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Abstract

Background: Mathematical models are used to gain an integrative understanding of biochemical processes and
networks. Commonly the models are based on deterministic ordinary differential equations. When molecular counts
are low, stochastic formalisms like Monte Carlo simulations are more appropriate and well established. However,
compared to the wealth of computational methods used to fit and analyze deterministic models, there is only little
available to quantify the exactness of the fit of stochastic models compared to experimental data or to analyze
different aspects of the modeling results.

Results: Here, we developed a method to fit stochastic simulations to experimental high-throughput data, meaning
data that exhibits distributions. The method uses a comparison of the probability density functions that are computed
based on Monte Carlo simulations and the experimental data. Multiple parameter values are iteratively evaluated
using optimization routines. The method improves its performance by selecting parameters values after comparing
the similitude between the deterministic stability of the system and the modes in the experimental data distribution.
As a case study we fitted a model of the IRF7 gene expression circuit to time-course experimental data obtained by
flow cytometry. IRF7 shows bimodal dynamics upon IFN stimulation. This dynamics occurs due to the switching
between active and basal states of the IRF7 promoter. However, the exact molecular mechanisms responsible for the
bimodality of IRF7 is not fully understood.

Conclusions: Our results allow us to conclude that the activation of the IRF7 promoter by the combination of IRF7
and ISGF3 is sufficient to explain the observed bimodal dynamics.
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Background
Computer models contribute to the integrative under-
standing of complex molecular processes in the cell. The
most commonly used approach is deterministic modeling
based on ordinary differential equations (ODEs). When
the studied system comprises species with a low molecu-
lar count, stochastic formalisms, e.g. Gillespie’s algorithm
that simulates trajectories and uses discrete molecule
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numbers are more appropriate [1]. In recent years, the use
of stochastic models has substantially increased [2].
Considering stochasticity in biological systems has

changed the quantitative and qualitative understanding
obtained by previous deterministic models [3]. Examples
of biological phenomena discovered by stochastic mod-
eling include gene expression in burst-like patterns [4],
productive or latent cell decision after HIV-infection [5],
and the presence of oscillatory behavior induced by noise
[6]. However, in contrast to the plethora of methods used
to fit and analyze deterministic models [7–10], there are
only very limited sets of methods available to do the same
with stochastic models.
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Thus, only recently, methods for parameter fitting of
stochastic models have been developed and are still under
development. Parameter estimation methods for stochas-
tic models have been so far designed for single time course
data [11–16]. For experiments leading to data distribu-
tions, they include the moment closure [17–19], and the
comparison of experimental and simulation distributions
[20–22]. Despite the current efforts, there are still major
problems that limit the full applicability of those methods.
The main drawback is the high computational execution
time. To solve this problem novel efficient strategies to fit
stochastic models are needed.
In the following we introduce a new approach that is

a variant of existing methods based on the comparison
of distributions. Differently to the existing methods we
use the experimental data to define a condition that the
model must fulfill in the deterministic regime. This condi-
tion tests, if the deterministic steady states are in the close
proximity to the modes of the experimental distribution.
Only if the model fulfills this condition, the parameter
set is evaluated in the stochastic regime. In this way, the
algorithm directs the evaluation of parameter sets towards
regions in parameter space with high potential to repro-
duce the experimental data. Additionally, this method
applies to non-linear models and complex experimental
data distributions.
To test the potential of this new method, we selected an

open scientific question and real experimental data. We
investigated the molecular mechanisms responsible for
the experimentally observed bimodal dynamics of IRF7
expression after Interferon (IFN) stimulation.
It is well documented that in isogenic cell popula-

tions not all cells produce an antiviral response when
infected by a virus [23]. The mechanisms behind this
heterogeneity have been related to stochastic events in
the signaling pathways responsible to elicit the antivi-
ral response [24–26]. IFN is a cytokine that activates the
JAK-STAT signaling pathway in virus-infected cells. The
JAK-STAT signaling pathway induces the translocation of
ISGF3 (a transcription factor) into the nucleus to directly
activate the transcription of a set of several hundred IFN-
stimulated genes (ISGs) [27]. IRF7 is an ISG with a central
role in the immune response [28, 29]. Recently, it was
observed that after IFN stimulation murine fibroblasts
show a switch-like pattern of IRF7 expression, which is
reflected at the population level as bimodality [30].
We developed amodel to describe the observed bimodal

dynamics of IRF7 expression after IFN stimulation. We
hypothesize that the binding of IRF7 and ISGF3 to
the IRF7 promoter is the mechanism responsible for
this bimodal behavior. Our simulation results repro-
duced IRF7 switch-like dynamics at single cell level, and
bimodality was achieved at the population level. Hereby,
we used the newly developed method to fit the model and

correctly reproduce the experimental data. Our results
allow us to conclude that the IRF7 promoter activation
by the combination of IRF7 dimers and ISGF3 is suffi-
cient to quantitatively explain the observed IRF7 bimodal
dynamics.

