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Abstract

Background: The analysis of microarray time series promises a deeper insight into the dynamics of the cellular
response following stimulation. A common observation in this type of data is that some genes respond with quick,
transient dynamics, while other genes change their expression slowly over time. The existing methods for detecting
significant expression dynamics often fail when the expression dynamics show a large heterogeneity. Moreover, these
methods often cannot cope with irregular and sparse measurements.

Results: The method proposed here is specifically designed for the analysis of perturbation responses. It combines
different scores to capture fast and transient dynamics as well as slow expression changes, and performs well in the
presence of low replicate numbers and irregular sampling times. The results are given in the form of tables including
links to figures showing the expression dynamics of the respective transcript. These allow to quickly recognise the
relevance of detection, to identify possible false positives and to discriminate early and late changes in gene
expression. An extension of the method allows the analysis of the expression dynamics of functional groups of genes,
providing a quick overview of the cellular response. The performance of this package was tested on microarray data
derived from lung cancer cells stimulated with epidermal growth factor (EGF).

Conclusion: Here we describe a new, efficient method for the analysis of sparse and heterogeneous time course
data with high detection sensitivity and transparency. It is implemented as R package TTCA (transcript time course
analysis) and can be installed from the Comprehensive R Archive Network, CRAN. The source code is provided with
the Additional file 1.
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Background
Time course microarray experiments are frequently con-
ducted to study the dynamics of gene expression at sev-
eral consecutive time points. Associated data sets often
require own custom-made analysis strategies, and cannot
been adequately exploited with standard methods which
were established to compare groups. The variability of
the dynamics, spanning from fast and transient to slower,
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long-lasting changes, is a challenge for the analysis of time
series microarray data. In perturbation experiments, sam-
pling frequency is often adapted to reflect the expected
changes in gene expression. This kind of experimental
design leads to irregularly sampled data sets. Irregular
time sampling may also arise when time points are cho-
sen to be omitted after quality control, for instance when
the respective arrays represent outliers with respect to
the global trajectory resulting from principal component
analysis (PCA) as shown in Fig. 1. If replicates are consid-
ered, their number may also vary due to the experimental
design or quality issues. Often time course-data provide
only one replicate per time point.
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Fig. 1 Trajectory of the transcriptomes: Axes represent principal components explaining 95.7% of the variability in the data. Measurement points
represent the entire transcriptome under three different stimulation experiments projected onto the first three principal components. For early time
periods, all three transcriptomes correlate very well with each other. Over time, the transcriptomes develop stimulus dependent. Stimulus 1 leads to
a strong change in the transcriptome, while stimulus 2 has a much smaller effect. Possible outliers are measurement points that show a large
distance from the trajectory or from related replicates

The first methods applied on time course microarrays
including SAM [1], ANOVA [2] and Limma [3] where
extensions of methods for contrasts between states and do
not include the order of time points into the analysis [4].
EDGE was one of the first methods taking the time

sequence into account [5, 6]. EDGE involves a fit of
natural cubic splines to gene expression profiles, and a
bootstrap approach providing a reference distribution.
MaSigPro (Microarray Significant Profiles) operates in a
similar manner [7]. Sohn et al. have modified EDGE by
using a permutation-approach and controlling the fam-
ily wise error rate [8]. Later, they applied the FWER as a
significance threshold and made the method more robust
using quantile regression [9]. These methods have three
drawbacks when used to analyse sparse data containing
sharp transient expression changes. First, the informa-
tion of the time course measurements is underestimated.
Biologically meaningful peaks might be overlooked when
the related measurement points are rejected as outliers.
Second, the information of the permuted reference time
course is overestimated. The permutation of the measure-
ment points within the time sequence is often used to
produce reference data of the same distribution, but with-
out the original ordered pattern of dynamic changes. This
estimation of the error rate can fail in sparse data sets
when the expression dynamics exhibit a sharp peak. Here,
permutation of the time points merely shifts but does
not wipe out the peak. With this method, the signal-to-
noise ratio of genes displaying fast variations in expression
can be underestimated and related genes are erroneously
removed from analysis. The third problem is that a large
number of computationally expensive permutations is
required, to avoid granularity in the resulting ranking
[4]. Granularity refers in this case to hundreds of genes
with exactly the same p-value. Repeated application of the

method may shift a gene to another p-value cluster, which
impedes reproducibility of the results.
An alternative method using multivariate empirical

