ps), and 0.042 meV (15.47 ps) for the 1Σ,
1Π and 1∆ terms, respectively. We notice that these ETMD lifetimes are at least an
order of magnitude shorter than the lifetime of He+-Mg at the respective equilibrium
distance discussed in chapter 4.1. The lifetime reduction can be explained by a smaller
interatomic equilibrium distance and an increased number of electrons on the neighbor
which can participate in ETMD.

With the decreasing distance the ETMD widths grow, indicating that the neutral-
ization process is expected to be enhanced by nuclear dynamics and to proceed on a
picosecond to hundreds of femtoseconds timescale depending on the leading hole con-
figuration in the decaying state. However, they do so non-monotonically due to the
closing of the Ne+(2p−1 2P)·Xe2+(5p−2 1D) channel at 3.45 Å. This behavior leads to
an interesting result that for the 1Π and 1∆ terms the width reaches maximum not at
the shortest distance at which the decay is possible but at the Ne+(2p−1 2P)·Xe2+(5p−2

1D) threshold. For the 1Σ term the values of the width at both thresholds (denoted (3)
and (2) in Fig. 5.3) are very close. Therefore, due to the closing of the channels the
total width oscillates in the range of R where the nuclear dynamics takes place during
ETMD.

The behavior of the partial decay width will be discussed only briefly. Since our
methods do not always allow the construction of channel projection operators, one often
approximates the partial decay width by dividing the total width through the number
of available final states. This approximation may lead to noticeable errors; however,
their impact on the measurable spectra will be small if the final states are nearly de-
generate and do not interact with other states. Therefore, in our case it is sufficient
to compute only the partial decay widths into the groups of nearly degenerate states
correlating with the Ne+(2p−1 2P)·Xe2+(5p−2 1S), Ne+(2p−1 2P)·Xe2+(5p−2 1D) and
Ne+(2p−1 2P)·Xe2+(5p−2 3P) multiplets. We could carry out such calculation of the
partial widths only for the Ne2+(2p−2 1D)·Xe decaying state. Interestingly, at R ≥ 4.55
Å where all three channels are open the ratio of partial widths is 3.3:4.0:1.0 (averaged
over the initial Ne2+(2p−2 1D)·Xe multiplet) which should be compared to the ratio of
final states multiplicities 9:5:1. At R0 where the decay into the Ne+(2p−1 2P)·Xe2+(5p−2

1S) channel is forbidden the ratio of the partial decay widths into the two remaining
channels is 6:5 compared to the 9:5 ratio of their multiplicities.

The behavior of the total ETMD width of the 1Σ term deriving from the Ne2+(2p−2

1S)·Xe state is also shown in Fig. 5.3. An important difference between the Γ(R) which
corresponds to this state and the states considered previously is that ETMD channels
remain open for all R where the nuclear dynamics during ETMD takes place. This state
is dominated by the (p−2

σ ) and (p−2
π ) configurations and, therefore, at larger R exhibits
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Figure 5.3: Total ETMD widths of the terms deriving from the Ne2+(2p−2 1D)·Xe and
Ne2+(2p−2 1S)·Xe decaying states. (Dashed line) 1Σ term derived from the Ne2+(2p−2 1S)·Xe,
(Dotted line) 1Σ term, (Solid line) 1Π term, (Dashed-dotted line) 1∆ term derived from the
Ne2+(2p−2 1S)·Xe multiplet. The numbered dashed vertical lines enumerate different channel
thresholds in the decay of the Ne2+(2p−2 1D)·Xe multiplet: (1) Ne+(2p−1 2P)·Xe2+(5p−2 1S),
(2) Ne+(2p−1 2P)·Xe2+(5p−2 1D), (3) Ne+(2p−1 2P)·Xe2+(5p−2 3P). The dotted vertical line
denotes the equilibrium distance R0 of the Ne·Xe ground state. Reprinted from Ref. [129].
Copyright (2016), with permission from Elsevier.

an overlap of Ne2+ with Xe and the total decay width slightly lower than the ones of
the 1Σ, 1Π terms of the Ne2+(2p−2 1D)·Xe state. Up to the threshold at 3.05 Å the
width behaves nearly exponential, while at shorter distances it is strongly enhanced
due to the admixture of configurations of the Ne+(2p−1)·Xe+(5s−1) character. At R0

the total width is 0.30 meV (2.17 ps), however, at R = 2.4 Å the combined effect of
the shorter interatomic distance and the electron delocalization between Xe and Ne2+

leads to the ETMD width of 72.91 meV (8.92 fs). To compute the partial widths in
the decay of the Ne2+(2p−2 1S)·Xe state we had to resort to dividing the total ETMD
width through the weights of the final states multiplets. The definition of the channel
projectors becomes difficult in this case due to the mixing of the Ne+·Xe2+ and Ne·Xe3+

states. The computed partial widths ratios in the case of the Ne2+(2p−2 1 )·Xe multiplet
allow us to estimate the errors incurred.

5.1.3 ETMD electron and KER spectra

Using the ETMD widths in Fig. 5.3 and the non-relativistic phenomenological PECs
shown in Fig. 5.2 we computed ETMD electron and KER spectra plotted in Figs. 5.4
and 5.5, respectively. We also estimated the effect of the spin-orbit splitting on the
spectra and found it to be limited as discussed in the last paragraphs of this section.

The easiest to interpret are the spectra of the Ne2+(2p−2 1S)·Xe state.The KER spec-
trum (see Fig. 5.5(a)), which shows what is the probability for the decay to take place
at a specific R, appears as a single narrow peak at 12 eV indicating that ETMD oc-
curs predominantly at the inner turning point of the decaying state PEC at 2.45 Å.
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Figure 5.4: ETMD electron spectra com-
puted using the final state manifold in Fig.
5.2. (a) Electron spectrum corresponding to
the decay of the Ne2+(2p−2 1S)·Xe state. (b)
Electron spectrum corresponding to the de-
cay of the Ne2+(2p−2 1D)·Xe state. (c) To-
tal electron spectrum obtained by summing
the spectra in (a) and (b). The ratio of the
integrated spectra in panels (a) and (b) cor-
responds to the ratio of the respective pop-
ulations (1:6) of the ETMD decaying states
reached in the Auger decay. Reprinted from
Ref. [129]. Copyright (2016), with permission
from Elsevier.
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ETMD proceeds almost exclusively into the Ne+(2p−1 2P)·Xe2+(5p−2 1D) and Ne+(2p−1

2P)·Xe2+(5p−2 3P) channels which are open for all R of interest, while the decay into the
Ne+(2p−1 2P)·Xe2+(5p−2 1S) channel is negligible. The decay into these two energeti-
cally separated channels is well visible in the ETMD electron spectrum (see Fig. 4(a))
as two sharp peaks at 0.7 eV and 2.2 eV, respectively. The narrow width of the peaks in
both electron and KER spectra is due to the behavior of the total ETMD width which
grows almost tenfold between the minimum of the decaying states PEC and the inner
turning point.

The electron spectrum due to ETMD of the Ne2+(2p−2 1D)·Xe state (see Fig. 5.4(b))
appears as one broad peak between 0 eV and 4 eV. The overwhelming contribution
to this peak comes again from the decay into the Ne+(2p−1 2P)·Xe2+(5p−2 1D) and
Ne+(2p−1 2P)·Xe2+(5p−2 3P) channels which become closed at distances smaller than
R0. The appearance of this spectrum which is so different from the spectra of the
Ne2+(2p−2 1S)·Xe state is due to the fact that none of the ETMD channels remains
open for all R where nuclear dynamics take place. It leads to the behavior of the total
width which we noted above - instead of reaching a maximum at the smallest available
R it exhibits two maxima - one at each threshold.

Since the probability of the decay does not vary much in the interval of R where the
nuclei move, it results in a broad distribution of the energies of the emitted electrons.
Another consequence of this behavior of Γ is the appearance of the vibrational structure
in the spectrum with the peaks at 0.4 eV and 1.8 eV corresponding to the decay close
to the ETMD thresholds. Our calculations show that this structure is due to the decay
into the Ne+(2p−1 2P)·Xe2+(5p−2 3P) channel (see Fig. 5.6). The KER spectrum due to
the ETMD of the Ne2+(2p−2 1D)·Xe state lies between 6.5 and 10.5 eV (see Fig. 5.5(b))
and is also quite structured. The peaks at approximately 8.6 and 10.2 eV correspond
to the thresholds of the Ne+(2p−1 2P)·Xe2+(5p−2 1D) and Ne+(2p−1 2P)·Xe2+(5p−2 3P)
channels, respectively. We see prominent peaks marking the channel thresholds due
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Figure 5.5: KER spectra computed using the
final state manifold in Fig. 5.2. (a) KER
spectrum corresponding to the decay of the
Ne2+(2p−2 1S)·Xe state. (b) KER spectrum
corresponding to the decay of the Ne2+(2p−2

1D)·Xe state. (c) Total KER spectrum ob-
tained by summing the spectra in (a) and (b).
The ratio of the integrated spectra in pan-
els (a) and (b) corresponds to the ratio of
the respective populations (1:6) of the ETMD
decaying states reached in the Auger decay.
Reprinted from Ref. [129]. Copyright (2016),
with permission from Elsevier.

to the non-monotonic behavior of the total ETMD width which has maxima at the
respective R. Moreover, these peaks are distinguishable in the KER spectra, since
the thresholds lie at different values of the interatomic distance. Again a vibrational
structure is visible in the spectrum due to the decay into the Ne+(2p−1 2P)·Xe2+(5p−2

3P) state.

Adding up the ETMD spectra of the Ne2+(2p−2 1D)·Xe and Ne2+(2p−2 1S)·Xe states
we obtain the total ETMD electron (Fig. 5.4 (c)) and KER (Fig. 5.5(c)) spectra
which should be observable in Ne·Xe following the Auger decay of the 1s-vacancy on
Ne. One may immediately see that the two electron spectra overlap making it difficult
to discern the contributions of ETMD from the different decaying states. The KER
spectra, on the contrary, are well separated energetically with the sharp peak due to the
ETMD of the Ne2+(2p−2 1S)·Xe state clearly visible at 12 eV. This spectral structure
offers a convenient opportunity to investigate the ETMD of the two decaying states
independently. Thus, a measurement of slow electrons coincident with the Ne+ and
Xe2+ nuclei which have 12 eV of KER should give the electron spectrum in Fig. 5.5(a).
The electron spectrum corresponding to the ETMD of Ne2+(2p−2 1D)·Xe state can be
obtained by collecting slow electrons coincident with the nuclei having 6 to 10.5 eV of
KER.

We would also like to note that the PECs of Σ and Π symmetries corresponding to
the lower lying Ne2+(2p−2 1D)·Xe state multiplet cross at about 3.5 Å the respective
PECs of the Ne+(2s−1 2S)·Xe+(5p−1 2P) state which is not populated directly in the
Auger decay. Therefore, nuclear dynamics which is set off by the Auger decay may
lead to the electron transfer and population of the Ne+(2s−1 2S)·Xe+(5p−1 2P) state.
The latter is electronically unstable and decays by ICD into the same final states as
ETMD. In addition to ICD, populating the Ne+(2s−1 2S)·Xe+(5p−1 2P) state leads to
the Coulomb explosion of the cluster. Since ICD rate decreases fast with the interatomic
distance the majority of ICD events will take place close to the crossing point resulting
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Figure 5.6: Comparison of the electron spectra obtained in ETMD of the Ne2+(2p−2 1S)·Xe
1Σ term into the Ne+(2p−1 2P)·Xe2+(5p−2 3P) channel with (dashed line) and without (solid
line) taking into account the spin-orbit splitting of the Xe(2+5p−2 3P) multiplet. Note the
vibrational structure visible in both spectra. Reprinted from Ref. [129]. Copyright (2016),
with permission from Elsevier.

in the electrons of 0 to 1.6 eV and KER of about 8.2 eV. These values lie within the
ETMD electron and KER spectra. Although the energy splitting due to the crossing
was found to be 0.04 to 0.1 eV we assume the non-adiabatic coupling to be weak, since
electron transfer is accompanied by the excitation of a 2s electron of Ne. Therefore,
we do not expect that the signal from this sequential electron transfer-ICD process will
be discernible in the experimental spectra. In general, non-adiabatic coupling to charge
transfer states as discussed above is likely to appear for the multiply charged states
decaying by ETMD and characterized by a large localized positive charge. However,
the charge transfer state has necessarily to be highly excited since the non-adiabatic
coupling occurs in the electronic continuum corresponding to the open channels. Thus,
a charge transfer state is likely to decay via autoionization or ICD, yielding the same
products as in the ETMD decay. We will return to this phenomenon in chapter 7,
discussing interatomic decay of highly charged metal ions.

To estimate the effect that the spin-orbit splitting of the final state would have on the
ETMD Ne+(2p−1 2P)·Xe2+(5p−2 3P) spectra of the Ne2+(2p−2 1D)·Xe state multiplet we
computed the electron spectra for the decay of the Ne2+(2p−2 1D)·Xe 1Σ state using the
model curves for the split Xe2+(5p−2 3P) multiplet. The results shown in Fig. 5.6 indi-
cate that the overall appearance of the spectrum remains very much the same. However,
the integrated intensity of the spectrum in the spin-orbit case is larger indicating that
the decay into the Ne+(2p−1 2P)·Xe2+(5p−2 3P) state becomes more probable. This is
due to the shifting of the ETMD thresholds so that the contribution of the 3P2 channel
which closes at shorter interatomic distances outweighs the contributions of the 3P0 and
3P1 channels which close at longer ones. We expect the effect of the spin-orbit splitting
on the spectra of the 1Π and 1∆ terms to be similar. Importantly, the spin-orbit splitting
of the final state does not destroy the vibrational structure visible in the spectra.

In the case of the Ne2+(2p−2 1S)·Xe state the spin-orbit splitting will have no effect
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on the KER spectrum, since the latter is defined by the value of R at which the decay
predominantly takes place. However, in the corresponding electron spectrum the peak
at 2.2 eV will be split into three reflecting the splitting of the Ne+(2p−1 2P)·Xe2+(5p−2

3P) multiplet in the final state.

