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Zusammenfassung 

Der Effekt von Elektronenbestrahlung an selbstorganisierende Monolagen (SAMs) von 

aromatischen Thiolen mit stabförmigen oligophenyl, acene und oligo(phenylen 

ethinylen) (OPE) Rückgrat, bestehend aus einem bis drei Phenyl Ringen, wurde mit 

einem besonderen Fokus auf die Entwicklung von strahleninduzierten Prozessen und 

die Eigenschaften von diesen Filmen als Negativresist in Elektronenlitographie 

untersucht. Bereits in einem frühen Stadium der Bestrahlung, zeigten alle untersuchten 

Filme ein ähnliches Verhalten mit einer klaren Dominanz von Quervernetzung. Die 

Wirkungsquerschnitte für die Modifikation der SAM Matrix und der Beschädigung der 

SAM-Substrat Grenzfläche wurden mittels einer Primärelektronenenergie von 50 eV 

bestimmt, welche häufig für die Herstellung von Kohlenstoff-Nanomembranen 

(KNMs) verwendet wird. Die ermittelten Werte sind ähnlich in innerhalb eines 

Prozesses und unterscheiden sich nur geringfügig für die verschiedenen Rückgraten. 

Die zwei-Ring Systeme zeigten mit einer optimalen Dosis von 10-20 mC/cm² bei 0.5-

1 keV die beste Eignung als lithographischer Resist. Die Leistung der ein-Ring und 

drei-Ring Systeme wurde durch die geringere Anzahl an Quervernetzungen und den 

hohen Widerstand der Ausgangsschichten gegen die Ätzlösungen beeinträchtigt. Ein 

weiterer Prozess, welcher mit auf die schlechte lithographische Leistung der drei-Ring 

Systeme zurückgeführt werden kann, aber auch bei den zwei-Ring Systemen bei einer 

hohen Dosis auftrat, war das spontane Ablösen der quervernetzen SAMs innerhalb der 

bestrahlten Flächen in Form von KNMs. Aus den lithographischen Daten wurden der 

Wirkungsquerschnitt und die strahleninduzierte Quervernetzung ermittelt und in 

Zusammenhang mit Rückstreuung und Sekundärelektronenausbeute diskutiert. Für die 

drei-Ring Systeme wurde zum ersten Mal die Herstellung von KNMs aus SAMs mit 

OPE Rückgrat gezeigt. 

Zusätzlich zu den oben genannten Experimenten wurden die elektrischen 

Transporteigenschaften von den hergestellten SAMs nach Elektronenbestrahlung (50 

eV) untersucht. Die Two-Terminal Junction Methode wurde dafür verwendet. Die 

erhaltenen Werte für die Stromdichte korrelieren sehr gut mit der molekularen Länge 

und bestätigen die generelle Formel 𝐽 = 𝐽0exp⁡(−𝛽𝑑), welche die Leitfähigkeit in 

monomolekularen Schichten beschreibt. Die 𝐽0 Werte nahmen leicht ab und wurden 

spannungsabhängig nach Bestrahlung, was vermutlich mit der Tunnelbarriere an der 
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SAM-Substrat Grenzfläche zusammenhängt. Zusätzlich zeigten alle Filme einen 

exponentiellen Abfall der Leitfähigkeit mit zunehmender Bestrahlungsdosis, was 

hauptsächlich auf den beobachteten Anstieg des Kontaktwiderstandes zurückzuführen 

war. Dieses Verhalten ist (i) der Modifikation der elektronischen Struktur, (ii) der 

Änderung der Austrittsarbeit, (iii) der Adsorption von Sauerstoff oder durch die Luft 

übertragenen Partikeln nach Bestrahlung und (iv) den teilweisen Brüchen von Au-S 

Bindungen an der SAM-Substrat Grenzfläche zuzuschreiben. Um Informationen über 

das Verhalten der relevanten Parameter zu bekommen, wurden Änderungen in der 

elektronischen Struktur und der Austrittsarbeit der SAMs nach Bestrahlung mit einer 

Kelvin Sonde untersucht. Der beobachtete Anstieg der Austrittsarbeit (zwischen 0.1 

und 0.26 eV) korrelierte gut mit dem Kontaktwiderstand. Die elektronische Struktur 

wurde indirekt mittels Fowler-Nordheim Graphen ermittelt. Diese Graphen zeigten 

nicht-resonantes (direktes) Tunneln für alle SAMs und einen Übergang in den 

Feldemissionsbereich für drei-Ring und OPE2 Monoschichten. Die jeweilige 

Übergangsspannung (Vtrans) wurde ermittelt, welche ein Fingerabdruck für die Position 

der Grenzorbitale darstellt. Die Werte für Vtrans verringerten sich nach Bestrahlung und 

zeigten eine fortschreitende Verringerung des HOMO-LUMO Abstands. 

Neben den nicht-substituierten aromatischen SAMs, wurden ebenfalls einfache 

strahleninduzierte Prozesse an Pyridin-substituierten Monoschichten untersucht. Die 

Reaktion dieser Filme auf Bestrahlung war vergleichbar mit denen der nicht-

substituierter SAMs. Am wichtigsten war, dass der Stickstoffgehalt in den Pyridin-

substituierten Filmen nach Elektronenbestrahlung nur leicht abnahm, was die 

Möglichkeit eröffnet Stickstoff dotierte KNMs und vergleichbare Graphenschichten 

herzustellen. 
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Abstract 

The effect of electron irradiation on aromatic thiolate SAMs with rod-like oligophenyl, 

acene, and oligo(phenylene ethylene) (OPE) backbones, containing from one to three 

phenyl rings, was studied, with a particular emphasis on the evolution of the basic 

irradiation-induced processes and performance of these films as negative resists in 

electron lithography. All films studied exhibited similar behavior upon the irradiation, 

with clear dominance of cross-linking, taking hold of the systems at already very early 

stages of the treatment. The cross-sections for the modification of the SAM matrix and 

the damage of the SAM-substrate interface were determined for the primary electron 

energy of 50 eV, frequently used for the fabrication of carbon nanomembranes (CNM). 

The derived values were found to be similar for a particular process, showing only slight 

difference for the different backbones. The two-ring systems exhibited the best 

performance as lithographic resists, with an optimal dose of 10-20 mC/cm2 at 0.5-1 

keV. The performance of the one-ring and three-ring systems was limited by a poor 

ability to form an extensive cross-linking network and by high resistivity of the pristine 

films to the etching agents, respectively. Another process, associated with the poor 

lithographic performance of the three-ring systems but occurring at high doses for the 

two-ring systems as well, was a spontaneous release of the cross-linked SAMs within 

the irradiated areas, in the form of CNMs. From the lithographic data, cross-sections of 

the irradiation-induced cross-linking were derived and discussed in context of 

backscattering and secondary electron yield. For the three-ring systems, fabrication of 

CNMs was demonstrated, first time in the OPE case.  

In addition to the above experiments, the electric transport properties of the given 

SAMs upon electron irradiation (50 eV) were studied. Two-terminal junction method 

was applied. The obtained current density values correlated well with the molecular 

length, confirming the general formula 𝐽 = 𝐽0exp⁡(−𝛽𝑑) used to describe the 

conductance of monomolecular films. The β values decreased slightly and became 

voltage-dependent upon irradiation, presumably because of the tunneling barrier at the 

SAM-substrate interface. In addition, all films studied exhibited an exponential 

decrease in conductance with increasing irradiation dose, which was mostly related to 

the observed increase in the contact resistance defining the 𝐽0 value. This behavior was 

attributed to (i) the modification of the electronic structure (ii) change of WF, (iii) 
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adsorption of oxygen or airborne species upon exposure of the irradiated films to 

ambient, and (iv) partial breakage of Au–S bonds at the SAM-substrate interface. To 

get information on the behavior of the relevant parameters, changes in the electronic 

structure and WF of the SAMs upon the irradiation were monitored by the Kelvin probe 

technique. The observed increase in WF (between 0.1 and 0.26 eV) for the most of the 

systems correlated well with the increase in the contact resistance. The electronic 

structure was studied indirectly by compiling the Fowler-Nordheim (F-N) plots. These 

plots exhibited non-resonant (direct) tunneling for all SAMs and transition to the field 

emission regime for the three-ring and OPE2 monolayers. The respective transition 

voltage Vtrans was derived, which is believed to be a fingerprint for the positions of the 

frontier molecular orbitals. The Vtrans values became smaller upon the irradiation, 

indicating a progressive decrease in the HOMO-LUMO gap.  

Apart from the non-substituted aromatic SAMs, basic irradiation-induced processes 

were studied in pyridine-substituted monolayers as well. Their response to irradiation 

treatment was similar as for the non-substituted SAMs. Most significantly, the nitrogen 

content in the pyridine-substituted films was found to decrease only slightly under 

electron irradiation, which opens a way to the fabrication of nitrogen-doped CNMs and 

related graphene sheets.  
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1 Introduction 

Self-assembled monolayers (SAMs) represent an indispensable element of modern 

nanotechnology due to their ability to tune surface properties such as chemical 

reactivity, wettability and biocompatibility [1, 2]. Their numerous applications, ranging 

from chemical sensors over nanofabrication and molecular electronics to biological and 

medical issues [1, 3, 4], rely mostly on flexibility of their design, allowing a 

combination of different functional groups within the general architecture of the SAM 

constituents, comprised of a suitable anchoring (head) group, rod-like spacer and a 

terminal tail group. Along with the flexibility of the chemical design, additional 

possibilities are provided by modification of SAMs by physical means such as 

ultraviolet (UV) light [5-8], X-rays [9, 10] and electron irradiation [11-14]. In the case 

of electron irradiation, which is the modification tool used in this study, both primary 

and secondary electrons originating from the substrate lead to the changes in the 

hydrocarbon matrix and at SAM-substrate interface. The most prominent irradiation-

induced processes include damage of the tail groups, cleavage of the chemical bonds in 

the SAM matrix, desorption of hydrogen and molecular fragments from the monolayer, 

cross-linking of the monolayer, loss of the conformational and orientational order and 

damage of the SAM-substrate interface [11, 15-18]. The exact evolution of these 

processes in the course of irradiation was found to be dependent on specific molecular 

architecture of the SAM constituents as well as on their packing density and the nature 

of the substrate [13, 14, 19]. Among these parameters, the identity of the molecular 

backbone has the largest influence on the basic outcome of the irradiation treatment 

[12, 15]. Depending on this parameter, the character of modification is different: with 

a dominance of either damage or cross-linking scenario. In the case of aliphatic SAMs, 

dominant irradiation-induced processes are decomposition of the alkyl chains with 

subsequent desorption of the released fragments and damage of the SAM-ambience 

interface, due to the breakage of Au−S bonds [11, 17, 20, 21].  
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Consequently, aliphatic monolayers become mostly damaged upon electron irradiation. 

In contrast, the reaction of aromatic SAMs to this treatment is dominated by extensive 

cross-linking, following the cleavage of C–H bonds in the SAM matrix [12, 19]. This 

has been investigated in detail by a variety of experimental techniques including energy 

loss spectroscopy [22-24], near edge X-ray absorption fine structure (NEXAFS) 

spectroscopy [25-27], UV photoelectron spectroscopy [16], infrared absorption 

spectroscopy [2, 12] and mass spectrometry [16, 24]. Accordingly, aromatic SAMs can 

potentially serve as a negative resist for lithography [12] and, after the separation from 

the substrate, exist as carbon nanomembranes (CNMs) [28-36] which can also be 

transformed into graphene sheets by subsequent pyrolysis [30, 34, 35].   

 

Figure 1.1: A schematic drawing of representative aromatic molecules with acene, 

oligophenyl and oligo(phenylene ethynylene) backbones, along with their acronyms. 

So far, most of the experiments related to lithography and CNM fabrication were 

performed with biphenyl-based SAMs [37]. However, as was shown recently, CNMs 

and the derived graphene sheets can also be prepared from different aromatic precursors 

[35, 36, 38]. This was demonstrated for a variety of molecules, including those with 

oligophenyl and acene backbones of variable length. The emphasis of these studies was, 

however, put on the properties of the resulting CNMs, including their structural [35], 

mechanical [36] and electric transport [38] characteristics, while the exact behavior of 

the different CNM precursors under electron irradiation was only partly addressed. In 

this context, in the given PhD work, I performed detailed spectroscopic characterization 

of the changes occurring in the SAMs with oligophenyl (non-fused) and acene (fused) 

backbones (see Figure 1.1) under electron irradiation. In addition, to test a broader 
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variety of rod-like aromatic SAM precursors, I also studied a series of SAMs with 

oligo(phenylene ethynylene) (OPE) backbone of variable length (see Figure 1.1). 

Further, in addition to the spectroscopic experiments, which give only indirect 

information about irradiation-induced cross-linking, dedicated lithographic 

experiments were performed to monitor the cross-linking behavior and to test the 

suitability of the SAMs studied as negative resist for lithography. Finally, fabrication 

of CNMs was tried and demonstrated, which was of particular importance in the case 

of the OPE-based SAMs that had not been utilized so far for this purpose.  

Along with the aforementioned changes at the substrate-SAM interface and in the SAM 

matrix, a change in electric transport properties of aromatic SAMs is expected to take 

place upon electron irradiation [38]. Consequently, in addition to the spectroscopic and 

lithographic experiments, I analyzed the effect of electron irradiation on electric 

transport properties of the aromatic SAMs, focusing on their static conductance. Note 

that the charge transport properties of pristine aromatic SAMs have already been 

extensively studied by using different experimental tools such as molecular junctions 

based on mercury drop [39-42], eutectic Gallium-Indium (EGaIn) junctions [38, 43], 

scanning probe methods [44-46], and large area junctions [47]. These experiments 

provided reliable data about the static conductance of SAMs and revealed specific 

dependence of the conductance on the molecular length and a parameter β, generally 

referred to as the attenuation factor. The related formula is given as 𝐽 = 𝐽0exp⁡(−𝛽𝑑) 

and this kind of dependency is characteristic of tunneling or hopping conduction 

mechanisms, which are typical of insulators and differ distinctly from the Ohmic 

behavior of conducting materials. The β value, which mostly depends on the character 

of the molecular backbone, is then a key parameter describing the charge transport 

efficiency. Low β values indicate high conductance. While the SAMs prepared with 

saturated molecules (e.g. alkanethiols) have comparably high β values (0.6-1 Å-1) [40, 

48-50], those of non-saturated molecules have lower β values such as 0.27 Å-1 for 

alkenes [51], 0.27-0.3 Å-1 for OPE [42, 51], 0.42-0.7 Å-1 for oligophenyl [42, 52-55] 

and ~0.5 Å-1 for acenes [46, 56]. Recently these studies have been extended to address 

the effect of electron irradiation [38]. Within the respective study, electric transport 

properties of CNMs prepared from the aromatic SAMs with oligophenyl backbone of 

variable length were investigated and compared with those of the pristine films. It was 

shown that electron irradiation leads to a significant (by an order of magnitude) 

decrease in the electrical conductance of aromatic SAMs which was explained by 
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decoupling of CNMs from the substrate and partial loss of aromaticity [38]. However, 

it has not been studied how the electric transport properties change in the course of 

electron irradiation treatment. In order to monitor this behavior, I analyzed in detail the 

changes in electrical conductance by exposing a variety of aromatic SAMs to electron 

irradiation with varying dose and monitoring the relevant parameters. The static 

conductance of all samples was measured by forming two-terminal EGaIn-SAM-

substrate junctions. 

Apart from the above studies, I performed dedicated experiments to monitor the 

changes in the work function (WF) of the aromatic SAMs upon electron irradiation. 

Generally, SAMs are capable of altering WF of surfaces and interfaces [57-61], 

however, the respective interface engineering involved only pristine films so far and 

the effect of electron irradiation on the WF of SAMs has not been investigated. In my 

case, the respective data appeared to be useful in context of electric transport properties 

of the SAMs and, in addition, they can be of practical relevance to useful to tune the 

WF of metal electrodes in organic electronics.  

In addition to the pure hydrocarbon aromatic systems, I also studied nitrogen-

containing ones, viz. a series of SAMs with the pyridine building block, performing 

detailed spectroscopic characterization of the changes occurring in these films upon 

electron irradiation. This behavior has not been studied so far, but can be of importance 

for the fabrication of nitrogen-containing CNMs that can be potentially converted to 

nitrogen-doped graphene sheets.    

