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1 Summary 
 

To date, despite significant advances in early detection and treatment of breast cancer, 
metastatic progression remains a major cause of morbidity and mortality in breast cancer 
patients. Importantly, patient stratification according to biomarker expression has led to 
continuous improvement of therapeutic strategies and better understanding of the diseases. 
However, the aggressive triple-negative subtype of breast cancer is still lacking effective 
therapeutic options. 
 
The important role of the tumor microenvironment in the formation of metastasis is well 
recognized. The extracellular matrix glycoprotein tenascin-C (TNC) has been previously 
described as a functional player of the metastatic niche, supporting the growth of breast cancer 
cells at the distant site. In this study, we investigated the clinical prognostic value of TNC in 
breast cancer patient cohorts. We found that TNC predicts poor clinical outcome only in the 
triple-negative subtype and that these tumors are enriched for TNC expression. Interestingly, 
while other subtypes rely on the stromal compartment as a source of TNC, triple-negative 
tumors express TNC in an autocrine manner. In addition, we confirmed that TNC promotes the 
growth of triple-negative breast cancer cells in the lungs in vivo. Therefore, we suggest that 
triple-negative breast tumors benefit from high, autocrine TNC expression to promote 
metastasis. 
 
Several cell surface receptors have been suggested to interact with TNC. However, the 
receptor(s) mediating the pro-metastatic signaling downstream of TNC remained unclear. We 
identified two integrin receptor subunits, integrin beta 1 (ITGB1) and integrin beta 3 (ITGB3), as 
TNC receptors. We demonstrated the binding of these molecules to TNC in an endogenous 
setting and showed that ITGB1 and ITGB3 support the growth of breast cancer cells in the lungs 
in vivo. Furthermore, we observed that the expression of these receptors, similar to TNC, is 
enriched in the triple-negative subtype. Using a large patient cohort, we showed that the 
prognostic value of TNC depends on the expression of the identified receptors, underscoring 
the clinical relevance of our findings. Importantly, ITGB1 and ITGB3 are supporting stem cell 
properties in triple-negative breast cancer cells. 
 
We found that the TNC knockout phenotype was associated with a decrease in stem cell 
properties of the normal mammary gland epithelium. In addition, we showed that TNC signaling 
members are upregulated during stages of the mammary gland development and maturation 
associated with expansion of the stem cell compartment. More importantly, TNC knockout 
mice showed an impairment in the formation of alveolar structures during pregnancy. All in all, 
our data strongly suggest a functional role of the TNC signaling in mammary stem cell biology. 
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In this study, we identified two integrin receptors of the mammary gland (ITGB1 and ITGB3) as 
the receptors mediating the TNC pro-metastatic signaling in triple-negative breast cancer. 
Furthermore, we showed that TNC supports stem cell properties in the mammary gland. 
Therefore, we propose that the TNC signaling might play an important role in the mammary 
stem cell to support its activity and that triple-negative breast cancer cells benefit from high 
expression of TNC and its receptors to promote metastatic growth in this subtype. Deeper 
understanding of the mammary stem cell biology might support the development of targeted 
therapy for triple-negative breast cancer patients. 
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2 Zusammenfassung 
 

Trotz erheblicher Fortschritte bei der frühen Diagnose und Behandlung von Brustkrebs bleibt 
die Metastasierung bis heute eine wichtige Ursache für Morbidität und Mortalität bei Patienten 
mit Brustkrebs. Insbesondere die Stratifizierung von Patienten anhand von Biomarkern hat zu 
einer kontinuierlichen Anpassung der therapeutischen Strategien sowie zu einem verbesserten 
Verständnis der Krankheiten geführt. Für den aggressiven triple-negativen Subtyp fehlen jedoch 
bis heute effektive Therapieoptionen. 
 
Die wichtige Rolle der Mikroumgebung eines Tumors bei der Bildung von Metastasen ist 
allgemein anerkannt. Das Glykoprotein Tenascin-C (TNC) der extrazellulären Matrix wurde in 
der Literatur als funktioneller Bestandteil der metastatischen Nische beschrieben, der das 
Wachstum der Mammakarzinomzellen an entfernten Orten im Körper unterstützt. In der 
vorliegenden Studie wurde der Wert von TNC für die klinische Prognose anhand von 
Mammakarzinom-Patientenkohorten untersucht. Dabei zeigte sich, dass TNC ausschließlich im 
triple-negativen Mammakarzinom ein Prädiktor für eine schlechte klinische Prognose darstellt 
und dass diese Tumore für TNC Expression angereichert ist. Interessanterweise konnten wir 
nachweisen, dass diese Tumoren TNC in autokriner Weise exprimieren, während andere 
Subtypen auf die stromale Komponente als Quelle für TNC zurückgreifen. Weiterhin ließ sich im 
in vivo-Modell bestätigen, dass TNC das Wachstum der  triple-negativen Brustkrebszellen in der 
Lunge fördert. Daher schlagen wir vor, dass triple-negative Tumoren der Brust eine erhöhte 
autokrine Expression von TNC für eine verstärkte Metastasierung nutzen. 
 
Verschiedene Zelloberflächenrezeptoren wurden als Interaktionspartner von TNC 
vorgeschlagen. Welche Rezeptoren jedoch das TNC nachgelagerte pro-metastatische Signaling 
vermitteln, blieb bislang unklar. Mit Integrin-beta-1 (ITGB1) und Integrin-beta-3 (ITGB3) 
konnten wir zwei neue Integrinrezeptor-Untereinheiten identifizieren, die als TNC-Rezeptoren 
dienen. Wir zeigten die Bindung dieser Moleküle an TNC innerhalb eines endogenen Modells 
und konnten im in vivo-Modell nachweisen, dass ITGB1 und ITGB3 das Wachstum der 
Mammakarzinomzellen in der Lunge fördern. Weiterhin beobachteten wir, dass die Expression 
dieser Rezeptoren, ähnlich wie im Fall von TNC, im triple-negativen Subtyp angereichert ist. 
Unter Verwendung einer großen Patientenkohorte zeigten wir, dass der prognostische Wert 
von TNC von der Expression der identifizierten Rezeptoren abhängt, so dass diese 
Beobachtungen auch klinisch relevant sind. Darüber hinaus vermitteln ITGB1 und ITGB3 
Stammzelleigenschaften in triple-negativen Mammakarzinomzellen. 
 
Wir beobachteten, dass der TNC-Knockout-Phänotyp mit einem Rückgang der 
Stammzelleigenschaften des Brustdrüsenepithels einhergeht. Zudem konnten wir zeigen, dass 
die Proteine des TNC-Signalweges während Phasen der Brustdrüsenentwicklung, die mit einer 
Erweiterung des Stammzellkompartimentes assoziiert sind, hochreguliert werden. Darüber 
hinaus zeigten die Knockout-Mäuse eine beeinträchtigte Ausbildung der alveolären Strukturen 
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während der Schwangerschaft. In der Gesamtheit legen diese Daten nahe, dass das TNC-
Signaweg funktionelle Bedeutung für die Stammzellbiologie der Brust besitzt. 
 

In dieser Studie identifizierten wir zwei Integrin Rezeptoren der Brustdrüse (ITGB1 und ITGB3) 
als diejenigen Rezeptoren, die das pro-metastatische TNC-Signalweg im triple-negativen 
Mammakarzinom vermitteln. Weiterhin konnten wir zeigen, dass TNC Stammzellfunktionen in 
der Brustdrüse unterstützt. Aus diesem Grund schlagen wir vor, dass das TNC-Signalweg in 
Bruststammzellen deren Aktivität fördert, und dass triple-negative Mammakarzinomzellen die 
hohen Expressionslevel von TNC und seinen Rezeptoren nutzen, um ihr Wachstum abseits des 
Primärtumors voranzutreiben. Ein tiefergehendes Verständnis der Stammzellbiologie der Brust 
könnte die Entwicklung einer zielgerichteten Therapie für Patienten mit triple-negativem 
Mammakarzinom weiter fördern. 
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3 Introduction 
 

3.1 Breast Cancer 
 

3.1.1 Epidemiology 

 

In 2016, breast cancer was the most commonly diagnosed cancer among women and the 

second cause of cancer-related death in the United States (US) [1]. Malignancies of the breast 

originate in the milk-producing glands called lobes or, more commonly, in the ducts which 

connect the lobes to the nipple. The normal mammary ducts are tube-like epithelial structures 

formed by an inner layer of cuboidal luminal cells and an outer layer of basal cells, also called 

myoepithelial cells. The ducts are separated from the underlying stroma by a basement 

membrane composed of extracellular matrix (ECM) proteins. When the tumor does not grow 

beyond the layer of cells where it originated, breast carcinoma is referred to as ‘in situ’ or 

‘ductal carcinoma in situ’ (DCIS). However in most cases, the tumor cells break the basement 

membrane and infiltrate the surrounding fatty, connective and lymphatic tissues. In that case, 

breast carcinoma is termed ‘invasive carcinoma’. If the tumor cells leave the breast tissue and 

spread throughout the body to distant organs, breast cancer is referred to as ‘metastatic 

carcinoma’ (Figure 1). In 2015, 292,130 new cases of breast cancer were diagnosed in the US, 

among which 80% were invasive or metastatic [2]. 

 

 
Figure 1  Anatomy of the breast and associated malignancies. 
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The female breast is composed of 15 – 20 ducts, which begin at the nipple, branch 

into smaller ducts and end in the terminal milk -producing units called lobes. Breast 

cancer malignancies typically arise in the ducts and can be categorized as ‘in situ’, 

‘invasive’ or ‘metastatic’ depending on the degree of invasion of the surrounding 

healthy tissue. Figure was adapted from from www.caperay.com. 

 

3.1.2 Staging  

 

The clinical prognosis of invasive breast cancer strongly depends on the extent of the disease at 

the time of diagnosis. Clinicians routinely describe the spread of breast cancer using the TNM 

staging system of the American Joint Committee on Cancer (AJCC). In this system, three 

parameters are assessed and described with the letters ‘T’, ‘N’ and ‘M’:  

 

 ‘T’ describes the size of the tumor and whether it has invaded nearby tissues or 

not;  

 ‘N’ indicates the degree of spread to the regional lymph nodes;  

 ‘M’ corresponds to the presence or the absence of distant metastasis [2, 3].  

 

The TNM staging is then expanded by the assignment of a roman number ranging from 0 to IV. 

Briefly, the stages 0, I and some stage II breast cancer refer to in situ carcinomas, while tumors 

that have spread to surrounding tissues or nearby lymph nodes generally correspond to stage 

II and III. The last stage of the system, stage IV, is the distant stage referring to breast cancers 

that have spread to distant organs [2, 3]. The prognostic value of the TNM classification is well 

recognized: In most of the cases, lower stages of breast cancer are associated with longer 

patient survival, while the 5-year survival rate decreases in higher stages. Importantly, the 

stage IV of the disease represents a threshold in term of patient survival. Indeed, according to 

the National Cancer Institute’s surveillance, epidemiology and end results (SEER) database, the 

5-year relative survival rate dramatically drops from 72% when a patient is diagnosed at stage 

III to 22% when the disease has already reached stage IV [4] (Figure 2). 

 

http://www.caperay.com/
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Figure 2  Female breast cancer relative 5-year survival according to stage.  

The 5-year survival rate of stage 0, I and II are close to 100% and slightly decreases 

to 72% in stage III. Stage IV of breast cancer corresponds to a 5 -year survival rate 

of only 22%. The rates are based on patients diagnosed between 2006 and 2012 in 

the US according to the National Cancer Institute’s  SEER database [4]. 

 

It has been recognized for a long time that breast cancer cannot be managed as a single 

disease. In fact, breast cancer is rather a collection of malignancies arising in the same tissue 

but differing greatly in term of biology, response to treatment and outcome. To date, there are 

mainly two classification systems for breast cancer patients. The first classification system is a 

routine clinical procedure based the expression of biomarkers. Importantly, biomarker-based 

stratification of breast cancer patients is used to determine therapeutic options and treatment 

plans. The second classification system arose with the development of microarray techniques 

and uses global gene expression profiling to stratify breast cancer patients into so called 

‘intrinsic subtypes’. 

 

3.1.3 Stratification according to biomarkers 

 

Upon clinical diagnosis of invasive breast cancer, patients are typically stratified based on four 

different subtypes. This classification is highly important as it has both a prognostic value and it 

determines treatment options. Currently, three biomarkers are routinely used for stratification 

of breast cancer patients. Those are, on one hand, the presence or absence of the hormone 

receptors (HR) for estrogen and progesterone (ER and PR) and, on the other hand, excess levels 

of the growth-promoting human epidermal growth factor receptor 2 (HER2). Typically, the 

scoring of the three membrane proteins is performed on paraffin-embedded needle-biopsies or 

surgical tissue samples stained by immunohistochemistry (IHC). However, receptor status can 

also be determined by gene expression quantification based on microarrays in a reliable 
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manner [5, 6]. In addition to the HR and HER2, the proliferation marker Ki-67 is used to refine 

the classification. Ki67 is strictly associated with proliferating cells as it is expressed during the 

all active phases of cell cycle (G1, S, G2 and mitosis) but it absent in quiescent cells (G0) [7]. 

Scoring of the described biomarkers (ER, PR, HER2 and Ki67) results in four clinical subtypes of 

breast cancer, which are termed luminal A, luminal B, HER2-enriched and triple-negative. The 

luminal subtypes are characterized by expression of the ER and/or PR biomarkers and are 

therefore described as ‘HR positive’. The two luminal subtypes differ in Ki-67 expression and/or 

HER2 levels. More precisely, tumors which are positive for HR, negative for HER2 and with a low 

Ki-67 score are classified as luminal A, while the luminal B subtype is also positive for HR but 

displays either a high Ki-67 score or an enrichment in HER2 expression. Breast cancer tumors 

showing negative staining for HR and abnormal expression of HER2 are classified into a third 

subtype, termed ‘HER2-enriched’. Finally, the last subtype is characterized by negativity for all 

three marker receptors (ER, PR and HER2) and is therefore called ‘triple-negative’ (Table 1) [8]. 

 

Table 1  Clinical subtypes of breast cancer. 
Breast cancer patients are stratified into four clinical subtypes according to HR 

presence or absence, expression level of HER2 and Ki-67 score. Table was adapted 

from [8]. 

Clinical subtype Biomarker expression 

Luminal A HR positive 

HER2 negative 

Ki-67 low 

Luminal B HR positive 

Ki-67 high or HER2 enrichment 

HER2-enriched HR negative 

HER2 enrichment 

Triple-negative  HR negative 

HER2 negative 

 

3.1.4 Stratification according to gene expression profiling 

 

In the last two decades, human breast cancer has been as well analyzed by gene expression 

profiling and hierarchical clustering regardless of disease stage or biomarker expression. In 

2000, Perou et al. used DNA microarray to characterize variations in global gene expression 

patterns in 65 frozen surgical samples from 42 breast cancer patients [9]. Unsupervised 

clustering analysis revealed the existence of different subtypes termed ‘intrinsic subtypes’. The 

adjective ‘intrinsic’ refers to the fact that the model is built on genes showing minimal 

variations within a tumor sample but maximal variations between different patients. The 
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identified subtypes were refined and validated in further patient cohorts and more recently this 

classification has been validated by the Cancer Genome Atlas Network [10-12]. Four major 

clusters were consistently described and named after their major characteristics. The luminal 

subtypes (A and B) are characterized by an enrichment in genes typically expressed by normal 

luminal epithelial cells of the mammary gland and genes associated with the ER signaling. 

Compared to the luminal A subtype, the luminal B subtype shows lower ER levels but higher 

expression of proliferation-associated genes. The basal-like subtype resembles the second 

epithelial lineage of the breast, the basal epithelial cells, and does not express genes associated 

with the luminal lineage. The HER2-enriched subtype is characterized by high expression level 

of a subset of genes which are associated with overexpression of the HER2 oncogene and the 

absence of almost all genes associated with ER expression [9, 13]. Subsequent studies have 

revealed heterogeneity within the subtypes themselves. Particularly basal-like breast cancer is 

likely to represent different molecular tumor types rather than a single phenotype [14]. In 

2007, a novel intrinsic subtype was described both in human and murine breast tumor data sets 

[15]. This group of tumors is characterized by low gene expression of the tight junction proteins 

claudin 3, 4 and 7 as well as E-cadherin, a calcium dependent cell-cell adhesion glycoprotein. 

Therefore, it was termed ‘claudin-low’. Subsequently, the claudin-low subtype was shown to be 

characterized by strong epithelial-to-mesenchymal transition (EMT), high tumor initiation 

capacity and enrichment in stem cell characteristics [16-19]. 

 

3.1.5 Concordance between biomarker-based stratification and intrinsic subtypes 

 

Importantly, the classification according to intrinsic subtypes not only provides comprehensive 

biological understanding of breast cancer but it also revealed critical differences in term of 

clinical parameters such as incidence, survival and response to treatment [9, 10, 17, 20-27]. 

Therefore, the question of concordance between the routinely used biomarker-based 

stratification and the newly defined intrinsic subtypes rapidly arose.  
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Figure 3  Distribution of the clinical subtypes of breast cancer within each intrinsic subtype. 
71% and 83% of claudin-low and basal-like tumors, respectively, are negative for 

expression of ER and HER2. In tumors classified as HER2 -enriched according to the 

intrinsic subtypes, 66% display an enrichment for the HER2 biomarker. 92% of 

tumors classified as luminal B are pos itive for ER biomarker expression, with or 

without overexpression of HER2. Finally, 87% of luminal A tumors are positive for 

ER biomarker expression and negative for HER2. Figure was adapted from [28]. 

The distribution of the intrinsic subtypes according to the biomarkers ER, PR and HER2 revealed 

a broad overlap between the different classification strategies. As an example, 87% of the 

luminal A intrinsic subtype is positive for ER and negative for HER2 enrichment. The majority of 

the HER2-enriched intrinsic subtype scores positive for HER2 overexpression by biomarker 

analysis, although the correlation is not 100%. Regarding the basal-like subtype, 83% is negative 

for both ER and HER2. Therefore, despite transcriptomic and histological differences between 

the two groups and although the terms ‘triple-negative’ and ‘basal-like’ cannot be used in an 

interchangeable manner, there is assuredly a strong overlap between the basal-like intrinsic 

subtype and the triple-negative phenotype. To date, the claudin-low intrinsic subtype is not 

considered in the biomarker-based clinical stratification of breast cancer patients. However, it is 

remarkable that 71% of the claudin-low subtype is negative for both ER expression and HER2 

overexpression [28-30] (Figure 3). 
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3.1.6 The PAM50 stratification  

 

In order to improve the concordance between laboratories and to increase the clinical 

feasibility of intrinsic classification, a standardized gene set for intrinsic classification was 

designed. The PAM50 assay uses a 50-gene set to stratify patients according to the intrinsic 

subtypes [25, 31]. Expression of the defined genes can be assessed on RNA isolated from 

formalin-fixed, paraffin embedded tissue, which are more commonly available than frozen 

tissue. A satisfying concordance with the original intrinsic subtypes and between laboratories 

has been established for the PAM50 assay [32]. Importantly PAM50 has shown potential for 

treatment prediction and general prognostic according to subtype [25]. Therefore, the use of 

the PAM50 gene expression signature is implemented in certain pathological institutes in the 

form of the Prosigna assay, a multiplexed gene expression profiling method, which has been 

approved by the US Food and Drug Administration (FDA). Prosigma is based on the NanoString 

Technolgy, which allows direct quantification of mRNA transcripts [33]. 

 

3.1.7 Clinical prognosis and prevalence of the intrinsic breast cancer subtypes 

 

Stratification of breast cancer patients according to the intrinsic subtypes allows efficient 

prediction of relapse and survival rates. Although the luminal A subtype is the most frequent 

subtype (prevalence ~ 28-31%), the patients show the best relapse-free and overall survival 

with 80-90% of the patients surviving the first 120 months without relapsing. The claudin-low, 

basal-like and HER2-enriched subtypes are less frequent (prevalence ~ 7-14%, ~ 14-23% and ~ 

12-17%, respectively) but the relapse-free and overall survival rate are dramatically diminished 

compared to the luminal A subtype. Accordingly, 50% of the basal-like and claudin-low patients 

will relapse after 50 and 75 months, respectively. Even more dramatic, 50% of the basal-like 

and claudin-low patients will not survive the first 50 and 95 months, respectively. The patients 

belonging to the luminal B subtype (prevalence ~ 19-23%) have a slightly better overall survival 

prognosis with 50% of them surviving the first 150 months [28] (Figure 4). In sum, patients 

belonging to the luminal A subtype are have an overall good clinical prognosis, while the basal-

like, claudin-low and HER2-enriched subtypes are characterized by shorter relapse-free and 

overall survival rates. 
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Figure 4  Kaplan-Meier analysis of relapse-free and overall survival of breast cancer patients. 
The patients were stratified according to the intrinsic subtypes (basal-like, claudin-

low, HER2 enriched and luminal A and B)  in the UNC337 dataset (n = 320). Figure 

was adapted from [28]. 

 

3.1.8 Treatment  

 

Surgery 
 

To date, surgery is routinely performed as part of the treatment plan of breast cancer. Surgical 

procedures can involve mastectomy or breast-conserving surgery (BCS), which consists in 

removing only the cancerous tissues and a rim of normal tissue (tumor margin). The more 

advanced the cancer is at time of diagnosis, the more aggressive the surgical procedure 

generally is. As an example, 36% of young women diagnosed with early stage breast cancer 

(stage I and II) have BCS, against 14% among woman with more advanced breast cancer (Stage 

III and IV) [2, 34]. Both BCS and mastectomy usually involve the removal of one or more axillary 

lymph node in order to determine the stage of the disease and the course of treatment. 

 

Radiation therapy 
 

Radiation therapy, which is the use of ionization radiation in order to induce DNA damage and 

cell death, is typically part of adjuvant therapy in breast cancer. Indeed, it was shown that the 

combination of surgery followed by radiation therapy decreases the risk of breast cancer 

recurrence by about 50% and the relative risk of breast cancer death by about 20% in most 

patients [35]. In late stage breast cancer, radiation therapy accompanies mastectomy and 

chemotherapy in 34% of all cases [2]. 
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Systemic therapy: chemotherapy and endocrine therapy 
 

Chemotherapy is administered to breast cancer patients in three different therapeutic settings. 

First, chemotherapy is recommended in an adjuvant setting, i.e. after surgery, in order to avoid 

local relapse and to target distant micrometastasis. Second, locally advanced cancers might be 

treated by neoadjuvant chemotherapy, i.e. before surgery, to reduce the tumor size and to 

make surgery less extensive or possible at all. Finally, chemotherapy is used to manage late 

stage breast cancer patients for whom surgery is not an option due to the spread of the 

disease. Indeed, 17% of late stage breast cancer patients receive only chemotherapy and/or 

radiation without surgery [2]. The benefit of chemotherapy depends on several clinical 

parameters, which are mainly assessed by staging and biomarker-based stratification. While 

triple-negative and HER2-enriched breast cancer patients tend to be more sensitive to 

chemotherapy, it is less likely to be beneficial for ER and/or PR positive breast cancer patients 

[36, 37]. Neoadjuvant and adjuvant chemotherapy regimen mostly involves a combination of 

drugs rather than a single agent. Typical chemotherapeutic drugs for these patients are 

anthracyclines such as doxorubicin or epirubicin, taxanes such as paclitaxel or docetaxel, 5-

fluorouracil, cyclophosphamide and carboplatin [38, 39]. The same agents and others, such as 

gemcitabine, are used in the treatment of metastatic breast cancer, although there is a general 

consensus that the efficacy is uniformly poor [40]. 