We would like to conclude the discussion of the results by some qualitative consid-
eration of ETMD into the Ne·Xe3+ channel possible from the Ne2+(2p−2 1S)·Xe state.
Decay onto the PECs denoted by the dashed-dotted lines in Fig. 1 will lead to the
dissociation of the dimer and the production of Ne and Xe3+ if the adiabatic nuclear
dynamics takes place on the final PEC. Assuming that the decay is the strongest at
the thresholds or the inner turning point of the decaying PEC we can estimate that
the ETMD electrons will have energy between 0 eV and 1 eV. The KER of Ne and
Xe3+ lies between 1.5 eV and 3 eV. Therefore, the corresponding decay should be seen
from the coincidence of an electron with energy < 1 eV with the Xe3+ having energy
between 0.2 eV and 0.4 eV. Due to the relatively low population of Ne2+(2p−2 1S)·Xe
state and a small number of accessible Ne·Xe3+ states the probability of such coincident
events may not be large. However, experimental observation of such events will be an
important demonstration of the impact that nuclear dynamics in the final states have
on the ETMD process.

In general, interactions between channels belonging to ETMD and double ETMD may
increase the degree of neutralization. The latter may be populated in the course of adi-
abatic nuclear dynamics of nuclear dynamics following ETMD. However, the branching
ratio of the double ETMD products will be low if the near-degeneracy of ETMD and
double ETMD channels occurs at medium or large interatomic distances as in the case
of Ne·Xe. At such geometries the interaction between the channels is weak and the
splitting of the adiabitc PECs small, making adiabatic nuclear dynamics improbable. If
the interaction occurs at geometries, where ETMD would be most efficient, both ETMD
and double ETMD channels would be directly populated due to the channel mixing. In-
terestingly, near degeneracy of ETMD and Auger channels were shown to cause ETMD
after the core ionization of water clusters leading to the surprising neutralization of the
core ionized water [96].

5.2 ETMD of Ne cations after KLL Auger decay in
Ne·Kr2

If the environment of a cation consists of weakly interacting monomers, e.g. solvent
molecules, ETMD(2) and ETMD(3) variants of the ETMD mechanism can be distin-
guished. In ETMD(2) it is the same neighbor which both donates an electron to the
cation and receives the energy released in electron transfer becoming doubly ionized. In
ETMD(3) the electron donor and the receiver of excess energy are two distinct monomers
which are singly ionized at the end of the decay. The delocalization of the positive charge
over the two monomers also lowers the energy of the ETMD(3) channels compared to

Parts of this chapter have been already published in
V. Stumpf, P. Kolorenč, K. Gokhberg and L. S. Cederbaum, Phys. Rev. Lett. 110, 258302 (2013).
Copyright 2013, American Physical Society.
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their ETMD(2) counterparts. Therefore, ETMD(3) as a neutralization mechanism is
applicable to a broader range of systems. In particular, if the charge of the cation
and correspondingly its electron affinity are low, ETMD(3) may be the only available
interatomic decay channel. This property of ETMD(3) was utilized to prove the occur-
rence of ETMD after single inner-valence ionization of argon in mixed argon-krypton
clusters [27].

The timescale of ETMD is governed by the efficiency of the Coulomb interaction be-
tween the transferred electron and the rest of the electrons on the neighboring species.
The average spatial separation of these electrons is substantially smaller for ETMD(2)
making it superior to ETMD(3) in systems with few neighbors. In large systems, how-
ever, ETMD(3) benefits from the scaling of its decay width with the number of neighbors
N which is given by Γ(N) = 0.5N(N − 1) · Γ(2) if the neighbors are equivalent. In con-
trast, the scaling of ETMD(2) is linear, Γ(N) = N · Γ(1). Therefore, in an extended
environment ETMD(3) is expected to be able to compete with ETMD(2) and to play
an important role in the neutralization of cations not only with a low but also with a
high charge.

To study the neutralization process driven by ETMD(3) we chose a rare gas cluster
consisting of a neon atom and two krypton neighbors. Krypton atoms have a higher
double ionization potential compared to xenon, prohibiting ETMD(2) for the Ne2+(2p−2

1D) states which are strongly populated in the Auger decay. ETMD(3) remains the only
electronic decay mechanism available for these states:

Ne ·Kr2 + hν → Ne+(1s−1) ·Kr2
Auger−−−→ Ne2+(2p−2 1D) ·Kr2

ETMD(3)−−−−−−→ Ne+(2p−1) · (Kr+(4p−1))2 + eETMD(3).
(5.2)

A comprehensive study of ETMD(3) including the simulation of nuclear dynamics and
the computation of the observables as it was done for Ne·Xe is not feasible for the
Ne·Kr2 cluster. The larger number of nuclear degrees of freedom greatly complicates
the electronic structure computations, since multi-dimensional potential energy surfaces
should be obtained. To reduce the computational demand, we considered only the nu-
clear coordinates which preserve the equilibrium symmetry of the cluster and performed
classical simulations of the nuclear dynamics accompanying ETMD(3). As will become
evident from the following this allows us to qualitatively estimate the energies of ETMD
electrons and KER of the nuclei, as well as the duration of the decay.

5.2.1 Discussion

The equilibrium geometry of the Ne·Kr2 cluster, which belongs to the C2v symmetry
group, is shown in the inset to Fig. 5.9. As in the case of Ne·Xe, the transition from the
neutral ground state into the Ne2+·Kr2 by photoionization and the subsequent Auger
decay is vertical. Figures 5.7 and 5.8 show cuts of the potential energy surface (PES)
of the Ne2+(2p−2)·Kr2 states along the coordinates corresponding to the symmetric
stretch and bend starting from the equilibrium geometry of Ne·Kr2. The behavior
along the stretch coordinate r (see Fig. 5.7) resembles that observed in Ne·Xe: the
interaction between Ne2+ and the krypton neighbors is attractive, while the energies of
the Ne2+(2p−2 1D)·Kr2 multiplet split only weakly in the considered range of r. The PEC
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of the Ne2+(2p−2 1S)·Kr2 state is similar to the PECs of the Ne2+(2p−2 1D)·Kr2 states.
Along the bend coordinate (see Fig. 5.8) the Ne2+(2p−2)·Kr2 PECs are flat, displaying
the weak interaction between the krypton atoms polarized by the neon dication. For all
Ne2+(2p−2)·Kr2 states a shortening of r due to nuclear dynamics can be expected. The
movement along the bend coordinate is expected to be slower, due to both the lower
gradient and the high mass of the krypton atoms.
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Figure 5.7: Non-relativistic diabatic PECs of the decaying Ne2+(2p−2)·Kr2 states (black
lines) and the PECs of the final states of ETMD along the symmetric stretch coordinate r.
The Ne+-(Kr+)2 final states of ETMD(3) (red line) are approximated using an analytic triple
ionization potential (TIP): TIP = IP (Ne) + 2IP (Kr) + 2/RNeKr + 1/RKrKr. The Ne+-
(Kr2+)·Kr final states of ETMD(2) are approximated using TIP = IP (Ne) + DIP (Kr) +
1/RNeKr. The atomic ionization potentials correspond to experimental values averaged over
fine structure components [111]. The dotted vertical line denotes the equilibrium value r0

along the symmetric stretch coordinate of the Ne·Kr2 ground state.

The tricationic Ne+(2p−1)·(Kr+(4p−1))2 final states of ETMD(3) are represented by a
single PES since the spin-orbit splitting present in the Kr+(4p−1 2P) cation is not taken
into account. All atoms are positively charged in this state making it purely repulsive
along the r coordinate (see Fig. 5.7). Therefore, the ETMD channel closes for the
Ne2+(2p−2 1D)·Kr2 states at intermediate values of r which will be accessed by nuclear
dynamics in the decaying states. On the contrary, opening of the angle θ decreases the
final state energy by minimizing the repulsion between the krypton cations and may
open the closed ETMD channel. For the Ne2+(2p−2 1S)·Kr2 state a faster neutralization
via ETMD(3) is possible since this channel is open also at small values of r. In addition,
ETMD(2) channels are available for this state, however, they are open only at r values
close to r0 or larger (see Fig. 5.7) and thus can be only weakly populated.

The ETMD(3) lifetimes of the Ne2+(2p−2)·Kr2 states at the equilibrium geometry lie in
the range of 7.7-32.3 ps. The values of the ETMD lifetimes for individual Ne2+(2p−2 1D)·Kr2

states reflect the varying efficiency of the orbital overlap between Ne2+ and Kr arising
from the different spatial orientation of the orbitals where the holes are located. The
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Figure 5.8: Non-relativistic diabatic PECs of the decaying Ne2+(2p−2)·Kr2 states (black
lines) and the PECs of the final states of ETMD along the symmetric bend coordinate θ.
The Ne+-(Kr+)2 final states of ETMD(3) (red line) are approximated using an analytic triple
ionization potential (TIP): TIP = IP (Ne) + 2IP (Kr) + 2/RNeKr + 1/RKrKr. The Ne+-
(Kr2+)Kr final states of ETMD(2) are approximated using TIP = IP (Ne) + DIP (Kr) +
1/RNeKr. The atomic ionization potentials correspond to experimental values averaged over
fine structure components [111]. The dotted vertical line denotes the equilibrium value θ0

along the symmetric bend coordinate of the Ne·Kr2 ground state.

shortest lifetime of 7.7 ps is observed for the state of b1 symmetry, where the leading
two-hole configuration is of Ne2+(2p−1

x 2p−1
z ) character and both orbitals with holes lie

in the plane of the trimer. Conversely, the state of a1 symmetry, where the leading two-
hole configuration has out-of-plane (2p−2

y ) character and, hence, the smallest overlap
with the occupied orbitals of Kr, shows the longest lifetime (32.3 ps). The lifetime of
the Ne2+(2p−2 1S)·Kr2 state lies at 34 ps.

A meaningful comparison with ETMD(2) lifetimes is not possible for the Ne2+(2p−2)·Kr2

states since either no or only few ETMD(2) channels are open at the equilibrium geom-
etry of Ne·Kr2. Compared to ETMD(2) in Ne2+·Xe, ETMD(3) in Ne·Kr2 is less efficient
in spite of shorter internuclear distances and twice the number of electrons available for
ETMD. The superiority of ETMD(2) in Ne·Xe can be attributed to the smaller average
distance between the electrons of Xe participating in ETMD(2) and to the stronger po-
larization of the “softer“ xenon atom by the neon dication, which enhances the overlap
with the hole orbitals on Ne2+.

As in previously discussed systems (He+-Mg, Ne2+·Xe), the vibrational motion is
faster than ETMD at the equilibrium geometry and accompanies the electronic decay.
Due to the vibrational motion, regions of small r can be accessed enhancing the efficiency
of ETMD(3). To visualize the impact of nuclear dynamics on the timescale of ETMD(3)
we computed a classical trajectory corresponding to the nuclear motion in the Ne·Kr2

cluster after the vertical core photoionization and the Auger decay (see Fig. 5.9). The
motion takes place on the PES of the Ne2+(2p−2)·Kr2 b1 state. We expect the PES of
other Ne2+(2p−2 1D)·Kr2 states and the corresponding trajectories of nuclear motion to
be of similar shape given the weak splitting of the PECs discussed above. For the b1
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Figure 5.9: Potential energy surfaces of the decaying Ne2+(2p−2 1D)·Kr2 b1 state (blue) and
of the Ne+(2p−1)-(Kr+(4p−1))2 ETMD(3) final state (green). The classical trajectory (red
line) describes the movement of the nuclei initiated by a vertical transition from the neutral
ground state into the b1 dicationic state (point A). Red dots, including points B and C, denote
the positions of ETMD(3) thresholds along the trajectory. Reprinted with permission from
Ref. [130]. Copyright (2013) by the American Physical Society.

state we calculated the ETMD(3) rate (inverse ETMD(3) lifetime) along the classical
trajectory (see Fig. 5.10).

The attractive interaction between the neon dication and the krypton neighbors leads
to the reduction of the Ne·Kr interatomic distances. At the same time the the angle θ
grows, indicating that the light neon dication moves towards the Kr2 moiety. During
this movement the decay rate increases steeply until the ETMD(3) channel becomes
closed (see the interval between A and B). The backwards movement of Ne2+ opens the
decay channel again at a smaller value of r and resulting in a higher maximum value of
the ETMD(3) rate. This can be explained by the slow increase of the angle θ, which
reduces the repulsion between the krypton cations in the final state of ETMD(3). Due
to the further opening of θ the neon dication can pass between the krypton neighbors
in the second oscillation (215-450 fs). Around the linear configuration of the cluster the
repulsion in the final state is further lowered and the ETMD(3) channel remains open
up to the Ne·Kr distances of 2.7 Å (see the threshold marked C in Fig. 5.9). The
ETMD(3) lifetime at this configuration is two orders of magnitude lower compared to
the equilibrium geometry (87 fs).

We computed the cumulative ETMD(3) yield for the movement of the nuclei along the
classical trajectory (see Fig. 5.10). After 650 fs approximately half of the b1 population
has decayed electronically, i.e. the average ETMD(3) lifetime taking into account the
nuclear dynamics lies at around 1 ps. The attractive interaction with the neighbors and
the opening of the angle θ due to this attraction increased the efficiency of ETMD by
almost an order of magnitude. We expect this effect of nuclear dynamics to be of general
importance for cations neutralized in a polarizable host environment.
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Figure 5.10: Effect of nuclear dynamics on the ETMD(3) process in Ne·Kr2 cluster. Lower
panel: the ETMD(3) rate along the trajectory given in Fig. 5.9. Note the rapid exponential
increase in the rate with the decreasing Ne·Kr distance (e.g section A-B). The maximum rate
achieved along the trajectory (point C) is about ninety times larger than the rate at the
equilibrium geometry of the Ne·Kr2 cluster. Upper panel: the ETMD yield accumulated along
the trajectory. The majority of the decay events takes place between 210 and 450 fs at nuclear
configurations close to the D2h Ne·Kr2 geometry. Reprinted with permission from Ref. [130].
Copyright (2013) by the American Physical Society.