A basic information about the SAMs and their electron-induced modification is 

provided in the next chapter, along with the background information about the 

characterization techniques used in this thesis. The details of the sample preparation 

and characterization procedures used in this work are given in Chapter 3. In Chapter 4, 

the results of the spectroscopic, lithographic and electric transport experiments are 

provided and discussed in detail. The conclusions of the PhD work are compiled in 

Chapter 5, and, finally, supplementary data of lithographic experiments are presented 

in Appendix.  
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2 Basics and Theoretical Background 

2.1 Self-Assembled Monolayers (SAMs) 

SAMs are organized molecular assemblies that form spontaneously by adsorption of 

molecules from gas or solution phase on suitable surfaces [1] and are comprised of a 

head group, rod-like spacer, and a terminal tail group as shown in Figure 2.1. The head 

group mediates the anchoring to the surface and should be suitable for the substrate, in 

other words, it should have affinity towards the substrate. For example, the most 

common head groups are thiol and selenol, which can form SAMs on noble metals like 

gold, silver, copper and platinum. The other constituent, spacer group, is the molecular 

backbone (mostly aliphatic or aromatic chains) which gives and designates the order, 

structural stability, packing density and electrical properties of the resulting SAM. The 

terminal tail group, often represented by common functional groups (amino, carboxyl, 

oligoethyleneglycol, nitrile, azide and so forth), which is exposed to the ambience, 

determines the surface properties.  

 

Figure 2.1: Schematic layout of an ordered SAM on a metal substrate. The SAM 

building blocks are described on the right side.  

SAMs can easily be prepared by immersing a clean metal in a dilute solution of suitable 

molecules. In this context, the most studied SAMs are monolayers of alkanethiols (ATs) 

on gold substrate binding via thiol head group. They form a c(4x2) superlattice of 

(√3x√3) R30° monolayer on Au (111) surfaces [62-64]. ATs are ordered with a distance 

of 4.97 Å from each other, which corresponds to a packing density of 4.65x1014 

Substrate

Terminal group

Spacer group

Anchoring group
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molecules per cm2. The chains are inclined at a tilt angle of ~ 30° with respect to the 

surface normal [62-65].  

For SAM preparation, gold is used as a standard substrate since it can be easily 

produced by physical vapor deposition (PVD), sputtering and electrodeposition 

methods [1] and is a quite inert material that does not form an oxide layer in air. Despite 

the fact that the exact mechanism of the formation of SAMs on gold is not clear, it has 

been shown by X-ray spectroscopy that the adsorbed sulfur species is a thiolate [66]. 

One probable mechanism for the chemisorption of alkanethiols on gold forming thiolate 

(RS-) is given below [67]  

𝑅 − 𝑆𝐻 + 𝐴𝑢𝑛
0 → 𝑅 − 𝑆−𝐴𝑢+ +

1

2
⁡𝐻2  

Even though the SAM formation contains a variety of chemical reactions and phases, 

it can be described in two main steps as follow [1]: In the first step (a few minutes), 

predominantly the reaction of the substrate with the head group of the molecule 

(chemisorption) takes place, while in the second step (several hours), formation of an 

ordered monolayer (crystallization of the surface) takes place because of the van der 

Waals interactions of the side chains and the mobility of the molecule on the surface.   

2.2 Modification of SAMs by Electrons 

When SAMs form on a surface, they change the surface properties of the underlying 

substrate such as wettability, biocompatibility, (non-specific or specific) adsorption (of 

biomolecules), electronic structure and so forth [1-3]. Along with their ability to modify 

the properties of the surfaces they are formed on, the SAMs themselves can be modified 

by irradiating them with electrons [11-14], UV light [5-8] and X-rays [9, 10] as well. 

Among these modification tools, in electron irradiation both primary and secondary 

electrons coming from the substrate modify the monolayer by leading to the changes in 

the hydrocarbon matrix and at the SAM-substrate interface. The character of the 

modification depends on the identity of the molecules forming the monolayer, most 

importantly on the molecular backbone. Monolayers consisting aliphatic molecules are 

damaged under electron irradiation [11, 14, 17, 68]. When aliphatic SAMs are exposed 

to electron irradiation, their response to the irradiation is degradation of SAM 

constituents, desorption of aliphatic fragments and weak cross-linking of remaining 
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aliphatic chains. This damaged film cannot protect the underlying substrate anymore 

against etchants, therefore, acts as a positive e-beam resist (Figure 2.2).  

 

Figure 2.2: Schematic drawing of electron and X-ray lithography with aliphatic (a) and 

aromatic (b) SAMs as positive and negative resist materials, respectively. Adapted from 

the ref [69].  

In contrast to the aliphatic SAMs, aromatic systems are not damaged but modified by 

electron irradiation. The adjacent aromatic chains in the SAMs are laterally cross-

linked, which reduces the extent of damage to the monolayer such as desorption of the 

SAM constituents and results in formation of a 2D hydrocarbon film with chemical and 

mechanical resistance [12, 70]. Note that cross-linking of aromatic SAMs with low-

energy electrons (50-100 eV) are generally done by a dose of ~50 mC/cm2 which 

roughly equals to 3000 electrons per nm2 [37]. Accordingly, aromatic SAMs behave as 



  Basics and Theoretical Background 

 

8 

 

negative e-beam resist. A representative drawing comparing the behaviors of aliphatic 

and aromatic SAMs under electron irradiation is shown in Figure 2.2. The simplest and 

most studied system for lithographic application is based on aromatic SAMs containing 

biphenyl units [12, 37]. Even though the aromaticity of the monolayer seems to be the 

only prerequisite for cross-linking, a study [71] based on aliphatic but ring-shaped 

bicyclohexyl SAM has shown that not the aromaticity, but the ring structure is 

responsible for cross-linking. In that study, ring-shaped bicyclohexylthiol SAMs have 

been laterally cross-linked under e-beam irradiation and have acted as a negative resist 

[71].  

In addition, when aromatic SAMs with nitrile [2] or nitro [19, 72] tail groups are treated 

with electron irradiation, these terminal groups are converted (reduction) to amino 

group which can be coupled over many chemical reactions, thus, aromatic SAMs can 

also be used as a template for surface functionalization and related fabrication of 

nanostructures.  

Besides their abilities to be used as negative e-beam resist and to functionalize the 

surfaces, cross-linked aromatic SAMs form CNMs [28-37] after removing their 

underlying substrate. The obtained CNMs can further be transformed into graphene-

like sheets by annealing the CNMs at elevated temperatures [30, 32, 34, 35].  

2.3 Analytical Methods 

2.3.1 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy is a very common technique in surface science to get 

a quantitative and qualitative understanding of the top most layer (~10 nm) of a surface 

[73-75]. In this technique, the surface of interest is irradiated with X-rays (photons) 

with a certain energy which interact with the core electrons of the surface atoms leading 

to formation of ionized states and emission of photoelectrons [73]. A photoelectron in 

its simplest form stands for an electron ejected by a photon, which is initially bound to 

an atom/ion. A representative scheme of the photoelectron emission process is shown 

in Figure 2.3. The kinetic energy (KE) of the emitted electron is measured by the 

electron spectrometer (Eq. 2.1), and from the difference between photon energy and the 

KE of the photoelectron, the binding energy (BE) of the photoelectron can be found 

[73]. The obtained BEs are the direct indication of the elements on the surface. 
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Figure 2.3: Schematic example of the photoelectron emission process and involved 

energy levels.  

A general XPS setup comprises of three major components: an X-ray source, an 

electron energy analyzer and an ultra-high vacuum (UHV) system. The Figure 2.4 

shows a scheme of the experimental setup. 

 

Figure 2.4: Schematic drawing of an XPS setup with basic components. Green filled 

circles represent photoelectrons. The illustrated process takes place in UHV conditions.  

The process for the emission of photoelectrons from sample surface can be explained 

in three steps [73]: (1) generation of the photoelectrons due to the interaction of X-rays 

with the electrons in the atomic shell, (2) movement of the photoelectrons through the 

surface and scattering processes (background formation in the spectrum due to inelastic 

scattering), and (3) emission of the photoelectrons to the vacuum which overcome the 
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work function of the sample. Energy of an impinging photon, hv, is transported to a 

core electron with a binding energy, Eb, leading to the emission of this electron and 

generation of a vacancy in core electron level (Eb is referenced with the alignment of 

the Fermi levels of sample and spectrometer). The KE of the emitted photoelectron is 

independent of the sample work function, ΦS, but dependent on the analyzer work 

function, ΦA (Equation 2.1) and it can be derived from the energy level scheme 

displayed in Figure 2.5. 

𝐸𝑘𝑖𝑛 = ℎ𝜈 − 𝐸𝑏 − 𝛷𝑆 − (𝛷𝐴 − 𝛷𝑆) = ℎ𝜈 − 𝐸𝑏 − 𝛷𝐴  (2.1) 

 

Figure 2.5: Schematic explanation of relevant energy terms in XPS of solid surfaces. 

An X-ray with energy, hν, generates a vacancy in a core electron level with a binding 

energy (Eb). The emitted photoelectron has to overcome the work function of the 

sample, ΦS, and the energy measured by the analyzer with respect to the Fermi Energy, 

EF, is the emitted energy diminished by the difference between the analyzer work 

function ΦA and ΦS. (Adapted from [73]). 

Elemental composition: In an obtained XPS spectrum, the signals are formed due to 

the electrons that come from a few nm depth and have not lost their energy, however, 

the background formation stems from inelastically scattered electrons. Two types of 

scans, wide and narrow scans, can be performed in XPS analysis. While wide scans 

provide a quick qualitative elemental analysis, narrow scans provide more detailed and 

quantitative information about the specified area.  
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The quantitative information is directly related to the intensity of the peaks in XPS 

spectra. For a homogenous sample, the total intensity for an element is the area under 

the signal and is given by [75] 

𝐼𝑖𝑗 = 𝐾 ∙ 𝑇(𝐾𝐸) ∙ 𝐿𝑖𝑗(𝛾) ∙ ⁡𝜎𝑖𝑗 ∙ 𝑛𝑖 ∙ 𝜆(𝐾𝐸) ∙ 𝑐𝑜𝑠 𝜃  (2.2) 

Iij: area of peak j from element i  

K: instrumental constant  

T(KE): transmission function of the analyzer  

Lij(γ ): angular asymmetry factor for orbital j of element i  

σij: photoionization cross-section of peak j from element i  

ni: concentration of element i  

λ(KE): attenuation length  

θ: take-off angle of the photoelectrons measured with respect to the surface normal 

From the equation above (2.2) the element’s concentration ni can be written as 

𝑛𝑖 =
𝐼𝑖𝑗

𝐾∙𝑇(𝐾𝐸)∙𝐿𝑖𝑗(𝛾)∙⁡𝜎𝑖𝑗∙𝜆(𝐾𝐸)∙𝑐𝑜𝑠𝜃
=

𝐼𝑖𝑗

𝑆𝑖
    (2.3) 

In equation 2.3, Si is the atomic sensitivity factor. The concentration of an element a 

(ca) on the surface can be estimated by the following equation 

𝑐𝑎 =
𝑛𝑎

∑𝑛𝑖
=

𝐼𝑎/𝑆𝑎

∑𝐼𝑖/𝑆𝑖
     (2.4) 

Attenuation length and film thickness: Attenuation length (λ) is known to be the 

mean distance of travelled by an electron between two inelastic collisions [75]. The λ 

of photoelectrons through alkanethiol self-assembled monolayers strongly depends on 

the KE of electrons [76, 77] which is given by 

𝜆 = (0.3) ∙ 𝐾𝐸0.64    (2.5) 

Therefore, the intensity of XPS signals is closely related to the attenuation lengths of 

electrons. If the top layer, through which electrons coming from underlying substrate 

pass, is thicker, the electrons will be more attenuated and thus, the intensity of the signal 

will be lower. This allows to estimate the thickness of the layer on the substrate which 

could be done in two different ways: (i) attenuation of substrate signal (in our case Au 

4f) or (ii) intensity ratio of layer signal to substrate signal (in our case C 1s/Au 4f7/2).  
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(i) To obtain the thickness by using the attenuation of substrate signal, either a clean 

substrate or a sample with a known thickness (e.g. a hexadecanethiol (HDT) SAM on 

Au) should be used as a reference and the related equation is  

𝐼

𝐼0
= 𝑒𝑥 𝑝 (

−𝑑

𝜆𝑠𝑢𝑏∙𝑠𝑖𝑛𝜃
)    (2.6) 

𝑑 = 𝑑𝑟𝑒𝑓 + 𝜆𝑙 𝑛 (
𝐼𝑟𝑒𝑓

𝐼
)   (2.7) 

Here d and dref are the thicknesses of the sample and the reference samples, λ is the 

attenuation length of the photoelectrons coming from the overlayer, I and Iref are the 

intensities of the interest and reference samples.  

(ii) To calculate the thickness from the intensity ratio of layer signal to substrate signal, 

a sample with a known thickness should be used as a reference (e.g. a HDT SAM on 

Au) to determine the spectrometer-specific coefficients and the related equation can be 

given as  

𝐼𝑜𝑣

𝐼𝑠𝑢𝑏
=

1−𝑒𝑥𝑝⁡
−𝑑𝑜𝑣

𝜆𝑜𝑣∙𝑠𝑖𝑛𝜃

𝑒𝑥𝑝⁡
−𝑑𝑠𝑢𝑏

𝜆𝑠𝑢𝑏∙𝑠𝑖𝑛𝜃

     (2.8) 

where dov is the overlayer thickness, θ the angle of photoelectron emission and λov the 

attenuation length of the photoelectrons coming from the overlayer and λsub the 

attenuation length of the photoelectrons coming from the substrate through the 

overlayer. For the Eq. 2.8, the thickness of the overlayer is evaluated using a software 

developed in our research group by Martin Schmid. 

2.3.2 Atomic force microscopy (AFM) 

Atomic force microscopy is one of the most widely used scanning probe microscopy, 

which measures the surface properties of the scanned area including topography, 

friction, magnetic and electric [78-80]. They can be operated at ambient atmosphere, in 

liquid or under vacuum [78-80], and they are easier to use compared to electron 

microscopes. In addition, AFM does not require any lens or e-beam irradiation unlike 

electron microscopes.  

The schematic representation of an AFM is like in principle in Figure 2.6. The sample 

is mounted on a stage which is moved by the piezo elements in x- and y- directions. 

The maximum scan area of AFM is roughly 100x100 µm2 with a horizontal resolution 

of less than 1 nm [80, 81]. The tip is mounted on another piezoelectric element, which 
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can move only in the z-direction. Generally, x and y piezomaterials are fastened to the 

sample stage and the AFM tip is fixed to the z piezomaterial, however, there are also 

some companies, which mount all three piezomaterials (for x,y and z-direction) to the 

sample stage. This is the case for our AFM setup (NT-MDT Solver NEXT SPM 

instrument). The deflection of the tip is tracked with a laser, which is reflected at the 

backside of the tip. The reflected laser is collected by a photodiode, generating a 

current, and the current values over the scan area is then converted to an image of the 

respective area.  

 

Figure 2.6: Schematic diagram of a general AFM setup: A laser beam is focused on 

the backside of a cantilever and reflected from it into a four-quadrant photodetector. A 

sample is mounted on a piezo tube that can move the sample in x, y and z directions.  

When the AFM tip approaches to the surface of interest, it behaves as in the force-

distance curve given in Figure 2.7. At short distances, because of the overlapping 

orbitals of the electrons from surface and tip, repulsive forces occur, while at larger 

distances attractive forces occur because of the van der Waals interaction. The exerted 

force on the tip can be described by the Lennard-Jones potential (Figure 2.7), thus, leads 

to cantilever deflection. If the distance is beyond the interaction range, no force acts on 

the tip and the cantilever is not deflected.  

AFM measurements can be operated in static (contact and force spectroscopy) or 

dynamic (semi-contact and non-contact) mode. In contact mode, the cantilever is swept 

over the surface of the sample and is deflected because of repulsive forces. In the 

contact mode, the topography of the sample can be obtained by two ways: constant 

height mode or constant force mode. While in the constant force mode movement of 
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the z-piezo gives the topography of the surface under investigation, in the constant 

height mode deflection of the cantilever is converted to the topography of the surface. 

This mode is preferably used for hard surfaces and can also be used in liquid 

environment.  

Nevertheless, the contact mode on soft samples like polymers or biomolecules could 

give damage to the sample. Therefore, a "softer" contact mode was developed, known 

as semi-contact (tapping mode or intermittent contact), in which the tip is kept at a 

distance from an attractive regime and the changes in frequency and amplitude are used 

to measure the force interaction. In tapping mode, the cantilever oscillates up and down 

near its resonant frequency using a small piezo element in the cantilever holder. Then 

the tip is approached to the sample until the amplitude has decreased to a predefined 

value because of the forces (Van der Waals forces, dipole-dipole interactions, 

electrostatic forces) acting on the cantilever. This amplitude value is sent to the z- piezo 

element which controls the height of the cantilever above the sample.  

 

Figure 2.7: Sketch for a force-distance curve of AFM tip and sample. Different 

operation modes can be used under the effect of described regimes: contact, intermittent 

contact or non-contact.  

The non-contact mode is similar to the tapping-mode, however, the tip is not affected 

by the sample during oscillation. Instead, the attractive forces of the sample exert a very 

weak force on the cantilever, resulting in a shift of the resonance frequency and thus 

amplitude. 

