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ABSTRACT 

The Hypothalamic-Pituitary-Adrenal (HPA) axis and its final effector, 

glucocorticoids (GCs), are important players in maintaining homeostasis of an organism 

upon stress exposure. However, overexposure to GCs during early life is involved in 

developmental programming of the HPA axis and is linked to detrimental effects in 

health. The hypothalamus is a key target for developmental programming due to its 

pivotal role as an integrator of input signals coming from sensory systems and other 

brain regions and as a translator of neuronal signals into endocrine signals. Yet, little is 

known about the molecular mechanisms involved in hypothalamic programming 

mediated by stressful experiences during early life. Elucidation of these mechanisms is 

essential for understanding the link between early life stress, dysregulation of the stress 

response, and detrimental health in later stages. 

Here, I used the zebrafish model to elucidate the molecular correlates of early 

adverse experience in hypothalamic cells. First, I developed a stimulation protocol using 

vortex flows to activate the hypothalamic-pituitary-interrenal (HPI) axis, the homolog 

of the HPA axis in teleost, and characterized the stress response at early stages by 

measuring cortisol (the main GC in zebrafish) and behavioral correlates. I then 

identified a critical time window in which HPI axis activity matures. Subsequently, I 

established an early life stress protocol to induce hypercortisolic states and alter stress 

response maturation. Endocrinological, behavioral, and cellular characterization of the 

early life stress paradigm showed an overall downregulation of the stress response with 

attenuated locomotor and cortisol response to subsequent stressful events as well as 

reduced calcium activity and expression of stress related peptides (AVP, CRH, and 

OXT) in hypothalamic cells. To dissect the molecular correlates of early adverse 

experience, I then performed transcriptomic analysis of hypothalamus-specific cell 

populations after exposure to the early life stress paradigm. Candidate molecules 

involved in the adaptive process occurring in hypothalamic cells were identified. 

Moreover, gene ontology and pathway analysis showed that lipid metabolism and 

molecular transport pathways were downregulated after zebrafish larvae were subjected 

to the early life stress protocol. In contrast, cellular movement and inflammatory 

response pathways were upregulated. Finally, I characterized the cortisol profiles of 

optogenetic and targeted transgenic tools which have been generated to manipulate the 
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HPI axis activity in freely swimming larvae. Here, I show evidence of altered levels of 

endogenous cortisol in larvae that were manipulated at any of the three levels of the HPI 

axis.    

Altogether, the main contributions of this thesis are: 1) establishment of a novel 

stress protocol to activate the HPI axis in zebrafish larvae in a highly controlled and 

strength-dependent manner; 2) characterization of the cortisol response of developing 

zebrafish and identification of a critical time window of stress response maturation; 3) 

development of an early life stress paradigm and elucidation of the effects of early 

adverse experience at the cellular, behavioral, and endocrinological level; 4) 

identification of candidate molecules and metabolic pathways in hypothalamic cells 

involved in adaptive processes after early adverse experience, and 5) characterization of 

the cortisol profiles of optogenetic and genetic tools to manipulate the HPI axis activity 

at any of its three levels (hypothalamus, pituitary, and interrenal gland). 
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ZUSAMMENFASSUNG 

Die Hypothalamic-Pituitary-Adrenal (HPA)-Achse und ihre Endsignalstoffe, die 

Glucocorticoide (GCs), sind wichtige Spieler bei der Aufrechterhaltung der Homöostase 

eines Organismus unter Stresseinwirkung. Allerdings ist eine übermäßige Einwirkung 

von GCs früh im Leben an der Programmierung der HPA-Achse während ihrer 

Entwicklung beteiligt und wird mit gesundheitsschädlichen Effekten in Verbindung 

gebracht. Der Hypothalamus ist ein Hauptziel für Programmierung während der 

Entwicklung aufgrund seiner entscheidenden Rolle als Integrator von einkommenden 

Signalen der sensorischen Systeme und anderer Hirnregionen, und als Übersetzer 

neuronaler Signale in endokrine Signale. Dennoch ist wenig über die durch stressige 

frühe Erfahrungen vermittelten molekularen Mechanismen bekannt, die an 

hypothalamischer Programmierung beteiligt sind. Eine Aufklärung dieser Mechanismen 

ist entscheidend für das Verständnis der Verbindungen zwischen Stress früh im Leben, 

Fehlregulation der Stressantwort, und Gesundheitsschäden in späteren Stadien. 

