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1. Abstract of the dissertation 
 

Spinal cord injury (SCI) is characterized by axonal damage, neural degeneration, formation of 

cystic cavities, and upregulation of a plethora of inhibitory as well as inflammatory molecules. 

To protect the surrounding tissue from further damage, fibroblasts and reactive astrocytes form 

an impenetrable barrier lining the lesion site. This environment impedes endogenous 

regeneration of axotomized neurons and glial cells. In addition to being exposed to extrinsic 

inhibitors of axonal regeneration after SCI, neurons in the mammalian central nervous system 

(CNS) intrinsically lack the capacity for spontaneous axonal regeneration. To restore neural 

tissue integrity and provide a favorable environment for injured axons to regenerate, an 

appropriate substrate is needed. An optimal substrate for neuroregeneration should have a 

neural identity and fulfill several functions including physical support and guidance, trophic and 

metabolic support, maintenance of tissue homeostasis, and modulation of neuronal outgrowth 

and network activity. Astrocytes represent the most suitable cell population to fulfill this task. 

Induced pluripotent stem cells (iPSCs), which show many homologies to embryonic stem cells 

(ESCs), represent an ethically acceptable means to obtain large amounts of astrocytes in vitro 

for autologous transplantation. 

In the present study, populations of immature astrocytes with caudal identity were generated 

from three human pluripotent stem cell (PSC) lines, whereby terminal in vitro differentiation 

was performed according to previously published studies using the inductors of astrocytic 

maturation CNTF, BMP2/4 and FGF1 to allow for comparative analysis of specific astrocytic 

subtypes and for selection of a pro-regenerative cell population. 

In accordance with previously published findings, morphological and functional differences 

among astrocytic populations were observed in the present study. Compared to astrocytes 

differentiated with FBS only, astrocytes differentiated with BMP2/4 exhibited a significantly 

increased cell size and a complex cytoarchitecture, decreased expression of the NSC marker 

Sox2, increased production of potentially growth-inhibitory extracellular matrix (ECM) 

components and of the growth-promoting neurotrophic factor BDNF, and limited ability to 

induce neurite outgrowth in co-cultures with primary dorsal root ganglion (DRG) neurons. 

Astrocytes differentiated with FGF1 were, in contrast, significantly smaller, mainly had a bipolar 

morphology and retained expression of the NSC marker Sox2, indicative of a rather immature 

phenotype. On the other side, differentiation with FBS alone or in combination with CNTF led to 

astrocytes that produced the pro-regenerative ECM component laminin, which was reflected in 

a strong growth-promoting effect on primary DRG neurons. Importantly, clear differences 

across the three used pluripotent stem cell (PSC) lines were observed; in particular, differences 

in the electrophysiological response pattern elicited by stimulation with adenosine triphosphate 

(ATP) indicated that astrocytic lines with a similar phenotypic profile have distinct 

characteristics. After transplantation into the intact and injured spinal cord of Fischer 344 rats, 
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some of these phenotypical characteristics observed in vitro were maintained in vivo. This is 

indicative of a stable phenotype of pre-differentiated astrocytes, which allows the selection of 

an astrocytic subtype in vitro to maximize the pro-regenerative effect of cell transplantation 

after SCI. However, the present study also sheds light on the risks associated with the use of 

human iPSCs as appreciable cell survival in the injured spinal cord was associated with a 

predisposition of grafted cells to form tumors. This was particularly evident in the intact spinal 

cord.  

In summary, the present study provides a comparative overview over astrocytic features and 

pinpoints inclusion or exclusion criteria for transplantation after SCI. These criteria can be used 

to estimate the pro-regenerative ability of astrocytic populations and to predict the potential of 

PSC-derived progeny to form tumors. 
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1. Zusammenfassung der Dissertation 
 

Traumatische Verletzungen des Rückenmarks führen zu axonalem Schäden, Verlust von 

neuralem Gewebe, zur Entstehung von Zysten und zur Hochregulierung von zahlreichen 

inhibitorischen und inflammatorischen Molekülen. Um das umliegende Gewebe vor 

zusätzlichen bzw. sekundären Schäden zu schützen bilden Fibroblasten und reaktive Astrozyten 

eine undurchdringliche Barriere um die Läsionsstelle herum. Dieses Milieu erschwert die 

endogene Regeneration beschädigter Neurone und glialen Zellen. In der Folge der Verletzung 

sind beschädigte Neurone des zentralen Nervensystems (ZNS) von Säugetieren extrinsischen 

Inhibitoren axonaler Regeneration ausgesetzt. Darüber hinaus fehlt den Neuronen die 

intrinsische Fähigkeit spontan zu regenerieren. Um die Integrität des neuralen Gewebes 

wiederherzustellen und um die Regeneration von beschädigten Neuronen durch ein 

Wachstumsförderndes Milieus zu begünstigen ist die Unterstützung durch ein entsprechendes 

Substrat notwendig. Ein optimales Substrat für die Neuroregeneration sollte einen neuralen 

Phänotyp aufweisen und verschiedene Funktionen, wie die physische, trophische und 

metabolische Unterstützung, die Regulierung axonaler Wegfindung, die Aufrechterhaltung der 

Gewebe-Homöostase sowie die Modulierung von neuronalem Wachstum und Netzwerk-

Aktivität, erfüllen. Aufgrund dieser Anforderungen stellen Astrozyten eine optimale 

Zellpopulation dar, um diese Aufgaben zu erfüllen. Induzierte pluripotente Stammzellen (iPSZ), 

die zahlreiche Gemeinsamkeiten mit embryonalen Stammzellen (ESZ) aufweisen, stellen eine 

ethisch vertretbare Möglichkeit dar, Astrozyten für autologe Transplantation in ausreichender 

Zahl in vitro zu generieren. 

Basierend auf bereits veröffentlichten Studien wurden hier Populationen von Astrozyten mit 

kaudalem Phänotyp aus drei humanen pluripotenten Stammzell- (PSZ)-Linien generiert. Ihre in 

vitro End-Differenzierung wurde dabei mit den Induktoren der astrozytären Reifung CNTF, 

BMP2/4 und FGF1 durchgeführt. Dadurch ergibt sich die Möglichkeit eines komparativen 

Vergleiches der daraus entstandenen astrozytären Subtypen und der Selektion einer pro-

regenerativen Zellpopulation.  

In Einklang mit der vorhandenen Fachliteratur wurden morphologische und funktionelle 

Unterschiede beobachtet. Astrozyten die mit BMP2/4 differenziert wurden zeigten signifikant 

erhöhte Zellgröße und komplexere Zytoarchitektur, niedrigere Expression des neuralen 

Stammzell (NSZ) Markers Sox2, erhöhte Produktion von potentiell wachstumshemmenden 

Komponenten der extrazellulären Matrix (EZM) und des wachstumsfördernden neurotrophen 

Faktors BDNF, so wie eine beschränkte Fähigkeit, Neuritenwachstum in co-Kulturen mit 

primären Spinalganglion Neuronen zu fördern. Mit FGF1 differenzierte Astrozyten waren 

demgegenüber signifikant kleiner, bipolar in ihrer Morphologie und zeigten Expression den NSZ 

Markers Sox2, was auf einen nicht ausdifferenzierten Phänotyp hinweist. Differenzierung mit 

FBS alleine oder in Kombination mit CNTF, wiederum, führte zu Astrozyten, welche die pro-
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regenerative EZM Komponente Laminin produzierten, was sich in einem starken 

wachstumsfördernden Effekt widerspiegelte. Zwischen den drei pluripotenten Stammzell- (PSZ) 

Linien wurden signifikante Unterschiede beobachtet, vor allem in Bezug auf ihre 

elektrophysiologischen Reaktionen auf Stimulation mit Adenosintriphosphat (ATP). Diese 

Diskrepanzen deuten darauf hin, dass astrozytäre Linien trotz eines ähnlichen phänotypischen 

Profils einen individuellen elektrophysiologischen Charakter aufweisen. Nach Transplantation in 

das intakte und verletzte Rückenmark von Fischer 344 Ratten wurden einige der in vitro 

beobachteten Eigenschaften beibehalten, was darauf hinweist, dass prä-differenzierte 

Astrozyten einen stabilen Phänotyp haben. Diese Eigenschaft ermöglicht die frühe Selektion 

eines geeigneten astrozytären Subtyps in vitro, der den pro-regenerativen Effekt der 

Zelltransplantation infolge eines Rückenmarktraume maximieren kann. Auf der anderen Seite 

bestätigt diese Studie auch Risiken, die im Zusammenhang mit der Anwendung von iPSZ stehen. 

Ein beträchtliches Zellüberleben im verletzten Rückenmark korrelierte demnach mit der 

Prädisposition der transplantierten Zellen, Tumore zu erzeugen.  Dieser Zusammenhang war vor 

allem im intakten Rückenmark deutlich ausgeprägt. 

Zusammenfassend verschafft diese Studie einen komparativen Überblick über astrozytäre 

Eigenschaften und über Einschluss-/Ausschlusskriterien für Transplantation nach 

Rückenmarktrauma. Diese Kriterien sind geeignet, die wachstumsfördernde Fähigkeit von 

astrozytäre Subtypen einzuschätzen und das tumorigene Potential von PSZ Tochterzellen 

vorherzusehen/zu prognostizieren. 
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2. Introduction  
 

2.1. Spinal cord injury: clinical state 
 

2.1.1. Injury of the spinal cord 

 

Injury of the spinal cord can be caused by compression, contusion or penetration of the spinal 

cord and leads to massive degeneration of neural tissue, formation of liquid-filled cysts and 

cavities, and the accumulation of cellular debris and inflammatory cells. Degeneration of 

neurons and glia and the disruption of ascending, descending and intraspinal projections result 

in the loss of sensory, motor and autonomic function [1]. Under these conditions functional 

recovery is only possible if spared projections take over the function of degenerated axons by 

creating new connections. This process is called regeneration if new connections are formed by 

an injured neuron, which extends an axon from its cut end, from its shaft (formation of new 

branches) or from a non-injured branch, while sprouting refers to new connections formed by 

non-injured neurons [2]. Sprouting is a compensatory mechanism which occurs in response to 

injury of other axons. To protect the surrounding tissue from further damage infiltrating 

meningeal cells and reactive astrocytes form an impenetrable barrier lining the lesion site [3]. 

The formation of liquid-filled cysts, the upregulation of inflammatory and inhibitory molecules 

and the confinement of the lesion environment by the glial scar represent an impermeable 

environment that prevents endogenous regeneration of axotomized neurons and lost glial cells 

[4].  

 

2.1.2. Incidence of spinal cord injury and impact on society 

 

Spinal cord injury (SCI) mostly results from a traumatic event, commonly traffic / motor vehicle 

crashes, falls, sports accidents and violence. The resulting disruption of sensory, motor and 

autonomic function has a high impact on the patient’s quality of life, as it affects both the 

physical and the psychological well-being. In addition, it represents a substantial financial 

burden for patients, their family and the community. No treatment is currently available to fully 

restore function, therefore health care resources are needed on a long-term or even life-long 

basis, including hospitalization, rehabilitation, prevention or care of secondary complications, 

medication and personal assistance [5-8]. A 2013 World Health Organization (WHO) report 

estimated that global non-traumatic and traumatic SCI incidence is likely to be between 40 and 

80 cases per million, which means a yearly world-wide incidence of 250,000 to 500,000 patients 

[8]. Comparative studies throughoutly analyzing the world-wide economic impact of SCI are 

currently not available, however an estimation of mean costs that a SCI patient has to cover in 

the USA amounts to $138,000-476,000 within the first year and $38,000-169,000 in following 
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years depending on location and severity of injury. Accordingly, as an example, lifetime health 

care of a 25 year old and of a 50 year old SCI patients amounts up to $3 million and up to $1,7 

million, respectively [7, 9]. Interestingly, SCI incidence has decreased or been stable in 

developed countries, likely due to development of preventive strategies based on epidemiology, 

whereas it has increased in developing and middle to low-income countries, where there is lack 

of information about SCI epidemiology [5]. 

 

2.1.3. Current state of clinical intervention 

 

To date, no therapeutical approach is available for the full restoration of sensorimotor and 

autonomic dysfunction after SCI. After complete SCI, sensorimotor and autonomic function 

controlled by spinal cord segments below the lesion site is irreversibly lost. In incomplete SCI, 

spontaneous and/or compensatory functional recovery can be partially addressed by 

rehabilitation procedures. Rehabilitation is meant to train the body to “re-learn” to perform a 

specific task either by stimulating the restoration of former circuits or inducing novel circuits or 

by adaptive or compensatory mechanisms. The former are based on plasticity of the nervous 

system, which is capable of re-organizing after injury both at a physiological and at a 

morphological level. For incomplete SCI patients, rehabilitative training is the most effective 

approach to direct and enhance plasticity, thereby inducing some sensorimotor recovery. Such 

training uses specific tasks to stimulate and facilitate neuroplasticity specifically related to a lost 

function (e.g. treadmill training for walking; reach & grasp training for everyday hand use). 

Rehabilitative training is only undertaken after examination of the patient to assess if certain 

physiological requirements are met, i.e. if the basis for functional improvement is provided. 

Rehabilitation is, however, costly: long-term training with a high amount of movement-

repetitions is intensive both for the patient and for the physiotherapists, and complex robotic 

devices, which are necessary for standardized training paradigms, are expensive and generally 

not available for everyday use [10]. In addition, rehabilitation has no effect on irreversibly 

injured circuits. 

Pre-clinical and clinical research has therefore been focusing on understanding why CNS 

function is irreversibly lost and on designing approaches to enhance CNS regeneration. 

 

2.2. Failure in central nervous system regeneration: key players 
 

The peripheral nervous system (PNS) retains the ability to regenerate axons after injury, 

whereas central nervous system axons (CNS) do not regenerate. At the beginning of the 20th 

century it was generally assumed that CNS neurons are completely unable to regenerate [11]. 

However, subsequent studies demonstrated that the CNS branches of dorsal root ganglion 

(DRG) neurons were capable of intraspinal regenerative sprouting after partial denervation of 
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the spinal cord in cats [12]. Nevertheless, CNS regeneration remained controversial for several 

decades [13], until it was demonstrated that transected CNS axons are able to re-grow into 

bridges of peripheral nerves transplanted into the rodent spinal cord [14, 15]. This led to the 

hypothesis that the inhibitory nature of the CNS environment is responsible for the failure of 

CNS neurons to regenerate [16]. However, CNS neurons display a lower growth potential than 

PNS neurons on a permissive substrate [17], suggesting that cell-intrinsic mechanisms and the 

inhibitory CNS environment both represent a barrier to CNS regeneration. It is now generally 

accepted that cell-intrinsic and extrinsic properties account for the differences in the capacity to 

regenerate between CNS and PNS neurons. 

 

2.2.1. Extrinsic inhibitors of axonal regeneration 

 

Axonal regeneration and plasticity in the CNS are hampered by a whole range of soluble growth-

inhibitory molecules, which accumulate at the site of injury, including CNS-myelin-derived 

inhibitors, ephrins, semaphorins and proteoglycans [4, 18, 19]. The cellular and molecular 

responses that contribute to the inhibitory environment after CNS injury have been subject of 

numerous investigations, and means to overcome growth-inhibition have moved from in vitro 

neurite-growth assays to several pre-clinical and clinical studies to date. 

 

2.2.1.1. Fibroglial scar and proteoglycans 

 

Immediately upon SCI, a sealing cellular barrier composed of reactive fibroblasts, macrophages 

and hypertrophic astrocytes arises within and at the edge of the injury site.  This results in 

stabilization of the injured CNS tissue by restoration of physical and chemical integrity and by 

limiting the breakdown of the blood brain barrier (BBB) to impede further infiltration of non-

CNS cells/molecules and infections and excessive subsequent secondary tissue damage [3, 20]. 

In fact, ablation of glial scar formation results in invasion of inflammatory cells into the lesion 

site, an increase in lesion volume, decreased neuroregeneration and functional deterioration 

[21-25]. However, the fibroglial scar constitutes a physical and molecular obstacle to 

regenerating axons due to the upregulation of a growth-inhibitory extracellular matrix (ECM). 

One class of molecules strongly upregulated in the ECM of CNS injury sites are chondroitin-

sulphate-proteoglycans (CSPGs) [26-28]. In the 90’s, in vitro studies in which non-growth-

permissive astrocytic lines were treated with inhibitors of proteoglycan synthesis established a 

clear link between CSPG secretion and inhibition of neurite growth [29, 30], whereas in vivo 

studies demonstrated that upregulation of CSPGs in the scar tissue contribute to failure of 

axonal regeneration [31, 32].  In concomitance, digestion of glycosaminoglycan (GAG) side 

chains of CSPGs with the bacterial enzyme chondroitinase ABC (ChABC) attenuated their 

growth-inhibitory activity both in vitro and in vivo [33, 34], suggesting that CSPG digestion could 

be of therapeutic value.  
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2.2.1.2. Modulation of the extracellular matrix: chondroitinase ABC 

 

Early pre-clinical studies performed in rodents demonstrated that administration of ChABC after 

SCI promotes regeneration of ascending and descending lesioned projections, enhances 

sprouting and connectivity of spared pathways, modulates the immune response and 

neuroprotection and leads to partial recovery of sensorimotor function [35-45]. Few studies 

were performed in cats and squirrel monkeys [46, 47], however studies in larger animals are 

necessary to assess safety, efficacy and dosage of the treatment before moving to a clinical 

setting. In addition, clinical translation of ChABC treatment remains challenging due to the rapid 

loss of enzymatic activity at body temperature and consequent lack of appropriate delivery 

methods [48]. 

 

2.2.1.3. Myelin-associated inhibitors 

 

CNS myelin was identified as potent inhibitor of neurite growth more than 30 years ago, when it 

was shown that CNS axons can regenerate in peripheral nerve transplants [14, 15], whereas PNS 

neurons displayed more limited neurite extension when exposed to CNS myelin [16, 49]. Nogo-A 

was identified as one myelin component, which largely accounts for its inhibitory activity [50, 

51]. However, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein 

(OMgp) and the CNS myelin lipid sulfatide also have potent inhibitory activity. All myelin 

inhibitors bind to a common receptor (NgR) in a complex with Lingo-1 and TROY or p75. 

Activation of NgR induces axonal cytoskeletal rearrangements and exerts further inhibitory 

functions via a signaling pathway involving the small Rho GTPase RhoA and the Rho associated 

protein kinase (ROCK) [4].  

 

2.2.1.4. Pre-clinical and clinical trials targeting Nogo-A 
 

In 1988 the monoclonal antibody IN-1, raised against the two inhibitory antigens (NI-35 and NI-

250) known as Nogo-A, was applied intratechally after SCI in rats, leading to enhanced sprouting 

and longitudinal axonal elongation [16]. Subsequent studies targeted Nogo-A in vivo by means 

of different anti-Nogo antibodies, the NgR blocking peptide NEP1-40, soluble NgR fusion 

proteins (NgR-Fc) or by genetic ablation, confirming across different animal species including 

non-human primates enhanced sprouting, some regeneration and functional recovery [52-63]. 

Based on this solid and very promising pre-clinical evidence, Nogo-A antibodies were produced 

by Novartis and applied in a Phase I clinical study which started in 2006 within the European 

Multicenter Study about Spinal Cord Injury (EMSCI) (clinicaltrials.gov ID: NCT00406016). 

However, results from this clinical study are not published yet. Anti-Nogo-A, also known as 

Ozanezumab, was also applied in more recent Phase I clinical trials targeting amyotrophic lateral 

http://clinicaltrials.gov/ct2/show/NCT00406016
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sclerosis (ALS) patients [64], multiple sclerosis (MS) patients (clinicaltrials.gov ID: NCT01435993; 

clinicaltrials.gov ID: NCT01424423)  and patients with traumatic brain injury (TBI) 

(clinicaltrials.gov ID: NCT02229643), results have not been published and Phase II trials are yet 

to be started.  

 

2.2.1.5. Inhibitory molecules 

 

In addition to CSPGs and CNS myelin-associated inhibitory molecules, other classes of potent 

growth-inhibitory molecules are upregulated after SCI within and around the lesion site, which 

are known to be crucial axon guidance cues during neurodevelopment: semaphorins, ephrins 

and Eph receptor tyrosine kinase family members, Wnts and Netrins [65-68]. Members of the 

Ephrin and Eph receptor families are expressed at the injury site by reactive astrocytes, 

fibroblasts and oligodendrocytes, indicating that no single cell type accounts for the inhibitory 

lesion environment, and were shown to affect cell survival and restrict axonal growth and 

regeneration after SCI [63, 69-74]. Inhibition of the ephrin/Eph receptor signaling by fusion 

proteins or blocking peptides was shown to promote axonal regeneration [72, 75]. 

Semaphorins, on the other side are expressed by infiltrating meningeal fibroblasts [76]. 

Inhibition of Sema3A resulted in improved regeneration, preservation of injured axons, 

Schwann-cell mediated myelination, decrease in apoptosis and functional recovery after SCI [77, 

78].  

Based on these pre-clinical results, modulation of the lesion environment, i.e. modulation of 

proteoglycans, myelin-associated molecules and developmentally relevant growth-inhibitory 

molecules, represents a promising therapeutical approach to increase regeneration after SCI.  

 

2.2.1.6. Delivery of neurotrophic factors to promote regeneration and 

sprouting 

 

Besides the growth-inhibitory environment of the injured spinal cord, absence of a permissive 

growth-substrate or growth-stimulating cues contribute the regenerative failure. Therefore, 

besides manipulating the extracellular environment of the injured CNS to reduce its inhibitory 

effect, chemoattractive cues, which promote axon-growth, are necessary to induce robust 

regeneration.  

Both during neurodevelopment and after injury of the PNS, neurotrophic factors play an 

important role in neuronal survival, axonal growth and target innervation. Several families of 

trophic factors including members of the neurotrophin family (nerve growth factor, NGF; brain-

derived neurotrophic factor, BDNF; neurotrophin-3, NT-3; neurotrophin-4/5, NT-4/5), GDNF-

family ligands (Glial cell line-derived neurotrophic factor, GDNF; neurturin, NRTN; artemin; 

persephin), neuropoietic cytokines (ciliary neurotrophic factor, CNTF; leukemia inhibitory factor, 

file://FSX23/OUK-Bas/SimeonovaIna/Einstellungen/Microsoft/Word/clinicaltrials.gov%20ID:%20NCT01435993
https://clinicaltrials.gov/show/NCT02229643
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LIF) and others have therefore been investigated for their influence on neuronal survival and 

axon growth after SCI.  

After injury of the spinal cord, BDNF and NT-3 have been shown to counteract atrophy of 

injured tracts and to support cell survival [79-81]. In addition, they encourage growth of injured 

axons [82-84]. Numerous pre-clinical studies used genetically modified cells such as fibroblasts 

[84-94], Schwann cells [82, 95], bone marrow stromal cells [96, 97], olfactory ensheathing cells 

[98-100], neural precursor cells [91, 101] or peripheral nerve grafts [102] as “biological mini-

pumps” to continuously produce the desired neurotrophic factors, such as BDNF and NT-3, after 

transplantation to the injured spinal cord. Although these studies showed robust axonal growth 

into the lesion site filled with neurotrophic factor producing cells, axons rarely exited the graft 

to extend into the host spinal cord due to the inhospitable environment and lack of 

chemoattractive cues. Only in the presence of a growth stimulus distal to the cell graft axons 

extend beyond the lesion site. Using virus-based in vivo gene delivery (lentivirus or adeno-

associated virus, AAV), neurotrophic factor gradients can be generated within the distal host 

tissue, allowing for bridging axonal regeneration [103-106].  

Although neurotrophic factor delivery represents a promising means to boost 

neuroregeneration, appropriate and safe techniques for localized and regulatable delivery have 

to be developed to allow for clinical translation. 

 

2.2.2. Intrinsic factors regulating axonal regeneration  

 

Injured CNS axons are incapable of regenerating not only due to environmental cues, but also 

due to their intrinsic properties. The growth capacity of CNS axons declines during development 

as connections mature and synapses are formed. This decline is accompanied by the down-

regulation of growth-associated genes. Transcriptional and epigenetic mechanisms, local 

protein translation, retrograde and anterograde axonal transport and cytoskeletal dynamics 

have been identified as intrinsic key regulators of axon regeneration. 

 

2.2.2.1. Calcium transients and activation of cAMP 

 

After axonal injury, influx of calcium into the axoplasm is one of the first consequences. This 

transient intracellular calcium wave propagating from the injured axon to the cell soma seems 

to be crucial for resealing the axonal membrane, protein synthesis, cytoskeleton 

rearrangement, assembly of the growth cone and the activation of intracellular signaling 

cascades. Calcium influx lead to increased cyclic cAMP levels, which promote growth cone 

assembly [107] and to activate signaling pathways to overcome myelin-associated signals [108-

110]. In fact, injection of a cell-permeable cyclic adenosine monophosphate (cAMP) analogue 

(dibutyryl-cAMP; db-cAMP) into DRG neurons enhanced the regeneration of injured dorsal 
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column axons [111-113]. An alternative method to enhance cAMP levels is subcutaneous 

application of the BBB-permeable drug Rolipram, an inhibitor of the cAMP-degrading enzyme 

phosphodiesterase (PDE) 4. Delivery of Rolipram after injury of the spinal cord led to enhanced 

regeneration, attenuation of the glial scar and significant increase in functional recovery in 

several pre-clinical studies [114-118], however clinical trials are still not reported.  

 

2.2.2.2. Epigenetic regulation of regeneration-associated genes 

 

When calcium waves reach the soma of DRG neurons, it leads to activation of PKCµ and 

consequent export of histone deacetylase 5 (HDAC5) from the nucleus. As a result, increased 

histone acetylation contributes to the activation of pro-regenerative gene expression in DRG 

neurons. In particular, increased acetylation of histone 4 (H4) in promoter regions of 

regeneration-associated genes (RAGs) leads to their increased expression. Several transcription 

factors including JUN, KLF4, KLF5, c-Fos, ATF3 and Gadd45g, as well as Smad1, Sprr1, Galanin, 

NPY and VIP, which have been associated with the injury-induced response and axon growth, 

have been found to be HDAC5-regulated [119, 120]. Independently, the histone 

acetyltransferase CBP/p300 regulates RAG expression via histone 3 (H3) acetylation of p53, 

GAP-43 and Sprr1 [121]. These findings suggest that epigenetic regulation of RAG expression 

may be targeted to promote regeneration after CNS trauma. 

 

2.2.2.3. Growth cone and microtubule dynamics 

 

Injured PNS neurons maintain stable microtubuli at the backbone and have dynamic microtubuli 

at the tip of their growth cone, whereas injured CNS axons form a retraction bulb with a 

disorganized network of microtubuli, a rather static structure that can persist for years after 

spinal cord injury [122]. After nuclear export, HDAC5-mediated deacetylation of microtubuli at 

the axon tip of DRG neurons increases their dynamics and reorganization. This is a prerequisite 

for the formation and motility of a growth cone, which are necessary for growth initiation and 

axonal extension [119, 123]. On the other side, selective inhibition of HDAC6 and the 

consequent increase in acetylated, stable microtubuli enhanced survival after oxidative stress 

and growth of CNS neurons on non-permissive substrate [124], indicating that microtubule 

stability might have divergent effects on axon regeneration. Nevertheless, some efforts have 

been made to pharmacologically stabilize microtubuli and promote growth cone formation and 

dynamics via administration of Taxol, an approved and commercially available drug. Moderate 

stabilization of microtubuli via application of low doses of Taxol prevented the formation of 

retraction bulbs, decrease axonal degeneration in vivo and enable CNS neurons to overcome the 

growth inhibitory effect of myelin in vitro [125]. In vivo, Taxol-mediated stabilization of the 

microtubule network led to a reduction of the fibrotic scar and of CSPG levels, and to moderate 
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increase in regeneration and functional recovery [126], which was partially replicated in a 

subsequent study [127]. Delivery of a Taxol derivative, Epothilone B, led to a decrease in glial 

scarring, and promoted regeneration and functional recovery [122]. Taken together, despite 

some convincing pre-clinical evidence, additional studies are needed to define the dose, time 

window of treatment and maximum benefit before moving towards clinical translation. 

 

2.2.2.4. Transcriptional networks and other signaling cascades 

 

Because CNS neurons fail to effectively activate RAGs [128], means to promote CNS axon 

growth by gene-delivery of RAGs or by manipulating pathways that lead to the upregulation of 

RAGs have been explored in numerous studies.  The pro-regenerative potential of transcription 

factors that might have a broad effects by influencing expression of several genes have been 

studied including SMAD1 [129], CREB [130], STAT3/SOCS3 [131], ATF3 [132] and c-JUN [133].  

Among these, STAT3 and c-JUN are perhaps the ones with the strongest indication for a pro-

regenerative effect; however none of these experiments promoted extensive long-distance 

regeneration in the spinal cord.  

Besides positive regulators of gene expression, intrinsic inhibitors of axon growth which 

negatively influence protein translation contribute to the CNS regenerative failure. The activity 

of mechanistic target of rapamycin (mTOR), a regulator of protein translation, is strongly 

influenced by phosphatase and tensin homolog (PTEN).  Elimination of the tumor suppressor 

gene PTEN induced robust axon growth of retinal ganglion neurons [134]. Further investigations 

demonstrated that mTOR activity also regulates sprouting of corticospinal tract (CST) neurons 

after injury. Conditional deletion of PTEN attenuated injury-induced loss of mTOR activity in CST 

neurons, and enhanced sprouting and regenerative growth indicating that this signaling 

pathway represents a promising approach to target the intrinsic regenerative capacity of 

neurons after SCI [135-137]. Combining PTEN deletion with the activation of the STAT3 pathway 

showed even more remarkable growth after an optic nerve crush injury [138]. 

 

2.2.2.5. What lessons can we learn from the peripheral nervous system? 
 

The ability of peripheral neurons to mount a regenerative program after PNS injury has been a 

major focus in identifying genes and signaling cascades important for axon regeneration. On one 

side, intrinsic properties of PNS neurons confer them the ability to regenerate on a life-long 

basis. On the other side, there is a striking difference in the structural proteins that make up the 

myelin of the CNS and the PNS. For instance, CNS myelin produced by oligodendrocytes is 

compact and rich in glycolipids, sulfolipid-sulfatides, proteolipid protein (PLP) and myelin-

associated inhibitors such as OMgp. In contrast, myelin protein zero (P0/MPZ) and peripheral 

myelin protein 22 (PMP22) constitute characteristic structural proteins of peripheral myelin 



13 

 

[139]. Importantly, the inhibitory myelin components MAG, OMgp, p75 and NgR are not absent 

in the PNS. Rather, after injury they are rapidly cleared by macrophages and Schwann cells. In 

addition, Schwann cells de-differentiate in order to down-regulate inhibitory myelin proteins. 

Unlike Schwann cells, CNS oligodendrocytes do not down-regulate myelin components and do 

not clear myelin debris after injury [140]. 

DRG neurons can be used to study mechanisms of regeneration in both the PNS and CNS, due to 

their unique nature: their cell soma is located in the dorsal root ganglia at each side of the spinal 

cord and they extend two axonal branches, one into the PNS and one into the CNS. The 

peripheral branch retains its ability to regenerate, whereas the central branch fails. Due to this 

fascinating property, they have been extensively used to perform basic research on 

neuroregeneration in vitro and in vivo. 

 

2.2.2.6. The conditioning lesion effect 

 

Sensory neurons of the DRG are pseudobipolar neurons which extend two axonal branches: the 

peripheral one, which innervates sensory organs in the skin, joints, muscles and tendons, and 

the central projection, which crosses the dorsal root entry zone (DREZ) to enter the spinal cord 

and either form connections with spinal cord interneurons residing in the gray matter or 

proceed via the white matter to brainstem nuclei to innervate their CNS targets. In 1969, 

experiments performed with DRG neurons of monkeys revealed a differential response to injury 

of their peripheral versus their central branches [141], a phenomenon, which had already been 

observed by Ramón y Cajal during his extensive examinations of the nervous system [142]. 

Upon damage to axons of the peripheral nerve, genetic and molecular programs are activated, 

which lead to a state of axonal growth [143]. After the growth program is initiated, axonal 

elongation is supported by the growth-permissive PNS environment, by tubes of Schwann cell 

basal lamina, as well as growth-permissive ECM and neurotrophic factor mediated 

chemoattraction [144]. Most intriguing is the ability of a peripheral lesion to elicit regeneration 

of the CNS branch of DRG neurons, which was observed more than 30 years ago. However, in 

this first study a peripheral nerve graft was used as growth substrate [145]. Regeneration of CNS 

branches in the absence of a permissive PNS substrate was demonstrated 15 years later, were a 

conditioning lesion of the sciatic nerve one-two weeks before a dorsal column lesion was shown 

to elicit regeneration of CNS projections beyond the lesion site [146]. Subsequent studies 

attributed the conditioning lesion effect to the elevation of cAMP levels 24 hours after PNS 

injury, which persisted for one week before returning to baseline levels; intra-ganglionic 

injections of db-cAMP could in fact increase neurite outgrowth [111]. cAMP elevation, in turn, is 

able to promote gene expression and regeneration via activation of the transcription factor 

cAMP response element binding protein (CREB) [130]. However, subsequent studies 

demonstrated that conditioning lesions activate a greater and more long-lasting genetic 
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response than cAMP administration [147], suggesting that cAMP is one but not the only key 

player accounting for the conditioning lesion effect. Extensive studies investigating the 

mechanisms behind the conditioning lesion effect might identify promising therapeutical 

approaches based on the regenerative program activated by peripheral nerve injury.    