5.3 ETMD of Ne cations after KLL Auger decay in
mixed neon-krypton clusters

Triatomic rare gas clusters such as Ne·Kr2 are seemingly ideal systems for experimen-
tal studies of the Auger-ETMD(3) cascades, since a slow electron and three positively
charged ions are produced. All these particles can be recorded in coincidence experi-
ments, as discussed for ETMD(2) in the Ne·Xe cluster, where the energy conservation
should provide an unambiguous proof of the ETMD process. However, experimental
production of triatomic rare gas clusters with a specific composition and sufficiently
high yield is a non-trivial task. On the contrary, large mixed neon-krypton clusters are
readily available and have been already utilized in experimental studies of ICD [131].
The Auger-ETMD(3) cascade is expected to occur at the neon-krypton interface of such
clusters and to release considerable amounts of coincident Ne+/Kr+/Kr+ triples as in
the case of Ne·Kr2. Unfortunately, the large size of the mixed clusters complicates the
matters, since due to their size not only a simple Auger-ETMD cascade but more com-
plicated cascades involving several interatomic steps become possible. Moreover, other
processes such as electron impact ionization or RCT which are irrelevant in the triatomic
cluster severely complicate the the interpretation of the experimental data and assign-
ment of the observed events to specific interatomic decay processes. In what follows we
briefly discuss possible de-excitation mechanisms in larger mixed neon-krypton clusters
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after the ionization above the K-edge of neon (870 eV).
The structure of the large mixed rare gas clusters is determined by the method of

their preparation. In co-expansion experiments mixed clusters with a so-called core-
shell structure are usually produced [15]. They consist of a core of the heavier atoms
surrounded by layers of the lighter ones. Therefore, separate regions of neon and krypton
as well as an interface layer can be defined within such clusters. Due to the different
local environment, the electronic relaxation pathways initiated by the interaction of the
cluster with X-Rays will be different for these regions. For instance, core ionization of an
atom in the Ne region would lead to ICD involving Ne neighbors, while core ionizations
at the interface would also initiate ICD and ETMD with Kr atoms. Hence, by changing
the size of the Kr core and the number of the Ne layers in an experiment the observable
electron and ion may be modified.

We assume that the atomic Auger populations of Ne2+ dications will be only weakly
influenced by the cluster environment [33]. If such dications are located at the Ne-Kr
interface they will undergo ICD processes with Ne and Kr as well as ETMD processes
with Kr neighbors, as would be the case in the smaller diatomic and triatomic clusters.
The estimated electron energies for these relaxation processes in Ne·Ne, Ne·Kr and
Ne·Kr2 are shown in Tab. 5.2. Due to the different degree of stabilization for the initial
and final states of decay by the polarizable environment inside a larger cluster these
energies will be shifted. In ICD between Ne2+ and Kr the charge on Ne remains the same
and in a first approximation does not contribute to the shift. The shift due to the outer-
valence ionization of Kr can be taken from the photoelectron spectra in Kr clusters [132]
and is equal to 0.7-1.1 eV depending on the state’s multiplet. Therefore, the ICD
electrons are expected to be faster by about 0.7-1.1 eV in larger neon-krypton clusters
compared to Ne·Kr. The energies of the ICD electrons from neon-neon pairs compared to
Ne·Ne will be shifted by a considerably smaller value due the lower polarizability of neon.
In ETMD(3), two Kr+ cations appear, while positive charge on Ne charge is reduced
from 2 to 1. We estimated the stabilization energy of Ne2+ on the Ne-Kr interface from
the pair binding energies of Ne2+·Ne and Ne2+·Kr. For the sake of simplicity we assumed
fcc structure, typical for large rare gas clusters (>103 atoms), in both Ne layers and Kr
core. The Ne2+ cation has 9 nearest Ne neighbors. It also has 3 nearest, 3 next nearest
and 6 next-next nearest Kr neighbors. Using the pairwise approximation we estimated
the corresponding stabilization energy of Ne2+ as 3.0 eV. For Ne+ assuming 9 nearest
Ne neighbors and 1 nearest, 3 next nearest and 6 next-next nearest Kr neighbors we
obtained a stabilization of 0.8 eV. Together with the shift due to the production of two
Kr+ cations we expect a shift of the ETMD(3) electron energies in the range of -0.8 to
0.1 eV.

In small Ne·Ne, Ne·Kr and Ne·Kr2 clusters the relaxation of Ne2+ cations via ICD and
ETMD(3), respectively, ultimately leads to Coulomb explosions and cluster disintegra-
tion. In larger neon-krypton clusters the situation is more complex. The excited Ne2+

cations decay via ICD which populates doubly outer-valence ionized states (see decay
steps 4-6 in Tab. 5.2). If neutral krypton neighbors are present, these states may con-
tinue decaying by ETMD(3) (decay steps 1-2). This is also true for the Ne2+(2p−2 3P)
states (decay step 3) which are not populated directly in the Auger decay but by ICD
of the Ne2+(2s−12p−1 3P). Thus, cascades of interatomic decay processes are possible
after the Auger decay in larger clusters.
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Table 5.2: Kinetic energies of electrons emitted in the interatomic relaxation of neon di-
cations in Ne·Ne, Ne·Kr and Ne·Kr2 clusters. ETMD(3) electron energies were calculated
as described in chapter 3.4.2. ICD electron energies for the Ne2+·Kr were calculated at the
equilibrium geometry of the Ne·Kr cluster using analytic double ionization potential (DIP):
DIP = IP (Ne) + IP (Kr) + 1/RNeKr and experimental atomic ionization energies [111]. The
ICD electron energies for Ne2+·Ne were adapted from Ref. [33].

Nr. Decay step Ekin [eV]

1 Ne2+(2p−2 1D) ·Kr2
ETMD(3)−−−−−−→ Ne+(2p−1) ·Kr+(4p−1))2 + eETMD(3) 0-4.5

2 Ne2+(2p−2 1S) ·Kr2
ETMD(3)−−−−−−→ Ne+(2p−1) ·Kr+(4p−1))2 + eETMD(3) 1-8.5

3 Ne2+(2s−12p−1 3P) ·Kr
ICD−−→ Ne2+(2p−2 3P) ·Kr+(4p−1) + eICD 0-3.5

4 Ne2+(2s−12p−1 1P) ·Kr
ICD−−→ Ne2+(2p−2 1D) ·Kr+(4p−1) + eICD 8-11

5 Ne2+(2s−12p−1 1P) · Ne
ICD−−→ Ne2+(2p−2 1D) · Ne+(2p−1) + eICD 0-3

6 Ne2+(2s−12p−1 1P) ·Kr
ICD−−→ Ne2+(2p−2 1S) ·Kr+(4p−1) + eICD 5-7.5

7 Ne2+(2s−2 1S) ·Kr
ICD−−→ Ne2+(2s−12p−1 1P) ·Kr+(4p−1) + eICD 0-2

The prerequisite for the appearance of such cascades is the ability of the following
interatomic decay steps to compete with repulsive nuclear dynamics initiated by the
previous ones. Alternatively, the cascades might be realized if the Coulomb explosion
after the initial interatomic decay step leads to the fission of the cluster which produces
Ne2+ cations surrounded by several neutral krypton neighbors. Taking into account the
timescale of ETMD (we estimate the lifetimes to be of the order of hundreds of fs to few
ps in large mixed neon-krypton clusters) the impact of such cascades on the electron and
KER spectra is expected to be limited. A presumably more efficient ICD-ICD cascade
is possible for Ne2+(2s−2 1S) cations (decay step 7). If ICD-ETMD or ICD-ICD-ETMD
cascades occur, both ICD and ETMD electrons can be observed in coincidence with
Ne+/Kr+/Kr+ triples of nuclei, yielding electron spectra different from those in Ne·Kr2.
The positive charge created in the first cascade step may lead to the deceleration of the
electrons in a subsequent step and ultimately to the closing of the decay channels [133].
Hence, the energies of electrons produced by the second or later steps of the interatomic
cascades might be lower than the energies shown in Tab. 5.2 corrected for the polarizable
cluster environment.

Additional complication in the experimental studies of electronic decay following X-
Ray absorption in neon-krypton clusters is the high photoabsorption cross section of
krypton at photon energies above the K-edge of neon [123]. In this energy range mostly
3s, 3p and 3d electrons are removed, which gives rise to Auger, double Auger and Coster-
Kronig decays as well as complicated cascades of these decays [134–136]. Moreover, the
excited states produced by these decay mechanisms, may also undergo ICD in neon-
krypton clusters. In addition to ICD, secondary processes which follow the electronic
decay, such as radiative charge transfer, could also produce Ne+/Kr+/Kr+ triples after
the photoionization of krypton. Together with the slow electrons emitted in the decay
of krypton, these ion signals would appear in the coincidence spectra recorded for the
analysis of ETMD(3) events of Ne2+.

Indeed, such events are very prominent as recent coincidence experiments demonstrate
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[137]. Therefore, in order to determine the number of the ETMD(3) events, a subtraction
of the signal produced by the photoionization of krypton had to be performed. The
resulting electron spectrum recorded in coincidence with the Ne+/Kr+/Kr+ signal is
shown in Fig. 5.11. The electron signal in the range of 0-10 eV gives the first evidence
for the occurrence of the Auger-ETMD(3) cascade after the core ionization of neon
in mixed neon-krypton clusters. Signals at energies > 10 eV can be interpreted as a
signature of ICD involved in the ICD-ETMD cascades.

Figure 5.11: Electron spectrum recorded at 878 eV photon energy in coincidence with
Ne+/Kr+/Kr+ nuclei in mixed neon-krypton clusters [137]. The photoelectron signal of neon
at (≈ 8 eV) and signal stemming from the photoionization of krypton were subtracted.

5.4 Conclusions

In this chapter we investigated the partial, ETMD-driven neutralization of dications
produced by the Auger decay of neon. We demonstrated that neutralization both via
ETMD(2) and ETMD(3) proceeds on a picosecond timescale in small rare gas clusters.
The nuclear dynamics triggered by the creation of the positive charge on neon increase
the average rate of the neutralization. This phenomenon is expected to be of general
importance for the neutralization of cations embedded in a polarizable environment.
Experimental evidence for the neutralization of neon dications driven by ETMD(3)
was given by coincidence measurements of electrons and Ne+/Kr+/Kr+ nuclei in mixed
neon-krypton clusters after X-Ray absorption. The corresponding electron spectra fur-
thermore indicate occurrence of cascades of interatomic decay steps following the Auger
decay of neon.
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6 X-Ray induced electronic cascades in
microsolvated metal ions

Metals play an essential role in the biochemistry of living organisms. They mostly
appear as cations bound either by electrostatic or coordinative interactions to their en-
vironment. In the former case the metal ions (Na, K, Mg, Ca) bear such important
functions as signaling and stabilizing or controlling the structure of the multiply neg-
atively charged biomolecules such as DNA, proteins, ATP etc. In the metalloenzymes
and metal cofactors the strongly bound metals (Fe, Zn, Cu etc.) directly participate in
the catalytic processes, acting as Lewis acids and facilitating electrons transfer, group
transfer and further important types of reaction steps [44].

The positive charge, already present on the metal atoms in the electronic ground state
can be further increased if the metal undergoes Auger decay. The electron affinities as-
sociated with these highly charged ions indicate that they will most probably undergo
ETMD-driven neutralization processes after X-Ray absorption. Recalling that the X-
Rays are a cause of radiation damage in biological systems, the question arises whether
X-Ray absorption at the metal sites and the subsequent ETMD may play a role in pro-
ducing damage to biomolecules. We have seen in the last chapter that the neutralization
process mediated by ETMD involves ionization or double ionization of the cations’ neigh-
bors and emission of slow electrons. Considering a particular biomolecule, such as DNA,
radiation damage can be classified either as direct, i.e. targeting the biomolecule itself
and indirect, i.e. targeting neighboring molecules which harm the biomolecule in a sub-
sequent step. Within this classification scheme the release of slow electrons is an indirect
damage since they are known to induce breaking of chemical bonds in biomolecules [38].
The ionization of the neighbors can be classified as direct damage if the metal atom is
attached to a biomolecule and causes its ionization in the ETMD process. On the other
hand, a solvated metal ion in the proximity of a biomolecule could introduce indirect
damage by ionizing the solvent molecules and thereby releasing reactive radicals which
can attack the biomolecule in the subsequent chemical reactions [39].

Experimental insight into the radiation damage in biomolecules containing metals
comes from the X-Ray crystallography. The radiation damage which accumulates in the
course of the measurements causes a blurring of the diffraction images [45]. The damage
is often non-random,the metal site being one of the weak spots [47, 48] and is modified
already at a relatively low radiation dose. One of the most frequent indications of this
damage is the reduction of the metal and elongation of the metal-ligand distances [47,49].
It is usually explained by the ionization elsewhere in the protein and a subsequent

Parts of this chapter have been already published in
V. Stumpf, K. Gokhberg and L. S. Cederbaum, Nat. Chem. 8, 237 (2016). Copyright 2016, Nature
Publishing Group.
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electron attachment to the metal. Interestingly, X-Ray absorption spectroscopy of metal
complexes shows that the metal may also become oxidized or remain in the original
charge state depending on the nature of the ligand [138, 139]. So far neither a unified
picture of radiation damage nor detailed molecular mechanisms of how it is incurred
have been established with certainty. In the following we contribute to the ongoing
discussion and present an electronic decay cascade which can be particularly effective
at damaging the metal containing sites in biomolecules.

We chose a microsolvated Mg2+·(H2O)6 cluster to study the processes taking place
after the X-Ray absorption by a metal embedded in an extended environment. Micro-
solvated clusters consist of ions surrounded by a finite number of solvent molecules and
play an important role in such research fields as surface, atmospheric and biophysical
chemistry (see [140] and references therein). On the other hand, small microsolvated
clusters are utilized to study interactions between the ions and solvents molecules [141]
while studying the larger ones allows to trace the transition to the liquid state [142].
Experimentally, microsolvated clusters can be produced by a pick-up procedure, where
neutral atoms are accommodated in a solvent microcluster and subsequently ionized by
electron impact [141]. Alternatively, such clusters are generated by electrospray ioniza-
tion of the ionic solutions [143].