 

Endocrine therapy is strongly recommended for treatment of HR positive tumors. The aim of 

such a treatment is to lower the overall estrogen levels or to block the pro-proliferative effect 

of estrogen on the tumor cells. Tamoxifen is a pro-drug, which metabolites can bind to ER and 

block its downstream signaling. Long-term treatment of HR positive breast cancer patients with 

tamoxifen have be shown to significantly reduce the risk of recurrence and mortality of these 

patients [41, 42]. Another class of drugs used to successfully treat HR positive tumors are 

aromatase inhibitors (AI), which interfere with the production of estrogen [43]. 

 

Commercially available assays based on gene panels such as ProSigna / PAM50, Oncotype DX or 

MammaPrint may also help to identify patients who will benefit from chemotherapy and 

endocrine therapy [44-47]. Indeed, stratification of breast cancer patients according to PAM50 

assay was shown to predict the benefit of adjuvant tamoxifen treatment in luminal A patients 

[47]. Both MammaPrint and Oncotype DX tests were originally designed to predict the 

probability of metastatic relapse in breast cancer patients. The Oncotype DX test is based on 

the expression of 21 ER-related genes and is used for patients with early stage of HR positive 

breast cancer in order to assess the potential benefit of adjuvant chemotherapy [45, 46]. The 

70 tested genes of the MammaPrint assay are related to the hallmarks of cancer and efficiently 

predict beneficial effects of chemotherapy [44, 48]. 
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Targeted therapy: Anti-HER2 therapy 
 

A well-established targeted therapy in breast cancer is directed against the proliferation 

promoting receptor tyrosine-protein kinase HER2. Trastuzumab (Herceptin) is a monoclonal 

antibody that directly targets the HER2 protein. The combination of trastuzumab and 

chemotherapy in early-stage breast cancer overexpressing HER2 shows significant 

improvement with respect to both recurrence and death rates [49]. Trastuzumab is also used in 

the treatment of metastatic breast cancer patients overexpressing HER2 [2]. More recently, a 

second monoclonal antibody binding to another site of HER2, Pertuzumab (Perjeta), was 

approved for neoadjuvant and late stage treatment of HER2 positive breast cancer [50]. This 

drug is used in combination with chemotherapy and trastuzumab and was shown to prolong 

the survival of patients [51]. Additional drugs for treatment of HER2 overexpressing breast 

cancer malignancies, especially metastatic disease, are ado-trastuzumab emtansine (Kadcyla, 

formerly called TDM-1) and lapatinib (Tykerb) [52, 53]. 

 

Other approved targeted therapies in breast cancer are Palbociclib (Ibrance) and Everolimus 

(Afinitor). These drugs are recommended for HR positive, HER2 negative postmenopausal 

patients. Palbociclib is a cyclin dependent kinase (CDK) 4 and 6 inhibitor showing good results in 

patients with advanced breast cancer [54, 55]. Everolimus is an mTOR inhibitor, which can 

improve the effectiveness of endocrine therapy in advanced HR positive, HER2 negative post-

menopausal breast cancer patients [56, 57]. 

 

3.1.9 Therapeutic challenges 

 

In the last 40 years, the mortality rate of breast cancer patients in the US declined by 36%, 

while the 5-year survival rate increased by 20% [4]. This is the encouraging consequence of 

constant improvement in patient stratification and the use of targeted therapies. However, one 

has to keep in mind that chemotherapy remains the only option for triple-negative breast 

cancer patients to date and that while it might be effective initially, long-term chemotherapy 

treatment is often associated with the development of resistance mechanisms [58]. Therefore, 

an improved understanding of the triple-negative phenotype and development of targeted 

therapy is urgently needed.  

 

The most demanding clinical challenge in breast cancer treatment is the management of 

metastatic diseases. Indeed, breast cancer remains the second cause of cancer-related death 

among women, mainly as a consequence of metastatic progression [2]. As described above, 

targeted therapy against advanced disease in HR positive and HER2 overexpressing breast 

cancer has been approved. Especially trastuzumab improves overall survival and progression-
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free survival of HER2-enriched breast cancer patients, although not without side effects which 

can be as severe as lung toxicity or cardiac failure [59]. However, due to the absence of known 

target, triple-negative metastatic breast cancer does not benefit from any targeted therapy and 

is also associated to broad chemoresistance [60]. 

 

3.2 Metastasis 
 

Tumor metastasis refers to the spread of the cancer cells from the primary site to progressively 

colonize distant organs. To date, metastasis is the major contributor to cancer-related deaths, 

regardless of the cancer entity. In the context of breast malignancies, metastasis at time of 

diagnosis is uncommon, accounting for only 6% of breast cancer patients [4]. However, every 

third breast cancer patient will develop metastatic disease during his life and the progression of 

the disease is associated with very poor survival rates [61]. 

 

3.2.1 The metastatic cascade 

 

At the cellular level, metastasis represents the end product of a multistep cascade and an 

evolutionary process [62] (Figure 5, A). In order to colonize a distant organ, a cancer cell has to 

go through the following steps: 

 

1. Local invasion - Upon transformation of epithelial cells and formation of a primary 

tumor, the cancer cells break through the basement membrane and invade the 

surrounding stroma. The acquisition of a mesenchymal signaling program and 

phenotype in a process called epithelial to mesenchymal transition (EMT) is widely 

believed to be a pre-requisite for cell mobility and invasion [63].  

 

2. Intravasation – At the primary site, tumor cells stimulate the formation of new blood 

vessels in a process termed neoangiogenesis. In contrast to blood vessels present in 

healthy tissues, the tumor-associated vasculature is leaky, which facilitates intravasation 

of the cancer cells into the lumen of blood vessels. 

 

3. Survival in circulation - Cancer cells use the vascular and lymphatic networks in order to 

spread throughout the body and must resist anoikis triggered by the lack of adhesion in 

circulation. 

 

4. Arrest at the distant site - The cancer cells arrest in the microvasculature of a distant 

organ. 
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5. Extravasation - The cancer cells exit the vasculature and enter the parenchyma of a 

distant organ, either as micro-colony or as a single cell. 

 

6. Formation of micrometastasis – In order to form micrometastasis, the cancer cells have 

to survive the strong negative pressure exerted by the foreign microenvironment at the 

distant site. 

 

7. Formation of macrometastasis - The cancer cells reactivate their proliferative capacities 

and corrupt the microenvironment to promote their own survival and form clinically 

detectable macrometastasis. 

 

Importantly, the efficiency of the different steps varies greatly, as determined by experimental 

studies. To be more specific, step 3 to 5 display a high efficiency rate with 80% of the cells 

implanted intravenously successfully extravasating the microvasculature. In contrast, the 

efficiency dramatically drops in the last steps of the metastatic cascade, with only 3% of the 

cells forming micrometastasis and 0.02% of the cells generating overt metastasis [64, 65]. In 

summary, the last two steps of the metastatic cascade, commonly called metastatic 

colonization, represent the rate limiting steps of the disease. Importantly, carcinomas 

originating from a particular organ only form metastasis in a subset of theoretically possible 

distant organs. This has been described as the ‘seed and soil’ hypothesis more than 120 years 

ago. Paget’s theory describes the phenomenon according to which even if the cancer cells, the 

‘seeds’, broadly disseminated throughout the body, they can only form metastasis in specific 

organs, referred to as the ‘soils’, i.e. the soil has to fit the seed [66]. In the case of breast 

cancer, the organs prone to metastasis formation are the bone, the lung, the liver and the 

brain, in order of prevalence [62] (Figure 5, B).  
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Figure 5  The metastatic cascade and the sites of colonization in breast cancer. 
(A) Metastasis is a multistep process starting with the formation of a primary 

tumor, the invasion of the local tissue and the intravasation into the blood 

circulation. Once in circulation, cancer cells have to survive before arresting in a 

distant organ and extravasating into its parenchyma. The metastatic colonization 

comprises the formation of micro- and macrometastasis, leading to clinically 

detectable lesions. (B) Although broadly spread by the vascular system, breast 

cancer cells typically form overt metastasis only in the bone, the lung, the liver 

and the brain.  Thickness of black lines is proportional to the relative frequencies 

of metastasis in a specific organ. Figures were adapted from [62]. 

 

3.2.2 The metastatic niche  

 

At the distant site, the cancer cells are facing a microenvironment which typically differs greatly 

from that present at the site of primary tumor formation. This microenvironment is composed 

of stromal cells (e.g. fibroblasts, endothelial cells, pericytes, adipocytes…), immune cells (e.g. 

macrophages, neutrophils, lymphocytes…), soluble factors (growth factors and cytokines), 

nutrients and metabolic components and ECM (Figure 6). The formation of overt metastasis is 

accompanied by the establishment of a so-called ‘metastatic niche’, referring to 

microenvironment corrupted by the cancer cells and which is favorable to tumor growth. 
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Figure 6  The tumor associated microenvironment. 
The microenvironment of cancer cells is typically composed of fibroblast s, immune 

cells, a vascular network and ECM components. Figure was adapted from [67]. 

 

Recent studies have shown that cancer cells at the distant site may occupy native stem cell 

niches of the host tissue, as in the case of prostate cancer, where disseminated cancer cells 

exhibit preference for lodging in hematopoietic niches of the bone [68]. Indeed stem cell niches 

show activation of several pathways promoting tumor growth. These are for example the Wnt, 

Notch, transforming growth factor (TGF) beta, hedgehog, phosphoinositide-3 kinase (PI3K) and 

the janus kinase / signal transduced and activator of transcription (JAK/STAT) pathways [69]. In 

breast cancer embryonic signaling pathways are known to promote an invasive phenotype [70]. 

Another location of choice for the cancer cells to establish a metastatic niche is the perivascular 

microenvironment, as for example in breast or renal cancer metastasis to the brain [71, 72]. 

Activated endothelium might support the growth of cancer cells at the distant site by paracrine 

factors, such as the Notch ligand Jagged-1 (JAG1) and TGF beta 1 [73, 74]. Noteworthy, 

endothelial cells also provide the cancer cells with specific ECM proteins as for example 

periostin (POSTN), which has been suggested to promote the formation of micrometastasis 

upon exit of dormancy [74].  

 

Fibroblasts are associated with cancer cells at all stages of the disease and are important 

cellular components of the metastatic niche. Upon arrival of cancer cells at the distant site, 

fibroblasts become activated by growth factors and cytokines present in the milieu and elicit 

pleiotropic functions. Activated fibroblasts, also called myofibroblasts, are the most prominent 
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source of ECM molecules and secreted growth factors at the distant site. Thereby they drive 

recruitment of endothelial cells and pericytes, regulate immune and metabolic functions and 

directly promote the growth of tumor cells through paracrine signaling [75-77]. 

 

3.2.3 The extracellular matrix 

 

The ECM is a highly diverse collection of glycoproteins, proteoglycans and polysaccharides [78]. 

In healthy tissue, the ECM makes up both the basement membrane, which is compact and 

primarily composed of collagen type IV, laminins and fibronectin, and the more porous 

interstitial matrix, which is rich in fibrillary collagen type I, proteoglycans and various 

glycoproteins [79]. The functions of the ECM are as diverse and versatile as its components are. 

First, the ECM plays a physical role for the cells by functioning as an anchorage site for cell 

surface receptors and by forming a migration barrier or, alternatively, migration tracks (Figure 

7, function 1 – 3). Second, the ECM display biochemical properties referring to its ability to 

modulate cell signaling. Binding of soluble growth factors allows the ECM to act as a reservoir 

for these signals and to present them specifically to co-receptors or receptors on adjacent cells, 

thereby triggering a signaling cascade (Figure 7, function 4 – 6). The ECM can also trigger 

signaling by itself via endogenous growth factor domains or functional domains requiring 

processing by proteases such as thrombin or matrix metalloproteinases (MMPs) (Figure 7, 

function 7). Finally, the biomechanical force resulting from ECM composition can be translated 

into signaling activities via focal adhesion complex and the actin cytoskeleton (Figure 7, 

function 8) [79]. Importantly, all these functions are interconnected. As an example, a stiff 

matrix can exert biomechanical force, thereby triggering changes in gene expression, and at the 

same time it can impact the motility of a cell. 
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Figure 7  Functions of the ECM. 
The ECM is functionally versatile and exerts physical (1 – 3), biochemical (4 -7) and 

biomechanical (8) cues. Figure was adapted from [79]. 

 

Although ECM-dependent activities are tightly controlled in healthy tissues, its quantity, 

composition and dynamics become abnormal in cancer. Among the alterations of the ECM in 

the tumor microenvironment, increased deposition of collagens is well studied and recognized 

[80]. Moreover, many other ECM components and their receptors are frequently overexpressed 

in cancer. This is the case for heparan sulfates proteoglycans and CD44, fibronectin (FN), 

fibrillin, fibulin, hyaluronan as well as matricellular proteins [79-81]. Consistent with these 

changes, expression of matrix remodeling enzymes such as MMPs, cathepsins and urokinases is 

often deregulated in cancer [79]. In addition, the collagen crosslinker enzymes lysyl oxidase 

(LOX) are upregulated in several types of cancer, leading to an increased ECM stiffness [82].  

 

Remodeling of the ECM impacts both the tumor cells themselves and the stromal cells. For 

example, deregulated ECM has been associated with EMT and enhanced migration of the 

tumor cells due to thickening and linearization of collagen fibers and MMPs activity [83-85]. On 

the other hand, abnormal ECM in tumors can promote tumor angiogenesis and 

lymphangiogenesis as well as tumor-associated inflammation [79]. In summary, cancer-

associated ECM not only promotes cancer-cell transformation and invasion but it also supports 

the formation of a niche further supporting cancer progression. 
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In recent years, a concept of pre-metastatic niche has emerged. According to some studies, 

tumor cells induce changes in the microenvironment at distant sites through secretion of 

soluble molecules, thereby facilitating metastatic colonization. Particularly homing of bone 

marrow-derived hematopoietic cells has been shown to facilitate tumor metastasis. In this 

process, the ECM might play an important role. For example, vascular endothelial growth factor 

receptor (VEGFR) positive myeloid cell, which are recruited at pre-metastatic sites, express the 

FN receptor integrin alpha 4 beta 1 (ITGA4-ITGB1), thereby providing a permissive niche for 

incoming tumor cells [86]. Another example is the recruitment of CD11b+ myeloid cells to the 

lungs by LOX, which are secreted by hypoxic breast tumor cells. CD11b+ cells adhere to 

crosslinked collagen IV and produce MMP2, thereby enhancing the invasion and the 

recruitment of bone marrow-derived hematopoietic cells and metastasizing tumor cells to the 

lungs. [87]. 

 

Many of the cited ECM components were also shown to support the growth of cancer cells in 

the metastatic niche. For example, binding of the ECM glycosaminoglycan hyaluronan to its 

receptor CD44 at the distant site drives metastasis in colon and breast cancer [88, 89]. In 

addition, a specific subgroup of ECM molecules, matricellular proteins, is of particular interest 

in the context of the metastatic niche due to their expression in normal stem cell niches. 

 

3.2.4 Matricellular proteins 

 

Within the ECM, matricellular proteins form a family of non-structural molecules often 

expressed in normal stem cell niches and frequently upregulated in cancer [90]. Tenascin C 

(TNC) and periostin (POSTN) are two matricellular proteins playing an important role in the 

metastatic niche in mouse models for breast cancer. TNC and POSTN are both expressed in 

normal adult stem cell niches and their functions at the distant site show a significant overlap 

[91-94]. Indeed, TNC promotes the expression of the Wnt target gene leucine-rich repeat-

containing G protein-coupled receptor 5 (LGR5) and POSTN binds and presents Wnt ligands to 

the cancer cells. As a consequence of this signaling modulation, both TNC and POSTN are 

required for the initiation of lung metastasis in mouse models for breast cancer [91, 94, 95]. In 

addition, overexpressed TNC and POSTN were shown to bind to each other in an in vitro setting 

[96]. Together, this data suggest a putative cooperation of TNC and POSTN that may play a role 

in metastasis. Furthermore, matricellular proteins have been linked to several cellular processes 

of the metastatic cascade such as EMT, angiogenesis, migration, proliferation, evasion of 

immune surveillance and survival of anoikis [90]. In addition of promoting a cancer stem cell 

phenotype and aggressiveness in glioma, the glycoprotein osteopontin (SPP1) was shown to 

support mammary tumor growth and metastasis [97-99]. Secreted protein acidic and rich in 

cysteine (SPARC) was shown to promote EMT and its expression is associated with invasion and 
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metastasis of several cancer entities [90]. Overexpression of SPARC promotes metastasis to the 

lung in a mouse model for breast cancer [100]. Although originally known for its anti-angiogenic 

properties, thrombospondin-1 (THBS1) is a glycoprotein of the ECM displaying a differential role 

in primary tumor growth and metastasis. Indeed, in a transgenic mouse model primary tumor 

formation was repressed by THBS1 while it promoted metastasis to the lung [101]. Importantly, 

the expression of many matricellular proteins in tumors is associated with metastatic 

progression in cancer patients [81]. 

 

3.3 Tenascin C 
 

3.3.1 Structure and cellular receptors 

 

TNC is a glycoprotein of the ECM originally described in the 1980’s for its anti-adhesive 

properties and its ability to inhibit attachment of fibroblasts to FN [102-105] (Figure 8, A). Its 

structure was rapidly characterized as a ‘hexabrachion’, i.e. a disulfide-linked hexamer which 

subunits range from 190 to 300 kDa [106] (Figure 8, B). Each arm emanates from a central 

globular particle, called assembly domain (AD), which is followed by 14 ½ epidermal growth 

factor (EGF) -like repeats, 8 constant and up to 9 alternatively spliced FN type III repeat 

domains and a carboxyl terminal fibrinogen globe (FG) (Figure 8, C). The central part of the FN 

type III repeat domain is alternatively spliced, giving rise to numerous TNC isoforms expressed 

in different contexts [107, 108]. 

 

 
Figure 8  Structure of the matricellular protein TNC. 
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(A) Illustration of the adhesive / antiadhesive properties of TNC compared to FN. 

Mouse fibroblasts were plated on plastic coated with FN or TNC. Noteworthy, the 

cells attached more on FN coating compared to plastic while they do not attach at 

all on TNC coating. Figure was adapted from [105]. (B)  Electromicrograph of TNC 

forming a hexabrachion. Figure was adapted from [109]. (C) TNC monomers 

comprise four distinct domains: an N-terminal assembly domain, 14 ½  EGF-like 

repeats, 8 constant and up to 9 alternatively spliced FN type III repeats and a C -

terminal FG domain. Figure was adapted from [107]. 

 

By virtue of its multiple domains, TNC was shown to interact with a variety of molecules, among 

which are many cell surface receptors [108]. TNC binding receptors include annexin II (ANXA2) 

[110], epidermal growth factor receptor (EGFR) [111], glypican 1 (GPC1) [112], phosphacan 

(PTPRZ1) [113], sodium channel Xia (NaN) [114], syndecan 4 (SDC4) [115-117], toll-like receptor 

4 (TLR4) [118], integrin alpha (ITGA) 2, 7, 8, 9, V, integrin beta (ITGB) 1, 3, 6 [119-124] and 

contactin 1 (CNTN1) [125]. To note is that only the heterodimers ITGA2/9-ITGB1 and ITGAV-

ITGB1/3/6 are known to be expressed on epithelial cells [126]. All these heterodimers are 

binding to the FNIII3 domain of TNC, except for ITGAV-ITGB3 which binds to the C-terminal FG 

domain and the ITGA2-ITGB1 which binding site is not known to date [127]. It is important to 

point out that the various cellular receptors of TNC were identified in different biological 

contexts using different approaches. 

 

Alternative splicing and binding to multiple cell surface receptors and ECM molecules (e.g. FN 

and POSTN [96, 128]) confer pleiotropic functions to TNC, in homeostasis (stem cell niches and 

tissue remodeling) and pathological stress (vascular disease, cardiac disease, atherosclerosis 

and cancer) [129]. 

 

3.3.2 Expression pattern and association with stem cell niches 

 

TNC has a tightly regulated pattern of expression throughout life, both in healthy and 

pathological conditions. During embryogenesis, TNC expression is first observed during 

gastrulation and somites’ formation and later during invasion of neural crest cells. TNC is then 

highly expressed in the developing central nervous system by glia cells, particularly during 

neuronal differentiation and migration in the cortex and cerebellum [130-132]. 

 

In adult tissues, TNC is mostly repressed with the exception of some connective tissues such as 

dense connective tissues (ligaments and tendons), bone periosteum and smooth muscle [129, 

133]. Interestingly, TNC is expressed in a number of the stem cell niches, such as the neural 
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stem cell niche, the epithelial niches of hair and whisker follicles or the osteogenic stem cell 

niche [92]. In the mammary gland, TNC is expressed during embryonic development and in 

regenerative regions upon mammary transplantation assay. In addition, TNC is also expressed 

during involution of the mammary gland upon lactation. [134, 135]. This is part of a striking 

aspect of the TNC biology, which is its association with tissue remodeling and regeneration. 

Further examples are pathological conditions such as wound healing or inflammation, which are 

also accompanied by upregulation of TNC [133, 136]. The expression pattern of TNC is in line 

with the described phenotype of mice lacking TNC. In 1992 and 1996, two groups 

independently generated TNC knockout mice [137, 138]. Although in both cases the mice were 

phenotypically normal when compared to wildtype animals, the TNC knockout mice showed 

several defects upon stress or injury. These defects become then apparent in the peripheral 

nerves, the cornea or in the hematopoietic compartment [139]. This tissue remodeling-

associated phenotype suggests a role for TNC in adult stem cell niches.  

 

3.3.3 Clinical association with cancer progression 

 

Another pathological condition where the expression of TNC is markedly increased is cancer 

[140]. TNC is highly expressed in most of the solid tumor tissues, including brain, breast, 

ovaries, prostate, pancreas, head and neck, colon, stomach, lung, liver, kidney, bladder, skin, 

bone as well as lymphomas [108]. The main source of TNC is the cancer-associated stroma, 

particularly myofibroblasts and endothelial cells. However, there is strong evidence that cancer 

cell can also express TNC in an autocrine manner, as in the case of breast and colon cancer 

[141, 142]. Accordingly, various cancer cells lines (melanoma, breast and colon) do express TNC 

[143-146]. Studies on diverse malignancies have revealed a clinical association between TNC 

expression and patients’ survival. In breast cancer, accumulating evidences show a prognostic 

value for TNC. Indeed, high expression of TNC in early stage of breast cancer is associated with 

invasive behavior and progression of the disease [147, 148]. In addition, several independent 

studies have shown that high expression of TNC in the primary tumor or in metastatic nodules 

correlates with disease recurrence and overall poor patient outcome [94, 149, 150]. Moreover, 

TNC was identified within a gene expression signature predicting clinical relapse in breast 

cancer patients [100]. Interestingly, studies showing a prognostic value for TNC also showed an 

inversed correlation between TNC expression and ER expression [145, 151]. In non-small cell 

lung carcinoma (NSCLC), high expression of TNC is associated with disease recurrence [152]. 

Similarly in head and neck cancer, evidence are accumulating that TNC represents a prognostic 

factor for relapse and poor overall survival [153, 154]. In melanoma and colon cancer, TNC 

expression in the lesions has been associated with advanced stage of the disease and poor 

clinical outcome [155-157]. This suggests that TNC might play a functional role in cancer 

progression and metastasis. 
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3.3.4 Molecular roles of TNC in cancer progression 

 

As a highly pleiotropic molecule, TNC indeed promotes various cellular mechanisms that can 

support the metastatic cascade. These range from adhesion and migration, angiogenesis, 

modulation of immune response to survival in a foreign microenvironment [107] (Figure 9). 

