
DISSERTATION
submitted

to the
Combined Faculty for the Natural Sciences and Mathematics

of the
Ruperto-Carola University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

Put forward by
Dipl. Inf. Dzmitry Razmyslovich

Born in Minsk, Belarus

Oral examination: 16.01.2017

Astrophysical-oriented Computational multi-Architectural

Framework

Advisor: Prof. Dr. Reinhard Männer
Second Advisor: Dr. Guillermo Ańıbal Marcus Mart́ınez

Abstract

This work presents the framework for simplifying software development in the astro-
physical simulations branch - Astrophysical-oriented Computational multi-Architectu-
ral Framework (ACAF).

The astrophysical simulation problems are usually approximated with the particle
systems for computational purposes. The number of particles in such approximations
reaches several millions, which enforces the usage of the computer clusters for the sim-
ulations. Meanwhile, the computational extensiveness of these approximations makes
it reasonable to utilize the heterogeneous clusters, using Graphics Processing Units
(GPUs) and Field-Programmable Gate Arrays (FPGAs) as accelerators. At the same
time, developing the programs for running on heterogeneous clusters is a complicated
task requiring certain expertise in network programming and parallel programming.

The ACAF aims to simplify heterogeneous clusters programming by providing the
user with the set of objects and functions covering some aspects of application de-
veloping. The ACAF targets the data-parallel problems and focuses on the problems
approximated with particle systems.

The ACAF is designed as a C++ framework and is based on the hierarchy of the
components, which are responsible for the different aspects of the heterogeneous cluster
programming. Extending the hierarchy with new components provides the possibility
to utilize the framework for other problems, other hardware, other distribution schemes
and other computational methods. Being designed as a C++ framework, the ACAF
keeps open the possibility to use the existing libraries and codes.

The usage example demonstrates the concept of separating the different program-
ming aspects between the different parts of the source code. The benchmarking results
reveal the execution time overhead of the program written using the framework being
just 1.6% for small particle systems and approaching 0% for larger particle systems (in
comparison to the bare simulation code). At the same time, the execution with differ-
ent cluster configurations shows that the program performance scales almost according
to the number of cluster nodes in use. These results prove the efficiency and usability
of the framework implementation.

Zusammenfassung

In dieser Arbeit wird das Framework (das Programmiergerüst) für die Vereinfachung der
Softwareentwicklung im Bereich der astrophysikalischen Simulationen – Astrophysika-
lisch-orientierte Mehrarchitektonische Rechenframework (Astrophysical-oriented Com-
putational multi-Architectural Framework (ACAF)) vorgestellt.

Die astrophysikalischen Simulationen sind normalerweise für Rechenzwecke mit den
Partikelsystemen angenähert. Die Partikelanzahl bei solchen Näherungen erreicht meh-
rere Millionen. Dies erzwingt die Nutzung der Computercluster für die Simulationen.
Wegen der Rechendichte der genäherten Simulationen werden die heterogenen Clus-
ter mit Field Programmable Gate Arrays (FPGAs) und/oder Grafikkarten (GPUs)
sehr häufig zur Beschleunigung benutzt. Die Softwareentwicklung für die heterogenen
Cluster ist eine komplizierte Aufgabe, sie benötigt bestimmte Kompetenzen in der
Netzwerkprogrammierung und der Parallelprogrammierung.

Das ACAF ist bestrebt, die notwendigen Programmierungsanforderungen für die
heterogenen Cluster zu erleichtern. Dafür bietet das ACAF für den Benutzer einen
Satz von Objekten und Funktionen an, die damit einige Sofrwareentwicklungsaspekte
abdecken. Das ACAF ist auf Parallel-Daten-Probleme ausgerichtet und zielt auf die
astrophysikalischen Simulationen, angenähert durch die Partikelsysteme.

Der ACAF ist entworfen als ein C++ Framework und basiert auf der Komponen-
tenhierarchie. Diese ist verantwortlich für die verschiedenen Programmierungsaspekte
für heterogene Cluster. Eine Erweiterung dieser Hierarchie mit neuen Komponenten
bietet die Möglichkeit, das Framework für andere Probleme, andere Systemteile, ande-
re Aufteilungsschemen und andere Rechenmethoden einzusetzen. Indem es als ein C++
Framework entworfen ist, gewährt das ACAF die Möglichkeit, existierende Bibliotheken
und Codes zu nutzen.

Das ACAF Anwendungsbeispiel demonstriert das Trennungskonzept von verschie-
denen Programmierungsaspekten zwischen verschiedenen Teilen des Quellcode. Das
Benchmarking-Ergebnis zeigt, dass der Zeitzuschlag des ACAF-nutzenden Programms
nur 1.6% für kleine Partikelsysteme ist und er nähert sich 0% für größere Partikelsyste-
me (im Vergleich zum nackten Simulationscode). Die Ausführungszeit bei verschiedenen
Cluster-Konfigurationen demonstriert, dass die Programmleistung fast entsprechend
der Cluster-Knoten-Anzahl skaliert. Dies weist die Effizienz und die Brauchbarkeit der
Framework-Implementierung nach.

Contents

Acronyms 8

Glossary 10

1 Introduction 13
1.1 Astrophysical Simulations . 13
1.2 N-Body Simulation Example . 16

1.2.1 Formal Description . 16
1.2.2 Computational Algorithm . 17

1.3 Description of the Problem . 22

2 Current State of The Art 24
2.1 Standards . 24

2.1.1 MPI . 24
2.1.1.1 MVAPICH2 . 25

2.1.2 CUDA . 25
2.1.3 OpenMP . 26

2.1.3.1 OpenACC . 26
2.1.3.2 OpenHMPP . 27

2.1.4 OpenCL . 27
2.1.4.1 SyCL . 28

2.2 Libraries, Frameworks and Languages 28
2.2.1 Cactus . 28
2.2.2 Charm++ . 29
2.2.3 Chapel . 30
2.2.4 Flash Code . 30
2.2.5 Others . 31

3 The Proposed Approach 33

4 Framework Design and Implementation Aspects 35
4.1 Why a Framework? . 35

4.1.1 Language Extension Approach 35
4.1.2 New Programming Language Approach 36
4.1.3 Framework Approach . 37

5

CONTENTS 6

4.1.4 Decision Making . 37
4.2 Framework Design . 38

4.2.1 Target Users . 38
4.2.2 Target Architecture . 39
4.2.3 Three Concepts Design . 39
4.2.4 Design of the Database . 41

4.2.4.1 Configuration . 42
4.2.4.2 Context . 43
4.2.4.3 Distribution . 43
4.2.4.4 Storage Objects . 43
4.2.4.5 Input and Output Data Definition 43
4.2.4.6 Content Objects . 44
4.2.4.7 Buffers . 44

4.2.5 Design of Framework . 44
4.2.5.1 Algorithm . 45
4.2.5.2 Implementations . 46

4.3 Design of the Framework Implementation 46
4.3.1 Device Detection Mechanism . 46
4.3.2 Configuration File . 48
4.3.3 Context, Database and Distribution Initialization 49
4.3.4 Content Objects and Buffers Instantiation 49
4.3.5 The Computational Concept . 50
4.3.6 Simulation Execution Principles 50
4.3.7 Considered Limitations . 51

4.4 Classes Description . 52
4.4.1 Basic Utility Classes . 52

4.4.1.1 Handle and Class . 52
4.4.1.2 Logger . 52
4.4.1.3 variant . 52
4.4.1.4 vector t . 54
4.4.1.5 ErrorCode . 54
4.4.1.6 Option . 54

4.4.2 ACAF . 55
4.4.3 Device . 55
4.4.4 Architecture . 56

4.4.4.1 CPUArchitecture . 57
4.4.4.2 GPUArchitecture . 57

4.4.5 Technology . 57
4.4.5.1 PthreadTechnology . 58
4.4.5.2 OpenCLTechnology . 60
4.4.5.3 CUDATechnology . 60

4.4.6 Network . 61
4.4.6.1 MPINetwork . 62

4.4.7 Context . 62
4.4.8 Storage . 62

CONTENTS 7

4.4.8.1 LocalStorage and NetworkStorage 63
4.4.8.2 DeviceStorage . 63
4.4.8.3 OpenCLStorage . 64
4.4.8.4 CUDAStorage . 64
4.4.8.5 RAMStorage . 64
4.4.8.6 MPIStorage . 64
4.4.8.7 NodeStorage . 64

4.4.9 Distribution . 65
4.4.10 Content . 66

4.4.10.1 LocalArray . 66
4.4.10.2 SyncedArray . 66

4.4.11 Database . 67
4.4.12 Kernel . 67

4.4.12.1 Technology::Implementation 68

5 Results 69
5.1 The Usage Example . 69

5.1.1 The Configuration File . 69
5.1.2 OpenCL Kernel Implementation 70
5.1.3 pthread Kernel Implementation 71
5.1.4 The Main Function . 72
5.1.5 Analysis . 74
5.1.6 Test Setup . 75

5.2 Benchmarking . 75

6 Discussion and Conclusion 79
6.1 Pros and Cons . 79
6.2 Criteria Evaluation . 81
6.3 Retrospective . 82

7 Future Work 83

Appendices 85

A N-Body Simulation Code 86

List of Figures 91

Bibliography 92

Acknowledgements 97

Acronyms

API Application Programming Interface. 21–25, 57, 60, 66, 69, Glossary: API

CPU Central Processing Unit. 18, 19, 22–24, 27, 28, 35, 38, 43, 52–54, 66, 67, 71, 73,
Glossary: CPU

CUDA Compute Unified Device Architecture. 17, 19, 22–26, 28, 35, 38, 56, 57, 60,
77, Glossary: CUDA

DSL Domain Specific Language. 33, 34, 78, Glossary: DSL

FITS Flexible Image Transport System. Glossary: FITS

FPGA Field-Programmable Gate Array. 12, 13, 35, 37, 38, 43, 52, Glossary: FPGA

GPU Graphics Processing Unit. 12, 17, 19, 22–24, 26–28, 35, 37–39, 43, 52, 53, 57,
66, 67, 71–73, 77, Glossary: GPU

HDF5 Hierarchical Data Format version 5. 21, Glossary: HDF5

MPI Message Passing Interface. 15, 16, 21, 22, 24–28, 38, 58, 60, 66, 71, Glossary:
MPI

OOP Object-Oriented Programming. 34, Glossary: OOP

OpenACC Open Accelerators. 23, 24, Glossary: OpenACC

OpenCL Open Computing Language. 17, 19, 24–26, 35, 38, 39, 56, 60, 61, 66, 67, 73,
77, Glossary: OpenCL

OpenMP Open Multi-Processing. 15, 23, 24, Glossary: OpenMP

PCI Peripheral Component Interconnect. 43, 53, 56, 57, Glossary: PCI

PGAS Partitioned Global Address Space. Glossary: PGAS

PTX Parallel Thread Execution. 57, Glossary: PTX

RAM Random Access Memory. 18, 37, 39, 61, 71, Glossary: RAM

8

Acronyms 9

SCF Self-Consistent Field. 12, Glossary: SCF

SDK Software Development Kit. 57, Glossary: SDK

SPH Smoothed Particle Hydrodynamics. 12, 80, Glossary: SPH

SSE Streaming SIMD Extensions. 34, Glossary: SSE

UML Unified Modeling Language. 43, Glossary: UML

VGA Video Graphics Array. 43, 53, Glossary: VGA

Glossary

API An Application Programming Interface is a set of subroutine definitions, proto-
cols, and tools for building software and applications. 21

CPU A Central Processing Unit is the electronic circuitry within a computer that
carries out the instructions of a computer program by performing the basic arith-
metic, logical, control and input/output operations specified by the instructions.
18, 35

CUDA CUDA is a parallel computing platform and application programming interface
model created by Nvidia. It allows software developers and software engineers to
use a CUDA-enabled graphics processing unit for general purpose processing. 17

DSL A Domain-Specific Language is a computer language specialized to a particular
application domain. This is in contrast to a general-purpose language, which is
broadly applicable across domains. 33

FITS Flexible Image Transport System is an open standard defining a digital file for-
mat useful for storage, transmission and processing of scientific and other images.
FITS is the most commonly used digital file format in astronomy. 81

FPGA A Field-Programmable Gate Array is an integrated circuit designed to be
configured by a customer or a designer after manufacturing. 12, 35

GPU A Graphics Processing Unit is a specialized electronic circuit designed to rapidly
manipulate and alter memory to accelerate the creation of images in a frame buffer
intended for output to a display. 12, 35

HDF5 Hierarchical Data Format is a set of file formats (HDF4, HDF5) designed to
store and organize large amounts of data. 21, 80

MPI Message Passing Interface is a standardized and portable message-passing system
designed by a group of researchers from academia and industry to function on a
wide variety of parallel computers. 15, 21, 35, 58

OOP Object-Oriented Programming is a programming paradigm based on the con-
cept of ”objects“, which may contain data, in the form of fields, often known as
attributes; and code, in the form of procedures, often known as methods. 34

10

Glossary 11

OpenACC Open Accelerators is a programming standard for parallel computing de-
veloped by Cray, CAPS, Nvidia and PGI. The standard is designed to simplify
parallel programming of heterogeneous CPU/GPU systems. 23

OpenCL Open Computing Language is a framework for writing programs that execute
across heterogeneous platforms consisting of central processing units, graphics
processing units, digital signal processors, field-programmable gate arrays and
other processors or hardware accelerators. 17, 24

OpenMP Open Multi-Processing is an application programming interface that sup-
ports multi-platform shared memory multiprocessing programming in C, C++,
and Fortran, on most platforms, processor architectures and operating systems,
including Solaris, AIX, HP-UX, Linux, OS X, and Windows. 15, 23

PCI Conventional PCI, often shortened to PCI, is a local computer bus for attaching
hardware devices in a computer. 43

PGAS A Partitioned Global Address Space is a parallel programming model. It as-
sumes a global memory address space that is logically partitioned and a portion
of it is local to each process, thread, or processing element. 37

PTX Parallel Thread Execution is a pseudo-assembly language used in Nvidia’s CUDA
programming environment. 57

RAM Random-Access Memory is a form of computer data storage. A random-access
memory device allows data items to be read or written in almost the same amount
of time irrespective of the physical location of data inside the memory. 18

SCF The Self-Consistent Field method is an algorithm for evolving collisionless stellar
systems [25]. 12

SDK A Software Development Kit is typically a set of software development tools
that allows the creation of applications for a certain software package, software
framework, hardware platform, computer system, video game console, operating
system, or similar development platform. 57

SPH Smoothed-particle hydrodynamics is a computational method used for simulating
fluid flows. It was developed by Gingold and Monaghan [23] and Lucy [31] initially
for astrophysical problems. 12

SSE Streaming SIMD Extensions is an SIMD instruction set extension to the x86
architecture, designed by Intel and introduced in 1999 in their Pentium III series
processors. SSE contains 70 new instructions, most of which work on single
precision floating point data. 34

UML The Unified Modeling Language is a general-purpose, developmental, modeling
language in the field of software engineering that is intended to provide a standard
way to visualize the design of a system. 43

Glossary 12

VGA Video Graphics Array refers specifically to the display hardware first introduced
with the IBM PS/2 line of computers in 1987, but through its widespread adoption
has also come to mean either an analog computer display standard. 43

Chapter 1

Introduction

1.1 Astrophysical Simulations

Astrophysics is a branch of astronomy which applies physics to the study of astronom-
ical objects, their occurrences and their physical processes. The only actual form of
data which astrophysicists have comes from observation of the cosmos. In this respect,
astrophysicists have no opportunity to experiment on any actual physical objects, while
creating simulations both of the objects and of the environment is often a very com-
plicated task. These complications lead astrophysicists to focus on theoretical research
and to use computational simulations as a research method.

The most important computational astrophysical problems include N-Body simula-
tions, interstellar gas simulations, cosmic dust simulations and radiative transfer simu-
lations. For the purposes of calculation, these problems are usually approximated with
respective particle systems. A particle system is a numerical approximation technique
dealing with the existence and interactions of particles, which refer to some matter
or radiation. The computational astrophysics data represents a collection of particles,
which approximate bodies for N-Body simulations, molecules for gas simulations, dust
pieces for cosmic dust simulations and photons for radiative transfer simulations. Each
particle contains a number of parameters, such as position in 3D space, speed, direction,
mass and other physical and/or chemical characteristics. A collection of certain values
for all parameters of all particles is called the state of a particle system. At the same
time, the computational tasks embrace numerical solving for a number of equations,
which evaluate the state of a particle system [12].

The most critical part of utilizing particle systems for astrophysical simulations lies
in time-stepping and integration techniques involved. There are many methods pre-
scribing the certain utilization schema. The most used methods include the following:

• for N-Body simulations [25]:

1. Particle-Particle (PP) method. The calculation consists in finding pairwise
forces between all the particles and accumulating them.

2. Particle-Mesh (PM) method. The particle system is converted into a grid
(“mesh”). Then the potential is solved for this density grid and the forces
are applied according to the cell assignment of the particle.

13

CHAPTER 1. INTRODUCTION 14

3. Particle-Particle/Particle-Mesh (P3M) method. This method is a combina-
tion of previous methods: the forces of the nearby particles are calculated
by the Particle-Particle method, the influence of the distant particles is cal-
culated by the Particle-Mesh method.

4. Nested Grid Particle-Mesh method. This method is the enhanced Particle-
Mesh method which introduces the sub-grids in the cells of the parent mesh
increasing the force and mass resolutions.

5. Tree-Code Top Down method. The whole particles space is iteratively split
into eight octants constructing the tree (such tree is also called “octree”). For
each octant the algorithm computes the total mass and the center of mass.
The splitting stops, when the size of the octant, the number of particles
inside or the mass of the octant reaches some threshold. The force equation
is solved for the tree nodes. The forces of nearby particles are calculated by
the Particle-Particle method.

6. Tree-Code Bottom Up method. This method is similar to the previous one,
but the tree is built iteratively by uniting two nearest leafs at each iteration.
Initially, all particles are considered to be leafs.

7. Fast-Multipole-Method (FMM) method. This method is also based on the
octree technique, but instead of the forces, the potentials are calculated.

8. Tree-Code Particle-Mesh method. This method is a combination of the Tree-
Code method and the Particle-Mesh method. Primarily, the particle system
is converted into a grid according to the Particle-Mesh method. But the
Tree-Code method is used for the grid cells, where the mass density is high.

9. Self-Consistent Field (SCF) method. This method is designed for the colli-
sionless stellar systems, where the particles do not directly interact with one
another. Rather the particles contribute to the combined gravitational field
moving along orbits, such as stars in galaxies.

• for interstellar gas simulations:

1. Molecular Dynamics method [10, 21]. This method is used for studying
the physical movements of atoms and molecules. The simulation consists
in solving Newton’s equations of motion for the particle system until its
properties no longer change with time.

2. Monte-Carlo methods [39]. This is the class of the computational algo-
rithms which use the probabilistic models for simulating some interactions
and events.

3. Particle-in-cell method [42]. This method is an adoption of the N-Body
simulation methods for fluid and gas simulations. In particular, the following
N-Body simulation methods are used: Particle-Particle, Particle-Mesh and
Particle-Particle/Particle-Mesh.

4. Smoothed Particle Hydrodynamics (SPH) method [34]. This method defines
the spatial distance (“smoothing length”), over which the properties of the
particles (density, temperature) are “smoothed” by a special kernel function.

CHAPTER 1. INTRODUCTION 15

• for cosmic dust and radiative transfer simulations, also Monte-Carlo method is
used [36].

The particle systems discovered by astrophysicists can often contain several million
particles. Consequentially, in order to perform the simulations, astrophysicists use
a high level of computer power (for example, 1.7 PetaFlop/s is used for DRAGON
simulations [44]).

The astrophysical simulations approximated with particle systems represent the
data-parallel problems. Data parallelism is a form of the parallelization paradigm,
which focuses on distributing the data across different computational units and per-
forming the same calculation on different data simultaneously. Another form of paral-
lelization paradigm is called task parallelism, which focuses on distributing independent
calculations across the computational units.

Data parallelism and computational extensiveness have led to the greater use of the
computer cluster for astrophysical simulations. Moreover, since the computational ex-
tensiveness is concentrated upon the evaluation of the state of a particle system, hetero-
geneous clusters become a must for an efficient astrophysical simulation [35, 19, 41, 27].
According to TOP500, the top-rated heterogeneous clusters use Graphics Processing
Units (GPUs) or Field-Programmable Gate Arrays (FPGAs) as computational accel-
erators. In particular, there are several task-specific astrophysical projects using the
GRAPE-6 FPGA for accelerating N-Body simulations [32, 28, 46, 33].

This means that astrophysicists should deal with developing simulation programs
which are capable of running on heterogeneous clusters. At the same time, the devel-
opment of the programs for heterogeneous clusters is a complicated task. It requires
certain expertise in the following subjects:

• astrophysics - that is to say, knowledge of cosmic objects, their existence and
interactions between them, including the knowledge of the physical and chemical
laws involved;

• network programming - that is, knowledge of the communication between the
nodes in computer clusters, including the data transfer interfaces, protocols and
supporting libraries;

• parallel programming and hardware accelerators programming - that is, knowl-
edge of the efficient data-parallel coding, the design and specifics of different
computational unit architectures, the commands and libraries for communicating
with hardware accelerators;

• micro-electronics for designing FPGA boards - understanding the integrated cir-
cuits of FPGA boards is necessary for choosing the correct design for the partic-
ular problem.

The following N-Body simulation example demonstrates the key programming dif-
ficulties which one encounters in working towards the development of the programs for
heterogeneous clusters.