Bayes statistics and one-sample Hotelling T2 statistics
is implemented in the R package timecourse [10]. This
package does not provide a significance threshold and
requires a minimum number of replicates. Also, BETR
(Bayesian Estimation of Temporal Regulation) [11], which
uses random-effects models and considers co-expression,
relies on time point replicates. Network-based methods
combine cluster analysis with detection of differential
expression and focus also on co-expression [12, 13]. But
co-expression is a very strict assumption for the extraction
of differentially expressed genes from time course data. In
tightly regulated and dynamic gene regulatory networks,
it seems to be very unlikely that cells do not regulate their
genes at any of the sampled time points. Some of the tar-
get genes could have a negative feedback loop and could
block their own expression, which could explain fast tran-
sient dynamic changes, while other target genes could
have a positive feedback loop and therefore maintain gene
expression longer. Additional regulation could happen
after a longer time or very fast without protein translation,
i.e. with functional large non-coding RNAs [14]. Longitu-
dinal co-expression might overlook target genes that are
affected by the stimulus, but which are additionally regu-
lated by other dynamic mechanisms. Moreover, the longer
the sampled time period is, the higher is the risk that ini-
tially unaffected genes show co-expression behaviour due
to completely different mechanisms without relation to
the stimulus. The risk is higher to detect false positive
target genes.
Methods based on Gaussian processes select differen-

tially expressed genes from one channel experiments [15]
and from two channel experiments [16], implemented in
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the R package gprege. However, the implemented Gaus-
sian processes suffer frommassive computational cost and
the required time point replication. An alternative for two
channel experiments is BATS (Bayesian Analysis of Time
Series) [17, 18].
Another class of time course methods is based on

principal component analysis (PCA) [19]. Inspired by
a trend in the data analysis to fit the true underlying
functions [20, 21], methods based on functional PCA
(FPCA) were developed [22, 23]. The most recent method
[23] can handle single replicated time course data, pre-
dict individual dynamics with PACE (Principal Com-
ponent Analysis through Conditional Expectation) [24]
and yields reasonable results for moderately slow expres-
sion dynamics. This method was successfully applied
to clinical data derived from immune response studies
[25]. For the data set considered in our study, involv-
ing perturbation experiments on cell cultures with fast
expression changes, this method did not perform reli-
ably. In particular, we observed counterintuitive differ-
ences between our original data and the original data
being displayed by this method after preliminary transfor-
mation by PACE. First, the method transforms flat gene
profiles into profiles exhibiting strong temporal changes,
shown in Additional file 2: Figure S1A. Second, the trans-
formed trajectories are too stiff to follow sharp peak
behaviour like in Additional file 2: Figure S1B. This hap-
pens before the actual time course analysis method is
applied.
Finally, even simple methods can yield good results for

sparse data, for instance by computing distances or the
area between curves [26, 27]. Also, a sliding window, cap-
turing a small subset of consecutive measurement points,
was discussed, but cannot be applied to non-equidistant
measurements [4].
To sum up, most existing methods cannot reliably

analyse sparse and irregularly sampled time course gene
expression data sets. Further details and a method com-
parison are provided in the Additional files. A method
overview is given in Additional file 2: Table S1.