 

 
Figure 9  Function of paracrine and autocrine TNC in the metastatic cascade.  
At the primary site, TNC promotes proliferation and migration of the cancer cells, 

thereby supporting the invasive phenotype. In  addition, it also promotes the 

formation of new blood vessels. At the distant site, primarily autocrine TNC 

supports viability of the cancer cells through stem and progenitor signaling 

molecules. Figure was adapted from [107]. 
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Modulation of adhesion and migration 
 

The anti-adhesive properties of TNC have been recognized for a long time [104, 105]. At the 

molecular level, TNC was shown to interfere with the binding of FN to its co-receptor SDC4, 

thereby altering the FN-induced ITGB1-ITGA5 signaling. As a result, formation of actin stress 

fibers and focal adhesion was inhibited and migration, as well as proliferation, was induced in 

glioblastoma and breast cancer cells [116]. Further studies in breast cancer and a study on 

melanoma have confirmed a role of TNC in promoting migration and invasion of cancer cells at 

the primary site [144, 158, 159].  

 

Role in angiogenesis 
 

TNC expression is associated with angiogenic processes during development and in adult tissue 

regeneration, as well as in pathological angiogenesis [160]. Evidences suggest that the pro-

angiogenic role of TNC plays a role in tumorigenesis. When human melanoma cells were 

injected into TNC knockout mice, the resulting tumors showed a decreased vascularization 

compared to control mice. Molecularly, stromal TNC was shown to promote the expression of 

vascular endothelial growth factor (VEGF), a key signaling molecule in angiogenesis [161]. 

Additionally, TNC was shown to induce an angiogenic switch in a transgenic mouse model for 

neuroendocrine pancreas carcinoma through Wnt signaling. In this model, TNC promotes the 

Wnt signaling by repressing its antagonist dickkopf-related protein 1 (DKK1) in endothelial and 

tumor cells [162]. 

 

Role in inflammation 
 

TNC is an important player of innate and adaptive immune surveillance through modulation of 

the production of inflammatory cytokines and recruitment of immune cells. This has been 

demonstrated in particular for chronic inflammatory diseases such as arthritis [118, 136]. In a 

mouse model for mammary carcinoma driven by the polyoma middle T (PyMT) oncogene, 

knockout of TNC resulted in less macrophages and monocytes infiltration when compared to 

control mice, suggesting a role for TNC in tumor-associated inflammation [163]. TNC was also 

suggested to modulate adaptive immunity in cancer. Indeed, in human lung cancer, TNC 

inhibited proliferation and interferon (IFN) gamma secretion of tumor-infiltrating lymphocytes 

[152]. Taken together, these findings suggest a role for TNC in cancer-associated inflammation. 

 

Role in the metastatic niche 
 

Interestingly, TNC shows a heterogeneous expression pattern in many tumors, with the 

strongest expression often observed at the invasive front of the tumor nodules [108]. This 
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phenomenon has been observed in breast cancer, melanoma, malignant pleural mesothelioma 

and intrahepatic cholangiocarcinoma and it is associated with higher risk of metastasis [107]. 

Importantly, expression of TNC at the invasive front was also observed in metastatic lesions of 

breast cancer [94]. 

  

In the past years, in vivo studies have demonstrated a functional role of TNC in the colonization 

of distant organs. The analysis of in vivo xenograft model for breast cancer metastasis 

demonstrated that TNC is required for lung and bone metastasis in breast cancer but not for 

mammary tumor growth. TNC deficient breast cancer cells showed a decreased ability to 

colonize the lung and the bone due to increased apoptosis as demonstrated by a marked 

expression of the apoptosis marker cleaved caspase 3 at the distant site. [94, 159]. In a 

syngeneic mouse model, the role of stromal TNC in breast cancer metastasis to the lung was 

addressed. Together with VEGF-A, stromal TNC was shown to promote metastasis to the lung 

[164]. Importantly, expression of TNC by the cancer cells themselves represents a considerable 

survival advantage at the distant site. Indeed, initially the stromal cells are not able to 

compensate for autocrine loss of TNC, as attested by the decreased metastatic burden when 

TNC+/+ mice are injected by TNC deficient cancer cells or control cells. However, once the 

metastatic lesions have reached significant size and upon activation of the stroma, as attested 

by the expression of alpha smooth muscle actin (αSMA) by myofibroblasts, autocrine TNC is no 

longer required [94]. Therefore, cancer cells expressing TNC in an autocrine manner might be 

able to proliferate at the distant site more readily compared to cells relying on the stromal 

activation as a source of TNC. 

 

In breast cancer metastasis to the lung, survival at the distant site was shown to rely on two 

adult stemness markers. TNC supports on one hand the expression of the Wnt target gene 

leucine-rich repeat-containing G protein-coupled receptor (LGR5) and on the other side the 

positive regulator of the Notch signaling musashi homolog 1 (MSI1). Thereby TNC promotes the 

Notch signaling, as attested by the TNC-dependency of the Notch target genes hairy/Enhancer-

Of-Split Related With YRPW Motif 2 (HEY2) and protein deltex 1 (DTX1), while it does not 

control the Wnt signaling as a whole. Indeed, the expression of the Wnt target genes AXIN2 and 

lymphoid enhancer-binding factor 1 (LEF1) is not affected upon knockdown of TNC (Figure 10). 

The pro-metastatic function of both adult stem cell markers, LGR5 and MSI1, was validated 

experimentally [94]. 
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Figure 10  TNC signaling in breast cancer metastasis to the lungs. 
Autocrine TNC enhances metastatic fitness of breast cancer cells  at the distant site 

through de-repression of the Notch positive regulator MSI1, and through the Wnt 

target gene and adult stem cell marker LGR5. Figure was adapted from [94]. 

 

MSI1 is an RNA-binding protein, which main target is the transcript of the Notch inhibitor 

NUMB [165] (Figure 11, A). MSI1 was originally described for its role in the central nervous 

system of Drosophila, where it is required for the development of adult external sensory organs 

[166, 167]. Subsequently, the MSI1 function was shown to play a crucial role in the 

maintenance of neural, intestinal epithelial and mammary stem cells [166, 168, 169]. In the last 

years, MSI1 has been reported to promote the growth of several cancer entities such as colon, 

pancreatic or cervival cancer and may represent a promising therapeutic target [170-172]. 
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Figure 11  Notch and Wnt signaling regulation by MSI1 and LGR5, respectively. 
(A) Binding of Delta-like 1 protein (DLL1) or Jagged (JAG) ligand to active Notch 

receptor leads to cleavage of the intracellular part of the Notch receptor and 

activation of translational activity, i.e. expression of the Notch target HEY2. Notch 

signal activation can be blocked by NUMB. By binding to the Numb mRNA, MSI1 

impedes repression of the pathway and potentiates the Notch signaling. Figure was 

adapted from [173]. (B) In the absence of RSpo proteins, the ZNRF3 receptor 

ubiquitinates the Wnt receptor Frizzled, leading to its degradation and inhibition 

of the pathway. Upon binding of RSPOs to LGR5, ZNRF3 dimerizes with LGR5 

receptor, leading to membrane clearance of ZNRF3 from the cell surface and 

enhancement of Wnt signaling. Figure was adapted from [174]. 

The Wnt target gene LGR5 was originally discovered as a marker of cycling stem cells of the 

adult small intestine and colon [175]. Previously, the biology of adult stem cells had been linked 

to activation of the Wnt signaling [176]. Subsequently, LGR5 was shown to associate with the 

Frizzled/Lrp Wnt receptor complex and to bind the functional markers of adult stem cells R-

spondins (RSPOs). The four members of the R-spondin family are secreted molecules which 

potentiate the Wnt signaling by enhancing the response to low-dose Wnt ligand [177]. At the 
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molecular level, the R-spondin / LGR5 complex captures and neutralizes Rnf43 and Znrf3, two 

transmembrane E3 ligases that remove the Wnt receptors from the surface of stem cells, 

thereby representing a positive feedback loop of the Wnt signaling [178, 179] (Figure 11, B). 

Originally restricted to the small intestine and the colon, the definition of LGR5 as an adult stem 

cell marker has now expanded to further tissues such as the stomach and the hair follicle [180-

183]. In the mammary gland, a role for LGR5 in the stem cell biology has been suggested by a 

study showing that LGR5+ cells display enriched repopulating capacity upon transplantation 

compared to LGR5- cells [184]. However, the functional role of LGR5 in mammary stem cells 

needs to be confirmed [185]. In cancer, LGR5 has been functionally linked to tumor initiation 

and the cancer stem cell phenotype in colorectal malignancies [186, 187]. In addition, a recent 

study in breast cancer showed that LGR5 promotes tumor formation and the maintenance of 

stemness properties through the Wnt pathway [188]. 

 

3.4 General biology of integrin receptors 
 

Integrins are heterodimeric cell surface receptors acting as the main receptors for ECM 

molecules. In human, the integrin family comprises 18 alpha subunits and 8 beta subunits 

pairing in order to form at least 24 different functional heterodimeric receptors. It is 

noteworthy that ITGB1 can bind to most of the alpha subunits [189] (Figure 12).  

 

 
Figure 12  Mammalian integrin subunits and their alpha to beta association. 
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Here, integrin subunits were classified in several subfamilies based on ligand 

specificity (collagen receptors, laminin receptors and RGD domain receptors) and 

restricted expression (leukocyte-specific receptors). Figure was adapted from 

[189]. 

 

Each integrin can bind to multiple ECM molecules and a single ECM molecule often recognizes 

several heterodimers. Upon binding of a ligand, inactive bent integrin heterodimers undergo 

conformational changes, which culminate in the separation of the short cytoplasmic alpha and 

beta domain. This allows the binding of the linker molecule talin to the beta cytoplasmic 

domain and the stimulation of local actin polymerization. The separated integrin cytoplasmic 

domains and talin form a recruitment platform for focal-adhesion proteins such as vinculin, FAK 

and paxilin, which are recruited sequentially. Autophosphorylation of FAK leads to the 

recruitment of SRC resulting in activation of both kinases. The FAK/Src complex is the starting 

point of signal transduction to various signaling pathways, triggering changes in gene 

expression. The typical signaling machinery downstream of integrins involves the JNK pathway, 

the NFκB pathway and the MAPK pathway [190]. This signaling cascade, starting upon ligand 

binding, is termed ‘outside-to-inside’ signaling [191]. Conversely, the ‘inside-to-outisde’ 

signaling describes how integrins become activated by intracellular signals [192]. 
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4 Aim of the study 
 

In breast cancer, expression TNC has been suggested to predict poor clinical outcome. 

Importantly, breast cancer is a very heterogeneous collection of diseases reflected in the 

different subtypes. In this study, we aimed to investigate the prognostic value of TNC in the 

different subtypes of breast cancer using gene expression profiling and tissue-microarray of 

breast cancer patients.   

TNC has been shown to promote breast cancer metastasis. However, the receptors mediating 

this effect remained unknown. Therefore, this project was geared towards the identification of 

the receptor(s) mediating the TNC pro-metastatic signaling in breast cancer using various in 

vitro and in vivo assays.  

The identification of the receptors mediating the TNC signaling led us to the investigation of a 

putative functional role of TNC in the context of the mammary stem cell biology. Therefore, we 

finally aimed to address the role of TNC in the mammary gland development and maturation. 
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5 Materials & Methods 
 

5.1 Tissue culture 
 

5.1.1 Culture of cell lines 

 

Adherent, monolayer cultures were maintained at 37 °C and 5% CO2 in appropriate medium. 
Medium composition is specified below (Table 2). For comparison of gene expression between 
different cell lines, the cells were cultured in identical medium (DMEM complete) for at least 
two passages prior analysis. 
 

Table 2  Cell lines and media. 

Cell line Medium 

BT474 DMEM/F12 complete 

HCC1937 RPMI-1640 complete 

HEK 293T DMEM complete 

MCF7 DMEM complete 

MDA157 DMEM complete 

MDA231  DMEM complete 

MDA231 LM2 DMEM complete 

MDA436 DMEM complete 

MDA468 DMEM complete 

SKBR3 McCoy's 5a complete 

SUM159 DMEM/F12 complete with insulin 

SUM159 LM1 DMEM/F12 complete with insulin 

T47D RPMI-1640 complete 

WMPY1 DMEM complete 

 

DMEM complete 
DMEM, GlutaMAX™ (Thermo) 
10% (vol/vol) Fetal Bovine Serum (FBS) (Thermo) 
1% (vol/vol) Penicillin-Streptomycin (10,000 U/ml) (Thermo) 
1% (vol/vol) Amphotericin B (US Biological) 
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DMEM/F12 complete with insulin 
DMEM/F12, GlutaMAX™ (Thermo) 
5% FBS (Thermo) 
1 μg/ml hydrocortisone (Sigma) 
5 μg/ml insulin (Sigma) 
1% (vol/vol) Penicillin-Streptomycin (10,000 U/ml) (Thermo) 
1% (vol/vol) Amphotericin B (US Biological) 
 
RPMI-1640 complete 
RPMI 1640 Medium, GlutaMAX™ (Thermo) 
10% FBS (Thermo) 
1% (vol/vol) Penicillin-Streptomycin (10,000 U/ml) (Thermo) 
1% (vol/vol) Amphotericin B (US Biological) 
 
DMEM/F12 complete 
DMEM/F12 GlutaMAX™ (Thermo) 
10% FBS (Thermo) 
1% (vol/vol) Penicillin-Streptomycin (10,000 U/ml) (Thermo) 
1% (vol/vol) Amphotericin B (US Biological) 
 
McCoy’s 5a complete 
McCoy’s 5a Medium (Thermo) 
10% FBS (10,000 U/ml) (Thermo) 
1% (vol/vol) Penicillin-Streptomycin (10,000 U/ml) (Thermo) 
1% (vol/vol) Amphotericin B (US Biological) 
 

Cell lines were passaged by addition of Trypsin-EDTA, 0.25% (Thermo). Once cells detached, 

appropriate medium was added. Splitting ratios were 1:2 – 1:10 depending on the cell line. Vi-

CELL XR (Beckman Coulter) was used for cell counting. For cryopreservation, the cells were 

pelleted (1200 rpm, 5 min, 4 °C), re-suspended in appropriate medium supplemented with 10% 

Dimethyl Sulfoxide (DMSO) Hybri-Max® (Sigma) and aliquoted in cryovials. Cryovials were 

progressively frozen down to -80 °C using a freezing container filled with propan-2-ol (Sigma) 

and transferred to a liquid nitrogen tank for long-term storage. For retrieval of frozen cells, the 

vial was thawed in a water bath at 37 °C. The cells were resuspended in appropriate medium 

and 12-24h after thawing the medium was exchanged for fresh medium. 

 

5.1.2 Culture of primary patient material 

 

The effusion sample was obtained from a patient admitted to the gynecological clinic at the 

University Hospital of Mannheim by Prof. Dr. Med. Marc Sütterlin and Dr. Med. Saskia Speck in 
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August 2013. The study was approved by the ethical committee of the University of Mannheim 

(case number 2011-380N-MA) and conducted in accordance with the Helsinki Declaration. 

Written informed consent was obtained from the patient. 

 

For preparation of the sample, the cells were pelleted (1200 rpm, 5 min, 4 °C) and red blood cell 

lysis was achieved using ACK Lysing Buffer (Lonza). Breast patient effusion 16 (BPE16) cells were 

cultured in adherent conditions in M199 medium at 37 °C and 5% CO2 and passaged by the 

addition of StemPro® Accutase® Cell Dissociation Reagent (Thermo). 

 

M199 complete 

Medium 199 (Thermo) 

2.5% FBS (10,000 U/ml) (Thermo) 

1% (vol/vol) Penicillin-Streptomycin (10,000 U/ml) (Thermo) 

1% (vol/vol)  Amphotericin B 

10% (vol/vol) L-Glutamine (200 mM) (Thermo) 

10 μg/ml Insulin (Sigma) 

0.5 μg/ml Hydrocortisone (Sigma) 

100 μg/ml Epidermal Growth Factor (EGF; Sigma) 

100 ng/ml Cholera toxin (Sigma) 

 

5.1.3 Mammosphere assay 

 

Mammary fat pats (3rd and 4th) were dissected from age-matched 8- to 16 week old virgin 

NOD/SCID interleukin-2 receptor gamma chain null (NSG) TNC-/+ and NSG TNC-/- mice. The fat 

pads were finely minced using scalpels and digested at 37 °C for 1h in 0.3 % collagenase III 

(Worthington) and 0.1 % trypsin (Sigma) in CO2 independent medium without additives 

(Thermo). Upon complete digestion, the fatty tissue was removed by two rounds of 

centrifugation and the pellet consisting of epithelial organoids, red blood cells, fragment of 

vessels and fibroblasts was resuspended in CO2 independent medium / 10% FBS (Thermo). Red 

blood cell lysis was achieved using ACK Lysing Buffer (Lonza) and organoids were resuspended 

in DMEM / 5% FBS (Thermo) in a cell culture flask and incubated for 1h at 37 °C and 5% CO2. 

After incubation, the flask was shaken horizontally with moderate vigor and the floating 

organoids were collected, while the attached fibroblasts were discarded. Preparation of single 

cell suspension from mammary epithelial organoids was achieved by incubating the organoids 

in 1:1 vol/vol versene (Sigma) / 0.25% trypsin (Sigma) 0.02% EDTA (Sigma) for 2 min in a 37 °C 

water bath. DNase 1 (5 μg/ml in CO2 independent medium without additives) was added to the 

sample and incubated for further 5 min at 37 °C. Inactivation of trypsin enzymatic reaction was 

achieved by the addition of CO2 independent medium / 10% FBS (Thermo) and the sample was 
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filtered through a 35 μm cell strainer to obtain single cell suspension. The cells were seeded in 

Ultra-low attachment cell culture flasks (Corning) at a density of 0.25 x 106 cells/ml and grown 

in mammosphere medium at 37 °C and 5% CO2. After 14 days, the mammospheres were 

passaged by the addition of StemPro® Accutase® Cell Dissociation Reagent (Thermo) and re-

seeded at the same cell density. After additional 14 days, the AxioVision LE64 software was 

used for image acquisition and area quantification of mammospheres. 

 

Mammosphere medium 

HUMEC Basal Serum-Free Medium (Thermo) 

0.25% (vol/vol) Penicillin-Streptomycin (10,000 U/ml) (Thermo) 

5 μg/ml hydrocortisone (Sigma) 

5 μg/ml insulin (Sigma) 

20 ng/ml EGF (Sigma) 

20 ng/ml Basic Fibroblast Growth Factor (bFGF; Invitrogen) 

2% (vol/vol) B27® Supplement (Thermo) 

 

5.1.4 Oncosphere assay 

 

The breast cancer cells were seeded in Ultra-low attachment cell culture flasks (Corning) at a 

density of 0.25 x 106 cells/ml and grown in oncosphere medium at 37 °C and 5% CO2 for 7 days. 

For harvesting, the cells were pelleted by centrifugation (1200 rpm, 5 min, 4 °C) and re-

suspended in the appropriate buffer. 

 

For quantitative analysis, the AxioVision LE64 software was used for image acquisition and area 

quantification of oncospheres with a minimum area of 15,000 μm2. 

 

Oncosphere medium 

HUMEC Basal Serum-Free Medium (Thermo) 

0.25% (vol/vol) Penicillin-Streptomycin (10,000 U/ml) (Thermo) 

5 μg/ml insulin (Sigma) 

20 ng/ml EGF (Sigma) 

10 ng/ml bFGF (Invitrogen) 

2% (vol/vol) B27® Supplement (Thermo) 
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5.1.5 Lentiviral production 

 

Lentiviral particles were produced in HEK 293T cells, which were transfected at a confluency of 

70%. 2.6 μg lentiviral plasmid, 2 μg envelope plasmid (pMD2G) and 5.4 μg packaging plasmid 

(psPAX2) were mixed in 850 μl Opti-MEM® Reduced Serum Medium (Thermo). In a second 

tube, 40.8 μl Lipofectamine® 2000 Transfection reagent (Thermo) were diluted in 809.2 μl Opti-

MEM® Reduced Serum Medium. After 15 min incubation, the plasmid DNA mix was added to 

the Lipofectamine mix and incubated for further 30 min at room temperature. The HEK 293T 

cells were washed with phosphate-buffered saline (PBS; Sigma) and supplied with 5.1 ml 

transfection medium before adding the DNA-Lipofectamine mix. After 24 h, the medium was 

replaced by 7 ml fresh transfection medium. The viral supernatants were collected 48 h and 72 

h after transfection and filtered through a 0.2 μm mesh to remove cellular debris. The viral 

particles were stored at -80 °C and thaed on ice prior infection. 

 
Transfection medium 
DMEM, GlutaMAX™ (Thermo) 
10% Fetal Bovine Serum (10,000 U/ml) (Thermo) 
1% (vol/vol) Sodium Pyruvate (100 mM) (Thermo) 

 

5.1.6 Lentiviral infection  

 

Target cells were transduced at a confluency of 70% by adding 600 μl non-concentrated viral 

particles and 600 μl appropriate medium supplemented with 8 μg/ml polybrene (Sigma). 

Successfully transduced cells were selected by Puromycin (2-3 μg/ml, Thermo) or Zeocin™ (800 

μg/ml, Thermo) antibiotic selection (all) and sorted for fluorescent proteins (only miRE system). 

The lentiviral constructs are described below (Table 3) 
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Table 3  Short-hairpin RNA (shRNA) sequences, backbone vectors and origin. 
The miRE shRNA were cloned in our laboratory as described below. Therefore no 

company or catalogue number is indicated.  

Vector Oligonuclotides Antisense sequence (5'-3') Company Catalogue number 

miRE-puromycin-
BFP 

ITGB3_1 TTTCATCACAGACTGTAGCCT   

miRE-puromycin-
BFP 

ITGB3_3 TAAGCATCAACAATGAGCTGG   

miRE-puromycin-
BFP 

REN713 TAGATAAGCATTATAATTCCT   

miRE-zeocin-
tdTomato 

ITGB1_1 TCAGTTGAAATTATCACACTC   

miRE-zeocin-
tdTomato 

ITGB1_3 TTAAACATCTATTTTCATCTG   

miRE-zeocin-
tdTomato 

TNC_1 TTTGGTAGAAGTTCTCGCGTC   

miRE-zeocin-
tdTomato 

TNC_2 TTGTCTGAGAAAATGACTTCC   

miRE-zeocin-
tdTomato 

REN713 TAGATAAGCATTATAATTCCT   

GIPZ-puromycin ANXA2_3 TAATAGTACAGGGACTTGC Open 
biosystem 

V2LHS_190394 

GIPZ-puromycin EGFR_1 TTCCGTTACACACTTTGCG Open 
biosystem 

V2LHS_200678 

GIPZ-puromycin EGFR_2 TTTCCAAATTCCCAAGGAC Open 
biosystem 

V2LHS_201187 

GIPZ-puromycin GPC1_2 TGGTCATGATCTTCAGCTG Open 
biosystem 

V3LHS_307212 

GIPZ-puromycin GPC1_4 AGATCTGGCGGACCTCGCC Open 
biosystem 

V3LHS_307210 

GIPZ-puromycin ITGA2_4 GAACTGTGATTTCTGTCCT Open 
biosystem 

V3LHS_376868 

GIPZ-puromycin ITGAV_2 TTCTCAAAGGGTTGATCTC Open 
biosystem 

V2LHS_133468 

GIPZ-puromycin ITGAV_3 AAAACAGCAAGATCAACTT Open 
biosystem 

V3LHS_365150 

GIPZ-puromycin SDC4_1 ATACCACAGAGATTCCCGT Open 
biosystem 

V2LHS_30982 

GIPZ-puromycin SDC4_2 TCCATTTCAGCATAAACTC Open 
biosystem 

V2LHS_30985 

GIPZ-puromycin TLR4_1 TTTGTTTCAAATTGGAATG Open 
biosystem 

V2LHS_221582 

GIPZ-puromycin TLR4_2 TATTAAGGTAGAGAGGTGG Open 
biosystem 

V2LHS_171350 

GIPZ-puromycin non-target 
control 

CTTACTCTCGCCCAAGCGAGAG Open 
biosystem 

RHS4348 
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5.2 Molecular cloning 
 

For generation of miRE lentiviral shRNA vectors, 10 ng desalted oligomers (Sigma; Table 3) were 

amplified by polymerase-chain reaction (PCR) using Q5® High-Fidelity DNA Polymerase (NEB). 