 

2.3. Cell transplantation to promote neuroregeneration 
 

The therapeutical approaches reviewed above aimed at enhancing regenerative axon outgrowth 

and/or sprouting of injured and spared projections by targeting their extrinsic or intrinsic 

properties. The regenerative capacity of endogenous projections remains, however, still very 

limited and outgrowing axons only extend for modest distances. Considering the long distances 

that regenerating axons need to cover in the human body, robust target reinnervation after 

severe spinal trauma might be utopic. Moreover, boosting endogenous regeneration alone does 

not lead to restoration of neural tissue integrity and function. Neuroregenerative approaches 

might therefore become fully effective only in combination with cell replacement strategies, 

which promote anatomical and functional repair. Cell transplantation should ideally (1) provide 

a permissive physical and molecular substrate for axon growth, perhaps in concomitance with 

secretion of pro-regenerative soluble factors, (2) provide for trophic support and remyelination, 

(3) replace damaged neurons or introduce neurons that can serve as “relays” (a cellular bridge). 

In cell transplantation experiments, these three aspects were addressed separately, some of 

them even in a clinical context. However, we are very far from the application of the “perfect” 

cell transplant covering all these functions. In addition, transplanted cells are heterogeneous in 

terms of age and gender of the donor, organ of source, culturing conditions across laboratories, 

method of delivery and other characteristics. Thus, both pre-clinical and clinical studies might 

report diverging outcomes. 

 

2.3.1. Regeneration versus “relay” formation   

 

Cell replacement strategies can address three main aspects of neural tissue restoration, which 

will be briefly described hereafter.  

Restoration of tissue integrity and regeneration  

Non-neural cells or glial cells can be used to provide physical guidance, as well as trophic and 

metabolic support. They can produce growth-permissive ECM, secrete neurotrophic or 

chemoattractive factors and interact with endogenous glial scar forming or inflammatory cells, 

thereby counteracting the extrinsic factors, which influence the regenerative potential of 

injured neurons. However, they hardly have influence on the intrinsic growth potential, which is 

very limited in CNS neurons. Nevertheless, they are crucial for restoration of tissue integrity and 
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homeostasis, support of elongating axons and modulation of network activity (figure 2.1., A). To 

restore the original neural tissue integrity and function, a CNS-residing cell type would be ideal.  

Remyelination  

Glial cells, specifically Schwann cells, olfactory ensheathing cells (OECs) or oligodendrocytes are 

capable of myelinating axonal projections: either by re-myelinating spared axons or by 

myelinating regenerating axons. Re-/myelination ensures fast transmission of neuronal 

information and balanced neural network activity. If regenerated axonal projections are not 

myelinated, they will only have a limited capacity to contribute to functional recovery. In 

addition, oligodendrocytes provide trophic and metabolic support to axons. Understanding the 

pathways involved in myelination and in axon-glia communication, and how these pathways 

may influence axonal growth responses after injury, is crucial for developing regenerative 

therapies after CNS injury.  

The concept of neuronal “relay” 

Classic intervention / repair strategies for SCI have aimed at boosting the endogenous 

regenerative potential of injured axons, which would extend across the lesion site back into the 

adjacent host spinal cord and beyond to re-innervate their targets. Currently, very few studies 

demonstrate substantial growth of injured axons into and beyond the injury site. In some cases, 

few axons have been identified which re-enter the intact spinal cord but only for a short 

distance. Therefore, in recent years the concept of neuronal „relay“ has gained attention and 

may represent an alternative strategy to reconstruct damaged neuronal networks. Transplanted 

neuronal precursors or immature neurons would differentiate and build a “cellular bridge” 

which receives information from sensory ascending or motor descending projections and 

convey it either by local connectivity with interneurons or by extending towards and re-

innervating original targets (figure 2.1., B). 

This concept has been addressed in recent studies [148, 149], which showed robust axonal 

extension from transplanted dissociated fetal tissue as well as from pluripotent stem cell (PSC)-

derived neural stem cells (NSCs). In addition, these studies reported electrophysiological activity 

of transplanted cells, confirming the functional relevance of this newly formed network, as well 

as partial recovery of hindlimb / motor function. However, additional pre-clinical studies are 

needed to assess the impact and the contribution of the neuronal “relay” to functional 

recovery.  

Generally, regeneration and “relay” formation need to be addressed at the same time. While 

transplantation of a pro-regenerative substrate, f.i. a glial-cell substrate, might not be enough to 

boost robust endogenous regeneration, it might guide axotomized projections towards “relay” 

forming cells. The latter on the other side might take advantage of a glial-cell substrate, as this 

might support their survival and maturation.  
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2.3.2. Transplantation of non-CNS cells  

 

2.3.2.1. Mesenchymal stem cells  

 

Mesenchymal stromal or stem cells (MSCs) have been extensively used for transplantation into 

the CNS. These self-renewing / multipotent stem cells, isolated from the bone marrow, can 

differentiate into osteoblasts, adipocytes and chondroblasts, as well as putative neural cells and 

myoblasts in vitro [150]. MSCs represent a very attractive and promising cell source for tissue 

repair because they can be easily obtained from autologous bone marrow, cryopreserved and 

expanded in a relatively short period of time [151]. In addition, they are well tolerated and 

there are no reports of adverse reactions in both autologous and allogeneic transplantations.  

MSCs have been reported to have anti-inflammatory, neuroprotective and pro-regenerative 

effects by decreasing demyelination and scar formation, promoting regeneration and guiding 

axons [152, 153]. Improvements of locomotor, sensory and autonomic function, as well as 

Figure 2.1 Cell replacement after SCI: regeneration versus neuronal „relay“ formation. 
Transplantation of a cellular substrate after SCI can address three  major aspects: (A) the cellular 
substrate provided the optimal conditions for injured neurons to regenerate axons and connect 
with their original targets to restore function, (B)  the stem cell substrate gives  origin  to 
neurons, which receive the signal  from axotomized  host neurons and extend projections 
towards denervated targets, thereby mediating communication and restoring function, and (C) 
re-myelination of de-myelinated spared projections, which can only be addressed if these are 
present.   
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reduction of neuropathic pain were observed in some studies in different animal models [154, 

155]. However, beneficial effects on functional recovery in well-conducted preclinical studies 

were modest. Nevertheless, a number of ongoing and completed clinical trials have assessed 

safety and potential beneficial effects of MSC transplantation after SCI.  Most of these trials only 

enrolled a small number of patients and are therefore unable to draw conclusions about clinical 

efficacy [156, 157].  

Taken together, although MSCs can be easily harvested and cultured for transplantation, their 

non-neural nature might lead to a disappointing outcome in terms of functional recovery. 

 

2.3.2.2. Stimulated macrophages 

 

Despite the detrimental role of the immune response after CNS injury, inflammation can also be 

beneficial after SCI. Macrophages are crucial for clearing ECM as well as cellular debris and 

secrete growth factors which facilitate remyelination and axon growth. In the late 1990s, 

transplantation of non-activated blood-born macrophages after transection of the spinal cord in 

rodents led to enhanced regeneration and recovery of motor function [158], as well as 

decreased expression of the axon-growth-inhibitory myelin protein MAG, increased 

angiogenesis and Schwann cell infiltration [159]. In a later study, a skin biopsy was used as the 

source to activate autologous macrophages that were administered 8-9 days after a rat spinal 

cord contusion. This resulted in less pronounced syringomyelia and improved motor function 

[160]. In subsequent clinical trials, autologous macrophages activated by incubation with 

autologous skin biopsies were injected into the spinal cord caudal to the lesion [161-163]. In 

both clinical trials, transplantation was performed in American Spinal Injury Association 

Impairment Scale (AIS)-A patients within 14 days after injury. While the macrophage cell 

therapy was well tolerated, no significant difference in primary outcomes (conversion from AIS 

A to B or C) between treated and control group was detected. While these are very crude 

clinical outcome measures, stimulated macrophages might not represent a suitable cell source 

for transplantation after SCI. 

 

2.3.2.3. Schwann cells 

 

Schwann cells are responsible for the myelination of PNS axons, but they are also able to 

myelinate CNS axons. They play a central role in PNS regeneration, express neurotrophic 

factors, provide a favorable ECM and guide axons across a lesion after PNS injury [144]. In 

addition, Schwann cells can be relatively easily obtained from peripheral nerve biopsies and 

expanded in culture. In the context of SCI, they have been used for over 30 years [164], not only 

due to their ability to re-/myelinate, but also because they represent a permissive substrate for 

regenerating axons.  
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Although several pre-clinical studies demonstrated that Schwann cells promote axon 

regeneration, other studies pointed out that they are not sufficient to induce bridging of the 

lesion site, as regenerating axons were not able to exit the graft and grow into the host tissue 

[165, 166]. In contusion SCI animal models, only few studies reported significant improvement 

of motor function when adult rodent Schwann cells were transplanted alone [167-169]. In one 

positive study, functional recovery was induced in mice after compression of the spinal cord, 

however way more efficiently with genetically engineered Schwann cells which overexpressed 

Polysialylated-neural cell adhesion molecule (PSA-NCAM) [170]. Only few pre-clinical studies 

were performed using human Schwann cells. Modest but significant beneficial effects were 

observed; however Schwann cells were transplanted in a combinatorial treatment [171, 172].  

Based on the preclinical evidence, three clinical studies have been conducted to date in which 

Schwann cells were transplanted in SCI patients. From the first two completed studies, only 

limited conclusions about efficacy can be drawn, but the transplantation procedure appeared to 

be safe [173-175]. Supported by safety and toxicity studies in rodents, mini-pigs and primates, a 

FDA-approved phase I study transplanting autologous Schwann cells in patients with subacute 

neurologically complete thoracic SCI was recently initiated, which is still ongoing [176] 

(clinicaltrials.gov ID: NCT01739023). Future clinical application will have to cope with some 

challenges: (1) autologous isolation of Schwann cells requires sacrificing a peripheral nerve, thus 

an alternative source needs to be found; (2) expansion of nerve-derived Schwann cells or 

induction of Schwann cell differentiation from MSCs might take several weeks [177, 178]; (3) 

when transplanted alone without further intervention, Schwann cells led to limited functional 

recovery; (4) cell survival following transplantation is rather low similar to other transplanted 

cells.  

Nevertheless, Schwann cells remain a reasonable treatment approach for SCI. While current 

clinical studies might not show meaningful clinical benefit, the results could provide the basis 

for future studies combining Schwann cell transplants with other treatments that have shown 

promise in animal models. 

 

2.3.2.4. Olfactory ensheathing cells 

 

OECs were first described in the 19th century by Golgi [179] and Blanes [180] as specialized glial 

cells exclusively located in the olfactory nerve and glomerular layers, one region of the CNS 

where axonal regeneration is possible throughout adulthood. They ensheat and isolate olfactory 

axons from the growth-inhibitory CNS environment, enabling axonal growth from the olfactory 

epithelium (PNS) towards targets in the olfactory bulbs (CNS) [181]. The unique axonal growth 

promoting properties of OECs were confirmed in vitro and in vivo after dorsal root transections 

[182] and complete thoracic transections [183]. In the following years, the pro-regenerative and 

neuroprotective effects of OECs were investigated in various rodent models of SCI [184, 185]. 
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OECs did not only promote axonal regeneration in the injured CNS, but also functional 

reconnection of injured axons, remyelination, formation of blood vessels, and re-organization of 

the glial scar [185, 186]. However, other studies which compared OECs and Schwann cells 

showed only limited beneficial advantages [167, 168, 187]. This might be at least partially 

attributable to the source of the transplanted cells, culturing conditions, number of passages 

and the site of injection [184, 188, 189]. 

The pre-clinical evidence encouraged the initiation of several clinical studies. In Australia OECs 

isolated from nasal biopsies were transplanted in patients with chronic SCI. These studies 

confirmed the feasibility and safety of the approach. While functional improvement was not 

detected, the studies with 3 - 6 patients were too small to draw definitive conclusions [190, 

191]. Two subsequent clinical trials reported functional improvement [192, 193], but again, a 

limited number of patients was included. Larger clinical trials are needed to confirm the safety 

and efficacy of OECs for the treatment of SCI. 

 

2.3.3. Neural stem cells: sources, transplantation and application in clinical 

trials 

 

The cell sources described in paragraph 2.3.2. had some beneficial effects when transplanted in 

pre-clinical and clinical SCI studies. They had neuroprotective and immunomodulatory effects, 

enhanced remyelination and / or promoted regeneration. However, none of these are native to 

the CNS and can therefore only partially restore tissue integrity, but not fulfill all tasks normally 

fulfilled by CNS neurons and glia. Full restoration of damaged CNS tissue may only be achieved 

by transplanting CNS-NSCs which can give origin to appropriate neuronal and glial phenotypes. 

CNS astrocytes and oligodendrocytes can provide physical, trophic and metabolic support, and 

re-/myelinate axonal projections, while neurons might serve as a “relay”, as mentioned in 

paragraph 2.3.1.   

NSCs can be obtained from different sources: adult NSCs can be isolated from the postnatal 

forebrain subependymal zone or from the spinal cord [194-196] and fetal NSCs from the fetal 

brain or spinal cord [197-201]; on the other side, NSCs and their progeny can be obtained via 

differentiation from embryonic or induced pluripotent stem cells (ESCs, iPSCs) [202-213] or from 

somatic cells via direct fate conversion [214-218]. In comparison to non-CNS cell types described 

above, NSCs are more difficult to obtain and their generation and expansion takes several 

weeks to months. Human adult NSCs isolated during surgery or post mortem [196, 219], fetal 

NSCs cannot be used for autologous transplantation and their use is moreover subject to ethical 

considerations. On the other hand, NSCs obtained from PSCs or generated by fate conversion 

can be tumorigenic due to genetic or epigenetic abnormalities [220]. Therefore, although they 

are a highly promising cell source for SCI repair, NSCs derived from either source have to be 

used with caution. 
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Numerous pre-clinical SCI studies have examined the potential of NSCs to mediate functional 

recovery after SCI. In general, a portion of the transplanted NSCs survive, adopt mature neural 

phenotypes and can integrate into the host tissue. Transplanted NSCs can provide a substrate 

for regenerating axons [221-223], serve as a “relay” [148, 149, 224], re-myelinate spared 

projections [200, 201, 210, 225-227] or can be neuroprotective [228]. More recent studies have 

also reported that human iPSC-derived NSC can promote functional recovery [148, 149, 229-

231]. 

The first NSC transplantation studies which were translated into a clinical setting were based on 

the generation of oligodendrocyte precursor cells (OPCs) from human ESCs (hESCs) to re-

myelinate spared axons and to promote functional recovery [211, 212]. A Phase I “first-ever” 

clinical study using human ESCs was initiated in 2009 by the Geron Corporation (Menlo Park, 

California, USA) to evaluate safety and efficacy of human ESC transplantation in acute SCI [232]. 

After five patients, the clinical trial was suddenly discontinued in 2011, apparently due to 

financial concerns [233].  Asterias Biotherapeutics Inc. (Fremont, California, USA) has recently 

initiated a Phase I/IIa trial using ESC-derived OPCs in subacute cervical SCI (clinicaltrials.gov ID: 

NCT02302157), which will be completed in 2018. Prior to this clinical trial, the ESC-derived OPC 

line AST-OPC1 was evaluated for pre-/clinical safety in a rodent animal model [234].    

Two further clinical trials in SCI were conducted with fetal NSCs isolated from the brain and 

from the spinal cord, respectively. Stem Cells Inc. (Newark, California, USA) sponsored one 

phase I/II clinical trial conducted in Canada and Switzerland from 2011 to 2015 (clinicaltrials.gov 

ID: NCT01321333), in which human spinal cord derived cells (HuCNS-SC cells) were delivered via 

intramedullary transplantation in patients with thoracic SCI. Prior to this clinical trial, the 

HuCNS-SC® cell line, which was purified and expanded by the company Stem Cell Inc., was 

evaluated for pre-/clinical safety in rodent animal models [235]. Whereas no safety concerns 

have arisen during the clinical trial, recovery of sensory function was observed in 3 out of 12 

patients [235]. From 2014 to 2016 safety of human spinal cord stem cells was assessed in a 

second phase I clinical trial in patients with complete SCI, which was sponsored by Neuralstem 

Inc. (Germantown, Maryland, USA) (clinicaltrials.gov ID: NCT01772810). This specific cell line 

(HSSC) was also tested in a multi-centric phase I/II clinical trial in ALS patients. Adverse events 

were observed, however they were not related to the transplanted cells [236].    

Recent pre-clinical studies demonstrated that NSCs isolated from embryonic day 14 (E14) or 

differentiated from the ESC lines HUES7 and 566RSC as well as from iPSCs are able to extend 

long-distance axons into the injured spinal cord and form synaptic connections, thereby possibly 

acting a “relay” [148, 149]. However, two subsequent replication studies reported ectopic 

growth of transplanted cells in CNS regions distant from the lesion site [237] and no locomotor 

recovery [238], drawing attention to the necessity to further assess safety and effect of both 

fetal and PSC-derived NSCs. 
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2.4. Tissue engineering: the promise of pluripotent stem cells 
 

The major advantage of transplanting dissociated fetal spinal cord derived NSCs without further 

in vitro manipulation is that these NSCs display characteristics of a naturally defined 

developmental stage and bear a low risk to form tumors – although ectopic colony formation is 

quite alarming [237]. At this stage NSCs are already patterned and committed to differentiation 

lineages, but are still malleable and resistant to stress, therefore they are likely to survive in the 

injured host tissue. However, obtaining the appropriate amount of day 40 human fetal tissue 

(corresponding to the rat E14 developmental stage) from abortions may not be trivial. Isolation 

of primary tissue is subject to batch-to-batch variability, and the isolated fetal tissue may not be 

enough to fill the lesion site (quantity).  

Fetal spinal cord derived cell lines (i.e. HuCNS-SC® and HSSC), which were described in 

paragraph 2.3.3., overcome potential batch-to-batch variability issues and have been expanded 

to obtain the appropriate quantity needed for clinical studies. They have been tested in several 

pre-clinical and clinical studies and are therefore “ready-to-go”. However, due to extensive 

propagation in vitro, these cell lines may have acquired “artificial” properties. 

Both primary fetal spinal cord tissue and fetal spinal cord derived NSC lines are subject to ethical 

implications and their transplantation has to be accompanied by immunosuppressive 

treatments to avoid graft rejection. In addition, both cell sources are committed to specific NSC 

lineages, therefore limiting the degree of freedom to select specific NSC populations, such as 

OPCs.   

In this context, ESCs and ESC-homologue iPSCs represent means to obtain large amounts of any 

cell type of the human body, however only iPSCs allow for autologous transplantation without 

ethical implications. Both cell sources will be briefly reviewed hereafter. 

 

2.4.1. Embryonic stem cells and induced pluripotent stem cells 

 

The term “pluripotent” describes in a broader sense a cell that can generate cell types of each of 

the three germ layers: endoderm, mesoderm and ectoderm. On the other side, a totipotent 

stem cell has the ability to generate any cell within an organism. ESCs are obtained from the 

inner cell mass (ICM) of blastocysts and are therefore not totipotent: they can give origin to any 

cell type of an organism but not to trophoblasts, which constitute the envelope surrounding the 

ICM. 

Human ESCs have been successfully isolated from blastocysts about 20 years ago [239], leading 

to the optimistic idea that they represent an unlimited source of any cell type for future basic 

research, drug screenings and cell transplantation. However isolation of ESCs from human 

blastomeres led to vehement public debate, although a method was published to generate hESC 
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lines without embryo destruction [240]. Ethical concerns about the morality of the use of 

human embryos for research purposes led to the prohibition or tight regulation of their use. 

Nevertheless numerous hESC lines were established and patented world-wide, including several 

clinical grade hESC lines which have been derived following Good Manufacturing Practice (GMP) 

guidelines and throughoutly genomically characterized [241-243]. Unfortunately, these lines did 

not gain the popularity of previously established hESC lines, such as the HUES6, HUES7, HUES9 

(Harvard University Embryonic Stem Cell) lines, and were never used in clinical trials [244]. 

Although derivation of hESCs is standardized and although they express similar markers at the 

undifferentiated state, hESCs do not have an equal developmental potential. The differentiation 

propensity of HUES lines 1-17 was compared following spontaneous as well as specific / 

directed differentiation at early and late passages to assess dependency of differentiation 

propensity on hESC senescence. While senescence did not affect predisposition for specific 

differentiation lineages, significant differences were observed across HUES lines. Some lines 

were committed to the mesodermal lineage (f.i. HUES1, HUES4, HUES8) and to the endodermal 

lineage (HUES4, HUES8), whereas others were inclined towards ectodermal / neural lineages 

(HUES6, HUES9) [245]. Altogether, hESCs represent an extremely powerful tool for regenerative 

medicine and in vitro disease modeling, as they are a virtually unlimited source of any cell type 

of the human body. However, their use is tightly regulated and accurate testing is necessary to 

assess their differentiation potential. On the other side, their genomic integrity has been 

throughoutly characterized and the existence of clinical grade hESCs enables faster and safer 

transfer into a clinical setting.  

A decade ago, Kazutoshi Takahashi and Shinya Yamanaka reported the successful development 

of an unimaginable and incredible technique, which opened up infinite possibilities for 

development and disease modeling as well as for regenerative medicine: by retroviral 

introduction of four factors - today known as Yamanaka factors - Oct3/4, Sox2, c-Myc and Klf4 

into somatic cells, the authors were able to obtain cells which had lost their somatic identity and 

assumed morphology, gene expression and growth properties of ESCs. In addition, 

reprogrammed somatic cells were able to give origin to all three germ layers and to contribute 

to development when introduced into a blastocyst [213, 246-249]. These cells were named 

induced pluripotent stem cells (iPSCs) and represent, similarly to ESCs, an unlimited source of all 

cell types of the human body. The discovery of iPSCs was a breakthrough, had a huge impact on 

the scientific community world-wide and was awarded with a Nobel Prize in Physiology and 

Medicine in 2012, only 6 years after the first publication.  

The impact of iPSCs in the field of regenerative medicine is remarkable: somatic cells can be 

harvested through minimally invasive or non-invasive methods, reprogrammed into a 

pluripotent state and used to obtain any desired cell type for autologous transplantation. 

Therefore iPSCs represent a unique and non-controversial tool for personalized and autologous 

therapeutic intervention.   
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The following paragraphs will be dedicated to the generation and differentiation of iPSCs, as 

well as their application. Lastly, the emerging field of direct fate conversion will be briefly 

reviewed.  

 

2.4.1.1. Generation and safety of induced pluripotent stem cells 

 

Conversion of somatic cells to a pluripotent state was first achieved by retroviral introduction of 

either combination of four transcription factors into fibroblasts: Oct3/4, Sox2, c-Myc and Klf4 

(Yamanaka factors) or Oct3/4, Sox2, Nanog and Lin28 [250]. Within only two years after the first 

publication, several laboratories world-wide published high-impact studies where a variety of 

somatic cell sources and transcription factor combinations were used to obtain iPSCs, including 

fibroblasts, blood cells, cord blood cells, liver cells, stomach cells, pancreatic cells, adult NSCs 

and keratinocytes. These studies proved the reproducibility and reliability of the novel 

technique [251-262].  

Delivery of the Yamanaka factors into somatic cells was originally achieved using moloney 

murine leukemia virus (MMLV)-derived retroviruses containing the pMX vector and the 

transcription factors of interest. Each viral vector contained one transcription factor; therefore 

each transcription factor was delivered separately to somatic cells within a viral cocktail [213, 

246]. Reprogramming efficiencies were very low, about 0.01% for human fibroblasts. Moreover, 

the fact that each reprogramming factor is delivered separately may lead to highly variable 

expression levels of each factor in each target cells, which in turn may lead to an extremely 

heterogeneous resulting iPSC population.  

Within the past decade, several alternative reprogramming methods were developed to 

enhance efficiency of reprogramming and address biosafety issues, which are summarized in 

figure 2.2.  
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In fact, when germline competence of retrovirally-reprogrammed iPSCs was tested, about 20% 

of the chimeric progeny developed tumors, probably due to reactivation of the viral transgenes 

[249]. In addition, integration of the reprogramming factors into the genome may as well result 

in tumor formation. Therefore, two studies tested an adenovirus-mediated delivery system 

[258, 263], as the genetic material of adenoviruses is neither integrated into the host genome 

nor replicated during cell division: after its release into the host cell, the double-stranded DNA is 

transcribed and degraded [258]. This reduces the efficiency of reprogramming, which was not 

Figure 2.2 Generation of induced pluripotent stem cells. 
Numerous techniques for the generation of iPSCs have been developed in the past decade to 
avoid the necessity of viral delivery of the four reprogramming factors and potential 
mutagenesis in de-differentiated somatic cells. Viral delivery was first replaced by DNA-based 
delivery, which however, in the case of integrative DNA fragments, still bares the risk for 
mutagenesis. RNA-based and protein-based introduction of the four reprogramming factors are 
the safest reprogramming methods, although their efficiency is still very low.    
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successful when the four reprogramming factors were delivered separately, even if 

adenoviruses were delivered repeatedly [263]. In one of the studies, reprogramming via plasmid 

transfection was tested; however, reprogramming efficiency was very low and integration of the 

plasmid into the genome was detected [263]. To improve reprogramming efficiencies and 

activate/deactivate the reprogramming factors in a controlled manner, polycistronic lentiviral 

vectors which contain all transcription factors in a single cassette were developed, whereby 

gene expression was either regulated by tetracycline (i.e. doxycycline) presence/absence or 

silenced by Causes Recombination (CRE)-mediated excision of the expression cassette [264-

266]. These lentiviral vectors were named STEMCCA (“STEM Cell Cassette”) and are now 

commercially available (Millipore, #SCR548, #SCR518, #SCR513, #SCR512). A subsequent study 

published by the STEMCCA developers stressed the importance of eliminating residual 

transgene expression from iPSC lines [267]. However, due to integration of the expression 

cassette into the genome and to the possibility that activation/deactivation of the oncogenes 

may not be completely reliable, tumor formation cannot be excluded when using lentiviral 

STEMCCA plasmids for reprogramming. Therefore, non-viral multiprotein expression cassettes 

were developed and delivered to somatic cells within a PiggyBac transposon containing a 

tetracycline trans-activator [268]. A “transposon” is a mobile (=transposable) genetic element: it 

can change its position within the genome via a non-replicative “cut & paste” or a replicative 

“copy & paste” mechanism. Long after their discovery, which was awarded with a Nobel Prize in 

Physiology and Medicine in 1983, transposons were instrumentalized as non-viral gene delivery 

system [269]. In addition, CRE-mediated factor excision can be used to ensure elimination of the 

oncogenes from iPSCs [268]. The system seems to represent a reliable means to generate non-

genetically modified iPSCs without viral delivery.  

Non-integrative reprogramming methods were also developed to bypass the potential and 

permanent genetic modifications resulting from integration of retroviral and lentiviral vectors, 

as well as of transposons. Non-replicative as well as replicative episomal (=extra-chromosomal) 

vectors were used for DNA-based, non-viral and non-integrative reprogramming [270-272]. 

Episomes are commercially available (ThermoFisher Scientific #A14703) plasmids which can be 

introduced into somatic cells without viral-mediated delivery and persist as well as replicate in 

the cytoplasm during the host cell cycle. In absence of a selection drug, plasmid replication does 

not occur and the episomal DNA is not passed on to the progeny during cell division. Transgene-

free progeny can therefore be selected for further use. However, since Episomes in general can 

persist in the cytoplasm as well as get integrated into chromosomal DNA, a screening is 

necessary to identify integration-free cell progeny.  

Last but not least, two reprogramming methods have been developed, which are not based on 

DNA delivery and thereby completely bypass the risk for genetic alterations due to insertional 

mutagenesis: RNA-based and protein-based delivery of reprogramming factors. The first 

method is based on repeated delivery of a synthetic mRNA molecule which was designed to 
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overcome immediate degradation by the cell’s antiviral response and to be efficiently 

translated. In addition, the reprogramming efficiencies were very high - however the 

methodology is relatively complex: RNA engineering, optimization of delivery methods, 

treatment with soluble interferon to counteract immediate degradation and optimization of cell 

culture conditions (culture media, feeder cell types, amount of oxygen) were necessary to 

obtain the desired outcome [273]. In the second study, Oct4, Sox2, Klf4 and c-Myc recombinant 

proteins containing a poly-arginine (11R) protein transduction domain were generated and 

transduced into fibroblasts, where they readily entered the nucleus. Repeated transduction as 

well as the HDAC inhibitor valproic acid (VPA) were used to enhance reprogramming efficiency 

[274]. Generation of iPSCs using protein transduction is very promising as it relies on a safer, 

faster and simpler reprogramming method.    

Altogether, generation of iPSCs has been performed world-wide using diverse reprogramming 

techniques and donor cells from several mammalian species and tissues. Although the end-

result, i.e. characteristics of the reprogrammed progeny, is generally reproducible, the necessity 

to define a standardized reprogramming method to reduce laboratory-to-laboratory batch-

variability needs to be addressed. In addition, most commonly used reprogramming methods 

introduce genetic mutations into the donor cells, and reprogramming, as well as 

characterization of the resulting iPSC line are very time-consuming.  

 

2.4.1.2. Induced pluripotent stem cells for regenerative medicine 

 

Currently, clinical application of PSC-derived progeny comprises five fields: age-related macular 

degeneration (AMD), Parkinson’s disease (PD), SCI, type I Diabetes and myocardial infarction 

[275]. One clinical trial using iPSCs was started in Japan in an individual with AMD. The outcome 

was satisfactory, as the patient’s vision has stopped deteriorating [276]. However, when the 

second patient was about to receive the treatment, the presence of potentially dangerous 

genetic mutations were detected in the iPSC line, leading to the termination of the trial and to 

critical considerations about the use of iPSCs in a clinical setting [275]. A feasibility clinical trial 

for the production of autologous retinal pigment epithelial cells from iPSCs was initiated in 2015 

to assess the safety and efficacy of the differentiation protocol prior to application in AMD 

(clinicaltrials.gov ID: NCT02464956). However, there are no reports about the outcome of the 

study. This example shows that although iPSCs are a highly promising source of any cell type for 

autologous cell therapy, they are still very far from routine clinical use and have to be used with 

caution.   

One reason behind this is the lack of a standardized production and quality control procedure. 

While commercially available ESC are well-characterized and have been used for decades of 

research, iPSCs still remain heterogeneous in terms of reprogramming method adopted, donor 

tissue, genetic and epigenetic profile, and more importantly of quality. Therefore, while the 
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potential of iPSCs in the field of regenerative medicine is enormous, as big is the risk of a 

fragmented development of their application.  

Nowadays it becomes more and more common that iPSCs are generated in a core facility, such 

as the iPSC core facility of the Helmholtz-Center in Munich, Germany (https://www.helmholtz-

muenchen.de/ipsc/index.html). The idea behind is to have a central “bank” of iPSC lines, which 

are generated following highly standardized protocols and throughoutly characterized. In 

particular, the generation of standardized iPSCs for pre-clinical and clinical use should comply 

with GMP guidelines.  

GMP is a world-wide guideline for ensuring that products, such as f.i. food and pharmaceutical 

products, are produced and controlled according to quality standards. The guidelines indicate 

the “minimum requirements” that a manufacturer must meet to make sure that the products 

are of high quality and of no risk to the customer or patient. GMP fundamentals and a full GMP 

manual, as well as numerous books about production, validation, quality management and 

regulations, are published by Maas and Peither GMP Publishing (https://www.gmp-

publishing.com/en/gmp-home.html) and cover a whole range of topics including structure and 

hygienic conditions of manufacturing facilities, environmental conditions, manufacturing 

processes, manufacturing documentation (Good Documentation Practice, GDP), qualification of 

operators, product distribution.  

GMP regulatory guidelines for “iPSCs as a product” include the type and method for the 

procurement of somatic donor cells; the derivation, expansion and cryopreservation of iPSC 

lines; the characterization of their properties, including genetic and epigenetic profile; 

monitoring of absence/presence of pathogens; monitoring of phenotypical stability over 

prolonged passaging or storage. Importantly, similar guidelines should be applied to the 

differentiation procedure.  

An ideal pre-requisite for a transfer of iPSCs into routine clinical use would be the establishment 

of a global “GMP iPSC haplobank” [277]. In fact, while on one side it seems utopic to generate 

iPSC lines and differentiate them to match any type of target tissue for autologous 

transplantation ad hoc in a timely manner, a haplobank would represent a core storage facility, 

in which iPSCs are generated in a standardized manner from selected donors, whose profiles 

matches the widest possible amount of recipients world-wide. For instance, donors would have 

blood group 0 and would be homozygous for common human leukocyte antigens (HLA), thereby 

reducing the risk of rejection by the recipient(s). This would reduce the necessity for local GMP 

compliant iPSC production and reduce global variability of iPSC sources. 

