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Abstract 

The phenomena of photo-induced chemical reactions can exhibit kinetics as short as a 

few femtoseconds. The development of femtosecond UV pulses enables the investigation 

of such ultrafast phenomena in more experimentally challenging, UV absorbing systems. 

This thesis describes, chronologically, development of a UV transient absorption (TA) 

system and its application to various coumarin-based molecular systems. The 

experimental section details the TA system comprising of three major components: two 

tunable UV excitation sources giving a total excitation range of 250-350 nm, 

supercontinuum generation enabling 240-700 nm probe range, and multichannel 

detection with greater than 5 ×10-5 OD sensitivity. The potential of the TA setup was 

tested on the study of ultrafast relaxation in 7-hydroxy coumarin.  Following successful 

tests, the photo-induced cleavage reaction of coumarin dimer was studied in order to 

understand the ultrafast dynamics. The experiments utilized 280 nm excitation and 

broadband (300-650 nm) probing. The results revealed fast cleavage occurring through 

short-lived nonradiative (<200 fs) singlet states. Two branched kinetic models were 

developed to describe the monomer formation and dimer relaxation dynamics, identify 

intermediate states, and determine the quantum yields. The anti-hh displayed the highest 

cleavage efficiency of ~20 %.  Finally, variation in the quantum yields between isomers 

was rationalized using a sequential bond cleavage mechanism over a concerted, 

“pericyclic-style” ring cleavage. 
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Kurzzusammenfassung 

Die Phänomene photoinduzierter chemischer Reaktionen können eine Kinetik innerhalb 

einiger Femtosekunden aufweisen. Die Entwicklung von Femtosekundenimpulsen im 

UV erlaubt die Erforschung solcher ultraschnellen Phänomene an experimentell 

herausfordernden, UV absorbierenden Systemen. In dieser Arbeit sind chronologisch die 

Entwicklung eines Systems für UV transiente Absorption (TA) und seine Anwendung an 

verschiedenen Cumarin-basierten molekularen Systeme beschrieben. Der experimentelle 

Teil erläutert das TA-System, das drei Hauptkomponenten umfasst: zwei 

durchstimmbare UV Anregungsquellen mit einem Gesamtspektrum von 250-350 nm, die 

Erzeugung eines Superkontinuums von 240-700 nm als Probeimpuls und die 

Multikanaldetektion mit einer Sensitivität größer als 5 ×10-5 OD. Das Potential des TA-

Aufbaus wurde im Rahmen einer Studie der ultraschnellen Relaxation in 7-

Hydroxycumarin überprüft. Nach erfolgreichen Tests wurde die photoinduzierte 

Spaltungsreaktion von Coumarindimeren untersucht mit dem Ziel die ultraschnelle 

Dynamik im Detail zu verstehen. In den Experimenten wurde ein Anregungsimpuls bei 

280 nm und ein breitbandiger Probeimpuls (300-650 nm) verwendet. Die Ergebnisse 

lassen eine schnelle Spaltungsreaktion erkennen, die über kurzlebige strahlungslose 

(<200 fs) Singulettzustände stattfindet. Zwei verzweigte Kinetikmodelle wurden 

entwickelt, um die Erzeugung des Monomers und die Relaxationsdynamik des Dimers 

zu beschreiben, die Zwischenzustände zu identifizieren und die Quantenausbeute zu 

bestimmen. Das Isomer anti-hh weist die höchste Spaltungseffizienz von ~20 % auf. 

Abschließend konnte der Unterschied der Quantenausbeuten zwischen den Isomeren, 

basierend auf einem Mechanismus einer sequentiellen Bindungsspaltung anstelle einer 

geschlossenen, pericyclischartigen Ringspaltung begründet werden. 
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Chapter 1            

Introduction 

 

The phenomena of light-induced changes to molecular structure, function and 

composition has long been one of the classic, but imminently exciting scientific avenues. 

Photo-induced chemical reactions play a crucial role in the function of many natural 

systems, such as displayed in photosynthesis, and now find ever increasing use in modern 

photovoltaic and optoelectronic technologies. They are capable of proceeding at 

extremely short timescales, the shortest of which are over in a few femtoseconds. The 

study of such events requires spectroscopic methods with sufficient time resolution being 

able to “freeze” the molecular structure far from equilibrium, and prior to their vibrational 

and rotational modes of relaxation.1 Ahmed Zewail and his group were the first to 

successfully realize the capability of ultrashort, laser pulse physics and developed a new 

research field, which is now known as “femtochemistry” (Figure 1.1).2-4 Nowadays a 

variety of advanced time-resolved spectroscopic techniques, ranging from the ultraviolet 

(UV) through to the deep infrared (IR), have been developed in order to understand the 

nature of molecular dynamics, and characterize the photochemistry of molecules.  

 

 

Figure 1.1: The ring opening of a cyclobutane molecule to form two ethylene molecules. Zewail 

and his co-workers showed with femtosecond spectroscopy that first one bond breaks and 

tetramethylene as an intermediate is formed in 100-200 fs and has a lifetime of about 700 fs.4  
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UV irradiation is best known for its detrimental effects on organic compounds, 

particularly upon prolonged sunlight exposure. However, UV radiation can also have a 

beneficial effect and be used to initiate desired chemical reactions. For example, one of 

the detrimental effects of UV irradiation on the biosphere is the formation of 

cyclobutane-based DNA lesions (Figure 1.2), which has been considered to be the major 

cause of DNA damages and high rates of skin cancer.5 However, upon specific UV 

irradiation the DNA lesions can also be repaired with high efficiency by a light-driven 

photolyase using electron donor and electron acceptor photosensitizers (Figure 1.2).6, 7 A 

large variety of photoactive molecules have their absorption in the UV spectral domain. 

The typical absorption ranges of some important classes of organic compounds are listed 

in Table 1.1, which are constituents of bio-molecules, many molecular devices and supra-

molecular structures. Molecules based on these basic compounds are of significant 

importance for synthetic chemistry, as well as biological and technical processes. For 

example, the photosynthesis of vitamin D and vision processes in pigments rely on 

electrocyclic ring opening and closing reactions.8, 9 Retinal proteins are among the most 

popular examples of bio-photosensors, where light-induced redistribution of charge on 

the chromophore drives the structural changes needed for the biological function. The 

sensitivity of retinal increases exponentially into the UV, and thus in order to obtain the 

information of local charge reorganization during protein function UV spectroscopies are 

usually applied.10 Besides the general interests in bio-oriented activities, UV irradiation 

is also capable of causing fast polymerization from a liquid resin into a solid polymer, 

and inducing the polymerization of reactive groups present in a solid polymer to achieve 

insolubilization, thus modify its physical properties.11  

 

 

Figure 1.2: Under UV irradiation, the formation of thymine-thymine cyclobutane-pyrimidine 

dimers and their repair (reverse) reaction by the enzyme photolyase.  
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Table 1.1 Typical absorption range of some important 

classes of organic compounds12, 13 

Molecule Absorption range 

1. Simple alkene 190-200 nm                   

2. Acyclic diene 220-250 nm 

3. Cyclic diene 250-270 nm 

4. Styrene 270-300 nm 

5. Saturated ketones 270-280 nm 

6. Aromatic compounds 250-280 nm 

         

 

The development of ultrafast spectroscopic techniques has been supported by the 

availability of ultrashort laser pulses. UV-based femtosecond experiments are rarer than 

their visible and NIR counterparts due to technological limitations, many of which are 

materials related or rather UV compatible materials are still few in number.  

Consequently, few time-resolved groups utilize UV femtosecond optics. This is 

unfortunate as whilst the larger, more complicated visible-NIR absorbing systems are 

easy to experimentally probe, the simpler UV absorbing materials are substantially less 

easy to measure. Back to the early 90s, the first UV transient experiments were performed 

based on dye laser technology giving a time resolution of hundreds of femtoseconds to a 

few picoseconds.14, 15 With the availability of mJ pulse energy, titanium sapphire 

(Ti:sapphire) amplifiers, femtosecond pulses can now be generated in different spectral 

ranges, with extension into the UV by nonlinear frequency up-conversion.16, 17 However, 

no fine tuning was possible by frequency doubling or tripling of the amplifier’s 

fundamental frequency, and the bandwidth of the generated UV pulses was not able to 

support pulse durations into the sub-100 fs regime. The realization of non-collinear 

optical parametric amplifiers (NOPA) changed all this. Broadband pulses with μJ pulse 

energies, which can support transform limits of < 10 fs became a reality with this 

advancement.18  Most NOPA systems are designed to operate in the visible to NIR range 

(~ 500-1000 nm) but some have been tailored for UV generation. Utilizing frequency 

doubling or sum frequency generation of visible NOPA outputs, sub-30 fs pulses with 
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tuning range from 200 nm to 350 nm can be efficiently generated.19-21 However, high 

time resolution of time-resolved measurements call for even shorter pulses, which require 

broader spectral bandwidth. Recent advanced techniques of UV pulse generation mainly 

focus on how to overcome the bandwidth limits, which usually come at the expense of 

significant complication to the experimental setup, potentially making it unfeasible for 

robust, long term usage. In addition, pulse characterization in the UV is complicated by 

the short-wavelength absorption of nonlinear materials and unfavourable phase-matching 

conditions. Finally, the generation of broad probe pulses spanning from the deep UV 

extending to near IR is still not available, primarily due to the lack of suitable materials 

with high bandgap and high damage thresholds.   

The aim of this thesis is two-fold. The first part describes in detail the successful 

construction of a high-quality, robust UV pump-probe setup. The main focus will be on 

the implementation of two NOPA apparatus for easy to tune, UV pump pulse generation. 

Two simple schemes outline the components of sum frequency generation (SFG) based 

NOPA and a second harmonic generation (SHG) based NOPA. Both are designed to 

efficiently generate UV pulses with enough pump energy for most molecular systems, 

and with sufficient bandwidth to support sub-30 fs pulse duration. In addition, to 

characterize the generated UV pulses, a compact autocorrelator based on two-photon 

absorption in a photomultiplier tube was developed.  

In the second part, we demonstrate the application of femtosecond UV transient 

absorption to investigate the cleavage dynamics of coumarin dimers. The near UV/high 

energy (> 300 nm) photo-induced dimerization of coumarin is well-known to give the 

cyclobutane-based dimer molecule via the cycloaddition reaction (Figure 1.3). 

Conversely, mid to deep UV irradiation (< 280 nm) triggers the cycloreversion of the 

coumarin dimer back to the monomer form (Figure 1.3).22 Generally, the photo-induced 

reaction of the cyclobutane ring is regarded to be pericyclic, which facilitates the scission 

and creation of chemical bonds within one step.23, 24 In reality though, this reaction does 

not have to be concerted, but can proceed via the formation of intermediates (Figure 1.1).4 

The mechanism of cyclobutane-based reactions have long been a central topic in 

photochemistry as the cyclobutane unit is found as a basic structural element in a wide 

range of naturally occurring compounds, such as in bacteria, fungi, plants and skin.25  In 

particular, cellular DNA strongly absorbs shorter-wavelength solar UV irradiation, 

resulting in various types of DNA damage, among which the cyclobutane pyrimidine 

dimers are predominant.7 For the cyclobutane-based coumarin dimer, it has been found 

to be a valuable non-invasive therapeutic tool in the treatment of second cataract based 

on the photo-induced cleavage reaction of the cyclobutane ring.26, 27 Using time-resolved 
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spectroscopy to examine the underlying photocleavage dynamics of coumarin dimer is 

of crucial importance to understand and optimize the cleavage efficiency for its drug 

delivery applications. It is also very helpful to understand other cyclobutane-containing 

groups as studies of the cyclobuane amino acids and peptides are limited.  

 

Figure 1.3: Upon direct irradiation of coumarin monomers with wavelength above 300 nm, a 

[2+2] cycloaddition reaction occurs, producing cyclobutane-based coumarin dimers. Under UV 

irradiation below 280 nm, the cyclobutane rings of dimer molecules undergo cycloreversion 

resulting in the monomer product. 

 

Outline of the thesis 

In Chapter 2, to obtain ultrashort UV pulses, two nonlinear up-conversion processes, 

sum frequency generation and second harmonic generation, are applied. Different from 

conventional configurations, the two UV generation schemes are improved in the 

consideration of conversion efficiency, spectral handling and group velocity mismatch. 

To characterize the generated UV pulses, a simple autocorrelator is introduced in 

Chapter 3, which is based on two-photon absorption in a photomultiplier tube.  In order 

to confirm the reliability of the measured autocorrelation trace, an experimental 

verification is conducted for various fluences. Other aspects influencing the reliability 

and suitability of the autocorrelator, like window and photocathode material are also 

discussed. In Chapter 4, the supercontinuum generation is investigated for various 

condensed materials and pump wavelengths. The main focus is on how to broaden the 

anti-Stokes side of the supercontinuum spectrum. Chapter 5 addresses the principal of 
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the transient absorption (TA) experiment. All relevant components which play a role in 

building and running a femtosecond UV TA experiment are assembled to give a complete 

pump-probe system. Data processing and data analysis are elucidated. The entire pump-

probe system, including the experiment measurement software, is tested in the study of 

the electronic levels and the dynamics of the excited state of 7-hydroxy coumarin. The 

experimental results of the cleavage reaction of coumarin dimer studied by UV transient 

absorption experiments is given in Chapter 6. The interpretation of the experimental 

data is supported by exponential analysis, singular value decomposition and global target 

analysis, from which two branched kinetic models are developed to describe the 

formation of monomers and dimer relaxation dynamics, to identify possible intermediate 

states, and to determine the quantum yields of the dimer splitting. Moreover, the effect 

of molecular structure on the quantum yield of cleavage reaction is analyzed by 

comparing the three isomers. A summary of the results and proposals for future 

experiments are given in Chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

Chapter 2            

Generation of Sub-30 fs UV Pulses Tunable from 250 

nm to 350 nm  

 

The generation of ultraviolet (UV) pulses with sufficiently short pulse duration is the key 

prerequisite for the successful realization of femtosecond time-resolved spectroscopy in 

the UV spectral domain. This chapter starts with a background information regarding the 

development of UV pulse lasers, in particular recent advances in ultrashort UV solid-

state amplifiers. Following this, two UV nonlinear parametric amplifier (NOPA) systems 

based on the sum frequency generation (SFG) and the second harmonic generation (SHG), 

respectively, are discussed in detail. For the SFG UV NOPA, different arrangements of 

the visible and NIR pulses are discussed with respect to the conversion efficiency. The 

physical effects influencing conversion efficiency and pulse duration for the SHG UV 

NOPA, such as dispersion compensation and group velocity mismatch (GVM), are 

discussed with the simulation. The final section briefly summarizes the basic features of 

the two UV NOPAs.   
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2.1  The development of ultrafast UV pulses 

Over the last decades, due to the introduction of new gain materials, mode-locking and 

amplification techniques, there have been spectacular developments in ultrafast laser 

technologies. However, the development of ultrashort pulses in the UV domain has been 

a challenge, mainly due to the scarcity of nonlinear optical materials possessing suitable 

optical and mechanical characteristics for the UV spectral region. Moreover, direct 

sources being able to generate UV pulses with femtosecond duration remain unavailable. 

Therefore, generation of ultrashort UV pulses has to make use of readily available longer 

wavelength pulses, such as visible and NIR pulses, by frequency up-conversion processes 

(Figure 2.1). Recently, experimental approaches and theoretical studies of UV pulses 

have been focusing on increasing conversion efficiencies and shortening pulse durations. 

So far, there have been two well developed media for generating ultrashort UV pulses: 

one is gas, and the other is solid-state material.  

 

 

 

Figure 2.1: Frequency up-conversion processes in an optical medium possessing (a, b) quadratic 

(2), (c) cubic (3), and (d) higher order nonlinear susceptibility (n). (a) Two electromagnetic 

waves with the same frequency , generate a higher frequency wave with a frequency of 2 by 

the SHG; (b) two electromagnetic waves with frequencies 1 and 2 can generate a wave with 

frequency 3=1+2 by SFG; (c) two photons with frequencies 1 and 2 are converted into 

higher frequency photons by four wave mixing (FWM), depending on the phase-matching 

conditions; (d) high harmonic generation (HHG) gives a output wave with a frequency of n. 
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Gas has been successfully applied in the ultrashort UV generation because it can avoid 

complications such as a finite phase-matching bandwidth, which limits the obtainable 

pulse duration. By focusing 22 fs, 1-mJ fundamental 800 nm pulses in air, third harmonic 

UV pulses were generated.28 Its advantages are the short pulse duration (16 fs) and the 

relative ease of implementation, but the conversion efficiency was only about 0.1 %. A 

higher conversion efficiency can be obtained with argon. Beutler et al. applied 

filamentation in argon to broaden the spectral bandwidth of third harmonic UV pulses 

from 1.4 nm to about 10 nm, leading to sub-20 fs UV pulses with ~ 7 % conversion 

efficiency.29 In addition to argon, neon has been found to provide the highest output of 

the nondegenerate FWM signal at 260 nm with 12 fs pulse duration.30 Down to 

wavelengths shorter than 250 nm, FWM in gases is a simple and efficient way to generate 

ultrashort pulses. Zuo and co-workers extended UV pulse generation down to 237 nm by 

spectral phase transfer through FWM process in neon gas.31 The value of this approach 

is that the temporal width of the generated UV pulses were controlled by simple 

manipulation of the NIR pulse chirp, giving a 25 fs pulse duration without a complex 

compressor system. Moreover, compared to other UV generation techniques in gas phase, 

this method provided tunability of the output spectrum by tuning the center wavelength 

of the NIR pulses. However, the low nonlinear susceptibility of gas media is still the 

primary limitation to be applied widely in the generation of UV pulses.  

The other frequency conversion medium is the solid-state nonlinear crystal, in 

particular the -BaB2O4 (BBO) and LiB3O5 (LBO) family, which are the most commonly 

used frequency up-conversion nonlinear materials in the UV pulses generation because 

of their high nonlinear susceptibility and wide range of transparency.32, 33 However, 

operation of BBO below 200 nm becomes challenging since its absorption edge is around 

190 nm. So far, the KBe2BO3F2 (KBBF) crystal is found to be the only solid material 

which can fulfil the stringent requirement of wide transparency in the deep UV, and 

therefore enable the harmonic generation down to 157 nm.33-35 In general, a good 

nonlinear crystal for the generation of UV pulses should satisfy the following 

requirements: (1) large nonlinear coefficient, (2) large angular acceptance, (3) small 

spatial walk-off effect, (4) small linear and nonlinear absorption at the UV region, (5) 

high damage threshold, (6) good chemical and mechanical stability.36 The most 

straightforward way for femtosecond UV pulse generation relies on direct second37 or 

third harmonic generation38, and sum frequency mixing21, 39 of ultrashort pulses provided 

by optical parametric amplifiers (OPA) operating in the visible and NIR. However, large 

group velocity mismatch and narrow phase matching bandwidth limit the conversion 

efficiency and restrict the achievement of spectrally broad pulses. Efficient generation of 

tunable UV pulses under 50 fs is a non-trivial task. To overcome the bandwidth limit, 
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some frequency conversion techniques have been successfully employed. Positively 

chirped NIR pulses mixing with visible pulses allowed the visible spectrum efficiently 

transfer to the UV region and therefore led to 20-30 fs UV pulses in a broad tuning range 

from 295-450 nm.19 Various modifications of the achromatic phase-matching technique 

have been applied to the frequency doubling20, 40 and sum frequency mixing41 in BBO 

crystals, which improved ultraviolet pulse durations to 7 fs  and 13.2 fs, respectively. The 

basic idea of the achromatic approach is that a broadband visible pulse is angularly 

dispersed such that each frequency component converts to the UV region at its individual 

phase matching angle, which can give an extremely broad UV spectrum. All the above 

mentioned UV generation schemes are based on the traditional type-І phase matching. 

For a BBO crystal, type I phase matching has the intrinsic advantage of a higher nonlinear 

coefficient. However, type-II phase matching provides a broader acceptance bandwidth 

for the ordinary beam and a narrower one for the extraordinary beam, thus allowing for 

more efficient energy conversion from the broad visible pulses to the UV. Manzoni et al. 

reported a sub-10 fs UV pulses generation by type II phase matching configuration.42 In 

analogy to the visible pulse generation, a tunable UV pulse can also be achieved by 

employing direct OPA43 or optical parametric chirped pulse amplification (OPCPA).44, 

45 However, intense deep UV pumping can induce nonlinear and thermal effects in the 

nonlinear crystal and optical elements. Finally, FWM allows the conversion of the visible 

pulses into the UV and amplification at the same time, which can be simply realized in 

the transparent solid medium, like fused silica46 or CaF2
47.   

In addition to gases and solid media, for the enhancement of the conversion efficiency, 

hollow fibers filled with rare gas have been used.48-51 However, this technique does not 

provide tunable light generation. There are also a number of excimer lasers which can 

emit in the deep UV spectral range under 200 nm, but mostly with a pulse duration of 

picoseconds to nanoseconds.52-54  
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2.2 Generation of sub-30 fs UV pulses by chirped sum 

frequency generation 

In transient absorption spectroscopy, the fluctuation of the signal is typically three times 

larger than the energy fluctuation of the laser pulses,55 hence, a stable light source is 

highly required. It is common to attribute the good stability of optical parametrically 

generated pulses to the stable input pulses and optical elements. SFG of UV pulses 

typically mixes NIR pulses at 800 nm with amplified visible pulses, therefore it can take 

full advantage of the stability of the commercial Ti:sapphire chirped pulse amplifier 

(CPA) system.  However, the intensity of the input light and crystal length also impact 

on the stability of the output.56 In order to achieve excellent pulse stability, a combination 

of crystal length and input parameters, such as spectral phase and polarization, has to be 

carefully chosen.  

In SFG, two optical waves E (1, z) and E (2, z) with frequencies 1 and 2 generate 

a nonlinear polarization P(2) (3) at the frequency 3 =1+2 in the second-order 

nonlinear medium with a nonlinear susceptibility (2)

1 2( , )   (Figure 2.2 (a)), which can 

be expressed as57: 

         2 (2)

3 0 1 2 1 22 , : , ,z z     P E E                                                         (2.1) 

The incident pair of waves at frequency 1 and 2 can also produce polarization 

densities at frequencies 1 -1, 1 +1, 2 -2, 2 +2 and 1 -2, however, not all of 

these waves are necessarily generated, as certain phase matching conditions must be 

satisfied. The process of wave mixing involves energy exchange among the interacting 

waves. Photon energy and momentum conservation require the conditions 3=1+2 and 

k1+k2=k3, respectively. For the most efficient energy transfer amongst the waves, one 

naturally expects that both photon energies and momentum conservations should be 

satisfied in the wave interaction. In the course of frequency up-conversion, two low 

frequency photons 1 and 2 are annihilated, and one high frequency photon 3 is gained. 