Methods
Experimental data
Published experimental data were produced by Rand et al.
[30]. The data described the expression of IRF7 after IFN-
β stimulation in a population of murine NIH3T3 fibrob-
lasts. Rand’s experiments were done in the following way:
First, cells were transfected with a BAC (Bacterial Artifi-
cial Chromosome) containing IRF7 and reporter mCherry
genes fused, subsequently cultures were treated with dif-
ferent concentrations of murine IFN-β . For illustrative
purposes we selected the treatment with 150U of IFN-
β , a concentration where bimodality is prevalent. Then,
fluorescence in the cultures was monitored using flow
cytometry at different time points during 48 hours.

Numerical methods
In the deterministic regime the model was simulated
using symbolic methods in Matlab [31] and/or using the
LSODA algorithm in COPASI 4.11 [32]. Stability was cal-
culated by making the right-hand side of the differential
equations equal to zero and subsequently by finding the
roots of the system using function solve in Matlab. Eigen-
values were calculated using function eig in Matlab. For
solving the model under stochastic dynamics we used
the Gibson and Bruck algorithm [33] coded in COPASI.
The random search and genetic algorithm were coded
in Matlab. Raw experimental data was analyzed using
the function FCS data reader coded in Matlab [34]. The
modes in the distributions were calculated using the func-
tion PeakFinder coded in Matlab [35]. The source code of
the project can be accessed via: https://sourceforge.net/
projects/irf7-bimodaldynamics/.

Results
New algorithm to fit stochastic biological models
Comparing experimental and simulation distributions
The measurements of fluorescence were made compara-
ble with the corresponding observable chemical species
So in the model by a function h that maps state So(ti) to
observation S†(ti) as follows:

S†(ti) = h(So(ti)), (1)

at each measurement time point ti, i = 1, . . . , n.
Subsequently, a process to compare distributions was

developed based on [20]. First, considering a specific
set of parameter values θ = {θ1, . . . , θd}, we performed
ns repetitions of the stochastic simulations s(ti) =
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{s1(ti), . . . , sns(ti)}. The total of those stochastic simula-
tions were used to build histograms with a fixed number
of bins L for each ti. Subsequently, the (discrete) probabil-
ity density function (PDF) of the simulations Ps(s(ti), θ , bl)
were computed using the center of each bin bl, for l =
1, . . . , L, and the normalized form of the histograms. On
the other hand, having nm repetitions of single cell experi-
mental datam(ti) = {m1(ti), . . . ,mnm(ti)} histograms and
PDFs Pe(m(ti), bl) were built. Even though, complex for-
mulas can be use to calculate the number of bins in an
histogram, here L was kept constant for Ps and Pe and
was calculated as L = √

nm, this is a simple approach
used by default by most programming languages (i.e. Mat-
lab). Finally, an approach using the difference of squares
was used as a metric to calculate the distance between
Ps(s(ti), θ , bl) and Pe(m(ti), bl), as follows:

F(θ ,m) =
n∑

i=1

L∑

l=1
(Pe(m(ti), bl) − Ps(s(ti), θ , bl))2. (2)

Algorithm implementation
The objective function F(θ ,m) can be used to calculate a
parameter estimate

θ̂ = argminθF(θ ,m). (3)

As optimization usually requires plenty of function eval-
uations and each evaluation of F requires ns stochastic
simulations, a direct optimization strategy is computa-
tionally unfeasible even for simple models. Therefore,
we introduce a new strategy that selects good candidate
parameters and only performs the stochastic simulations
for these parameters.
In large systems where fluctuations can be discarded,

the stochastic system can be reduced to the deterministic
one [36, 37]. For this reason, in most cases the deter-
ministic dynamics can be associated with a measure of
central tendency in the PDFs obtained after the stochas-
tic simulations. Using this reasoning we will introduce the
strategy to efficiently estimate parameters for stochastic
models making use of deterministic dynamics as an initial
indicator.
Assuming that the experimental data is in equilibrium

at the last measurement point tn, we used the modes from
Pe(m(tn), bl) as a central measure of tendency, denoting
the modes by α(tn) = (

α1(tn), . . . ,αq(tn)
)
, with q being

the total number of modes.
Then, using the ODE version of the model (Ẋ(θ , t)) we

determine its stability. Here we tested whether the system
has stable steady states and denote them with X∗(θ) =(
X∗
1 (θ), . . . ,X∗

ss(θ)
)
, being ss the number of stable steady

states. If the system has no stable steady state, it holds ss =
0 and the vector X∗(θ) is empty. The calculation of steady

states can either be performed by solving Ẏ (θ) = 0 where
Ẏ is the right hand side of the ODE system with X(θ , t)
replaced by Y (θ). Solving this equation can be impossi-
ble for large systems. Alternatively, one can numerically
solve the ODE systems until the flux is zero for all compo-
nents. Varying the initial conditions leads to the different
steady states. The stability of the system was calculated
after determining the sign of the eigenvalues (λ < 0), for
stable steady states [38].
Having X∗(θ) and α(tn) we introduce the deterministic

precondition:

β low
k X∗

k (θ) ≤ αk(tn) ≤ β
up
k X∗

k (θ),

for 1 ≤k ≤ q, and 0 ≤ β low
k ≤ 1 and 1 ≤ β

up
k .