Altogether, it is becoming clear that iPSC production and application should be tightly regulated 

by globally accepted guidelines prior to a transition into the clinic. 

 

https://www.helmholtz-muenchen.de/ipsc/index.html
https://www.helmholtz-muenchen.de/ipsc/index.html
https://www.gmp-publishing.com/en/gmp-home.html
https://www.gmp-publishing.com/en/gmp-home.html


28 

 

2.4.1.3. Differentiation of pluripotent stem cells into neural phenotypes 

 

The relevance of PSCs for regenerative medicine has been extensively discussed above; 

however neural tissue engineering would not be possible without deep knowledge of the 

neurodevelopmental mechanisms which underlie the formation of mature neurons and glia and 

the establishment of neural networks, both in health and disease. Corticogenesis and the 

complex mechanisms of CNS development have been investigated and recapitulated in vitro 

using PSCs [278], significantly contributing to our understanding of neurodevelopmental 

processes as well as of neurological disorders. Due to the complexity and inaccessibility of the 

human brain for experimental investigation, animal models have traditionally been utilized to 

study embryonic and postnatal CNS development. The advent of PSCs, and especially of iPSCs, 

opened up the possibility to study human neural development in health and disease [279], 

culminating in the establishment of 3D in vitro cultures, in which differentiating cells self-

organize to form complex structures. The latter have been referred to as “organoids”. Organoids 

contain the neural phenotypes normally present in the CNS, and these are in addition self-

organized to recapitulate both tissue and organ structure [280-282].  

Soon after the discovery of iPSCs, protocols for their differentiation into specific neural lineages 

have been established, based on early or more recent knowledge gained from ESC in vitro 

differentiation [283-290].    

The most common in vitro neural induction procedure for hPSCs [288, 291] starts with exposure 

of free-floating PSC colonies, referred to as embryoid bodies (EBs), to a basic neural medium. 

Cells acquire a neural plate - homologue neuroepithelial identity and, once plated on a 

substrate, they self-organize in multi-layered concentric structures, which mimic the closure and 

stratification of the neural tube and are referred to as neural rosettes (NRs). During neural 

development, patterning or lineage specification of neural tube progenitors is mediated by 

exposure to soluble factors called morphogens. For instance, bone morphogenetic proteins 

(BMPs) and sonic hedgehog (SHH) are released dorsally from the roof plate and ventrally from 

the notochord, respectively. Neural tube progenitors are exposed to gradients of morphogens, 

and this in turn leads to their commitment to a specific cell fate: for example, ventrally 

patterned neural progenitors will give origin to ventral motor neurons. On the other side, 

exposure to retinoic acid (RA) confers them a caudal or spinal cord phenotype [292-294]. 

Similarly, NR progenitors are most sensitive to in vitro patterning, and commitment to a specific 

fate is maintained in later stages [288]. After patterning, NRs are manually picked and cultured 

either at low-adhesion (neurospheres) or on substrate (adherent monolayer) in the presence of 

the growth factors basic fibroblast growth factor (FGF) 2 and epidermal growth factor (EGF). 

During this step, neuroepithelial progenitors become tri-potent NSCs and their differentiation 

will give origin to astrocytes, oligodendrocytes and neurons.  
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Within the past decade, neural differentiation protocols have been optimized for the directed 

differentiation of PSCs into a nearly pure desired cell population, such as OPCs [208, 211, 212, 

285, 295], astrocytes [205, 296, 297] and neurons. In the latter case, protocols for neuronal 

differentiation have been additionally fine-tailored in order not to obtain a randomly mixed 

population [288], but neurons with a defined neurotransmitter-phenotype, including pyramidal 

neurons [298], midbrain dopaminergic neurons [299-302], spinal motor neurons [206, 303, 304] 

and serotonergic neurons [207]. Phenotypical specification offers the possibility to investigate 

or manipulate mechanisms of development or disease progression in a cell population of 

interest. For instance, iPSC-derived dopaminergic neurons can be useful to investigate 

molecular mechanisms underlying neurodegeneration in PD. In addition, the healthy neuronal 

cell population can be engrafted to substitute diseased neurons: healthy dopaminergic neurons 

can be transplanted in individuals affected by PD. Similarly, neuronal precursors which have 

been patterned towards a spinal cord phenotype will be more suitable to substitute damaged 

neurons after SCI than non-spinal cord-residing dopaminergic neurons.   

It has to be said, however, that although protocols for directed differentiation of PSCs are very 

promising, they hardly lead to pure populations without additional selection procedures, such 

as fluorescence-activated cell sorting (FACS)-mediated purification. In addition, they are not 

easily reproducible, partially due to the variability of the PSC line used. Thus, these protocols are 

still not sufficiently robust.  

In summary, PSCs are a useful tool for the investigation and recapitulation of neural 

development, which constitutes the basis for tissue engineering (figure xx). Based on broad 

knowledge of neurodevelopmental mechanisms, protocols for the directed differentiation of 

PSC into specific neural phenotypes have been established, however these methods are not 

easy to reproduce.  
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2.4.2. Direct fate conversion of somatic cells into neuronal phenotypes 

 

While one advantage of hPSCs is the high degree of freedom regarding the progeny that can be 

obtained, a big disadvantage is that most of the differentiation procedures are extremely time-

consuming [205]. Moreover, each step of neural induction may introduce additional laboratory-

to-laboratory or batch-to-batch variability and strongly influence the outcome of differentiation. 

For example, both size and density of EBs, NRs and neurospheres or adherent progenitors may 

affect their sensitivity to a certain soluble factor necessary for directed differentiation. In 

addition, iPSCs still bear the risk of incomplete differentiation in vivo and consequent tumor 

formation. 

In order to shorten the duration of differentiation and to minimize variability, as well as the risk 

of tumor formation, forced expression of lineage-specific factors has been used to directly 

Figure 2.3 Induced pluripotent stem cells for tissue engineering. 
Somatic cells, for instance skin cells, can be obtained from any patient in a minimally invasive 
way.  Using viral or non-viral mediated delivery of the four reprogramming factors, somatic cells 
can be de-differentiated to a ESC-like pluripotent state.  Thereafter, by applying soluble factors, 
they can be guided towards any desired cell fate. For instance, via incubation with basic neural 
medium, their differentiation into NSCs is promoted. These can in turn give origin to neurons 
and glia and promote tissue repair, restoration of neural network function and functional 
recovery after spinal cord injury. 
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switch the phenotype of somatic cells - this process is called trans-differentiation or direct fate 

conversion. In 2010/2011 first evidence was published, that combinatorial (forced) expression 

of neural-lineage-specific transcription factors can efficiently convert fibroblasts into functional 

neurons in vitro, which are referred to as induced neurons (iN) [305, 306]. Mouse iNs not only 

expressed the neuronal markers ß-III-tubulin, NeuN and microtubule-associated protein 2 

(MAP2), but also synapsin, indicative of functional synapses; in addition, electrophysiological 

recordings demonstrated that they are functional [305]. Using the same transcription factors, 

human iNs were generated, however these were not electrophysiologically active. Expression of 

an additional transcription factor and extended culturing time were necessary for neurons to 

assume mature features [306]. In both studies GABAergic and glutamatergic neuronal 

phenotypes were predominant. One later study published by the same group demonstrated 

that one single pro-neural transcription factor, achete-scute family bHLH transcription factor 1 

(ASCL1), was sufficient to convert both mouse and gamma-Aminobutyric acid human fibroblasts 

into functional iNs, which however required a longer maturation process [215]. Subsequently, 

rodent fibroblasts were trans-differentiated into GABAergic interneurons [307], into OPCs which 

were able to mature and ensheat axons both in vitro and in vivo [308], as well as into functional 

astrocytes [309], demonstrating that fate conversion can be used to obtain a desired neural 

phenotype without an intermediate pluripotent state.  

Altogether, direct fate conversion represents a faster and safer method for the generation of a 

desired cell phenotype for disease modeling or tissue engineering. However, it is still not clear if 

the phenotype of trans-differentiated cells is stable for longer time-frames and, similarly to 

iPSC-derived cells, the limited availability of a human cell population which can be used as a 

reference makes it difficult to assess how close the phenotype of trans-differentiated cells 

matches the phenotype of native cells. The progeny obtained by direct fate conversion has low 

or no proliferation potential and can therefore not be expanded, for instance for 

transplantation purposes. In addition, in contrast to differentiation of PSCs, only one cell type at 

the time can be obtained by trans-differentiation. Last but not least, fate conversion is to date 

induced by viral - mainly lentiviral - delivery of lineage specific transcription factors [215, 305, 

308, 309]. As mentioned in 2.4.1.1., viral delivery and genomic integration of the expression 

cassette are potentially mutagenic. Therefore, although trans-differentiation does not 

necessarily include a pluripotent stage, the risk for tumor formation cannot be ruled out. 
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2.4.3. Pluripotent stem cell - derived neural stem cells in pre-clinical 

studies of spinal cord injury 

 

Soon after the advent of iPSCs and the establishment of neural differentiation protocols, the 

therapeutic potential of iPSC-derived NSCs for spinal cord injury repair was investigated in 

rodent models of SCI. The first goals of these studies were to assess safety, survival, 

differentiation and integration of iPSC-derived NSCs. First, safety of iPSC-derived neurospheres 

was evaluated by transplantation into the brain of non-obese diabetic / severe combined 

immunodeficiency (NOD/SCID) mice [229]. Transplantation into the intact CNS is in fact 

necessary to assess the properties and behavior of iPSC-derived NSCs in a physiologically 

healthy environment. iPSC-derived NSCs, which did not lead to tumor formation were 

considered to be safe and were thereafter transplanted into the spinal cord of mice after a 

contusion injury. Transplanted NSCs differentiated into functional oligodendrocytes, astrocytes 

and neurons and promoted functional recovery. Myelin-binding protein (MBP)+ myelin 

produced by oligodendrocytes, BDNF and NT3 likely released by astrocytes, tissue sparing and 

the presence of 5-HT+ fibers in close proximity to the graft were considered to be potential 

mechanisms contributing to functional recovery [229]. Next, the therapeutic potential of human 

iPSC-derived NSCs was examined in NOD/SCID mice after contusive SCI. NSCs differentiated into 

the three neural lineages, promoted angiogenesis, axonal regeneration and myelination, and 

formed synapses with host cells. Functional recovery persisted for several months after 

transplantation [230]. Pro-active contribution of grafted iPSC-derived NSCs, which were 

expanded in monolayer cultures to enhance homogeneity, to functional recovery was confirmed 

in a subsequent study by diphtheria-toxin (DT)-mediated selective ablation. This study also for 

the first time addressed the concept of “neuronal relay” in the context of iPSC-derived NSC 

transplantation. To this end, WGA-expressing adenoviruses were injected into the motor cortex 

of spinal cord injured mice. Wheat germ agglutinin or WGA, a plant lectin, which can be passed 

to second or third-order neurons across synapses, was detected caudally to the injury site. In 

addition, synapses between transplanted and host cells were detected by 

immunohistochemistry. Altogether, this study suggested that transplanted iPSC-derived NSC can 

give rise to functional neurons, which form synaptic connections with descending motor neuron 

projections as well as with caudal targets, therefore serving as “neuronal relay” and possibly 

accounting for the observed functional recovery [231]. These three studies addressed relevant 

questions in clinically relevant contusive SCI models. However, several aspects remained to be 

addressed. In fact, iPSC-derived NSCs were not patterned to assume spinal cord identities / 

phenotypes, therefore their efficacy to serve a functional relay in a spinal cord environment 

might not reach an optimal level. In addition, transplantations were performed acutely or sub-

acutely after SCI, raising the question if their therapeutical potential can be exploited in a 

chronic injury environment. Both these issues were addressed next. Caudalized human iPSC-

derived NSCs were transplanted into an “early chronic” model of SCI, four weeks after contusive 
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injury. In this study, iPSC-derived NSCs were found to differentiate into the three neural 

lineages, but no functional recovery was detected [310]. This suggests that iPSC-derived NSC 

transplantation approaches might need to be adapted to be effective in chronic SCI models, but 

it might also suggest that they might not be effective at all. Lastly, a very impressive study 

showed robust long-distance axonal outgrowth of transplanted human iPSC-derived NSCs three 

months after lateral hemisection of the rat spinal cord. Not only axonal outgrowth was 

remarkable, but extended axons also formed synapses with endogenous neurons. In addition to 

graft axonal-outgrowth, host axonal-ingrowth was detected, whereby host serotonergic axons 

penetrated the graft and formed synapses with grafted cells, suggesting the formation of a 

functional neuronal “relay”. However, no functional recovery was detected in this study. 

Alarmingly, human iPSC-derived axonal terminals were detected in the cortex, olfactory bulb 

and cerebellum of rats which received transplantation, and iPSC-derived NSCs were detected in 

the spinal cord central canal distally from the lesion site. More alarmingly, ectopic colony 

formation was observed in replication studies after transplantation of fetal-derived NSCs into 

the rat spinal cord, up to the brain stem and 4th ventricle (hindbrain). Ectopic colonies moreover 

expressed the proliferation marker Ki67 [237, 311, 312]. These findings indicate that although 

robust survival, differentiation and integration of NSC grafts into the host spinal cord are 

promising for tissue regeneration, they may also lead to undesired and potentially deleterious 

outcome.     

All in all, the presented studies addressed key aspects of iPSC-derived NSC transplantation after 

SCI. Transplanted cells are able to differentiate and integrate into the host spinal cord by 

functionally interacting with host cells, as well as to contribute to functional recovery. However, 

functional recovery was not observed throughout all studies, possibly due to the batch-to-batch 

variability of transplanted cells or of the adopted experimental procedure. In addition, although 

synapse formation was detected, whether these synaptic connections are electrophysiologically 

active was not demonstrated. 

In general, several mechanisms of action of iPSC-derived NSCs have been identified 

(myelination, production of neurotrophic factors, “relay” formation) as potential contributors to 

functional recovery. Still, to date it is not clear which role they play and the extent or necessity 

of their contribution needs to be determined. One reason behind this issue is the mixed 

phenotypical identity of iPSC-derived differentiated NSCs. Batch-to-batch NSC variability may 

lead to differentiated progeny with variable compositions of neurons and glia. The latter, in 

turn, fulfill very specialized tasks in the healthy and injured CNS. For instance, a true spinal cord 

“relay” mechanism can only be mediated by neurons, which receive an excitatory signal and 

convey it to the next neuron, such as glutamatergic neurons. In this case, forebrain GABAergic 

inhibitory or midbrain dopaminergic neurons are most likely of no use. On the other side, 

astrocytes produce ECM molecules and secrete neurotrophic factors such as BDNF, GDNF, NT-3 

and VEGF, which can promote axonal regeneration. Therefore, variable extent of astrocytic 
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differentiation in independent studies might lead to differential endogenous regeneration. In 

order to address mechanisms of tissue repair and promote functional recovery in a more 

controlled way, it is necessary to transplant well-characterized cells with a tailored phenotype.  

 

2.5. Astrocytes for tissue replacement after spinal cord injury 
 

Glial cells constitute about 90% of cell of the human brain [313], and are often being referred to 

as the “brain glue” due to their multiple roles in brain physiology, metabolism, development 

and disease, as well as response to traumatic injury. Astrocytes, which account for 20-40% of 

the total cells in the mammalian brain [314], regulate blood flow, homeostasis of water, ions, 

neurotransmitters, sugars and metabolites, secrete ECM components, regulate synapse 

formation and neurotrophins and modulate neuronal network activity. Therefore, they are 

crucial for brain function in health and disease.   

In a broad sense, astrocytes are glial cells of typically stellate morphology, characterized by 

extension of some big processes and numerous small processes. Astrocyte have been 

subdivided into two main categories based on their morphologies: protoplasmic astrocytes are 

located in the gray matter and have numerous short highly branched processes, whereas 

fibrous astrocytes are located in the white matter and have long sparsely branched processes. 

However, the astrocytic population is extremely heterogeneous: glial progenitors are subject to 

developmental patterning, leading to morphological und functional diversity, which is not well 

characterized and under investigation [315, 316].   

It has been shown that astrocytes are organized in individual spatial domains: spatial overlap 

between two adjoining astrocytes amounts approximately 5% of their volume and only involves 

the outer portion of their processes, whereas the core region is never penetrated by other 

astrocytes [317, 318]. Within each domain, a single astrocyte can regulate the function of 105 

synapses in the rodent cortex and hippocampus and likely more than 106 in the human cortex 

[319]. Moreover, at least one astrocytic end-foot surrounds blood vessels [320]. Accordingly, 

each astrocyte plays a role in the regulation of both neural network and neurovascular function. 

From a neurodevelopmental point of view, specification and maturation of astrocytes has been 

extensively investigated but remains confusing, especially in terms of marker expression [321]. 

Initiation of astrogliogenesis or specification from an A2B5+ glial restricted precursor (GRP) [322] 

has been attributed to the transcription factors Sox9 and nuclear factor I-A (NFIA), which act 

synergistically to regulate genes involved in glial specification [323]. Following the gliogenic 

switch, NFIA induces expression of excitatory amino acid transporter 1 (EAAT1 also known as 

GLAST) in astroglial precursors, one of the two major astrocytic glutamate transporters [324]. 

Thereafter, maturing astrocytes are characterized by expression of the canonical astrocytic 

marker glial fibrillary acidic protein (GFAP), as well as by expression of S100 calcium-binding 

protein ß (S100ß), aldehyde dehydrogenase 1 family member L1 (Aldh1l1), the cell surface 
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marker CD44, the water channel aquaporin 4 (Aqp4), the astrocytic gap junction component 

connexin 43 (Cx43), aldolase C (AldoC) and the glutamate transporter EAAT2 (also known as 

GLT1), the latter four being associated with mature astrocytes [325-331]. However, timing of 

astrocytic marker expression is still not throughoutly clear. For instance, although Aqp4 is 

considered to be a hallmark of mature astrocytes [332], it is also expressed in subventricular 

zone-residing postnatal NSCs [333]. In addition, expression of the cytoskeletal filament marker 

vimentin has been associated with immature as well as with reactive astrocytes [334-336].  

Hereafter, the roles of astrocytes in the healthy as well as damaged CNS will be briefly reviewed. 

 

2.5.1. Role of astrocytes in the healthy central nervous system 

 

2.5.1.1. Cerebrovascular regulation of water, ion and sugar homeostasis 

 

Neural activity is a complex process, which demands a lot of energy. Therefore, the CNS is 

extremely dependent on continuous supply of energy sources, such as lactate, ATP and glucose, 

through the blood flow. It has been shown that the distribution of the cerebral blood flow is 

regulated according to the functional activity of different brain regions in time: when the 

activity of a certain brain region increases, also the blood flow in this region is increased. This 

mechanisms is called hyperaemia and is responsible for adequate delivery of energy sources to 

meet the needs of different tissues under physiological and pathological conditions [337]. 

Adjustments in blood circulation at a micro-environmental level are regulated by neurovascular 

units, which comprise endothelial cells (blood vessels), pericytes, a neuronal process and an 

astrocytic end-foot, as well as microglia and smooth muscle cells. Neurovascular units are not 

only important for modulating cerebral blood flow, but also play a big role in the regulation of 

the BBB [338-340]. Astrocytic end-feet almost completely enwrap blood capillaries; here, 

through the water channel Aqp4, multiple types of K+ channels and purinergic P2Y receptors 

[320], astrocytes regulate water and ion homeostasis and respond to purinergic signals (ATP).  

Importantly, extracellular K+ ion concentrations play crucial role in synaptic transmission: 

maintenance of a constant level of K+ during neuronal activity is a pre-requisite to maintain 

neuronal excitability [341]. 

On the other side, astrocytes release ATP in response to neurotransmitters through connexin 

hemichannels linking adjacent astrocytic processes in order to activate their own purinergic 

receptors. These results in intracellular Ca2+ fluctuations which propagate from one astrocyte to 

adjacent astrocytes, process referred to as Ca2+ wave. In addition, ATP’s catabolic end-product 

adenosine, which is released by astrocytes in the neurovascular unit, leads to vasodilation [342] 

and consequently to a decrease in vascular resistance and an increase in local blood flow. 

Therefore, through their role in the neurovascular unit, astrocytes are potent regulators of 

cerebral blood flow and therefore of energy supply. 
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Glucose is the metabolite which provides most of the energy needed in the brain. One very 

prominent human brain imaging technique, positron emission tomography or PET, is based on 

detection of 2-deoxyglucose in functionally and therefore metabolically active brain regions 

[343]. Interestingly, astrocytes respond to enhanced neuronal activity, particularly to the 

neurotransmitter glutamate, with increased production of glucose and with enhanced aerobic 

glycolysis. As a metabolic result, astrocytes produce and release lactate, which is taken up by 

neurons and used as alternative source of energy [343-345]. Hence, astrocytes serve as 

providers of energy for neurons.  

 

2.5.1.2. Regulation of neurotransmitter homeostasis 

 

In addition to K+, extracellular and intracellular concentrations of Na+ ions are of pivotal 

importance for neuronal and glial physiology. In the CNS, Na+ concentrations are crucial for the 

regulation of neurotransmitter homeostasis: most astrocytic neurotransmitter transporters are 

dependent on trans-membrane Na+ gradients to regulate extracellular neurotransmitter 

concentrations. Specifically, the glutamate (EAAT1 und EAAT2), GABA (GATs) and glycine (GlyT1 

and GlyT2) transporters require co-transport of Na+ ions to the intracellular space for an 

efficient uptake of the corresponding neurotransmitters. Stimulation of neuronal fibers leads to 

elevation of intracellular Na+ concentrations in astrocytes, which is coupled to neurotransmitter 

clearance [346]. The latter is crucial to ensure neuronal network activity: when glutamate is 

released from excitatory synapses, only rapid removal from the extracellular space will allow 

continuous neurotransmission. In addition, glutamate can be excitotoxic by leading to neuronal 

overstimulation, which results in neuronal degeneration. Under pathological conditions, such as 

traumatic injury of the CNS, excessive synaptic release, decreased clearance and leakage of 

glutamate from damaged cells contribute to an increase in extracellular glutamate 

concentrations. This in turn results in a secondary degeneration cascade [347]. The astrocytic 

transporters EAAT1 and EAAT2 maintain low extracellular concentrations of glutamate; in 

particular, EAAT2 accounts for more than 90% of the total glutamate uptake in the brain [347, 

348]. Therefore, defects in astrocytic glutamate transporter function might have a deleterious 

impact in the CNS. For example, expression of a defective splice variant of EAAT2 has been 

associated with Alzheimer’s disease (AD), although it is not clear if this is causal or 

consequential [349-352]. Once taken up by astrocytes, glutamate is metabolized to glutamine 

by the enzyme glutamine synthetase. Thereafter, glutamine is transported back into neurons, 

where it can be used as substrate for the synthesis of glutamate [346]. 

In summary, Na+-dependent glutamate uptake and metabolism by astrocytes is crucial for the 

maintenance of neuronal network activity.    
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2.5.1.3. Modulation of neural network activity 

 

As mentioned above, a single astrocyte can contact potentially more than 106 synapses in the 

human brain. Accordingly, one single astrocyte is able to sense, modulate and integrate 

information from several neighboring neurons at once [353]. Since astrocytes are organized in 

non-overlapping spatial domains [317, 318], the activity of a particular synapse is regulated by 

one astrocyte only. Astrocytes are able to sense neurotransmitters and react with intracellular 

Ca2+ fluctuations, phenomenon which is referred to as non-electrical excitability [353] and which 

allows them to monitor synaptic activity and react accordingly. In fact, astrocytes do not only 

sense but also release neuromodulators, termed “gliotransmitters”. These include ATP, 

adenosine, D-serine and glutamate [353]. For instance, in response to stimulation, Ca2+ is 

released from endoplasmic reticulum stores into the cytoplasm of astrocytes, which in turn may 

trigger release of glutamate into the extracellular space. Glutamate can here bind to pre-/ or 

post-synaptic glutamate receptors (mGluR and NMDARs) and regulate neuronal glutamate 

release and synaptic transmission. Astrocyte-released glutamate has been shown to modulate 

short-term plasticity of excitatory synapses by increasing (facilitation) or decreasing 

(depression) their strength [354, 355]. Interestingly, spatial localization and kinetics of 

glutamate-induced Ca2+ fluctuations are dependent on the concentration and duration of 

extracellular glutamate application: low concentrations of glutamate induce asynchronous Ca2+ 

fluctuations in single astrocytes or even in micro-domains within astrocytic processes without 

propagation to the soma; in contrast high concentrations of glutamate induce a global 

intracellular Ca2+ increase, which can propagate between adjacent astrocytes [355-357]. These 

so called astrocytic “Ca2+ waves” are considered to be one key mechanism of long-range 

modulation of neuronal network activity. The recognition of this bi-directional communication 

between neurons mediated by neurotransmitters led to the concept of “tri-partite synapse”. In 

this model a pre-synaptic terminal, as post-synaptic dendritic spine and an astrocytic process 

converge to form a functional unit [355].  

In summary, astrocytes are able to sense neuronal activity at a micro-domain and at a global 

level and can modulate synaptic transmission via fluctuations of intracellular Ca2+ 

concentrations and release of gliotransmitters.   

 

2.5.1.4. Production of extracellular matrix 

 

Among their functions, astrocytes are able to shape the extracellular environment to provide a 

stable milieu for neuronal activity: both neurons and astrocytes synthetize ECM components to 

support formation, maintenance and function of synapses [358]. Interestingly, ECM components 

are expressed in dynamic patterns during development and in the adult CNS [359], suggesting 

that they tightly regulate developmental processes as well as postnatal CNS function [360]. In 
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addition, the ECM is altered after traumatic injury of the CNS [28], in brain aging [361], as well 

as in several diseases of the nervous system [362-364].  

The ECM is an ensemble of glycoproteins and proteoglycans which form a highly organized 

environment embedding cells and regulating their interactions with molecular ligands or with 

other cells. ECM glycoproteins include laminin, tenascins and thrombospondins; proteoglycans, 

on the other side, can be subdivided into two major classes based on the type of GAG covalently 

linked to the core protein: heparin sulphate proteoglycans (HSPGs) and CSPGs [358].  

The neuronal soma, their proximal dendrites and the initial segment of the axon are enwrapped 

by a condensed and specialized ECM which is referred to as “perineuronal net” (PNN) and was 

first described by Camillo Golgi in 1882. The main components of the PNN are tenascin-R, 

hyaluronan (HA), CSPGs and link proteins, which stabilize the interaction between the latter 

two. On the other side, the C-terminal domain of CSPGs binds to trimeres of Tenascin-R [365, 

366]. The function of the PNN has not been fully understood yet, however it has been suggested 

to ensheat and thereby support highly active neurons, especially in terms of synapse formation 

and synaptic activity/plasticity. In fact, development of new synapses is coupled to the 

emergence of the PNN. On the other side, the negative charge of GAGs might serve as cation 

buffering agent, controlling the diffusion of K+, Na+ and Ca2+ ions and therefore neuronal activity 

[366]. 

Again, the role of astrocytes is crucial: they are able to secrete relevant ECM components, such 

as collagen, fibronectin, laminin, tenascin-C, thrombospondins, decorin, HSPGs such as glypican 

and syndecan and CSPGs such as versican, brevican, neurocan and phosphacan. Therefore, they 

contribute to the PNN, as well as to healthy CNS ECM and ECM alterations in CNS disease and 

after traumatic injury [28]. 

      

2.5.1.5. Astrocytic secretome 

 

Via exocytosis, diffusion through trans-membrane pores and active trans-membrane 

transport, astrocytes also serve as CNS secretory cells: they secrete diverse substances which 

contribute to CNS development and homeostasis, synaptogenesis and neuronal network 

function [367]. This secretory network has been termed “gliocrine system” [368].  

Components of the astrocytic secretome are neuro-/gliotransmitters, neuromodulators, 

hormones and peptides, metabolic substrates, scavengers of reactive oxygen species (ROS), 

inflammatory factors and, last but not least, growth factors and neurotrophic factors [368]. 

One prominent example is BDNF, a powerful regulator of dendritic and axonal growth during 

development and of their maintenance in the mature CNS [369]. BDNF is produced both by 

neurons and by astrocytes [370] and has two main forms: pro-BDNF, which binds to the 

neurotrophin receptor p75, and mature or mBDNF, which binds to TrkB receptors. 
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Interestingly, neurons usually release pro-BDNF which is taken up and processed by 

astrocytes to its mature form prior to release into the extracellular space [371]. While mature 

BDNF promotes survival, differentiation, synaptic long-term potentiation and neurite 

outgrowth as well as arborization through cytoskeleton remodeling, pro-BDNF is involved in 

the regulation of apoptosis, long-term depression, as well as neurite pruning and retraction, 

[369, 372]. Therefore, a well-balanced ratio of neuronally produced pro-BDNF and 

astrocytically secreted mature BDNF is crucial for an appropriate maintenance of neuronal 

circuit connectivity and activity.  

Both neurons and astrocytes also secrete GDNF, a potent neurotrophic factor which 

predominantly has trophic and neuroprotective effects on dopaminergic neurons [373] as 

well as noradrenergic, serotonergic and peripheral motor and sensory neurons [374]. Due to 

its trophic effect on dopaminergic neurons, GDNF has been under investigation as possible 

target for the treatment of PD and has been already applied in clinical trials [375-378]. In 

addition, a neurodevelopmental role has been attributed to GDNF in the pre-/ and postnatal 

regulation of primary sensory and motor neuron development [379]. 

NGF, also secreted by astrocytes [380], was the first nerve growth promoting factor 

discovered [381, 382] and supports survival and maintenance of several types of neurons in 

the CNS and PNS. Similarly to BDNF, NGF can have two forms: a less active pro-NGF form and 

a mature or ß-NGF form. When secreted, NGF binds to its receptor TrkA prior to uptake into 

neurons, where it exerts functions in survival, differentiation and growth of cholinergic, 

sympathetic and sensory neurons. It has been shown that NGF signaling plays a big role in the 

development of neuropathies, including diabetes and HIV-associated neuropathy, as well as 

in neuroprotection of cholinergic neurons in the basal forebrain complex, which is highly 

affected in AD. Based on this rationale, both pre-clinical and clinical studies have been 

conducted, where NGF was delivered to address neuropathies and neurodegenerative CNS 

diseases [383].   

Altogether, both neurons and astrocytes secrete neurotrophic factors which regulate 

neurodevelopment, neuronal survival, differentiation, growth and arborization, pruning and 

retraction as well as neuronal network activity. 

 

2.5.2. Reactive astrogliosis and glial scar formation  

 

One hallmark of CNS pathologies is reactive astrogliosis, a process in which astrocytes undergo 

morphological and functional changes in reaction to the altered CNS environment. Astrocytes 

respond to several forms of CNS insult, including infection, ischemia, neurodegenerative disease 

and traumatic injury [384], thereby significantly influencing pathobiology. Reactive astrogliosis is 

however a highly complex and still not throughoutly understood phenomenon.  
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Several molecular mediators leaking from the disrupted BBB or released by neurons, 

oligodendrocytes, microglia, endothelial cells, leukocytes or other astrocytes in response to 

insult have been shown to trigger aspects of reactive astrogliosis. These include cytokines and 

growth factors, such as LIF, CNTF, tumor necrosis factor (TNF) α, interferon (INF) γ, interleukin 

(IL) 6 and IL10; neurotransmitters, such as glutamate and noradrenalin; ATP; nitric oxide and 

ROS; Amyloid-ß; hypoxia and glucose deprivation. As a consequence, astrocytes (I) undergo 

hypertrophy or structural changes, particularly concerning the expression of intermediate 

filaments (GFAP, vimentin, nestin), (II) increase proliferation and migration rates, (III) act in a 

pro-inflammatory or anti-inflammatory manner, (IV) regulate extracellular homeostasis and (V) 

contribute to the formation of a glial scar [384].     

After traumatic injury of the CNS, tissue remodeling leads to the formation of a mature lesion, in 

which three major components can be identified: the lesion core, compact astrocytic scars and 

perilesion perimeters. The lesion core is characterized by a fluid-filled cyst of variable size or by 

a permanent fibrotic scar containing non-neural cells and ECM, as well as cellular debris, 

inflammatory and inhibitory molecules. The astrocytic scar is initiated by proliferation and 

migration of astrocytes to the lesion site to form a dense cellular barrier surrounding the lesion 

core [385], with packing densities up to double than in healthy tissue [24]. The perilesion 

perimeter is constituted by neural cell types, including neurons, oligodendrocytes and 

astrocytes which exhibit gradually decreasing reactive phenotypes with increasing distance from 

the lesion core [385].   

