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Abstract

Camera motion estimation and dense scene reconstruction are essential for mod-
ern computer vision applications such as autonomous driving, robot navigation
and virtual reality. State-of-the-art methods are usually based on stereo camera
systems that use the information about the distance between the two cameras to
uniquely estimate the depth map. However, these systems need to be calibrated
and are too expensive for some special industrial applications. Thus, we focus
in this work on monocular camera systems that consist of a single moving cam-
era. To increase the robustness of the method we use temporal information in
terms of filters. These use temporal consistency to improve the accuracy of the
estimation of the current state of a system, e.g. the unknown camera motion or
the depth map. Instead of using established stochastic filters such as extended
Kalman filters, unscented Kalman filters or particle filters we use novel minimum
energy filters that do not base on a stochastic model but on the minimization of
an energy function.
In a first step we derive the minimum energy filter and provide differential equa-
tions for the optimal state and the corresponding second-order operator. We
demonstrate that this filter is as exact as state-of-the-art stochastic filters for
most problems and, in addition to it, superior in more involved scenarios. Then
we consider a simple geometric setting for the reconstruction of the camera motion
within a static scene based on stereo image data. There we formulate a non-linear
filtering problem on the special Euclidean group based on non-linear observations
of optical flow and depth map. In experiments we show that the underlying cam-
era motion can be reconstructed with minimum energy filters as accurate as in
other state-of-the-art stereo methods. Finally, we present an approach for the
joint reconstruction of camera motion and disparity map (inverse of depth map)
in a monocular approach by means of minimum energy filters. By introducing
a novel disparity group we can derive the filter without additional constraints or
barrier functions. Further we generalize the used energy function to a Charbon-
nier penalty function which is robuster against outliers in the optical flow. We
also demonstrate that additional regularizers can be easily integrated within the
overall filtering problem providing a rich basis for many applications. From the
mathematical point of view we solve by means of minimum energy filters a non-
linear filtering problem on a Lie group for a high dimensional problem – thus a
problem which is infeasible for most stochastic filter.
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Zusammenfassung

Die Schätzung der Kamerabewegung und dichte Szenen-Rekonstrution sind
wesentlich für Anwendungen im Bereich des maschinellen Sehens, wie etwa au-
tonomes Fahren, Roboter-Navigation und virtuelle Realität. Aktuelle Methoden
basieren normalerweise auf Stereo-Systemen welche die Information über die Ent-
fernung der Kameras nutzen, um Tiefenkarten eindeutig zu schätzen. Allerdings
müssen diese Systeme kalibriert werden und sind zu teuer für spezielle industrielle
Anwendungen. Daher fokussieren wir uns in dieser Arbeit auf monokulare Kamera-
Systeme, bestehend aus nur einer sich bewegenden Kamera. Um die Robustheit der
Methode zu erhöhen, verwenden wir zeitliche Informationen mithilfe von Filtern.
Diese nutzen zeitliche Konsistenz, um die Genauigkeit der Schätzung des aktuellen
Zustands des Systems zu erhöhen, z.B. die unbekannte Kamerabewegung oder die
Tiefenkarte. Anstatt etablierter stochastischer Filter, nutzen wir neue minimale
Energie Filter, welche nicht auf einem stochastischen Modell basieren, sondern auf
der Minimierung einer Energie Funktion.
In einem ersten Schritt leiten wir den Minimale Energie Filter her, einschließlich
der Differentialgleichungen für den optimalen Zustand und dem entsprechenden
Operator zweiter Ordnung. Experimente zeigen, dass dieser Filter für die meis-
ten Problemstellungen genauso exakt ist wie stochastische Filter des Standes der
Forschung und darüber hinaus in komplizierteren Szenarien sogar überlagen ist.
Danach betrachten wir eine einfache geometrische Situation für die Rekonstruk-
tion der Kamerabewegung in einer statischen Szene. Wir formulieren ein nicht-
lineares Filter-Problem auf der speziellen Euklidischen Gruppe, welches auf nicht-
lineare Beobachtungen vom optischen Fluss und der Tiefenkarte basiert. In Exper-
imenten zeigen wir, dass wir die zugrunde liegende Kamerabewegung mindestens
so genau schätzen können wie alternative Methoden des Standes der Forschung.
Zum Schluss präsentieren wir einen Ansatz für die gemeinsame Rekonstruktion
der Kamerabewegung und der Disparitäten-Karte (Inverse der Tiefen) in einem
monokularen Ansatz mit Hilfe von Minimale Energie Filtern. Durch Einführung
einer neuen Disparitäten-Gruppe können wir den Filter ohne zusätzliche Nebenbe-
dingungen oder Barriere-Funktionen herleiten. Ferner verallgemeinern wir die En-
ergie Funktion zu einer Charbonnier Straf-Funktion welche robuster gegenüber
Ausreißern im optischen Fluss sind. Wir zeigen auch, dass sich zusätzliche Regular-
isierer leicht in das gesamte Filterungs-Problem einbetten lassen, was eine ergiebige
Basis für viele Anwendungen ergibt. Vom mathematischen Standpunkt aus betra-
chtet, lösen wir mithilfe minimaler Energie Filter ein nichtlineares Filter-Problem
auf einer Lie Gruppe für ein hochdimensionales Problem – also ein Problem das
für die meisten stochastischen Filter unlösbar ist.
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Chapter 1

Introduction

1.1 Overview and Motivation

Accurate camera motion estimation and three dimensional scene reconstruc-
tion from observed image or video data is a fundamental building block of
computer vision. There are broad applications in many areas such as au-
tonomous driving, robot navigation, 3D reconstruction of large outdoor ob-
jects as well as small scale medical applications e.g. manufacturing of dental
crowns.

Reconstruction methods that use multiple cameras in parallel gain precise
scene representation. First applications which use these methods are already
available on the market. However, multiple camera systems generate a big
amount of data that need to be processed. The relative position of one
camera to the others has to be known precisely such that these methods
require a good calibration before they can be used. On the other side in-
dustrial applications are requiring cheap sensors and prefer systems with as
little hardware costs as possible. Therefore in the last decade reconstruc-
tion methods that require only a single camera (also known as monocular
methods) gained center stage. Monocular methods require less calibration
effort but have the drawback that the monocular reconstruction is ill posed
because of the unknown scene scale. It cannot be reconstructed uniquely
without additional information about invariants within the scene. Further-
more, monocular methods have a less beneficial motion parallax compared to
stereo methods. Through this fact, state-of-the-art methods often use tem-
poral consistency assumptions on monocular camera systems. By recording
consecutive frames they increase accuracy and robustness. One can distin-
guish between offline methods such as bundle adjustment, which require a
full video, and online methods that can (in principle) process the data in
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Chapter 1. Introduction

real time, e.g. sliding window methods and filtering methods.
In this work we focus on filtering methods for the problem of camera mo-
tion estimation and monocular scene reconstruction. Unlike sliding window
approaches, stochastic filters provide a broad mathematical framework and
are well understood within the last half century outbound the seminal work
of Rudolf Kálmán in 1960. This so called Kálmán filter was frequently used
for many important engineering tasks in the past, such as for the Apollo
13 mission to the moon, in the navigation of satellites, aircraft steering and
many other tasks in sciences and economy down to the present day. Mathe-
matically spoken, Kálmán found a solution to the following problem: Given
observations of a system at different time points t, e.g. radar signals of a
plane, which we denote by yt, we want to recover the most likely position of
the plane x(t). More exactly, we want to determine the whole a posteriori
probability distribution of the state process, denoted by πt which is given
through

πt(A) := P(xt ∈ A|ys, s ≤ t) . (1.1)

We assume that the movement of the plane can be described by a mathe-
matical equation, that describes the temporal change rate of the position of
the aircraft. This can be expressed by a continuous function f that depends
on the current position x(t). This behavior can be written as ordinary differ-
ential equation ẋ(t) = f(x(t)). We allow the state to differ from this system
by introducing a noise term δ(t) and obtain the following equation

ẋ(t) = f(x(t)) + δ(t) , x(t0) = x0 . (1.2)

Here we also demand the existence of an initial state x0 in order to obtain
a well defined solution. The observations depend on the unknown state x(t)
by a function h(x(t)) and some measurement noise ε(t). We can write this
equation as follows:

y(t) = h(x(t)) + ε(t) . (1.3)

Kálmán searched for a solution of the following problem: Given observations
y(s), s ≤ t up to a time t, what is the most likely state x∗(t) that fits to
these observations? Mathematically spoken, we want to find the following
expression, also known as maximum a posteriori (MAP) estimate, i.e.

x∗(t) = arg max
x(t)

πt(x) . (1.4)

For the case of linear functions f and h and Gaussian noise processes δ(t)
and ε(t), Kálmán found an exact solution for this problems by minimizing the
least squares error on the residuals. The resulting a posteriori distribution is

2



1.1. Overview and Motivation

again normally distributed (Gaussian), and the generating first and second-
order moment can be calculated explicitly. Due to the great success of the
Kálmán filter this approach was extended in the following decade to plenty
of problems in different areas of sciences and engineering. Many modern
problems require a solution for the filtering problem for scenarios of non-
linear dependencies between that state and the observations. However, for
the general filtering problem with non-linear functions f and h it was shown
that no explicit finite dimensional solution for the a posteriori distribution
πt exists [63]. Besides, the demand for the error terms ε(t) and δ(t) to be
normally distributed does often not mirror the correct description of the
considered physical system.
Therefore a couple of strategies have been developed to tackle the non-
linearities in the filtering approach: By using linear approximations the ex-
tended Kálmán Filter is relatively similar to the classical (linear) Kálmán
filter. Unscented Kálmán filters sample the mean and variance of the a pos-
teriori distribution by using sigma-points and the unscented transformation.
Particle filters find a Monte-Carlo-approximation of the a posteriori distri-
bution by using sampling methods and variance reduction strategies. Many
other engineering tricks (e.g. coordinate transform) were adapted to specific
problems and led to convincing results.
Today’s challenges in image processing, such as the reconstruction of three
dimensional structure of a scene or the estimation of camera motion often
require accurate methods to find suitable solutions for the filtering problem
to cope with such problems as follows:

• non-linearities between the observations (e.g. image features) and the
latent variables (camera motion, depth map) on state space (through
a projective camera),

• non-Euclidean geometry of the state space (rotation of camera motion,
positiveness constraints of depth maps),

• high-dimensional state space (each pixel of an image correspond to a
dimension),

• higher-order differential equations (e.g. separation of the kinematics of
the camera motion into different orders),

• and outliers or ambiguous data points within the observations.

In the last years modern filters have been established that support a broader
class of a posteriori distributions, e.g. particle filters, that are very successful

3



Chapter 1. Introduction

in image processing. They are not limited to the Gaussian case but unfor-
tunately these methods require a careful design and sophisticated variance
reducing techniques to gain good results. Other methods try to find a good
(finite dimensional) approximation of the true a posteriori distribution that
is given through the Kushner-Stratonovich equation by numerical considera-
tions or projection onto a suitable set of exponential families [18]. A good
overview about these non-linear methods can be found in [24]. Due to this
variety of non-linear filtering methods, many problems can be solved today
with a high accuracy. For problems containing a non-trivial geometry, as
appearing in modern applications (e.g. robitocs), non-linear filters were gen-
eralized for special Riemannian manifolds and Lie groups. As an example we
mention particle filters on SE3 [53] and extended Kálmán filters on Lie groups
[17] for e.g. application to monocular SLAM (Simultaneous Localization And
Mapping).

Although for each single problem can be solved with methods, it becomes
apparent that solving all problems at once seems to be involved for most
existing methods. The non-linear problem which we want to solve requires a
filter that copes with a curved geometry of Lie groups and with high dimen-
sional state spaces. Moreover, it would be beneficial to use an alternative
to the least square error minimization that is used within extended Kálmán
filters. Least squares minimization tends to be sensitive to outliers within
the data, and does often not lead to the desired results in image processing
applications.

As a consequence we will take another path in this work: Instead of using
a probabilistic interpretation of the filtering problem we will investigate the
same problem from the point of view of optimal control following the work
of Mortensen [58]. This results in an optimal control problem in which a
certain energy function is minimized that penalizes deviations from the model
of the state (1.2) and the observation (1.3). Interpreting the model noise
δ(t) as the control variable of the system one can recursively approximate
the optimal state x∗(t) of (1.2) by a second-order Minimum Energy Filter
using Hamiltonian dynamics and the well known Hamilton-Jacobi-Bellman
equation.

1.2 Related Work

Incorporation of temporal context – in terms of (partial) differential equations
– into the estimation of latent variables has a long tradition in many common
applications, e.g. robotics, aviation and astronautics. Starting from the
seminal work of Kálmán [49] considering Gaussian noise and linear filtering
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1.2. Related Work

equations, stochastic filters had have great success in many important areas
of mathematics, computer sciences and engineering during the last fifty years.
The filtering methods have been improved during the last decades to cope
with non-linearities of state and observation equations, such as extended
Kálmán filters [46], unscented Kálmán filters [47] and particle filters [4]. For
a detailed overview of these methods we refer to [7, 24].
However, one strong limitation of stochastic filters represents the fact that
the a posteriori distribution is usually unknown and, in general, is infinite
dimensional due to the non-linear dependencies. To cover a large bandwidth
of a posteriori distributions Brigo et al. approximated these by distributions
of the exponential family [18]. In contrast, particle filters try to sample from
these [4]. Extended and unscented Kálmán filters, on the other hand, only
allow distributions that are Gaussian.
Although these methods work successfully for many real-valued problems,
they cannot be easily transferred to filtering problems which are constrained
to manifolds, appearing in many modern engineering and robotic applica-
tions. Therefore, in the last decade, several strategies have been developed
to adapt classical unconstrained filters to filtering problems on specific Lie
groups and Riemannian manifolds: Kálmán filters were transferred to the
manifold of symmetric positive definite matrices [81]. Extended Kálmán fil-
ters on SO3 [56] with symmetry preserving observers [15] were elaborated.
Particle filters on SO3 and SE3 were proposed in [53] as well on Stiefel [79] and
on Grassman manifolds [68]. An application of particle filters to monocular
SLAM is reported in [54].
Recently, unscented Kálmán filters were generalized to Riemannian mani-
folds [42]. Since then, extended Kálmán filters for constrained model and
observation equations were developed [17] for general Lie groups based on
the idea of the Bayesian fusion [86].
However, although stochastic filters have been adapted to curved spaces and
non-linear measurement equations, they still require assumptions about the a
posteriori distributions, e.g. to be Gaussian. Furthermore, while transferring
related concepts of probability theory and stochastic analysis to Riemannian
manifolds is mathematically feasible [45, 21, 20], exploiting these computa-
tionally for stochastic filtering seems involved. The widely applied particle
filters also have limitations in connection with manifolds since the sampling
requirements of particles become expensive [54].
A different way to approach a solution to the filtering problem was proposed
by Mortensen [58]. Rather than trying to cope with the probabilistic set-
ting of the filtering problem, he investigated the filtering problem from the
viewpoint of optimal control. By using the control parameter to model noise
and by integrating a quadratic penalty function over the time, he foufnd a
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Chapter 1. Introduction

first-order optimal Minimum Energy Filter. The advantage of this method
is that it does not rely on assumptions about, or approximations of, the a
posteriori distribution and that Hamilton-Jacobi-Bellman equation provides
a well-defined optimality criterion. It was shown theoretically in [50] that
the minimum energy estimator converges with exponential speed for control
systems on Rn that are uniformly observable.

The first article applying the minimum energy filters to geometrically con-
strained problems used perspective projections in the case of vectorial mea-
surements [3]. The minimum energy filters were generalized to second-
order filters on specific Lie groups with the help of geometric control theory
in [48, 2, 70]. The Minimum Energy Filter, as introduced by Mortensen [58],
was generalized to the Lie group SO3 for the case of linear observation equa-
tions [88] and for attitude estimation [87]. Further follow-up work [71] gen-
eralized the filter to non-compact Lie groups [72].

1.3 Contribution

First, we introduce the main concepts of minimum energy filtering which
are based on optimal control theory and derive the second-order minimum
energy filter for the case of Euclidean state spaces. We also provide compar-
isons with state-of-the-art stochastic filters for difficult filtering problems (e.g.
with sinusoidal sensor) demonstrating that the proposed method is superior.
Then we extend the minimum energy filtering approach of Saccon et al. [73],
which is itself based on the recursive filtering principle of Mortensen [58],
to the problem of camera motion estimation on the special Euclidean group
SE3 . The corresponding non-linear filtering problem is based on observations
of optical flow and depth map, which are calculated in a preprocessing step.
This problem implicitly corresponds to a stereo camera system. We derive
the second-order optimal minimum energy filter, which results in a differen-
tial equation for the optimal state and its second-order operator. Instead of a
constant velocity model, where the camera motion is propagated constantly,
we use a higher-order kinematic model that also respects constant accelera-
tions or higher-order moments. We demonstrate that this model is beneficial
in situations where the camera motion changes quickly, e.g. in curves or due
to accelerations of the camera. Numerical experiments on the challenging
KITTI benchmark demonstrate that our method reconstructs the camera
motions as good as state-of-the-art methods. We also provide comparisons
between the extended Kálmán filter and the proposed minimum energy fil-
ters. This shows that the minimum energy filter is superior which confirms
the results of [88].
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1.4. Organisation

In a second step we generalize this approach from a stereo approach to a
monocular approach which is based on non-linear observations of optical flow.
The state variables which need to be reconstructed are the camera motion
and higher-order kinematics as well as the disparity map. Here we use a
disparity map instead of a depth map, which has a better numerical behavior.
To avoid constraints such as barrier functions within the optimization, we
define a novel disparity group and derive the corresponding exponential map
and logarithmic map. Thus, the state space of the overall filtering problem
can be expressed as a product Lie group. Since the observations of optical
flow are not always reliable, e.g. in regions without texture, we extend the
approach of Saccon et al. [73] from a quadratic to a generalized Charbonnier
energy function. This energy function is a smooth approximation to the
L1 norm and gains accurate reconstructions in contrast to a quadratic L2

energy function. In the sequel we provide the derivation of the minimum
energy filter. The calculations result in a recursive description of the optimal
state of the system as well as a second-order operator. Finally, we briefly
discuss how to add a spatial regularizer to the filtering problem resulting in
a better reconstruction of the disparity map.

Overall we solve in the last chapter a non-linear filtering problem on a (prod-
uct) Lie group for a high dimensional problem – a problem which is infeasible
for most stochastic filters. We also showed that the minimum energy filter
enables to solve even more complicated problems that also use additional
regularization terms.

1.4 Organisation

This work is structured as follows: In the chapter 2 we introduce the fun-
damental concepts of stochastic filtering theory in terms of the well-known
Kushner-Stratnonovich equation. Then we give an overview about stochastic
filters and briefly discuss the benefits and drawbacks of these. We continue
with stating some of the fundamental concepts of optimal control theory
which we will use then to derive the second-order optimal minimum energy
filters in the case of an Euclidean state space. Afterwards we consider a case
study where we compare the minimum energy filter with classical stochas-
tic filters. Chapter 3 continues with a short introduction about fundamental
concepts of differential geometry and Lie groups that we will need later for the
derivation of the main results of this thesis. Then we discuss the concepts
of how the minimum energy filtering principle formulated on a Euclidean
space can be assigned to a Lie group. Chapter 4 contains the first main
contribution of this work – the derivation of the second-order optimal min-

7



Chapter 1. Introduction

imum energy filter on the special Euclidean group SE3 for camera motion
estimation within a stereo approach. Finally, this approach is generalized in
chapter 5 for the problem of joint monocular filtering of camera motion and
disparity map. We conclude our work in chapter 6 with a summary about
the contributions of this work and a brief discussion about what this work
can be extended to in the future.
Please take into account that we only proof the main Theorems within the
chapters for a better readability of this work. Thus, we shifted the the most
technical proofs of Propositions and Lemmas to the appendix. However,
these proofs belong to the main contributions of this work.

1.5 Notation

Sets
N := {1, 2, 3, . . . } natural numbers
R real numbers
[n] := {1, . . . , n} set of integer numbers from 1 to n
Ω (discrete and finite) image domain
z ∈ Ω point in image domain
|Ω| number of elements in Ω (if finite)
nΩ number of pixels in image domain

Differential Geometry and Lie groups
M differentiable manifold
TxM tangent space of M at x ∈M
TM tangent bundle on M
η, χ, ξ tangent vectors ∈ TxM
〈ξ, η〉x Riemannian metric at x ∈M
∇·· Levi-Civita connection on TM
G general Lie group
g Lie algebra of G
IdG, Id identity of considered Lie group
〈ξ, η〉 = 〈ξ, η〉Id Riemannian metric on Lie algebra g
vecg : g→ Rn vectorization operator
matg =: vec−1

g inverse of vecg
ExpG exponential map on G
LogG logarithmic map on G
GL4 General Linear group
SO3 Special Orthogonal group
so3 Lie algebra of SO3

8



1.5. Notation

SE3 Special Euclidean group
se3 Lie algebra of SE3

vecse : se3 → R6 vectorization operator
matse = vec−1

se inverse of vecse
Pr : R4×4 → se3 projection onto Lie algebra se3

LGH := GH left translation
THLG tangent map of left translation at H
xη := TIdLxη shorthand for tangent map
x−1η := TIdL

∗
xη shorthand for dual of tangent map

ωχη := ω(χ, η) := ∇χη connection function for χ, η ∈ g
ω�
χ η := ωηχ swap operator
〈ω∗χη, ξ〉 := 〈η, ωχξ〉 dual of connection function
〈ω�∗

χ η, ξ〉 := 〈η, ωξχ〉 dual of swap operator
[·, ·] Lie bracket on considered Lie group, matrix commu-

tator
Df(x) differential/Riemannian gradient of f at x
Df(x)[η] := 〈Df(x), η〉 directional derivative of f in direction η
Hess f(x) Hessian of a twice differentiable function f : G → R
Dif differential resp. i-th component of f
Dx differential of an expression resp. x

Control Theory and Stochastic Filtering
x = x(t) state space variable
f function that models changes of x
y = y(t) observation space variable
h function that models dependency of state space vari-

able x
δ = δ(t) control variable (model noise)
ε = ε(t) observation noise (residual)
µ costate / dual variable
ẋ(t) = d

dt
x(t) (total) time derivative of x

H Hamiltonian
J energy function

Matrix and Vector Notations
x column vector (bold printed)
xi i-th to j-th component of x
〈x,y〉 scalar product on Rn

A matrix (capitals)
Aij element of A in row i and column j
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Ai:j,k:l block matrix with rows from i to j and columns from
k to l from A

vec(A) vectorization (stacking columns of matrix A)
1n n× n identity matrix
‖x‖2

Q := 〈x,Qx〉 quadratic form regarding Q
eni i-th unit vector in Rn

0n×m zero matrix of dimension n×m
1n×m one matrix of dimension n×m
0n zero vector of dimension n
1n one vector of dimension n

10



Chapter 2

Stochastic Filtering

In this chapter we summarize the classical filtering problem that consists of
finding the a posteriori distribution πt of the unknown state x(t) given ob-
servations y(s), s ≤ t in the past. We will require the theoretical background
in the chapters below and demonstrate that non-linear filtering problems are
involved to solve at large. The general solution of this filtering problem is
implicitly given by the famous Kushner-Stratonovich equation which is also
known as Fokker-Planck equation for physicists. This stochastic partial dif-
ferential equation is the normalized version of the Zakai equation and these
equations are connected by the Kallianpur-Striebel Theorem. For brevity we
do not provide the derivation of these Theorems but want to give a little
insight to filtering theory to explain why the general problem is hard.

Up to some carefully designed filtering problems, e.g. with linear dependen-
cies between the unknown state and observations and with additive Gaussian
noise, it is hard to find an explicit expression for the a posteriori distribution
πt. In fact, many non-linear filtering problems result in an infinite dimen-
sional a posteriori distribution and thus cannot be solved exactly. Hence
we introduce in this chapter some well known strategies to approximate the
non-linear filtering problem and briefly discuss the benefits and drawbacks
of these methods.

2.1 Theoretical Backgrounds

In this section we introduce the general filtering problem with the unknown
state variable that is given through a stochastic differential equation (stochas-
tic integral equation) in continuous time as well as the given observations y(t)
that depend on x(t) and the a posteriori distribution π(t). For details we refer
to [7].
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2.1.1 State and Observation Equations

In this work we only consider the case where the unknown state x is a diffusion
process which can be described by a stochastic differential equation, i.e.

xt = x0 +

∫ t

t0

f(xs) ds+

∫ t

t0

σ(xs) dBs, (2.1)

where the second integral is stochastic integral by a Brownian motion Bt.
This can also be expressed as differential equation as follows

dx(t) = f(x(t)) dt+ σ(x(t)) dBt, x(t0) = x0. (2.2)

This stochastic differential equation means, that the change in x retains like
the function f(x) disturbed by a noise term σ that might also be dependent on
x and a Brownian motion. As in equation (1.2) we assume that the stochastic
part of this stochastic differential equation is simply a white noise process.
This means that σ ≡ 1. Then the differential of the Brownian motion is the
white noise processs δ(t)dt = dBt. We do not known the state of x directly
but some observations that depend on x by a measurable function h̃, such
that the observations can be expressed as

yt = y0 +

∫ t

t0

h̃(xs) ds+Wt. (2.3)

W = (Wt)t∈R again denotes a brownian motion, which models noise on the
observations. Since the function h̃ does not depend on y, this equation is
often represented as

yt = h(x(t)) +Wt, (2.4)

where we set h(x(t)) = y0 +
∫ t
t0
h̃(xs) ds. Take into account that h depends on

the whole trajectory of x rather than the single state x(t). For the mathemat-
ical investigations one usually prefers the first representation (2.3), however
for practical purposes the second expression (2.4) is more suitable. As most
filters usually use the representation (2.4) we will also use this convention.

2.1.2 The A Posteriori Distribution

The filtering problem consists of estimating the conditional distribution πt
of a signal x at time t given the information accumulated from observing y
in the interval [0, t]. This means for a bounded and measurable function φ,
computing the a posteriori distribution

πtφ := E(φ(xt)|Yt), (2.5)
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where Yt := σ(ys, s ∈ [0, t]) ∨ N denotes the filtration generated by ys aug-
mented with all sets of measure null.

2.1.3 The Kushner-Stratonovich equation

In the 1960s Harold Kushner found a rigorous mathematical description for
the general filtering problem that can be expressed as a partial differential
equation, if some regularity assumptions are fulfilled [51, 52]. Using the
second-order differential operator

A = fD +
1

2
σ2D2 ,

we can formulate the Kushner-Stratonovich partial differential equation
which implicitly describes the a posteriori distribution of the general filtering
problem.

Theorem 2.1.1 (Kushner-Stratonovich). Under suitable conditions [7, Eq.
(3.25), (3.42)] the conditional distribution of the signal πt satisfies the fol-
lowing evolution formula, called Kushner-Stratonovich equation,

πt(φ) =πt0(φ) +

∫ t

t0

πs(Aφ) ds

+

∫ t

t0

(
πs(φh)− πs(hπs(φ))

)
(dys − πs(h) ds)

(2.6)

for any function φ for which Aφ is bounded.

Remark 2.1.2. Note, that this partial differential equation cannot be solved
explicitly in most cases and that solutions of (2.6) are in general infinite
dimensional. This means that the true solution of (2.6), which is a probability
distribution, cannot be expressed with a finite number of parameters [63].
However, there are non-linear filtering problems for which the solution of
(2.6) has a finite dimensional representation.

2.2 Common Stochastic Filters

As the general solution of the non-linear filtering problem is in general infinite
dimensional, suitable approximations of the a posteriori distribution have
been developed in the past yielding a large bandwidth of stochastic filters.
In this section we summarize the most important of them and briefly discuss
their benefits and drawbacks. Depending on the situation and the specific
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design of the filter one can gain excellent reconstruction results for many
filtering problems. There exist a lot of strategies to improve the performance
of a filter to a specific situation. Therefore we focus only on the general
properties of the methods that we present and discuss typical problems of
these methods. A good overview about non-linear filters can be found in [24].

2.2.1 The Kálmán Filter

The classical Kálmán filter [49] was derived in 1960 for the linear filtering
problem with the following state- and observation equations

xk+1 =Fxk + δk ,

yz =Hxk + εz ,

with Gaussian model noise δ(·) and Gaussian observation noise ε(·). This
means that δ and ε are fully described by the mean value which is zero and
the covariance matrices R and Q, respectively. The functions f(x) = Fx and
h(x) = Hx can be expressed by matrices F and H which represent linear
transformations of the state. In this scenario, the a posteriori distribution
can be understood as a linear transformation of Gaussians such that it is
also a Gaussian. It can be shown that the filter is optimal with respect
to the mean square error of the residuals. The discrete Kálmán filter for
the linear filtering problem is given through the following propagation and
update equations (cf. [84]):

x−k+1 =Fxk (state propagation)

P−k+1 =FPkF
> +R (covariance propagation)

Kk+1 =P−k+1H
>(HP−k+1H

> +Q
)−1

(Kálmán gain update)

xk+1 =x−k+1 +Kk+1(yk+1 −Hx−k+1) (state update)

Pk+1 =(I −Kk+1H)P−k+1 (covariance update)

Benefits: The Kálmán filter leads to optimal results in the case of linear
functions f and h as introduced above and Gaussian noise terms.

Drawbacks: The Kálmán filter is limited to the linear case. Additionally,
Kálmán filter cannot be easily extended to filtering problems on Lie groups
because the filtering problem becomes non-linear due to the curvature of the
state space.

14



2.2. Common Stochastic Filters

2.2.2 The Extended Kálmán Filter

The extended Kálmán filter (EKF), proposed in 1974, is a non-linear filter
which adapts the concepts of the (linear) Kálmán filter [77]. The solution of
the non-linear filtering problem

xk+1 =f(xk) + δk ,

yk =h(xk) + εk ,

can be approximated by similar propagation and update equations as in
the linear case presented above. By linear approximations of the non-linear
functions f and h the resulting recursive equations for mean value and the
covariance of the a posteriori distribution are similar to those of the Kálmán
filter.

Benefits: Simple generalization of the classical Kálmán filter to the non-
linear filtering problem that results in good reconstructions. For many appli-
cations methods were found to increase the accuracy of the filter [24]. Using
the Baker-Campbell-Hausdorff formula, the extended Kálmán filter was gen-
eralized to Lie groups [17].

Drawbacks: The assumption that the a posteriori distribution is a Gaus-
sian is in general violated, especially if there exist multiple modes in the
general solution. Adaption of the extended Kálmán filter to a novel non-
linear problem might fail since there exists no general theory that states how
accurate an approximation is. For involved non-linear filtering problems the
linearization technique of the extended Kálmán filter often fails. This is also
known as divergence problem [33].

2.2.3 The Unscented Kálmán Filter

The unscented Kálmán filter (UKF), introduced in 2000 [47], is a general-
ization of the classical Kálmán filter for non-linear filtering problems, where
the a posteriori distribution is assumed to be a Gaussian [47, 22]. The key
idea is to carefully select a number of samples (sigma points) which correctly
describe the mean value and covariance in the one domain and to transfer
these points by the non-linear function f and h into the measurement space.
From these transformed points the parameters of the a posteriori distribution
can be estimated. Since the full algorithm is relatively elongated we refer to
the original article [47] where the single steps of the algorithm are listed.

15



Chapter 2. Stochastic Filtering

Benefits: The unscented transformation of sigma points usually leads to
better result than the linearization techniques of the extended Kálmán filter.
Moreover, the unsented Kálmán filter was derived for general Riemannian
manifolds in [42]. Therefore it is widely applicable in contrast to the ex-
tended Kálmán filter. Due to the statistical simplicity of the filter it is easy
to transfer the concepts to filtering problems defined on Riemannian mani-
folds [42].

Drawbacks: Although the unscented Kálmán filter counts to the state-of-
the-art non-linear filters, it is assumed that the a posteriori distributions is
a Gaussian. For highly non-linear problems this approach often fails which
will be shown in the experimental section of this chapter.

2.2.4 The Particle Filter

In 2001 particle filters (PFs) were proposed which are similar to unscented
Kálmán filters; the main idea is to apply non-linear transformations to parti-
cles to gain a statistical description of the a posteriori distribution by Monte-
Carlo sampling [29, 4]. In contrast to the unscented Kálmán filter the a
posteriori is not restricted to be a Gaussian. In fact, particle filters cover
a large bandwidth of different a posteriori distributions depending of the
chosen number of desired particles.

Benefits: In contrast to extended and unscented Kálmán filters, particle fil-
ters cover a large bandwidth of distributions. Variance reduction techniques,
such as importance sampling, enable to keep the computational effort rela-
tively small. This cannot be taken for granted within general approaches.
This makes the particle filter to the mean of choice for many applications
e.g. [23].

Drawbacks: Although PFs deal with high dimensions they do not beat
the so-called “curse of dimensionality” [25]. For moderate filtering problems
in high dimensions other filters might perform better than PFs since for
each single dimension at least a few particles need to be generated which is
computationally expensive.

2.2.5 The Projection Filter

A differential geometric approach for solving the non-linear filtering problem
is given by Brigo et al. [18] published in 1999. The key idea within this
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approach is to project the infinite dimensional solution of (2.6) onto a suitable
manifold of finite dimensional distributions on Rn

S := {p(·, θ), θ ∈ Θ} ,

where Θ ⊂ Rd is a parameter set. One can show that the set of square roots
of these densities S1/2 := {

√
p(·, θ), θ ∈ Θ} is an d−dimensional submanifold

of L2(Rn) where the inner product on L2 gives the Fisher information matrix
g(θ) = (gij(θ)). This inner product provides S1/2 with the structure of a
Riemannian manifold. A suitable choice of parametrized density functions
are exponential families that cover a large bandwidth of distributions, i.e.