(4)

Equation (4) means that the number of modes equals
the number of stable steady states: ss = q, and that each of
the stable steady states is close to its corresponding mode.
Only, if this is fulfilled, we calculate stochastic simulations
and evaluate the objective function F(θ ,m). If the pre-
condition is not fulfilled, we do not carry out stochastic
simulations. In this case, we assign a high (bad) objec-
tive function value to direct the parameter search towards
parameters that pass the deterministic precondition. A
graphical representation of the deterministic precondition
is given in Fig. 1.
At this point, it is important to notice that the

deterministic precondition is not stating that the sta-
ble steady states form the ODE system are equal to the
mean obtained by solving the stochastic system. Rather,
the deterministic precondition tests if the deterministic
steady state lies around a certain range.

Fig. 1 The deterministic precondition. Left side the deterministic
dynamics of the system can be seen, here the observable variable
evolves to a single stable steady state X∗

1 (θ). This steady state can be
calculated by finding the point in the system where the net flux is
equal to zero Ẋ(θ) = 0. At the right hand side of the plot, the PDF of
the experimental data is shown. This PDF is rotated and the x-axis
shows the count and the y-axis shows the bin values with units of
Molecules/Cell. From both graphs it can be seen that the
deterministic precondition is valid when X∗

1 (θ) is inside the range
defined by β low

1 X∗
1 (θ) and β

up
1 X∗

1 (θ)
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Fcond(θ ,m) =
{
F(θ ,m), β low

k X∗
k (θ) ≤ αk(tn) ≤ β

up
k X∗

k (θ)– “Condition passed”
∞, else – “Condition not passed” (5)

Our extended objective function with the deterministic
check reads as:
and the estimate is defined as:

θ̂cond = argminθFcond(θ ,m). (6)

As previously discussed, our method is based on the
central assumption that the modes in the experimental
data are related to the stable steady states in the deter-
ministic mathematical model. If this assumption should
fail, either of the following could happen: a) The method
accepts a parameter that passed the deterministic pre-
condition but does not show a good agreement of the
distributions. If it does not show good agreement, the
objective function F(θ ,m) will show a high value which
means that this parameter does not lead to a good fit.
Therefore, this case leads to a loss of computational time,
but not to wrong results and it overall is still less expen-
sive than evaluating every parameter set. b) We reject a
parameter that fails the deterministic precondition but
would have lead to a good fit. In this case, we lose indeed
a good parameter. This shows that our method is obvi-
ously a heuristic strategy that does not guarantee to find
the exact global minimum, but this is true for almost any
optimization strategy. The algorithmic steps are depicted
in Fig. 2.

Parameter estimationmethods
The deterministic precondition was first implemented
using a random search algorithm. Random search is a
global optimization strategy that tests random combi-
nations of parameter values. The successful output in
this method is dependent on the total number of evalu-
ated parameter sets [39]. The more evaluated parameter
values, the higher the probability to find the global mini-
mum. The pseudo-code for the random search is given in
Algorithm 1.
The second implementation of the deterministic pre-

condition was using themore directed Genetic Algorithm.
Genetic Algorithm mimics evolution and is based on
reproduction and selection. This algorithm is made of
a population of individuals (parameter sets), and each
contains a genome that is defined by the number of
parameters to optimize. The individuals are ranked after
solving the objective function, and a population of
parental individuals is selected according to an elitism rate
(ε). New individuals (offspring) are generated by pairing
and recombining the parental genomes (cross-over). Vari-
ability is introduced in the population by adding muta-
tions in the new individuals according to a given mutation
rate (μ). By the continuous process of selecting the best
parameters after each generation, the algorithm evolves
towards the regions in the parameter space that reduce the

Fig. 2 Algorithm to fit stochastic models to experimental data. The algorithm solves the model in the deterministic and stochastic regimes. A
condition observed in the experimental data is defined. A set of parameter values is evaluated in the deterministic regime to test if the model
reproduces this condition. If the condition is met the stochastic simulation is performed. Otherwise, the parameter values are rejected. The PDF
obtained from the experimental data is compared with the PDF obtained after running the stochastic simulations. This comparison is made using a
difference of squares as an objective function. This process is repeated until evaluating a total number of parameter sets or after a termination
criterion is met. The parameter set that best reproduces the experimental data is given by the minimum value obtained after the iterative evaluation
of the objective function
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Algorithm 1: Random search with the deterministic
precondition
Data: High-throughput data PDFs. Biochemical

model.
Define: Ranges for the parameter values.
Number of parameters sets to test is N.
Result: Parameter values that best reproduce the

experimental data.

Generate matrix of random parameter values.
for j = 1 : N do

Assign the jth parameter set in the model ;
Run deterministic simulations ;
Test deterministic precondition ;
if deterministic precondition is true then

Run stochastic simulations ;
Objective Function (OF) = F(θ ,m) ;

else
Reject the jth parameter set;
Set OF = ∞ ;

end
end

values in the objective function. The pseudo-code for the
Genetic Algorithm is given in Additional file 1.