0

F
o

rc
e

Probe sample distance

Repulsive regime

Tip is in contact 

with the surface

Attractive regime

Tip is pulled toward 

the sample surface

Intermittent 

contact

Contact

Non-contact



Basics and Theoretical Background  

 

15 

 

2.3.3 Scanning electron microscopy (SEM) 

Scanning electron microscopy is an imaging technique in which the surface of interest 

is analyzed with the electrons emitted from the surface. It can provide an image of the 

surface with a high magnification up to 300.000 times and a resolution of a few 

nanometers [81]. A typical SEM consists of an electron gun, magnetic focusing lenses, 

apertures, a stigmator, deflection coils, a sample stage and detectors [82, 83]. A 

representative image is shown in Figure 2.8.  

 

Figure 2.8: Schematic representation of a SEM instrument. The red lines indicate the 

pathway of electrons emitted by the electron gun.  

SEM is a type of electron microscope which scans sample surface with focused e-beam 

to generate images (under vacuum). Depending on the energy, electrons have a 

penetration depth from the sample surface towards the interior part where numerous 

interactions take place due to the transmitted electron and the surface atoms. These 

interactions mainly lead to formation of secondary electrons as well as forward and 

backscattered of electrons. Some portion of the emitted electrons can be detected by 
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appropriate detectors, which are positively biased. The electrons hit the detector and 

lead to the generation of photons. The photons are sent to photomultiplier and they are 

converted to a voltage signal. Later, this signal is amplified and projected on the screen 

of cathode ray tube (CRT). CRT generates intensity profile on a x- and y- direction. 

This intensity profile is then converted to an image on the screen. Note that the produced 

images are mainly combination of secondary and backscattered electrons.   

The secondary and backscattered electrons differ from each other with their energy and 

formation mechanism. When a high-energy primary electron is sent to a surface, it 

interacts with an atom on the surface, and can undergo either inelastic scattering with 

electrons of the atom or elastic scattering with the atomic nucleus [83]. In an inelastic 

collision, some of the primary electron energy is transmitted to the atomic electron, 

leading to emission of a secondary electron. For a secondary electron to reach the 

surface and exit the solid, it should have enough energy to survive inelastic collisions 

and overcome the work function of the substrate. Generally, secondary electrons have 

energies less than 50 eV, and most of the detected secondary electrons are generated in 

the first few nm of the sample surface [83]. However, backscattered electrons are 

produced with elastic scattering mechanism. Their energy is comparable to the energy 

of primary electrons and is considered to be more than 50 eV. As the atomic number 

increases, the number of backscattered electrons increase because of the bigger atomic 

radius which increases the elastic scattering of the primary electrons. Therefore, an 

element with higher atomic number will appear brighter than the element with lower 

atomic number on a typical SEM image.  

SEMs are designed to work with electron energies up to ~ 30 keV, and the electrons are 

detected with secondary electron (SE), in-lens and backscattered electron (BSE) 

detectors. Each of them is located at a different position in SEM and therefore, the 

images of the same sample, depending on the position of the detector, are often quite 

different. The in-lens detector is vertically above the electromagnetic lens, while the SE 

detector is positioned at 45° to the sample stage. The secondary electrons experienced 

one scattering process (SE1: They are coming mostly from upper layer (a few nm) of 

the surface) are mainly detected with the in-lens detector and give direct information 

about the surface [82-84]. However, a classical SE detector collects a mixture of SE1, 

SE and BSEs, which come from deeper layers, therefore, resolution and contrast of an 

image obtained from SE detector is weaker than in-lens detector.
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2.3.4 Electron beam lithography (EBL) 

Electron beam lithography (EBL) is one of the most used lithographic techniques for 

producing high resolution patterns from nm to cm scale, which is derived by a SEM 

instrument and a special software to draw the desired structures and control the SEM 

instrument [85]. In this technique, a surface covered with a resist layer (a polymer) is 

irradiated with an e-beam that leads to either degradation or cross-linking of the resist 

depending on the nature of the resist. If the resist is negative, it will degrade and lead 

to dissolution of the irradiated area of the resist upon developing (Development of a 

patterned sample in lithography is to remove the resist either from the patterned area or 

outside the patterned area, depending on the resist type) (Figure 2.9). However, if it is 

positive, it will cross-link and lead the irradiated area to stay on the surface upon 

developing while the non-irradiated area will be removed.  

 

Figure 2.9: Schematic representation of forward-scattering, viz. deflection of the 

primary electrons in the resist (shown with the green area) and backward-scattering, 

viz. reflection of some of the primary electrons from the substrate, in EBL. Generated 

secondary electrons represented by purple solid lines are produced in this process as 

well.  

To obtain a good resolved pattern, electron beam should be optimized by aligning the 

beam with the smallest possible astigmatism and a small spot size [86]. If the beam is 

not adjusted well enough, undesired pattern formation is unavoidable. Beside the beam, 

there are other phenomena like forward and backscattering affecting the pattern shape. 

In forward scattering, while the electrons travel through the resist, they face some low 

energy elastic collisions, which deflect the electrons slightly from its path as shown in 
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the green region (Figure 2.9). Therefore, this process increases the effective beam size, 

which can be overcome by applying higher electron energy. However, in the 

backscattering process, as the electrons penetrate the resist and reach the substrate, 

where some portion of the electrons can experience large angle elastic collisions leading 

to travel in the resist again. This results in a common phenomenon, proximity effect, 

where both the pattern area (overexposure) and the surrounding environment are also 

irradiated with the backscattered and secondary electrons. To eliminate this drawback 

a thinner resist layer can be used.  

After adjusting the e-beam and taking such phenomena into consideration, a series of 

different e-beam doses should be applied to find the optimal dose for the sample to be 

patterned, because on every substrate the effect of such phenomena (generation of 

secondary and backscattered electrons) could be different. In addition to this, every 

resist material could have small chemical differences even if they are called as same 

polymer, where the necessary dose could be lower or higher for the other resist.   

2.3.5 Current-voltage (I-V) measurements with a two-terminal junction 

The measurement of current-voltage (I-V) response for SAMs is important to 

understand their charge transfer properties and it is the most direct and easiest way to 

probe conduction in SAMs by recording their I-V responses [87]. The I-V 

characteristics of SAMs are measured by connecting a suitable non-destructive top 

electrode to the SAMs. The metal substrate on which the SAM is formed serves as the 

bottom electrode. I-V response of SAMs have been studied by different experimental 

tools such as molecular junctions based on scanning probe methods [44-46], mercury 

drop [39-42] and eutectic gallium-indium (EGaIn) tip [38, 43]. With scanning probe 

methods, very small areas are analyzed, whereas with mercury drop and EGaIn tip 

bigger areas can be analyzed because of the larger contact area between the top 

electrode and the SAM.  

It has been shown that there are two main conduction mechanisms dominating the 

electron transfer rates of SAM films: non-resonant (direct) tunneling [38, 44, 45, 88] 

and hopping [87, 89, 90] (The possible conduction mechanisms [91] for SAMs, adapted 

from semiconductors, are given in Table 2.1). Non-resonant tunneling is the most 

common transport mechanism observed in saturated alkyl SAMs [91], which have high 

energy difference between highest occupied molecular orbital (HOMO) lowest 
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unoccupied molecular orbital (LUMO) around 8 eV [44] and show an exponential 

decrease in the tunneling rates with increasing molecular length. This exponential 

dependence is given by the formula 𝐽 = 𝐽0exp⁡(−𝛽𝑑), where β is tunneling decay 

parameter and d is the molecular length. This parameter is useful to get information 

about the transport efficiency of SAM films. However, in the case of conjugated 

species, HOMO-LUMO gaps are smaller, therefore, different transport mechanisms 

such as resonant tunneling or hopping conduction could take place [44]. Besides, upon 

increasing bias voltage a transition from direct tunneling to field emission (Fowler-

Nordheim tunneling) where the applied bias voltage leads the tunneling barrier to 

change its shape from rectangular to triangular barrier develops [44, 45]. The transition 

point, where the conduction mechanism changes, is believed to be fingerprint for the 

positions of frontier orbitals [92, 93]. While the transition voltage appears at higher 

voltage range in saturated alkyl SAMs, it appears to be at smaller voltage range in 

aromatic SAMs [45].  

Table 2.1: Possible conduction mechanisms (Adapted from [91]). 

Conduction 

mechanism 

Characteristic  

behavior 

Temperature 

dependence 

Voltage 

dependence 

Direct 

tunneling1 𝐽~𝑉𝑒𝑥𝑝 (−
2𝑑

ħ
√2𝑚Φ) 

none 𝐽~𝑉 

Fowler-

Nordheim 

tunneling 

𝐽~𝑉2𝑒𝑥𝑝 (−
4𝑑√2𝑚Φ3/2

3𝑞ħ𝑉
) 

none  
ln (

𝐽

𝑉2
)~

1

𝑉
 

Thermioinic 

emission 𝐽~𝑇2𝑒𝑥𝑝 (−
Φ− 𝑞√𝑞𝑉/4𝜋𝜀𝑑

𝑘𝑇
) ln (

𝐽

𝑇2
)~

1

𝑇
 

ln(𝐽)~𝑉1/2 

Hopping 

conduction 
𝐽~𝑉𝑒𝑥𝑝 (−

Φ

𝑘𝑇
) ln (

𝐽

𝑉
)~

1

𝑇
 

𝐽~𝑉 

1 This characteristic of direct tunneling is valid for the low bias regime.  

2.3.6 Work function (WF) measurements by Kelvin probe technique 

The Kelvin probe (KP) technique is used to measure the work function (WF) of surfaces 

by bringing probe and the surface in close proximity [94]. The WF is the minimum 

energy to remove an electron from a solid to the vacuum level (Figure 2.10). It is 
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derived from the bulk properties of the solid, however, the changes in the surface can 

considerably alter the WF [95].  

In a WF measurement, because the sample and probe are placed in a very close 

proximity (0.2 to 2 mm) they act as capacitor plates. When the two metal surfaces are 

connected electrically, electrons flow from the surface with the smaller work function 

to the surface with the higher work function until the Fermi levels of the capacitor plates 

are equalized. This results in accumulation of opposite charges on the capacitor plates 

and a contact potential difference (CPD) [94]. This potential difference generates an 

electric field between the plates, and can be neutralized by applying an external voltage. 

The potential difference related to the electric field is equal to the work function 

difference between the probe and sample [96].  

 

Figure 2.10: Schematic energy diagram of a metal (Adapted from ref [97]). 

The basic principles of Kelvin Probe are schematically shown in Figure 2.11. In brief, 

to measure CPD by using a probe vibrating at a certain frequency, a varying capacitance 

is produced, and the change in voltage and generated alternative current are recorded 

(because of varying the distance between the plates) by applying the counter potential 

and obtaining zero alternative current, the generated electric field is nullified [94, 96].  

Since Kelvin Probe technique can measure only CPD values, a calibration is necessary 

to measure real work function of surfaces. This calibration is generally done with 

sputtered metals like gold with 5.1-5.3 eV (depending on the crystal structure) work 

function [98]. This technique is very sensitive to detect the changes in the work function 

within a few meV resolution [94]. Because the WF is a surface property, small 

modifications of metal surfaces like doping [99] and SAM formation [58, 61] - even 
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Work function
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the direction of the dipole moment in SAMs [100] - can change the work function 

dramatically.  

 

Figure 2.11: Schematic drawing of the basic principles of the WF measurements based 

on Kelvin Probe (Taken from ref [101]).     
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3 Experimental 

3.1 Materials 

All solvents and chemicals were purchased from Sigma-Aldrich. The non-substituted 

SAM precursors used in this study are shown in Figure 3.1, along with their 

abbreviations. The precursors benzenethiol (PT); 2-naphthalenethiol (NphT); 

1,1'biphenyl-4-thiol (BPT); S-[4-[2-[4-(2-phenylethynyl)phenyl]ethynyl]phenyl] 

thioacetate (OPE3); and 1,1′,4′,1′′-terphenyl-4-thiol (TPT) were commercially obtained 

from Sigma-Aldrich. The precursors S-[4-(2-phenylethynyl)phenyl] thioacetate 

(OPE2); and 2-anthracenethiol (AnthT) were custom-synthesized by the group of Prof. 

Andreas Terfort, Frankfurt University, Germany. The procedure for the synthesis of 

AnthT can be found in the literature [102]. OPE2 was also synthesized according to a 

literature protocol [103].  

 

Figure 3.1: The structures of the non-substituted precursors for the SAM studied, along 

with their abbreviations. The precursors build three different series, with oligophenyl, 

acene, and OPE backbones, respectively. PT serves as the first member of all three 

series.  

The pyridine-substituted SAM precursors used in this study are shown in Figure 3.2, 

along with their abbreviations. The precursors 4-(4-pyridyl)phenyl-1-thiol (BPn); 4-(4-
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pyridyl)phenyl-1-methanethiol (BP1n); 4′ (4-pyridyl)biphenyl-4-methanethiol (TP1n); 

and terphenyl-4-methanethiol (TP1) were custom-synthesized by the group of Prof. 

Andreas Terfort, Frankfurt University, Germany.  

 

Figure 3.2: The structures of the reference (TP1) and the pyridine-containing 

precursors (BPn, BP1n and TP1n) for the SAMs studied, along with their abbreviations. 

3.2 SAM Preparation 

Three types of gold substrates were used (Georg Albert PVD, Germany).  For 

characterization and monitoring of electron irradiation damage, 30 nm polycrystalline 

gold substrates deposited by physical vapor deposition on polished silicon (100) wafers 

primed with a 9 nm titanium layer as adhesion promoter were used. Whereas, for 

lithographic patterns standard Au(111) substrates prepared by evaporation of 75 nm 

gold onto polished Si(100) wafer (roughness ~10 Å) primed with 5 nm Ti as adhesion 

layer was used. For the membrane fabrication, Au(111) substrates prepared by 

evaporation of 75 nm gold directly onto the Si(100) wafer were used. The gold films 

were polycrystalline, exposing preferably (111) orientated surfaces of individual 

crystallites. 

The substrates having a length of ~1.5 cm and a width of ~1 cm were cleaned by 

ozonation using a low-pressure Hg lamp for 30 min, rinsed with absolute ethanol 

(EtOH) and blown dry in a stream of Argon. Gold substrates were immersed in 0.5-1 

mM of the respective thiol solutions in absolute EtOH (NphT, AnthT and TP1) or in 

DMF (PT, BPT, TPT, OPE2, and OPE3) under Argon atmosphere for 24h at room 

temperature. In the case of acetyl protected thiols, 1-2 drops of aqueous TEA were 
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added to the thiol solution in order to cleave the acetyl group. Later, the samples were 

rinsed with the same solvent and EtOH, and dried in an Argon stream.  

For the preparation of pyridine-containing SAMs, 50-100 µM ethanolic solutions of the 

respective molecules were used. After immersing the gold substrates for 24h, they were 

extensively rinsed with EtOH and dried in an Argon stream. Extensive characterization 

showed no evidence of impurities or oxidative degradation products for all type of 

molecules. In addition, reference SAMs of hexadecanethiolate (HDT) were prepared 

on similar gold substrates using standard procedures [104].  

3.3 Electron Irradiation and Patterning 

Irradiation of the SAMs was carried out both homogeneously and in a lithographic 

fashion, depending on the particular purpose. For homogeneous irradiation, a flood gun 

(FG20, Specs Germany) mounted at a distance of ~11 cm from the sample was used, at 

a base pressure better than 1×10-8 mbar. The electron energy was set to 50 eV, and the 

dose was calibrated by a Faraday cup and calculated by multiplication of the exposure 

time by the current density (25 µA/cm2). For single-dose lithographic patterns, the 

SAMs were irradiated through a transmission electron microscopy (TEM) grid 

(Quantifoil, R 1/4, 400 mesh, Copper), which was placed directly onto the SAMs and 

connected electrically to the sample holder by a metal spring. For multiple-dose 

irradiation and lithographic patterns, an electron beam writer consisting of a scanning 

electron microscope (LEO 1530) and a special lithographic unit (Raith Elphy Quantum) 

was operated. The energy of the electron beam was set to values from 0.5 to 5 keV, and 

the dose was calibrated by a Faraday cup placed on the same holder as the SAM 

samples. Within the software, dwell time and area step size of the focused electron 

beam was set manually to avoid an overexposure at low or an underexposure at high 

doses, respectively, in order to control irradiation over a large dose scale.  

3.4 XPS Characterization 

Both pristine and homogeneously irradiated SAMs were characterized by XPS. The 

XPS characterization was performed out in situ, immediately after irradiation and 

without exposure of the irradiated films to ambient conditions. The XPS measurements 
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were carried out under UHV conditions (residual pressure less than 5×10-9 mbar) with 

a MAX200 (Leybold-Heraeus) spectrometer equipped with a Mg Kα X-ray source (200 

W) and a hemispherical analyzer. Normal emission geometry was used. The recorded 

spectra were corrected for the spectrometer transmission and the BE scale was 

referenced to the Au 4f7/2 emission at 84.0 eV [105]. A photograph of the used UHV 

setup including XPS and electron gun is shown in Figure 3.3. 