S = {p(x, θ) = exp(θ>c(x)− ψ(θ)), θ ∈ Θ} ,

where c1, . . . , cn are scalar functions (sufficient statistics) such that
{1, c1, . . . , cn} are linearly independent and ψ is a normalizing function.
Brigo et al. [18] showed that the solution of (2.6) (in Stratonovich form) can
be projected onto a manifold of exponential families. The resulting density
function is parametrized by a vector θ(·) ∈ Rd that can be obtained by solving
a simple stochastic (ordinary) differential equation. This is much easier to
solve than the stochastic partial differential equation (2.6).

Benefits: The projection filter provides a quite general framework that
covers a large bandwidth of a posteriori distributions (no only Gaussian), i.e.
the sufficient statistics can be adapted in such a manner to fit to a specific
filtering problem that result in an almost optimal filter. Additionally, for
some specific non-linear problems also exact solutions can be found.

Drawbacks: It is difficult to generalize the projection filter to distributions
on Riemannian manifolds although there are approaches that define suitable
exponential families on compact manifolds. A more practical problem is to
find suitable exponential families for a given problem that leads to good
results.

2.2.6 Discussion on Common Non-Linear Filters

The filters summarized above show how a solution of the general filtering
problem (2.6) can be found. However, extended Kálmán filter suffer from
the divergence problem, whereas unscented Kálmán filter result in better
reconstruction. Due to the fact that the a posteriori distribution of the
general filtering problem is not Gaussian in general, there exists problems
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where these methods fail. Particle filters are more flexible in finding the
correct solution but do not work in high dimensions. In practice also a lot of
tuning is required to find good parameters for the filter. A positive result is
that most of these methods were generalized to non-Euclidean geometry. In
contrast, projection filters, provided by an exact mathematical theory, will
result in better reconstructions but are usually limited to Euclidean spaces.
Due to these limitations we consider a different strategy based on optimal
control theory on Lie groups and the dynamical programming principle.
Therefore we introduce basic concepts of optimal control theory in the next
section and derive the so-called minimum energy filter at the end of this
section.

2.3 Control Theory: A Brief Introduction

For the derivation of the minimum energy filter we require some basic re-
sults from optimal control theory such as the famous Pontryagin Minimum
Principle and the Hamilton-Jacobi-Bellman equation. We begin with some
essential definitions and continue with the statement of the optimal control
theory and the corresponding concepts that are required for solving it. The
following definitions and Theorems from optimal control theory are well-
known and can be found in Athans and Falb [5] as well as Fleming and
Rishel [34] which provide an introduction to optimal control theory. In the
sections belows we will follow the approach of Evans [32, chapter 10] in which
a rigorous introduction to the field of optimal control is given.

2.3.1 Fixed-Time Optimal Control Problem

Let us consider the following dynamical system that can be understood as a
differential equation of the unknown state x. δ(t) denotes the control variable.

ẋ(t) =f(x(t), δ(t)) (2.7)

x(t0) =x0 . (2.8)

Here, x0 ∈ Rn is a given initial point and f : Rn×D → Rn is a given bounded
and Lipschitz-continuous function. D is a compact subset of Rm for a m ∈ N.
In the following the variable δ = δ(t) is a control variable and the set of all
measurable controls is the set of admissible controls, denoted by

D := {δ : [t0, t]→ D|δ is measurable } .
The objective of optimal control theory is to find an admissible control δ
such that a certain optimality criterion is fulfilled and such that the control
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variable sufficies (2.7). The optimality criterion is usually given by a cost
function on the control variable δ that needs to be minimized. For each ad-
missible control δ(·) ∈ D we define the corresponding cost or energy function

Jx,t0(δ) :=

∫ t

t0

r(x(τ), δ(τ)) dτ + g(x(t)) , (2.9)

where x(·) = xδ(·)(·) solves the ordinary differential equation (ODE) (2.7).
The functions r : Rn × D → R and g : Rn → R are given cost functions
for the running costs and terminal costs, respectively. Following Evans [32]
these functions are assumed to be bounded and Lipschitz-continuous.

The goal of optimal control theory is to determine the value function that is
defined through

V(x, τ) := inf
δ∈D
Jx,τ (δ), x ∈ Rn, 0 ≤ τ ≤ t, (2.10)

such that the state equation (2.7) is fulfilled. It can be shown that the value
function V satisfies a specific kind of Hamilton-Jacobi equation which can be
used to find an optimal control. This procedure is also known as Pontryagin
Minimum Principle. This is a result of the following Theorem.

Theorem 2.3.1. The value function V is the unique viscosity solution of
this terminal-value problem for the Hamilton-Jacobi-Bellman equations:

∂

∂τ
V(x, τ)+ min

d∈D

{
〈f(x, d),DxV(x, τ)〉+ r(x(τ), d)

}
= 0 , (2.11)

V(·, t) =g(·) . (2.12)

Proof. See [32, chapter 10, Theorem 2].

Remark 2.3.2. Below we will use the term “pre-Hamiltonian” which is
defined by

H̃(x, p, δ, t) := 〈f(x(t), δ(t)), p(t)〉+ r(x(t), δ(t)) . (2.13)

The Hamiltonian can then be defined as the minimum of the pre-Hamiltonian
regarding δ, i.e.

H(x, p, t) := min
δ∈D

{
〈f(x(t), δ(t)), p(t)〉+ r(x(t), δ(t))

}
= min

δ∈D
H̃(x, p, δ, t)

(2.14)
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With the definition of the Hessian, the Hamilton-Jacobi-Bellman equation in
(2.11) can also be written as

∂

∂t
V(x, t) +H(x,DxV(x, t), t) = 0 . (2.15)

Below we will introduce the main concepts of minimum energy filter. Un-
fortunately, these require a different energy function than the function in-
troduced in (2.9), where a condition on the terminal value is given by the
function g. For the minimum energy filter, however, we need a condition on
the initial value. The corresponding energy is

Jx,t(δ) :=

∫ t

t0

r(x(τ), δ(τ)) dτ + g(x(t0)), (2.16)

where x(·) = xδ(·)(·) solves the ordinary differential equation (ODE) (2.7).
By switching the integration bounds we obtain an expression, which is similar
to the original one:

Jx,t(δ) := −
∫ t0

t

r(x(τ), δ(τ)) dτ + g(x(t0)). (2.17)

The corresponding optimal control problem can be considered to run back-
ward in time such that the pre-Hamiltonian needs to be defined as

H̃(x, p, δ, τ) := 〈f(x(τ), δ(τ)), p(τ)〉 − r(x(τ), δ(τ)) . (2.18)

Using the Pontryagin’s minimum principle we find the Hamiltonian for the
control problem (2.17) is given as in (2.14) by

H(x, p, r) := min
δ∈D

{
〈f(x(τ), δ(τ)), p(τ)〉 − r(x(τ), δ(τ))

}
= min

δ∈D
H̃(x, p, δ, τ) .

(2.19)

Theorem 2.3.1 states the Hamilton-Jacobi-Bellman equation for control prob-
lems that are solved forward in time. However, we require a similar statement
for control problems that are solved backwards in time. This state can be
derived in a similar way as in Theorem 2.3.1 but the proof is involved. The
most important part is, to replace the terminal value problem by the initial
value problem. The corresponding value function V is defined through

V(x, t) = inf
δ∈D

∫ t

t0

r(x(τ), δ(τ)) dτ + g(x(t0)), s.t. (2.7) . (2.20)
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As in Evans [32] one can derive a similar Hamilton-Jacobi-Bellman equation
as in Theorem 2.3.1 for the value function (2.20) which reads

∂

∂t
V(x, t)−H(x,DxV(x, t), t) = 0 . (2.21)

For brevity we omit the proof of this equation which is beyond the scope of
this work.

2.3.2 Observability and Controllability

Definition 2.3.3 (Observability). We say that a state x0 is observable at t0
if, given any control δ, there is a time t1 > t0 such that knowledge δ(τ) and
the output y(τ) for τ ∈ (t0, t1] is sufficient to determine x0. If every state x0

is observable at every time t0 in the interval of definition of the system, then
we say that the system is observable.

This definition means that the state variable can be uniquely determined
from the observations y = y(t) and the knowledge about the trajectories
of the noise processes δ = δ(t). When the function f is not injective, e.g.
f(x) = sin(x) one can reconstruct the value of x only modulo 2π which is not
unique. We provide another counter-example where consider the observation
of the position of the epipole (focus of expansion) y(t) ∈ R2 which is not
sufficient to uniquely reconstruct the underlying camera motion.

Example 2.3.4. Let us consider the following filtering problem in which we
want to determine the ego-motion of the camera E(t) = (R(t), w(t)) ∈ SE3,
where R(t) ∈ SO3 is a rotation matrix and w(t) ∈ R3 is a translation vector.
We assume that only observations of the epipole (focus of expansion) y(t) ∈
R2 are given and that E is constant. This can be expressed as the following
system:

Ė(t) =E(t)δ(t) , E(t0) = E0 , (2.22)

y(t) =π(R(t)>w(t)) , (2.23)

where π : R3 → R2, (x1, x2, x3)> 7→ x−1
3 (x1, x2)> denotes the perspective

projection onto the image plane. δ is a noise process which evolves on the
tangent space of SE3 at identity, such that Eδ ∈ TE SE3 . Since the Lie
group SE3 is a six dimensional manifold, but the observations are only two
dimensional, there are four degrees of freedom for the camera motion that
cannot be determined from epipole observations uniquely. Indeed the scale
of the scene (magnitude of translation) get lost due to the projection or the
rotation of the camera around the z-axis that leaves the epipole invariant.

21
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Furthermore, changes in the translational and rotational components can be
compensated by each other without changing the location of the epipole.
Therefore, the underlying motion cannot be reconstructed uniquely and the
control problem is not observable.

Definition 2.3.5 (Controllability). If the state x1 = 0 is reachable from x0

at t0, then we say that x0 is controllable at time t0. In other words, x0 is
controllable at t0 if there exists a piecewise continuous (control) function δ
such that

Φ(T ; δ(t0,t]), x0) = 0 , (2.24)

for some T ≥ t0, where Φ denotes the transition function of the system. If
every state x0 is controllable at any time t0 in the interval of definition of the
system, then we say that the system is (completely) controllable.

2.4 The Minimum Energy Filter (MEF)

In this section, we will derive the second-order minimum energy filter that
is based on optimal control theory. Our presentation is oriented towards the
original paper [58] from 1968 together with some modifications, in agreement
with the more recent literature like e.g. [88] which was published in 2012.
Furthermore, we will also provide an evolution equation of the so-called gain
operator, which has not been provided in the original paper [58]. We again
consider the filtering problem

ẋ(t) =f(x(t)) + δ(t) , x(t0) = x0 , (2.25)

y(t) =h(x(t)) + ε(t) , (2.26)

where we assume that the functions f and h are two times continuously
differentiable functions and δ = δ(t) and ε = ε(t) are noise processes. Next,
we will introduce an energy function on these noise processes that needs to
be minimized.

2.4.1 Objective Function and Control Problem

Given the state (2.25) and observation (2.26) equations, we wish to find the
optimal state of the system. To this end, we introduce a quadratic energy
function that penalizes the model noise δ and the observation noise ε, as an
optimality criterion. Thus, given an initial state x0, we suggest to minimize
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the energy function

J (t;x0, δ, ε) := 1
2
‖x(t0)− x0‖2

R0
+ 1

2

∫ t

t0

‖δ(τ)‖2
R + ‖ε(τ)‖2

Q dτ , (2.27)

subject to the state (2.25) and observation (2.26) equations. Here, we assume
that R,R0 ∈ Rn×n and Q ∈ Rm×m are symmetric and positive definite. The
main difficulty for minimum energy filtering is to find a recursive expression
for the optimal state x, to avoid the need to minimize the energy (2.27) for
each fixed point of time t separately.

Theorem 2.4.1. The second-order minimum energy filter for the state (2.25)
and observation (2.26) with energy (2.27) and initial state x0 is given by the
solution of the coupled differential equations

ẋ∗(t) =f(x∗, t) + P (t)D1h(x∗, t)Q
(
y(t)− h(x∗, t)

)
, x∗(t0) = x0 , (2.28)

Ṗ (t) =R−1 + Dx∗f(x∗, t)P (t) + P (t)(Dx∗f(x∗, t))>

+ P (t)E(x∗, t)P (t) , P (t0) = R−1
0 ,

(2.29)

where E(x∗, t) := Dx∗
(
Dh(x∗, t)Q(y(t)− h(x∗(t)))

)
.

Before providing a sketch of the proof at the end of this section, we introduce
the some required major concepts of optimal control theory first.

Remark 2.4.2. In practice, measurements of a system are only available at
discrete points of time rather than continuously. Accordingly, we assume the
measurement equation to be piecewise constant, i.e. the function y(t) has the
value y(tk−1) for t ∈ [tk−1, tk). For a continuous-discrete filter one requires a
discrete control theory whose development is beyond the scope of this work.

Following Mortensen [58], we replace the observation noise by the residual
given by (2.26),

ε(t) = y(t)− h(x(t)) . (2.30)

Insertion of equation (2.30) into the energy (2.27) provides us with an energy
that depends on x0, δ and x, i.e. J (t;x0, δ, x) := J (t;x0, δ, y − h(x)), where
x = x(τ)|τ∈[t0,t], and δ = δ(τ)|τ∈[t0,t] are considered as full trajectories. Our
optimization problem then reads

min
x,δ
J (t;x0, δ, x) , subject to (5.1) . (2.31)

This optimization problem can be split up into two parts as each admissible
control variable δ(t) will lead to a unique path x(t) if we incorporate the

23



Chapter 2. Stochastic Filtering

state equation (5.1) into the optimization. The first part consists of find-
ing the value function that returns the value of the energy function after
minimization subject to (5.1), given for a fixed point of time t by

V(x, t;x0, t0) := min
δ(τ),t0≤τ≤t

J (t;x0, δ, x) subject to (5.1) . (2.32)

The second part focuses on the derivation of a recursive expression of the
optimal solution – see Eq. (2.43) below.
The optimization problem (2.32) is solved by classical Hamilton-Jacobi the-
ory. We start with defining the (pre-)Hamiltonian of the control problem
that consists of two expressions: The integrand of the energy function (2.27)
as well as the constraint equation (5.1), together with the costate variable
p ∈ Rn, that can be understood as a Lagrangian multiplier.

H−(x, p; δ, t) =1
2
‖δ(t)‖2

R + 1
2
‖y(t)− h(x(t))‖2

Q − 〈p(t), ẋ(t)〉
(5.1)
= 1

2
‖δ(t)‖2

R + 1
2
‖y(t)− h(x(t))‖2

Q − 〈p(t), f(x(t)) + δ(t)〉 .
(2.33)

Since we defined a cost function on the inital state x(t0) in (2.27), the
corresponding control problem has to be solved backwards in time (cf.
[73]). This explains the minus sign in (2.33). Applying Pontryagin’s maxi-
mum/minimum principle [66], which states that the constrained optimization
problem (2.32) is solved if

DδH−(x, p, δ; t) = 0 , (2.34)

finally gives us the optimal control δ∗, i.e.

0
!

=DδH−(x, p, δ∗; t) = Rδ∗(t)− p(t) (2.35)

⇔ δ∗(t) =R−1p(t) . (2.36)

Insertion of the optimal control δ∗ into the (pre-)Hamiltonian (2.33) leads to
the optimal HamiltonianH : Rn×Rn×R, that we define throughH(x, p; t) :=
H−(x, p, δ∗; t) and which is given by the following calculation.

H(x, p; t) =1
2
‖R−1p(t)‖2

R + 1
2
‖y(t)− h(x(t))‖2

Q − 〈p, f(x(t)) +R−1p(t)〉
=1

2
(p(t))>(R−1)>p(t)− (p(t))>R−1p(t) + 1

2
‖y(t)− h(x(t))‖2

Q

− (p(t))>f(x(t))

=− 1
2
‖p(t)‖2

R−1 + 1
2
‖y(t)− h(x(t))‖2

Q − 〈p(t), f(x(t))〉 .
(2.37)
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2.4. The Minimum Energy Filter (MEF)

In the last line we used the symmetry of R. Now, we can write down Hamil-
ton’s equations

ẋ(t) =D2H(x, p; t) = −f(x(t))−R−1p(t) , (2.38)

ṗ(t) =−D1H(x, p; t) = Df(x(t))p(t)−Dh(x(t))Q(y(t)− h(x(t))) . (2.39)

2.4.2 Hamilton-Jacobi-Bellmann Equation

From classical control theory [5] we obtain the Hamilton-Jacobi-Bellman par-
tial differential equation as given in (2.21)

∂V
∂t

(x, t;x0, t0)−H(x,D1V(x, t;x0, t0), t) = 0 . (2.40)

If it is solved locally, the Hamilton-Jacobi-Bellman equation will result in a
necessary condition for optimality. For a linear-quadratic control problem
(i.e. with linear dynamics and quadratic energy function), it will be a neces-
sary and sufficient optimality condition for optimality provided it is globally
solved for all t. But even in the absence of only linear dependencies between
the state of the system and the observations, condition (2.40) will be evalu-
ated in the proof of Theorem 2.4.1 in order to obtain a recursive solution of
the filtering problem.

Proof of Theorem 2.4.1. The initial optimal state x∗(t0) can be found by
minimizing the value function for t = t0.

V(x, t0;x0, t0) = 1
2
‖x(t0)− x0‖2

R0
(2.41)

As R0 is symmetric and positive definite, the optimal state for the initial-
ization is x∗(t0) = x0. Next, we consider the necessary condition of the state
process x∗(t) for an arbitrary t ∈ R in order to be optimal, i.e.

D1V(x∗, t;x0, t0) = 0 . (2.42)

All solutions of this equation match as optimal trajectories x(τ)|τ∈[t0,t]. How-
ever, the computation of these solutions is expensive. Since a considerable
effort is required to compute the optimal trajectory for each single t ∈ T,
we are interested in a recursive rule for updating an optimal state. This can
be found by computing the total time derivative of the necessary condition
to the optimal trajectory (2.42), restricted to an optimal path x∗. Thus, af-
ter inserting the Hamilton-Jacobi-Bellman equation (2.40) into the resulting
condition, we obtain the evolution equation for the optimal state

ẋ∗(t) = f(x∗(t)) +
(
Hess1 V(x∗, t;x0, t0)

)−1
D1h(x∗(t))Q

(
y(t)− h(x∗(t))

)
.

(2.43)

25



Chapter 2. Stochastic Filtering

The derivation of this equation can be found in Appendix A.1.1. The cal-
culations there are based on the original approach of Mortensen [58] but
we will additionally derive also the evolution equation of the second-order
operator explicitly which is missing in the original work. Additionally, we
provide a derivation that is consistent with more recent work of Zamani et
al. [88]. The evolution equation of x∗ (2.43) still depends on the Hessian of
the value function, which is unknown. Following [58], one may compute the
total time derivative of the Hessian, which results in a differential equation
that contains third order tensors. By continuing this iteratively, we find that
the computation of the optimal estimate x∗ will contain derivatives of the
value function of any order, since the filtering problem generally is infinite
dimensional. As a consequence, an approximation is conducted as described
next.

2.4.3 Truncation and Evolution of Second-Order Op-
erator

Since calculation of the infinite recursion, which is required for exact filtering,
is impossible, we require an approximation of the true solution. Thus, we
exemplarily restrict the recursion to a second-order minimum energy filter
that contains derivatives of first and second-order only. All higher-order
derivatives that appear are neglected. Using the notation

Ẑ(x∗, t) := HessV(x∗, t; t0, x0) , (2.44)

we compute the total time derivative of Ẑ. The corresponding calculations
can be found in section A.1.2. As proposed in [88, 73], we find an approxima-
tion Z(x∗, t) to the optimal operator Ẑ(x, t) that develops from the following
matrix differential equation by omitting higher-order terms:

d

dt
Z(x∗, t) = Hess1H(x∗, 0, t) + (D2D1H(x∗, 0, t))> · Z(x∗, t)

+ Z(x∗, t) ·D1D2H(x∗, 0, t) + Z(x∗, t) · Hess2H(x∗, 0, t) · Z(x∗, t) .
(2.45)

Since the Hessian of the value function must be inverted in (2.43), we replace
the corresponding expression by(

Hess1 V(x∗, t;x0, t0)
)−1 ≈ Z(x∗, t)−1 =: P (t) . (2.46)

By evaluating the Hessian of the value function at t = t0, we find the initial-

26



2.5. Case Studies

ization for the operator P ,

P (t0) =
(
Hess1 V(x∗, t0;x0, t0)

)−1

(2.41)
=
(
Hessx∗(

1
2
‖x∗(t0)− x0‖2

R0

)−1

=R−1
0 .

Using the well known rule for computing the derivative of the inverse of a
matrix, we obtain the evolution equation for the gain operator P.

Ṗ (t) =
d

dt
(Z(t))−1 = −Z(x∗, t)−1Ż(x∗, t)Z(x∗, t)−1

=− P (t)
(

Hess1H(x∗, 0, t) + (D2D1H(x∗, 0, t))> · Z(x∗, t)

+ Z(x∗, t) ·D1D2H(x∗, 0, t)

+ Z(x∗, t) · Hess2H(x∗, 0, t) · Z(x∗, t)
)
P (t)

=− P (t) Hess1H(x∗, 0, t)P (t)− P (t)(D2D1H(x∗, 0, t))>

−D1D2H(x∗, 0, t)P (t)− Hess2H(x∗, 0, t).
(2.47)

Finally, the calculation of the expressions in (2.47) can be written explicitly
as follows:

Hess1H
(
x∗, 0, t

)
=Dx∗

(
Dh(x∗(t))Q(y(t)− h(x∗(t)))−Df(x∗, t)p

)∣∣∣
p=0

=Dx∗

(
Dh(x∗, t)Q−1(y(t)− h(x∗(t)))

)
=: E(x∗, t) ,

D2D1H(x∗, 0, t) =Dp

(
−Df(x∗(t))p+ Dh(x∗(t))Q(y(t)− h(x∗(t)))

)∣∣∣
p=0

=−Df(x∗(t)) ,

D1D2H(x∗, 0, t) =Dx∗

(
−f(x∗(t))−R−1p

)
= −Dx∗f(x∗(t)) ,

Hess2H(x∗, 0, t) =Dp

(
f(x∗(t))−R−1p

)∣∣∣
p=0

= −R−1 .

After insertion of these expressions into (2.47), we obtain the second-order
minimum energy filter, which completes the proof of Theorem 2.4.1.

2.5 Case Studies

Before considering the actual filtering problem for camera motion recon-
struction and disparity map estimation in the following chapters, we provide
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Figure 2.1: Comparison of the reconstructed trajectories of extended Kalman
filter (EKF), unscented Kalman filter (UKF), particle filter (PF) (with 100
particles) and the minimum energy filter (MEF) given the observations of the
cubic sensor (left) and a sinusoidal sensor (right). In the case of the cubic
sensor one can observe that the EKF slightly worse. UKF, PF and MEF
perform almost similarly after convergence. In the more difficult setting
of the sinusoidal sensor, EKF and UKF diverge relatively fast and result
in piecewise constant reconstructions. The PF converges faster than the
MEF but the MEF stays longer at the true solution (dashed line). In this
experiment we use for all stochastic filters the true covariance matrices and
all filters have the same initialization.
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a small academic example on an Euclidean state space. We use the minimum
energy filter that we derived above. The case study contains two non-linear
filtering problems to compare the proposed minimum energy filter with the
extended Kalman filter [35], the unscented Kalman filter [47] as well as the
standard particle filter [38] directly. For the extended Kalman filter we use
our own implementation whereas the code for the unscented Kalman filter
and the particle filter is from [74] and [75], respectively. The state- and
observation equations are given through

ẋ(t) =1 + σε(t) , x(t0) = 2 , (2.48)

y(t) =h(x(t)) + δ(t) , (2.49)

where the processes δ(t) and ε(t) correspond to white noise processes with
fixed covariance matrices R and Q, respectively. In the experiments we use
moderate model noise (σ = 0.5) and consider two non-linear scenarios:

h(x) =10−3x3 , (cubic sensor) (2.50)

h(x) =10 sin(x) . (sinusoidal sensor) (2.51)

Here we added the coefficients to enable the representation of the observations
on the same scale as the state. The reconstructions of the trajectory of the
optimal state x gained by extended Kalman filter (EKF), unscented Kalman
filter (UKF) and minimum energy filter (MEF) are depicted in Fig. 2.1, where
we use the true covariance matrices for all stochastic filters; all filters were
initialized equally with x0 = 5. We also evaluate the cumulative asymptotic
error after convergence of the filters (t = 1) in Fig. 2.2. In the simpler case
of the cubic sensor the MEF is as good as UKF and PF; in the more difficult
case of a sinusoidal sensor the MEF outperforms the stochastic filters clearly.

2.6 Derivation of Third-Order Filters

In this section we will consider third-order optimal minimum energy filters.
For that reason we extend the approach from section 2.4 and explicitly de-
rive evolution equations of the third order operator of the optimal state. The
derivation of higher-order minimum energy filters was not done before and
therefore we provide the full derivations below. On multi-dimensional Eu-
clidean spaces this would require tensor calculus, which is beyond the scope
of this work. Thus, we consider only the one-dimensional case, i.e. the state
variable x and the observation y are real valued and the functions f and h
map to one-dimensional spaces. For simplicity we will use the prime-notation
f ′ for derivatives of a function f regarding x. Additionally, we assume that
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Figure 2.2: Evaluation of the mean cumulative asymptotic error after conver-
gence of the filters (t = 1) on a logarithmic scale. The mean error is averaged
over 100 sample tracks for the filtering problem in (2.48) and (2.49). In the
scenario of a cubic sensor (cubic), the UKF, PF and MEF are similar, only
the EKF is slightly worse. In the more difficult case of the sinusoidal sensor
(sin), the MEF outperforms the PF, UKF and EKF clearly. However, in this
setting the error of all filters is quite large.
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2.6. Derivation of Third-Order Filters

the Hamiltonian in (2.37) is three times continuously differentiable in the
arguments x and p such that all partial derivatives commute.
The equation for the optimal state stays equal to (2.43), which reads in the
one-dimensional case:

ẋ∗(t) = f(x∗(t)) +
(
V ′′(x∗, t;x0, t0)

)−1
h′(x∗(t))Q

(
y(t)− h(x∗(t))

)
. (2.52)

Using again the notation Z(t) = V ′′(x∗(t), t) we continue with the calculation
of the total time derivative of Z to find a recursive representation:

d

dt
Z(x∗(t), t) =

d

dt
V ′′(x, t)

∣∣
x=x∗

=
(
V ′′′(x, t)ẋ(t) +

(
∂
∂t
V(x, t)

)′′)∣∣∣
x=x∗

(2.40)
=
(
V ′′′(x, t)ẋ(t) +

(
H(x,V ′(x, t), t)

)′′)∣∣∣
x=x∗

=V ′′′(x∗, t)ẋ∗(t) +
(
D1H(x,V ′(x, t), t) + D2H(x,V ′(x, t), t)V ′′(x, t)

)′∣∣∣
x=x∗

=V ′′′(x∗, t)ẋ∗(t) +
(
D2

1H(x,V ′(x, t), t) + (D2D1H(x,V ′(x, t), t))V ′′(x, t)
+
(
D1D2H(x,V ′(x, t), t) + D2

2H(x,V ′(x, t), t)V ′′(x, t)
)
V ′′(x, t)

+ D2H(x,V ′(x, t), t)V ′′′(x, t)
)∣∣∣

x=x∗

(2.42)
= V ′′′(x∗, t)ẋ∗(t) + D2

1H(x∗, 0, t) + D2D1H(x∗, 0, t)V ′′(x∗, t)
+
(
D1D2H(x∗, 0, t) + D2

2H(x∗, 0, t)V ′′(x∗, t)
)
V ′′(x∗, t)

+ D2H(x∗, 0, t)V ′′′(x∗, t)
=D2

1H(x∗, 0, t) + D2D1H(x∗, 0, t)Z(t)

+ D1D2H(x∗, 0, t)Z(t) + D2
2H(x∗, 0, t)Z(t)2

+
(
ẋ∗ + D2H(x∗, 0, t)

)
V ′′′(x∗, t)

(2.52)
= D2

1H(x∗, 0, t) + D2D1H(x∗, 0, t)Z(t)

+ D1D2H(x∗, 0, t)Z(t) + D2
2H(x∗, 0, t)Z(t)2

+
(
f(x∗(t)) +

(
(Z(t))−1h′(x∗(t))Q

(
y(t)− h(x∗(t))

)
+ D2H(x∗, 0, t)

)
V ′′′(x∗, t)

=D2
1H(x∗, 0, t) + 2D2D1H(x∗, 0, t)Z(t) + D2

2H(x∗, 0, t)Z(t)2

+
(
(Z(t))−1h′(x∗(t))Q

(
y(t)− h(x∗(t))

)
V ′′′(x∗, t) . (2.53)

Here we used in the last step the equality D2H(x∗, 0, t) = −f(x∗, t) and that
the partial derivatives commute. Note that the last summand of (2.53) is
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not contained in the truncated evolution equation in (2.45). By substitution
of P (t) := (Z(t))−1 we avoid the inversion of Z. By using the derivative of
the inverse, i.e.

d

dt
P (t) =

d

dt
(Z(t))−1 = −(P (t))2Ż(t) , (2.54)

and by inserting of (2.53) into (2.54) we gain the following differential equa-
tion:

Ṗ (t) =
(
− (P (t))2D2

1H(x∗, 0, t)− 2D2D1H(x∗, 0, t)P (t)−D2
2H(x∗, 0, t)

−
(
(P (t))3h′(x∗(t))Q

(
y(t)− h(x∗(t))

)
V ′′′(x∗, t)

)
=Q
(
(y(t)− h(x∗(t)))h′′(x∗(t))− (h′(x∗(t)))2

)
(P (t))2 + 2f ′(x∗(t))P (t)

+R−
(
(P (t))3h′(x∗(t))Q

(
y(t)− h(x∗(t))

)
V ′′′(x∗, t)

)
(2.55)

2.6.1 Evolution of Third-Order Operator

For the derivation of a third-order optimal filter it remains to calculate the
total time derivative of the third order operator Y (t) := Y (t, x∗) = V ′′′(x∗, t),
which can again be obtained by differentiation and insertion of the existing
equations of x∗, Z and Y . This results in the following differential equation
for Y :

d

dt
Y (x∗(t), t) =

d

dt
V ′′′(x, t)

∣∣
x=x∗

=V ′′′′(x∗, t)ẋ∗(t) +
(
∂
∂t
V(x, t)

)′′′∣∣∣
x=x∗

=V ′′′′(x∗, t)ẋ∗ +
(
H(x,V ′(x, t), t)

)′′′∣∣∣
x=x∗

=V ′′′′(x∗, t)ẋ∗ +
(
D2

1H(x,V ′(x, t), t) + 2D1D2H(x,V ′(x, t), t)V ′′(x, t)

+ D2
2H(x,V ′(x, t), t)(V ′′(x, t))2 + D2H(x,V ′(x, t), t)V ′′′(x, t)

)′∣∣∣
x=x∗

=V ′′′′(x∗, t)ẋ∗(t) +
(
D3

1H(x,V ′(x, t), t) + D2D
2
1H(x,V ′(x, t), t)V ′′(x, t)

+ 2D2
1D2H(x,V ′(x, t), t)V ′′(x, t) + 2D1D

2
2H(x,V ′(x, t), t)(V ′′(x, t))2

+ 2D1D2H(x,V ′(x, t), t)V ′′′(x, t)
+ D1D

2
2H(x,V ′(x, t), t)(V ′′(x, t))2 + D3

2H(x,V ′(x, t), t)(V ′′(x, t))3

+ 2D2
2H(x,V ′(x, t), t)V ′′′(x, t)V ′′(x∗, t)

+ D1D2H(x,V ′(x, t), t)V ′′′(x, t) + D2
2H(x,V ′(x, t), t)V ′′(x, t)V ′′′(x, t)
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+ D2H(x,V ′(x, t), t)V ′′′′(x, t)
)∣∣∣

x=x∗

=V ′′′′(x∗, t)ẋ∗(t) + D3
1H(x∗, 0, t) + D2D

2
1H(x∗, 0, t)V ′′(x∗, t)

+ 2D2
1D2H(x∗, 0, t)V ′′(x∗, t) + 2D1D

2
2H(x∗, 0, t)(V ′′(x∗, t))2

+ 2D1D2H(x∗, 0, t)V ′′′(x∗, t)
+ D1D

2
2H(x∗, 0, t)(V ′′(x∗, t))2 + D3

2H(x∗, 0, t)(V ′′(x∗, t))3

+ 2D2
2H(x∗, 0, t)V ′′′(x∗, t)V ′′(x∗, t)

+ D1D2H(x∗, 0, t)V ′′′(x∗, t) + D2
2H(x∗, 0, t)V ′′(x∗, t)V ′′′(x∗, t)

+ D2H(x∗, 0, t)V ′′′′(x∗, t)

After insertion of the expressions for the second and third order operator we
obtain the following equality:

d

dt
Y (x∗(t), t) = V ′′′′(x∗, t)ẋ∗ + D3

1H(x∗, 0, t) + D2D
2
1H(x∗, 0, t)Z(t)

+ 2D2
1D2H(x∗, 0, t)Z(t) + 2D1D

2
2H(x∗, 0, t)(Z(t))2

+ 2D1D2H(x∗, 0, t)Y (t)

+ D1D
2
2H(x∗, 0, t)(Z(t))2 + D3

2H(x∗, 0, t)(Z(t))3

+ 2D2
2H(x∗, 0, t)Y (t)Z(t)

+ D1D2H(x∗, 0, t)Y (t) + D2
2H(x∗, 0, t)Z(t)Y (t)

+ D2H(x∗, 0, t)V ′′′′(x∗, t) .