Amplification primers are listed in Table 4. The PCR product was resolved by gel electrophoresis 

(2% agarose, Sigma) and extracted using the QIAquick gel extraction kit (Qiagen) according to 

manufacturer’s instructions. Subsequently, the PCR product was digested with EcoRI-HF (NEB) 

and XhoI (NEB) restriction enzymes and purified using the QIAquick PCR purification kit (Qiagen) 

according to manufacturer’s instructions. In parallel, 10 μg of vector was digested with EcoRI-

HF (NEB) and XhoI (NEB) restriction enzymes and dephosphorylated using Antarctic 

Phosphatase (NEB) (Figure 13). The reaction product was resolved by gel electrophoresis (1% 

agarose, Sigma) and extracted using the QIAquick gel extraction kit (Qiagen) according to 

manufacturer’s instructions. Ligation was performed at 16 °C overnight in a 1:3 molar ratio 

using T4-Ligase (NEB). ElectroMAX Stbl4 Competent Cells (Invitrogen) were used for 

transformation. Positive clones were verified by Sanger sequencing (GATC Biotech) using the 

sequencing primer (Table 4). 

 

Table 4  Primers for molecular cloning. 

Oligonucleotide Sequence (5'-3') 

amplification primer (forward) TGAACTCGAGAAGGTATATTGCTGTTGACAGTGAGCG 

amplification primer (reverse) TCTCGAATTCTAGCCCCTTGAAGTCCGAGGCAGTAGGC 

sequencing primer GCCACCAAAGAACGGAGCC 
 

 
Figure 13  miRE-puromycin-BFP (A) and miRE-zeocin-tdTomato (B) vector map.  
The restriction sites XhoI and EcoRI  were used for molecular cloning as described 

in 5.2. The vectors were mapped using the SnapGene software.  



Materials & Methods 

49 
 

5.3 Gene expression analysis 
 

5.3.1 RNA extraction 

 

Total RNA was isolated from different cell lines and from mouse mammary glands (four per 

mouse) using the RNeasy Mini Kit (Quiagen) according to manufacturer’s instructions. Cells 

lines were lysed directly in RLT buffer supplemented with 1% β-mercaptoethanol (Sigma) and 

mammary glands were dissociated in the same buffer using the GentleMACS Dissociator 

(Miltenyi Biotec) according to manufacturer’s instructions. RNA concentration and quality was 

determined using the NanoDrop (Thermo). RNA samples were stored at -80 °C. 

 

5.3.2 Quantitative real-time PCR  

 

Total RNA was reverse-transcribed using the High-Capacity cDNA Reverse Transcription Kit 

(Thermo) according to manufacturer’s instructions. cDNA corresponding to 40 ng of starting 

RNA was used for quantitative real-time PCR (qRT-PCR). qRT-PCR was performed on the ViiA ™ 

7 Real-Time PCR System (Applied Biosystems) according to the following program: 50 °C for 2 

min, 95 °C for 10 min (enzyme activation phase), 95 °C for 15 sec, 60 °C for 1 min (40 cycles, 

amplification phase), 95 °C for 15 sec, 60 °C for 1 min, 95 °C for 15 sec (enzyme inaction and 

dissociation phase). SYBR® Green PCR Master Mix (Thermo) was used for detection of double-

stranded PCR products. Data acquisition and analysis based on the 2-∆∆Ct method were 

performed using the ViiA 7 ™ Software (version 1.2.2.). Target genes were normalized against 

Hprt (mouse) or RPL13A (human) (Table 5). Primer specificity was verified by melting curve 

analysis and assessing of amplification product size by gel electrophoresis. 
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Table 5  qRT-PCR primers. 
Oligonucleotide Specie Forward sequence (5'-3') Reverse sequence (5'-3') 

hRPL13A human AAGTACCAGGCAGTGACAG CCTGTTTCCGTAGCCTCATG 

hTNC human TAACAGCATCACCCTGGAAT TCCTTGTCTTCCTTCACAGC 

hLGR5 human CATTTGTAGGCAACCCTTCTC GGCACCATTCAGAGTCAGTGT 

hMSI1 human CCAATGGGTACCACTGAAGC CACTCGTGGTCCTCAGTCAG 

hAXIN2 human AGTGTGAGGTCCACGGAAAC TGGCTGGTGCAAAGACATAG 

hHEY2 human AAGATGCTTCAGGCAACAGG CGCAAGTGCTGAGATGAGAC 

hITGB1 human AACTGCACCAGCCCATTTAG ACATTCCTCCAGCCAATCAG 

hITGB3 human GTGTGCCTGGTGCTCTGAT GAGTGACCTGGGAGCTGTCT 

hNANOG human CACCTATGCCTGTGATTTGTG AAGTGGGTTGTTTGCCTTTG 

hOCT4 human CAAGCTCCTGAAGCAGAAGAGGAT CTCACTCGGTTCTCGATACTGGTT 

hSOX2 human TGTCAAGGCAGAGAAGAGAGTG GCCGCCGATGATTGTTATTA 

hANXA2 human AGCGGGATGCTTTGAACA TGGTAGGCGAAGGCAATATC 

hEGFR human CACCACGTACCAGATGGATGT GCCCTTCGCACTTCTTACAC 

hGPC1 human GGCCCTGCCCTGACTATT GTGAGCGTGTCCCTGTTGT 

hITGA2 human CTGGAGTGGCTTTCCTGAGA GTTCCCATGTTCCTGGTGAG 

hITGAV human TGGTTTGGAGCATCTGTGAG TACCAGGACCACCAAGAAGT 

hSDC4 human GAGCCCTACCAGACGATGAG CACCAAGGGATGGACAACTT 

hTLR4 human ACCTGGACCTGAGCTTTAATC CACAGCCACCAGCTTCTGTA 

mHprt mouse TCAGTCAACGGGGGACATAAA GGGGCTGTACTGCTTAACCAG 

mKrt14 mouse AGCGGCAAGAGTGAGATTTCT CCTCCAGGTTATTCTCCAGGG 

mFzd1 mouse CAGCAGTACAACGGCGAAC GTCCTCCTGATTCGTGTGGC 

mItgb1 mouse ATGCCAAATCTTGCGGAGAAT TTTGCTGCGATTGGTGACATT 

mItgb3 mouse GTGGGAGGGCAGTCCTCTA CAGGATATCAGGACCCTTGG 

mTnc mouse GCATCGGTCACTGGATACCT TGCTGAGTAGTGGGTGGATG 

mLgr5 mouse CCTACTCGAAGACTTACCCAGT GCATTGGGGTGAATGATAGCA 

mRspo1 mouse CTGCCCACCTGGATACTTCG CTTGTGCAGGTACAAGCCCT 

mRspo3 mouse ATTGCCCAGAAGGGTTGGAA TTTCTCGGACCCGTGTTTCA 

mMsi1 mouse TCAGCCAAAGGAGGTGATGTC GTTGTGGCTTGGAAACCTGG 

mHey2 mouse AGATGCTTCAGGCAACAGGG GCGCAACTTCTGTTAGGCAC 

 

5.4 Protein work 
 

5.4.1 Generation of whole cell protein lysates 

 

Cells were lysed in NP-40 lysis buffer (250 mM Tris-HCl pH7.4 (Sigma), 150 mM NaCl (Sigma), 1 

mM EDTA (Sigma), 1% NP-40 (Sigma), 5% glycerol (Sigma)) supplemented with 1x HALT 

Protease and Phosphatase Inhibitor Cocktail (Thermo). Cells were washed three times with ice-
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cold PBS (Sigma) and incubated in NP-40 lysis buffer for 5 min on ice. The resulting homogenate 

was transferred into a pre-cooled reaction tube, vigorously mixed by vortexing and incubated 

on ice for further 20 min. Finally, the lysate was centrifuged at 20,000 rpm for 15 min at 4 °C 

and the supernatant was transferred to a fresh, pre-cooled reaction tube. Protein lysates were 

stored at -20 °C until use. 

 

Concentrations of protein lysates were quantified using the Pierce™ Micro BCA Protein Assay 

Kit (Thermo) according to manufacturer’s protocol. Absorbance at 562 nm was measured at the 

SpectraMax M5 (Molecular Devices) and concentration were determined using the SoftMax 

Pro5.4  software (Molecular Devices). 

 

5.4.2 Co-immunoprecipitation 

 

Co-immunoprecipitation (Co-IP) was performed using the Pierce™ Crosslink Magnetic IP/Co-IP 

Kit (Thermo) according to manufacturer’s instructions. Cells were cultured as oncospheres. 

Whole cell protein lysates were generated as described above without vigourous mixing of the 

homogenate. 625 µg and 1250 µg whole cell protein lysates were loaded per Co-IP for MDA 

MB231 LM2 and SUM159 LM1, respectively, elution volume was 50 µl per Co-IP. 

 

5.4.3 Single reaction monitoring analysis 

 

Single reaction monitoring (SRM) analysis was performed by Dr. Sabrina Hanke. The eluates of 

16 Co-IPs per sample were combined, neutralized and concentrated in a vacuum concentrator. 

Proteins were reduced with 5 mM tris(2-carboxyethyl)phosphine (TCEP, BioVision) at 60 °C for 

30 min followed by alkylation with 15 mM iodoacetamide (IAA, Sigma-Aldrich) for 30 min at 37 

°C. Subsequently, proteins were precipitated with chloroform/methanol as described previously 

[1]. The protein pellets were resolubilized in 0.1% RapiGest SF Surfactant (Waters) in Tryptic 

Digestion Buffer (50 mM Tris-HCl, 1 mM CaCl2 in water, pH 8) by sonication for 30 min and 

digested with Sequencing Grade Modified Trypsin (1:25, w/w, Promega) for 15 h at 37 °C and 

1200 rpm. Samples were acidified to 0.5% TFA (10% TFA in water, ProteoChem) and incubated 

for 30 min at 37 °C at 1200 rpm. Acidified protein solutions were separated from insoluble 

detergent by-products by 10 min centrifugation at 20,000 × g. Samples were desalted using a 

96-well, C18 Lab-in-a-plate Flow-Thru Plate (Glygen), dried in a vacuum concentrator and 

resuspended in 3% acetonitrile, 0.1% formic acid, 0.01% TFA in water containing the heavy 

peptide pool (see below).  

 



Materials & Methods 

52 
 

Based on the SRM Atlas data (www.srmatlas.org, January 2016), up to five proteotypic peptides 

per target protein were selected for selected reaction monitoring (SRM). Peptides were 

restricted to a mass range of 600-2000 Da, methionine and cysteine containing peptides were 

excluded if possible. To determine the levels of the endogenous target peptides in the IP 

samples, heavy peptide standards corresponding to their natural counterparts (light) were 

synthesized with heavy isotopic lysine (13C615N2) or arginine (13C615N4) at the C terminus 

(Intavis, Germany), pooled and spiked into the digested and desalted samples to a final 

concentration of 0.5 pmol/μL. 

 

SRM analysis was performed on a QTRAP 6500 mass spectrometer (SCIEX) operated with 

Analyst software (v1.6.2) and coupled to a nanoAcquity UPLC system (Waters) equipped with a 

nanocapillary, reversed-phase M-Class Peptide CSH C18 Column (130 Å pore size, 1.7 μm 

particle size, 300 μm x 150 mm, Waters). Column temperature was set to 55 °C. 10 μL of each 

sample were injected by full-loop injection and loaded on the column within 4 min (3% 

acetonitrile in 0.1% formic acid, 0.01% TFA in water). Samples were separated over 120 min at a 

flow rate of 6 µl/min using 4 to 30% (1-110 min), 30-85% (110-115 min), 85-3% (115-120 min) 

acetonitrile gradient in 0.1% formic acid, 0.01% TFA in water (Biosolve). 

 

For SRM method optimization and validation, MS/MS spectra of the heavy peptide pool were 

acquired in the trap mode (enhanced product ion) with dynamic fill time, Q1 resolution low, 

scan speed of 10000 Da/s, m/z range of 100-2000. Peptides and transitions are listed in Table 6. 

Scheduled SRM were performed with Q1 operated in unit resolution, Q3 in low resolution, a 

target scan time of 2 s, a median (minimal) dwell time of 106 ms (37 ms) and retention time 

windows of ±2.75 min around the specific elution time.  

 

SRM data were processed using the Skyline software (version 3.5.0.9319). For correct peak 

detection, the default peak boundary assignment based on Savitzky-Golay smoothing was 

manually reassigned if required. Peptides with unfavorable elution profile or interfering peaks 

in the light transitions were excluded from further data analysis. Information including 

background-reduced peak area of heavy and light peptides were exported for further analysis. 

For each peptide, peak areas of corresponding transitions were summed for analysis. The ratio 

between the background reduced peak area of the light transition and the background reduced 

peak area of the heavy transition was calculated to correct for ionization or spray differences 

between runs. To obtain a reliable quantification, peptides with an average peak area of the 

light peak less than two-fold up-regulated in the samples compared to the background signal of 

three averaged SRM measurements of heavy peptide pool in solvent were excluded from 

analysis. For visualization, peak areas were normalized to the maximal peak area.



Materials & Methods 

53 
 

 

Table 6  Peptides and transitions for SRM analysis. 
Accession Accession Name Peptide 

Sequence 
Transition Modification Precursor 

m/z 
Fragment 
m/z 

Retention Time 
(min) 

Declustering 
Potential 

Collision 
Energy 

P02751 FINC_HUMAN WC[CAM]GTTQ
NYDADQK 

+2y11 light 793.830637 1240.5440
36 

12.7 89 37.4 

P02751 FINC_HUMAN WC[CAM]GTTQ
NYDADQK 

+2y9 light 793.830637 1082.4748
93 

12.7 89 37.4 

P02751 FINC_HUMAN WC[CAM]GTTQ
NYDADQK 

+2y7 light 793.830637 853.36863
7 

12.7 89 37.4 

P02751 FINC_HUMAN WC[CAM]GTTQ
NYDADQK 

+2y11 heavy 797.837736 1248.5582
35 

12.7 89 37.4 

P02751 FINC_HUMAN WC[CAM]GTTQ
NYDADQK 

+2y9 heavy 797.837736 1090.4890
92 

12.7 89 37.4 

P02751 FINC_HUMAN WC[CAM]GTTQ
NYDADQK 

+2y7 heavy 797.837736 861.38283
6 

12.7 89 37.4 

P05106 ITB3_HUMAN WDTANNPLYK +2y9 light 611.29857 1035.5105
51 

31.8 75.7 30.9 

P05106 ITB3_HUMAN WDTANNPLYK +2y8 light 611.29857 920.48360
7 

31.8 75.7 30.9 

P05106 ITB3_HUMAN WDTANNPLYK +2y7 light 611.29857 819.43592
9 

31.8 75.7 30.9 

P05106 ITB3_HUMAN WDTANNPLYK +2y9 heavy 615.305669 1043.5247
5 

31.8 75.7 30.9 

P05106 ITB3_HUMAN WDTANNPLYK +2y8 heavy 615.305669 928.49780
6 

31.8 75.7 30.9 

P05106 ITB3_HUMAN WDTANNPLYK +2y7 heavy 615.305669 827.45012
8 

31.8 75.7 30.9 

P24821 TENA_HUMAN ITAQGQYELR +2y8 light 589.811844 964.48467 19 74.1 30.1 

P24821 TENA_HUMAN ITAQGQYELR +2y7 light 589.811844 893.44755
6 

19 74.1 30.1 

P24821 TENA_HUMAN ITAQGQYELR +2y6 light 589.811844 765.38897
9 

19 74.1 30.1 

P24821 TENA_HUMAN ITAQGQYELR +2y8 heavy 594.815979 974.49293
9 

19 74.1 30.1 

P24821 TENA_HUMAN ITAQGQYELR +2y7 heavy 594.815979 903.45582
5 

19 74.1 30.1 

P24821 TENA_HUMAN ITAQGQYELR +2y6 heavy 594.815979 775.39724
8 

19 74.1 30.1 
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5.4.4 Western blot 

 

Protein lysates were mixed with 4x NuPAGE LDS sample buffer (Thermo) and 10x NuPAGE 

reducing agent (Thermo) and heated to 95 °C for 12 min. Protein lysates were resolved on 4-

12% Bis-Tris NuPAGE gels (Thermo) with 1x MOPS buffer (Thermo) for 2 h at 120 V and blotted 

on PVDF membrane (Biorad) for 2 h at 25 V. Membranes were blocked overnight at 4 °C in 1x 

TBS (10x TBS: 48.4 g Tris-Base (Sigma), 160 g NaCl (Sigma), 2 l water, pH 7.5) supplemented with 

0.1% (vol/vol) Tween-20 (Sigma) and 5% (wt/vol) non-fat dry milk powder (Sigma) (blocking 

solution). Primary antibodies (Table 5) were incubated for 2 h at room temperature in blocking 

solution. Membranes were washed 5 times for 5 min in 1x TBS supplemented with 0.1% 

(vol/vol) Tween-20 (Sigma; washing buffer). HRP-conjugated secondary antibodies (1:10,000; 

Dako) were incubated for 1 h at room temperature in blocking solution. Membranes were 

washed again 5 times for 5 min in washing buffer and the formed immunocomplexes were 

revealed using the ECL Prime Western Blotting Detection Reagent according to manufacturer’s 

instructions (Amersham International). 

 

5.4.5 Fluorescence-activated cell sorting 

 

For fluorescence-activated cell sorting (FACS), 0.2 x 10^6 cells were washed twice in staining 

solution (PBS (Sigma) supplemented with 2% (vol/vol) Fetal Bovine Serum (Thermo)) and 

incubated in Cytofix/Cytoperm™ buffer (BD) for 20 min at 4 °C for permeabilization. After 

washing in Perm/Wash™ buffer, the cells were labelled with a CK FITC-conjugated antibody 

(Table 5) for 45 min in the dark at 4 °C. The cells were washed twice with Perm/Wash™ buffer, 

filtered and acquisition was performed at the Cyan ADP cytometer (Beckman Coulter). The 

same protocol was applied for ITGAV PE-conjugated antibody (Table 5) labelling with omission 

of the fixation and permeabilization steps. Instead, the cells were washed in staining solution. 

Data analysis was conducted using the FlowJo Software. 

 

Cell sorting experiments were performed with FACS Aria I or II (BD) for blue fluorescent protein 

(BFP) or tdTomato expression at the Imaging and Cytometry DKFZ Core Facility. 
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5.5 Tissue analysis 
 

5.5.1 Immunohistochemistry 

 

For immunohistochemical stainings, dissected lungs were fixed in formalin (Sigma) overnight at 

4 °C, dehydrated with increasing concentrations of ethanol (Sigma) followed by xylene (Sigma) 

and subsequently embedded in paraffin. 5 μm sections were deparafinized, rehydrated and 

quenched by H2O2 (Sigma). Antigen retrieval was performed by incubating the sections in 

Pepsin (DAKO) at 37 °C for 14 min (TNC) or by boiling the sections in pH 6 target retrieval 

solution (DAKO) in a steam pot for 20 min (VIM). The sections were incubated in blocking 

solution (1% bovine serum albumin (Sigma), 0.1% Triton X 100 (AppliChem) in PBS). Primary 

antibody (Table 7) staining in blocking solution was performed overnight at 4 °C. On the next 

day, the sections were incubated for 30 min with appropriate biotinylated secondary antibody 

(1:200, Vector Laboratories) at room temperature. The immunocomplexes were revealed by 

using the Vectastain ABC HRP Kit and the DAB Substrate Kit (Vector Laboratories) according to 

manufacturer’s instructions. Between each step the sections were washed in PBS (10 mM 

Na2HPO4 (Sigma), 2.68 mM KCl (Sigma), 140 mM NaCl (Sigma), pH 7.45) for 5 min. The sections 

were counterstained with hematoxylin solution according to Mayer (Sigma) and washed in tap 

water. Before mounting in Cytoseal XYL (Thermo), dehydration and clearing in xylenes (Sigma) 

was performed. 

 

For hematoxylin and eosin (HE) staining, 5 μm sections were deparafinized, rehydrated and 

stained for 6 min with hematoxylin solution according to Mayer (Sigma). Differentiation was 

obtained by a short incubation in alcoholic acidic solution (200 ml ethanol supplemented with 

0.3% concentrated hydrogen chloride) followed washing in tap water. The sections were 

counterstained with eosin Y alcoholic solution (Sigma), dehydrated and cleared in xylenes 

(Sigma) before mounting in Cytoseal XYL (Thermo). 

 

Images were acquired at the Cell Observer.Z1 (Zeiss) microscope at the Imaging and Cytometry 

DKFZ Core Facility and processed with the ZEN software (Zeiss).  
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Table 7  Antibodies for Western Blot (WB), fluorescence-activated cell sorting (FACS) and 
immunohistochemistry (IHC). 

Antigen Manufacturer (catalogue number) Specie Technique (dilution) 

TNC Santa Cruz (sc-20932) rabbit WB  (1:1,000) 

ITGB1 Cell Signaling (4706S) rabbit WB (1:1,000) 

ITGB3 Cell Signaling (13166) rabbit WB (1:1,000) 

GAPDH Abcam (ab9484) mouse WB (1:10,000) 

CK Miltenyi (130-080-101 ) mouse FACS (1:10) 

ITGAV Biolegend (104105) mouse FACS (1:10) 

TNC Sigma (T2551) mouse IHC (1:4,000) 

VIM Novocastra (NCL-L-VIM-572) mouse IHC (1:400) 
 

5.5.2 Tissue microarray analysis 

 

The tissue microarray (TMA) was constructed from mammary carcinoma biopsy samples at the 

Pathology Department of the University Hospital of Heidelberg between 2001 and 2002 under 

the supervision of Prof. Dr. Med. Peter Sinn. Analysis was performed using the Definiens 

software Tissue Studio® version 4.2. Percental score was calculated using the following formula:  

 

Percental score = 3x [% area immunohistochemistry TNC high stain] + 2x [% area 

immunohistochemistry TNC medium stain] + 1x [% area immunohistochemistry TNC low stain] 

 

5.6 In vivo lung colonization assay 
 

Animal care and all procedures followed the German legal regulations and were previously 

approved by the governmental review board of the state of Baden-Wuertemberg, 

Regierungspraesidium Karlsruhe (authorization numbers G51-13).  

 

Mice were bred and housed in individually ventilated cages in the animal facility of the DKFZ 

under specific pathogen-free conditions. 

 

Lung colonization assay was performed on 6- to 8-week old NSG mice by intravenous injection 

of 200,000 single cells labelled with a triple modality reporter proteins and resuspended in 100 

μl PBS (Sigma) [193]. Metastatic growth was monitored weekly in vivo. For this purpose, 200 μl 

D-Luciferin (15 mg/ml, Biosynth) was injected intraperitoneally 10 min prior measurement. 