Identifying parameters for a constitutive gene
expression circuit with in-silico data
To prove the functionality and benefits of the new pro-
posed algorithm, we first applied it to a simple example
where the parameters are known a priori. The model
describes the stochastic dynamics of two variables, pro-
tein and mRNA of a gene with constitutive expression
[40], a graphical representation of the constitutive gene
expression circuit is given in Fig. 3-a. The model is
described by the following reactions:

∅
θ1−→ mRNA, (7)

mRNA θ2−→ ∅, (8)

mRNA θ3−→Protein, (9)

Protein θ4−→ ∅. (10)
To estimate the parameter values for this model we car-

ried out the following procedure: First, we generated the
in-silico data by selecting the following true parameter
values θo = (5, 0.03, 0.1, 0.03) and running 10000 inde-
pendent stochastic simulations from which PDFs were

built. Four observable time points were defined at 50 min,
100 min, 150 min and 200 min (see Fig. 3b). From the
PDFs a mode was obtained at α1(tn) = [543] a.u.(arbitrary
units), where tn = 200 min. Then, we defined the
deterministic precondition using Eq. (4), and assigning
minimum and maximum acceptance ranges by setting
β low
1 = 0.95 and β

up
1 = 1.05, respectively. A deeper analysis

of the stability of the constitutive gene expression circuit
is given in Additional file 2. To build simulated PDFs
we used 1000 repetitions of the stochastic model, this
number was empirically calculated according to
Additional file 2. For illustrative purposes, we assumed
that the values for the parameters responsible for the
mRNA transcription and protein translation (θ1, θ3) were
unknown, and the new algorithm was used to estimate
those parameters. The deterministic precondition was
applied using the RS strategy obtaining that the algorithm
only evaluates stochastic dynamics in 3.1% of the tested
parameter values, reducing in this way the total simulation
time. Additionally, the complete algorithm was repeated
1000 times and histograms of the estimated parameter
were computed to determine whether they are close to
θ(0). As can be observed in Fig. 3-c the deterministic
precondition reduces the evaluation of different param-
eters under stochastic dynamics by selecting only those
parameters that are in a well-defined region in the prox-
imity of θ(0). For this model, the main benefits of using
the deterministic precondition was the reduction of the
number of parameters evaluated under stochastic dynam-
ics. This rejection of parameters was made in an area
outside the true parameter values, and hence no dif-
ference in accuracy is expected in comparison with a
method without using the deterministic precondition. A
complete description of the analysis of the performance,
accuracy and error for this example is given in Additional
file 2. The model for the constitutive gene expression
circuit can be obtained from BioModels database under
reference MODEL1608100000.

Mathematical model for IRF7 expression dynamics
Subsequently we applied our algorithm to a real problem
with flow cytometry data. Here we studied the dynamics
of murine IRF7 gene expression upon IFN stimulation. For
this reason, we developed a model that comprises known
key components and feedback mechanisms. The overall
system describes the active IRF7 promoter (Pa) by the
binding of IRF7 dimer and ISGF3 to the DNA binding
sites ISRE and IRFE, respectively [41], the transcription
and translation of IRF7, and its subsequent phosphoryla-
tion and dimerization. IRF7 protein binding to the IRFE
binding site in the promoter results in the production
of more IRF7 protein, constituting a positive feedback
loop [42]. A graphical representation of the IRF7 gene
expression dynamics is given in Fig. 4.



Aguilera et al. BMC Systems Biology  (2017) 11:26 Page 6 of 14

Fig. 3 Parameter estimation using a constitutive gene expression circuit and in-silico data. a Diagram of a gene with constitutive expression. The
mRNA is produced at constant rate θ1 and is degraded at constant rate θ2, the proteins are produced at constant rate θ3 and are degraded with θ4.
b Comparison between in-silico data and model dynamics using the true parameters θo = (5, 0.03, 0.1, 0.03) and the estimated parameters
θ̂ = (5.086, 0.03, 0.098, 0.03). A distribution with the in-silico data is given in grey. In red is given the model dynamics. c Comparison between a
priori and a posteriori parameter distributions. The true parameters are represented by the intersection of the red lines. In the priori distribution it
can be observed that 1000 parameters are randomly distributed in the parameter space. The posteriori distributions were calculated by running
1000 independent random searches with 1000 parameters each, and by plotting the best parameter value selected by the algorithm. In the
posteriori distribution it is plotted only the parameters that passed the deterministic precondition, and it can be observed that those parameter
estimates are in a region close to the true parameter values

Chemical reactions
The developed model consists of 7 species and 13 reac-
tions (reactions (11) to (23)). In the model, reaction (11)
describes the IFN activation of the JAK-STAT signal-
ing pathway. For the description of this reaction and

according to [30] a saturable function was used. Down-
stream reactions of the pathway were lumped in reaction
(12), so that the same variable was used to describe the
output of the JAK-STAT signaling pathway, namely ISGF3,
in this highly simplifiedmodel. Reaction (13) describes the
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Fig. 4 IRF7 gene expression circuit. a In viral infected cells IRF7 gene expression is induced after IFN stimulation by the JAK-STAT signaling pathway.
The IRF7 promoter activation is governed by the binding of IRF7 dimer and ISGF3 to the promoter DNA binding sites (ISRE and IRFE). IRF7 promoter
activation leads to the transcription of IRF7 mRNA and subsequent its translation to produce the IRF7 protein. Notice that the IRF7 production and
subsequently phosphorylation and dimerization leads to the binding to its own DNA binding site, resulting in the production of more IRF7, making
in this way a positive feedback loop. b A simplified system representing the IRF7 gene expression dynamics is given. Here, the promoter transitions
between active/basal states (Pa/Po), the gene transcription and translation processes are represented as solid black lines as well as the feedback
loop in the system