This expression contains also fourth-order terms, i.e. V ′′′′. By omitting these
we obtain an third-order approximation of Y which we denote by Ỹ . It is
given through:

d

dt
Ỹ (t) = D3

1H(x∗, 0, t) + 3D2
1D2H(x∗, 0, t)Z(t)

+ 3D1D
2
2H(x∗, 0, t)(Z(t)2 + Ỹ (t)) + D3

2H(x∗, 0, t)(Z(t))3

+ 3D2
2H(x∗, 0, t)Z(t)Ỹ (t)

(2.56)

The evaluation of the partial derivatives of the Hamiltonian results in the
following expressions:

D3
1H(x∗, 0, t) =3Qh′(x∗)h′′(x∗)−Q(y − h(x∗))h′′′(x∗) (2.57)

D2
1D2H(x∗, 0, t) =− f ′′(x∗) (2.58)

D1D
2
2H(x∗, 0, t) =0 (2.59)

D3
2H(x∗, 0, t) =0 (2.60)

D2
2H(x∗, 0, t) =−R (2.61)

33



Chapter 2. Stochastic Filtering

This gives the final differential equation equation for the approximate third
order operator Ỹ which is

d

dt
Ỹ = 3Qh′(x∗)h′′(x∗)−Q(h(x∗)− y)h′′′(x∗)− 3f ′′(x∗)Z

− 3RZỸ , .
(2.62)

The initial values for the optimal state is already given in (2.28), which is
x∗(t0) = x0. The optimal state of the second-order operator can be calculated
as

Z(t0) =V ′′(x∗(t0), t0)

=
∂2

∂(x∗)2
1
2
R−1

0 (x∗ − x0)2

=
∂

∂x∗
R−1

0 (x∗ − x0)

=R−1
0 .

Similarly, the initial state of the third-order operator can be calculated, which
is zero, i.e. Ỹ (t0) = 0. The expressions (2.52), (2.55) and (2.62) together with
the initial values gives the third-order optimal minimum energy filter which
is summarized in the following Theorem:

Theorem 2.6.1. The third-order optimal minimum energy filter for the one-
dimensional state and observation equations (2.25) and (2.26) with energy
function (2.27) is given through the following coupled evolution equations:

ẋ∗(t) =f(x∗(t)) + P (t)h′(x∗(t))Q
(
y(t)− h(x∗(t))

)
,

Ṗ (t) =Q
(
(y(t)− h(x∗(t)))h′′(x∗(t))− (h′(x∗(t)))2

)
(P (t))2 + 2f ′(x∗(t))P (t)

+R−
(
(P (t))3h′(x∗(t))Q

(
y(t)− h(x∗(t))

)
Ỹ (t)

)
˙̃Y (t) =3Qh′(x∗(t))h′′(x∗(t))−Q(y(t)− h(x∗(t)))h′′′(x∗(t))− 3f ′′(x∗(t))/P (t)

− 3RỸ (t)/P (t) .

The initial states are given through x∗(t0) = x0, Z(t0) = R−1
0 and Ỹ (t0) = 0,

where the expressions x0 and R0 are from the energy function (2.27).

In a similar way one could proceed and calculate the total time derivative
of the fourth-order operator X(t) := V ′′′′(x∗, t), and the insertion of the
Hamilton-Jacobi-Bellman equation to find a fourth-order optimal minimum
energy filter. The corresponding expressions become large that is why we
omit them.
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2.7 Experiments on Higher-Order Filters

In this section we compare the second-order optimal minimum energy filter
presented in Theorem 2.4.1 with the third-order optimal minimum energy fil-
ter from Theorem 2.6.1. For the sake of simplicity we use the same filtering
problems as in the case studies above, i.e. a simple differential equation for
the optimal state and a sinusoidal sensor. As reference methods we also com-
pared to the extended Kálmán filter, unscented Kálmán filter and particle
filter which were used for the experiments in section 2.5. We plotted sample
paths and filter reconstructions of the filters in Fig. 2.3. As one can observe
are the reconstructions of the second-order and third-order optimal mini-
mum energy filter very similar, yielding almost the same mean cumulative
asymptotic error. Only at some selected areas the methods differ from each
other. Although we think that there are problems which require higher-order
optimal filtering (e.g. with a non-quadratic energy function), in most cases
the second-order optimal filter results in excellent results and represents a
good tradeoff between complexity and accuracy.

2.8 Summary

In this chapter we introduced the general filtering problem from stochas-
tic filtering theory with its fundamental solution given by the Kushner-
Stratonovich equation which is a partial differential equation (PDE) on the
a posteriori distribution. Since this PDE cannot be solved exactly we pre-
sented state-of-the-art methods that try to find a suitable approximation of
this distribution. We briefly discussed the benefits and drawbacks of these
filters. We continued with some basics about control theory and derived the
second-order optimal minimum energy filter which does not rely on stochastic
filtering theory but on optimal control theory. After a complete derivation of
the minimum energy filter which is consistent with the general approach of
Saccon et al. [73], we compared this filter with extended Kálmán filter, un-
scented Kálmán filter and particle filter. We demonstrate that the minimum
energy filter is as good as the reference filters for simple non-linear scenarios
but superior in the case of more involved filtering problems. Finally, we con-
tributed the derivation of a third-order optimal filter for the scalar Euclidean
case, extending the work of Mortensen [58]. In experiments we showed that
second-order and third-order minimum energy filters differ only slightly from
each other, which does not justify the effort of calculating the third-order
operator in general. We also think, that calculating third order tensors in
scenarios with high-dimensional filtering problems become computationally
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Figure 2.3: Top (full view): typical filter reconstructions of stochastic filters
(extended Kálmán filter (EKF), unscented Kálmán filter(UKF) and particle
filter (PF)) and minimum energy filter (MEF) of second and third order
regarding to a sinusoidal sensor filtering problem, (cf. (2.48) and (2.49) with
h(x) = 10 · sin(x)). We observe that the minimum energy filters of different
orders return almost exact filter reconstructions. Bottom (detailed view):
between the time points 1 and 3 (red box) the minimum energy filter of
second and third order differ slightly from each other. However, this little
difference does not justify the increased computation effort of the third-order
filter, especially in high dimensions.
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2.8. Summary

infeasible. This is the reason why we restrict to second-order optimal filters
in the chapters below.
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Chapter 3

Differential Geometry

In this chapter we introduce fundamental concepts of differential geometry
with focus on Lie groups. Then we briefly summarize the main concepts of
the article of Saccon et al. [73] of how to apply the minimum energy filter,
which was derived in the last chapter, to the more general case of Lie groups.
The resulting second-order optimal filter consists of two coupled differential
equations that require to be integrated. Thus, we conclude this chapter with
a section about numerical integration on Lie groups and numerical integration
of matrix Riccati equations.

3.1 Riemannian Manifolds

The definitions and Theorems of this chapter correspond to the classical
definitions from literature. For the introduction of Riemannian manifolds,
especially matrix manifolds we used definitions from [1].

3.1.1 Charts, Atlases and Manifolds

Before introducing manifolds we start with the basic definition of topological
spaces.

Definition 3.1.1 (topological space). A pair (M,A) is called a topological
space with a set M and a family A of subsets of M such that

1. A1, A2 ∈ A =⇒ A1 ∩ A2 ∈ A ,

2. For any index set I holds

(Ai, i ∈ I) ⊂ A :
⋃
i∈I
Ai ∈ A ,
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3. ∅,M∈ A .

If there exists for each point p ∈M a neighborhood A ∈ A and a diffeomor-
phism φ : A → B, where B is an open subset of Rn, we call the pair (A, φ)
a chart at p and A is called a coordinate neighborhood.

Definition 3.1.2. A (C∞) atlas is a collection of charts (Ai, φi)i of the
topological space M such that

1.
⋃
iAi =M ,

2. for any i, j and Ai ∩ Aj 6= ∅ the charts (Ai, φi) and (Aj, φj) are com-
patible with each other in the following sense: The set φi(Ai ∩Aj) and
φj(Ai ∩ Aj) are open sets in Rd and the mapping

φj ◦ φ−1
i : Rd → Rd

is smooth (C∞).

An atlas A can be augmented by all charts (U, φ) such that A ∪ {(U, φ)} is
still an atlas. This is called a maximal atlas. A smooth manifold is a couple
(M,A) where M is a set and A is a maximal atlas of M into Rd where A
is Hausdorff and second-countable. For details we refer to [1].

3.1.2 Tangent Spaces

Most important for optimization on a smooth manifold as introduced above
is the notion of tangent vectors at a specific point p ∈ M. There are differ-
ent concepts of how to introduce tangent vectors. We will consider tangent
vectors as equivalence classes of differentiable curves γ : R → M, t 7→ γ(t)
with γ(0) = x that have the the same differential. However, calculation of
this differential requires a vector space structure which is not given on M
itself. Instead one requires a smooth real-valued mapping f : M→ R such
that f ◦ γ : t 7→ f(γ(t)) is a smooth mapping from R to R. This leads to the
following definition from [1]:

Definition 3.1.3. A tangent vector ξx to a manifoldM at a point x ∈M is a
mapping from all smooth functions onM that are defined in a neighborhood
of x, denoted by Fx(M), such that there exists a curve γ onM with γ(0) = x,
satisfying

Df(x)[ξx] = Df(x)[γ̇(0)] :=
d(f(γ(t)))

d t

∣∣∣
t=0

, (3.1)

for all f ∈ Fx(M). Such a curve γ is said to realize the tangent vector ξx.
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The tangent space at a point x ∈ M, denoted by TxM is the space of all
tangents vectors ξx to M at x. For a manifold M we denote the tangent
bundle by the union of all tangent spaces, which is

TM :=
⋃
x∈M

TxM. (3.2)

Example 3.1.4 (Tangent spaces of matrix Lie groups). We consider the
general linear group of all quadratic n × n matrices which are invertible
which is denoted by GLn . Together with the matrix multiplication this gives
a matrix Lie group. Since GLn is an embedded submanifold of Rn×n which
itself is a Euclidean space, the tangent spaces can directly calculated as the
limit

γ′(0) := lim
t→0

γ(t)− γ(0)

t
, (3.3)

where γ : R→ GLn is a curve with γ(0) = x. The resulting tangent space is

Tx GLn := Rn×n . (3.4)

Below we will introduce subgroups of GLn that are also considered as em-
bedded submanifolds of Rn×n.

3.1.3 Riemannian Metric

Definition 3.1.5. A differentiable manifoldM equipped with a scalar prod-
uct g = gx : TM×TM→ R≥0 that varies smoothly on the manifold is called
Riemannian manifold. For each tangent space TxM3 ξx, ηx the Riemannian
metric gx(ξx, ηx) is an inner product, which is a bilinear and symmetric pos-
itive form. We use the following notations: gx(ξ, η) = g(ξ, η) = 〈ξ, η〉 =
〈ξ, η〉x.

Riemannian Metric on Embedded Submanifolds If N is an embed-
ded submanifold of M and g be a Riemannian metric on M then the cor-
responding Riemannian metric ḡ = ḡx on N is equal to g = gx since each
tangent space TxN is an subspace of TxM. Thus

ḡx(ξ, η) = gx(ξ, η) ∀ξ, η ∈ TxN .

Definition 3.1.6 (Riemannian gradient). The Riemannian gradient, de-
noted by Df(x), is defined as the unique elements of TxM that satisfies

〈Df(x), η〉x := Df(x)[η], ∀η ∈ TxM, (3.5)
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where the D on the right hand side denotes the directional derivative. Note,
that we will use the notation D for both, the directional derivative and the
Riemannian gradient, or more abstract, for differentials.

Remark 3.1.7. If we have functions of multiple variables, i.e. f(x1, . . . , xn)
we denote with Dif(x1, . . . , xn) the corresponding (partial) derivative or the
(partial) gradient. For expressions we will use Dy (x2 + y) to identify the
element for which the derivative has to be computed.

Riemannian Gradients on Embedded Submanifolds If (N , g) is an
embedded submanifold of a Riemannian manifold (M, g) (with the same
Riemannian metric), then each tangent vector ξ ∈ TxM can be decomposed
in an element of TxN and and an element on the normal space of TxN ,
denoted by (TxN )⊥ as follows

ξ = Px(ξ) + P⊥x (ξ) ,

where Px denotes the orthogonal projection onto TxN and P⊥x denotes the
orthogonal projection onto the normal space of TxN .
If f(x) is a real-valued function on N ⊂M we find the Riemannian gradient
gradf(x) on the tangent space TxN by computing the Riemannian gradient
grad f(x) on TxM and projecting it onto TxN , i.e.

gradf(x) = Px(grad f(x)) . (3.6)

3.1.4 Second-Order Geometry

In order to adapt the notion of the Hessian to a manifold, we introduce affine
connections.

Definition 3.1.8. Let X (M) denote the set of all vector fields on M. An
affine connection ∇ on a manifold M is a mapping

∇ : X (M)×X (M)→ X (M),

which is denoted by (η, ξ) 7→ ∇ηξ and satisfies the following properties.

1. F(M)-linearity in η: ∇fη+gχξ = f∇ηξ + g∇χξ ,

2. R-linearity in ξ : ∇η(aξ + bζ) = a∇ηξ + b∇ηξ ,

3. Product rule: ∇η(fξ) = (ηf)ξ + f∇ηξ ,

where we used η, χ, ξ, ζ ∈ X (M), f, g ∈ F(M), and a, b ∈ R.
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For the introduction of second-order geometry we require the symmetry of a
connection to be expressed in a coordinate free way which needs the concept
of the Lie bracket of two vector fields.

Definition 3.1.9 (Lie bracket for vector fields). Let ξ and η be two vector
fields on M with common open domain U and let F(U) denote the space of
all real-valued and smooth functions defined on U. The Lie bracket [ξ, η] is
defined as the function F(U) into itself defined by

[ξ, η]f := ξ(ηf)− η(ξf). (3.7)

On matrix manifolds the Lie bracket is simply the matrix commutator
[A,B] = AB − BA. Below we will also consider the Lie bracket from the
point of view of Lie group theory in order to define the Lie algebra.
For the definition of a Riemannian Hessian we need to select a specific affine
connection with properties that are desirable for a Riemannian calculus, i.e.
the properties symmetry and compatibility with the Riemannian metric which
are given through the following Theorem:

Theorem 3.1.10. On a Riemannian manifold M there exists an unique
affine connection ∇, called the Levi-Civita connection or the Riemannian
connection that satisfies

1. ∇ηξ −∇ξη = [η, ξ], (symmetry), and

2. χ〈η, ξ〉 = 〈∇χη, ξ〉+ 〈η,∇χξ〉 (compatibility with the Riemannian met-
ric),

for all vector fields χ, ξ, η on M.

The existence of this connection was shown by Levi and Cicita [1, Thm.
5.3.1]. In the following we think of the Riemannian connection if we use the
notation ∇.

Affine Connections on Embedded Submanifolds Following [1, Prop.
5.3.2] the affine connection ∇ on an embedded submanifold N of a Rie-
mannian manifold M with Riemannian connection ∇ can be computed by
projection, i.e.

∇ηxξ = P(∇ηxξ) (3.8)

In this work we will mainly focus on matrix manifolds that are embedded
submanifolds of Euclidean spaces. In this case we can compute the affine
connection directly by

∇ηxξ = Px(Dξ(x)[η]). (3.9)
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Definition 3.1.11. Let f be a real-valued function on a Riemannian mani-
foldM, then the Riemannian Hessian at a point x ∈M is the linear mapping
Hess f(x) of TxM into itself defined by

Hess f(x)[ξx] = ∇ξx grad f (3.10)

for all ξx ∈ TxM, where ∇ denotes the Riemannian connection on M.

With this definition the Riemannian Hessian can also be expressed as

〈Hess f(x)[ξ], η〉 := D(Df(x)[ξ])[η]−Df(x)[∇ηξ]. (3.11)

3.2 Lie Groups

In this section we will consider specific Riemannian manifolds that contain
a smooth group action, which are known as Lie groups. In this section we
will introduce the main concepts of Lie groups and Lie algebras that are
required for the following mathematical treatment of filters on Lie groups.
An extensive overview about general Lie groups and representation theory
can be found in [43, 19]. An introduction to matrix Lie groups is given in
[40]. All definitions and Theorems in this sections are basics from general
Lie group theory and are thus provided without references.

3.2.1 Lie Algebras

Before considering Lie groups we start investigating Lie algebras, which can
be considered as the infinitesimal counterpart of Lie groups. Most important
for studying Lie algebras is the Lie bracket.

Definition 3.2.1. Let g be a vector space. A Lie bracket on g is a bilinear
map [·, ·] : g× g→ g satisfying

1. [x, y] = −[y, x] for x, y ∈ g ,

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for x, y, z ∈ g (Jacobi identity).

For any Lie bracket on g, the pair (g, [·, ·]) is called a Lie algebra.

We also require to define the adjoint mapping on Lie groups which are deriva-
tions

Definition 3.2.2. Let g be a Lie algebra. A linear map δ : g → g is called
a derivation if

δ([x, y]) = [δ(x), y] + [x, δ(y)], for x, y ∈ g. (3.12)
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A typical example for derivations is the adjoint representation:

Definition 3.2.3. Let g be a Lie algebra. Then we obtain with the Jacobi
identity that the linear map

adx : g→ g, y 7→ adx(y) := [x, y] , (3.13)

is a derivation.

3.2.2 Lie Groups

Many problems arising in the real world can be described as Lie groups, since
problems are usually symmetric in the sense, that they have a forward and
an inverse backward action.

Definition 3.2.4. A Lie group is a group G endowed with the structure of
a Riemannian manifold such that the group actions

m : G × G → G, (x, y) 7→ xy and i(x) : G → G, x 7→ x−1, (3.14)

are smooth. The neutral element of the Lie group G is denoted by IdG = xx−1.
We omit the subscript G when the Lie group is clear from the context.

We will write Lx : G → G, y 7→ xy for the left translation map and Rx : G →
G, y 7→ yx for the right translation map.

Example 3.2.5. We consider the following matrix Lie groups

1. Gln : general linear group of all invertible n× n matrices

2. SOn : the group of rotations in Rn, that consists of all orthogonal
matrices with positive determinant 1, i.e.

SOn :=
{
R ∈ Rn×n|R>R = 1n, det(R) = 1

}
. (3.15)

Further, SOn is a compact Lie group.

3. SEn : special euclidean group that consists of all affine motions, with
rotations and translations. It is defined through

SEn :=
{( R w

01×n 1

)
∈ R(n+1)×(n+1)

∣∣∣R ∈ SOn, w ∈ Rn
}
. (3.16)
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3.2.3 Left Invariant Vector Fields

The basic tool of Lie group theory is to translate problems on the Lie group
to problems to the corresponding Lie algebra. To do this we require left-
invariant vector fields. A fundamental Lemma of Lie group theory is that
the tangent map of the group action also defines a group action on the tangent
bundle TG of G which can be found in [43, Lemma 9.6.1]:

Lemma 3.2.6. The tangent map of the left translation L

T (L) : T (G × G) ∼= TG × TG → TG, (ξ, η) 7→ TL(ξ, η) ,

defines a Lie group structure on the tangent bundle TG with identity element
0Id ∈ TIdG. The map

Φ : G × TId(G)→ TG, (x, η) 7→ xη = TIdLxη := TLxη(Id) ,

is a diffeomorphism.

Proof. See [43, Lemma 9.6.1].

Definition 3.2.7. A vector field ξ ∈ X (G), where X (G) denotes the set of
smooth vector fields on G, is called left-invariant if

ξ = (Lx)∗ξ := TIdLx ◦ ξ ◦ L−1
x (3.17)

holds for each x ∈ G.

The left-invariance of the vector field implies together with Lemma 3.2.6 that
for each x ∈ G we have ξ(x) = xξ = TIdLxξ = TLxξ(Id), such that the vector
field ξ is completely determined by its value ξ(Id) ∈ TIdG. Conversely, we
obtain for each η ∈ TIdG a left-invariant vector field ξ with ξ(Id) = η by the
relation ξ(x) = TIdLxη. The left-invariance follows from

ξ ◦ Lyx = ξ(yx) = (yx)η = y(xη) = TIdLyξ(x) , (3.18)

for all x, y ∈ G. From this follows that the mapping from TIdG to all left-
invariant vector fields on G given through η 7→ ξ is a linear bijection. From
this fact we obtain the Lie bracket [·, ·] on TIdG which satisfies the relation

TIdLx[ξ, η] = [TIdLxξ, TIdLxη] for all ξ, η ∈ TIdG and x ∈ G. (3.19)

Definition 3.2.8. The Lie algebra g := (TIdG, [·, ·]) which is associated with
the left-invariant vector fields is called the Lie algebra of G.
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In the next chapters below we will often use this fact to pull operations on
tangent spaces back to operations on the Lie algebra.

Example 3.2.9. We continue the example 3.2.5:

1. The Lie algebra of GLn is the set of all n×n matrices, i.e. gln := Rn×n.

2. The Lie algebra to SOn is the set of all skew-symmetric matrices

son := {X −X>|X ∈ Rn×n} .

3. The Lie algebra of SEn is

sen :=
{(ω t

0 0

) ∣∣∣ω ∈ son, t ∈ Rn
}
. (3.20)

By definition the Lie algebra g can also be understood as the tangent space
at the identity element IdG of the Lie group G. Since g has the structure
of a vector-space, for a n−dimensional Lie group G there exists a linear and
invertible mapping vecg : g→ Rn such that each element in g can be uniquely
represented as a vector in Rn. The inverse operation is denoted by matg :=
vec−1

g . As this mapping is not unique we will define the corresponding maps
in the following chapters for the required Lie groups.

3.2.4 The Exponential Map

On of the most important structure in Lie group theory is the so called
exponential map, that maps a tangent vector in the Lie algebra to an element
of the Lie group.

Definition 3.2.10. We define the exponential function on a Lie group G as
in [43, sec. 9.2] through

ExpG : g→ G, ExpG(η) := γη(1), (3.21)

where γη : R → G is the unique maximal integral curve of the left invariant
vector field ηl, satisfying γη(0) = IdG . This means that γη is the unique
solution of the initial value problem

γ(0) = IdG, γ̇(t) = TIdLγ(t)η, for all t ∈ R. (3.22)

Here TIdLx denotes the tangent map of the left translation of x evaluated at
identity.
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Remark 3.2.11. We also require the so called logarithmic map denoted by
LogG : G → g which is the inverse of the exponential map, i.e. LogG :=
Exp−1

G .

Example 3.2.12. Let G := GLn(R) the Lie group of invertible n×n matri-
ces. The tangent map of the left translation of x at identity is given through

TIdLxη = DyLx(y)[η]|y=Id = xη. (3.23)

The unique solution γη(t) of the initial value problem

γη(0) = 1, γ̇η = γ(t)η , (3.24)

is given by the fundamental system of linear differential equations in terms
of the matrix exponential, i.e.

γη(t) = etη =
∞∑
k=0

tk
ηk

k!
. (3.25)

This exponential series converges for any matrix η. Thus, the exponential
map of the Lie group GLn(R) coincides with the usual matrix exponential,
i.e. ExpGLn(R)(η) = eη. This is the reason for the term “exponential map”.

3.2.5 Product Lie Groups

In this section we investigate product Lie groups with their induced product
group action. For this purpose let G1, . . . ,Gn be Lie groups and G := G1 ×
· · · × Gn endowed with the direct product group structure

(x1, . . . , xn)(y1, . . . , yn) := (x1y1, . . . , xnyn) . (3.26)

Proposition 3.2.13. G := G1 × · · · × Gn is a Lie group with Lie algebra

g = g1 × · · · × gn (3.27)

where g1, . . . , gn denote the Lie algebras of G1, . . . ,Gn.

Proof. By the definition of the group action as direct product we see that G
is a Lie group with identity element IdG = (IdG1 , . . . , IdGn). Since we have a
product Riemannian manifold, the tangent spaces also factorize, i.e. TIdG =
TIdG1

G1×· · ·×TIdGn
Gn. It remains to calculate the Lie bracket by determining

the left-invariant vector fields on G. By definition of left invariant vector fields
we obtain for each η = (η1, . . . , ηn) ∈ TIdG a vector field ξ ∈ X (G) with
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ξ(x) = TIdLxξ. The left-translation of the tangent map at identity of G can
be calculated as

TIdLxξ =T(IdG1
,...,IdGn )L(x1,...,xn)(ξ1, . . . , ξn)

=(TIdLx1ξ1, . . . , TIdLxnξn).

Thus, the Lie bracket on G also fulfills the equality

x[η, χ] = ([x1η1, x1χ1], . . . , [xnηn, xnχn])

for η, χ ∈ TIdG. It follows that the Lie algebra is by definition given through
the product topology, i.e. g = g1 × · · · gn.

Example 3.2.14. In the chapters below we consider different product Lie
groups. On of them is the group G = SE3×R6 with the group action which
is defined for x1 = (E1, v1), x2 = (E2, v2) ∈ G through

(x1, x2) 7→ (E1E2, v1 + v2) ∈ G . (3.28)

In Fig. 3.1 we depicted this Lie group (represented as a sphere) and also
inserted the relations to the tangent map and the exponential map on G.
We can also define the following Riemannian metric and the Riemannian
gradient on this group using the product topology as follows:
Riemannian metric on product Lie group. On SE3 as submanifold
of GL4, the Riemannian metric at E ∈ SE3 for ξ, η ∈ TE SE3 is given by
〈ξ, η〉E := 〈E−1ξ, E−1η〉14 where 〈A,B〉14 := tr(A>B) is the usual inner
matrix product. Thus the Riemannian metric on TxG for two tangent vectors
ξ = (Eξ1, ξ2), η = (Eη1, η2) ∈ TxG = TE SE3×R6 is given through

〈ξ, η〉x = 〈Eξ1, Eη1〉E + 〈ξ2, η2〉 = 〈ξ1, η1〉14 + 〈ξ2, η2〉, (3.29)

where we used the components x = (E, v) ∈ G.
Riemannian Gradient. For a real-valued function f : G → R, the Rieman-
nian gradient Df(x) is defined through the relation 〈Df(x), η〉x := Df(x)[η]
for all η ∈ TxG. For the product Lie group G = SE3×R6 and x = (E, v) ∈
G, η = (Eη1, η2) ∈ TxG we calculate the Riemannian gradient as follows:

Df(x)[η] = 〈Df(x), η〉x
=〈E−1DEf((E, v)), η1〉14 + 〈Dvf((E, v)), η2〉 ,

where DEf((E, v)) is the partial Riemannian gradient on SE3 and
Dvf((E, v)) is the Euclidean partial gradient on R6.
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Id ∈ G

x = Expg(η)

χ = TIdLxη =: xη

H

ξ = TIdLyη = TIdLyT
∗
IdLxχ

TxG

g = TIdG = se3 × R6 vecg

matg
R12

ExpgLogg

G = SE3×R6

η0 ∈ g

Figure 3.1: Illustration of the Lie group G (represented as sphere) with its
Lie algebra g and tangent spaces at different points. A tangent vector χ at
a point x can be expressed as tangent map at identity of the left translation
at x of a vector η ∈ g, i.e. χ = xη. Since the Lie algebra g can be identified
by the vecg mapping with R12, we can express each tangent vector at a point
x as a pair (x, vecg(η)). Each tangent vector on any tangent space may be
mapped to the manifold using the exponential map Exp.

3.2.6 Levi-Civita Connection on Lie Groups

Since each Lie group is a Riemannian manifold it is naturally equipped with
the Levi-Civita connection ∇. Due to the structure of Lie groups it is addi-
tionally possible to express the Levi-Civita connection in terms of the con-
nection function which is defined through

xω(ξ, η) := x∇ξη = ∇xξxη , (3.30)

for all x ∈ G and tangent vectors ξ, η ∈ g. We also introduce the “swap”-
operator that interchanges the arguments, i.e ω�

ξ η := ωηξ.

3.2.7 Duality on Lie Groups

Tangential spaces on Riemannian manifolds and especially on Lie groups are
linear spaces, endowed with a scalar product – the Riemannian metric. Thus,
these tangent spaces of finite-dimensional Lie groups are finite-dimensional
Hilbert spaces, which imply duality: In this work we denote by TxG∗ the dual
space of the tangent space of TxG at a point x ∈ G. For a Lie group G we also
have the dual of the Lie algebra g denoted by g∗. The dual space TxG∗ denotes
the set of all linear mappings from TxG to R. For µ ∈ TxG∗ and η ∈ TxG
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we use the natural pairing 〈µ, η〉x = µ(η). Below we use the identification of
the Lie algebra g with the bidual g∗∗. We say that a operator φ : g → g∗ is
symmetric with respect to the Riemannian metric (dual pairing) if φ = φ∗.
Using the duality concept we introduce the following operators on the con-
nection function in (3.30). The dual of the connection function ω∗ξ : g∗ → g∗

is defined through the relation 〈ω∗ξ (µ), η〉 := 〈µ, ωξη〉. Additionally we require
expressions that were introduced in [73]: The swapped dual of the connection
function is given through ω∗�µ : g → g∗ which is defined by 〈ω∗�µ (ξ), η〉 :=
〈ω∗ξ (µ), η〉 = 〈µ, ωξη〉 as well as the dual of the “swap”-operator ω�∗

η : g∗ → g∗

defined by the relation 〈ω�∗
η µ, ξ〉 := 〈µ, ω�

η ξ〉 = 〈µ, ωξη〉.

3.3 The Minimum Energy Filter on Lie

Groups

In this section we summarize the main ideas that are required for the gen-
eralization of the minimum energy filter for Lie groups. These include the
concept of left-trivialization of the appearing expression which allow calcu-
lations on the Lie algebra. We follow the approach of Saccon et al. [72, 73].
Instead of providing the full derivation of the second-order optimal filter, we
will only focus on the main results. We begin with the problem formulation
and the definition of the energy function and proceed with the solution of
the corresponding optimal control problem. Finally we demonstrate the re-
cursive description of the optimal state and the corresponding second-order
operator which results in the minimum energy filter.

3.3.1 Filtering Problem

In opposite to the filtering problem on an Euclidean space which was formu-
lated in (2.25) and (2.26) we require a different formulation on Lie groups.
The corresponding differential equations can be expressed be means of the
tangent map of the left translation in terms of left invariant vector fields as
follows. This results in the following state equation:

ẋ(t) = x(t)
(
f(x(t)) + δ(t)

)
. (3.31)

The idea behind this representation is, that each tangent vector η ∈ TxG can
be expressed in terms of an element of the Lie algebra ξ ∈ g and the tangent
map of the left translation of x at identity, i.e. η = xξ = TIdLxξ. Thus the
functions f : G → g as well as the noise term δ map onto an element of the
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Lie algebra. The observation stays unchanged in comparison to the euclidean
case, i.e.

y(t) = h(x(t)) + ε(t) . (3.32)

3.3.2 Objective Function

The objective function can be formulated similarly to the energy function on
the Euclidean space. However, instead of δ we use its vectorized representa-
tion within the quadratic form. The final energy function reads

J (δ, ε, t; t0) := m0(x) +

∫ t

t0

‖δ(τ)‖2
R + ‖vecg(ε(τ))‖2

Q dτ . (3.33)

In this energy function ‖vecg(δ(τ))‖2
R and ‖ε(τ)‖2

Q denote quadratic forms
on the noise processes with symmetric and positive definite matrices R and
Q. The initial value function m0 is a smooth and bounded function with an
unique minimum x0 on G. The only difference to the energy in (2.27) consists
of the vectorization operator for δ.

3.3.3 Optimal Control Problem

We continue with the replacement of the observation noise ε = ε(t) by the
residual

ε(t) = ε(t, x(t)) := y(t)− h(x(t)) , (3.34)

that is gained from the observation equation (3.32). Insertion of this ex-
pression into the energy function (3.33) gives the modified energy that now
depends on x rather than ε

J (δ, x, t; t0) = m0(x) +

∫ t

t0

‖vecg(δ(τ))‖2
R + ‖y(τ)− h(x(τ))‖2

Q dτ . (3.35)

As we already included the observation equation (3.32) into this energy it
remains to minimize it with respect to δ and x as well as the state equation
(3.31). Below we address this problem in terms of optimal control and inter-
pret the model noise as a control parameter. As every (admissible) control
δ = δ(t) generates a trajectory of x, we first minimize the energy function
with respect to δ and such that the state equation (3.31) is fulfilled. From
the point of view of optimal control we want to obtain the value function
which returns the value of the energy function of the optimal control δ∗, i.e.