Bioluminescence was acquired by the IVIS Spectrum In Vivo Imaging System (PerkinElmer) 

under inhalational anesthesia by Isoflurane (Ecuphar). The mice were sacrificed when the in 

vivo photon flux reached 10^9 photon / sec or when the mice showed any sign of distress. At 
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experimental end point, the mice were sacrificed and bioluminescence of the lung was acquired 

ex vivo. Data processing was performed with the Living Image® software.  

 

5.7 Whole mount staining of the mammary fat pad 
 

TNC-deficient mice (C57BL/6J TnctmRef1) were provided by Prof. Dr. Reinhard Faessler. Age-

matched TNC knockout and wildtype mice were sacrificed and the third and fourth mammary 

fat pads were dissected and stretched on a glass slide. Whole mount stainings were performed 

using VitroView™ Mammary Gland Whole Mount Stain Kit (GeneCopoeia™) following 

manufacturer’s instructions. The slides were imaged using the Perfection V850 Pro scanner 

(Epson) at the Imaging and Cytometry DKFZ Core Facility. Quantification of the epithelial area 

was performed semiautomatically using the ImageJ software. 

 

5.8 Survival analysis of breast cancer patients 
 

The Kaplan-Meier Plotter compiles 26 publically available gene expression datasets (Affymetrix) 

from 3554 BrCa primary breast tumors [194] (www.kmplot.com/analysis/). The patients were 

stratified based on the 2013 St Gallen criteria (TN: ESR1-/HER2-, luminal A: ESR1+/HER2-/MKI67 

low, luminal B: ESR1+/HER2-/MKI67 high and ESR1+/HER2+, HER2 subtype: ESR1-/HER2+). 

Classification of the patients according to TNC median expression value was performed 

automatically. 

 

Normalized gene expression profiling (Illumina) of 1992 fresh frozen primary breast tumors was 

obtained from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) 

[195]. The patients were stratified according to PAM50 intrinsic breast cancer subtypes (luminal 

A, luminal B, HER2 or basal). Classification of the patients according to TNC, ITGB1 and ITGB3 

expression values was performed manually. 

 

5.9 Graphical output and statistical testing 
 

Graphical illustration of analyzed data and statistical testing were performed using the 

GraphPad Prism software, version 6. 

 

http://www.kmplot.com/analysis/
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6 Results 
 

6.1 TNC mediates metastasis in triple-negative breast cancer 
 

6.1.1 Cancer cell-derived TNC is associated with poor clinical prognosis in triple-negative 

breast cancer 

 

TNC is expressed in many different tumor entities and its expression is often associated with 
poor clinical outcome. In breast malignancies, growing evidence suggests that high expression 
of TNC correlates with poor metastasis-free and overall survival of the patients [94, 100, 147-
150]. Interestingly, a negative correlation between ER positivity and TNC expression has been 
suggested by independent studies [145, 146]. We sought to investigate further the prognostic 
value of TNC in breast cancer and its potential association to a particular subtype. To this end, I 
performed a survival analysis according to TNC level on gene expression profiling of breast 
cancer patients. I used the Kaplan-Meier Plotter, an online tool, which integrates gene 
expression and clinical annotations from 3554 primary breast cancer tumors in order to assess 
putative biomarkers [194]. In order to include as many patients as possible in the analysis, 
stratification was based on gene expression of the biomarkers ER, HER2 and Ki67. Indeed, 
although IHC remains the golden standard for determining receptor status, the use of 
microarray-derived gene expression for ER, HER2 and Ki-67 has been demonstrated to stratify 
patients in a reliable manner [5, 6]. The patients were separated into four groups: luminal A, 
luminal B, HER2-enriched and triple-negative. Upon stratification of the patients according to 
subtype, the patients were classified as ‘TNC high’ or ‘TNC low’. TNC lower quartile (0 – 25%) 
was defined as cutoff value. Kaplan-Meier analysis of relapse-free survival was then generated 
for the different subtypes according to TNC expression. Surprisingly, the analysis of all subtypes 
did not show any significant difference in relapse-free survival between the ‘TNC high’ and the 
‘TNC low’ groups. However, patient stratification revealed striking differences between the 
subtypes regarding TNC prognostic value. While in the luminal (A and B) and in the HER2-
enriched subtypes expression of TNC did correlate with clinical prognosis, high expression of 
TNC in triple-negative primary tumors was associated with significantly shorter relapse-free 
survival of the patients compared to those displaying low expression of TNC (Figure 14, A - E). 
Therefore, we concluded that the prognostic value of TNC in breast cancer is specific to the 
triple-negative subtype. These results were confirmed by using IHC based subtypes: In patients 
negative for ER, PR and HER2, high expression of TNC is associated with shorter relapse-free 
survival, while TNC does not predict clinical outcome in the other subtypes (data not shown).  
 



Results 

59 
 

 
Figure 14  TNC predicts relapse-free survival in triple-negative breast cancer (Kaplan-Meier 
plotter). 
Kaplan-Meier analysis of relapse-free survival of breast cancer patients (n = 3554), 

luminal A breast cancer patients (n = 2069), luminal B breast cancer patients (n = 

1166), HER2-enriched breast cancer patients (n = 239) and triple-negative breast 

cancer patients (n = 580). Subjects were classified according to subtypes (luminal 

A: ER1+/HER2-/Ki67 low, luminal B: ER1+/HER2-/Ki67 high and ER1+/HER2+, HER2-

enriched subtype: ER1-/HER2+, triple-negative: ER1-/HER2-) and TNC lower 

quartile value using Kaplan-Meier plotter online tool for breast cancer (probe: 

201645_at). P value was calculated by log-rank test. HR : hazard ratio.  

 

We next sought to validate this finding using an independent dataset. To this purpose, I 
performed a meta-analysis on a gene expression profiling dataset of 1992 breast cancer 
patients originally published by the Molecular Taxonomy of Breast cancer International 
Consortium (METABRIC) [195]. This dataset is clinically annotated and allows the stratification 
of the patients according to the PAM50 intrinsic breast cancer subtypes (luminal A, luminal B, 
HER2 and basal-like-like subtypes). As expected, the basal-like subtype strongly overlaps with 
negativity for ER, (PR) and HER2: 78% of the patients classified as basal-like are negative for ER 
expression and display normal expression of HER2, as determined by IHC. When considering 
gene expression, 76.8% of the basal-like-like patients are negative for ER, PR and HER2.  
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Figure 15  TNC expression is enriched and predicts poor overall survival in the basal-like 
subtype of breast cancer (METABRIC dataset). 
(A – D) Kaplan-Meier analysis of overall survival of patients belonging to (C) all 

subtypes (n = 1774), (D) the luminal A subtype (n = 718), (E) the luminal B subtypes 

(n = 490) and (F) the HER2-enriched subtype (n = 238) were classified according to 

TNC lower quartile (probe: 201645_at). P values were calculated by log-rank 

Mantel Cox test.  (E) Kaplan-Meier analysis of overall survival of basal -like breast 

cancer patients (n = 328) in the METABRIC datasets. Patients were stratified 
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according to PAM50 assay and TNC lower quartile (probe: 201645_at). P value was 

calculated by log-rank test. HR : hazard ratio. (F) TNC expression in the METABRIC 

datasets. Patients were stratified according to PAM50 assay (n = 1774). ****P < 

0.0001; by two-tailed Mann-Whitney test.  

The patients were first stratified according to PAM50 intrinsic breast cancer subtypes. In each 
subtype, the lower quartile (0 – 25%) of TNC expressing tumors was defined as ‘TNC low’, 
whereas the ‘TNC high’ group comprised the rest of the cohort. In the basal-like subtype, which 
comprises 328 patients, high expression of TNC in the primary tumor correlated with 
significantly shorter overall survival of the patients when compared to low expression of TNC (P 
= 0.0420, HR = 1.518) (Figure 15, E). Remarkably, this did not apply to the other three subtypes 
(luminal A, luminal B, HER2) or when considering all subtypes. In these cohorts, expression level 
of TNC did not show any significant prognostic value in term of overall survival (Figure 15, A – 
D). Interestingly, we observed a significant enrichment in TNC expression in the basal-like 
patients compared to other subtypes (Figure 15, F). 
 
These findings prompted us to further investigate the expression level and the cellular origin of 
TNC in breast tumor. To address this, we made use of a clinically annotated tissue microarray 
(TMA) composed of 205 cores, each of them corresponding to a mammary carcinoma primary 
tumor. Semi-automatic quantification using the Definiens Software Tissue Studio® was 
performed on each core to determine a percental score for TNC expression. This scoring allows 
weighting of tissue areas according to signal intensity, i.e. within a core, a tissue area with high 
TNC expression contributes three-times more to the scoring than a sized-matched area with 
low TNC expression. The tumors were then classified according to their receptor status as 
annotated by a pathologist. This analysis revealed a significantly higher TNC percental score in 
triple-negative tumors compared to luminal and HER2 tumors, indicating that the overall 
protein expression of TNC is higher in the triple-negative subtype than in other subtypes (Figure 
16, A and B).  
 
The cancer-associated stroma, especially myofibroblasts, has been reported to be the major 
source of TNC in tumors. However, in some cases cancer cells can also express TNC in an 
autocrine manner [141, 142]. Accordingly, many cores showed a typical stromal TNC expression 
pattern and no expression by the cancer cells (CaC TNC-). Nevertheless, some tumors clearly 
showed autocrine TNC expression by the cancer cells (CaC TNC+, Figure 16, D). Stratifying the 
patients according to their receptor status revealed that 60% of triple-negative tumors 
displayed a CaC TNC+ phenotype against only 20% in the luminal and HER2 subtype (Figure 16, 
C). This finding strongly suggests that the propensity to express TNC in an autocrine manner is 
associated with the triple-negative subtype, while the cancer-associated stroma remains the 
main source of TNC in the other subtypes. 
 



Results 

62 
 

 
Figure 16  Cancer-cell derived TNC is enriched in triple-negative breast cancer tumors.  
(A) Exemplary images showing TNC immunostaining and the corresponding 

percental score as determined by the Definiens Software Tissue Studio®.  (B) TNC 

expression breast cancer patients primary tumors (n = 205). Subjects were 

classified according to pathological annotation of the estrogen receptor (ER), 

progesterone receptor (PR) and human epidermal  growth factor receptor 2 (HER2) 

immunohistochemistry markers (luminal: ER +/PR+, HER2: HER2+, triple-negative: ER -

/PR-/HER2 -). *P < 0.05; by two-tailed Mann-Whitney test. (C) Frequency of CaC 

TNC- and CaC TNC+ cores in the TMA (n = 110). Subjects were classified according 

to pathological annotation of the ER, PR and HER2 immunohistochemistry markers 

(luminal: ER+/PR+, HER2: HER2+, triple-negative: ER -/PR-/HER2 -). (D) Representative 

images showing exclusively cancer cell-derived negative TNC immunostaining (CaC 

TNC- ; left) and cancer-cell derived positive TNC immunostaining (CaC TNC+ ; right) 

of paraffin sections from a TMA consisting of samples from various breast cancer 

subtypes.  
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In summary, we found that the prognostic value of TNC in breast cancer is restricted to the 
triple-negative subtype and that this subtype expresses more TNC compared to the other 
subtypes. In addition, we showed that triple-negative breast cancer tumors express TNC in a 
cancer-cell autonomous manner. 
 

6.1.2 TNC mediates lung colonization in a pre-clinical model 

 

TNC has been previously shown to play a functional role in two different breast cancer 
metastasis mouse models [94, 164]. We used a pre-clinical xenograft model in order to validate 
the pro-metastatic function of TNC. Therefore, we generated two independent TNC knockdown 
sublines in the SUM159 LM1 cell line using shRNA interference technology (Figure 17, A). The 
cell line was previously labelled with a triple modality reporter and expresses the oxidative 
enzyme luciferase, in addition to the green fluorescent protein (GFP) and thymidine kinase. The 
luciferase enzyme catalyzes the reaction of luciferin to oxyluciferin under the emission of light, 
so-called bioluminescence, which can be quantified. This technique allows in vivo and ex vivo 
quantification of metastatic burden upon intraperitoneal injection of luciferin [193].  
 

 
Figure 17  TNC mediates metastasis to the lungs in a triple-negative breast cancer xenograft 
model.  
(A) Gene expression analysis by qRT-PCR of control and TNC knockdown SUM159 

LM1 cells. For all genes, the expression in the knockdown line was normalized to 

the control line. Error bars depict means + SD of technical replicates (n = 3). (B) 

Scheme showing lung colonization assay by intravenous injection of human cancer 

cells into immunocompromised mouse. (C) Representative images showing in vivo 
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bioluminescence in mice injected intravenously with control and TNC knockdown 

SUM159 LM1 cells at experimental endpoint.  (D) Lung colonization, as determined 

by ex vivo bioluminescence, in mice injected intravenously with control and TNC 

knockdown SUM159 LM1 cells (n = 7-8 per group). Whiskers represent minimum 

and maximum values. ***P < 0.001; by one-way ANOVA with Dunnett ’s multiple 

comparisons test. (E) Representative images showing HE staining of paraffin-

embedded lungs of mice injected intravenously with control and TNC knockdown 

SUM159 LM1 cells at experimental endpoint. Scale bars, 50 0 μm.  

Together with a non-targeting shRNA control, we injected the TNC knockdown sublines 
intravenously into immunocompromised NSG mice and assessed their ability to colonize the 
lungs by bioluminescence imaging (Figure 17, B). Knocking down TNC in the cancer cells 
resulted in a significant 2- to 3-fold decrease in lung colonization ability of the cancer cells 
(Figure 17, C and D). Hematoxylin and eosin (HE) staining on paraffin-embedded lungs 
confirmed that TNC knockdown cells formed less metastatic foci compared to control cells 
(Figure 17, E). These results, together with previously published studies, confirmed that 
autocrine TNC mediates metastasis to the lung in breast cancer. 
 

6.2 Identification of ITGB1 and ITGB3 as TNC receptors in triple-negative breast 

cancer metastasis to the lungs 
 

6.2.1 Candidates and workflow 

 

In order to understand how TNC signals to the cancer cells, we sought to identify the 
receptor(s) mediating this pro-metastatic signaling cascade in triple-negative breast cancer. 
Various cell surface receptors have been suggested to support TNC activity in different 
biological processes (see 3.3.1). Based on the literature, we used microarray and qRT-PCR gene 
expression analysis (data not shown) to establish a list of receptor candidates expressed in the 
triple-negative cell line MDA-231 LM2. We obtained a list of 9 receptors: ANXA2, EGFR, GPC1, 
ITGA2, ITGAV, ITGB1, ITGB3, SDC4 and TLR4. I then applied the following workflow: Each 
candidate was knocked down separately by shRNA interference technology using two 
independent hairpins and the expression of known TNC target genes (LGR5, MSI1 and HEY2) 
was monitored upon knockdown. We selected the receptor candidates, whose knockdown 
caused at least 50% decrease in mRNA expression of at least one of the target genes. The 
scoring candidates were further analyzed for their ability to bind to TNC and to mediate lung 
colonization in vivo (Figure 18, A and B). 
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Figure 18  Workflow followed for identification of receptor(s) mediating the TNC signaling. 
(A) Scheme showing workflow for identification of TNC cell surface receptors. 

Shortly, receptor candidates, as suggested by literature and gene expression data, 

were knocked down by shRNA and gene expression analysis of the TNC target 

genes was performed in vitro. For the scoring candidates, binding to TNC was 

verified by endogenous co-immunoprecipiation. The final candidates were 

validated in vivo in a metastatic lung colonization assay. (B) Gene expression 

analysis by qRT-PCR of control and TNC knockdown in MDA231 LM2 cells. For all 

genes, the expression in the knockdown line was normalized to control. Error bars 

depict means + SD of biological replicates ( n = 3).  

 

6.2.2 ANXA2, EGFR, GPC1, SDC4 and TLR4 do not control the expression of the TNC target 

genes 

  

The knockdown screen allowed ruling out of 5 of the receptor candidates. Indeed, upon 
knockdown of ANXA2, EGFR, GPC1, SDC4 and TLR4 in triple-negative metastatic breast cancer 
cells no major decrease of the TNC target genes LGR5, MSI1 and HEY2 could be observed 
(Figure 19). Therefore, these receptors were not considered in further analyses. 
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Figure 19  TNC signaling upon knockdown of ANXA2, EGFR, GPC1, ITGAV, SDC4 and TLR4. 
(A) Gene expression analysis by qRT-PCR of control and ANXA2 knockdown 

oncospheres. For all genes, the expression in the knockdown line was normalized 

to the control line. Error bars depict means + SD of biological replicates (n = 3). (B)  

Gene expression analysis by qRT-PCR of control and EGFR knockdown oncospheres. 

For all genes, the expression in the knockdown line s was normalized to the control 

line. Error bars depict means + SD of biological replicates (n = 3). (C) Gene 

expression analysis by qRT-PCR of control and GPC1 knockdown oncospheres. For 

all genes, the expression in the knockdown lines was normalized to the control 

line. Error bars depict means + SD of biological replicates (n = 3). (D) Gene 

expression analysis by qRT-PCR of control and SDC4 knockdown oncospheres. For 
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all genes, the expression in the knockdown lines was normalized to the control 

line. Error bars depict means + SD of biological replicates ( n = 3). (E) Gene 

expression analysis by qRT-PCR of control and TLR4 knockdown oncospheres. For 

all genes, the expression in the knockdown lines was normalized to the control 

line. Error bars depict means + SD of biological replicates ( n = 3). 

 

6.2.3 ITGB1 and ITGB3 control the expression of the TNC and Wnt target gene LGR5 

 

ITGB1 and ITGB3 were as well knocked down using shRNA interference technology in two 
triple-negative metastatic breast cancer cell lines (MDA231 LM2 and SUM159 LM1). The 
MDA231 cell line was generated out of the pleural effusion of a 51-year old patient with 
disseminated disease who relapsed several years after removal of the primary tumor [196, 
197]. Later on, MDA231 cells were used to generate organ-specific metastatic derivative cell 
lines by the mean of in vivo selection using immunocompromised mice [100, 198]. Briefly, the 
MDA231 parental cells able to form metastasis in the lung upon inoculation in the blood stream 
were isolated and denoted lung metastatic derivative 1 (LM1). The MDA231 LM1 line was then 
submitted to a second round of in vivo selection in order to generate the MDA231 LM2, which 
increased ability to colonize the lung compared to the parental MDA231 cell line. Comparison 
of the gene expression profiling of the metastatic line to the parental line has led to the 
definition of a gene expression signature predicting lung metastasis. This allowed the 
identification of various functional mediator of breast cancer lung metastasis [100]. 
Importantly, the enrichment of TNC in the metastatic derivative cells was the starting point for 
the investigation of this molecule in the context of breast cancer metastasis [94, 159]. 
Furthermore, we used an additonal triple-negative cell line called SUM159 originating from a 
primary anaplastic carcinoma tumor [197, 199]. In a collaborative effort, our lab generated a 
metastatic derivative of the parental SUM159 cell line by selecting the cells which were able to 
grow in the lungs. The resulting SUM159 LM1 cell line shows increased ability to colonize the 
lung compared to its parental counterpart (data not shown). In addition, I also used the primary 
metastatic breast cancer cells BPE16. These cells were isolated from a pleural effusion sample 
of a metastatic breast cancer patient. Previously, the BPE16 cells had been analyzed by FACS for 
the expression of the epithelial marker cytokeratin (CK) with a pan-cytokeratin-specific 
antibody. Thereby, I aimed to exclude a possible contamination by stromal fibroblast. The 
human prostatic stromal myofibroblast cell line WPMY-1 was used as a negative control and the 
breast cancer cell line MDA231 LM2 served as a positive control. As expected, WPMY-1 cells 
were negative for CK expression, while the MDA231 LM2 displayed a positive signal, as 
compared to isotype control. The BPE16 cells were exclusively positive for CK expression, 
therefore a contamination of the cancer cell culture by myofibroblasts was excluded. In 
addition, when cultured under serum-free and low-adhesion conditions, the BPE16 spheres 
formed oncopsheres (Figure 20). Importantly, characterization and knockdown analysis of the 
BPE16 cells were performed on cells, which had been passaged less than 10 times. 
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Figure 20  Characterization of BPE16 primary breast cancer pleural effusion cells. 
(A) FACS analysis showing CK expression in WMPY-1 fibroblasts, MDA231 LM2 

breast cancer cells and BPE16 cells. (B) Representative images of a tighly cohesi ve 

oncosphere formed by BPE16 cells grown in serum-free, non-adhesive conditions 

for 7 days. Scale bars, 50 μm.  

 

The efficiency of the ITGB1 and ITGB3 knockdown varied from 75% to 95% in the different lines 
(Figure 21, A and C). Upon knockdown of ITGB1 and of ITGB3, the expression of LGR5 was 
decreased in the triple-negative breast cancer cell lines MDA231 LM2 and SUM159 LM1 by 50% 
as well as in the primary metastatic breast cancer cells BPE16 by 75% (Figure 21, A and C). TNC 
was shown to control the expression of LGR5 while it does not regulate the expression of the 
canonical Wnt target gene AXIN2 [94]. Therefore, the expression of AXIN2 was as well 
monitored upon knockdown of ITGB1 and ITGB3. In line with the TNC phenotype, ITGB1 and 
ITGB3 knockdown sublines expressed AXIN2 to the same level as the control subline (Figure 21, 
A and C). The Notch regulator MSI1 and the Notch target gene HEY2 of the TNC signaling were 
not affected by the knockdown of ITGB1 and ITGB3 (Figure 21, B and D). We concluded that 
both ITGB1 and ITGB3 control the expression of the TNC and Wnt target gene LGR5. 
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Figure 21  ITGB1 and ITGB3 control the expression of the TNC target gene LGR5 in triple-
negative breast cancer cells. 
(A and B) Gene expression analysis by qRT-PCR of control and ITGB1 knockdown in 

MDA231 LM2, SUM159 LM1 and primary BPE16 oncospheres. For all genes, the 

expression in the knockdown lines was normalized to control. Error bars depict 

means + SD of biological replicates (n = 3). (C and D) Gene expression analysis by 

qRT-PCR of control and ITGB3 knockdown in MDA231 LM2, SUM159 LM1 and 
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primary BPE16 oncospheres. For all genes, the expression in the knockdown lines 

was normalized to control. Error bars depict means + SD of biological replicates (n 

= 3). 