First computational studies of ICD and ETMD in microsolvated clusters were con-
ducted by Müller et al. [93]. The authors predicted appearance of ETMD(2) and
ETMD(3) processes after the photoionization of microhydrated lithium cations, which
was recently verified by electron spectroscopy of LiCl aqueous solutions [144]. In a fur-
ther experimental study Pokapanich et al. determined the ICD lifetimes of Ca2+ and
K+ in aqueous solutions after the 2p photoionization by comparing the corresponding
electron signals to the signals of the competing Auger process [95]. The observation
of the ICD signal implies that this process is sufficiently fast for metal ions in aque-
ous solutions to escape quenching by the Auger process which occurs on a timescale
of few femtoseconds. The ordering of the experimental ICD lifetimes of Ca2+ and K+

and their magnitude has been reproduced by ab initio computations of microsolvated
clusters consisting of the metal ions and the first coordination shell. The interatomic
decay widths drop sharply with the growing interatomic distance and it is the first coor-
dination shell which contributes at most to the decay of the metal cation. This feature
explains the success of the microsolvated cluster models in the description of the inter-
atomic decay in solutions. The Mg2+·(H2O)6 cluster closely resembles (RMgO = 2.08
Å) the most probable structure of the metal’s first coordination shell in diluted aqueous
solutions (RMgO = 2.00− 2.15 Å) [101]. Hence the properties of the decay processes in
Mg2+·(H2O)6 such as total or partial decay widths are expected to reproduce those in an
aqueous solution. More generally, the results should also provide a qualitative picture
for other metals in a non-covalent environment as is common for biological systems.

The absorption of an X-Ray photon by the Mg2+ cation predominantly removes the
1s electrons of magnesium. After the core ionization the magnesium dication undergoes
mainly a single-step Auger decay increasing the charge of the metal to four:

Mg2+ · (H2O)6

hν−→ Mg3+(1s−1) · (H2O)6

Auger−−−→ Mg4+ · (H2O)6 (6.1)

As in the case of the isoelectronic neon atom, the interatomic decay of Mg4+ comprises
not only the neutralization steps via ETMD but also the energy transfer steps from
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the electronically excited metal cation to the environment via ICD. These processes
are visualized in the Fig. 6.1. Obviously, the charge of the Mg3+ cation which was
partially neutralized via an ETMD process is still very high (EA ≈ 80 eV for the isolated
cation [111]). This large electronic affinity is sufficient for an additional neutralization
step. Therefore, it is not a single interatomic decay step which follows the Auger decay
of Mg3+ but rather a cascade of interatomic decay steps.

Figure 6.1: Electronic relaxation processes possible in the microsolvated Mg4+ cation created
by core ionization of Mg2+ (photoelectron not shown) and subsequent Auger decay. Excited
states of Mg4+ transfer the excess energy to the environment singly ionizing a water neighbor
(ICD process). Energetically low lying states of Mg4+ accept an electron from a water neighbor,
transferring the excess energy either to the same water molecule (ETMD(2) process) or to a
different one (ETMD(3) process). In small microsolvated clusters the described modes of
interatomic electronic relaxation are followed by Coulomb explosion. In larger clusters the
water cations are likely to decompose preferentially by proton transfer to the next solvation
shell either directly or in the collision of the flying away cation with that shell [36, 145,146].
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We determined the sequence of the electronic decay processes involved in the cascade
as well as the duration of the individual steps. We furthermore estimated the contribu-
tion of this cascade to the X-Ray induced radiation damage by calculating the number
of released electrons and radicals. The nuclear dynamics accompanying the electronic
decay cascade were not treated explicitly given the large number of nuclear degrees of
freedom. Only a qualitative discussion of the impact which the nuclear dynamics have
on the timescale of the electronic decay and the yields of the reactive species is included.

6.1 Interatomic decay of the Mg4+ cations produced by
Auger decay

We found in an ab initio calculation that the binding energy of the magnesium 1s elec-
tron in Mg2+·(H2O)6 is 1317 eV. Removing this electron by an X-ray photon creates a
highly energetic, electronically unstable trication. In the following we discuss the fate of
this unstable trication. We do not consider double Auger decay leading to Mg5+·(H2O)6

states, since our computational methods do not allow to obtain the normal-to-double
Auger branching ratio. We expect, however, in analogy to the isoelectronic neon atom,
a low population of the double Auger products. The predominant decay mechanism
for the magnesium trication is the normal Auger decay, leading to the emission of a
fast electron and population of Mg4+·(H2O)6 states. The states of Mg4+ mostly pop-
ulated in the Auger decay are Mg4+(2p−2 1D,1S) (63%), Mg4+(2s−12p−1 1P) (21%),
Mg4+(2s−12p−1 3P) (9%), and Mg4+(2s−2 1S) (7%). However, while the Auger popula-
tions are comparable to those of the neon atom (see chapter 5.1), the Auger lifetime is
considerably reduced from 2.7 to 1.9 fs.

All of the Mg4+ electronic states are unstable with respect to interatomic electronic
decay in the presence of water molecules. In the microsolvated cluster both the weakly
populated Mg4+(2p−2 3P) ground state and the most populated Mg4+(2p−2 1D,1S) states,
which have about 4-9 eV excess energy relative to the ground state, cannot decay by
ICD. However, they efficiently decay by both ETMD(2) and ETMD(3) pathways. The
computed ETMD lifetimes are about 16 fs (see Tab. 6.1), which are much shorter than
the picosecond lifetimes found we obtained for the Ne·Xe and Ne·Kr2 clusters. They
are comparable to the 20 fs ETMD lifetime of the tetrahydrated Li2+ cations calculated
by Müller et al. [93]. The high number of water neighbors and the shorter ion-neighbor
distances, which facilitate the electron transfer, strongly enhance both ETMD(2) and
ETMD(3) processes. The ETMD(2) to ETMD(3) branching ratio is 1.0/1.6, therefore,
both H2O+ and H2O2+ are efficiently produced in the ionization of the medium. The final
products are either Mg3+(2p−1 2P)·(H2O)5H2O2+ or Mg3+(2p−1 2P)·(H2O)4(H2O+)2:
the positive charge on Mg is partially neutralized as the result of electron transfer from
water (see Fig. 6.1). It is remarkable that ETMD(3) is the more efficient neutralization
pathway, in contrast to ETMD(2) which is dominant in small rare gas clusters (see
previous chapter). ETMD(3) strongly benefits from the N · (N − 1) scaling of the decay
width with the number of equivalent neighbors N and the reduced water-water distances
in microsolvated clusters. The ETMD electrons have energies between 11 and 26 eV for
ETMD(2) and between 23 and 40 eV for ETMD(3). The greater delocalization of the
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Table 6.1: Lifetimes and branching ratios of competing decay processes for cationic states pro-
duced by the Auger decay of the core ionized Mg3+(1s−1 2S)·(H2O)6 cluster. Minor channels
contributing less than 10 percent to the product population are neglected.

Decaying state Lifetime [fs] ETMD(3) ETMD(2) ICD

Mg4+ (2p−2 1D) 15.6 0.65 0.35 -

Mg4+ (2p−2 1S) 18.2 0.57 0.43 -

Mg4+ (2s−12p− 3P) 17.5 0.51 0.49 -

Mg4+ (2s−12p−1 1P) 0.7 - - 1.0

Mg4+ (2s−2 1S) 0.9 - - 1.0

positive charge in the final state of ETMD(3) results in faster emitted electrons.

The excited Mg4+(2s−12p−1 3P) cations also undergo ETMD(2) and ETMD(3) since
the corresponding excess energy is not sufficient for ICD, the decay lifetime is 17 fs.
Both the 2p and the 2s orbitals may accept the electron from a water neighbor in the
ETMD process. The water electron is preferably transferred to the 2p orbital of Mg
due its larger spatial overlap with the valence orbitals of the water neighbors. The ratio
of the Mg3+(2p−1 2P) and Mg3+(2s−1 2S) cations produced by ETMD is 1.0:1.6. The
magnitudes of ETMD(2) and ETMD(3) are comparable, however their branching ratio
for the electron transfer into the 2s is higher (1.1/1.0) than the ratio for the transfer
into the 2p orbital (1.0/1.5). In other words, the electron transfer into the compact 2s
orbital couples more efficiently to the emission of another electron from the same water
neighbor than from a more distant one, enhancing ETMD(2). For the electron transfer
into the 2p orbital ETMD(3) is the leading relaxation pathway as observed for the
Mg4+(2p−2 1D,1S) states. The energies of the ETMD(2) and ETMD(3) electrons lie in
the ranges of 3-53 and 17-66 eV, respectively. The broadness of these ranges reflects the
difference in energies between the Mg3+(2p−1 2P) and Mg3+(2s−1 2S) cations in the final
states of ETMD. Unlike the states considered above, microsolvated Mg4+(2s−12p−1 1P)
possesses enough excess energy for the ionization of the water molecules and, therefore,
can decay by ICD. Its computed ICD lifetime is extremely short, 0.7 fs, showing that
this interatomic decay occurs even faster than the already very fast local Auger decay
on the metal (1.9 fs). We mention that the experimentally determined ICD lifetime
of Mg3+(2s−1 2S) in liquid water is 1.5 fs [14], indicating that such extremely fast
interatomic decay in hydrated metal ions is the rule rather than exception, due to the
short metal-water distances and a large number of open ICD channels. In this state ICD
will also dominate ETMD by about an order of magnitude due to the higher efficiency
of energy transfer. The energies of the ICD electrons lie below 7 eV.

The ICD of the high-lying Mg4+(2s−2 1S) into the Mg4+(2s−12p−1 1P) state is en-
ergetically forbidden. A possible decay pathway for the Mg4+(2s−2 1S) cation is the
transition into the Mg4+(2s−12p−1 3P) state, which involves an electron transfer from a
water neighbor due to the change in the multiplicity from singlet to triplet. This mech-
anism is denoted as exchange ICD [147] and is expected to be inferior to the ordinary,
energy transfer driven ICD. Its lifetime should be comparable to the ETMD lifetimes of
other Mg4+ states. Surprisingly, the calculated decay lifetime of the Mg4+(2s−2 1S) state
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lies at approximately 1 fs, i.e. it is comparable to the lifetime of the Mg4+(2s−12p−1 1P)
decaying by the ordinary ICD. The Mg4+(2s−2 1S) cation, which has a very high ex-
cess energy, can undergo a so-called double ICD process [148]. In the course of this
three-electron decay process two electrons fill the 2s vacancies and the excess energy is
utilized to remove a third electron from a neighbor. No rates of double ICD in other
systems with double-holes on a single atom have been reported so far. However, it has
been demonstrated that an intramolecular autoionization driven by two electron tran-
sition into a double-hole inner-valence state can be of a few fs duration [149]. To clarify
which mechanism is responsible for the ultrafast decay of the double inner-valence hole
we computed the corresponding partial widths and showed that the contribution of the
double ICD is only of minor importance, the lifetime is determined by a two-electron
ICD process producing Mg4+(2s−12p−1 3P). The explanation might be that at short ion-
water distances the coupling in the final state between the outer-valence hole on H2O+

with 2s and 2p holes on Mg4+ is so strong that the whole notion of electron transfer
driven exchange ICD process becomes untenable. Indeed, the Mg4+(2s−12p−1 1P)·H2O+

configuration becomes admixed to the leading Mg4+(2s−12p−1 3P)·H2O+ in the final
state increasing the decay rate.

6.2 Cascades of interatomic decay after core ionization
of Mg2+

The individual interatomic decay processes considered above constitute a ramified decay
cascade which follows the Auger process in Mg3+(1s−1 2S)·(H2O)6. We construct this
cascade by following the fate of different states populated in the Auger decay.

We first consider the Mg4+(2p−2)·(H2O)5H2O+ states produced by the ICD of
Mg4+(2s−12p−1 1P). These are the same states of Mg4+ we discussed above but now with
H2O+ ion in its vicinity. Can they continue decaying by ETMD? The ETMD channels
in the Mg4+(2p−2)·(H2O)5H2O+ cluster have a complicated electronic structure and re-
quire application of the computationally highly demanding MRCI method. Therefore,
an explicit computation of states involved into ETMD of Mg4+(2p−2)·(H2O)5H2O+ was
not possible. We performed model calculations instead. Since the water neighbor ionized
via ICD has a significantly higher single and double ionization potentials compared to a
neutral one [150,151], most of the ETMD channels involving this neighbor will be closed.
Hence, we replaced the ionized water neighbor by a positive point charge. A positive
charge destabilizes the final states of ETMD relatively to the initial, which may lead to
the closing of decay channels. This effect was found to be responsible for the dependence
of ICD lifetimes on the pH values in aqueous solutions [133]. According to our model cal-
culations all the ETMD(2) and ETMD(3) channels available in the Mg4+(2p−2)·(H2O)5

system remain open for Mg4+(2p−2)·(H2O)5H2O+. The ETMD lifetime grows from
16.0 to 21.8 fs since only five neutral water neighbors are now available for the elec-
tronic decay. In the same way the lifetime of the Mg4+(2s−12p−1 3P)(H2O+)(H2O)5

states, which are populated by the ICD of Mg4+(2s−2 1S), grows from 17.5 to 23.2
fs. The single step ETMD process and the ICD-ETMD cascade following the Auger
decay lead to the formation of Mg3+ cations. Only a small portion of these cations
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Figure 6.2: Schematic description of the electronic decay processes taking place after the core
ionization of the hydrated Mg2+ cation. First, the intra-atomic Auger decay (black arrows)
creates highly charged Mg4+ cations. Then, the energetic ions lose their excess energy by
ICD. The Mg4+ ions with little excess energy undergo ETMD and become reduced. Computed
electronic decay lifetimes for Mgq+(H2O)6 clusters are shown on the left. The cascade continues
until all Mg4+ and Mg3+ ions revert to the original Mg2+ state in a sequence of ultrafast,
interatomic ICD (blue) and ETMD (red) steps. Estimated time for the complete cycle is 220
fs. Several reactive products such as electrons, water cations and dications are released mainly
from the first coordination shell of Mg2+ as indicated by the side arrows.
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is in the excited Mg3+(2s−1 2S) state since it can be produced solely by the ETMD
of Mg4+(2s−12p−1 3P). The majority of the magnesium trications are in the electronic
ground state Mg3+(2p−1 2P) (see Fig. 6.2). We wish to remark at this point that the
Mg3+(2p−1 2P) species can also be obtained directly from the initial core ionized Mg
ion in the presence of water ligands. Thus, a 2p electron of Mg may fill the 1s vacancy
and transfer its energy not to another 2p electron, which would result in the Auger
process on the metal, but to a valence electron on water ionizing it in a core ICD-like
process [95,96,152]. This decay leads to population of Mg3+(H2O+)(H2O)5 states. Since
the positive charge in the latter is more delocalized than in the final states of the Auger
decay, the electrons emitted in the core ICD-like process have larger energies (1205-1225
eV) compared to the Auger electrons (1111-1157 eV). What process will be more im-
portant? The Auger lifetime of the core ionized state was found to be 1.9 fs, while its
ICD lifetime was 57 fs. Therefore, the Auger decay takes place in 97 % of Mg4+(H2O)6

systems and core ICD-like only in 3%. This branching ratio, however, can be tilted
much more in favor of the interatomic process for other metal ions. Thus in the case of
Ca2+ the core ICD-like probability was found experimentally to be 10% [153].