V(x, t) := inf
δ|[t0,t]

J (δ, x, t; t0) subject to (3.31) . (3.36)
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Finding the optimal control on the Lie algebra is mathematically involved
and requires geometric control theory and a geometric formulation of the
Pontryagin maximum (minimum principle) (cf. [48, chapter 11]). As the
proof of this maximum principle is already elongated for the scenario of Eu-
clidean space it will be even more involved on Lie groups since one requires
the so called symplectic structure of the cotangent bundle. Even textbooks
provide a simplified proof of the maximum principle, cf. [5, chapter 5]. There-
fore we will not provide the proofs of the maximum principle; it is beyond
the scope of this work. Instead we refer to the results of geometric control
theory and the work of Saccon et al. [72]. The (time-varying) Hamiltonian
H̃ : T ∗G × g× R→ R for the above control problem (3.36) is given through

H̃(p, δ, t) := ‖vecg(δ(t))‖2
R+‖y(t)−h(x(t))‖2

Q−〈p(t), TIdLx(f(x(t))+δ(t))〉x .
(3.37)

Instead of the scalar product in the Euclidean, the Riemannian metric is used
here. Thus the costate variable p (which can be interpreted as a Lagrangian
multiplier) lies in the dual of the tangent space TxG, i.e. p ∈ TxG∗. The
key concept of the approach of [72] is to trivialize this Hamiltonian such
that is is independent of the point x ∈ G. Each element of the cotangent
bundle p ∈ TxG∗ can be represented uniquely by a µ ∈ g∗ by means of left
translation such that µ = TIdL

∗
xp resulting in the left-trivialized Hamiltonian

H̃− : G × g∗ × Rn × g→ R proposed in [72, Eq. (19)].

H̃−(x, µ, δ, t) = ‖vecg(δ(t))‖2
R + ‖y(t)− h(x(t))‖2

Q − 〈µ(t), f(x(t)) + δ(t)〉Id .
(3.38)

Using the geometric Pontryagin minimum principle [48, chapter 11], the value
function can be found by minimization of the Hamiltonian (3.38). Since this
Hamiltonian is convex in δ, we obtain a unique solution δ∗, of the control
problem (3.36). Insertion of this solution into the (time-varying) Hamiltonian
gives the optimal Hamiltonian

H(x, µ, t)− := H̃−(x, µ, δ∗, t) . (3.39)

As in the case of an Euclidean state space we require the Hamilton-Jacobi-
Bellman equation for the recursive filtering principle in the sequel. This
differs from the classical theory and needs to be generalized to Riemannian
manifolds. The corresponding left-trivialized Hamilton-Jacobi-Bellman equa-
tion (HJB) provided by [72] is

∂

∂t
V(x, t)−H(x, TIdL

∗
x(D1V(x, t)), t) = 0. (3.40)

Most of the other concepts of the minimum energy filter presented in the last
chapter stay almost unchanged: After starting with the necessary condition
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for optimality, i.e.
D1V(x∗, t) = 0 , (3.41)

one can calculate the total time derivation of the condition (3.41). Then the
HJB equation (3.40) is inserted as an optimality criterion, which includes the
constraints of the dynamical system (3.31). After truncation of higher-order
derivatives and a variable substitution one gains the following two differential
equations, cf. [73]:

ẋ∗(t) = TIdLx∗(t)
(
f(x∗(t)) +K(t)rt(x

∗)
)
, x∗(t0) = x0 , (3.42)

where K(t) : g∗ → g is the second-order operator satisfying the operator
Riccati equation below. The residual rt(x

∗) is given through

rt(x
∗) = TIdL

∗
x∗(t)

(
Q(y(t)− h(x∗(t))) ◦Dh(x∗(t))

)
, (3.43)

where Q is the weighting matrix in the energy function (3.35). The second-
order optimal symmetric gain operator K(t) fulfills the following Riccati
equation

K̇(t) = A◦K+K◦A∗−K◦E◦K+matg ◦R−1◦vecg−ωKr◦K−K◦ω∗Kr , (3.44)

with initial condition K(t0) =
(
TIdL

∗
x∗(t0) ◦Hessm0(x∗(t0))◦TIdLx∗(t)

)−1
. The

operators A(t) : g→ g and E(t) : g→ g∗ are given by

A(t) =D1f(x∗(t)) ◦ TIdLx∗(t) − adf(x∗(t))−Tf(x∗(t)) , (3.45)

E(t) =− TIdL
∗
x∗(t) ◦

((
Q(y(t)− h(x∗(t)))Tx∗G

)
◦ Hessh(x∗(t))

◦ (Dh(x∗(t)))∗Q ◦Dh(x∗(t))
)
◦ TIdLx∗ ,

(3.46)

where ω is the connection function, defined in (3.30) and Kr is a short-
hand K(t)rt(x

∗). The functions ad· and T· denote the adjoint representa-
tion and the torsion function associated with the connection function ω.
The expression (·)W is the so-called exponential functor which maps a linear
map φ : U → V to the linear map φW : L(W,U) → L(W,V ) defined by
φW (η) = φ◦η. For details on functor theory of Lie groups we refer the reader
to [43, chapter 9.1].
Since the details of the above expression are involved we refer the reader to
the original article of Saccon et al. [73] where also the proofs can be found. In
the chapters below we will adapt this second-order optimal filter to specific
problems of image processing and scene understanding, where we will derive
the expressions in (3.42) and (3.44) explicitly.
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3.4 Numerical Integration on Lie Groups

An overview about numerical integration on Lie groups can be found in
[39] for right invariant vector fields. However, we will consider only Lie
groups that are generated by left invariant vector fields to be consistent with
our main reference [72]. Therefore we introduce in this section the adapted
numerical methods for Lie groups that are generated by left invariant vector
fields. We distinguish between explicit and implicit methods that are used for
solving the following differential equation on a Lie group G with Lie algebra
g

ẋ(t) = TIdLx(t)f(x(t), t) x(t0) = x0 , (3.47)

where f : G → g is a continuous function. TIdLxf(x) =: xf(x) is the tangent
map of the left translation of x evaluated at the identity element Id of G.

3.4.1 Explicit Schemes

Similarly to explicit Runge-Kutta methods which act on Euclidean spaces
one can apply the corresponding concepts to Lie group. The numerical in-
tegration consists of two steps: The propagation of the vector field and an
update step. Crouch-Crossman methods generalize these operations to Lie
groups by using the exponential map to project the “update”-step onto the
Lie group. The first stage Crouch-Crossman method is given by

xk+1 = xk ExpG(∆f(xk)) , (3.48)

where ∆ = tk+1 − tk denote the integration step size. This methods cor-
responds to a simple explicit Euler scheme on an Euclidean space. On Lie
groups this scheme is also known as Lie-Euler method. The second stage
Crouch-Crossman method reads

xk+1 = xk ExpG
(

∆
2
K1

)
ExpG

(
∆
2
K2

)
, (3.49)

where K1 = f(xk) and K2 = f(xk ExpG(∆K1)). One can continue these
procedures to third order stages. As remarked in [39], the construction of
“algorithms with order greater than three” will be very complex.

3.4.2 Implicit Schemes

Based on Munthe-Kaas methods that are based on the Magnus Series Expan-
sion one can derive implicit numerical integration procedures. The simplest
of the implicit integration schemes is the Lie midpoint rule which is given by

xk+1 = xk ExpG(Ω), Ω = ∆f(xk Exp(Ω
2
)) . (3.50)

The value of Ω can be found by fixed point iterations.
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3.4.3 Numerical Integration of Matrix Riccati Equa-
tions

The minimum energy filter that we derived within the last chapter requires to
integrate the matrix Riccati equation (2.29), which is a second-order matrix
differential equation on the second-order operator P . Because P is the matrix
representation of the inverse Hessian of the value function for the optimal
state x∗, it is symmetric and positive definite. Thus, it is important that this
property is preserved during numerical integration. It was shown in [27] that
positive definiteness is preserved if the numerical integration scheme (explicit
or implicit) has at most order one. Therefore we propose to use an explicit
or implicit first order scheme. The explicit scheme can be derived relatively
simple but the implicit scheme of a matrix Riccati equation which is given
through the solution of

Pk = Sk + AkPk + PkA
>
k − PkHkPk (3.51)

requires to solve an algebraic Riccati equation. Therefore the equation (3.51)
can be reformulated into the following canonical form:

Sk + (Ak − 1
2
1)Pk + Pk(Ak − 1

2
1)> − PkEkPk = 0 . (3.52)

If Ek ∈ Rn×n has a low rank and thus can be decomposed into Ek = F>k Fk
with Fk ∈ Rm×n with m � n, the equation (3.52) can be solved exactly.
Typical method for solving (3.52) are based on Krylov-subspace methods [11]
or Kleinmann iterations [10]. For dense situations where m = n, implicit
methods for solving the algebraic Riccati equation cannot be applied. The
corresponding optimization problem is infeasible for large n. We propose to
use explicit numerical integration schemes instead.
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Recursive Filtering on SE3

4.1 Introduction

4.1.1 Overview and Motivation

Camera motion estimation is a fundamental task in many important applica-
tions in computer vision (e.g. autonomous driving, robotics). It is an essential
component of structure-from-motion, simultaneous localization and mapping
(SLAM) and odometry tasks. Furthermore it aids as additional prior for
e.g. optical flow methods. In the proposed approach, the ego-motion of the
camera is fully determined solely by the apparent motion of visual features
(optical flow) as recorded by the camera without needing additional sensors
such as GPS or acceleration sensors.
Although the camera motions can be reconstructed correctly from only two
consecutive frames [62, 41], the best performing methods take into account
multiple frames. They are more robust against the influence of erroneous
correspondence estimates. Two approaches to making use of the temporal
context can be distinguished: batch approaches – such as bundle adjustment
methods [80] – first record all the frames and fit in a smooth camera path
afterwards. They sometimes also incorporate loop closure constraints [85]
to further improve camera motion accuracy. Factorization methods [78, 60]
create the problem of jointly estimating camera poses and scene points as a
matrix decomposition problem. These batch approaches have the potential
of working exactly as they make use of all available information. On the
other hand, they hardly work in real-time applications, as the volume of
incorporated information increases linearly with time.
In contrast, online approaches apply sliding window techniques [6, 9, 16]
that track features on multiple frames to increase robustness and compute
the best fitting motion.
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A mathematical description of (online) temporal smoothing is given by the
notion of (stochastic) filtering [7]. In case of an ODE describing the behavior
of a latent variable, and observations that depend on the latent variable, the
goal is to estimate the most likely value of the unknowns. However, stochastic
filters suffer from non-linear dependencies of latent variables and observations
as well as geometric constraints and unknown probability distributions.
That is the reason why we chose deterministic Minimum Energy Filters that
do not need information about distributions and cope with the non-linearities
of the observer equation and the geometry of the state space SE3 in [13].
Since the state equation of the ego-motion in [13] is simple and requires small
weights on the penalty term for the model noise, however, this approach is
sensitive against noise and requires good observation data.
Therefore, in this chapter, we extend our previous work [13] to a second-
order model with constant acceleration assumption which is more stable and
shows better convergence. In our experiments, we demonstrate significantly
improved performance both on synthetic data with higher-order kinematic
scenarios and on the challenging KITTI benchmark [36]. Comparison with
novel continuous/discrete extended Kálmán filters on Lie groups [17] shows
that our approach – although being less general than [17] – leads to better
results and is robust against imperfect initializations.

4.1.2 Contribution and Organization

Our contributions reported in this chapter amount

• to generalize the constant camera velocity model from [13] (non-linear
measurement model) to polynomial models, in particular the constant
acceleration model;

• to provide a complete derivation of the second-order minimum energy
filter [72] as applied to camera motion estimation together with robust
numerics that are consistent with the geometry and the structure of
matrix Riccati equations;

• to report experiments demonstrating that higher-order kinematic mod-
els are more accurate than the constant velocity model [13] on synthetic
(with kinematic camera tracks) and real world data and that they en-
able to reconstruct higher-order information;

• to report experiments comparing our approach to state-of-the-art ex-
tended Kálmán Filters on Lie groups [17], indicating that our method
is superior in coping with non-linearities of the observation function as
well as in being more robust against imperfect initializations.
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In the next section, we introduce the filtering equations related to our prob-
lem of camera motion reconstruction. Next, we describ how to apply the
(operator-valued) minimum energy filter derived from [72], which was intro-
duced in section 3.3 , to our scenario. The numerical integration schemes of
the ODEs for the optimal state will be given in section 4.5. We will confirm
the theoretical results in section 4.6 by experiments on synthetic and real
world data and thus underline the applicability of our approach.

4.2 Minimum Energy Filtering Approach

As introduced in example 3.2.5, will denote by E(t) ∈ SE3 the time-
dependent (external) camera parameter that can be expressed in terms of
a rotation matrix R(t) ∈ SO3 and a translation vector w(t) ∈ R3 as a 4× 4
matrix

E(t) =

(
R(t) w(t)
01×3 1

)
, (4.1)

for which we also use the shorthand E(t) = (R(t), w(t)). Since the ego-
motion of a camera is generally not constant, the model Ė = 0 assumed
in previous work [13] does not hold in real-world problems, where a camera
fixed to a car rotates and accelerates in different directions. The constant
acceleration assumption, however, is more suited in this cases. It can be
described by the second-order differential equation Ë(t) = 0 for all t with
initial pose E(t0) = E0 and velocity Ė(t0) = V0. In general, one can consider
a polynomial model of even higher-order for E(t). In the following, we will
focus on the assumption that E(t) is quadratic in t. We will comment on
generalizations at the end of section 4.3.

The equation Ë(t) = 0 can be prescribed as a system of first-order differential
equations

Ė(t) =V (t) ,

V̇ (t) =0 ,
(4.2)

where V (t) ∈ TE(t) SE3 and V̇ (t) ∈ TV (t)TE(t) SE3 = TE(t) SE3. However,
since the tangent bundle of a Lie group can be expressed in terms of the
product T SE3 ∼ SE3×se3, we obtain a more compact expression, i.e.

Ė(t) =E(t) matse(v(t)),

v̇(t) =06 ∈ R6,
(4.3)
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where the operator matse : R6 → se3 is defined by

(η1, η2, η3, η4, η5, η6)> 7→


0 − η3√

2

η2√
2

η4

η3√
2

0 − η1√
2
η5

− η2√
2

η1√
2

0 η6

0 0 0 0

 . (4.4)

The inverse operation is denoted by vecse : se3 → R6. Note that this operation
is consistent with the usual scalar product, i.e. for χ, η ∈ se3 it holds

〈χ, η〉Id := tr(χ>η) = 〈vecse(χ), vecse(η)〉. (4.5)

Since SE3 is a Lie groups regarding the matrix multiplication and v ∈ R6

is a Lie group regarding addition, we can understand the system (4.3) as a
first-order differential equation on a product Lie group

G := SE3×R6. (4.6)

For two elements x1 = (E1, v1), x2 = (E2, v2) ∈ G we define the left transla-
tion Lx1 by Lx1x2 := (E1E2, v1 + v2) ∈ G. Since the tangent bundle TR6 can
be identified with R6, we obtain the Lie algebra

g = se3 × R6. (4.7)

In turn, we can take down (4.3) compactly as

ẋ(t) = (E(t) matse(v(t)),06) , (4.8)

where E and v denote the first and second element of x ∈ G, respectively.
On matrix Lie groups, one can express kinematics directly as matrix multi-
plication (cf. [88]), i.e. Ė = EΓ for Γ ∈ se3, E ∈ SE3, which is not valid for
general Lie groups. The rigorous way to describe kinematics is to use the
tangent map (cf. [72]) of the left translation which is given by the following
Proposition:

Proposition 4.2.1. The tangent map of the left translation regarding x =
(E, v) ∈ G at identity, i.e. TIdLx : g → TxG, can be computed for η =
(η1, η2) ∈ g as

TIdLxη = (Eη1, η2) = L(E,0)η =: xη. (4.9)

With Proposition 4.2.1 we can write down (4.8) as

ẋ(t) = TIdLx(t)f(x(t)) = x(t)f(x(t)), (4.10)

where f : G → g is given by

f(x) = f((E, v)) = (matse(v),06). (4.11)
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Remark 4.2.2. During the further development, the notation xη for a Lie
group element x ∈ G and η ∈ g must always be understood as the tangent
map of the left translation at identity. Similarly, we denote x−1η := TIdL

∗
xη

for the dual of the tangent map of Lx at identity.

4.2.1 Optical Flow Induced by Ego-Motion

Within a static scene, the optical flow u : Ω×R→ R2 on an image sequence
{I(t), t ∈ R} can be computed in terms of the underlying scene structure.
This is given by a depth map d : Ω × R → R>1 and the camera motion
E : R → SE3, i.e. E(t) = (R(t), w(t)), where R(t) and w(t) denote the
camera rotation and translation, respectively, by the following relation:

u(z, t; d(z, t),(R(t), w(t))) = π(R(t)>(( z1 ) d(z, t)− w(t)))− z, z ∈ Ω

(4.12)

whereas π : R3 → R2 is the projection (z1, z2, z3)> 7→ z−1
3 (z1, z2)> as depicted

in Fig. 4.1. Note that z ∈ R3 indicates inhomogenous coordinates rather than
homogenous coordinates on the projective space.
We can also express (4.12) directly in terms of E(t) for each z ∈ Ω :

u(z, t; d(z, t), E(t)) + z = π((E−1(t)gz(t))1:3), (4.13)

where gz(t) := (d(z, t)(z)>, d(z, t), 1)> denotes the data vector containing
depth information of pixel z below.

4.3 Minimum Energy Filter Derivation

In this section, we will determine the problem of camera motion estimation
with filtering equations, and we will summarize the most important steps for
the derivation of the minimum energy filter.
By denoting the left side of (4.13) by z ∈ R2 which is the observation, i.e.

yz(t) := u(z, t; d(z, t), E(t)) + z , (4.14)

and defining
hz(E, t) := π((E−1(t)gz(t))1:3) (4.15)

as the right hand side of (4.13), together with (4.3) and (4.10), we obtain
the following state- and observation system by setting x = (E, v) ∈ G:

ẋ(t) =x(t)(f(x(t)) + δ(t)), x(t0) = x0 , (state) (4.16)

yz =hz(E(t), t) + εz(t), z ∈ Ω , (observation) (4.17)
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Z = d(z(t))z(t)

E(t− 1) = (I3,0)

w(t)

E(t) = (R(t), w(t))

z(t)

z̃(t+ 1)

z(t)

z(t+ 1)

u(z(t), t)

Figure 4.1: Camera model for the monocular approach: A static scene point
Z is projected onto the plane at z(t) of the first camera E(t − 1) which is
mounted at the origin with rotation 13 such that Z = d(z(t))z(t). By moving
the camera into position E(t) = (R(t), w(t)), the scene point is projected onto
π(R>(t)(Z −w(t))) = z(t+ 1) which is at the same (relative) image position
as x̃(t+ 1) on the second image plane. The induced optical flow is given by
the difference u(z(t), t) = z(t+ 1)− z(t).

where f(x) is defined as in (4.11). The functions δ : R→ g and εz : R→ R2,
z ∈ Ω, are noise processes that model deviations from state and observations,
respectively.

4.3.1 Energy Function

Given a depth map, which is contained in the function gz(t) in (4.15) and
the optical flow u(z, t) in terms of the observations yz in (4.14), we want to
find the camera motion and its velocity in terms of x(t) ∈ G such that the
observation error εz in (4.17) is minimal and such that (4.16) is fulfilled with
minimal deviations δ(t) for all t ∈ R.
To this end, we consider the penalization of δ = (δ1, δ2) ∈ g and ε = {εz}z∈Ω

by a quadratic function c : g× R2n × R× R→ R given as

c(δ, ε, τ, t) :=1
2

(
‖vecse(δ1(τ))‖2

S1
+ ‖δ2(τ)‖2

S2
+
∑
z∈Ω

‖εz(τ)‖2
Q

)
, (4.18)
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where S1, S2 ∈ R6×6 and Q ∈ R2×2 are symmetric, positive definite weighting
matrices. From [72] we adopt the idea of a decay rate α > 0, and thus we
introduce the weighting factor e−α(t−t0) on the right-hand side of (4.18):

c(δ, ε, τ, t) :=1
2
e−α(t−t0)

(
‖vecse(δ1(τ))‖2

S1
+ ‖δ2(τ)‖2

S2
+
∑
z∈Ω

‖εz(τ)‖2
Q

)
.

(4.19)

Based on the penalty function (4.19), we define the energy:

J (δ, ε, t0, t) := m0(x(t), t, t0) +

∫ t

t0

c(δ, ε, τ, t) dτ , (4.20)

where m0 is a quadratic penalty function for the initial state. For our model
we set

m0(x, t, t0) := 1
2
e−α(t−t0)〈x− Id, x− Id〉Id, (4.21)

where the difference is canonical, i.e. x− Id = (E − 14, v) for x = (E, v).

Remark 4.3.1. Instead of using two quadratic forms with matrices S1, S2,
we can use more generally a symmetric and positive weighting matrix S ∈
R12×12 if we want to couple δ1 and δ2. In the upper case we find that S =(
S1 0
0 S2

)
.

4.3.2 Optimal Control Problem

The optimal control theory allows us to determine the optimal control input
δ : R → g that minimizes the energy J (δ, ε, t0, t) for each t ∈ R subject to
the state constraints (4.16). To be precise, we want to find for all t ∈ R and
fixed x(t) the control input δ|[t0,t] defining

V(x(t), t) := min
δ|[t0,t]

J (δ, ε(x(t), t), t0, t), s.t. (4.16) . (4.22)

The optimal trajectory is

x∗(t) := arg minx(t)∈G V(x(t), t) , (4.23)

for all t ∈ R and V(x, t0) = m0(x0, t0, t0). This problem is a classical optimal
control problem, for which the standard Hamilton-Jacobi theory [48, 5] under
appropriate conditions results in the well-known Hamilton-Jacobi-Bellman
equation. Pontryagin [5] proved that the minimization of the Hamiltonian
provides a solution to the corresponding optimal control problem (Pontrya-
gin’s Minimum Principle).
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However, since G is a non-compact Riemannian manifold, we cannot apply
the classical Hamilton-Jacobi theory for real-valued problems (cf. [5]). In-
stead we follow the approach of Saccon et al. [72] who derived a left-trivialized
optimal Hamiltonian based on control theory on Lie groups [48]. This left-
trivialized optimal Hamiltonian is defined by H̃− : G × g× g× R→ R,

H̃−(x, µ, δ, t) := c(δ, ε(x, t), t0, t)− 〈µ, f(x(t)) + δ(t)〉Id. (4.24)

The minimization of (4.24) w.r.t. the variable δ = (δ1, δ2) leads [72, Propo-
sition 4.2] to the optimal Hamiltonian

H−(x, µ, t) := H̃−(x, µ, δ∗, t) , (4.25)

where δ∗ = (δ∗1, δ
∗
2) is given by

vecse(δ
∗
1) = eα(t−τ)S−1

1 vecse(µ1), and

δ∗2 = eα(t−t0)S−1
2 µ2 .

(4.26)

Examining the right-hand side of (4.25) in detail, we obtain

H−((E, v), µ, t) = 1
2
e−α(t−t0)

(∑
z∈Ω

‖yz − hz(E)‖2
Q

)
− 1

2
eα(t−t0)

(
〈µ1,matse(S

−1
1 vecse(µ1))〉Id (4.27)

+ 〈µ2, S
−1
2 µ2〉

)
− 〈µ1,matse(v)〉Id ,

where we used ε(x(t), t) = {yz − hz(E(t), t)}z∈Ω. Here we introduced on the
left hand the variable x since the right hand side depends on x = (E, v).
In the next section, we will compute explicit ordinary differential equations
regarding the optimal state x∗(t) for each t ∈ R that consists of different
derivatives of the left trivialized Hamilton function (4.27).

4.3.3 Recursive Filtering Principle by Mortensen

In order to find a recursive filter, we compute the total time derivative of the
optimality condition on the value function, which is

D1V(x∗, t) = 0 , (4.28)

for each t ∈ R. This equation must be fulfilled by an optimal solution x∗ ∈ G
of the filtering problem. Unfortunately, because the filtering problem is in
general infinite dimensional, this leads to an expression containing derivatives
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of every order. In practice (cf. [88, 72]), derivatives of third order and higher
are neglected, since they require tensor calculus. Omitting these leads to a
second-order approximation of the optimal filter. The following Theorem is
an adaption of [72, Theorem 4.1]:

Theorem 4.3.2. The differential equations of the second-order Minimum
Energy Filter for state (4.16) and non-linear observer model (4.17) are given
by

(x∗)−1ẋ∗ =
(
f(x∗)−matg(P (t) vecg(rt(x

∗)))
)
,

x∗(t0) = Id , (4.29)

Ṗ (t) = −α · P + S−1 + CP + PC>

− P
(∑

z∈Ω(Γ̃vecse(Pr(Az(E∗))) +Dz(E
∗)) 06×6

06×6 06×6

)
P ,

P (t0) = 112 ,

(4.30)

where rt(x
∗) :=

(∑
z∈Ω Pr(Az(E

∗),06

)
and with the orthogonal projection

Pr : R4×4 → se3 defined in section A.2.2. The expressions C and Ψ are given
through

C(x∗, t) :=

(
−Ψ(x∗, t) 16

06×6 06×6

)
,

with

Ψ(x∗, t) := advec
se3

(f(x∗)) + Γ̃∗vecse(P rt(x∗)) . (4.31)

The function Az : SE3 → R4×4 is given by

Az(E) = Dz(E, gz) :=
(
κ−1
z Î − κ−2

z ÎE−1e4
3g
>
z Î
)>

·Q(yz − hz(E))g>z E
−>,

(4.32)

where κz := κz(E) := (e4
3)>E−1gz. The second-order operator Dz : SE3 →

R6×6 is given by (A.37), see Appendix A.3.1.
The matrix valued functions Γ̃z, Γ̃

∗
z : R6 → R6×6 are obtained from the

vectorization of the connection functions. Their components are given by
(Γ̃z)ij :=

∑6
k=1 Γijkz

k and (Γ̃∗z)ik :=
∑6

j=1 Γijkz
j with z ∈ R6 and the

Christoffel-Symbols Γijk are given in Appendix A.2.5.

This Theorem will be proven at the end of the section after we provided some
essential Lemmas.

65



Chapter 4. Recursive Filtering on SE3

Remark 4.3.3. A generalization of this Theorem is published in Saccon
et al. [72] for a larger class of filtering problems. However, the application
of the Theorem is not straightforward since the appearing expressions, e.g.
exponential functor, cannot be evaluated directly. Furthermore, the adaption
to non-linear filtering problems has not been considered in the literature yet.
Besides, we show how to find explicit expressions in terms of matrices for the
general operators in [72].

In our previous work [13] we presented a theory regarding the case of con-
stant velocity. This theory can be derived directly from Theorem 4.3.2 by
neglecting the velocity v i.e. the second component of x = (E, v) ∈ G (thus
changing from Lie group SE3×R6 to SE3) and by setting f(x) ≡ 0. In this
case, the state and observation equations are reduced to

Ė(t) =E(t)δ(t), E(t0) = E0, (state) , (4.33)

yz =hz(E(t), t) + εz(t), z ∈ Ω. (observation). (4.34)

For the reader’s convenience, we state the theory under the assumption of
constant velocity as a corollary:

Corollary 4.3.4. The differential equations of the second-order Minimum
Energy Filter for our state (4.33) and non-linear observer model (4.34) are
given by

(E∗)−1Ė∗ = −matse(P (t) vecse(
∑
z∈Ω

Pr(Az(E
∗)))),

E∗(t0) = Id , (4.35)

Ṗ (t) = −α · P + S−1
1

− Γ̃∗
vecse((E∗)−1Ė∗)

P − P (Γ̃∗
vecse((E∗)−1Ė∗)

)>

− P
(∑
z∈Ω

(Γ̃vecse(Pr(Az(E∗))) +Dz(E
∗))
)
P,

P (t0) = 16.

(4.36)

Remark 4.3.5. We compare the computational complexity for the cases of
constant velocity and constant acceleration. By considering the difference
between Theorem 4.3.2 and Corollary 4.3.4, we see that the only differences
are a larger state space and the occurrence of the additional operator f(x∗) in
(4.31). However, this does not change the computational effort significantly.
Thus, we suggest to use the second-order state equation since it is more
robust but computational only slightly more complex as we will see in the
experiments.
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Before we will turn to proving Theorem 4.3.2, we first provide some Lemmas
that are based on the general approach of [72]. However, we cannot use
the main result of [72] directly, since the appearing general operators are
complicated to evaluate. Instead, we provide the corresponding expressions
in such a way that they can be easily implemented. Thus, following [72, Eq.
(37)] the estimate of the optimal state x∗ is given by

(x∗)−1ẋ∗ = −D2H−(x∗, 0, t)− Z(x∗, t)−1 ◦ (x∗)−1D1H−(x∗, 0, t) . (4.37)

This expression contains the second-order information matrix Z(x, t) : g→ g
of the value function V as defined in (4.22), defined through

Z(x, t) ◦ η = x−1 ◦ Hess1 V(x, t)[xη] . (4.38)

An explicit expression for the gradient of the Hamiltonian in (4.37) is pro-
vided in the following Lemma:

Lemma 4.3.6. The Riemannian gradient D1H−(x, µ, t) on TxG for x =
(E, v) can be calculated as

D1H−(x, µ, t) = x
(
e−α(t−t0)

∑
z∈Ω

Pr(Az(E)),− vecse(µ1)
)
, (4.39)

where the function Az(E) = Az(E, gz) : SE3×R4 → GL4 is defined in (4.32).

By insertion of (4.39) in (4.37) and usage of the definition of rt(x
∗) from

Theorem 4.3.2 we obtain

(x∗)−1ẋ∗ = −D2H−(x∗, 0, t)− e−α(t−t0)Z(x∗, t)−1 ◦ rt(x∗). (4.40)

Following the calculus in [72], the evolution equation for the trivialized Hes-
sian Z(x, t) : g→ g∗ is given through [72, Eq. (51)] which is:

d

dt
Z(x∗(t), t)

≈Z(x∗, t) ◦ ω(x∗)−1ẋ∗

+ Z(x∗, t) ◦ ω�
D2H−(x∗,0,t)

+ ω∗(x∗)−1ẋ∗ ◦ Z(x∗, t)

+ ω�∗
D2H−(x∗,0,t) ◦ Z(x∗, t)

+ TIdL
∗
x∗ ◦ Hess1H−(x∗, 0, t) ◦ TIdLx∗

+ TIdL
∗
x∗ ◦D2(D1H−)(x∗, 0, t) ◦ Z(x∗, t)

+ Z(x∗, t) ◦D1(D2H−)(x∗, 0, t) ◦ TIdLx∗

+ Z(x∗, t) ◦ Hess2H−(x∗, 0, t) ◦ Z(x∗, t) .

(4.41)
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(cf. [72, Eq. (51)]).
The “swap”-operators ω�

· ·, ω�∗
· · in this expression are defined in section 1.5,

i.e. ω�
η ξ := ωξη and 〈ω�∗

η ξ, χ〉Id := 〈ξ, ω�
η χ〉Id = 〈ξ, ωχη〉Id. By considering

the standard basis of g, there exists a matrix representation K ∈ R12×12,
such that for all η = (η1, η2) ∈ g we receive

vecg(Z(x∗, t) ◦ η) = K(t) vecg(η) . (4.42)

Similarly to [13] we need to evaluate the right-hand side of the evolution
equation at η ∈ g and to vectorize it. The single expressions are shown in
the following Lemma.

Lemma 4.3.7 (Matrix representations of Z). Let Z(x∗, t) : g → g be the
operator (4.38). Then there exists a matrix K = K(t) ∈ R12×12 yielding

vecg(Z(x∗, t)(η)) = K(t) vecg(η), (4.43)

and thus

vecg(d/dtZ(x∗, t)(η)) =K̇(t) vecg(η) , (4.44)

vecg(Z
−1(x∗, t)(η)) =K−1(t) vecg(η) , (4.45)

as well as

1. vecg(Z(x∗, t) ◦ ω(x∗)−1ẋ∗η
+ Z(x∗, t) ◦ ω�

D2H−(x∗,0,t)η) = K(t)B vecg(η)

2. vecg(ω
∗
(x∗)−1ẋ∗

◦ Z(x∗, t) ◦ η
+ ω�∗

D2H−(x∗,0,t) ◦ Z(x∗, t) ◦ η) = B>K(t) vecg(η)

3. vecg(TIdL
∗
x∗ ◦ Hess1H−(x∗, 0, t)[TIdLx∗η]) = e−α(t−t0)

·
(∑

z∈Ω(Γ̃vecse(Pr(Az(E))) +Dz(E)) 06×6

06×6 06×6

)
vecg(η)

4. vecg(Z(x∗, t) ◦D1(D2H−)(x∗, 0, t) ◦ TIdLx∗η)

= −K(t)

(
06×6 16

06×6 06×6

)
vecg(η)

5. vecg(TIdL
∗
x∗ ◦D2(D1H−)(x∗, 0, t) ◦ Z(x∗, t) ◦ η)

= −
(

06×6 06×6

16 06×6

)
K(t) vecg(η)

6. vecg(Z(x∗, t)(Hess2H−(x∗, 0, t)[Z(x∗, t)(η)]))
= −eα(t−t0)K(t)S−1K(t) vecg(η) ,
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with Γ̃·, Γ̃∗· , and functions Az, Dz from Theorem 4.3.2 and

B :=
(

Ψ(x∗,t) 06×6

06×6 06×6

)
, (4.46)

with Ψ from Theorem 4.3.2.