The spectra were fitted by symmetric Voigt functions and a Shirley-type background. 

To fit the S 2p3/2,1/2 doublets, two peaks with the same full width at half-maximum 

(FWHM), the standard [105] spin-orbit splitting of ~1.2 eV (verified by fit), and a 

branching ratio of 2 (S 2p3/2/S 2p1/2) was used. The fits were performed self-

consistently: The same fit parameters were used for identical spectral regions.  

 

Figure 3.3: A photograph of the XPS setup (MAX 200) used in this PhD work and its 

components.  

The effective thickness of the monolayers was calculated using a standard procedure 

[106], based on the C 1s/Au 4f intensity ratio. A standard expression for the attenuation 

of the photoemission signal was assumed [75]; attenuation lengths reported in ref [76] 

were used. To determine the spectrometer-specific coefficients, I took molecular films 

of known thickness as direct reference; the respective samples were measured under 

the same conditions as the aromatic SAMs. As reference films I used HDT monolayers 

on Au(111) which have a film thickness of 19.4 Å, which was calculated through the 

alkyl chain length (1.26 Å per CH2 unit) [107], length of Au–S bond (2.4 Å) [108], and 

the molecular inclination (30°-33.5°) [3]. 
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3.5 Fabrication of Gold Patterns  

E-beam patterned SAMs (see Section 3.3) on Au/Si substrates were immersed in 20 mL 

of thiosulfate-based etching solution for 35 min at room temperature [109, 110]. The 

etching solution contained 1 M KOH, 0.1 M K2S2O3, 10 mM K3Fe(CN)6, and 1 mM 

K4Fe(CN)6. Subsequently, the samples were washed with Millipore water and dried 

with Argon. 

3.6 AFM Characterization of Gold Patterns 

Fabricated gold patterns were characterized by atomic force microscopy (AFM). The 

measurements were performed with a Solver NEXT (NTMDT) controller in tapping 

(semi-contact) mode under ambient conditions. 

3.7 Preparation of Carbon Nanomembranes (CNMs) 

For the fabrication of SAM-based membranes, well-established protocols of refs [29, 

30] were followed. In brief, the SAMs on gold were homogeneously irradiated by 

electrons (50 eV) with 40 mC/cm2 dose. Then, a poly(methyl methacrylate) (PMMA) 

(AR-P 631.04) layer was spincast onto these irradiated SAMs (membrane) on gold for 

30 s at 4000 rpm; next, the membrane/PMMA sandwich was baked on a hotplate at 

55°C for 5 min and then a second PMMA (AR-P 671.04) layer was spincast and baked. 

The gold was dissolved in Lugol’s solution (aqueous KI/I2, 2%), and rinsed with water. 

Finally, the membrane/PMMA sheets were transferred to TEM grids and the PMMA 

layer was removed by a critical point dryer (Automated Critical Point Dryer, Leica EM 

CPD300) in order not to damage the CNMs because of surface tension occurring during 

the drying process. The free-standing membranes were characterized by SEM (Leo 

1530, Zeiss) using an in-lens detector. For these purposes, the membranes were 

transferred to a TEM grid (Plano, 1500 mesh, copper, 11 μm opening width). 
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3.8 I-V Measurements 

A home-built two-terminal junction setup, adapted from the works of Rampi et al. [40, 

48] and von Wrochem et al. [111, 112], was modified according to our purpose to work 

with an EGaIn tip. The measurements were performed in the tunneling junction 

geometry, using the conductive Au substrate as the bottom electrode and the EGaIn tip 

as the top electrode. A CMOS camera with a Macro lens (The Imaging Source 

DMK22AUC03 1/3 in. Micron with MR 8/O) is placed across the sample to monitor 

the preparation of EGaIn tip and the contact between EGaIn tip and SAM surface. 5 µL 

of Ga-In eutectic (75.5 wt % Ga and 24.5 wt % In) was taken a Hamilton syringe 

(Autosampler Syringe 701ASRN) with a conical metallic needle that was electrically 

connected to Keithley 2635A source meter. Molecular junctions were formed by 

bringing the soft Ga2O3/EGaIn tip into contact with SAMs on Au substrates. The tip 

formation is shown in Figure 3.4. In brief, a small droplet of EGaIn is formed on the tip 

of the conical needle and is brought into contact with a sacrificial gold substrate to 

adhere on it. Afterwards, the needle is withdrawn slowly to get a conical GaIn tip. Once 

tip was formed, it was left for 5-10 min to form an oxide layer (Ga2O3). Measurements 

were done at ambient atmosphere and room temperature (relative humidity = 35-45%). 

5-10 measurements at different places were performed for each sample and the average 

values were calculated. The contact area was estimated by analyzing the image taken 

by the camera. The current through the junction was recorded as a function of the 

applied voltage by using the Keithley source meter. Data points were collected using a 

voltage ramp with a bias interval of ~45 mV and an interval of at least 5 s between 

individual steps. The voltage was swept from -0.01 V to -0.5 V and 0.01 V to 0.5 V 

with a ~45 mV interval.  
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Figure 3.4: Formation of an EGaIn tip on a syringe needle is shown: (a) Make a droplet 

of  EGaIn out of the needle; (b) bring the drop in contact with a sacrificial substrate (Au 

in this case) until it sticks; (c) pull the needle up slowly to form a sharp tip; (d) wait 5-

10 minutes to passivate the tip with the oxide layer (Ga2O3) and (e) bring the tip into 

contact with the sample to be measured and form a junction (the tip is reflected in the 

metallic surface). (f) Schematic illustration of home-build junction setup used to make 

measurements of tunneling currents across SAMs. The diameter the contact between 

EGaIn and SAM shown in panel (f) was between 30 and 75 µm. The photographs 

shown here were taken in cooperation with Tobias Wächter (PhD student, APC 

Heidelberg) and Peter Jeschka (technical staff, APC Heidelberg).  

3.9 WF Measurements 

Work function (WF) measurements were carried out using a UHV Kelvin Probe 2001 

system (KP Technology Ltd., UK). The pressure in the chamber was ~5×10-8 mbar. The 

calibration of the setup was done with sputtered gold, referenced to 5.2 eV. The in situ 

electron irradiation and WF measurements were done in the same analysis chamber by 
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using a HDT SAM on gold (WF=4.3 eV) as a reference after each irradiation. The 

measurements were carried out at room temperature. 
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4 Results and Discussion 

In this chapter, the results of X-ray photoelectron spectroscopy, electron lithography, 

CNM fabrication, electric transport and work function experiments based on SAMs of 

acene, oligophenyl and OPE backbones are presented and the effect of electron 

irradiation on these SAMs is discussed. In addition, the effect of electron irradiation on 

pyridine-containing aromatic SAMs is also discussed through spectroscopic analysis. 

Note that, the terms “fused” and “non-fused” will be interchangeably used with the 

terms of “acene” and “oligophenyl”, respectively.  

4.1 Spectroscopic Experiments 

The changes occurring in aromatic SAMs upon electron irradiation were monitored by 

XPS, taking AnthT, TPT and OPE3 SAMs as representative systems for the acene, 

oligophenyl and OPE series, respectively (see the figure below). The fabricated AnthT, 

TPT and OPE3 films on gold were irradiated by electrons with a kinetic energy of 50 

eV. The irradiation was performed with fixed doses of 5/10/20/40/60 mC/cm2. Sample 

preparation and analysis conditions are explained in Experimental Part (Chapter 3). 

 

This is the same figure as shown in Chapter 1 (Figure 1.1).  
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The Au 4f spectra in Figure 4.1 exhibit the Au 4f7/2,5/2 doublet from the gold substrate. 

The intensity of the Au 4f7/2,5/2 components does not change noticeably with increasing 

dose, suggesting a very low extent (if any at all) of irradiation-induced desorption.  
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Figure 4.1: Au 4f XPS spectra of the pristine and irradiated AnthT (a), TPT (b), and 

OPE3 (c) SAMs. The doses are marked at the respective spectra. The energy of the 

electrons was 50 eV. 

The characteristic C 1s XPS spectra of pristine AnthT, TPT and OPE3 SAMs in Figure 

4.2 are dominated by an intense emission at BE positions of 283.94, 284.05 and 284.2 

eV, respectively. These strong peaks correspond to their backbone originating from 

C−C bond in the aromatic structure [12, 113], followed by a weak shoulder at a ~1.8 

eV higher BE, assigned to the carbon atom bound to the sulfur headgroup or to shake-

up processes in the aromatic matrix (see discussion in ref [114]). The intensity of the C 

1s peaks as well as the character and shape of the C 1s spectra of the SAMs do not 

exhibit any perceptible changes upon irradiation. This suggests, in agreement with the 

Au 4f data, a very low extent (if any at all) of irradiation-induced desorption, which is 

also supported by the behavior of the effective thickness. After an exposure of 60 

mC/cm2 dose, the BE values shift 0.22, 0.11 and 0.08 eV to higher energy level for 

AnthT, TPT and OPE3, respectively. In addition, C 1s signal broadening, depicted here 

as an increase in the FWHM values, (Figure 4.3) was observed indicating the loss of 

orientational and conformational order in the monolayer [13, 115].  The relation 

between carbon content and relative thickness is given in Figure 4.4 and they are 
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correlating to each other: An increase in carbon content corresponds to increase in 

thickness. Interestingly, after an exposure of 60 mC/cm2 dose C 1s signal did not 

decrease (4 mC/cm2 is sufficient to decrease the C 1s signal to 65% for HDT SAM) and 

an increase in thickness of the cross-linked SAMs was observed. The thickness of 

SAMs (calculated on the basis of the Au 4f signal; see Experimental Part) increased 

slightly upon electron irradiation, viz., from 11.2 to 11.3 Å for AnthT films, from 15.3 

to 16.4 Å for TPT films and from 16.9 to 18.6 Å for OPE3 films (Figure 4.4). Such an 

increase is presumably related to adsorption of residual gas molecules on the irradiated 

SAMs [116, 117]. The doses applied (1 mC/cm2 corresponds to ~13 electrons per SAM 

constituent) were obviously sufficiently high to induce such an adsorption even under 

UHV conditions in the electron irradiation chamber.  
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Figure 4.2: C 1s XPS spectra of the pristine and irradiated AnthT (a), TPT (b), and 

OPE3 (c) SAMs. The doses are marked at the respective spectra. The energy of the 

electrons was 50 eV. The C 1s spectra are decomposed into the component peaks, viz. 

the main peak (green lines) and a minor shoulder (blue lines); see text for details. 

Vertical solid lines highlight the BE positions of the peaks. 

At first sight, XPS monitoring of C 1s signals (Figure 4.2) seems unaffected by 

electrons for all type of molecules. However, when it is analyzed from the perspective 

of BE shift and FWHM change (Figure 4.3), there is a continuous change in both 

FWHM and BE shift curves belonging to AnthT which could be attributed to the 

continuous orientational and conformational change in the monolayer [13, 115] (The 
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change in conformational order was previously explained in detail with near edge X-

ray absorption fine structure spectroscopy (NEXAFS) in our groups’ studies [13, 26, 

27]).  
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Figure 4.3: Dependence of the FWHM of the main C 1s peak (a), and BE position of 

this peak (b) for the TPT (red triangles), AnthT (blue squares), and OPE3 (black circles) 

SAMs on irradiation dose. The energy of the electrons was 50 eV. The parameters in 

panels (a) and (b) are fitted by exponential functions according to Eq. 4.1 (color-coded 

dashed curves).  

Whereas, TPT and OPE3 films show such change till the exposure to 10 mC/cm2 dose, 

and the maximum BE shift is getting smaller with increasing molecular length. These 

changes can be associated with progressive cross-linking of the SAM constituents, 

following the extensive cleavage of C−H bonds in the SAM matrix. The threshold for 

such processes lies at ~7 eV [11, 17], far below the electron energies in the experiments 

of this study. 

Both BE positions and FWHMs of the main C 1s peak for the SAMs studied exhibit an 

exponential-like variation at low doses and a leveling off behavior at high doses. Such 

a behavior is typical for SAMs [14, 15] and can be described by a function  

I = Isat + (IprisIsat )exp(-Q/eSirrad )   (4.1) 

where I is the value of a characteristic film parameter in a course of irradiation, Ipris and 

Isat are the parameter values for the pristine and strongly irradiated films (a leveling off 

behavior), respectively, Q is the cumulative charge delivered to the surface in 

Coulombs, e is the electron charge, Sirrad is the area irradiated by the electron beam, and 

the cross-section  is a measure of a rate at which the saturation behavior is achieved. 

The respective fitting curves are shown in Figures 4.3a and 4.3b, and the derived cross-
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sections, averaged over the FWHM and C 1s behavior, are compiled in Table 4.1. The 

values for the TPT and OPE3 SAMs are similar while that for the AnthT monolayer is 

noticeably lower. The latter is probably related to the conjugated character of the AnthT 

backbone, so that the effect of the cross-linking, resulting in the formation of conjugated 

structures as well [16, 22, 118], is less pronounced in the C 1s XPS spectrum than in 

the TPT and OPE3 case. Significantly, the cross-sections in Table 4.1 correlate well 

with the literature values. The effective hydrogen content loss cross-section in the TPT 

SAMs on Au was estimated at (2.7-4.7)×10-17 cm2 for electron processing at 50 eV by 

high-resolution electron energy loss spectroscopy and electron-stimulated desorption 

experiments [24], in an excellent agreement with our SAM matrix value of 

(3.650.9)×10-17 cm2 for the same system. Significantly, this correlation suggests 

indirectly that our cross-section values for the modification of the SAM matrix, 

obtained on the basis of the C 1s XPS spectra, reflect predominantly the hydrogen 

content loss in the matrix. 
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Figure 4.4: Dependence of the carbon content (a), and the effective thickness (b) for 

the TPT (red triangles), AnthT (blue squares), and OPE3 (black circles) SAMs on 

irradiation dose. The energy of the electrons was 50 eV. The straight, color-coded 

dashed lines in panels (a) and (b) are guides for the eyes. The inset in panel (a) shows 

the decrease in the carbon content of the HDT SAM till an irradiation dose of 4 mC/cm2.  

Along with the SAM matrix, the SAM-substrate interface was modified upon the 

electron irradiation as follows from the S 2p XPS spectra of the SAMs shown in Figure 

4.5. For pristine samples the characteristic S 2p doublet has a S 2p3/2 BE of 162 eV 

which is typical for a thiolate species bonded to the gold surface [16, 113, 119] (Figure 

4.5) with no traces of atomic sulfur, disulfide, unbound sulfur or oxidized species. The 

intensity of the thiolate related doublet in the pristine SAMs decreases with increasing 

molecular length, manifesting a stronger attenuation of the S 2p photoelectrons by the 
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thicker TPT and OPE3 films. During irradiation thiolate bond intensity decreases 

exponentially and a second sulfur species simultaneously appears to be at ~163.1-163.4 

eV which corresponds to the irradiation-induced cleavage of the Au−S bonds and has 

been previously associated with the formation of disulfide species [2, 10] but most 

likely have C–S–C character [10] trapped in the monolayer matrix.  
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Figure 4.5: S 2p XPS spectra of the pristine and irradiated AnthT (a), TPT (b), and 

OPE3 (c) SAMs. The doses are marked at the respective spectra. The energy of the 

electrons was 50 eV. The S 2p spectra are decomposed into the component doublets 

corresponding to the pristine thiolate species (green lines) and irradiation-induced 

sulfur species (blue lines); the sum of these components is drawn by the red lines. 

Vertical solid lines highlight the BE positions of the doublets. 