 

6.2.4 ITGB1 and ITGB3 are both required for the regulation of the TNC signaling 

 

Prompted by the results obtained upon single knockdown of ITGB1 and ITGB3, I generated 
double knockdown for ITGB1 and ITGB3 in the triple-negative breast cancer cell lines MDA231 
LM2 and SUM159 LM1. For this purpose, I used two lentiviral vectors encoding for the shRNA 
targeting ITGB1 or ITGB3 and carrying different antibiotic resistance cassette (zeocin and 
puromycin), transduced the target cells successively with the different lentiviral particles and 
selected the transduced cells with the adequate antibiotic. The knockdown of both integrins 
was tested by qRT-PCR at mRNA level and by western blot at protein level. For both receptors, 
the efficiency of the knockdown was at least 80% in the MDA231 LM2 cell line and 90% in the 
SUM159 LM1 cell line (Figure 22, A and B). The knockdown cells were passaged every 2nd to 3rd 
day, together with the control cells. Gene expression analysis by qRT-PCR revealed that double 
knockdown of ITGB1 and ITGB3 lead to a decrease of 75% in LGR5 expression. Interestingly, 
Notch-related TNC target genes MSI1 and HEY2 were as well affected with a decrease in 
expression of 55% and 50% respectively (Figure 22, C). Therefore, we concluded that together 
ITGB1 and ITGB3 mediate the TNC signaling. 
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Figure 22  ITGB1 and ITGB3 mediate the TNC signaling in triple-negative breast cancer cells. 
(A) Gene expression analysis by qRT-PCR of control and ITGB1/ITGB3 knockdown 

MDA231 LM2 and SUM159 LM1 oncospheres. For all genes, the expression in the 

knockdown lines was normalized to the control line. Error bars depict means + SD 

of biological replicates (n = 3). (B) Protein expression analysis by western blot of 

ITGB1 (top) and ITGB3 (bottom) in control and ITGB1 /ITGB3 double knockdown 

MDA231 LM1 oncospheres. GAPDH was used as a loading control. (C) Gene 

expression analysis by qRT-PCR of control and ITGB3 knockdown in MDA231 LM2, 
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SUM159 LM1 and primary BPE16 oncospheres. For all genes, the expression in the 

knockdown lines was normalized to control. Error bars depict means + SD of 

biological replicates (n = 3).  

 

6.2.5 TNC binds to ITGB1 and ITGB3 

 

Having shown that ITGB1 and ITGB3 regulate the expression of known target genes of the TNC 
signaling, we next sought to prove the physical binding of TNC to the identified receptors. For 
this purpose, endogenous TNC was immunoprecipitated out of whole cell lysate (WCL) from 3-
dimensional oncosphere culture of triple-negative breast cancer cells (MDA231 LM2 and 
SUM159 LM1). Magnetic beads coupled to a polyclonal antibody directed against TNC were 
used in order to pull down TNC and its putative binding partners. The resulting elution samples 
were analyzed for their protein content, using immunoblotting and single reaction monitoring 
(Figure 23, A). When using an antibody targeting TNC, immunocomplexes corresponding to the 
various TNC isoforms were detected in the eluate sample by western blot. WCL was used as a 
positive control. The pulldown reaction was very specific as attested by the lack of the TNC 
immunocomplexes when using an IgG antibody control instead of the anti-TNC antibody. This 
was observed in both cell lines used. The same samples were then tested for the presence of 
ITGB1. Indeed ITGB1 immunocomplexes could be detected in the TNC co-IP sample. The lack of 
ITGB1 in the IgG co-IP sample showed that the binding was specific to TNC and that it was not 
the result of unspecific binding to other components of the system (Figure 23, B). Using a 3-
dimensional endogenous system, we concluded that TNC and ITGB1 bind to each other in our 
breast cancer triple-negative models. 
 
At the time of analysis, the lack of an antibody for ITGB3 detection by western blot analysis lead 
us to use an alternative approach to test for the presence of ITGB3 in the TNC co-IP lysates. In 
collaboration with Dr. Sabrina Hanke, we performed a targeted tandem mass spectrometry 
analysis named selected reaction monitoring (SRM) upon TNC immunoprecipitation. This 
technique detects peptide-specific fragment ions from target analytes that have been selected 
beforehand. SRM analysis validated the specificity of the TNC pull-down by showing a 120-fold 
and 3200-fold TNC enrichment in the TNC co-IP sample compared to the IgG co-IP sample in 
MDA231 LM2 and SUM159 LM1, respectively. As a proof of principle, we aimed to show the 
interaction between TNC and FN, a well characterized binding partner of TNC [116]. Indeed, a 2- 
to 3-fold enrichment for FN was measured in the TNC co-IP sample compared to the IgG co-IP 
sample in both MDA231 LM2 and SUM159 LM1. This measurement validated our technical 
approach. Analysis of an ITGB3-specific peptide by SRM revealed a 2- to 3-fold enrichment in 
the TNC co-IP sample compared to the IgG co-IP sample in MDA231 LM2 and SUM159 LM1 
(Figure 23, C). Meanwhile, the presence of ITGB3 in the TNC co-IP sample was also confirmed 
by immunoblotting in the SUM159 LM1 cell line (Figure 23, D). 
 
In summary, using immunoblotting and SRM, we showed that TNC endogenously binds to 
ITGB1 and ITGB3 in our triple-negative breast cancer model. 
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Figure 23  ITGB1 and ITGB3 bind to TNC in triple-negative breast cancer cells. 
(A) Scheme showing workflow for proof of binding. Shortly, anti-TNC antibody was 

coupled and crosslinked to protein A/G attached to magnetic beads  Whole cell 

lysate from breast cancer oncospheres was added to the beads complex and TNC 
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and its binding partners were eluted after significant washing. Single reaction 

monitoring (SRM) and western blot analysis was performed on the eluates samples. 

(B) Protein expression analysis by western blot of TNC and ITGB1 in whole cell 

lysate, TNC and IgG co-immunoprecipitation (co-IP) using MDA231 LM2 and 

SUM159 LM1 oncospheres. (C) SRM analysis of TNC and ITGB3 following TNC 

immunoprecipitation in MDA231 LM2 and SUM159 LM1 oncospheres. For both 

proteins, the abundance in the TNC immunoprecipitation el uate was normalized to 

the IgG immunoprecipitation. Water was used as background measurement.  (D)  

Protein expression analysis by western blot of TNC and ITGB 3 in whole cell lysate, 

TNC and IgG co-immunoprecipitation (co-IP) using SUM159 LM1 oncospheres. 

 

6.2.6 ITGB1 and ITGB3 mediate lung colonization in pre-clinical models 

 

As TNC is known to mediate metastasis to the lung of triple-negative breast cancer cells, we 
expected its receptors to promote this process as well. In order to further challenge the two 
receptors identified, I tested the ability of receptor knockdown cells to colonize the lung of 
immunocompromised mice. For this purpose, single and double ITGB1 and/or ITGB3 
knockdown MDA231 LM2 cells were injected intravenously in NSG mice and the growth of the 
cancer cells in the lung was monitored in vivo by bioluminescence measurement as described 
previously. At experimental endpoint, the animals were sacrificed and bioluminescence was 
measured ex vivo. A 2- to 3-fold significant decrease in lung colonization was observed when 
comparing ITGB1 and ITGB3 single knockdown cells to the control cells. Interestingly, the 
double knockdown cells for ITGB1 and ITGB3 showed a 12-fold decreased potential to colonize 
the lungs when compared to the respective control cells (Figure 24, A and B). This suggests that 
ITGB1 and ITGB3 act in synergy in mediating metastasis to the lung. The metastatic burden was 
visualized by IHC staining of human vimentin (VIM) in the lung tissues. VIM is a type III 
intermediate filament protein that is expressed by mesenchymal cells or cells which have 
undergone epithelial-to-mesenchymal transition. Therefore, VIM staining allowed specific 
detection of the cancer cells in the lung. While the control cells have invaded most of the lung 
parenchyma, ITGB1 and ITGB3 knockdown cells formed smaller metastatic nodules, leaving 
most of the tissue intact (Figure 24, C). The pro-metastatic role of ITGB1 and ITGB3 was 
confirmed in the SUM159 LM1 cell line. Similarly to what we observed using the MDA231 LM2 
cell line, the double knockdown cells for ITGB1 and ITGB3 showed a dramatic decrease in their 
ability to colonize the lungs of immunocompromised mice (Figure 24, D). 
 
This set of in vivo experiments showed that the two receptors identified mediate lung 
colonization of triple-negative breast cancer cells.  Together with our previous findings, these 
data confirmed the identification of ITGB1 and ITGB3 as the receptors mediating the TNC pro-
metastatic signaling.  
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Figure 24  ITGB1 and ITGB3 mediate lung colonization in triple-negative breast cancer. 
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(A) Lung colonization, as determined by ex vivo  bioluminescence, in mice injected 

intravenously with control, ITGB1 knockdown, ITGB3 knockdown and ITGB1/ITGB3 

double knockdown MDA231 LM2 cells (n = 5 or n = 8 per group). Whiskers 

represent minimum and maximum values. ***P < 0.005, **** P < 0.001; by two-

tailed Mann-Whitney test (single versus double knockdown) and by one-way 

ANOVA with Tukey’s multiple comparisons test  (single and double knockdown 

versus respective control). (B) Representative images showing in vivo 

bioluminescence in mice injected intravenously with control, ITGB1 knockdown, 

ITGB3 knockdown and ITGB1/ITGB3 double knockdown MDA231 LM2 cells at 

experimental endpoint. (C) Representative images showing brown immunostaining 

for human VIM in paraffin-embedded lungs of mice injected intravenously with 

control and ITGB1/ITGB3 double knockdown MDA231 LM2 cells at experimental 

endpoint. Scale bars, 50 μm.  (D) Lung colonization, as determined by ex vivo 

bioluminescence, in mice injected intravenously with control and ITGB1/ITGB3 

double knockdown SUM159 LM1 cells (n = 8 per group). Whiskers represent 

minimum and maximum values. **P < 0.01; by one-way ANOVA with Dunnett’s 

multiple comparisons test. 

 

6.2.7 ITGA2 is a putative alpha subunit pairing with ITGB1 in the mediation of the TNC 

signaling 

 

Integrins are heterodimeric cell surface receptors acting as the main receptors for ECM 
molecules. In human, the integrin family comprises 18 alpha subunits and 8 beta subunits 
pairing in order to form at least 24 different functional heterodimeric receptors [189]. Having 
identified two integrin beta subunits as receptors mediating the TNC pro-metastatic signaling, 
the next step consisted in investigating which alpha subunits could pair with ITGB1 and ITGB3.  
 
ITGB1 can bind to virtually all known alpha subunits [189]. Nevertheless, in the context of its 
interaction with TNC, ITGB1 has been suggested to pair with ITGA2, ITGA7, ITGA8 and ITGA9 
[127]. Out of the four candidates, only ITGA2 was expressed in our triple-negative breast cancer 
model based on microarray data. In addition, the Human Protein Atlas database indicates 
strong expression of ITGA2 in breast cancer tissues and absence or very low expression of 
ITGA7, ITGA8 and ITGA9 (www.proteinatlas.org, data not shown). Therefore, I generated a 
stable knockdown of ITGA2 in triple-negative metastatic breast cancer cells. A knockdown 
efficiency of 75% was achieved as determined by qRT-PCR after antibiotic selection. The gene 
expression analysis of the TNC target genes (LGR5, MSI1 and HEY2) upon ITGA2 knockdown 
revealed a 70% decrease in LGR5 expression while the Notch-related target genes remained 
unaffected. In accordance to the ITGB1 and TNC phenotype, ITGA2 knockdown did not impact 
the expression of AXIN2 (Figure 25, A). From this analysis, we concluded that ITGA2 is a 
putative partner of ITGB1 in the mediation of the TNC signaling. 

http://www.proteinatlas.org/
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Unlike ITGB1, there are only two integrin alpha subunits which are known to be able to bind to 
ITGB3, ITGAV and ITGA2b [189]. In cancer, the ITGB3-ITGAV complex has been shown to 
promote cancer progression [200]. In addition, TNC can bind ITGB3-ITGAV and mediate the 
attachment of endothelial cells [119]. Therefore, I generated a stable knockdown of ITGAV in 
triple-negative metastatic breast cancer cells using two independent shRNAs. A knockdown 
efficiency of minimum 85% was achieved at mRNA level and the knockdown was verified by 
FACS at protein level. Surprisingly, the TNC target genes remained unaffected upon ITGAV 
knockdown (Figure 25, B and C). The ITGB3-ITGA2b complex is expressed by platelets and 
supports platelet activation and aggregation by binding to von Willebrand factor (vWF) and 
fibrinogen. Until now, expression of ITGA2b at protein level on cancer cells has not been shown 
in cancer cells. 
 
Our data suggest that ITGA2 is a strong candidate as the partner of ITGB1 binding to TNC. 
Though, identifying the alpha subunits pairing with ITGB1 and ITGB3 in the mediation of the 
TNC pro-metastatic signaling will require further investigation. 
 

 
Figure 25 TNC signaling upon knockdown of ITGA2 and ITGAV.  
(A) Gene expression analysis by qRT-PCR of control and ITGA2 oncospheres. For all 

genes, the expression in the knockdown line was normalized to the control line. 
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Error bars depict means + SD of biological replicates (n = 3). (B) Gene expression 

analysis by qRT-PCR of control and ITGAV knockdown CN34 LM1 oncospheres. For 

all genes, the expression in the knockdown lines was normalized to the control 

line. Error bars depict means + SD of biological replicates (n = 3).  (C) Flow 

cytometry analysis showing ITGAV expression in control cells, ITGAV_2 (left) and 

ITGAV_3 (right) knockdown cells. 

 

6.2.8 TNC and its receptors are enriched in triple-negative breast cancer cells 

 

We demonstrated that ITGB1 and ITGB3 mediate the TNC pro-metastatic signaling in triple-
negative breast cancer (Figure 21 and 22). In addition, we showed that the prognostic value of 
TNC was restricted to the triple-negative subtype of breast cancer and that triple-negative 
tumors expressed more TNC than others (Figure 14 - 16). We next raised the question if the 
identified receptors might be differentially expressed between the different subtypes. 
Therefore, I monitored the expression of TNC and its receptors in a panel of breast cancer cell 
lines belonging to different subtypes, as defined by IHC. While the MCF7 and T47D cell lines 
were classified as luminal as they express both ER and PR, the BT474 and SKBR3 cell lines were 
shown to overexpress the HER2 receptor. MDA468, HCC1937, MDA157, MDA436, MDA231 LM2 
and SUM159 LM1 do not express ER, PR and HER2 and therefore they were classified as TN 
[201]. Gene expression analysis by qRT-PCR analysis showed that triple-negative breast cancer 
cells express significantly more TNC than luminal and HER2 breast cancer cells (Figure 26, A). 
Interestingly, triple-negative breast cancer cells are also enriched for ITGB1 and ITGB3 
expression compared to the two other subtypes (Figure 26, B and C). Taken together, our data 
indicates that triple-negative breast cancer cells are enriched for expression of TNC and its 
receptors ITGB1 and ITGB3. 
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Figure 26  Triple-negative breast cancer cells are enriched for TNC, ITGB1 and ITGB3 
expression. 
(A) Gene expression analysis by qRT-PCR of a panel of Breast cancer cells lines. The 

cell lines were grouped according to their receptor status. Luminal / HER2: MCF7, 

T47D, SKBR3, BT474. Triple-negative: MDA468, HCC1937, MDA157, MDA436, 

MDA231 LM2, SUM159 LM1. The expression of TNC in all cell lines was normalized 

to the MCF7 cell line. Error bars depict means + SD of technical replicates ( n = 3). 

*P < 0.05; by one-way ANOVA with Dunnett’s multiple comparisons test. (B) Gene 

expression analysis by qRT-PCR of a panel of Breast cancer cells lines. The cell lines 

were grouped according to their receptor status. Luminal / HER2: MCF7, T47D, 

SKBR3, BT474. Triple-negative: MDA468, HCC1937, MDA157, MDA436, MDA231 

LM2, SUM159 LM1. The expression of ITGB1 in all cell lines was normalized to the 

MCF7 cell line. Error bars depict means + SD of technical replicates (n = 3). *P < 

0.05; by one-way ANOVA with Dunnett’s multiple comparisons test.  (C) Gene 
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expression analysis by qRT-PCR of a panel of Breast cancer cells lines. The cell lines 

were grouped according to their receptor status. Luminal / HER2: MCF7, T47D, 

SKBR3, BT474. Triple-negative: MDA468, HCC1937, MDA157, MDA436, MDA231 

LM2, SUM159 LM1. The expression of ITGB3 in all cell lines was normalized to the 

MCF7 cell line. Error bars depict means + SD of technical replicates (n = 3). *P < 

0.05; by one-way ANOVA with Dunnett’s multiple comparisons test.   

 

6.3 Clinical relevance of the TNC-integrin axis in breast cancer 
 

In vitro and in vivo experiments demonstrated that the ITGB1 and ITGB3 receptors mediate the 
pro-metastatic function of TNC in triple-negative breast cancer. We then aimed to assess the 
clinical relevance of our findings by asking whether the expression of TNC and its receptors 
correlate in breast cancer patients and whether the identified TNC-ITGB axis is associated with 
clinical prognosis. To address this, I performed a meta-analysis on a gene expression profiling 
dataset of 1992 breast cancer patients originally published by the METABRIC.  
 

6.3.1 TNC expression correlates with ITGB1 and ITGB3 expression in breast cancer patients 

 

In order to assess a putative correlation between TNC expression and the expression of the 

identified receptors ITGB1 and ITGB3, the patients were first stratified according to the PAM50 

intrinsic subtype. In the basal-like subtype, within which 78% of the patients were triple-

negative according to pathological annotations, the expression of TNC was plotted against 

ITGB1 or ITGB3 expression. Both combinations revealed a significant positive correlation with 

correlation coefficient of 0.3056 and 0.2666, respectively. The correlation was even stronger (r 

= 0.3376) when comparing TNC expression to the mean expression of ITGB1 and ITGB3 (Figure 

27, A – C). We concluded that basal-like patients expression of TNC correlates with expression 

of ITGB1 and ITGB3. Interestingly, expression of ITGB1 and ITGB3 also positively and 

significantly correlate with each other (Figure 27, D). 
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Figure 27  TNC expression positively correlates with ITGB1 and ITGB3 expression in basal-like 
breast cancer patients. 
(A) TNC and ITGB1  expression in basal-like-like breast cancer patients. (B) TNC and 

ITGB3 expression in basal-like-like breast cancer patients. (C) TNC expression and 

mean expression of ITGB1 and ITGB3 in basal-like-like breast cancer patients. (D) 

ITGB1 and ITGB3 expression in basal-like-like breast cancer patients. Each dot 

represents one patient (n = 328).  r, nonparametric Spearman correlation 

coefficient. P, two-tailed. 

 

6.3.2 The TNC-integrin axis is associated with poor overall survival in basal-like breast 

cancer  

 

We then investigated the clinical prognosis of patients showing high expression of TNC and of 
the identified receptors, ITGB1 and ITGB3, in the METABRIC dataset. 
 
To this purpose, the basal-like patients were selected according to PAM50 intrinsic breast 
cancer subtypes and stratified according to TNC expression, as previously described (see 6.1.1, 
Figure 15). In each subtype, the lower quartile (0 – 25%) of TNC expressing tumors was defined 



Results 

82 
 

as ‘TNC low’, whereas the ‘TNC high’ group comprised the rest of the cohort. Next, the patients 
within the ‘TNC high’ group were classified according to the expression level of ITGB1. The 
‘ITGB1 high’ group was defined as the upper quartile (75 – 100%) of the ITGB1 expressing 
patients, while the remaining patients were classified as ‘ITGB1 low’. High expression of both 
TNC and ITGB1 correlated with significantly shorter overall survival when compared to the ‘TNC 
low’ group (P = 0.0411, HR = 1.678) (Figure 28, A). Remarkably, the ‘TNC high’ patients with 
high expression of ITGB1 lived shorter than patients with low expression of ITGB1 with median 
survival time of 8.3 and 12.3 years, respectively (Figure 28, C and D). When applying the same 
workflow, we observed that high expression of both TNC and ITGB3 also correlated with 
significantly shorter overall survival when compared to the ‘TNC low’ group (P = 0.0208, HR = 
1.797) (Figure 28, B). The median survival of ‘TNC high’ patients with high expression of ITGB3 
was 8.1 years, against 11.9 years for patients with low expression of ITGB3 (Figure 28, C and D).  
 
We next investigated the clinical prognosis of patients expressing TNC and both receptors, 
ITGB1 and ITGB3, was investigated. Therefore, the previously described cutoff values were used 
to refine further the TNC classification by defining a ‘TNC / ITGB1 / ITGB3 high’ group, which 
was compared to the ‘TNC low’ group. The analysis revealed a median survival of only 5.8 years 
for patients expressing high level of TNC and of the two identified receptors. This represents a 
strong drop compared to patients expressing only high level of TNC or high level of TNC and of 
one of its receptor (Figure 28, C and D). The median survival of patients expressing high level of 
TNC and low level of both ITGB1 and ITGB3 is 14.5 years. Remarkably, this value was higher 
than all other groups decribed above, enhancing the fact that the prognostic value of TNC 
depends on the expression of the identified receptors (Figue 28, C and D). 
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Figure 28  The TNC-integrin axis predicts poor patient outcome in basal-like breast cancer 
patients. 
(A) Kaplan-Meier analysis of overall survival of basal-like breast cancer patients (n 

= 328). Subjects were classified according to TNC lower quartile  and ITGB1 upper 

quartile. (B) Kaplan-Meier analysis of overall survival of basal-like breast cancer 

patients (n = 328). Subjects were classified according  to TNC lower quartile and 

ITGB3 upper quartile. (C) Patient numbers and median survival in years of the 

groups depicted in  (A - C) and in Figure 2, E. P values were calculated by log-rank 

Mantel Cox test. (D) Graphical representation of the values listed in (C).  
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6.4 ITGB1 and ITGB3 promote the formation of oncospheres  
 

TNC expression pattern in stem cell niches and the fact that it controls the expression of adult 
stem cell markers (LGR5 and MSI1) links this molecule to stemness properties [92]. This 
prompted us to investigate the role played by ITGB1 and ITGB3 in breast cancer stemness. For 
this purpose, we used a 3-dimensional spheroid assay. When cultured in serum-free medium 
under low-adhesion conditions, triple-negative breast cancer cells (MDA157, MDA231 LM2 and 
SUM159 LM1) formed cohesive structures, more or less tight, called oncospheres (Figure 29, 
A). These culture conditions enriches for stemness properties, as attested by an enrichment in 
typical stemness markers (NANOG, OCT4, SOX2) as well as an increase in TNC expression when 
compared to monolayer culture (Figure 29, B). In order to investigate a putative link between 
stemness and ITGB1 / ITGB3 expression, a time course experiment was performed. SUM159 
LM1 cells were cultivated as monolayer and oncospheres and harvested for protein analysis 
after 3, 7 and 14 days of spheroid culture. Immunoblotting confirmed the enrichment in TNC at 
protein level in oncosphere culture compared to monolayer. Interestingly, TNC expression level 
continuously increased until day 14. A similar expression pattern was observed for ITGB3: 
immunoblotting showed enrichment in oncosphere culture compared to monolayer culture and 
an increase in ITGB3 expression with time. Unlike TNC and ITGB3, ITGB1 was enriched upon 
oncosphere culture but its expression remained constant after 7 and 14 days (Figure 29, C). I 
then aimed to confirm the enrichment for ITGB1 and ITGB3 in oncosphere culture in a further 
triple-negative cell line (MDA157) using FACS. Oncospheres showed an increase in ITGB1 and 
ITGB3 expression. To note is that the entire cell population shifted towards an ITGB1high 
ITGB3high phenotype, indicated that the same cells upregulate both molecules (Figure 29, D). 
Next, I tested whether ITGB1 and ITGB3 played a functional role in the formation of 
oncospheres. Therefore, single ITGB1 or ITGB3 knockdown SUM159 LM1 cells were seeded for 
oncosphere assay and after 7 days the area of randomly selected oncospheres was quantified. 
No significant difference in size was observed when comparing the single ITGB1 or ITGB3 
knockdown sublines to the control (Figure 29, E). However, knocking down both ITGB1 and 
ITGB3 resulted in a strong decrease in size of the oncospheres formed (Figure 29, F). We 
concluded that ITGB1 and ITGB3 promote sphere formation. 
 