IRF7 promoter activation by the binding of IRF7 dimer
and ISGF3 to ISRE and IRFE, respectively. Subsequently,
we incorporated IRF7 mRNA transcription by the active
promoter, and to a lesser extent by the basal promoter
state, as reactions (14) and (15), respectively. Reaction (16)
considers the translation of IRF7 mRNA to produce IRF7
protein. IRF7 protein is phosphorylated in reaction (17).
Two phosphorylated IRF7 proteins form a IRF7 dimer
in reaction (18). Finally, IRF7 promoter inactivation,
degradation of mRNAs, ISGF3, IFN and IRF7 proteins
are represented by reactions (19) to (23), respectively:

IFN
fIFN−−→ 2IFN , (11)

IFN
fISGF3−−−→ ISGF3 + IFN , (12)

∅
fPa−→ Pa, (13)

Pa
fmRNAA−−−−→ mRNA + Pa, (14)

∅

fmRNAB−−−−→ mRNA, (15)

mRNA
fIRF7−−→ IRF7 + mRNA, (16)

IRF7
fIRF7phos−−−−→ IRF7phosp, (17)

2 · IRF7phosp fIRF7dimer−−−−−→ IRF7dimer, (18)

Pa
fdPa−−→ ∅, (19)

IFN
fdIFN−−→ ∅, (20)

mRNA
fdmRNA−−−−→ ∅, (21)

IRF7dimer
fdIRF7dimer−−−−−→ ∅, (22)

ISGF3
fdISGF3−−−−→ ∅, (23)

The reaction rates are given in Table 1.

Mathematical equations
To evaluate the deterministic precondition we consider
the corresponding ODEs (Eq. (24) to (30)):

d IFN
dt

= fIFN − fdIFN (24)

d ISGF3
dt

= fISGF3 − fdISGF3 (25)

d Pa
dt

= fPa − fdPa (26)

d mRNA
dt

= fmRNAA + fmRNAB − fdmRNA (27)

d IRF7
dt

= fIRF7 − fIRF7phosp (28)

d IRF7phosp
dt

= fIRF7phosp − 2 · fIRF7dimer (29)

d IRF7dimer
dt

= fIRF7dimer − fdIRF7dimer (30)
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Table 1 Reaction rates considered in the model

Name Definition

fIFN VIFN
(

IFNn

knIFN+IFNn

)

fdIFN kdIFN · IFN
fISGF3 kISGF3 · IFN
fdISGF3 kdISGF3 · ISGF3
fPa kon

(
ISGF3·IRF7dimer

kaI3·kaI7+kaI3·ISGF3+kaI7·IRF7dimer+ISGF3·IRF7dimer

)
(1 − Pa)

fdPa koff · Pa
fmRNAA kActive · Pa
fmRNAB kBasal(1 − Pa)

fdmRNA kdmRNA · mRNA

fIRF7 kIRF7 · mRNA

fIRF7phosp kdIRF7 · IRF7
fIRF7dimer kIRF7dimer · IRF7phosp · IRF7phosp
fdIRF7dimer kdIRF7dimer · IRF7dimer

The model for the IRF7 circuit can be obtained from
BioModels database under referenceMODEL1608100001.

Fitting the stochastic IRF7 gene expression model to
experimental data
All parameters of the above described model for the IRF7
gene circuit were fitted by using experimental data of
IRF protein expression. In the model, a global quantity
to describe the different forms of the IRF7 protein was
defined as follows:

IRFtotal(t) = IRF7(t)+IRF7phosp(t)+IRF7dimer(t),
(31)

and this variable was mapped to IRF7†(ti) flow cytometry
measurements as follows:

IRF7†(ti) = ϕIRF7total(ti), (32)

where ϕ is a scaling factor.
Using the experimental data, PDFs were build and

the modes in the distributions were determined using
the PeakFinder function [35] obtaining two elements of
α(tn) = [77, 1000] a.u. (arbitrary units), where tn = 48 h. ϕ
relates the values of fluorescence with themolecular count
described by the mathematical model. Unfortunately, no
calibration curve is provided with the data to calculate
this parameter. For this reason,multiple values were tested
for ϕ obtaining consistent results, for illustrative purposes
we report ϕ = 1. We defined the deterministic precondi-
tion using Eq. (4), and assigning minimum and maximum
acceptance ranges by setting β low

k = 0.95 and β
up
k = 1.05,

for k = 1, 2. The allowed ranges for the parameter values
are given in Table 2. The deterministic precondition was

introduced in two different optimization strategies, ran-
dom search, and genetic algorithms. In both optimization
strategies 1000 realizations of the stochastic simulations
were performed if the parameter set fulfilled the deter-
ministic precondition.
Using the random search strategy, we tested 10000

parameter sets from which less than the 1% passed the
deterministic precondition and were stochastically eval-
uated. The reduction of parameter values allowed us to
efficiently find a set of parameter values that reproduced
the experimental data (the fitting for the random search
algorithm is given in Additional file 3). A complete anal-
ysis of the performance of the use of the deterministic
precondition with the random search algorithm is given
in Additional file 4. To test the reproducibility of the esti-
mated parameter values, the method was repeated 100
times obtaining well-defined parameter distributions that
show the predominant values, see Additional file 5.
Then, we implemented the deterministic precondition