The photon momentum condition is known in nonlinear optics as the phase matching 

condition (Figure 2.2 (b)). The phase matching condition also can be easily understood 

from the concept of energy transfer. 
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Figure 2.2: (a) The interaction of two incident waves with frequencies 1 and 2 generates 

a wave with frequency 1+2=3, (b) the phase matching condition of k1+k2=k3. 

 

For simplification, we represent the electric field ( , )n zE with the form of quasi-

monochromatic plane wave by ( , ) ( , ) nik z

n nz E z e E a , where kn and En (n, z) are the 

wave vector and the envelope of the electric field, and a is the unit vector of the electric 

field. The coupled complex equations for slowly varying envelopes of the laser fields E1 

(1, z), E2 (2, z), and the nonlinear signal E3 (3, z) are written as57 

2
(2) -i kz1 1

3 22

1

( , ) i2
( , ) ( , )eff

dE z
E z E z e

dz k c

 
                                                                 (2.2) 

2
(2) -i kz2 2

3 12

2

( , ) i2
( , ) ( , )eff

dE z
E z E z e

dz k c

 
                                                                   (2.3)

2
(2) -i kz3 3

1 22

3

( , ) i2
( , ) ( , )eff

dE z
E z E z e

dz k c

 
                                                                         (2.4) 

where 
(2)

eff is the effective nonlinear coefficient which determines the rate of energy 

transfer among the three waves. k1, k2 and k3 are wave vectors of the fields with 

frequencies 1, 2 and 3, respectively, and k =k1+k2-k3 is the wave-vector mismatch. 

We consider SFG in the non-depletion regime, in which the intensity of the generated 

high frequency beam is so low that the intensities of the incident laser fields 1 and 2 

are assumed to remain during the interaction. Then the solution of Equation (2.4) yields 
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We can write Equation (2.5) as 
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The intensity of SFG output can be determined from the electric field as 
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Equation (2.7) shows that the intensity of the generated wave depends on the intensity of 

the incident waves, and the effective coefficient of the crystal. Only when k→0, 

   
2 22sin ( 2) 2 ckz kz z z    , where 2cz k   is defined as the coherence length, 

the intensity of the generated sum frequency grows as a quadratic function of the length 

z of the nonlinear medium. If the phase matching is not satisfied, the phase of E (3, z) 

is z dependent, which means all generated radiation contributions from different z 

positions with a thickness unit of z in the crystal cannot be added coherently, or they 

may even cancel each other out leading to a low output. 

The phase matching condition k1+k2=k3 can also be expressed as 1 1 2 2 3 3n n n   

which can never be satisfied in isotropic or cubic materials with normal dispersion 

properties,       3 1 2
,n n n   . Therefore, collinear phase matching can only be 

achieved with anomalous dispersion or birefringent crystals.58 The dispersion of 

nonlinear media not only limits the energy transfer efficiency, but also affects the 

bandwidth of the frequency conversion. If the phase-matching requirement is satisfied 

for the central frequencies 1 1 2 2 3 3

c c c c c cn n n     then it will not be equally satisfied for 

most other pairs of interacting frequencies because the refractive index is frequency 

dependent. (Figure 2.3). When ck z  , the process of SFG vanishes.  
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Figure 2.3: Phase matching condition scheme for SFG. The phase matching 

condition k=0 is satisfied with the frequency pair 
1

c and
2

c , while for other pairs 

k≠0. 

 

2.2.1 Chirped SFG 

There are three possible schemes for SFG arrangement of the incident waves, which in 

our case are NIR pulses at 800 nm and visible pulses from the NOPA (Figure 2.4).   

One can assume that well compressed incident pulses should also render short output 

pulses. If all wave components are assumed to have Gaussian temporal profiles, the pulse 

duration of the generated wave can be estimated as59 

2 2 2

3 1 2

1 1 1

  
                                                                                                                  (2.8) 

where 1, 2 and 3 are the pulse durations of the laser fields with frequencies 1, 2 and 

3, respectively. In the arrangement shown in Figure 2.4 (a), a NIR pulse mixes with a 

compressed visible pulse, the pulse duration of the high frequency pulse is dominated by 

the visible pulse which renders the output pulse a duration of about 20 fs. However, 

because of the dispersion in the nonlinear crystal, the output pulse still needs to be further 

compressed which adds complexity to the experimental setup. Furthermore, a large part 

of the energy of the NIR pulses is wasted because of the poor temporal overlap between 

the two interacting pulses.  
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An improved arrangement is shown in Figure 2.4 (b), which reduces the number of 

required compressors to be just one. One shortcoming of this arrangement is that, the 

duration of the visible pulse is slightly longer than the NIR pulse so the frequency 

components at the spectral wings cannot be converted to the UV, resulting in a narrower 

bandwidth.    

In the third arrangement shown in Figure 2.4 (c), the NIR pulse is positively chirped 

to a duration well overlapped with the visible pulse. Although the generated UV 

bandwidth is mainly affected by the dispersion induced group velocity mismatch, as well 

as the acceptance bandwidth of the nonlinear crystal, a good temporal overlap between 

the NIR pulse and the visible pulse enables a generated UV pulse with sufficient 

bandwidth which potentially supports sub-20 fs pulse duration. Additionally, this 

arrangement provides a high conversion efficiency and simplifies the adjustment by 

using only one compressor. Further increasing the pulse duration of the NIR pulse to be 

even longer will not improve conversion efficiency as the low peak intensity does not 

support high energy transfer. Based on the third arrangement, the schematic of the 

nonlinear mixing scheme in our experiment, and the relevant pulse parameters are shown 

in Figure 2.5. 

 

 

 

Figure 2.4: (a) Compressed visible pulses mixing with NIR pulses, (b) uncompressed visible 

pulses mixing with NIR pulses, (c) uncompressed visible pulses mixing with stretched NIR 

pulses. 
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Figure 2.5: Schematic of the nonlinear mixing scheme. A chirped NIR pulse mixes with a visible 

pulse to generate a UV pulse. The relevant pulse parameters are indicated. 

 

2.2.2 Experimental realization and characterization 

The SFG NOPA (Figure 2.6) is fed by a regenerative Ti:sapphire amplifier system (CPA 

1000 Clark-MXR) which delivers 640 µJ/pulse at 800 nm with a repetition rate of 1kHz. 

Briefly to describe the NOPA, a few µJ of the Ti:sapphire fundamental is used for the 

generation of a supercontinuum by focusing into a 2 mm sapphire plate. A selected 

spectral component of the supercontinuum is amplified in a 1 mm BBO crystal. The first-

stage amplifier gives a major contribution to the stability and beam profile of the final 

visible output energy. A thicker 2 mm BBO crystal is used in the second amplifier stage. 

Tuning the intersection angle between the pump and the seed, and the phase matching 

angle of the BBO make it is possible to obtain the output with 12 µJ energy and a tunable 

range from 490 nm to 660 nm. The spectral bandwidth of the NOPA pulses can be 

controlled by changing the chirp of the supercontinuum and the phase matching angle of 

the nonlinear crystal. After transmission through the lenses and nonlinear crystals, the 

visible pulse is positively chirped to a pulse duration of more than 150 fs.  To achieve 

better temporal overlap between the NIR and visible pulses, we add extra positive chirp 

to the NIR pulses by sending it through a block of glass (SF 11, 4 cm) leading to a pulse 

duration of about 200 fs. A BBO crystal with a cutting angle of 40.5º and 90 µm thickness 

is used to mix the visible and NIR pulses. After synchronizing the visible and NIR with 

a mechanical delay stage, the two beams are focused and overlapped in the crystal with 

a 3° beam intersection angle which is sufficient to spatially select the UV output whilst 

maintaining beam overlap inside the crystal. To avoid permanent damage on the crystal, 
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the BBO is located 2 cm behind the focuses of both beams. To compress the UV pulses 

to a minimum duration, a fused silica prism pair is chosen because of its transparency in 

the UV range. Considering the polarization dependence from the Fresnel reflection, the 

polarization orientations of both visible and NIR pulses are rotated to S-polarization by 

using half-wave plates, thus the reflection losses are minimized for P-polarized UV 

output at Brewster’s angle during the compression. The distance between the two prisms 

varies between 40 and 60 cm depending on the tuning range of the spectrum. An 

aluminium mirror is used at the end as the folding mirror, so that the beam exiting the 

second prism travels back in the same vertical plane as the entering beam. 

The SFG-NOPA system produces UV pulses (Figure 2.7 (a)) with energy up to 2 J 

tunable from 300 to 350 nm (Figure 2.7 (b)). The frequency conversion efficiency is 

about 16 %. The output energy can be increased by repositioning the BBO crystal close 

to the focus region to change the pump intensity. This will also influence the output beam 

profile and divergence. By adjusting the position of the BBO crystal towards the focus, 

a FWM signal around 420 nm is observed (Figure 2.7 (a)). In the application of transient 

absorption measurements, our system is not optimized for maximum output power, but 

for optimal quality of the beam profile and short pulse duration. The typical throughput 

of fused silica prisms in the UV region is about 55 %, giving ~1 J UV output after 

compression. Adjusting the time delay between the two incident pulses only varies the 

output intensity. No evident spectral tuning is observed because of the narrow bandwidth 

of the NIR pulse. All generated UV pulses display spectral bandwidths of 6-8 nm (Figure 

2.8 (a)) 

The pulse duration of the UV output is characterized via two-photon absorption 

autocorrelation in a photomultiplier tube, which will be elaborated in the following 

chapter of UV pulse characterization. To determine the pulse duration from the 

autocorrelation curve, the UV pulse is fit with a Gaussian distribution. The fitting shows 

no satellite pulses or detectable shoulders, which indicates that there is no spectral 

components with high order chirp (Figure 2.8 (b)). The measured pulse is almost 

transform-limited ( 0.44    ).  The ~9 % above the Fourier limit is due to the 

dispersion in the MgF2 window of photomultiplier tube. The pulse duration varies from 

26 to 32 fs for different spectral range. At the cost of output energy, broader spectral 

width is possible with a thinner BBO crystal, and therefore a shorter pulse duration can 

be obtained. 
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Figure 2.6: Experimental setup for SFG based on chirped NIR pulses is as following: 400 J 

pulses at 800 nm is used to pump the whole system which includes a two-stage visible NOPA 

(marked with dashed line) and one stage of frequency mixing of the visible pulses and NIR 

pulses. The energy distribution of the fundamental input pulses is: 25 % (100 J) is split off and 

contributes to the final SFG-UV generation, 5 % (15 J) of the transmitted pulses are used to 

generate supercontinuum serving as the seed light for the first-stage NOPA (preamplifier), and 

the remainder (285 J) is frequency converted to 400 nm serving as the pump light for the two-

stage amplifier. The bandwidth of the NOPA output is about 45 nm. A fraction of the 100 J 

fundamental pulses is sent through a 4 cm SF11 block. To avoid optical damage and degradation 

of the glass block, a telescope system based on Lens1 and Lens2 is used to double the beam size 

of the NIR. The uncompressed NOPA output and stretched NIR pulses are polarization-rotated 

by half-wave plates and focused into a 90-m-thick BBO crystal (=40.5°) for type I non-

collinear SFG. The beam intersection angle is about 3°. To compress the UV pulses to a minimum 

duration, a double-pass prism pair is used.  

BS1: 25 % reflection beam splitter, BS2: 5 % reflection beam splitter, BBO1: 0.5 mm thickness, 

cutting angle of 29.2°, BS3: 20 % reflection beam splitter, NF: neutral density filter, BBO2: 1 

mm thickness, cutting angle 32.5°, BBO3: 2 mm thickness, cutting angle of 32.5°, BS4: 80 % or 

50 % reflection beam splitter, HWP1: achromatic half-wave plate, HWP2: half-wave plate at 800 

nm, BBO4: 0.9 mm thickness, cutting angle of 40.5°, Lens1: convex lens with 10 cm focal length, 

Lens2: concave lens with 5 cm focal length. 
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Figure 2.7: (a) SFG with cascaded FWM of 2vis-NIR, (b) UV pulse spectra in the tuning 

range from 300 to 350 nm. 

 

 

 

Figure 2.8: (a) Spectrum of UV output at 334 nm with a bandwidth of 6.7 nm, giving a 

transform-limit duration of 24.5 fs. (b) Autocorrelation trace at 334 nm with a temporal 

width of 26.8 fs. The open dots are experimental data and the solid line is the Gaussian fit. 
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2.3  Generation of UV pulses from 250 to 300 nm by 

frequency doubling 

 

2.3.1 Dispersive compensation 

In the SHG, an incident wave with a frequency  generates a signal at the frequency 2 

as it propagates through a nonlinear medium. The mechanism and theory of SHG process 

follow exactly that of SFG discussed in the previous section, and it also has the same 

limiting effects, such as dispersion induced phase mismatch and phase distortion. 

Spectral phase distortion which pre-exists in the input fundamental pulses, commonly as 

quadratic phase (linear chirp) or in rare case higher order phases, results in broadening 

of the SH pulses and low conversion efficiency. It is well known that, the phase 

distortions can be removed by dispersive compensation, either in the fundamental pulses 

or in the SH pulses.60, 61  

There are three possible schemes of spectral phase compensation in SHG (Figure 2.9). 

All three schemes have been experimentally applied in the generation of ultrashort 

pulses.37, 40, 62-64 Depending on the chosen scheme, the fundamental pulses may be 

transformed differently during frequency doubling in terms of conversion efficiency and 

the output pulse duration. For the generated signal in the visible range, all three schemes 

are able to remove the chirp identically and therefore result in the same transform-limited 

SH pulses. However, for the generation of UV pulses, the high oscillation frequency 

induces severe dispersion in the nonlinear medium, especially in thick crystals, thus 

different schemes will behave distinctively.  
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Figure 2.9: Dispersion compensation schemes used in SHG (a) compensation 

performed in the SH pulses, (b) pre-compensation in the fundamental pulses, (c) 

compensation in the SH pulses after pre-compensation of the fundamental pulses. 

 

A detailed theoretical and qualitative description of SHG using transform-limited or 

non-transform-limited fundamental pulses is given by Sidick and coworkers.60, 61 To 

simplify the model, in the following discussion we only consider the quadratic spectral 

phase from the fundamental pulses and internal dispersion of the nonlinear crystal, which 

are the primary contributors to pulse broadening. For a fundamental pulse centered at the 

frequency 0 with only quadratic spectral phase, it can be expressed with a Gaussian 

shape: 
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                                                                  (2.9) 

where  is the spectral width,  () is the spectral phase which can be written as  

   
2

0A                                                                                                          (2.10)  
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where A is the coefficient of the linear chirp. Substituting Equation (2.9) and (2.10) into 

(2.5), the SH field in the frequency domain can be expressed as40  
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                                    (2.11) 

and the spectral phase is  

2

0

1
( ) ( 2 ) .

2
SH A                                                                                                 (2.12) 

Comparison of Equation (2.12) and (2.10) shows for a Gaussian pulse with linear chirp, 

the SH process reduces the coefficient of linear chirp by half.  This result is based on the 

assumption that GVM doesn’t play a major role in SHG. If cubic spectral phase is taken 

into consideration, the coefficient is reduced by a factor of 4 in SH process.40 Although 

the SH process, can suppress linear and higher-order chirps, to some extent, to achieve 

transform-limited pulses further compensation is still necessary (Figure 2.9 (a)). If 

Gaussian input pulses exhibits purely with quadratic spectral phase, the final SH pulse 

shape and duration are independent of whether the dispersive compensation is performed 

in the fundamental pulse or the generated SH pulse. However, pulse shortening is found 

to be limited by a residual higher-order spectral phase in the compressor stage,64 which 

cannot be compensated by using well-known methods of dispersive compression, e.g. 

prism pair. For pulses in the UV range, due to higher order dispersion in optical materials 

and also to the lack of suitable chirped mirrors, dispersion compensation after SH process 

is more challenging than in other spectral ranges. Therefore, for SH-based UV pulse 

generation, pre-compensation of the fundamental pulses (Figure 2.9 (b)) is more 

advantageous than the compensation of the SH pulses. Moreover, from the point of 

conversion efficiency, pre-compensation increases the peak intensity of the fundamental 

pulse and thus results in a higher conversion efficiency. 
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2.3.2 Group velocity mismatch in SHG 

For UV pulse generation, GVM can severely affect the conversion efficiency and pulse 

duration of the output pulses. In the case of SHG, group velocity mismatch can be 

quantitative expressed as 

0 02

1 1
GVM

  

 
  
 
 

                                                                                                  (2.13) 

where 
02  and 

0
  are the group velocities of the SH pulse and the fundamental pulse. 

The group velocity is wavelength and refractive index dependent, given by 
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                                                                                             (2.14) 

where c is the velocity of light in vacuum, and n(λ) is the refractive index at wavelength 

λ. 

In fact, the transform-limited SH pulse does not occur at exact phase cancellation from 

the pre-compensation. When the input pulses with minimum pulse duration propagate 

through the nonlinear crystal, the spectral phase will be further distorted, and the spectral 

distortion is transferred to the SH pulses leading to pulse broadening. The GVM causes 

the fundamental pulses and growing SH pulses to undergo temporal drift from each other 

while traversing the crystal, creating broader SH pulse with increasing interaction length. 

Moreover, due to the GVM, the SH pulse lags behind the fundamental. When the 

temporal interval of the two interacting waves reaches to the pulse duration of either, the 

SH process is suppressed. To compensate the broadening in the SH process, a second 

compensator can be applied, although it makes the tuning difficult when the central 

wavelength is changed (Figure 2.9 (c)). Another way to preserve the pulse duration 

during frequency doubling of femtosecond pulses requires the use of very thin nonlinear 

crystals. For UV pulses in the 20 fs regime with centre wavelength of 270 nm, the 

preservation of pulse duration and minimization of the temporal walk-off would require 

a crystal thinner than 50 m. However, as we discussed in the section of SFG, the 

intensity of the generated signal is proportional quadratically to the thickness of nonlinear 

medium. Minimum pulse duration of the SH pulse is at the cost of conversion efficiency. 

In order to obtain short SH pulses with high conversion efficiency, a suitable combination 

of crystal length and dispersion compensator should be carefully chosen.  
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A simulation was performed to study the effect of spectral phase on the pulse duration 

and the output energy. The simulation is based on the Lab2 program from LAB2-A 

virtual femtosecond laser lab by using a non-depleted fundamental wave 

approximation.65 Simulated UV spectra with varying degrees of quadratic spectral phase 

added to the transform-limited fundamental pulses are shown in Figure 2.10. The 

approximation is valid for small conversion efficiency, which requires a thin nonlinear 

crystal and low intensity of the input pulses. The fundamental input is set to be centered 

at 560 nm with 30 nm bandwidth and 1 J per pulse. We applied type I phase matching 

in a 55 m BBO crystal, and the cutting angle was intentionally set to be 44.3°, in order 

to maximize the conversion efficiency at 560 nm and minimize the phase mismatching. 

As such, the only influential factors are the GVM and the limited spectral acceptance of 

the crystal. The material dispersion in the 55 m BBO crystal can be neglected. For 

example, the SH pulses at 280 nm with a Fourier limit of 16.6 fs is lengthened by less 

than 0.5 fs after propagating through a 55 m crystal.  The higher order spectral phase is 

not considered in the simulation.  

 

 

  Figure 2.10: Simulated spectra under various quadratic phase. 
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Figure 2.11: Simulated output energies and pulse durations under various quadratic 

phase. 

 

The simulated spectra in Figure 2.10 show no spectral tuning by changing the 

quadratic spectral phase which means the peak wavelength of the generated pulse is 

independent of the quadratic phase. With increasing of quadratic phase, the output 

intensity decreases because the peak intensity of the fundamental pulse is reduced. If the 

fundamental pulses are stretched with the same amount of quadratic phase but with 

opposite sign, the resulting generated spectrum doesn’t show any major change, because 

in the thin crystal, the direction of the chirp doesn’t play a substantial role. When a BBO 

crystal with doubled thickness (110 m) is used, the difference of spectral intensities 

between pulses with opposite phases will be increased by a factor of 5. A more 

quantitative description of the generated SH pulses under various quadratic phase is 

shown in Figure 2.11. The output energy curve shows a symmetric dependence on the 

applied phase. In the case of transform-limited pulses (=15.4 fs), the generated SH 

pulses have the maximum energy output. However, the exact phase cancellation doesn’t 

result in the shortest SH pulses. Instead, a negative phase (-131 fs2) very near zero 

compensation gives the minimum pulse duration of 19 fs. The group velocity mismatch 

becomes more severe with shorter fundamental pulses, which can explain the longer SH 

pulses at 0 phase. The improvement of pulse duration at -131 fs2 is due to the internal 

group velocity dispersion of the SH pulse.61 The internal group velocity dispersion of the 

generated pulses rearranges the phases of different frequency components in an opposite 

direction compared to the GVM. Of course, the obtained minimum SH pulse is still not 

transform-limited, especially when a thick crystal is used, an extra phase compensator 
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may still be needed after the SH process. In conclusion, the SH pulse duration is 

determined by the combined effects of GVM in the nonlinear crystal and the phase added 

to the fundamental pulses.  

 

2.3.3 Experimental realization and characterization 

 

 

Figure 2.12: Experimental setup for the UV SHG NOPA using pre-compensation of the 

fundamental pulses. 300 J pulses from Ti:sapphire CPA is used to pump the two-stage visible 

NOPA (marked with dashed line). An iris is placed after the collimation of the visible pulses, 

which is used as a spatial filter to attenuate the fundamental energy of the SHG and also to keep 

a good beam profile of the generated UV light. The output pulses of the two-stage NOPA are 

over-compressed by a double-pass pair of fused silica prisms to be negatively chirped with a 

pulse duration of about 30 fs. Subsequently, the negatively chirped pulses are focused into a 55 

m BBO crystal (=45°) for collinear frequency doubling using type I phase matching. Since the 

output UV pulses and the fundamental visible pulses are spatially overlapped as they exit from 

the BBO crystal, four dielectric mirrors (HR 262-266 nm) are used to filter out the residual visible 

pulses. BS1: 5 % reflection beam splitter, BBO1: 0.5 mm thickness, cutting angle of 29.2°, NF: 

neutral density filter, BBO2: 1 mm thickness, cutting angle 32.5°, BBO3: 2 mm thickness, cutting 

angle of 32.5°, BBO4: 55 m thickness, cutting angle of 45°. 
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Our experimental setup for the SH UV generation is shown in Figure 2.12, which is 

based on the scheme performing pre-compensation in the fundamental pulses, as showed 

in Figure 2.9 (b). The fundamental visible pulses generation is identical to that used for 

SFG-based UV pulse generation (see last section). The typical bandwidth of amplified 

visible pulses can potentially support sub-20 fs pulse duration in most of the tuning range 

(Figure 2-13 (a)). The output energy of the visible pulses is up to 15 J. After the second 

stage of nonlinear amplification, the spectral phase of the visible pulses is controlled by 

a pair of fused silica prisms. The apex angle of the prism is cut such that the angle of 

incidence is the Brewster angle at the central wavelength. The tip-to-tip spacing of prisms 

is adjusted from 70 to 90 cm depending on the spectral range of the visible light. 