Method TTCA
The method TTCA (transcript time course analysis)
includes different scores to identify genes showing differ-
ential expression dynamics of various kinds.
The dynamics score Di captures slow gene expres-

sion dynamics, the peak score Pi selects fast transient
expression changes, the integral score Ii accounts for
absolute changes in mRNA production level in different
time periods, and a relevance score Ri provides infor-
mation on existing references in the literature. A further
option allows for gene ontology groups to be processed
in a similar manner as individual genes. Additionally, the
minimum overlap score �i is computed to identify gene

ontology groups with maximal separation of the group
specific expression bandwidths between two conditions.
Significance threshold and effect size are calculated for
each score and the consensus score Ci combines the differ-
ent scores for a final ranking.
For the detection of differential gene expression based

on two channel microarray data, we recommend to create
a constant gene expression profile as control profile. This
control profile might start with the expression value of
the first time point, or could be set to the average expres-
sion value of the experimentally derived gene expression
profile.
The gene expression level is based on an assembled set

of detected probes of 25 bp length. In this article, we
focus on the expression dynamics of genes, however, those
probe level signals can also be mapped to related tran-
scripts or other longer oligonucleotides. These can equally
be analysed with TTCA.
In the following section, preprocessing for microarray

time series data is addressed. Next, all relevant scores and
components of the proposedmethod are explained briefly.

Pre-processing of microarray time course data
Microarray data are usually afflicted by batch effects,
i.e. unwanted variability in the samples arising from
their experimental, technical and digital processing his-
tory. Batch effects can be introduced when samples are
processed on different hybridisation batches (maximum
6-12 samples at once), or when a subset of the sam-
ples experienced slightly different experimental condi-
tions (time of the day, new media, etc.). Many batch
effects can be technically detected and can be removed
if enough replicates are available. Microarray time course
data sets are frequently sparse and the number of repli-
cates per time point is low. In such data it is impossi-
ble to detect batch-effects [28]. Moreover, the frequently
used quantile-normalisation, implemented in RMA [29],
is based on the assumption that the majority of the
genes shows a constant expression level. However, for
time series experiments this might not be the case. Espe-
cially, cancer cells are known to have a high variabil-
ity in their gene expression profiles [30]. Perturbation
experiments might induce secondary gene responses that
eventually result in considerable expression dynamics for
a broad range of genes. It has been shown that thou-
sands of genes can change their expression over time
after stimulation [6]. Instead of using multi-array nor-
malisation methods like RMA for time course analyses,
we recommend to use within-array normalisation meth-
ods which process each array separately, independent of
arrays taken at other time points. In particular, we recom-
mend individual array standardisation with SCAN [31],
which is robust against GC-content bias and some batch
effects.
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Dynamics score
We define a dynamics score in three steps based on
the method EDGE [6] and its extension using quantile-
regression [9].
The null hypothesisH0 is that the stimulus does not sig-

nificantly alter the expression level of gene i. Thus, the
measurements of the respective conditions (i.e. treatment
vs. control) are derived from the same expression pat-
tern and can be combined for a single function fit. In
Fig. 2a, the null hypothesis is represented by the fit to all
measurement points without distinction between the con-
ditions (dashed line). The alternative hypothesis H1 is that
the measurements are derived from different expression
patterns, and that the two conditions have to be treated
separately. Hence, the data is split into the two conditions,
and each time course is fitted to an individual function
(see the solid lines in Fig. 2a). The sum of the residuals of
the two individual function fits should be smaller than the
sum of the residuals of the single function fit to fulfil the
alternative hypothesis H1.
The fit is based on quantile regression [32]. The fit-

ted function g(t) and the residuals rij are obtained by
minimising

n∑

j=1
ρ0.5(yj − g(tj)) − λ

∫
|g′′(t)|dt

︸ ︷︷ ︸
smoothes the function

. (1)

The quantile regression algorithm is symbolised by ρ0.5,
and implemented in the R-package Quantreg [33] in func-
tion rqss(). The index 0.5 indicates the use of the median
to provide the most robust curve fit. The continuous func-
tion g is fitted to the measurements yj, j ∈ {1, . . . , n} taken
at time points tj, j ∈ {1, . . . , n} with n measurements in
total. The first term of Eq. (1) represents the absolute, not
the quadratic distance between the measurements yj and
the function g(tj). Microarrays are inflicted with a certain
proportion of outliers [9]. If these outliers are weighted
quadratically by least-square approaches, as most meth-
ods do, a Gaussian distributed error model is assumed.
However, a Gaussian error model is not a good choice for
the characteristics of frequent outliers, as this approach
biases the fit stronger than the absolute distance. The
second term of Eq. (1) penalises the absolute number of
directional changes in the gene expression dynamics to
avoid over-fitting. The penalisation term is weighted by