using a genetic algorithm with adaptive population size.
Here we implemented an initial population of 3000 indi-
viduals for the first generation, and 5 subsequent gen-
erations with 20 individuals. Notice, that a large initial
population of parameters was needed by the expected
high rejection percentage of parameters by the determin-
istic precondition during the first generation. As param-
eters for the algorithm we used ε = 0.4 and μ = 0.2.
Our simulation results showed a constant decrease in the
value of the objective function value during the genera-
tions, which indicates progress during fitting. By the use
of the deterministic precondition 99% of the parameters
were rejected in the first generation and in the subse-
quent generations around 30% of the parameter values
were rejected, improving in this way the efficiency of the
algorithm (see Fig. 5). The comparison between the exper-
imental data and the model simulation distributions is
given in Fig. 6 showing a high degree of agreement. In
addition, to check the validity of the methodology further
we fit the model to two additional flow cytometry mea-
surements that describe the stimulation of the cell culture
with 100U and 250U of IFN. The respective results are
given in Additional file 6. Complete analysis of the perfor-
mance of the use of the deterministic precondition in the
genetic algorithm is given in Additional file 4.

IRF7 temporal dynamics
The simple model of IRF7 gene expression described
above is sufficient to explain IRF7 bimodality. Using the
optimized parameter values given in Table 2 and the ini-
tial conditions given in Table 3, the stochastic temporal
dynamics of the model were simulated and are given in
Fig. 7. In Fig. 7-a it can be seen that the IFN concen-
tration evolves to a steady state. Subsequently, the first
affected variable is ISGF3 that equally evolves towards
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Table 2 Description of the parameter values

Name Description Range Nominal Units

VIFN Maximum activation rate of the IFN pathway [2.8, 11.2] 6.135 (Molecules/Cell)∗min

n Hill coefficient - 2 Dimensionless

kIFN Saturation constant for the IFN pathway [0.0022, 0.0088] 0.0055 Molecules/Cell

kdIFN Decay rate of the IFN pathway [0.0232, 0.0926] 0.0492 min-1

kISGF3 Constant for ISGF3 production [0.00012, 0.00048] 0.0003 min-1

kdISGF3 Decay rate of the ISGF3 [0.00068, 0.00272] 0.0017 min-1

kon Promoter activation [184.55, 738.2] 522.59 min-1

kaI3 Constant of promoter activation by IFN [7681.6, 30727] 22687.02 Molecules/Cell

kaI7 Constant of promoter activation by IRF7 [13399, 53597] 35281.99 Molecules/Cell

koff Promoter inactivation [0.00044, 0.00176] 0.0013 min-1

kActive IRF7 transcription rate by active promoter [0.5402, 2.161] 1.144 min-1

akBasal IRF7 basal transcription rate [0.0312, 0.125] 0.0861 min-1

bkdmRNA Decay rate of mRNA [0.029, 0.116] 0.0715 min-1

ckIRF7 Translation rate of IRF7 [14, 56] 43.867 min-1

kdIRF7 Rate of IRF7 phosphorylation [1.540, 6.160] 3.877 min-1

kIRF7dimer Rate of IRF7 dimerization [0.235, 0.94] 0.602 (Cell/Molecules)/min

kdIRF7dimer Decay rate of IRF7 dimers [0.209, 0.836] 0.439 min-1

ϕ Scaling factor - 1 Cell/Molecules

akBasal was calculated to be at least one order of magnitude smaller than kActive
bDegradation rates for the mRNA were calculated assuming a mRNA half-life in the order of minutes [50]
c Based on the average translation rate in NIH3T3 cells [49]

Fig. 5 Genetic Algorithm performance. The deterministic
precondition was introduced in a genetic algorithm strategy. The
genetic algorithm was implemented using an adaptive population
size using a population of 3000 individuals for the first generation,
and a population of 20 individuals for the subsequent generations. As
algorithm parameters we used μ = 0.2, and ε = 0.4. In the plot a
decrease in the objective function value during the generations in
the GA is shown

a stable steady state, see Fig. 7-b. Figure 7-c shows the
IRF7 promoter dynamics exhibiting transitions between
active/basal states. This promoter state transition is a
characteristic of genes with regulated expression [43].
Subsequently, IRF7 mRNA expression displays a pattern
that is affected by this stochastic switching between two
possible states, one with basal expression and the other
with active expression, see Fig. 7-d. For single-cell tra-
jectories, IRF7 protein expression shows a switch-like
expression. For the whole population of those trajecto-
ries bimodality is observed (Fig. 7-e), the same stands for
the different forms of the IRF7 protein, phosphorylated
(Fig. 7-f) dimer (Fig. 7-g), and the total amount of IRF7
proteins (Fig. 7-h). The system’s steady states are given in
Table 4.