In der vorliegenden Arbeit benutzte ich den Zebrafisch als Modell, um die 

molekularen Korrelate von frühen negativen Erlebnissen in hypothalamischen Zellen 

aufzuklären. Zuerst habe ich ein Stimulationsprotokoll mit Wirbelströmungen 

entwickelt, um die Hypothalamic-Pituitary-Interrenal (HPI)-Achse zu aktivieren, die in 

Teleostei homolog zur HPA-Achse ist, und habe die Stressantwort in frühen 

Entwicklungsstadien durch Messung von Cortisol (des primären GCs im Zebrafisch), 

und korrelierendes Verhalten charakterisiert. Weiterhin habe ich ein kritisches 

Zeitfenster identifiziert, in dem die Aktivität der HPI-Achse ausreift. Anschließend habe 

ich ein Protokoll für Stress früh im Leben etabliert, um hypercortisolische Zustände zu 

erzeugen und die Reifung der Stressantwort zu verändern. Endokrinologische, 

verhaltensbiologische und zelluläre Charakterisierung dieses „early life stress 

paradigms“ zeigte eine generelle Herabregulierung der Stressantwort mit gedämpften 

lokomotorischen und Cortisolantworten auf nachfolgende Stressereignisse, und 

verringerte Calciumaktivität und Expression stressrelevanter Peptide (AVP, CRH und 

OXT) in hypothalamischen Zellen. Um molekulare Korrelate früher negativer 

Erlebnisse zu untersuchen, habe ich danach eine Transkriptomanalyse von 

Hypothalamus-spezifischen Zellpopulationen nach Einwirkung des „early life stress 

paradigms“ durchgeführt. Kandidatenmoleküle wurden identifiziert, die im 
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Anpassungsprozess involviert sind und in hypothalamischen Zellen vorkommen. 

Außerdem zeigte eine Gen-Ontologie- und Signalweganalyse, dass Lipidmetabolismus 

und molekulare Transportwege herunterreguliert wurden, nachdem Zebrafischlarven 

dem „early life stress“-Protokoll ausgesetzt waren; andererseits wurden Zellmotilitäts- 

und Entzündungsreaktionswege heraufreguliert. Schließlich habe ich die Cortisolprofile 

von optogenetischen und genetischen Werkzeugen charakterisiert, die zur Manipulation 

der HPI-Achsenaktivität in freischwimmenden Larven entwickelt wurden. Hier zeige 

ich Nachweise veränderter endogener Cortisolspiegel in Larven, die auf jeder der drei 

Ebenen der HPI-Achse manipuliert wurden. 

Zusammenfassend sind die hauptsächlichen Beiträge dieser Arbeit: 1) Etablierung 

eines neuartigen Stressprotokolls zur Aktivierung der HPI-Achse in Zebrafischlarven 

auf hochgradig kontrollierte und stärkeabhängige Weise; 2) Charakterisierung der 

Cortisolantwort von sich entwickelnden Zebrafischen und Identifizierung eines 

kritischen Zeitfensters der Stressantwortreifung; 3) Entwicklung eines „early life stress 

paradigms“ und Aufklärung der Effekte früher negativer Erlebnisse auf der zellulären, 

endokrinologischen und Verhaltensebene; 4) Identifizierung von Kandidatenmolekülen 

und metabolischen Signalwegen in Hypothalamuszellen, die in Anpassungsprozesse 

nach früher negativer Erfahrung involviert sind, und 5) Charakterisierung von 

Cortisolprofilen optogenetischer und genetischer Werkzeuge zur Manipulation der HPI-

Achsenaktivität auf jeder ihrer drei Ebenen (Hypothalamus, Hypophyse und 

Interrenalorgan). 
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1. INTRODUCTION 

1.1 Stress response and the Hypothalamic-Pituitary-Adrenal axis 

The stress response is defined as a set of physiological and behavioral processes 

which are elicited in order for an animal to cope with any environmental cue perceived 

as a threat to the internal homeostasis of an organism (Selye, 1956). Upon the 

perception of a stressful event, different brain circuits are activated depending on the 

nature of the stressor (Herman and Cullinan, 1997). While stressors representing a 

physiological threat (physical or systemic stressors) are processed by the brainstem 