The Mg3+(2p−1 2P) state has a high electron affinity and therefore lies in the electronic
continuum of the ETMD final states if neutral water neighbors are present. To visualize
the impact of the metal’s charge on the ETMD lifetimes and observables, we compare
these quantities for the Mg3+(2p−1 2P)·(H2O)6 and Mg4+(2p−2 1D,1S)·(H2O)6 clusters.
In the Mg3+(2p−1 2P)·(H2O)6 cluster both ETMD(2) and ETMD(3) channels are open,
the corresponding lifetime is 15.5 fs. Thus, the decreased positive charge does not modify
the ETMD lifetime significantly. This result is not obvious since the polarization of the
water ligands is weaker in the case of Mg3+ compared to Mg4+ cations. The polarization
of the ligands is expected to enhance ETMD due to the increased overlap of the ligands’
electrons with the hole orbitals on magnesium. A related discussion on the charge
dependence of ICD widths of microsolvated metal ions (see chapter 7) shows, however,
that the ligand polarization is not the only charge dependent parameter determining
the efficiency of interatomic decay. The ratio of the ETMD(2) to ETMD(3) populations
does not deviate significantly from the results for the Mg4+(2p−2 1D,1S) as well, being
1.0/1.2. In contrast, the energies of the ETMD electrons in Mg3+(2p−1 2P)·(H2O2+)6

are markedly reduced and lie at 0-6 and 5-19 eV, respectively. The reduction of the
electron energies is due to the significantly lower electron affinity of Mg3+(2p−1 2P)
(atomic value ≈ 80 eV) compared to Mg4+(2p−2 1D,1S) (≈ 109−119 eV) which can not
be compensated by the lower Coulombic repulsion in the final states of ETMD.

Interestingly, also the excited Mg3+(2s−1 2S)·(H2O)6 species (see Fig. 6.2) resembles
the decay characteristics of its higher charged Mg4+(2s−12p−1 1P)·(H2O)6 analogue. The
corresponding ICD lifetime is ultrashort with only 0.8 fs. A detailed discussion of the
factors which cause the high efficiency of ICD in microsolvated clusters of metal ions
is presented in chapter 7. The energies of the ICD electrons lie in the range of 4-10
eV, i.e. few eV higher than for the Mg4+(2s−12p−1 1P) cation. The difference in the
excess energies of Mg3+(2s−1 2S) and Mg4+(2s−12p−1 1P) is of the same magnitude as
the difference in the Coulombic repulsion in the final states, leading to an overall small
shift in the ICD electron energies.

The Mg3+ species produced in the course of the decay cascade after the core ionization
of magnesium is not surrounded by six neutral water neighbors. Some of these neighbors
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are ionized or doubly ionized depending on the pathway of the Mg3+ production, which
includes ICD-like, ETMD processes or the longer ICD-ETMD and ICD-ETMD-ICD
cascades. The presence of the water cations has an impact on the lifetimes of Mg3+

species as discussed above. Again, by replacing previously ionized water ligands with
point charges we estimated the Mg3+ lifetimes for each individual pathway of production.
The ETMD lifetimes of the Mg3+(2p−1 2P) cations lie in the range of 43-400 fs eV.
The longest lifetimes belong to cations produced by the ICD-ETMD-ICD cascade with
several positively charged neighbors in the vicinity of magnesium. The shortest lifetimes
are found for cations obtained by single step core ICD-like or ETMD(2) processes. The
ICD lifetimes are located in the interval between 8 and 152 fs. In this case not only the
lower number of the ionizable neighbors but additionally the closing of the high-lying
ICD channels considerably increase the lifetime. Among the closed ICD channels are
those with holes in the a1 orbitals of water which are directed towards the metal ion.
Whenever open, these ICD channels are the strongest due to the small average distance
between the electrons on magnesium and those occupying the a1 orbital of water.

We see that even in the presence of several ionized neighbors the interatomic decay
steps discussed above can be glued into a continuous decay cascade (see Fig. 6.2). Taking
into account the decreasing number of neutral water neighbors available for interatomic
decay at each consecutive step of the cascade we find that 90 percent of the core ionized
states would de-excite to the final state within only 220 fs (see Fig. 6.3). Thus, although
the majority of the energy stored in the core ionized Mg3+(1s−1 2S) cation is taken away
by the fast Auger electron, the remaining electronic energy of 160− 240 eV is sufficient
to drive a long decay cascade on a femtosecond timescale. If for a specific electronic state
of the metal both ICD and ETMD channels are available, ICD will be predominant. It
will lead to the electronic relaxation of the metal ion without changing its charge. An
ETMD step will follow reducing the charge by one. This is illustrated by the decay
of Mg4+(2s−12p−1 1P) first by ICD to Mg4+(2p−2) states and further by ETMD to
Mg3+(2p−1 2P). Even if the ion does not have excess energy and ICD is not possible
there can still be available ETMD channels. Therefore, the cascade of the interatomic
processes goes on and the ion is being reduced until no interatomic electronic decay is
allowed. For our system it leads to the surprising result that Mg ends up in the same
electronic state it was in initially.

All the individual electronic decay steps we discussed for the microsolvated Mg2+(H2O)6

cluster will occur also in solution. The effect of the polarizable medium will be man-
ifested in stabilizing of the positively charged ions at different stages of the cascade.
Therefore, the energies of the emitted electrons will be somewhat different from the
cluster’s case. The presence of additional solvation shells will further increase the effi-
ciency of ICD and ETMD(3), but their overall impact will be moderate, mainly because
of their larger distance to the metal ion [16,154]. The effect of the second solvation shell
is expected to be more pronounced for ETMD(3) since its contribution to the decay
width is given by ΓETMD(3) ∝ ND · NI , where ND is the number of electron donors (6
in the first solvation shell) and NI the number of ionizable water molecules (12 in the
second solvation shell [102]). In contrast, the contribution of the second solvation shell
to the ICD width is ΓICD ∝ NI . We estimated the increase of the ETMD widths due
to a second solvation shell to be approximately 30 percent.
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Figure 6.3: Yield of magnesium and water cations generated during the electronic decay
cascade taking place after the core ionization of the Mg2+(H2O)6 cluster. Repulsive nuclear
dynamics occurring after the interatomic electronic decay steps are not taken into account.
Reprinted with permission from Ref. [155]. Copyright (2016) by the Nature Publishing Group.

6.3 Impact of the nuclear dynamics on the electronic
decay

Within the duration of the cascade a large amount of Coulombic repulsion energy (few
tens of eV) is accumulated, due to the high metal charge and short distances to the ion-
ized water neighbors. Therefore, repulsive nuclear dynamics accompany the electronic
decay. Unfortunately, ascertaining the interplay between nuclear dynamics and elec-
tronic decay in microsolvated clusters by ab initio calculations goes beyond the scope
of the present work. Therefore, we consider qualitatively the most probable nuclear dy-
namics scenarios and estimate their impact on the cascade duration and the branching
ratios of electronic decay.

In small microsolvated clusters lacking the second solvation shell around the metal
ion the nuclear dynamics is dominated by Coulomb explosions involving charged water
molecules and the metal cation [141]. Its effect consists in removing the positive charge
mostly as H2O+ from the vicinity of the metal ion. This, according to our estimates,
leads to an increasing of the decay rates by as much as factor 2-2.5 when the water
cations are gone. The effect is very pronounced for the Mg3+(2p−1 2P) cations, which
can only decay by ETMD(3) in the presence of charged water molecules (see the tail at
longer times in the Mg3+ population in Fig. 6.3). Removing the positive charge opens
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the energetically higher lying ETMD(2) channels and increases the ETMD(2)/ETMD(3)
ratio. Therefore, the production of H2O2+ is increased at the expense of H2O+. The
total numbers of electrons remain unchanged, however, their energies will be increased
by up to a few eV. The speed of the Coulomb explosion can be estimated from the results
obtained for H2O+-H2O+ produced by ICD of the water dimer, where a threefold increase
in oxygen-oxygen distance (to 1 nm) occurs in 130 fs [156]. Due to the multiple charge
of the metal the timescale of the Coulomb explosions releasing water cations from the
microsolvated cluster is even shorter, presumably few tens of femtoseconds. This speed is
comparable to or higher than the ETMD rates discussed above. Therefore, the Coulomb
explosions set off by earlier interatomic steps of the cascade will proceed during the later
ETMD steps and enhance them. ICD in the presence of positively charged neighbors is
still sufficiently fast to outrun the repulsive nuclear dynamics. Nevertheless, already a
moderate movement of the neighbors opens the strong ICD channels and reignites the
ultrafast decay on the timescale of few femtoseconds. Hence, both ICD and ETMD at
later stages of the cascade are enhanced by the Coulomb explosions.

In larger microsolvated clusters and aqueous solutions a proton transfer from a water
cation to a neighboring water molecule is likely to occur [141, 146]. Highly accurate ab
initio computations demonstrate that the onset of proton transfer in water dimers may
occur already at about 5 fs and the transfer may be complete by 50 fs [145,157]. However,
its prevalence and rate are sensitive to the nature of the initially ionized state. Joint
theoretical and experimental investigation in liquid water put an upper boundary for
the proton transfer at 40 fs [146]. Doubly ionized water molecule has been shown to lose
two protons in solution within 4 fs [36]. These timescales indicate that proton transfer
initiated by earlier interatomic steps of the cascade proceeds during the later ICD and
ETMD steps. The protons move from the first to the second or a farther solvation shell
of the metal cation. In this respect the effect of the proton transfer on the cascade will
be similar to the one of Coulomb explosion discussed above: removing positive charge
from the vicinity of the cation and enhancing the interatomic decay processes. Moreover,
following proton transfer a neutral radical species (OH or O) remain in the vicinity of
the metal cation. These radicals exhibit ionization potentials comparable to those of
the water molecule (13.0 eV for OH, 13.6 eV for O) and will participate in ETMD(3).
The overall result of both the charge removal and the appearance of additional radicals
close to the metal ion will be to increase the decay rates of different interatomic steps
by as much as a factor of 6.5. The ionization of the O and OH radicals will alter the
distribution of the radical species, for example increasing the production of O (via OH+)
at the expense of OH.

We furthermore want to remark that in solutions we also may expect Coulomb ex-
plosion to occur and enhance the interatomic processes. Large Coulomb energy accu-
mulated between Mg and water cations speaks in its favor. Hence, we expect a compli-
cated fragmentation pattern for the cationic products of the interatomic decay involving
Coulomb explosions and molecular dissociation in aqueous solutions. The fragmentation
leads to the increase in ICD and ETMD rates and shortens the cascade duration. The
character of the released chemical species is modified directly by the proton transfer
processes and indirectly due to the sensitivity of interatomic decay rates to the presence
of the positive charge.
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6.4 Contribution of the decay cascade to the radiation
damage

The electronic decay cascade initiated by the absorption of an X-Ray photon by the
metal cation may be viewed from two different angles: the one of the cation itself,
and the other one of the nearest neighbors or ligands. From the point of view of the
nearest neighbors the probability of their damage by the ≈1150 eV Auger electrons
is small. However, they are directly damaged in the interatomic processes becoming
either singly or doubly ionized. In the case of water solutions the single ionization
will lead to proton transfer reaction producing OH radical, while doubly ionized water
is expected to produce atomic oxygen? [36]. The hydroxyl radical is highly reactive
and causes oxidative damage to other molecules present in the solution (see e.g. [158]).
Atomic oxygen is reactive as well and is admittedly a source of further damaging species
such as H2O2 [159]. In addition to such direct damage to the nearest neighbors and
the production of radicals, the interatomic processes result in the emission of electrons
having energies <40 eV. Such electrons can be resonantly captured by the molecules
in the near environment initiating efficient bond breaking reactions [38]. In total, the
interatomic decay processes massively degrade the molecules in the immediate vicinity
of the metal species through multiple ionizations releasing in their course both reactive
electrons and radicals. If we are to neglect the interatomic processes, the decay of the
1s vacancy on Mg2+ would result in one (Auger) electron. Taking them into account
and counting the damaging particles released in the complete cascade one would obtain
on average 2.4 slow electrons in addition to a fast Auger electron and 4.3 radicals per
each 1s vacancy. These values are supposed to further increase if one considers also
the interatomic relaxation of the Mg5+ cations produced by the double Auger decay.
Following our argumentation longer decay cascades with a higher number of reactive
products can be anticipated for these cations.

In the decay cascade presented above the Mg ion which absorbs the X-ray photon
reverts back to its initial electronic state within few hundreds of femtoseconds. At the
same time the nearest environment of this ion is multiply ionized implying the produc-
tion of a large number of reactive particles (radicals and slow electrons) at the metal’s
location. This shows that no change of the metal ion’s charge on X-ray irradiation is by
no means equal to no damage done. On the grounds of our detailed findings one may an-
ticipate that the similar cascades generally hold also for other metal ions independently
whether the ion reverts back to its initial charge or photoreduction is observed. Clearly,
these cascades will be accompanied by extensive damage to the surrounding molecules.
Note, that after only 10 fs already 28 % of the core ionized states (Mg4+(2s−12p−1 1P)
and Mg4+(2s−2 1S)) will undergo the Auger and the interatomic Coulombic decays.
This sets off a Coulomb explosion leading to a modification of molecular geometry in
the vicinity of the metal ion already at that short timescale. In a broader context, this
finding demonstrates that studying interatomic decay processes is of great importance
to estimate timescales of radiation damage in metalloproteins during X-Ray diffraction
experiments.