As seen from Figure 4.6 the total intensity of S 2p signals of the aromatic SAMs studied 

did not decrease upon irradiation which, along with the Au 4f and C 1s XPS data, 

suggests a very low extent of the irradiation-induced desorption in the studied SAM 

(apart from the H desorption, following the cleavage of C−H bonds). Similar behavior 

was also observed for a two-ring molecule, nitrile terminated biphenylthiol [2]. It was 

attributed partly to the thickness reduction and partly to the breakage of the Au−S 

bonds, which leads to formation of an additional doublet at ~163.2 eV in the S 2p XPS 

spectra. The thickness increase in the monolayers leads to a higher attenuation of the S 

2p signal for all sulfur-containing species [2], while progressive propagation and 

capture of the released sulfur species in the aromatic matrix results in a closer placement 

of such species with respect to the SAM-ambience interface, giving a more intense S 

https://www.msxlabs.org/forum/soru-cevap/340853-isareti-nasil-yapilir.html
https://www.msxlabs.org/forum/soru-cevap/340853-isareti-nasil-yapilir.html
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2p signal. As described above, while thickness increase (higher attenuation of S 2p) 

reduces the total sulfur intensity, radiation induced released sulfur species located in 

the aromatic matrix increases it, therefore, almost no change in the total sulfur intensity 

is observed in our case. In comparison to alkanethiol SAMs, both cleavage of the Au−S 

bonds and the degradation of the released species are noticeably slowed by the cross-

linking in the aromatic network as shown by the curves in Figure 4.6. In contrast, 70% 

of all Au−S bonds are broken at a dose of only 1 mC/cm2 in the case of alkanethiol 

SAM (e.g. HDT, Figure 4.6d) in which molecular defragmentation is superior to cross-

linking [11, 14, 17, 20, 21].  
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Figure 4.6: Dependence of the total intensity of the S 2p signal (blue squares), intensity 

of the S 2p component corresponding to the pristine thiolate species (red triangles), and 

intensity of the S 2p component corresponding to irradiation-induced species (black 

circles) for the TPT (a), AnthT (b), OPE3 (c), and HDT (reference) (d) SAMs on 

irradiation dose. The intensities of the above components are fitted by exponential 

functions according to Eq. 4.1 (red and black solid lines, respectively). The gray dashed 

lines correspond to 1 and are meant as guides for the eyes. The energy of the electrons 

was 50 eV. 
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Table 4.1: Cross-sections of the irradiation-induced processes involving the SAM 

matrix and the SAM/substrate interface; see text for details. The values were 

determined from the spectroscopic experiments. For the AnthT SAMs, effective cross-

section of the cross-linking, determined from the lithographic experiments (see Section 

4.2), is given. The units are 10-17 cm2. 

Monolayer TPT  AnthT OPE3 

SAM matrix 3.650.9  1.150.5 3.81.5 

SAM/Au interface 1.70.3  1.20.4  1.00.2 

cross-linking  103  

At the same time, the intensities of the doublets corresponding to the thiolate and 

irradiation-induced species exhibit an exponential-like variation at low doses and a 

leveling off behavior at high doses. Using similar approach as in the case of the C 1s 

spectra, fitting according to Eq. 4.1 could be performed. The respective fitting curves 

are shown in Figure 4.6, and the derived cross-sections are compiled in Table 4.1, 

averaged over the curves describing the intensities of S 2p component doublets 

corresponding to the thiolate and irradiation-induced species. These cross-sections are 

quite similar for the SAMs studied, with the highest value for the TPT monolayer and 

the lowest value for the OPE3 monolayer, which are in accordance with literature 

values. For example, the cross-section for the electron beam (50 eV) damage of the 

SAM-substrate interface in the BPT SAMs on Au was estimated at 1.75×10-17 cm2 

(average value for the damage of the pristine headgroups and formation of new, sulfur-

derived species) in a series of independent experiments [120], which is very close to 

the value of (1.703)×10-17 cm2 obtained for the TPT monolayers in the present work. 

At the same time, these parameters are by almost two orders of magnitude lower than 

the analogous value for the reference HDT SAM (5.5±0.4×10-16 cm2) where the 

irradiation-induced damage dominates over cross-linking. Note that, for HDT the 

thiolate cross-section is obtained only after 4 mC/cm2 dose. In contrast, in the aromatic 

SAMs, including those of the present study, extensive cross-linking, occurring quite 

fast in the course of irradiation, prevents and quenches any displacement of the SAM 

constituents, necessary for the cleavage of the Au−S bonds, hindering the respective 

processes. Even if a bond can be broken, it can recombine if the respective "fragments" 

stay in place [121]. This is certainly true for such "fragment" as the substrate, but is also 
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the case for the assembled molecules as far as they do not only interact weakly with 

each other but are covalently linked to the matrix.  

4.2 Lithographic Experiments 

Cross-linking behavior in the aromatic matrix can only be monitored indirectly by 

spectroscopic experiments because of the lack of characteristic features for this process, 

even though the desorption of H, following the cleavage of C–H bonds and representing 

a prerequisite for the cross-linking, can be directly monitored based on the characteristic 

vibration modes [12, 13, 22, 24] or by mass-spectrometry [17, 24]. Therefore, 

complementary lithographic experiments were performed. The idea of these 

experiments was to monitor the resist performance of the SAMs studied as function of 

the irradiation dose and electron energy, providing also a direct proof of the suitability 

of these films for electron lithography. Two sets of the experiments were performed. 

Within the first set, a pattern of square-like features was "written" by EBL using a 

scanning electron microscope with a pattern generator system (see Chapter 3 for 

details). The irradiation dose was varied from one square-like feature to another at a 

fixed electron energy, which, in its turn, was varied from pattern to pattern (0.5, 1, 3 

and 5 keV). Within the second set, a pattern of circle-like features was "written" by PPL 

using the same electron source (a flood gun) and the same electron energy (50 eV) as 

for the spectroscopy experiments (see Chapter 3 for details). This allowed to correlate 

the results of the spectroscopic and lithographic experiments. All patterns were etched 

using the same procedure and imaged by SEM (not shown) and AFM afterwards (see 

Chapter 3 for details). 

4.2.1 Electron beam lithography experiments 

The fabricated PT, NphT, BPT, OPE2, AnthT, TPT and OPE3 films on gold (75nm) 

were patterned by EBL. The irradiation was performed with fixed doses of 

1/2/5/10/20/40/80/100/150 mC/cm2 with kinetic energies of 0.5, 1, 3 and 5 keV. Later, 

all samples were etched in same thiosulfate based etching solution for 35 min at room 

temperature. Figure 4.7 shows the representative drawing of e-beam patterning of the 

SAMs and related pattern formation upon etching. 
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Figure 4.7: Representative drawing of e-beam patterning of aromatic SAMs, and a side 

view of the process for the fabrication of gold patterns.  

It was mentioned in the previous section that the electron irradiation modifies aromatic 

SAMs different than aliphatic ones, where the irradiation leads to disorder in 

conformation and orientation of the monolayer, desorption of monolayer fragments, 

and dehydrogenation of the molecules with C=C double bond formation [11, 20]. After 

electron irradiation, because of the aforementioned changes, aliphatic SAMs fall into a  

Table 4.2: XPS thickness, area per molecule and packing density of the pristine SAMs 

used in this section. The values were determined from the XPS spectra of the SAMs.  

Molecules XPS thickness 

(Å) 

Area per molecule 

(Å2/molecule) 

Packing density 

(molecules/cm2) 

PT 5.7±0.4 31.6 3.17×1014 

NphT 8.4±0.5 24 4.17×1014 

BPT 10.4±0.6 25.9 3.86×1014 

OPE2 9.5±0.6 27.7 3.61×1014 

AnthT 11.2±0.6 26.1 3.83×1014 

TPT 15.3±0.8 21.9 4.56×1014 

OPE3 16.9±0.8 22.8 4.39×1014 

HDT (reference) 19.4±0.1 21.6 4.63×1014 
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Figure 4.8: AFM images of Au/Si(100) patterns prepared by EBL with the SAM resists and respective dependence of the height of the square-like 

gold features in the patterns shown below the each set of images on irradiation dose. The patterning was performed at electron energies of 0.5 keV 

(black squares and black curve), 1 keV (red up triangles and red curve), 3 keV (blue diamonds and blue curve), and 5 keV (green down triangles and 

green curve) from top to down. The doses corresponding to the individual square-like Au features were 5, 10, 20, 40, 80, 100 and 150 mC/cm2 (from 

left to the right).  
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less stable layer which acts as positive resist. In contrast to aliphatic SAMs, electron 

irradiation increases the stability of aromatic SAMs by inducing cross-linking between 

the molecules, therefore, they act as negative resist. After etching, the areas exposed to 

irradiation show a contrast both in SEM and AFM images when compared to non-

exposed surrounding areas [12].  

The ability of aromatic SAMs as a negative resist for EBL was first shown by Geyer et. 

al [12] (our institute). However, so far, most of the experiments related to electron 

lithography, relying on the aromatic SAMs, was performed with biphenyl-based 

monolayers [12, 16, 19, 37, 122]. With this regard, to test the suitability of different 

aromatic SAMs for lithographic purpose, 3 µm square patterns on the SAMs, 

continuously increasing the dose from square to square, were written and later the 

samples were etched. Also, 2 µm squares (AFM images of the patterns from NphT 

SAM is given in Appendix (Figure A.1), representative of the all other SAMs) were 

written in the same way starting from 1 mC/cm2 dose. The AFM images of the 

respective patterns are shown in Figure 4.8. Accordingly, an increase in the pattern 

height with increasing dose range, (under-dose range), followed by a plateau (optimal 

dose range), and a decrease (over-dose range) was observed. The initial increase in the 

pattern height with increasing dose level shows the insufficient dose to cross-link the 

whole irradiated area and leads to partial cross-linking of the monolayer and partial 

etching of the underlying gold substrate. At the optimal dose range, cross-linked 

monolayers are strong enough not to allow etching ions to penetrate the layer, and thus, 

exhibit negative resist ability. Figure 4.9b shows non-irradiated and irradiated areas 

with optimal dose after exposing them to etching, and the cross-linked structure 

(irradiated area) seems to be very efficient to protect the underlying gold. Figure 4.9a 

shows the pattern heights obtained after immersion of the samples for same etching 

time (35 min) and it shows that there is a length dependence of pattern heights. In over-

dose range, the features prepared at higher doses (see Figures 4.8 and 4.11) mimic the 

perimeters of the written squares and a decreasing height profile was observed which 

could be due to the peeling of the membrane (in the form of CNM) occurred upon 

etching. The only explanation for this behavior is a release of the entire cross-linked 

SAM within the irradiated area upon the etching, in the form of CNM. Indeed, with 

increasing doses, cross-linking becomes more extensive but the anchoring to the 

substrate gets impaired progressively (see Figures 4.5 and 4.6). Accordingly, the cross-

linked SAM can be easily released in the etching solution as soon as the irradiation dose 
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is sufficiently high, leaving the underlying Au substrate unprotected against the etching. 

The observed perimeter-like Au structures instead of the initially written square-like 

features can then be only related to the joint effect of the backscattered primary 

electrons and the secondary electrons from the substrate [123]. These electrons are 

reflected and emitted not only within the irradiated areas but also along their perimeter, 

providing a lower irradiation dose then that by the combined effect of the primary, 

backscattering, and secondary electrons within the irradiated spots. Accordingly, the 

SAM along the perimeter is still well-anchored to the substrate and somewhat cross-

linked, providing a protection against the etching. The formation of perimeters taking 

place at higher doses indicates the proximity effect which occurs with the peeling 

(release of the CNMs) independent from molecule type (please see Appendix A.2).  

 

Figure 4.9:  The maximum pattern heights obtained from lithographic experiments 

versus film thickness of the pristine SAMs (a) and an SEM image of an NphT SAM on 

gold (b) patterned with EBL at 0.5 kV and at optimal dose range. In the given case, the 

squares at left and right side were formed with 10 mC/cm2 and 20 mC/cm2 doses, 

respectively. The scale bar in panel (b) corresponds to 2 µm. The maximum heights 

correspond to the average of the maximum heights from all electron energies (at 0.5, 1, 

3 and 5 keV energies). The thickness values were obtained from XPS measurements. 

Below I will discuss the etching ability of the pristine (non-irradiated) SAMs which is 

an important parameter to evaluate their resist ability. The most possible way of etching 

gold substrate over a SAM monolayer is that etchant ions pass through the pristine (non-

irradiated) monolayer and reach the gold surface and start to etch by forming gold ions. 

While SAMs of all molecules can easily be etched, three-ring molecules (TPT and 

OPE3) SAMs cannot be etched as shown in Figure 4.10 (only performance of TPT 
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SAM is shown). This is probably related to the densely packed structure of TPT SAM, 

which does not allow etchant molecules to pass through the pristine monolayer 

presumably due to steric hindrance and etch the underlying gold substrate. Thus, not 

the non-irradiated but the irradiated areas become preferably etched, resulting in an 

inverse (positive) contrast of the lithographic patterns. Nevertheless, such a contrast can 

be much more easily achieved with the aliphatic SAMs, which by themselves represent 

a positive resist for lithographic applications [15]. However, SAMs of another three-

ring molecule, perfluoroterphenyl-substituted alkanethiols [70], could give lithographic 

contrast which was most probably because of the flour atoms in the molecules. These 

flour atoms relatively increase the molecular spacing between the adjacent molecules 

(forming less densely packed monolayer), thus, allowing etching agents to pass through 

the monolayer and resulting in etch of the underlying substrate. Therefore, even though 

a correlation between the pattern height and the molecular length can be seen in Figure 

4.9a, the packing density also seems to be important for the etching ability of the 

monolayers, along with the molecular length. 

To prove the effect of this parameter (etching ability), some area (much larger than XPS 

spot) on the surface of TPT sample was shadowed with a mask and irradiated (50 eV) 

with 20 mC/cm2 dose. Surprisingly, XPS spectra (Figure 4.10) from both shadowed and 

irradiated regions of 45 min etched sample show that both pristine SAM and cross-

linked SAM are still on the gold surface. Thiolate bonding belonging to the shadowed 

area is still intact and only a small percentage (10-15%) of it is oxidized, which can be 

seen from the peak arising around 168 eV. On one hand, this indicates that these three-

ring molecules are forming a very stable monolayer against etchants with their densely-

packed structure and molecular length, which prevent etching ions penetrating this layer 

to a high extent as it was observed both in SEM, AFM and XPS analyses. On the other 

hand, it could indicate that etching of gold film takes place with the diffusion of ions 

through the membrane, which is facilitated probably by the loosely connected 

membrane to the gold surface (because of broken Au−S bonds). Figure 4.9 shows the 

relation between the effective film thickness and pattern height; every molecule has a 

different maximum height because of an induction time, a required time to remove the 

SAM from the gold and/or to overcome the steric hindrance. For instance, while NphT 

has a maximum height 53 nm, TPT has only 5-6 nm pattern height and OPE3 cannot 

give any gold pattern height profile, which are in correlation with the length of the 

molecule. However, as I mentioned above it is evident that not only molecular length 
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but also packing density of the SAM has a crucial role on the fabrication of gold 

features, explaining the effect of etching ability factor.  

 

Figure 4.10: AFM images of TPT SAM from the pristine (non-irradiated) (a) and 

irradiated areas (c) of the same sample (b). The respective images were taken after 

etching the sample for 45 min. The height profile the red dashed line in panel (b) is 

given in panel (d). The C 1s (e) and S 2p (f) XPS spectra of both irradiated and non-

irradiated areas are shown. The vertical grey solid lines in panel (e) and (f) show the 

BE position of the main peaks in each spectrum.  

Further, the influence of the primary energy of electrons on the dose-dependent height 

of the patterns were studied. The respective results are presented in Figure 4.8 where 

the pattern heights are plotted as a function of irradiation dose for different energies of 

electrons. It can be seen that the maximum height and bell-like curves for all molecules 

are almost free from the energy while the respective dose shifts to higher values with 

increasing energy of the primary electrons, and this behavior can be explained by a joint 

impact of the primary, backscattered and secondary electrons that are responsible for 

all the irradiation-induced processes in the SAMs. In the applied energy range (0.5-5 

keV), both the backscattering factor [124] and the secondary electron yield (with the 

maximum yield at ~500 eV) [125] decrease with increasing electron energy. These 

decreases are in agreement with the curves presented in Figure 4.8, thus, lead to the 
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shift of the optimal dose to higher doses with increasing electron energy. It should be 

noted that the secondary electrons presumably provide the major effect for cross-linking 

of the monolayers, and the energy provided by these electrons are fully sufficient for 

the mediation of the major irradiation processes as long as certain threshold value (~7 

eV) is reached [11, 17].  

 

Figure 4.11: AFM images (3D representation) of Au/Si(100) patterns prepared by EBL 

with the SAM resists as well as the height profiles along the lines shown in the images. 

The patterning was performed with the NphT (a, b) and AnthT (c) SAM resists at 

energies of 3 keV (a) and 0.5 keV (b, c). The doses corresponding to the individual 

square-like Au features were 5, 10, 20, 40, 80, 100 and 150 mC/cm2 (from left to the 

right). 

Interestingly, there are clear effects of the SAM thickness and the electron energy, as 

was especially obvious in the EBL experiments. The transfer from the well-defined 
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pattern to the etching-mediated CNM release occurs at lower doses for the thicker 

SAMs (compare Figures 4.11b and 4.11c) and at a lower electron energy for the same 

SAM (compare Figures 4.11a and 4.11b). This means that the cross-linking is more 

efficient for a thicker monolayer, which is understandable considering that the 

irradiation-induced cleavage of C−H (and C−C) bonds, which is a prerequisite for the 

cross-linking, can be quenched by the interaction with the substrate [11, 17]. The 

efficiency of such a quenching decreases with increasing distance to the substrate and 

is, accordingly, less efficient, for longer molecules, resulting in a higher extent of cross-

linking. An additional effect in this context is a stronger cross-linking in the vicinity of 

the SAM-ambient interface as compared to the SAM-substrate one for any particular 

film [26].  