CHAPTER 1. INTRODUCTION 16

1.2 N-Body Simulation Example

1.2.1 Formal Description

The example solves a typical astrophysical force N-Body simulation problem used for
simulating stellar systems. The full code of the simulation written in C++ can be
found in Appendix A. Formally, the problem can be described as following:

1. the N-Body force simulation approximates the motion of particles, which inter-
act with one another through some type of physical forces. Our usage example
considers the gravitational force;

2. the problem considers N particles, which are point masses mi, i = 1, N in three
dimensional space R3 with a position vector pi;

3. according to the Newton’s law of gravity the gravitational force felt on particle i
by a single particle j is given by

Fij =
Gmimj(pj − pi)

‖pj − pi‖3

where G is the gravitational constant and ‖pj − pi‖ is the magnitude of the
distance between pi and pj ;

4. summing over all the particles yields the equation of motion:

mi
dvi
dt

=

N∑
j=1,j 6=i

Gmimj(pj − pi)

‖pj − pi‖3

where vi is the velocity of particle i and
dvi
dt

is the motion acceleration of particle

i;

5. taking into account that vi =
dpi
dt

, it is possible to approximate:

v′i = vi + Fijmi∆t

p′i = pi + v′i∆t

where v′i is the new velocity of particle i and p′i is the new position of particle i.

This means that the N-Body force simulation lies in iterating over some time period
with the step ∆t. At each iteration the simulation consists of evolving the state of the
particle system by recalculating the new positions of all the particles.

CHAPTER 1. INTRODUCTION 17

1.2.2 Computational Algorithm

The complexity of the calculation algorithm of N-Body simulation depends on the target
computational configuration. Performing the calculation using the more complex con-
figurations (a parallel calculation, a calculation in network, a heterogeneous calculation)
requires additional data synchronizations, data transfers, execution synchronizations.
This section covers the computational algorithms for the serial calculation, the parallel
calculation on a single CPU, the parallel calculation on a CPU cluster and the parallel
computation on a heterogeneous cluster using Particle-Particle method.

The serial algorithm of the simulation can be implemented within the following
steps (see Figure 1.1):

1. allocate the arrays for the particle parameters: masses, positions, velocities;

2. initialize the arrays with data: either random generated values or the values
loaded from data files;

3. implement the time-iterating loop with the predefined time boundaries;

4. on each iteration of the loop iterate over all the particles and for each particle
perform the following steps:

(a) compute the gravitational force felt on the current particle as a sum of the
pairwise forces;

(b) when gravitational forces for all the particles are computed, calculate the
new velocity in time ∆t;

(c) using the new velocity and the current position of the particle compute the
new position in time ∆t.

Figure 1.1: The serial algorithm of the N-Body force simulation.

CHAPTER 1. INTRODUCTION 18

The multi-threaded algorithm for a single node without any accelerators requires
either the knowledge of operating systems calls to run several threads or using the third-
party tools and libraries, which provide the convenience functions and instructions for
these aims. The algorithm consists of the following steps (see Figure 1.2):

1. allocate the arrays for the particle parameters: masses, positions, velocities;

2. initialize the arrays with data: either random generated values or the values
loaded from data files;

3. logically split the particles between the desired number of threads: decide which
particles positions are computed by the particular thread - usually described by
the array index range;

4. each thread performs its own time-iterating loop with the same predefined time
boundaries;

5. on each iteration of the loop the thread iterates over assigned range of the particles
and for each particle performs the following steps:

(a) the thread computes the gravitational force felt on the current particle as a
sum of the pairwise forces;

(b) when gravitational forces for all the particles in all threads are computed,
the thread calculates the new velocity in time ∆t;

(c) using the new velocity and the current position of the particle the thread
computes the new position in time ∆t;

6. at the end of each time iteration, all threads synchronize their execution by block-
ing the further processing till all the threads reach the end of the iteration.

The serial and multi-threaded algorithms can be developed using the regular pro-
gramming language (such as C++, Java, Fortran). Using the third-party tools (such
as Boost, Open Multi-Processing (OpenMP) - see Section 2.1.3) the multi-threaded
version can be developed without the operating system calls knowledge.

The further optimization of the simulation code includes implementing of the dis-
tributed network-enabled algorithm. To develop the network-enabled simulation code
it is necessary to have some expertise either in the network-protocol programming or
in some network-messaging library (such as Message Passing Interface (MPI) - see Sec-
tion 2.1.1). In case of the network-messaging library usage the algorithm includes the
following steps (see Figure 1.3):

1. initialize the network library and query the network configuration (number of
nodes, the rank of the current node);

2. logically split the particles between all the nodes of the network and between
the desired number of threads in the context of the current node: decide which
particles positions are computed by the particular node and the particular thread
- usually described by the array index range;

CHAPTER 1. INTRODUCTION 19

Figure 1.2: The parallel algorithm of the N-Body force simulation.

3. allocate the arrays for the particle parameters: masses, positions, velocities (ve-
locities should be allocated only for the particles computed by the current node);

4. initialize the arrays with data: either random generated values or the values
loaded from data files;

5. in case of random values the parameters should be synchronized between all the
nodes (in terms of MPI library this operation is called “gathering”);

6. since the changing positions should be synchronized between the nodes at the end
of each time iteration, the time-iterating loop is performed at the node-level in
the main thread of the application;

7. on each iteration of the loop multiple threads are started to perform the com-
putation of new positions of the particles, where each thread performs the same
steps as previously:

(a) the thread computes the gravitational force felt on the current particle as a
sum of the pairwise forces;

(b) when gravitational forces for all the particles in all threads of the current
node are computed, the thread calculates the new velocity in time ∆t;

(c) using the new velocity and the current position of the particle the thread
computes the new position in time ∆t;

CHAPTER 1. INTRODUCTION 20

8. at the end of each time iteration, when all threads have finished their execution,
the new positions of the particles are synchronized between all the nodes.

Figure 1.3: The network-enabled algorithm of the N-Body force simulation.

Finally, performing the calculation of the particle positions using some hardware
accelerators requires an expertise in the accelerator programming. Particularly for uti-
lizing GPUs, Open Computing Language (OpenCL) (see Section 2.1.4) expertise or
Compute Unified Device Architecture (CUDA) (see Section 2.1.2) expertise are neces-
sary. The algorithm in this case consists of the following steps (see Figure 1.4):

1. initialize the network library and query the network configuration (number of
nodes, the rank of the current node);

2. initialize the accelerator programming environment and query the available ac-
celerator on each node;

3. logically split the particles between all the nodes of the network and between the
computational units in the context of the current node (Central Processing Unit
(CPU) threads and accelerators): decide which particles positions are computed
by the particular node, the particular device and the particular thread - usually
described by the array index range;

CHAPTER 1. INTRODUCTION 21

4. allocate the arrays for the particle parameters for each computational unit (CPU
threads use Random Access Memory (RAM) of the node, while an accelerator
usually has its own memory space and can not directly communicate with RAM
of the node): masses, positions, velocities (velocities should be allocated only for
the particles computed by the current device);

5. initialize the arrays with data: either random generated values or the values
loaded from data files;

6. in case of random values the parameters should be synchronized between all the
nodes;

7. and if an accelerator has its own memory space, the data should be copied into
the accelerators arrays;

8. since the changing positions should be synchronized between the nodes at the end
of each time iteration, the time-iterating loop is performed at the node-level in
the main thread of the application;

9. on each iteration of the loop the accelerator and multiple CPU threads are started
to perform the computation of new positions of the particles, where each compu-
tational unit performs the same steps as previously:

(a) the device computes the gravitational force felt on the current particle as a
sum of the pairwise forces;

(b) when gravitational forces for all the particles of the current device are com-
puted, the device calculates the new velocity in time ∆t;

(c) using the new velocity and the current position of the particle the device
computes the new position in time ∆t;

10. at the end of each time iteration, when all devices have completed their execution,
the new positions of the particles are synchronized in the following order:

(a) the positions computed by the accelerator are transfered from the accelerator
memory space to RAM of the current node;

(b) the positions are synchronized in the network between all the nodes;

(c) the synchronized positions are written back into the accelerator memory
space.

In addition to the complexity of the algorithm, the code for computing the gravita-
tional force, the new velocity and the new position of the particles should be developed
for each computational unit separately. For example, in case of performing the compu-
tation on CPU and GPU, the code should be written in C++, C or Fortran languages
for CPU threads and in OpenCL C or CUDA C languages for GPU.

Moreover, if due to the number of particles or to the number of parameters the full
arrays do not fit into the accelerator memory space, the partial synchronization method
should be applied. This method includes the following steps:

CHAPTER 1. INTRODUCTION 22

Figure 1.4: The heterogeneous algorithm of the N-Body force simulation.

1. on each time iteration split the arrays to the blocks, which fit at once into the
accelerator memory space;

2. within another loop, write iteratively the blocks into the accelerator memory
space and perform the computation on the individual blocks.

1.3 Description of the Problem

The development of the application, which approximates the astrophysical simulations
with particle systems, is a complex task. According to the aims of the simulation,
scientists should consider different methods for utilizing particle systems (see Section
1.1). For an efficient implementation of the certain method for a heterogeneous cluster,
strong expertise in fields of network programming and parallel programming is required.
Additionally, the developer should consider the following programming aspects (as was
demonstrated in Section 1.2.2):

• the proper splitting of the problem between the nodes of the cluster and the
computational devices of the nodes;

CHAPTER 1. INTRODUCTION 23

• the memory allocation for different computational units;

• the necessary and sufficient methods for synchronizing the data and the execution;

• the correct time frames and directions for transferring data;

• the correct splitting of the functionality between the computational units.

The complexity of the simulation development underlines the need for supporting
tools, which address both the programming aspects and the expertise prerequisites.
Hence, the supporting tools are meant to fulfil the following requirements for the effi-
cient solution of the problem:

• the native accelerators support;

• the native network support;

• the device-specific operations abstraction;

• the network-specific operations abstraction;

• the data operations abstraction;

• the data and calculation distribution mechanisms abstraction;

• finally, the abstraction mechanisms are to keep open the option for fine-tuning
the critical parts of the simulation.

Chapter 2

Current State of The Art

This chapter covers mostly used and important frameworks, libraries and standards
which can optimize or simplify development of the astrophysical simulation applica-
tions.

2.1 Standards

This section gives an overview of the currently used programming standards and stan-
dard Application Programming Interfaces (APIs) for generic parallel heterogeneous
programming. All the standards were designed for generic problems and therefore con-
tain and require the implementation details which are irrelevant or obvious for the
astrophysical simulation applications. Nonetheless, studying the existing standards
helps to identify the relevant level of abstraction and the relevant set of functions and
structures.

2.1.1 MPI

Message Passing Interface (MPI) [26] is a standardized message-passing system designed
to function on a wide variety of parallel computers. MPI is widely used on many
computer clusters for parallel computations on several machines. MPI can also be
used for parallel computations on a single node by running multiple instances of the
program. MPI provides the user with functions to efficiently exchange data in the
parallel systems.

MPI has nothing to do with the code parallelization: the program can be imple-
mented with or without accelerators usage, with or without parallelizing and opti-
mizing execution code. MPI offers an interface-independent network communication,
which enables the possibility to eliminate the usage of any particular network protocols.
Moreover, MPI provides not only plain data copy functions, but also 13 collective data
functions, such as data reduction, data gathering. Using of MPI the user can abstract
the network communication in the efficient way.

Another advantage of MPI is the existence of a number of extensions, which often
can enhance the network communication even further, such as enabling InfiniBand
usage or parallel files handling (including Hierarchical Data Format version 5 (HDF5)

24

CHAPTER 2. CURRENT STATE OF THE ART 25

files). The most interesting extension in terms of heterogeneous clusters programming
is MVAPICH2.

2.1.1.1 MVAPICH2

MVAPICH2 [43] is a novel MPI design which integrates CUDA-enabled GPU data
movements transparently into MPI calls. This means that the user can often eliminate
additional steps for transferring data firstly to the host memory and then to GPU
memory and backward. Since MVAPICH2 involves not only an efficient encapsulation
of the function calls, but also utilization of the motherboard and GPU chips capabilities,
the final effect can reasonably improve the performance.

Hence, the user should still guarantee the correct lifetime management of GPU
memory. The user should manually trigger the execution of the GPU code. If the
calculations should be done simultaneously on GPU and CPU or several GPUs, MVA-
PICH2 can only be utilized by dividing the calculation on different devices of the same
host into separate MPI processes. Another limitation of MVAPICH2 that it only sup-
ports CUDA-enabled GPUs.

So, MPI and MVAPICH2 are important libraries for developing programs for het-
erogeneous clusters, but these libraries cover only a single aspect - communication
between nodes and devices. Moreover, the libraries actually just abstract and simplify
the network protocol usage. Still, the user should take care of allocation, distribution
of the data, code execution and synchronization. Therefore, these libraries can not be
seen as a solution for the problem we have identified. Still, while they can be used for
efficient implementing of the framework in our research.

2.1.2 CUDA

CUDA stands for and is a parallel computing platform and an API model created by
Nvidia. CUDA is currently used only for Nvidia GPUs. CUDA API model enables a
user to utilize GPUs for general-purpose computations on a single node.

The program written with CUDA API consists usually of 2 parts:

• a kernel code, which is going to be executed on the GPU. Usually, the kernel code
represents the actual mathematical calculations, since the mathematical part is
the target of the accelerators usage approach. The kernel code is written in a
variety of the C language - CUDA C.

• a host code, which performs initialization, GPU memory management (including
allocation, transferring and deallocation), kernel uploading and execution.

The user of CUDA API should control all aspects of the program lifetime. Having
several GPUs on the same node implies explicitly controlling each device and the cor-
responding memory space. Performing additional parallel calculations on CPU should
be implemented as a standalone solution, because CUDA has nothing to do with CPU
programming.

This means that CUDA is a utility for general-purpose GPU programming. It
provides a possibility to efficiently develop general-purpose programs for Nvidia GPU

CHAPTER 2. CURRENT STATE OF THE ART 26

devices. But being a generic tool implies that CUDA offers the user as much program-
ming aspects as possible and requires as many implementation details as it is actually
necessary. So, CUDA should be a part of the solution in our research. Still, it has not
been designed to abstract the aspects we need to be covered.

2.1.3 OpenMP

Open Multi-Processing (OpenMP) [15] is a standard API for shared-memory pro-
gramming in C/C++/Fortran languages, which enables easy and efficient development
of the parallelized code using compiler directives. OpenMP parallelizes the program
by distributing the execution of some code in the threads pool. OpenMP API is sys-
tem independent, while the compiler is responsible for the correct system-dependent
implementation.

In order to run some piece of code in parallel, the user should mark this code with an
OpenMP pragma, it could be either a for loop, iterations of which will be distributed, or
a number of sections each of which will run in a single thread. The necessary initializa-
tion calls and actual multi-threaded calls will be placed by the compiler preprocessor.
Additionally, the user can specify which data should be local for a thread, which data
should be shared between threads (also, some other basic data operations are available
such as scattering, gathering and reduction).

Using OpenMP pragma instructions, it becomes very easy to parallelize the code for
multi-threaded execution. Often, if a loop has no data dependencies between iterations,
it is enough just to place a single pragma before loop and recompile the program. At
the same time, parallelization of a complex code requires certain mastering in OpenMP
programming, but it is usually much easier to use OpenMP for pure calculations rather
than to use the thread management system-dependent calls.

The current widely supported version 3.1 (Microsoft Visual Studio 2008-2015 sup-
port only version 2.0) is designed to execute the parallel parts of the code using only
CPUs. This limits the actual profit of using OpenMP as a solution for the identified
problem. But there are several extensions of OpenMP which enable also accelerators
usage. These extensions will be described in the following subsections.

2.1.3.1 OpenACC

Open Accelerators (OpenACC) is a standard for the programming of computa-
tional accelerators originally proposed by Nvidia (currently only CUDA-enabled GPUs
are supported). Open Accelerators (OpenACC) uses the similar API as OpenMP and
is also based on the preprocessor pragmas. In addition to the standard OpenMP prag-
mas, OpenACC offers the instructions to control data allocation, data flow, accelerator
kernels and accelerator parallel blocks. Using OpenACC in case of independent loop it-
erations the programming of computational accelerators can be done by adding a single
pragma to the code. If no accelerators are present in the machine, CPU will be used for
executing the code. In 2013, OpenACC was merged into the general OpenMP standard
- OpenMP version 4.0. OpenACC as well as OpenMP 4.0 are currently supported by
a limited number of compilers.

CHAPTER 2. CURRENT STATE OF THE ART 27

2.1.3.2 OpenHMPP

OpenHMPP (HMPP for Hybrid Multicore Parallel Programming) is a programming
standard for heterogeneous computing based on HMPP API developed by CAPS En-
terprise. This API also uses preprocessor compiler directives for marking the code to
run it on the hardware accelerator. The basic idea of OpenHMPP lies in defining a
codelet - a pure calculation function which is intended to be performed by the hardware
accelerator. Additionally, the user should define the data transfer points and codelet
call points. At the current moment OpenHMPP is supported only by 2 compilers:
CAPS Enterprise compilers and PathScale ENZO compiler suite.

Unfortunately, OpenMP and its extensions do not solve the problem as well. Even
taking into account that such API model definitely reduce the requirements in parallel
programming skills abstracting the numerous function calls in easy-readable pragmas,
it does not hide the implementation details, which are out-of-interests for scientific
programmers: device data allocation, data transferring, runtime synchronization. On
the other hand, the API hides the device selection possibilities, which may be necessary
for the advanced programmers. Additionally, this API does not cover at all any kind of
network communications and is designed solely for a single node. This means that for
heterogeneous computing clusters a user should manually manage MPI (or other) calls
mixing them with OpenMP (OpenACC or OpenHMPP) pragmas to run the application
on all the nodes, which furthermore complicates the final code.

2.1.4 OpenCL

Open Computing Language (OpenCL) [3] is an open standard for general pur-
pose parallel programming across different heterogeneous processing platforms: CPUs,
GPUs and others. The OpenCL programming model is quite similar to CUDA, but
implies the usage aspects of different accelerators. As well as for CUDA, OpenCL
program consists of 2 parts:

• a kernel code, which is going to be executed on accelerators written in OpenCL
C language.

• a host code, which performs initialization, memory management (including alloca-
tion, transferring and deallocation), kernel compilation, uploading and execution.

As well as for CUDA, using OpenCL requires the user to control all aspects of the
program lifetime. But in contrast to CUDA, OpenCL provides a possibility to run the
kernel code on different GPUs and other different accelerators such as DSPs (Digital
Signal Processors), FPGAs (Field-Programmable Gate Arrays). Also, OpenCL offers
a simplified memory model for multi-accelerator contexts.

Nevertheless, OpenCL is designed for single machine implementations. There were
some projects (such as CLara [1] - the project is stalled at OpenCL 1.0, or VirtualCL [7]
- the project is stalled at OpenCL 1.1) which implement a proxy for the remote devices
providing an access to them over the network. This implies that the host code of a
proxy is not able to provide some logic, to store some temporary buffers, to optimize
the network data exchange. Rather, the project implies working with remote devices

CHAPTER 2. CURRENT STATE OF THE ART 28

the same way as with local devices, which can lead to the unnecessarily frequent and
time-expensive data transfers. This limits the utilization of OpenCL for heterogeneous
clusters programming. Still, the OpenCL use is possible in conjunction with MPI or
other communication interface.

Moreover, OpenCL is a standard for parallel programming of computational accel-
erators. This means that OpenCL is not supposed to simplify the accelerators pro-
gramming (still it fulfils this task for some platforms). Instead, it provides a standard
way to incorporate the accelerators power into the end-user applications. Therefore,
OpenCL could be an important part of the solution for our problem.

2.1.4.1 SyCL

SyCL [4] is a new C++ single-source heterogeneous programming model for OpenCL.
SyCL takes an advantage of C++11 features such as lambda functions and templates.
SyCL provides high level programming abstraction for OpenCL 1.2 and OpenCL 2.2.
This means that SyCL simplifies the integration of OpenCL into the programming
code, making the heterogeneous programming available without learning some specific
language extensions (such as the OpenCL C language or the CUDA C language). More-
over, SyCL tends to be included in the upcoming C++17 Parallel STL standard. Still,
being an enhancement of OpenCL standard, SyCL does not introduce any network
interoperability restricting the heterogeneous programming model to a single machine.

2.2 Libraries, Frameworks and Languages

This sections covers numerous libraries and frameworks used or possible to be used for
solving the code complexity problem of heterogeneous applications. [17]

2.2.1 Cactus

Cactus [24] is an open-source modular environment, which enables parallel compu-
tation across different architectures. Modules in Cactus called “thorns”. A thorn
encapsulates all user-defined code. A user has a choice either to combine the solution
of the problem configuring one or several existing thorns or write a new thorn. Thorns
are able to communicate with each other using the predefined API functions. A thorn
consists of at least a folder and 4 administrative files written in Cactus Configuration
Language: interface.ccl, param.ccl, schedule.ccl, configuration.ccl. Each of these files
describes some particular properties of the configuration:

• interface.ccl is similar to a C++ class definition providing the key implementation
features of the thorn;

• param.ccl tips which data is necessary for running the thorn and which data is
provided by the thorn;

• schedule.ccl defines under which circumstances the thorn is executed;

CHAPTER 2. CURRENT STATE OF THE ART 29

• configuration.ccl specifies which milestones are required to run the thorn and
which milestone provides the thorn. In the built configuration, each milestone
can be provided not more than once, while the code base can have several thorns
providing the same milestone. The example milestones are: LAPACK, OpenCL,
IOUtil.