?Since the atomic oxygen has a triplet electronic ground state, it has an equivalent of two radicals in
our estimate of the reactive product yields.
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Positioning of metal ions within or in close proximity to biomolecules makes the
radiation damage particularly disruptive for the functions these molecules fulfill. Ex-
perimental evidence is available that irradiation of DNA molecules complexed with Ca2+

by X-rays at energies below and above the Ca K-edge showed about 30% enhancement
in the induction of double strand breaks when the photon energy was increased across
the K-edge [160]. Similarly, it was demonstrated that iron containing metalloenzymes
were more efficiently deactivated when irradiated with the X-rays above the iron’s K-
edge [161]. We hope that the interatomic electronic cascades elucidated in this report
will be useful in understanding the X-ray induced photochemistry and radiation damage
of metal containing biomolecules.

6.5 Conclusions

In this chapter we investigated electronic relaxation of a core ionized metal cation in the
microsolvated Mg2+(H2O)6 cluster. We demonstrated that after the local Auger decay
the metal undergoes a multistep electronic decay cascade on a timescale of few hundreds
of femtoseconds. In this cascade, ICD and ETMD processes act in a complementary way,
facilitating energy transfer from the metal to the water neighbors and electron transfer
in the opposite direction, respectively. Thus, the core ionized metal cation returns to the
original Mg2+ state and introduces a substantial damage to the environment by releasing
slow electrons, ionizing the neighbors and setting of repulsive nuclear dynamics in its
vicinity.
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7 Impact of the metal’s charge on ICD
lifetimes in microsolvated clusters

The discussion of the interatomic electronic decay processes of microhydrated magne-
sium cations in the previous chapter revealed that in this system both ICD and ETMD
proceed on a femtosecond timescale. The ICD lifetimes of the hexahydrated Mg3+ and
Mg4+ cations with holes in the 2s orbital are remarkably short (≈ 1 fs). Such ultrafast
interatomic decay may induce repulsive nuclear dynamics in the vicinity of the metal on
a femtosecond timescale. Therefore, studying the ICD lifetimes of metal atoms and pa-
rameters which govern them is important to elucidate the timescale of radiation damage
in biomolecules containing metal atoms.

ICD, which is characterized by the transfer of the excess energy from the excited
species to the neighbor, is driven by the correlation between the electrons located on
the neighboring species. The long-range nature of the electron repulsion as well as the
fact that the final states of ICD lie in the electronic continuum, explain the femtosecond
timescale of this process [4,20,24,25,162]. The energy transfer nature of ICD determines
the behavior of the width at large separations, R, between the excited species and
a neighbor. At such distances ICD can be visualized as follows: the excited species
de-excite emitting a virtual photon which is absorbed by the neighbor leading to its
ionization. If the electronic transition in the excited species is dipole-allowed, the ICD
width behaves as 1/R6 and grows fast with decreasing distance [154, 163]. At shorter
interatomic distances the overlap between the electrons of the excited species and of
the neighbor leads to the enhancement of the width relative to that predicted by the
asymptotic behavior [154]. Thus, typical ICD lifetimes in rare gas dimers, which have
equilibrium distances in the 3 to 4 Å range, are at few 10 fs to few 100 fs timescale:
64-92 fs (theory) [53,164,165] and 150±50 (experiment) in Ne dimer [25], 300-600 fs in
He·Ne [24, 162], 75 fs in Ne·Ar [166]. The ICD lifetime becomes progressively shorter
if more ionizable neighbors are present around the excited moiety. For example, the
experimentally determined lifetime of inner-valence ionized bulk Ne atoms in a neon
cluster is only 6 fs [23] as compared to the ≈ 100 fs lifetime of the inner-valence ionized
neon dimer [25]. The ICD lifetime of the inner-valence ionized neon embedded in the
C60 fullerene (τICD = 1.6 fs) [167] becomes comparable to the Auger lifetime of the
core-ionized Ne atom (τAuger = 1.9 fs) [125].

The combined effect of small interatomic separations and large number of neighbors
explains the remarkably short computed ICD lifetimes of microsolvated magnesium ions
discussed above. In this context, experiments on aqueous solutions demonstrate that

Parts of this chapter have been already published in
V. Stumpf, C. Brunken and K. Gokhberg, J. Chem. Phys. 145, 104306 (2016). Copyright 2016,
American Institute of Physics.

87



7. Impact of the metal’s charge on ICD lifetimes in microsolvated clusters

not only magnesium but also the isoelectronic Na+ and Al3+ cations decay by ICD on
a timescale of few femtoseconds. Thus, Öhrwall et al. investigated ICD in the diluted
aqueous solutions of the Na+, Mg2+, and Al3+ salts following the photoemission of a
2s-electron of the metal ion [14]. The ICD process can be schematically represented as

Mq+ · H2O + hν → M(q+1)+(2s−1) · H2O→ M(q+1)+(2p−1) · H2O+ + eICD, (7.1)

where M q+ denotes the metal cation with the initial charge q. ICD lifetimes, extracted
from the Lorentzian widths of the photoelectron spectral lines, were 3.1 fs (Na+), 1.5 fs
(Mg2+) and 0.98 fs (Al3+). Obviously, they showed a clear trend of decreasing mono-
tonically with the growing charge of the metal. The authors identified the equilibrium
Mq+·H2O distances in the initial state, and the polarization of water neighbors induced
by the cations in the initial and the decaying states as the important parameters de-
termining the ICD lifetime. Increasing the charge of the cation leads to the decreasing
equilibrium distances and to the increased polarization of the water neighbors. Both
effects diminish the average distance between the electrons localized respectively on the
cation and on the water, which leads to the increasing ICD width in this isoelectronic
series.

It is experimentally impossible to disentangle these two effects. However, ab ini-
tio computational methods allow us to study the influence of both the intermolecular
distance and neighbor’s polarization on the ICD lifetimes separately. We conducted
ab initio calculations of ICD widths (i.e. inverse ICD lifetimes) in the small Ne·H2O,
Na+·(H2O)m (m = 1-4), and Mg2+·(H2O)n (n = 1-6) clusters following the removal of a
2s-electron of Ne, Na+, and Mg2+. We did not address ICD of microsolvated aluminum
for the reason that its solvation shell structure is pH-dependent [168] and cannot be
easily modeled by a single cluster. Instead, we extended the isoelectronic series to the
lower charged species and studied ICD rate in Ne·H2O. We analyzed the dependence
of ICD widths on the atom-water distances in monohydrated clusters both including
and excluding polarization effects in the decaying state. We furthermore analyzed the
dependence of ICD widths on the number of water neighbors at fixed metal-water dis-
tances.

7.1 ICD widths of 2s-ionized states in Ne·H2O

We begin our discussion with the Ne·H2O cluster, which bears no positive charge and
formally extends the isoelectronic Mq+·H2O (Mq+ = Na+, Mg2+) series towards a lower
value of q. In the electronic ground state of the Ne·H2O cluster the weak interaction
between the neutral neon atom and the water molecule is reflected by a relatively large
equilibrium Ne-O distance (Req = 3.22 Å), compared to the Req values of the microsol-
vated metal cations (see Tab. 7.1). The binding energy of a neon 2s-electron is larger
than the lowest cluster double ionization energies (DIE) in the neutral Ne·H2O cluster at
Req (see Tab. 7.1). Therefore, ICD channels are open and the ICD electron should have
energies between 4 eV and 10 eV. Ejection of electrons from any outer-valence orbital
of the water molecule is allowed in ICD for all neon-oxygen distances larger than 2 Å.
Since no decay channels become closed in this range, the ICD width behaves smoothly
as a function of R (see Fig. 7.1). The ICD lifetime at the equilibrium R is 49.8 fs; it lies
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Table 7.1: Atom-water equilibrium distances Req, ionization energies of 2s-electrons (IE),
double ionization energies (DIE) and ICD lifetimes of isoelectronic Aq+·H2O clusters at re-
spective Req. For Na+·H2O and Mg2+·H2O the values of Req correspond to the equilibrium
geometries of the Na+·(H2O)4 and Mg2+·(H2O)6 clusters (see chapter 3.6.1). The DIE corre-
spond to the Aq+1(2p53s0)·H2O+(ov−1) final states of ICD. The range of DIE values is due to
ionization of different outer-valence electrons of the water molecule in ICD.

Aq+ Req [Å] IE [eV] DIE [eV] τICD [fs]

Ne 3.22 47.9 37.9 - 44.0 49.8

Na+ 2.30 78.3 69.9 - 76.0 7.0

Mg2+ 2.08 115.3 109.4 - 115.0 3.6

within the typical sub-100 fs range of ICD lifetimes for the rare gas dimers containing
neon [21,53]. However, our results deviates from the 86 fs obtained by Ghosh et al. [169]
for the same system using a conceptually different computational technique (complex
absorbing potential augmented EOM-CCSD, CAP/EOM-CCSD). The deviation can not
be explained by the difference in the equilibrium structures, as was verified by an addi-
tional ICD lifetime calculation for the geometry used in Ref. [169]. It is, probably due to
the difference in approaches used to compute electronic resonances. Similar differences
in ICD widths computed by Fano-ADC and CAP/EOM-CCSD methods were reported
for van-der-Waals systems containing neon [170]. Another explanation, provided by the
authors of Ref. [169], is that the basis set used in their calculation was not sufficiently
large. At large Ne·H2O separations the computed ICD width exhibits the 1/R6 behavior
characteristic of the energy, or virtual photon transfer, process. At intermediate inter-
atomic distances (R < 5 Å) the full ab initio width grows faster than the asymptotic
1/R6 curve. The enhancement of the accurate ab initio width relative to the virtual
photon transfer width is attributed to the overlap of the electrons localized on different
units [154], which is completely neglected in the virtual photon transfer model.

The magnitude of the ICD width depends on the average distance between the elec-
trons located on the two units. The resulting enhancement of the width amounts to 30%
at Req. In the ground state of Ne·H2O the absence of the positive charge on Ne results in
a large equilibrium Ne-O distance and a small overlap of the electronic densities of neon
and water. Following the inner-valence ionization, which promotes the system into the
decaying state, a positive charge appears on Ne distorting the electronic density on the
water molecule towards the neon cation and decreasing the average distance between
the electrons on the two moieties.

An interesting observation is that any enhancement of the width over the 1/R6 asymp-
totic behavior in the coordinate range of interest is due to the polarization of the water
neighbor by the positive charge on the excited moiety. Indeed, the ab initio width
obtained when the neighbor’s polarization is excluded behaves as 1/R6 for all R of in-
terest (see Fig. 7.1). Since this conclusion is correct for the case of Ne, it should be
also correct for the isoelectronic Na+ and Mg2+ which have more compact electronic
orbitals. Therefore, continuing the asymptotic widths to shorter interatomic distances
should give us the estimate of ICD widths in Na+·H2O and Mg2+·H2O where the effect
of neighbor polarization in both ground and decaying states is neglected.
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Figure 7.1: ICD width of the Ne+(2s−1) state in the Ne·H2O cluster as a function of the Ne-O
separation. (Solid line) The width obtained in the full ab initio computation. (Dotted line)
The ab initio decay width computed excluding the interatomic relaxation in the decaying state.
(Dashed line) Extrapolation of the asymptotic 1/R6 behavior which is seen to correspond to
the ICD width when all polarization of the water neighbor is neglected to shorter interatomic
distances. (Dashed-dotted line) The ICD width computed using the virtual photon transfer
model in Eq. 7.2 where the experimental excitation energies and transition dipole moments
of Ne+, and the photoionization cross sections of H2O were utilized. Note the similarity of
different ICD widths at large R. The neon-oxygen distance corresponding to the electronic
ground state equilibrium geometry is shown as a vertical dotted line. Reprinted from Ref. [171].
Copyright (2016), with permission from AIP Publishing LLC.

A way to estimate the error of the Fano-ADC-Stieltjes method is the comparison of the
numerical ICD widths at asymptotic separations between the species with those obtained
by the virtual photon model [154, 163] which relies on the experimentally determined
properties of the isolated units:

Γ =
3c

∣∣∣ �DM

∣∣∣2 σH2O(ω)

πωR6
. (7.2)

Here, �DM is the transition dipole moment corresponding to the (2s−1)→(2p−1) transi-
tion in the inner-valence ionized atom or cation, ω is the energy of the corresponding
virtual photon, σH2O(ω) is the ionization cross section of H2O averaged over the pho-
ton’s polarization at this energy, and c the speed of light (all parameters given in atomic
units). The asymptotic ICD width computed using the experimental parameters of iso-
lated Ne [111] and water molecule [172] is plotted in Fig. 7.1. Comparing it with the ab
initio width one can see that the virtual photon model predicts an ICD width 1.9 times
smaller than the numerical value.
This discrepancy can be explained by the fact that the transition dipole moment and
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ionization cross sections, present implicitly in the ab initio approach, contain errors
at the level of approximation we employ. Thus, the decaying Ne+(2s−1) state of Ne is
constructed using both 1h and 2h1p configurations, necessary to include the intra-atomic
correlation and relaxation effects of the 2s-hole. The 2p-hole in the final Ne+(2p−1)
state is constructed using only 1h configurations. To estimate the errors introduced by
this restricted and unbalanced representation of the initial and final states we carried
out an auxiliary CI calculation for Ne. It included all 1h and 2h1p configurations
constructed from the neutral Ne reference state for the calculation of the Ne+(2s−1)
decaying state, and only the 1h configurations corresponding to the 2p-holes for the
Ne+(2p−1) final state. Compared to the experimental values the transition energy, ω, was

underestimated by a factor of 0.9, whereas the transition moment, ~DM , was too high by
a factor of 1.1. The ionization cross section σH2O(ω) implicit in the present Fano-ADC-
Stieltjes method is constructed using only singly excited 1h1p configurations. As was
demonstrated by Ruberti et al. [173], the computed cross section of water overestimates
the experimental one in the photon energy range of interest (25 eV < ω < 40 eV) if
only single excitations are used. Moreover, an additional error in σ(ω) appears due to
the wrong energy of the virtual photon implicit in the ADC calculation of the width.
Altogether we may estimate the error of the ADC(2x) scheme at asymptotic distances
to be a factor 1.8 of the virtual photon model; the value close to the factor 1.9 was
actually obtained.

7.2 ICD widths of 2s-ionized states in Na+·H2O and
Mg2+·H2O

Replacing Ne by Na+ modifies the initial state of the system considerably. The attrac-
tive interaction between the sodium cation and the polar water molecule reduces the
equilibrium Req value to 2.30 Å ,compared to the 3.22 Å in Ne·H2O. At such interatomic
distances the internuclear repulsion in the final states of ICD is so strong that the kinetic
energy of the emitted electrons is lower (2.3 eV to 8.4 eV) than in the Ne·H2O (see Tab.
7.1) in spite of the higher excess energy (≈32 eV) of Na2+(2s−1).