With these Lemmas we are able to prove our main result in Theorem 4.3.2:

Proof of Theorem 4.3.2. We can easily compute the differential of Hamilto-
nian in (4.27) which is

−D2H−(x∗, 0, t) =
(
matse(v

∗),0
)

= f(x∗) . (4.47)

By inserting expression (4.47) into the optimal state equation (4.40) together
with the definition of the operator vecg(Z(x∗, t)−1 ◦ x∗η) = K−1(t) vecg(η),
we find that

(x∗)−1ẋ∗ = f(x∗)

− e−α(t−t0) matg
(
vecg(Z(x∗, t)−1 ◦ rt(x∗))

)
=f(x∗)− e−α(t−t0) matg

(
K−1(t) vecg(rt(x

∗))
)
. (4.48)

The application of the vecg−operation onto the equation (4.41) evaluated
for a direction η, together with Lemma 4.3.7 results in

K̇(t) vecg(η) =
[
K(t)B +B>K(t)

+ e−α(t−t0)
(∑

z∈Ω(Γ̃vecse(Pr(Az(E)))+Dz(E)) 06×6

06×6 06×6

)
−K(t)

( 06×6 16

06×6 06×6

)
−
( 06×6 06×6

16 06×6

)
K(t)

− eα(t−t0)K(t)S−1K(t)
]

vecg(η),

(4.49)

where on the right-hand side we assume that K(t) is an approximation of
the vectorized operator Z(x∗(t), t). This is the reason why we replace the
approximation by an equality sign in (4.49). With a change of variables (cf.
[72])

P (t) := e−α(t−t0)K(t)−1 , (4.50)

and the formula for the derivative of the inverse of a matrix [64], we obtain

Ṗ (t) =− αe−α(t−t0)K(t)−1 − e−α(t−t0)K(t)−1K̇(t)K(t)−1

=− αP (t)− eα(t−t0)P (t)K̇(t)P (t) . (4.51)
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Insertion of (4.49) (after omitting the direction vecg(η) that was chosen arbi-
trarily) into (4.51) leads to the differential equation (4.30) in Theorem 4.3.2.
Therefore, we also find that

C(x∗, t) =
( 06×6 16

06×6 06×6

)
−B(t) . (4.52)

The differential equation of the optimal state (4.29) follows from inserting
(4.50) into (4.48), which completes the proof.

4.3.4 Generalization to Higher-Order Models

In the previous section, we discussed minimum energy filters to estimate
ego-motion under the assumption of constant acceleration. We saw that
changing the assumption of constant velocity to constant acceleration requires
extending the Lie group and adopting the functions f(x) and C(x).
The generalization to higher polynomial models regarding camera motion,
where we assume that the m-th order derivative of the ego-motion should be
zero, i.e.

dm

dtm
E(t) = 0 , (4.53)

is straightforward. Again, the approach can be described by a system of
first-order ODEs as follows. Note that in the constant acceleration model
(second-order), only the first-order model needs to respect manifold struc-
tures, whereas all the other derivatives are trivial since they evolve on Eu-
clidean spaces:

Ė(t) =E(t)
(
matse(v1(t)) + δ1(t)

)
,

v̇1(t) =v2(t) + δ2(t),

...

v̇m−2(t) =vm−1 + δm−1(t),

v̇m−1(t) =δm(t) .

(4.54)

To achieve a unique solution we require initial values, i.e. v1(0) =
v0

1, . . . , vm−1(0) = v0
m−1 ∈ R6. Again, the observation equations (4.17) stay

unchanged. The minimum energy filter for this model is provided by the
following Theorem. By using once again

x = (E, v1, . . . , vm−1) ∈ Gm := SE3×R6 × · · · × R6 , (4.55)

the corresponding minimum energy filter can be obtained easily from Theo-
rem 4.3.2.
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4.3. Minimum Energy Filter Derivation

Theorem 4.3.8 (Minimum energy filter for m−th order state equation).
The differential equations of the second-order Minimum Energy Filter for
the state equation (4.54) and the observation equations (4.17) are given by
the equations (4.29) and

Ṗ (t) = −α · P + S−1 + CP + PC>

− P
(∑

z∈Ω(Γ̃vecse(Pr(Az(E∗))) +Dz(E
∗)) 06×(m−1)6

0(m−1)6×6 0(m−1)6×(m−1)6

)
P ,

P (t0) = 16m ,

(4.56)

where we assume that the expressions x∗ and P lie in the spaces Gm and
R6m×6m, respectively. The appearing expressions in Theorem 4.3.2 are re-
placed by

f(x) :=(matse(v1), v2, . . . , vm−1,06×1),

rt(x
∗) :=

(∑
z∈Ω

Pr(Az(E
∗),0(m−1)6×1

)
,

C(x∗, t) :=

((
−Ψ(x∗,t)
06(m−2)×6

)
16(m−1)

06×6 06×6(m−1)

)
.

All the other expressions from Theorem 4.3.2 stay unchanged.

Proof. Since product Lie groups are simply Lie groups with the product
topology, we can still apply the general minimum energy filter of Saccon
et al. [72]. The Lie group Gm has dimension 6m such that the vector-
ized bilinear operator Z from (4.38), i.e. P results in a 6m × 6m ma-
trix. The definition of the function f follows from the differential equations
in (4.54). Similarly to Theorem 4.3.2, the observations do not depend on
the whole state x = (E, v1, . . . , vm−1), but only on E. This leads to the fact
that rt, which is essentially the left-trivialized differential of the Hamiltonian
(i.e. x−1D1H−(x,0, t)), vanishes after calculating the differentials regarding
v1, . . . , vm−1. Similarly, the Hessian x−1 Hess1H−(x,0, t)[xη] in Lemma 4.3.7
can be extended by zeros. Furthermore, components v1, . . . , vm−1 ∈ R6 have
a trivial geometry and do not contribute to curvature and thus the corre-
sponding connection functions in Lemma 4.3.7 also do not influence curva-
ture. Finally, we can compute the expression

D1(D2H−(x,0, t))[xη] = −Df(x)[η]

= −(matse(v2), v3, . . . , vm−1,0)

and thus

vecg
(
D1(D2H−(x,0, t))[xη]

)
=
(

06(m−1)×6 16(m−1)

06×6 06×6(m−1)

)
, (4.57)
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as we did in Lemma 4.3.7 for the special case. Together with the adjoint
operator in Ψ(x, t), we obtain the expression C.

4.4 Comparison with Extended Kálmán Fil-

ters

As an alternative to the proposed approach, we also suggest considering ex-
tended Kálmán filters, which are established within the stochastic filtering
community for many decades. The extended Kálmán filter was also gener-
alized to Lie groups within the last years yielding to a discrete / continuous
extended Kálmán filter on Lie groups [17]. We provide the corresponding
calculations in section 4.6. The Kálmán filter approach is valid in a more
generalized scenario compared to ours because the state space as well as
the observation space are matrix Lie groups, whereas we only consider real-
valued observations in Rn. On the other hand, one needs to know that the
covariance matrices of the model and observation noise and the a posteriori
distribution are assumed to be Gaussian, which is in general not true for
non-linear observation dynamics.

Algorithm 1 Extended Kálmán Filter for Lie groups

Require: State x(tl−1), Covariance P (tl−1), Observations yk(tl), k =
1, . . . , n

1: procedure Propagation on [tl−1, tl] : Integrate the following differen-
tial equations

2: ẋ(t) = x(t)f(x(t))
3: Ṗ (t) = J(t)P (t) + P (t)(J(t))> + S

+1
4
E(adg(ε(t))S adg(ε(t))

>)

+ 1
12
E
(
adg(ε(t))

2
)
S + 1

12
SE
(
adg(ε(t))

2
)>

4: x−(tl) = x(tl), P−(tl) = P (tl)

5: procedure Update:

6: Kl = P−(tl)H
>
l

(
HlP

−(tl)H
>
l +Ql

)−1

7: m−l|l = Kl

∑
z∈Ω

(
yz(tl)− hz(x−(tl))

)
8: x(tl) = x−(tl) Exp(matg(m

−
l|l))

9: P (tl) = Φ(m−l|l)
(
112 −KlHl

)
P−(tl)Φ(m−l|l)

>

The extended Kálmán Filter from [17] is summarized in Algorithm 1 and has
already been adapted to our problem for real-valued observations. In line 7
the residual is expressed as direct difference which is a special case of [17].
The function Φ in line 9 on G is shown in Appendix A.4.
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4.4. Comparison with Extended Kálmán Filters

In the next section, we will adapt the Algorithm 1 to different scenarios: to a
filtering problem with linear observations as well as to our non-linear filtering
problem with a projective camera (cf. (4.16), (4.17)).

Remark 4.4.1. Note that the extended Kálmán filter from [17] requires a
differential equation (that is not only driven by noise) in order to propagate
the state, i.e. Ė(t) = E(t)

(
f(E) + δ(t)

)
, where f is non-trivial. Otherwise

the update step of the extended Kálmán filter is not significant because
update and correction steps in the extended Kálmán filter are separated.
This is the reason why we only compare it to the second-order state equation
where f 6≡ 0.

4.4.1 Derivations for Linear Observations

In the scenario of linear observations the state equation stays unchanged, i.e.
is identical to (4.16). Similarly to [88] we use the following linear observation
equations:

yk(t) = E(t)ak + εk(t), k ∈ [n], (4.58)

where E(t) ∈ SE3 is the first component of x(t) ∈ G and ak ∈ R4 are
vectors that model the linear transformation of the state x. Again, εk(t) ∈
R4 are the observation noise vectors. In this case, the minimum energy
filter can be derived much more easily than in the non-linear case. Thus,
for the compactness of presentation, we will skip the proof of the following
Propositions.

Proposition 4.4.2. The minimum energy filter for the constant acceleration
model (4.16) and linear observation equations (4.58) is given by the equations
(4.29) and (4.30) where the function Ak for x = (E, v) is replaced by

Ak(x) =E>Q(Eak − yk)a>k , (4.59)

and the components (i, j), i, j = 1, . . . , 6 of the matrix Dk(x) ∈ R6×6 are
given by

(Dk(x))i,j = ζki (E)(Ej), Ej := matse(e
6
j) , (4.60)

with ζk(E)(·) : se3 → R6 given by

matse(ζ
k(E)(η1)) := Pr

(
η>1 Q(Eak − yk)a>k + E>Qη1aka

>
k

)
. (4.61)

Here, Q ∈ R4×4 is a symmetric and positive definite matrix (cf. (4.19)). All
other expressions from Theorem 4.3.2 stay unchanged.
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Since the linear observation model is a special case of the approach in [17]
we only need to modify the corresponding expressions in Algorithm 1 which
we summarize in the following Proposition.

Proposition 4.4.3. The Extended Kálmán Filter for the constant accelera-
tion model (4.16) and linear observation equations (4.58) is given by Algo-
rithm 1 where the matrix Hl :=

∑
z∈Ω H

k
l is given by

Hk
l =


vecse(Pr(E(tl)

>e4
1a
>
k ))> 01×6

vecse(Pr(E(tl)
>e4

2a
>
k ))> 01×6

vecse(Pr(E(tl)
>e4

3a
>
k ))> 01×6

vecse(Pr(E(tl)
>e4

4a
>
k ))> 01×6

 ∈ R4×12 (4.62)

and the function J(t) ([17, Eq. (52)]) is provided by (A.50) in Appendix A.4.

Remark 4.4.4. Note that (4.62) is different from [17, Eq. (111)] because
of the additive instead of multiplicative noise term, and consequently is not
consistent with the group structure of SE3.

4.4.2 Derivations for Non-linear Observations

The adaption of the extended Kálmán Filter [17] to our state (4.16) and
observation (4.17) equation is provided by the following Proposition:

Proposition 4.4.5. The extended Kálmán filter from [17] for our state
(4.16) and observation (4.17) equation is given by Algorithm 1 where the
expressions J(t) and Hl are provided in the equations (A.50) and (A.49),
respectively, see Appendix A.4.

4.5 Numerical Geometric Integration

The numerical integration of the optimal state differential equation (4.29)
requires respecting the geometry of the Lie group. We use the implicit Lie
midpoint rule for integration of the differential equation of the optimal state
x∗ (4.29) as proposed in [39]. We need to modify the method since we
defined state space G as left invariant Lie group. Instead, in [39], only right-
invariant Lie groups are investigated. The adaption to left-invariant Lie
groups is straightforward and leads to the following integration schemes: for
a discretization t0 < t1 < · · · < tn with equidistant step size δ = tk− tk−1 for
all k, we integrate the differential equation of the optimal state (4.29) using
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4.6. Experiments

Figure 4.2: Synthetic sequence (left) generated by a simple ray tracer. To
provide realistic camera tracks we used ground truth trajectories from the
KITTI odometry benchmark and computed the corresponding induced opti-
cal flow (mid) and the depth map (right). The corresponding color encodings
for direction of optical flow and depth map are on the right hand side.

the Lie midpoint rule (3.50):

x(tk+1) = x(tk) Exp(Ξ) , (4.63)

with Ξ = δ
(
f(x(tk) Exp(Ξ/2)))

−matg(P (tk) vecg(rt(x(tk) Exp(Ξ/2)))
)
.

(4.64)

For each k the matrix Ξ is received by a fixed point iteration of (4.64). For
the integration of equation (4.30), we need to consider that this is a special
kind of the matrix Riccati differential equation for which methods exist that
ensure that the solution is positive definite. As shown in [27], a numerical
integration method will preserve positive definiteness if and only if the order
of the method is one. By taking down (4.30) as general Riccati differential
equation

Ṗ (t) = A(t)P (t) + P (t)A(t)> − P (t)B(t)P (t) + C(t) , (4.65)

with symmetric matrices B(t) and C(t), the implicit Euler integration
method is given by

P (tk+1) =P (tk) + δ
(
AP (tk+1) + P (tk+1)A>

− P (tk+1)BP (tk+1) + C
)
,

(4.66)

which can be expressed by the algebraic Riccati equation for which an unique
solution exists [55] that can be found by standard solvers, e.g. CARE.

4.6 Experiments

In this experimental section, we will evaluate the accuracy of the proposed
minimum energy filter for ego-motion estimation. First we will provide ex-
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periments on synthetic data to exclude external influences and to show ro-
bustness against measurement noise. Then we will consider real world exper-
iments on the challenging KITTI benchmark and compare our method with a
state-of-the-art method [37]. Finally, to evaluate the theoretical performance
of the filter, we will also compare to the state-of-the-art extended Kálmán
filter [17] in a controlled environment.

4.6.1 Synthetic Data

Before considering real-life sequences, we first evaluate synthetic scenes to
have full control on the regularity on the camera track. We generate 3D
scenes by raytracing simple geometric objects (cf. Fig. 4.2), which also en-
ables us to acquire correctly induced optical flow and depth maps. In order
to gain a realistic camera behavior, we use the tracks from the KITTI visual
odometry training benchmark which were determined by an inertial navi-
gation system in a real moving car. We start with considering the case of
perfect measurements (section 4.6.1) and demonstrating robustness against
different kinds of noise in section 4.6.1.

Evaluation on Noiseless Measurements First, we evaluate the pro-
posed filter on the true optical flow. To avoid overfitting, we set a relatively
small weight onto the weighting matrix for the data term, i.e. Q = 0.1/n,
where n is the number of observations. We set the weighting matrix S to the
block diagonal matrix containing the matrices Si, i.e.

S = blockdiag(S1, . . . , Sm) , (4.67)

where m denotes the order of the kinematic. The single blocks are given for
i = 1, . . . ,m through

Si = diag(s1, s1, s1, s2, s2, s2)

with s1 = 10−2 and s2 = 10−5. The decay rate is set to α = 2 and the
integration step size to δ = 1/50.
As demonstrated in Fig. 4.3, the proposed filters of different order show a
similar rotational error since the ground truth rotation is often constant and
influenced by (physical) noise. That is possibly caused by the low temporal
resolution of 10 Hz, not being able to give sufficient information on the
kinematics. On the contrary, in the translational part we can see that the
higher-order models work significantly better than our first-order model [13],
but that third- and fourth-order methods perform fairly the same. From
this we can conclude that kinematics of fifth- or even higher-order will not
improve performance regarding this kind of camera tracks.
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Figure 4.3: Comparison of the rotational error in degree (top) and the trans-
lational error in meters (bottom) of the proposed minimum energy filters
with kinematic state equations of orders one (see [13]) and two, three and
four (this work). The dotted lines show the error averaged over all frames.
We used a real camera track from sequence 0 of the KITTI visual odometry
benchmark and used it to generate synthetic sequences with induced depth
map and optical flow. The rotational errors are similar through all frames
although the higher-order methods converge faster in the first iterations. In
frames 20–90, the motion of the camera is almost constant and the filters
perform similarly. However, the translational error of the first order method
significantly changes in frames 90–150 and 175–200 because the constant
velocity assumption is violated by curves in the trajectory.
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Figure 4.4: Different noise models for the observed data (optical flow, cf.
Fig. 4.2): top left: additive Gaussian noise (µ = 0, σ2 = 0.001), top right:
additive uniform noise (µ = 0, σ2 = 0.001), bottom left: multiplicative
Gaussian noise (µ = 1, σ2 = 1), bottom right: multiplicative uniform noise
(µ = 1, σ2 = 1).

Evaluation on Noisy Measurements To evaluate the robustness against
noise, we altered the true optical flow measurements by multiplicative and
additive noise, each being distributed uniformly or Gaussian, see Fig. 4.4.
The proposed method determines camera motion using the same parameters
as in section 4.6.1. Comparison to the ground truth is achieved using the
geodesic distance on SE3 in order to avoid two separate error measures for
translation and rotation, i.e.

dSE3(E1, E2) := ‖vecse(Log(E−1
1 E2))‖2 . (4.68)

The results in Tab. 4.1 show that higher-order models outperform the first-
order model with the exception of very high noise levels where the data
does not contain sufficient information to correctly estimate a higher-order
kinematic.

Remark 4.6.1. Note that our model currently does not model noise on depth
maps explicitly since it only allows additive noise on the flow measurements
as introduced in (4.17). However, we think that the noise term ε should also
compensate small deviations of the depth.
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Table 4.1: Quantitative evaluation of proposed methods (order 1 to 4) mea-
suring the geodesic error (cf. (4.68)) w.r.t. ground truth camera motion. As
input data we used noisy flow observations with the following noise models:
additive Gaussian (AG, µ = 0), additive uniform (AU, µ = 0), multiplica-
tive Gaussian (MG, µ = 1) and multiplicative uniform (MU, µ = 1) for
different variances σ2. For intense noise (multiplicative: σ2 > 10−1, additive:
σ2 > 10−4), the first-order method performs better than higher-order models
since it is more robust against noise. In contrast, for moderate noise levels,
higher-order kinematics are more appropriate.

noise σ2 1st order 2nd order 3rd order 4th order

MG
100 0.2162 0.2759 0.2821 0.2866

MU 0.2856 0.3840 0.3705 0.3705

MG
10−1 0.1597 0.1644 0.1485 0.1423

MU 0.2072 0.2596 0.2367 0.2287

MG
10−2 0.1417 0.1184 0.1041 0.1011

MU 0.1517 0.1353 0.1143 0.1082

MG
10−3 0.1283 0.0987 0.0844 0.0808

MU 0.1300 0.0952 0.0808 0.0777

noise σ2 1st order 2nd order 3rd order 4th order

AG
10−3 0.2859 0.4355 0.4318 0.4385

AU 0.4835 0.7431 0.7175 0.7071

AG
10−4 0.1598 0.1695 0.1688 0.1701

AU 0.2176 0.2341 0.2216 0.2193

AG
10−5 0.1384 0.1157 0.1010 0.0974

AU 0.1263 0.1130 0.1009 0.0968

w/o 0 0.1264 0.0893 0.0783 0.0757
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Evaluation of Kinematics In the last section we showed that the pro-
posed method is robust against different kinds of measurement noise. Now
we evaluate the proposed minimum energy filters with higher-order kine-
matic model for camera tracks of different complexity. For this purpose, we
generate camera tracks for the kinematic models (first to fourth order) by (ge-
ometric) numerical integration of corresponding differential equation (4.54)
for m ∈ {1, 2, 3, 4} where we set v0 ≡ 0. In order to obtain reasonable paths
we use non-trivial initializations for (E0, v

0
1, v

0
2, v

0
3). Then we generate syn-

thetic sequences for the different kinematic tracks and use the ground truth
optical flow and depth maps as input for the proposed filters.
The proposed method uses the parameters Q = 0.1n−112 with n = 1000; and
S was chosen as in (4.67), whereas s1 = 1, s2 = 0.001 and α = 0.
In Fig. 4.2 we visualize the geodetical error (4.68) as well as the camera track
reconstructions. It becomes apparent that for a camera track with constant
velocity (Fig. 4.5b) the minimum energy filter with first-order kinematics [13]
performs best and reaches the highest accuracy. For the other tracks with
higher-order kinematics (cf. Figures 4.4d, 4.3f and 4.2h), the proposed filters
with higher-order kinematic model work superiorly to [13].

4.6.2 Evaluation with Realistic Observations

In order to demonstrate that the minimum energy filter with higher-order
state equations also works under real world conditions, we evaluate our ap-
proach on the challenging KITTI odometry benchmark [36]. This benchmark
does not contain ground truth data for optical flow, and depth maps can only
be obtained from external laser scanners. Thus, we compute optical flow and
depth maps in a preprocessing step using the freely available method by Vo-
gel et al. [82] which only requires image data. Although this method is the
top ranked method on the KITTI optical flow benchmark, its results still
contain relevant deviations from the true solution and thus provide realistic
observation noise to evaluate the performance of our proposed filter. As the
preprocessed data of [82] is dense optical flow, it causes a high computa-
tional effort. Therefore, we only use a sparse subset of data points which
are selected randomly. In section 4.6.2 we will show that a small number of
observations is sufficient for good reconstructions.

Quantitative Evaluation of First and Higher-Order Models For our
quantitative evaluations on the KITTI benchmark in Table 4.2, we initialize
our first [13] and higher-order approaches with the corresponding identity
element on the Lie group, i.e. x0 = Id, and set the corresponding matrices P0

to the identity matrices. The quadratic forms of the penalty term of the
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(b) geodetical error on a first-order kinematic track
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(c) reconstruced track: second-order kinematics
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(g) reconstruced track: fourth order kinematics
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Figure 4.2: Reconstruction of the camera tracks (top row) and evaluation
of the geodetical error w.r.t. ground truth (bottom row) as computed by
the proposed filter with kinematics of order 1, 2, 3 and 4. We evaluated
the performance on simulated camera tracks with kinematic models of dif-
ferent orders: constant velocity (b),(a), constant acceleration (d),(c) as well
as third (f),(e) and fourth (h),(g) order kinematics. In the constant velocity
scenario (b), the first-order filter performs best. On the other scenarios (d),
(f), (h), the higher-order methods are superior and lead to the best path
reconstructions.
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model noise δ are set as shown in (4.67) with s1 = 10−2 and s2 = 10−5. To
increase the influence of the data term, we set the weighting matrix to

Q := 1
n
12 , n = 1000 . (4.69)

On the one hand, this high-weighting leads to less smoothed camera tra-
jectories, but on the other hand minimizes the observation error, which is
desirable for visual odometry applications. For comparison we also present
in Table 4.2 the performance measures of the odometry method [37].
We emphasize that the first-order approach [13] and second-order method
from Theorem 4.3.2 perform better in the case of camera motion reconstruc-
tion than the proposed higher-order (> 2) models with generalized kinematics
from Theorem 4.3.8. The reason for that is that the real camera motion is
influenced by model noise, induced by jumps of the camera, to which the
first-order method can adapt faster. Higher-order models smooth the cam-
era trajectories, which in this case is unfortunate. However, they will be
beneficial if the actual camera motion behaves according to the models, as
shown in the experiments in section 4.6.1.
Note that our method currently is not designed to be robust against out-
liers in the observation. Using outlier rejection models would increase the
accuracy of our method. In contrast, the approach of Geiger et al. [37] uses
additional precautions to eliminate violation of the assumption of a single
rigid body motion, see e.g. sequence 3 in Table 4.2. However, in this work
we focus more on the modeling and optimization than on optimal results be-
cause the latter require assumptions and heuristics making the whole model
involved.

Determination of Optimal Number of Observations Since the eval-
uation of the functions Az and Dz in Theorem 4.3.2 as well as the accurate
numerical integration in section 4.5 are expensive, we are looking for a good
trade-off between the number of required measurements and accuracy. In Ta-
ble 4.3 we evaluate the geodetical error for a different number of observations
n. For n = 1, our proposed filters do not converge since they are numerically
instable. For n = 5, . . . , 20, the geodetical error is fairly small but reaches a
minimum for n = 50. For n < 5, the error increases because the ego-motion
cannot be reconstructed uniquely (cf. Five-point-algorithm [62]). Likewise,
for n > 50, the error rises due to noisy measurements averaged by the filter.

Influence of the Decay Rate α In real sequences, the motion is usu-
ally not uniform and changes due to acceleration and curves. As demon-
strated earlier, higher-order state equations that model accelerations, jerks,
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Table 4.2: Quantitative evaluation of rotational (in degrees) and translational
(in meters) error on the first 200 frames of the training set of the KITTI
odometry benchmark. We compared the proposed higher-order method (i.e.
2nd to 4th) with our first-order method from [13]. As a reference method, we
also evaluated the approach by Geiger et al. [37]. The first and second-order
methods outperform the higher-order methods since they can fit more easily
to the non-smooth ego-motion data.

sequence 00 01 02 03 04 05

tr
an

s.
er

ro
r (Geiger [37]) 0.0272 0.0572 0.0255 0.0175 0.0161 0.0185

1st order [13] 0.0284 0.0759 0.0188 0.0804 0.0165 0.0188
2nd order 0.0356 0.0786 0.0289 0.0938 0.0210 0.0288
3rd order 0.0358 0.0784 0.0290 0.0924 0.0216 0.0286
4th order 0.0347 0.0782 0.0275 0.0918 0.0211 0.0277

ro
t.

er
ro

r

(Geiger [37]) 0.1773 0.1001 0.1552 0.1829 0.0970 0.1539
1st order [13]0.1773 0.1139 0.1504 0.2246 0.0836 0.1454
2nd order 0.1996 0.1183 0.1430 0.2448 0.0805 0.1566
3rd order 0.2402 0.1348 0.1872 0.2719 0.1090 0.1971
4th order 0.2795 0.1466 0.2223 0.3120 0.1479 0.2335

sequence 06 07 08 09 10

tr
an

s.
er

ro
r (Geiger [37]) 0.0118 0.0160 0.1166 0.0175 0.0147

1st order [13] 0.0122 0.0174 0.1142 0.0193 0.0205
2nd order 0.0153 0.0284 0.1153 0.0293 0.0417
3rd order 0.0175 0.0268 0.1153 0.0258 0.0342
4th order 0.0140 0.0257 0.1155 0.0240 0.0317

ro
t.

er
ro

r

(Geiger [37]) 0.0829 0.1770 0.1589 0.1166 0.2001
1st order [13] 0.0765 0.1654 0.1444 0.0911 0.1829
2nd order 0.0703 0.2113 0.1676 0.1167 0.2388
3rd order 0.0875 0.2362 0.2053 0.1335 0.2628
4th order 0.1045 0.2709 0.2318 0.1630 0.2956
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Table 4.3: Determination of the optimal number of measurements n. We
evaluated the mean geodetical error of our filter with different kinematic
models (first to fourth order) on a short sequence (10 frames) for different
numbers n of observations. Since the n observations are selected randomly,
we repeated the experiment 50 times and averaged finally, to find a repre-
sentative value. We found an optimal number of measurements for n = 50.

n 1st order 2nd order 3rd order 4th order

1000 0.1205 0.1361 0.1311 0.1290
500 0.1070 0.1174 0.1116 0.1096
200 0.0915 0.0945 0.0902 0.0890
100 0.0764 0.0764 0.0739 0.0733
50 0.0667 0.0651 0.0638 0.0637
20 0.0715 0.0703 0.0687 0.0684
15 0.0709 0.0691 0.0674 0.0672
12 0.0718 0.0720 0.0702 0.0699
10 0.0749 0.0735 0.0716 0.0712
9 0.0751 0.0747 0.0726 0.0722
8 0.0772 0.0762 0.0742 0.0738
7 0.0735 0.0733 0.0717 0.0714
6 0.0786 0.0776 0.0757 0.0753
5 0.0789 0.0797 0.0778 0.0774
4 0.0856 0.0859 0.0837 0.0831
3 0.0917 0.0951 0.0928 0.0921
2 0.1005 0.1085 0.1058 0.1051
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etc. usually converge faster and yield a better accuracy. However, higher-
order models are delayed since it takes some time until the information from
the observation is transported to the lowest layer. Furthermore, if the mo-
tion changes quickly, then higher-order models will still propagate wrong
kinematics. For this reason, in [72] a decay α > 0 rate is introduced and also
adopted to our model. For α = 0, all past information is preserved in the
propagation within the filter. For larger values of α, old information about
the trajectory has lower influence on the filter and is less respected in future.
For the experiments we use the weighting matrix Q = n−112, where n is the
number of measurements. Furthermore, we use S as in (4.67) with the values
s1 = 5 · 10−2, s2 = 5 · 10−4. The integration step size is set to δ = 1/50.
In Fig. 4.3, we visualize the influence of different values of α on the minimum
energy filters of order 1 to 4. For small decay rates α, the filters will converge
faster over time, but will also cause errors if the kinematics change. On the
other hand, large decay rates adapt more easily to spontaneous changes of
kinematics. The filters take longer to converge, however.

4.6.3 Comparison with the Extended Kálmán Filters

Experiments with Linear Observation Equation For the experiments
in Fig. 4.4 we use four observation equations (n = 4), and the vectors ak in
(4.58) are chosen as

ak = e4
k , k ∈ [4] , (4.70)

to extract information from all directions. We generate the ground truth
from an arbitrary initialization by integration of (4.16) with multivariate
Gaussian noise with mean 012 and diagonal covariance matrix S = 112. As
shown in [17], we integrate the ground truth with ten times smaller step
sizes than the filtering equations of extended Kálmán and minimum energy
filter. Afterwards we generate the observations with (4.62) and Gaussian
noise with covariance Q = 10−814 and set the covariance matrices S and Q
in Algorithm 1 to the same values. However, the matrix Q for the minimum
energy filter in Proposition 4.4.2 is set to Q = 10014 to give more weight to
the observations for faster convergence. Note that for the extended Kálmán
Filter the choice Q = 10014 leads to a worse performance, which is why we
use the true covariance instead.
As a reference, we apply our own implementation of the method by Bourmaud
et al. [17] adapted to our model. The results are demonstrated in Fig. 4.4.
We suppose that the main reason for the different performances is that we
compare a second-order (minimum energy filter) with a first-order (extended
Kálmán ) filter.

88



4.6. Experiments

0 20 40
10−3

10−2

10−1

100

frames

ge
o
d
et
ic
al

er
ro
r

(a) α = 1

0 20 40
10−3

10−2

10−1

100

frames
ge
o
d
et
ic
al

er
ro
r

(b) α = 2

0 20 40
10−3

10−2

10−1

100

frames

ge
o
d
et
ic
al

er
ro
r

(c) α = 4
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Figure 4.3: Evaluation of the translational error (in meters) of the minimum
energy filter regarding the first, second, third and fourth order state equation
on the first 50 frames of sequence 0 of the KITTI odometry sequence. For
small values of the decay rate α, the filter memorizes past information and
converges fast, see Fig. (4.3a). Although higher-order filters converge faster,
they cause oscillation due to the time delay that is required to propagate
information into higher-order derivatives of the kinematics. Since for large
values of α past information is neglected, the filters converge slower and the
difference between second, third and fourth order models become smaller,
while the oscillations disappear. Please note that for this experiments the
weighting matrices S and Q are kept fixed. To further reduce the error for
large α we propose to adapt the weights.
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Figure 4.4: Comparison between minimum energy filter with second-order
kinematics (MEF) (red, cross) and extended Kálmán filter (CD-LG-EKF)
[17] (green, square) with state equation (4.16) and observation equation
(4.58) as derived in Properties 4.4.2 and 4.4.3, respectively. We plotted
the six components of the rigid motion of the ground truth (GT) (blue,
circle), the extended Kálmán filter, and the minimum energy filter, i.e.
(ω1, ω2, ω3, t1, t2, t3)> := (vecg(LogG(G))))1:6. Here, G is the corresponding
element of the Lie group G. Further, we set the discretization step size to
δ = 0.1. Although we initialized the extended Kálmán filter with the ground
truth solution and added only little observation noise, it diverges after a few
steps whereas the minimum energy filter converges from a wrong initializa-
tion to the correct solution within a few steps. The reason for that is that
the approach [17] only uses first-order approximation, whereas the minimum
energy filter also includes second-order derivatives of the observation func-
tion.
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Extended Kálmán Filter for Non-linear Observations We were not
able to obtain convergence of this filter from a trivial (chosen as identity
element of the Lie group) or ground truth initialization. Since the extended
Kálmán did not converge for linear observations (4.4.1) from wrong initial-
izations, we presume that the non-linearities of our observation equations are
intractable for the approach from [17].