The rest of the thorn implementation should be organized into the files written
with the following languages: Fortran90, C, C++, CUDA C, OpenCL C. The thorn
implementation should include the functions defined in interface.ccl. The files will
be compiled and linked together during the building of particular configuration. In
functions and kernels a user should explicitly utilize the predefined Cactus macros and
instructions, which are to be replaced with the necessary language constructions before
compiling the program.

Cactus code has a built-in support of MPI. The latest version of Cactus includes
the thorns for utilizing accelerators with the help of CUDA and OpenCL. Having these
thorns, the user is able to program the accelerators calling the simplified interface
functions for copying data and executing kernels. The network communication and
the data transfer with accelerators can also be implicitly managed by Cactus using the
distributed data types.

Nevertheless, having the distributed data types does not solve the problem com-
pletely, because implementing a new thorn is quite a complicated task. The user has no
ability to combine different devices into the same solution, since the thorns are always
synchronized. Cactus is only designed to solve time iterative problems.

2.2.2 Charm++

Charm++ [29] is a message-driven parallel language implemented as a C++ library.
The usual Charm++ program consists of a set of objects called “chares”. A chare
is an atomic function, which performs some calculations. Chares communicate with
each other using messages. The task of the programmer in Charm++ context lies in
dividing the problem into work pieces, which can be executed with virtual processors.
The Charm++ library schedules these work pieces among the available processing units.

A chare implementation should be written in C++ language. It represents several
classes which inherit some Charm++ classes. A typical chare has at least 2 classes: the
main chare class, which initializes the environment and sets the necessary variables,
and a worker class, which contains calculation routines. Since the source code of chares
is written in C++ language, it is possible to use any 3rd party libraries including the
accelerating libraries such as CUDA and OpenCL. But using these libraries anyway
involves the manual management of all the aspects of accelerators programming.

Another possibility to utilize GPUs lies in using an additional Charm++ library -
Charm++ GPU Manager. This library provides the user with simplified functions to
interact with CUDA-enabled GPUs. The user should define a work request for GPU
Manager providing a CUDA kernel, input and output arguments to be transferred to
the GPU. The GPU Manager ensures the overlapping of transfers and executions on
the GPU and runs a GPU kernel asynchronously.

CHAPTER 2. CURRENT STATE OF THE ART 30

Even with the help of the GPU Manager, writing GPU-enabled programs with
Charm++ remains a complex task. Charm++ is a message-driven platform, therefore
the user should program the chares keeping in mind all the possible input and output
messages. A user should control all the aspects of GPU programming. With a help of
GPU Manager, a user can save on some function calls. Still, he should fully control the
workflow.

2.2.3 Chapel

Chapel [13] is a parallel programming language. Chapel provides a user with a high-
level parallel programming model which supports data parallelism, task parallelism and
nested parallelism. Being designed as a new standalone language, Chapel allows to use
a high level of parallelism abstraction. This results in a compactly written code which
is at the same time highly optimized, since the compiler controls all the aspects. Chapel
was initially designed for multi-core Cray machines. But thanks to the high level of
abstraction, Chapel was extended to support also the heterogeneous systems.

At the same time, being a standalone language, Chapel has limited possibilities for
extending the functionality and for interoperating with other languages. Since Chapel
is an open source project, everybody can change the compiler grammar for having new
commands. Additionally, Chapel provides interoperability with the C language, which
consists of implementing special binary bindings. Also, Chapel is able to generate a C
interface and compile the source code into the shared library, so the code written in
Chapel can be called from other C programs.

Hence, Chapel is a powerful language, which allows a user to write parallel programs
with several lines of code. Since the compiler is responsible for all the aspects of de-
ploying a parallel program: data transferring, network communication, load balancing
and device’s execution calls, it becomes difficult to control the workflow of the pro-
gram. Moreover all the optimizations and extensions should be done on the language
grammar level, which involves even higher expertise in parallel computing.

2.2.4 Flash Code

Flash Code [18, 22] is a modular Fortran90 framework targeted to computer clus-
ters. It uses MPI to distribute calculations over the cluster nodes and inside the node
over CPU cores. The Flash Code was initially developed for simulating thermonuclear
flashes. But due to the modularity of the system, many other modules were imple-
mented, which led to wider application range. The current version of Flash Code has
a huge delivered code base: ca. 3500 Fortran files.

The Flash Code was designed much earlier than heterogeneous clusters became
widely-used. Therefore, the framework has no built-in support for any hardware ac-
celerators and relies on particular modules to optimize the calculations as much as
possible. Flash Code has different module types. Each module type is responsible for
one or another system aspect being usually quite atomic (solvers, grids, etc). This
means that a module can be implemented using any accelerating techniques and li-
braries. Moreover, a module can be implemented as a standalone dynamic library with
the necessary Fortran90 bindings to the Flash code.

CHAPTER 2. CURRENT STATE OF THE ART 31

But the modularity of the framework implies the unnecessary data transferring in
case of heterogeneous systems. The framework can not consider the device memory,
therefore, data should always be loaded into the device on the entry of the module and
unloaded on the exit, even if the next module needs it to be in the device memory.
Moreover, the constant variables and arrays should be transferred to the device at
each iteration. These disadvantages can impair the performance gap achieved by using
heterogeneous systems.

Moreover, the modularity of the Flash Code does not incorporate the abstraction
of the parallel programming. So writing a new module requires the proficiency in
parallel programming, including: hardware accelerators utilization; MPI usage; data
distribution and synchronization techniques.

2.2.5 Others

AMUSE [47] is a Python framework designed to couple existing libraries for per-
forming astrophysical simulations involving different physical domains and scales. The
framework uses MPI to involve cluster nodes. Still, the utilization of any hardware
accelerators should be a part of libraries coupled in a particular configuration.

Swarm [16] is a CUDA library for parallel n-body integrations with a focus on
simulations of planetary systems. The Swarm framework targets single machines with
Nvidia GPUs as hardware accelerators. The framework provides a user with a possi-
bility to extend the calculations algorithm. But the final system is not scalable and
cannot utilize the power of a cluster. So, the framework is only designed to solve some
specific problems.

The Enzo [2] project is a adaptive mesh refinement simulation code developed by a
community. The code is modular and can be extended by users. Enzo does not support
network communication. Still, it contains several modules developed to utilize Nvidia
GPUs using CUDA.

There are also numerous task-specific projects, which target certain astrophysical
problems. In particular, the following projects should be mentioned as widely used:

• GADGET-2 [40] is a freely available code for N-Body and gas simulations on
computer clusters, which uses Tree-Code Particle Mesh and SPH methods. The
older versions of the project have also supported GRAPE [32] FPGAs as compu-
tational accelerators.

• NBODY6++GPU [45] is a code for N-Body simulations using Ahmad-Cohen
neighbor schema [8]. The code uses hybrid parallelization methods (MPI, GPU,
OpenMP and Streaming SIMD Extensions (SSE)) to accelerate the simulations.

• Vine [46] is a simulation code for solving N-Body and interstellar gas problems
using tree structures and SPH method. The code is able also to utilize GRAPE
[32] FPGAs to accelerate the computation.

Among other languages which are not so widely used we should mention: Julia [11]
language, X10 [14] language, Fortress language. All these languages were initially
designed for CPU clusters. Some of them provide ports or extensions for hardware

CHAPTER 2. CURRENT STATE OF THE ART 32

accelerators. These ports and extensions usually have no abstraction for the accelerator
memory space communications.

Finally, some other widely-used, but very domain-specific libraries are: WaLBerla
[20], RooFit [9], MLFit [30].

Summary

The described standards, libraries, frameworks and languages solve the individual prob-
lems of the development of the astrophysical simulation programs. They are able to
optimize and/or simplify the development. Still, they do not solve completely the given
problem.

Chapter 3

The Proposed Approach

As described in Chapter 1, it is a complex problem to develop the heterogeneous-
enabled particle system simulation application without special tools and frameworks,
which in turn requires knowledge in several subjects. This takes much time and de-
mands professional expertise from astrophysicists, which restricts scientists to perform
calculation experiments on clusters easily and distracts them from the main goal.

As it was shown in Chapter 2, there are currently several different solutions, which
can optimize and simplify the process of development. Each of these solutions has its
pros and cons. We firstly want to highlight the importance of combining the ideas and
targeting a particular kind of problem - particle system problems for astrophysical sim-
ulations. Limiting the application purposes of the solution will result in better abstrac-
tions for the necessary entities. Secondly, by designing the solution to be heterogeneous-
enabled, it becomes possible to encapsulate all the necessary device-specific function
calls. Finally, targeting the particle system problems enables a prospective ability to
use the framework not only for astrophysical simulations, but also for other particle
system domains - for instance physics and biology.

The aim of our research is to simplify software development for the im-
plementation of astrophysical simulations by means of reducing programming
knowledge requirements. The solution we suggest for the identified problem is the
ACAF. ACAF stands for Astrophysical-oriented Computational multi-Architectural
Framework. The ACAF is a toolkit for developing the astrophysical simulation appli-
cations. The target data to be processed with the ACAF is a set of states of a particle
system.

The ACAF aims to facilitate astrophysical research by providing a user with a set
of objects and functions which fulfil the following requirements:

• the structure of an object and the semantics of a function should be plain and
similar to the objects often used by scientists in other programming environments
and in theoretical problem descriptions;

• the objects and functions should cover most of the heterogeneous programming
aspects;

• there should be a possibility to extend the tools in use as well as to provide the
alternative implementations of existing tools;

33

CHAPTER 3. THE PROPOSED APPROACH 34

• the design of the framework should clearly split the algorithmic (mathematical,
physical) part from the heterogeneous programming techniques;

• the definition of the distribution of data and computation over the cluster nodes
should be user-friendly;

• the programming language for the framework implementation should be flexible
enough to fulfil the previous requirements, while the language should have as
little run-time expenses (e.g. by using Virtual Machines) as possible. Ideally the
language should be similar to the used by scientists at the present moment;

• finally, it would be an additional advantage to maintain the possibility of contin-
ually reusing the existing computational libraries.

For evaluating the success of the design and implementation of the proposed ap-
proach, it is helpful to elaborate upon the following criteria:

1. the time overhead of using the framework in comparison to the bare simulation
code: the less the time overhead is, the more successful the framework is;

2. the amount of the device-specific code (device queries, device memory allocations,
device data transferring, device communication) necessary for executing a sim-
ulation in comparison to the bare simulation code. That is to say, the less the
amount of code is, the more successful the framework is;

3. the amount of the network-specific code (network queries, network data transfer-
ring) necessary for executing a simulation in comparison to the bare simulation
code. That is, the less the amount of code is, the more successful the framework
is;

4. the portability and the flexibility of the resulting simulation in the context of
deploying the simulation code within different hardware configurations. The less
actions should be done for deploying the simulation code on other hardware, the
more successful the framework is;

5. the uniformity of the computational code for different target devices - the less
different computational codes should be written for different devices, the more
successful the framework is;

6. the possibility that the present framework can be extended: the more modular
and atomic the framework entities are, the more successful the framework is.

The intermediate results of the research were published in:

1. D. Razmyslovich, G. Marcus, and R. Männer. Towards an Astrophysical-oriented
Computational multi-Architectural Framework. In Computational World 2016,
pages 16 – 26. IARIA, 2016. ISSN 2308-4170

2. D. Razmyslovich and G. Marcus. Astrophysical-oriented Computational multi-
Architectural Framework: Design and Implementation. International Journal On
Advances in Intelligent Systems, volume 9(3&4), forthcoming

Chapter 4

Framework Design and
Implementation Aspects

4.1 Why a Framework?

The problem described in Chapter 1 can be solved in general terms with one of the
following possibilities:

• an extension for the existing compiler, which introduces some meta-commands
(or pragmas in the terms of the C language), which are consequently translated
into the usual language instructions and are compiled normally;

• a new programming language with a full-functional compiler;

• a framework, which provides a user with some abstraction elements, which can
be combined for solving the problem.

The pros and cons of those approaches are described in the following subsections.

4.1.1 Language Extension Approach

The main advantage of the language extension is the maintenance of the programming
language in use. This approach introduces some new commands, which encapsulate
the existing instructions. Ideally, ignoring the new commands should not prevent the
source code to be compiled.

Since the extension is triggered during the program compilation, it needs no extra
run-time expenses and is equivalent to the similar hand-written code. This also means
that a user can choose between the extension capabilities and hand-writing at any place
in the code. Additionally, just extending the programming language voids a need to
learn something completely new. Even more, the existing code can then be cheaply
adapted to utilize the extension capabilities.

On the other hand, a pure language extension without any additional libraries limits
the actual possibilities, because the extension is a compile-time tool. So the extension
cannot have any run-time information: the amount of available resources; the devices
in use; cluster utilization schema; the amount of data to be processed in non-constant

35

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 36

cases. This means that a user should embed all the necessary information into the source
code, so that the extension has an access to it. It directly involves the recompilation
of the program for any resource changes. Moreover, it means that the program should
have different source code for different machines and that the binaries are not portable.
Last but not least, the source code enhanced with a language extension is more difficult
to debug.

A good example of the language extension is OpenACC (see Section 2.1.3.1). Ope-
nACC enables a possibility to utilize the accelerators using the preprocessing com-
mands. Using these commands the user marks which parts of the code should be
executed on the accelerator, which data is input and which data is output. The com-
mands are accelerator-independent. Still one of the compiler arguments is the target
accelerator. This means that the final binary is compatible and optimized for some par-
ticular accelerator or several accelerators (for example, all Nvidia GPUs with compute-
capability 2.0). So, the binary is not easily portable and requires the recompilation for
different accelerators.

4.1.2 New Programming Language Approach

In contrast to the language extension, which introduces the new commands keeping
the forms and syntax of the original language, the new programming language enables
an opportunity to produce the forms and syntax according to someone’s needs. This
means that the language extension is bound to the expressions and patterns defined
in the original language. Conversely, the new programming language is designed for
solving certain problems and defines the optimal expressions for these aims.

Having a separate language designed initially to express data parallelism for some
domain-specific tasks provides users with a clear problem-related set of instructions.
This set of instructions can enhance the development serving the following advantages:

• the improved readability of the code;

• the advanced forms of expressions, which are convoluted in other languages;

• the development patterns promoted by the instructions;

• the higher level of abstraction;

• the necessary level of the programming flexibility.

Still, developing a new programming language is quite a complicated task which
requires considering the following issues:

• granularity of the instructions/statements - which details may be interesting for
users and which details are exhausted;

• extendability of the programming language contradicts the portability of the ex-
tended solution. Since the extension should be a part of the language, it should
expand the semantics, which complicates the combining of several extensions;

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 37

• compatibility with the existing solutions - it is often more efficient to reuse some
existing library, rather than to implement a complete solution of the problem
from scratch.

Finally, the disadvantage of this approach makes the fact that the user has to learn
a completely new programming language.

4.1.3 Framework Approach

In contrast to the language extension and the new programming language, the frame-
work does not introduce new language commands, forms and expressions. Contrarily,
a framework is generally language-independent and often provides the interfaces for
several programming languages at the same time.

The framework provides users with an abstraction mechanism usually represented
with a set of objects and functions. The objects and functions encapsulate some func-
tionality providing an interface which fits the actual computational problem better. A
successful design of the framework can lead to the softening of the dependencies between
the objects and functions and their modularity. The latter means that the framework
can be divided into parts and implemented and deployed part by part, which guaran-
tees a faster feedback and results. Additionally, the modularity can secure extending
possibilities. Moreover, the framework can become a base for another framework.

The framework can be usually extended to include some compile-time tools, which
will further reduce the amount of the user code. Finally, it is a common practice to use
a framework as a base for some Domain Specific Language (DSL).

The key advantage of the framework approach is the flexibility of its implementation
and usage. At the same time, the main disadvantages of the framework approach lies
in the fact that the original programming language is kept. This means that not
all instructions can be abstracted and encapsulated. Moreover, the framework using
requires some initialization and setting up steps. Being a run-time tool, a framework
can also have additional resource expenses (memory usage, execution time).

4.1.4 Decision Making

Considering the given problem (see Section 1.3) and the simulation example (see Section
1.2), the framework has been chosen as the most efficient way to proceed due to the
following reasons:

1. the programming aspects which compose the problem represent the functional
complexity of the heterogeneous programming. Consequently, the framework
aims to to encapsulate the complex functionality providing an appropriate inter-
face;

2. at the same time, the programming language commands, forms and expressions
do not compose any problem, because astrophysicists are used to use them;

3. the architecture of computational clusters is changing quite rapidly introducing
new computational accelerators, new node interconnections, new types of nodes.
Therefore, the possibilities to extend the framework are becoming very important;

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 38

4. the prospective ability to use the framework as a base for a DSL is essential, since
DSL can provide a further simplification of the development;

5. finally, the project is developed by a single person. So in order to guarantee
the appropriate velocity of the solution implementation, the modularity of the
approach is highly important.

4.2 Framework Design

We have chosen to design and implement the proposed framework as a C++ framework.
C++ combines the best options for our requirements:

• being the OS programming language for the target systems, it provides the best
performance possibilities - there are options to use direct processor commands, op-
timized SSE commands, as well as different acceleration options: multi-threading,
accelerating hardware calls;

• an additional advantage of the OS programming language lies in the possibility to
link against any other binaries, so that the existing libraries (either technology-
related or astrophysics-related) can be reused in the code scope;

• C++ is an Object-Oriented Programming (OOP) language, which allows to de-
sign the framework based on the objects paradigm, while the properties of Object-
Oriented Programming (OOP) (encapsulation, inheritance and polymorphism)
guarantee the extendability of the framework design;

• C++ namespaces provide a possibility to prevent naming collisions between dif-
ferent extensions and modules without limiting the extendability;

• the latest standards for C++ (C++11 and C++14) define the ability to integrate
functional programming paradigm into the object-oriented environment. The
functional programming enables the usage of functional data types and functional
data combinators. These features can be utilized for representing complex data
dependencies and data transforming functors.

4.2.1 Target Users

The design of the framework should be understandable for the following groups of users:

• Astrophysicists, as the main target users group. They need the understandable
abstraction - the structures and functions similar to the native mathematical and
physical mechanisms used for solving the simulation problems. At the same time,
the coverage of the heterogeneous programming aspects from the structures and
functions should be comprehensive in order to leave primarily the astrophysics-
related parts to be programmed. Still, astrophysicists are known to be familiar
with the programming languages. In particular, Fortran90 is the most used pro-
gramming language among them. Therefore, using C++ for the framework makes

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 39

it available to utilize the existing libraries and the code written in Fortran90. Ad-
ditionally, the user code should be stable to the framework growth and upgrades
including technological upgrades.

• Programmers, who will extend the framework. The main directions in which the
framework should be extendable: computational architectures and technologies
(e.g. new devices and new interfaces), scaling possibilities, data handling, algo-
rithmic enhancing. Meanwhile the main issues to deal with are the coexistence
of different extensions, flexibility in extending as many entities as possible.

• Other scientists working with particle system simulation problems. Considering
this group of users, the framework should be designed for the generic problems
of the particle system simulation, rather than to be limited to the astrophysics-
specific aspects.

4.2.2 Target Architecture

The current framework implementation is targeted to the heterogeneous clusters us-
ing Central Processing Units (CPUs), Graphics Processing Units (GPUs) and Field-
Programmable Gate Arrays (FPGAs) for the computations. The nodes is to be inter-
connected in any way supported by Message Passing Interface (MPI), e.g. Ethernet,
Infiniband. The current implementation is limited to be compiled and executed on the
machines running some Linux operating system. For the compilation and executing
the framework based applications the following additional packages are necessary:

• an appropriate GCC compiler version (greater than 4.7) and the corresponding
standard library package;

• libpci-dev;

• libconfig++-dev;

• OpenMPI or MPICH for utilizing distributed computations;

• CUDA for utilizing CUDA technology for NVIDIA GPUs;

• OpenCL for utilizing OpenCL technology for GPUs, FPGAs and CPUs.

4.2.3 Three Concepts Design

Taking into account the mentioned target architecture and the target user groups, we
have designed the framework splitting the heterogeneous programming problem into 3
concepts (see Figure 4.1):

1. The computational concept describes the principal algorithm used for calcu-
lating. In other words, the computational concept is a mathematical, physical
and astrophysical background of the problem solution and the environment nec-
essary to execute the solution of the problem on some particular device. This
concept bases on a set of efficient high-parallel multi-architectural algorithms. So

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 40

Figure 4.1: The 3-concepts design.

that each algorithm had an efficient implementation for each architecture and
device in use. All implementations for the same algorithm could work together
on different platforms.

2. The data concept describes logical and physical representation of the data used
in a solution, as well as the distribution of this data. This concept lies both in
a set of data-structures providing an efficient way of managing the data of the
astrophysical objects; and a set of functions for manipulating these structures.

3. The communication concept describes data transfers and synchronization po-
ints between computing units. The concept lies in efficient data-distribution
mechanisms, which guarantee the presence of the necessary data in the required
memory space and in the required order. This means that the communication
concept is responsible for transferring data from one memory space to another and
for transforming it according to the user-defined, architecture-defined or device-
defined rules.

Design of the computational concept is a technical problem lying in the space of a
properly implemented set of programming interfaces to access the necessary functions
on the necessary platforms.