As major component of the glial scar, astrocytes exert diverging effects after injury: on one side 

they are neuroprotective by confining the lesion core in order to prevent diffusion of injury-

induced signals and consequent secondary damage; on the other side they represent an 

impediment to axon regeneration by expressing growth inhibitory molecules, including growth 

inhibitory ECM [24, 28, 385]. As mentioned above, CSPGs are upregulated in glial scar forming 

astrocytes and significantly contribute to the non-permissive environment leading to 

regenerative failure [28, 48]. Digestion of CSPGs with chondroitinase ABC has been extensively 

exploited in pre-clinical SCI studies in order to reduce the growth-inhibitory lesion environment 

and pave the way for regenerating axonal projections.  

Although the astrocytic scar has been widely regarded as one major impediment to 

neuroregeneration, its disruption does not have pro-regenerative effects, but the exact 

opposite. One recent study throughoutly addressed this issue in a rodent SCI model by a triple 

approach: (I) loss-of-function strategies to ablate scar-forming astrocytes, (II) genetic 

attenuation of scar-forming astrocytes and (III) ablation of chronic astrocytic scars. Interestingly, 

transgenic ablation or disruption of the glial scar did not lead to a significant reduction in CSPG 

expression in the lesion core or in adjacent regions, indicating that non-astrocytic scar-forming 

cells produce considerable amounts of CSPG. Next, although regeneration of injured axons was 

boosted by conditioning lesions of by neurotrophic factor delivery, regeneration was not 
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augmented but instead completely prevented in mice with defective glial scar. At a mechanistic 

level, the study showed that scar-forming astrocytes are able to up-regulate growth supportive 

CSPGs and laminin [25]. In conclusion, the study challenges the dogma which sees astrocytic 

scar formation as principle cause of CNS regenerative failure by demonstrating that glial scar 

disruption does not rescue but exacerbate it. 

In summary, astrocytes play a major role in the response of the CNS to traumatic injury by 

integrating several environmental signals and undergoing morphological and functional changes 

(figure 2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Astrocytes have a crucial role in the healthy and diseased CNS. 
Astrocytes are a key component of the CNS: they regulate homeostasis of water, ions, 
metabolites and neurotransmitters; they produce ECM components and neurotrophic factors; 
they regulate the BBB and contribute to the response to traumatic injury; they regulate synapse 
formation and function. These are only selected features of astrocytes: their contribution to 
neural network development and function as well as to the response to injury is indispensable.  
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2.5.3. Transplantation of astrocytes following central nervous system 

trauma 

 

Due to the multiple and crucial roles of astrocytes in the CNS both under physiological and 

under pathological conditions, they represent a very attractive cell source for transplantation 

after SCI. They can contribute to restoration of tissue integrity by filling the lesion site and 

providing physical, trophic and metabolic support to damaged or sprouting axons. Through 

production of a permissive ECM or PNN-specific ECM, as well as through release of neurotrophic 

factors, they can influence neuronal growth and neural network connectivity. Through 

neurovascular units, they can regulate exchange of water and sugar between the vascular 

system and neurons, thereby ensuring adequate supply of energy to meet the neural network’s 

requirements. In addition, through regulation of ions and neurotransmitter homeostasis, they 

regulate neuronal activity. Therefore, reconstitution of damaged neural tissue may not be 

possible without an astrocytic scaffold.  

Several pre-clinical SCI studies have been conducted, in which astrocytes have been 

transplanted into the lesion site as substrate for repair. In transection as well as dorsal column 

injuries of the rat spinal cord, astrocytes differentiated from rat embryonic GRPs were found to 

promote robust axon growth and recovery of locomotor function. After unilateral dorsal column 

lesion, transplanted astrocytes were able to fill the lesion site, counteract endogenous 

astrogliosis and delay the expression of growth-inhibitory ECM components, thereby 

contributing to axon-growth into as well as beyond the lesion site. When performing in a grid 

walk test, rats which received astrocytic transplants performed significantly better than lesioned 

rats [222]. In a subsequent study, the authors compared rat embryonic GRP-derived astrocytes 

which were differentiated in the presence of either CNTF or BMPs. Both factors contribute to 

the commitment of multipotent CNS precursors to an astrocytic fate [386]. Morphological 

differences between the two astrocytic populations were detected, as BMP-treated GRPs gave 

origin to big, flat astrocytes, whereas astrocytes differentiated with CNTF where rather small, 

thin and bipolar. Once transplanted after dorsal column lesion of the rat spinal cord, CNTF-

astrocytes survived well at the lesion site, but produced inhibitory CSPGs and were not able to 

induce axonal regeneration or functional recovery. In contrast, BMP-astrocytes did not express 

inhibitory CSPGs and promoted axon growth and locomotor recovery [387]. This study 

addressed, for the first time, the question whether some astrocytic subtypes may be more 

suitable than others to promote repair after SCI. The authors confirmed this hypothesis with 

astrocytes derived from human 9-week old fetuses in the presence of either CNTF or BMP. 

Supporting their previous findings, they demonstrated that astrocytes treated with BMP were 

more suitable to promote regeneration after SCI [388]. However, other studies showed that 

there was no difference between the two astrocytic populations in the pro-regenerative 
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capacity after transplantation into the rat injured dorsal column, and functional improvement 

promoted by BMP-treated astrocytes could not be reproduced [389, 390]. 

Further pre-clinical studies addressed more in detail astrocytic mechanisms of action underlying 

their beneficial effects after CNS trauma. In particular, the authors focused on the ability of 

astrocytes to clear extracellular glutamate, which may accumulate at the injury site due to 

primary damage and in turn induce secondary damage. In fact, the astrocytic glutamate 

transporter EAAT2 (also known as GLT-1) is lost at the lesion core after SCI and newly generated 

astrocytes lack EAAT2 expression [391]; as a consequence, defective clearance of glutamate and 

its accumulation in the extracellular space may result in susceptibility of the CNS tissue to 

further damage. To test their hypothesis that astrocytic glutamate clearance is relevant for 

spinal cord neuroprotection and repair, the authors transplanted mouse glial progenitors 

overexpressing EAAT2 into the spinal cord of rats which were subject to hemi-contusion of the 

spinal cord. Indeed, lesion size was reduced in rats which received EAAT2-overexpressing 

astrocytes; in addition, transplanted cells preserved phrenic motor neurons and consequently 

diaphragm function [392]. By AAV-mediated overexpression of EAAT2 in endogenous astrocytes 

of the injured cervical dorsal horn in mice, the authors also demonstrated that defective 

glutamate clearance may underlie the development of neuropathic pain after SCI, which can be 

reversed by restoration of astrocytic EAAT2 function [393].    

Altogether, this first set of pre-clinical evidence demonstrates the relevance of astrocytes for 

spinal cord neuroprotection and repair. However, astrocyte transplantation has not been 

sufficiently investigated to date.   

 

2.5.4. Generation of astrocytes from pluripotent stem cells 

 

In the above mentioned studies, morphologically and functionally distinct astrocytic populations 

were differentiated from fetally-derived murine or human GRPs. However, these do not 

represent a suitable cell source for autologous transplantation and always have to face ethical 

implications relative to the use of fetuses for experimental and clinical research. On the other 

side, although the generation of safe, non-tumorigenic iPSCs is still being addressed world-wide 

for future applications, iPSCs represent a cell source of unlimited potential and protocols for 

their efficient differentiation have been established. While most efforts have been focused on 

the generation of specific neuronal populations, little attention has been dedicated to the 

generation of transplantable astrocytes.    

Commitment of neural precursors to the astrocytic phenotype can be induced in multiple ways. 

Two decades ago it was shown that the cytokine LIF and the neurotrophic factor CNTF, which 

act through the same receptor/signaling system (gp130), are potent inductors of astrocytic fate 

commitment: CNTF was able to induce astrocytic differentiation in more than 98% of precursors 

isolated from the fetal murine brain [386, 394]. At the same time, BMP4 and BMP2 were found 
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to induce commitment of subventricular zone-residing NSCs and bipotent oligodendroglial-

astroglial cortical progenitor cells to the astroglial cell fate, respectively [386, 395, 396]. 

Interestingly, CNTF and BMP4 exerted their astrocyte-inductive effects by distinct pathways 

[386], suggesting that they might drive specification of phenotypically distinct astrocytes. 

Indeed, when directly compared, astrocytes differentiated from GRPs with either CNTF or BMPs 

had distinct properties [387, 389], although their phenotypical properties could be reversed by 

interchanging the treatment. While A2B5+ GRPs treated with fetal bovine serum (FBS) or BMP 

gave origin to flat, stellate A2B5-/GFAP+ astrocytes, CNTF treatment led to intermediate 

A2B5+/GFAP+ with long processes; phenotypical properties were not reflected in a different pro-

regenerative potential in vivo [389]. In addition to CNTF and BMP4, fetal serum was found to be 

a potent inductor of astrocytic maturation in vitro [335], and is currently used in astrocytic 

cultures, despite its not well characterized composition.  

The first published protocols for the efficient generation of astrocytes from PSCs [205, 397] 

were based on prolonged culturing of neurospheres in minimal neural medium at low adhesion 

conditions: the authors postulated that, while early neurospheres are neurogenic, neurospheres 

cultured at least until day in vitro (DIV) 180 under these conditions become gliogenic due to a 

natural commitment-switch of neural precursors to the astrocytic lineage. After the gliogenic 

switch, progenitors were plated on a laminin substrate and their maturation was induced by 

treatment with CNTF. Using this simple approach, the authors were able to obtain nearly pure 

GFAP+ astrocytic populations which were: (I) regionally patterned, following treatment of NRs 

with the caudalizing agent RA, with the anteriorizing agent FGF8 and with the ventralizing agent 

SHH; (II) functionally active, as demonstrated by electrophysiological measurements of 

glutamate uptake and Ca2+ waves. Although the results of this study are convincing, the 

generation of pure astrocytic populations using this extremely simple protocol seems 

unrealistic. In addition, the fact that six months are required for completion is a major drawback 

from a clinical point of view.  

While the above mentioned protocol relies on GFAP expression as a hallmark of astrocytic 

identity, another study addressed the complexity of astrocytic maturation and the phenotypical 

diversity of mature astrocytes. For instance, it has been shown that protoplasmic astrocytes are 

rather mature/quiescent and express low levels of GFAP but high levels of EAAT2, whereas 

fibrous astrocytes are rather reactive and express high levels of GFAP but low levels of EAAT2 

[296]. Using dual-SMAD-inhibition-based induction of iPSC neural differentiation and exposure 

of neural progenitors to 1% FBS, the authors obtained nearly pure populations of maturing 

astrocytes within DIV 90. To induce maturation of astrocytes, instead of using the canonical 

CNTF treatment, the authors treated the cultures with FGF1 after FBS withdrawal. As a 

consequence, expression of GFAP, as well as the early astrocytic markers NFIA and connexin 43 

were down-regulated, while glutamate uptake was increased – hallmark of a mature/quiescent 

astrocytic phenotype. However, this seemed to underlie increased expression of EAAT1, but not 
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EAAT2. In contrast, exposure of progenitors to TNFα led to a reactive astrocytic population, 

characterized by significant increase in chemokine expression. 

As previously mentioned, the importance of astrocyte-mediated glutamate clearance was 

investigated in a rodent model of SCI [392]. The same group examined the efficacy of human 

iPSC-derived astrocytes in this respect. Neural progenitors with a caudal phenotype were 

obtained by dual-SMAD-inhibition and exposure to RA. Subsequently, exposure to neural 

medium supplemented with FBS for 60 DIV was used to induce astrocytic differentiation. Prior 

to transplantation, overexpression of EAAT2 in iPSC-derived astrocytes was induced lentivirally, 

as regular iPSC-derived astrocytes expressed little-to-no EAAT2. Astrocytes were injected 

immediately after C4 unilateral contusion in mice; EAAT2 expressing astrocytes led to reduced 

lesion size, as well as preservation of diaphragm innervation by phrenic motor neurons and of 

diaphragm function [398]. This study demonstrated the potential benefits of iPSC-derived 

astrocyte transplantation after SCI. However, the use of a lentiviral vector for the induction of 

EAAT2 expression may lead to mutagenesis. Ideally, EAAT2 expressing, glutamate sequestering 

astrocytes should be generated without genetic modifications.  

To date, no study has used a comparative approach to identify iPSC-derived astrocytes suitable 

for transplantation after SCI. 
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2.6. Rationale and Hypotheses 
 

Previous studies have demonstrated that transplantation of astrocytes with specific 

characteristics can be beneficial after SCI [222, 387, 388, 392, 393]. In particular, Davies et al. 

directly compared two astrocytic subtypes derived from murine or human glial restricted 

precursors upon terminal differentiation with FBS in combination with either CNTF or BMPs. 

Davies et al. pointed out that different astrocytic subtypes exhibit a more or less pronounced 

ability to serve as pro-regenerative substrate in the injured spinal cord [222, 387, 388]. On the 

other side, Falnikar et al. and Li et al. demonstrated the beneficial effect of astrocytes 

overexpressing the glutamate transporter EAAT2, also known as GLT-1, in an animal model of 

cervical SCI [392, 393]. Thus, selection of astrocytes with a distinct phenotypical and functional 

profile might increase the efficacy of this therapeutical approach. Generation of large amounts 

of astrocytes from human iPSCs for autologous transplantation is not subject to ethical debate 

and was achieved in independent laboratories [205, 296, 397, 399, 400]. These protocols were 

used as a reference to generate astrocytes from two iPSC lines and one well-characterized 

commercially available ESC line, which was used as a control. 

 

Hypothesis 1: 

Astrocytes can be generated from human ESCs and iPSCs by replication of previously published 

protocols. Astrocytes obtained following the same procedure will exhibit a similar profile. 

 

Hypothesis 2: 

Astrocytes terminally differentiated with CNTF, BMP2/4 or FGF1 are phenotypically different. 

The phenotypical profile acquired in vitro is at least partially maintained in vivo and therefore 

extensive in vitro characterization allows the selection of an astrocytic population which is more 

suitable to support neuroregeneration in vivo.  

 

Hypothesis 3:  

Pre-differentiated astrocytes survive after transplantation into the spinal cord, mature into their 

final phenotype and are able to restore tissue integrity as well as to promote regeneration of 

damaged neuronal projections.  

 

The experimental goal of this thesis was the generation and extensive in vitro as well as in vivo 

characterization of astrocytes to define the characteristics of an astrocytic substrate suitable to 

promote regeneration after SCI.  

To test hypothesis 1, I partially replicated and modified previously published protocols [205, 

397], whereby terminal differentiation was performed not only with CNTF, but also with 

BMP2/4 and FGF1. Authenticity of the astrocytic phenotype was assessed by calcium imaging in 
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response to ATP stimulation, as responsiveness to ATP is a peculiar property of mature 

astrocytes [401]. 

To test hypothesis 2, I analyzed the morphological and functional profile of astrocytes 

differentiated for two weeks. This included (1) cell size and basic morphology, (2) expression of 

astrocytic markers, (3) expression of NSC markers and proliferation markers, (4) expression and 

secretion of ECM components and of the neurotrophic factor BDNF and (5) direct influence on 

neurite elongation in co-cultures with primary DRG neurons. To test if their phenotype was 

stable and maintained in vivo, their expression profile was analyzed after transplantation into 

the spinal cord of Fischer 344 rats. 

To test hypothesis 3 pre-differentiated astrocytes were transplanted into the spinal cord of 

Fischer 344 rats after a dorsal column wire knife lesion at level C4. 
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3. Materials and methods 
 

3.1. Materials 
 

3.1.1. Chemicals, reagents and kits 

Chemical Company 

Adenosine triphosphate (ATP)  Sigma Aldrich 

Aprotinin Sigma Aldrich 

ß-Mercaptoethanol Roth 

Bovine serum albumin (BSA) Sigma Aldrich 

CaCl2∙2H2O Roth 

D(+)-Sucrose Roth 

Ethylenediaminetetraacetic acid (EDTA) Roth 

Ethanol 99.8%  (denatured) Roth 

Ethylene glycol Roth 

Donkey serum  Biochrome 

Fluoromount-G SouthernBiotech 

Fura-2-acetoxymethyl ester (Fura-2) Sigma Aldrich 

Glacial acetic acid Roth 

Glucose NeoLab 

Glycine Sigma Aldrich 

HCl VWR 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Roth 

Isopropanol Roth 

KCl NeoLab 

Methanol (MeOH) Roth 

MgCl2∙6H2O NeoLab 

Na2CO3 NeoLab 

NaHCO3 NeoLab  

Na2HPO4  Roth 

Na3PO4 Roth 

NaCl VWR 

NaH2PO4 Roth 

NaOH 10 N solution Roth 
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Chemical Company 

Na-Pyruvate 100 mM solution Thermo Fisher Scientific 

O-phenylenediamine (OPDA) Sigma Aldrich 

Paraformaldehyde Roth 

Phenylmethylsulfonylfluorid (PMSF) Sigma Aldrich 

ROTIPURAN® Glycerol Roth 

Sodium azide  Roth 

Tissue-Tek O.C.T. ™ compound Sakura 

Tris(hydroxymethyl)-aminomethan (TRIS) base NeoLab 

Tris(hydroxymethyl)-aminomethan (TRIS) hydrochloride NeoLab 

Triton X-100 NeoLab 

 

3.1.2. Reagents and kits for RNA isolation, cDNA synthesis and RT-PCR 

 

Reagents and Enzymes Company 

1,4-Dithiothreitol (DTT) Roth 

6x loading dye  Fermentas 

DNA ladder, 2log (1 mg/mL) New England Biolabs 

DNase I (100 Kunitz units/mL) Cellsystems  

Diethylpyrocarbonat (DEPC) Roth 

Deoxynucleoside triphosphate (dNTP)s (10mM) Promega 

Ethidium bromide (EtBr) NeoLab 

MMLV 5x reaction buffer Promega 

MMLV reverse transcriptase (200U/µL) Promega 

Oligo d(T) primers (500 µg/mL) Promega 

RNase A (20 mg/mL) Thermo Fisher Scientific 

RNAsin (40U/µL) Promega 

UltraPure™ Agarose Thermo Fisher Scientific 

  

Kits Company 

RNeasy Mini Kit Qiagen 

RNase-Free DNase Set Qiagen 

5-PRIME RT-PCR reaction mix VWR 
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3.1.3. Solutions and buffers 

 

3.1.3.1. General 

 

TRIS-buffered saline (TBS), pH 7.4 

Reagent For 1.0 Liter solution 

TRIS base   1.94 g 

TRIS hydrochloride   13.22 g 

NaCl 9.0 g 

ddH2O 1.0 L 

 

0.25 M monobasic sodium phosphate solution 

Reagent For 1.0 Liter solution 

NaH2PO4 27.60 g 

ddH2O 1.0 L 

 

0.4 M dibasic sodium phosphate solution 

Reagent For 1.0 Liter solution 

Na2HPO4 28.51 g 

ddH2O 1.0 L 

 

0.2 M phosphate buffer, pH 7.3 

Reagent Final concentration For 1.0 L solution 

NaH2PO4 0.2 M 230 mL 

Na2HPO4 0.2 M 770 mL 

To prepare 0.2 M phosphate buffer (pH 7.3), solutions of monobasic and dibasic sodium 

phosphate are prepared separately. When both salts are completely dissolved in ddH2O, the 

solutions are mixed and the pH verified using a pH meter. 

 

0.1 M phosphate buffered saline (PBS) 

Reagent Final concentration For 1.0 L solution 

NaCl - 9.0 g 

Phosphate buffer, 0.2 M 0.1 M 500 mL 

ddH2O - 500 mL 
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3.1.3.2. Calcium Imaging 

 

Buffered saline (SGG) for Ca2+ imaging 

Reagent Final concentration For 1.0 L solution 

CaCl2∙2H2O 2 mM 0.29 g 

Glucose 35.6 mM 6.305 g 

Glycine 1 mM 0.075 g 

HEPES 10 mM 2.3 g 

KCl 2.5 mM 0.186 g 

MgCl2∙6H2O 1 mM 0.203 g 

NaCl 140 mM 8.18 g 

Na-pyruvate 100 mM solution 0.5 mM 5 mL 

 

 

3.1.3.3. Enzyme-Linked Immunosorbent Assay (ELISA) 

 

Coating buffer, pH 9.6 

Reagent Final concentration For 250 mL solution 

Na2CO3 - 397 mg 

NaHCO3 - 733 mg 

ddH2O - 250 mL 

 

Washing buffer 

Reagent Final concentration For 1.0 L solution 

NaCl - 14.36 g 

Triton-X-100, 100% 0.05% 500 µL 

PBS - 500 mL 

 

Blocking buffer 

Reagent Final concentration For 100 mL solution 

BSA  - 3.0 g 

PBS - 100 mL 
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Homogenization buffer 

Reagent Final concentration For 250 mL solution 

BSA  - 1.25 g 

NaCl - 3.6 g 

EDTA, 0.5 M 5 mM 2.5 mL 

Triton-X-100, 100% 0.1% 250 µL 

PBS - 500 mL 

These two components are added immediately prior to use: 

Reagent Final concentration For 100 mL solution 

Aprotinin - 228 µL 

PMSF, 0.2 M in MeOH - 125 µL 

 

Peroxidase buffer 

Reagent Final concentration For 100 mL solution 

BSA - 0.1 g 

Triton-X-100, 100% 0.25% 250 µL 

PBS - 100 mL 

 

Citric acid solution 

Reagent Final concentration For 100 mL solution 

Citric acid - 1.91 g 

ddH2O - 100 mL 

 

OPDA buffer, pH 5.0-5.4 

Reagent Final concentration For 100 mL solution 

Citric acid, 0.1 M 15mM 16.5 mL 

Dibasic sodium phosphate solution, 0.4 M 30 mM 8.3 mL 

ddH2O - 66.0 mL 

OPDA - 50 mg 

 

10% sulfuric acid solution 

Reagent Final concentration For 100 mL solution 

H2SO4, 2N  - 12 mL 

ddH2O - 88 mL 
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3.1.3.4. Gel electrophoresis 

 

50x TRIS-acetate-EDTA (TAE) buffer for gel electrophoresis 

Reagent Final concentration For 1.0 Liter solution 

Trizma Base - 242.0 g 

Glacial Acetic Acid - 57.10 mL 

EDTA, 0.5 M 50 mM 100 mL 

ddH2O - fill up to 1.0 L 

 

3.1.3.5. Immunocyto- and histochemistry  

 

Immunofluorescence blocking buffer for immunocytochemistry  

Reagent Final concentration For 100 mL solution 

Donkey serum 1% 1.0 mL 

Triton-X-100, 10% 0.1% 1.0 mL 

TBS - fill up to 100 mL 

 

4% Paraformaldehyde (PFA) / 0.1 M phosphate buffer 

Reagent Final concentration For 100 mL solution 

Paraformaldehyde - 40.0 g 

Phosphate buffer, 0.2 M 0.1 M 500 mL 

NaOH 10 N - 4 drops 

ddH2O - 500 mL 

ddH2O is heated to 65°C under constant stirring. Paraformaldehyde is carefully added, then 

NaOH is added drop-wise. The solution is cooled down to 40°C under constant stirring. After the 

paraformaldehyde has completely dissolved, the solution is filtered through a Whatman filter-

paper into  0.2 M phosphate buffer (1:1). Until used, the paraformaldehyde is stored at 4°C. 

 

30% Sucrose solution 

Reagent Final concentration For 1.0 L solution 

D(+)-Sucrose - 300.00 g 

Phosphate buffer, 0.2 M 0.1 M 350.00 mL 

ddH2O - 350.00 mL 
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Tissue collecting solution (TCS) 

Reagent Final concentration For 1.05 Liter solution 

Glycerol - 250 mL 

Ethylene glycol - 300 mL 

Phosphate buffer, 0.2 M 0.1 M 250 mL 

ddH2O - 250 mL 

 

Immunofluorescence blocking buffer for immunohistochemistry 

Reagent Concentration For 100 mL solution 

Donkey serum 5% 5 mL 

Triton-X-100 0.25% 250 µL 

TBS - fill up to 100 mL 

 

3.1.4. Antibodies  

 

3.1.4.1. Primary antibodies (ICC, IHC)  
 

Epitope Species Isotype Type Dilution Company 

Β-III-tubulin ms IgG monoclonal 1:1000 Promega 

CS-56 ms IgM monoclonal 1:300 Sigma Aldrich 

DCX gt igG polyclonal 1:500 Santa Cruz 

GFAP rb IgG polyclonal 1:1000 Dako 

hGFAP ms IgG1 monoclonal 1:1000 Stem Cells Inc. 

HoxB4 rt IgG2a monoclonal 1:10 DSHB 

Human Ki67 rb IgG monoclonal 1:500 Cell signaling 

Laminin rb IgG polyclonal 1:800 Sigma Aldrich 

Nestin ms IgG1 monoclonal 1:1000 Merck Millipore 

Neurofilament-H 

(NFH) 
rb IgG Polyclonal  1:500 Merck Millipore 

Human NUC (hNUC) ms IgG1 monoclonal 1:1000 Merck Millipore 

Sox2 gt IgG polyclonal 1:200 Santa Cruz  

Vimentin ms IgG1 monoclonal 1:1000 Merck Millipore 
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3.1.4.2. Secondary antibodies  
 

Epitope Species Isotype Dilution Company 

Alexa Fluor 488 α-ms dk IgG (H+L) 1:1000 Thermo Fisher Scientific 

Alexa Fluor 488 α-rb dk IgG (H+L) 1:1000 Thermo Fisher Scientific 

Alexa Fluor 488 α-gt dk IgG (H+L) 1:1000 Thermo Fisher Scientific 

Alexa Fluor 488 α-rt dk IgG (H+L) 1:1000 Thermo Fisher Scientific 

Alexa Fluor 594 α-ms dk IgG (H+L) 1:300 Thermo Fisher Scientific 

Alexa Fluor 594 α-rb dk IgG (H+L) 1:300 Thermo Fisher Scientific 

Alexa Fluor 594 α-gt dk IgG (H+L) 1:300 Thermo Fisher Scientific 

Cy5 α-ms dk IgG (H+L) 1:500 Dianova 

Cy5 α-rb dk IgG (H+L) 1:500 Dianova 

FITC α-ms  dk IgM (H+L) 1:500 Thermo Fisher Scientific 

4’,6-Diamidine-2’-phenylindole dihydrochloride (DAPI) 1:1000 Sigma Aldrich 

 

3.1.4.3. Primary antibodies (ELISA)  
 

Epitope Species Isotype Type Dilution Company 

BDNF rb IgG polyclonal 1:2000 Acris 

BDNF ch IgY polyclonal 1:2500 Promega 

 

3.1.4.4. Secondary antibodies (ELISA) 
 

Epitope Species Isotype Dilution Company 

Peroxidase-conjugated  α-ch rb IgY (H+L) 1:1000 Promega 
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3.1.5. Primers for RT-PCR 

 

Primer 5’-3’ sequence  Annealing °C Company 

Aqp4 fwd GGAATTTCTGGCCATGCTTA 53-54 Eurofins MWG Operon 

Aqp4 rev AGACTTGGCGATGCTGATCT  Eurofins MWG Operon 

Chl1 fwd ATGGAGCCGCTTTTACTTGGA 54-55 Eurofins MWG Operon 

Chl1 rev GGCAACTTGGACTTTTGACTGT  Eurofins MWG Operon 

EAAT1 fwd ATCCTTGGATTTACCCTCCGA 54-55 Eurofins MWG Operon 

EAAT1 rev CGCCATTCCTGTGACAAGAC  Eurofins MWG Operon 

FoxG1 fwd AGGAGGGCGAGAAGAAGAAC 55-56 Eurofins MWG Operon 

FoxG1 rev TCACGAAGCACTTGTTGAGG  Eurofins MWG Operon 

GAPDH fwd CCTTCATTGACCTCAACTAC 55 Eurofins MWG Operon 

GAPDH rev GGAAGGCCATGCCAGTGAGC  Eurofins MWG Operon 

HoxA5 fwd CCGGAGAATGAAGTGGAAAA 53-54 Eurofins MWG Operon 

HoxA5 rev ACGAGAACAGGGCTTCTTCA  Eurofins MWG Operon 

HoxB4 fwd ACACCCGCTAACAAATGAGG 55 Eurofins MWG Operon 

HoxB4 rev GCAGCAAAGATGAGGGAGAG  Eurofins MWG Operon 

Isl1 fwd AAACAGGAGCTCCAGCAAAA 53 Eurofins MWG Operon 

Isl1 rev AGCTACAGGACAGGCCAAGA  Eurofins MWG Operon 

NFIA fwd ACAGGTGGGGTTCCTCAATC 54-55 Eurofins MWG Operon 

NFIA rev GTGGGACGCTGCAACTTTT  Eurofins MWG Operon 

NFIX fwd ATGTACTCCCCGTACTGCCTC 55-56 Eurofins MWG Operon 

NFIX rev ACATCCGCTTTTCATGCTTCTT  Eurofins MWG Operon 

NG2 fwd GTCTTTTGAGGCTGCCTGTC 54-55 Eurofins MWG Operon 

NG2 rev CTGTGTGACCTGGAAGAGCA  Eurofins MWG Operon 

Nkx2.1 fwd CGCATCCAATCTCAAGGAAT 53 Eurofins MWG Operon 

Nkx2.1 rev TGTGCCCAGAGTGAAGTTTG  Eurofins MWG Operon 

Nkx2.2 fwd TGCCTCTCCTTCTGAACCTTGG 55-56 Eurofins MWG Operon 

Nkx2.2 rev GCGAAATCTGCCACCAGTTG  Eurofins MWG Operon 

Nkx6.1 fwd ACACGAGACCCACTTTTTCCG 56-58 Eurofins MWG Operon 

Nkx6.1 rev TGCTGGACTTGTGCTTCTTCAAC  Eurofins MWG Operon 

Olig1 fwd TTGCATCCAGTGTTCCCGATTTAC 56-58 Eurofins MWG Operon 

Olig1 rev  TGCCAGTTAAATTCGGCTACTACC  Eurofins MWG Operon 

Olig2 fwd CAGAAGCGCTGATGGTCATA 53 Eurofins MWG Operon 

Olig2 rev TCGGCAGTTTTGGGTTATTC  Eurofins MWG Operon 

Pax3 fwd GAACACGTTCGACAAAAGCA 52-53 Eurofins MWG Operon 

Pax3 rev GCACACAAGCAAATGGAATG  Eurofins MWG Operon 

PDGF-R fwd CTATCCACACTGTCAAACAGGTTG 56-58 Eurofins MWG Operon 

PDGF-R rev TCTGCTGGACTGAGAAGTTTCATC  Eurofins MWG Operon 

S100ß fwd AAAGAGCAGGAGGTTGTGGA 53 Eurofins MWG Operon 

S100ß rev AGGAAAGGTTTGGCTGCTTT  Eurofins MWG Operon 
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3.1.6. Cell culture 

 

3.1.6.1. Cell lines and primary cell cultures 
 

Name Type Source  Background 

Skin fibroblasts Primary Strain: Fischer344 rats 

Age: 9 - 13 weeks old 

Gender: female 

Weight: 140 - 180 g 

Direct source: Charles River Laboratories, Harlan 

Laboratories (Envigo) or in-house breeding 

Wild type 

DRG neurons Primary Strain: Fischer344 rats 

Age: 9 - 13 weeks old 

Gender: male 

Weight: 140 - 180 g 

Direct source: Charles River Laboratories, Harlan 

Laboratories (Envigo) or in-house breeding 

Wild type  

HUES6 PSCs Cell line Human embryonic inner cell mass 

Cell line established at Harvard University  

Passage number: 39 

Direct source: Laboratory of Prof. Dr. Beate Winner, 

Friedrich-Alexander Universität Erlangen-Nürnberg 

Wild type 

iPSC #1 Cell line Human Skin Biopsy 

iPSC clone name: 21E6 

Passage number: 46 

Direct source: Laboratory of Prof. Dr. Beate Winner, 

Friedrich-Alexander Universität Erlangen-Nürnberg 

Wild type 

iPSC #2 Cell line Human Skin Biopsy 

iPSC clone name: 19-23 

Passage number: 34 

Direct source: Laboratory of Prof. Dr. Beate Winner, 

Friedrich-Alexander Universität Erlangen-Nürnberg 

Wild type 
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3.1.6.2. Basic media, enzymes and supplements 
 

Chemical/Reagent Company 

2.5% Trypsin/EDTA  Life Technologies 

B27-Supplement (50x) Thermo Fisher Scientific 

Calpain Inhibitor Calbiochem 

Collagenase XI (10 mg/mL) Sigma Aldrich 

Dispase I (10 mg/mL) Worthington 

Destilled water Thermo Fisher Scientific 

DMEM/F12  Thermo Fisher Scientific 

Dimethyl sulfoxide (DMSO) NeoLab 

DPBS (1x) Thermo Fisher Scientific 

Fibrinogen (100 mg/mL) Sigma Aldrich 

Gentamicin (10 mg/mL) Thermo Fisher Scientific 

Hanks' Salt Solution Biochrome 

Heparin Sigma Aldrich 

Hibernate®-A Thermo Fisher Scientific 

L-Glutamine (100x) Thermo Fisher Scientific 

Laminin (1 mg/mL) Sigma Aldrich 

Non-essential amino acids (NEAA) (100x) Thermo Fisher Scientific 

N2-Supplement (100x) Thermo Fisher Scientific 

PAA Gold fetal bovine serum (FBS) Biochrome 

Penicillin / Streptomycin (10,000 Units/mL) Thermo Fisher Scientific 

Poly-L-ornithine (PLO) (10 mg/mL) Sigma Aldrich 

Retinoic Acid (RA) Sigma Aldrich 

Thrombin (100 U/mL in 10 mM CaCl2) Sigma Aldrich 

TrypLETM Express (1x) Thermo Fisher Scientific 
 

3.1.6.3. Growth factors and cytokines 
 

Factor (Cell culture) Factor (Additional for surgery) Company 

Recombinant hEGF Recombinant hGDNF PeproTech 

Recombinant hFGF1 Recombinant hHGF PeproTech 

Recombinant hFGF2 Recombinant hIGF PeproTech 

Recombinant hBDNF (ELISA)  Recombinant hNT-3 PeproTech 

Recombinant hBMP2 Recombinant hPDGF PeproTech 

Recombinant hBMP4  PeproTech 

Recombinant hCNTF  PeproTech 
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3.1.6.4. Cell culture media composition 
 

Basic neural medium (bNM) 

Reagent Concentration of stock Final concentration 

DMEM/F12  - - 

NEAA  100x 1x 

N2-Supplement 100x 1x 

B27-Supplement 50x 1x 

Heparin 2 mg/mL 2 µg/mL 

Penicillin/Streptomycin 10,000 U/mL 100 U/mL 

Gentamicin 10 mg/mL 1 µg/mL 

 

Proliferation medium for HUES6/iPSC-derived neurospheres 

Reagent Concentration of stock Final concentration 

bNM  - - 

Recombinant hEGF 100 µg/mL 20 ng/mL 

Recombinant hFGF2 100 µg/mL 20 ng/mL 

 

Proliferation medium for HUES6/iPSC-derived adherent NSCs 

Reagent Concentration of stock Final concentration 

bNM  - - 

FBS 100% 1% 

Recombinant hEGF 100 µg/mL 20 ng/mL 

Recombinant hFGF2 100 µg/mL 20 ng/mL 

 

Differentiation medium for HUES6/iPSC-derived adherent NSCs:  

Treatment Reagent Concentration of stock Final concentration 

 bNM  - - 

 FBS 100% 1% 

No factors - - - 

BMP Recombinant hBMP2 + hBMP4 200 µg/mL 10 ng/mL each 

CNTF Recombinant hCNTF 200 µg/mL 20 ng/mL 

FGF1 Recombinant hFGF1 200 µg/mL 20 ng/mL 
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Maintenance medium for primary DRG neurons 

Reagent Concentration of stock Final concentration 

DMEM/F12 - - 

Penicillin/Streptomycin 10,000 U/mL 100 U/mL 

L-glutamine 100x 1x 

B27 supplement 100x 1x 

 

3.1.7. Animals 
 

All primary culture preparation as well as animal experiments were carried out with 9-13 week 

old male or female Fischer344 rats weighing 140 to 180 g. Direct source: Charles River 

Laboratories, Harlan Laboratories (Envigo) or in-house breed. Animal experiments were carried 

out in compliance with national guidelines for animal care and use in accordance with the 

European Union Directive (2010/63/EU). All animal protocols were reviewed and approved by 

the local authorities and animal ethics committee. Animals had free access to food and water.  