(Palkovits, 1999), stressors which need to be interpreted by higher brain structures 

(psychological or processive stressors) are processed by limbic structures such as the 

amygdala, hippocampus, prefrontal cortex (PFC), and bed nucleus of the stria terminalis 

(BNST) (Herman and Cullinan, 1997, Bains et al., 2015). In both cases, information 

coming from physical or psychological stressors is then integrated in the paraventricular 

nucleus of the hypothalamus (PVN) (Figure 1.1). This brain area organizes the 

physiological and behavioral response to the stressor by activating the sympathetic 

nervous system (first response wave) and the Hypothalamic-Pituitary-Adrenal (HPA) 

axis (second response wave) (Sapolsky et al., 2000, Joels et al., 2006, Cicchetti, 2013).  

During the first response wave, adrenalin is secreted from the adrenal medulla 

having immediate effects at the systemic level by increasing heart rate, elevating blood 

glucose levels, and suppressing digestive and reproductive systems to avoid 

unnecessary energy expenditure and facilitate coping with the stressor (Sapolsky et al., 

2000, Ulrich-Lai and Herman, 2009). The second response wave, orchestrated by the 

HPA axis,  modulates the physiological changes induced by the first response wave 

(Sapolsky et al., 2000). The HPA axis is considered as the key regulatory system, for it 

is a physiological and anatomical link between the central nervous system and the 

endocrine system, represented by the hypothalamus and pituitary, respectively (Löhr 

and Hammerschmidt, 2011). Activation of the HPA axis is mediated by hypothalamic 

neurons expressing corticotropin releasing hormone (CRH) in the PVN. Within seconds 

after activation, CRH and arginine vasopressin (AVP) are released from the PVN and 

stimulate adrenocorticotropic hormone (ACTH) secretion from the corticotroph cells 

located at the anterior lobe of the pituitary gland. ACTH binds to the melanocortin 

receptors 2 (MC2R) located in the adrenal glands at the top of the kidneys and 
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stimulates glucocorticoid (GC) release, with cortisol and corticosterone being the main 

GCs in humans and rodents, respectively (Charmandari et al., 2005) (Figure 1.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Schematic representation of the stress response. Psychological and physiological 

stressors are processed by different brain structures which further direct information to the main 

integrational brain center located in the paraventricular nucleus of the hypothalamus (PVN). 

Neurons expressing corticotropin releasing hormone (CRH) orchestrate the stress response by 

secreting this hormone, which binds to the CRH receptors (CRHR) in the pituitary and 

stimulates adrenocorticotropic hormone (ACTH) synthesis and secretion. ACTH then binds to 

melanocortin 2 receptors located in the adrenal glands and stimulates glucocorticoids (GCs) 

synthesis and secretion into the general circulation. GCs have a wide range of peripheral 

functions which induce adaptive changes aiming to maintain homeostasis, including negative 

feedback on the hypothalamus-pituitary axis, as well as on higher brain centers such as the 

hippocampus, prefrontal cortex (PFC), and amygdala.  

GCs are the final effectors of the stress response having pleiotropic effects, both 

genomic and non-genomic, in several target tissues. Among a wide variety of functions, 

they play an important role on glucose mobilization from muscle and liver and in anti-

inflammatory process which allows directing valuable energy to essential functions 

involved in coping with a stressful event and maintaining homeostasis (Sapolsky et al., 
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2000, Tasker and Herman, 2011). Moreover, GCs exert a wide range of effects on 

neurons in a temporal and spatial-dependent manner, affecting brain function such as 

cognition, behavior, and mood (De Kloet et al., 1998, de Kloet et al., 2005, Sandi and 

Haller, 2015). They also interact with hypothalamic cells in the PVN and corticotrophs 

in the anterior pituitary to form a negative loop that represses CRH and ACTH secretion 

(Johnson et al., 1992, Groeneweg et al., 2011) (Figure 1.1). In mammals, the changes in 

hormone levels in response to a stressor are in the range of minutes; however, some 

genomic effects of GCs in target tissues as a result of a stress response may occur with a 

delay of hours or even days (Sapolsky et al., 2000).  