Afterwards the visible pulses are focused into a 55 m type I BBO crystal (=45°) for 

frequency doubling, which is a compromise between attainable energy and the duration 

of the generated pulses. Our system is optimized for the shortest pulse duration, which 

as demonstrated in the simulation, the value of spectral phase giving the shortest pulse 

duration is very close to the value giving the highest conversion efficiency. The UV beam 

is collimated with a spherical mirror with 10 cm focal length. The residual visible light 

is removed from the output beam using four dielectric mirrors, which are high reflective 

at 266 nm and transmissive in the visible. Although the reflection of each dielectric 

mirror gives rise to about 5-10 % energy loss, UV pulses up to 500 nJ are obtained. 

Visually no significant fluctuation is observed. The output stability can be kept under 3 

% for hours during our transient absorption measurements. The conversion efficiency is 

about 8 % when the BBO is positioned a half centimeter before the focus. The tunable 

range of the UV output is dependent on the tunability of the visible NOPA. Using visible 

pulses in the range of 480 nm to 660 nm, the output UV is tunable from 250 to 330 nm. 

Employing fine adjustment of the BBO crystal and tuning of the prism compressor, 

we can obtain UV pulses with more than 6 nm bandwidth in the whole tuning range 

(Figure 2.13 (b)), which potentially supports a pulse duration of sub-30 fs. The observed 

pulse durations are summarized along with the corresponding spectra in Figure 2.14, 

which are not optimized to be the broadest. The time-bandwidth product varies from 0.47 

to 0.58. Compared to the simulation, a slight broadening of the UV pulses is observed, 

which could come from the higher-order chirp and further dispersion in the MgF2 window 

of the photomultiplier tube. These effects cannot be compensated by a prism compressor 

alone. The unavoidable spectral distortion in the SH pulses can be partially removed by 

applying an extra chirped mirror. 
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Figure 2.13: (a) Spectrum of the visible fundamental pulses obtained from a two-stage 

NOPA, (b) spectrum of the UV output generated by SHG. 

 

Figure 2.14: Spectral (a-c) and temporal (d-f) characterization of SHG UV output pulses. 

For pulses at 270 nm, (a) the spectral bandwidth is 4.6 nm and (d) pulse duration is 27.2 

fs, corresponding to the time-bandwidth product  of 0.52. For pulses at 289 nm, (b) 

the spectral bandwidth is 7.5 nm and (e) pulse duration is 21.8 fs, = 0.58. For pulses 

at 302 nm, (c) the spectral bandwidth is 5.0 nm and (f) pulse duration is 28.4 fs, = 

0.47. 
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2.4  Conclusion and outlook 

Nonlinear frequency up-conversion processes via SFG and SHG have been presented. 

The essential aspects for the generation of ultrashort UV pulses were identified and 

analyzed both theoretically and experimentally. In terms of energy conversion efficiency, 

pulse duration and ease of implementation, the best performance of UV generation based 

on SFG is obtained by mixing uncompressed visible pulses with stretched NIR pulses. 

Conversely, for SHG the best results were obtained when the fundamental pulses were 

compressed and deliberately left slightly negatively chirped. The experimental results of 

both UV generation schemes are summarized in the following table.  

Table 2.1 Experimental results of the generation of UV pulses 

 SFG SHG 

Supplied energy 400 nJ 300 nJ 

Output energy 2 J < 1 J 

Tunable range 300- 350 nm 250- 330 nm 

Pulse duration Sub-30 fs Sub-30 fs 

Band width  > 6 nm 4.5- 7.5 nm 

Compression After UV generation, about 

50 % energy is lost during 

the compression  

Prior to UV generation, about 

20 % energy loss during the 

compression of the fundamental 

visible pulses 

Comments The time zero has to be 

regained after any alteration 

of the optical system 

Easy to adjust and keep stable 

 

Independent of the frequency conversion process, the duration of the UV pulses is 

mainly limited by the bandwidth, particularly at shorter UV wavelengths. The bandwidth 

is determined by the acceptance bandwidth of the nonlinear crystal and GVM. The GVM 

effect is more severe towards shorter UV wavelengths. Thus, it seems realistic that the 

UV pulses generated in SHG have less bandwidth than in SFG. However, if both schemes 

generate the UV pulse at the same wavelength, for example at 300 nm, the SHG gives 

more bandwidth than the SFG as in the BBO crystal, the SHG acceptance bandwidth is 

20 % more than the SFG.  
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By current SFG and SHG schemes, the generated UV pulses are very close to the 

transform limit which is supported by the bandwidth shown in Table 2.1. In order to 

generate UV pulses with shorter duration, the limitation of the bandwidth has to be 

overcome. One proposed method is to arrange the frequency components of each input 

pulse into an appropriate order to form frequency pairs that satisfy the same phase 

matching condition. A simple way of doing this is to substantially chirp the two input 

pulses with opposite sign, by tuning the delay between them different frequency 

components of the input pulses can be arranged into pairs to meet the same phase-

matching requirement. In the case of ordinary frequency conversion, if the phase 

matching condition is satisfied for the central frequencies 
3 3 1 1 2 2

c c c c c cn n n     then it will 

not be satisfied for most pairs at other frequencies resulting a restricted bandwidth 

(Figure 2.15 (a)). However, in the chirp-assisted scheme, the phase matching requirement 

is met not only by the central frequency pair, but also other pairs which generate off-

center sum frequencies resulting a wider bandwidth or more-efficient conversion (Figure 

2.15 (b)). This chirp-assisted frequency conversion will be applied to SFG and SHG UV 

generation and shorter pulses sub-20 fs are expected. 

 

 

Figure 2.15: (a) Ordinary frequency conversion. The phase matching requirement is satisfied for 

the central frequencies pair 3 3 1 1 2 2

c c c c c cn n n    . (b) Chirped-assisted frequency conversion. 

The phase matching is achieved for a broad bandwidth of generating waves. 
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Chapter 3            

Characterization of UV Pulses by Two Photon 

Absorption 

 

In this chapter, the ultrashort pulses are characterized by a very compact and simplified 

autocorrelator device based on two photon absorption (TPA) in a photomultiplier tube 

(PMT). An online-read configuration for acquisition and evaluation of the data is 

introduced, which makes full use of the collected data and allows a visual control of 

relevant measurement parameters. In order to confirm the reliability of the pulse duration 

measured from autocorrelation experiments, an experimental verification is conducted 

for various pulses fluences. The reliability and suitability of TPA autocorrelation are 

discussed by investigating different window materials and photocathodes of the PMT.  
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3.1  UV pulses characterization 

A direct and unambiguous characterization of femtosecond pulses in the UV spectral 

range is much more demanding than in the visible. The routine method of phase matched 

second-harmonic (intensity) autocorrelation66-68 in nonlinear crystals cannot be applied 

in the UV range due to the lack of nonlinear crystals with phase matching and optical 

transmittance.69, 70 Other alternatives like cross correlation through sum frequency or 

different frequency mixing71 can partially overcome these limitations. However, the 

characterization is restricted to the spectral range over 300 nm and requires an additional 

auxiliary pulse with comparable pulse duration, which complicates the adjustment of the 

optical system. Moreover, a relative large group velocity walk-off between the UV and 

visible pulses tends to broaden the correlation curve and therefore induces errors in the 

determination of the pulse duration. 

Picosecond and femtosecond autocorrelation measurements of UV pulses based on 

TPA induced photoconductivity have been performed in solid materials72-81, gases82-84, 

and even solutions85. The TPA involved characterization is insensitive to the phase 

matching condition as well as the polarization and therefore can be applied to the pulses 

with a broad spectral band. For solid-state materials, because of the wide band gap, 

diamond (5.45 eV),72 BBO (6.6 eV),86 fused silica (9 eV),79, 87 and MgF2 (11 eV)79 can 

be potential candidates for the TPA process (Figure 3.1). In a typical pulse 

characterization based on TPA, two replicas of UV beam are temporally and spatially 

overlapped on the medium, and either the optical depletion signal or the induced electric 

charge signal is recorded by the photodiode and integrated in an amplifier. A simplified 

setup is designed by using the PMT photocathode as the active medium as well as the 

detection device,73, 88 which are taking advantages of the photoelectric property of 

photocathodes. Each two-photon transition produces a photoelectron within the 

photocathode, which can be directly measured by the internal electrical detection. 

However, the pulse duration signal is often superimposed with a significant linear 

background signal from one-photon absorption and the thermal emission at the 

photocathode.73  
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Figure 3.1: The detection ranges of TPA autocorrelation based on various solid-state 

materials. 

 

In order to obtain the autocorrelation signal without background, the self-diffraction 

and degenerate four wave mixing based on the third order nonlinear effect in glass can 

be used to extract the pulse duration information.89, 90 However, the use of these 

approaches has not become widespread in the UV range, because the significant 

nonlinear processes take place within the high-intensity of the focused beam. In the 

generation of UV pulses, it is difficult to reach the output energy up to micro joules or 

higher, so these high-energy required autocorrelations are not suitable for the 

characterization of low energy UV pulses.  

Several methods have been developed in recent years, which are not only able to 

monitor the pulse duration, but also reconstruct the phase from a measured 

autocorrelation and the pulse spectrum. Techniques as multiphoton intrapulse 

interference phase scan (MIIPS)91 and dispersion scan (d-scan)92, 93 have been reported, 

which consist in applying spectral phases to the pulse to be characterized and measuring 

the resulting second harmonic signal. However, the transfer of both methods to the UV 

range are intricate because a nonlinear crystal is still needed to get the respective 

spectrogram or a sonogram to retrieve the phase information of the pulses. Multiple 

frequency-resolved optical grating (FROG) techniques have been successfully 

transferred to the UV spectral region. Capable UV characterizations of FROG setups are 

often relying on third-order nonlinearities. Therefore, they again require frequently high 

intensity, like in the case of transient grating (TG)94, self-diffraction (SD)28, 50 and 

polarization gating (PG)95, 96. Besides to the requirement of high intensity, the complex 

implementation of setups and mathematical retrieval procedures add cumbersome works 

in the spectroscopic applications. Additionally, the UV pulses are usually generated 

through several nonlinear optical processes combined in series, the incidental instability 

and the beam profile with multi-modes will influence the accuracy of the measured pulse 

duration.  
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For a straightforward and easy-to-handle characterization of UV pulses in our 

application of transient absorption spectroscopy, a simple on-site measurement of the 

pulse duration is performed based on a solar blind PMT. A significant advantage of 

incorporating a PMT into the autocorrelation measurements is that the desired two-

photon response, the transformation of light into electric voltage and voltage 

amplification are all combined into one single compact device. Another advantage 

distinguishing our setup from other TPA autocorrelators is its construction which is based 

on a simple split mirror design without using any beam splitter which induces extra 

dispersion in one beam. The reduced degrees of freedom render this TPA autocorrelator 

well suited to obtain everyday pulse validation in the spectroscopic applications. 

 

3.2  Characterization of PMT 

 

 

Figure 3.2: (a) Illustration of the PMT. The photocathode is sealed in a vacuum shield 

tube with the electron multiplier. The PMT operates in a semi-transparent configuration in 

which a thin film of photocathode is coated over a UV transparent window. The input UV 

pulses are incident on the photocathode film after transmission through the MgF2 window. 

The TPA induced free electrons are focused and amplified by multi-stage of dynodes. (b) 

The bandgaps of KBr and CsI cathode allow for the observation of TPA signal for pulses 

in the wavelength range of approximately 151-302 nm and 179-358 nm, respectively. 
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The PMT is an extremely sensitive light detector providing a current output proportional 

to the incident light intensity. When the incident photon strikes onto the photocathode, 

and its energy h is more than the work function W of the photocathode material, then 

an electron is ejected. If the incident photon satisfies another condition as 

hW<2hunder high incident intensity, the photocathode will absorb two photons 

simultaneously and eject one electron. The intensity of the photoemission has a nonlinear 

quadratic dependence on the incident intensity. After ejection from the photocathode, 

electrons are electrostatically accelerated and focused on the first dynode of the electron 

multiplier, and further focused and amplified onto the next dynodes repeatedly (Figure 

3.2 (a)). The amplification of each dynode depends on the energy of the incident electrons 

and the inter-electrode voltage provided by a high-voltage power supply.  

According to the application, the PMT can be designed and manufactured with various 

photocathode materials. Each type of photocathode has a characteristic spectral response. 

The performance of the entire photon-detecting device is determined by the conversion 

efficiency from photons into electrons, which is radiation wavelength dependent and can 

be described as the spectral response. As mentioned in the chapter of UV pulse generation, 

the total spectral range of the generated UV pulses from SFG and SHG NOPA is 

spanning from 250 nm to 350 nm, thus photocathodes with high linear response 

efficiency in the range of 125-175 nm are required. Two commercial PMT (Electron 

Tubes 9423B/9424B) manufactured with different cathode materials, KBr and CsI, are 

applied to characterize pulses at the wavelength region of 250-300 nm and 300-350 nm, 

respectively. The spectral response curves of two solar blind photocathodes are shown in 

Figure 3.3. Multiplying the wavelength of the spectral response curve by the factor of 2 

gives the corresponding TPA response curve. Both photocathodes are visible blind and 

only sensitive to vacuum-UV and UV light. Both photocathodes show a maximum 

spectral response at 120 nm. The overall quantum yield of CsI is higher than KBr, but 

KBr is more sensitive to the shorter wavelength and pushes the linear optical response to 

160 nm. Therefore, KBr is expected to give higher signal-to-background ratio by 

supressing linear response at wavelengths below 300 nm. The responses at long 

wavelength for CsI and KBr cut off at 230 nm and 160 nm, respectively, which is 

determined by the work function of the photocathode. The work function of CsI is about 

6.9 eV97, and about 8.2 eV for KBr98. Due to the transmission limit of the window 

material, the spectral responses at short wavelength cut off at 110 nm for both 

photocathodes. The window material of the two PMT is 2.5 mm thick MgF2, which 

allows the transmission of UV light down to 115 nm and is free from radioactive 

contaminants in the wavelength range of pulses to be characterized. The transmission 

curve of MgF2 window is shown in Figure 3.4. For a particular photocathode to be 
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suitable for TPA autocorrelation, it should possess a quadratic nonlinear response to the 

incident optical radiation. The response of CsI photocathode has shown a quadratic 

behaviour with a slop of 1.93 in the double logarithmic plot against the input optical 

energy.78 

 

 

Figure 3.3: Spectral response curves of CsI (red) and KBr (black). The data are 

provided by ET Enterprises. 

 

 

Figure 3.4: UV transmission curve for MgF2 window used in the PMT. The 

data are provided by ET Enterprises. 
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3.3  Autocorrelation setup 

The layout of the TPA autocorrelator is shown in Figure 3.5. In this setup, instead of 

using conventional beam splitters, the replica beams are realized by spatial cutting the 

beam profile in two D-shape aluminum mirrors. The gap between the mirrors is set as 

small as 300 m that allows the separation of two replicas and leads to minimal energy 

loss in the gap. One of the D-shape mirrors is mounted on the piezo-stage translator to 

realize a time scan up to 3.3 ps. The two replicas are focused on the photocathode of the 

PMT by an Aluminum focus mirror (150 mm focal length). The photoelectrons generated 

from TPA in the photocathode give the information of the pulse duration in the form of 

an autocorrelation trace as a function of the temporal delay between the two replicas. The 

TPA efficiency can be improved by focusing more efficiently into the photocathode. 

Since the response of TPA increases quadratically with inverse spot area. Without the 

consideration of self-focusing effect, the smallest obtainable spot size of the incident UV 

light is estimated about 11 m at the photocathode by enlarging the beam size before 

focusing and using 150 mm spherical mirror. However, the spot size might be larger than 

the estimated size, because of the strong aberration of the UV beam.99 The input energy 

is varied by using a set of neutral-density filters as reflective attenuators. The 

autocorrelator is designed to be very compact in order to minimize the variation of the 

optical path when changing the filter. 

 

 

Figure 3.5: Layout of the autocorrelation setup. The input UV pulses are attenuated by the 

reflective neutral density filter. The two replicas are reflected off the D-shape-mirror pair. One 

of the D-shape mirrors is mounted on a two-dimension adjustable mirror mounting and the other 

one is fixed on a piezo stage. The two replicas are focused and overlapped in the PMT by using 

an aluminum coated focusing mirror (150 mm focal length). 
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3.4  Data acquisition 

For the data acquisition, evaluation and real-time display, a PXI system (National 

Instrument) with a Labview software is used. The output voltage of the PMT is amplified 

by a factor of 20 with a voltage amplifier and integrated with an external gated Boxcar-

integrator. The piezo stage (PI P-625.1CD) is operated in an open loop configuration, 

and the whole travel range is 500 m corresponding to a maximum temporal delay about 

3 ps.  

In the beginning stage of our experiment, the piezo stage was driven by the voltage 

generator with a triangle waveform. The voltage range and frequency were set to be 6 V 

and 2 Hz depending on the temporal length of the pulses to be measured. The output 

voltage of PMT was read as an Analog Input in the virtual instrument (VI) which was 

triggered and sampled with 1 kHz rate from the laser repetition rate. The voltage was 

converted into time delay using a pre-recorded voltage-time calibration function.  For the 

evaluation of autocorrelation traces, as shown in Figure 3.6, only data obtained from the 

high or low ramp of the drive voltage were selected and displayed with a Gaussian fitting 

curve, which has been introduced previously in the SHG autocorrelation.100 However, 

applying this rapid scanning configuration to the TPA autocorrelation makes the 

extraction of the pulse duration information difficult because of the strong background 

signal and relatively noisy UV pulses. The data acquisition proceeds independently of 

the drive-voltage generation. For example, in order to read one valid data set with 200 

samples as shown in Figure 3.6, more than one period of drive voltage is needed and 75 % 

acquired data cannot be used because they are either in the low ramp or between the low 

and high ramp in each sampled range. It is possible to obtain more valid data by reducing 

the number of samples to read, however, it will compromise the resolution of the 

autocorrelation trace (Figure 3.7 (a)) and lead to a wrong interpretation of the 

autocorrelation curve. This problem is particularly severe for the TPA signal with low 

contrast ratio of the peak and background.  
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Figure 3.6: The piezo stage is driven by the generated voltage with 2 Hz triangle 

waveform. Read 200 samples per channel with 1 kHz laser repetition rate, giving a 

reading cycle of 0.2 s. Only data obtained from the high or low ramp of the drive 

voltage are selected. In the high ramp mode, the data marked with green are selected, 

and red marked data are invalid. 

 

 

Figure 3.7: Autocorrelation trace at 280 nm acquired and evaluated by (a) rapid scanning 

configuration giving a pulse duration of 34 fs, and (b) online-read configuration giving a pulse 

duration of 28 fs. The open dots are experimental data, and black lines are fits. 

 

In order to improve the performance of data evaluation, a modified configuration is 

applied in the TPA autocorrelation, in which the drive-voltage generation and the data 

acquisition proceed in synchronization. Depending on the duration of the pulses to be 

measured, the autocorrelation VI (shown in Figure 3.8) creates an Analog Output signal 

to drive the piezo stage with a chosen scan range and time resolution. The time resolution 
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is only limited by the positioning resolution of the piezo stage, which is under 1 nm in 

the case of our setup corresponding to a time resolution of less than 0.01 fs.  The output 

voltage of PMT is read as an Analog Input Signal from the same VI. Both data acquisition 

and voltage generation proceed in parallel with 1 kHz rate. One data point is read after 

one-step movement of the piezo stage. Each data point corresponds to a single laser shot. 

When the whole scan range is complete, the signal data points are displayed and the pulse 

duration is calculated from the Gaussian fitting parameters. Compared to the rapid 

scanning, the advantages of this online-read configuration can be summarized as: (1) all 

data acquired can be used for evaluation, thus less time is needed to obtain an entire 

autocorrelation profile; (2) a sufficient number of data points can be obtained; (3) full 

visual control of all measurement parameters, such as the scan range and resolution. The 

autocorrelation trace based on this configuration is shown in Figure 3.7 (b). 

 

 

Figure 3.8: Screenshot of the autocorrelation VI. The scan range and resolution can be chosen 

according to the pulse to be measured. If the pulses are noisy, an averaging mode can be applied. 
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3.5  Experimental results and discussion 

A precise and reliable measurement of pulse duration plays an important role in time-

resolved spectroscopy applications. Several factors could influence the fidelity of the 

autocorrelation trace obtained by TPA in the PMT, such as the intensity and spectral 

range of the input pulses, the intrinsic response time of the photocathode, as well as the 

window material which could lead to distorted pulse duration measurement. Moreover, 

to extract reliable information of the pulse duration, it is important to reduce the 

background signal and increase the signal-to-noise ratio which is dependent on a 

combination of the spectral response of photocathode and the spectral range of input 

pulses. In the following, a detailed investigation about the reliability of measurements 

and evaluation of the data will be carried out in the aspects of pulse energy influence, 

material dispersion effect and photocathode effect. 

 

3.5.1 Pulse energy influence 

A theoretical model of TPA-induced photon-detection is developed,57 in which electron 

ejection takes place through the simultaneous absorption of two photons. If linear 

absorption and free-carrier absorption are neglected, the TPA photoelectric signal is 

primarily determined by the amount of energy absorbed by the photocathode, then the 

autocorrelation signal can be expressed as the absorption of the incident beam. The 

intensity change of the two replicas can be expressed as follow 

21
1 2 1

dI
I I I

dz
                                                                                                                (3.1) 

22
2 1 2

dI
I I I

dz
                                                                         (3.2) 

where I1 and I2  are the intensities of the replicas, I= I1 +I2 is the total intensity of the 

incident pulses, and β is the TPA coefficient. The generated TPA signal is governed by 

β, which is related to the imaginary part of the third-order susceptibility (3) = 
𝑅

(3)
+

𝑖
𝑖𝑚

(3)
of the TPA medium101: 
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in which ω is the carrier frequency of the input pulses, n0 is the refractive index of the 

TPA medium, ε0 is the permittivity in vacuum, and c is light speed in vacuum. 