The effects of the SAM thickness and electron energy were observed for all three-series 

studied (oligophenyls, acenes, and OPEs). Note that the first member of all three series, 

PT/Au, exhibited a negative resist behavior as well, even though with inferior 

performance (lower contrast of the lithographic patterns) as compared to the 

monolayers comprised of the longer molecules. This is understandable since most of 

the molecular models of cross-linking involve simultaneous cross-linking of several 

rings of a particular molecular backbone, which is necessary for the formation of an 

extended, 2D polymer-like network [16, 22, 118]. One ring is obviously not enough to 

form such a network of comparable quality. In contrast, all two-ring systems performed 

quite well as negative lithographic resists, until the onset of the spontaneous CNM 

release at high irradiation doses. The AnthT film performed similar as well (but only at 

low doses), in contrast to the TPT and OPE3 monolayers which did not provide 

reasonable lithographic patterns under the conditions of the experiments in this study. 

To quantify the results of the lithographic experiments the height of the square-like gold 

features in the patterns prepared with the SAM resists were plotted as function of 

irradiation dose. The observed dependencies in Figure 4.8 could be fitted by a first order 

exponential function, following the formula used for e-beam induced changes in C 1s 

spectra (Eq. 4.1):  

ℎ = ℎ𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + (ℎ𝑝𝑟𝑖𝑠𝑡 − ℎ𝑝𝑎𝑡𝑡𝑒𝑟𝑛) ∙ 𝑒𝑥𝑝 (−
𝜎𝑄

𝑒.𝑆𝑖𝑟𝑟𝑎𝑑
)  (4.2) 

where h is the value of a characteristic film parameter in the course of irradiation, hprist 

and hpattern are the thickness of the Au film (substrate) and height of the Au features, 

respectively, Q is the cumulative charge delivered to the surface in Coulombs, e is the 
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electron charge, Sirrad is the area irradiated by the electron beam, and the cross-section 

σ (expressed in cm2) is a measure of a rate at which the saturation behavior is achieved.  
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Figure 4.12: Dependence of the cross-sections for irradiation-induced cross-linking on 

the electron energy for the SAMs of this study. The values were determined from the 

lithographic experiments.  

The calculated cross-section values for the cross-linking of the aromatic monolayers 

are presented in Figure 4.12 as a function of electron energy. The observed decrease in 

cross-section values with respect to energy correlates well with the secondary electron 

yield of the gold substrate [125], which is also supported by the shifts in dose-dependent 

height profiles (Figure 4.8) of the gold patterns. These shifts correspond to the data 

points in Figure 4.12, by calculating thickness variation of patterns from Figure 4.8 as 

a function of dose. Note that, cross-section values of OPE3 SAM are not possible to 

calculate from the pattern heights because no pattern formation was available after 

etching the OPE3 sample. The cross-section value for the cross-linking of AnthT film 

at 1 keV (it seems that 50 eV corresponds to 1 keV from Figure 4.12) is 1 order of 

magnitude higher than that of damage on thiolate bond (discussed in the previous 

section for 50 eV, see Table 4.1). Otherwise, extensive damage of the SAM/substrate 

interface (breakage of Au−S), occurring at the very low irradiation doses in the films 

where the cross-linking is a minor process only, could not be prevented, suggesting that 

the cross-linking of the monolayer takes place earlier than the damage of the SAM-

substrate interface. 
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The final issue of this part is the performance of the SAMs studied as negative resists 

for electron lithography. According to the experiments, the two-ring systems (BPT, 

NphT, and OPE2) are most suitable for this purpose, but the dose should be carefully 

selected to be high enough to initiate sufficient cross-linking but low enough to avoid 

a spontaneous release of CNM pieces in the case of wet etching procedure. A dose of 

10-20 mC/cm2 appeared to be most suitable at 0.5-1 keV (see Figure 4.11) and is 

somewhat higher, up to 30-40 mC/cm2, at higher primary energies. In contrast, the PT 

SAMs exhibited a poor performance as resist, which is presumably related to a limited 

extent of 2D cross-linking, associated with one-ring system (see above). 

4.2.2 Proximity printing lithography  

In the previous subsection, performance of aromatic SAMs was tested in the framework 

of EBL. To see the same behavior for the proximity printing lithography (PPL), AnthT 

SAM, representative of all other monolayers of this study, was selected to study the 

effect of dose at 50 eV electron energy on the resist performance. For this purpose, 

AnthT films on Au/Si were irradiated through a TEM grid having 1 m circular holes 

as a stencil mask by varying the doses and subsequently immersed into gold etching 

solution. This resulted in well-defined gold patterns as illustrated by the AFM images 

(Figure 4.13a-i). The height profiles in these figures correspond to the thickness of the 

gold layer deposited on the silicon substrate by PVD (75 nm). While the big extent of 

gold film was etched away within the non-irradiated areas and appeared dark, the gold 

film was efficiently protected by the cross-linked AnthT film in the areas treated by the 

electron beam and appeared bright.  

The PPL performance (Figure 4.13) of AnthT SAMs, representative of all other 

monolayers of this study, at 50 eV energy is similar to the EBL performance of these 

films (see Figure 4.8 for AnthT SAM), which is expected due to the same underlying 

irradiation-induced processes. While the predefined, circle-like features were observed 

at the low doses (Figures 4.13 d, e, f), perimeter-like patterns were formed at the high 

doses (Figures 13 h, i), following the release of the cross-linked SAM within the 

irradiated areas. Accordingly, to obtain the best resist performance, an optimal dose 

should be chosen according to the energy of the primary electrons. Note that higher 

irradiation load could lead to a higher extent of cross-linking [16], however, as observed 

in EBL experiments, proximity effect and release of the CNMs are the restrictive points 
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for high doses. Therefore, to use aromatic SAMs as a negative resist one should not 

exceed the optimal dose range.  

 

Figure 4.13: AFM images of an e-beam patterned gold on Si(100). The patterning was 

performed with the AnthT SAM resists in proximity printing geometry (see text for 

details). The energy of the electrons was set to 50 eV. The doses were 0.5 (a), 1 (b), 2 

(c), 4 (d), 6 (e), 8 (f), 10 (g), 20 (h) and 40 mC/cm2 (i). The panels (a), (b) and (c) show 

low-dose; (d), (e) and (f) optimal dose, and (g), (h) and (i) over-dose. The panel (j) and 

(k) are the height profile over 6 circular gold patterns and the corresponding mean 

pattern thicknesses, respectively.  

By studying the kinetics of this process, cross-section value for cross-linking (50 eV) 

could be calculated from the same formula (Eq. 4.2) described in the previous 

subsection (for EBL experiments). Combining PPL and EBL cross-sections together 

(Figure 4.14), it can be said that the observed dependence of the cross-section value 

mimics the secondary electron yield of the underlying substrate with respect to electron 

energy [125]. As can be seen in Figure 4.14, from 50 to 500 eV, the cross-linking cross-

section increases, and after 500 eV for increasing electron energy, the cross-section 

value decreases. This dependence clearly explains the effect of secondary electrons 

which are responsible for the mediation of the cross-linking in aromatic SAMs, together 

with primary and backscattered electrons.  
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Figure 4.14: Dependence of the cross-sections for irradiation-induced cross-linking on 

the electron energy for the AnthT SAM. The values were determined from the 

lithographic experiments. The value corresponding to an electron energy of 50 eV is 

provided. This value was determined in the separate experiments (see text for details). 

In addition, a direct comparison to the spectroscopy-derived values can be done for the 

AnthT SAM only (see Table 4.1 and Figure 4.14) since the same primary energy (50 

eV) was applied in both spectroscopic and dedicated lithographic experiments. The 

values for the other SAMs, obtained at the higher electron energies only, can be 

tentatively scaled following the behavior of the curve for the AnthT film (Figures 4.12 

and 4.14); accordingly, the cross-sections at 50 eV are similar to those at 1 keV. 

The energy dependence of the cross-linking cross-section for the AnthT SAM in Figure 

4.14 represents a bell-like curve, mimicked, starting from 500 eV, by the analogous 

curves for all other SAMs of this study with the exception of PT/Au which seems to be 

a special case (see above). Significantly, the modification of the SAMs is mediated not 

only by the primary electron beam but also by the backscattering (elastic) and secondary 

(true) [123] electrons. The electron backscattering factor depends on the atomic number 

and energy, being quite large for Au (close to 1.0 at 500 eV) [124]. Significantly, it 

decreases with increasing electron energy [124], similar to the cross-section curves in 

Figure 4.14 (starting from 500 eV). The secondary electron yield exhibits a bell-like 

behavior with increasing electron energy, with a maximum at ~500 eV for gold [125], 

mimicking the curve for the AnthT SAM in Figure 4.14. Accordingly, a significant 

effect of the secondary and backscattering electrons within the entire impact of the 
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electron irradiation can be assumed, at least at high kinetic energies, above 500 eV. In 

particular, this effect is responsible for the perimeter-like "decoration" of the predefined 

spots in the lithographic pattern written with a high dose (Figures 4.11 and 4.13). For 

low kinetic energies, such as e.g. 50 eV, the contribution of the secondary electrons is 

believed to be small, referring, however, to specific, resonant dissociative electronic 

attachment processes [24], whereas non-resonant processes, leading also to the loss of 

H, can be mediated by the secondary electrons as well. Note that the yield of the true 

secondary electrons is generally higher than that of the backscattering, elastic electrons, 

except for very low primary energies (less than 30 eV), but they mostly have low kinetic 

energies, with a maximum of the distribution centered at 6-7 eV [123]. Consequently, 

some of the secondary electrons are well capable to cleave C−H bonds, since the 

threshold for the respective process was estimated at ~7 eV [11, 17].  

4.3 Fabrication of CNMs  

Besides their suitability for lithographic applications, aromatic SAMs can be 

transformed into ultrathin, free-standing carbon nanomembranes (CNMs) [28-37] with 

tunable thickness (0.5-3 nm) and porosity [35] where different precursor molecules can 

be used. These membranes have mechanical strengths with 10-20 GPa (Young’s 

moduli) [30, 36] and aspect ratio of more than 106 [37]. Furthermore, they can be 

converted to graphene sheets by annealing the CNMs at elevated temperatures [30, 34, 

35, 37]. Fabrication of this kind of membranes necessitates the use of electron 

irradiation which cross-links the molecules within the SAM. In this regard, with a fixed 

irradiation dose of 40 mC/cm2 (50 eV), all aromatic SAMs were homogenously 

irradiated, and later, all cross-linked structure removed from their gold substrate 

following the protocols in literature [29, 30, 32]. Transfer of the membranes on TEM 

grids was done according to the established procedure [35].  

Figure 4.15 shows SEM images of membranes stretched over copper TEM grids with 

1500 mesh (Plano, 11 μm opening width). While all molecules formed CNMs on TEM 

grids, one ring molecule, PT, could not form free-standing membrane most probably 

because of its mechanically instable structure: In comparison to other molecules, PT 

has the lowest carbon content and packing density, which are the most restrictive 

probable reasons not to form a membrane with enough mechanical strength. Also, even 
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Figure 4.15: SEM images of the CNMs prepared from the TPT (a), AnthT (b), OPE3 

(c), BPT (d), NphT (e) and OPE2 (f) SAMs. The CNMs were supported by copper grids 

(1500 mesh, Plano).  

though the CNM of OPE2 could be fabricated, the SEM image of OPE2 membrane 

(Figure 4.15f) contained a lot of disrupted pieces. It seems to be mechanically not very 

stable in comparison to other molecules as seen from Figure 4.15f, which is presumably 

because of its low packing density (see Table 4.2). In SEM images, it is clear to 

distinguish the areas where the CNMs cover the TEM grid openings (gray-white 

squares) and non-covered openings or broken membranes (black areas). It should be 

noted that the most direct way to see the modification of monolayers by electron 

irradiation is the fabrication of membrane where molecules within the SAM film are 
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cross-linked, through which a quasi 2D polymeric layer with mechanical stability is 

formed as observed for the molecules used in this study.  

4.4 Electric Transport Experiments 

As a follow-up for the spectroscopic and lithographic experiments, the electrical 

properties, in particular static conductance, of aromatic SAMs were studied by two-

terminal junction method using an eutectic Ga-In (EGaIn) as the top electrode and the 

conductive gold substrate as the bottom electrode. EGaIn was chosen due to its good 

electrical conductivity [126], nondamaging character to SAMs [126], easiness to use 

and advantage to characterize larger areas than other methods [38, 127] such as STM 

and conductive AFM. With the results obtained, it was also possible to derive the effect 

of backbone type on the electrical properties of aromatic SAMs. In this regard, the 

fused, non-fused and OPE ring SAMs on gold were irradiated with 10, 20 and 40 

mC/cm2 doses. Later, I-V measurements were carried out by two-terminal junction 

where the current through the SAM was measured according to the applied voltage 

which was sweeped from -0.01 V to -0.5 V, and from 0.01 V to 0.5 V at room 

temperature under ambient atmosphere (humidity: 40-50%). Note that, in this study, no 

temperature dependent measurements (related to hopping or thermionic emission) were 

carried out. The possible conduction mechanisms for SAMs are given in Table 2.1 and 

can be obtained from the mathematical translation of the classical I-V measurements. 

The mainly observed mechanisms for the SAMs used here are the non-resonant (direct) 

and the Fowler-Nordheim tunneling regimes.  

Current density−bias voltage plots at different irradiation doses of the fused, non-fused 

and OPE ring series are presented in Figures 4.16a, 4.16b and 4.16c, respectively. The 

error bars are typical for this type of junction and are the statistical error and the 

uncertainty in estimating the contact area between the electrodes [40, 41]. The graphs 

show that there is a similar behavior of all molecules upon electron irradiation: 

Conductance of all molecules decreases with increasing irradiation dose. The decrease 

in fused and non-fused systems are roughly two orders of magnitude after 40 mC/cm2 

dose, while that of OPE system is only one order of magnitude. To have a closer look 

to the effect of e-beam on the conductance of SAMs, logJ values at -0.5 V were plotted 
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Figure 4.16: Comparison of log(J) versus voltage for molecular junctions of pristine 

and irradiated SAMs from acene (a1, a2, a3), oligophenyl (b1, b2, b3), and OPE (c1, c2, 

c3) backbones using PT (a1, b1, c1) as the first member in each series assigned with 

subscript ‘1’.  

as a function of irradiation dose (Figure 4.17). As can be seen from Figure 4.17, it is 

clear that the lowest decrease in conductance belongs to the OPE backbone showing 

the most stable ring structure upon irradiation, which was also verified with XPS 

analysis of C 1s and S 2p signals (see Section 4.1), while, the most drastic change 

belongs to the fused rings (acene backbone). The decrease in conductance could be 

related to the changes both at gold/SAM interface and within the SAM film. The former 

is the decreased chemical contact between gold substrate and SAM (Au−S bond), and 

the latter is the disorder in the aromatic monolayer (see Section 4.1). As discussed in 

Section 4.1 the damage of SAM-substrate interface (remaining amount of Au–S bond) 

for the acene backbone is slightly more than oligophenyl and OPE backbone. The effect 

of disorder in the monolayer on conductance can be explained with the following 

estimation. The change in conformational and orientational order for acene backbone 

was expected to be larger than other backbone types because of their highly-conjugated 
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rigid ring structure which leads to a lack in torsion of the backbone. Since the rings in 

the backbone do not have rotation freedom, during electron irradiation, a larger and 

continuous loss of order in the monolayer takes place, which can be monitored with the 

FWHM and BE of C 1s signal (Figure 4.4). Whereas, in the case of oligophenyl 

backbone, the rings have the torsional freedom, therefore, they can make the cross-

linking with the adjacent molecules easier than acene ones, therefore, less decrease in 

the SAM order and less decrease in the conductance. In addition, the observed decrease 

in current density upon irradiation was also mentioned in ref [38] and assigned to 

combined effects coming from enhanced barrier at the gold/cross-linked SAM 

interface, disorder in the SAM upon irradiation (cross-linking and partial loss of 

aromaticity) and an alignment of molecular orbitals with respect to the Fermi levels of 

the electrodes. The irradiation treatment modifies the electronic structure of aromatic 

SAMs by resulting in reduction in HOMO-LUMO gaps [16, 128, 129]. The increase in 

barrier height will be explained by the contact resistances in the following paragraphs.  
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Figure 4.17: Comparison of log(J) values at -0.5 V of acene (a), oligophenyl (b) and 

OPE (c) backbones as a function of irradiation dose. The dashed lines represent the 

respective linear fits. 

When one looks at the current densities of all pristine molecules in Figure 4.18a, it is 

obvious that all curves are correlated with the molecular length of the SAM precursors. 

This means that there is a dependence of current flowing through the SAMs on the 

length of molecular junction, and Figure 4.18b depicts this dependence clearly. 