In summary, our data showed that the TNC receptors identified are associated with stemness 
properties in triple-negative breast cancer and promotes the formation of oncospheres. 
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Figure 29  ITGB1 and ITGB3 are associated with stemness properties in triple-negative breast 
cancer cells. 
(A) Representative images of oncospheres formed by MDA157, MDA231 LM2 and 

SUM159 LM1 breast cancer cells grown in serum-free, non-adhesive conditions for 

7 days. Scale bars, 50 μm. (B ) Gene expression analysis by qRT-PCR of SUM159 LM1 

cells grown as monolayer and oncospheres. For all genes, the expression of the 

oncosphere samples was normalized to monolayer samples. Error bars depict 
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means + SD of technical replicates (n = 3). (C) Protein expression analysis by 

western blot of TNC, ITGB1 and ITGB3 in SUM159 LM1 cells grown as monolayer 

and oncospheres for 3, 7 and 14 days. GAPDH was used as a loading control. (D) 

Protein expression analysis  of ITGB1 and ITGB3 by FACS of MDA157 cells grown as 

monolayer and oncospheres. (E) Quantitative analysis of oncosphere formation 

showing area of oncosphere (top) and representative images of corresponding 

oncospheres in control, ITGB1 and ITGB3 knockdown SUM159 LM1 cells grow n in 

serum-free, non-adhesive conditions for 7 days (bottom). Scale bars, 50 μm. 

Whiskers represent minimum and maximum values. n.s., not significant; by one-

way ANOVA with Dunnett’s multiple comparisons test. (F) Quantitative analysis of 

oncosphere formation showing area of oncosphere (top) and representative images 

of corresponding oncospheres in control and ITGB1/ITGB3 double knockdown 

SUM159 LM1 cells grown in serum-free, non-adhesive conditions for 7 days 

(bottom). Scale bars, 50 μm. ****P < 0.0001 ; by one-way ANOVA with Dunnett’s 

multiple comparisons test.  

 

6.5 TNC supports stem cell properties in the mammary epithelium and 

promotes pregnancy-associated alveogenesis 
 

The link between TNC, its receptors and stemness properties in triple-negative breast cancer 
prompted us to investigate a putative role of the TNC signaling in the context of normal 
mammary gland and mammary stem cells. 
 
To address this, we tested the ability of mammary epithelial cells lacking TNC to form 
mammospheres. This assay has been used as a surrogate reporter of stem cell activity in the 
mammary gland as it is assumed that only undifferentiated cells will survive and self-renew in 
suspension culture [201]. The mammary epithelial cells from 5 adult TNC+/- and TNC-/- mice 
were isolated and cultivated in serum-free low-adhesion conditions and mammosphere 
formation capability was assessed by measuring the size of the resulting organoids. We 
observed a significant decrease in mammospheres size isolated from TNC-/- adult mice 
compared to control mice, suggesting a functional role of TNC self-renewal and stemness 
properties of the mammary epithelial cells (Figure 30, A and B). 
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Figure 30  Mammosphere formation ability of mammary epithelial cells from TNC+/- and TNC-/- 
(A) Quantitative analysis of mammosphere size generated from mammary 

epithelial cells isolated from Tnc+/- and Tnc -/- mice. Each dot represents one mouse 

(n = 5). **P < 0.001; by two-tailed Mann-Whitney test. (B) Representative images 

of corresponding mammospheres. Scale bars, 50 μm.  

 

In order to further investigate the role of TNC in mammary stem cells, we took advantage of the 
unique developmental pattern of the mammary gland. In contrast to other organs, which arise 
during embryogenesis, the development of the mammary gland occurs mainly after birth. 
Indeed, mammary gland is a highly plastic tissue, which undergoes tremendous structural 
changes during the life of a mammal. In the mouse, a rudimentary ductal structure invading the 
fat pad can be visualized at the age of 3 weeks. The first expansion of the mammary gland can 
be characterized as ductal elongation and takes place during puberty. Between 3 and 9 weeks, 
the ductal growth takes place led by proliferative regions called terminal end buds (TEB) and 
the ductal tree invades further the underlying fat pad until it is completely filled with ducts in 
the virgin adult animal. The next major structural and functional change begins at the onset of 
pregnancy. In order to prepare for lactation, the epithelium proliferates and differentiates in 
order to form grape-like milk-secretory structures called alveoli. When lactation is not required 
anymore, the mammary gland involutes and returns to a stage resembling the virgin gland [185, 
202, 203]. The development of mouse mammary glands can be visualised using whole mount 
analysis, which were performed on NSG 4th mammary glands at key stages of development: 
pre-puberty (3 weeks), puberty (5 weeks), virgin adult (9 weeks) and mid-pregnancy (12.5 days 
post coitum (dpc)) (Figure 31, A). Both developmental stages highlighted, puberty and mid-
pregnancy, are driven by the coordinated division and differentiation of mammary stem cells. 
  
In order to investigate a putative role of the TNC signaling in the mammary gland development, 
the expression of the TNC signaling members was monitored by qRT-PCR in the mammary gland 
of pre-puberty, puberty, adult virgin and pregnant NSG mice. In puberty mice, the expression of 
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Tnc and its receptor Itgb3 were significantly increased compared to pre-puberty mice, while 
Itgb1 remained unchanged. The downstream target genes of TNC, Lgr5, Msi1 and Hey2 were as 
well significantly enriched in the pubertal mammary fat pads. Interestingly, two known ligands 
of the LGR5 receptors, Rspo1 and Rspo3 were upregulated in the pubertal mammary fat pads 
(Figure 31, C). The same analysis was performed on mammary fat pads of age-matched 
pregnant mice (12.5 dpc) versus virgin mice. An upregulation of both TNC receptors, Tnc itself, 
its downstream targets (Lgr5, Msi1 and Hey2) as well as the LGR5 ligand Rspo1 was observed 
(Figure 31, E). In addition, the expression of markers of the basal epithelial lineages enriched in 
mammary stem cells (Krt14, Krt15, Cdh5) was also monitored [204]. These markers were 
significantly upregulated during puberty and pregnancy, suggesting an expansion of the 
mammary stem cell compartment (Figure 31, B and D). 
 
The induction of the TNC signaling in two independent stages of mammary development lead 
to the hypothesis, that TNC might play a functional role in these processes. I performed a 
morphological analysis of the mammary gland of TNC knockout (TNC-/-) C57BL/6 compared to 
wildtype animals. Both 4th mammary fat pads of 3 mice per group were stained with carmine 
alum as a whole mount. Compared to the wildtype organs, mammary fat pads from TNC-/- 

showed fewer alveolar structures. Interestingly, the alveoli in the TNC-/- animals were 
concentrated at the tip of the ducts while in the wildtype setting, the branches were covered by 
alveoli (Figure 31, F). The observed difference was quantified by assessing the epithelial area 
within the layer of fat of 6 mammary fat pad per group in total. This revealed that the 
epithelium was reduced by approximately 33% in the TNC-/- mice compared to the wildtype 
situation (Figure 31, G).  
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Figure 31  The TNC signaling supports the development of the mammary gland. 
(A) Representative images of carmine alum stained 4 th mouse mammary gland at 

different stages of development (from left to right: pre -puberty, 3 weeks; puberty, 

5 weeks; virgin adult; 9 weeks; pregnant). (B - C) Gene expression analysis of basal 

markers and TNC signaling members by qRT-PCR in mammary glands of pre-puberty 

and puberty mice.  For all genes, the expression in the puberty samples was 

normalized to pre-puberty samples. Error bars depict means + SD of biological 
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replicates (n = 5). *P < 0.05, **P < 0.01, ****P < 0.0001; by two -tailed Mann-

Whitney test. (D - E) Gene expression analysis of basal markers and TNC signaling 

members by qRT-PCR in mammary glands of virgin and pregnant mice.  For all 

genes, the expression in the pregnant samples was normalized to virgin samples. 

Error bars depict means + SD of biological repli cates (n = 3). **P < 0.01, ***P < 

0.001; by two-tailed Mann-Whitney test.  (F)  Representative images of Carmine 

Alum stained 4 th mouse mammary gland of wild type and TNC -/- mice. Scale bars, 

0.5cm. (G) Quantitative analysis of epithelial area in Carmine Alu m stained 4 th 

mammary gland in wild type and TNC -/- mice (n = 3 per group; 2 mammary gland 

per mouse). **P < 0.01; by two-tailed Mann-Whitney test. 

 

As our data suggest a defect in alveogenesis in the TNC-/- mice, I wondered if this lead to a 

defect in lactation. TNC-/- mice are known to breed as well as their wildtype counterpart [17]. I 

hypothesized that a defect in lactation might lead to the death of pups after birth due to 

insufficient milk intake. As a preliminary attempt to address this question, we assessed the 

number of weaned pups of 3 wildtype matings and 3 TNC-/- matings (2 – 4 liters per mating). 

This analysis did not reveal any difference in litter viability between the groups (Figure 32, A 

and B). This result suggests that the observed defect in alveogenesis might be temporary and 

that other mechanisms might compensate for it at later stages of pregnancy and during 

lactation. Further investigations are required to clarify this point. 
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Figure 32  Weaned litter size in wildtype and TNC-/- mice. 
(A) Detailled number of weaned wild type and TNC-/- pups for 3 matings and 2-4 

litters per mating. (B)  Average weaned wild type and TNC-/- pups. Line shows mean 

value (n = 3 matings, 2-4 litters / mating). n.s., not significant; by two-tailed Mann-

Whitney test 
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7 Discussion 
 

In this study, we investigated the role of TNC in breast cancer metastasis to the lungs focusing 

on two specific aspects. First, we aimed to identify the cellular receptors of TNC in metastatic 

breast cancer cells mediating the published pro-metastatic signaling [94]. Second, we sought to 

investigate the link between the pro-metastatic function of TNC and the different subtypes of 

breast cancer. We were able to shed significant light on both aspects of the TNC biology in 

metastatic breast cancer. Furthermore, our findings guided further investigation regarding a 

putative functional role of TNC in the normal mammary stem cell biology. 

 

7.1 ITGB1 and ITGB3 mediate the TNC signaling in vitro and promote 

metastasis in vivo 
 

The role of TNC in promoting metastasis has been established by independent comprehensive 

studies [94, 164]. However, the cellular receptors mediating the pro-metastatic signaling of TNC 

remained unclear. Since its original discovery 30 years ago, TNC and its cellular functions have 

been extensively studied and reviewed. Remarkably, several cell surface receptors have been 

suggested to mediate the cellular function of TNC [92, 107, 108, 129, 136]. In order to identify 

the cellular receptors of TNC in the particular context of breast cancer metastasis to the lung, 

we filtered the list of suggested receptors based on whole transcriptome datasets and gene 

expression analysis of our metastatic breast cancer models (MDA231, MDA231 LM2, SUM159 

LM1). This approach allowed us to establish a list of nine putative TNC receptors, which could 

be readily tested in vitro.  

 

The TNC signaling in breast cancer metastatic cells have been investigated by Oskarsson et al., 

who showed that TNC control the expression of the Notch signaling positive regulator and adult 

stem cell marker MSI1 and of the Wnt target gene and adult stem cell marker LGR5, while the 

canonical Wnt target gene AXIN2 remained unaffected [94]. We reasoned that the receptor(s) 

of TNC in this particular context should control these target genes in a similar way. Therefore, I 

generated knockdown for the nine receptor candidates and monitored the expression of LGR5, 

AXIN2, MSI1 and the Notch target gene HEY2. Two integrin beta subunits, ITGB1 and ITGB3, 

showed an interesting gene expression pattern upon knockdown. Indeed, knocking down these 

genes in two different cell lines separately resulted in a decrease in LGR5 expression while 

AXIN2 was not affected. Importantly, we validated this finding in primary metastatic breast 

cancer cells, emphasizing the potential clinical relevance of our finding (Figure 21). We 
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hypothesized that targeting of both receptors might recapitulate the full TNC signaling and 

generated double knockdown cells for both ITGB1 and ITGB3. Indeed, knockdown of both 

integrin beta subunit receptors lead to further reduction of LGR5 level as compared to the 

single knockdown and a decrease in expression in both MSI1 and HEY2 (Figure 22). These 

findings imply that the TNC signaling is mediated by ITGB1 and ITGB3. A recent study using a 

syngeneic mouse breast cancer model showed that depletion of ITGB1 elicited a compensatory 

mechanism leading to increased expression of ITGB3 [205]. As such as phenomenon might 

explain the difference observed between the single and double knockdown, I tested this 

hypothesis in our system. However, I did not observe any effect on ITGB3 expression upon 

knockdown of ITGB1 or vice-versa (data not shown). Compensatory mechanisms between 

ITGB1 and ITGB3 might as well happen at a non-transcriptional level. One can easily imagine 

that upon knockdown of ITGB1 (or ITGB3) more TNC-ITGB3 (or TNC-ITGB1) complex might form 

as a consequence of the greater availability of TNC. However this mechanism does not provide 

the cells with a full compensation as attested by the effect on LGR5 upon knock down of the 

single receptors.  

 

In order to prove the binding of TNC to the identified receptors, we decided to 

immunoprecipitate TNC and to test for the presence of ITGB1 and ITGB3 in the pull-down 

sample. This type of biochemical proof-of-binding analysis is typically performed on 

overexpressed, tagged proteins of interest. We aimed to established an endogenous assay. As 

attested by western blot technique, we managed to pull down endogenous TNC in a specific 

and efficient manner. Together with TNC, we could also detect ITGB1, proving that both 

molecules formed a complex and that indeed TNC binds to ITGB1. In addition, we used mass 

spectrometry to perform targeted SRM analysis for ITGB3 in a collaborative effort with Dr. 

Sabrina Hanke. We validated our technical approach by showing enrichment in FN, a well-

characterized binding partner of TNC, upon TNC immunoprecipitation [116]. Targeted SRM 

analysis revealed that ITGB3 was also enriched in the TNC endogenous pull-down sample. We 

were later able to validate this finding using western blot technique (Figure 23). Together, this 

set of experiments demonstrates that TNC can bind both ITGB1 and ITGB3.  

 

TNC has been shown to functionally promote survival and outgrowth of breast cancer cells at 

the pulmonary site [94]. In order to assess the functional role of ITGB1 and ITGB3 on the late 

stages of breast cancer metastasis to the lungs, I performed a set of in vivo experiments using 

immunocompromised NSG mice. Due to the lack of functional B-, T- and NK-cells, these mice 

offer the best engraftment rates for human cells allowing to study human disease in an in vivo 

setting [206]. In order to assess the growth of the cancer cells at the distant site in vivo, we 

previously labelled the cancer cells with a triple-modality reporter gene encoding for thymidine 

kinase, GFP and luciferase allowing whole body bioluminescence imaging upon intraperitoneal 
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injection of luciferin [193]. In vivo, this technique is particularly useful for assessing the overall 

metastatic spread. For quantification purpose, we assessed the bioluminescence signal upon 

dissection of the lungs, ex vivo. Quantification of the metastatic burden revealed that deficiency 

in ITGB1 or ITGB3 caused a 2- to 3-fold significant decrease in metastatic ability in the MDA231 

LM2 metastatic derivative, which was confirmed by IHC (Figure 24). This strongly suggests that 

both ITGB1 and ITGB3 promote the growth of breast cancer cells at the distant site. There have 

been contradictory studies on the role of ITGB1 in metastatic progression, one study showing 

that ITGB1 plays a critical pro-metastatic role in breast cancer, while another one states that 

ITGA2-ITGB1 is a metastasis suppressor [207, 208]. Importantly, both studies used HER2 driven 

transgenic mouse models for in vivo analysis. In contrast, our work was performed in the 

context of human triple-negative breast cancer, where ITGB1 clearly promoted metastatic 

outgrowth. The pro-metastatic function of ITGB3 was suggested in a syngeneic mouse model 

where overexpression of ITGB3 in a mammary carcinoma cell line promoted spontaneous 

metastasis to the bone [209]. Remarkably, TNC was shown to promote metastasis to the lung in 

our xenograft model [94]. Therefore it would be of interest to address the role of ITGB3 in bone 

metastasis in our model.  

 

Assessing the metastatic ability of breast cancer cells deficient for both ITGB1 and ITGB3 

revealed a 12-fold decrease compared to control cells, compared to 2- to 3-fold for the single 

knockdowns (Figure 24). Importantly, the strong decrease in metastatic ability upon double 

knockdown of ITGB1 and ITGB3 was confirmed in a second cell line. This shows that ITGB1 and 

ITGB3 have more than an additive effect in promoting the growth of metastatic cancer cells at 

the distant site. We validated the previously demonstrated pro-metastatic role of TNC in vivo 

[94]. In this setting, TNC knockdown breast cancer cells showed only a 3-fold decreased 

metastatic ability (Figure 16). The divergence between the TNC-knockdown and the ITGB1/3-

knockdown metastatic phenotype indicates that the functions of ITGB1 and ITGB3 are not only 

the result of a TNC binding but rather that additional roles are likely to exist.  

 

The identification of two TNC binding integrin receptors prompted us to investigate which alpha 

subunits are pairing with ITGB1 and ITGB3. Among the four candidates which have been 

associated with ITGB1 as TNC receptors (ITGA2/7/8/9) only ITGA2 was expressed at mRNA level 

in the MDA231 and its metastatic derivative cell lines. In order to assess the expression of those 

proteins in breast cancer, we made use of the Human Protein Atlas database. The Human 

Protein Atlas portal is a publicly available database of immunohistochemistry analysis showing 

the distribution of proteins in normal and malignant human tissues. Out of the four candidates, 

ITGA2 was the only one showing strong and broad expression in breast cancer tissues. This 

prompted us to investigate further a potential role for ITGA2 in regulating the TNC signaling. 

The generation of an ITGA2 knockdown down revealed that ITGA2 controls the expression of 
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LGR5, to a similar extend as ITGB1, making of ITGA2 a strong candidate as a partner of ITGB1 

(Figure 25). This finding should be validated in further cell lines though. ITGAV has been 

suggested to pair with ITGB3 as a TNC receptor. In addition, ITGAV-ITGB3 has been shown to 

promote metastasis to the lungs in a syngeneic mouse model for mammary tumors [209]. 

Hence, we did not observe any effect on the TNC signaling upon knockdown of ITGAV in 

metastatic breast cancer cells. To note is that the knockdown efficiency was of 85% at mRNA 

level and that it was verified at protein level (Figure 25). However, it might be necessary to 

eliminate the protein completely using a knockout technology such as the CRISPR/Cas system to 

be able to impair the TNC signaling [210]. A further binding partner of ITGB3 is ITGA2b. 

However, expression of ITGA2b is known to be restricted to the hematopoietic system, where it 

supports platelet activation and aggregation during blood coagulation. Therefore to date, 

identification of the alpha partner of ITGB3 requires further investigations. 

 

7.2 The TNC-integrin axis in breast cancer metastasis is associated with the 

triple-negative subtype 
 

The tight regulation of TNC expression throughout life is well studied and it is widely recognized 

for many cancer entities that high expression of TNC in a tumor is associated with poor clinical 

outcome for patients [107]. To date, breast cancer is not considered a single disease, but rather 

a collection of subtypes with different phenotypes which have been classified in a collective 

effort of the breast cancer research community. In a clinical setting, expression of the 

biomarkers ER, PR and HER2 remains the golden standard for patient stratification. 

Interestingly, histological studies on breast cancer patients’ specimen have suggested a 

negative correlation between TNC and ER expression [145, 151]. This prompted us to 

investigate a putative link between the prognostic value of TNC and the different breast cancer 

subtypes. Using multiple gene expression datasets compiled in the Kaplan-Meier online tool for 

breast cancer, we found that the prognostic value of TNC was exclusively restricted to the 

triple-negative subtype, while it does not apply to other specific subtypes or all subtypes 

(Figure 14) [194]. This finding was validated in the METABRIC dataset, which comprises gene 

expression profiling data of almost 2000 breast cancer patients (Figure 15) [195]. Correlation 

between high TNC expression in breast cancer and disease recurrence has already been 

suggested by various studies [94, 149, 150]. However the strict association to one of the breast 

cancer subtype, the triple-negative subtype, had not been recognized previously and represents 

a novel finding with putative therapeutic consequences. 

 

Having established the link between the triple-negative subtype and TNC prognostic value and 

as ER negative tumors were suggested to express more TNC compared to ER positive tumors, 
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we aimed to correlate the expression level of TNC with the different breast cancer subtypes. To 

this purpose, we quantitatively analyzed a TMA comprising 205 patients for TNC expression. In 

this patient cohort, 13% of the patients were classified as triple-negative according to 

pathological annotations. In the clinic, about 10-20% of breast cancer tumors test negative for 

all three biomarkers. Therefore we can assume that our patient cohort is not over- or 

underrepresenting the triple-negative subtype. Our analysis using automated quantification 

revealed that TNC expression is higher in the triple-negative tumors compared to the other 

subtypes (Figure 16). This finding was confirmed in the METABRIC gene expression dataset 

(Figure 15). Interestingly, we observed differential expression pattern of TNC among the 

different cores of the TMAs. In a large number of cores, TNC expression was associated with the 

stromal compartment. However, some cores also showed clear tumor-cell derived expression 

of TNC and these cores mainly belonged to the triple-negative subtype. This strongly suggests 

that triple-negative breast cancer cells express TNC on their own and do not rely on the stromal 

compartment as a source of TNC. As our and previous data showed that autocrine TNC 

represents an advantage in term of survival at the distant site, we suggest that the prognostic 

value of TNC in the triple-negative breast cancer subtype might not only be due to absolute 

amount of TNC but also to its cellular source. Indeed, we observed that 60% of the triple-

negative patients express cancer-cell derived TNC against only 20% in the other subtypes 

(Figure 15). Accordingly, triple-negative breast cancer cell lines expressed significantly more 

TNC than cell lines belonging to another subtype (Figure 26). This finding was confirmed and 

extended using the GOBO (Gene expression-based Outcome for Breast cancer Online) gene 

expression dataset, which comprises 51 breast cancer cell lines (data not shown) [211]. 

Interestingly, we showed that triple-negative breast cancer cells also express more ITGB1 and 

ITGB3 as cancer cells belonging to the other subtypes (Figure 26). Hence, we postulate that 

triple-negative breast cancer cells express high level of autocrine TNC as well as its receptors 

ITGB1 and ITGB3. As a consequence, triple-negative breast cancer cells do not rely on the 

stroma for TNC production and the TNC pro-metastatic signaling can be readily activated due to 

high expression of the mediating receptors. Clinically, this phenomenon is illustrated by the 

strict association of the TNC prognostic value to the triple-negative, which is due to higher 

expression of autocrine TNC level and greater availability of its receptors.   
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7.3 Clinical relevance and putative therapeutic targeting of the TNC-integrin 

axis in triple-negative breast cancer 
 

Having identified a functional pro-metastatic axis for triple-negative breast cancer to the lungs, 

we next aimed to evaluate its clinical relevance using the METABRIC gene expression profiling 

dataset of basal-like patients, out of which 80% are triple-negative. Therefore we can assume 

that characteristics of basal-like patients in this dataset are very likely to apply the the triple-

negative subtype. We observed that the expression of TNC positively and significantly 

correlates with the expression of ITGB1 (r = 0.3056). Similarly, TNC expression significantly 

correlates with ITGB3 expression, although the correlation coefficient is lower (r = 0.2666). This 

might be a consequence of the low spread of the ITGB3 values. Indeed, the dispersion of the 

ITGB3 expression values was much less pronounced that the one of ITGB1 with standard 

deviations values of 0.1884 and 0.7924, respectively. Interestingly, when the TNC expression 

values were correlated to the mean of the ITGB1 and ITGB3 expression values, the positive 

correlation became even stronger (r = 0.3376). This is due to the fact that expression of ITGB1 

and ITGB3 also positively and significantly correlates with each other (r = 0.2775) (Figure 27). In 

summary, we observed a positive correlation in expression between the two TNC receptors and 

between TNC and its receptors in basal-like breast cancer patients, which encouraged us to 

further investigate the clinical relevance of the TNC-integrin axis.  