The presence of a positively charged ion in the initial state leads to the polarization
of the water already in the initial state. Therefore, the width computed when the
interatomic relaxation is omitted deviates at R < 5.0 Å from the 1/R6 behavior, unlike
in the case of Ne·H2O, where the deviation sets in at shorter R. At Req this width is
enhanced by 30% relative to the 1/R6 curve continued from the asymptotic distances.
The polarization of H2O increases even further following the 2s-ionization of Na+ which
promotes the system to the decaying state. Including the interatomic relaxation in the
calculation makes the enhancement of the ICD width even more pronounced, so it is
enhanced by the factor of 2.1 at Req. We conclude that the original polarization of H2O
by Na+ in the initial state as well as the additional polarization induced by removing
the 2s-electron lead to much stronger electron overlap and consequent enhancement of
the ICD width relative to the asymptotic 1/R6 behavior.

Combined effect of shorter equilibrium interatomic distances, as well as strong polar-
ization of the water molecule results in the very short ICD lifetime of 7.0 fs. A compara-
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Figure 7.2: ICD width of the Na2+(2s−1) state in the Na+·H2O cluster as a function of the
Na-O separation. (Solid line) The width obtained in the full ab initio computation. (Dotted
line) The ab initio decay width computed excluding the interatomic relaxation in the decaying
state. (Dashed line) Extrapolation of the asymptotic 1/R6 behavior to shorter interatomic
distances which corresponds to the ICD width when all polarization of the water neighbor is
neglected. (Dashed-dotted line) The ICD width computed using the virtual photon transfer
model in Eq. 7.2 where the experimental excitation energies and transition dipole moments
of Na2+, and the photoionization cross sections of H2O were utilized. The sodium-oxygen
distance corresponding to the Na+·H2O electronic ground state equilibrium geometry is shown
as a vertical dotted line. Reprinted from Ref. [171]. Copyright (2016), with permission from
AIP Publishing LLC.

ble lifetime was obtained previously for a single geometry calculation in Na+·H2O using
a simpler, perturbation theory based Wigner-Weisskopf method [174]. The lifetime at
R = 2.21 Å was found to be 3.5 fs, while our calculation gives 5.5 fs for this geometry.
The ICD widths of the decaying state computed ab initio and using the virtual photon
transfer model are shown in Fig. 7.2. The error of the Fano-ADC-Stieltjes method in the
asymptotic regime relative to the virtual photon model is similar to the one in Ne·H2O:
the ab initio method overestimates the result given by the virtual photon model by a
factor of 2.0.

The extension of this isoelectronic series to Mg2+·H2O continues the observed trend;
the equilibrium distance and the corresponding ICD lifetime decrease to 2.08 Å and 3.6
fs respectively, and the kinetic energy of the ICD electrons becomes even lower (0.3 -
4.1 eV). The ab initio widths corresponding to the calculations done with and without
accounting for the interatomic relaxation are shown in Fig. 7.3. Since in the initial
state the doubly charged Mg2+ polarizes the water neighbor stronger, the corresponding
width enhancement relative to 1/R6 behavior (see the dashed curve in Fig. 7.3) is larger
than in the case of Na+ and it amounts to 70% at Req.
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Figure 7.3: ICD width of the Mg3+(2s−1) state of the Mg2+·H2O cluster as a function of the
Mg-O separation. (Solid line) The width obtained in the full ab initio computation. (Dotted
line) The ab initio decay width computed excluding the interatomic relaxation in the decaying
state. (Dashed line) Extrapolation of the asymptotic 1/R6 behavior to shorter interatomic
distances which corresponds to the ICD width when all polarization of the water neighbor is
neglected. (Dashed-dotted line) The ICD width computed using the virtual photon transfer
model (see Eq. 7.2) where the experimental excitation energies and transition dipole moments
of Na2+, and the photoionization cross sections of H2O were utilized. The magnesium-oxygen
distance corresponding to the Mg2+·H2O electronic ground state equilibrium geometry is shown
as a vertical dotted line. Reprinted from Ref. [171]. Copyright (2016), with permission from
AIP Publishing LLC.

Including the configurations responsible for the interatomic relaxation in the calcu-
lation of the ICD state leads not only to the increase in Γ due to the additional po-
larization of H2O in the ICD state, but also to the appearance of the charge transfer
states in the spectrum. The ICD Mg3+(2s−1)·(H2O) state crosses and interacts with the
Mg2+(2s−13s1)·H2O

+ resonance charge transfer states at R = 3.8-5.0 Å which leads to
the non-monotonic behavior and strong enhancement of the ICD width at 3.8-5.0 Å .
At R = 4 Å the lifetime is approximately 6 fs, comparable with ICD lifetimes at much
shorter interatomic distances or autoionization lifetimes of the isolated Mg3+(2s−13s1)
atom (2-3 fs) [175]. Such enhancement of the ICD widths due to interactions with charge
transfer states is expected to be of general importance in the higher charged cations. At
the equilibrium R the full width is enhanced relative to the 1/R6 behavior by the factor
of 3.5. It is instructive to compare the behavior of ICD widths with R throughout the
Ne·H2O, Na+·H2O, Mg2+·H2O isoelectronic series (see Fig. 7.4). At large interatomic
distances, where the 1/R6 behavior is valid, ICD is fastest for Ne and slowest for Mg2+.
Higher positive charge leads to a lower transition dipole moment, to a higher virtual
photon energy, and to a lower value of the ionization cross section of H2O which results in

93



7. Impact of the metal’s charge on ICD lifetimes in microsolvated clusters

smaller Γ (See Eq. 7.2). At shorter R’s the positive charge on the metal cations induces
a polarization of the water neighbor both in the initial and decaying states, leading to
stronger enhancement relative to the 1/R6 behavior compared to Ne·H2O. As the result
the ICD widths at the respective equilibrium geometries are 13 meV, 92 meV and 178
meV, while at R = 2.0 Å they nearly coincide. In the case of sodium the ICD width
remains lower than the one for Ne down to the shortest interatomic distances. In the
case of magnesium the interaction with the charge transfer states makes the electronic
decay more efficient than the decay of neon in the 2.3-5.5 Å range.

One can also attempt to answer the question which parameter - the interatomic sepa-
ration R or the water polarization induced by the charged moiety - is primarily respon-
sible for the order of the ICD widths in the studied isoelectronic series. If we consider
the ICD widths which do not include the effect of water polarization for the Na+·H2O,
Mg2+·H2O clusters at the equilibrium distance of Na+·H2O (2.30 Å) we find that their
ratio is 1.7:1.0. The ratio of the same ICD widths which do not include the effect
of water polarization computed at respective equilibrium internuclear distances of the
the Na+·H2O (2.30 Å) and Mg2+·H2O (2.08 Å) clusters is 1.0:1.1. The ratio of the ICD
widths which include the effect of water polarization computed at respective equilibrium
internuclear distances of the the Na+·H2O (2.30 Å) and Mg2+·H2O (2.08 Å) clusters is
1.0:1.9. Therefore, we conclude that the equilibrium distances and the polarization in-
duced by the cationic charge on H2O are equally important in determining the ordering
of the ICD widths in the Na+·H2O, Mg2+·H2O series.

7.3 ICD widths of 2s-ionized states in Na+·(H2O)n and
Mg2+·(H2O)n

Metal ions in their natural environment (coordination complexes, solutions etc.) are
surrounded by a coordination shell of ligands or solvent molecules. The ICD width
should be linear with the number of the equivalent neighbors as long as these neighbors
do not interact. There are not many calculations of the ICD width as a function of
the number of neighbors. Thus, linear behavior was found theoretically in the Ca·Hen
clusters [94]; the ICD width of the inner-valence ionized neon atom in Nen, however,
increased faster than linear with n [54].

We would like to determine this behavior for larger microsolvated clusters of Na+

and Mg2+. Results of calculations in Na+·(H2O)m for m = 1-4 using a simpler Wigner-
Weisskopf method show a lot of scatter and do not allow to extract the Γ behavior with
the number of neighbors [174]. However, one would expect a nonlinear dependence of the
ICD width on the coordination number for microsolvated cations. The interactions of
the ligands with the metal cation are non-additive and become weaker with the growing
coordination number, in particular, if the metal cation carries a high charge [176, 177].
This can be explained by the fact that the electronic interaction of a specific ligand with
the cation is modified by the presence of the remaining ligands, which become polarized
and shield the charge on the metal, weakening its interaction with the ligand in question.
Similar effect should also be observed in the behavior of Γ with the number of ligands.
In larger clusters individual molecules should be less polarized by the cation due to the
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Figure 7.4: ICD widths of the 2s ionized Mq+(2s−1)·H2O states of the isoelectronic series of
microsolvated clusters Ne·H2O, Na+·H2O, Mg2+·H2O. (Solid lines) Full ab initio ICD width.
(Dashed lines) Extrapolation of the asymptotic 1/R6 behavior to shorter interatomic dis-
tances which corresponds to the ICD width when all polarization of the water neighbor is
neglected. Note the ordering of the curves in the asymptotic regime and at small interatomic
distances.Reprinted from Ref. [171]. Copyright (2016), with permission from AIP Publishing
LLC.

shielding of its charge by the rest of the neighbors. Therefore, the contribution of the
individual ligands to the total ICD width should decrease with the number of neighbors.
The gradual filling up of the first coordination shell of the sodium cation (see Fig. 7.5),
leads only to a weak nonlinearity of the corresponding ICD width. In the case of the
tetra-coordinated sodium cation the difference between the ab initio result and the
linear extrapolation is approximately 6%. Switching off the interatomic relaxation in
the decaying state (see Fig. 7.5) makes the deviation from the linear behavior even
weaker. A more pronounced nonlinearity in Γ can be observed in Mg2+·(H2O)n when
n is varied. This is due to the stronger polarization of H2O by the Mg3+(2s−1) ion
in the decaying state and to the consequently stronger shielding of the ionic charge
compared to the Na+·(H2O)m clusters. Both the higher charge of the magnesium cation
and the smaller metal-oxygen distances are responsible for this effect. Thus, for the
tetra-coordinated Mg2+ a deviation from linear behavior of 25% occurs, while at the
maximum coordination number of 6 it reaches an even higher value of 31%. In contrast
to Na+·(H2O)m clusters, excluding the additional polarization in the decaying state
decreases this deviation markedly to 12% for n = 6. This shows that the polarization
induced by the additional charge in the decaying state is mostly responsible for the
deviation from the linear behavior. In conclusion, the linear extrapolation approach is
expected to give reasonable results for metal cations with a low charge in the initial
state, where the metal-ligand distances are larger and the polarization of ligands in the
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Figure 7.5: ICD width as the function of the coordination number n in Na+·(H2O)n. (Full
black line) the full ab initio result; (dashed black line) a linear extrapolation from the decay
width of the singly coordinated Na+. The corresponding red lines belong to computations,
where polarization of the water neighbors in the decaying state was excluded. The calcula-
tions were done for cluster geometries obtained from the fully optimized Na+·(H2O)4 one as
described in chapter 3.6.1.Reprinted from Ref. [171]. Copyright (2016), with permission from
AIP Publishing LLC.

initial [105] and decaying states is weaker. The larger the charge on the metal is, the
larger deviation from the linear behavior of the ICD width with n is expected.

Finally, we would like to establish a connection between the ab initio results reported
above and the ICD lifetimes of Na+ and Mg2+ in aqueous solution determined exper-
imentally by Öhrwall et al. [14]. The first coordination shell of the cation makes the
major contribution to the ICD width of the 2s-ionized state. We estimate that including
the second solvation shell would increase the width only weakly (by about 3%). There-
fore, calculations in microsolvated clusters are expected to give accurate ICD widths in
dilute solutions. In the case of Mg2+ the coordination number distribution in aqueous
solution is narrow with the maximum at n = 6 [102]. Furthermore, the metal-oxygen
distance in the Mg2+·(H2O)6 cluster (2.08 Å) lies in the range of experimental values
for the solvating Mg2+ (2.00-2.15 Å) [101]. The Fano-ADC-Stieltjes method yields 0.84
fs as the lifetime in the cluster, while the experimental value in solution is 1.5 fs. The
discrepancy between the computed and the experimental results lies within the error
of the Fano-ADC-Stieltjes method (factor 2.2) which we estimated by comparing the
virtual photon model with the ab initio calculation.

Due to the rather broad distribution of the coordination numbers and metal-oxygen
interatomic distances for Na+ in aqueous solution [178], a comparison with a cluster ICD
lifetime is less reliable. The experimental lifetime was found to be 3.1 fs, while the cal-
culations in the tetra-coordinated cluster give 1.8 fs. The ab initio result lies within the
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Figure 7.6: ICD width as the function of the coordination number n in Mg2+·(H2O)n. (Full
black line) the full ab initio result; (dashed black line) a linear extrapolation from the decay
width of the singly coordinated Mg2+. The corresponding red lines belong to computations,
where polarization of the water neighbors in the decaying state was excluded. The calcula-
tions were done for cluster geometries obtained from the fully optimized Mg2+·(H2O)6 one as
described in chapter 3.6.1. Reprinted from Ref. [171]. Copyright (2016), with permission from
AIP Publishing LLC.

error of the Fano-ADC-Stieltjes method (factor 2.0). In addition, in comparing the ICD
widths for Na+ one should keep in mind that penta- and higher coordinated structures
are prominent in a solution. An ab initio calculation which takes into account statistical
distribution of nearest solvent shells will, therefore, result in ICD lifetime shorter than
3.6 fs. Thus, average experimental values for the sodium-oxygen distance and coordi-
nation number are 2.34 Å and 5.2, respectively [102]. Inserting these parameters in
the pairwise approximation with a 10% nonlinearity correction and 2.0 correction factor
of the Fano-ADC-Stieltjes method we obtain a shorter lifetime of 3.3 fs. Interestingly,
the ratio of the ab initio width in Mg2+·(H2O)6 to the one in Na+·(H2O)4 nearly equals
the experimental ratio, 2.14 to 2.06. The decrease of the ICD lifetime due to the larger
average coordination number of the sodium in solution compared to the Na+·(H2O)4
cluster is compensated by the larger average sodium-oxygen distance.