Discussion
The promise of systems biology is to achieve a quanti-
tative understanding of the molecular processes in the
cell with the aid of computational models. However, a
bottleneck is the availability of reliable parameter values
needed in those models. Often, it is very difficult or even
impossible to measure all of these parameters. For deter-
ministic models, this problem has been well tackled by
the development of efficient methods for parameter esti-
mation. Contrarily, for stochastic dynamics the landscape
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Fig. 6 Comparison between the experimental data and stochastic
simulations. Result of the fitting of the model with the experimental
data using the genetic algorithm and the deterministic precondition.
In the plots, the y-axis represents the normalized cell count and the
x-axis represents the fluorescence quantity (arbitrary units, au)
associated with the expression of the IRF7 protein. In gray we present
the histograms that represent the experimental data, in red the PDF
from the stochastic simulations

of methods for parameter estimation is poorer and still
under development. For this reason, innovative and effi-
cient algorithms are needed to fit and validate realistic
stochastic models.
During the last years important advances have been

achieved in the field of parameter inference for stochastic

Table 3 System’s initial conditions

Variable Initial condition (molecules/cell)

IFN 150

ISGF3 1

Pa 0

mRNA 1

IRF7 1

IRF7phosp 0

IRF7dimer 0

models. On one hand, strategies that involve mathemati-
cal procedures of moment estimation have been suggested
[17–19]. On the other, Bayesian methods that test multi-
ple parameters values to find approximated solutions that
represent the data have been successfully implemented
[20]. Currently, the main problems observed in most
methods include the computational cost, the accuracy of
the obtained solution, and its potential to be implemented
in large and non-linear systems. Different strategies have
been suggested to improve the accuracy and alleviate the
computational performance [21, 22].
In our method, we tackled the computational cost by

introducing a deterministic precondition that works as a
by-pass in the algorithm avoiding large amounts of unnec-
essary stochastic simulations. The concept of reducing the
parameter space by introducing a precondition defined by
the experimental data has been suggested previously by
Hori et al. [21]. In their method, a small order linearmodel
is used to optimize the experimental data by finding the
root of a Lyapunov equation. In contrast, we use a deter-
ministic precondition. Both approaches have advantages
and disadvantages. Thus, Hori’s method is constrained by
the need to find the Lyapunov equation. Our method is
based on steady state calculation and Monte Carlo simu-
lations that are standard and well-known methodologies
used in systems biology.
Recently a new algorithm developed by Lillacci et al.,

has been shown to significantly reduce the computa-
tional cost and achieve a high accuracy fit for stochastic
models and flow cytometry data [22]. This method uses
the Kolmogorov distance as a metric to calculate the
difference between model simulation and experimental
data. By choosing this metric, it is possible to estimate
the minimal number of simulations needed to compare
experimental andmodel simulations under a certain toler-
ance value. This estimated value decreases as the number
of experimental data increases. In typical flow cytome-
try experiments the number of measured cells is in the
order of tens of thousands and this number in Lillacci’s
Algorithm is translated in a reduction of at least one order
of magnitude in the number of required stochastic simu-
lations. This algorithm has been applied to a model with



Aguilera et al. BMC Systems Biology  (2017) 11:26 Page 11 of 14

Fig. 7 Time courses in the IRF7 circuit after IFN stimulation. The temporal dynamics of the promoter, mRNA and IRF7 protein dynamics were obtained
after stochastic simulations. A representative trajectory that presents a single cell dynamics is given by the red lines. The stochastic simulations were
repeated 1000 times using the same initial condition obtaining the histograms that represent the cell population. a Time courses of IFN showing
the evolution to a steady state, the same is observed in b for the ISGF3. c IRF7 promoter shows the transition between the two possible states
Off/On. d IRF7 mRNA showing a basal expression state and a state of active expression. Bimodality is observed in e for the IRF7 protein, the same
bimodal behavior was observed in f for the IRF7 phosphorylated protein, in g for the IRF7 protein dimer, and in h for all forms of the IRF7 protein

18 reactions and 20 free parameters obtaining a good
fit to flow cytometry experimental data that reproduces
bimodal dynamics. Comparing our method with Lillacci’s
algorithm it is important to point out that both methods
tackle the computational cost issue in two fundamentally
different ways. Lillacci’s algorithm minimizes the number

of needed stochastic simulations, whereas our algorithm
minimizes the number of parameters sets evaluated with
stochastic dynamics. A powerful new algorithm may be
the result of combining both methodologies.
It is well known from non-linear dynamics that the

model architecture and parameter values determine the
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Table 4 System’s steady states

Variable 1st sss (eigenvalue) 2nd sss (eigenvalue)

IFN 0 (-15.95) 124.70 (-0.0017)

ISGF3 0 (-3.87) 22.00 (-0.049)

Pa 0 (-0.44) 0.99 (-0.072)

mRNA 1.20 (-0.071) 15.93 (-0.32)

IRF7 13.62 (-0.049) 180.32 (-0.44)

IRF7phosp 6.62 (-0.0017) 24.09 (-3.87)

IRF7dimer 60.19 (-0.0013) 796.69 (-58.03)