For input pulses with the spatial and temporal profile described by Gaussian 

distribution as   2 2 2 2

0, exp expi iI r t I t r w         , the solutions for I1 and I2 at 

distance r from laser beam axis and time t are given by102 
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                                                                          (3.5) 

0 ( , )iI r t  refers to the pulse intensity at z=0. A delay time t between the replicas is 

scanned in the autocorrelation measurement. Take one beam I1 as an example, integration 

of Equation (3.4) over space and time gives the transmission T1 of the pulse for delay 

time t: 

0

1
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1 ( , ) ( , )R

I r t
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E z I r t I r t t


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

     
                                                             (3.6) 

where E1 is the incident energy of one beam, and R is the overlapping area of the replicas. 

The integrant can be expanded in a power series and perform the integral on each of the 

series terms. The absorption behaviour can be obtained as A1=1-T1. For the condition that 

the nonlinear absorption is small, as 0 1izI , the A1 is approximated as 102 

2

1 10 20 2
( ) exp

22 2 2 2

z z t
A t I I

 



 
     

 
.                                                                 (3.7) 

The first term of Equation (3.7) shows the self-induced TPA which is the main 

contribution of the background signal, and the second term corresponds to the 

autocorrelation of the two pulses which gives the pulse duration information. For 

Gaussian pulses, the temporal width of the autocorrelation trace is broadened by a factor 

of √2 compared to the pulse duration of the input beam. In case of our experiment

10 20 0 2I I I  , the autocorrelation signal AC of the photoconductivity is expressed as 
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                                                                                    (3.8) 

where k is the spectral response of the PMT. Although the solution of TPA absorption is 

given under the approximation of 0 1izI , when the transmission change is smaller 

than 15-20 %, the error from this approximation is less than 6 %.77, 102  

Figure 3.9 shows the TPA autocorrelation traces recorded by the CsI PMT for various 

incident pulse energies. The light source is taken from the SHG-UV NOPA at the 

wavelength of 280 nm. The spectral bandwidth of UV pulses is about 6.6 nm, 

corresponding to a Gaussian pulse with a Fourier limit of 17.5 fs. All measured 

autocorrelation traces are symmetric relative to the peak. The values of pulse duration 

are evaluated from the full width half maximum (FWHM) of the autocorrelation traces 

based on the deconvolution factor of 2 for the Gaussian pulse profile. The pulse 

duration is broadening with increased input pulse energy. The measured autocorrelation 

width is lengthened by 25 % when the input pulse energy is increased to 130 nJ (Figure 

3.9 (e)). If the input pulse energy is increased over 200 nJ, a decreased autocorrelation 

signal is observed, which can be explained as the depleted input due to the cubic response 

from the MgF2 window. With a bandgap energy (11 eV) of MgF2, the photon energy (4.4 

eV) of 280 nm pulses is high enough to induce a cubic response. A general limit for the 

autocorrelation based on TPA in a PMT is the strong background signal from one-photon 

absorption and TPA signals of the two individual pulses. The pulse energy dependence 

of the background offset signal shows a similar trend as the pulse duration broadening 

when increase the input pulse energy (Figure 3.9 (f)). Note that, in Equation (3.8) the 

width of autocorrelation signal is independent of the incident pulse intensity, which is 

different from the observation in our experiments. The increase of the deviation from the 

real pulse duration for large fluences is due to the saturation of signals from the PMT and 

the increase of the free-carrier absorption.103 The curve of offset versus the input pulse 

energy can be fit as a second order polynomial function. The disagreement of our data 

(Figure 3.9 (f)) from the quadratic dependence is probably due to the free-carrier 

absorption under large optical fluences. Besides, for high energy excitation the linear 

absorption below the bandgap may be sufficient to generate photoelectrons.     
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Figure 3.9: Measured autocorrelation traces at 280 nm with increasing pulse energy, the pulse 

widths obtained are (a) 21.7 fs, (b) 24.3 fs, (c) 25.2 fs, and (d) 27.3 fs. The open dots are measured 

autocorrelation data, and solid lines are Gaussian traces. (e) Selected autocorrelation Gaussian 

traces at different pump energies. (f) Temporal pulse broadening (black) and background offset 

(dark blue) versus input pulse energy. 

 

3.5.2  Material dispersion effect 

The temporal resolution of the autocorrelator is partly deteriorated by the dispersion from 

the thick window material of the PMT, since the PMT in our experiment is not designed 

to be used for the characterization of ultrashort pulses. The input surface window of the 
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PMT is MgF2 with a thickness of 2.5 mm. As the laser beam passes through an optical 

glass, pulse lengthening is produced, which leads to a falsified pulse characterization. 

This problem is especially pronounced when the pulses to be characterized are in the UV 

part of the spectrum.  

For a Gaussian pulse with the pulse duration of 0  and central wavelength at λ0, after 

propagating a distance L in an optical glass, the stretched pulse duration can be expressed 

as104 

2
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                                                                                             (3.9) 

with c being the speed of light in vacuum, and 2 2d n d being the second derivative of 

the refractive index at λ0, which can be calculated from the Sellmeier equation. For 

various materials, Sellmeier equation will be given in different forms. The Sellmeier 

equation of three common UV materials, MgF2, CaF2 and fused silica (FS) is 
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where A, B1, B2, B3, C1, C2, C3 are experimentally determined constants. The values of 

constants for MgF2, CaF2 and fused silica are listed in the Table 3.1. The second 

derivative of the refractive index is given by 
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Table 3.1 Sellmeier constants   

 A   B1 B2 B3 C1 C2 C3 

MgF2 1.27620        0.60967      0.00800         2.14973        0.08636          18.80          25.00 

CaF2   1.33973        0.69913      0.11994         4.35181        0.09374          21.18          38.46 

FS       1.00         0.696166    0.407943       0.897479      0.068404      0.116241     9.89616 
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The calculated results of the second order derivative of refractive index with respect 

to the wavelength are shown in Figure 3.10, from which it is observed that the refractive 

index vary strongly in the spectral range below 300 nm. When working in the spectral 

domain of UV, MgF2 is the material with the lowest dispersion, compared to the other 

two common UV materials. However, a Fourier-limited pulse at 280 nm with 22 fs pulse 

duration is lengthened to 39 fs after propagation through a 2.5 mm thick MgF2 window. 

Substituting Equation (3.11) into (3.9), the temporal spreading of the pulse after 

propagating a distance of L can be evaluated. Conversely, the initial pulse duration also 

can be calculated with Equation (3.11) and (3.9) if the pulse duration after propagating 

through the material is known. 

Due to the dispersion problems encountered with MgF2 window, the pulse duration 

obtained from the raw measured autocorrelation is longer than the actual pulse duration, 

which will falsify the time resolution in spectroscopic applications.  To overcome this 

problem, it has to ensure that the UV pulse reaching the sample has almost the same 

duration as being characterized in the PMT autocorrelator. Therefore, the flow cell used 

in our experiment is designed to have a similar thickness as the MgF2 window. Care is 

also taken to have a comparable path length in air from the UV NOPA to the flow cell 

and PMT autocorrelator. In practice, the UV light is pre-compressed by the prism 

compressor prior to the PMT and flow cell, in order to compensate the dispersive 

broadening of the pulses induced by the window materials of the PMT and flow cell.  

 

 

Figure 3.10: Calculated second order derivatives of the refractive 

index with respect to the wavelength for FS (red), CaF2 (black) and 

MgF2 (blue). 
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3.5.3  Photocathode effects  

If the photon energy satisfies Ebg < h  < W, where Ebg is the bandgap energy, one-photon 

absorption takes place, giving rise to the energy relaxation of the conduction electron, 

which increases the time resolution of the pulse characterization.73 In general, the one-

photon absorption is increasingly significant towards shorter wavelengths. Our original 

motivation in choice of KBr is to suppress one-photon absorption in the spectral range 

below 300 nm, and thus lead to a better autocorrelation performance compared to CsI. 

Figure 3.11 shows the autocorrelation traces measured by KBr and CsI PMT at 281 nm 

and 267 nm, respectively. At wavelength of 281 nm, the autocorrelation trace in KBr is 

shown to be more than 15 fs longer than in CsI (Figure 3.11 (a) and (b)). For a 

measurement of shorter wavelength at 267 nm (Figure 3.11 (c) and (d)), the durations of 

observed autocorrelation traces are similar in two PMT, but still KBr gives a longer pulse 

duration. These behaviours are contrary to what is expected. From the experimental 

results, CsI shows a better time resolution than KBr. The different behaviours can be 

explained in terms of the PMT properties: the response time and spectral response. 

Cathodes for both these photomultiplier tubes contain the same under-layer. The 

photoemission time from both cathodes is significantly lower than timing performance 

of the multiplier which is the same for both types. In other words, the response time of 

the PMT does not depend on the type of photocathode. The response time varies 

approximately as 1/V1/2, and V is the voltage applied on dynodes. Therefore, the CsI 

photocathode has the faster response time, because of the higher voltage for a given gain 

than the KBr photocathode. Other factors affecting the timing are the number of dynodes 

and the photocathode diameter which are the same for both CsI and KBr PMT. 

As mentioned in the section of 3.2, two PMT show different spectral response in the 

detecting UV region. The photoemission efficiency increases with a shorter wavelength. 

The linear spectral responses of KBr and CsI at 140 nm, corresponding to TPA at 280 

nm, are 3.2 % and 11.6 %, respectively, which is about 5 times difference. For the linear 

response at shorter wavelength around 130 nm, corresponding to TPA at 260 nm, two 

PMT have similar same quantum yield of about 10 %, which gives both TPA 

autocorrelation traces similar duration (33 fs and 29.8 fs). These trends suggest that, the 

time resolution is more limited by the spectral response instead of the bandgap or work 

function. In our measurements, CsI is able to characterize pulses of the total spectral 

range from 250 nm to 350 nm. While, KBr can only give the autocorrelation trace with 

the duration close to the actual value on the very edge of the UV spectrum.  Thus, to 
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obtain the best time resolution for a particular photoelectric material, one must take into 

account the spectral response in the spectral range of interest. 

 

 

Figure 3.11: Autocorrelation traces measured by KBr ((a), (c)) and CsI ((b), (d)) photocathode. 

The pulse durations are (a) 44.9 fs at 281 nm, (b) 28.3 fs at 281 nm, (c) 33.0 fs at 267 nm, and 

(d) 29.8 fs at 267 nm. 



 

49 
 

Chapter 4           

Supercontinuum Generation to the UV 

 

A broadband supercontinuum (SC) is commonly used as the probe light in time-resolved 

spectroscopies. SC generation gives broadband probe light on both the Stokes and anti-

Stokes flanks of the pump frequency. In this chapter, the investigation of SC focuses on 

the anti-Stokes side to generate a UV continuum. Spectral broadening is investigated for 

different pump wavelengths (800 nm and 400 nm) and intensities, and various optical 

media with high bandgap (CaF2, sapphire and YAG). It is shown that the shorter pump 

wavelength and material with higher bandgap are more advantageous for generating 

shorter-wavelength SC. The spectra of each generated SC are measured in a multichannel 

detector. The grating-based and prism-based spectrometer are introduced and compared 

in terms of the spectral resolution and transmission efficiency. 
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4.1 UV supercontinuum generation 

In 1970, Alfano and Shapiro have found that when an intense ultrashort pulse was 

focused into an optical transparent medium, some different frequency components 

appeared leading to extreme spectral broadening of the pulse,105, 106 which is referred as 

supercontinuum (SC) or white light (Figure 4.1 (a)). Applications of SC have spread 

widely including the probe pulses in time-resolved spectroscopy107, 108, pulse 

compression109-111 and seed pulses of optical parametric amplifiers112, 113.  

The mechanism of SC generation is controversial and involves complex processes. It 

is generally accepted that the continuum generation is triggered by self-focusing, because 

the energy threshold for the continuum generation coincides with the critical energy for 

self-focusing.114 Self-phase modulation is considered as the dominant mechanism 

leading to spectral broadening.115 However, self-phase modulation associated with self-

focusing cannot explain complicated spectral characteristics of continua completely. For 

example, water has been widely used to generate continuum with very broad spectrum 

despite the low Kerr nonlinear index.116 Recently, it has been suggested that multiphoton 

ionization,117, 118 self-steepening,119, 120 four-wave mixing121 and chromatic dispersion122 

play roles as well.  

Under a variety of experimental conditions, many media have been found able to 

generate SC in the visible-to-infrared region, while much less research has been carried 

out in the UV spectral range. There are some reasons for the difficulties of UV SC 

generation. Firstly, laser pulses with high intensity are required to achieve shorter 

wavelength, because the spectral intensity of the continuum decreases rapidly as it 

diverges from the pump wavelength.115  Secondly, most of optical materials have 

absorption in the UV region. For example, the photonic crystal fibers have been proved 

useful to push the short wavelength edge of SC down to 280 nm, while the fundamental 

barrier to the generation of even shorter wavelengths is the large two photon absorption 

in silica.123 Moreover, it is believed that there is a bandgap threshold of the material for 

continuum generation, and the material with higher bandgap is more advantageous for 

shorter wavelength generation.122 Nowadays only a few materials have large enough 

bandgaps to generate frequency components extending to UV, such as CaF2 (10.2 eV) 

and LiF (11.8 eV).118, 124 Figure 4.1 (b) summarizes several media which have been 

studied for continuum broadening into UV, and under the same pumping LiF produces 

the shortest wavelength due to having the largest bandgap. 
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The generation of anti-Stokes components in SC strongly depends on the pump 

wavelength, in other words, shorter pump wavelength can extend the anti-Stokes 

components more into UV (Figure 4.1 (b)). The SC generation is possible when the 

energy of the pump photons exceeds one third of the band gap of the medium because 

the self-focusing is stopped by avalanche ionization from the valence band to the conduct 

band.125 Nonlinear processes like optical amplification, second harmonic generation, and 

sum frequency generation allow the generation of pulses deep to UV, which can be used 

as the pump light in the SC generation to access an even wider UV spectral range.110 For 

example, the CaF2 based continuum generation pumped by the second or third harmonic 

pulses of 800 nm extends the spectrum from close to the pump wavelengths down to 250 

nm and 225 nm, respectively.126 Instead of using single color pump, generated high 

harmonic pulses combing with the fundamental pulses via two-color filamentation lead 

to SC generation extending up to 230 nm in air.127, 128 The frequency broadening around 

the high harmonic components, is mainly dictated by cross-phase modulation induced by 

the fundamental pulses.  

 

 

Figure 4.1: (a) The SC is generated when an intense ultrashort laser pulse is focused into a 

transparent medium. Because self-phase modulation and material dispersion, the generated 

continuum is usually temporal stretched compared to the input pump pulse. (b) The cut-off 

wavelength of SC generated in various media for the pump wavelengths at 800, 400 and 266 

nm.115, 120, 123, 126, 128-130 
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The high pulse-to-pulse stability, high amount of coherence and low energy threshold 

render continuum generated from the condensed medium a valuable source of broadband 

radiation for spectroscopic applications.131 As mentioned in the previous chapters, the 

tuning range of UV pump pulses is from 250 nm to 350 nm. In the UV spectroscopic 

applications, extending the probe to wavelengths as short as the pump allows the direct 

observation of the ground state bleach. For molecules with transition in the visible, it is 

also helpful to be able to monitor the ground state recovery of higher absorption bands 

since they do not overlap with the stimulated emission.132   

CaF2 and LiF tend to generate broader anti-Stokes spectrum than other materials 

because of the broad bandgap (Figure 4.1 (b)). However, the UV light is likely to cause 

color-center degradation in the ionic crystals, such as LiF.129, 133  Therefore, of all the 

materials that support a broad spectrum to the UV region, only CaF2 has been found to 

be useable in routine applications.130, 132, 134
 In our UV transient absorption experiment, 

CaF2 is chosen as the continuum material to generate the broad probe spectrum under the 

pump wavelength of 800 nm and 400 nm. 

 

4.1.1 Experimental setup 

The setup for the continua generation under the fundamental 800 nm and second 

harmonic 400 nm pumping is shown in Figure 4.2. The laser source is a commercial 

800nm Ti:sapphire regenerative amplifier system with 1 kHz repetition rate and about 

100 fs pulse duration. A fraction of the amplifier output with energy about 30 J per 

pulse is selected as the input pump for the whole setup of continua generation. For 800 

nm pumping, 20 % input pulses (6 J) is focused in a 5 mm CaF2 substrate by a 100 mm 

lens. To adjust the energy, a step-variable attenuator in combination with an iris is used. 

The CaF2 is polished and cut to 001 direction, so the linearly polarized laser beam 

propagates along the optical axis. Since CaF2 is prone to material degradations, the crystal 

has to be moved continually. A motor-driven stage is designed to eccentrically move the 

crystal with a period of a few seconds, as shown in Figure 4.2. The pump beam is 

carefully aligned to be normal to the crystal surface, in order to reduce the instability 

induced by the continuous motion. The generated continuum is then collimated by a 1 

inch off-axis parabolic mirror with a focal length of 50 mm. The 800 nm residual pump 

light is removed by an 800 nm edge filter. The threshold of continuum generation is lower 

than 3 J. This setup is also used for SC generation in sapphire and YAG, only by 
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exchanging the substrate. The thickness of sapphire is 2 mm and YAG is 3 mm. Since 

sapphire and YAG have high damage threshold, no translation stage is needed. 

For 400 nm pump, 80 % input pulses are firstly frequency doubled by a 1 mm BBO 

crystal with cutting angle of 29°, and then focused in CaF2 substrate by a 100 mm fused 

silica lens. The maximum output energy of the second harmonic pulses is about 5 J. 

The generated continuum is collimated with an f = 50 mm off-axis parabolic mirror 

before passing through the 400 nm high-reflective dielectric mirror which is used to 

suppress the high spectral power near the pump wavelength. Since the reflection 

efficiency of the dielectric mirror depends on the incident angle of the beam, with a fine 

angle-adjustment, some more spectral range in the vicinity of the 400 nm pump can be 

added. 

 

 

Figure 4.2: Schematic of the SC generation setup pumped by the fundamental 800 

nm pulses and second harmonic 400 nm pulses. 20 % input energy is used to directly 

pump CaF2 and the remaining 80 % is frequency doubled to generate SC more into 

UV. BS: 80 % reflection beam splitter, VF: variable filter, L1 and L2: 100 mm fused 

silica lens, OAPM: off-axis parabolic mirror with 50 mm focal length, F1: 800 nm 

edge filter (visible and UV high transmission, 800 nm high reflection), F2: 400 nm 

high reflection mirror.  
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4.1.2 Results and discussion 

The spectra of generated SC in CaF2, sapphire and YAG under 800 nm pumping are 

shown in Figure 4.3. The spectra of SC is measured by a prism-based spectrometer and 

recorded by a home-made photomultiplier array, which will be elaborated in the next 

section. The spectrum of SC generated in CaF2 under 800 nm pumping spans from 300 

nm to 750 nm. The dip at about 400 nm and long wavelength cut-off are due to the 800 

nm edge filter used to remove the fundamental pulses. The blue wing of the spectrum is 

about 10000 cm-1 broader than sapphire, and 12000 cm-1 than YAG. This is not surprising, 

considering the dependence of spectral broadening on the medium’s bandgap. One 

feature of the continuum is a trend of increasing anti-Stokes broadening with increasing 

bandgap, which has been explained by the mechanism of multiphoton excitation 

enhanced self-phase modulation.118 The energy ratio of the medium’s bandgap to the 

incident photon, E/h, determines the amount of anti-Stokes broadening. The bandgaps 

of sapphire and YAG are estimated by measuring the absorption edge using UV-

spectrophotometer (SHIMADZU UV-1800) and the values are 6.2 and 4.9 eV, 

respectively. The absorption of CaF2 is out of the detection range (UV cut-off at 190 nm) 

of the spectrophotometer, but as reported early, the bandgap of CaF2 is about 10.2 eV.118 

Thus, because of the wide bandgap, CaF2 is chosen to further extend the SC spectrum to 

the deep UV under higher frequency pumping. 

 

 

Figure 4.3: Spectra of the continua generated in CaF2, sapphire and YAG under the 

fundamental 800 nm pumping.  
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The threshold of SC generation is under 3 J, and a slight increase of the pump energy 

gives a stable single filament. Upon further increasing the energy, the spectral broadening 

increases and a plateau-like spectrum starts to develop. When the pump energy is 

increased over 5 J, spectral interference and wiggles are observed. Generation of a 

continuum is always associated with self-focusing, which leads to a largely increased 

intensity and therefore enhances self-phase modulation. When the pump energy is low, 

self-focusing is not reached before the beam gets out of the medium. As the pump energy 

is increased to a critical value, the continuum generation is started. This critical value can 

be defined as the continuum threshold, which is slightly higher than the threshold causing 

self-focusing. The threshold of self-focusing is given by135 
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where 𝑛0 and 𝑛2 are linear and nonlinear refractive indices of the medium, and λ denotes 

the central wavelength of the pump pulse. When the pump power is low but enough to 

start self-focusing, for a medium with a certain thickness shorter than the self-focusing 

length, the self-focus of the beam will be out of the medium and thus the self-modulation 
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where k = 2π/λ is the wave number, a0 is the radium of the pump beam at the 1/e level of 

intensity, and R= P/Pth is the energy ratio between the pump beam and the threshold of 

self-focusing. Equation (4.2) shows that high intensity is required to reach short self-

focusing length. The continuum threshold can be understood as the intensity where the 

self-focusing length equals the thickness of the medium. When the continuum 

generation is initiated but the pump intensity is not high enough to induce strong self-

modulation, a narrow spectral broadening is commonly observed. The continuum 

broadening increases with an increase of intensity. Limited by the bandgap of the medium, 

a further increase in the intensity cannot produce more spectral components but creates 

multiple filaments. 