4.7 Limitations

Our proposed method requires good measurements in terms of optical flow
and depth maps in order to reconstruct the camera motion correctly. Al-
though we showed on synthetic data that the proposed method is robust
against different kinds of noise, it is not robust against outliers, caused by
independently moving objects that violate the static scene assumption, or
simply wrong computations of optical flow and depth maps. Making our
approach robust as component of a superordinate processing stage, however,
is beyond the scope of this work and left for future work.
In addition to optical flow, the proposed method requires depth information
which is expensive to obtain if not available anyway, e.g. in stereo camera
setups.

4.8 Summary

In this chapter we generalized the camera motion estimation approach [13]
from a model with constant velocity assumption to a more realistic model
with constant acceleration assumption as well as to a kinematic model which
respects derivatives of any (fixed) order. For the resulting second-order min-
imum energy filter with higher-order kinematics, we provided all necessary
derivations and demonstrated that our approach is superior to our previous
method [13] for both synthetic and real-life data. We also compared our ap-
proach to the state-of-the-art continuous-discrete extended Kálmán filter on
connected unimodular matrix Lie groups [17] and showed that in both cases
the minimum energy filters is superior since it converges from imperfect ini-
tializations to the correct solutions.
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Chapter 5

Joint Filtering of Disparity
Map and Camera Motion

5.1 Introduction

5.1.1 Overview

In the last chapter we considered the scenario of reconstructing the unknown
camera motion from observed optical flow and depth maps. In practice, this
usually requires a stereo approach to find the depth map. In this chapter,
we want to address the reconstruction of the scene structure of images and
videos itself, which is a fundamental building block in computer vision and
is required for plenty of applications, e.g. autonomous driving, robot vision
and augmented reality. Although stereo methods usually lead to exact recon-
struction and work fast, they require calibration of the camera setup and, due
to the second camera, these systems are more expensive than single camera
systems. Therefore, in this chapter, we will focus on the monocular approach
that consists of reconstructing the scene structure based on the data gained
by a single moving camera. In contrast to the stereo setting, this problem
is ill-posed because of the unknown motion parallax. On the other hand,
monocular approaches can be used as fallback level in a stereo system if one
camera fails.
Similarly to the approach within the last chapter, we want to use tempo-
ral information for smoothing and propagation. Again, in this scenario, the
state variables, e.g. camera motion, do not evolve on an Euclidean space but
a more general Lie group, we cannot use classical filters, such as extended
Kálmán filters [35]. Moreover, other state-of-the-art non-linear filters, such
as particle filters [29], that can be applied to specific Lie groups [53], cannot
be easily extended to high dimensional problems [25]. Due to these math-
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ematical problems we will use the recently proposed minimum energy filter
on compact Lie groups [73] that minimizes a quadratic energy function to
penalize deviations of the filtering equations by means of optimal control the-
ory. This filter was shown to be superior to extended Kálmán filters on the
low dimensional Lie group SE3 [12]. We will demonstrate that this approach
can also be successfully applied to high dimensional problems, enabling joint
optimization of camera motion and disparity map. As in [12], we will also
incorporate higher-order kinematics of the camera motion. To be robust
against outliers, we will extend the approach of [73] from quadratic energy
function to a generalized Charbonnier energy function.

5.1.2 Related Work

Plenty of methods for depth or disparity map estimation were published
during the last decade. We distinguish between stereo methods (that ben-
efit from the additional information gained from the camera setup) and
monocular methods. Recognized stereo methods include [44, 67, 82] that
use the known distance of the cameras (baseline) for accurate triangulation
of the scene. These methods also enable reducing the computational effort
by using epipolar geometry and by combining local and global optimization
schemes. Monocular methods [26, 8, 31, 30, 65, 61, 16] benefit from less cali-
bration effort in comparison to stereo methods, but suffer from a peculiarity
of the mathematical setup that prevents to reconstruct the scale of the scene
uniquely. To increase the robustness and the accuracy of the reconstruction,
modern methods incorporate multiple consecutive frames into the optimiza-
tion procedure. Well-known is bundle adjustment [80] which optimizes a
whole trajectory but cannot be used in online approaches such as sliding
window [9] or filtering methods [8, 16]. Filtering methods usually require a
suitable modeling of the unknown a posteriori distribution. However, they
suffer from the drawback that the definition of probability densities on curved
spaces, such as Lie groups, is complicated, although successful strategies to
find a solution to this problem have been developed [17, 20, 53]. Zamani et al.
[88] introduces so-called minimum energy filters for linear filtering problems
for compact Lie groups based on optimal control theory and the recursive
filtering principle of Mortensen [58]. This approach was generalized to (non-)
compact Lie groups in [73] and applied to a non-linear filtering problem on
SE3 for camera motion estimation [13].

5.1.3 Contributions

In this chapter our main contributions add up
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• to provide a mathematical filtering framework for joint monocular cam-
era motion and disparity map estimation including higher-order kine-
matics,

• to introduce a novel disparity Lie group for inverse depth maps which
avoids additional positive depth constraints such as barrier functions,

• to solve the corresponding challenging non-linear and high-dimensional
filtering problem on a product Lie group by using novel minimum energy
filters,

• to provide a generalized Charbonnier energy function instead of a
quadratic energy function [73], which results in robustness against out-
liers,

• to incorporate a spatial regularizer within the energy function to in-
crease the accuracy of the disparity map in regions close to the epipole.

5.2 Model

In this section we introduce the mathematical framework of joint monocular
camera motion and disparity map estimation from the point of view of tem-
poral filtering. Note, that we use the notion disparity map for the inverse
of the depth map in this work without using the baseline that is required in
stereo settings. In classical filtering theory one wants to determine the most
likely state of an unknown process x = x(t) modeled by a perturbed differ-
ential equation ẋ(t) = f(x(t)) + δ(t) based on prior perturbed observations
y(s) = h(x(s)) + ε(s) for s ≤ t, which results in a maximum a posteriori
problem. In this work, we require the state space of x to be a Lie group
G which we need to describe non-Euclidean expressions such as camera mo-
tions. Using the expressions δ = δ(t) and ε = ε(t) to represent model noise
and observations noise, respectively, the resulting filtering equations can be
written as

ẋ(t) =x(t)
(
f(x(t)) + δ(t)

)
, x(t0) = x0 , (5.1)

y(t) =h(x(t)) + ε(t) . (5.2)

The state equation (5.1) is modeled on a Lie group G by means of the tangent
map of the left translation at identity and functions f, δ ∈ g such that ẋ(t) ∈
TxG. In the following sections we will introduce the state space of x, the
propagation functions f and the observation function h.
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5.2.1 State Space

The camera motion is modeled on the Special Euclidean group SE3 :=
{( R w

0 1 ) |R ∈ SO3, w ∈ R3}, and we also use a higher-order kinematics (e.g.
acceleration of camera) modeled by a vector v ∈ R6. The disparity map can
be represented by a large vector di ∈ R|Ω|, resulting in an own dimension for
each pixel in the image. However, the depth must always be positive and we
want to avoid additional constraints within our optimization. Therefore, we
introduce a novel Lie group for the inverse of the depth, denoted by (0, 1)|Ω|

which is defined as follows:

Definition 5.2.1 (Lie group (0, 1)n (Disparity group)). By denoting
di(z, t) := 1

d(z,t)
∈ (0, 1) the inverse of the depth we define the Lie group

(0, 1)n with group action for x, y ∈ (0, 1)n as

(x, y) 7→
(
(x−1 − 1) · (y−1 − 1) + 1

)−1
=

xy

1− x− y + 2xy
.

All operations apply component-wise to the vectors involved. The (Lie group
inverse) can be computed as i(x) := 1−x. This results in the identity element
Id = 1

2
, i.e. a vector full of 1/2.

For the following calculations and numerical treatment such as numerical
integration we require to calculate the unique exponential and logarithmic
maps of the proposed Lie group (0, 1)n. These are provided by the following
Proposition.

Proposition 5.2.2. The exponential on the Lie group (0, 1)n, Exp(0,1)n :
Rn → (0, 1)n is given through

x 7→ e4x

e4x + 1
. (5.3)

Proof. The derivation of the exponential maps requires to calculate the
geodesics γ on the Lie group (0, 1)n as described in definition 3.2.10. Thus,
we need to solve the following initial value problem for γη(t):

γη(0) = IdG, γ̇η(t) = TIdLγ(t)η, for all t ∈ R. (5.4)

The tangent map of the left translation can be calculated as follows:
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TIdLx =DyLxy|y=Id

=Dy

(
(x−1 − 1)(y−1 − 1) + 1

)−1|y=Id

=(−1)
(
(x−1 − 1)(y−1 − 1) + 1

)−2
(x−1 − 1)Dy(y

−1 − 1)|y=Id

=
(
(x−1 − 1)(y−1 − 1) + 1

)−2
(x−1 − 1)y−2|y=Id

=
(
(x−1 − 1)((1

2
)−1 − 1) + 1)−2(x−1 − 1)(1

2
)−2

=x2(x−1 − 1)4

=4(x− x2) .

Now, the ordinary differential equation

γη(0) = Id(0,1)n , γ̇η(t) = 4(γη(t)− γη(t)2)η, for all t ∈ R. (5.5)

has the solution

γη(t) =
e4tη

1 + e4tη
. (5.6)

Thus, by definition, we obtain the exponential map Exp(0,1)n : Rn → (0, 1)n

for t = 1 which is

Exp(0,1)n(η) = γη(1) =
e4η

1 + e4η
, (5.7)

where all operations apply component-wise to the vectors involved.

The logarithmic map, denoted by Log(0,1)n : (0, 1)n → Rn which is defined as
the inverse function of the exponential map can be calculated as

Log(0,1)n(x) := Exp−1
(0,1)n(x) = 1

4
log
( x

1− x
)
. (5.8)

Both, exponential and logarithmic map are depicted in Fig. 5.1
Using SE3 for the camera motion, R6 for the acceleration of the camera and
the Lie group given through definition 5.2.1 for the disparity map, we find
the product Lie group G for our state space, i.e.

G := SE3×R6 × (0, 1)|Ω| . (5.9)

5.2.2 Propagation of the Camera Motion

For propagation of the camera we will use a second-order kinematic model
that can be expressed as second-order differential equation as in [12], which
is

Ė(t) =E(t) matse(v(t)), E(t0) = E0 ,

v̇(t) =0, v(t0) = v0 ,
(5.10)
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Figure 5.1: Exponential and logarithmic map of the Lie group (0, 1)n for
n = 1.

where E = E(t) ∈ SE3 and v = v(t) ∈ R6. The linear operator matse was
defined in (4.4).

Remark 5.2.3. Since E describes the local camera motion from frame to
frame, a first order model Ė(t) = 0 corresponds to a constantly moving cam-
era, i.e. with constant velocity. Thus, the model (5.10) describes a constant
acceleration in the global camera frame.

5.2.3 Propagation of the Disparity Map

For the filter design we require differential equations for propagation of the
states. The camera motion is propagated using the generalized kinematic
model that can be written as dynamical system as in (4.54).
Propagation of the disparity map on an image grid, however, is non trivial. To
this end we proposed two methods for propagation of the scene’s depth map:
1. A piecewise affine model and 2. A warping and interpolation technique.

Discrete Propagation By Warping and Interpolation The propa-
gation consists of mapping the image grid forward by an estimate of the
motion Ê = (R̂, ŵ), by cubic interpolation of the depth on the irregular grid
and back-projection of the resulting scene points. This leads to the following
algorithm, which is also depicted in Figure 5.2.

1. Start with the current disparity map di on regular image grid in camera
(I, 0).

2. Warp the image grid forward into next image (camera estimate
Ê(t)) by using current disparity map di to get a grid with points
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Figure 5.2: Discrete propagation of the disparity map

z̃ = π(R̂ ( z1 ) (di(z))−1 + ŵ), where π : R3 → R2 is given through
(z1, z2, z3)> 7→ (z3)−1(z1, z2)>.

3. Perform cubic interpolation on the warped grid z̃ given the values
(z, di(z)) which gives the new depth map (z̃, d̃i(z̃)) in frame (I, 0).

4. Move Z̃ = ( z̃1 ) (d̃i(z̃))−1 to second camera to obtain Ẑ = R̂>
(
Z̃ − ŵ

)
.

5. Recognize the propagated disparity map as third component, i.e.
d̂i(z) = (Ẑ3)−1.

Continuous Propagation Using a Affine Model This model assumes
a piecewise affine scene structure and uses spatial gradients for propagating
the scene’s disparity map forward using a continuous framework. However,
as we will see later, this method works poor since large spatial gradients (e.g.
depth jumps at occlusions) violate the planar scene assumptions causing
oscillations within numerical integration.
Let di(·, t) : Ω → (0, 1)|Ω| be the inverse depth map, where the subscript i
denotes the inverse depth in the sequel and let x = (E, v, di) ∈ G. Then for
a (piecewise) planar scene the following differential equation for the inverse
depth holds:

ḋ(z, t) = fdi(x(t), t)z, di(z, t0) = d0
i (z) . (5.11)

The function on the right side is defined through

(fdi(x))z := −
(
Log(E)gz

)>
F (z)

(
∇zdi(z, t)
di(z, t)

)
(5.12)
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where
gz := gz(x) := (z1, z2, 1, di(z, t))

> , (5.13)

and the matrix F (z) is defined through

F (z) :=

(
1 0 0
0 1 0
−z1 −z2 1

0 0 0

)
. (5.14)

A detailed derivation of this formula is given in appendix A.5.1.

Comparison of Propagation Models For evaluation of the propagation
models we use a synthetic scene and a given camera motion which is used for
propagation. The piecewise affine model integrates the differential equation
(5.12) to gain the propagated depth map, whereas the warping and interpo-
lation technique only uses two discrete time points. In Figure 5.3 we see the
results of the two methods. The discrete method is more exact and much
cheaper, since the continuous needs 100 time steps for a good reconstruc-
tion. The assumption of a piecewise planar scene is in general not true. E.g.
depth discontinuities result in large spatial gradients resulting in a worse
reconstruction than the discrete propagation method.

5.2.4 Camera Motion and Disparity Map Induced Op-
tical Flow

Since the state space G consists of the camera motion E(t) and the disparity
map di(·, t), we require observations that depend on both variables. It is
well-known that from a given disparity map and a given camera motion the
correspondences between a pair of consecutive images expressed as optical
flow can be uniquely determined if the scene is static. To be precise, the
dependency between the optical flow vector u(z, t) at a position z ∈ Ω can be
expressed with the following non-linear relation, where we denote by R(t) ∈
SO3 and w(t) ∈ R3 the rotational and translational component of the camera
motion E(t) = (R(t), w(t)), respectively:

u(z, t)− z = π
(
R(t) ( z1 ) (di(z, t))

−1 + w(t)
)
. (5.15)

This equation can also be written in terms of the matrix E(t) ∈ SE3 as
follows:

u(z, t)− z = π
(
E(t)

(
( z1 )(di(z,t))

−1

1

))
. (5.16)

Remark 5.2.4. In comparison to chapter 4 we used a different modeling
since we used a backward optical flow model that avoids inversion of the
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Figure 5.3: Comparison of the propagation methods. Top left: ground truth
disparity map at time t0 (initialization for the presented propagation meth-
ods), top right: ground truth disparity map at time t20, mid left: contin-
uous propagation method at time t20, mid right: discrete-time propagation
method at time t20, bottom left: error map of continuous method, bottom
right: error map of discrete method (blue: correct reconstruction, red: wrong
reconstruction). The discrete time propagation methods leads to a better re-
construction and has a much smaller run time of factor 300. At positions
with high disparity gradient, the assumptions of the continuous methods are
violated which results in a worse reconstruction.
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matrix E ∈ SE3, instead of the forward optical flow model. This modeling
has two benefits:

1. The calculations of the gradient and Hessian become simpler,

2. the reconstruction will be better since in the forward optical flow model
(divergent) usually cannot reconstruct the margins of the images cor-
rectly due to occlusions. This can be avoided using a backward flow
model.

5.2.5 Overall Filtering Model

The function f(x(t)) : G → g in (5.1) can now be defined as follows:

f(x(t)) := (fE(x(t)), fv(x(t)), fdi(x(t))) , (5.17)

with component functions fE(x(t)) := matse(v(t)), and fv(x(t)) := 06 as in
(5.10) as well as fdi(x(t)) := 0|Ω|. Beside this continuous propagation step
we also incorporate discrete updates of the disparities as described in section
5.2.3.
By setting yz(t) := u(z, t) − z and hz : G → R2, as the right hand side of
(5.15), we find the following observation equations by adding noise εz(t) ∈ R2

for all z ∈ Ω.
yz(t) = hz(x(t)) + εz(t) , z ∈ Ω . (5.18)

5.2.6 Objective Function

Minimum energy filtering requires to define an energy function that penalizes
the model and observation noise. In contrast to [73], that we will follow in this
chapter, we will not use quadratic energy functions but an energy function
that is a smooth approximation of the L1−norm. The reason is that we want
to reduce the influence of outliers in the observations that may cause numer-
ical problems because the gradient grows linearly. This problem is depicted
in Fig. 5.4. The norm of the gradient of the proposed L1 penalty function
is bounded. A smooth approximation to the non-differentiable L1−norm is
the generalized charbonnier penalty function that is smooth (C∞) and has
linear growth, such that we use it for φ, i.e. φ(x) := (x+ ν)β − νβ. With this
notation and the shorthand ‖x‖2

Q := x>Qx the energy function reads

J (δ,ε, x; t) := 1
2
‖x− x0‖2

R−1
0

+

∫ t

t0

(
1
2
‖vecg(δ(τ))‖2

R−1 +
∑
z∈Ω

φ(1
2
‖εz(τ)‖2

Qz

))
dτ,

(5.19)

where Qz, R0 and R are symmetric and positive definite matrices.
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Figure 5.4: Comparison of a quadratic penalty function (red curve) and the
generalized Charbonnier penalty function (5.31) (blue curve) with β = 1

2
and

ν = 1 and their gradients. On can recognize that for outliers (e.g x > 3) the
gradient of the quadratic function grows linearly whereas the gradient of the
generalized Charbonnier function stays constant, what is beneficial for exact
numerics.
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5.2.7 Optimal Control Problem

After replacing the observation noise εz(t) by the residual εz(t) =
εz(x(t), t) := yz(t)− hz(x, t) in (5.30) we want to minimize the energy func-
tion J (δ, x, x(t0); t) = J (δ, ε(x), x(t0); t) regarding the model noise δ(t) with
respect to the differential equation (5.1) yielding the value function

V(x(t), t, x(t0)) := min
δ|[t0,t]

J (δ, x; t) subject to (5.1). (5.20)

Calculation of the value function requires to introduce the time-varying (left-
trivialized) Hamiltonian function H̃ : G×g∗×g×R→ R that is given through

H̃(x, µ, δ, t) :=
(

1
2
‖vecg(δ(t))‖2

R−1 +
∑
z∈Ω

φ(1
2
‖yz(t)− hz(x(t)))‖2

Qz

)
− 〈µ, f(x(t)) + δ(t)〉Id .

(5.21)

Owing to the Pontryagin minimum principle [66] we find the minimizing
argument of the value function (5.20) by minimizing the Hamiltonian H̃
with respect to δ. Since this Hamiltonian is convex with respect to δ the
minimum is unique and can be calculated as follows:

0
!

=Dδ∗H̃−(x, µ, δ∗, t)

=Dδ∗
(

1
2
‖vecg(δ(t)

∗)‖2
R − 〈µ, δ(t)∗〉

)
=R vecg(δ

∗)− vecg(µ)

⇔ δ∗ = matg
(
R−1 vecg(µ)

)
.

The optimal Hamiltonian H : G × g∗ ×R→ R defined through H(x, µ, t) :=
minδ H̃−(x, µ, δ, t) is found by insertion of δ∗. This results in H(x, µ, t) :=
H̃(x, µ, δ∗, t) such that

H(x, µ, t) =− 〈µ, f(x(t)〉Id − 1
2
‖vecg(µ)‖2

R +
∑
z∈Ω

(
φ
(

1
2
‖yz(t)− hz(x(t))‖2

Qz

))
.

(5.22)

In the case of a linear-quadratic control problem this optimal Hamiltonian
satisfies the (left-trivialized) Hamilton-Jacobi-Bellman equation (cf. (3.40)),
i.e.

∂

∂t
V(x, t)−H(x, x−1D1V(x, t), t) = 0 . (5.23)

Here, D1V(x, t) ∈ T ∗xG is an element of the cotangent space.
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Remark 5.2.5. Note that our control problem has neither linear control dy-
namics nor a quadratic energy function. Thus, we have no guarantee that the
HJB equation is a necessary and sufficient condition for optimality. Instead
we require a good initialization to gain an optimal reconstruction. However,
we will show that in parctice a fairly general initialization will lead to good
reconstructions.

5.2.8 Recursive Filtering Principle and Truncation

Computation of the total time derivative of the necessary condition

D1V(x, t, x(t0)) = 0 , (5.24)

and insertion of the HJB equation (5.23) leads to the following Lemma that
gives a recursive description of the optimal state x∗ = x∗(t) (cf. [73, Eq.
(37)]).

Lemma 5.2.6. The evolution equation of the optimal x∗ state is given
through

ẋ∗(t) = x(t)
(
f(x∗(t))− Ẑ(x∗(t), t)−1 ◦ x−1(D1H(x∗(t),0, t))

)
, (5.25)

where Ẑ : g → g∗ is the left-trivialized Hessian of the value function given
through

Ẑ(x∗, t) ◦ η = (x∗)−1 HessV(x∗(t), t, x(t0))[x∗η] , η ∈ g . (5.26)

Proof. See appendix A.5.3.

Because the non-linear filtering problem is infinite dimensional we will replace
the exact operator Ẑ by an approximation Z : g→ g∗ which can be obtained
by truncation of the full evolution equation of Z. But still the operator
Z(x∗, t) on g is complicated such that we introduce a matrix representation
P (t) that is defined through the relation vecg(Z(x∗, t)−1 ◦ η) =: P (t) vecg(η).

Lemma 5.2.7. The matrix representation of the approximation of the oper-
ator Ẑ evolves regarding the following matrix Riccati equation

Ṗ (t) = R + C(x∗, t)P (t) + P (t)C(x∗, t)> − P (t)H(x∗, t)P (t), (5.27)

where the matrix R is the weighting matrix in the energy function (5.30) and
the matrices C and H are given for η ∈ g through

C(x∗, t)P (t) vecg(η) := vecg
(
(x∗)−1D2(D1H(x∗,0, t))[Z(x∗, t) ◦ η]

)
+ vecg(ω

�∗
D2H(x∗,0,t) ◦ Z(x∗, t) ◦ η) + vecg(ω

∗
(x∗)−1ẋ∗ ◦ Z(x∗, t) ◦ η) ,

H(x∗, t) vecg(η) := vecg((x
∗)−1 Hess1H(x∗,0, t)[xη]) .
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Here, xωξη := ∇xξxη denotes the connection function on the Lie algebra g
of the Levi-Civita connection ∇·· for ξ, η ∈ g and x ∈ G, and ω�∗

ξ is the dual
of the “swaped” connection function ω�

ξ η := ωηξ (cf. [72]).

Proof. See appendix A.5.3.

By insertion of the expression P into (A.87) and by evaluation of the expres-
sions in Lemma 5.2.6 and 5.2.7 we obtain the final minimum energy filter
that consists of continuous propagation of the states with a discrete update
of the disparity map.

Theorem 5.2.8. The second-order minimum energy filter with additional
discrete propagation step for the disparity map is given through the following
evolution equations of the optimal state x∗ ∈ G as well as the second-order
operator P ∈ R(12+|Ω|)×(12+|Ω|).

ẋ∗(t) =x∗(t)
(
f(x∗(t))−matg(P (t) vecg(G(x∗(t), t)))

)
, (5.28)

Ṗ (t) =R + C(x∗, t)P (t) + P (t)C(x∗, t)> − P (t)H(x∗, t)P (t), (5.29)

with initial conditions x∗(t0) = x0 and P (t0) = R0, where R0 is the matrix in
(5.30). G(x∗, t) = (GE(x∗),0, Gdi(x

∗)) ∈ g denotes the Riemannian gradient
of the Hamiltonian in (A.87) with components GE and Gdi .

Proof. See appendix A.5.3.

The numerical integration of these equations between the time steps tk−1

and tk correspond to the update step of a filter, where the updates are as-
sumed to be piecewise constant. After each update step the disparity map
is propagated forward using the procedure in Fig. 5.2 that result in the final
filter.

5.2.9 Numerical Integration

In contrast to the low-dimensional filtering presented in chapter 4 where we
used implicit numerical integration that we presented in section 3.4, these
methods cannot be used for high-dimensional problems. The main problem
is that the operator H in Theorem 5.2.8 is symmetric and strictly positive
definite. However, implicit methods for solving the algebraic Riccati equation
[10] require a low-rank approximation of H. In the considered case this cannot
be done without loosing essential information. Therefore we decided to use
explicit numerical integration schemes, such as Crouch-Crossman methods
that we presented in section 3.4.1. During numerical integration it is impor-
tant to keep the matrix P sparse, therefore we set the off-diagonal entries of
the lower right part of P (that addresses the disparities) after each iteration
to zero.
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5.3 Adding of Spatial Regularization

Since the approach that we presented within the last section does not con-
sider spatial regularization which causes incorrect results in regions close to
the epipole, we propose to add a spatial regularizer into the optimization
problem. Thus, the resulting minimum energy filter will consider both, tem-
poral and spatial regularization. Although the resulting optimal filter can
again be derived in a mathematical correct way, the numerics becomes more
involved as in the case without spatial regularizer: Temporal and spatial reg-
ularization will lead to a second operator (inverse of the Hessian of the value
function) which becomes dense relative quickly. Since our problem consists of
a high dimensional state space N > 500.000, an exact numerical treatment
becomes infeasible. Instead, we need to find suitable approximations that
enable a sparse representation of the Hessian. We discuss this special issue
after derivation of the corresponding minimum energy filter.
For this derivation we leave the original filtering problem in (5.1) and (5.2)
unchanged but add an additional spatial regularization term into the energy
function which now reads

J (δ,x, x(t0); t) := m0(x(t0)) +
(

1
2
‖vecg(δ(τ))‖2

Q

+
∑
z∈Ω

φdata(1
2
‖yz(τ)− hz(x(τ))‖2

Sz

)
+ λφreg

(
1
2
‖∇zdi(z, τ)‖2

))
dτ ,

(5.30)

where λ > 0 is a positive constant and φ is a two times continuously differen-
tiable penalty function. As in the previous section φdata and φreg denotes
the generalized Charbonnier penalty function which is given through

φ(·) := (·+ ν)β − νβ . (5.31)

For a small ν > 0 and the choice β = 1/2 we gain an approximation of L1.
Below we will denote the parameters of the corresponding data term by νd
and βd and for the regularizer by νr and βr.

5.3.1 Optimal Control Problem

In the case of a spatial regularizer the corresponding minimization of the
energy function (5.30) regarding the control variable δ(t) subject to the dif-
ferential equation (5.1) stays almost unchanged and reads

V(x(t), t, x(t0)) := min
δ|[t0,t]

J (δ, x; t) subject to (5.1). (5.32)
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The model noise process δ(t) is considered as control parameter of the corre-
sponding minimum energy control problem that is solved backwards in time
(cf. [72]). Since the energy function (5.30) is still convex in δ the optimal
value δ∗ can again be found by minimizing the pre-Hamiltonian (5.21) which
needs to be modified by adding an extra term for the spatial gradient. As
the spatial gradient does not depend on δ the minimizing parameter of the
optimization problem (5.32) is again δ∗ = matg(R

−1 vecg(µ)). The resulting
Hamiltonian is given through

H(x, µ, t) := −〈µ, f(x(t)〉 − 1
2
‖vecg(µ)‖2

R−1

+
(∑
z∈Ω

(
φdata

(
1
2
‖yz(t)− hz(x(t))‖2

Qz

)
+ λφreg

(
1
2
‖∇zdi(z, t)‖2

)))
,

(5.33)

where x = x(t) consists of the components E(t) ∈ SE3, v(t) ∈ R6 and
(di(z, t))z∈Ω = di(t) ∈ (0, 1)|Ω|.

5.3.2 Recursive Filtering Principle and Truncation

Similarly to section 5.2.8 we compute the total time derivative of the nec-
essary condition and use the Hamilton-Jacobi-Bellman equation to find the
optimal filtering equations. For brevity we omit the corresponding calcula-
tions which require a discretization of the spatial gradient of the disparities
∇zdi(z, t) in the energy function (5.30). Finally, we obtain the minimum
energy filter which is given in Theorem 5.2.8. The only difference is that the
Riemannian gradient and the Riemannian Hessian need to be calculated re-
garding the Hamiltonian in (5.33) instead of the Hamiltonian in (5.22). Since
only few additional terms appear we refer the reader for the corresponding
expressions in the appendix.

5.4 Experiments

5.4.1 Preprocessing

As stated above, our method requires precise optical flow as input. Since
we propose a monocular method we also demand that the optical flow is
computed from two consecutive image frames without stereo information.
For this reason we used the well-known EpicFlow approach [69]. The matches
are computed with Deep Matching [83]; the required edges are from [28].
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5.4.2 Choice of the Weighting Matrices

Monocular methods suffer from the fact that observations that appear close
to the epipole (focus of expansion) are orthogonal to the camera motion such
that these regions cannot be reconstructed correctly. Therefore we use the
weighting term from [8, Eq. (14)] for the weighting matrix Q that decreases
the influence of the data term in regions close to the epipole.

5.4.3 Outlier Detection

To remove outliers, we compute the backward flow from frame i to i + 1 as
well as the forward flow from frame i+1 to i. In regions where these flows are
not consistent with each other, we decrease the weight of the term R such
that the filter has less ability to fit to the data and the discrete disparity
map propagation from section 5.2.3 reduces the error.

5.4.4 Scale Correction

As monocular approaches cannot estimate the scale of a scene without prior
knowledge about invariants in the scene, we corrected the scale of the scene
by calculating of the pixel-wise quotient of the disparities and taking its

median as scale s := median{dgt
i (z, t)/dest

i (z, t)|z ∈ Ω∗}, where Ω∗ denotes
the image domain without points which are close to the epipole (< 50 pixel
distance).

5.4.5 Qualitative Results without Regularization

In Fig. 5.5 we compare the reconstruction of the disparity map for different
scenes (a) – (k) of our method with the results from [8] and the ground truth
without using a spatial regularization (i.e. λ = 0 in (5.30)). One can observe
in Fig. 5.5 that our method preserves small details and depth discontinuities
better than [8] and returns sharper edges. However, regions close to the
epipole cannot be reconstructed correctly, because of the monocular approach
with induces a less beneficial motion parallax.

5.4.6 Quantitative Results without Regularizer

We evaluated the mean amount of pixels in Ω∗ with a disparity error larger
than three pixel for both occluded and not occluded scenarios in Table 5.1.
We are slightly inferior towards Becker et al. [8]; however, unlike [8] we do
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(a)

Figure 5.5: Top: gray value image, second row: ground truth disparity map,
third row: Becker et al. [8], fourth row: our method.
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(b)

Figure 5.5: Top: gray value image, second row: ground truth disparity map,
third row: Becker et al. [8], fourth row: our method.
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(c)

Figure 5.5: First row: gray value image, second row: ground truth disparity
map, third row: Becker et al. [8], fourth row: our method.
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(d)

Figure 5.5: First row: gray value image, second row: ground truth disparity
map, third row: Becker et al. [8], fourth row: our method.
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(e)

Figure 5.5: First row: gray value image, second row: ground truth disparity
map, third row: Becker et al. [8], fourth row: our method.
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(f)

Figure 5.5: First row: gray value image, second row: ground truth disparity
map, third row: Becker et al. [8], fourth row: our method.
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(g)

Figure 5.5: First row: gray value image, second row: ground truth disparity
map, third row: Becker et al. [8], fourth row: our method.
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(h)

Figure 5.5: Reconstruction of selected disparity maps (a) – (h) of the KITTI
stereo benchmark [36] with the corresponding color encoding (green is near,
blue/black is far): first row: gray value image of scene, second row: ground
truth from the KITTI stereo benchmark, third row: monocular method of
Becker et al. [8], fourth row: reconstruction with our monocular method.
Although in the quantitative evaluation both methods perform equally, one
can recognize that our method results in sharper corners. Due to spatial
regularization [8] reconstructs regions close to the epipole better.

117



Chapter 5. Joint Minimum Energy Filtering

not have spatial regularization within our optimization which explains the
differences.