Fig. 2 Score characteristics: a) Dynamics score. The alternative hypothesis is represented by the solid line. The dashed line represent the null
hypothesis (Picture source [6]). b) Peak score. Is based on the largest distance (arrow) between measurement points for two different stimuli. The
solid line represents the fit achieved via quantile regression with Eq. (1). c) Integral score. The area between two dynamics indicates the absolute
mRNA production change. This value can be computed for different time intervals. d) Different score distributions after z-transformation and the
merged consensus score distribution
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the scaling factor λ. We estimated λ = 0.6 for SCAN-
processed data with the help of real-time PCR profiles
from genes that are known to be differentially expressed
after the stimulation. The obtained residual-vectors Ri are
modified by weighting vectors �. These weights account
for the uneven experimental design in the following way:
First, each time point should have the same weight inde-
pendent from the number of replicates. Second, more
values in one condition than in the other result in higher
residuals without a better fit. TTCA balances the uneven
design. Third, to reduce the unwanted bias by this vector,
the sum of all vector elements of the weighting vector is
forced to the same value. The scalar product of the resid-
ual and weighting vector yields a scalar value for each
gene.
The dynamics score Di is then defined by

Di := H0
H1

= < �H0 ,RH0
i >

< �stim,Rstim
i > + < �ctrl,Rctrl

i >
.

The relation H0/H1 quantifies how much worse the
null-hypothesis fits in comparison to the alternative
hypothesis and is easy to interpret.

Peak score
Perturbation experiments may invoke fast and transient
peak dynamics in a gene subset, where the peak might
be captured by only a small number of measurements. In
this case, peaks, although biologically meaningful, may be
overlooked by microarray analysis methods. To account
for this, we introduce the peak score. Let T = {t1, . . . , tn}
denote the set of the measurement time points. For each
time-point t ∈ T , we define Fstimit and Fctrlit as the averages
of all replicates for the stimulated and control conditions,
respectively. The peak score is then given by

Pi := max
t∈T

∣∣∣Fstimit − Fctrlit

∣∣∣ .

The success of this approach has been pointed out by
Di Camillo et al. [26]. To test whether differences between
the expression profiles are significant, we use the robust
0.95 quantile of all available standard deviations, for a
minimum of 1000 genes and multiple replicated measure-
ment points as a noise-threshold. A gene i is considered
as significant, if Pi is more than twice the noise-threshold
(see Fig. 2b). To account for a possible correlation between
the standard deviation and mean of gene expression,
TTCA sorts the genes with respect to their mean values
and divides them into a minimum of 8 groups, each con-
taining at least 1000 genes. The noise-threshold is then
computed separately for each group. TTCA can either
use replicated time points to provide a noise threshold or

the distribution of the score values to provide a signifi-
cance threshold. Replicates are not required but can be
used. If less than 4 measurement points are replicated,
the program will provide only a ranking and the signifi-
cance will be calculated as in the other scores as described
below.

Instability score
Some genes, found highly significant in the previous
scores, exhibit an extreme variance between replicates. If
the median of the standard deviation of replicated mea-
surements of gene i is two-fold larger than the gene group
noise threshold, these genes are classified as unstable. The
instability score is binary and appears in the results table
together with a relative effect size, explained below. TRUE
indicates instable genes that are likely false positives, and
FALSE indicates genes with acceptable variance between
replicates. For an example see the gene SNORA11 in
Table 1 and Fig. 4.