 

3.1.7.1. Anesthesia mixture 
 

Drug Name Active substance Dosage Company 

Ketamine 10% Ketamine 62.5 mg/kg 
HFW Bremer 

Pharma GmbH 

Vetranquil® 1% Acepromacine 0.625 mg/kg Ceva 

Xylariem® Xylacine 3.175 mg/kg Ecuphar 

NaCl 0.9% - - Braun 
 

3.1.7.2. Post-surgical animal care 
  

Drug Name Active substance Dosage Company 

Ampicillin-ratiopharm®  Ampicillin 25 - 50 mg/kg Ratiopharm 

Bepanthen® Dexpanthenol - Bayer 

Fresubin - - Fresenius Kabi 

NaCl 0.9% - - Braun 

Rimadyl® Carprofen 4 - 5 mg/kg Pfizer 

Ringer solution - - Braun 

Temgesic® Burprenophine 0.03 - 0.05 mg/kg Reckitt Benckiser 

Sandimmun® Cyclosporine A 10 mg/kg Novartis 
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3.1.8. Laboratory equipment and disposables 

Item Company 

Glas bottles NeoLab  

0.5 mL Eppendorf tubes Greiner Bio-one 

1.5 mL Eppendorf tubes Greiner Bio-one 

10 mL disposable pipette tip Greiner Bio-one 

12-well cell culture plates Greiner Bio-one 

15 mL Falcons Greiner Bio-one 

24-well cell culture plates Greiner Bio-one 

24 x 60mm cover glasses Roth 

25 mL disposable pipette tip Corning, Inc. 

2 mL Eppendorf tubes Greiner Bio-one 

4- and 8-well chamber slides Nunc 

50 mL Falcons Greiner Bio-one 

5 mL disposable pipette tip Greiner Bio-one 

6-well cell culture plates Greiner Bio-one 

96-well plate (ELISA) Greiner Bio-one 

AQUAline AL25 water bath Lauda 

1 mL Cryotubes  Greiner Bio-one 

Disposable pipette tips: 10 µL, 20 µL, 200 µL, 1000µL VWR 

Disposable pipette tips w/ filter: 10 µL, 20 µL, 200 µL, 1000µL Greiner Bio-one 

DOS-20S shaker NeoLab 

Eppendorf research plus 8-channel pipet Eppendorf 

Feather® disposable scalpels: no. 11, no. 15 Feather 

Friedman-Pearson rongeur Fine Science Tools 

Gel electrophoresis chamber NeoLab 

Gel electrophoresis power source Peqlab, VWR 

Glas cover slips, round, 13 mm VWR 

Hamilton microliter syringe: 2µL, 5 µL, 10 µL Hamilton 

HERAcell 240i CO2 incubator Thermo Fisher Scientific 

HM 550 cryostate Zeiss 

Superfrost PlusTM microscope slides Thermo Fisher Scientific 

MSC-Advantage sterile hood Thermo Fisher Scientific 
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Item Company 

NanoDrop VWR 

Neubauers' cell counting chamber Supe-Rior Marienfeld 

Olympus CKX41 fluorescence microscope Olympus 

Parafilm NeoLab 

Pasteur capillary pipettes WU Mainz  

Peristaltic pump (perfusion) Ismatec 

PB-11 pH-meter Sartorius 

PCR reaction tubes Roth 

Picospritzer® II microinjector  Science Products 

PIPETBOY acu2 INTEGRA Bioscience 

Pipettes VWR 

Power source 250V VWR 

Precision balance Kern 

Thermometer NeoLab 

Whatman® filter paper Sigma Aldrich 

Surgical retractor Roboz 

RH basic 2 heating/stirring plates IKA 

Rotina 380R cell culture centrifuge Hettich Zentrifugen 

Silkam® silk suture with micro-lancet needle Braun 

Small animal stereotaxic instrument Kopf 

Sterilizer tray World precision instruments 

Straight and curved surgical forceps Fine Science Tools 

Suture clips Fine Science Tools 

Suture Tying forceps Fine Science Tools 

T175 cell culture flasks Greiner Bio-one 

T25 cell culture flasks Greiner Bio-one 

T75 cell culture flasks Greiner Bio-one 

Thermocycler (PCR) BioRad 

Ultra-Low Adhesion T75 Flasks Sigmal Aldrich 

Vortex mixer NeoLab 

Wire knife and retractable wire knife carrier Mc Hugh Milieux 

Wound clip remover Fine Science Tools 
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3.1.9. Imaging Equipment 

 

Imaging equipment Company 

Tecan sunrise 96-well microplate reader (ELISA) Tecan 

BX53 fluorescence microscope Olympus 

BX61 confocal laser-scanning microscope Olympus 

CKX41 bright field microscope (cell culture) Olympus 

IX81 motorized inverted fluorescence microscope Olympus 

UV gel capture chamber Peqlab 

BX51W1 upright fluorescence microscope Olympus 

 

3.1.10. Software 

 

Software Company Application 

Adobe Illustrator CS6 Adobe Image creation and processing 

Adobe Photoshop CS6 Adobe Image processing 

BioCaptTM Bio-Budget Gel imaging (UV) 

Cell-F  Olympus Fluorescence imaging 

Cell-P Olympus Fluorescence imaging 

Cell-R Olympus Fluorescence imaging (Calcium Imaging) 

Endnote X7 Thomson Reuters Reference management 

Fluoview 2.1.c Olympus Confocal laser scanning imaging 

ImageJ RSB Image processing and evaluation 

Magellan6TM Tecan ELISA: detection 

Microsoft Office Microsoft Data analysis 

Prims 6 Graphpad Graphpad Data anaylsis, statistics,  representation 
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3.2. Methods 
 

3.2.1. Maintenance of human pluripotent stem cells 

 

HUES6 (Harvard University embryonic stem cell line 6) and human iPSC lines were obtained 

from the laboratory of Prof. Dr. Beate Winner, Friedrich-Alexander Universität Erlangen-

Nürnberg. Human iPSCs were generated via retroviral delivery of the OSKM factors and 

thoroughly characterized. After clonal expansion until passage 10 - 11, good/stable iPSC clones 

per donor were selected and further expanded until passage 30 - 40. Hereby, PSCs were 

cultured on MatrigelTM-coated (BD Biosciences) 6-well plates (Nunc®) in mTeSR medium 

(StemcellTM Technologies) and differentiating cells, which may appear at the edges of growing 

PSC colonies, were mechanically removed every day or every other day. Our collaborators 

prepared PSC cultures, so that neural induction could be performed upon arrival.    

 

3.2.2. Neural induction of human pluripotent stem cells 

 

3.2.2.1. Day in vitro 0: generation of embryoid bodies  

Laboratory of Prof. Dr. Beate Winner, Friedrich-Alexander Universität Erlangen-Nürnberg 

 

PSC cultures were mechanically cleaned to eliminate differentiating contaminating cells. PSC 

colonies were then gently lifted with a cell scraper (Corning®). Homogeneous medium-sized 

colony fragments were transferred to ultra-low adhesion 6-well plates (StemcellTM 

Technologies) and cultured overnight in mTeSR medium. Resulting free-floating colonies are 

called EBs due to their capacity to give origin to progeny of all three germ layers. 

 

3.2.2.2. Day in vitro 1: neural induction 

Laboratory of Prof. Dr. Beate Winner, Friedrich-Alexander Universität Erlangen-Nürnberg 

 

Without further dissociation, EBs were centrifuged at 800 - 1000 rpm for 5 minutes and the 

mTeSR medium was replaced with bNM. Free-floating cultures were transferred to T25 or T75 

flasks to be transported to the Spinal Cord Injury Center, Ruprecht-Karls Universität Heidelberg.  

 

3.2.2.3. Day in vitro 3 to 7: maintenance of embryoid bodies 

 

On DIV 3, 5 and 7 EBs were centrifuged at 800 - 1000 rpm for 5 minutes and 50-75% of the bNM 

was replaced. If adherent colonies were observed, EBs were transferred to a new T25 or T75 

flask to prevent adherent colonies from undergoing spontaneous differentiation and releasing 

differentiation signals.  
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Single EBs tend to fuse and form clumps. To maintain a homogeneous culture and to ensure 

that all EBs are exposed to the same gradient of nutrients from the culturing medium, EB-

clumps or unusually big EBs were allowed to settle down by gravity in 50 mL falcon tube and 

mechanically fragmented. 

 

3.2.2.4. Day in vitro 8 (to 12): generation of neural rosettes  

 

Depending on the size of EBs, they might be kept for longer as free-floating suspension (up to 

DIV 12), especially if caudalization with RA is planned. RA has some toxicity for EB colonies, 

therefore very small colonies will die back entirely.   

Prior to plating, 6-well plates were coated with PLO (20 µg/mL in ice-cold water for 1 hour at 

37°C), rinsed and coated with laminin (10 µg/mL in ice-cold water for 2 hours at 37°C). If present, 

EB-clumps or big EBs were mechanically fragmented. EBs were allowed to settle down in a 50 mL 

falcon tube by gravity or by centrifugation at 600 rpm for 5 minutes. Small EBs still present in the 

supernatant were discarded, as they do not survive during the RA treatment. 40 to 50 medium-

sized EBs were plated per well of a PLO/laminin coated 6-well plate and cultured in bNM. The 

next day, the medium was replaced to eliminate debris and dead cells. 

 

3.2.2.5. Day in vitro 11: caudalization with retinoic acid 

 

At DIV 11, neural rosettes (NRs) are visible within attached aggregates as multilayered circular 

structure resembling the closed neural tube. Several NRs were present within one NR 

aggregate. 

At this point, the medium was replaced with fresh bNM medium containing 0.1 - 0.5 µm RA to 

induce caudalization. If no morphogen was added at this stage, the default phenotype of the 

progeny would be rostral (forebrain). RA and RA-containing medium were used in the dark, as 

RA is light sensitive and unstable. The medium was replaced on DIV 12 and 14 to provide fresh 

RA. 

 

3.2.2.6. Days in vitro 15 - 22: picking of early NRs to initiate free-floating 
cultures 

 

According to published protocols [205, 397] and to induce a glial phenotype, NRs and the 

resulting neurospheres need to be cultured as free-floating spheres, as attachment might 

trigger a neurogenic phenotype. 

NRs were selected based on their overall morphology, mechanically picked with a 200 µL pipet 

and transferred to a T25 or T75 flask without being fragmented to initiate the formation of 

neurospheres (early NSCs). Here it was particularly important to collect as many NRs as possible 
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in one T25 flask: the density of the initial culture will influence the proliferation potential of the 

derived NSCs; if  initial densities were too low, resulting NSCs were not well expandable. 

75% of the medium was replaced every 2nd day to provide fresh RA until DIV 22. Importantly, 

NRs were not fragmented or dissociated.  

 

3.2.2.7. Day in vitro 23: dissociation of free-floating late NRs and expansion 

 

At DIV 23, RA treatment was completed. Late NRs were mechanically gently dissociated to 

smaller fragments (not single cells) and, from this day on, cultured in proliferation medium for 

neurospheres. 

 

3.2.2.8. Days in vitro 23 - 180: expansion and freezing of neurospheres 

 

From DIV 23 on, 75% of the proliferation medium was replaced twice per week. In order not to 

expose early neurospheres to stressful conditions, they were allowed to settle down by gravity 

and only 75% of the supernatants was centrifuged at 1000 rpm for 5 minutes. Until day 60, 

neurospheres grew very slowly. Although medium was changed twice a week, passaging was 

performed only every 2 weeks. During the first 60 - 80 days of expansion, neurospheres were 

transferred to a new T25 flask if adherent colonies were observed, as neurosphere adhesion 

augments their neurogenic potential. When neurospheres reached a sufficiently high density, 

they were transferred to low-adhesion T75 flasks for further expansion until DIV 180.  

Density permitting, but generally once a week, neurospheres were frozen. Neurospheres were 

centrifuged at 1000 rpm for 5 minutes, gently resuspended in 900 µL of bNM without 

dissociation and transferred to 1 mL cryotubes. 100 µL DMSO was added immediately prior 

freezing, cryotubes were inverted a few times and then stored at -80°C for maximum 1 week 

before being transferred to the liquid nitrogen storage unit.   

 

3.2.2.9. Days in vitro ~ 40, 50, 65, 80, 90, 100, 180: immunocytochemical 

analysis of neurospheres 

  

Early and late neurospheres were plated on PLO/laminin coated chamber slides or 24-well 

plates and fixed for at least 10 minutes with a 4% PFA solution 2 hours later. After 3 washing 

steps with TBS for 5 minutes and incubation with blocking buffer for 30 minutes at RT, 

neurospheres were incubated overnight at 4°C with antibodies to Sox2, nestin (NSC markers), 

vimentin (NSC and early astrocyte marker) and HoxB4 (a transcription factor expressed in the 

developing spinal cord), respectively diluted in blocking buffer. The next day, after 3 washing 

steps with TBS for 5 minutes, neurospheres were incubated for 2 hours at RT with fluorescent 

secondary antibodies and DAPI diluted in blocking buffer. After 3 additional washing steps, 
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neurospheres were stored at 4°C / in the dark. The % of immunopositive cells was calculated by 

microscopy and cell counting.    

 

3.2.2.10. Days in vitro 80 - 180: maturation of astrocyte precursors without 

FBS 

 

According to the original publication [205, 397], from day 80 up to day 180 precursor cells 

increasingly commit to the astrocytic lineage. At this point, neurospheres can be dissociated, 

plated at low density (5*103 to 2*104 cells per well of a 24 well plate) on PLO/laminin and 

differentiation can be started 1 - 3 days later. Differentiation was induced by withdrawal of 

proliferation factors and stimulation with the pro-astrocytic factor CNTF for 1 week [205, 397].  

Importantly, CNTF-containing bNM was entirely replaced every other day, as CNTF is chemically 

unstable. After 1 and 2 weeks of differentiation, differentiating precursors were fixed and 

immunolabeled as described above. Differentiation was assessed by quantifying expression of 

vimentin, GFAP (early and later astrocytic markers) and ß-III-tubulin (neuronal marker), and 

stemness and proliferation by quantifying expression of Sox2 (NSC marker) and Ki67 

(proliferation marker). The % of immunopositive cells was calculated by microscopy and cell 

counting.    

Both early (DIV ~100) and late (DIV ~180) neurospheres were not differentiating to form 

homogeneous astrocytic cultures. Therefore, the differentiation protocol was adjusted as 

follows. 

 

3.2.2.11. Days in vitro 80 - 180: maturation of “astrocyte precursors” with FBS 

 

From DIV 80 - 90, dissociated neurospheres were plated on PLO/laminin at a (low) density of 

1.5*105 per T75 flask. After a short acclimatization phase, 1% FBS was added to the proliferation 

medium and administered until the end of differentiation. NSCs were cultured as low-density 

monolayers for at least 2 weeks prior to differentiation. Following advantages were observed: 

dead cells were removed from the culture before differentiation; small aggregates were 

dissociated into single differentiating cells; single cells acquired a flat, astrocyte-like 

morphology. Whenever necessary, astrocytic precursors were passaged by adding 2.5 mL 

TripLETM Express to each T75 flask after removing the bNM. After a 3-minute incubation at 37°C, 

cells were resuspended in bNM, centrifuged at 1000 rpm for 5 minutes, counted using a 

haemocytometer and replated in a new PLO/laminin coated T75 flask (1.5*105). After an initial 

phase at low density for 1-2 passages, cells were allowed to reach confluence at each passage.     
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3.2.2.12. Days in vitro ~100 - 160: maturation of astrocyte precursors with 

CNTF, BMP2/4 and FGF1 

 

After at least 2 weeks of FBS treatment at low density, monolayer NSCs were plated at a density 

of 5*103 to 104 cells per well of a 24-well plate. The next day or at latest 3 DIV later 

differentiation was initiated by incubation with differentiation medium containing FBS and no 

additional factor or either CNTF, BMP2/4 or FGF1 (concentration: 20 ng, 10 ng each, 20 ng). 

Importantly, differentiation medium was entirely replaced every other day, as CNTF is 

chemically unstable. In addition, BMP2/4 treatment led to some NSC death, therefore an initial 

cell density of 104 per well of a 24-well plate was required.  

After 2 weeks of differentiation, differentiating precursors were fixed and immunolabeled as 

described above. Differentiation was assessed by quantifying expression of vimentin, GFAP 

(early and later astrocytic markers) and ß-III-tubulin (neuronal marker), whereas residual 

proliferation by quantifying expression of Sox2 (NSC marker) and Ki67 (proliferation marker). 

The % of immunopositive cells was calculated by microscopy and cell counting.   In addition, 

production of ECM was assessed by immunolabeling for CS-56 and laminin. ECM production was 

analyzed by microscopy, conversion of the fluorescence signal to a binary (B/W) signal and 

calculation of the area fraction per cell covered by each ECM component. Whenever possible, 

for each immunocytochemical analysis 3 - 6 fields of 3 wells of 1 - 3 independent 

differentiations were analyzed. Each well represents an individual microenvironment and is 

considered as n = 1. 

 

3.2.3. RNA extraction 

 

For RNA extraction, neurospheres were centrifuged at 1000 rpm for 5 minutes, resuspended 

directly in 250 µL lysis buffer (1% ß-mercaptoethanol in RLT buffer, RNeasy Mini Kit) and 

vortexed before immediate use or storage at -80°C. Total RNA was extracted using the RNeasy 

Mini Kit (Qiagen) and following the manufacturer’s instructions. 

 

3.2.4. cDNA synthesis 

 

RNA was reverse-transcribed to the first-strand cDNA using oligo (dT) primers and M-MLV 

Reverse Transcriptase and according the following scheme: 

 

Reagents solution I Amount BioRad thermocycler protocol 

RNA probe 

Oligo (dT) primers 

4.0 µL 

1.0 µL 

80°C for 3 min 

4°C for ∞ 
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Reagents solution II Amount BioRad thermocycler protocol 

5x MMLV reaction buffer 

MMLV reverse transcriptase, 200 U/µL 

dNTPs, 10 mM 

RNAsin, 40 U/µL  

DTT, 100 mM in H2O 

DEPC-treated H2O 

3.0 µL 

1.0 µL 

0.75 µL 

0.35 µL 

1.5 µL 

3.4 µL 

42°C for 1 hour 

80°C for 10 minutes 

4°C for ∞ 

 

3.2.5. PCR and gel electrophoresis 

 

The expression profile of neurospheres was assessed by PCR amplification of genes of interest 

either associated with positional identity or associated with glial specification, as following: 

 

Reagents  Amount BioRad thermocycler protocol 

2.5x 5-PRIME RT-PCR reaction mix  

10 µM fwd primer 

10 µM rev primer 

ddH2O 

cDNA (30 ng) 

4.0 µL 

0.25 µL 

0.25 µL 

4.5 µL 

1 µL 

95°C for 2 minutes once 

35 cycles of: 

95°C for 30 seconds  

55°C for 1 minute * 

72°C for 1 minute 

72°C for 8 minutes once 

4°C for ∞ 

* Annealing temperatures were calculated and adjusted for each primer. 

 

3.2.5.1. Gel electrophoresis 

 

1.5 g of UltraPure™ agarose were dissolved in 150 mL of 1x TAE buffer at boiling temperature. 

The agarose solution was allowed to cool down under constant stirring, and 1.5 µL EtBr were 

was added. Afterwards, the solution was poured into a gel chamber and let solidify at RT. 2 µL 

6x loading dye were added to the PCR reaction probe, and loaded for gel electrophoresis. 2-log 

DNA ladder was used to estimate amplicon lenghts, but not amplicon amounts. Electrophoresis 

was performed at 100 V for at least one hour.  
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3.2.6. Calcium imaging of maturing astrocytes 

 

3.2.6.1. Imaging procedure 

Laboratory of Prof. Dr. Hilmar Bading, Ruprecht-Karls-Universität Heidelberg 

 

To perform Ca2+ imaging, 2-week differentiated astrocyte cultures were differentiated for 2 

weeks on round 13 mm cover slips in 24-well plates. These were pre-treated with HCl at 65°C 

overnight and stored in isopropanol, then dried and coated with PLO/laminin (100 µg/mL und 

10 µg/mL) immediately prior to use. Due to a less efficient attachment on glass than on plastic 

surfaces, NSCs were plated at higher densities prior to differentiation (8*104 cells per cover slip).     

Two-three days prior to Ca2+ imaging, plates were transported to the laboratory of Prof. Hilmar 

Bading, Ruprecht-Karls-Universität Heidelberg, where the set-up was located, and allowed to 

acclimatize.  

On the day of imaging, few cover slips at one time were transferred to an empty 24-well plate, 

washed with SGG buffer and incubated with Fura-2 (1:1000 in SGG buffer) for 30-45 minutes at 

RT. After an additional washing step with SGG buffer, differentiating cells were incubated with 

SGG buffer for at least 30 minutes at RT. At this point, cover slips were placed into the imaging 

set-up’s chamber under a 40x objective and covered with 1 mL SGG buffer. Up to 13 ROIs 

corresponding to a single cell each were set. Using the Cell-R imaging software, one-frame-per-

second recordings were started at 340 nm and 380 nm in parallel, since Fura-2 is a ratiometric 

fluorophore.  

Resting Ca2+ levels were recorded for 60 seconds, then 1 mL of 200 µM ATP in SGG buffer was 

very carefully pipetted into the chamber in order to expose astrocytes to 100 µM ATP. One-

frame-per-second recordings were performed for up to 5 minutes after ATP application. 

 

3.2.6.2. Analysis  

 

The area and integrated density (ID) of 3 empty ROIs (background / noise signal) and up to 13 

ROIs per cover slip were calculated as numerical / arbitrary values per frame using ImageJ (ROI 

manager), both for 340 nm and 380 nm recordings. The total ID per frame of the 3 empty ROIs 

was subtracted from each ROIs’ ID per frame, both for 340 nm and 380 nm recordings. 

Thereafter, a 340 nm/380 nm ID ratio per frame was calculated for each ROI. The resulting 

values were plotted as curves using Prims 6 Graphpad and represent Ca2+ fluctuations over 

time. 
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3.2.7. BDNF Enzyme-Linked Immunosorbent Assay   

 

All ELISA experiments were performed together with Shengwen Liu, a medical doctor working in 

our research laboratory.  

Differentiation of PSC-derived NSCs into astrocytes was performed in PLO/laminin coated 24-

well plates with the differentiation factor of interest. FBS-containing differentiation medium 

was replaced 48 hours prior to ELISA measurements with differentiation medium without FBS 

(500 µL/well). 

On day 2 of the ELISA protocol supernatants were collected and immediately used. Cells were 

counted to determine the amount of BDNF produced by a defined number of cells.    

 

3.2.7.1. Day 1: coating of 96-well plates 

 

Rabbit anti-BDNF primary antibody was diluted in coating buffer (1:2000) and distributed into 

the 96-well plate (50 µL / well). Control wells were incubated with rabbit serum (1:4000 in 

coating buffer). Plates were incubated overnight at 4 °C in a humid chamber and on a horizontal 

shaker. 

 

3.2.7.2. Day 2: washing, blocking and incubation with cell supernatants 

 

Unbound antibody was removed by washing the wells twice with ELISA washing buffer for 10 - 

30 minutes at RT, thereafter wells were incubated with ELISA blocking buffer for one hour at RT 

and washed again twice. During this time, a purified human BDNF stock solution is diluted in 

ELISA homogenization buffer to obtain 12 solutions with a range of concentrations [pg/well: 100 

/ 66.6 / 44.4 / 29.6 / 19.8 / 13.17 / 8.78 / 5.85 / 3.9 / 2.6 / 1.73 / 0] as standard/reference curve 

to calculate BDNF concentrations of cell supernatants. Cell supernatants were diluted 1:2 in 

homogenization buffer.  

Purified BDNF solutions and diluted supernatants were added to the wells of the 96-well plate 

and incubated overnight at 4°C  in a humid chamber on a horizontal shaker.  

 

3.2.7.3. Day 3: Incubation with anti-BDNF  

 

Samples were removed and wells were washed with ELISA washing buffer at least 4 times for 15 

minutes at RT. Chicken anti-BDNF antibody (1:2500 in ELISA homogenization buffer) was then 

added to each well. The 96-well plate and incubated O/N at 4°C  in a humid chamber on a 

horizontal shaker.  

 



72 

 

3.2.7.4. Day 4: incubation with peroxidase-conjugated secondary antibody 

 

Chicken anti-BDNF antibody was removed and wells were washed with ELISA washing buffer at 

least 4 times for 15 minutes at RT. Peroxidase-conjugated anti-chicken IgY antibody (1:1000 in 

ELISA peroxidase buffer) was added to each well. The 96-well plate and incubated overnight at 

4°C  in a humid chamber on a horizontal shaker.  

 

3.2.7.5. Day 5: measurement of optic densities  

 

Peroxidase-conjugated anti-chicken IgY antibody was removed and wells were washed twice 

with ELISA washing buffer and twice with PBS for 15 minutes at RT. To 16 mL ELISA OPDA per 

96-well plate 8 mg OPDA and 11 µL 30% H2O2 were added immediately prior to use. 150 µL of 

this solution were added to each well. After an incubation of 5 - 30 minutes until the solution 

turned bright yellow, 50 µL of a 10% H2SO4 solution were added to stop the reaction.   

Optic densities were measured with a Tecan sunrise 96-well microplate reader at 490 nm. 

 

3.2.8.  Isolation of dorsal root ganglion neurons and co-culture with 

maturing astrocytes 

 

Differentiation of PSC-derived NSCs into astrocytes was performed in PLO/laminin coated 6-well 

plates or 12-well plates with the differentiation factor of interest. Differentiation medium was 

replaced 2 hours prior to co-culturing with differentiation medium without FBS or any 

differentiation factor, as these might have an effect on neurite growth. Only confluent and 

homogeneous cultures of astrocytes were used for co-culturing experiments.   

 

3.2.8.1. DRG isolation 

 

10 - 13-week old Fischer344 rats were deeply anesthetized. The spinal column was dissected 

and the spinal cord wash flushed out through injection of Hank’s salt solution into the spinal 

canal. Two spine halves were obtained by gently cutting dorsally and ventrally. By gently pulling 

the intra-spinal nerve endings with forceps and gently removing the dura mater surrounding 

them, DRGs were isolated from each segment of the spine along the rostro-caudal axis, 

collected into 1.5 mL Eppendorf tubes and kept on ice in Hibernate A medium.  

 

3.2.8.2. DRG digestion and plating of isolated neurons 

 

When all DRGs were collected, Hibernate A medium was removed and DRGs were washed with 

ice cold Hank’s salt solution. 500 µL of a 1:1 collagenase XI:DispaseI solutions were added and 
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incubated for 30 minutes at 37°C. To ensure that all DRGs are equally exposed to the enzymatic 

solution, Eppendorf tubes were gently turned every 10 minutes. Enzymatic digestion was 

stopped by incubation with warm DMEM/F12 medium containing 10% FBS for a few seconds. 

The FBS-containing medium was then removed and DRGs were washed with warm serum-free 

DMEM/F12 medium. Finally, DRGs are resuspended in DRG maintenance medium and 

mechanically dissociated by pipetting up-and-down through a fire-polished glass pipet. The total 

number of DRG cells, including neurons and glia, was counted and cells were plated onto 

PLO/laminin coated 6-well plates. Importantly, only 0.5 µg/mL laminin were used, since high 

concentrations of laminin lead to extensive neurite growth of dissociated DRG neurons, which 

was not needed here. Plated DRG neurons were kept in DRG maintenance medium at 37°C 

overnight and re-plated after 24 hours: thereby cellular debris and inhibitory ECM components 

such as myelin were washed away prior to plating onto differentiating astrocytes. To this end, 

DRG neurons were gently washed with warm DPBS, incubated with trypsin (0.125% in warm 

DPBS) for 2-3 minutes at 37°C, resuspended in DRG maintenance medium containing 10% FBS, 

counted and centrifuged at 1000 rpm for 5 minutes. After determining the cell number using a 

haemocytometer, up to 1.25*104 and 2.5*104 cells per well of a 12-well or 6-well plate 

respectively were plated onto differentiating astrocytes. 

 

3.2.9. Transplantation of neural stem cells and astrocytes into the rat spinal 

cord 
 

3.2.9.1. Preparation of NSCs and differentiating astrocytes 

 

Either NSCs or differentiating astrocytes were transplanted into the intact or injured spinal cord 

of fischer344 rats. 

NSCs were cultured as free floating neurospheres in proliferation medium and mechanically 

fragmented by pipetting up-and-down prior to transplantation. Importantly, they were not 

dissociated into single cells, since previous studies [228] reported higher survival of transplanted 

cells when neurospheres were transplanted as small fragments. 

Differentiation of PSC-derived NSCs into astrocytes was performed in PLO/laminin coated 6-well 

plates or 12-well plates with the differentiation factor of interest. Differentiation medium was 

replaced 2 hours prior to co-culturing with differentiation medium without FBS or any 

differentiation factor, as these might have an effect on neurite growth.  

On the day of transplantation, cells were resuspended, counted and centrifuged at 1000 rpm for 

5 minutes. The pellet was rinsed once with DPBS, and then the DPBS solution was removed 

completely until the pellet was nearly dry. The volume of the pellet was estimated and the 

remaining volume of a PBS/1% glucose solution was added to reach a concentration of 2.5*105 

to 5*105 cells/µL. Concentration of the cell solution strongly depended on cell size, since NSCs, 

especially if cultured as neurospheres, were generally very small, whereas differentiating 
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astrocytes were bigger: when resuspending astrocytes it was physically not possible to obtain a 

concentration of 5*105 cells/µL. Immediately prior to transplantation, the cell solution was 

diluted 1:2 either in  PBS/1% glucose or in a cocktail of Calpain inhibitor (Stock 100 µM, final 25 

µM) and either 9 growth/neurotrophic factors (BDNF and NT-3: stock for surgery 100 µg/mL, 

final 25 µg/mL; EGF, FGF1, FGF2, GDNF, HGF, IGF, PDGF: stock for surgery 20 µg/mL, final 5 

µg/mL) or only the differentiation factor used to induce astrocytic maturation (CNTF, BMP2/4, 

FGF1: stock for surgery 20 µg/mL, final 5 µg/mL). The stock growth factor cocktail itself was 

diluted 1:2 either in PBS/1% glucose or with fibrinogen (stock for surgery 100 mg/mL, final 25 

mg/mL) or thrombin (stock for surgery 100U/mL, final 25 U/mL), as well immediately prior to 

cell injection. 