Conversely, the design of the data concept and the communication concept can be
coupled into a special distributed database. Here and further, we understand under
the database its basic definition: a database is an organized collection of data. This
database should provide the user with an interface for managing data. Besides, it should
manipulate the data according to the requirements and properties of computational
units and algorithms. Hence, the database should fulfil the following requirements:

• operating with a set of structures efficient for representing astrophysical data:
tuples, trees (octrees, k-d trees), arrays;

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 41

• operating with the large amount of data, which does not fit in the target device
memory;

• the native support of hardware accelerators e.g. GPUs and FPGAs;

• the data should be efficiently distributed between both cluster nodes and the
calculating devices inside of each node;

• the database should be programmatically scalable: a user should be able to ex-
tend the number of features in use - architectures; devices; data-structures; data
manipulation schemes and functions; communication protocols;

• the database should store the data according to the algorithm, device and plat-
form requirements.

This means that this special database can be referred to as a Partitioned Global
Address Space (PGAS), which is already addressed in several existing solutions such
as Chapel and X10. But in our approach, we incorporate into the database not only
partitioning of the address space, but also the other properties specified above.

Hence in this work, we focus on the communication and data concepts - the design
and implementation of a distributed database. The computational concept is
designed to contain only the algorithms and functions, necessary to present the capa-
bilities of the database.

4.2.4 Design of the Database

The target data for the ACAF database is a set of states of a particle system. According
to the definition of a particle system (see Chapter 1), there is no need for our database
to store various data of various types. All parameters of a particle are some physical
properties of it. So in computer representation, the parameters are usually either
integer, float or double (integral) values. Hence in our database, these types of data are
only considered. A state of some particle system can be represented in some computer
memory space as an array of structures, where members of a structure are particle
parameters - e.g. integral data types. Therefore, the ACAF database is only targeted
to store arrays of integral data elements.

As soon as a particle system usually includes some million particles, it is common
and necessary to use computer clusters and accelerators to simulate its states. So,
the aim of the ACAF is to simplify implementing the simulation tasks targeted to
be run on heterogeneous computer clusters utilizing as much computational power as
possible. The efficient utilization of any computational device (e.g. a processing unit)
becomes possible only when all the parameters necessary for computation reside in
the cheapest memory space in terms of access latency. The efficient use of low-level
memory spaces (processor registers and near by caches of the unit) is to be achieved with
both the compiler implementation and the operating system scheduler. Meanwhile, the
programmer’s task is to ensure the presence of data in the nearest high-level memory
space (usually the device RAM). Moreover it is necessary to store data in high-level
memory spaces in the format acceptable for computational algorithms. Hence, raw

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 42

arrays are maintained in our database. This provides the direct access to the parameters
of a particle.

The ability of the ACAF database to distribute data between cluster nodes and
devices enables the scalability of the data amount. So, the amount of data to be
processed is only limited to the mutual storage capabilities of cluster nodes and devices.

Distributing data between cluster nodes and devices implies division and synchro-
nization of data according to the particular implementation of the computational con-
cept. Meanwhile, data synchronization in heterogeneous computer clusters implies
interoperability of different programming technologies used on different computational
devices. Since the ACAF database is targeted to utilize GPUs, CPUs, FPGAs and a
network, the used technologies include the following:

• OpenCL and pthreads for CPUs;

• OpenCL and CUDA for GPUs;

• OpenCL for FPGAs;

• MPI for a network.

Interoperability of the technologies mentioned above means the following function-
ality of the ACAF database: copying and/or converting of memory buffers from one
technology into another; synchronizing the memory buffer content distributed between
different technologies.

Basing on this information, we have extracted the important constructing blocks of
the ACAF database design. These blocks are described in the following subsections.
The full block diagram is shown at the end of this section in Figure 4.2.

4.2.4.1 Configuration

One of the input data a user should provide to the database is the configuration of the
heterogeneous cluster utilization. The database is to be able to discover automatically
the available and supportable hardware and technologies during the initialization phase.
But only the user can define how to utilize the hardware. In particular, the user should
specify:

• which network communication interface should be used, if any;

• which technology should be associated to one or another device;

• which amount of items should be distributed to the devices;

• some other miscellaneous device-dependent and technology-dependent parameters
necessary for the execution.

The configuration is the same for all the running instances of the project in the
cluster.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 43

4.2.4.2 Context

The configuration defines the context for the database and the framework. The context
consists of the device/technology pairs and the network interface. The device is a certain
C++ object uniquely identifying a certain hardware device on the particular machine.
The technology is an interface, which declares the necessary functions to execute the
instructions on the supported devices. Only the supported devices can be coupled with
a particular technology. The technology defines by itself the full set of the supported
devices. Finally, the network interface declares the function set to perform network
communication.

In contrast to the configuration, the context represents the actual set of devices
available in the current system, as well as the actual device/technology coupling which
is possible in the current framework version and setup.

4.2.4.3 Distribution

The context together with the configuration defines the distribution - a collection of
the device/size and network node/size pairs. So, the distribution keeps information
on the quantity of logical items to be stored on a certain device. Meanwhile, the
network node sizes are automatically calculated and broad-casted over the predefined
network interface. The correlation of the logical items count and the actual physical
memory allocation is not a part of the distribution. The user can define several different
distributions within the same configuration and use them for different aims.

4.2.4.4 Storage Objects

On the other hand, the context as well defines the storage objects - the instances of
the storage interface. The storage interface declares the functional schema of operating
with some physical memory space. Each storage object corresponds to some memory
space (physical or virtual) and some programming interface for accessing this memory
space. For example, the storage object can represent GPU memory space using OpenCL
memory access functions, the main (RAM) memory space using the C++ memory
functions or some remote network location accessible through the predefined network
interface.

This means that the storage objects work with the low-level memory interactions.
The storage objects do not know anything about the content of a particular memory
block. The objects operate with byte-sized memory buffers.

4.2.4.5 Input and Output Data Definition

Another input a user provides is the definition of the input and output data of the
algorithm. This definition describes the format of the data, the access, communication
and synchronization schema, as well as the correspondence of the logical items count
and the actual internal data items count.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 44

4.2.4.6 Content Objects

Hence, the data description defines the content objects - the logic how to work with
memory. In particular, a content object determines the following properties of the data:

• the type of the whole data collection;

• the types of the elements;

• the arrangement of the elements in the collection;

• the policy for reading the elements from a memory block;

• the policy for writing the elements;

• the possible directions and mechanisms of transferring the data;

• the correlation between the logical sizes defined by the distribution and the actual
physical sizes of data.

4.2.4.7 Buffers

Finally, the content objects, the storage objects and a distribution define altogether
the memory buffers. A memory buffer represents a range in certain memory space
allocated by the storage object with the data arranged according to the content object.
The size of the data is determined by the distribution with regard to the content factor.
A memory buffer object contains only the reference to the memory region, the size of
this region and the storage object, which manages this region.

4.2.5 Design of Framework

In order to implement and test the abilities of the proposed database design, it is
necessary to develop the computational concept of the heterogeneous programming
problem described in Section 4.2.3. The computational concept is the mathematical
representation of an astrophysical simulation. This means that this concept can be
described with an algorithm which evolves the state of the particle system and is able
to operate on the data stored in the memory buffers of the database (see Subsection
4.2.4.7).

The mathematical background of an astrophysical simulation is a part of any as-
trophysical research, because this part represents the mathematical approximation of
physical laws. The physical laws are a subject of the research:

• which laws are involved;

• which influence has a certain law, which of them are important and which of them
can be ignored;

• how the laws work together;

• how a particular law should be approximated in order to be precise enough.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 45

Figure 4.2: Diagram of the ACAF database design.

This means that the computational concept alone requires good programming skills
from astrophysicists, because the precision of the simulation depends on the particular
implementation of the mathematical algorithm. At the same time, the main difficulty
in implementing the mathematical algorithm for a heterogeneous cluster lies in the
necessity to implement the same algorithm several times for different technologies,
which use different technology-dependent programming languages.

Consequently, it becomes reasonable to have some technology-independent pro-
gramming language, which can be used for implementing the mathematical algorithm
and can be afterward translated into the technology-dependent binaries. But as it was
already mentioned in Section 4.2.3, in this work we concentrate on the database im-
plementation. Therefore, the proposed language is left for the future work. Still in
this section, we provide the architectural design of the whole framework, including the
computational concept.

The design of the framework is schematically presented in Figure 4.3 together with
the elements of the database design (see Section 4.2.4). Such design includes all the
elements necessary to run an astrophysical simulation on a heterogeneous cluster.

4.2.5.1 Algorithm

Hence, for performing a simulation, the computational algorithm should be also pro-
vided by the user. The algorithm represents the mathematical approximations of the
physical laws, which are aimed to evolve the state of the particle system.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 46

4.2.5.2 Implementations

The computational algorithm together with the context object (see Subsection 4.2.4.2)
defines a set of the technology-dependent and device-targeted implementations. Each
implementation of this set represents a particular set of instructions, which can be
executed on the target device. This means that each implementation is bound to the
technology used in the current context for the device.

Figure 4.3: Diagram of the ACAF framework design.

4.3 Design of the Framework Implementation

In order to guarantee the correctness of the framework implementation and foresee the
possible problems, we have firstly translated the proposed component-based framework
design (see Figure 4.3) into the implementation design using the Unified Modeling
Language (UML) diagram. The detailed description of the classes including some
implementation details is provided in Section 4.4. This section gives the overview
of the key mechanisms and techniques used in the implementation described in the
following subsections.

4.3.1 Device Detection Mechanism

As described in Subsection 4.2.4.1 the first input data the framework expects from
the user is the configuration. It provides the information how to utilize the hardware

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 47

presented in the cluster. But such a hardware-related specification can be quite complex
due to the large variety of components presented in the cluster and different possibilities
to use these components.

Therefore, in order to simplify and minimize the data necessary for the framework
from a user, it was decided to implement the device detection mechanism. The idea
of this mechanisms lies in detecting the available computational devices on each node
and finding out which technologies can be used for programming these devices. Finally,
the detection mechanism is to foresee some extending possibility for future devices and
technologies.

Taking all these requirements into account, the mechanism is divided into 2 logical
parts - a collection of independent Architecture subclasses and a collection of indepen-
dent Technology subclasses. Each Architecture subclass and each Technology subclass
has a descriptive unique string identifier available for the user (this identifier is not the
C++ subclass name).

Each Architecture subclass represents a device type (CPU, GPU, FPGA and other)
and provides an ability to enumerate all the devices in the current system of this
type. The particular enumeration technique depends on the implementation of the
subclass and the type of the device. In the current framework, there are 2 subclasses
implemented:

• CPUArchitecture enumerates CPUs in the system. Since the current imple-
mentation targets Linux-based clusters, the CPUArchitecture class relies on the
information provided in /proc/cpuinfo file. The class parses the file on the ini-
tialization step and instantiates the Device objects.

• GPUArchitecture enumerates CPUs in the system. This class scans the whole
Peripheral Component Interconnect (PCI) bus of the system in order to find the
devices of the Video Graphics Array (VGA) type, which are in fact the GPUs.
For each of these devices a Device object is instantiated.

Each Technology subclass represents a programming interface to interact with the
devices. So, the framework requires that each subclass marks the devices supported by
this interface. The marking process can be done in one of the following ways:

• The subclass checks the devices enumerated on the previous step by Architecture
subclasses and for each device makes some tests in order to clarify the compati-
bility.

• The subclass scans the system for the available devices supported by this tech-
nology. (Usually, the interfaces provide the functions, which directly list the de-
vices.) Afterwards the subclass matches the devices enumerated by Architecture
subclasses and the devices listed by the technology.

The described device detection mechanism is a part of the framework initializa-
tion. This means that when the framework is successfully initialized, it has a list of
device objects, where each object corresponds to a certain Architecture subclass and is
supported by some Technology subclasses (none is also possible).

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 48

4.3.2 Configuration File

Having the device detection mechanism is not enough to make the correct decision how
to utilize the devices of the cluster. Notwithstanding the fact that some heuristic-based
decision is still possible, the user should be able to influence the utilization schema.
Therefore, it is necessary to have a configuration file to specify the following parameters:

1. which of the supported technologies should be selected for the context for each
device available in the system;

2. the fallback behavior in case of the unsuccessful association between devices and
technologies;

3. the desired network interface, if any;

4. one or several distributions, where each distribution describes a partitioning of
the logical units between the devices and the nodes of the cluster.

Taking into account the device information available after the framework initializa-
tion, it becomes possible to specify the device-technology association in the text form
using the technology names, the architecture names and the full device names.

In order to simplify the usage and the implementation of the configuration file
specification it was decided to use the libconfig[5] format for the file. The file has the
following structure:

• there are 3 top-level sections: “context”, “network” and “distribution”;

• the section “network” is optional and specifies the network interface to be used,
for example “MPI”;

• the section “context” is mandatory and includes device-technology associations
(in the order of the processing priority):

1. the technology name or the keyword “none” and an array of the full device
names (as it was acquired by the Architecture subclass);

2. the architecture name and the technology name or the keyword “none”;

3. the optional parameter “skip”, which indicates if the unsuccessfully associ-
ated devices are to be skipped;

• the section “distribution” is mandatory and contains one or several named sub-
sections;

• each named distribution subsection consists of device-specific blocks defining a
certain partitioning of logical units:

1. the full device name or the architecture name;

2. the logical size and the block size vectors.

An example configuration file is demonstrated in Listing 5.1.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 49

4.3.3 Context, Database and Distribution Initialization

Using the automatically listed devices set and the user-provided configuration file, the
context object can be initialized. The context initialization is based on parsing the
configuration file and traversing the device list, which was previously generated by
the device detection mechanism. The result of the context initialization is a device-
technology map. Only the devices listed in the map will be used later for the calculation.
Another part of the context initialization is configuring the network interface according
to the specification in the configuration file.

Using the initialized context, the database object can be initialized. The database
initialization lies in the instantiation of the storage objects, responsible for device- and
network-targeted transactions. The device-targeted storage objects are instantiated by
the associated technology. The network-targeted storage objects are instantiated by
the network interface. Each storage object is an instance of some Storage subclass
(for different targets there are also other intermediate interfaces in the class hierarchy
such as DeviceStorage, LocalStorage, NetworkStorage). Each storage object is fully
responsible for providing the communication schema with its target. The result of the
database initialization is a set of storage objects.

Finally, the initialized context and database make it possible to instantiate the
distribution objects. A distribution object describes a certain partitioning of an astro-
physical simulation problem between the different computational devices of the cluster.
The partitioning is based on logical units. The distribution objects are composed using
the initialized context and the user-provided configuration file. The initialized context
lists the devices which will be used for the computation, while a particular subsection of
the distribution section in the configuration file specifies the association of the devices
to some size vector measured in the logical units. The logical units in the distribution
object can represent either the actual particles count or some relative count, which can
be converted to the particles count in the user-code using some factor.

The distribution initialization is divided into 2 steps:

1. at the first step, each network node initializes its local distribution for its own
devices;

2. at the second step, the network nodes synchronize the sizes in order to gather the
full distribution information.

4.3.4 Content Objects and Buffers Instantiation

As described in Subsection 4.2.4.5, the user also provides the information about the
input and output data of the algorithm. This information is provided by instantiating
the objects of some Content subclass. Each Content subclass provides a certain typical
logical access schema. This schema includes the following characteristics:

• the data container type - for example one-dimensional array, multi-dimensional
array, octree;

• the unit type - some scalar values (such as mass, temperature), some vector values
(position, velocity, acceleration) or something else;

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 50

• the ownership of the data in the multi-storage context - which copy has the correct
values for a certain range in case of the data being duplicated in several memory
spaces;

• the synchronization mechanism in the multi-storage context - how the data should
be transferred in case of the data being duplicated and kept up-to-date.

Another part of the content object instantiation is the memory allocation for storing
the parts of data. Therefore, each content instantiation includes the units distribution
object as a parameter. The units distribution object is generated from the regular dis-
tribution object using some factor. Having the units distribution, the content object is
able to request the database to allocate the necessary amount of memory in the storage
associated with the device. The result of this allocation is returned as an instance of a
certain Buffer subclass. This instance includes internally the buffer physical size, the
pointer to the managing storage object, the address of the actual buffer (an address
form depends on the buffer type) and other storage-specific parameters.

4.3.5 The Computational Concept

As described in Section 4.2.5, the computational concept represents the mathematical
algorithm of the particle system evaluation based on physical laws of the particles
interaction. In the framework context, this mathematical algorithm is represented as a
collection of Kernel class instances. Each instance is parametrized with a collection of
technology-targeted implementations and execution parameters.

The technology-targeted implementations are created using the device-technology
association available in the context and the technology-specific programming code.
For the current implementation of the framework, the user should provide all the
technology-specific programming code snippets for the technologies in use. The code
will be compiled and prepared for each device associated with the technology, the re-
sulting executable binary is represented by an object of some Implementation subclass.
This object encapsulates all the parameters necessary to run the code on a certain de-
vice. All the device-targeted instances of Implementation subclasses for the particular
mathematical computation are incorporated and managed by a single Kernel object.

The execution parameters can be either scalar values or content objects. The scalar
values are byte-copied to the target device memory space. For each specified content
object, the buffer allocated in the device memory is used.

4.3.6 Simulation Execution Principles

Taking all the described mechanisms into account, the user should perform the following
steps for executing a simulation using the framework:

1. provide a configuration file using libconfig[5] syntax (see Section 4.3.2 for details
and Section 5.1 for an example);

2. define which content objects are necessary for non-scalar distributed algorithm
parameters (see Section 4.3.4 for details and Section 5.4 for an example);

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 51

3. write technology-specific execution code for all the technologies in use and bind
them into the kernel objects (see Section 4.3.5 for details and Sections 5.2, 5.3,
5.4 for an example);

4. write the main execution logic using content objects and kernel objects in C++
language which usually consists of the following parts:

• environment initialization;

• objects construction;

• data initialization;

• time-evolving loop, which performs the kernel executions and content syn-
chronizations.

An example of the main execution logic can be found in Section 5.4.

The last step usually consists of a time evolving loop. For each iteration of this loop,
some kernels are executed and some content objects are synchronized. Alternatively,
some output data can be generated. But since the loop is written in C++ language it
can include as many different instructions as necessary.

4.3.7 Considered Limitations

The proposed design considers the following limitations in the functionality and uti-
lization of the framework:

• The design targets exclusively the data-parallel problems. Therefore, the imple-
mented framework cannot be directly utilized for the task-parallel problems. This
limitation is grounded from the properties of the astrophysical simulation prob-
lems described in Chapter 1. Moreover, the heterogeneous cluster computing is
usually effective only for the data-parallel problems.

• The design and implementation of the framework targets x86-64 systems run-
ning a Linux Operating System. This limitation is formed by the statistics of
TOP500 supercomputers, which shows that as of November 2015 90.6% of the
supercomputers are x86-64 machines and 98.8% of the supercomputers run a
Linux Operating System [6].

• The design of the framework maintains the separation of the computational re-
sources by their type (Architecture subclasses) and the utilization schema (Tech-
nology subclasses). This separation forces a user to consider the specifics of the
devices and to write the separate code for different devices in the current im-
plementation. On the other hand, this limitation enables a user to finely-tune
the computation code for each device according to the utilization schema and
enhances the extendability of the framework in terms of the supported device
types and utilization schemes.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 52

4.4 Classes Description

This section provides the detailed description of all the key C++ classes implemented
for the framework. For the interface classes, the implementation hierarchy is also
described. All the implemented classes are organized in the C++ namespace acaf and
the nested namespaces of acaf, where the nesting is reasonable for avoiding the name
collisions. At any namespace level, a nested namespace with name internal is also used
to express the implementation details, which are not supposed for the user code. The
overview of the key classes and the dependencies between them is shown in Figure 4.4.

4.4.1 Basic Utility Classes

This subsection describes the set of the helper classes implemented to simplify and/or
enhance the implementation of the classes hierarchy.

4.4.1.1 Handle and Class

The Handle class is an enhanced template smart-pointer. Most of the implemented
classes inherit the Class class directly or indirectly. The most important part of the
Class class is the protected reference counter, which is available for the Handle class
and all the subclasses of the Class class. This reference counter together with the
Handle class guarantees the robust smart-pointer implementation, which can be safely
casted to a naked pointer and back to a smart-pointer without loosing the reference
counting.

The template-based implementation of the smart-pointer also allows to use type-
safe implicit conversions between the handles of different types, which lead to a safer
“casts free” user code. Finally, the variadic template function make handle voids the
necessity to use naked memory allocations for the framework entities (e.g. new and
delete).

4.4.1.2 Logger

The Logger class is a utility class in the current implementation of the framework,
which has a set of static functions for logging some runtime information using a certain
central place. The class provides an ability to log the information of different levels:
errors, warnings, information, debug.

4.4.1.3 variant

The variant class is a helper class, which can hold an object of any type without
being a template class. An object of the variant class can be easily forwarded to any
functions as an argument and cloned as necessary. The variant class helps to avoid the
template-based implementations of the type-dependent classes and functions, where
the framework structures deal as a proxy between the sender user function and the
receiver user function maintaining the type and memory safety. This means that if
the actual type of some parameters and arguments does not matter to the internal
framework functionality, but is to be safely forwarded to some callback user functions,

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 53

F
ig

u
re

4.
4:

T
h

e
ov

er
v
ie

w
U

M
L

d
ia

gr
am

of
ke

y
cl

as
se

s
of

A
C

A
F

.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 54

the variant class becomes essential. The class idea and implementation are inspired by
the boost::any class.

4.4.1.4 vector t

The vector t class is a template class, which aims to encapsulate vector arithmetic
operations and provide an ability to work with constant-length vector variables as with
scalar variables. Internally, the class stores the data in the linear piece of memory. The
size of the memory piece is equal to the length of the vector multiplied by the size of
each item. The number of items in the vector should be a power of 2 and not greater
than 32. The class contains the implementation of the following operations:

• for the arithmetic operations with other vector variables and scalar variables;

• conversion between different vector template specializations;

• operators to access the individual items;

• more complex vector-specific functions such as calculating the eucleadean length,
the volume of the vector, the dot of 2 vectors, the cross of 2 vectors.