1.2 Glucocorticoid and mineralocorticoid receptors mediate the 
effects of glucocorticoids. 

The genomic effects of GCs are mediated by the glucocorticoid receptor (GR; low 

affinity) and/or the mineralocorticoid receptor (MR; high affinity) (De Kloet et al., 

1998, Kadmiel and Cidlowski, 2013). In the brain, the GRs are strongly expressed in 

regions related to HPA axis activity, such as the hypothalamus and pituitary 

corticotrophs. The MRs are also expressed in hypothalamic regions involved in 

osmoregulation; however, the highest expression of MRs is located in the hippocampus, 

the brain region involved in learning and memory processes (Reul and de Kloet, 1985, 

De Kloet et al., 1998). Both receptors are members of the nuclear receptor family and 

are located in the cytosolic space of cells, where they bind to their ligands that diffuse 

through the cell membrane. Due to the high affinity to GCs, around 80% of the MRs are 

occupied even at relatively low concentrations of GCs under basal conditions. Hence, it 

has been proposed that GCs exert a tonic influence through hippocampal MRs. In 

contrast, GRs occupancy occurs when higher GCs levels are reached after HPI axis 

activation and therefore their actions are linked, among other functions, to feedback 

mechanisms to restore homeostasis (De Kloet et al., 1998, Eberwine, 1999). In this way, 

the function of MRs is more likely to be limited by the number of receptors rather than 

by its level of occupancy. On the other hand, the GR function is more dependent on 

fluctuations of GCs levels occurring after HPI axis activation. 

After binding to GCs, GRs translocate to the nucleus as homodimers. They modify 

gene transcription via transactivation. In this process, GRs bind glucocorticoid-

responsive elements (GRE) on the DNA, culminating in enhanced or repressed gene 

transcription of target genes. Activated GRs also interfere with the transcriptional 
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activity of transcription factors through protein-protein interactions, resulting in indirect 

regulation of target genes expression, a process denominated as transrepression. 

Moreover, heterodimerization between GRs and MRs is also possible, resulting in 

changes in the transcription rate of target genes (Beato and Sanchez-Pacheco, 1996, De 

Kloet et al., 1998, Newton and Holden, 2007, Datson et al., 2008).  

In addition, GCs exert rapid non-genomic effects in a wide variety of target tissues. 

Of especial interest are the rapid effects of GCs on brain regions involved in the stress 

response. These rapid effects facilitate or inhibit signaling of ion channels, receptors, 

and/or neurotransmitters, culminating in altered cell activity (Groeneweg et al., 2011). 

While increased excitability has been observed in hippocampus, amygdala and PFC 

shortly after an increase in GC levels, other brain regions such as the hypothalamus 

showed decreased excitability (Zhu et al., 1998, Di et al., 2003, Karst et al., 2005, Karst 

et al., 2010, Groeneweg et al., 2011). 

The receptors and mechanisms mediating the rapid non-genomic effects of GCs in 

the brain are not completely known. Studies have shown that these effects involve 

member-bound receptors and G-protein-coupled signaling. Although some studies have 

shown that rapid effects are mediated by classical GRs and MRs bound to the 

membrane (Solito et al., 2003, Karst et al., 2005, Karst et al., 2010, Roozendaal et al., 

2010), others have shown that administration of GR or MR receptor antagonists do not 

block the rapid effect of GCs (Di et al., 2003, Di et al., 2009). Moreover, G-protein-

coupled signaling was also observed in these cases, indicating that a yet unknown 

membrane-bound G-protein-coupled receptor is involved in some non-genomic effects 

of GCs. This is the case in PVN cells, where rapid non-genomic effects on 

glutamatergic signaling mediated by GCs require endocannabinoid signaling (Di et al., 

2003, Evanson et al., 2010). After administration of GCs, a putative membrane-bound 

G-protein-coupled receptor is activated and stimulates the synthesis of the 

endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in 

postsynaptic neurons; these endocannabinoids are secreted and bind to the 

endocannabinoid receptor type 1 (CB1) at the presynaptic terminal, which culminates in 

reduced secretion of glutamatergic vesicles. In this way, rapid non-genomic effects of 

GCs are involved in the fast termination of the stress response at the level of the 

hypothalamus, maintaining homeostasis and preventing the complete depletion of stress 

hormones to allow the organism to respond to potential subsequent threats.  
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1.3 The paraventricular nucleus (PVN), acute stress, and 
glucocorticoid effects. 