 

3.2.9.2. Anesthesia and exposure of the C4 segment of the rat the spinal 

cord  

 

Female 12 to 14-week old Fischer344 rats weighing 140 - 180g were immunosuppressed 24 

hours before surgery by a subcutaneous injection of Sandimmun® (10 mg/kg body weight). 

Sandimmun® was administered daily until the end of the experiment. After surgery, rats 

received subcutaneous injections of Temgesic®, ampicillin and Ringer solution twice a day for 

two days. On the day of surgery, rats were deeply anesthetized, shaved at the dorso-cervical 

level and the skin was rinsed with Braunol. Animals were fixed on a stereotaxic setup. A midline 

skin cut from C2 to C5 was done with a scalpel to expose the musculature, then the paraspinous 

musculature was gently pushed aside with forceps to expose the C4 spinal cord segment and 

the opening was fixed by insertion of a retractor. The C4 segment of the spinal cord was 

thereafter exposed by laminectomy and the dura mater was disrupted either by a small cut 

(scalpel) or a small hole (syringe tip).  

 

3.2.9.3. Hemisection of the spinal cord 

 

After laminectomy and disruption of the dura mater by a small longitudinal cut, the right half of 

the spinal cord was completely sectioned using surgical microscissors. The exposed spinal cord 

segment was covered with a cut-to-fit thin 1% agarose film, thereafter the muscles were 

sutured with a sterile silk thread and the skin was clipped with suture clips.   

 

3.2.9.4. Wire knife injury of the spinal cord 

 

A retractable wire knife carrier was fixed on the stereotactic arm, then the stereotactic arm was 

fixed on the stereotactic setup. Prior to lesioning, the wire knife was carefully extruded from its 

holder in order to position it in the middle of the C4 segment (both on the rostro-caudal and on 
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a medio-lateral axis), whereby the wire knife had to be as accurately as possible perpendicular 

to the rostro-caudal axis. After insertion into the spinal cord through the hole previously 

punched into the dura mater, the depth of the wire knife carrier along the dorso-ventral axis 

was adjusted and the wire knife was slowly extruded. The extruded wire knife was slowly pulled 

towards the dorsal edge of the spinal cord, while the spinal cord was at the same time gently 

pressed towards the knife with a blunt stab in order to transect the dorsal column projections. 

This procedure was repeated until the full-length wire knife was visible underneath the dura 

mater, indicative of successful transection of the dorsal column. The wire knife was slowly 

retracted and pulled out. A representative picture of the lesion was taken to better identify it 

one week later, when cells were transplanted into the injury site. The exposed spinal cord 

segment was covered with a cut-to-fit thin 1% agarose film, thereafter the muscles were 

sutured with a sterile silk thread and the skin was clipped with suture clips.   

 

3.2.9.5. Re-exposure of the spinal cord and cell injection 

 

One week after transection of the dorsal column, the C4 segment was re-exposed as described 

above. Using the picture of the lesion, the site for injection was identified.  

The previously prepared cell solution was pipetted into a pulled glass micropipette (100 µm 

diameter), which was fixed on the stereotactic arm and connected to a Picospritzer. After 

punching a hole into the dura mater, the glass needle was carefully inserted into the spinal cord 

at the lesion site, as well as rostrally and caudally to it. Respectively ~1 µL and ~0.35 µL of the 

cell solution were injected into each site twice:  ~1.25*105 cells/µL diluted in a cocktail of 

Calpain inhibitor (final concentration: 25 µM), a specific growth/neurotrophic factor 

combination (final concentrations ranging from 5 µg/mL to 25 µg/mL) and either fibrinogen 

(final concentration: 25 mg/mL) or thrombin (final concentration 25 U/mL) respectively, for a 

total of 2 µL injection volume into the lesion epicenter and 0.7 µL injection volume rostrally and 

caudally. If PSC-derived NSCs or astrocytes were co-grafted with fibroblasts, they were cultured 

and resuspended separately at a concentration of ~2.0*105 cells/µL and 6*104 cells/µL in a 

growth factor cocktail or PBS/1% glucose respectively, then mixed 1:1 immediately prior to 

transplantation. No fibrinogen or thrombin were applied in fibroblast co-transplantation 

experiments. 

By application of 20 PSI for 5 ms, cells were injected into the lesion site at a depth of 0.8 mm, 

while the glass needle was slowly pulled upwards. When the defined volume of cell solution was 

injected, the glass needle was pulled out after a short break to avoid reflux of injected cells. The 

muscles were sutured with a sterile silk thread and the skin was stapled with suture clips.   
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3.2.9.6. Transplantation of differentiating astrocytes into the intact spinal 

cord 

 

After exposure of the C4 spinal segment as described above, ~1 µL of a ~1.25*105 cells/µL 

solution pre-diluted in a cocktail of Calpain inhibitor and a specific growth/neurotrophic factor 

combination (CNTF, BMP2/4, FGF1 or EGF/FGF2: stock for surgery 20 µg/mL, final 5 µg/mL) was 

injected directly into the intact spinal cord at a depth of 1 mm. When the defined volume of cell 

solution was injected, the glass needle was pulled out after a short break to avoid reflux of 

injected cells. The muscles were sutured with a sterile silk thread and the skin was clipped with 

suture clips.   

 

3.2.10. Perfusion and tissue analysis 

 

3.2.10.1. Perfusion 

 

Either 2 or 4 weeks after cell transplantation, rats were sacrificed and perfused. 

Prior to perfusion, rats were deeply anesthetized and fixed on a grid placed on a plastic vessel. 

Their belly was sprayed with 70% EtOH and a 1 cm transversal cut at the level of the sternum 

was done. A further, deeper small cut was done under the sternum. After cutting the diaphragm 

and opening a hole into the rib cage, the pericardium was opened up to expose the heart. A 

butterfly needle was then inserted into the left heart ventricle (1 - 2 mm depth), with particular 

care in order not to damage the septum. The right atrium was truncated by a scissor to allow 

the blood to flow out. Using a peristaltic pump, ice-cold PBS was pumped into the heart and 

consequently into the blood circulation for approximately 10 minutes. Thereby the blood was 

completely washed out and ice-cold 4% PFA was pumped into the blood circulation in order to 

fix the tissue for approximately 15 minutes. During the whole procedure particular attention 

was paid to avoid flow of air bubbles in the perfusion pipes, as their introduction into the blood 

circulation hampers the efficiency of perfusion. The brain and spinal cord were isolated and 

stored in 4% PFA at 4°C overnight. The next day the PFA was substituted with 30% sucrose, to 

avoid ice-crystal mediated damage the tissue, when the latter is frozen for cryosectioning. The 

brains and spinal cords were stored at 4°C for them to sink, ranging from 2 to 4 days at least. 

 

3.2.10.2. Cryosectioning and immunohistochemistry 

 

Once the brains and spinal cords were sunk, they were cryosectioned. 

The C2-C5 portion of the spinal cord was embedded in Tissue-TekTM, the spinal cord fragment 

was frozen by exposure to -50/-53°C. Sagittal, 35 µm thick tissue sections were obtained using a 

cryostat and stored at in TCS-filled 24-well plates (free-floating) at 4°C until further use. 
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The staining procedure began with 3 washing steps with TBS for 10 minutes and incubation with 

blocking buffer for 1 hour at RT. Tissue sections were then incubated overnight at 4°C and on a 

horizontal shaker with the following antibodies: hGFAP or hNUC (Human-specific markers) in 

combination with Ki67, Sox2, vimentin, GFAP, DCX, Neurofilament-H (NFH), CS-56 and laminin, 

respectively diluted in blocking buffer. The next day, after 3 washing steps with TBS for 10 

minutes, tissue sections were incubated for 2.5 hours at RT with fluorescent secondary 

antibodies and DAPI diluted in blocking buffer. After 3 additional washing steps, tissue sections 

were mounted on glass slides and covered with Fluoromount-G mounting solution and a glas 

coverslip, and thereafter stored at RT / in the dark. The % of immunopositive cells was 

calculated by microscopy and cell counting. To this end, whenever cell survival was high enough 

3 - 6 fields from 3 spinal cord slices from 3 animals were analyzed, for a total number of 

individual cells of x > 1000, and this was considered n = 3. However, this was not possible for all 

experiments. 

 

3.2.11. Statistics 

 
Statistical analysis was performed with Prims 6 Graphpad. No statistical analysis was performed 

if n < 3. When n ≥ 3, either a one-way or a two-way ANOVA statistical tests were performed, 

followed by post hoc testing either without correction or with a correction for multiple 

comparisons. In particular, when 3 treatment groups were compared to the ‘no factors’ control 

group within a single cell line (closed system, 3 direct comparisons), a one-way ANOVA followed 

by Fisher’s LSD post hoc test was performed. When 4 treatment groups were compared across 

cell lines (multiple comparisons), two-way ANOVA followed by Tukey’s post hoc test was used. 
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4. Results 
 

4.1. Generation of astrocytes from human pluripotent stem cells 
 

4.1.1. Neural induction and differentiation protocol 
 

To generate astrocytes from human PSCs, recently published protocols were compared [205, 

296, 397, 399, 400] and neural induction and differentiation were first performed according to 

the protocol published by Krencik et al. (Figure 4.1, left timeline) [397].  

The first attempt to replicate the protocol did not succeed. Neurospheres were expanded in the 

presence of EGF and FGF2 in bNM without B27. Under these conditions, neurospheres did not 

proliferate and each medium change or passaging attempt led to progressive loss of 

neurospheres until the culture was depleted (data not shown). The second attempt to replicate 

the protocol was performed in the presence of B27 in the bNM culture medium and led to 

expandable neurosphere cultures. Neurospheres were generated from four PSC lines: one 

human ESC line, the well-characterized HUES6 line, and three human iPSC lines, either without 

or with caudalizing RA treatment (data not shown). Of all available PSC-derived NSC lines, three 

caudalized NSC lines, referred to as HUES6, iPSC #1 and iPSC #2 were used for further 

experiments. 

 

4.1.2. Characterization and differentiation of pluripotent stem cell derived 

neurospheres 

 

At DIV 60 - 90, neurospheres were characterized by immunocytochemistry and RT-PCR (Figure 

4.2.1 A, B). Neurospheres were homogeneously immunolabeled for the NSC markers Sox2 and 

nestin, the NSC / early astrocytic marker vimentin, as well as the transcription factor HoxB4, 

which is expressed in the developing spinal cord, indicating successful caudalization of 

neuroepithelial cells (Figure 4.2.1 A) [205, 288]. Along this line, RT-PCR showed low or no 

expression of the forebrain transcription factor FoxG1, but appreciable expression of the 

caudal/spinal transcription factors HoxB4, HoxA5 and Isl1 (Figure 4.2.1 B) [288]. Since neural 

rosettes (NRs) were not treated with dorsalizing or ventralizing agents, NSCs expressed both 

dorsal (Pax3) and ventral (Nkx2.1, Nkx2.2, Nkx6.1) transcription factors [288]. Importantly, NSCs 

expressed a broad range of markers associated with the glial lineage, including the 

oligodendrocyte markers Nkx2.2, NG2, Olig1, Olig2 and PDGFR and the astrocyte-specification 

markers NFIA, NFIX, S100ß, Aqp4, Chl1 and EAAT1, also known as GLAST (Figure 4.2.1, B).  

At an early (DIV 65 - 95, passage 3 - 4) and a late (DIV 170 - 180) time-point, neurospheres were 

gently dissociated, plated on PLO/laminin and exposed to CNTF in the absence of EGF and FGF2. 

Based on the original protocol [205, 397], cells were exposed to CNTF for one week, but this 
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time was insufficient to induce astrocytic maturation. After one week, none of the 

differentiated NSC lines gave rise to a considerable amount of GFAP+ positive astrocytes (data 

not shown). Therefore differentiation was extended to two weeks throughout all remaining 

experiments. After two weeks of differentiation, neither early neurospheres (Figure 4.2.2 A) nor 

late neurospheres (Figure 4.2.2 B) gave rise to homogeneous astrocytic cultures as expected 

[205, 397], although they homogeneously expressed the early astrocytic marker vimentin. The 

GFAP+ population amounted to about 10% in HUES6- and iPSC #2-derived differentiated NSCs 

and did not exceed 30% of total differentiating cells in iPSC #1-derived NSCs (Figure 4.2.3 A). In 

contrast to previously published data [205, 397], both early and late NSCs from all lines 

generated up to 15% ß-III-tubulin+ neurons (Figure 4.2.3 B) and the overall differentiation 

potential of late neurospheres was significantly decreased (Figure 4.2.2, A, B) in both iPSC-

derived NSC lines. Surprisingly, iPSC #1-derived late neurospheres did not differentiate into 

GFAP+ astrocytes or into ß-III-tubulin+ neurons at all.  

Expression of the NSC marker Sox2 was significantly increased in DIV 170 - 180 HUES6- and iPSC 

#2-derived NSCs differentiated with CNTF (Figure 4.2.3 C), suggesting that extensively passaged 

neurospheres have a lower capacity of terminally differentiating. Expression of the proliferation 

marker Ki67 did not exceed 40% in any line and at both time points (Figure 4.2.3 D). iPSC #1-

derived late neurospheres exhibited decreased expression of Sox2 and Ki67 (Figure 4.2.3 C, D), 

but maintained homogeneous vimentin expression. Importantly, differentiating neurospheres 

did not consistently give rise to homogeneous monolayer cultures, but also included patches of 

tightly-packed Sox2+ colonies (Figure 4.2.2 A, B).  

Taken together, these results show that the original differentiation protocol by Krencik et al. 

does not lead pure astrocytic cultures under similar experimental conditions with any of the 

three different PSC lines.   
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Figure 4.1: Differentiation of PSCs into astrocytes.  

Schematic representation of the protocols to differentiate PSCs into astrocytes. First, the 
protocol by Krencik et al. was replicated (left). Due to insufficient purity of the resulting cultures, 
the protocol was modified (right): on DIV ~80 free-floating neurospheres were plated at low 
density on PLO/laminin and exposed to 1% FBS for at least two weeks prior to differentiation. 
Maturation of NSCs into astrocytes was induced by treatment with CNTF, BMP2/4 or FGF1 in 
addition to FBS. 
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Figure 4.2.1: PSC-derived neurospheres express markers associated with a glial lineage.  

(A) Representative photomicrographs of early neurospheres (DIV 60 - 80) expressing the NSC 
markers Sox2 and nestin, the NSC / early astrocytic marker vimentin and the transcription factor 
HoxB4, which is expressed by caudal/spinal precursors during neurodevelopment. (B) Total RNA 
was isolated from neurospheres to analyze expression of genes associated with positional 
identity (FoxG1, HoxB4, HoxA5, Isl1, Pax3, Nkx2.1, Nkx6.1) and glial specification 
(oligodendrocytic: Nkx2.2, NG2, Olig1, Olig2, PDGFR; astrocytic: NFIA, NFIX, S100ß, Aqp4, Chl1, 
GLAST) by RT-PCR. HUES6- and iPSC #2-derived neurospheres are shown as representative 
examples of successful neural induction and caudalization.  
Scale bar: 20 µm. A: anterior; P: posterior; D: dorsal; V: ventral.  

A B 
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Figure 4.2.2: Differentiation of PSC-derived neurospheres with CNTF for two weeks results in 

mixed cultures of astrocytes and neurons.  

Representative photomicrographs of PSC-derived (A) DIV 75 - 95 early neurospheres and (B) 
DIV 170 - 180 late neurospheres after differentiation with CNTF for two weeks. Differentiated 
cells expressed the early astrocytic marker vimentin, the astrocytic marker GFAP, the neuronal 
marker ß-III-tubulin, the NSC marker Sox2 and the proliferation marker Ki67. Surprisingly, iPSC 
#1-derived late precursors did not differentiate into astrocytes or neurons, and showed little 
Sox2 and Ki67 expression.  
Scale bar: 20 µm. 

A 

B 
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Figure 4.2.3: Quantitative analysis of differentiation and proliferation in PSC-derived 

neurospheres differentiated with CNTF for two weeks.  

Quantitative analysis of marker expression in DIV 75 - 95 early neurospheres (solid bars) and 
DIV 170 - 180 late neurospheres (striped bars) after two weeks of differentiation with CNTF. 
Cells expressed (A) the astrocytic marker GFAP, (B) the neuronal marker ß-III-tubulin, (C) the 
NSC marker Sox2 and (D) the proliferation marker Ki67. Marker expression in differentiating 
HUES6-derived (black), iPSC #1-derived (red) and iPSC #2-derived (blue) cells was quantified as 

% of DAPI
+
 nuclei. n = 3 - 6 wells / condition; asterisks indicate significant differences between 

early and late neurospheres, hashtags indicate significant differences between cell lines.  One-
way ANOVA, Fisher’s LSD post hoc; * and #: p < 0.05, ** and ##: p < 0.01, *** and ###: p < 
0.001. 

A B 

C D 
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4.1.3. Transplantation of pluripotent stem cell derived neurospheres into 

the injured spinal cord  
 

Although differentiation of neurospheres according to the protocol by Krencik et al. [205, 397] 

(Figure 4.1, left timeline) did not result in pure astrocytic cultures in vitro (Figure 4.2.2 and 

4.2.3), transplanted cells are exposed to signaling cues from the host environment and survival 

and differentiation can be drastically influenced. Therefore, to assess survival and 

differentiation in the lesioned spinal cord, HUES6-derived DIV ~130 neurospheres were 

transplanted one week after C4 lateral hemisection or wire knife lesion of the C4 dorsal column 

(Figure 4.3; Appendix table 4.2 A, B). In addition, to evaluate potential effects of growth factor 

co-delivery on cell survival and differentiation, HUES6-derived neurospheres were resuspended 

in a mix of calpain inhibitor and nine growth factors or in PBS/1% glucose at a concentration of 

2*105 – 2.5*105 cells/µl. ~5 µl were injected into the hemisectioned spinal cord, whereas ~2 µl 

were injected into the wire knife lesioned spinal cord (Appendix, Table 4.2 A) [148, 149].  

Animals received subcutaneous injections of cyclosporine A and were allowed to survive for 

four weeks as indicated. Accordingly, cell integration into the host tissue and phenotype was 

analyzed four weeks after grafting.  

HUES6-derived neurospheres exhibited moderate survival when transplanted without growth 

factors and appreciable survival when transplanted with the growth-factor cocktail. As shown in 

Appendix Table 4.2 A, HUES6-derived cells were detected in all animals that received 

neurospheres in combination with growth factors, whereas neurospheres administered in 

PBS/1% glucose survived in 5 out of 6 transplanted animals (+GF = 100% survival, (-)GF = 83% 

survival). In addition, qualitatively more cells survived when transplanted with the growth factor 

cocktail (Figure 4.4.1). However, across all animals grafted cells were located mostly at the 

lesion edge rather than the lesion epicenter. The latter was filled by infiltrating cells, potentially 

reactive fibroblasts and immune cells such as macrophages. 

To determine the phenotype of transplanted PSC-derived cells into glial and neuronal lineages, 

expression of the astrocytic marker GFAP and of the early neuronal marker DCX was quantified. 

Across all animals, over 90% of the transplanted cells differentiated into GFAP+ astrocytes, 

whereas 5-10% expressed the early neuronal marker DCX (Figure 4.4.2). This indicates that, 

although neurospheres do not fully differentiate into astrocytes in vitro (reflected by GFAP 

expression, Figure 4.2.2 and 4.2.3 A), they are robustly driven to a GFAP+ astrocytic phenotype 

by the host CNS environment. However, reflecting in vitro findings (Figure 4.2.2 and 4.2.3 B), 

neurospheres retained some neurogenic potential in vivo. No significant differences in the 

differentiation potential of transplanted neurospheres were observed between the PBS/1% 

glucose control group and the full growth factor cocktail group. Interestingly, GFAP+ astrocytes 

which were located at the lesion epicenter or at the lesion edge co-expressed vimentin, 

whereas individual cells which migrated into the surrounding host spinal cord further from the 
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lesion site only expressed GFAP and exhibited a complex cytoarchitecture (Figure 4.2 A). Since 

vimentin is expressed in early/immature astrocytes but also in reactive astrocytes, these 

observations suggest that the microenvironment at and immediately surrounding the lesion 

epicenter either prevents maturation of HUES6-derived vimentin+ early astrocytes or it 

stimulates them to acquire a reactive phenotype.  

To evaluate whether HUES6-derived astrocytes contribute to the growth-inhibitory fibroglial 

scar, tissue sections were immunolabeled with human specific GFAP and NFH antibodies. 

hGFAP+ astrocytes and NFH+ projections were closely associated, suggesting that HUES6-derived 

astrocytes were not completely growth-inhibitory. However, without appropriate control or 

comparison group, it is not possible to assess whether transplanted astrocytes were growth-

promoting or less growth-inhibitory than endogenous reactive astrocytes.  

Since a C4 hemisection of the spinal cord is a rather severe SCI model, HUES6-derived 

neurospheres were transplanted after wire knife lesion of the C4 dorsal column, a model in 

which the dura mater is only slightly damaged during the surgical procedure. Similar to the 

above described results, HUES6-derived neurospheres transplanted without additional growth 

factors exhibited only moderate survival, robust differentiation into astrocytes, but also some 

differentiation into neurons (Figure 4.5). 

Taken together, the neurogenic potential of HUES6-derived neurospheres is maintained in vivo 

independent of the lesion model, but their differentiation into vimentin+ and/or GFAP+ 

astrocytes is influenced by the injured host spinal cord. Survival is moderate and mostly 

restricted to the lesion edges. 
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Figure 4.3: Schematic representation of the surgical procedure. 
Level C4 of the rat spinal cord was injured either by lateral hemisection using a surgical micro-
scissor or by transection of the dorsal column using a wire knife. One week post-injury PSC-
derived NSCs were injected into the injury site and four weeks after transplantation animals 
were sacrificed for tissue analysis. 
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Figure 4.4.1: HUES6-derived neurospheres moderately survive in the injured spinal cord. 

Representative photomicrographs of hNUC
+
 HUES6-derived progeny four weeks after C4 

hemisection and cell transplantation. HUES6-derived neurospheres were transplanted either (A) 
without additional growth factors or (B) were re-suspended  in a solution containing calpain 
inhibitor and nine growth/neurotrophic factors. 
Scale bar: 500 µm. GF: growth factor; A: anterior; P: posterior; L: lateral; M: medial.  
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Figure 4.4.2: HUES6-derived neurospheres mainly differentiate into astrocytes in the injured 
spinal cord. 
Representative photomicrographs of HUES6-derived progeny four weeks after C4 hemisection 
and cell transplantation. HUES6 neurospheres-derived cells expressed (A, D) the astrocytic 
markers vimentin and GFAP and (C, D) some cells expressed the early neuronal marker DCX. 

GFAP+ astrocytes (B) co-localized with NFH
+
 host neuronal projections.   

Scale bars: (A) 200 µm und 50 µm, (B) 300 µm and (C) 100 µm. (D) n = 3 - 4 animals per group. 
A: anterior; P: posterior; L: lateral; M: medial.  
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Figure 4.5: HUES6-derived neurospheres moderately survive and mainly differentiate into 

astrocytes in the injured spinal cord. 

(A) Representative photomicrographs of hNUC
+
 HUES6-derived progeny four weeks after wire 

knife lesion of the C4 dorsal column and transplantation without additional growth factors. 
Transplanted cells (B, C) mainly expressed the astrocytic marker GFAP and some cells expressed 
the early neuronal marker DCX. 
Scale bar: (A) 500 µm and (B) 100 µm. (C) n = 3 animals. 
GF: growth factor; A: anterior; P: posterior; D: dorsal; V: ventral.  

B C 

A 



90 

 

4.2. In vitro characterization of pluripotent stem cell derived 
astrocytes 

 

4.2.1. Modified differentiation protocol for the generation of neuron-free 

astrocytic cultures 

 

In vitro differentiation of NSCs into astrocytes is strongly promoted by exposure to FBS. 

As astrospheres differentiated according to the procedure described above did not result in 

pure astrocytic cultures, early (DIV 80 - 90) neurospheres were dissociated, plated on 

PLO/laminin and exposed to 1% FBS for at least two weeks prior to differentiation. In addition, 

to boost astrocytic maturation, NSCs were exposed either to FBS alone or to FBS in combination 

with CNTF, BMP2/4 or FGF1 in absence of EGF and FGF2 (Figure 4.1, right timeline), as these 

three factors are considered to be potent modulators of astrocytic maturation (paragraph 

2.5.4.). In addition, we aimed to determine whether exposure to these factors influences 

astrocytic maturation and thereby generating homogeneous astrocytic cultures more suitable 

for transplantation. 

 

4.2.2. Immunocytochemical analysis and Ca2+ imaging of pluripotent stem 
cell derived astrocytes 

 

NSCs plated at DIV ~80 at low density, pre-treated for at least two weeks with FBS in the 

presence of EGF/FGF2 and eventually differentiated for two weeks with FBS and CNTF, BMP2/4 

or FGF1 (Figure 4.1, right timeline) gave rise to neuron-free (Figure 4.6 B) cultures of maturing 

astrocytes at any time point after FBS pre-treatment (DIV ≥ 95 + two weeks of differentiation). 

About 20 - 30% of differentiating cells were GFAP+ (Figure 4.6 A, C). In HUES6-derived cultures, 

BMP2/4 treatment reduced the number of GFAP+ astrocytes. However, across all lines and 

indicated treatments, the percentage of GFAP+ astrocytes was not higher than in neurosphere 

cultures differentiated without FBS (Figure 4.2.2 and 4.2.3). 

To further confirm the astrocytic identity of differentiating cells, cellular responses to external 

stimuli were tested in DIV ≥ 95 cells differentiated with CNTF for two weeks. As previously 

described [401], in vitro stimulation of astrocytes by exposure to ATP leads to increases in 

nuclear/cytoplasmic Ca2+ concentration. Local application of ATP using a Picospritzer leads to 

single-cell Ca2+ fluctuations, which can be transmitted to neighboring astrocytes via gap 

junctions, generating so called Ca2+ waves. After loading with the Ca2+ indicator Fura-2 and 

stimulation with 100 µM ATP (by bath application), increases in nuclear and cytoplasmic Ca2+ 

concentrations were detected as increases in fluorescence intensity (Figure 4.7 A). Fluorescence 

intensity was measured every second over five minutes and plotted as a continuous intensity-

over-time curve (Figure 4.7 B). Differences between cell lines and response patterns were 
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thereby identified: differentiating astrocytes responded either with an early (< 60 seconds) or 

late (> 60 seconds) single-peak increase in intracellular Ca2+ concentration followed by a 

decrease towards threshold levels or with early or late oscillatory fluctuations, consisting of 

more than two consecutive peaks of similar or smaller amplitude. While about 50% of HUES6-

derived astrocytes responded to ATP stimulation, up to 80% of iPSC #2-derived astrocytes were 

responsive. In contrast, iPSC #1-derived astrocytes were generally unresponsive. HUES6-derived 

astrocytes primarily responded with a single-peak increase in nuclear and cytoplasmic Ca2+ 

concentration whereas iPSC #2-derived astrocytes primarily responded with oscillatory 

fluctuations (Figure 4.7 C).  

The fact that most iPSC #1-derived cells were unresponsive, while about 80% of all iPSC #2-

derived stimulated cells responded, yet both lines contain about 20 - 30% were GFAP+ cells 

(Figure 4.6) suggests that GFAP expression alone is insufficient to identify mature and functional 

astrocytes. 

In summary, iPSC #1-derived astrocytes only rarely responded to ATP stimulation, whereas 

HUES6- and iPSC #2-derived astrocytes exhibited a characteristic response pattern, indicating 

that, while morphologically similar, astrocytic lines and individual cells have a distinct functional 

profile.  
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A  B  

C  

Figure 4.6: Treatment of PSC-derived NSCs with 1% FBS and differentiation with CNTF, BMP2/4 

or FGF1 for two weeks leads to neuron-free cultures.  

(A-B) Representative photomicrographs of (A) GFAP and (B) ß-III-tubulin expression after two 
weeks of NSC-differentiation either with 1% FBS alone or with FBS in combination with the factor 
indicated. (B) NSCs did not differentiate into neurons and (C) GFAP expression was detected in 
~20 - 30% of the cells.  
Scale bar: 20 µm. n = 3 - 6 wells / condition; asterisks indicate significant differences between 
treatment and the ‚no factors‘ control. One-way ANOVA, Fisher’s LSD post hoc, *: p < 0.05. 
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Figure 4.7: PSC-derived astrocytes respond to ATP with Ca
2+ 

fluctuations.  

(A) Representative photomicrographs and (B) graphic representation of Ca
2+ 

fluctuations after 
ATP-mediated stimulation of astrocytes differentiated for two weeks with CNTF. By means of the 

Ca
2+ 

indicator Fura-2, increases in nuclear and cytoplasmic Ca
2+ 

concentrations were turned into 
changes in fluorescence intensity. (C) The distribution of „peak“ and „oscillatory“, as well as 
„early“ and „late“ responses is shown as % of the total number of analyzed cells . 
n = 3 independent experiments, n = 48 - 71 individual cells per cell line; hashtags indicate 
significant differences. One-way ANOVA, Fisher‘s LSD post hoc was performed separately for 
each response pattern; #: p < 0.05, ##: p < 0.01, ###: p < 0.001. 

A 
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4.2.3. Astrocytes differentiated in the presence of CNTF, BMP2/4 and FGF1 
are morphologically distinct 

 

During differentiation of PSC-derived NSCs with CNTF, BMP2/4 and FGF1, distinct morphological 

changes in all astrocytic lines were observed. To quantify these qualitative observations, 

astrocytes were labeled with the early astrocytic marker vimentin, which was expressed in 

virtually all cells (Table 4.1 and Figure 4.8 A). The perimeters of the cells were traced and the 

area was measured using ImageJ (Figure 4.8 B). This quantification revealed significant 

differences in cell size of differentiating astrocytes across treatments: HUES6-derived and iPSC 

#2-derived astrocytes treated with BMP2/4 were significantly larger, whereas FGF1-treated 

astrocytes exhibited a trend towards a decrease in cell size. In iPSC #1-derived astrocytes, only a 

small BMP2/4 treatment-dependent effect was observed suggesting that this line is not only 

unresponsive to ATP stimulation, but also less sensitive to factors inducing astrocytic 

maturation. In addition, iPSC #1-derived astrocytes had a rather round and less complex 

morphology compared to the other two cell lines.  

These results indicate that although CNTF, BMP2/4 and FGF1 lead to astrocytic cultures with a 

similar degree of GFAP expression, they can have a strong effect on cell morphology and may 

specify distinct astrocytic subtypes, in concert with previously published results [222, 387, 388]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantitative analysis of vimentin expression in PSC-derived astrocytes differentiated for two 

weeks. Virtually all cells express vimentin independently of the cell line or culturing conditions. 

Table 4.1: PSC-derived NSCs differentiated for two weeks homogeneously express vimentin.  
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Figure 4.8: BMP2/4 treatment leads to an increase in cell size of PSC-derived astrocytes.  

(A) Representative photomicrographs of vimentin expression and (B) quantification of the cell 
size of astrocytes after two weeks of differentiation either with FBS alone or with FBS in 
combination with the factor indicated. Scale bar: 20 µm. n = 3 - 6 wells / condition; asterisks 
indicate significant differences between each treatment applied and the ‚no factors‘ control 
group, one-way ANOVA, Fisher‘s LSD post hoc. Hashtags indicate significant differences between 
cell lines, two-way ANOVA, Tukey‘s post hoc; * and #: p < 0.05, ** and ##: p < 0.01, *** and ###: 
p < 0.001. 
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4.2.4. Pluripotent stem cell derived astrocytes retain Sox2 and Ki67 
expression after two weeks of differentiation 

 

As mentioned above, after two weeks of differentiation only about 20 - 30% of all cells were 

GFAP+ astrocytes.  

In order to assess to which degree differentiating cultures were im-/mature, expression of the 

NSC marker Sox2 was quantified. Across all lines between 20% and 40% of cells were Sox2+ after 

two weeks; the highest amount - up to about 80% - of Sox2+ cells was observed in FGF1-treated 

cultures across all lines (Figure 4.9). This suggests that FGF1 does not promote maturation of 

PSC-derived NSCs into astrocytes. On the other hand, a significant decrease in Sox2+ precursors 

in HUES6-derived and iPSC #2-derived astrocytes treated with BMP2/4 suggests that these cells 

are more mature, which is not reflected in increased GFAP+ expression (Figure 4.6). 