Although the length of the molecule seems to be the main parameter affecting the 

conductance (Figure 4.18b), the identity of backbone has the major role on the 

conductance which can be described with another parameter, tunneling decay parameter 

(β). When the current density values of the same backbone at the same voltage are 

plotted in a logarithmic fashion (Figure 4.18c), β values can be obtained from the linear 
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fits of the data points of the same ring structure, and are different than those of others 

(which will be discussed in the following paragraph).   
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Figure 4.18: Semilog plot of current density of the pristine SAMs as a function of the 

bias voltage between the EGaIn and gold electrodes for the EGaIn-SAM-Au junctions 

(a). Current density (at -0.5 V) of the pristine SAMs versus molecular length (b). The 

dashed black line shows the exponential fit of the data points. Semilog plot of current 

densities (at -0.5 V) of the pristine SAMs versus molecular length (c). The data points 

of each backbone are shown with a linear fit (dashed lines). 

One important parameter to characterize the charge transport properties of SAMs is the 

tunneling decay constant (β) which contains information about the height of the 

tunneling barrier [50]. It can be derived from simplified approximation of the Simmons 

model as shown in Eq. 4.3 where the charge transport through molecular junction is 

dominated by a tunneling mechanism, the current decays exponentially with the length 

of molecule and β is obtained as it is shown in Figure 4.18b [130]:  

𝐽 = 𝐽0exp⁡(−𝛽𝑑)    (4.3) 

J and J0 are current and injection densities (A/cm2) at an applied voltage V, respectively.  

The effective thickness of the molecular junctions is denoted as d (Å). Note that, in this 

equation, it is assumed that tunneling barrier is rectangular or close to rectangular [50]. 

The molecular length of the precursors was estimated by using ChemDraw 3D software, 

assuming that all molecules are in an extended and in trans conformation. The length 

of the molecules was calculated from the sulfur headgroup to the topmost hydrogen 

atom. In calculations, for pristine SAMs sum of the molecular lengths obtained by 

ChemDraw 3D software and length of Au–S bond (2.4 Å) was used as the effective 

thickness, while for irradiated SAMs the effective thicknesses obtained by XPS were 

used. Irradiated SAMs, because they form a 2D carbon network, contain no pristine 

molecules, which form molecular tunnels for charge transport, as it is the case in 
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pristine SAMs. It should be taken into account that upon irradiation the effective film 

thickness of two-ring films decreases 5-10% according to XPS analysis of pristine 

films, while three-ring films show thickness increase, which was explained in Section 

4.1. However, for PT SAM (one-ring), the thickness decrease is even more pronounced 

at around 30% lower.  
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Figure 4.19: Plot of the tunneling decay constant (β) versus bias voltage of the pristine 

and the irradiated SAMs of acene (a), oligophenyl (b) and OPE (c) backbones. Average 

values of the β values versus irradiation dose are shown in panel (d).  

Figure 4.19 shows the respective β values for each system in the bias range between -

0.5 V and 0.5 V. The average of the estimated β values (Figure 4.19d) of the pristine 

SAMs are 0.52 Å-1, 0.49 Å-1 and 0.33 Å-1 for fused, non-fused and OPE rings, 

respectively, which are in agreement with the values in literature. In the given case, for 

non-fused, fused and OPE rings the β values lay between 0.42-0.7 Å-1 [42, 52-55], ~0.5 

Å-1 [46, 56] and 0.27-0.3 Å-1 [42, 51], respectively. The observed difference in β values 

of pristine SAMs (as shown in Figure 4.19, the β values at negative bias region are 

slightly bigger than the ones in the positive bias region) could be related to asymmetric 

tunneling path which was also mentioned for the SAMs of non-fused rings [38]. The 
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average of estimated β values for each system is plotted as a function of irradiation dose 

in Figure 4.19d. As can be seen in this figure, while the average β values for non-fused 

and OPE rings decrease continuously upon irradiation, and for the fused rings do not 

decrease.  

It is obvious that the electric transport properties of the SAM films are changing upon 

irradiation. While tunneling decay constants of pristine samples seem to be not 

dependent on bias voltage, a huge impact of irradiation is clearly visible for β, which 

makes it dependent on bias voltage: The β values decrease with increasing bias voltage. 

The bias-dependent behavior is probably related to the tunneling barrier at the cross-

linked SAM-substrate interface [38, 91]. In addition, the asymmetric behavior of the 

pristine β values with respect to bias voltage disappears, and a more symmetric behavior 

is observed upon irradiation. 

0 3 6 9 12

0

1

2

3

4

5

0 3 6 9 12 15 0 3 6 9 12 15 18 21

a

lo
g

 R
T
 (


.c
m

2
)

b

Effective film thickness (Å)

c

 pristine

 10mC

 20mC

 40mC

 

Figure 4.20: Semilog plot of average tunneling resistances versus effective film 

thickness for the pristine and irradiated SAMs of acene (a), oligophenyl (b) and OPE 

(c) backbones. Dashed lines represent the linear fits of the data points.  

To have a closer look at the decrease in conductance of the SAMs studied, tunneling 

resistances (RT) were studied. The RT of the junctions based on the SAMs of acene, 

oligophenyl and OPE backbones, which are plotted against the molecular length in a 

logarithmic fashion at each irradiation dose, are presented in Figure 4.20. The resistance 

of all SAMs increases continuously upon irradiation which is understandable because 

it is inversely proportional to the conductance. However, an interesting observation 

arose from the intersect of each line in the resistance graphs, which corresponds to the 

contact resistance (R0): An exponential increase in the contact resistances was observed 

for all systems, which were plotted as functions of irradiation dose in Figure 4.21. This 

exponential increase in the contact resistance was attributed to the enhanced tunneling 
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barrier, which altered the contact resistance of carbon nanotube based composite 

material from 2 to 10 orders of magnitude for the barrier heights varying from 1 to 5 

eV [131]. Possible explanation for the increase in contact resistances could be given by 

the changes at the interfaces. (i) SAM-ambience interface: When irradiated SAMs are 

exposed to ambient atmosphere, adsorption of oxygen or airborne species on SAM 

films takes place [18], which can be observed with XPS analysis. The I-V 

measurements in this PhD project were carried out at ambient atmosphere, therefore, 

the adsorption of oxygen or airborne species on the irradiated SAM is possible to occur, 

and should give an additional resistance to the film. (ii) SAM-substrate interface: Upon 

irradiation, the thiolate bond (Au−S) intensity decreased continuously, which means 

the reduced chemical contact between SAM and substrate. Therefore, this change 

should also influence the resistance of the SAMs. (iii) Within SAM matrix: Each 

molecule in pristine SAMs forms a molecular tunnel for charge transport. However, as 

it was previously explained in Section 4.1 that electron irradiation results in lateral 

cross-linking of the aromatic molecules (forming a quasi-2D material) along with the 

decrease in the order in the monolayer, which should also modify the electronic 

structure.  
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Figure 4.21: Plot of contact resistance as a function of irradiation dose for acene, 

oligophenyl and OPE backbones. The contact resistances of each backbone are fitted 

by exponential functions represented by dashed lines.  

In addition, the barrier height of a material is known to be interrelated to the work 

function of the metals and semiconductors [132-134]. Therefore, a change in WF 

should affect the barrier height and thereby contact resistance. The study of Frisbie and 

his coworkers could be given as an example to this statement, which suggested that the 

contact resistance of junctions could be altered by changing the WF of SAMs and type 
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of chemical contacts [46]. They prepared SAMs on different substrates, and compared 

their contact resistances with respect to the WF change. They showed that contact 

resistance is strongly dependent on WF change (difference in WF between WF of pure 

metal and WF of SAM-covered metal) and increases with decreasing WF change [46]. 

Actually, they define the WF changes as the sum of three interfacial dipoles: the 

intrinsic molecular dipole, the intrinsic metal dipole that changes upon monolayer 

adsorption (i.e., the surface electron push-back effect) and the metal–linker (e.g., metal–

S) bond dipole. As discussed in the previous sections, electron irradiation modifies the 

aromatic SAMs by forming a cross-linked network which should lead to a change in 

the intrinsic molecular and metal dipoles. Also, the broken Au−S bond and the 

formation of irradiation-induced sulfur species should contribute to the change in 

metal–linker bond dipole. According to these considerations there must be a change in 

WF, so that the contact resistance increases as a consequent to irradiation, and in order 

to prove this, the WF of pristine and irradiated samples was measured in situ under 

UHV conditions, which will be explained in the next section. The related WF changes 

are shown in Figure 4.24. Upon irradiation, all SAMs, except for PT, showed an 

increase in the WF between 0.1 and 0.26 meV, meaning that the WF of irradiated SAMs 

on gold came close to that of pure gold metal which was referenced to 5.2 eV. This 

expected increase could be one explanation for the increase in the contact resistance.  

Another important parameter to carry information about the electronic structure of 

SAMs, viz. the position of the frontier orbitals and the width of the HOMO-LUMO 

gap, is the transition voltage (Vtrans) at which point charge transport mechanism is 

changed from molecular tunneling into field emission [44]. Beebe et al [44] assumed 

that the electronic structure of metal-molecule-metal junctions has a rectangular 

tunneling barrier which is equal to the energy offset between Fermi level (EF) of the 

metal and the closest molecular orbital (HOMO is accepted as the closest molecular 

level in aromatic SAMs ). The length of the molecule in the junction is assumed to be 

the width of the tunneling barrier. Although the real barrier of the molecular junctions 

is much more complicated, it has been shown that this model clearly depicts the change 

in the current-voltage response, which is a transition from direct tunneling through a 

barrier (trapezoidal type) to field emission through the top of the barrier (triangular 

type) [44, 45]. The more detailed explanation of the model and the transition voltage 

are explained in the refs [44, 45, 92, 135].  
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According to the studies related to transition voltage of SAMs [44, 45, 56, 92, 135, 

136], it could be said that Vtrans is influenced by molecular length, WF and EF-EHOMO 

offset values. In addition, depending on the character of the backbone, the effect of 

molecular length could be different. While in aromatic SAMs Vtrans decreases with 

increasing aromatic unit, for aliphatic SAMs Vtrans values are independent from the 

molecular length [45]. This situation is attributed to the similar HOMO-LUMO gap of 

aliphatic SAMs and change in HOMO-LUMO gap of aromatic SAMs with respect to 

chain length [45]. The voltage corresponding to the minimum of the plot of ln (I/V2) 

against 1/V (Fowler-Nordheim (F-N) plot), the transition voltage, provides direct 

information on the tunneling barrier height [44].  
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Figure 4.22: Fowler-Nordheim (F-N) plots for molecular junctions of pristine and 

irradiated SAMs from acene (a1, a2, a3), oligophenyl (b1, b2, b3), and OPE (c1, c2, c3) 

backbones using PT (a1, b1, c1) as the first member in each series assigned with subscript 

‘1’.  

F-N plots of all molecules are given in Figure 4.22. The Vtrans of pristine SAMs was not 

possible to observe in the given bias voltage range except for AnthT (Figure 22a3, in 

the negative voltage range) and OPE3 SAMs (Figure 22c3, in the positive voltage 
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range). Actually, this observation is reasonable because the bias range is between -0.5 

V and +0.5 V which is not sufficient to see the transition voltages of all molecules. 

Also, literature reports the Vtrans values of these molecules (not observed) in the range 

of ~0.5–1 V [38, 44, 45], which is higher (or lower for negative bias) than my applied 

voltage limit. After irradiation, while Vtrans of longer molecules (OPE2, AnthT, TPT 

and OPE3) started to appear in the bias range, there was not observed a transition for 

shorter molecules (PT, NphT and BPT), however, Penner et al observed the Vtrans of 

BPT at around 0.25 V after 50 mC/cm2 irradiation dose [38]. Here it should be stressed 

that there are discrepancies for the estimation of Vtrans in literature, at least half of the 

measured current-voltage curves are discarded to get a reasonable value. In this study, 

all I-V curves obtained from the measurements were used in the results without 

discarding. Upon irradiation OPE2, AnthT, TPT and OPE3 SAMs showed a tendency 

to decrease their Vtrans values (Figure 4.23). This decrease could be related to the 

broadening of the molecular orbitals [38] and the reduction in HOMO-LUMO gaps 

upon irradiation, which was observed for BPT [16] and terphenyldimethanethiol [128, 

129] SAMs after irradiating them with e-beam. The estimated values for pristine AnthT 

and OPE3 SAMs are lower than the literature values measured by conductive AFM 

[45], which is presumably because of the difference in WF values between EGaIn and 

Au AFM tip which are ΦAu ≈ 5.3 eV and ΦEGaln ≈ 4.3 eV, respectively [38]. Not 

observing a transition for the SAMs with low film thickness in the applied voltage range 

could be explained by: Since Vtrans depends on the thickness of the aromatic SAM, the 

applied voltage range is not sufficient to see the Vtrans values for the SAMs comprising 

of short molecules.  
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Figure 4.23: Transition voltage (Vtrans) for both bias polarities versus irradiation dose 

for AnthT (a), TPT (b), OPE2 (c) and OPE3 (d) SAMs. 

4.5     Work Function Experiments 

The change in work function (WF) of the aromatic SAMs upon electron irradiation was 

monitored by the Kelvin Probe technique (see Section 3.9). The WF values for all series 

(acene, oligophenyl and OPE backbone) with respect to freshly sputtered gold, 

measured with a Kelvin probe are presented in Figure 4.24 and compiled in Table 4.3. 

The main purpose of this section is to monitor the variation in WF of aromatic SAMs 

upon electron irradiation, which is presented for the first time.  
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Figure 4.24: Change in the WF of the SAMs from acene (a), oligophenyl (b) and OPE 

(c) backbones as a function of irradiation dose.  
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The WF values for the pristine SAMs of acene backbone are in accordance with the 

literature [56], where the WF values were obtained from ultraviolet photoelectron 

spectroscopy measurements. As seen from Figure 4.24, there is a clear effect of electron 

irradiation on the WF of SAMs from all backbone types; WF of all SAMs moved 

upward while only PT SAM film exhibited a movement to downward. AnthT SAM has 

the highest variation in WF with the value of ~0.26 eV, and OPE3 SAM has the lowest 

change with only 0.1 eV. In general, the acene backbone has the highest variation. If it 

is considered that the effect of electron irradiation at the SAM-ambience and at the 

SAM-substrate interface (cleavage of Au−S bond) are similar for each backbone type, 

the change in the SAM matrix (cross-linking of the monolayer and loss of order in the 

monolayer) should have major role for the differences in the WF change. 

Table 4.3: WF values of pristine and irradiated SAMs. The units are eV.  

Irradiation 

dose 

PT NphT AnthT BPT TPT OPE2 OPE3 

Pristine 4.7 4.44 4.3 4.48 4.36 4.7 4.39 

5 4.6 4.5 4.31 4.53 4.37 4.73 4.37 

10 4.5 4.53 4.38 4.6 4.42 4.75 4.4 

20 4.56 4.56 4.45 4.65 4.47 4.77 4.41 

40 4.56 4.59 4.5 4.66 4.55 4.8 4.46 

  60 4.58 4.61 4.56 4.64 4.57 4.83 4.49 

 

When one looks to Figure 4.24, it is clear that the WF values of acene and oligophenyl 

SAMs are ordered with the molecule length of their constituents, however, OPE2 SAM 

deforms this order for the OPE backbone. The absolute WF value of pristine OPE2 is 

somewhat higher than expected, which should be related to its film properties such as 

low packing density (see Table 4.2) and/or large tilt angle with respect to the surface 

normal in comparison to other SAM films. The effect of the latter was mentioned for 

alkanethiol SAMs on gold and silver substrates [137]. According to XPS thickness 

value of pristine OPE2 SAM, it corresponds to ~70% of the monolayer if it forms an 

all trans extended upright orientation. Therefore, this could be explained either by the 
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low packing density and/or by large tilt angle of OPE2 SAMs. However, its general 

response to the irradiation, increasing with irradiation dose, is same like other SAMs.  

The results obtained in this section confirm the importance of the backbone type, which 

has already been discussed by XPS analysis and electric transport experiments, and 

show that electron irradiation can be a useful tool tune the WF of surfaces covered with 

organic layers like SAMs.  

4.6 Nitrogen-Containing Aromatic SAMs 

As an additional system, I also investigated the effect of electron irradiation on 

pyridine-containing aromatic SAMs (see the figure below) with XPS. Therefore, I 

followed the same procedure as described for the non-substituted aromatic molecules 

in Section 4.1.  

 

This is the same figure as shown in Chapter 3 (Figure 3.2).  