The output polarization of SC light is calibrated by using a Glan polarizer. It is 

observed that most parts of the SC are polarized in the direction of the incident pulses 

polarization, but a small part of the spectrum in the blue wing changes polarization. A 
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continuum is supposed to maintain the same polarization direction as its incident pump 

for an isotropic medium.105 However, due to self-induced polarization changes of the 

pump light in isotropic media with cubic crystal structure, such as CaF2, an intensity 

modulation of the blue wing of the SC along polarization axes orthogonal to the 

polarization of the pump beam could occur.133  

The spectrum of SC pumped by the second harmonic pulses is shown in Figure 4.4. 

The SC spectrum spans most of the visible range and extends into the deep UV up to 240 

nm. The missing part of the spectrum from 370 nm to 450 nm is due to the 400 nm high-

reflective mirror which is used to isolate the SC from the 400 nm pump light. According 

to Equation (4.1), the continuum generation strongly depends on the pump wavelength. 

Shorter pump wavelengths lower the self-focusing threshold, and therefore less energy 

is needed to initiate the continuum generation. The continuum generation occurs above 

a threshold value of less than 2 J. It is interesting to note that, pumping at 400 nm 

enables the anti-Stokes side extending more into UV compared to 800 nm pumping, but 

the overall broadening is less. The Stokes side of the SC pumped by 400 nm is cut-off at 

600 nm which is at least 200 nm less than pumped by 800nm. It seems that tuning the 

pump wavelength to be shorter results in a narrower SC spectrum. Such a behavior has 

been observed in other studies115, 131 and explained as the competition between multi-

photon excitation and self-phase modulation.125 For example, if the bandgap E of the 

medium is in relation with the incident photon  as E/h, free electrons induced by two 

photon absorption restricts self-focusing.  

 

 

Figure 4.4: The SC generated in CaF2 with the second harmonic pump source. (a) The anti-Stokes 

side of the generated SC is highlighted. (b) SC spectra in UV and visible. A 400 nm high-

reflective mirror is used to remove the pump, which results in the spectral gab around 400 nm. 
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4.2 Multichannel detection system 

To characterize the spectral properties of the generated SC, a multichannel detection 

system is designed, which comprises a spectrometer and a photodiode array. For the 

application of UV time-resolved spectroscopy, the detection system is required to be able 

to efficiently realize data acquisition with minimal signal loss. In the beginning stage of 

our experiments, a commercial grating-based spectrometer (Oriel, Newport) was applied 

(Figure 4.5 (a)). A 150 mm lens focused the SC to the slit, which has a width of 50 m. 

A spherical mirror was used to collimate the SC and reflect it to the grating. Each 

frequency component was spectrally separated and horizontally focused to the 

photodiode array after the second spherical mirror. The whole detection setup is very 

easy to align, and versatile for different spectral ranges by simply changing the grating 

which has high reflection efficiency in the spectral range of interest. However, for the 

broad spectral range (250 nm to 700 nm) in our measurements, there is no suitable 

commercial grating available, which can provide high efficiency for all frequency 

components, especially in the UV. The low efficiency of grating will decrease the 

detection sensitivity, and therefore leads to undesired baseline and signal shifts.136  

In addition to grating, prisms are also very common materials providing angular 

dispersion. The advantages of using a prism over a grating as the dispersive element in 

the spectrometer (Figure 4.5 (b)) are: (1) high transmission throughout the whole spectral 

range of the SC, without zero or high order loss, (2) avoidance of the order sorting 

problem, when the spectrum of SC spans more than one octave, spectral components 

from different orders may overlap on the same pixel, and (3) high spectral resolution in 

the blue part of the spectrum due to the wavelength dependence of the dispersion.132 

After the dispersion in prism, the beam is focused horizontally by a quartz lens. The 

combination of the prism and the lens is chosen depending on the geometry of the 

photodiode array. In our case, a fused silica prism together with a 20 mm focusing lens 

allows spectral components from 300 nm to 650 nm imaging into the photodiode array 

which contains a sensor with area of 12.5 x 2.5 mm2. The photodiode array is placed on 

the horizontal focal point of the SC to achieve the optimal spectral resolution and highest 

detection intensity.  

To calibrate the wavelength of the multichannel detection system, a set of band-pass 

filters from 300 nm to 800 nm with 10 nm differences in the center wavelength are used. 

The known spectrum of each filter can be used to assign the wavelength to its 

corresponding pixel. In our routine measurement, 20 filter/pixel couples are sufficient to 
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use as input data for a nonlinear curve fitting ( 1 2

1 2 2

b x b x
y a a e a e   , y: wavelength, x: 

pixel, a1-b2: fit parameters) which correlates each of the 256 pixels to a wavelength. 

 

 

Figure 4.5: Schematic diagrams of the multichannel detection system. The 

spectrometers are marked with dashed lines. (a) Grating-based spectrometer. A 

fused silica lens with a focal length of 150 mm focuses the SC to the 50 m slit. A 

spherical mirror (10 cm focal length) is used to collimate the SC and reflect it to the 

grating (77417, Oriel). The first order of the SC is horizontally focused into the PDA 

by another spherical mirror (10 cm focal length). (b) Prism-based spectrometer. The 

fused silica prism is cut such that the angle of incidence is the Brewster angle at the 

central wavelength. After the prism, the SC is horizontally focused into the PDA by 

a 20 mm focusing lens. The FG3 filter (Schott) is used to suppress the strong 

components around 600 nm in order to balance the intensity of the whole spectrum 

to be detected. 
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Chapter 5           

Implementation and Performance of the UV Transient 

Absorption Experiment  

 

This chapter addresses the principal of the transient absorption (TA) experiment. All 

relevant components which play a role in building and running a femtosecond UV TA 

experiment are assembled to give a complete pump-probe system. Data processing 

including time-zero correction and coherent artifact subtraction, as well as data analysis 

by using multi-exponential analysis and global target analysis are elucidated. The 

performance parameters are crucial in the study of ultrafast molecular and chemical 

dynamics. The entire pump-probe system, including the experiment measurement 

software, is tested in the study of the electronic levels and the dynamics of the excited 

state of 7-hydroxy coumarin.  
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5.1 Transient absorption experiment 

In TA spectroscopy, the pump pulse induces the transition of a fraction of the molecules 

to the excited state by a vertical Franck Condon transition and the induced optical 

transmission changes are monitored as a function of delay time by the absorption 

measurement of the broad continuum probe (Figure 5.1). According to Lambert Beer’s 

law, the change of spectral intensity 𝑂𝐷(𝜆, ) of the probe light propagating through the 

sample is recorded as 
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where 𝐼0(𝜆) is the spectral intensity of the probe light before passing through the sample, 

𝐼(𝜆, ) is the spectral intensity of the probe light having passed through the sample at a 

delay time  after the photo-excitation, c is the concentration of the absorbing substance, 

 is the molar absorption coefficient, and d is the path length of the sample. In practice, 

transient absorption meausrements are generally presented as the difference absorbance 

of the sample, which can be calculated as: 
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where I(λ,)on and I(λ,)off denote the transmitted intensity of the probe light having 

passed through the excited sample and the unexcited sample, respectively. The 

alternating pumping of the sample is realized by blocking every second pump pulse. The 

setting of a variable and well-defined delay time  between the pump and the probe light 

enables the collection of spectra as a function of time. The recorded TA spectra 

𝑂𝐷  (𝜆, ) is a combination of several negative and positive signals. Assignment of the 

various signals permits discussion of the nature of excited states.  If I(λ,)on > I(λ,)off, a 

transient gain is observed, which results in the depopulation of the ground state with 

possible stimulated emission.137 When the sample is excited by the pump, a certain 

amount of the molecules from the ground state are transferred to the excited state. Thus, 

after excitation, the probe light will be less well absorbed in the spectral range of static 

absorption, which leads to a negative signal known as the ground state bleach (GSB) 

(Figure 5.2 (a)). The amplitude of the GSB is proportional to the total population in the 

excited states. If an excited state has optically allowed transitions back to the ground state 

or relaxing to lower states, the probe light in certain wavelengths can stimulate this 
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transition with additional photons emitted, from which a negative signal called stimulated 

emission (SE) is observed (Figure 5.2 (b)). If I(λ,)off > I(λ,)on, a positive signal is 

observed. The predominant cause of the positive absorption is optically allowed 

transitions from the initial excited state to higher energy excited states (Figure 5.2 (c)). 

If a chemical reaction is caused by the pump pulse, a created species or product can also 

show a positive absorption signal. 

 

 

Figure 5.1: (a) Schematic depiction of the principle of TA spectroscopy. Two ultrashort laser 

pulses, the pump pulse and the probe pulse, are incident on a sample in which they are spatially 

overlapped. The transmitted probe pulse is recorded by the detector which can be a single-channel 

detection system, such as photodiode, or a multichannel detection system, such as CCD. The TA 

spectra are calculated as the difference absorbance between the excited sample and unexcited 

sample. (b) Energy level diagram representing the excited states dynamics. TA spectroscopy 

provides information about how the excited states are populated and relax.  
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Figure 5.2: Different contributions to the transient absorption signal. When the pump light is on, 

a fraction of the molecules are excited to the excited state by the pump light, thus the number of 

molecules on the ground state is reduced. (a) The first contribution is from the ground state 

bleach. After excitation, the probe light in the region of the ground state absorption of the 

molecule is absorbed less resulting in a negative signal. (b) When the probe photon induces 

emission from the excited state, a negative signal called stimulated emission (SE) is observed. (c) 

The probe light can promote the population from the excited state to higher excited states, which 

gives a positive signal called excited state absorption. 
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5.1.1 Pump-probe experimental setup 

In the previous chapters, the most relevant components employed in our TA pump-probe 

setup, such as the tunable UV pump source and the supercontinuum probe light, have 

been described in detail. In this section, the complete implementation of the whole pump-

probe setup will be given, as shown in Figure 5.3. The idea behind the design and 

arrangement of the whole setup is that all optical paths of both pump pulses and probe 

pulses should be kept as short as possible to reduce the dispersion induced by air, whilst 

utilizing the minimum number of optics in order to avoid energy loss by either reflection 

or absorption. Moreover, an open layout of the pump-probe system is designed to 

facilitate the daily adjustment and operation. Finally, the setup is constructed to be 

flexible so that it can be routinely adapted to other possible experimental techniques, for 

example single-beam coherent anti-Stokes Ramen scattering (CARS) or shaped UV 

pulse TA spectroscopy. 

As a light source, a regenerative Ti:sapphire amplifier system (CPA 1000 Clark-MXR) 

is utilized, which delivers 640 µJ-pulses at 800 nm with ~100 fs duration, 10 nm 

bandwidth and a repetition rate of 1kHz. The TA setup for our measurements is based on 

two tunable femtosecond UV pump sources (SHG and SFG NOPA) and two broadband 

continua (sapphire and CaF2) for the wavelength selective pumping and probing, 

respectively. A general view of the pump and probe pulses are given here, and details 

have been discussed in chapter 2 and 4, respectively. For the pump, a 300 J/pulse portion 

is used to operate the SHG UV NOPA and 400 J pulses are selected to pump the SFG 

UV NOPA. The SHG UV NOPA is based on frequency doubling of the compressed 

visible pulses, which provides the generated UV pulses with tunable spectral range from 

250-350 nm and sub-30 fs pulse duration. The other UV NOPA is based on frequency 

mixing between chirped 800 nm pulses and visible pulses, which creates an excitation 

spectrum with a tunable range from 300-350 nm. According to the static absorption 

spectrum of the sample to be investigated, the pump light can be easily switched between 

two UV NOPAs by flipping two aluminium mirrors. To adjust the pump energy to meet 

the needs of the sample, a neutral density filter is placed prior to the generation of UV 

pulses to attenuate the energy of the input visible pulses. The insertion of optics into the 

optical path after UV generation is avoided. In order to vary the delay time between the 

pump pulses and probe pulses, the pump is delayed with a retro-reflector mounted on a 

motorized, computer-controlled translation stage and the optical path of the probe light 

is kept constant. Every second pump pulse is blocked with a chopper wheel, which is 

controlled by a 500 Hz signal synchronized with the laser trigger. In this way, the sample 

is alternatively being excited and not excited. 
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Figure 5.3: Schematic representation of the ultrafast UV TA experimental setup. 5 % of the 

output from the Ti:sapphire amplifier is split off and used to power a supercontinuum 

combination. The remaining energy is used to operate either the SHG UV NOPA or the SFG UV 

NOPA. After passing the chopper, the UV pump beam is sent through a delay line. The pump 

and probe beams are focused onto the sample, and the transmitted probe is detected by the 

multichannel detector. FM: flip mirror, BS1: 5 % reflection beam splitter, BS2: 70 % reflection 

beam splitter, PMT: photomultiplier tube, Attenuator: neutral density filter, PDA: photodiode 

array, Filter: FG3 filter (Schott), lens: quartz lens with 150 mm focal length. 

 

The characterization of the UV pulses is realized using a solar-blind photomultiplier 

tube (PMT) via two photon absorption (for details see chapter 3). To ensure the UV 

pulses reaching in the sample have the same duration as measured in the PMT, the optical 

paths from UV generation to the PMT and to the sample are adjusted to be identical.  

For the probe light, 5 % output of the CPA system is used to support several variants 

of supercontinuum generation: one comprises of a visible continuum generated in 2 mm 
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sapphire, and the other are two UV-VIS continua generated in CaF2 pumped by 800 nm 

and 400 nm, respectively. The whole supercontinuum spectrum spans from the deep UV 

240 nm to near 800 nm. The desired spectral range of probe light can be chosen by 

flipping two aluminium mirrors. Most of our measurements are performed in solutions 

and therefore carried out at the magic angle (54.7°) to eliminate anisotropic effect.138 

Contrary to the traditional pump-probe experiments performed in the visible range, 132, 

139, 140 we do not change the polarization of the pump pulses but rather the polarization 

of the probe pulses, which prevents any UV pulse distortion by passing through the 2 

mm half wave plate. Due to the lack of accurate, broadband half wave plates working 

from 300-700 nm the polarization of the probe light is set by placing an 800 nm half 

wave plate before the continuum generation. The orientation of the continuum substrate 

is adjusted with respect to the polarization of the laser. A linear polarized continuum with 

a high extinction ratio is obtained.  

The pump and probe pulses are spatially overlapped and focused into the sample with 

spherical mirrors of 30 cm and 25 cm focal length, respectively. The focusing spot of the 

pump light is slightly bigger than the probe. After passing through the sample, the pump 

light is blocked, and the continuum probe light is dispersed in a prism-based spectrometer 

and recorded by a photodiode array. Data recording is performed using Labview 

programs (homebuilt) in a PXI system (National Instruments), which provides high 

performance synchronization and fast data storage. The Labview-based program 

provides a visual control of all relevant data, which enables a real-time handling of the 

measurement parameters. 

 

5.1.2  The design of the flow cell  

For the measurements performed in solution, usually the sample is either placed in a 

static cuvette, or circulated in a flow cell to prevent overexposure of the same excited 

volume and accumulation of products. For our experiments, a flow cell was designed and 

constructed to exchange the solution continuously with controlled speed and volume, 

shown in Figure 5.4. The design of the flow cell follows two requirements. On one hand, 

the length of the optical path through the two windows and the spacer should be 

minimized to keep a good experimental time resolution. The group velocity mismatch 

between the pump and probe pulse, as well as material dispersion induced pulse 

lengthening, lead to deterioration of the time resolution. The thinnest windows we are 

able to commercially obtain are 200 m polished quartz windows. It is important to note 

that the driving speed and volume of the flow cell have to be set carefully to prevent any 
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mechanical break of such thin windows. Several spacers with different thickness, 500, 

350 and 250 m are produced by the mechanical workshop. Using an extremely thin 

spacer improves the time resolution at the cost of the sample concentration. On the other 

hand, as mentioned in the chapter of UV pulse characterization, the entrance window of 

the PMT falsifies the characterization of pulse duration. Therefore, to overcome this 

problem and make the pulse characterization reliable, the front window of the flow cell 

is designed to have a similar thickness as the PMT window.  

The samples we are interested, coumarin dimers, are only available in very small 

amounts because of the low efficiency of dimerization.141 However, a high concentration 

of the sample is required to reach a desired optical density (at least 0.3 OD) in the 

extremely thin flow cell. To save the limited amounts of sample for multiple 

measurements, the volume of the sample has to be kept as small as possible. The pump-

head device (Masterflex, Console Drive 77390) is applied to drive the sample, which 

permits an overall volume of the sample as low as 3 ml.   

 

 

 

Figure 5.4: Scheme of the designed flow cell. (a) The thickness of the front window is about 

1.5 mm and the back window is about 200 m. The flow cell is held together by metal flanges, 

which can be mounted on a holder with three-dimension translation stage. (b) Front side of 

the flow cell. (c) Back side of the flow cell.  
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5.2 Data processing 

The recorded experimental data contain not only substantial dynamical information of 

the sample to be studied, but also undesired coherent artifacts that arise from the pump-

probe nonlinear interactions at the time zero, which are also solvent and 

substrate/window material dependent. Meanwhile, each spectral component of the 

chirped supercontinuum probe enters the sample at different times for any specific setting 

of the pump-probe delay (Figure 5.5 (a)), therefore the time zero of observed kinetics at 

each wavelength is different. These situations are disadvantageous as the coherent 

artifact notably distorts the data structure and subsequently increases the difficulty of the 

analysis for the initial dynamics, especially the amplitude is comparable to weak transient 

signals (Figure 5.5 (b)). However, the coherent artifact can help to determine the system’s 

parameters, such as the instrument response function and correct the spectra for temporal 

dispersion. In the following, a theoretical model of the coherent artifact is studied, from 

which a simulated nonresonant signal is obtained. To extract the correct, artifact free TA 

spectra of the sample under study, coherent artifacts are subtracted and the time-zero is 

corrected. 

 

 

Figure 5.5: (a) TA signal measured in ethanol solvent (λexc = 280 nm, exc = 28 fs, energy = 100 

nJ). The time axis is associated with the delay time between the pump and the probe. The positive 

time means the pump pulse comes before the probe pulse.  In our experiment, the supercontinuum 

probe is positively chirped, so the low frequency components travel faster than the high frequency 

components. The time-zero point is arbitrarily set at 390 nm. (b) TA trace of coumarin dimer 

taken at the probe wavelength of 375 nm (black dot-line), and pure kinetic trace without coherent 

artifacts (red line). 
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5.2.1  Coherent artifacts  

Coherent artifacts are intrinsic to the TA pump-probe experiment, which are produced 

by the simultaneous nonlinear mixing between one photon from the pump pulse and 

another one from the probe pulse. There are mainly three nonlinear processes which 

contribute to coherent artifacts: two-photon absorption (TPA),72, 85 stimulated Raman 

scattering (SRS)142 and cross-phase modulation (XPM)143. Simultaneous absorption of a 

pump photon and a probe photon gives rise to TPA; the energy difference of two incident 

photons corresponding to the vibrational oscillation of the medium gives rises to SRS; 

the phase modulation of the probe pulse induced by the intense pump pulse gives rise to 

XPM.  

In the TA measurements, when the frequencies of the pump and the probe match the 

condition hpump + hprobe > E (energy gap of the medium), the TPA is possible and more 

pronounced with the higher frequency component of the probe. TPA occurs in almost all 

organic solvents under UV pulse excitation below 350 nm.144 According to Equation 

(5.2), the TPA induced absorption translates into a positive OD signal (Figure 5.6 (a)). 

If TPA induced fluorescence takes place, a reverse negative signal can appear at a shorter 

wavelength. Since the self-induced TPA of the probe pulse can be neglected, according 

to Equation 3.5, the TPA signal increases linearly with pump intensity. 

A SRS signal appears more likely when the frequency of the probe is partially red-

shifted with respect to the frequency of the pump. The very broad spectrum of the 

supercontinuum probe provides a good chance that some components may fall into the 

spectral region being able to seed the coupling between the molecular vibrational ground 

state and a virtual energy level. The emission contribution from the SRS usually 

translates into a negative OD signal (Figure 5.6 (c)). However, a reverse situation is 

also possible when the frequency of the probe pulse is higher than the pump pulse. The 

probe pulse is absorbed to reach the virtual Raman level and the pump pulse acts as a 

Stokes pulse. It is important to note that the pump pulse induced frequency modulation 

of the probe pulse can cause a small spectral shift in the observed SRS signal.144 In our 

case, the contribution from SRS can be neglected, because the smallest energy separation 

between the pump pulse (270/280 nm) and the probe pulse (300-650 nm) is more than 

3000 cm-1 which is out of the range of vibrational modes for ethanol and acetonitrile used 

in the experiments.  
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Figure 5.6:  The contributions to the coherent artifact. (a) Simultaneous absorption of one pump 

photon and one probe photon gives rise to a positive TPA signal. (b) Frequency components of 

the probe interacting with the maximum of the pump pulse are pushed outwards resulting in 

decreasing intensity in the central part of the probe pulse and increasing in the probe pulse wings. 

(c) SRS contributions in two different conditions: the frequency of the pump is higher than the 

probe then the probe carries a negative signal, and the reverse, if the probe has higher frequency 

then it carries a positive signal. 

 

 

For the XPM process, the phase modulation induced by intense pump pulses occurs 

in all spectral components of the probe pulse. Assuming the temporal distribution of the 

pump pulse is a Gaussian shape, 
2 22 2 2

0( ) ( ) t

pumpI t A t A e   , the modulated probe pulse 

with centre frequency, 0, can be expressed as144 

2 0
0 2

8
( ) ( )probe pump

n L
t t tI t

c


  


                                                                              (5.3) 

where  is the coefficient of linear chirp, n2 is the second order refractive index, L is the 

thickness of the sample. The modulation is dependent on the intensity of the pump pulse. 

The frequency modes around 0 overlapping with the maximum of the pump pulse 

experience the most modulation, thus the spectral density of those modes is decreased, 

which is observed as a positive OD signal. The frequency modes >0 and <0 

overlapping with the wing of the pump pulse experience the least modulation and 

subsequently gain amplification from the modulation of modes  around 0, thus the 
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spectral density of these frequency modes are increased, which translates into a negative 

signal. In summary, the spectral density is transferred from the centre of the probe to the 

wings. This trend features the XPM signal with a shape of peaked middle and dipped 

wings (Figure 5.6 (b)). The intensity of the XPM signal is proportional to ( )probed t dt . 

From Equation (5.3), the XPM signal can be approximated as: 

2 0

2

( )8
( ) ( )

pump

probe pump

dI tn L
I d t dt I t t

c dt


 



 
    

 
                                                (5.4) 

which means higher frequencies, greater probe chirp and shorter pump pulses give 

greater XPM signal. 