Table 5.1: Evaluation of the mean disparity errors of the method of Becker
et al. [8] and our approach. We calculated the disparity maps on all training
sequences and evaluated the amount of pixels with a disparity error larger
than three (p3px[%]) or five p5px[%]) pixels. We also evaluated to occluded
(occ) and non-occluded (noc) ground truth data. Our approach is inferior in
the category of three pixel error but slightly superior in the relation of five
pixel errors meaning that our approach has less large errors than [8].

p3px[%] (occ) p5px[%] (occ) p3px[%] (noc) p5px[%] (noc)

Becker et al. [8] 17.74 10.82 17.63 10.72
our approach 19.24 10.69 19.14 10.59

5.4.7 Qualitative Results with Spatial Regularizer

State-of-the-art optical flow methods usually include spatial regularization,
such that the optical flow field that we need for our method is good enough
for a good reconstruction. However, outliers in the optical flow that appear
within low textured regions or because of repetitive patterns cause large er-
rors within the depth map reconstruction. Often the influence of erroneous
optical flow even results in an non-perfect reconstruction of the camera mo-
tion. As mentioned above, the minimum energy filtering approach has limita-
tions in reconstructing regions to the epipole correctly (cf. Fig. 5.5), because
the induced energy at these regions is close to zero. Therefore, we present
a comparison between the minimum energy filter with regularization (pre-
sented in section 5.3) and without in Fig. 5.6. Although it is not possible
to estimate the disparity map at the epipole within a monocular approach
(without using additional information), one can observe that the reconstruc-
tion error in this region is reduced compared to the minimum energy filter
without spatial regularization.
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(a)

Figure 5.6: First row: gray value image, second row: ground truth disparity
map, third row: minimum energy filter without spatial regularization, fourth
row: minimum energy filter with spatial regularization.
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(b)

Figure 5.6: First row: gray value image, second row: ground truth disparity
map, third row: minimum energy filter without spatial regularization, fourth
row: minimum energy filter with spatial regularization.
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(c)

Figure 5.6: First row: gray value image, second row: ground truth disparity
map, third row: minimum energy filter without spatial regularization, fourth
row: minimum energy filter with spatial regularization.
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(d)

Figure 5.6: First row: gray value image, second row: ground truth disparity
map, third row: minimum energy filter without spatial regularization, fourth
row: minimum energy filter with spatial regularization.
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(e)

Figure 5.6: Reconstruction of selected disparity maps (a) – (e) of the KITTI
stereo benchmark [36] with the corresponding color encoding (yellow/green
is near, blue/black is far). For each reconstruction the minimum energy
filter used data from nine consecutive frames. The top two images of each
subfigure show the original gray value image and the ground truth disparity
map. The third row in each subfigure corresponds to the proposed minimum
energy filter without using a spatial regularizer (i.e. λ = 0 in (5.30)). The
last row presents the reconstruction of the minimum energy filter with spatial
regularizer (λ > 0). The white boxes indicate regions that are close to the
epipole. One can easily recognize that these regions are better reconstructed
by using the spatial regularizer, which we introduced in section 5.3.
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5.5 Summary

In this chapter we extended the minimum energy filter, which was presented
in the chapters before, to the monocular approach, where only data of one
moving camera is available. In order to solve the corresponding filtering
problem jointly (with respect to the unknown camera motion, higher order
kinematics and the disparity map), we introduced a novel disparity group.
This allows to model the whole problem on one specific product Lie group
without the need of constraints (e.g. positive depth priors). Instead of a
quadratic energy function we used the more general Charbonnier penalty
function enabling robustness against outliers within the observations. In
experiments we demonstrated that our approach is as accurate as state-of-
the-art methods and additionally preserves small details. In total, we solved
a non-linear filtering problem on a non-trivial product Lie group for high
dimensional problems by means of second-order minimum energy filters. We
also pointed out that the presented minimum energy filter is a rich tool
for the solutions many filtering problems by adding additional regularizers
within the energy function. Finally, we would like to refer the reader to [14]
where some parts of this chapter are published.

124



Chapter 6

Conclusion

In this work we introduced the main concepts of minimum energy filtering
theory based on the previous work of Mortensen [58], Zamani et al. [88] and
Saccon et al. [72, 73] and applied the filter to problems of camera motion
estimation and depth/disparity map estimation. First, we considered the
Euclidean case and showed how the second-order optimal filter can be derived
for this case. We introduced the main ideas of optimal control theory such
as the energy function, the value function, Pontryagin’s minimum principle
and the Hamilton-Jacobi-Bellman equation. By calculation of the total time
derivative of the necessary condition on the value function and omitting third
and higher-order derivatives we obtained a second-order approximation of
the optimal state. Finally, the second-order optimal state can be found by
integration of a coupled system of ordinary differential equations. One might
ask if it is possible to gain a better approximation of the optimal solution of
the filtering problem which itself cannot be expressed explicitly. Mortensen
[58] addressed this important point: “If one seeks a differential equations for
these quantities [(third order tensor)], one needs to know the components of a
tensor of the fourth rank, and so on ad infinitum.” Thus, it is indeed possible
to derive approximation of any (finite) order of the exact solution of the
filtering problem. However, as mentioned by Zamani et al. [88] it is involved
to evaluate tensors on Lie groups: “Similar to our previous filter derivation
[. . . ] we could continue with Mortensen’s approach to derive a higher-order
filter. However, this would require some tedious tensor algebra.” Due to the
long and technical evaluations of the second-order tensor across the whole
work we can confirm this statement of Zamani et al. [88]. However, as an
example we provided the third-order optimal filter for a one-dimensional state
space which does not require tensor calculus. Experiments show that the
third-order-optimal filter differs only slightly from the second-order optimal
filter, which does not influence the mean cumulative error. On the other
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hand, the computational effort of evaluating the third order operators grows
quickly in high dimensions such that we think that the second-order optimal
filter provides a good tradeoff between accuracy and runtime.
More important than comparing the different orders of approximation of
the minimum energy filters, is the comparison to state-of-the-art stochastic
filters, such as extended Kálmán filter, unscented Kálmán filter or parti-
cle filter. Within an academic example we showed that for usual filtering
problems the proposed second-order minimum energy filter is as good as es-
tablished methods. But for more involved filters, e.g. sinusoidal sensor, we
showed that the minimum energy filter is superior. To the best knowledge
of the author, this is the first experiment where the minimum energy filter
was compared directly to established methods. We were surprised that the
minimum energy filter performs so well in comparison to stochastic filters,
since the latter are more flexible to correctly describe the true a posteriori
distribution. The reason for this is, that the Hessian of the value function is
computed explicitly for the second-order optimal minimum energy filter. In
contrast, the presented stochastic filters only use the non-linear transforma-
tions (particle filter, unscented Kálmán filter) or first-order approximations
(extended Kálmán filter), which result less accurate results.
In chapter 4 we considered the minimum energy filter for the application
of estimating the unknown camera motion on the Lie group SE3, which is
also known as visual odometry. In this filtering problem the observations
are given by the optical flow and the depth map, resulting in a non-linear
dependence of the observations from the state. In contrast to a constant
velocity model which is assumed in state-of-the-art visual odometry meth-
ods, we considered a constant acceleration model which is more suitable for
real-world applications. Although this model is relatively simple and does
not incorporate physical constraints, such as the Newtonian force laws [57],
it results in accurate results that are as exact as modern visual odometry
methods. In addition, we compared our approach to the approach of Bour-
maud et al. [17] which is a generalized version of the extended Kálmán filter
for Lie groups. In the case of a filtering problem with a linear dependence
between state and observation equation we showed that the minimum energy
filter is superior to the extended Kálmán filter in accuracy and the asymp-
totic error. Together with the results in chapter 2 this experiment indicates
that the proposed filter outperforms the extended Kálmán filter for filtering
problems on the Euclidean space as well as on Lie groups.
We extended this approach for joint recursive filtering of camera motion and
scene structure in chapter 5. Unlike the stereo approach, which was implicitly
used for the visual odometry estimation, the joint reconstruction disposes of
less observations because only the monocular optical flow is given; simulta-
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neously it needs to reconstruct a high-dimensional state, which makes this
procedure difficult. For better numerical properties we used disparities (in-
verse of depth map) and introduced a novel disparity group. This allows
to conduct all mathematical operations directly on this Lie group without
needing projections, barrier functions or additional terms within the energy
function. Moreover this representation is more suitable for regularization
since the deviation of disparity differences is smaller than the deviation of
depth differences. Next, we derived the state equation for the propagation
of the optimal state of camera motion and disparity map. For the camera
motion we used the higher-order kinematic model presented in chatper 4.
For the propagation of the disparity map we investigated two approaches:
a propagation with a continuous-time model based on planar scene assump-
tions and a discrete-time model. Although the continuous propagation model
seems to fit better to the time-continuous minimum energy filter, we learned
that for practical application the discrete-time propagation performs much
better; the assumption of a piecewise planar scene is violated too often in
real-world problems. After defining the energy function of the filtering prob-
lem we spotted that a quadratic energy function causes numerical problems
because of outliers in the measurements and the properties of the exponential
map of the Lie group. We solved this problems by replacing the quadratic en-
ergy by a generalized Charbonnier penalty function, which can be understood
as a smooth approximation of the L1 norm. Subsequently, we showed that
Hamilton-Jacobi theory can be applied successfully to solve the correspond-
ing optimal control problem. One takes note of the fact that the observed
filtering problem is neither a linear filtering problem nor with quadratic (L2)
penalty function such that Hamilton-Jacobi theory only provides a neces-
sary condition for optimality. Fortunately this is not a limitation for the
considered application. By using a sparse approximation of the second-order
operator we showed that numerical integration of the differential equations of
optimal state and second-order operator is feasible if we use explicit integra-
tion schemes. However, implicit integration schemes which are numerically
stabler, cannot be used by reason of the high dimension of the state space.
Using explicit numerical schemes, we demonstrated that the derived filter
gains accurate reconstructions of the disparity map and camera motion. By
comparison with the monocular methods of Becker et al. [8] it was manifested
that our method is better in most scenarios. Only regions close to the epipole
(focus of expansion) were better reconstructed by the method of [8] due to an
additional regularization terms. Thus, in a last step, we also incorporated a
spatial regularization term to replace missing data around the epipole. The
corresponding minimum energy filter contains both, temporal and spatial
regularizers as well as propagation functions for the camera motion and the
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disparity map. On the one hand this allows an improved reconstruction of
the disparity map but on the other hand the second-order operator become
dense, which is numerically infeasible. To cope this problem we proposed a
simple numerical approximation which is numerically feasible and leads to
state-of-the-art scene reconstructions.

Future Work Because the method of minimum energy filtering is rela-
tively new compared to established stochastic filters, such as the extended
Kálmán filter, the unscented Kálmán filter or the particle filter, there are
plenty of applications where this approach can be adapted to. We showed
that the minimum energy filter is superior to classical filters in the observed
non-linear scenarios and we think that it will return accurate results in many
modern applications. Especially for non-linear filtering problems on Lie
groups or problems in high dimensions this filter leads to good results.
For gaining reconstructions with highest accuracy, we require exact numerical
integration with many fine integration steps which is intensive in run-time.
In practice, however, real-time solutions for filtering problems are often re-
quired. Therefore, for the classical filters (extended Kálmán filters, unscented
Kálmán filters, particle filters) discrete-time filters were derived, which are
much simpler and thus less time consuming. Although these methods are
very fast, they are limited in accuracy and do not lead to state-of-the-art
results. If runtime is the limiting resource, we propose to use a discrete-time
version of the minimum energy filter. This can by easily derived by means
of discrete optimal control theory, but we think that the accuracy will be
inferior to the time-continuous minimum energy filter which we presented in
this work.
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Proofs regarding the Minimum
Energy Filter

A.1 Minimum Energy Filter on Euclidean

Space

A.1.1 Derivation of the Evolution Equation of the Op-
timal State

By using the chain rule we compute the total time derivative of the necessary
condition (2.42) we gain the following equalities.

0
!

=
d

dt

(
D1V(x, t;x0, t0)

∣∣∣
x=x∗

)
=
(
Dx

( ∂
∂t
V(x, t;x0, t0) +

(
D1V(x, t;x0, t0)

)>
ẋ(t)

))∣∣∣
x=x∗

(2.40)
=
(
Dx

(
H
(
x,D1V(x, t;x0, t0), t

)
+
(
D1V(x, t;x0, t0)

)>
ẋ(t)

))∣∣∣
x=x∗

=
(
DxH

(
x,D1V(x, t;x0, t0), t

)
+ Hess1 V(x, t;x0, t0)ẋ(t)

+ (Dxẋ(t))>D1V(x, t;x0, t0)
)∣∣∣

x=x∗

(2.42)
=

(
DxH

(
x,D1V(x, t;x0, t0), t

)
+ Hess1 V(x, t;x0, t0)ẋ(t)

)∣∣∣
x=x∗

(A.1)

Here, Dxg(x) denotes also the Jacobian matrix of a function g(x) as well
as the gradient if the function is real valued. We require to compute the
gradient of the Hamiltonian. It can be computed using the right hand side
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of the Hamilton’s equations (2.38) and (2.39) as well as the chain rule such
that

DxH
(
x,D1V(x, t;x0, t0), t

)
=
(
D1H(x,D1V(x, t;x0, t0), t)

)
+ Hess1 V(x, t;x0, t0)

(
D2H(x,D1V(x, t;x0, t0), t)

)
(2.39),(2.38)

= −D1f(x, t)D1V(x, t;x0, t0) + Dh(x(t))Q(y(t)− h(x(t)))

+ Hess1 V(x, t;x0, t0)
(
−f(x(t))−R−1D1V(x, t;x0, t0)

)
.

(A.2)

By insertion of this expression into (A.1) and by using the optimality condi-
tion (2.42) we obtain the following expression

0
!

=
(

Hess1 V(x, t;x0, t0)
d

dt
x(t)−

(
Df(x(t))D1V(x, t;x0, t0)

−Dh(x(t))Q(y(t)− h(x(t))
)

+ Hess1 V(x, t;x0, t0))
(
−f(x(t))−R−1D1V(x, t;x0, t0)

))∣∣∣
x=x∗

(2.42)
= Hess1 V(x∗(t), t;x0, t0)

d

dt
x∗(t)−Dh(x∗(t))Q(y(t)− h(x∗(t)))

− Hess1 V(x∗, t;x0, t0)f(x∗, t)

⇔ Hess1 V(x∗(t), t;x0, t0)
d

dt
x∗(t) = Hess1 V(x∗, t;x0, t0)f(x∗(t), t)

+ Dh(x∗(t))Q
(
y(t)− h(x∗(t))

)
⇔ d

dt
x∗ = f(x∗(t)) +

(
Hess1 V(x∗, t;x0, t0)

)−1
D1h(x∗(t))Q

(
y(t)− h(x∗(t))

)
.

(A.3)

A.1.2 Derivation of the Evolution Equation of Ẑ(t)

The evaluation of the total time derivative of the operator Ẑ(x, t) defined in
(2.44) results in the following equality:

d

dt
Ẑ(x∗, t) =

d

dt

(
Hess1 V(x∗, t; t0, x0)

)
= Hess

( ∂
∂t
V(x∗, t; t0, x0)

)
+ D3

x∗V(x∗, t; t0, x0)
d

dt
x∗(t)

= Hess
( ∂
∂t
V(x∗, t; t0, x0)

)
+ h.o.t. (A.4)

Here, D3
x∗ denotes the third order differential tensor of the value function

that we simply replace by higher-order terms (h.o.t.).
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The Hessian in (A.4) can be computed by differentiation of the expression
(A.2) that results in the following calculation.

Hess
( ∂
∂t
V(x∗, t; t0, x0)

)
= Dx∗

(
Dx∗

(
H(x∗,D1V(x∗, t;x0, t0), t)

))
(A.2)

= Dx∗

(
D1H

(
x∗,D1V(x∗, t;x0, t0), t

)
+ Hess1 V(x∗, t;x0, t0) ·D2H

(
x∗,D1V(x∗, t;x0, t0), t

))
= Hess1H

(
x∗,DV(x∗, t;x0, t0), t

)
+ (D2D1H

(
x∗,D1V(x∗, t;x0, t0), t

)
)> · Hess1 V(x∗, t;x0, t)

+ Hess1 V(x∗, t;x0, t0) ·D1D2H
(
x∗,DV(x∗, t;x0, t0), t

)
+ Hess1 V(x∗, t;x0, t0) · Hess2H

(
x∗,D1V(x∗, t;x0, t0), t

)
· Hess1 V(x∗, t;x0, t0)

+ h.o.t.

(2.42)
= Hess1H(x∗, 0, t)

+ (D2D1H(x∗, 0, t))> · Hess1 V(x∗, t;x0, t0)

+ Hess1 V(x∗, t;x0, t0) ·D1D2H(x∗, 0, t)

+ Hess1 V(x∗, t; t0, x0) · Hess2H(x∗, 0, t) · Hess1 V(x∗, t; t0, x0) + h.o.t.

= Hess1H(x∗, 0, t) + (D2D1H(x∗, 0, t))> · Ẑ(x∗, t)

+ Ẑ(x∗, t) ·D1D2H(x∗, 0, t) + Ẑ(x∗, t) · Hess2H(x∗, 0, t) · Ẑ(x∗, t) + h.o.t.

One can check that the transposed matrices are correct. This can be verified
by component-wise evaluation of the derivatives. Here, we also used the
symmetry of the Hessian und thus omitted the corresponding transposed
signs. Insertion of the full expression into (A.4) leads to

d

dt
Ẑ(x∗, t) = Hess1H(x∗, 0, t) + (D2D1H(x∗, 0, t))> · Ẑ(x∗, t)

+ Ẑ(x∗, t) ·D1D2H(x∗, 0, t) + Ẑ(x∗, t) · Hess2H(x∗, 0, t) · Ẑ(x∗, t)

+ h.o.t.

(A.5)

A.2 Properties of SE3 and G
A.2.1 Kronecker Products on se3

The Kronecker products ⊗se,⊗>se : R4×4×R4×4 → R6×6 on se3 are defined for
matrices A,B ∈ R4×4 and η ∈ se3 through vecse(AηB) =: (A⊗se B) vecse(η)
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and vecse(Aη
>B) =: (A⊗>seB) vecse(η). Since the explicit formulas for ⊗se,⊗>se

are quite uninformative, we do not provide them here.

A.2.2 Projection onto se3

The projection Pr : R4×4 → se3 is given by

Pr(A) :=1
2

diag((1, 1, 1, 0)>)
(
A diag((1, 1, 1, 2)>)− A> diag((1, 1, 1, 0)>)

)
.

(A.6)

A.2.3 Adjoints, Exponential and Logarithmic Map

The adjoint operator adse(matse(v)) can be computed for a vector v ∈ R6 as
follows

vecse
(
adse(matse(v))η) = advec

se (matse(v)) vecse(η)

:=

(
matso(v1:3) 03×3

matso(v4:6) matso(v1:3)

)
vecse(η) , (A.7)

where matso(v1:3) := (matse(v))1:3,1:3. This directly follows from the definition
of the adjoint as Lie bracket, i.e. adse(ξ)η := [ξ, η] where the Lie bracket
[·, ·] : se3 × se3 → se3 is simply the matrix commutator on se3.

vecse(adse3(matse(v))η) = vecse([matse(v), η]) (A.8)

= vecse(matse(v)η14 − 14ηmatse(v)) (A.9)

=
(
matse(v)⊗se 14 − 14 ⊗se matse(v)

)
vecse(η) . (A.10)

A componentwise evaluation of (A.10) leads to (A.7). Since R6 is trivial, the
adjoint representation on g parametrized by a vector v ∈ R12 is

advec
g (matg(v)) =

(
advec

se (v1:6) 06×6

06×6 06×6

)
. (A.11)

The exponential map ExpSE3
: se3 → SE3 and the logarithmic map on SE3

can be computed by the matrix exponential and matrix logarithm or more
efficiently by the Rodrigues’ formula as in [59, p. 413f ].
Then the exponential map ExpG : se3 → SE3 for a tangent vector η =
(η1, η2) ∈ g and the logarithmic map LogG : SE3 → se3 for x = (E, v) ∈ G
are simply

ExpG(η) =(ExpSE3
(η1), η2) ∈ G , (A.12)

LogG(x) =(LogSE3
(E), v) ∈ g , (A.13)

and similar for higher-order state spaces.
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A.2.4 Vectorization of the Connection Function

Following [1, section 5.2], we can vectorize the connection function ω of the
Levi-Civita connection ∇ for constant η, ξ ∈ g in the following way:

vecg(ωηξ) = vecg(ω(η, ξ)) = vecg(∇ηξ) = Γ̃vecg(ξ) vecg(η) , (A.14)

where Γ̃x is the matrix whose (i, j) element is the real-valued function

(Γ̃γ)i,j :=
∑
k

(γkΓ
i
jk) , (A.15)

and Γijk are the Christoffel symbols of the connection function ω for a vector

γ ∈ R12. Similarly, permuting indices, we can define the adjoint matrix Γ̃∗γ
whose (i, j)-th element is given by

(Γ̃∗γ)i,j :=
∑
k

(γkΓ
i
kj) . (A.16)

This leads to the following equality:

vecg(ωηξ) = Γ̃∗vecg(η) vecg(ξ) . (A.17)

If the expression ξ in (A.14) is non-constant, we obtain the following vector-
ization from [1, Eq. (5.7)], for the case of the Lie algebra se3, i.e.

vecse(∇ηxξ(x))

=Γ̃vecg(ξ(x)) vecse(ηx) + D vecse(ξ(x))[vecse(ηx)]

=Γ̃vecg(ξ(x)) vecse(ηx) +
∑
i

(ηx)i vecse(Dξ(x))[Ei])

=Γ̃vecg(ξ(x)) vecse(ηx) +D vecse(ηx) , (A.18)

where the entries of the matrix D ∈ R6×6 can be computed as

(D)i,j = (vecse(Dξ(x)[Ej]))i , Ej = matse(e
6
j) , (A.19)

where e6
j denotes the j-th unit vector in R6.

A.2.5 Christoffel symbols of SE3

The Christoffel symbols Γkij, i, j, k ∈ {1, . . . , 6} for the Riemannian connection
on SE3 are given by

Γ3
12 = Γ1

23 = Γ2
31 =1

2
,

Γ2
13 = Γ3

21 = Γ1
32 =− 1

2
,

Γ6
15 = Γ4

26 = Γ5
34 =1 ,

Γ5
16 = Γ6

24 = Γ4
35 =− 1 .
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and zero otherwise. Note that this Christoffel symbols are similar to these of
the kinematic connection in [89]. However, for the Riemannian connection,
we need to switch the indexes i and j.

A.3 Supplemental Material of Chapter 4

A.3.1 Proofs

Proof of Proposition 4.2.1. The tangent map is simply the differential or
directional derivative. For x1 = (E1, v1), x2 = (E2, v2) ∈ G it holds
Tx2Lx1 : Tx2G → TLx1 (x2)G. Thus, we can compute it for a η = (E2η1, η2) ∈
Tx2G = TE2 SE3×R6 as follows

Tx2Lx1 ◦ η = DLx1(x2)[η]

= lim
τ→0+

τ−1
(
Lx1(x2 + τη)− Lx1(x2)

)
= lim

τ→0+
τ−1
(
L(E1,v1)((E2 + τE2η1, v2 + τη2))

− (E1E2, v1 + v2)
)

= lim
τ→0+

τ−1
(
(E1E2 + τE1E2η1, v1 + v2 + τη2)

− (E1E2, v1 + v2)
)

=(x1x2η1, η2) ∈ Tx1x2G = TLx1 (x2)G .

For x2 = Id = (14,06) and η = (η1, η2) ∈ g, it follows

TIdLx1 ◦ η = (E1η1, η2) = L(E1,06)(η1, η2) =: x1η ∈ Tx1G .

Note that the adjoint of the tangent map of Lx at identity can be expressed
as inverse of x = (E, v), i.e. for η = (η1, η2) ∈ TxG and ξ = (ξ1, ξ2) ∈ g

〈TIdL
∗
xη, ξ〉Id =〈η, TIdLxξ〉x

=〈η1, Eξ1〉E + 〈η2, ξ2〉
=〈E−1η1, ξ1〉Idse3

+ 〈η2, ξ2〉
=〈L(E−1,06)η, ξ〉Id .

Thus, TIdL
∗
xη = L(E−1,06)η. We will use the shorthand x−1η := TIdL

∗
x for the

dual of the tangent map of Lx at identity.

Proof of Lemma 4.3.6. Since µ = (µ1, µ2), v are independent of E the gra-
dient D1H−(x = (E, v), µ, t) can be computed separately in terms of E, i.e.
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for η = (Eη1, η2) ∈ TxG

D1H−(x, µ, t)[η] =
(
DE

1
2
e−α(t−t0)

(∑
z∈Ω

‖yz − hz(E)‖2
Q

)
[η1],

−Dv〈µ1,matse(v)〉[η2]
)
.

The directional derivative regarding v can be computed by the usual gradient
on R6 which is given by

−Dv〈µ1,matse(v)〉[η2] =− 〈vecse(µ1),Dvv[η2]〉
=〈− vecse(µ1), η2〉 ,

(A.20)

such that Dv〈µ1,matse(v)〉 = − vecse(µ1). For the directional derivative of
H− we first consider the directional derivative of hz(E). Since hz(E) can also
be written as

hz(E) := ((e4
3)>E−1gz(t))

−1ÎE−1gz(t) , Î := ( 1 0 0 0
0 1 0 0 ) , (A.21)

the directional derivative (into direction ξ) can be derived by the following
matrix calculus.

Dhz(E)[ξ] (A.22)

=D
(
((e4

3)>E−1gz)
−1
)
[ξ]ÎE−1gz + ((e4

3)>E−1gz)
−1D

(
ÎE−1gz

)
[ξ]

=− κ−1
z D((e4

3)>E−1gz)[ξ]κ
−1
z ÎE−1gz + κ−1

z ÎD(E−1)[ξ]gz

=− κ−1
z (e4

3)>D(E−1)[ξ]gzκ
−1
z ÎE−1gz + κ−1

z ÎD(E−1)[ξ]gz

=− κ−1
z (e4

3)>(−1)E−1D(E)[ξ]E−1gzκ
−1
z ÎE−1gz + κ−1

z Î(−1)E−1D(E)[ξ]E−1gz

=κ−2
z (e4

3)>E−1ξE−1gz ÎE
−1gz − κ−1

z ÎE−1ξE−1gz , (A.23)

where κz = κz(E) := (e4
3)>E−1gz. Then for the choice ξ = Eη1 we find that

eα(t−t0)D1H−(x, µ, t)[Eη1] (A.24)

=−
∑
z∈Ω

tr
(
Dhz(E)[Eη1](yz − hz(E))>Q

)
=−

∑
z∈Ω

tr
((
κ−2
z ((e4

3)>η1E
−1gz)ÎE

−1gz − κ−1
z Îη1E

−1gz
)
(yz − hz(E))>Q

)
=
∑
z∈Ω

tr
((
κ−1
z Îη1E

−1gz − κ−2
z ((e4

3)>η1E
−1gz)ÎE

−1gz
)
(yz − hz(E))>Q

)
=
∑
z∈Ω

tr
((
κ−1
z Îη1E

−1gz − κ−2
z ÎE−1gz(e

4
3)>η1E

−1gz
)
(yz − hz(E))>Q

)
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=
∑
z∈Ω

tr
((
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)
η1E

−1gz(yz − hz(E))>Q
)

=
∑
z∈Ω

tr
(
E−1gz(yz − hz(E))>Q

(
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)
η1

)
=
∑
z∈Ω

〈 (
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)>
Q(yz − hz(E))g>z E

−>︸ ︷︷ ︸
=:Ak(E)

, η1

〉
Id. (A.25)

Here we used that the trace is cyclic. We obtain the Riemannian gradient
on SE3 by projecting (cf. [1, section 3.6.1]) the left side of the Riemannian
metric in (A.25) onto TE SE3, which is for x = (E, v)

DEH−(x, µ, t) =e−α(t−t0) PrE
(
EAz(E)

)
=e−α(t−t0)

∑
k

E Pr
(
Az(E)

)
, (A.26)

with Az(E) :=
(
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)>
Q(yz − hz(E))g>z E

−>, and PrE :
GL4 → TE SE3 denotes the projection onto the tangential space TE SE3 that
can be expressed in terms of PrE(E·) = E Pr(·). Besides, Pr : GL4 → se3

denotes the projection onto the Lie algebra se3 as given in (A.6). Putting
together (A.20) and (A.26) results in

D1H−(x, µ, t) =
(
e−α(t−t0)

n∑
k=1

E Pr
(
Az(E)

)
,− vecse(µ1)

)
∈ TxG . (A.27)

Proof of Lemma 4.3.7. Eq. (4.43) can be easily found by considering a basis
of se3 and the fact that Z is a linear operator on the Lie algebra. Since the
resulting matrix K(t) vecg(η) := Z(x∗, t) ◦ η depends only on t, the equation
(4.44). Eq.(4.45) is trivial since Z is linear.

1. With the symmetry of the Levi-Civita connection, i.e.

[η, ξ] = ∇ηξ −∇ξη , (A.28)
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we gain the following equalities

vecg(Z(x∗, t) ◦ ω(x∗)−1ẋ∗η + Z(x∗, t) ◦ ω�
D2H−(x∗,0,t)η)

(4.43)
= K(t) vecg(ω(x∗)−1ẋ∗η + ω�

D2H−(x∗,0,t)η)

(4.40)
= K(t) vecg(∇−D2H−(x∗,0,t)η

−∇e−α(t−t0)Z(x∗,t)−1◦rt(x∗)η +∇ηD2H−(x∗, 0, t))

(A.28)
= K(t) vecg(−[D2H−(x∗, 0, t), η])−∇e−α(t−t0)Z(x∗,t)−1◦rt(x∗)η

(A.17)
= K(t)

(
vecg([f(x∗), η])− Γ̃∗

vecg(e−α(t−t0)Z(x∗,t)−1◦rt(x∗)) vecg(η)
)

(4.43)
= K(t)

(
vecg([f(x∗), η]) + Γ̃∗−e−α(t−t0)K(t)−1 vecg(rt(x∗))

)
vecg(η

)
(A.11)

= K(t)
(
advec

g (f(x∗)) + Γ̃∗−e−α(t−t0)K(t)−1 vecg(rt(x∗))

)
vecg(η)

=:K(t)B vecg(η) . (A.29)

The claim follows from the fact that the adjoints and the Christoffel
symbols on R6 are zero.

2. Since this expression is dual to the expression in 1. the claim follows
by using its transpose.

3. Recall that the Hamiltonian in (4.27) is given by

H−((E, v), µ, t) = 1
2
e−α(t−t0)

(∑
z∈Ω

‖yz − hz(E)‖2
Q

)
− 1

2
eα(t−t0)

(
〈µ1,matse(S

−1
1 vecse(µ1))〉Id

+ 〈µ2, S
−1
2 µ2〉

)
− 〈µ1,matse(v)〉Id .

The Riemannian Hessian w.r.t. the first component can be computed
for x = (E, v) ∈ G, η = (η1, η2) ∈ g and the choice µ = (µ1, µ2) =
(04×4,06) as

eα(t−t0) vecg(x
−1 Hess1H−(x, µ, t)[xη])

= eα(t−t0) vecg

(
x−1∇xηD1H−(x,0, t)

)
(A.30)

= eα(t−t0) vecg

(
∇ηx

−1D1H−(x,0, t)
)

(A.31)

= vecg

(
∇η

(∑
z∈Ω

Pr(Az(E)),−eα(t−t0) vecse(04×4)
))

(A.32)
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=
(∑
z∈Ω

vecse
(
∇η1 Pr

(
Az(E)

))
,06

)
=
∑
z∈Ω

(
Γ̃

vecg

(
Pr(Az(E))

) vecse(η1)

+
∑
i

(vecse(η1))i vecse(D Pr
(
Az(E)

)
)[Ei])

)
.

(A.33)

Here, line (A.30) follows from the general definition of the Hessian (cf.
[1, Def. 5.5.1]). Line (A.31) holds because of the linearity of the affine
connection, the equation (A.32) results from insertion of the expression
in Lemma 4.3.6 and (A.33) can be achieved with (A.18).

As next we calculate the differential D Pr(Az(E))[η1] in (A.33) for an
arbitrary direction η1. Since the projection is a linear operation (cf.
(A.6)), i.e. D Pr(Az(E))[η1] = Pr(DAz(E)[η1]), we require to calculate
DAz(E)[η1]. By using the product rule and the definition of Az from
(4.32) we obtain

DAz(E)[η1]

=D
((
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)>
Q(yz − hz(E))g>z E

−>)[η1]

=
(
D
(
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)>

[η1]Q(yz − hz(E))g>z E
−>)

+
(
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)>
Q
(

(−Dhz(E)[η1])g>z E
−>)

+
(
(yz − hz(E))g>z DE−>[η1]

))
.

(A.34)

The directional derivative of
(
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)

is

D
(
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)
[η1]

=− κ−2
z (e4

3)>DE−1[η1]gz Î

+ 2κ−3
z (e4

3)>DE−1[η1]gz ÎE
−1gz(e

4
3)>

− κ−2
z ÎDE−1[η1]gz(e

4
3)>

=κ−2
z (e4

3)>E−1ηE−1gz Î

− 2κ−3
z (e4

3)>E−1η1E
−1gz ÎE

−1gz(e
4
3)>

+ κ−2
z ÎE−1η1E

−1gz(e
4
3)> .

(A.35)

By inserting the directional derivatives (A.35), (A.23) and DE−>[η1] =
−(E−1η1E

−1)> into (A.34), we obtain the vector-valued function
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ζk(E)(·) : se3 → R6 defined as

matse(ζ
k(E)(η1)) := Pr

(
DAz(E)[η1]

)
(A.36)

= Pr

((
κ−2
z (e4

3)>E−1η1E
−1gz Î

− 2κ−3
z (e4

3)>E−1η1E
−1gz ÎE

−1gz(e
4
3)>

+ κ−2
z ÎE−1η1E

−1gz(e
4
3)>
)>
Q
(
yz − hz(E)

)
g>z E

−>

+
(
κ−1
z Î − κ−2

z ÎE−1gz(e
4
3)>
)>
Q
((
κ−1
z ÎE−1η1E

−1gz

− κ−2
z (e4

3)>E−1η1E
−1gz ÎE

−1gz
)
g>z E

−>

−
(
yz − hz(E)

)
g>z E

−>η>1 E
−>
))

.