4.4.1.5 ErrorCode

The ErrorCode class is a service class, which provides an ability to track and handle
the error codes in the application. The class itself represents a wrapper for an integer
variable, which is the actual error code. The meaningful description of the error code
is stored internally in the helper StoredErrorCode class. The instance of this class is
unique for each integer error code and each string error name. The framework user
and the framework developer can instantiate the ErrorCode class objects using either
an integer code or the error name. The latter option either will result in the existing
integer code or a new negative integer code will be registered and associated with the
provided error name. There are 2 reserved pre-instantiated error codes:

• the error name Success is associated with the error code 0;

• the error name Unknown is associated with the error code -1.

Another possibility to define some error code is provided by two preprocessor macros:
ACAF DECLARE ERROR and ACAF DEFINE ERROR.

4.4.1.6 Option

The Option class is a service class, which is used to manage the available command
line options. The class declares the semantics of a command line option, using the
static storage structures to organize the options. The framework predefines several
command line options. Each part of the framework and the user code can define
additional options. The definition of the custom command line options can be done
using the declared C++ macros or calling manually Options::addOption function with
the appropriate arguments. The sole requirement to the usage of the macros and the

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 55

function is that all options should be added to the framework before the ACAF::init
call. The macros are designed to add the options in the static manner.

4.4.2 ACAF

The ACAF class is an entry point to the whole framework functionality. The class has
the following public methods:

• init - completely initializes the framework: parses the command-line arguments,
parses the configuration file, scans the system for available devices, initializes the
basic entities: context, database;

• cleanup - destroys all resources allocated by the framework since the initialization;

• conf - returns the parsed configuration tree as a pointer to the root ACAF::config
object.

Parsing of the command line arguments is based on the statically assembled col-
lection of possible options (a helper class Option is used for it). The parsing of the
configuration file is done firstly by libconfig[5] library, which checks the syntax of the
input file and constructs the corresponding object-based tree. Afterwards, ACAF class
converts the constructed object-based tree into the ACAF::config objects.

ACAF::config class represents a node of the configuration file and has methods to
list the children nodes, select a particular child node by name and retrieve the value of
the node.

4.4.3 Device

The Device class is one of the central classes in the framework implementation. An
instance of this class represents a device in the current system. The class has the
following private member fields:

• the vendor name as a string field and the vendor identifier as a variant archite-
cture-dependent field;

• the device name as a string field and the device identifier as a variant architecture-
dependent field;

• the pointer to the instance of the Architecture subclass, which has created this
device object;

• the map of supported technologies and technology-specific identifiers of the device;

• the set of some architecture-defined, technology-defined or custom device prop-
erties.

Functionally, the Device class is simple and does not perform any tasks. All mod-
ification operations of the device are not public and can be called only by the friend
classes. A single exception is adding of custom properties.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 56

4.4.4 Architecture

The Architecture class is a common interface for all different computational device
architectures. Under the device architecture we understand the design architecture
of the device processing unit, which can be used for the computational purposes (e.g.
CPU, GPU, FPGA). The interface declares the common member functions and member
fields for all the architecture subclasses. The main function of any Architecture subclass
lies in enumerating the devices of some specific type. The framework relies on the
unambiguous correspondence of the devices and the supported architectures: there is
no such device which can belong to more than one architecture.

Additionally, the Architecture class defines the static mechanism guarantying that
each subclass is instantiated only once in the scope of one running process. This
mechanism is based on the statical singleton instantiation of the Architecture subclasses
during the framework library loading. All instances are stored in the static name-object
map. Only the instances in the map will be taken into account by the framework.

To support some other computational architectures as the predefined ones, the user
should implement another subclass of the Architecture class. The new subclass should
provide the framework with the actual implementations of 2 pure virtual methods of
the interface:

• getName - returns the name of the architecture;

• rescan - rescans the entire system in order to detect all available devices of the
current architecture type; and stores the appropriate Device instances in the
member variable.

The current framework implementation includes 2 subclasses of the Architecture
class: CPUArchitecture and GPUArchitecture (see Figure 4.5).

Figure 4.5: The UML diagram of Architecture subclasses.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 57

4.4.4.1 CPUArchitecture

CPUArchitecture subclass is implemented to list CPUs available in the system. The
subclass logic is based on the Linux-like representation of CPUs enumerating, particu-
larly the subclass parses /proc/cpuinfo file, which is a standard Linux kernel interface
to represent the CPU information. During the parsing of the file, the CPUArchitecture
subclass collects information relevant to the calculation:

• the number of processors;

• the number of cores for each processor;

• the physical location of each processor;

• the vendor identifier of each processor;

• the model name of each processor.

The CPUArchitecture subclass creates the Device instances for each physical pro-
cessor independent of the number of cores it has. The architecture-dependent device
identifier is the physical slot number of the processor.

4.4.4.2 GPUArchitecture

GPUArchitecture subclass is implemented to list GPUs available in the system. The
subclass logic is designed for PCI-connected devices, since the subclass scans the PCI
bus of the system and lists all the devices of the VGA type and creates for each of them
a Device instance. The new instance stores the following properties of the found PCI
device:

• the PCI-based vendor name and vendor identifier;

• the PCI-based device name;

• the PCI bus address of the device - the quad of domain, bus, device and function
variables, which is also the architecture-dependent device identifier.

4.4.5 Technology

The Technology class is a common interface for all computational technologies. The
interface declares the common member functions and member fields for all the com-
putational technology subclasses. Any Technology subclass implements the following
interface functions:

• getName - returns the name of the technology;

• rescan - scans the entire system to identify the devices supported by the technol-
ogy and matches the devices which were previously listed by some Architecture
subclass. The matched instances are marked as supported with the technology.
The particular matching mechanism depends on the technology type and the
implementation: some technology can enumerate the devices directly, the other
check the devices listed by the architectures to fulfil some criteria;

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 58

• getStorage - for each supported device the subclass should provide an instance of
some Storage subclass, which is able to manage the device memory space;

• implement - for each supported device the subclass should provide an instance
of some Technology::Implementation subclass, which is able to execute some pro-
gramming code or some binary on the device. Usually, each Technology subclass
provides also an implementation of the appropriate Technology::Implementation
subclass.

The Technology class guarantees the singleton instantiation of the subclasses during
the framework loading in the same way as the Architecture class.

Extending of the supported computational technologies can be done by implement-
ing another subclass of the Technology class. The new subclass should provide the
framework with the actual implementations of the 4 pure virtual methods mentioned
above.

The current framework implementation includes 3 subclasses of the Technology
class: PthreadTechnology, OpenCLTechnology and CUDATechnology (see Figure 4.6).

4.4.5.1 PthreadTechnology

PthreadTechnology subclass is implemented to execute the computational code on CPUs
in multiple threads using pthreads library. In addition to pthreads library, the subclass
uses hwloc library in order to bind the threads to CPU cores, where it is possible. This
technology is supported by any device instantiated with CPUArchitecture subclass.
This means that the rescan method lists all the CPUArchitecture devices. The RAM-
Storage class is used for the devices within this technology. The implement method
results in the instance of the inner class PthreadTechnology::Implementation.

For running some computations on the devices, the class creates for each CPU core
a single thread, which runs an idle function waiting continuously for a kernel. The
technology uses semaphore, mutex and condition synchronization models in order to
ensure that the threads remain idle and do not consume any CPU time until a new
kernel is queued.

PthreadTechnology::Implementation subclass represents a collection of jobs to
be executed within the threads created by the technology for a particular device. This
representation includes the following parameters:

• the pointer to the actual computational function, which is also the sole argument
in the variadic list for the implement method of the PthreadTechnology subclass.

• the number of tasks to be executed within the kernel: how many times the actual
computational function should be called for different data in order to consider
the computation completed.

• the execution statuses for each task: the return value of the actual computational
function has the acaf::status type and it can be evaluated to some error code.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 59

F
ig

u
re

4.
6:

T
h

e
U

M
L

d
ia

gr
am

of
th

e
T

ec
h

n
ol

og
y

su
b

cl
as

se
s.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 60

4.4.5.2 OpenCLTechnology

OpenCLTechnology subclass is implemented to execute the computational code on any
supported device using OpenCL library. The supported devices are identified in rescan
method by querying OpenCL library for all the devices available in the system; and
matching these devices with the devices enumerated previously by the Architecture
subclasses. In particular, the current implementation of the framework includes the
logic to match the following devices:

• the devices of the CL DEVICE TYPE CPU type are supposed to be listed by
the CPUArchitecture subclass. Therefore, the technology searches by the device
name and the vendor name among the devices of this architecture;

• the devices of the CL DEVICE TYPE GPU type are supposed to be listed by
the GPUArchitecture subclass. Therefore the technology tries firstly to query
OpenCL for the PCI bus address and match it to the known GPUArchitecture
devices (using the OpenCL extensions of AMD and NVIDIA GPUs). If matching
PCI bus ID appeared impossible or unsuccessful, then matching by the vendor
name and the device name is used;

• the devices of the CL DEVICE TYPE OTHER type are currently ignored by the
technology, but generally can be also matched to some listed devices using the
same mechanisms as for the previous types.

For running some OpenCL code on the devices, an instance of the inner class Open-
CLTechnology::Implementation is instantiated. The data management and transferring
is implemented in the OpenCLStorage class.

OpenCLTechnology::Implementation subclass represents a wrapper for the
OpenCL kernel structure. This subclass can be used for executing some code on
OpenCL-enabled devices. This subclass is instantiated by the implement method of the
OpenCLTechnology subclass. The instantiation is possible using either a string variable
with the program written in the OpenCL C language or a file name containing such
a program. OpenCLTechnology subclass compiles the program code into an OpenCL
kernel object. The latter together with the target device comprises the parameters
of the OpenCLTechnology::Implementation subclass. Another possible argument is the
compilation options for the OpenCL implementation.

4.4.5.3 CUDATechnology

CUDATechnology subclass is implemented to execute the computational code on any
CUDA-designed device. The technology uses CUDA Driver API in order to match
devices, control the data flow and the execution of the binary code on devices. The
usage of CUDA Driver API allows to make the framework more independent:

• a program based on CUDA Driver API requires only the CUDA library delivered
together with the graphics device driver on the target system;

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 61

• the CUDA Driver API can utilize the binary Parallel Thread Execution (PTX)
modules to execute some functions on GPU;

• the CUDA Driver API supports for multiple GPUs is based on context CUDA
objects; this simplifies the management of the devices at the framework level.

Matching CUDA-enabled devices to the devices enumerated previously by the Architec-
ture subclasses relies on the fact that the current CUDA-enabled devices are connected
over the PCI interface. This means that any device can be identified by its PCI bus
address. This address is used in order to find the matching framework devices. The
implement method creates an instance of the inner CUDATechnology::Implementation
class. The data communication mechanisms are provided by the CUDAStorage class.

CUDATechnology::Implementation subclass represents a wrapper for the CUDA
binary function, which can be used for executing some code on CUDA-enabled devices.
This subclass is instantiated in the implement method of the CUDATechnology sub-
class. The instantiation is possible using either a string variable with the PTX binary
code or a file name containing such a cubin, PTX or fatbin binary code, which are the
possible arguments in the variadic list. To produce PTX, cubin, fatbin binary codes the
user should compile the original CUDA C program using the nvcc compiler, which is
a part of the CUDA Software Development Kit (SDK) package. Still, Parallel Thread
Execution (PTX) is a pseudo-assembly language and therefore it can also be used to
write a CUDA-targeted code manually. Using the provided PTX binary code and a
function name, the CUDATechnology subclass creates a CUfunction object.

4.4.6 Network

The Network class is a common interface for different network interfaces. The interface
declares the common member functions and member fields for all the network sub-
classes. The main function of any Network subclass lies in defining the communication
between the different nodes of the network. The Network object is a singleton for each
running instance of the program. This means that only one instance of a particular
Network subclass can exist in the scope of a single running process.

To support some other network interfaces as the predefined ones, the user should
implement another subclass of the Network class. The new subclass should provide
the framework with the actual implementations of the 10 pure virtual methods of the
interface:

• getNodesCount -returns the total number of the nodes in the network;

• getMyNodeIdx - returns the current node identifier;

• allgather - gathers the whole buffer from all the nodes;

• alltoall - gathers the whole buffer from all the nodes and redistributes it again
between all the nodes;

• send bcast - sends a broadcasting message to all the nodes in the same network/-
subnetwork as the current node;

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 62

• recv bcast - receives a broadcasting message from the node;

• send - sends the content of some buffer to the remote buffer;

• recv - receives the content of the remote buffer in some local buffer;

• init - initializes the instance of the class;

• instantiate - for each node in the network creates an instance of some Network-
Storage subclass and adds it to the database.

The current framework implementation includes 1 subclass of the Network class:
MPINetwork.

4.4.6.1 MPINetwork

MPINetwork subclass provides an implementation of the Network class using the Mes-
sage Passing Interface (MPI) library. The MPI library is widely used in the heteroge-
neous applications and can fully reflect the whole set of the Network interface func-
tions. The current implementation of MPINetwork subclass works only with the global
MPI COMM WORLD communicator and does not support grouping of the nodes. The
implementation of the instantiate function creates for each node in the global commu-
nicator an instance of the MPIStorage class.

4.4.7 Context

The Context class represents a map of device-technology pairs. Each pair describes the
utilization schema of the device presented in the system. The context is a singleton
object for each running instance of the program. The context is initialized using the
global ACAF::config based configuration. The Context class also hosts an instance
of the Database class. When the initialization of the context is finished, the member
database will be also initialized.

4.4.8 Storage

The Storage class is the interface for all the framework entities which represent the
engines for writing and reading the data to/from some memory space. All actual storage
entities should inherit this class directly or indirectly in order to be correctly processed
by the other framework entities. The interface class contains the declarations of the
basic functions and also the trivial implementations for some of them. The interface
class holds a collection of all owned memory buffers as a map of buffer-content pairs. All
created buffers represent some pieces of memory with no connection to the particular
format of the stored data (Content class). The most important methods of the class
include:

• init - initializes the current instance of the class. The basic implementation adds
the current instance to the database set of storage objects. All subclasses should
call the parent init function in order to make sure that all the parts of the class
are correctly initialized.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 63

• create - creates a new buffer object for the specified content object and the nec-
essary physical buffer size. Every Storage subclass creates an instance of some
particular buffer class, which fits the aims and the functionality of the class.

• find - for the specified content finds the buffers owned by this storage object.

• isSame - checks if the current instance represents the same memory space as the
instance passed over the arguments.

Usually, the actual storage objects do not inherit the Storage class directly, but
inherit special subclasses, designed to simplify the implementation. Still, the user is
able to extend the framework according to the research needs and implement the new
storage types inheriting either the Storage class itself or some of its subclasses.

Storage::Buffer is an inner class of the Storage class. It declares the main interface
for the buffer objects. A buffer object is a wrapper for some region in some mem-
ory space. The Storage::Buffer class declares the general functions for all the buffer
subclasses. it is supposed that the actual memory space wrapped with the particular
buffer object is used only by the “parent” storage class and its subclasses. Therefore,
the Storage::Buffer class does not declare any memory access functions. The interface
has one pure virtual function - isSame, which checks if the current buffer object wraps
the same memory region as the object passed over the arguments.

4.4.8.1 LocalStorage and NetworkStorage

The first level in the hierarchy of the different Storage subclasses represents the classi-
fication of the storage objects according to the memory space location in the system:

• the LocalStorage class represents an interface for any memory space, which is
physically located within the current network node. The interface includes the
functions for the basic data manipulation: read, write, fill, map, unmap.

• the NetworkStorage class represents an interface for the remote-located memory
space. The policy of the framework declares that each network node corresponds
to an instance of some NetworkStorage subclass. The basic data manipulation
for the remotely located memory space is not effective. Therefore the interface
does not provide any functions similar to the LocalStorage class. The data ma-
nipulation in this case should be managed over the Network class.

4.4.8.2 DeviceStorage

The DeviceStorage class is a subclass of the LocalStorage class and represents some
memory space located on a particular device (usually an accelerator) attached directly
to the current node. In addition to the functions and variables inherited from the
superclasses, the DeviceStorage class stores a pointer to the target Device instance
and checks its validity when necessary. Also, the class contains an inner class De-
viceStorage::Buffer, which does not provide additional functionality, but addresses the
classification of buffers at the type level.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 64

4.4.8.3 OpenCLStorage

The OpenCLStorage class is a subclass of the DeviceStorage class and represents the
memory space used for some OpenCL device. In the initialization function of the stor-
age class, the device is checked to support OpenCL technology and the OpenCL device
identifier is acquired. The storage class creates a separate OpenCL command queue
for data transferring. The class also provides its own buffer inner class OpenCLStor-
age::Buffer, which wraps an object of cl mem type. The storage class uses OpenCL
functions to create the buffer and transfer the data to/from the device buffers.

4.4.8.4 CUDAStorage

The CUDAStorage class is a subclass of the DeviceStorage class and represents the
memory space used for some CUDA device. In the initialization function of the storage
class, the device is checked to support CUDA technology and the CUDA device identi-
fier is acquired. The storage class creates a separate CUDA processing stream for data
transferring. The class also provides its own buffer inner class CUDAStorage::Buffer,
which wraps an object of CUdeviceptr type. The storage class uses CUDA Driver API
functions to create the buffer and transfer the data to/from the device buffers.

4.4.8.5 RAMStorage

The RAMStorage class is a subclass of the LocalStorage class and represents the RAM
memory space of the current node. The RAMStorage object is a singleton for each
Database object. This means that there is one and only one object of the RAMStor-
age type in the storage collection of each Database object. The class uses the raw
memory access functions for data operations and malloc, free functions for allocating
and freeing the memory buffers. The class also provides its own buffer inner class
RAMStorage::Buffer, which wraps a raw memory pointer (void *).

4.4.8.6 MPIStorage

The MPIStorage class is a subclass of the NetworkStorage class and represents the
remote memory accessed with MPI functions. As it was mentioned in Subsection
4.4.8.1, the MPIStorage class does not provide any functions to transfer the data, but
enables the mirroring of the remote buffers in the local database. So, the class has
the functions to create a buffer object and an implementation of the buffer inner class
MPIStorage::Buffer, which wraps a remote memory buffer identified by the MPI tag.
The MPI tag of the buffer is used by the MPINetwork class in order to mark the
messages between the nodes, which facilitates the correctness of the network transfers.
The MPI tags are assigned per content and the framework relies on the same content
instantiation order of all the content objects.

4.4.8.7 NodeStorage

The NodeStorage class is a special class used to acquire temporary memory buffers for
synchronization purposes (it extends the Storage class directly). The class operates also

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 65

with the main RAM memory space, as well as the RAMStorage class. But in contrast
to the RAMStorage class, the NodeStorage class does not provide an ability to create
a usual buffer. It only creates a temporary buffer, which is a raw access buffer and can
be used for data operations.

4.4.9 Distribution

The Distribution class addresses the problem of defining the data separation between
the network nodes and between the devices inside of each node. For these purposes
an instance of the class stores 2 data maps: the device-partition pairs map and the
network node-partition pairs map. An instance of the Distribution class can be created
using some named distribution section of the configuration file and a Context object.
The Context object defines the devices and the network nodes which should be included
in the distribution maps. At the same time, the named section of the configuration file
defines the partition sizes for each element of the maps.

The distribution section in the configuration file consists of blocks. Each block refers
either to some particular device by its name or to all the devices of some architecture.
The blocks referring to the devices by name have a higher priority. The Distribution
class checks each block of the section and scans the context for the mentioned devices.
For each found device, the class assigns the partition size in the map. In the current
implementation of the framework only the pure numbers are allowed as the partition
sizes. Still, the simple math operations relative to the device properties (such as the
number of compute units, preferred work group size) will simplify the format of the
configuration file.

When the device map is complete, the distribution class calculates the total partition
size of the current node and synchronizes the partition sizes between all the nodes in
the network filling out the corresponding map. To traverse the defined distribution,
the class provides the iterator implementation and search function.

In addition to the devices partitioning map and the network partitioning map,
the Distribution class contains a device-block sizes map, which is also initialized with
the named distribution section of the configuration file and addresses the processing
granularity. The usage of the block size parameter depends on the selected technology
(for example, it defines the work group size for OpenCL and the items count per job
for pthreads).

The Distribution class has the sizes to be defined in some abstract common units
(usually, particles count). At the same time, the content object creation function needs
a distribution of its items, which does not often respect one-to-one correspondence to
the abstract units (1 content item does not always correspond to 1 particle). Therefore,
the framework defines another interface class UnitsDistribution, which should be used
for the content object creation. The Distribution class provides a function units, which
simplifies the conversion of the Distribution instance into the UnitsDistribution instance
for the usual case of the factor correspondence between the content items count and the
distribution units (for example, 1 particle corresponds to a constant number of items).

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 66

4.4.10 Content

The Content class is a base interface for all the classes which represent the data layout
for some physical memory block. Each final implementation of the Content interface
stores the full set of the buffers. This corresponds to the whole data range processed
in the application. The interface declares some common functions for all the content
objects:

• fill - fills the whole data range with some constant value;

• random - fills the whole data range with some random values;

• synchronize - synchronizes the content of the buffers in the current node with the
other network nodes;

• isSame - checks if the current content object represents the same data as the one
passed over the function arguments.