The fabricated BPn, BP1n, TP1n and TP1 SAMs exhibited a similar behavior upon 

electron irradiation. C 1s, S 2p and N 1s XPS spectra of the pristine and irradiated TP1n 

SAM are presented in Figure 4.25, representative of the BPn, BP1n and TP1 

monolayers as well. The irradiation was performed homogeneously over the sample, 

the electron energy was set to 50 eV, and the dose was varied.  
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Figure 4.25: C 1s (a), S 2p (b) and N 1s (c) XPS spectra of the pristine and irradiated 

TP1n SAMs. The doses are marked at the respective spectra. The energy of the electrons 

was 50 eV. The C 1s spectra are decomposed into the component peaks, viz. the main 

peak (green lines) and a shoulder (blue lines); see text for details. The S 2p spectra are 

decomposed into the component doublets corresponding to the pristine thiolate species 

(green lines) and irradiation-induced sulfur species (blue lines); the sum of these 

components is drawn by the red lines. Vertical solid lines in panel (b) highlight the BE 

positions of the doublets. 

The C 1s spectra of the pristine TP1n SAM in Figure 4.25a exhibits a strong peak at 

284.5 eV corresponding to the oligophenyl backbone [113, 114] and a shoulder around 

285.5 eV, assigned to the carbon atom bonded to the nitrogen. The position of C 1s 

signal is consistent with the XPS spectra of the TP1n SAM used in ref  [115]. No 

features corresponding to possible oxygen contamination are observed, which was also 

supported by the O 1s spectrum (not shown). The intensity of the C 1s peaks as well as 

the character and shape of the C 1s spectrum of the TP1n SAM do not exhibit any 

perceptible changes upon irradiation. This suggests, in agreement with the Au 4f data 

(not shown here), a very low extent (if any at all) of irradiation-induced desorption, 

which is also supported by the behavior of the effective thickness. The respective 

dependence of this parameter for the BPn, BP1n, TP1n and TP1 SAMs on irradiation 

dose is shown in Figure 4.26a. Accordingly, the effective thickness almost did not 

change in the course of the irradiation but for TP1n SAM increased slightly. The 

thickness increase is presumably related to the irradiation-induced adsorption of 

residual gas molecules on the SAM surface, which was observed in AnthT, TPT and 

OPE3 SAMs and mentioned in Section 4.1.  
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Table 4.4: XPS thickness, area per molecule and packing density of the pristine 

pyridine-containing SAMs and TP1 SAM used in this section. The values were 

determined from the XPS spectra of the SAMs. 

Molecules XPS thickness 

(Å) 

Area per molecule 

(Å2/molecule) 

Packing density 

(molecules/cm2) 

BPn 11.6±0.4 25.5 3.92×1014 

BP1n 12.6±0.4 24.7 4.05×1014 

TP1n 18±0.6 21.3 4.70×1014 

TP1 16.6±0.6 23.1 4.33×1014 

 

The lack of any perceptible changes in the C 1s spectra upon the irradiation can lead to 

a wrong conclusion that no chemical changes in the SAM matrix occur. This is, 

however, not the case as follows from a detailed analysis of these spectra. The derived 

parameter, viz. the FWHM of the main C 1s peak for the BPn, BP1n, TP1n and TP1 

SAMs is shown in Figure 4.26b as functions of the irradiation dose. As seen in this 

figure, the FWHM values exhibited small but well-traceable changes upon the 

irradiation, with a saturation-like behavior achieved already at ~20 mC/cm2. These 

changes can be associated with progressive cross-linking of the SAM constituents, 

following the extensive cleavage of C–H bonds in the SAM matrix. The threshold for 

such processes lies at ~7 eV [11, 17], far below the electron energies in this work.  

The FWHMs of the main C 1s peak for the SAMs studied exhibit an exponential-like 

variation at low doses and a leveling off behavior at high doses. Such a behavior is 

typical for SAMs [15] and can be described by using Eq. 4.1 described for the same 

processes in Section 4.1. The respective fitting curves are shown in Figure 4.26b, and 

the derived cross-sections, from the C 1s FWHM behavior, are compiled in Table 4.5. 

The cross-section value of BPn film is ~1.3 times higher than that of BP1n film, 

indicating the change in the hydrocarbon matrix is more pronounced than the BP1n one. 

This is an expected result, because the presence of the methylene unit (-CH2-) between 

the sulfur headgroup and aromatic chain provides the formation of a more densely 

packed and ordered monolayer. Actually, odd numbers (1, 3, 5) of the methylene units 

provide higher order and packing density to the monolayer than even numbers (0, 2, 4, 

6) [138-145]. Moreover, this is also supported with the packing densities of BPn and 

BP1n  SAMs compiled in Table 4.4. A similar behavior was observed for TP1n and 

TP1 SAMs both of which have the identical structure except for the nitrogen in the top 
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ring. The TP1n monolayer has a cross-section value of 3.1×10-17 cm2 which one is 1.5 

times more than TP1 SAM. Therefore, from the comparison of the cross-sections it can 

be claimed that the nitrogen in the aromatic ring leads the TP1n SAM to be more 

impaired under electron irradiation in comparison to the TP1 SAM. Furthermore, the 

huge effect of methylene spacer is obvious when the cross-sections of the TPT SAM 

(see Section 4.1), whose backbone is identical to TP1 but without a methylene spacer, 

and TP1 SAMs are compared to each other. For three-ring system (TPT and TP1 

SAMs), the cross-section of the TPT SAM is ~1.8 times more than TP1, indicating the 

loss of order in the monolayer more noticeable than TP1 monolayer as mentioned above 

for BPn and BP1n SAMs.  
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Figure 4.26: Dependence of the effective thickness (a) and FWHM of the main C 1s 

peak (b), for the BPn (black squares and black dashed curve), BP1n (red cicles and red 

dashed curve), TP1n (green down triangles and green dashed curve), and TP1 (blue up 

triangles and blue dashed curve) SAMs on irradiation dose. The straight, color-coded 

dashed lines in panel (a) are guides for the eyes. The parameters in panel (b) are fitted 

by exponential functions according to Eq. 4.1 (color-coded dashed curves).  
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Figure 4.27: Dependence of the total intensity of the S 2p signal (blue squares), 

intensity of the S 2p component corresponding to the pristine thiolate species (red 

triangles), and intensity of the S 2p component corresponding to irradiation-induced 

species (black circles) for the BPn (a), BP1n (b), TP1n (c), and TP1 (d) SAMs on 

irradiation dose. The intensities of the above components are fitted by exponential 

functions according to Eq. 4.1 (red and black solid lines, respectively).  

Along with the SAM matrix, the SAM-substrate interface was modified upon the 

electron irradiation as follows from the S 2p XPS spectra of the TP1n SAM shown in 

Figure 25b, representative of the BPn, BP1n and TP1 monolayers as well (similar 

behavior). The spectrum of the pristine TP1n SAM exhibits a characteristic S 2p3/2,1/2 

doublet at a BE position of ~162.0 eV (S 2p3/2) corresponding to the thiolate species 

bound to noble metal surfaces [113, 146], with no traces of atomic sulfur, disulfide, 

unbound sulfur or oxidized species. Upon the irradiation, another component doublet 

at a BE position of ~163.4 eV (S 2p3/2) appears and progressively increases in intensity 

with increasing dose on the expense of the thiolate-stemming doublet. This behavior 

corresponds to the irradiation-induced cleavage of the Au–S bonds and appearance of 

new species, which can be disulfides but most likely have C–S–C character [10, 16]. 

The intensities of both S 2p component doublets as well as the total intensity of the S 

2p signal for the BPn (a), BP1n (b), TP1n (c) and TP1 (d) SAMs are presented in Figure 

4.27 as functions of the irradiation dose. Except for BPn film (see Figure 4.27a), the 

total S 2p intensity changed hardly in the course of the irradiation which, along with 
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the Au 4f (not shown) and C 1s XPS data, suggests a very low extent of the irradiation-

induced desorption in the SAMs studied. The decrease in the sulfur content of BPn 

SAM was attributed to the less packing density of the monolayer. At the same time, the 

intensities of the doublets, corresponding to the thiolate and irradiation-induced species, 

exhibit an exponential-like variation at low doses and a leveling off behavior at high 

doses. Using same approach as in the case of the C 1s spectra, fitting according to Eq. 

4.1 could be performed. The respective fitting curves are shown in Figure 4.27, and the 

derived cross-sections are compiled in Table 4.5, averaged over the curves describing 

the intensities of S 2p component doublets corresponding to the thiolate and irradiation-

induced species. These cross-sections are quite similar for the SAMs studied, with the 

highest value for the BPn SAM and the lowest value for the TP1n monolayer.  
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Figure 4.28: N 1s intensity of BPn, BP1n and TP1n SAMs as a function of irradiation 

dose.  

Apart from the changes at the SAM-substrate and within the SAM matrix, a change at 

the SAM-ambience interface also took place upon electron irradiation. The effect of 

electron irradiation was monitored by the variation in intensity of nitrogen which is 

located at the topmost outer position (SAM-ambience interface) of the SAM. The 

respective N 1s XPS spectra are shown in Figure 4.25c, representative of the BPn and 

BP1n monolayers as well. The spectrum of the pristine TP1n film shows a peak at a BE 

position of ~399 eV corresponding to the nitrogen in the pyridine ring [115, 147]. The 

total intensity of N 1s signal for BPn, BP1n and TP1n is plotted as a function of 

irradiation dose and is presented in Figure 4.28. Upon the irradiation, the intensity of 

the N 1s signal decreased slightly by about 5-8%, which suggests a very low extent of 

desorption in the SAM, along with C 1s and S 2p signals. However, for BPn SAM the 
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decrease in N 1s intensity is more noticeable as in the case for C 1s and S 2p signals of 

BPn monolayer, indicating the desorption of molecular fragments from the SAM film, 

therefore, the BPn SAM was found to be the least stable film. Moreover, after 

irradiating TP1n SAM with a 20 mC/cm2 dose, a shoulder at 400.5 eV, attributed to the 

irradiation-induced nitrogen species, was observed in intensity with increasing dose.  

Table 4.5: Cross-sections of the irradiation-induced processes involving the SAM 

matrix and the SAM/substrate interface; see text for details. The values were 

determined from the spectroscopic experiments. The units are 10-17 cm2.  

Monolayer BPn  BP1n TP1n TP1 

SAM matrix 2.21  1.70.6 3.11.1  

SAM/Au interface 20.4  0.940.3  0.60.3 1.4 
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5 Conclusions 

In this work, I focused on the effect of electron irradiation on aromatic thiolate SAMs 

on noble metal substrates. Accordingly, I studied the evolution of the basic irradiation-

induced processes in the course of the irradiation treatment as well as performance of 

these films as negative resists in electron lithography. In addition, the changes in the 

electric transport properties and work function were monitored. The most basic 

aromatic systems, with rod-like oligophenyl, acene and OPE backbones, were 

addressed, with the length of the backbone being varied and with the OPE-based films 

being investigated for the first time in the given context. All the SAMs studied exhibited 

similar behavior upon the irradiation treatment, with clear dominance of cross-linking, 

following the cleavage of C–H bonds in the SAM matrix and slowing down and 

inhibiting damage of the SAM-substrate interface and desorption of molecular 

fragments. The cross-sections for the modification of the SAM matrix and the damage 

of the SAM-substrate interface were determined for the primary electron energy of 50 

eV, frequently used for the CNM fabrication. The derived values were found to be 

similar for a particular process, showing only slight difference for the different 

backbones.   

It was found that the effect of cross-linking takes hold of the systems at already very 

early stages of the treatment, affecting the other, irradiation-induced processes and 

ensuring performance of the films as negative lithographic resist. The two-ring systems 

(BPT, NphT and OPE2) exhibited the best performance as lithographic resists, with an 

optimal dose of 10-20 mC/cm2 at 0.5-1 keV. The one-ring system (PT) showed a poor 

performance, which was explained by its limited ability to form an extensive, 2D cross-

linking network. The three-ring systems (TPT, AnthT and OPE3) exhibited a poor 

lithographic performance, because of the high resistance of the pristine films to the 

etching agents, resulting in a low etching contrast between the irradiated and non-

irradiated areas. Another process associated with the poor lithographic performance of 

the three-ring films, but occurring at high doses for the two-ring films as well, was a 

spontaneous release of the cross-linked SAMs within the irradiated areas, in the form 
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of CNMs. This process resulted either in spot-perimeter-decoration patterns or even in 

reversal of the lithographic contrast.  

From the lithographic data, cross-sections of the irradiation-induced cross-linking were 

derived for all SAMs studied. These cross-sections decreased with increasing electron 

energy in the energy range of the lithographic experiments (0.5-5 keV). For the AnthT 

film, where the data for 50 eV were obtained as well, the dependence of the cross-

section on the electron energy exhibited a bell-like curve with a maximum at 500 eV, 

mimicking the behavior of the secondary electron yield from the gold substrate.  

For all types of the SAM precursors except for PT, fabrication of CNMs was 

demonstrated, reproducing the literature data [35] for the films with the oligophenyl 

and acene backbones and getting this result for the first time for the monolayers with 

the OPE backbone. 

The changes in the electric transport properties of the aromatic SAMs upon electron 

irradiation (50 eV) were monitored by two-terminal junction method using an EGaIn 

tip as the top electrode and the conductive Au substrate as the bottom electrode. The 

obtained current density values correlated well with the lengths of the pristine SAMs, 

confirming the general formula 𝐽 = 𝐽0exp⁡(−𝛽𝑑) used to describe the conductance of 

monomolecular films. The estimated tunneling decay constants (β) for the pristine 

SAMs were in good agreement with the literature values. At the same time, upon 

irradiation, the β values decreased for all SAMs except for those with the acene 

backbone, and became somewhat dependent on the bias voltage, which is probably 

related to the tunneling barrier at the SAM-gold interface [38].  

Upon varying the irradiation dose from 10 to 40 mC/cm2, a decrease in electrical 

conductance by 1 order and 1-2 orders of magnitude was observed for the OPE and 

oligophenyl SAM films, respectively. In the case of the acene backbone, this effect was 

even more pronounced (a decrease by 2-3 orders of magnitude), which was attributed 

to the destruction of the highly-conjugated ring structure of these films. The decrease 

in electrical conductance meant an increase in the tunneling resistance of the molecular 

junctions, which occurred mostly on the expense of the contact resistance. The latter 

parameter increased exponentially upon irradiation for all monolayers studied. This 

behavior was attributed to (i) the modification of the electronic structure (positions of 

the frontier orbitals and the width of the HOMO-LUMO gap), (ii) change of WF, (iii) 

adsorption of oxygen or airborne species at the SAM-ambience interface upon exposure 
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of the irradiated films to ambient and (iv) partial breakage of Au–S bonds at the SAM-

substrate interface.  

To get information on the behavior of the relevant parameters, changes in the electronic 

structure and WF of the SAMs upon the irradiation were monitored by the Kelvin probe 

technique. The observed increase in WF (between 0.1 and 0.26 eV) for the most of the 

systems correlated well with the increase in the contact resistance. The electronic 

structure was studied indirectly by compiling the Fowler-Nordheim (F-N) plots. These 

plots exhibited non-resonant (direct) tunneling for all SAMs and transition to the field 

emission regime for the three-ring and OPE2 monolayers. Not observing such a 

transition for shorter molecules was attributed to the limited bias voltage range (Vtrans) 

so that the F-N tunneling regime could not be achieved. The respective transition 

voltage Vtrans was derived, which is believed to be a fingerprint for the positions of the 

frontier molecular orbitals [92, 93]. The Vtrans values became smaller upon the 

irradiation, indicating a progressive decrease in the HOMO-LUMO gap.  

The changes in the WF in all systems were monitored by the Kelvin probe technique. 

All SAMs studied exhibited similar behavior, showing an increase in the WF by 0.1-

0.26 eV upon the irradiation treatment, except for the one-ring system (PT) which 

showed a decrease by ca. 0.15 eV. The increase in WF for the most of the monolayers 

correlated with the increase in the contact resistances. In particular, the SAMs with the 

acene backbone exhibited the highest WF change, corresponding to the highest change 

in the electrical conductance. 

Apart from the non-substituted aromatic SAMs, pyridine-substituted monolayers with 

oligophenyl backbone were also studied. All these SAMs exhibited similar behavior as 

the nitrogen-free systems. The cross-sections for the modification of the SAM matrix 

and the damage of the SAM-substrate interface were determined for the primary 

electron energy of 50 eV. The derived values were found to be similar for the SAMs 

studied, showing only slight difference for the two-ring (BPn and BP1n) and three-ring 

(TP1n and TP1) films. In addition, the total nitrogen intensity was found to decrease 

only slightly under the electron irradiation treatment which can be useful to fabricate 

nitrogen-doped CNMs and graphene sheets. At high doses (above 40 mC/cm2 dose), the 

formation of irradiation-induced nitrogen species was observed.
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Appendix  

 

Figure A. 1: AFM images of Au/Si(100) patterns prepared by EBL with the NphT 

SAM. The patterning was performed at electron energies of 0.5, 1, 3 and 5 keV. The 

doses corresponding to the individual square-like Au features were 1, 2, 5, 10, 20, 40, 

80, 150 and 300 mC/cm2 (from left to the right). 
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Figure A. 2: Spontaneous release of the cross-linked SAM pieces within the irradiated 

areas during the wet etching process, in the form of CNMs.
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