Integral score
The integral score is intended to quantify the area between
the expression profiles for control and treatment. To com-
pute the integral between the two expression dynamics of
each gene i we first linearly interpolate the missing val-
ues of the quantile regression at measured time points t
and at time points where the curves intersect. We then
estimate the area between the two dynamics Di applying
the trapezium rule. This integral

Ii :=
∫ t2

t1

∣∣∣Dstim
i (t) − Dctrl

i (t)
∣∣∣ dt

for each gene i serves as a measure for the difference
in the mRNA production between the two conditions.
Figure 2 C illustrates the integral score, which can be com-
puted for different time intervals. Hereby, four separate
scores are computed (Iearly

i , I intermediate
i , I late

i ,Icomplete
i ) to

distinguish between the early response, the intermedi-
ate response, the late response, and the response over
the whole period. The first three scores are defined
for subsequent time-intervals, which can be defined by
the user. These scores allow to distinguish between
slowly and rapidly responding genes, and might also
be used to distinguish a secondary response from
the direct response to the stimulus. By using a z-
score transformation and averaging of all three integral
scores the combined integral score Icomb

i is obtained.
The combined integral score emphasises the largest
changes in gene expression for each period stronger
than the more outbalancing complete integral score
Icomplete
i .
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Table 1 Compendious result table. The instability of SNORA11 is confirmed and the effect size is high, which indicates a false positive
result. The plotted SNORA11 profile in Fig. 4 confirms this suspicion. The effect size of the peak score covers up to 26% of the detection
range

Consensus rank Gene name Consensus score Consensus score p-value PubMed Instability score Effect size of peak score

1 CTGF 1.00 3.57E-05 73 0.009 0.26

2 EGR1 0.91 7.25E-05 101 0.006 0.23

3 SNORA11 0.62 8.18E-04 0 0.038 0.26

4 PTGS2 0.59 0.001 804 0.009 0.10

5 JUN 0.58 0.001 6789 0.005 0.11

6 GLIPR1 0.57 0.001 0 0.006 0.13

7 FOS 0.55 0.002 920 0.002 0.14

8 AREG 0.53 0.002 549 0.006 0.10

13 MIR4320 0.44 0.005 0 0.016 0.15

15 F3 0.44 0.006 65 0.011 0.10

19 IL8 0.41 0.007 43 0.018 0.13

20 EGR2 0.41 0.008 7 0.005 0.12

21 PCNA 0.40 0.009 583 0.003 0.03

29 DUSP5 0.37 0.013 4 0.012 0.10

36 MYC 0.34 0.017 984 0.002 0.06

37 ROS1 0.34 0.017 84 0.005 0.03

38 HIF1A 0.34 0.017 185 0.007 0.08

42 MIR554 0.34 0.018 0 0.004 0.15

45 IL24 0.32 0.022 0 0.003 0.06

49 TGFB2 0.31 0.025 121 0.008 0.04

51 TGFB1 0.30 0.027 887 0.004 0.03

52 JUNB 0.30 0.028 54 0.008 0.05

Relevance score
By using the R package RISmed [34] we query the PubMed
database of publications for records that match both the
gene name and the condition. For each gene i this yields
a number of publications pi. We use a log-transformation
to normalise pi between 0 and 1, and obtain the relevance
score

Ri := logpmax(pi),

where pmax := maxi(pi). This score indicates whether
a gene is already well known to be associated with the
condition or potentially a new target.

Consensus score
The consensus score is used for the final ranking of the
genes and combines the four scores. By merging the
dynamics score with the peak score, combined integral
score and relevance score, and normalising the result to be
between 0 and 1, we obtain

Ci := D̆i + P̆i + Ĭcomb
i + R̆i

4
,

whereby score S is z-transformed S̆ before the average is
computed. Figure 2d shows the z-transformed distribu-
tions of the score values. To better centre the relevance
score distribution, only non-zero values are considered for
the z-transformation.