Each Content object is bound to some Context instance, since it defines which de-
vices and network nodes are taken into account. it is supposed that Content objects
should only be instantiated by some Database instance. But the user is able to im-
plement any other classes which correspond to the Content class concept extending
the possibilities of the framework. The current framework implementation provides 2
contents: a local array and a synced array.

4.4.10.1 LocalArray

The LocalArray class is a subclass of the Content class and represents a linear items
layout in memory. The items are distributed over the network nodes and the devices,
but without any synchronization schema. This means that the data is partitioned ac-
cording to the supplied UnitsDistribution instance. But each part exists independently
to the other parts. Still, the object stores the full distribution map of storage-partition
pairs.

4.4.10.2 SyncedArray

The SyncedArray class is a subclass of the LocalArray class and represents a linear items
layout in memory. The items are distributed over the network nodes and the devices
with the full range available in each part of the system and synchronization possibility.
This means that the data is partitioned according to the supplied UnitsDistribution
instance. But each buffer keeps the full range of the array stored. So any computational
device can access the items values stored in the other buffers. By the user request, the
data in the buffers can be synchronized. The synchronization of the data is performed
in the following steps:

• the data from the local storage buffers is collected into a temporary buffer acquired
from the NodeStorage instance;

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 67

• the temporary buffers of different network nodes are synchronized using the all-
gather function of the Network instance;

• the synchronized data is written back from the temporary buffer to all the local
storage buffers.

4.4.11 Database

The Database class represents the central storage for all the data-related objects in the
framework environment. Primary the database holds the following objects:

• a set of the Storage objects, where each object refers to some memory space (see
Subsection 4.4.8);

• a map of the named Content objects, where each object represents some data
layout schema used in the user application (see Subsection 4.4.10).

If the storage objects are created by some other entities of the framework and just
added to the appropriate Database instance, the Content objects are directly instanti-
ated by the Database instance. For this purposes, the class defines a template function
create, which takes a particular subclass of the Content class as a template argument.
Also, the create function needs a name for the content and an instance of the Units-
Distribution class to initialize the newly created content object and to add it to the
named map.

4.4.12 Kernel

The Kernel class represents a function running distributively with all its implementa-
tions for the available devices and all the necessary function arguments. The Kernel
class is an end-user class. This means that the framework user is able to instantiate as
many objects as necessary. The class provides the following manipulation functions:

• add - creates and adds an implementation of the kernel. The actual creation
of the implementation object is forwarded further to the specified technology
instance. The creation of the implementation object is done separately for each
device assigned to the specified technology. Only the devices in the context of
the kernel are taken into account.

• set - adds a value or a Content object to the list of the arguments of the kernel.
A scalar argument value is passed to each implementation as it is. The Content
object is passed to each implementation in the form of the buffer corresponding
to the device, where the implementation is executed.

• start - triggers the concurrent execution of all the available implementations of
the kernel.

The order of the described functions reflects the usual work flow with a kernel
object:

1. The user creates a named kernel object.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION ASPECTS 68

2. The user adds several implementations of the kernel for different technologies.

3. The user sets the necessary execution parameters of the kernel.

4. The user starts the kernel execution.

4.4.12.1 Technology::Implementation

The inner Technology::Implementation class is an interface base class for all the kernel
implementations. The interface class has only pure virtual functions, which define the
possible operations available for the kernel implementation:

• set - sets the provided value or the content buffer to the implementation according
to the technology;

• start - starts the execution of the implementation;

• running - returns true if the implementation is currently running and false oth-
erwise;

• join - blocks the further application running till the implementation execution is
finished.

Chapter 5

Results

5.1 The Usage Example

The results of our research are represented with the implementation of the framework
with the proposed design. To present the abilities of the framework and to evaluate
the final implementation, a usage example was developed. The usage example solves
a typical astrophysical force N-Body simulation problem described earlier in Section
1.2. The usage example performs the described simulation on the heterogeneous cluster
providing the possibility to test different configurations: CPUs only, GPUs only, CPUs
and GPUs simultaneously, using a single node or the whole cluster. The initial state
of the particle system is described by random particle positions, equal particle masses
and zero particle velocities.

The usage example consists of 4 distinct parts: the configuration file for the frame-
work; the kernel implementations for pthread and OpenCL technologies; the main
function using framework API. All these parts are described in details in the following
subsections.

5.1.1 The Configuration File

The example configuration file is presented in Listing 5.1.

Listing 5.1: ”Configuration Example”

1 network=”MPI” ;
2 context : { sk ip = true ; CPU = ” pthread ” ; GPU = ”OpenCL” ; } ;
3 d i s t r i b u t i o n : {
4 d e f a u l t = (
5 { a r c h i t e c t u r e = ”GPU” ; s i z e = [1 0 2 4] ; b lock = [2 5 6] ; } ,
6 { a r c h i t e c t u r e = ”CPU” ; s i z e = [2 5 6] ; b lock = [4] ; }
7) ;
8 } ;

As described in Section 4.2.4.1, the example configuration file provides the frame-
work with the hardware utilization schema. In particular, line-by-line the example file
defines the following:

69

CHAPTER 5. RESULTS 70

1. The “network” parameter in line 1 defines that MPI should be used for the
network communication within the cluster network. The calculation will be dis-
tributed over all the active nodes of the cluster. Eliminating this parameter will
lead to the single-node computation.

2. The “context” parameter in line 2 provides the textual context definition. All
the CPU devices will be utilized by the pthread technology; all the GPU devices
will be utilized by the OpenCL technology; all the other devices or the devices
of the previous type not supported by these technologies will be skipped without
producing any errors. Changing the “skip” parameter to value “false” will lead
to the errors if there are any CPUs or GPUs not-supported by the assigned
technologies.

3. The “distribution” section in lines 3-8 defines one entity with the name “default”,
which prescribes the following partitioning of the problem:

(a) Each GPU device processes 1024 items per iteration, calculating 256 items
per work group (line 5).

(b) Each CPU device processes 256 items per iteration, calculating 4 items per
thread job (line 6).

5.1.2 OpenCL Kernel Implementation

The example OpenCL kernel implementation is provided in Listing 5.2.

Listing 5.2: ”OpenCL Algorithm Example”

1 #pragma OPENCL EXTENSION c l k h r f p 6 4 : enable
2 #pragma OPENCL EXTENSION cl amd fp64 : enable
3
4 #d e f i n e SOFTENING 0.001
5
6 k e r n e l void f o r c e (u int4 a c a f t o t a l ,
7 g l o b a l double ∗ mass , g l o b a l double4 ∗ pos i t i on ,
8 g l o b a l double4 ∗ v e l o c i t y , double t ime s t ep)
9 {

10 l o c a l double4 s h a r e d p o s i t i o n [ITEMS PER GROUP] ;
11 s i z e t l i d = g e t l o c a l i d (0) ;
12
13 s h a r e d p o s i t i o n [l i d] = p o s i t i o n [g e t g l o b a l i d (0)] ;
14 double4 t h i s a c c ;
15 t h i s a c c . x = t h i s a c c . y = t h i s a c c . z = t h i s a c c .w = . 0 ;
16 f o r (s i z e t i = 0 ; i < a c a f t o t a l . x ; ++i)
17 {
18 double4 d i s t = s h a r e d p o s i t i o n [l i d] − p o s i t i o n [i] ;
19 t h i s a c c += mass [i] ∗ d i s t / powr (l ength (d i s t) + SOFTENING

, 3 .) ;
20 }

CHAPTER 5. RESULTS 71

21
22 s i z e t g id = g e t g l o b a l i d (0) ;
23 v e l o c i t y [g id] += t h i s a c c ∗ t ime s t ep ;
24 p o s i t i o n [g id] += v e l o c i t y [g id] ∗ t ime s t ep ;
25 }

This kernel implementation provides the computational code for evolving the po-
sition of the single particle written in OpenCL C language. The first argument of
the kernel function represents the special framework argument, which hints how many
particles are represented in the full data set (in other words, what is the size of the
arrays “mass”, “position”, “velocity”). The index of the current particle is provided
by OpenCL C get global id function.

5.1.3 pthread Kernel Implementation

The example pthread kernel implementation is provided in Listing 5.3.

Listing 5.3: ”Pthread Algorithm Example”

1 #d e f i n e SOFTENING 0.001
2
3 s t a t u s f o r c e (
4 const aca f : : u int4 & j id , const aca f : : u int4 & j t o t a l ,
5 const aca f : : v a r i a n t v e c t o r & args
6)
7 {
8 double ∗ mass = r e i n t e r p r e t c a s t <double ∗>(∗(args [0] . get<

void ∗>())) ;
9 double4 ∗ p o s i t i o n = r e i n t e r p r e t c a s t <double4 ∗>(∗(args [1] .

get<void ∗>())) ;
10 double4 ∗ v e l o c i t y = r e i n t e r p r e t c a s t <double4 ∗>(∗(args [2] .

get<void ∗>())) ;
11 double t ime s t ep = ∗(args [3] . get<double >()) ;
12
13 double4 t h i s p o s = p o s i t i o n [j i d [0]] ;
14 double4 t h i s a c c (0 .) ;
15 f o r (s i z e t i = 0 ; i < j t o t a l [0] ; ++i)
16 {
17 double4 d i s t = t h i s p o s − p o s i t i o n [i] ;
18 t h i s a c c += mass [i] ∗ d i s t / pow(d i s t . l ength () + SOFTENING

, 3 .) ;
19 }
20
21 v e l o c i t y [j i d [0]] += t h i s a c c ∗ t ime s t ep ;
22 p o s i t i o n [j i d [0]] += v e l o c i t y [j i d [0]] ∗ t ime s t ep ;
23
24 re turn e r r o r : : Success ;
25 }

CHAPTER 5. RESULTS 72

This kernel implementation provides the computational code for evolving the posi-
tion of the single particle written in C++ language using the special framework types.
The pthread kernel implementation function arguments are strongly prescribed to be
the following:

1. the first argument is a uint4 vector, which delivers the identifier of the current
particle;

2. the second argument is a uint4 vector, which delivers the number of all the par-
ticles in the full data set;

3. the last argument is a vector of variants, which contains the user arguments. The
arguments should be properly casted before usage.

5.1.4 The Main Function

The example main function of the program with the appropriate calls of the framework
API is provided in Listing 5.4.

Listing 5.4: ”Main Function Example”

1 i n t main (i n t argc , char ∗∗ argv)
2 {
3 MPI Init(&argc , &argv) ;
4 s t a t u s s = e r r o r : : Success ;
5 do
6 {
7 s = aca f : : i n i t i a l i z e (argc , argv) ;
8 i f (s . f a i l ()) break ;
9

10 Handle < DataBase > db = Context : : getContext ()−>getDB () ;
11 L i n e a r P a r t i c l e s d i s t r (Context : : getContext () , a c a f s t r i n g (”

d e f a u l t ”)) ;
12 Handle<Content> mass , pos , ve l o ;
13
14 {
15 aca f : : pa ir<Handle<Content>, s tatus> tmp ;
16 tmp = db−>create< SyncedArray<double , 1> >(”mass ” , d i s t r

. un i t s (1)) ;
17 i f (tmp . second . f a i l ()) cout << tmp . second ;
18 mass = tmp . f i r s t ;
19 mass−> f i l l (a ca f : : va r i an t (1 .)) ;
20 tmp = db−>create< SyncedArray<double4 , 1> >(” p o s i t i o n ” ,

d i s t r . un i t s (1)) ;
21 i f (tmp . second . f a i l ()) cout << tmp . second ;
22 pos = tmp . f i r s t ;
23 pos−>random (
24 aca f : : va r i an t (double4 ({ −1. , −1. , −1. , 0 .})) ,

CHAPTER 5. RESULTS 73

25 aca f : : va r i an t (double4 ({ 2 . , 2 . , 2 . , 0 .}))
26) ;
27 tmp = db−>create< LocalArray<double4 , 1> >(” v e l o c i t y ” ,

d i s t r . un i t s (1)) ;
28 i f (tmp . second . f a i l ()) cout << tmp . second ;
29 ve lo = tmp . f i r s t ;
30 velo−> f i l l (a ca f : : va r i an t (double4 (0 .))) ;
31 }
32
33 double cur r en t t ime = 0 . ;
34 double end time = 1 . ;
35 double t ime s t ep = 0 . 0 1 ;
36
37 Kernel f o r c e (” f o r c e ” , Context : : getContext ()) ;
38 s = f o r c e . add (”OpenCL” , ” g rav i ty . c l ” , ”−c l−mad−enable ” ,

t rue) ;
39 i f (s . f a i l ()) cout << s << endl ;
40 s = f o r c e . add (” pthread ” , &: : f o r c e) ;
41 i f (s . f a i l ()) cout << s << endl ;
42 s = f o r c e . s e t (0 , mass) ;
43 i f (s . f a i l ()) cout << ”Adding mass f a i l e d : ” << s << endl ;
44 s = f o r c e . s e t (1 , ” p o s i t i o n ”) ;
45 i f (s . f a i l ()) cout << ”Adding p o s i t i o n f a i l e d : ” << s <<

endl ;
46 f o r c e . s e t (2 , ” v e l o c i t y ”) ;
47 i f (s . f a i l ()) cout << ”Adding v e l o c i t y f a i l e d : ” << s <<

endl ;
48 f o r c e . s e t (3 , va r i ant (t ime s t ep)) ;
49 i f (s . f a i l ()) cout << ”Adding t imestep f a i l e d : ” << s <<

endl ;
50
51 whi l e (cu r r en t t ime < end time)
52 {
53 f o s << ” Current time : ” << cur r ent t ime << std : : endl ;
54 s = f o r c e . s t a r t (d i s t r . un i t s (1)) ;
55 i f (s . f a i l ()) break ;
56 pos−>synchron ize () ;
57
58 cur r en t t ime += t ime s t ep ;
59 }
60 } whi le (f a l s e) ;
61
62 aca f : : f i n a l i z e () ;
63 MPI Final ize () ;
64

CHAPTER 5. RESULTS 74

65 i f (s . f a i l ())
66 p r i n t f (”An e r r o r %d (%s) occurred . Fa i l ed !\n” , s . code () , s

. name ()) ;
67 e l s e
68 p r i n t f (” Success !\n”) ;
69
70 re turn s . code () ;
71 }

This main function implementation provides the basic necessary code to initialize
correctly the environment, to instantiate the entities, to perform the particle system
evolving loop and to clean up the objects.

• The initialization step includes 2 function calls: MPI Init and acaf::initialize
(lines 3 and 4). According to the MPI user manual, the MPI Init should always
be the first function call of the application. Therefore, it is impossible to integrate
it as a part of the framework initialization.

• The instantiation of the entities includes: the distribution creation using the
configuration file (line 11); the contents creation (lines 16, 20 and 27) and ini-
tialization - the masses are set to 1; the positions are randomized in the range
between (−1,−1,−1) and (1, 1, 1); the velocities are set to (0, 0, 0) (lines 19, 24
and 30); the kernel creation and adding the available implementations and argu-
ments (lines 37-49).

• The particle system evolving loop (lines 51-59) consists of synchronous execution
of the kernel (line 54), synchronizing the positions (line 56) and proceeding to the
next time frame (line 58).

• Finally, the clean up of the environment also includes 2 function calls symmetric
to the initialization: MPI Finalize and acaf::finalize (lines 62 and 63).

5.1.5 Analysis

The usage example demonstrates the following properties of the framework:

1. the framework provides an ability to separate the data mechanisms from the
computational code and the environmental code. The computational code oper-
ates with the data using the pointers to some region of memory. Conversely, the
environmental code operates with the instances of Content subclasses using the
convenience functions: random, fill, synchronize and other;

2. the framework encapsulates the device-specific operations: specifying the utiliza-
tion schema of the device in the configuration file and providing the computational
code for the device is enough for including the device in the computation;

3. also, the framework encapsulates the network-specific operations: it is only nec-
essary to mention the network communication library in the configuration file
and place the initialization and cleanup function calls (if they are required by the
library);

CHAPTER 5. RESULTS 75

4. the framework targets the data-parallel problems, the task-parallel problem im-
plementation cannot be facilitated by the framework;

5. the framework requires the user to implement the computational code separately
for each Technology instance used in the configuration. Moreover, it is necessary
that the code is reentrant, since it is executed simultaneously on different data.

5.1.6 Test Setup

For testing the framework, the following heterogeneous cluster was used: the 7-nodes
cluster with 4 processing nodes, each of them has the NVIDIA GeForce GTX 285 GPU
with 2GB of RAM, the Intel Xeon E5504 CPU and 6GB of RAM. The nodes run
Debian OS. The nodes are connected using Infiniband interface.

5.2 Benchmarking

To evaluate the framework using some measurable metrics, benchmarking with different
parameters was performed. Benchmarking includes executing the usage example with
different number of particles, different configurations (with or without some devices,
with or without network utilization). The execution times for all different runs are
combined in Figures 5.1, 5.2 and 5.3.

Figure 5.1: The full comparison chart of running the code on a different number of
nodes.

The comparison charts show that the most efficient way to run the computation on
the heterogeneous cluster using the ACAF is a distributed computation performed on

CHAPTER 5. RESULTS 76

Figure 5.2: The lower range comparison chart of running the code on a different number
of nodes.

GPUs only. The deeper analysis of the execution times of the simulation within the
different numbers of nodes shows:

• the average ratio of the execution times between 2 nodes configuration and 1 node
configuration is 1.971x;

• the average ratio of the execution times between 4 nodes configuration and 2
nodes configuration is 1.97x;

• the average ratio of the execution times between 4 nodes configuration and 1 node
configuration is 3.882x.

These ratios are quite near the ideal ratios 2, 2 and 4. This proofs the efficiency of
the distribution mechanisms based on the design and implemented in the framework.
The average ratios mentioned above consider only the distribution-effective execution
times, in particular, the cases with at least 81920 particles. For the lower amount
of particles, the network transferring overhead drops the whole performance of the
computation.

The comparison of different device configurations (GPU only, CPU and GPU, CPU
only) shows that the GPU computation is 40x times faster, than CPU computation.
This speed-up factor also explains that combining CPU and GPU computations makes
no sense for the lower number of particles being 10x times slower as the GPU compu-
tation and 4x faster as the CPU computation.

Additionally, the comparison of the framework performance against the bare code
performance was done (the source code of the bare implementation can be found in
Appendix A). This comparison shows what is the overhead of using the framework.

CHAPTER 5. RESULTS 77

Figure 5.3: The comparison chart of running the code with different hardware config-
urations.

The bare simulation code consists of the network-distributed computations performed
on GPU using the same OpenCL kernel. The full bare simulation code can be found
in the Appendix 1. Figure 5.4 represents the percent overhead of the execution time
of the usage example to the execution time of the bare implementation scaled over the
particles number in the example system.

According to this chart, we can state that the time overhead of using ACAF ap-
proximates 0 for the larger particle systems and is equal to 4 seconds for the case of
1310720 particles.

CHAPTER 5. RESULTS 78

Figure 5.4: The comparison chart of the ACAF-based implementation to the bare
implementation.

Chapter 6

Discussion and Conclusion

6.1 Pros and Cons

The following advantages can be mentioned as a result of comparing the final framework
design and its implementation with the other approaches mentioned in Section 2.2 and
the bare simulation code implementation:

1. The design of the framework prescribes the clear separation of the data mecha-
nisms from the computational code and the environmental code. The data op-
erations are managed by the data-relevant entities of the framework: Database,
Storage, and Content. This enables one to encapsulate the necessary complex
data operations: distribution of the data, its transferring and its synchronizing
(see 1 in Section 5.1.5).

2. The data operations are also separated according to the type of the operation:
data allocating and transferring is managed by Storage classes (see Subsection
4.2.4.4), data interpretation and logic operations on the data are managed by
Content classes (see Subsection 4.2.4.6), while the Database class guarantees the
correct functionality and provides some miscellaneous functions. Such splitting
helps to extend only the necessary framework parts.

3. The framework also splits the simulation implementation into several distinct
parts, which makes the coding task transparent:

• the configuration file specifies the devices and nodes to be used and defines
the distribution of the data (see Listing 5.1);

• the kernel implementations represent mathematical and physical parts of the
code (see Listings 5.2 and 5.3);

• the environmental code does the initialization, data definition, data initial-
ization, kernel instantiation and defines the main particle system evaluation
loop (see Listing 5.4).

4. The framework is designed as a C++ framework. This means that the user and
the framework developer have access to a large range of different powerful system

79

CHAPTER 6. DISCUSSION AND CONCLUSION 80

calls and a variety of computational libraries and tools. So, the user has a choice
either to re-implement the algorithm using the framework tools or to reuse the
existing solution. Moreover, the availability of the system calls provides an option
of performance-targeted tuning of the final application.

5. The framework encapsulates the device-specific operations using the Architecture
and Technology classes (see 2 in Section 5.1.5). The encapsulation of the op-
erations implies that the final user should not know and should not use some
device-specific functions, libraries and tools. The framework classes also sepa-
rate the functional aspects of the work with some device present in the system:
Architecture class enables the devices of some specific type to be recognized and
used by the framework (see Section 4.4.4); Technology class focuses on the device
utilization schema (see Section 4.4.5). This separation facilitates the possibilities
of extending the framework: the developer is able to target one of the aspects
(see Section 4.3.1).

6. The framework also encapsulates the network-distributed communications and
computations. This encapsulation provides users with an ability to avoid the
network-related operations and offers rather the possibility to switch easily be-
tween the single-node and multi-nodes configurations (see 3 in Section 5.1.5).

7. The time overhead of using the framework in comparison to the bare code is very
low and approximates 0% with the growth of the particles count (see Figure 5.4).
The network distribution mechanisms of the framework are efficient and do not
introduce an additional overhead as it was shown in Section 5.2.