The resulting coherent artefact signal is a linear combination of the three nonlinear 

processes in different proportions, as each contribution is linearly dependent on its 

corresponding third-order polarization. In practice, the contributions from TPA and SRS 

are very small, therefore the coherent artifacts for non-chirped probing can be well fitted 

by the XPM function, or more precisely by an approximation of the XPM function with 

its time derivatives as145    

2

XPM XPM
1 XPM 2 3 2

( ) ( )
( ) ( )

dS t d S t
S t A S t A A

dt dt
                                                              (5.5) 

where A1-A3 are constants.  

If pump and probe wavelengths are different, the group velocity dispersion (GVD) 

has to be taken into account, which is dependent on the difference between refractive 

index values for pump (npump) and probe (nprobe). The velocity mismatch causes temporal 

broadening of the coherent artifact. For the chirped probing, the temporal width of the 

artifact varies with the probe wavelength. Except for the frequency difference between 

the pump pulse and probe pulse, the path length L also contributes to the temporal width 

of the artifact. To minimize the temporal width of the artifact, the flow cell should be 

designed to be as thin as possible. 

The XPM function SXPM (t) is given by 144: 

  
2 22 2 2( )2

XPM ( ) 2log 1 ( ) GVDtt

GVDS t a te t e
                                                       (5.6) 
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where a = 0

2
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pump probe( )GVD

L
n n

c
   . Because the second term in Equation 

(5.6) is usually much less than 1, then the XPM function is derived approximately by 

making use of the first term of the logarithm expansion: 

 
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XPM ( ) 0.86 ( ) .GVDtt
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Inserting Equation (5.7) into (5.5), the coherent artifact signal is expressed as:  
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5.2.2   Time zero correction 

The spectrally broad probe pulses are obtained using the generation of supercontinuum. 

The supercontinuum is temporally chirped, usually positively chirped due to the self-

phase modulation (SPM) and GVD in the generation itself. As shown in Figure 5.5 (a), 

the time evolution of the coherent artifact is evidence of positive chirping of the probe 

pulse, as the pump pulse is almost transform limited. At certain settings of the pump-

probe delay stage at td, different spectral components of the probe interact with the pump 

at different time, therefore for the frequency component   of the probe the actual delay 

t in Equation (5.8) should be replaced as 

 0( ) d dt t t t                                                                                  (5.9) 

in which a time-zero function t0 () is introduced and  is the phase of the chirped probe 

pulse. The time zero corresponds to the delay setting where the pump and the probe are 

exactly overlapped in time. The most commonly used methods to obtain the time-zero 

function are based on the coherent artefact either from pure solvents or from a transparent 

substrate.146, 147 Inserting Equation (5.9) into (5.8), a function of coherent artifacts for 

chirped probing is obtained, in which t0 () presents as one of the parameters. Fitting this 

function to the coherent artifact data measured in the pure solvent, the values of t0 () for 
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all detected wavelengths are obtained (Figure 5.7 (c)). These points can be fit with a 3rd 

or 4th order polynomial function, which describes the time-zero function for the whole 

data set. Moreover, the trace of t0 () can also be depicted by locating the peaks of 

coherent artifacts (Figure 5.7 (c)). The positive maximum of the coherent artefact signal 

shifts in time with the probe frequency, which reflects the dispersive features of the 

chirped probe pulse with an accuracy better than 10 fs. However, if the frequency of the 

probe pulse is very far apart from the pump pulse, GVD and XPM lead to multiple peaks 

in the coherent artefact signal (Figure 5.7 (b)), which may introduce errors in picking the 

correct peak. Therefore, for the UV-pump/visible-probe measurements, especially in the 

case when the frequency difference between the pump and probe is over 10000 cm-1, by 

fitting coherent artifacts one can gain a more precise time zero correction. With the help 

of the time-zero function, the TA spectra can be temporally corrected by shifting the raw 

data along the time axis with the corresponding t0 (). The process of time zero correction 

can be considered as a synchronization for all probe wavelengths. The raw TA spectra 

and the spectra after time-zero correction are shown in Figure 5.9 (a) and (c).  

 

 

Figure 5.7: There is a ~ 0.75 ps temporal dispersion of the coherent artifacts between (a) 320 nm 

and (b) 400 nm. The open dots are experimental data and the solid lines are fits simulated by the 

coherent artifacts function. (c) The time-zero function (λexc = 330 nm, energy = 100 nJ, exc = 30 

fs) obtained by locating the peaks of the coherent artifact signal (empty circle) and the parameter 

t0 () from the coherent artifact function (red line). 
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5.2.3   Coherent artifacts subtraction 

Removing coherent artifacts from the raw TA data is challenging work because the 

nonresonant coherent artifacts are temporally overlapped with the resonant signal from 

the sample around time zero, and vary in shape and time depending on the wavelength 

of the probe. A procedure for artifact subtraction has been performed by directly 

subtracting the coherent artifact measured in pure solvents with a weighting factor, which 

is correlated to the pump pulse intensity.144 However this method doesn’t apply well in 

the UV-pump/VIS-probe experiment. The molecules under study modulate the refractive 

index of the solution slightly, therefore the XPM in solution with molecules is not a 

perfect match with the XPM in the pure solvent anymore, and the deviation can be even 

more severe in deeper UV pumped experiments. Other proposed methods like singular 

value decomposition can also be used to subtract coherent artifacts,134 but the 

experimental data for delay times longer than the coherent artefact can be easily affected. 

The method used in our experiments is based on the coherent artifact function discussed 

in the section above and rate equation models containing kinetic information of the 

molecule under study. Briefly, the observed TA signal of a single spectral component as 

a function of delay time can be written as a sum of terms: 

     CA M ccOD t S t S t F                                                           (5.10) 

where the first term represents the signal of the coherent artifact and the second term 

represents the molecular response convoluted with the pump-probe cross correlation. 

Since the coherent artifact function has been elucidated in details, emphasis will be 

placed on the second term. In photochemical reactions, the kinetic trace at wavelength λ 

as a function of delay time can be described by an appropriate multi-exponential function, 

which will be elaborated on in the section for data analysis. As an example, a single TA 

trace of coumarin dimer in acetonitrile (Figure 5.8 (a)), pumped by 270 nm and probed 

at 325 nm, can be fitted with a rate equation function, which contains a rising contribution 

and two decaying contributions (for details see next section), as shown in the following 

equation  

     1 2

_325 (1 ) 1dec dec riset t t

M nmS t A ae a e e
    

                                                  (5.11) 

where A is the amplitude, a is scaling factor,  dec1 and dec2 are decay time constants, and 

rise is a rising time constant. Combing Equation (5.8) and (5.11) into Equation (5.10), a 

model describing the coherent artifact and molecular dynamics with two decay species 

is formed. Fitting of the model with experimental data is carried out by using the finite-
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difference Marquardt-Levenberg algorithm, which minimizes the sum of the squares of 

the residuals (fitted points minus data points) by varying fit parameters.148, 149 Note that 

the algorithm does not supply error bars on individual parameters, because it always 

changes the entire parameter set. The best-fit trace is produced with minimal residual 

(Figure 5.8 (b)). A Labview routine is developed which runs the calculation and the 

iteration of the correction matrix for all possible pairs of fit parameters. It is often that 

the fits of kinetic traces result in a variation of the local minimum, which gives different 

values of parameters. Therefore, searching the space for best-fit parameters is restricted 

by the parameter boundaries, such as maximal to minimal values. By carefully choosing 

the parameter boundaries, and rate equation models, a set of parameters locating in the 

immediate vicinity of the “best-fit” can be obtained. Since the resulting trace is a linear 

combination of coherent artifacts and molecular response, the stimulated coherent 

artifacts can be easily separated. The clean TA data of the molecules is obtained by 

subtracting the stimulated coherent artifacts from the raw data. TA surface plots with and 

without coherent artifacts are shown in Figure 5.9. The artifacts-free signal shown in 

Figure 5.9 (d), allows an accurate analysis of the molecular system being studied. 

 

 

 

Figure 5.8: TA traces of coumarin dimer (a) with and (b) without coherent artifacts pumped by 

270 nm and probed at 325 nm. Raw data are in black line and fitting traces are in red.  
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Figure 5.9: (a) Raw TA spectra of coumarin in ethanol (λexc = 330 nm, energy = 100 nJ, exc = 30 

fs). (b) Coherent artifacts measured in pure ethanol solvent. (c) Time corrected TA spectra with 

coherent artifacts. (d) Time corrected TA spectra with coherent artifacts subtracted. 

 

5.3 Data analysis 

The obtained experimental data from TA measurements contain a large amount of 

potential information regarding the dynamics and the nature of photoinduced reactions. 

The data set in our measurement consists of a series of spectra covering the wavelength 

range from 300 nm to 650 nm and spanning time delays from several femtoseconds to 

nanoseconds. These spectra are usually arranged in a data matrix X ( m n ) where one 

direction is related to the delay time between the pump and the probe and the other to the 

probe wavelength. Each row of data presents a spectrum recorded at a certain delay time, 

and each column corresponds to a kinetic trace as a function of time at a particular probe 

wavelength. In practice, this matrix is trimmed to exclude wavelengths where the noise 

overwhelms the signal. 
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In the analysis routine, the first step is to assess the complexity of the system under 

study, in other words, to gain an initial estimation of the number of components which 

are related to the different species, such as intermediate states and products. One simple 

and commonly used method is the exponential analysis of kinetic traces for different 

spectral regions. Single kinetic traces can be fitted by appropriate parametric exponential 

functions,150 which provide qualitative descriptions of the data without the need of prior 

knowledge of the mechanistic model. In the simplest case, a transient trace at a probe 

wavelength λ is fitted to a single exponential, which is characterised by the amplitude A0 

and time constant  : 

0( ) tA t A e 



                                                                                                          (5.12) 

from which we may assume that there is one absorbing species (A0 >0) or a emission 

species (A0 <0) decays with a time constant  at wavelength λ. Analyzing single kinetic 

traces by exponential function can work well only when each species has a very distinct 

spectrum, however, it is not the case in normal circumstances. Usually there are multiple 

absorbing species with a high degree of spectral overlap, which generates observed 

decays that do not fit to a single exponential but a multiexponenetial fit. The kinetic trace 

with multiexponential features can be presented as a sum of exponentials: 
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
                                                                                          (5.13) 

In our fitting routine of TA traces, a population generation function ( ) 1 riset
B t e


   is 

considered regarding the population excited directly by the pump. Then Equation 5.13 is 

changed to be the following: 

  rise( ) const (1 ).it t
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A t Ae e
 




                                                                            (5.14) 

The rise time constant rise corresponds to the laser pulse time profile. The generation 

function 𝐵(𝑡) can also be used to factor other processes such as a population increase 

due to product formation. The algorithm fitting optimization is implemented by Labview 

programs, and the sum of squares of the residuals is used to evaluate the quality of the 

fit. For a fitting function with a large number of parameters, the variation of the residuals 

due to a change in the value of one parameter can be compensated by adjusting the other 

parameters. When several exponential functions give very similar fitting results, the 

solution should go to the simplest one unless some prior knowledge exists to help 

eliminate those with the least physical meaning. In many cases we have some prior 
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information about the system under study, therefore a target analysis can be applied by 

specifying the energy flow network model.148 However, it is still problematic that for 

complex data with a large number of overlapped spectra, the best-fit model may not be 

unique.  

Another method to determine the minimum number of components needed to model 

the system is singular value decomposition (SVD)151, which explains the variation of the 

raw data on a completely model-free basis. Decomposition of the matrix X by using SVD 

can be written as: 

SVD ( )= 
X USV                                                                                                    (5.15) 

where U and V are matrices of dimensions of 𝑚 × 𝑚 and 𝑛 × 𝑛, respectively. In the case 

of TA data considered here, each column of U can be seen as a spectrum, and each 

column of V can be seen as the trace associated with time. S is a 𝑚 × 𝑛 diagonal matrix 

and contains the singular values, which are arranged in descending order of magnitude. 

Generally, the largest singular values contain weight related to the physical signals, while 

the remaining values mainly contain noise. The number of components can be estimated 

from the first few singular values which are higher than noise-related values. SVD can 

also be used as a noise filter by eliminating the noise components. A noise-reduced 

matrix is obtained by reconstructing only the first few, strongest components. It should 

be reminded that individual SVD factors do not represent the physically relevant spectra 

but rather linear combinations of them. Generally, the dominant spectral component of 

U will be similar to the averaged TA spectrum and the other components show how the 

TA spectra evolves in time. Figure 5.10 shows an example of singular value 

decomposition analysis for a simulated data set which is based on a three-component 

parallel model (Figure 5.10 inset) with decay rate constants of 2, 1 and 0.2, respectively. 

The parallel model is commonly used to describe a molecular system, in which each 

species is independent of each other and depopulating in parallel. By SVD, the signal is 

captured in the 3 highest weighted components which is in accordance with the three-

component model (Figure 5.10 (b)). The spectrum of the first component is very similar 

to the raw TA spectra as shown in Figure 5.10 (a). 
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Figure 5.10: SVD analysis of simulated data. The model is a three-component parallel model, 

and each component has an individual decay rate. (a) Simulated TA spectra in the spectral range 

from 320 nm to 620 nm and time range from 10 fs to 4.95 ps. (b) Diagonal values of the S matrix. 

The three major components are marked as filled red circles. (c) First 3 spectral components of 

the U matrix. 

 

Once the number of components and a reasonable understanding of the kinetics are 

obtained, the next step for a comprehensive data analysis would be to build a kinetic 

model for the whole chemical system under study. Global target analysis (GTA) is an 

extremely useful data analysis tool for the simultaneous analysis of multiple kinetic traces 

at different wavelengths with a particular target model.152 The goal of GTA is to attempt 

to simplify the overwhelming amount of data into a small number of components. The 

global fitting algorithm of GTA is implemented using MATLAB (Ultrafast Spectroscopy 

Modelling Toolbox, Imperial College).153 The measured TA data spectra is a 

superposition of the contributions from different components weighted by their 

respective time-dependent concentration, which can be expressed as: 

 
1

( , ) ( )
n

i i
i

OD t c t  


                                                                                              (5.16) 
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where ci (t) and i (λ) denote the concentration and spectrum of component i. Dependent 

on the chosen model, the time-dependent concentration is calculated by rate equations 

with the decay rates, and i (λ) corresponds to the molar absorptivity of the observable 

transient species. The first step to build a model with the assumed number of components, 

which can be obtained from SVD or exponential analysis, is to consider how the states 

are populated, and where population flows. Multiple possible models are tested, and the 

best-fit model is obtained with least residual and most physical meanings. Once the fitting 

algorithm is complete, we are left with the decay rates and the species associated 

spectrum (SAS) of each components.  

To show the capability of GTA, an example is given using the simulated data 

introduced in Figure 5.10. The results of global analysis based on this model is shown in 

Figure 5.11. The SAS (Figure 5.11 (a)) corresponds to difference absorption spectra of 

three components. Note that the SAS of component 1 has a negative amplitude which is 

not observable in the TA spectra because component 1 is superimposed with component 

2 and 3 which have positive amplitudes. From the concentration profile (Figure 5.11 (b)), 

rate constants of three components are obtained, which are in accordance with the rate 

parameters of the simulated data. In the global analysis, three species are disentangled. 

For a data set with a large number of spectrally overlapped components, several models 

can reproduce the experimental data with the same quality and thus identification of the 

best model sometimes will not be possible. Additional knowledge about the system being 

studied may help to judge the physical relevance of the calculated spectra and time 

constant. Moreover, multiple and complementary experiments, such as those performed 

in different molecular environments or at different probe regions can also help find a 

more precise description of the system.  
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Figure 5.11: (a) SAS of the simulated data based on three-component model. (b) Concentration 

profile of the components (rate constants: k1=2, k2=1, k3=0.2). 

 

 

5.4 Study of 7-hydroxy coumarin in electronically excited 

state 

The performance of the entire UV pump-probe system is tested in the study of the 

electronic levels and the dynamics in the excited state of 7-hydroxy coumarin. This 

molecule has been studied using time-resolved TA spectroscopy before, which makes it 

a good candidate to evaluate the experimental system in our laboratory.154 7-hydroxy 

coumarin is a substituted coumarin with a strong static absorption in the UV region 

(Figure 5.12), and high fluorescence efficiency.155 The photochemical properties of 7-

hydroxy coumarin in solution are significantly dependent on the polarity of the solvent.  
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Figure 5.12: Static absorption of 7-hydroxy coumarin in ethonal (solid line) and 

acetonitrile (dashed line). 

 

 

The sample was pumped at 327 nm and probed with a supercontinuum in the spectral 

range from 300 nm to 640 nm. The energy of the pump pulses were adjusted to be ~70 

nJ. The shot-to-shot stability of the UV pump pulses was about 2.5 % (standard deviation 

of the average energy), and the stability of the probe pulses is given by the standard 

deviation of the intensity distribution divided by its root-mean-square value. The result 

of CaF2 supercontinuum pumped under 800 nm is about 0.5 % around 330 nm. The 

experimental data were recorded by a PDA with 150 delay line positions and averaged 

over 300 laser shots with 20 scans. The duration of one experiment was about 1 hour and 

in such a short time the whole system can be assumed to be stable. The spectral resolution 

was about 0.5 nm in the UV region and 4 nm in the red edge of the spectrum. The 

sensitivity of the measurement was evaluated by the signal recorded after time zero. With 

10 accumulated scans and 300 sampled points, an average sensitivity of about 5×10-5 OD 

over the whole detection window was obtained. By fitting a Gaussian and its two order 

derivatives to the coherent artifacts, the FWHM of the Gaussian was taken as the time 

resolution (Figure 5.13).132    

 

Solutions of 7-hydroxy coumarin in different solvents (ethanol and acetonitrile) had 

an optical density, at the excitation wavelength (327 nm), of about 0.6 OD in a 350 m 

optical flow cell. All solvents and coumarin were used without further purification.   
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Figure 5.13: Fits of the coherent artifact (pumped under 327 nm and probed at 330 nm) in (a) 

ethanol and (b) acetonitrile, giving a time resolution of 60 fs and 72 fs, respectively. 

 

TA spectra of 7-hydroxy coumarin in ethanol and acetonitrile are presented in Figure 

5.14 and 5.15. The spectral structure in both solvents are similar. We observed two 

excited state absorption bands and one negative band. The first positive signal appears 

around 350 nm overlapping with the ground state bleach, and the second weak positive 

band covers almost the whole visible region (500-650 nm) of our detection window. The 

strong emission signal shows a maximum at 400 nm and extends up to 500 nm, which 

indicates the high fluorescence efficiency of 7-hydroxy coumarin. The main differences 

of the two solvents on the molecular dynamics can be explored by examining the kinetic 

traces at selected wavelengths, especially in the fluorescence related emission band. The 

selected kinetics traces differ significantly for well separated spectral regions. The 

excited state absorption band around 350 nm in ethanol shows a major decay component 

longer than 500 ps and a minor decay component with a time constant of 15 ps. The 

maximum of the stimulated emission at 400 nm is fitted with one rise time constant (7.8 

ps) and two decay time constants (11.8 ps and 500 ps). The absorption band in acetonitrile 

around 350 nm shows a mono-exponential decay with a time constant of 35.7 ps, which 

is faster than in ethanol. The emission band in acetonitrile is shorter lived than in ethanol, 

and decays with two time constants of 4.6 ps and 32.8 ps. The long-time emission in 

ethanol indicates that the solvent with higher polarity leads to greater fluorescence 

emission in 7-hydroxy coumarin.  
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Figure 5.14: (a) Selected TA spectra of 7-hydroxy coumarin in ethanol, (b) TA traces and the 

corresponding kinetic fits at the maximum of absorption (350 nm) and emission (400 nm). The 

absorption band at 350 nm is fitted with two decay time constants (A: amplitude): dec1 = 15.0 ps 

(A1 = 0.15), dec2 > 500 ps (A2 = 0.85). For the kinetic trace at 400 nm, one rise time constant and 

two decay time constants are obtained: rise = 7.8 ps (A = 1), dec1 = 11.8 ps (A1 = 0.1), dec2 > 500 

ps (A2 = 0.9). For clarity, coherent artifacts have been fitted and subtracted. 

 

 

 

Figure 5.15: (a) Selected TA spectra of 7-hydroxy coumarin in acetonitrile, (b) TA traces and 

the corresponding kinetic fits at the maximum of the absorption (348 nm) and emission (408 nm) 

band. Decay time constant at 348 nm: dec = 35.7 ps. Decay time constants at 408 nm: dec1 = 4.6 

ps (A1 = 0.54), dec1 = 32.8 ps (A1 = 0.46). For clarity, coherent artifacts have been fitted and 

subtracted. 
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To unravel the processes underlying the observable spectroscopic changes, a GTA 

was applied. The dynamics of 7-hydroxy-coumarin in both solvents can be very well 

described by a branched parallel model shown in Figure 5.16. This model is corroborated 

by an initial decomposition of the experimental data by SVD which shows four major 

components. Both positive absorption and negative emission signals are well fitted. The 

results of the GTA (Figure 5.17) are explained in the following way. After excitation into 

the Franck-Condon region, component A is populated and from this state parallel 

relaxation pathways along the components B and C start off. There is almost no emission 

from component B, while component C shows a strong emission contribution. The above 

processes can be interpreted as, the excited state population can relax in two different 

pathways after the optical excitation into the ππ* state.154 One relaxation takes place along 

the carbonyl stretching mode into the dark nπ* state and the other one along the bright 

ππ* state into the S1 minimum. From the S1 minimum it goes back to ground state or 

relaxes by fluorescence. In ethanol the relaxation rates for the two pathways are similar, 

while in acetonitrile the relaxation rates change dramatically and component B is more 

populated.  

 

 

Figure 5.16: Relaxation model used in the GTA. k1-k4 are rate constants for the 

respective decays.  
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Figure 5.17: Global target analysis results for 7-hydroxy coumarin: SAS for measurements in (a) 

ethanol and (b) acetonitrile; selected TA traces for measurements in (c) ethanol and (d) 

acetonitrile, open points are experimental data, lines are global target fits. Time constants for 

ethanol: t1 = 0.9 ps, t2 = 1.1 ps, t3 = 7.7 ps, t4 = 37.0 ps, and for acetonitrile: t1 = 3.0 ps, t2 = 15.6 

ps, t3 = 7.8 ps, t4 = 25.7 ps. (t1- t4 represent the decay times A→B, A→C, B→D and C→D, 

respectively) 

 

From the experimental results and global analysis, the interaction between the 

electronics states and the solvent is observed as the dynamics differ in ethanol and 

acetonitrile. As suggested in Ref 154, the influence of solvent polarity is on the position 

of the conical intersection, which determines the branching ratio between the two 

pathways. The nπ* state is more affected by the polarity of the solvent than the ππ* state. 