Significance
Except for the peak score we did not define any signifi-
cance threshold, yet. For the other scores a significance
level can be computed by a one-sided, one-group hypoth-
esis test. The program fits the Cauchy, Gamma, log-
normal, logistic, normal, Poisson andWeibull distribution
to the empirical distribution of score values using the
function fitdistr() provided by the R package MASS [35].
The log-normal distribution is only defined for strictly
positive values, however, by shifting the x−axis it can
be fitted in the negative part as well. The obtained sig-
nificance threshold is transformed back afterwards. The
distribution function providing the best fit of the distribu-
tion of score values is automatically selected and plotted.
To estimate the significance for a differentially expressed
gene we provide the p-value as well as the effect size
[36]. The effect size of the peak score is defined as the
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distance between the expression dynamics, normalised by
the maximum distance possible, i.e. the highest expres-
sion value within the data set minus the lowest expression
value within the data set. The largest observed expression
change in our data set covers 25.9% of the whole detection
range and represents the effect size. The same normal-
isation is used for the instability score and also for the
integral score, where the maximum area is given as the
maximal distance multiplied by the time period. In the
consensus score, a gene is considered to be significant, if it
is considered significant in at least two scores.

Method extension for gene set analysis
To investigate the behaviour of functional groups, the
genes are linked to gene ontology groups using the
BiomaRt-package [37, 38]. Then the expression level at the
initial time point is subtracted from the gene expression
profile of each gene. Thus, all profiles are initially zero
and only the expression change with respect to the first
value is observed (Fig. 3a). Second, the average expres-
sion together with the upper sdu and lower sdl standard
deviation of all genes within each ontology group are cal-
culated for each time point. The upper standard deviation
hereby accounts for all measurement points above the
group mean and the lower standard deviation accounts
for all measurement points below the average. Separa-
tion into upper and lower standard deviation helps to
better recognise when the subset of the functional group
shows increased (or decreased) expression. This would
lead to enlarged upper (or lower) standard deviations,
where the classical standard deviation does not allow such
distinction. We then consider gene groups differentially
expressed if their expression bandwidths are separated
by the condition, i.e., that the variability between genes
in the same ontology group are small in contrast to
changes caused by different treatments. To test, whether
the expression bandwidths are separated by condition, we
distinguish two different cases, as shown in Fig. 3b. On the
one hand, the band of the control can be higher than the
band of the stimulus (case A), on the other hand, the situa-
tion can be reversed (case B). We search for the minimum
overlap

θij =

max

⎡

⎢⎢⎣

Case A︷ ︸︸ ︷
(mean(C) − sdl(C))−(mean(S) + sdu(S));

Case B︷ ︸︸ ︷
(mean(S) − sdl(S))−(mean(C) + sdu(C))

⎤

⎥⎥⎦

1
2

(sdu(S) + sdl(S) + sdu(C) + sdl(C))

︸ ︷︷ ︸
Bandwith

of both bandwidths for a combination of time points
j ∈ {1, . . . , n} and genes i, where n indicates the
total number of measurements per gene. We are

Fig. 3 Gene set analysis. a) Example analysis result with the average
of n genes. b) Scheme for minimal overlap calculation. The
continuous lines represent the average expression of the gene group
at one time point for either the stimulated sample (S) or the control
(C). The dotted lines represent the average with upper (Sdu) or lower
(Sdl) standard deviation

only interested in the maximum distance between the
bands or the minimum mutual overlap for the score
�i = max

(
θi1 , . . . , θij , . . . , θin

)
at each time

point. Positive values indicate a separation of the bands
and negative values indicate overlap. The average expres-
sion profile for each gene group and treatment is then
used to calculate the other scores as described above.
Hence, TTCA ranks functional groups high if they contain
genes with similar expression pattern over time within
a condition and if they clearly change the expression
dynamics from one condition to the other. Although we
did not compare the performance of the gene set module,
the application on real data seems promising. Alterna-
tively, the user can use the ranking of the individual genes
to apply other methods for gene set analysis.

Computation time and further packages
TTCA is computationally fast using about 1 h for one con-
trast. This includes the analysis of expression dynamics
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and the generation of relevant figures on a standard lap-
top (i5 1.70 GHz, memory 12 GB). Furthermore, TTCA
uses the R-package tcltk2 [39] for a progress bar and the
R-package VennDiagram [40] to show automatically the
overlap of significant genes across scores.