Meanwhile, the current implementation of the framework has the following limita-
tions and disadvantages:

1. The framework requires the knowledge and usage of the technology-targeted com-
putational languages to utilize the computational devices, such as OpenCL C and
CUDA C for utilizing GPUs (as it is shown in the usage example in Section 5.1).
The computational kernel used by the framework to execute the actual calcula-
tions should be implemented by the user for each type of technology combined in
the current computational context. To avoid the necessity of having the individ-
ual kernel implementations for each technology, it is vital to design and implement
some common parallel programming language, which can be further translated
into the technology-specific languages. Still, it is crucial to maintain an ability to
use the native technology-specific programming languages in order to be able to
finely-tune a particular computational code.

2. In addition to the technology-targeted programming languages requirement, the
reentrance of the user-defined computational code is necessary, even though it
complicates the implementation of the kernel for different devices. At the same
time, the wrongly implemented kernel executed simultaneously on different data
can lead to hard-recognizable incorrect results (see 5 in Section 5.1.5).

CHAPTER 6. DISCUSSION AND CONCLUSION 81

3. In comparison to the other approaches described in Section 2.2, the proposed
framework design still requires some coding work to be done. The amount of
coding can be reduced by implementing the DSL as a layer over the framework
functionality.

4. The framework exclusively targets the data-parallel problems, particularly the
particle problems. The framework does not fit for the task-parallel problems.
Utilizing the framework for some other data-parallel problems rather than the
particle problems may require an implementation of some other Content sub-
classes (see 4 in Section 5.1.5).

5. There is no possibility to provide immediately some user-driven testing of the
framework, since the main advantage of many other approaches (as in e.g. 2.2.4) is
the availability of many different ready-to-use modules, the combination of which
leads to the necessary solution. This means that the implemented framework
misses the set of built-in modules/functions/classes, which will serve the same
purpose.

6. Also the chosen programming language C++ is not an optimal one, because most
astrophysicists work at the current moment with Fortran90. This means that the
actual using of the framework will imply the change of the working programming
language.

6.2 Criteria Evaluation

When discussing pros and cons of the framework, it is necessary to evaluate the imple-
mented approach against the criteria described in Chapter 3:

1. As it was shown in Figure 5.4, the time overhead of using the ACAF in comparison
to the bare simulation code reaches 1.6% for small particle systems and approaches
0% for larger particle systems. Still, the absolute time overhead for 1310720
particles is 4 seconds.

2. The usage example (see Section 5.1) demonstrated that it is unnecessary to write
any device-specific code (device queries, device memory allocations, device data
transferring, device communication) in order to execute the simulation on differ-
ent computational units.

3. Also, the same usage example demonstrated that it is possible to execute the
simulation on the heterogeneous cluster without explicitly writing any network-
specific code (network queries, network data transferring), with an exception of
initialization and cleanup function calls.

4. The concept of the configuration file (see Section 4.3.2 and Listing 5.1) allows
one to use the different utilization schemes within the same executable program.
Still, adding the new technologies requires the user explicitly to implement the
kernels for these technologies.

CHAPTER 6. DISCUSSION AND CONCLUSION 82

5. The current implementation of the framework does not cover the uniformity of
the computational code. The kernel should be implemented separately for each
technology in use (see Listings 5.2 and 5.3). This issue is addressed in future
work (see Section 7).

6. The framework is based on the hierarchy of C++ classes, which are responsible
for the different aspects of the heterogeneous cluster programming (see Section
4.4). Growing the hierarchy by implementing the new C++ classes allows for the
possibility to extend the framework with new functionality.

6.3 Retrospective

The most problematic part of the developed framework is the detached design from
the prospective users. The framework is designed without any feedback from astro-
physicists. This disadvantage unfortunately results in the absence of user testing at
the final stage of the framework implementation. The main reasons of the detached
development were the following:

1. The astrophysics are used to work with Fortran90 programming language. But
C++ is chosen due to the following facts:

• C++ programming language as an operating system language for the target
platform provides different performance tuning possibilities (using assembler
insertions, SSE command, direct operating system calls and hardware calls);

• C++ has an ability to call the functions from the binary libraries originally
written in other programming languages (including Fortran90);

• C++ functions exported from the binary library as C-style functions can be
called directly from Fortran90.

2. The proposed design of the framework implies the need to re-implement the var-
ious helper computational functions in order to be able to perform the same
simulation tasks as scientists currently target. This re-implementing lies beyond
the scientists’ interests and the inability to continue the active research with the
new framework reduces their willingness to proceed with the design.

Based on the implemented framework, it might be possible to resolve the identified
problems which enable the user-driven development of the framework. In particular,
the following features could have been integrated:

1. The functions used in the environmental code of the framework could have been
implemented together with the C-style interface, which would enable scientists to
use Fortran90 at least for the environmental code. Still, the kernel implementation
should be written in the technology-targeted language.

2. The reusing of the existing libraries should have been integrated more deeply to
enable passing the content memory buffers to the foreign functions.

Chapter 7

Future Work

The future work on the framework can be performed by extending it with the following
features:

• The tree-structure content classes which can be directly utilized for advanced SPH
and N-Body simulations. Such classes will significantly enhance the usability of
the framework. The usage of the octree structures in the particle problems is the
effective method in case of a large number of particles.

• The current implementation of the pthread technology provides an ability to
implement a kernel within a pointer to the function of the particular semantic.
Such usage schema is not optimal for the large projects with many different
kernels. Therefore, it makes sense to have the dynamic calls to the functions
for the pthread technology. The most reasonable way to implement the dynamic
calling to the functions consists of using the third-party library “dyncall”. The
library encapsulates the dynamic function semantic in addition to encapsulating
the dynamic calls. This means that the arguments to the function will be passed
directly without wrapping them into the acaf::variant vector collection.

• The actual error handling mechanism relies on the initialization order of the error
codes. This means that the particular integer error codes are dynamic and can
differ within several runs of the same code on different machines. Such incon-
stant error codes complicate the integration of the framework into the complex
applications, since the client application can not process the errors by the integer
codes. Therefore, the error handling should be revised to make the integer error
codes more persistent.

• The current content classes provide only the full data range synchronization. This
limitation prevents the framework usage for the very large data on the cluster with
poor local storage capacities, when the full range of all the necessary data can not
be stored at once in the local memory. In this case, the computation of a single
iteration is usually split into several steps. To support such processing schema,
the framework needs the content classes for the partially synchronized arrays.

• Another useful feature for the framework is the support of astrophysical-native file
formats: Hierarchical Data Format version 5 (HDF5), Flexible Image Transport

83

CHAPTER 7. FUTURE WORK 84

System (FITS). Such support will make it possible to initialize the data and
report the results in the necessary formats without an additional effort from the
user.

• Finally, the most valuable modification of the framework lies in designing and im-
plementing of the Domain Specific Language, which is to encapsulate the current
numerous framework function calls into the language commands. This modifica-
tion will make the usage of the framework even more transparent and will sig-
nificantly decrease the amount of the necessary coding work. Still, the language
should keep open an ability to switch to the direct framework calls and to provide
the kernel implementation in the technology-native programming languages.

Appendices

85

Appendix A

N-Body Simulation Code

Listing A.1: ”The Main Function”
1 #inc lude <time . h>
2 #inc lude <s t d l i b . h>
3 #inc lude <d i r en t . h>
4 #inc lude <sys / s t a t . h>
5 #inc lude <errno . h>
6 #inc lude <s t d i o . h>
7 #inc lude <s t r i n g . h>
8 #inc lude <ctime>
9

10 #inc lude <unis td . h>
11 #inc lude < l im i t s . h>
12
13 #inc lude <mpi . h>
14
15 #de f i n e RANDOM PARTICLES 2560
16
17 unsigned in t partNumber = 0 ;
18 c l doub l e ∗ mass = NULL;
19 c l u i n t ∗ i d s = NULL;
20 c l doub l e4 ∗ po s i t i o n = NULL;
21 c l doub l e4 ∗ v e l o c i t y = NULL;
22
23 void load data (i n t mpi s ize , i n t mpi id)
24 {
25 srand (time (NULL)) ;
26
27 partNumber = mpi s i z e ∗ RANDOM PARTICLES;
28
29 mass = (c l doub l e ∗) mal loc (partNumber ∗ s i z e o f (c l doub l e)) ;
30 i d s = (c l u i n t ∗) mal loc (partNumber ∗ s i z e o f (c l u i n t)) ;
31 po s i t i o n = (c l doub l e4 ∗) mal loc (partNumber ∗ s i z e o f (c l doub l e4)) ;
32 v e l o c i t y = (c l doub l e4 ∗) mal loc (partNumber ∗ s i z e o f (c l doub l e4)) ;
33
34 f o r (unsigned in t i = 0 ; i < partNumber ; ++i)
35 {
36 id s [i] = i + 1 ;
37 mass [i] = 1 . ;
38 po s i t i o n [i] . s [0] = ((c l doub l e) rand ()) / RANDMAX;
39 po s i t i o n [i] . s [1] = ((c l doub l e) rand ()) / RANDMAX;
40 po s i t i o n [i] . s [2] = ((c l doub l e) rand ()) / RANDMAX;
41 po s i t i o n [i] . s [3] = . 0 ;
42 v e l o c i t y [i] . s [0] = . 0 ;
43 v e l o c i t y [i] . s [1] = . 0 ;
44 v e l o c i t y [i] . s [2] = . 0 ;
45 v e l o c i t y [i] . s [3] = . 0 ;
46 }
47
48 MPI Allgather (&(po s i t i o n [mpi id ∗ RANDOM PARTICLES]) , 4 ∗ RANDOM PARTICLES, MPI DOUBLE,

pos i t i on , 4 ∗ RANDOM PARTICLES, MPI DOUBLE, MPICOMMWORLD) ;
49 }
50
51 in t main (i n t argc , char ∗∗ argv)
52 {
53 c l o c k t s t a r t = c lock () ;
54
55 MPI Init(&argc , &argv) ;
56
57 i n t mpi s ize , mpi id ;
58 MPI Comm size (MPI COMMWORLD, &mpi s i z e) ;

86

APPENDIX A. N-BODY SIMULATION CODE 87

59 MPI Comm rank(MPI COMMWORLD, &mpi id) ;
60
61 double t ime cur , t ime step , time max ;
62 t ime cur = 0 . ;
63 t ime s tep = 0 . 1 ;
64 time max = 1 . ;
65
66 load data (mpi s ize , mpi id) ;
67
68 prepareEnvironment () ;
69
70 transferDataToDevice () ;
71
72 whi le (t ime cur < time max)
73 {
74 r e f i n e p o s i t i o n s (t ime step , mpi id ∗ RANDOM PARTICLES, RANDOM PARTICLES) ;
75 transferDataToHost (true , mpi id ∗ RANDOM PARTICLES, RANDOM PARTICLES) ;
76
77 MPI Allgather (&(po s i t i o n [mpi id ∗ RANDOM PARTICLES]) , 4 ∗ RANDOM PARTICLES,

MPI DOUBLE, pos i t i on , 4 ∗ RANDOM PARTICLES, MPI DOUBLE, MPICOMMWORLD) ;
78 transferDataToDevice (t rue) ;
79
80 t ime cur += t ime s tep ;
81 }
82
83 freeEnvironment () ;
84
85 MPI Final ize () ;
86
87 c l o c k t f i n i s h = c lock () ;
88
89 p r i n t f (”Done in %g seconds\n” , ((double) (f i n i s h−s t a r t)) /CLOCKS PER SEC) ;
90 return 0 ;
91 }

Listing A.2: ”The GPU Management Code”
1 #de f i n e FAILED(er rcode) (CL SUCCESS != errcode)
2 #de f i n e ITEMS PER GROUP 256
3
4 s i z e t wgrNum = 0 ;
5 s i z e t witNum = 0 ;
6 s i z e t wgrSize = 0 ;
7
8 const char ∗ g stProgramFi le = ” grav i ty . c l ” ;
9 const char ∗ g stAccCalcKern = ” f o r c e ” ;

10 const char ∗ g stPosRef ineKern = ” r e f i n e p o s i t i o n s ” ;
11 const char ∗ g stBui ldOpt ions = ”−c l−mad−enable ” ;// −c l−nv−maxrregcount=20”;
12 const char ∗ g stBuildKernelLogName = ”BuildKernelLog . txt ” ;
13
14 c l p l a t f o rm i d ∗ cpPlat fo rmsLi s t = NULL;
15 c l d e v i c e i d ∗ cdDev ice sL i s t = NULL;
16 c l c on t e x t ccContext = NULL;
17 cl command queue cqKernelQueue = NULL;
18 cl command queue cqTransferQueue = NULL;
19
20 cl program cpProgram = NULL;
21 c l k e r n e l ckAccCalc = NULL;
22 c l k e r n e l ckPosRef ine = NULL;
23
24 cl mem cmMassBuf = NULL;
25 cl mem cmPositionBuf = NULL;
26 cl mem cmVelocityBuf = NULL;
27
28 void r e f i n e p o s i t i o n s (double t ime step , i n t mp i o f f s e t , s i z e t s i z e p e r p r o c e s s)
29 {
30 c lSetKerne lArg (ckAccCalc , 3 , s i z e o f (double) , &t ime s tep) ;
31 c l u i n t 4 ac tua l ;
32 ac tua l . s [0] = witNum ;
33 ac tua l . s [1] = actua l . s [2] = actua l . s [3] = 0 ;
34 c lSetKerne lArg (ckAccCalc , 4 , s i z e o f (c l u i n t 4) , &actua l) ;
35 s i z e t o f f = mp i o f f s e t ;
36 clEnqueueNDRangeKernel (cqKernelQueue , ckAccCalc , 1 , &o f f , &s i z e p e r p r o c e s s , &wgrSize , 0 ,

NULL, NULL) ;
37 c lF i n i s h (cqKernelQueue) ;
38 }
39
40 void transferDataToHost (bool minimal , i n t o f f s e t , i n t s i z e)
41 {
42 c lF i n i s h (cqKernelQueue) ;
43 i f (s i z e == −1 | | ! minimal)
44 {
45 o f f s e t = 0 ;
46 s i z e = partNumber ;
47 }
48

APPENDIX A. N-BODY SIMULATION CODE 88

49 clEnqueueReadBuffer (cqTransferQueue , cmPositionBuf , CL TRUE, s i z e o f (c l doub l e4) ∗ o f f s e t ,
s i z e o f (c l doub l e4) ∗ s i z e , &(po s i t i o n [o f f s e t]) , 0 , NULL, NULL) ;

50 i f (! minimal)
51 {
52 clEnqueueReadBuffer (cqTransferQueue , cmVelocityBuf , CL TRUE, 0 , s i z e o f (c l doub l e4) ∗

partNumber , v e l o c i t y , 0 , NULL, NULL) ;
53 }
54 }
55
56 void transferDataToDevice (bool minimal)
57 {
58 i f (minimal)
59 {
60 clEnqueueWriteBuffer (cqTransferQueue , cmPositionBuf , CL TRUE, 0 , s i z e o f (c l doub l e4) ∗

partNumber , po s i t i on , 0 , NULL, NULL) ;
61 }
62 e l s e
63 {
64 void ∗ temp = malloc (s i z e o f (c l doub l e4) ∗ ITEMS PER GROUP) ;
65 memset (temp , 0 , s i z e o f (c l doub l e4) ∗ ITEMS PER GROUP) ;
66
67 clEnqueueWriteBuffer (cqTransferQueue , cmMassBuf , CL TRUE, 0 , s i z e o f (c l doub l e) ∗

partNumber , mass , 0 , NULL, NULL) ;
68 clEnqueueWriteBuffer (cqTransferQueue , cmPositionBuf , CL TRUE, 0 , s i z e o f (c l doub l e4) ∗

partNumber , po s i t i on , 0 , NULL, NULL) ;
69 clEnqueueWriteBuffer (cqTransferQueue , cmVelocityBuf , CL TRUE, 0 , s i z e o f (c l doub l e4) ∗

partNumber , v e l o c i t y , 0 , NULL, NULL) ;
70
71 i f (witNum > partNumber)
72 {
73 clEnqueueWriteBuffer (cqTransferQueue , cmMassBuf , CL TRUE, s i z e o f (c l doub l e) ∗

partNumber , s i z e o f (c l doub l e) ∗ (witNum − partNumber) , temp , 0 , NULL, NULL) ;
74 clEnqueueWriteBuffer (cqTransferQueue , cmPositionBuf , CL TRUE, s i z e o f (c l doub l e4) ∗

partNumber , s i z e o f (c l doub l e4) ∗ (witNum − partNumber) , temp , 0 , NULL, NULL) ;
75 clEnqueueWriteBuffer (cqTransferQueue , cmVelocityBuf , CL TRUE, s i z e o f (c l doub l e4) ∗

partNumber , s i z e o f (c l doub l e4) ∗ (witNum − partNumber) , temp , 0 , NULL, NULL) ;
76 }
77 }
78 }
79
80 bool prepareEnvironment ()
81 {
82 c l i n t errorCode = CL SUCCESS ;
83
84 wgrSize = ITEMS PER GROUP;
85 witNum = partNumber + ((partNumber % wgrSize == 0) ?0 : wgrSize) − (partNumber % wgrSize) ;
86 wgrNum = witNum / wgrSize ;
87
88 do {
89 // Quer ies a l l p o s s i b l e p lat fo rms
90 c l u i n t uiNumPlatforms = 0 ;
91 errorCode = clGetPlatformIDs (0 , NULL, &uiNumPlatforms) ;
92 i f (FAILED(errorCode)) break ;
93
94 cpPlat fo rmsLi s t = (c l p l a t f o rm i d ∗) mal loc (s i z e o f (c l p l a t f o rm i d) ∗ uiNumPlatforms) ;
95 errorCode = clGetPlatformIDs (uiNumPlatforms , cpPlat formsList , NULL) ;
96 i f (FAILED(errorCode)) break ;
97
98 // Ret r i eve s the in format ion about dev i c e s
99 c l u i n t uiNumDevices = 0 ;

100 errorCode = clGetDeviceIDs (cpPlat fo rmsLi s t [0] , CL DEVICE TYPE GPU, 0 , NULL, &
uiNumDevices) ;

101 i f (FAILED(errorCode)) break ;
102
103 cdDev ice sL i s t = (c l d e v i c e i d ∗) mal loc (s i z e o f (c l d e v i c e i d) ∗ uiNumDevices) ;
104 errorCode = clGetDeviceIDs (cpPlat fo rmsLi s t [0] , CL DEVICE TYPE GPU, uiNumDevices ,

cdDevicesLis t , NULL) ;
105 i f (FAILED(errorCode)) break ;
106
107 char devname [1 000] = {0} ;
108 c lGetDev ice In fo (cdDev i ce sL i s t [0] , CL DEVICE NAME, 1000 , devname , nu l l p t r) ;
109 p r i n t f (” Using the dev i ce : %s\n” , devname) ;
110
111 ccContext = clCreateContext (NULL, 1 , cdDevicesLis t , NULL, NULL, &errorCode) ;
112 i f (FAILED(errorCode)) break ;
113
114 cmMassBuf = c lCrea t eBu f f e r (ccContext , CL MEM READ WRITE, s i z e o f (c l doub l e) ∗

witNum , NULL, &errorCode) ;
115 i f (FAILED(errorCode)) break ;
116
117 cmPositionBuf = c lCrea t eBu f f e r (ccContext , CL MEM READ WRITE, s i z e o f (c l doub l e4) ∗

witNum , NULL, &errorCode) ;
118 i f (FAILED(errorCode)) break ;
119
120 cmVelocityBuf = c lCrea t eBu f f e r (ccContext , CL MEM READ WRITE, s i z e o f (c l doub l e4) ∗

witNum , NULL, &errorCode) ;
121 i f (FAILED(errorCode)) break ;

APPENDIX A. N-BODY SIMULATION CODE 89

122
123 cqKernelQueue = clCreateCommandQueue (ccContext , cdDev i ce sL i s t [0] ,

CL QUEUE OUT OF ORDER EXEC MODE ENABLE, &errorCode) ;
124 i f (FAILED(errorCode)) break ;
125
126 cqTransferQueue = clCreateCommandQueue (ccContext , cdDev i ce sL i s t [0] ,

CL QUEUE OUT OF ORDER EXEC MODE ENABLE, &errorCode) ;
127 i f (FAILED(errorCode)) break ;
128
129 FILE∗ fProgram = NULL;
130
131 fProgram = fopen (g stProgramFile , ” rb ”) ;
132 i f (NULL == fProgram)
133 {
134 errorCode = CL INVALID PROGRAM;
135 break ;
136 }
137
138 // get the l ength o f the source code
139 f s e e k (fProgram , 0 , SEEK END) ;
140 s i z e t szSourceLength = f t e l l (fProgram) ;
141 f s e e k (fProgram , 0 , SEEK SET) ;
142
143 // a l l o c a t e a bu f f e r f o r the source code s t r i n g and read i t in
144 char ∗ s tSource = (char ∗) mal loc (szSourceLength + 1) ;
145 i f (f r ead (stSource , szSourceLength , 1 , fProgram) != 1)
146 {
147 f c l o s e (fProgram) ;
148 f r e e (s tSource) ;
149 errorCode = CL INVALID PROGRAM;
150 break ;
151 }
152
153 f c l o s e (fProgram) ;
154 stSource [szSourceLength] = ’\0 ’ ;
155
156 cpProgram = clCreateProgramWithSource (ccContext , 1 , (const char ∗∗)&stSource , &

szSourceLength , &errorCode) ;
157 errorCode = clBuildProgram (cpProgram , 1 , cdDevicesLis t , g stBui ldOpt ions , NULL, NULL)