Using the basis {Ej}6
j=1 of se3, with Ej := matse(e

6
j) we define, as in

(A.19), the following matrix Dz(E) ∈ R6×6 with components

(Dz(E))i,j := ζki (Ej) . (A.37)

By using the equation (A.18) we find that

vecse
(
∇η1 Pr(Az(E))

)
=
(
Γ̃Pr(Az(E)) +Dz(E)

)
vecse(η1) .

Insertion of this expression into (A.33) leads finally to the desired result,
i.e.

eα(t−t0) vecg(x
−1 Hess1H−(x, µ, t)[xη])

=

(∑
z∈Ω(Γ̃vecse(Pr(Az(E))) +Dz(E)) 06×6

06×6 06×6

)
vecg(η) .

4. The Riemannian gradient of the Hamiltonian regarding the second com-
ponent is at zero, thus we obtain

D2H−(x,0, t) =
(
−matse(v),0

)
= −f(x) . (A.38)

Computation of differential regarding the first component at η =
(Eη1, η2) ∈ TxG results in

D1(D2H−(x,0, t))[η] = −Df(x)[η]

=−D(E,v)(matse(v),0)[η]

=− (matse(η2),0) .

139



Appendix A. Proofs regarding the Minimum Energy Filter

Finally, we compute the complete expression which is for η = (η1, η2) ∈
g and x∗ = (E, v) ∈ G

vecg(Z(x∗, t) ◦D1(D2H−)(x∗, 0, t) ◦ TIdLx∗η)

=K(t) vecg(D1(D2H−)(x∗, 0, t)[Eη1, η2])

=−K(t) vecg((matse(η2),0))

=−K(t)

(
06×6 16

06×6 06×6

)
vecg(η) .

(A.39)

5. The following duality holds

D2(D1H−(x∗, 0, t)) =(D1(D2H−(x∗, 0, t)))∗

=− (Dx∗f(x∗))∗ ,
(A.40)

as well as the following duality rule for linear operators f, g : g → g∗

(i.e. f ∗, g∗ : g→ g∗ by the identification g∗∗ = g) and η, ξ ∈ g,

〈(g∗ ◦ f ∗)(η), ξ〉Id = 〈f ∗(η), g(ξ)〉Id
=〈η, (f ◦ g)(ξ)〉Id = 〈(f ◦ g)∗(η), ξ〉Id ,

(A.41)

from which follows
(g∗ ◦ f ∗) = (f ◦ g)∗ . (A.42)

Note that for g = se3 we replace the Riemannian metric 〈·, ·〉 by the
trace, and that the dual notation can be replaced by the transpose.

Applying the vecg− operation for η ∈ g gives

vecg(TIdL
∗
x∗ ◦D2(D1H−)(x∗, 0, t) ◦ Z(x∗, t) ◦ η)

(A.40)
= − vecg(TIdL

∗
x∗ ◦ (Df(x∗))∗ ◦ Z(x∗, t) ◦ η)

(A.42)
= − vecg((Df(x∗) ◦ TIdLx∗)

∗ ◦ Z(x∗, t) ◦ η)

(A.39)
= −

(
06×6 06×6

16 06×6

)
vecg(Z(x∗, t) ◦ η)

=−
(

06×6 06×6

16 06×6

)
K(t) vecg(η) .

6. It holds for η = (η1, η2) ∈ g and the definition of the Riemannian
Hessian that

Hess2H−(x, µ, t)[η] = ∇(η1,η2)D2H−(x, µ, t) . (A.43)
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The Riemannian gradient of the Hamiltonian regarding the second com-
ponent can be computed for x = (E, v) ∈ G as

D2H−(x, µ, t)

=
(
−eα(t−t0) matse(S

−1
1 vecse(µ1))−matse(v),−eα(t−t0)S−1

2 µ2

)
. (A.44)

Inserting (A.44) into (A.43) results in

e−α(t−t0) Hess2H−(x, µ, t)[η]

=−∇(η1,η2)

(
matse(S

−1
1 vecse(µ1)) + matse(v), S−1

2 µ2

)
=− Prg

(
Dµ(matse(S

−1
1 vecse(µ1)) + matse(v))[η],

Dµ(S−1
2 µ2)[η]

)
=−

(
Pr
(
matse(S

−1
1 vecse(η1))

)
, S−1

2 η2

)
=−

(
matse(S

−1
1 vecse(η1)), S−1

2 η2

)
,

where Prg : R4×4×R6 → g denotes the projection onto the Lie algebra
g. Note that the second component of the projection is trivial.

This result coincides with [72] where the Hessian of the Hamiltonian
regarding the second component is computed directly. Applying the
vecg−operation leads to

vecg( Hess2H−(x, µ, t)[TIdLxη])

=− eα(t−t0) vecg

(
matse(S

−1
1 vecse(η1)), S−1

2 η2

)
=− eα(t−t0)((S−1

1 vecse(η1))>, (S−1
2 η2)>)>

=− eα(t−t0)

(
S−1

1 06×6

06×6 S−1
2

)
︸ ︷︷ ︸

=:S−1

vecg(η) .

Now we apply the vecg-operation to the expression Z(x∗, t) ◦
Hess2H−(x∗, 0, t) ◦ Z(x∗, t):

vecg

(
Z(x∗, t) ◦ Hess2H−(x∗, 0, t)[Z(x∗, t)(η)]

)
=K(t) vecg

(
Hess2H−(x∗, 0, t)[Z(x∗, t)(η)]

)
=− eα(t−t0)K(t)S−1 vecg(Z(x∗, t)(η))

=− eα(t−t0)K(t)S−1K(t) vecg(η) .
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A.4 Derivations for Extended Kálmán Filter

The function Φ : R12 → R12×12 in Alg. 1 is

Φ(v) =

(
ΦSE3(v1:6) 06×6

06×6 16

)
,

whereas the function ΦSE3 is given in [76, section 10] (cf. [17, Eq. (17)]).

A.4.1 Derivations for Non-Linear Observations

The expression of Hl that is defined in [17, Eq. (59)] is simply the Riemannian
gradient of the observation function hz, i.e.

Hl :=
∑
z∈Ω

Dhz(G(tl)) ,

where hk is defined as in (A.21); and the Dhz can be computed component-
wise (for j = 1, 2) for x(tl) = (E(tl), v(tl)) by the directional derivative for a
direction xη ∈ TxG.

Dhjz(x)[xη] = D
(
(e4

3E
−1gz)

−1e4
jE
−1gz

)
[(Eη1, η2)] (A.45)

=κ−2
z e4

3η1E
−1gze

4
jE
−1gz − κ−1

z e4
jη1E

−1gz (A.46)

=〈
(
κ−2
z E−1gze

4
jE
−1gze

4
3 − κ−1

z E−1gze
4
j

)>
, η1〉 (A.47)

=:〈ρjk(x), η1〉 , (A.48)

where the second last line follows from the definition of the Riemannian
metric on SE3, i.e. 〈η, ξ〉Id = η>ξ, and the fact that the trace is cyclic.
By projection of ρ1

k(x(tl)) onto the Lie algebra se3 and by vectorization, we
obtain the Riemannian gradient. Stacking the vectors leads to the Jacobian
Hl ∈ R2×12, which is provided through

Hl =
l∑

k=1

(
vecse(Pr(ρ1

k(tl)))
> 01×6

vecse(Pr(ρ2
k(tl)))

> 01×6

)
. (A.49)

Next, we consider the calculation of the function J(t) in Alg. 1 in line 3.
Following [17], J(t) can be calculated as

J(t) = F (t)− adg(f(x(t))) + 1
12
C(S) , (A.50)

where the differential of F (t) = Df(x(t)) can be computed as

F (t) =

(
06×6 16

06×6 06×6

)
. (A.51)
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For a diagonal weighting matrix S, we find that in (A.50) the function C can
be computed for diagonal weighting matrices S as

C(S) =

((
Ξ 03×3

03×3 Ξ

)
06×6

06×6 06×6

)
, (A.52)

where Ξ = − diag((S22 +S33, S11 +S33, S11 +S22)>), and the adjoint in (A.50)
can be computed with (A.11).

A.5 Supplemental Material of Chapter 5

A.5.1 Derivation of the Piecewise Affine Model

We assume to have a given depth map d = (d(z), z ∈ Ω) that we want
to propagate in the future corresponding a given camera motion E(t) =
(R(t), w(t)) ∈ SE3 . With the depth map we can assign to each image point
z ∈ Ω on the image grid a space point Z(z, d(z)) = ( z1 ) d(z). We suppose
that the scene structure around Z(z, d(z)) is piecewise planar and can be
described by vector p(z) ∈ R3 such that the surface around Z is the set

{Z ∈ R3|〈Z, p(z)〉 = 1}, (A.53)

To determine the vector p we choose the constraints〈
d(z) ( z1 ) , p(z)

〉
=1

∇z1,z2

〈
d(z) ( z1 ) , p(z)

〉
= ( 0

0 ) .

Given a known depth d(z) and a gradient ∇z1,z2d(z) the solution can be
computed as

p(z) = d−2(z)

−1 0 0
0 −1 0
z1 z2 1

(∇zd(z)
d(z)

)
. (A.54)

When we move the camera by the rotation R ∈ SO3 and translation w ∈ R3

the induced viewing ray {Rλ ( z1 ) + w|λ > 0} intersects the plane at

λ =
1− p(z)>w

p(z)>R ( z1 )
, (A.55)

that leads to a new space point (from the point of view of the moved camera)

Ẑ(z, R, w) := λ ( z1 ) =
1− p(z)>w

p(z)>R ( z1 )
( z1 ) (A.56)
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The corresponding depth d̃ in z for an arbitrary camera motion E = (R,w)
is just the third component of Ẑ(z,R, w), i.e.

d̂(z,R, w) = ( 0 0 1 ) Ẑ(z, R, w) =
1− p(z)>w

p(z)>R ( z1 )
= λ . (A.57)

For the choice (R,w) = (1,0) we find that d̂(z,1,0) = d(z). This means that
d̂ is accurate next to a constant camera motion, that can be described by
η ∈ se3, such that

E(t) =

(
R(t) w(t)

0 1

)
= Exp(tη) ∈ SE3 .

We want to compute the total time derivative d̂(z, t) := d̂(z,R(t), w(t)) at
t = 0 which is given through

d

dt
d̂(z, t)

∣∣
t=1

= lim
t→0

t−1
(
d̂(z, t)− d̂(z, 0)

)
(A.58)

by using the matrix differential d
dt
E(t)|t=0 = η. Evaluating (A.58) gives for

η1 = η1:3,1:3 and η2 = η1:3,4

d

dt
d̂(z, t)

∣∣∣
t=0

= −p(z)>η2p(z)> ( z1 ) + p(z)>η2 ( z1 )

(p(z)> ( z1 ))2
, (A.59)

where p(z) was determined on (A.54) and depends on d(z) and ∇d(z). Thus,
substituting (A.54) finally gives

ḋ(z, t) =−
(
d(z, t)−1η2 + η1 ( z1 )

)> ( −1 0 0
0 −1 0
z1 z2 1

)(
∇d(z,t)
d(z,1)

)
(A.60)

=−
(
η
( z

1
d(z,t)−1

))>( −1 0 0
0 −1 0
z1 z2 1
0 0 0

)(
∇d(z,t)
d(z,1)

)
, (A.61)

where η = ( η1 η2
0 0 ) and z = ( z1z2 ). In this work we use the inverse depth

representation. Therefore we replace di(z) = (d(z))−1. With the formula

d

dt
di(z, t) = −d(z, t)−2ḋ(z, t) , (A.62)

we find the differential equation

d

dt
di(z, t) =di(z, t)

2
(
η
( z

1
di(z,t)

))>( −1 0 0
0 −1 0
z1 z2 1
0 0 0

)(
∇(di(z,t))

−1

(di(z,t))
−1

)
=−

(
η
( z

1
di(z,t)

))>( 1 0 0
0 1 0
−z1 −z2 1

0 0 0

)(
∇di(z,t)
di(z,t)

)
.
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A.5.2 Vectorization of Adjoint Representation

For the considerations below we require to introduce the vectorization of the
adjoint operator on the Lie group G = SE3×R6 × (0, 1)nΩ which is given for
a vector v ∈ R12+nΩ by the expression

advec
g (matg(v)) =

advec
se (v1:6) 06×6 06×|Ω|
06×6 06×6 06×|Ω|
0|Ω|×6 0|Ω|×6 0|Ω|×|Ω|

 . (A.63)

Here advec
se denotes the operator defined in (A.7).

A.5.3 Proofs

Proof of Lemma 5.2.6. The proof requires to compute the total time deriva-
tive of the necessary condition for the optimal state x∗ which is given through

D1V(x∗, t) = 0. (A.64)

The calculation of the time derivative of (A.64) is already given in [72, Eq.
(26)–(37)] and results in the following evolution equation:

(x∗(t))−1ẋ∗(t) = −D2H(x∗(t),0, t)− Z(x∗(t), t)−1 ◦ (x∗)−1(D1H(x∗(t),0, t)).
(A.65)

The derivative of the Hamiltonian regarding the second component is simply

D2H(x∗,0, t) = −f(x∗) , (A.66)

such that the evolution equation for the optimal state x∗ reads

(x∗(t))−1ẋ∗(t) = f(x∗)− Z(x∗(t), t)−1 ◦ (x∗)−1(D1H(x∗(t),0, t)), (A.67)

which is Lemma 5.2.6.

The calculation of the differential of the Hamiltonian

D1H(x∗(t),0, t)

is a bit involved but can be calculated component-wise. We will use the

shorthands I := ( 1 0 0 0
0 1 0 0 ) ∈ R2×4, e = ( 0 0 1 0 ) ∈ R1×4, gz =

(
( z1 )(di(z,t))

−1

1

)
∈

R4 and κz = eEgz ∈ R. With these expressions we can write the function h
as h(z, t) := κ−1

z IEgz.
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We begin with the directional derivative of the HamiltonianH(x,0, t) regard-
ing the camera motion E for x = (E, v, di) in a specific direction Eη ∈ TE SE3

which is

DEH(x,0, t)[Eη] =
∑
z

DEφ(1
2
‖yz − hz(x, t)‖2

Qz)[Eη]

=
∑
z

β(1
2
‖yz − hz(x, t)‖2

Qz + ν)β−1(yz − hz(x, t))>Qz(−1)DEhz(x, t)[Eη]

=
∑
z

β(· · · )β−1(yz − hz(x, t))>Qz(−1)DE

(
eEgzIEgz

)
[Eη]

=
∑
z

β(· · · )β−1(−1) tr
(

(yz − hz(x, t))>Qz(κ
−1
z IEηgz − κ−2

z eEηgzIEgz)
)

=
∑
z

β(· · · )β−1(−1) tr
(

(yz − hz(x, t))>Qz

(
κ−1
z I − κ−2

z IEgze
)
Eηgz

)
=
∑
z

β(· · · )β−1(−1)
〈
gz(yz − hz(x, t))>Qz

(
κ−1
z I − κ−2

z IEgze
)
Eη
〉

=
∑
z

β(· · · )β−1
〈(
gz(yz − hz(x, t))>Qz

(
κ−2
z IEgz(e

4
3)> − κ−1

z I
)
E
)>
, η
〉
.

From the definition of the Riemannian gradient on SE3 follows that it can
be computed by the orthogonal projection Pr : R4×4 → se3 which reads

A 7→ 1
2

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

)(
A

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

)
− A>

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

))
. (A.68)

The resulting Riemannian gradient of the Hamiltonian regarding E is

DEH(x, 0, t) =
∑
z

β(· · · )β−1E Pr
((
gz(yz − hz(x, t))>Qz

(
κ−2
z IEgze− κ−1

z I
)
E
)>)

=:EGE(x) ∈ TE SE3 . (A.69)

The gradient of the Hamiltonian can be calculated component-wise, i.e. for
each z in the image domain Ω separately. We will use the shorthand g′z :=

−
(

( z1 )(di(z,t))
−2

0

)
for the partial derivative ∂

∂di(z,t)
gz.

Then the components of DdiH(x,0, t) read

∂

∂di(z, t)
H(x,0, t) =

∂

∂di(z, t)

∑
z∈Ω

φ(1
2
‖yz − hz(x, t)‖2

Qz)

=
∂

∂di(z, t)

(
1
2
‖yz − hz(x, t)‖2

Qz + ν
)β

+ νβ
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=β(· · · )β−1(yz − hz(x, t))>Qz(−1)
∂

∂di(z, t)
hz(x, t)

=β(· · · )β−1(yz − hz(x, t))>Qz(−1)
(
−κ−2

z eEg′zIEgz + κ−1
z IEg′z

)
=β(· · · )β−1(yz − hz(x, t))>Qz

(
κ−2
z eEg′zIEgz − κ−1

z IEg′z
)

=:(Gdi(x))p(z) ∈ R . , (A.70)

where p(z) denotes the index of the pixel z after stacking the image domain
Ω column-wise. Thus, by combining all these entries to a vector (given a
fixed ordering of z ∈ Ω, e.g. column-wise), we obtain the expression Gdi(x).
Since the Hamiltonian does not depend on the vector v, the corresponding
entries are zero such that we finally obtain the gradient of the Hamiltonian
regarding x = (E, v, di) which is

D1H(x,0, t) = TIdLx(GE(x),06, Gdi(x)) ∈ TxG. (A.71)

Proof of Lemma 5.2.7. Following Saccon et al. [72, Eq. (51)] the evolution
equation of the operator Z(x∗, t) : g→ g∗ is given through

d

dt
Z(x∗, t) (A.72a)

≈Z(x∗, t) ◦ ω(x∗)−1ẋ∗ (A.72b)

+ Z(x∗, t) ◦ ω�
D2H(x∗,0,t) (A.72c)

+ ω∗(x∗)−1ẋ∗ ◦ Z(x∗, t) (A.72d)

+ ω�∗
D2H(x∗,0,t) ◦ Z(x∗, t) (A.72e)

+ TIdL
∗
x∗ ◦ Hess1H(x∗, 0, t) ◦ TIdLx∗ (A.72f)

+ TIdL
∗
x∗ ◦D2(D1H)(x∗, 0, t) ◦ Z(x∗, t) (A.72g)

+ Z(x∗, t) ◦D1(D2H)(x∗, 0, t) ◦ TIdLx∗ (A.72h)

+ Z(x∗, t) ◦ Hess2H(x∗, 0, t) ◦ Z(x∗, t) . (A.72i)

Since Z ∈ g∗ and g∗ is a vector space we can represent Z(x∗, t) as a matrix
K(t) ∈ R(|Ω|+12)×(|Ω|+12) by evaluating Z for a specific η ∈ g and vectorization,
i.e.

vecg(Z(x∗, t)(η)) = K(t) vecg(η) . (A.73)

Similarly we can vectorize the full differential equation of Z to find the evo-
lution equation of the operator P (t) in Lemma 5.2.7.
With (A.73) it is obvious to see that the expression in (A.72a) can be vec-
torized as

vecg

( d
dt
Z(x∗, t)(η)

)
= K̇(t) vecg(η) . (A.74)
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Second, we consider the expressions in (A.72b) and (A.72c).

vecg(Z(x∗, t) ◦ ω(x∗)−1ẋ∗η + Z(x∗, t) ◦ ω�
D2H(x∗,0,t)η)

(A.73)
= K(t) vecg(ω(x∗)−1ẋ∗η + ω�

D2H(x∗,0,t)η)

(A.67)
= K(t) vecg(∇f(x∗)η −∇Z(x∗,t)−1◦(x∗)−1D1H(x∗,0,t)η

+∇ηD2H(x∗, 0, t))
(A.66)

= K(t) vecg(∇f(x∗)η −∇Z(x∗,t)−1◦(x∗)−1D1H(x∗,0,t)η

−∇ηf(x∗))
(A.28)

= K(t) vecg([f(x∗), η]−∇Z(x∗,t)−1◦(x∗)−1D1H(x∗,0,t)η)

(A.17)
= K(t)

(
vecg([f(x∗), η])− Γ̃∗vecg(Z(x∗,t)−1◦(x∗)−1D1H(x∗,0,t)) vecg(η)

)
(A.73)

= K(t)
(
vecg([f(x∗), η])− Γ̃∗K(t)−1 vecg((ẋ)−1D1H(x∗,0,t)) vecg(η

))
(A.63)

= K(t)
(
advec

g (f(x∗))− Γ̃∗K(t)−1 vecg((ẋ)−1D1H(x∗,0,t))

)
vecg(η)

=:K(t)C1(x∗, t) vecg(η) . (A.75)

By duality we find that the lines (A.72d) and (A.72e) can be represented as

vecg
(
ω∗(x∗)−1ẋ∗ ◦ Z(x∗, t)(η) + ω�∗

D2H(x∗,0,t) ◦ Z(x∗, t)(η)
)

= C1(x∗, t)>K(t)η.

(A.76)
The vectorization of (A.72h) can be simply achieved as

vecg
(
Z(x∗, t) ◦D1(D2H)(x∗, 0, t) ◦ TIdLx∗η

)
(A.73)

= K(t) vecg
(
D1(D2H)(x∗, 0, t) ◦ x∗η

)
=K(t) vecg

(
−D1f(x∗)[x∗η]

)
=−K(t) vecg(matse((η2,06,0|Ω|)))

=−K(t)

 06×6 16 06×|Ω|
06×6 06 06×|Ω|
0|Ω|×6 0|Ω|×6 0|Ω|×|Ω|

 vecg(η)

=:−K(t)C2(x∗, t) vecg(η) ,

where f is the function in (5.17). Again, by duality follows

vecg
(
TIdL

∗
x∗ ◦D2(D1H)(x∗, 0, t) ◦ Z(x∗, t) ◦ η

)
= C2(x∗, t)>K(t) vecg(η)

(A.77)
for the expression in (A.72g). Setting C(x∗, t) := C2(x∗, t) − C1(x∗, t) gives
the matrix C(x∗, t) in Lemma 5.2.7.
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The expression in (A.72i) can be calculated as

vecg
(
Z(x∗, t) ◦ Hess2H(x∗, 0, t) ◦ Z(x∗, t) ◦ η

)
(A.78)

(A.73)
= K(t) vecg

(
Hess2H(x∗, 0, t) ◦ Z(x∗, t)

)
(A.79)

=−K(t)RK(t) vecse(η) , (A.80)

where R is the weighting matrix in the energy function in (??).
It remains to calculate the matrix representation of the Hessian of the Hamil-
tonian in (A.72f), i.e.

vecg
(
TIdL

∗
x∗ ◦ Hess1H(x∗, 0, t) ◦ TIdLx∗ ◦ η

)
=: H(x∗, t) vecg(η). (A.81)

The single blocks of the Hessian of the Hamiltonian can be calculated again
separately, i.e.

H =

H11 H12 H13

H21 H22 H23

H31 H32 H33

 .

Note that the entries that address the variable v are all zero since the
Hamiltonian does not depend on v for x = (E, v, di). Thus, the entries
H12, H13, H21, H22, H31 are all zero. As we consider the Riemannian Hessian
regarding the symmetric Levi-Civita connection, it is sufficient to calculate
H11, H33 and H13 = H>31. The matrix H33 is a diagonal matrix containing the
partial derivatives

∂

∂di(z, t)
(Gdi(x))z , (A.82)

where (Gdi(x))z was calculated in (A.70). The columns of H13 can be ob-
tained similarly by calculation of the partial derivatives of the vector repre-
sentation of the gradient GE(x∗) in (A.69), i.e.

(H13)p(z)• =
∂

∂di(z)
vecse(Pr(GE(x∗))) , (A.83)

where • denotes the full column, and p(z) denotes the position of z in a
fixed ordering (e.g. column-wise). The matrix H11 is a bit more complicated
because the Christoffel symbols on SE3 are not zero. It can be calculated by
the general definition of the Riemannian Hessian (cf. [1, Def. 5.5.1]). For
η ∈ SE3 we find the following equalities

vecse(E
−1 HessEH(x∗,0, t)[Eη])

Def.
= vecse(E

−1∇EηDEH(x∗,0, t))

Lin.
= vecse(∇ηE

−1DEH(x∗,0, t))
(A.69)

= vecse(∇ηGE(x∗)) .
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The last equation can be evaluated by using the formula in (A.18). For
brevity we omit the full calculations.
Thus, evaluation of the differential equation of Z for a η ∈ g and vectorization
with the operator vecg gives us the following equation for K :

K̇(t) = −K(t)RK(t)−K(t)C(x∗, t)− C(x∗, t)>K(t) +H(x∗, t). (A.84)

We want to avoid the inversion of the operator K in (A.65). Therefore
we replace P (t) := K(t)−1 in (A.84). By using the well-known rule for
the calculation of the differential of an inverse matrix we obtain finally the
expression in Lemma 5.2.7.

Ṗ (t) =
d

dt
K(t)−1

=−K(t)−1K̇(t)K(t)−1

=− P (t)(−1)K(t)RK(t)P (t)− (−1)P (t)K(t)C(x∗, t)P (t)

− (−1)P (t)C(x∗, t)>K(t)P (t)− P (t)H(x∗, t)P (t)

=R + C(x∗, t)P (t) + P (t)C(x∗, t)> − P (t)H(x∗, t)P (t)

(A.85)

Proof of Theorem 5.2.8. By replacing the expression

Z(x∗, t)−1 ◦ η = matg(P (t) vecg(G(x∗, t))

in (A.65) we obtain the equation (15) in the paper where

G(x∗, t) := (GE(x∗),06, Gdi(x
∗))

denotes the gradient of the Hamiltonian as calculated in (A.71). The initial
condition of equation (15) can be found by minimizing the value function (9)
for t = t0. Then we find that the optimal initial state is x∗(t0) = x0. The
differential equation for P was already calculated in Lemma 5.2.7 in (A.85)
and the initial state of P is the inverse of the Hessian of the value function
(9) at t = t0 which is R0. This completes the proof.

A.5.4 Calculations for the Filtering Problem with
Spatial Regularization

In this section we derive the minimum energy filter for joint camera motion
and disparity estimation which was discussed in section 5.3. We recall the
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(left-trivialized) Hamiltonian (5.33) which includes the spatial regularizer. It
is given through

H(x, µ, t) := −〈µ, f(x(t)〉 − 1
2
‖vecg(µ)‖2

R−1

+
(∑
z∈Ω

(
φdata

(
1
2
‖yz(t)− hz(x(t))‖2

Qz

)
+ λφreg

(
1
2
‖∇zdi(z)‖2

)))
. (A.86)

Here, x = (E, v, di) ∈ G consists of the camera motion E ∈ SE3, v ∈ R6 and
the disparity map di ∈ (0, 1)|Ω|.
Computation of the total time derivative of the necessary condition (5.24)
again leads to a differential equation for the optimal state (cf. (A.87)).

ẋ∗(t) = x(t)
(
−D2H(x∗(t),0, t)− Z(x∗(t), t)−1 ◦ x−1(D1H(x∗(t),0, t))

)
(A.87)

where Z : g → g∗ is the left-trivialized Hessian of the value function given
through

Z(x, t) ◦ η = x−1 HessV(x(t), t, x(t0))[xη], η ∈ g . (A.88)

The differential of the Hamiltonian regarding the second component is
D2H(x∗,0, t) = −f(x∗). We continue with the differential of the Hamilto-
nian regarding the first component. As the differential of the data term was
already derived in (A.71), we only calculate the differential of the regularizer,
which we denote for x = (E, v, di) by

Φ(x) := λ
∑
z∈Ω

φreg
(

1
2
‖∇zdi(z)‖2

)
. (A.89)

The image domain Ω is discrete, therefore we require a discretization of the
spatial gradient ∇zdi(z). For this reason we introduce difference matrices
which can be expressed with help of Kronecker products. If n1 denotes the
number of rows and n2 denotes the number of columns of the image domain
Ω, we have

D1 :=1n2 ⊗ D̃1 , D2 := D̃2 ⊗ 1n1 , (A.90)

where D̃1 ∈ {−1, 0, 1}n1×n1 and D̃2 ∈ {−1, 0, 1}(n2−1)×n2 are given through

D̃1
ij :=


1, j = i+ 1, i < n1,

−1, j = i, i < n1,

0, otherwise ,

, D̃2
ij :=


1, j = i+ 1, i < n2,

−1, j = i, i < n2,

0, otherwise .
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As an example the difference matrices of a 3× 4 image are given through

D1 =



−1 1 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 0 0

 ∈ {−1, 0, 1}3·4×3·4

D2 =



−1 0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

 ∈ {−1, 0, 1}3·4×3·4

The discrete gradient ∇zdi(z) can now be expressed as follows

∇zdi(z) =

(
(D1di)p(z)
(D2di)p(z)

)
, (A.91)

where di is the vector representation (stacked column wise) of the inverse
depth map (di(z))z∈Ω and p(z) denotes position (index) of z in the vector
di, i.e. (di)p(z) = di(z). The derivative of (A.89) can be calculated regarding
di(z̃) :

∂

∂di(z̃)
Φ(x) = λ

∂

∂di(z̃)

∑
z∈Ω

φreg
(

1
2
‖∇zdi(z)‖2

)
=λ
∑
z∈Ω

∂

∂di(z̃)

((
1
2
‖
(

(D1di)p(z)
(D2di)p(z)

)
‖2 + νr

)αr − ναrr )
=λ
∑
z∈Ω

αr
(

1
2
‖
(

(D1di)p(z)
(D2di)p(z)

)
‖2 + νr

)αr−1

·
(
(D1di)p(z)(D1ep(z̃))p(z) + (D2di)p(z)(D2ep(z̃))p(z)

)
:=(G

reg
di

(x))p(z̃) (A.92)

Stacking these partial derivatives into a vector results in the gradient regard-
ing the depth, i.e. DdiΦ(x) =: Greg(x). By using the previously calculated
expressions GE from (A.69) and Gdi from (A.70) and combining them with
the expression (A.92) we find the differential of the expanded Hamiltonian
in (A.86) which reads for x = (E, v, di) ∈ G

D1H(x, 0, t) = TIdLx
(
GE(x), 0, TId

(0,1)|Ω|
L∗di
(
Gdi(x) +G

reg
di

(x)
))
. (A.93)
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For the second-order optimal filter it remains to compute the Hessian of the
Hamiltonian regarding the first component D1H(x, 0, t) which was partially
done within the last section for the data term. Therefore, we continue sepa-
rately with the regularizer Φ in (A.89). This expression does not depend on
the camera motion E ∈ SE3 and the velocity v ∈ R6. Thus, we only require
to calculate the mixed derivatives of Φ since the geometry of the disparity
group (0, 1)|Ω| is trivial (the corresponding Christoffel-symbols are all zero).

∂2

∂di(ẑ)∂di(z̃)
Φ(x) =

∂

∂di(ẑ)
λ
∑
z∈Ω

αr
(

1
2
‖
(

(D1di)p(z)
(D2di)p(z)

)
‖2 + νr

)αr−1

·
(
(D1di)p(z)(D1ep(z̃))p(z) + (D2di)p(z)(D2ep(z̃))p(z)

)
=λ
∑
z∈Ω

αr(αr − 1)
(

1
2
‖
(

(D1di)p(z)
(D2di)p(z)

)
‖2 + νr

)αr−2

·
(
(D1di)p(z)(D1ep(z̃))p(z) + (D2di)p(z)(D2ep(z̃))p(z)

)
·
(
(D1di)p(z)(D1ep(ẑ))p(z) + (D2di)p(z)(D2ep(ẑ))p(z)

)
+ αr

(
1
2
‖
(

(D1di)p(z)
(D2di)p(z)

)
‖2 + νr

)αr−1

·
(
(D1ep(ẑ))p(z)(D1ep(z̃))p(z) + (D2ep(ẑ))p(z)(D2ep(z̃))p(z)

)
=:(Hreg(x))p(ẑ)p(z̃).

Adding the Hessian of the regularization term to the Hessian of the data term,
which was calculated above, finally results in the Hessian of the Hamiltonian
regarding the first component. All the other expressions which are required
for the minimum energy filter with spatial regularization were already calcu-
lated in appendix A.5.3. By adding the corresponding gradients and Hessians
of the regularizers we finally obtain the minimum energy filter for the prob-
lem of joint monocular disparity map and camera motion estimation which
also includes a spatial regularizer. This completes the calculations.

153



Appendix A. Proofs regarding the Minimum Energy Filter

154



Bibliography

[1] P. A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2008.

[2] A. A. Agrachev and Y. Sachkov. Control Theory from the Geometric
Viewpoint, volume 2. Springer, 2004.

[3] A. P. Aguiar and J.P. Hespanha. Minimum-Energy State Estimation for
Systems with Perspective Outputs. Automatic Control, IEEE Transac-
tions on, 51(2):226–241, Feb 2006.

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on
Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking.
Signal Processing, IEEE Transactions on, 50(2):174–188, 2002.

[5] M. Athans and P. Falb. Optimal Control. An Introduction to the Theory
and Its Applications. McGraw-Hill, 1966.

[6] H. Badino, A. Yamamoto, and T. Kanade. Visual Odometry by Multi-
Frame Feature Integration. In Computer Vision Workshops (ICCVW),
2013 IEEE International Conference on, pages 222–229. IEEE, 2013.

[7] A. Bain and D. Crisan. Fundamentals of Stochastic Filtering. Springer,
2009.

[8] F. Becker, F. Lenzen, J. H. Kappes, and C. Schnörr. Variational Recur-
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