Maturing HUES6-derived and iPSC #2-derived astrocytic cultures retained a generally low 

proliferation potential: between 5% and 20% of the cells were immunolabeled for Ki67 (Figure 

4.10). HUES6-derived astrocytes were the least proliferative, with a significant increase to about 

20% in the FGF1-treated group. Strikingly, in iPSC #1-differentiating cultures about 50% of the 

cells expressed Ki67, whereby about 90% Ki67+ cells were detected in the FGF1-treated group. 

These findings suggest that FGF1 is not a potent inductor of astrocytic maturation for PSC-

derived NSCs. In addition, iPSC #1-derived cultures were highly proliferative, indicating that they 

might be robust, stress-resistant and capable of filling a lesion site after SCI or that they might 

result in uncontrolled proliferation after transplantation. 
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A 

B 

Figure 4.9: FGF1 treatment leads to an increase in Sox2 expression in PSC-derived NSCs.  

(A) Representative photomicrographs and (B) quantification of Sox2 expression in maturing PSC-
derived astrocytes after two weeks of differentiation either with FBS alone or with FBS in 
combination with the factor indicated. 
Scale bar: 20 µm. n = 3 - 6 wells / condition; asterisks indicate significant differences between 
each treatment applied and the ‚no factors‘ control group, one-way ANOVA, Fisher‘s LSD post 
hoc. Hashtags indicate significant differences between cell lines, two-way ANOVA, Tukey‘s post 
hoc; * and #: p < 0.05, ** and ##: p < 0.01, *** and ###: p < 0.001. 
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Figure 4.10: iPSC #1-derived astrocytes are highly proliferative.  

(A) Representative photomicrographs and (B) quantification of Ki67 expression in maturing PSC-
derived astrocytes after two weeks of differentiation with FBS alone or with FBS in combination 
with the factor indicated. 
Scale bar: 20 µm. n = 3 - 6 wells / condition; asterisks indicate significant differences between 
each treatment applied and the ‚no factors‘ control group, one-way ANOVA, Fisher‘s LSD post 
hoc. Hashtags indicate significant differences between cell lines, two-way ANOVA, Tukey‘s post 
hoc; * and #: p < 0.05, *** and ###: p < 0.001. 
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4.2.5. Pluripotent stem cell derived astrocytes produce extracellular matrix  
 

One function of astrocytes which is highly relevant in the healthy and injured CNS is the 

production of ECM components. The latter can be growth-promoting or growth-repulsive. As 

previously mentioned (paragraph 2.5.2.), reactive astrocytes up-regulate CSPGs after injury; of 

these, some can be growth-repulsive (e.g. CSPG1-3 and 7 also known as Aggrecan, Versican, 

Neurocan, Brevican, as well as Phosphacan) and some can be growth-promoting (e.g. CSPG4-5 

also known as NG2 and Neuroglycan C) [25].  

Total CSPG expression in astrocytic cultures was analyzed by immunolabeling of the CSPG core 

protein CS-56 (Figure 4.11 A, C). To quantify the amount of CSPG, the fluorescence signal was 

first converted into a binary (black and white) image and the area-fraction covered by CSPG was 

quantified and divided by the total number of cells per field, to express CSPG levels as % 

covered area per cell.  

Expression of CSPG was significantly higher in astrocytes differentiated for two weeks with 

BMP2/4 (Figure 4.11 C, D) and decreased in FGF1-treated cultures across all lines. iPSC #1-

derived astrocytes produced the lowest amount of CSPG across all treatments, however, due to 

the fact that they had to be passaged at least once during differentiation, the low amount of 

CSPG detected might underlie enzymatic digestion of the ECM. Therefore, CSPG production was 

also analyzed after one week of differentiation, before passaging was necessary (Figure 4.11 A, 

B). The same expression pattern was observed across treatments and cell lines, and iPSC #1-

derived precursors hardly produced any CSPG.  

In summary, HUES6-derived and iPSC #2-derived BMP2/4-treated astrocytes produced the 

highest amount of CSPG both after one week and after two weeks of differentiation. In addition, 

the highly proliferative and ATP unresponsive iPSC #1-derived cultures were not capable of 

producing appreciable amounts of CSPG further indicating their limited differentiation potential.  

As a second ECM component, laminin expression was examined. Laminin has been associated 

with axonal growth in the developing CNS and PNS, such as in areas of the adult CNS where 

regeneration is observed [402, 403], and is used in vitro to promote attachment and growth of 

NSCs as well as their progeny, including neurons.  

Laminin expression in maturing astrocyte cultures was mostly restricted to the HUES6-derived 

line and particularly to FBS only- or CNTF-treated astrocytes (Figure 4.12). iPSC #2-derived 

astrocytes produced low levels of laminin and in iPSC #1-derived cultures hardly any laminin 

immunolabeling could be detected. 
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Figure 4.11: BMP2/4 treatment leads to an increase in CSPG production by PSC-derived 

astrocytes.  

(A, C) Representative photomicrographs and (B, D) quantitative analysis of CSPG expression in 
PSC-derived astrocytes after (A, B) one week and (C, D) two weeks of differentiation with FBS 
alone or with FBS in combination with the factor indicated.  
Scale bar: 20 µm. n = 3 - 6 wells / condition; asterisks indicate significant differences between 
each treatment applied and the ‚no factors‘ control group, one-way  ANOVA, Fisher‘s LSD post 
hoc. Hashtags indicate significant differences between cell lines, two-way ANOVA, Tukey‘s post 
hoc; * and #: p < 0.05, ** and ##: p < 0.01, *** and ###: p < 0.001. 
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Figure 4.12: Laminin expression is low in PSC-derived astrocytes.  

(A) Representative photomicrographs and (B) quantitative analysis of laminin expression in PSC-
derived astrocytes after two weeks of differentiation either with FBS alone or with FBS in 
combination with the factor indicated.  
Scale bar: 20 µm. n = 3 wells / condition; asterisks indicate significant differences between each 
treatment applied and the ‚no factors‘ control group, one-way ANOVA, Fisher‘s LSD post hoc. 
Hashtags indicate significant differences between cell lines, two-way ANOVA Tukey‘s post hoc;  
* and #: p < 0.05, ** and ##: p < 0.01, *** and ###: p < 0.001. 
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4.2.6. Pluripotent stem cell derived astrocytes produce a low amount of 
BDNF 

 

Astrocytes can exert their neurotrophic and growth-promoting effect by releasing neurotrophic 

factors including BDNF into the extracellular space (paragraph 2.5.1.5.).  

Therefore we analyzed BDNF levels in astrocytic supernatants by ELISA after differentiation for 

two weeks. The measured absolute amount was divided by the total number of cells per well to 

calculate the amount of BDNF produced by 106 cells under the same conditions (Figure 4.13). 

Across all lines, up to 300 pg BDNF/106 cells/24h was measured, with a significant increase in 

the BMP2/4 group across all cell lines. iPSC #2-derived BMP2/4-treated astrocytes produced up 

to 3 ng of BDNF, at least ten-fold more than in all other treatments across all lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: BMP2/4 treatment leads to an increase in BDNF production in PSC-derived 

astrocytes.  

BDNF ELISA of supernatants from PSC-derived astrocytes differentiated for two weeks with FBS 
alone or with FBS in combination with the factor indicated.  
n = 3 - 6 wells / condition; asterisks indicate significant differences between each treatment 
applied and the ‚no factors‘ control group, one-way ANOVA, Fisher‘s LSD post hoc. Hashtags 
indicate significant differences between cell lines, two-way ANOVA Tukey‘s post hoc; * and #: p < 
0.05, ** and ##: p < 0.01, *** and ###: p < 0.001. 
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4.2.7. Co-culture of two-week differentiated pluripotent stem cell derived 
astrocytes with rat primary dorsal root ganglion neurons   

 

In order to assess the direct interaction between PSC-derived astrocytes and neurons, PSC-

derived NSCs were differentiated for two weeks and then co-cultured with rat primary DRG 

neurons for 24 hours. To this end, rat primary DRGs were isolated, plated on PLO/laminin-

coated 6-well plates and re-plated 24 hours later; immediately prior to re-plating, dead cells and 

potentially inhibitory debris, such as DRG-derived myelin, were washed out. DRG neurons 

survived on astrocytic monolayers and extended numerous branched and unbranched neurites 

within 24 hours (Figure 4.14 A). To quantify the maximal in vitro pro-regenerative effect of 

astrocytic cultures, the longest neurite of each DRG neuron was measured using the NeuronJ 

plugin of ImageJ. The average length of the longest DRG neurites was significantly higher in 

HUES6-derived astrocytic co-cultures, especially in the FBS-only and CNTF groups, where 

neurites with a length of > 2000 µm were measured - a quite impressive length considering the 

short co-culturing time. FBS-only and CNTF-treated HUES6-derived astrocytes also promoted 

the highest amount of neurite outgrowth above 500 µm (Figure 4.14 C). 

iPSC #1- and iPSC #2-derived astrocytes promoted an average neurite outgrowth of 600 µm, 

whereby iPSC #1-derived astrocytes were less pro-regenerative (figure 4.14 B).  

Although it is not possible to establish a causal relationship between these two findings, a 

correlation between the laminin expression pattern (figure 4.12) and the extent of neurite 

outgrowth was observed.    
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Figure 4.14: Influence of PSC-derived astrocytes on neurite growth of DRG neurons.  

(A) Representative photomicrographs of ß-III-tubulin immunolabeled DRG neurons after 24 
hours of co-culturing on PSC-derived astrocytes differentiated for two weeks with FBS and CNTF.  
(B) Quantification of the average length of the longest neurite across cell lines and differentiation 
conditions as indicated. (C) Quantification of the incidence of neurite length-ranges across cell 
lines and differentiation conditions as indicated.   
Scale bar: 250 µm. n = 3 wells; Hashtags indicate significant differences between cell lines, two-
way ANOVA, Tukey‘s post hoc; * and #: p < 0.05, ** and ##: p < 0.01, *** and ###: p < 0.001. 
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4.3. Transplantation of differentiated astrocytes into the intact and 
lesioned spinal cord 

 

PSC-derived neurospheres differentiated without FBS treatment and transplanted into the 

injured spinal cord (Figures 4.4.1, 4.4.2 and 4.5) modestly survived and differentiated into 

astrocytes in vivo, but the neurogenic potential observed in vitro persisted in vivo. 

We next aimed at transplanting proliferative NSCs or neuron-free pre-differentiated astrocytes 

into the injured as well as intact spinal cord to evaluate their survival and whether the set of 

phenotypical and functional properties acquired in vitro are maintained in vivo in the host 

microenvironment, allowing us to choose a pro-regenerative astrocytic subtype. 

To minimize the number of animals, only one PSC-line was chosen for the first pilot animal 

experiment and thereafter only CNTF-treated astrocytes were compared across three lines. Due 

to their high proliferation rate, we hypothesized that iPSC #1-derived NSCs might be robust 

enough to fill the lesion site after a dorsal column wire knife lesion.  

An overview of experimental groups and survival rates of this pilot experiment can be found in 

Appendix table 4.2 B. Animals received subcutaneous injections of cyclosporine A and were 

allowed to survive for two or four weeks as indicated. 

 

4.3.1. iPSC #1-derived neural stem cells hardly survive after 
transplantation into the injured spinal cord        

 

First, to evaluate the robustness of proliferating iPSC#1-derived NSCs cultured with 1% FBS and 

EGF/FGF2, we transplanted DIV ~130 - 160 proliferating precursors one week after a wire knife 

lesion of the spinal cord. To assess which paradigm is more suitable to maximize survival rates, 

prior to transplantation, PSC-derived NSCs were resuspended in a solution containing calpain 

inhibitor and either EGF/FGF2 or nine growth factors, or they were co-grafted with adult rat 

fibroblasts to assess if they can sustain PSC-derived NSCs in the lesion site; either EGF/FGF2 or 

the full growth factor cocktail were used to resuspend the cell mixture.  

In contrast to our hypothesis that proliferating NSCs may be more robust than pre-

differentiated cells, proliferating iPSC #1-derived NSCs exhibited poor survival two weeks after 

transplantation into the injured spinal cord (Figure 4.15 A-D and Appendix Table 4.2 B). 

Although hNUC+ cells were detected in almost all animals, neither the presence of a growth 

factor cocktail (Figure 4.15 B, D) nor co-transplantation with rat fibroblasts (Figure 4.15 C, D) 

resulted in appreciable differences in survival rates. 

Although the lesion site was filled in both fibroblast co-transplantation groups, the vast majority 

of the cells was hNUC- (Figure 4.15 C, D). In addition, in contrast to HUES6-transplanted 

neurospheres (Figure 4.5), only few hNUC+ cells expressed GFAP (Figure 4.15 A-D, and 
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magnifications of boxed areas). In addition, colony-like tightly-packed hNUC+ aggregates were 

detected in some animals (Figure 4.15 A, left-pointing arrow).  

Altogether, these results show that iPSC #1-derived proliferating NSCs did not show superior 

survival after transplantation into the lesioned spinal cord. Poor differentiation into astrocytes 

might be due to the short time-frame (two weeks). Therefore, pre-differentiation of astrocytes 

with CNTF, BMP2/4 or FGF1 might result in a robust astrocytic phenotype in vivo.  

 

4.3.2. iPSC #1-derived differentiated neural stem cells survive after 
transplantation into the injured spinal cord, but do not express GFAP        

 

To evaluate their survival and the stability of their phenotype, astrocytes differentiated for two 

weeks with FBS and the indicated differentiation factor were transplanted one week after wire 

knife lesion of the spinal cord. 

CNTF, BMP2/4 and FGF1 differentiation groups were included: (1) to assess the effect of the 

host microenvironment on their phenotype, (2) to evaluate whether differences observed in 

previous studies between astrocytes treated with CNTF versus BMP2/4 [222, 387, 388] were 

valid for our cultures and (3) to identify a potentially more growth-promoting astrocytic 

phenotype.  

To support growth factor specific differentiation of astrocytic subtypes and to at least initially 

counteract the influence of the host microenvironment on the phenotype of grafted cells, 

differentiated astrocytes were re-suspended in a solution containing calpain inhibitor and the 

differentiation factor (CNTF, BMP2/4 or FGF1) used in vitro prior to transplantation.  

iPSC #1-derived FGF1-treated NSCs exhibited a similarly low survival rate as proliferating 

precursors and did not result in decreased cavity formation (Figure 4.16 C and Appendix Table 

4.2 B). CNTF- and BMP2/4-treated iPSC #1-derived NSCs on the other side were able to survive 

both at the edge of the lesion and at the lesion epicenter. Some small cavities were observed, 

however the lesion site was filled with hNUC+ cells. In addition, hNUC+ cells were found within 

the host tissue rostral and caudal to the lesion site (Figure 4.16 A, B and Appendix Table 4.2 B).  

This result could be positively interpreted, since survival of transplanted cells is one of the major 

issues in stem cell-based SCI studies. However, hNUC+ cells did not express the astrocytic 

marker GFAP (Figure 4.16 A-C and magnifications of boxed areas). Considering that they had 

been pre-differentiated for two weeks, this finding was unexpected.  
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4.3.3. iPSC #1-derived differentiated neural stem cells are likely 

tumorigenic, whereas HUES6- and iPSC #2-derived differentiated 

astrocytes express GFAP and laminin in vivo 
 

As mentioned above, proliferative or differentiated iPSC #1-derived NSCs did not differentiate 

into GFAP+ astrocytes within two weeks after injection into the wire knife lesioned spinal cord. 

To test whether the duration of the experiment (two weeks) or the host microenvironment 

underlie this outcome, we transplanted iPSC #1-derived NSCs after two weeks of differentiation 

into the intact spinal cord and allowed them to differentiate in vivo for four weeks (Appendix 

table 4.2 C).  

iPSC #1-derived NSCs gave origin of tumor-like colonies of hNUC+ cells, which expanded in all 

directions in the intact spinal cord. Colonies were densely packed and confined, with only few 

hNUC+ cells migrating and integrating into the host tissue (Figure 4.17). This phenomenon was 

not observed in all animals: as shown in Appendix table 4.2, hNUC+ cells were detected only in 

33 - 50% of the animals, suggesting host rejection of transplanted iPSC #1-derived NSCs and 

clonal expansion of tumor-forming cells. To address this issue we transplanted HUES6- and iPSC 

#2-derived NSCs differentiated for two weeks with CNTF into the intact spinal cord and, after 

four weeks, we compared the three lines phenotypically (Figures 4.18.1 and 4.18.2, and 

Appendix table 4.2 C).  

Reflecting the in vitro differences between iPSC #1 versus HUES6-/iPSC #2-derived differentiated 

NSCs (Figures 4.7, 4.8, 4.10, 4.11, 4.12 and 4.14), the latter two cell lines did not give origin to 

tumor-like colonies, and the survival rate was considerably lower (Figure 4.18.1 A, C). 

Independent on the differentiation factor applied, iPSC #1-derived NSCs pre-differentiated for 

two weeks were hardly GFAP+ in vivo (Figure 4.18.1 B, magnification and figure 4.18.2 A, light 

blue bars), but ~15 - 25% of the cells were proliferative (Figure 4.18.2 B). Alarmingly, iPSC #1 

hNUC+ cells were surrounded by a thick layer of GFAP-expressing host astrocytes, suggesting 

that they might have induced an astrogliotic reaction. In contrast, HUES6- and iPSC #2-derived 

NSCs pre-differentiated for two weeks with CNTF in vitro homogeneously expressed GFAP 

(Figure 4.18.1 A, B, magnifications and Figure 4.18.2 A, grey bars). To determine if these 

astrocytes are functional, we analyzed expression of laminin, which is indicative of their ability 

to produce ECM. Laminin expression was observed in areas where hNUC+ cells were present, but 

co-localized both with hNUC+ and hNUC- host cells (figure 4.18.1 A, C, magnifications). Reflecting 

the in vitro findings (Figure 4.12), HUES6-derived astrocytes produced higher amounts of 

laminin and/or induced laminin production in host cells (Figure 4.18.2 C).  

Altogether, in vivo findings reflect in vitro observations: phenotypical differences observed 

between the three lines in vitro correlated with phenotypical differences in vivo. However, due 

to the low number of animals and the low survival rate (Appendix table 4.2), these last animal 

experiments are not sufficient to draw definitive conclusions.    
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Figure 4.15: iPSC #1-derived NSCs hardly survive in the injured spinal cord and do not 

differentiate into GFAP+ astrocytes.   

Representative photomicrographs of hNUC
+
 iPSC #1-derived progeny two weeks after 

transplantation into a C4 wire knife lesion (A) with EGF/FGF2, (B) with the full growth factor 

cocktail, (C) co-grafted with fibroblast and EGF/FGF2 or (D) co-grafted with fibroblast and the full 

growth factor cocktail. Higher magnification of boxed areas shows that transplanted cells hardly 

expressed the astrocytic marker GFAP. Scale bar: 500 µm (left panels) and 100 µm (right panels). 

GF: growth factor; A: anterior; P: posterior; D: dorsal; V: ventral.  
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Figure 4.16: iPSC #1-derived NSCs differentiated for two weeks survive in the injured spinal 
cord but do not express GFAP.  

Representative photomicrographs of hNUC
+
 iPSC #1-derived progeny differentiated in vitro for 

two weeks with the factor indicated followed by injection into a C4 wire knife lesion (A) with 
CNTF, (B) BMP2/4 or (C) FGF1. Higher magnification of boxed areas shows that very few 
transplanted cells expressed the astrocytic marker GFAP under all conditions. 
Scale bar: 500 µm (left panels) and 100 µm (right panels).  
A: anterior; P: posterior; D: dorsal; V: ventral.  
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Figure 4.17: iPSC #1-derived NSCs differentiated for two weeks survive in the intact spinal cord 
but exhibit tumor-like growth.  

Representative photomicrographs of hNUC
+
 iPSC #1-derived progeny after two weeks of 

differentiation with the factor indicated followed by injection into the C4 level of the intact spinal 
cord (A) with CNTF, (B) BMP2/4 or (C) FGF1.   
Scale bar: 500 µm. SC: spinal cord; A: anterior; P: posterior; D: dorsal; V: ventral.  
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Figure 4.18.1: HUES6- and iPSC #2-derived NSCs differentiated for two weeks with CNTF 
moderately survive in the intact spinal cord and express GFAP and laminin.  

Representative photomicrographs of hNUC
+
 (A) HUES6-, (B) iPSC #1- and (C) iPSC #2-derived 

progeny after two weeks of differentiation with CNTF followed by injection into the C4 level of 
the intact spinal cord. Magnifications show that HUES6- and iPSC#2-derived cells which express 
the astrocytic marker GFAP show immunolabeling for laminin, whereas iPSC #1-derived cells did 

not differentiate into GFAP
+
 astrocytes, but retained Ki67 expression.  

Scale bars: 500 µm and 20 µm. SC: spinal cord; A: anterior; P: posterior; D: dorsal; V: ventral.  
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Figure 4.18.2: Quantification of marker expression of PSC-derived NSCs pre-differentiated in 
vitro for two weeks after transplantation into the intact spinal cord.  

Quantification of marker expression of hNUC
+
 cells in (A, C light grey) HUES6-, (A, B light blue) 

iPSC #1 and (A, C dark grey) iPSC #2-derived progeny pre-differentiated in vitro for two weeks 
with the factor indicated and for four weeks in vivo after injection into the intact spinal cord. 
HUES6- and iPSC#2-derived cells expressed the astrocytic marker GFAP and showed laminin 

immunolabeling, whereas iPSC #1-derived cells did not differentiate into GFAP
+
 astrocytes, but 

retained a higher percentage of Ki67-expressing cells. Symbols represent individual values, bar 
represent the mean value; n = 1 - 2 as indicated.  

B A C 
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HUES6- and iPSC #1-derived NSCs cultured with EGF and FGF2 were transplanted into the (A-B) 

injured and (C) intact spinal cord in the presence or absence of a growth factor (GF) cocktail and 

with or without fibroblast co-grafting.  

iPSC #1-derived cells treated for two weeks with FBS and CNTF, BMP2/4 or FGF1 were 

transplanted into the (B) injured and (C) intact spinal cord.  

(C) HUES6- and iPSC #2-derived astrocytes treated for two weeks with CNTF were transplanted 

into the intact spinal cord. 

Appendix table 4.2: Overview of PSC-derived NSC and astrocyte transplantations into the 
intact or injured rat spinal cord. 
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5. Discussion 
 

This study aimed to define and specify a cellular substrate from PSCs which is able to restore 

tissue integrity after SCI. In particular, the generated cell graft should (1) fill the lesion site, 

thereby decreasing lesion size and cavitation, (2) take on tasks typical of adjuvant CNS cells such 

as providing physical, trophic and metabolic support to healthy, injured and spared neurons.  

Due to their multiple crucial roles in the developing, healthy and diseased CNS (paragraph 2.5 

and figure 2.4), this study focused on the specification of astrocytes.  

Human ESCs and iPSCs were chosen as primary cell sources based on their potential in the field 

of tissue engineering and regenerative medicine. In fact, since the first isolation of mouse ESCs 

more than three decades ago [404, 405] and the isolation of human ESCs almost two decades 

ago [239], developmental processes have been not only elucidated at a molecular level, but also 

recapitulated in vitro, culminating in the generation of complex tri-dimensional organoids [279-

282]. Our understanding of developmental processes has considerably advanced within the past 

few decades, allowing us to obtain basically any known/characterized somatic cell from PSCs in 

vitro.  

Based on knowledge gained from neurodevelopmental in vitro studies, I first aimed at 

generating astrocytes from human PSCs, which were thereafter transplanted into the intact and 

injured spinal cord of Fischer344 rats.  

 

5.1. Generation of astrocytes from human pluripotent stem cells 
 

5.1.1. Embryonic neural stem cells: the gliogenic switch  

 

To date, only few studies have focused on the generation of astrocytes from human PSCs [205, 

296, 397, 399, 400], since the generation of neuronal subtypes is highly relevant for modeling 

neurodegenerative diseases and developing therapeutical approaches to counteract the 

symptoms. For instance, the generation of dopaminergic neurons from PSCs is considered to be 

a promising means for the treatment of PD [406-408]. Although transplantation of neurons into 

the injured spinal cord might allow for re-connection of injured neurons and their targets 

(Paragraph 2.3.1. and Figure 2.1), they cannot survive and efficiently exert their function in the 

lesion environment without the support of an astrocytic substrate.   

The studies published by Krencik et al. in 2011 [205, 397] represented a time consuming but 

seemingly uncomplicated method to obtain large amounts of pure astrocytic populations from 

PSCs and was based on the principle of a “gliogenic switch” of developing NSCs. 

In the embryo, NSCs arise from neuroepithelial cells after the closure of the neural tube, first 

produce neuronal progenitors and then start to differentiate into glia: both in vivo and during in 

vitro expansion, embryonic NSCs have been shown to switch from an early neurogenic to a late 
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gliogenic state, which in the mouse embryo culminate at E12 and start at E18 respectively. 

Unlike astrocytes, which can differentiate from NSCs in several regions of the CNS, 

oligodendrocytes only arise from specific CNS areas, such as the ventral neural tube [208, 409].  

It was suggested that neurons produced by NSCs in vivo instruct the latter to switch to a 

gliogenic phenotype via a negative feedback mechanism [410], which is however not provided 

during in vitro expansion of NSCs. Nevertheless, an increase in gliogenic potential has been 

observed in NSCs in vitro with increasing passaging, leading to the hypothesis of an “inner clock” 

regulating this cell fate switch [409].  

Based on this knowledge and based on observations by Sun et al. about the higher neurogenic 

potential of NSCs cultured as monolayers compared to NSCs cultured as free-floating spheres 

[409], Krencik et al. proposed a method in which human PSC-derived NSCs are expanded as 

neurospheres at low-adhesion serum-free conditions for ~160 days [205, 397] and then 

differentiated into astrocytes by exposure to CNTF for one week. According to the authors, at 

this late time point the in vitro gliogenic switch had already occurred (paragraph 4.1. and figure 

4.1, left timeline). 

However, Sun et al. also pointed out that NSCs cultured as neurospheres, especially big-sized 

ones, can be more heterogeneous than NSCs cultured as monolayers, due to their three-

dimensional structure and complex cell-cell interactions. In addition, Sun et al. mentioned that 

human fetal NSCs can retain their neurogenic potential for over 200 days in vitro [409].  

Last but not least, we experienced in the laboratory of our collaborator Prof. Dr. Beate Winner, 

Friedrich-Alexander Universität Erlangen-Nürnberg, that in vitro maturation of human PSC-

derived NSCs into neurons requires up to eight weeks; therefore, only one week of exposure to 

CNTF seemed to be a very short time for the in vitro maturation of astrocytes.      

As a result, in our hands differentiation of human PSCs based on the protocol published by 

Krencik et al. led to mixed populations of neurons, astrocytes and undifferentiated cells (Figures 

4.2.2 and 4.2.3), both in DIV ~80 and in DIV ~180 neurospheres. In addition, DIV ~180 

neurospheres differentiated for two weeks had a reduced differentiation potential and 

expressed a higher % of the NSC marker Sox2 compared to DIV ~80 differentiated neurospheres 

(figure 4.2.3), suggesting that extensive passaging reduced their ability to differentiate. 

However, when DIV ~130 HUES6-derived neurospheres were transplanted into the injured rat 

spinal cord, about 90-95% of the cells differentiated into GFAP+ astrocytes, indicating that 

neurospheres can give origin to almost pure astrocytic populations when exposed to the 

complex CNS microenvironment (Figures 4.4.1, 4.4.2 and 4.5).  

Thus, in vitro differentiation may not provide sufficient cues to induce the maturation of human 

PSC-derived NSCs.  

Reflecting in vitro findings (Figures 4.2.2 and 4.2.3), HUES6-derived neurospheres gave origin to 

5-10% DCX+ young neurons in vivo (Figure 4.4.2 and 4.5). 



116 

 

In summary, these results do not demonstrate or recapitulate a “gliogenic switch” in PSC-

derived NSCs in vitro, but highlight the strong influence of the spinal cord lesion environment on 

the differentiation into astrocytes. 

 

5.1.2. Astrocytic specification by exposure to FBS and selected soluble 

factors 

 

As mentioned above, neurospheres are composed of a mixed cell population [409]. On the 

other side, although there is no specific study claiming its absolute necessity, fetal bovine serum 

has been used to culture astrocytes for almost four decades [335, 411, 412], including fetally 

derived astrocytes [222, 387, 388] and astrocytes derived from human PSCs [296, 400].  

For this reason, and to minimize cell-cell contact and heterogeneity, I dissociated DIV ~80 

human PSC-derived neurospheres, plated them at low density on PLO/laminin and exposed 

them to 1% FBS (paragraph 4.2. and figure 4.1, right timeline) for at least two weeks. Under 

these conditions, all NSCs had an equal amount of space and were equally exposed to FBS and 

to the growth factors EGF and FGF2. As a result, their cell size increased and they assumed a flat 

and more complex morphology (data not shown), possibly indicative of a preliminary astrocytic 

stage.  

When EGF and FGF2 were withdrawn and substituted by the inductors of astrocytic maturation 

CNTF, BMP2/4 and FGF1 for two weeks, human PSC-derived NSCs gave rise to cultures, which 

were neuron-free (Paragraph 4.2. and figure 4.6). Although the % of GFAP+ astrocytes was 

within the same range as in cultures differentiated from neurospheres (Figures 4.2.2 and 4.2.3 

versus 4.6), astrocytic morphology was more complex in cells exposed to 1% FBS and BMP2/4 

than in cells differentiated from neurospheres, which were generally small and bipolar (figure 

4.6).  

Up to 80-90% of iPSC #2-derived cells differentiated for two weeks with CNTF were 

electrophysiologically active in response to ATP stimulation (Figure 4.7), a feature typical of 

mature astrocytes [401, 413, 414], which is relevant for neural network activity [415]. In both 

HUES6- and iPSC #2-derived “CNTF astrocytes”, responses to ATP were either a peak in 

intracellular Ca2+ concentrations or complex oscillatory responses (Figure 4.7). This indicates 

that these astrocytes not only expressed functional P2Y ATP-sensitive receptors, but were also 

able to elicit complex responses, which were independent of their GFAP expression. According 

to these observations, GFAP expression is not sufficient to determine the amount of mature or 

functional astrocytes in PSC-derived differentiating astrocytes. On the other side, although 

~10% iPSC #1-derived cells expressed GFAP, they were mostly non-responsive, indicative of an 

immature phenotype.  

Interestingly, HUES6- and iPSC #2-derived astrocytes exhibited differences in the distribution of 

the “preferred” response pattern (figure 4.7), indicating that different astrocytic populations 
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can have specific characteristics even if they are morphologically similar, which make them 

unique.  

In summary, DIV ~80 PSC-derived NSCs plated at low density, exposed to 1% FBS for at least two 

weeks (DIV ~95) and differentiated for two weeks with CNTF, BMP2/4 and FGF1 show 

morphological and functional features of mature astrocytes, whereas neurons were depleted 

from these cultures.  

 

5.2. Characterization of human pluripotent stem cell derived 

astrocytes  
 

5.2.1. Diversity of astrocytic subtypes 

 

Although astrocytes are generally depicted as more or less homogeneous cell population 

characterized by a stellate morphology, it is now clear that astrocytes are actually highly 

diverse.  

Astrocytes are generally subdivided into protoplasmic and fibrous astrocytes, which have been 

attributed to the grey matter and white matter, respectively; however, it becomes more and 

more clear that astrocytes are morphologically and functionally at least as diverse as neurons 

[319]. It seems logical that astrocytic precursors are as sensitive as neurons to morphogens 

during development and that in response to patterning morphogens they will adopt a 

phenotype which enables them to fulfill functions specific to the microenvironment they reside 

in [319]. Accordingly, they will for instance have an appropriate size and express appropriate 

neurotransmitter receptors, cell-adhesion molecules and ECM. 

In order to generate astrocytes with a caudal / spinal identity [293], neuroepithelial cells (NRs) 

were exposed to RA for 10 days (Figure 4.1) [205, 397]. Expression of the caudal transcription 

factors HoxA5, HoxB4 and Isl1 was detected in PSC-derived neurospheres, along with the dorsal 

transcription factor Pax3 and the ventral transcription factors Nkx2.1 and Nkx6.1 (Figure 4.2.1). 

In addition, since according to literature LIF/CNTF and BMP2/4 exert their inductive effects on 

astrocytes via distinct signaling pathways [386] and FGF1 was found to promote differentiation 

of human PSCs into quiescent astrocytes [296], these three factors are possibly promoting 

specification of distinct astrocytic subtypes.  