 

We decided to investigate the putative clinical relevance of the identified TNC-integrin axis in 

the context of triple-negative breast cancer. To address this, we stratified the patients 

expressing high level of TNC according to ITGB1/3 expression. Within the ‘TNC high’ group, we 

observed a separation according to ITGB1 expression: the ‘ITGB1 high’ group performed worse 

in term of overall survival compared to the ‘ITGB1 low’ group. This observation held true when 

we performed the same analysis with ITGB3. Patients with high expression of both TNC and 

ITGB1 or ITGB3 lived significantly shorter than patients with low expression of TNC. In contrast, 

even if patients with high expression of TNC but low expression of ITGB1 or ITGB3 live shorter 

than patients with only low expression of TNC, this difference did not reach statistical 

significance. These findings strongly support the idea of a functional link between TNC and 

ITGB1 and ITGB3 in a clinical setting (Figure 28).  

 

The overall survival of patients further declined when TNC high tumors expressed high level of 

both ITGB1 and ITGB3. Interestingly, ‘TNC high’ patients with low expression level of ITGB1/3 

lived nearly as long as patients with low expression of TNC (Figure 28). This observation further 

emphasizes the fact that TNC promotes cancer progression through the identified receptors, 

ITGB1 and ITGB3. 
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All in all, we demonstrated in a representative cohort of basal-like breast cancer patients that 

the prognostic value of TNC depends on the expression of the identified receptors and that 

patients displaying high level of both TNC and its receptors perform significantly worse than 

patients expressing only high amount of TNC. These results imply that our findings might be of 

clinical relevance and raise the question of a therapeutic targeting of the identified TNC-ITGB 

axis in triple-negative breast cancer. 

 

Due to its tumor-specific expression pattern, TNC appears to be an appealing candidate for 

cancer treatment. Indeed, TNC-targeted therapy strategies for cancer have been developed in 

the last years. It is important to mention that to date TNC is used as a biomarker to direct the 

delivery of cytotoxic molecules to the cancer site.  Targeting the molecular functions of TNC in 

cancer progression has only been performed in very preliminary settings [212, 213]. The most 

promising approach to date is the TNC-targeting antibody F16, which has reached phase III in 

clinical trial for several cancer entities [214]. Of particular interest for us it the use of F16 

antibody in the treatment of metastatic breast cancer [215]. In a phase II clinical study 

published in 2015, the F16 antibody was coupled to IL2 in order to attract immune cells into the 

tumor and to facilitate the engagement of the immune system against the tumor. When 

combined to a chemotherapy regimen (doxorubicin), anti-cancer activity was observed in 9/10 

patients and the treatment showed a very good safety profile. These results are very 

encouraging and the F16 antibody for treatment of metastatic breast cancer will hopefully be 

challenged in a larger patient cohort rapidly. In regards of our results, it might be important to 

consider patient stratification upon therapy. Indeed, we showed that autocrine TNC expression 

is greater in triple-negative breast cancer patients and that it mediates metastasis in this 

particular subtype. Therefore any therapy targeting TNC would have better chances to show 

anti-cancer activities in this particular subtype. Unfortunately, information on patient subtype 

was not stated by Catania et al. in their study using the F16 antibody in metastatic breast 

cancer [215]. Targeting of integrin signaling through integrin inhibitors have reached phase III 

clinical studies or clinical approvment [216]. Particularly interesting in the context of this study, 

the peptide Cilengitide targets ITGAV-ITGB3 and has reached phase II clinical trial in patient 

with recurrent glioblastoma [217]. If ITGB3 would work with ITGAV in the promotion of breast 

cancer metastasis, it would make sense to test the effect of this drug in our model system. To 

our knowledge, there is no specific inhibitor of ITGA2-ITGB1 under clinical investigations. 

However, the ITGB1 blocking antibody AIIB2 has been used safely used in mice where it was 

showed to inhibit the seeding of osteosarcoma cells in the lung [218] In addition, this antibody 

has been shown to induced apoptosis and decrease growth of breast cancer cells in vitro and in 

vivo. We have preliminary data showing that in our model, in vitro treatment with AIIB2 leads 

to a decrease in LGR5 expression (data not shown). All in all, this suggests that blocking of 

ITGB1 with AIIB2 might be a clinically relevant strategy to tackle breast cancer metastasis. 
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According to our data, combination of TNC targeting and integrin inhibition should be 

considered in the future. In order to avoid possible negative side effects due to the broad range 

of action of ITGB1, it would be particularly appealing to use the tumor-specific expression 

pattern of TNC to direct compounds targeting integrins. The multimodal nanoparticle-based 

SMART (Simultaneously Multiple Aptamers and RGD Targeting) probe targets TNC, ITGAV-ITGB3 

and nucleolin at the same time. This probe has shown a strong specificity and binding affinity to 

multiple human cancer cells in vitro, while its efficiency in vivo remains to be addressed [219]. It 

would be interesting to investigate whether the SMART probe might disrupt the binding 

between TNC and ITGB3. This raises a crucial point, which is the identification of the precise 

binding sites of TNC to the ITGB1 and ITGB3 receptors. While ITGB3 has been suggested to bind 

to the third FNIII-like domain and to the C-terminal FG domain, the binding site for ITGA2-ITGB1 

remains unknown [123]. Co-immunoprecipitation of mutant TNC lacking specific domains and 

ITGB3 or ITGB1 could be used to address this question. Knowledge about the exact binding site 

of integrins within the TNC molecule would facilitate the design of specific targeting molecules.  

 

7.4 The TNC-integrin axis promotes stem cell properties in triple-negative 

breast cancer 
 

Pluripotent epithelial mammary cells and breast cancer cells have been shown to form spheroid 

structures called respectively mammospheres and oncospheres when grown on non-adhesive 

plates in serum-free conditions. Interestingly, TNC expression is enriched upon spheroid culture 

of mammary epithelial and breast cancer cells [94, 201]. This prompted us to investigate the 

expression of the identified TNC receptors upon spheroid formation, as well as a putative 

functional role for ITGB1 and ITGB3 in sphere formation. We confirmed the induction of TNC 

expression at protein level by western blot upon sphere formation and observed a gradual 

enrichment of TNC protein with time. Interestingly, ITGB3 protein expression followed the 

same pattern of induction and gradual enrichment, while ITGB1 was induced upon sphere 

formation without being further enriched (Figure 29). It is important to note that spheroid 

culture represents a stressful environment for the cancer cells due to partial lack of nutrients 

(serum-free conditions) and adhesion. These conditions have been shown to enrich for 

aggressive breast cancer cells with stemness and early progenitor properties [220]. Accordingly, 

the expression of the stemness markers NANOG, OCT4 and SOX2 was induced upon sphere 

formation (Figure 29). Interestingly, TNC has been previously linked to the formation of 

oncospheres [94]. Together with the similarity in expression pattern of TNC and its receptors 

upon spheroid formation, this prompted us to investigate the functional role of ITGB1 and 

ITGB3 in sphere formation. The lack of one or the other receptor did not impact sphere 

formation, indicating that ITGB1 and ITGB3 alone are sufficient to support sphere formation. 
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However, upon double knockdown of both ITGB1 and ITGB3, we observed a dramatic reduction 

in sphere formation capacity, as attested by significantly smaller spheres. Interestingly, both 

the Notch and the Wnt pathways have been linked to the formation of mammo- and 

oncospheres. More in detail, activation of the Notch signaling pathway was shown to increase 

the formation of mammospheres and genetic and pharmacologic deletion of the Notch 

receptors 1 and 4 reduced the formation of oncospheres [221, 222]. On the other hand, the 

PTEN/Akt pathway was shown to regulate the formation of mammospheres and oncospheres 

via the Wnt singaling pathway and a further independent study demonstrated that both 

canonical and non-canonical Wnt signaling promote stem cell growth in mammospheres [223, 

224]. We have shown that ITGB1 and ITGB3 control the expression of the Wnt target gene LGR5 

and at least part of the Notch signaling. Therefore, it is reasonable to assume that in our model 

ITGB1 and ITGB3 promote spheroid formation via the Wnt and the Notch pathways. As TNC was 

previously shown to be necessary for sphere formation and we have shown that both ITGB1 

and ITGB3 are necessary to mediate the TNC signaling, this assay strongly suggests that ITGB1 

and ITGB3 promote sphere formation via TNC. It also implies that the cells expressing TNC, 

ITGB1 and ITGB3 are cancer cells with stemness properties capable of surviving and 

proliferating under stress conditions. Importantly, we showed by FACS that the same cells are 

able to upregulate both ITGB1 and ITGB3 under spheroid conditions. Accumulating evidences 

suggest that within a tumor, a relatively small number of cells are capable of self-renewal, 

initiation of tumorigenesis and generation of heterogeneous cancer cell populations. These 

cells are termed tumor initiating cells (TIC) or cancer stem cells (CSC) [225]. Recently, several 

integrins have been described as markers of TIC.  In two independent mouse models, ITGB3, in 

collaboration with the TGF-beta signaling pathway, was shown to be necessary and sufficient 

for the TIC phenotype in breast cancer [200, 226]. Additionally, ITGB3 was described as a TIC 

marker in a further mouse model for mammary tumorigenesis [227]. The ITGA6 and ITGB1 

integrins are also required for breast cancer initiation, as shown in two independent mouse 

models for human breast cancer [228, 229]. Our findings on the role of ITGB1 and ITGB3 for in 

oncosphere formation are in line with the idea of ITGB1 and ITGB3 being markers of tumor-

initiating cells. 

 

7.5 The TNC-integrin axis promotes stem cell properties in the mammary gland 
 

As previously mentioned, TNC expression has been detected in the mammary gland during 

embryonic development as well as upon mammary gland engraftment upon transplantation 

[134, 135].In this study, we showed that TNC and its receptors, ITGB1 and ITGB3, are associated 

with stemness properties in triple-negative breast cancer cells. This prompted us to investigate 

a putative role for TNC signaling in the normal mammary stem cells. Mammary stem cells are 

multipotent adult stem cells, which are thought to reside in the basal position in the mammary 
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ducts and which can give rise to all mammary epithelial lineages [202]. In order to assess the 

putative role of TNC in mammary stem cells we used mammosphere formation as a surrogate 

assay for stemness activity. Indeed, mammosphere cultures have been shown to enrich for 

mammary stem and progenitor cells [201]. We observed a significant decrease in 

mammosphere formation capacity in the TNC knockout mammary epithelial cells, indicating an 

impairment in stemness properties (Figure 30). As already mentioned, both the Wnt and the 

Notch signaling were shown to promote stem cell growth in mammospheres. More 

experiments are required to determine if these signaling pathways are responsible for the 

phenotype observed in the TNC knockout mammospheres. 

 

In order to analyze the functional role of TNC in mammary stem cells, we assessed the 

expression of the TNC signaling members in the murine mammary fat pad at developmental 

and maturation stages which strongly rely on functional stem cells and are characterized by an 

expansion of the stem cell compartment. These are mainly ductal elongation during puberty 

and alveogenesis during pregnancy. We observed an induction of Itgb1 and Itgb3 during 

pregnancy-associated alveogenesis. In 2006, two independent reports showed that integrins 

(ITGB1 and ITGA6) can be used as cell surface markers of the mammary stem cell population, 

from which a single cell is able to reconstitute a functional mammary gland in vivo upon 

transplantation [230, 231]. A year later, expression of ITGB3 was shown to distinguish between 

luminal progenitor cells (ITGB3 positive) and differentiated luminal cells (ITGB3 negative) [232]. 

Therefore upregulation of these receptors during alveogenesis strongly suggests expansion of 

the stem and early progenitor compartment at this stage of pregnancy. Accordingly, the 

mammary stem cell markers and basal-markers Krt14, Krt15 and Cdh5 were also significantly 

upregulated [185, 204]. Remarkably, we observed an induction of Tnc, Lgr5, Msi1 and Hey2 

during pregnancy-associated alveogenesis compared to virgin mice, indicating that the TNC 

signaling is associated with expansion of the mammary stem cell compartment. Interestingly, 

one of the ligands of LGR5, RSPO1, was also induced, possibly indicating a collaboration of these 

two molecules in enhancement of the Wnt pathway. Indeed, Wnt signaling was shown to 

promote the expansion of mammary stem cells [233]. Similarly, we also observed an 

upregulation of stem and early progenitor markers as well as of the TNC signaling members 

upon ductal expansion at puberty. (Figure 31). All in all, the correlation between TNC signaling 

members and stem cell markers upregulation during crucial developmental phase of the 

mammary gland prompted us to address further the role of TNC in mammary gland stem cells.  

 

For this purpose, we performed morphological analysis of the mammary gland in TNC knockout 

mice and compared it to wildtype mice. We specifically chose mid-pregnancy, corresponding to 

12.5 dpc, as we observed an enrichment of the TNC signaling members at this stage. In 

addition, upregulation of ITGB3 at 12.5dpc followed by a decrease in expression at later stage 



Discussion 

102 
 

of the pregnancy was shown in a previous study [234]. In the TNC knockout mice, we 

consistently observed a defect in the mammary gland tree. Indeed compared to the wildtype 

mice, the alveolar structures at mid-pregnancy in the TNC knockout mice were less numerous 

and concentrated only at the tip of the ducts (Figure 31). This indicates an impairment in 

pregnancy-associated alveogenesis possibly due to decreased stemness properties. 

Interestingly, an independent study has described a similar phenotype at this stage of 

pregnancy in ITGB3 knockout mice, as well as in mice lacking ITGB1 expression in the mammary 

basal compartment. Indeed ITGB3 knockout mice showed impaired alveogenesis at 12.5 dpc 

and ITGB3 was shown to be required for mammary stem cell expansion during puberty with no 

effect on luminal progenitor cells [234]. This study shed a new light on the role of ITGB3 in the 

mammary epithelial lineages showing that ITGB3 is not only a marker of early luminal 

progenitor but it is required for mammary stem cells upon pregnancy-associated activation. In 

mice lacking ITGB1 in the basal mammary compartment, impairment of alveogenesis at mid-

pregnancy accompanied by decreased stem cell number was observed [235]. In a transcription 

profiling analysis of the different epithelial compartment of the mammary gland, TNC and LGR5 

expression was shown to be enriched in the mammary stem cell compartment [204]. 

Furthermore, it has been repeatedly shown that LGR5 expression is heterogeneous in the 

mammary gland epithelium and one study suggested that cells expressing high level of LGR5 

display enriched repopulating capacity [184]. Therefore, we propose that the TNC signaling 

initially identified in the context of triple-negative breast cancer plays a functional role in the 

normal mammary stem cell biology at mid-pregnancy. Interestingly, comparative studies of 

gene expression signatures of the different intrinsic breast cancer subtypes with those of the 

mammary epithelial lineages revealed striking similarities in gene expression profiles. In detail, 

the claudin-low and the basal-like subtypes showed significant similarities with mammary stem 

cells and early luminal progenitor cells, respectively, while the HER2-enriched and the luminal 

subtypes resemble more differentiated cells [185]. In recent years, several triple-negative 

breast cancer cells lines have been defined as claudin-low. This is the case for the in vitro 

models used for investigating the TNC signaling in this study, strengthening the idea that our 

model for triple-negative metastatic breast cancer is likely to share some similarities with 

mammary stem cells [17]. 

 

In an attempt to address a possible defect in lactation in TNC knockout mice, we assessed the 

number of pups surviving the early life phase until weaning. We did not observe any significant 

decrease in viability of the TNC knockout animals, which would suggest impaired lactation 

(Figure 32). This indicates that the defect in alveogenesis might be transient and compensated 

at later phases of pregnancy. Interestingly, the ITGB3 knockout animals also did not display 

reduced ability to feed their pups while lactation was strongly impaired in the mice lacking 
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ITGB1 in the mammary basal compartment. This suggests that ITGB1 might have a broader 

TNC-independent function in the mammary gland stem cells [234, 235]. 

 

As TNC and its associated signaling members are increased at mid-pregnancy in the mouse 

mammary gland, one might ask whether pregnancy increases the risk for breast cancer. It is 

important to note that the link between pregnancy and breast cancer is not well characterized. 

Nevertheless, studies have suggested that pregnancy results in an increased risk for breast 

cancer within 10 years following birth [236]. This is probably the consequence of massive 

cellular proliferation during alveogenesis and age-related accumulation of genetic mutations or 

epigenetic modifications in the breast epithelium, which can result in tumorigenic growth of 

premalignant epithelial cells. In this context, enrichment in TNC expression could indeed 

support the development of a pre-malignant lesion to a breast tumor. However, this hypothesis 

needs to be investigated experimentally. Furthermore, previous studies have shown that TNC is 

strongly expressed upon lactation during the involution of the mammary gland and we have 

confirmed it in our mouse model (data not shown) [134, 135]. One can easily imagine that 

enhanced expression of TNC in the context of post-lactational tissue remodeling might support 

pregnancy-associated carcinogenesis. 
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8 Conclusion and model 
 

In this study, we showed that the prognostic value of TNC in breast cancer is restricted to the 

triple-negative subtype. Using different approaches, we could show that triple-negative tumors 

are enriched for TNC expression in breast cancer patients. Interestingly, despite the fact that 

the stromal compartment represents a significant source of TNC in breast tumors in general, we 

found that triple-negative breast cancer cells preferably produce TNC in an autocrine manner. 

Accordingly, TNC expression is increased in triple-negative breast cancer cell lines in vitro 

compared to cell lines belonging to other subtypes. In a triple-negative model, we identified 

two integrin beta subunit receptors mediating the TNC signaling in vitro. Following the pattern 

observed for TNC, ITGB1 and ITGB3 expression was enriched in triple-negative breast cancer 

cells. We showed that ITGB1 and ITGB3 promote breast cancer metastasis to the lungs in an in 

vivo model for human breast cancer. Interestingly, we observed that the TNC-ITGB axis 

supports stem cell properties in triple-negative breast cancer cells. We investigated the role of 

the TNC signaling in the mammary stem cell biology and found that it is associated with crucial 

developmental and maturation stages of the mammary gland. More importantly, our data 

indicate that TNC supports stem cell properties in the mammary epithelium and that it 

promotes pregnancy-associated alveogenesis.  

 

This study suggests interesting parallels between the role of TNC in triple-negative breast 

cancer and in the mammary stem cells. We propose that the pro-metastatic TNC-integrin axis 

identified in triple-negative, claudin-low breast cancer cells plays an important role in the 

mammary stem cell. While in the mammary stem cell TNC promotes stem cell properties and 

alveogenesis during pregnancy, triple-negative disseminated tumor cells take advantage of high 

expression of TNC and its receptors to promote their growth at the distant site. (Figure 33). 
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Figure 33  Model. 
During pregnancy, mammary stem cells express high level of ITGB1, ITGB3 and TNC, 

which play a functional role in alveogenesis [204, 234, 235]. In disseminated triple-

negative breast cancer cell, which are enriched for TNC, ITGB1 and ITGB3 

expression, TNC binds to ITGB1 and ITGB3 and promotes stem  cell properties and 

the expression of LGR5, MSI1 and HEY2. This signaling axis supports metastatic 

growth in the lungs. 
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9 Outlook and perspectives 
 

We have identified a TNC-integrin axis mediating lung metastasis in triple-negative breast 

cancer. In order to target this pro-metastatic axis, further investigations are required to 

determine the exact binding site of ITGB1 and ITGB3 to TNC. Our signaling data suggest that the 

two receptors can partially compensate for each other. However, in the context of stemness 

maintenance and metastatic colonization, ITGB1 and ITGB3 are likely to collaborate. Therefore, 

it would be of interest to study the binding affinity of TNC for each receptor. In addition, further 

investigations are required to clarify which alpha subunits are binding to ITGB1 and ITGB3. This 

knowledge would be beneficial for the testing of compounds blocking integrin function and 

would be highly relevant to the development of therapeutic strategies against the TNC-integrin 

axis. 

TNC has been suggesteded to collaborate with another matricellular protein called POSTN in 

the regulation of the Wnt pathway. We have evidence that TNC can bind to POSTN in triple-

negative breast cancer cells. In addition, we observed that TNC and POSTN promote breast 

cancer metastasis to the lung (data not shown). More work is required to determine the exact 

role of POSTN in the TNC-integrin beta axis. In addition, a possible functional collaboration of 

TNC and POSTN in the development of the mammary gland is currently under investigation. 
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10 Appendix 
 

10.1 Abbreviations 
 

AD assembly domain 
AJCC American Joint Committee on Cancer  
ANXA2 annexin 2 

BCS breast-conserving surgery 
BFP blue fluorescent protein 
BPE breast pleural effusion 
CDK cyclin dependent kinase 
CK cytokeratin 
CNTN1 contactin 1 
Co-IP co-immunoprecipitation 
CSC cancer stem cell 
DCIS ductal carcinoma in situ 
DKK1 dickkopf-related protein 1  

DMSO dimethyl sulfoxide 
DTX1 deltex 1 
ECM extracellular matrix 
EGF epidermal growth factor 
EGFR epidermal growth factor receptor 
EMT epithelial-to-mesenchymal transition  
ER estrogen receptor 
FACS fluorescence-activated cell sorting 
FBS fetal bovine serum 

FDA food and drug administration 

FG fibrinogen globe 
FN fibronectin 
GFP green fluoresent protein 
GOBO Gene expression-based Outcome for Breast cancer Online 
GPC1 glypican 1 
HE hematoxilin and eosin 
HER2 human epidermal growth factor receptor 2 
HEY2 hairy/Enhancer-Of-Split Related With YRPW Motif 2  
HR hormone receptor 
IFN interferon 

IHC immunohistochemistry 
ITGA integrin alpha 
ITGB integrin beta 
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ITGB integrin beta 
JAG1 Jagged-1  
JAK / STAT janus kinase / signal transduced and activator of transcription 
LEF1 lymphoid enhancer-binding factor 1  
LGR5 leucine-rich repeat-containing G protein-coupled receptor 
LM lung metastatic 
LOX lysyl oxidase  
METABRIC Molecular Taxonomy of Breast Cancer International Consortium 
MMP matrix metalloproteinase 
MSI1 musashi homolog 1  

NaN sodium channel Xia 
NSCLC non-small cell lung carcinoma  
NSG NOD/SCID interleukin-2 receptor gamma chain null 
PCR polymerase chain reaction 
PBS phosphate buffered saline 
POSTN periostin 
PR progesterone receptor 
PTPRZ1 phosphacan 
PyMT polyoma middle T  
qRT-PCR quantitative real time polymerase chain reaction 

RSPO R-spondin 
SDC4 syndecan 4 
SEER surveillance, epidemiology and end results 
shRNA short hairpin RNA 
SMA smooth muscle actin 
SMART Simultaneously Multiple Aptamers and RGD Targeting 
SPARC secreted protein acidic and rich in cysteine 
SPP1 secreted phosphoprotein 1 
SRM single reaction monitoring 
TEB terminal end buds 

TGF transforming growth factor  
THBS1 thrombospondin-1  
TIC tumor initiating cell 
TLR4 toll-like receptor 4 
TMA tissue microarray 
TNC tenascin C 
US United States 
VEGF vascular endothelial growth factor  
VEGFR vascular endothelial growth factor receptor 

VIM vimentin 
vWF von Willebrand factor 
WCL whole cell lysate 
αSMA alpha smooth muscle actin 
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