The energy positive of the nπ* state is up-shifted in polar solvents, which leads to the 

conical intersection moving close to the Franck-Condon region. Ethanol is more polar 

than acetonitrile, so the shifted conical intersection leads more transition from the initial 

ππ* state to the nπ* state, which explains the different branching ratio in ethanol (~1:1) 

and acetonitrile (~1:5). 
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The experimental data of 7-hydroxy coumarin in ethanol and acetonitrile obtained 

with the TA setup constructed in our laboratory very closely resemble those reported in 

Ref 154, which verifies quantitatively the performance of our experimental setup is 

sufficient and reliable. However some quantitative differences, such as the different 

signal amplitude, longer time constants in our case, are unavoidable because of the high 

sensitivity of the TA signal to spatial overlap between the pump and the probe, pump 

intensity as well as detection system, which is intrinsic to TA pump-probe measurements. 

The instrument characteristics and procedures of data analysis also could affect the 

results.  

 

5.5 Conclusion 

A newly designed UV transient absorption system is fully described. The setup has been 

put together under full consideration of all optical and technical components, which are 

necessary and essential to perform pump-probe measurements in the spectral domain of 

UV. The needs of good time resolution can be met by the ultrashort pump pulse together 

with the right choice of the sample cell. The performance of our setup is summarized in 

Table 5.1. In addition, a data processing and analysis procedure is established, which is 

specifically developed for ultrafast UV spectroscopy. The coherent artifact signal 

generated during TA measurements is discussed and a correction procedure is developed 

based on the XPM function. The study of 7-hydroxy coumarin in ethanol and acetonitrile 

was carried out to test the performance of the experimental system. The study was aimed 

to investigate the electronic states of 7-hydroxy coumarin and the solvent effects on the 

dynamics. The obtained TA data is in agreement with the reported results 154. 

Table 5.1 The performance of the setup 

Pump range 250-350 nm 

Probe range 240-750 nm 

Time resolution ~ 60 fs 

Spectral resolution 0.5-4 nm 

Sensitivity 5×10-5 OD 

Comments The whole system is stable and able to 

perform measurements for weeks 

continuingly without massive 

adjustment 
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Chapter 6            

UV Transient Absorption Study of Coumarin Dimers 

 

The photo-induced cleavage of a coumarin dimer into its two monomers is a promising 

mechanism for laser controlled medical applications. In this chapter, we focus chiefly on 

the dynamics of excited states of coumarin dimer and the mechanism of cleavage reaction 

in order to develop strategies for increasing the reaction efficiency. The unsubstituted 

coumarin dimers in three isomers: anti-head-to-head (anti-hh), syn-head-to-head (syn-hh) 

and syn-head-to-tail (syn-ht) are studied by UV transient absorption spectroscopy. This 

chapter starts with an introduction of up-to-date investigations of coumarin dimers. In 

the following, time-resolved experiments are performed and the experimental results of 

coumarin dimers are presented. From the data, two branched kinetic models are 

developed to describe the formation of monomers and dimer relaxation dynamics, to 

identify possible intermediate states, and to determine the quantum yields of the dimer 

splitting. Subsequently, a complementary information of coumarin monomer is given to 

gain a better understanding of cleavage mechanism of dimers. At the end, the differences 

in cleavage efficiency for the three dimer isomers are discussed. 
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6.1  Introduction 

There have been various experimental and theoretical studies of coumarin 

photochemistry. Recently, UV pump (330 nm) transient absorption spectroscopy of 

coumarin and umbelliferone monomers permitted the study of the excited states 

photodynamics and deactivation channels.154 The results indicated that after a vertical 

excitation to the ππ* excited state two parallel branching pathways can take place: (1) 

through the dark nπ* state back to the ground state in a few picoseconds or (2) relaxation 

along the bright ππ* state which induces an opening of the coumarin  system. 

Furthermore, the ring opened coumarin was found to reform its closed structure in about 

20 ps. This result was also confirmed by an investigation of coumarin and a related 

heterocyclic molecule, α-pyrone, by using transient vibrational absorption 

spectroscopy.156 Following excitation at 310 nm, α-pyrone rapidly decays back to the 

closed form with 68% efficiency. In contrast, coumarin reforms its closed form with near 

100% quantum yield under 330 nm excitation. An additional relaxation mechanism in 

the excited state of coumarin is the formation of triplet states. However, the properties of 

the triplet state have not been fully characterized, as it is still not clear from which singlet 

state the triplet manifold is populated.154  

While the ultrafast relaxation dynamics of coumarin monomers seem to be well 

understood, the ultrafast dynamics of coumarin dimers is still not clarified. Theoretical 

investigations by Seifert et al. calculated the photoexcitation spectra of coumarin dimers 

and derivatives in the gas phase, which suggested similar response spectra at low energies 

for the anti-hh, syn-hh and syn-ht dimer.157 Ab initio calculations of the ground and first 

excited states, combined with frontier orbital analysis provided some explanations of 

possible dimerisation products.158 However, theoretical studies regarding the excited 

state dynamics of coumarin dimers and the cleavage reaction have not been conducted 

yet. There have been experimental approaches carried out regarding the time-

independent properties of the photo-cleavage reaction. Three different types of cleavage 

mode for the coumarin dimers: symmetric, asymmetric and competitive, were observed 

under direct UV irradiation around 277 nm. On the basis of experimental results, it was 

concluded that the chemical structure of the coumarin dimers determines the cleavage 

mode for the cyclobutane ring.22, 159 The cleavage reaction was also studied by UV-VIS 

and IR spectroscopy upon direct excitation at 254 nm in the absence and presence of 

triplet-state sensitizers.160 The results of the study proposed the photocleavage occurs via 

a non-fluorescent short-lived singlet state with a splitting efficiency of around 0.2. This 

was further confirmed by two photon absorption experiments, which showed about 20 % 

efficiency for the cleavage reaction.161, 162 Additionally, it was discovered that addition 
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of substituents to the coumarin dimer can improve the cleavage reaction efficiency. 

However, it is still not clear how the substituents modify the cleavage dynamics, or how 

it generally leads to enhanced efficiencies compared to the unsubstituted coumarin dimer.  

Due to the cleavage of two C-C bonds in the cyclobutane ring when the monomer 

products are formed, the photoreversions of cyclobutane-based compounds have often 

been explained in the framework of a pericyclic reaction (Figure 6.1 (a)) governed by the 

Woodward-Hoffmann rules.163 For photochemical pericyclic reactions, a general feature 

is the pericyclic minimum on a two-electron excited state of the reactant, which collects 

population from any initially excited state transferring it to the ground state of product 

and reactant, respectively.23 Fuß et al. have performed several time-resolved laser 

ionization measurements of pericyclic reactions in cyclohepta-1,3-diene and 

cycloocta1,3-diene, which indicated the depopulation time of the initial excited state into 

the two-electron excited state is under 100 fs.24, 164 According to the Woodward-

Hoffmann rule, the cleavage reaction proceeds in one step without any intermediate state, 

which means the two C-C bonds of cyclobutane ring are split simultaneously. However, 

some studies concerning the photocycloreversion of the cyclobutane ring have provided 

indication of an intermediate state (Figure 6.1 (b)).165, 166 Zewail et al. observed the 

tetramethylene diradical intermediate state, and monitored its formation and decay 

dynamics using time-of-flight mass spectrometry.4 The experimental data showed the 

diradical is formed in about 150 fs and decays in about 700 fs to form a cyclobutane ring 

and two ethylene molecules. However, a key question as to whether the cleavage reaction 

of the cyclobutane ring is concerted or a two-step, successive process is still not clearly 

addressed. 
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Figure 6.1: (a) Schematic energy curves for photo-induced pericyclic reaction: after vertical 

excitation, population flows into the pericyclic minimum on a two-electron excited state of the 

reactant, which collects population from any initially excited state transferring it to the ground 

state of the product and reactant, respectively. (b) Schematic energy curves for the cleavage 

reaction based on a two-step mechanism: beginning with the breakage of one -bond to form a 

diradical intermediate which in turn passes through a transition state to form the final product. 

 

6.2 Experiment parameters 

Our transient absorption setup was based on a tunable femtosecond UV pump source and 

a broadband supercontinuum for the wavelength selective probing. The pump pulses 

were generated from SHG NOPA with a tunable range from 250 nm to 300 nm. For 

excitation of the dimers, the pump wavelength was tuned to 280 nm or 270 nm. The pulse 

duration was less than 30 fs and energies up to 100 nJ. A single filament supercontinuum 

generated in CaF2 plate served as the probe light spanning most of the visible range and 

extends to UV around 300 nm. The spectrally resolved intensity of each laser shot was 

recorded by the multichannel photodiode array. The time resolution of the measurements 

was about 60 fs, as estimated by Gaussian fitting of the observed cross-correlation signals 

between the pump and probe pulses. All measurements were carried out at the magic 

angle (54.7°) between pump and probe polarizations. 

All dimer molecules were synthesized in a modified procedure following Ref 167. The 

static absorption spectra of anti-hh, syn-hh and syn-ht dimers are shown in Figure 6.2. 

Samples (coumarin monomer and dimers) were used without further purification and 

diluted in acetonitrile in a 350 µm quartz windowed optical flow cell. The optical density 
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of three dimer isomers was adjusted to be nearly the same value of about 0.3 OD at the 

corresponding pump wavelength. 

 

 

Figure 6.2: Static absorption spectra of coumarin dimers (solid line) and the respective monomer 

(dashed line) in acetonitrile. (a) syn-ht, the absorption peaks λAbs_Peak are at 272.8 nm and 280.8 

nm, (b) syn-hh, λAbs_Peak= 272.2 nm, 280.4 nm, (c) anti-hh, λAbs_Peak= 272.0 nm, 280.0 nm. 
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6.3 Results  

6.3.1 Transient absorption data 

Figure 6.3 shows the transient absorption data obtained by pumping syn-ht, syn-hh and 

anti-hh dimers at 280 nm in acetonitrile. All coumarin dimer isomers were measured 

under the same experimental conditions. In comparing the TA spectra of three dimers, 

one can see similar characteristics and trends. The difference absorbance values evolve 

over the pump-probe delay time. A dominant positive signal spans almost the whole 

detection window from 310 nm to 650 nm showing an almost flat plateau with no 

observable simulated emission signal. Nevertheless, upon closer inspection several 

dynamics features can be seen. The excited state absorption in the blue region shifts from 

375 nm to 325 nm and narrows with a time scale of about 30 ps, showing similar 

dynamics as the coumarin monomer.154 As the delay time increases, the intensity of the 

positive signal continues to decay. In the time range between 80 fs and 1 ps, the transient 

signal of all wavelength components exhibits almost the same decay indicating a fast 

depopulation of excited states, with absorption covering almost all the detectable spectral 

range. After 4 ps, one peak around 330 nm is clearly identifiable, which shifts to 325 nm 

and remains unchanged up to a pump/probe delay time of 700 ps. Different from 325 nm, 

a red-shifted signal around 340 nm shows a complete decay to the baseline in a time scale 

of 30 ps. After 30 ps seconds there is no appreciable spectral variation across all 

wavelengths. 

More interesting to note is the differences between the three dimers. At early times, 

the anti-hh dimer (Figure 6.3 (c)) features a stronger absorption than the other two dimers. 

After 4 ps, a broad absorption structure extending from 400 nm to 560 nm remains for 

both anti-hh and syn-hh dimers (Figure 6.3 (b)). This contribution has a weak but 

detectable amplitude of about 1-2 % in this spectral region. The absorption band at 325 

nm in long time measurements shows slightly different amplitude for three dimers. The 

anti-hh dimer displays more intensity at 325 nm compared to the other two dimers. The 

most striking spectral difference is that the syn-ht dimer (Figure 6.3 (a)) has a well-

resolved absorption band around 540 nm which could possibly be evidence of another 

photoproduct formation concomitant to photocleavage,160 since coumarin monomers on 

the ground state don’t have absorption at this wavelength region (Figure 6.2). To identify 

this signal, an additional irradiation study on the syn-ht dimer was performed and its 

absorption difference was monitored by using UV/VIS absorption spectroscopy. After 3 

hours of UV lamp irradiation at 252 nm, the absorption spectrum of the syn-ht dimer 

shows only an increase of absorbance at λmax=310 nm and no absorption is observed 
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around 540 nm (Figure 6.4), which is consistent with literature data.167 Furthermore, a 

long time transient absorption measurement of up to 700 ps of syn-ht dimers shows a 

very slow decay behaviour around 540 nm (Figure 6.5). From this empirical analysis it 

seems the 540 nm signal is likely a very weakly absorbing excited state, which for reasons 

that remain unknown is more prominent in the syn-ht isomer. 

 

 

Figure 6.3: Selected transient spectra for (a) syn-ht, (b) syn-hh and (c) anti-hh dimer, following 

excitation at 280 nm. The small dip at about 400nm in all measurements is due to a malfunction 

of the detection system at this wavelength. 
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Figure 6.4: Direct irradiation of the syn-ht dimer by UV lamp at 252 nm: (a) absorption 

change upon irradiation time, (b) absorption difference after 3 hours irradiation time (red) 

and the static absorption of coumarin monomers (black). 

 

 

Figure 6.5: Transient absorption trace of the syn-ht dimer at 540 nm (empty circle) with 

the fitting trace (solid line). Three exponential contributions are obtained: t1 =150 fs, t2 =1.4 

ps and t3 = 600 ps. 
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6.3.2 Kinetic analysis 

The features and differences of the three dimers can be observed more clearly by 

examining the kinetic data at selected wavelengths. Figure 6.6 depicts selected kinetics 

for the three dimers, which demonstrates a rich variety of population dynamics at early 

delay times (< 2 ps). In general, the signal measured at different probe wavelengths 

consists of three time constants (Table 6.1): an initial fast component (< 1 ps) with a high 

amplitude followed by a minor slower decay with a time constants of a few picoseconds. 

In addition, the much longer lived positive signals at 325 nm and 540 nm are fitted with 

nanoseconds time constants. As the three dimers have different isomeric structure, it is 

reasonable to expect different behaviours before the cleavage takes place. For the anti-

hh dimer at 325 nm, we used a bi-exponential function revealing a time constant of 200 

fs for the relaxation of the dimer excited states. A minor component with ~ 27% 

amplitude and a nanosecond lifetime suggests that a sizable fraction of the initially 

excited coumarin dimers evolved to form monomer photoproducts. At 340 nm, no long 

lived absorption can be observed. The signal is dominated by a major decay with a time 

constant of about 220 fs. A minor contribution with a time constant of about 33 ps is also 

observed, which is similar to the relaxation dynamics of coumarin monomers via lactone 

ring opening.154 The absorption band at 540 nm, which is far away from the ground state 

absorption band of the coumarin monomer, shows a major decay component with a time 

constant of about 160 fs, and a minor decay component with a slower decay constant of 

about 1.5 ps.  

 

Table 6.1 Decay time constants and normalized amplitudes at selected wavelengths 

Molecule λ (nm) A1 t1/ps A2 t2/ps A3 t3/ps 

anti-hh 325 0.73 0.20 0.27 >ns / / 

340 0.82 0.22 0.18 33 / / 

540 0.95 0.16 0.03 1.5 0.02 >ns 

syn-hh 325 0.77 0.17 0.23 >ns / / 

340 0.73 0.24 0.27 31 / / 

540 0.94 0.16 0.06 1.5 0.01 >ns 

syn-ht 325 0.87 0.10 0.13 >ns / / 

340 0.81 0.18 0.19 30 / / 

540 0.92 0.13 0.02 1.7  0.07 >ns 
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Syn-hh dimer is very similar to anti-hh dimer with only a slightly faster decay at 325 

nm (170 fs) and slower decay at 340 nm (240 fs). It is interesting to note that the syn-ht 

dimer exhibits identifiable features not only in the transient absorption spectra, but also 

in the dynamics. The syn-ht dimer has the fastest initial dynamics of the three isomers 

with more than 80 % of the initially excited population relaxing in less than 200 fs. 

 

 

Figure 6.6: Transient absorption traces of the three dimers (a) syn-ht, (b) syn-hh and (c) anti-hh 

with corresponding fits at 325 nm (empty triangle), 340 nm (empty square) and 540 nm (empty 

cirlce). Kinetics comparison of the three isomers for the probing wavelengths at (d) 325 nm, (e) 

340 nm and (f) 540 nm. For clarity the coherent artefact has been subtracted, and the comparison 

of kinetics are performed by the normalized fits. 
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6.3.3 Quantum yield 

The efficiency of the single photon induced cleavage is characterized by the quantum 

yield Φ, which is defined as the ratio of the number monomers NM formed divided by 

two (since one cleaved dimer molecule leads to the formation of two monomer molecules) 

and the number of excited dimer molecules ND: 

2

M

D

N

N
                                                                                                                          (6.1) 

Since the TA absorption band of coumarin dimers around 325 nm, at very long delay 

times, matches perfectly the linear absorption of monomers in the ground state (see 

Figure 6.7), the number of produced monomers can be directly calculated according to 

the Lambert-Beer law. The number of excited dimers ND is not directly available from 

the TA signal, since no ground state bleach of the dimers is detectable in our experiment. 

It can be calculated though by the number of absorbed pump pulse photons. By using the 

molar absorption coefficients of three dimers in acetonitrile at 280 nm (ɛanti-hh=2647, ɛsyn-

hh=2324 and ɛsyn-ht=2888 L*mol-1cm-1) and the solution’s optical density, the number of 

absorbed photons can be easily calculated. Moreover, since the experiments for all three 

isomers were performed under the same experimental conditions, the quantum yields can 

be expressed as a normalized relative quantum yield and experimental parameters like 

absolute pump pulse fluence, excitation and probe beam areas are not required. By 

assuming a quantum yield of 20% for the single photon induced cleavage of the anti-hh 

dimer coumarin,167 quantum yields of the other two dimers can be obtained (Table 

6.2).The quantum yield of syn-ht dimers calculated this way matches very well the value 

(15 %) obtained in static irradiation experiments by other groups160, hence supporting the 

methods validity. 

 

Table 6.2 Quantum yield (QY) of coumarin dimers 

Molecule Normalized QY QY % Error 

Anti-hh 1 20.0 ±1.0 

Syn-hh 0.855 17.1 ±1.2 

Syn-ht 0.755 15.1 ±1.2 

 

 

 



 

UV Transient Absorption Study of Coumarin Dimers 

 

98 
 

 

Fig. 6.7: Static absorption of coumarin monomer (res line), TA signal of anti-hh 

dimers after 100 ps (solid blue triangle), and the species associated spectra (SAS) of 

the last species in the global target analysis of anti-hh dimers (empty black circle). 

 

 

6.4  Discussion 

The profoundly similar static absorption spectra for the three dimers is expected as each 

dimer contains the same pair of isoelectric, yet electrically decoupled -conjugated rings. 

Electronic interaction between the two -systems is prohibited by the bridging four-

membered ring. All three dimers have similar Franck-Condon state absorption (Figure 

6.2) under 280 nm pumping, which is associated with the HOMO-LUMO transition.157 

This indicates that a relatively small geometry change accompanies the S0 → S1 transition. 

The fast 200 fs decay component (Figure 6.6) can be contributed to the relaxation of the 

low excited electronic state of the dimers. The absence of any negative signal (Figure 6.3) 

suggests the low excitation state of the coumarin dimer is a non-fluorescent, short-lived 

singlet state which corresponds to the previous report concerning the cleavage 

mechanism of coumarin dimers.160 The very distinctive absorption band of the syn-ht 

dimer around 540 nm more likely arises from a slowly decayed singlet state, instead of a 

triplet state, because the absorption bands of the lowest excited triplet state of coumarin 

monomers have been identified in the region between 400 and 450 nm and with a decay 

time of 300-500 ns.168, 169 Dimer molecules contain the pair of isoelectric, yet electrically 

decoupled -conjugated rings. The coumarin dimer π-conjugation is even more restricted 

to the phenyl rings than the monomer system. Electric interaction between the two -

system is prohibited by the bridging four-membered ring, thus the triplet transition of 
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dimers within the -system is not expected to be 4000 cm-1 shifted compared to the parent 

monomer molecule. However, triplet sensitisation experiments or alternative techniques, 

such as electron paramagnetic resonance, would be required to test for contribution from 

a coumarin dimers triplet state. 

It is expected that the transient spectra at detection wavelengths below 325nm 

resembles the absorption spectra of the monomer product at very long probe delays. The 

spectra for delays larger than 30ps match well indeed with the ground state absorption 

spectrum of the monomer (Figure 6.7). Nevertheless, the lack of any variation in the 

kinetic traces at these wavelengths (e.g. at 325nm) after about 500 fs provides little 

insight on when exactly the ground state of the monomer is formed. As illustrated in 

Figure 6.8, the kinetics at 325nm can be described by a kinetic model where the monomer 

is formed initially in the excited state, decaying via an intermediate state and finally to 

the ground state of the monomer. Alternatively, the same kinetics can be equally well 

described by a kinetic model where the monomer ground state is formed directly from 

the excited state of the dimer without any intermediate. In the model with an intermediate 

state, the ground state of the monomer is predicted to form within about 20 ps, whilst in 

the kinetic model without an intermediate state the ground state of the monomer is formed 

much quicker within 300 fs. As explained in chapter 5, the unambiguous modelling of 

the monomer formation derives from the strong spectral overlapping of different states 

in these spectral region. This makes it very challenging to identify the underlying kinetic 

model by using only the blue shifted probe wavelengths in the analysis. To assist in 

distinguishing whether an intermediate state is involved or not, examination of the 

transient spectra at other detection wavelengths is required. In the next part, we will 

discuss the possible mechanisms for the cleavage reaction by applying global target 

analysis (GTA) in order to give a more-detailed picture about the evolution of monomer 

formation.   
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Figure 6.8: Schemes for the kinetic models for the formation of coumarin monomer. The green 

line is the sum of all contributions in each model: black represents the population in the excited 

state of the dimer, while blue describes the ground state of the monomer. The red trace represents 

an intermediate state between the excited dimer and ground state of the monomer. 