Methods for lung cancer data set
Cell seeding, growth factor stimulation andmicroarray
processing
The cell line H1975 (NCI-H1975; ATCC: CRL-5908)
were obtained from LGC Standards (Teddington, UK).
The cell line was authenticated by STR-analysis (DSMZ,
Braunschweig, Germany) and routinely checked for
mycoplasma contamination. H1975 NSCLC cells were
seeded in 6-well-plates with 1.33 · 105 cells per well. After
incubation for 3 days, cells were washed 3 times and
supplemented with DMEM without FCS for overnight
starvation. On the following day, cells were stimulated
with 50 ng/mL of EGF diluted in starvation medium.
Samples were harvested after 0, 0.5, 1, 2, 4, 6, 8, 12,
24 and 48 hours. Subsequently RNA was extracted, as
described below. Total cellular RNA was isolated with
the NucleoSpin RNA II kit according to the manufactur-
ers’ instructions. RNA concentrations were determined
by measuring the absorbance (230 - 400 nm) using a
NanoDrop®ND-1000 spectrometer. The purity of the RNA
was determined through the ratio of the absorbance at
260nm and 280nm. RNA with a ratio ≥ 1.8 was used
for further analysis. After assessing RNA integrity using
the Agilent Bioanalyzer, 100 ng in 3 μl per sample were
handed over. After amplification, labelling with biotin and
fragmentation of the RNA, hybridisation with GeneChip
Human Gene 2.0 ST Array was performed for 16 h at
45 ◦C. Subsequently, washing and staining was performed
using an Affymetrix Fluidics Station 450 and the microar-
ray was scanned using an Affymetrix GeneArray Scanner
3000.

Microarray preprocessing
Themethod Single Channel Array Normalisation (SCAN)
[31] was used for the preprocessing. For the mapping
of probes to genes we used the Netaffix.v.34 annota-
tion file which is available from the array manufacturer.
For the transcript-level we used Brainarray-Ensembl-T-
v.18.0.0 [41] for annotation. The quality was addition-
ally assessed before and after preprocessing with the R-
package ArrayQualityMetrics [42]. Four possible outliers
were visible in the 3D-PCA-plot generated with pcaMeth-
ods [43]. They were investigated in contrast to other repli-
cates or to the closest measurement points with Limma
[44] and Piano [45] under use of BioMart [46] for GO-
mapping. We assumed a problem with the magnesium
concentration and excluded the affected arrays from the
analysis.

Results and discussion
The approach presented here allows the identification of
biologically relevant genes from noisy, sparse, and pos-
sibly incomplete time course gene expression data sets
from perturbation experiments. In the case presented in
our study, the administration of the potent mitogen EGF
led to the identification of numerous known EGF/EGFR
induced target genes as indicated by the relevance score,
such as CTGF (Fig. 4), EGR1, PTGS2/COX2, and tran-
scription factors of the AP1 family including JUN and FOS
(Table 1).
The top-ranked genes represent key factors involved in

the initiation and maintenance of a mitogenic response in
tumour cells. Interestingly, many of the immediate EGF-
dependent targets listed in Table 1 represented transcrip-
tional regulators, for instance EGR1, EGR2, JUN, FOS, or
MYC, and secreted chemokines like CTGF, IL8 (Fig. 4), or
KITLG/SCF, illustrating that EGF is a central inducer of
pro-proliferative gene expression and paracrine regulation
in lung cancer. These results are confirmed by previous
publications describing for example, that activation of the
PI3K/AKT pathway, which typically stimulates the tran-
scription factor AP1 consisting of JUN/FOS heterodimers,
can stimulate IL8 production and secretion in NSCLC
cells [47].
However, our approach not only confirmed findings

from other studies. Even more important, we identified
a long list of previously un-published downstream effec-
tors (Additional file 3: Table S4; 18/79 (23%) significantly
regulated genes have not been described in the context of
EGF/EGFR signalling). For example, the target gene IL24
(Relevance Score: 0.32) has been shown to inhibit NSCLC
cell migration suggesting that EGF-induced IL24 might
shift tumour cells from amigratory to amitotic phenotype
[48] (Fig. 4). The high ranked gene GLIPR1 (Fig. 4) has
recently been identified as tumour suppressor in lung can-
cer [49], however, the relationship between GLIPR1 and
EGF was yet unknown. In addition, the significant regula-
tion of the micro-RNAs miR-4320 (Relevance Score: 0.44;
Fig. 4) and miR554 (Relevance Score: 0.34) suggests that
EGF supports the oncogenic properties of NSCLC cells via
miRNA-dependent mechanisms [50].
We compared TTCA with Limma, EDGE and MaSig-