IRF7total 80.43 954.01

behavior of the system. Hence, more complex stable
dynamics such as limit cycles, and higher-multistability
(a system with more than two stable steady states) can
be obtained. Unstable systems are usually not of interest
in the biological context. Our method was designed and
tested for monostable and bistable systems, all other cases
being rejected by the deterministic precondition. The
case of limit cycles can be better approached by existing
parameter estimationmethods for single time-course data
[12–16]. The case of systems with higher-multistability
can in principle be treated by our method, but the appli-
cation is limited by the costly need to find multiple sta-
ble steady-states in the system. Finally, it is relevant to
mention that comparing stable states of the ODE model
with modes of the measured flow cytometry distribu-
tion in some models can present some inherent problems.
Bimodal fluorescence distributions may have no relation
to bistability, e.g. when the systems has large differences
in transitions rates for the promoter states [44].
Our method was implemented using two well-

established optimization strategies, random search and
genetic algorithms. Using a random search algorithm we
observed that less than 1% of the population of parame-
ters are subject to stochastic evaluations, this reduction
in the tested parameters allowed us to explore a larger
proportion of the parameter space, which is especially
relevant for systems with multiple unknown parameters
and no initial parameter guesses. On the other hand,
using genetic algorithms we achieved a convergence to a
minimal value in the optimization function after a few
generations (see Fig. 5). Additionally, during each gener-
ation in the genetic algorithm a large percentage of the
total evaluated parameters is rejected by the determin-
istic precondition. This percentage is dependent on the
parameter of the algorithm (rate of elitism and mutation
rate). In both strategies the introduction of the determin-
istic precondition significantly improved the parameter
estimation process. Moreover, the implementation of
deterministic precondition is not restricted to random
search and genetic algorithms, it can also be implemented

in other optimization algorithms, e.g. particle swarm or
simulated annealing. A complete analysis of the perfor-
mance of using the deterministic condition is given in
Additional file 4.
The accuracy of the method is given by the agreement

between experimental data and simulations. As can be
observed in Fig. 6 a good fit was found, albeit not a per-
fect one. We observed that even increasing the number of
tested parameter values during the random search and/or
increasing the number of generations during the genetic
algorithm did not improve the fit. For this reason, we
consider that the differences between the model and the
experimental data might be explained by the fact that
our system is a highly simplified model that was built by
lumping some steps in the biological system. Our team is
working to fit more complex models in a future publica-
tion. To test the reproducibility of the obtained parameter
values, the method was repeated 100 times and distribu-
tions of the obtained parameters were built. As can be
observed in Additional file 5, when a parameter is iden-
tifiable this is reflected in a narrow distribution, on the
other hand, when a parameter is non-identifiable this is
reflected in a wide distribution. In the example given by
reactions (11) to (23) we observed that most parameters
are not identifiable. Thus, non-identifiability is expected
in the parameters contained in reactions (11) and (20).
Those reactions have opposite effects on the IFN dynam-
ics. For this reason, multiple combinations of values in
parameters VIFN , kIFN and kdIFN have similar effects on
the overall system dynamics. Contrarily, the parameters
involved in the production of the mRNA (kActive and
kBasal) are better confined.
Rand et al. described bimodal gene expression of IRF7

after IFN stimulation. This phenomenon was explained
at the cell population level by the effects of the IFN
paracrine response [30]. Here we observed that bimodal-
ity also can be explained in absence of paracrine response
and only taking into account the molecular mechanism
responsible for the IRF7 promoter dynamics. Bistability
in gene-expression circuits is commonly associated with
the switching between active/basal states in the gene pro-
moter. In most cases, DNA cooperativity in the promoter
is the basis of promoter-state switching [45]. However,
for type-I IFN responses a promoter activation in a coop-
erative manner has recently been discarded [46]. Taking
the recent literature into account, we developed a model
on the basis of a positive feedback loop circuit compris-
ing the independent activation of ISRE and IRFE elements
by one ISGF3 molecule and one IRF7 dimer, respectively
(see Fig. 4). This model has the needed and sufficient ele-
ments to sustain a bistable system (that is a positive feed-
back loop and non-linear dynamics in the reaction rates)
[47, 48]. Additionally, multiple model structures test-
ing different biological scenarios including: additional
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feedback loops, additional intermediate elements, and
promoter cooperative activation were tested, obtaining
that the presented model reproduces the experimental
data best. Our simulation results agree with the exper-
imental data obtained from flow cytometry [30]. Addi-
tional characteristics observed in the experimental data
are also reproduced by the model, such as the basal
expression of IRF7 without IFN stimulation [29], see
Additional file 7. The number of molecules in the active
state of the system (given by the obtained 2nd steady state,
see Table 4) agrees with the order of magnitude reported
for mammal mRNAs (average = 17 Molecules/Cell with
a range between 1 to 200 Molecules/Cell) and the range
of protein concentration (average = 50,000Molecules/Cell
with a range between 100 to 108 Molecules/Cell) [49].

Conclusion
Here, we present a method to fit stochastic models to
experimental data. The method is based on the compar-
ison of distributions. The central idea of the method is
to use a deterministic precondition that is defined by the
experimental data as a filter avoiding large amounts of
costly stochastic simulations. Using this idea, the num-
ber of parameters evaluated under stochastic dynamics
is reduced, resulting in a significant improvement in the
performance of the algorithm. As a case study, we used
a model of IRF7 gene expression investigating the origin
of bimodality in its dynamics upon IFN stimulation. Our
results allowed us to conclude that a circuit with IRF7
promoter activation by one IRF7 dimer and one ISGF3
molecule is sufficient to explain the observed bimodal
dynamics.
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