 

6.4.1 Global target analysis 

Theoretical and experimental findings, in particular the photocleavage quantum yields (~ 

20%) of coumarin dimers, suggest there must be at least one competing relaxation 

pathway that opposes the dimer ring opening.24, 161, 170 From the data obtained, the most 

likely competing process is fast non-radiative decay back to the ground state of coumarin 

dimers. Initial decomposition of the experimental data by singular value decomposition 

(SVD) shows four major components for all three isomers. Therefore, a global target 

analysis was carried out for the experimental data sets with two models both comprising 

5 levels (A-E) and 4 rate constants (Figure 6.9). Other kinetics models involving fewer 

species or less channels were also tested but either could not fit the experimental data, 

produced unrealistic dynamics or spectra.  
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Figure 6.9: Relaxation models used in the global target analysis. k1-k4  are rate 

constants for the respective decays. 

 

In this section, a GTA for the anti-hh dimer is presented. Species associated spectra 

(SAS) and dynamics fittings of the anti-hh dimer at selected wavelengths are shown in 

Figure 6.10, and the obtained decay constants are summarized in Table 6.3. Results for 

the other two isomers are similar, so the SAS will not be shown here (see Appendix) and 

the obtained decay constants are given in Table 6.3. In this analysis, the coherent artefacts 

from the solvent and flowing-cell window have been fitted and subtracted. The set of 

SAS and time constants acquired result in a very good fit of the anti-hh dimer over the 

whole data range. Both target models give the same residuals and quality of fit to the 

experimental data. 

 

 

 

 

Table 6.3 Time constants of dimers obtained by GTA  

Molecule Model 1 (ps) 2 (ps) 3 (ps) 4 (ps)  Residual 

Anti-hh I 0.16 1.01 4.04 19.06    20.17 

II 0.21 0.71 0.81 19.00    20.17 

Syn-hh I 0.19 1.50 6.95 19.20    47.96 

II 0.23 0.98 1.23 19.20    47.96 

Syn-ht I 0.14 1.33 7.40 23.00    15.17 

II 0.16 0.94 1.12 23.00    15.16 
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Fig. 6.10: Global target analysis results of the anti-hh dimer: SAS obtained for (a) model I and (b) 

model II, transient absorption traces for (c) model I and (d) model II. Open points are experimental 

data, solid lines are global target fittings.   

 

Model I is based on one sequential decay A → B, followed by a branching from B to 

E and C. A similar model has been used to describe the kinetics of Flavin-Thymine 

dimers.7 The SAS of the GTA results depicts a broad absorption (Figure 6.10 (a)) with a 

decay shorter than 160 fs showing a major loss of excited state absorption, similar to that 

seen in the kinetic fitting of the raw data (Table 6.1). The branching starts from the second 

species B, and the fitted time constants reveal two time constants for B → E and B → C 

of about 1 ps and 4 ps, respectively. Note, the quantum yield calculated from these two 

time constants matches the experimentally measured quantum yield of 20 %. There is a 

large difference in shape between species A and species B, which may indicate the 

overlap between absorption of different states or simply indicate that species A and B 

originate from different electronic states.152 Comparatively, species B has a relatively flat 

absorption with lower amplitude, which decays with a time constant of ~ 800 fs (1/( 2
-1 

+ 3
-1)). After branching, two species C and D, which have similar absorption, display 
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two sequential decays with lifetimes of 4 ps and 19 ps, respectively. Additionally, species 

D resembles the static absorption of the coumarin monomer (Figure 6.7).  

Instead of starting with a sequential channel, model II begins directly with branching 

pathways A → E and A → B with time constants 210 fs and 710 fs, respectively. The 

quantum yield from the calculation of branching rate constants is about 22.8 %, similar 

to that obtained from model I. The SAS of species A (Figure 6.10 (b)) is the same as in 

model I and decays with the same time constant of ~ 160 fs (1/( 1
-1 + 2

-1)). Species B in 

both models decays also with the same time constant (800 fs). The SAS of two species 

B have approximately the same spectral shape, but different in the overall amplitude. The 

subsequent reaction of species B has three sequential channels leading to complete 

product formation in a total time of ~ 20 ps. In model I and II, two D species are identical 

and are required to fit the offset which is the discrepancy to the static absorption of 

coumarin monomer, known as long-lived weak contribution from 400 nm to 560 nm.  

 

6.4.2 Electronic state assignment 

The almost perfect agreement between the fitting traces based on model I and II in the 

target analysis and the experimental data enables an assignment of the electronic states 

of dimers. The SAS and time constant of the initial species A do not differ at all between 

the two models. After a vertical excitation, the excited state of dimer is populated and 

decays in 160 fs. The assumption of a single species A, which is assigned to the excited 

state S1 of coumarin dimer, is justified by the lack of any strong spectral evolution in the 

first 200 fs. Note that the intermediate species B is required in both target models with 

the same life time about 800 fs. The most pronounced difference between the models is 

located at the branching point. For model I, population flows into the intermediate state 

B, from here two competing relaxation pathways start off. One is back to the ground state 

of dimer, the other pathway leading to the formation of monomer products. In model II, 

branching takes place directly from the Franck-Condon state A. According to the 

pericyclic reaction, by vertical excitation, population initially leads to the lowest ππ* state, 

and flows to the dark two electron excited state via surface crossing. The pericyclic 

minimum on the two electron excited state acts as a population collection well from 

where partitioning to the ground state of reactant and products takes place without 

forming an intermediate state.23 A significant point to address is whether the cleavage 

arises from a concerted bond cleavage as displayed in pericyclic reactions, or a successive 

bond cleavage. If the cleavage process is pericyclic, the branching states of both models 

play as the pericyclic minimum. In model I, species B acts as pericyclic minimum, where 
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one would expect similar spectral features as species A because they originate from the 

same potential. However, the large difference of spectra between species A and B is in 

contrast to the pericyclic reaction. Model II is even more unlikely to be interpreted by 

pericyclic reaction because at least one intermediate B is involved. Therefore, the actual 

reaction mechanisms of model I and II are more favour of the view that one-bond 

cleavage preceded the other. Moreover, the basic semi-empirical calculations of the anti-

hh ground state show the HOMO-LUMO levels, and four levels adjacent for each other, 

show none to very little orbital density across the cyclobutane ring (see Appendix). It 

does not seem that the initial excited state is coupled to the cyclobutane ring, which 

further support for non-pericyclic mechanism.  

In both models, species C and D have SAS spectra with similar features, which hints they 

may be originated from the same electronic potential. Because of the agreement between 

species D and the static absorption of coumarin monomer, species D is assigned to the 

ground state of monomer products (Figure 6.7). The results of the GTA applied to the 

syn-hh dimer give almost the same decay times (~19 ps) from species C to D (shown in 

Table 6.4). For syn-ht dimers, the path C→D is populated within 23 ps, but by fixing the 

time constant to 19 ps instead, the fit quality of the experimental data is only 0.3% worse. 

It indicates species C is not strongly isomer dependent, and therefore from here the 

monomer product is already formed. The cleavage reaction in both models can be 

interpreted that the UV excitation first causes a bond scission of the cyclobutane ring to 

generate species B, which subsequently undergoes the second bond cleavage leading to 

species C. Nevertheless, it is not clear at this stage, whether the monomer product is 

formed on its excited state by the adiabatic pathway,171, 172 or directly landed on the high 

vibrational ground state. In this regard, an additional transient absorption measurement 

was performed on coumarin monomer in order to observe a complementary 

photoinduced behaviour. Different from previously reported 330 nm pumping 

measurements,154 a shorter pump wavelength at 280 nm was used. A three species based 

SAS for coumarin monomer is shown in Figure 6.11. Species C of the coumarin 

monomer is depopulated in about 19 ps, which is reminiscent of the reported lactone ring 

opening relaxation,154 and similar to species C of the coumarin dimer. However, 

comparing the shape and position of species C of the monomer and species C from the 

dimer, it is still difficult to decide if species C of coumarin dimer can be ascribed to the 

ring opening state. If the coumarin monomer is formed on the high vibrational ground 

state, then the time scale of ~ 19 ps is from vibrational cooling in the ground state. 

Transient changes of the vibrational population in the S0 ground state give rise to a shifted 

electronic absorption which can explain the blue shift of species C to D in SAS. After a 

complete cyclobutane ring cleavage, the redistribution of the excess energy supplied by 
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the pump pulses could stimulate a hot vibrational state, and result in a concomitant 

relaxation by interaction with the solvent.173 From this it can be concluded that state C is 

associated with the coumarin monomer photoproduct, and shall be referred to as a “hot” 

state. 

 

Figure 6.11: Global target analysis results of coumarin monomer 

 

In summary, both models are numerically in good agreement with the experimental 

results. The quantum yields estimated from the rate constants of GTA, 20.0 % for model 

I and 22.8 % for model II, are very close to the value of 20.0 % calculated from the 

experimental TA data. The deactivation from state C to the ground state D of monomers 

doesn’t differ from models. Model I and II both present the cyclobutane splitting is a 

successive two C-C bond cleavage process with an intermediate state B. However, 

intermediate state B in model I has comparatively smaller optical cross-section compared 

to model II, which is compensated by more abundant population. Two models fail to 

provide a distinctive global minimum numerical solution, which means that effectively 

linear combinations can also give the same output fit. 

 

6.4.3 Isomeric effect 

The dependence of the quantum efficiency of cleavage reaction on the stereoisomer 

(Table 6.2) reveals more details of the photocleavage reaction mechanism. The 

successive two-bond cleavage mechanism can be rationalised on the basis of sterics and 

radical stabilization, and conveniently permits a simple rational for the difference in 

cleavage quantum yields between the isomers. 
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For cyclobutane compounds, the repulsion between the substitution groups can 

accelerate the bond cleavage by lowering the activation energy.174 It has also been 

invoked to explain very large differences between 5-fluorouracil-coumarin crossdimers 

(Table 6.4).175 Another mechanism to explain different cleavage reaction yields in 

cyclobutane compounds is the mesomeric stabilization of charges and resonances.175 

Charge stabilization effect has been observed for oxetanones compounds, where 

substitution groups may hinder stabilization of charges after initial opening of the 

cyclobutane ring. In general, resonances and charge delocalization due to different 

electronegativity of substituents can lead to bond weakening. Both effects, namely charge 

delocalization as well as repulsion between the substitution groups, explain the difference 

between the three dimers investigated in this work.  

In the anti-hh case, cleavage of the cyclobutane, C-C bond closest to the two ester 

groups would permit radical formation with resonance stabilization into the ester C=O π-

system. Additionally, the anti-facial arrangement gives the smallest degree of steric 

hindrance as both phenyl groups and C=O are well apart from each other. Conversely, 

the syn-ht isomer is symmetric across both C-C bonds, and therefore it is kinetically 

equivalent if either bond is cleaved. However, in the syn-facial arrangement the two 

coumarin monomer units lie in the same face. This means that when one bond is cleaved 

there is likely to be larger, steric repulsions between the carbonyl from one unit and the 

phenyl group of the other. These unfavourable interactions could promote an increase in 

bond reformation. Additionally, in the syn-ht isomer only one radical can be stabilized 

by the adjacent ester group, whilst the other radical can only resonate into the adjacent 

phenyl group. The syn-hh case is midway between the other two isomers: it has the same 

radical resonance stabilisation as the anti-hh, but similar, unfavourable sterics of the syn-

ht isomer. For syn-hh, the carbonyls of both units are in close proximity, and likewise 

the phenyl groups are also in close, special proximity. From this rationalization, one 

might expect the quantum yield for ring cleavage to favour: anti-hh>syn-hh>syn-ht. This 

explanation certainly fits the trend of the experimentally determined quantum yields. 

The interplay between charge delocalization and repulsion forces of substitution 

groups is of course very sensitive to the chemical properties of substitution groups. 

Nevertheless, our results for unsubstituted coumarin as well as one-photon excitation 

studies of other coumarin derivatives show that indeed head-to-tail isomers often show a 

smaller quantum yield than the respective head-to-head isomers.160, 175 This is even the 

case for cyclobutane pyrimidine dimers (Table 6.4).170 This suggests that a general 

chemistry strategy to optimize the quantum yields of the cleavage of cyclobutane-based 
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compounds in applications should avoid using head-to-tail isomers, but focus on head-

to-head isomers in order to weak the cyclobutane bonds. 

 

Table 6.4 Comparison of the cleavage efficiencies (in %) for several dimers of 

cyclobutane-based compounds and their isomers. 

Coumarin Dimers Coumarin-5-fluorouracil175 Cyclobutane Pyrimidine170 

Anti-hh 20 Syn-hh 18.9 Syn-hh 3.4 

Syn-hh 17.1 Syn-ht 9.2 Anti-hh 0.3 

Syn-ht 15.1 Anti-ht 2.9 Anti-ht Not possible 

 

 

6.5  Conclusion and outlook  

In this work we have investigated the photo-induced cleavage reaction of three coumarin 

dimer isomers (anti-hh, syn-hh and syn-ht) by using time-resolved femtosecond 

spectroscopy. The experimental data combined with the global analysis provide a 

comprehensive picture of the cyclobutane-based cleavage reaction of coumarin dimers 

(Figure 6.12): 

1) In this work, it is confirmed that the mechanism of photocleavage reaction is via non-

fluorescent short-lived singlet states. The excited state of coumarin dimers relaxes 

rapidly in a time constant less than 200 fs.  

2) Two branching models are developed which describe the relaxation dynamics of 

coumarin dimers and suggest the monomer formation is a successive two C-C bonds 

cleavage process. Independent of the model, the first bond cleavage occurs in less 

than 200 fs, while the second bond cleaves in a timescale of a few picoseconds, 

depending on the isomer. 

3) The direct cleavage of dimers is characterized by quantum yields of 20.0%, 17.1% 

and 15.1% for anti-hh, syn-hh and syn-ht dimers, respectively. The values of quantum 

yield obtained by using the absorption of monomers and rate constants from GTA are 

in the order of anti-hh > syn-hh > syn-ht. Differences in the observed experimental 

quantum yields obtained for the three stereoisomers are due to the interplay between 

stereo forces between substitution groups and charge delocalization leading to C-C 

bond weakening. With regard to the design of cyclobutane-based linker systems with 

high cleavage efficiency, head-to-head configuration is of high relevance.  
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Figure 6.12: Detailed kinetic model for the excited state dynamics of the coumarin dimers 

and the time constants of monomer formation. The excited state of coumarin dimers relaxes 

in less than 200 fs. Two kinetic models suggest the population can go back to the ground state 

either via the excited state of coumarin or the intermediate state. The first bond cleavage takes 

place in less than 1 ps. The life time of the intermediate state is about 1 ps. The monomer 

product is formed in a few picoseconds and landed on a “hot” state. The vibrational cooling 

time is about 19 ps independent of the isomer. 

 

 

It has to be mentioned though, that two undistinguishable target models which give 

the same residuals and quality of fits of the experimental data makes the identification of 

the precise timescale of monomer formation impossible. One possible approach to clarify 

which model gives a more precise description of  the cleavage mechanism is by observing 

the repopulation of the ground state of coumarin dimers. As shown in Figure 6.13, the 

ground states E of coumarin dimer in model I and model II are repopulated with different 

time constants. If the ground state bleach is observed, by comparing the recovery time of 

the bleach with the time constant derived from the target model it is not difficult to 

determine the correct mechanism. However, it is necessarily that the ground state bleach 

is accompanied by a potentially-overlapping band of the excited state absorption. Since 

the underlying dynamics of the excited state of coumarin dimers has been understood in 

our study, the identification of the ground state signal wouldn’t be problematic. By the 

current detection window, we cannot observe the bleach signal. There are two possible 

ideas to overcome this problem, one is applying the ground-state recovery experiment by 

using a weak delayed replica of the pump pulse as the probe. The other one is using the 

supercontinuum generated in CaF2 under 400 nm pumping, which has been recently 

realized in our laboratory.  
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Figure 6.13: Concentration profile of the anti-hh dimer in (a) model I and (b) model II. Curves 

A-E represent the population evolution of states A-E, respectively. The ground state of 

coumarin dimers is repopulated with a time constant of 1.01 ps in model I, as described in the 

green line of (a) and 210 fs in model II, as described in the green line of (b). 
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Chapter 7            

Conclusions and Outlook 

 

7.1 UV transient absorption spectroscopy 

In this thesis, a UV-pump/UV-Vis-probe setup with sub-60 fs temporal resolution was 

successfully developed. For the UV pump pulse, tunable femtosecond pulses were 

generated based on two nonlinear up-conversion processes: frequency doubling of 

precompressed visible pulses, and sum frequency generation between broadband visible 

pulses and chirped NIR pulses, giving a total tuning range from 250 nm to 350 nm. The 

duration of the generated UV pulses is overall sub-30 fs and close to the transform limit. 

Temporal characterization was carried out using a simple autocorrelator based on two-

photon absorption in a photomultiplier tube. For probe pulses, the supercontinuum (SC) 

generated in CaF2 can cover the spectral range of 300-750 nm and 240-360 nm by simply 

changing the pump input. Achievable experimental sensitivity was greater than 5 ×10-5 

OD. Finally, the whole TA experimental system was tested on the study of ultrafast 

relaxation of 7-hydroxy coumarin and the solvent effect on its dynamics.  

The existing system will serve as a stable, easy to use system to permit studies of a 

variety of interesting UV absorbing materials. Our system will also act as a platform for 

future development of nonlinear, UV pulse generating systems. Immediate avenues to 

pursue, chirp-assisted harmonic generation and sum frequency mixing are efforts to 

increase both the UV pulse spectral bandwidth, thereby permitting shorter transform 

limited pulses and increasing the output pulse energies. Type II phase matching and 

achromatic doubling are also our most likely candidates to explore. Reinvestigation of 

third harmonic pumped NOPAs, which can give broadband, shorter wavelength (350-

500 nm) pulses, may be an interesting line to explore as a direct source for near UV 

pulses and as sources forming deeper UV pulses (< 240 nm). Successful realization of 

faster and/or higher frequency UV pulses has huge ramifications for many applied 

physical sciences. Some immediate examples include blue-emitting LED and lasing 

technologies and the femtosecond photophysics of UV-induced damage to biological.  
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7.2 Cleavage reaction of coumarin dimers 

In the study of photo-induced cleavage reaction of coumarin dimer, three dimer isomers 

were excited at 280 nm and probed in the spectral rang of UV and visible (300-650 nm). 

By using time-resolved spectroscopy, it is the first time experimentally confirmed that 

the photocleavage reaction occurs through a short-lived nonradiative singlet state in less 

than 200 fs. After UV excitation only one product was identified for the three isomers, 

which is the original monomer molecule. With the help of global target analysis, two 

branching models were developed which suggest the monomer formation is a successive 

two C-C bonds cleavage process involving with an intermediate state, instead of a 

concerted process following the pericyclic reaction. This assumption is further 

rationalized in terms of steric repulsion and charge delocalization, which have great 

impacts on the quantum yield of cleavage reaction. The anti-hh dimer shows the highest 

cleavage efficiency with a value of about 20 %, for syn-hh and syn-ht, the values are 

17.1 % and 15.1 %, respectively. The difference of quantum yield for the three isomers 

is originated from the isomeric structure. The anti-facial arrangement gives the smallest 

degree of steric hindrance between the different parts of the dimer. Charge stabilization 

of the two ester groups is more favourable to head to head type molecule. As a result, the 

anti-hh gives the best performance on the cleavage reaction. With regard to the strategy 

of enhancing the cleavage of coumarin dimers, head-to-head configuration is of high 

relevance. 

Based on the works presented in this thesis, a comprehensive picture of the 

cyclobutane–based cleavage reaction of coumarin dimers is provided. However, so far, 

two undistinguishable target models make the identification of the precise timescale of 

monomer formation impossible. Despite the initial similarity of the two models, they 

correspond to substantially different dynamics behaviors of the population back to the 

ground state. By performing ground-state recovery experiment, we will be able to verify 

which mechanism model is closer to the actual one and therefore identify the timescale 

of the cleavage reaction. Additionally, although the experimental findings do not support 

a “pericyclic-type” cleavage mechanism as the HOMO-LUMO levels show none to very 

little orbital density across the cyclobutane ring, it would be interesting to investigate a 

different cleavage reaction by exciting the dimer into higher excited states which are 

coupled to the cyclobutane ring. For a pericyclic cleavage reaction, all bonding changes 

occur at the same time and in a single step. It can be expected that three isomer will give 

a similar quantum yield because no intermediate state is involved and the influence of 

charge delocalization on the radical will be small. For experimental realization, higher 

photon energies of the pump are required, for example higher than 5 eV. If a broad 
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bandwidth pump is realized successfully, 2-demensional (2D) spectroscopy can be 

applied. An additional dimension of the excitation frequency allows to investigate the 

excitation-frequency dependence of the dynamics by observing qualitatively different 

spectral shape along the pump frequency axis. These above mentioned complementary 

studies would provide deeper insights into the cleavage reaction of cyclobutane-based 

molecules.   
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Appendix 

 

A. Global target analysis of syn-hh and syn-ht dimers 

 

 

A.1: Global target analysis results of syn-hh dimer: SAS obtained for (a) model I and (b) 

model II, transient absorption traces for (c) model I and (d) model II. Open points are 

experimental data, lines are obtained from the global target analysis.   
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A.2: Global target analysis results of syn-ht dimer: SAS obtained for (a) model I and (b) 

model II, transient absorption traces for (a) model I and (b) model II. Open points are 

experimental data, lines are obtained from the global target analysis.   

 

B. Computational calculations of anti-hh dimer 

Calculations were performed using the freely available ArgusLab (4.0.1, 2004 Mark 

Thompson and Planaria Software) package. Geometry optimization was performed in a 

step wise manner. Molecular mechanics (Unified Force Field, UFF) was used to relax 

the geometry to a local, ground state minimum. After successful minimization, semi-

empirical methods using the PM3 model were used to further minimize the equilibrium 

geometry. Careful attention was paid to ensure the cyclobutane ring was in the expected, 

distorted, “boat” geometry. Optimizations were susceptible to local minima where the 

cyclobutane ring is in the higher energy, flat arrangement.  Once completed, the energies 

and molecular orbitals were generated.    
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B.1: Occupied, ground state molecular orbitals for the anti-hh dimer in its relaxed (energy 

minimum) geometric arrangement.   

MO-54: HOMO MO-53: HOMO-1

MO-52: HOMO-2 MO-51: HOMO-3

MO-50: HOMO-4



 

Appendix  

 

134 
 

 

B.2: Vacant, ground state molecular orbitals for the anti-hh dimer in its relaxed (energy minimum) 

geometric arrangement.   

 

 

 

 

      

MO-55: LUMO MO-56: LUMO+1

MO-57: LUMO+2 MO-58: LUMO+3

MO-59: LUMO+4
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