;
158 i f (FAILED(errorCode))
159 {
160 // Ret r i eve s the d e t a i l e d bu i ld log in the case o f bu i ld e r r o r
161 FILE ∗ fBui ldLog = fopen (g stBuildKernelLogName , ”w”) ;
162
163 i f (NULL != fBui ldLog)
164 {
165 s i z e t szBui ldLogSize = 0 ;
166 clGetProgramBuildInfo (cpProgram , cdDev ice sL i s t [0] , CL PROGRAM BUILD LOG, 0 ,

NULL, &szBui ldLogSize) ;
167 char ∗buf = (char ∗) mal loc (s i z e o f (char) ∗ (szBui ldLogSize + 1)) ;
168 memset (buf , 0 , s i z e o f (char) ∗ (szBui ldLogSize + 1)) ;
169 clGetProgramBuildInfo (cpProgram , cdDev ice sL i s t [0] , CL PROGRAM BUILD LOG,

szBui ldLogSize , buf , NULL) ;
170
171 f p r i n t f (fBuildLog , buf) ;
172
173 f c l o s e (fBui ldLog) ;
174 }
175
176 break ;
177 }
178
179 ckAccCalc = c lCreateKerne l (cpProgram , g stAccCalcKern , &errorCode) ;
180 i f (FAILED(errorCode)) break ;
181
182 c lSetKerne lArg (ckAccCalc , 0 , s i z e o f (cl mem) , &cmMassBuf) ;
183 c lSetKerne lArg (ckAccCalc , 1 , s i z e o f (cl mem) , &cmPositionBuf) ;
184 c lSetKerne lArg (ckAccCalc , 2 , s i z e o f (cl mem) , &cmVelocityBuf) ;
185
186 } whi le (f a l s e) ;
187
188 i f (FAILED(errorCode))
189 p r i n t f (”Some e r r o r occurred during i n i t i a l i z a t i o n %d\n” , errorCode) ;
190
191 return ! (FAILED(errorCode)) ;
192 }
193
194 void freeEnvironment ()
195 {
196 i f (! ! ckAccCalc) c lRe l ea s eKerne l (ckAccCalc) , ckAccCalc = NULL;
197 i f (! ! cpProgram) clReleaseProgram (cpProgram) , cpProgram = NULL;
198
199 i f (! ! cqTransferQueue) clReleaseCommandQueue (cqTransferQueue) , cqTransferQueue = NULL;
200 i f (! ! cqKernelQueue) clReleaseCommandQueue (cqKernelQueue) , cqKernelQueue = NULL;
201
202 i f (! ! cmMassBuf) clReleaseMemObject (cmMassBuf) , cmMassBuf = NULL;

APPENDIX A. N-BODY SIMULATION CODE 90

203 i f (! ! cmPositionBuf) clReleaseMemObject (cmPositionBuf) , cmPositionBuf = NULL;
204 i f (! ! cmVelocityBuf) clReleaseMemObject (cmVelocityBuf) , cmVelocityBuf = NULL;
205
206 i f (! ! ccContext) c lRe leaseContext (ccContext) , ccContext = NULL;
207
208 i f (! ! cpPlat fo rmsLi s t) f r e e (cpPlat fo rmsLi s t) , cpPlat fo rmsLi s t = NULL;
209 i f (! ! cdDev i ce sL i s t) f r e e (cdDev i ce sL i s t) , cdDev i ce sL i s t = NULL;
210 }

Listing A.3: ”OpenCL GPU Kernel”
1 #pragma OPENCL EXTENSION c l kh r f p 6 4 : enable
2
3 #de f i n e SOFTENING 0.001
4
5 #i f n d e f ITEMS PER GROUP
6 #de f i n e ITEMS PER GROUP 256
7 #end i f
8
9 k e r n e l void f o r c e

10 (
11 g l o b a l double ∗ mass ,
12 g l o b a l double4 ∗ pos ,
13 g l o b a l double4 ∗ velo ,
14 double t ime step ,
15 uint4 g l o b a l s i z e
16)
17 {
18 l o c a l double4 sha r ed th i s p o s [ITEMS PER GROUP] ;
19
20 s i z e t l i d = g e t l o c a l i d (0) ;
21
22 b a r r i e r (CLK GLOBAL MEM FENCE) ;
23 sha r ed th i s p o s [l i d] = pos [g e t g l o b a l i d (0)] ;
24 double4 t h i s a c c ;
25
26 t h i s a c c . x = th i s a c c . y = th i s a c c . z = t h i s a c c .w = . 0 ;
27
28 f o r (unsigned in t i = 0 ; i < g l o b a l s i z e . x ; ++i)
29 {
30 double4 d i s t v e c = sha r ed th i s p o s [l i d] − pos [i] ;
31 t h i s a c c += mass [i] ∗ d i s t v e c / powr (l ength (d i s t v e c) + SOFTENING, 3 .) ;
32 }
33
34 s i z e t g id = g e t g l o b a l i d (0) ;
35 s i z e t vid = gid − g e t g l o b a l o f f s e t (0) ;
36
37 b a r r i e r (CLK GLOBAL MEM FENCE) ;
38 ve lo [vid] += th i s a c c ∗ t ime s tep ;
39 b a r r i e r (CLK GLOBAL MEM FENCE) ;
40 pos [g id] += ve lo [vid] ∗ t ime s tep ;
41 }

List of Figures

1.1 The serial algorithm of the N-Body force simulation. 17
1.2 The parallel algorithm of the N-Body force simulation. 19
1.3 The network-enabled algorithm of the N-Body force simulation. 20
1.4 The heterogeneous algorithm of the N-Body force simulation. 22

4.1 The 3-concepts design. 40
4.2 Diagram of the ACAF database design. 45
4.3 Diagram of the ACAF framework design. 46
4.4 The overview UML diagram of key classes of ACAF. 53
4.5 The UML diagram of Architecture subclasses. 56
4.6 The UML diagram of the Technology subclasses. 59

5.1 The full comparison chart of running the code on a different number of
nodes. 75

5.2 The lower range comparison chart of running the code on a different
number of nodes. 76

5.3 The comparison chart of running the code with different hardware con-
figurations. 77

5.4 The comparison chart of the ACAF-based implementation to the bare
implementation. 78

91

Bibliography

[1] CLara.
URL https://www.alpha-tierchen.de/~bkoenig/clara/

[2] The Enzo Project.
URL http://enzo-project.org/

[3] Khronos Group - OpenCL.
URL http://www.khronos.org/opencl

[4] Khronos Group - SyCL.
URL http://www.khronos.org/sycl

[5] libconfig – C/C++ Configuration File Library.
URL http://www.hyperrealm.com/libconfig/

[6] TOP500.
URL https://en.wikipedia.org/wiki/TOP500

[7] A. S. A. Barak. The Virtual OpenCL (VCL) Cluster Platform. In Proc. Intel
European Research & Innovation Conference, page 196, 2011.

[8] A. Ahmad and L. Cohen. A numerical integration scheme for the N -body gravita-
tional problem. volume 12(3):pages 389–402, July 1973. ISSN 0021-9991 (print),
1090-2716 (electronic). doi: http://dx.doi.org/10.1016/0021-9991(73)90160-5.

[9] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, P. Canal,
D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata, D. G. Maline,
M. Goto, J. Iwaszkiewicz, A. Kreshuk, D. M. Segura, R. Maunder, L. Moneta,
A. Naumann, E. Offermann, V. Onuchin, S. Panacek, F. Rademakers, P. Russo,
and M. Tadel. {ROOT} - A C++ framework for petabyte data storage, sta-
tistical analysis and visualization. Computer Physics Communications, volume
180(12):pages 2499 – 2512, 2009. ISSN 0010-4655. doi: http://dx.doi.org/10.
1016/j.cpc.2009.08.005. 40 {YEARS} {OF} CPC: A celebratory issue focused on
quality software for high performance, grid and novel computing architectures.

[10] C. Arasa, M. C. van Hemert, E. F. van Dishoeck, and G. J. Kroes. Molecular Dy-
namics Simulations of CO2 Formation in Interstellar Ices. The Journal of Physical
Chemistry A, volume 117(32):pages 7064–7074, 2013. doi: 10.1021/jp400065v.
PMID: 23550656.

92

https://www.alpha-tierchen.de/~bkoenig/clara/
http://enzo-project.org/
http://www.khronos.org/opencl
http://www.khronos.org/sycl
http://www.hyperrealm.com/libconfig/
https://en.wikipedia.org/wiki/TOP500

BIBLIOGRAPHY 93

[11] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A Fresh Approach
to Numerical Computing. CoRR, volume abs/1411.1607, 2014.

[12] S. Braibant, G. Giacomelli, and M. Spurio. Particles and fundamental interac-
tions: an introduction to particle physics. Springer, 2nd edition, 2011. ISBN
9789400724631.

[13] B. L. Chamberlain. Chapel (Cray Inc. HPCS Language). In D. A. Padua, editor,
Encyclopedia of Parallel Computing, pages 249–256. Springer, 2011. ISBN 978-0-
387-09765-7.

[14] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: An Object-oriented Approach to Non-uniform Cluster
Computing. SIGPLAN Not., volume 40(10):pages 519–538, October 2005. ISSN
0362-1340. doi: 10.1145/1103845.1094852.

[15] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-
Memory Programming. IEEE Comput. Sci. Eng., volume 5(1):pages 46–55, Jan-
uary 1998. ISSN 1070-9924. doi: 10.1109/99.660313.

[16] S. Dindar, E. B. Ford, M. Juric, Y. I. Yeo, J. Gao, A. C. Boley, B. Nelson, and
J. Peters. Swarm-NG: a CUDA Library for Parallel n-body Integrations with focus
on Simulations of Planetary Systems. CoRR, volume abs/1208.1157, 2012.

[17] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella,
D. Graves, M. Lijewski, F. Löffler, B. O’Shea, E. Schnetter, B. V. Straalen, and
K. Weide. A survey of high level frameworks in block-structured adaptive mesh
refinement packages. Journal of Parallel and Distributed Computing, 2014.

[18] A. Dubey, K. Antypas, A. C. Calder, B. Fryxell, D. Q. Lamb, P. M. Ricker, L. B.
Reid, K. Riley, R. Rosner, A. Siegel, F. X. Timmes, N. Vladimirova, and K. Weide.
The software development process of FLASH, a multiphysics simulation code. In
J. Carver, editor, SE-CSE@ICSE, pages 1–8. IEEE, 2013. ISBN 978-1-4673-6261-0.

[19] W. Dubitzky, K. Kurowski, and B. Schott, editors. Large-Scale Computing. John
Wiley & Sons, Inc., Hoboken, NJ, USA, November 2011. ISBN 9781118130506.
doi: 10.1002/9781118130506.

[20] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde. WaLBerla: HPC
software design for computational engineering simulations. Journal of Compu-
tational Science, volume 2(2):pages 105–112, May 2011. ISSN 18777503. doi:
10.1016/j.jocs.2011.01.004.

[21] D. Frenkel and B. Smit. Understanding Molecular Simulation (Second Edition).
Academic Press, second edition edition, 2002. ISBN 978-0-12-267351-1. doi: http:
//dx.doi.org/10.1016/B978-012267351-1/50003-1.

BIBLIOGRAPHY 94

[22] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Mac-
Neice, R. Rosner, J. W. Truran, and H. Tufo. FLASH: An Adaptive Mesh Hydro-
dynamics Code for Modeling Astrophysical Thermonuclear Flashes. Astrophys. J.
Supp., volume 131:pages 273–334, November 2000. doi: 10.1086/317361.

[23] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics - Theory
and application to non-spherical stars. Monthly Notices of the Royal Astronomical
Society, volume 181:pages 375–389, November 1977. doi: 10.1093/mnras/181.3.
375.

[24] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf.
The Cactus Framework and Toolkit: Design and Applications. In Vector and
Parallel Processing – VECPAR’2002, 5th International Conference, Lecture Notes
in Computer Science. Springer, Berlin, 2003.

[25] A. Graps. N-Body / Particle Simulation Methods, 1996.
URL http://www.cs.cmu.edu/afs/cs/academic/class/15850c-s96/www/

nbody.html

[26] W. Gropp, E. Lusk, and A. Skjellum. Using MPI (2Nd Ed.): Portable Parallel
Programming with the Message-passing Interface. MIT Press, Cambridge, MA,
USA, 1999. ISBN 0-262-57132-3.

[27] T. Hamada and K. Nitadori. 190 TFlops Astrophysical N-body Simulation on a
Cluster of GPUs. In 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, November, pages 1–9.
IEEE, November 2010. ISBN 978-1-4244-7557-5. doi: 10.1109/SC.2010.1.

[28] S. Harfst, A. Gualandris, D. Merritt, R. Spurzem, S. P. Zwart, and P. Berczik.
Performance analysis of direct N-body algorithms on special-purpose supercom-
puters. New Astronomy, volume 12(5):pages 357–377, July 2007. ISSN 13841076.
doi: 10.1016/j.newast.2006.11.003.

[29] P. Jetley, L. Wesolowski, F. Gioachin, L. V. KalÃ c©, and T. R. Quinn. Scaling
Hierarchical N-body Simulations on GPU Clusters. In SC, pages 1–11. IEEE, 2010.
ISBN 978-1-4244-7559-9.

[30] A. Lazzaro, S. Jarp, J. Leduc, A. Nowak, and L. Valsan. Report on the par-
allelization of the MLfit benchmark using OpenMP and MPI. Technical Report
CERN-OPEN-2014-030, CERN, Geneva, Jul 2012.

[31] L. B. Lucy. A numerical approach to the testing of the fission hypothe-
sis. Astronomical Journal, volume 82:pages 1013–1024, December 1977. doi:
10.1086/112164.

[32] J. Makino, T. Fukushige, M. Koga, and K. Namura. GRAPE-6: Massively-Parallel
Special-Purpose Computer for Astrophysical Particle Simulations. Publications
of the Astronomical Society of Japan, volume 55(6):pages 1163–1187, 2003. doi:
10.1093/pasj/55.6.1163.

http://www.cs.cmu.edu/afs/cs/academic/class/15850c-s96/www/nbody.html
http://www.cs.cmu.edu/afs/cs/academic/class/15850c-s96/www/nbody.html

BIBLIOGRAPHY 95

[33] G. Marcus. Acceleration of Astrophysical Simulations with Special Hardware. Ph.D.
thesis, University of Heidelberg, Germany, 2011.

[34] S. Marri and S. D. M. White. Smoothed particle hydrodynamics for galaxy-
formation simulations: improved treatments of multiphase gas, of star formation
and of supernovae feedback. Monthly Notices of the Royal Astronomical Society,
volume 345(2):pages 561–574, 2003. doi: 10.1046/j.1365-8711.2003.06984.x.

[35] N. Nakasato, G. Ogiya, Y. Miki, M. Mori, and K. Nomoto. Astrophysical Particle
Simulations on Heterogeneous CPU-GPU Systems, June 2012.

[36] K. M. Pontoppidan, C. P. Dullemond, E. F. van Dishoeck, G. A. Blake, A. C. A.
Boogert, N. J. Evans, II, J. E. Kessler-Silacci, and F. Lahuis. Ices in the Edge-
on Disk CRBR 2422.8-3423: Spitzer Spectroscopy and Monte Carlo Radiative
Transfer Modeling. The Astrophysical Journal, volume 622:pages 463–481, March
2005. doi: 10.1086/427688.

[37] D. Razmyslovich and G. Marcus. Astrophysical-oriented Computational multi-
Architectural Framework: Design and Implementation. International Journal On
Advances in Intelligent Systems, volume 9(3&4), forthcoming.

[38] D. Razmyslovich, G. Marcus, and R. Männer. Towards an Astrophysical-oriented
Computational multi-Architectural Framework. In Computational World 2016,
pages 16 – 26. IARIA, 2016. ISSN 2308-4170.

[39] D. Sahu, A. Das, L. Majumdar, and S. K. Chakrabarti. Monte Carlo simulation
to investigate the formation of molecular hydrogen and its deuterated forms. New
Astronomy, volume 38:pages 23 – 30, 2015. ISSN 1384-1076. doi: http://dx.doi.
org/10.1016/j.newast.2014.12.011.

[40] V. Springel. The cosmological simulation code GADGET-2. Monthly Notices of
the Royal Astronomical Society, volume 364:pages 1105–1134, December 2005. doi:
10.1111/j.1365-2966.2005.09655.x.

[41] R. Spurzem, P. Berczik, I. Berentzen, K. Nitadori, T. Hamada, G. Marcus,
A. Kugel, R. Männer, J. Fiestas, R. Banerjee, and R. Klessen. Astrophysical
particle simulations with large custom GPU clusters on three continents. Com-
puter Science - Research and Development, volume 26(3-4):pages 145–151, April
2011. ISSN 1865-2034. doi: 10.1007/s00450-011-0173-1.

[42] T. Stroman. Particle-in-cell simulation of astrophysical plasmas: probing the origin
of cosmic rays. Ph.D. thesis, Iowa State University, United States of America, 2010.

[43] H. Wang, S. Potluri, M. Luo, A. Singh, S. Sur, and D. Panda. MVAPICH2-
GPU: optimized GPU to GPU communication for InfiniBand clusters. Computer
Science - Research and Development, volume 26(3-4):pages 257–266, 2011. ISSN
1865-2034. doi: 10.1007/s00450-011-0171-3.

BIBLIOGRAPHY 96

[44] L. Wang, R. Spurzem, S. Aarseth, M. Giersz, A. Askar, P. Berczik, T. Naab,
R. Schadow, and M. Kouwenhoven. The DRAGON simulations: globular cluster
evolution with a million stars. Monthly Notices of the Royal Astronomical Society,
volume 458(2):pages 1450–1465, 2016.

[45] L. Wang, R. Spurzem, S. Aarseth, K. Nitadori, P. Berczik, M. B. N. Kouwenhoven,
and T. Naab. NBODY6++GPU: ready for the gravitational million-body problem.
Monthly Notices of the Royal Astronomical Society, volume 450(4):pages 4070–
4080, 2015. doi: 10.1093/mnras/stv817.

[46] M. Wetzstein, A. F. Nelson, T. Naab, and A. Burkert. Vine - A Numerical Code for
Simulating Astrophysical Systems Using Particles. I. Description of the Physics and
the Numerical Methods. The Astrophysical Journal Supplement, volume 184:pages
298–325, October 2009. doi: 10.1088/0067-0049/184/2/298.

[47] S. P. Zwart. The Astronomical Multipurpose Software Environment and the Ecol-
ogy of Star Clusters. In CCGRID, page 202. IEEE Computer Society, 2013. ISBN
978-1-4673-6465-2.

Acknowledgements

.
To my supervisor Prof. Dr. Reinhard Männer, for giving me a chance to work on

this thesis, for his support and guidance during the last seven years.

To Dr. Guillermo Ańıbal Marcus Mart́ınez, for his guidance in the beginning of my
work on the thesis and for his very valuable comments and advises on the final stages.

To German Academic Exchange Service (DAAD), for providing the financial sup-
port during my first year of study.

To the company Volume Graphics GmbH, specially to the directors Christoph Poli-
woda, Thomas Günther and Christof Reinhart, for their understanding during my
part-time work in the company last three years.

To my parents, for their love and support throughout my life.

To my wife, for everyday inspiration, for her support from the very beginning and
for all the good times that keep me going.

To all of them, I thank you sincerely for your support during the time that has
taken me to write this thesis.

97

	Acronyms
	Glossary
	Introduction
	Astrophysical Simulations
	N-Body Simulation Example
	Formal Description
	Computational Algorithm

	Description of the Problem

	Current State of The Art
	Standards
	MPI
	MVAPICH2

	CUDA
	OpenMP
	OpenACC
	OpenHMPP

	OpenCL
	SyCL

	Libraries, Frameworks and Languages
	Cactus
	Charm++
	Chapel
	Flash Code
	Others

	The Proposed Approach
	Framework Design and Implementation Aspects
	Why a Framework?
	Language Extension Approach
	New Programming Language Approach
	Framework Approach
	Decision Making

	Framework Design
	Target Users
	Target Architecture
	Three Concepts Design
	Design of the Database
	Configuration
	Context
	Distribution
	Storage Objects
	Input and Output Data Definition
	Content Objects
	Buffers

	Design of Framework
	Algorithm
	Implementations

	Design of the Framework Implementation
	Device Detection Mechanism
	Configuration File
	Context, Database and Distribution Initialization
	Content Objects and Buffers Instantiation
	The Computational Concept
	Simulation Execution Principles
	Considered Limitations

	Classes Description
	Basic Utility Classes
	Handle and Class
	Logger
	variant
	vector_t
	ErrorCode
	Option

	ACAF
	Device
	Architecture
	CPUArchitecture
	GPUArchitecture

	Technology
	PthreadTechnology
	OpenCLTechnology
	CUDATechnology

	Network
	MPINetwork

	Context
	Storage
	LocalStorage and NetworkStorage
	DeviceStorage
	OpenCLStorage
	CUDAStorage
	RAMStorage
	MPIStorage
	NodeStorage

	Distribution
	Content
	LocalArray
	SyncedArray

	Database
	Kernel
	Technology::Implementation

	Results
	The Usage Example
	The Configuration File
	OpenCL Kernel Implementation
	pthread Kernel Implementation
	The Main Function
	Analysis
	Test Setup

	Benchmarking

	Discussion and Conclusion
	Pros and Cons
	Criteria Evaluation
	Retrospective

	Future Work
	Appendices
	N-Body Simulation Code
	List of Figures
	Bibliography
	Acknowledgements