Supporting this hypothesis, CNTF-, BMP2/4- and FGF1- treated human PSC-derived cells 

differentiated for two weeks were morphologically tremendously different (figure 4.8): BMP2/-4 

treated astrocytes were 3- to 4-fold larger than CNTF-treated astrocytes, while FGF1-treated 

astrocytes were smaller and rather bipolar. iPSC #1-derived NSCs seemed to be less responsive 

to BMP2/4 treatment, as the size of their progeny was not increased after two weeks of 

differentiation. However, FGF1-treatment led to significantly decreased cell size. 
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In addition, although cell size differences were consistent across cell lines, differences in the 

“basic” morphology of astrocytes (“no factors” group) were also observed (Figure 4.8).  

Differences in basic morphology as well as in the pattern of response elicited by ATP stimulation 

(Figure 4.7) are both indicative of the unique character of astrocytic populations. Based on 

these observations it can be concluded that even when exactly the same differentiation 

protocol is applied, it is possible to obtain comparable but not even nearly identical progeny 

from human PSCs. This can be due to a number of factors, including intrinsic factors such as 

genetic and epigenetic background and extrinsic factors such as slight technical variability, for 

instance variability in size and density of neurosphere cultures. Considering the amount of 

external signals that stem cells are exposed to within their microenvironment to acquire the 

required phenotype, it seems logical that these cells are very sensitive to slight 

microenvironmental changes in vitro.   

Astrocytes differentiated from all three human PSC lines by exposure to 1% FBS and CNTF, 

BMP2/4 and FGF1 were extensively characterized in order to identify an astrocytic subtype 

which may be more beneficial / regeneration-promoting after transplantation into the injured 

spinal cord. Based on literature, a difference in pro-regenerative potential has been suggested 

between CNTF and BMP2/4-treated astrocytes [222, 387, 388]. 

 

5.2.2. Astrocytes are proliferative 

 

Unlike other post-mitotic cells including neurons, astrocytes retain the ability to proliferate, a 

feature which was first observed more than four decades ago [416]. In particular, astrocytes 

were found to be proliferative in the intact [416, 417] as well as in the injured brain [418]. 

Proliferation in astrocytes was found to be induced by soluble factors such as EGF, but 

interestingly also by signals coming directly from adjacent neurons: neuronal removal was 

shown to induce changes in astrocytic morphology and an increase in their proliferation in vitro 

[419]. In addition, proliferation was found to be one key feature of reactive astrogliosis [420].  

On the other side, unlike neurons, astrocytes express the transcription factor Sox2, which is 

mainly associated with neural progenitors [421]. Astrocytes which express Sox2 might be less 

mature and to some extent phenotypically flexible. 

These two features confer to astrocytes a certain resistance to stressful conditions and a certain 

ability to adapt to micro-environmental changes, which neurons lack. Herewith, astrocytes are 

for instance able to readjust in response to injury, a mechanism which is crucial for the 

prevention of secondary damage.   

Thus, I analyzed expression of the NSC marker Sox2 and of the proliferation marker Ki67. 

Presence of Sox2 might partially explain why only ~20-40% of PSC-derived astrocytes expressed 

the astrocytic marker GFAP. After two weeks of differentiation, expression of Sox2 amounted to 
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~20-40% across all lines, with a significant decrease in HUES6-derived and iPSC #2-derived 

BMP2/4-treated astrocytes and a significant increase to ~80% in FGF1-treated cells across all 

PSC lines (Figure 4.9).  

These results suggest that expression of Sox2 is a shared feature of different astrocytic lines. 

Correlating with their increased cell size and complex morphology, PSC-derived BMP2/4-treated 

astrocytes might be more mature and at the same time less resistant to stressful conditions. In 

fact, as mentioned in paragraph 3.2.2.12, PSC-derived NSCs differentiated with BMP2/4 had to 

be seeded at two-fold density prior to differentiation due to their lower survival rate. In 

contrast, correlating with their decreased cell size and less complex morphology, PSC-derived 

FGF1-treated astrocytes are likely less mature but possibly more resistant to stressful 

conditions. This specific finding is in contrast with findings published by Roybon et al., who 

stated that human PSC-derived FGF1-treated astrocytes have features of mature quiescent 

astrocytes [296]. 

Expression of the proliferation marker Ki67 was generally low in HUES6- and iPSC #1-derived 

astrocytes, reaching about ~20%. Again, Ki67 immunolabeling showed a trend towards and a 

significant decrease in BMP2/4-treated HUES6- and iPSC #1-derived astrocytes, supporting the 

hypothesis that these astrocytes are more mature. FGF1 treatment induced a significant 

increase in Ki67 expression in HUES6- and iPSC #1-derived astrocytes, again in contrast with the 

hypothesis that FGF1 induces a mature quiescent astrocytic phenotype (Figure 4.10) [296]. 

Surprisingly and quite astonishingly, proliferation in iPSC #1-derived differentiating cells 

amounted to ~50-90%, correlating with their lower sensitivity to BMP2/4 (Figure 4.8) treatment 

and lack of electrophysiological activity in response to ATP (Figure 4.7). This finding may reflect 

the robustness of this cell line, which may be of advantage after transplantation into the injured 

spinal cord. However, as it is known that iPSC-derived progeny may rise to tumors, high Ki67 

expression might also be indicative of uncontrolled proliferation and propensity to form tumors 

in vivo. Indeed, residual proliferation was detected in iPSC #1-derived NSCs differentiated for 

two weeks in vitro and for four weeks in vivo in the intact spinal cord (Figure 4.18.1 and 4.18.2), 

which likely underlies the resulting formation of tumor-like colonies (figure 4.17).    

 

5.2.3. Astrocytic extracellular matrix in health and injury 

 

The ECM is an ensemble of extracellular molecules which provide not only a physical substrate 

for attachment and cohesion of cells, but also signaling cues, which can regulate cell survival, 

proliferation, growth, progression along their lineage and migration. In the CNS, ECM molecules 

can be produced by endothelial cells, microglia, macrophages, pericytes, oligodendrocytes, 

neurons and astrocytes. Astrocytes, in particular, are able to secrete a wide range of ECM 

molecules including agrin, brevican, collagen IV and VIII, decorin, fibronectin, glypican, laminin, 

neurocan, phosphacan, syndecan, tenascin-C, thrombospondins and versican [28]. Changes in 
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ECM composition are crucial in the CNS response to traumatic injury: (1) the barrier produced 

by glial scarring cell is able to confine the lesion environment and to protect the surrounding 

tissue from secondary damage; (2) signaling ECM cues may serve as attractors for astrocytes, 

fibroblasts and immune cells; (3) signaling ECM cues promote proliferation, de-differentiation 

and re-differentiation in cells residing around the injured area.  

As members of the CSPG family, aggrecan, versican, neurocan, brevican, known as CSPG1-3 and 

7, as well as phosphacan, are upregulated after SCI and represent a growth inhibitory barrier for 

axon growth. In fact, enzymatic digestion of CSPGs with ChABC has been extensively used in 

animal models of SCI to promote regeneration [35, 39, 42, 44, 48]. However, complete ablation 

of the glial scar has been shown to have deleterious effects on the regenerative potential after 

SCI, pinpointing its importance for recovery after injury. Moreover, not all CSPG family members 

are growth inhibitory: NG2 and Neuroglycan C, known as CSPG 4 and 5, can be growth 

promoting [25]. The growth-inhibitory CSPGs neurocan and phosphacan, the growth-promoting 

CSPG NG2 as well as the above mentioned HSPGs glypican and syndecan have been detected in 

the ventricular zone of the embryonic brain and have been associated with regulatory functions 

within the NSC niche and with the formation of neural networks [422]. As an example, a 

phosphacan short isoform has been associated with neuronal differentiation, myelination and 

neurite outgrowth of cortical neurons [423].    

Laminin, on the other side, is an ECM molecule, which has been associated with axonal growth 

in the developing CNS and PNS. Developing neurons have been shown to elongate along 

laminin-expressing cells until the completion of axonal outgrowth, when laminin declines in the 

extracellular space. In the adult CNS, axonal sprouts were found in close association with 

laminin expressing astrocytes after SCI, suggesting that laminin does not only play a role in 

embryogenesis but also in the pro-regenerative response to injury [402]. One decade later it 

was shown that growth-modulating ECM molecules, such as collagen IV, fibronectin and laminin 

co-localize with infiltrating Schwann cells, but not with astrocytes in the injured human spinal 

cord [424]; however laminin co-localizes with GFAP+ glial processes and with regenerating axons 

in other model systems, such as fish [425]. In addition, laminin is a key player in the 

regenerative response after PNS injury [426].  

Historically, in the astrocytic scar formed after SCI, laminin has been suggested to mediate axon 

growth, whereas CSPGs have been associated with inhibition of growth [427]. To assess if 

human PSC-derived astrocytes differentiated for two weeks with 1% FBS and the factors 

indicated are (1) functional in terms of their ability to produce ECM and (2) potentially growth-

promoting or growth-inhibitory, expression of laminin and of the CSPG core protein CS-56 were 

analyzed.  

While the electrophysiologically inactive, highly proliferating iPSC #1 derived differentiating 

NSCs were generally not able to produce considerable amounts of ECM, HUES6- and iPSC #2-
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derived astrocytes produced CSPGs, especially if treated with BMP2/4 (Figure 4.11). These 

observations (1) indicate that PSC-derived astrocytes exhibit functional properties of mature 

astrocytes, (2) support the hypothesis that BMP2/4-treated astrocytes are more mature 

(Paragraph 5.1.2. and Figures 4.9 and 4.10) and (3) suggest that BMP2/4-treated astrocytes are 

potentially growth-inhibitory.  

Laminin expression was detected mainly in HUES6-derived astrocytes, especially in the “no 

factors” and CNTF groups, and to some extent in iPSC #2-derived astrocytes (Figure 4.12). These 

observations (1) confirm the ability of PSC-derived astrocytes to produce ECM components 

relevant for the modulation of axon growth, (2) suggests that HUES6-derived CNTF-treated 

astrocytes might be growth-supportive and (3) again shows that PSC-derived astrocytic cell lines 

are functionally comparable but not identical.   

Interestingly, the intrinsic capacity of PSC-derived CNTF-treated astrocytes to produce laminin 

was maintained in vivo after transplantation to the intact spinal cord (Figure 4.18.1 and 4.18.2), 

whereby differences in laminin expression between HUES6-derived versus iPSC #2 derived 

astrocytes in vivo reflected the in vitro expression pattern. This finding suggests in vitro features 

of PSC-derived astrocytes are intrinsic and can be maintained in a complex microenvironment. 

Close observation of the laminin expression pattern in vivo (Figure 4.18.1) revealed that (1) 

laminin expression was confined to the region where hNUC+/GFAP+ cells were present, but (2) 

laminin was also expressed in hNUC- host cells within this specific area. This interesting finding 

suggests potential graft-host cross interactions, whereby transplanted PSC-derived astrocytes 

are able to induce phenotypical changes in host astrocytes. 

Since HUES6- and iPSC #2-derived astrocytes were not transplanted into the injured spinal cord 

within this thesis and since the exact composition of the CSPG ECM component was not 

characterized in detail in vitro (incidence of growth-inhibitory versus growth-promoting CSPGs), 

it cannot be determined at this point if PSC-derived astrocytes, for instance CSPG-expressing 

BMP2/4-treated astrocytes versus laminin-expressing CNTF-treated astrocytes, differ in their 

growth-promoting potential. 

 

5.2.4. BDNF-mediated stimulation of axonal extension 

 

As previously described (paragraph 2.5.1.5), astrocytes are able to process the immature form 

of BDNF, pro-BDNF, to mature BDNF, which promotes axonal outgrowth and dendritic 

branching [372]. Due to this property, BDNF has been administered in numerous pre-clinical 

studies of SCI to promote regeneration and sprouting, either by viral delivery or by genetic 

modification of cells, which served as biological mini-pumps after transplantation into the lesion 

site [428]. In order to assess if human PSC-derived astrocytes are naturally able to serve as 
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BDNF-producing mini-pumps without further genetic manipulation, BDNF production was 

analyzed by ELISA in supernatants of PSC-derived NSCs differentiated for two weeks.  

The amount of BDNF produced by PSC-derived astrocytes was relatively low. While across all 

conditions and cell lines the amount of BDNF was hardly detectable, it reached up to 3 ng 

produced by one million cells within 24 hours in BMP2/4-treated cells across all lines (figure 

4.13).  

Again, this might be indicative of a more mature phenotype in PSC-derived cells differentiated 

with BMP2/4. However, whether such small amounts of BDNF can have effects on axonal 

outgrowth in vivo remains to be determined, especially considering the low survival rate of PSC-

derived NSCs and astrocytes after transplantation (Figures 4.4.1, 4.4.2, 4.5, 4.15, 4.18.1 and 

Appendix Table 2). 

 

5.2.5. Direct interaction between astrocytes and DRG neurons in vitro                

 

All findings mentioned so far are indicative of phenotypical differences among astrocytic 

subtypes, both dependent on treatment with a specific factor and on the PSC-line of origin; 

however their predictive value in terms of pro-regenerative potential is only valid if their effect 

on axonal growth is directly assessed.  

To address this issue, their effect on axonal growth was tested in an in vitro-ex vivo system: 

primary DRG neurons, which extend an axonal branch into the PNS and a sensory ascending 

branch into the CNS, were co-cultured on homogeneous layers of PSC-derived astrocytes. 

Mirroring the laminin expression pattern, neurite extension was highest in DRG neurons co-

cultured on HUES6-derived astrocytes differentiated with 1% FBS alone or in combination with 

CNTF (figure 4.14). However, whether this correlation is causal has not been demonstrated in 

this study. 

On the other side, CSPG expression did not seem to have a big impact on neurite outgrowth. 

Lower neurite extension was observed in DRG neurons co-cultured on HUES6-derived BMP2/4 

treated astrocytes compared to “no factors”- or CNTF-treated astrocytes, however this was not 

the case in iPSC #2-derived astrocytes, where neurites reached an average length of 600 µm in 

all groups.  

Although this technique (co-culturing) is the only experiment of this study that directly 

addresses the interaction between astrocytes and axotomized neurons, it has several 

limitations. First of all the absence of a “control” condition: a “PLO/laminin control” could not 

be used due to the fact that our astrocytic cultures are plated on a substrate whose initial 

laminin concentration is twenty-fold higher than the concentration normally used to culture 

DRG neurons. Plating DRG neurons on 10 µg/mL laminin does not represent an appropriate 

control: during the two weeks of differentiation the initial concentration of laminin has likely 
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decreased due to detachment from the plastic surface and to astrocyte-mediated digestion or it 

has increased due to astrocyte-mediated deposition. For this reason, only neurites which were 

on top of astrocytes or astrocytic processes were included in the analysis.  

Another possibility would have been to co-culture DRG neurons on another cellular substrate, 

such as human BMSCs or fibroblast, or rat primary astrocytes. The first two cell types are not of 

interest, since the aim of this study is not to transplant BMSCs or fibroblasts, but to create a 

cellular substrate of neural identity. Rat primary astrocytes are, on the other side, obtained 

from the brain of new born rats and have therefore neither the appropriate age nor the 

appropriate caudal phenotype.  

Therefore, this experiments aims at comparing PSC-derived astrocytic populations in a closed 

system: it is not possible to say if PSC-derived astrocytes are generally more or less growth-

promoting compared to spinal cord-residing astrocytes, but it is possible to select the astrocytic 

population with the highest pro-regenerative potential among the cell lines and treatments 

analyzed.  

An additional limitation of this experiment is due to the unique character of DRG neurons. It is 

known that their peripheral branch is able to regenerate after PNS insult, but their central 

branch has a limited ability to re-grow in response to CNS injury. In this co-culture experiment it 

is not possible to say if the longest neurite of a DRG neuron is a dendrite or an axonal projection 

and more importantly it not possible to say if the axonal projection is a central or a peripheral 

branch. Again, the use of alternative primary neurons would not necessarily have been of 

advantage; hippocampal neurons, which are relatively easy to isolate, are not spinal neurons or 

motor neurons and therefore do not represent a target population.  

In summary, DRG co-cultures represent a closed system to roughly evaluate the effect of 

different classes of astrocytic populations on axonal outgrowth of from a more general point of 

view.     

 

5.3. Transplantation of pluripotent stem cell derived neural stem cells 

and astrocytes into the spinal cord  
 

5.3.1. Animal models of spinal cord injury 

 

SCI leads to an extremely complex series of molecular and cellular events and his extremely 

diverse in terms of type and severity of injury as well as of region affected. First animal models 

of SCI date back to over a century ago [429] and have since then considerably contributed to our 

understanding of SCI, from molecular mechanisms to neurological outcome.  

Obviously, non-human primates constitute the animal model closest to humans; however size 

and longevity of “old-world” primates is a big limiting factor for pre-clinical studies, as these 
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only allow small studies, in which few experimental conditions can be tested. On the other 

extreme, rodents are easy to house and allow large pre-clinical studies. Hereby, mice are a 

powerful tool for genetic studies due to the availability of thousands of transgenic lines, but rats 

represent the preferred animal model of SCI due to the functional, electrophysiological and 

morphological similarities with human SCI [430].  

The next question is, which segment of the spinal cord should be injured. Complete transection 

of the spinal cord at thoracic levels will lead to complete and permanent loss of hindlimb 

function, as well as of bowel and bladder control. The advantage of this model is that axon 

growth and functional improvement can only be attributed to true regeneration and not to 

sprouting or compensatory mechanisms. However, cervical models of SCI, including the models 

presented in this study, are becoming more and more relevant due to epidemiological data 

which indicate that more than 50% of SCI patients have injuries in the cervical spine, whereby 

the most common segments affected are C5, C4 and C6 [431, 432]. Accordingly, throughout this 

study the injury was applied at cervical segment 4 (Figure 4.3). Lateral hemisection of the spinal 

cord at C4 is a more severe model of SCI that has been used in previous studies to evaluate 

transplants of fetal spinal cord tissue or PSC-derived NSCs [148, 149]. Thus, this was the first 

model of choice for the present study (Figures 4.3, 4.4.1 and 4.4.2). Inspired by the publications 

by Lu et al., a cocktail of calpain inhibitor and nine growth factors, as well as fibrinogen and 

thrombin, were used to support the survival of HUES6-derived neurospheres (Figure 4.4.1). 

Despite the possibility to directly compare injured and healthy fibers within the same animal, 

hemisection models are not reflecting human SCI. As an example, to perform a hemisection of 

the spinal cord, the integrity of the dura mater is disrupted but a longitudinal cut of several 

millimeters, whereas the dura mater usually remains intact in human SCI. Other possible models 

of SCI are contusion, compression, distraction, dislocation, full or partial transection and 

chemical models [430]. Although contusion would have been a model that is well established in 

our laboratory and closest to human SCI, wire knife transection of the dorsal column, i.e. 

transection of CST projections, was chosen for this study (figures 4.3, 4.5, 4.15, 4.16 and 

appendix table 2). In this animal model, the dura mater is not disrupted during the injury, cysts 

typical of contusive SCI models develop, a well-characterized neuronal tract is transected, a 

feature which is useful to address regeneration, and spinal cord injured rats do not exhibit 

drastic loss of neurological function, which makes post-surgical animal care easier. A big 

disadvantage of this animal model is that it is more difficult to assess neurological 

improvements due to the small functional deficits. Nevertheless, since survival and 

differentiation in the lesioned spinal cord was a first parameter to analyze, the use of a 

neurologically relevant model of SCI was not a priority.  
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5.3.2. Survival of pluripotent stem cells derived neural stem cells and 

astrocytes in the spinal cord  

 

Survival of grafted cells is one of the major issues leading to the current low efficacy of cell 

transplantation studies in SCI. Although they are robust, proliferative and expandable in vitro, 

once transplanted into the lesioned spinal cord, NSCs or their more differentiated progeny are 

exposed to a multiplicity of challenging environmental cues (Paragraph 2.2.1.), which they do 

not have to cope with in vitro. These stressful conditions severely reduce their survival rate. To 

promote survival of PSC-derived NSCs, we therefore provided two additional factors. On one 

side, cells were resuspended in a solution containing thrombin or fibrinogen immediately prior 

to injection and delivered separately; known from studies on blood coagulation, thrombin 

cleaves fibrinogen to fibrin monomers and fibrinopeptides A and B; fibrin protein chains then 

polymerize and crosslink to establish the framework of a thrombus or blood clot [433]. The 

consequent gelation provides a physical substrate for the transplanted cells, impeding their 

dispersion. On the other side, based on studies published by Lu et al. [148, 149], cells were 

resuspended in a solution containing calpain inhibitor, which counteracts calpain-induced cell 

injury and death [434, 435], and nine additional growth- and neurotrophic factors. 

Indeed, survival of HUES6-derived neurospheres was qualitatively higher if the cells were 

resuspended in the full growth factor cocktail prior to transplantation (Figure 4.4.1), whereby 

cells generally did not survive at the lesion epicenter but rather at the edge of the lesion (Figure 

4.4.1 and 4.5). After transplantation into the wire knife lesioned spinal cord without additional 

growth factors, HUES6-derived neurospheres were not able to fill the cyst(s), but survived at the 

lesion edge or within areas of spared tissue proximal to it, where they could provide a growth-

promoting substrate for regenerating or sprouting projections (Figure 4.5). The effects of the 

growth factor cocktail did not seem to lead to a qualitative improvement in cell survival in later 

experiments: iPSC #1-derived NSCs cultured as monolayers in the presence of 1% FBS and then 

transplanted with or without fibroblasts, respectively, or with or without growth factor cocktail 

were not able to survive in the wire knife-lesioned spinal cord, and qualitative differences in cell 

survival were not striking (Figure 4.15). In contrast, iPSC #1-derived NSCs differentiated as 

monolayers in the presence of 1% FBS plus CNTF, BMP2/4 or FGF1 and then resuspended in a 

solution containing calpain inhibitor and their respective differentiation factor exhibited a much 

better survival: CNTF- and BMP2/4-treated iPSC #1-derived cells survived at the lesion epicenter 

and reduced cyst size compared to all other conditions within the same experiment (Figure 4.16 

versus 4.15), suggesting that the use of the full growth factor cocktail does not necessarily play a 

major role.  

Transplantation into the intact spinal cord led to some unexpected observations. First, survival 

of HUES6- and iPSC #2-derived astrocytes was generally low although the host environment was 

less challenging (Figure 4.18.1), and hNUC+ cells were detected only in 50-75% of the animals 
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(Appendix Table 2). Second, while hNUC+ iPSC #1-derived NSCs differentiated for two weeks the 

factors indicated were observed in 75-100% of all wire knife injured animals, they were 

detected in only 33-50% of the intact animals (Appendix Table 2). When detected, they led to 

tumor-like colony formation. One possible explanation is that the host environment is rather 

capable to reject the xenograft while intact, and that iPSC #1-derived NSCs, which survive this 

rejection are robust enough to form a tumor via clonal expansion.  

Generally, survival of grafted cells in one big issue, which needs to be addressed to improve 

therapeutical approaches based on cell transplantation. Several options are available, of which 

few were adopted in this study: (1) delivery of ECM molecules such has fibrin, (2) delivery of 

inhibitors of cell death, (3) delivery of growth- and neurotrophic factors, (4) co-transplantation 

with cells which are more robust, such as fibroblasts or BMSCs, (5) inclusion in a stable 

biomaterial. However, these aspects need to be fine-tailored. For instance, delivery of 

fibrinogen and thrombin is useful to provide an initial physical substrate for the transplanted 

cells, but does not provide the supportive signals of CNS ECM. Accordingly, specific CNS ECM 

compositions could be identified and co-delivered to specifically enhance the survival of 

transplanted cells or to enhance regeneration of injured projections. Recent studies have 

started to address this issue by comparing the effect of selected ECM molecules on NSC survival 

and differentiation [436] and on neurite outgrowth [437, 438]. Although only recently this issue 

has been addressed in the context of CNS nerve injury [437], ECM-engineering seems worth-

while pursuing. However, delivery of ECM molecules and soluble factors is challenged by the 

rapid degradation in vivo, which does not affect biomaterials to the same extent. Co-

transplantation of non-CNS cells (fibroblasts), on the other side, did not seem to have a positive 

effect on the survival of our cells.  

In conclusion, survival of grafted cells is a high-priority, which needs to be extensively addressed 

in order to enhance the efficacy of cell-based therapeutical approaches for SCI.   

  

5.3.3. Differentiation of pluripotent stem cells derived neural stem cells 

and astrocytes in the spinal cord  

 

When PSC-derived NSCs are transplanted into the injured spinal cord they give rise to mixed 

populations of mainly neurons and astrocytes - only rarely oligodendrocytes - which vary from 

batch to batch, from animal model to animal model, as well as from laboratory to laboratory, 

strongly depending on the experimental paradigm. For instance, Nori et al. in 2011 [230] and Lu 

et al. in 2014 [148] reported that hiPSC-derived NSCs transplanted into mice and into rats gave 

rise to 50% and 70% neurons after two and three months, respectively, whereby in the first 

study only 22% of the total transplanted cells were NeuN+ after two months and in the second 

study all neurons (70%) were NeuN+ after three months. In both studies ~17% of the 

transplanted cells gave rise to GFAP+ astrocytes. Although this last finding is consistent, the two 
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studies are generally hardly comparable: (1) Nori et al. transplanted human iPSC-derived 

neurospheres into NOD/SCID mice which received a thoracic contusive lesion of the spinal cord 

without additional factors and analyzed the outcome after two months, whereas (2) Lu et al. 

transplanted human iPSC-derived NSCs cultured on PLO/laminin into athymic nude rats which 

received a cervical hemisection with a full growth factor cocktail and analyzed the outcome 

after three months. In the study by Nori et al., neurons were mostly GABAergic, whereas Lu et 

al. hardly detected transmitter associated markers and, if so, GABAergic markers were absent. 

If such experimental variability exists across laboratories and studies, the phenotype of the 

transplanted PSC-derived progeny will be as well highly variable and it will be therefore difficult 

to dissect out the mechanisms, which lead to functional improvement. In contrast, if a specific 

cell population is transplanted, for instance GRPs / astrocytes [222, 387, 388], genetically 

modified astrocytes [392] or specific populations of neurons, it is possible to address specific 

aspects or tissue repair, such as restoration of tissue integrity (astrocytes) or replacement of lost 

neuronal connections (neurons).  

Based on this, the present study aimed at generating specific and well-characterized astrocytic 

populations with a stable phenotype to provide a favorable substrate for axonal regeneration 

after SCI. While PSC-derived neurospheres retained the ability to generate neurons in vitro and 

in vivo (Figures 4.2.2, 4.2.3, 4.4.2 and 4.5), PSC-derived NSCs treated with 1% FBS led to neuron-

free cultures in vitro (figure 4.6) and to nearly pure astrocytic populations in vivo (figures 4.18.1 

and 4.18.2).  

The host environment had a clear effect on the differentiation of HUES6-derived neurospheres: 

within the lesion hNUC+ cells homogeneously expressed vimentin, suggesting that they are 

either less mature or reactive, whereas they expressed only GFAP once they migrated into the 

surrounding host tissue (Figure 4.4.2). On the other hand, pre-differentiated PSC-derived 

astrocytes maintained their intrinsic capacity to produce a low or a high amount of laminin in 

the host environment (Figures 4.18.1 and 4.18.2), suggesting that some phenotypical 

characteristics acquired during in vitro specification can be maintained in vivo. This makes it 

possible, for instance, to directly compare the pro-regenerative effect of astrocytes, which 

produce laminin versus astrocytes which produce less laminin, thus allowing (1) the 

identification specific mechanisms which promote axonal outgrowth and (2) the selection of a 

specific cell population for transplantation experiments. Accordingly, while HUES6 neurosphere-

derived astrocytes were generally not growth-repulsive and co-localized with NFH+ host 

projections (figure 4.4.2), laminin expressing astrocytes pre-differentiated with CNTF might be 

more growth-promoting.  On the other side, undesired differentiation patterns in vitro or in vivo 

can be used as an exclusion criterion.  

While this study applied this principle to astrocytes, it is worthwhile to pursue experiments in a 

similar way with neurons: to form a functional “relay” it is reasonable to transplant neurons or 
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neuronal precursors which will acquire a glutamatergic phenotype. A mix of undefined, 

glutamatergic, GABAergic, serotonergic and cholinergic neurons might not be equally effective.  

 

5.4. Safety of induced pluripotent stem cells  
 

5.4.1. Tumor formation of grafted pluripotent stem cells derived neural 

stem cells 
 

Based on the fact that survival of PSC-derived NSCs is generally limited in the injured spinal cord 

(Figures 4.4.1 and 4.5), highly proliferative iPSC #1-derived NSCs were chosen for 

transplantation experiments due to their robustness. 

Transplanted iPSC #1-derived NSCs treated with CNTF and BMP2/4 showed promising survival in 

the wire knife lesioned spinal cord (Figure 4.16), but most hNUC+ cells did not express GFAP. In 

addition, in some animals small tightly-packed colonies of GFAP- cells were observed (Figure 

4.15). These alarming findings led to the hypothesis that iPSC #1-derived cells might give rise to 

tumor-like tissue, which was confirmed once the cells were transplanted into the intact spinal 

cord (Figure 4.17). Because iPSC #1-derived NSCs differentiated into other lineages (neuronal, 

oligodendroglial) did not give origin to tumors both in the wire knife lesioned and in the intact 

spinal cord (data not shown, n = 21 animals), this outcome was actually unexpected. It 

pinpoints, however, that a simple pre-evaluation of tumorigenicity [229, 439] is not necessarily 

sufficient to exclude tumor-formation by iPSC-derived progeny. The genetic and epigenetic 

background of specific iPSC-lines might confer a predisposition to give rise to a tumor, however 

this ability might be generally “invisible” and only be “waken up” by a specific treatment, for 

instance incubation with 1% FBS.  

This study provides to some extent “predictive” or inclusion/exclusion criteria for 

transplantation of PSC-derived NSCs/progeny. In almost all parameters analyzed, iPSC #1-

derived precursors significantly differed from the other two PSC-lines: they (1) were not 

responsive to ATP stimulation (Figure 4.7), (2) less responsive to BMP2/4-mediated maturation 

(Figure 4.8 and 4.9), (3) significantly more proliferative (figure 4.10), (4) hardly produced ECM 

molecules (Figures 4.11 and 4.12), resulting in (5) low support of axon outgrowth in co-cultures 

with astrocytes (Figure 4.14). As a consequence, although the fact that they were able to fill 

cysts resulting from wire knife lesion of the DC, they did not acquire the desired astrocytic 

phenotype.  

The above mentioned observations are likely not universal predictive criteria, but represent 

exclusion criteria, which can be used in future studies to better select astrocytic populations for 

transplantation after SCI.   
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5.4.2. Safe methods for the generation of induced pluripotent stem cells 

 

Despite the major effort which has been made within the past decade to establish 

reprogramming methods which do not modify the genome of de-differentiated somatic cells, 

virus mediated reprogramming is still quite commonly used. As an example, in the previously 

mentioned study by Lu et al., reprogramming was achieved via retroviral delivery of the 

Yamanaka factors [148], and the same method adopted in the laboratory of our collaborator, 

Prof. Dr. Beate Winner, Friedrich-Alexander Universität Erlangen-Nürnberg. This is the oldest 

reprogramming method and is not considered to be safe due to integration into the genomic 

DNA, which can result in one or more genetic mutations during the integration process. In 

addition, although retrovirally transduced genes are subject to epigenetic silencing during the 

reprogramming process, they can be reactivated in vivo by an unknown/unpredictable stimulus 

and enhance predisposition of iPSC-derived progeny to form tumors [440]. Indeed, one of two 

human iPSC lines we used gave origin to tumors once in vivo.  

As mentioned in paragraph 2.4.1.1., the safest methods for reprogramming somatic cells are 

delivery of the reprogramming factors via (1) RNA delivery and (2) protein delivery. Since these 

techniques were developed only recently, most laboratories might be resilient to adopt them 

due to concerns arising from lack of experience and of tools. In addition, in most cell 

transplantation studies, including this study, the scope is not to establish safe iPSC-lines. Thus, 

the fastest and more convenient iPSC source is chosen. As this study shows, this leads to 

undesired outcome, which considerably slows down the progress towards the set goals – in this 

case the generation of astrocytes for transplantation after SCI.  

Therefore, it is worthwhile to fully take into account risks associated with the reprogramming 

method of choice and to consider alternatives and preventive solutions. In fact, virus-free 

reprogramming kits are already commercially available:  Merck-Millipore recently launched the 

SimpliconTM RNA Reprogramming Technology, where a single RNA molecule encoding for four 

transcription factors allows for efficient reprogramming bypassing genomic integration.  

 

6. Conclusions 
 

The present study focused on the generation of astrocytes from human PSCs for transplantation 

after SCI. Neuron-free astrocytic cultures were successfully generated from two human PSC 

lines and their morphological as well as functional properties were extensively analyzed to (1) 

determine if generated astrocytes exhibit features of authentic/mature astrocytes and (2) to 

estimate their in vivo pro-regenerative potential. In particular, potential inclusion/exclusion 

criteria were defined, which may facilitate the choice of the astrocytic subtype for 

transplantation studies. The present study also sheds light on the necessity to use iPSC lines 
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obtained by means of non-integrative reprogramming methods in order to minimize or 

completely eliminate the risk for tumor formation.      
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