7.4 Conclusions

In this chapter we investigated charge dependent parameters determining ICD lifetimes
of isoelectronic microhydrated Na+ and Mg2+ metal ions after 2s ionization. We showed
that at large metal-oxygen distances ICD lifetimes decrease with the growing charge as
predicted by the virtual photon model. At decreasing metal-oxygen distances polariza-
tion of the water neighbor enhances ICD the stronger the higher the charge of the metal
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is. In the Mg3+·H2O cluster interactions with Mg2+·H2O+ charge transfer states occur
at intermediate metal-oxygen distance, strongly enhancing the electronic decay.We con-
clude that the ordering of the ICD lifetimes observed in the experiment is both due to
shorter metal-oxygen distance and stronger polarization of the water ligand in the case
of the magnesium cation. We furthermore showed that the induced polarization of the
water molecules leads to a slower than linear growth of the ICD width with the number
of equivalent water neighbors; the nonlinearity is stronger for the higher charged Mg2+

cation.
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In this work we investigated by means of ab initio computational methods non-local
electronic decay processes which involve energy transfer (Interatomic Coulombic Decay
or ICD) and electron transfer (Electron Transfer Mediated Decay or ETMD) between
positively charged ions and their environment. ICD - which has been extensively theo-
retically and experimentally studied for about two decades - is an established ultrafast
decay pathway in weakly bound chemical environments, whereby electronically excited
species relax by ionizing their neighbors. What we found and reported in this thesis is
that the relatively obscure ETMD process is an efficient pathway for the redistribution
of localized positive charge in weakly bound medium. We carried out ab initio studies
of ETMD in several systems which comprise atomic cations in their electronic ground
state configuration, i.e. atomic cations with a low excess energy embedded in a van-der-
Waals or hydrogen bonded chemical environment. We characterized ETMD in this class
of systems with respect to its timescale and to the experimental observables, such as
energies of emitted slow electrons or kinetic energy released in Coulomb explosion. The
ICD process was also investigated, with emphasis on the ultrashort timescales observed
for metal cations surrounded by water molecules.

The environment is doubly ionized in an ETMD process, therefore, it can be utilized
as an efficient mechanism for the double ionization of the atoms or molecules adjacent
to the cation. To clarify this idea we investigated the double ionization of a magnesium
atom via the ETMD(2) relaxation of an attached He+ cation. In our study, this cation is
created via photoionization of the helium atom. The joint process of the photoionization
and ETMD(2) is equivalent to a one-photon double ionization of the magnesium atom.
Our calculations show that ETMD is able to suppress the competing RCT process
and efficiently doubly ionizes the magnesium. Therefore, the double ionization cross
section of Mg with the attached He atom is comparable to the photoionization cross
section of helium. In relative terms it is three orders of magnitude larger than the
cross section of the direct one-photon double-ionization of the isolated magnesium atom.
The experimental verification of this double ionization scheme was realized in helium
nanodroplets doped with magnesium clusters. Both intact doubly ionized magnesium
clusters and singly ionized fragments stemming from the fission of the doubly ionized
magnesium clusters were detected. These products appear only above the ionization
threshold of helium and only in coincidence with slow ETMD electrons. We propose
the one-photon double ionization via ETMD for experimental production and further
investigation of molecular dications in cold environment such as helium nanodroplets.
Molecules with low double ionization potentials, e.g. polyacenes are suitable immediate
candidates for such studies.

From the point of view of a cation undergoing ETMD, this decay mechanism reduces
its charge by one, i.e. it constitutes a purely electronic mechanism of partial neutraliza-
tion which needs not involve any motion of the nuclei. The energy conservation condition
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requires the electron affinity of the cation to be higher than the double ionization po-
tential of the environment. Therefore, ETMD as a mechanism of partial neutralization
is particularly important for multiply charged cations which are produced by the Auger
decay. Our calculations demonstrate that energetically low Ne2+(2p−2) cations produced
by the KLL Auger decay of the neon atom undergo ETMD(2) process and are partially
neutralized in the presence of a single Xe neighbor. The Ne2+·Xe cluster represents
an ideal system for the detailed study of ETMD(2) in a coincident experiment and
to facilitate such measurements we computed the kinetic energy spectra of the ETMD
electrons and the KER spectra of the nuclei. If ETMD(2) is energetically forbidden,
in larger systems ETMD(3) may take over its role as we show for the Ne2+·Kr2 cluster
since the delocalization of the positive charge over two neighbors lowers its threshold.
The lifetimes of ETMD in the Ne2+·Xe, Ne2+·Kr2 and in the the He+·Mg cluster dis-
cussed above lie in the picosecond range at the equilibrium geometries of the respective
neutral clusters. Therefore, ETMD in these small, weakly bound van-der-Waals clusters
is accompanied by nuclear dynamics. It is set off by the creation of positive charge in
the Auger decay following the core ionization and causes a shortening of interatomic
distances between the cation and the neighbors. For the Ne2+·Kr2 cluster we observed
a reduction of the ETMD(3) lifetime by an order of magnitude due to the nuclear dy-
namics. This phenomenon, which is expected to be of general importance for cations
created in a polarizable medium, leads to the enhancement of ETMD rate. This findings
suggest that in larger clusters due to the larger number of neighbors ETMD occurs on
the femtosecond timescale and becomes the leading neutralization process for highly
charged ions. Experimental evidence for an Auger-ETMD(3) cascade was provided in
large mixed neon-krypton clusters. Slow electrons and Ne+/Kr+/Kr+ triples of ions
were recorded in coincidence after the ionization of the neon-krypton clusters above the
K edge of neon. Analysis of the experimental data clearly shows that for each Auger
decay event which takes place on the Ne-Kr interface in the cluster there is an ETMD
event which partially neutralizes the Ne2+ cation and redistributes the charge across the
Ne-Kr boundary.

Both aspects of ETMD as an electronic decay mechanism which partially neutralizes a
cation and which doubly ionizes its environment play an essential role in understanding
the X-Ray induced radiation damage of systems containing metal cations. Our calcu-
lations in the microsolvated Mg2+·(H2O)6 cluster reveal that core ionization of Mg2+

initiates a cascade of electronic decay steps since all electronic states of Mg3+ and Mg4+

cations lie in the electronic continuum. The decay cascade consists of ETMD and ICD
steps and ultimately returns the magnesium cations into the original Mg2+ state. Each
ICD step releases the excess energy from the excited cations while each ETMD step of
the cascade reduces the charge of the metal cation with a low excess energy by one. At
the same time, each ICD step ionizes the environment singly and each ETMD step ion-
izes it doubly. Therefore, the decay cascade leads to a massive degradation of the water
solvation shell. We estimate that, on average, 4.3 radicals and 2.4 slow electrons are re-
leased by the decay cascade. Importantly, the duration of the cascade is approximately
220 fs at the frozen nuclei approximation; allowing for nuclear dynamics to occur should
shorten this duration even further. This findings demonstrate that X-Ray absorption in
metals is able to introduce direct and indirect damage to biomolecules on a femtosecond
timescale. In this context, it would be instructive to study X-Ray induced interatomic
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decay cascades in small metal containing biomolecules (e.g. Mg2+-ATP, chlorophyll)
and to estimate the contributions of the direct and indirect damage. Such molecules
can in principle be handled by the computational methods presented in this work.

We noted above that the total duration of the interatomic decay cascade in the
Mg4+·(H2O)6 cluster was 220 fs. This value can be seen as an upper bound since we
neglected nuclear dynamics accompanying the electronic decay. We expect the nuclear
dynamics to remove positively charged moieties (e.g. protons or intact water cations)
produced by early steps of the cascade and thus to open decay channels closed due to
the presence of these moieties. Nuclear dynamics simulations could help to understand
the mechanisms of such charge withdrawal and provide the corresponding timescales.
This knowledge would allow to estimate the duration of the interatomic cascades fol-
lowing Auger decay more precisely. We furthermore expect that nuclear dynamics could
play an important role for the timescale of interatomic decay of highly charged cations,
such as e.g. Mg4+, in an extended solvation environment. The positive charge may
induce a proton transfer to a second solvation shell of the metal. This would impact the
interatomic decay lifetimes, since the electronic properties of the water molecule (e.g.
polarizability) would change upon the proton loss. Recent studies on electronic decay
following core ionization of liquid water show that the interplay between electronic decay
and nuclear dynamics needs to taken into account to obtain qualitatively correct decay
observables in extended systems [96,179].

The computed timescales of the interatomic electronic decay for the microhydrated
Mg4+ and Mg3+ cations are remarkably short. Thus, the ICD lifetimes of excited,
hexahydrated Mg4+ and Mg3+ cations with holes in the 2s orbital were found to be even
shorter (≈ 0.8 fs) than the Auger lifetime of Mg3+ (1.9 fs). Experiments on excited Mg3+

cations in aqueous solutions support our results and yield an ultrashort ICD lifetime of
1.5 fs. Moreover, also the isoelectronic Na2+ and Al4+ cations were observed to decay
in aqueous solutions on a comparable timescale, the corresponding ICD lifetimes being
3.1 and 0.9 fs, respectively. We were able to explain the faster decay of Mg3+ compared
to Na2+ by conducting decay lifetime calculations in microsolvated clusters comprising
the metal ions and their first solvation shell. In the asymptotic range of metal-oxygen
distances the increase of the ion’s charge leads to a growth of the ICD lifetimes. This
result can be explained by the charge dependent parameters within the virtual photon
model. At short metal-oxygen distances polarization of the water neighbor enhances ICD
the stronger the higher the charge of the metal is. Surprisingly, the ICD lifetimes of
monohydrated Na2+, Mg3+ and the isoelectronic Ne are virtually equal at short metal-
oxygen distances. We conclude that the faster decay of Mg3+ compared to Na2+ is
both due to smaller metal-oxygen distances and the higher degree of polarization of the
ligand for the magnesium. The discrepancy of the absolute experimental and computed
lifetimes is of factor two. We show that the different levels of electronic correlation in the
description of the initial and final states of ICD within the Fano-ADC-Stieltjes scheme
are responsible for this discrepancy.

A further important finding is the interaction of the microsolvated Mg3+ cations de-
caying by ICD with the charge transfer states, where an electron is transferred into the
empty 3s orbital of magnesium. Such interactions strongly enhance the interatomic de-
cay and are expected to appear not only in connection with ICD but also with ETMD.
In the Mg3+·H2O cluster the interaction with charge transfer states occurs at metal-
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oxygen distances larger than the equilibrium ones. By varying the charge state of the
cation and the electronic properties of the ligand, systems may be found, where charge
transfer is possible close to the equilibrium geometry. In this context, methodological
development is necessary to investigate a broader range of model systems. The currently
available Fano-ADC-Stieltjes method is restricted to singly and doubly ionized as well
excited states of systems which can be described by a single determinant in the neutral
ground state. For the application of this scheme to a broader range of charge states
it can be combined with an universal electronic structure approach such as e.g. MRCI
instead of ADC.

ICD of metal ions is able to initiate repulsive nuclear dynamics in their vicinity few
femtoseconds after the absorption of the photon. Therefore, studying ICD and the
parameters which determine its timescale is important to estimate the times at which
X-Ray induced damage sets on in metalloproteins. Such knowledge is needed in the
context of the recently formulated idea of the serial femtosecond structure determination
at XFELs, in which the short duration of the X-Ray pulses is meant to provide damage-
free structures of proteins.

For ETMD, our calculations in Mg3+ and Mg4+ support the results of earlier studies
which showed that this process takes place on a timescale of few tens of femtoseconds
in microhydrated metal cations [93]. In particular, the ETMD(3) mechanism becomes
very efficient if the metal cation is surrounded by a complete solvation shell of water
molecules as the lifetime computations in Mg4+·(H2O)6 reveal. It strongly benefits
from the nonlinear scaling of the decay width with the number of neighbors and from
reduced water-water distances. In addition, increased polarization of the neighbors
should translate into the increased overlap between the occupied orbitals of the neighbors
with the empty orbitals on the cation which should increase the rates of interatomic
decay processes. Interestingly, the ETMD lifetimes of the hexahydrated Mg4+ and Mg3+

cations are very similar although the degree of the water’s polarization is considerably
higher for the Mg4+. Keeping in mind that the Auger cascades in heavier elements such
as transition metals yield broad charge distributions, the dependence or the ETMD
lifetimes on the charge state of the metal cations deserves further investigations. The
transition metals are the predominant metal species in the metalloenzymes and are thus
expected to play an important role in the X-Ray induced damage of the latter.
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M. Schöffler, S. Schössler, L. Foucar, N. Neumann, J. Titze,
H. Sann, M. Kühnel, J. Voigtsberger, J. H. Morilla, W. Schöllkopf,
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073401 (2014).

[119] C. C. Wang, O. Kornilov, O. Gessner, J. H. Kim, D. S. Peterka, and
D. M. Neumark, J. Phys. Chem. A 112, 9356 (2008).

[120] D. Buchta, S. R. Krishnan, N. B. Brauer, M. Drabbels, P. OKeeffe,
M. Devetta, M. Di Fraia, C. Callegari, R. Richter, M. Coreno, K. C.
Prince, F. Stienkemeier, J. Ullrich, R. Moshammer, and M. Mudrich,
J. Chem. Phys. 139, 084301 (2013).
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Lett. 116, 073001 (2016).

[150] J. Severs, F. Harris, S. Andrews, and D. Parry, Chem. Phys. 175, 467
(1993).

[151] G. Handke, F. Tarantelli, A. Tarantelli, and L. Cederbaum, J. Elec-
tron. Spectrosc. Relat. Phenom. 75, 109 (1995).

[152] W. Pokapanich, H. Bergersen, I. L. Bradeanu, R. R. T. Marinho,
A. Lindblad, S. Legendre, A. Rosso, S. Svensson, O. Björneholm,
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Cederbaum, Phys. Rev. A 81, 013417 (2010).

[164] R. Santra and L. S. Cederbaum, J. Chem. Phys. 115, 6853 (2001).

[165] N. Vaval and L. S. Cederbaum, J. Chem. Phys. 126, 164110 (2007).

[166] T. Ouchi, K. Sakai, H. Fukuzawa, I. Higuchi, P. V. Demekhin, Y.-C.
Chiang, S. D. Stoychev, A. I. Kuleff, T. Mazza, M. Schöffler, K. Na-
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