Pro (see Additional file 2). We assume, that the number
of PubMed publications, linking EGF stimulation with
individual genes, can be used to generate a ranking of
expected target genes. Additional file 2: Table S2 shows
the ranking of the top 100 expected genes, determined by
TTCA, Limma, EDGE and MaSigPro. Additional file 3:
Table S3 shows the top 100 gene names displayed by each
method investigated. Additional file 2: Figures S2-S8 show
the top ten expression profiles of each method investi-
gated and a p-value distribution provided by EDGE. The
code for the method comparison is in Additional file 2.
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Fig. 4 Time course profiles of genes considered significant. Red: With EGF stimulation. Blue: Control. Line: Quantile regression. Points: Measurements.
SNORA11 is ranked highly significant, but the instability score is high and identifies this finding as false positive

The source code of the TTCA method is in Additional
file 1.

Conclusion
We have presented a new method for microarray
time-series data analysis, specifically intended for dif-
ficult experimental designs with sparse measurements.
Even when the experimental design involves a uni-
form data collection, experimental problems can lead
to the exclusion of individual arrays, and thus to the
loss of measurement points after quality control. Suf-
ficient replicates are important for proper microarray
data analysis [51] and remain important in more accu-
rate next-generation sequencing [52]. However, even
if such data are difficult, they nonetheless contain
helpful hints for further investigations. TTCA is able
to detect different characteristics of the changes in
expression dynamics and always provides not only p-
values but also effect sizes for an optimal significance
interpretation [36].
Our method can also be applied for data sets with

less complicated designs (regular sampling intervals, large
number of replicates) and yield very good results, compa-
rable with other tools. It should be noted, however, that
the scores included in TTCA detect specifically expres-
sion patterns arising after perturbation or stimulation
experiments. For detecting specific dynamical behaviours,
e.g. oscillations, we recommend specialised methods like
Lomb-Scargle periodograms [53], JTK-CYCLE [54] or
GeneCycle [55].

We believe that the developed TTCA package is a
valuable and efficient tool for the dissection of important
information that is usually concealed by experimental and
biological variations leading to data heterogeneity. The
connection with the number of PubMed publications has
to our knowledge never been included in other packages
and supports the user in distinguishing between new and
already known genes affected by the applied perturba-
tion. Further new features (at least to our knowledge) are
the automatic detection of the best density function, the
approach to detect false positives (the instability score), or
the distinction between early, middle and late response.
Also, the outbalancing of the sampling design using
weighting factors is an important new feature. Moreover,
we provide a new gene set significance approach, which
pools genes into gene ontology groups which expres-
sion bandwidths are separated (minimal overlap score).
TTCA provides automatically quality checks and plots the
gene expression profiles. Thus, the user can easily judge
the performance of the package for any included data
set. Strong advantages of TTCA are the high degree of
transparency, the multitude of visual output for quality
assessment, search flexibility and sensitivity also in cases
where other methods cannot be applied.

Additional files

Additional file 1: R code of TTCA (EUPL). (TXT 816 kb)

http://dx.doi.org/10.1186/s12859-016-1440-8


Albrecht et al. BMC Bioinformatics  (2017) 18:33 Page 10 of 11

Additional file 2: Method comparison. A table summarises the methods
mentioned in the introduction, method shortcomings are further
discussed and TTCA is compared with some applicable methods. Includes
Table S1-S3 and Figures S1-S8. (PDF 2165 kb)

Additional file 3: The complete result table is given in Table S4.
(XLSX 816 kb)
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