The PVN is one of the most important neuronal nuclei for orchestrating 

neuroendocrine and autonomic functions.  Being located in the periventricular zone, in 

the anterior and tuberal region of the hypothalamus, the PVN has a highly integrative 

functional role involved in a wide variety of physiological functions (Swanson and 

Sawchenko, 1980) (Figure 1.2A-B).  It controls the activity of the HPA axis, thyroid 

axis, and reproductive axis, as well as growth and development, body fluid balance, and 

gastrointestinal and cardiovascular function (Coote, 1995, Kalra et al., 1999, Williams 

et al., 2000, Buijs et al., 2003, Ferguson et al., 2008). To exert regulation over these 

functions, the PVN neurons project to other brain regions such as the median eminence 

(parvocellular neurons) and pituitary (magnocellular neurons). Moreover, projections 

from the PVN to caudal medullary and spinal autonomic control centers exert 

autonomic regulatory control (Swanson and Sawchenko, 1983, Ferguson et al., 2008, 

Herman et al., 2008) (Figure 1.2C).  

Depending on the type of cells activated and the region to which they project, there 

are three main effector pathways regulated by the PVN neurons: 1) the HPA axis, 

through CRH-expressing neurons in the dorsomedial parvocellular (PVNmpd) and 

anterior parvocellular (PVNap) regions of the nucleus; 2) neurohypophysial peptide 

signals, through AVP- and OXT-expressing magnocellular neurons in the anterior, 

medial, and posterior magnocellular regions (PVNam, PVNmm, PVNpm, respectively); 

and 3) autonomic regulation, through neurons  in the lateral (PVNlp), dorsal (PVNsp), 

and ventromedial (PVNmpv) parvocellular regions which project to the brainstem and 

spinal cord (Swanson and Sawchenko, 1983, Herman et al., 2008) (Figure 1.2C). 

Importantly, integrative glutamatergic and GABAergic neurons have been located 

within the PVN and in the halo zone surrounding the PVN, respectively, indicating the 

high complexity of integrational regulation onto the PVN (Ferguson et al., 2008).  

Exposure to acute stress rapidly activates parvocellular neurosecretory neurons 

within the PVN, inducing phosphorylation of cyclic AMP response element binding 

protein (CREB) and mitogen activated protein (MAP) kinase, as well as increased 

transcription of Crh and Avp (Kovacs and Sawchenko, 1996, Khan and Watts, 2004, 

Herman et al., 2008, Herman et al., 1992, Herman, 1995). Moreover, acute stress 

(immobilization) also activates OXT-magnocellular neurons resulting in OXT release 
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(Jezova et al., 1995, Herman et al., 2008). Importantly, induction of c-fos mRNA in 

magnocellular neurons after mild stress exposure (restraint, swim, novelty) occurs in a 

delayed manner, suggesting that under these conditions, these cells respond to the 

physiological effects of stress, rather than to the stressor (Cullinan et al., 1995, Herman 

et al., 2008).   

GCs play an essential role on the delayed effects of stress in the PVN. Strong 

expression of GRs is present in PVN neurons and their intracellular localization 

(whether in the nucleus or cytoplasm) depends on the presence of GCs, suggesting GC-

dependent transcriptional activity (Fuxe et al., 1985, Liposits et al., 1987, Aronsson et 

al., 1988, Uht et al., 1988). In primary cultures of hypothalamic cells, synthesis and 

release of CRH, AVP and OXT are inhibited by acute exposure to GCs (Hu et al., 1992, 

Hellbach et al., 1998, Kim et al., 2001). Consistent with this, in vivo studies have shown 

that the negative feedback exerted by the GC stress response in parvocellular neurons 

limits the stress-induced up-regulation of AVP in a cyclic AMP dependent-manner 

(Herman, 1995, Kuwahara et al., 2003). Similarly, CRH expression levels in PVN 

neurons are regulated by GCs and stress (Imaki et al., 1991); in mice, adrenalectomy 

results in increased CRH and AVP expression in PVN neurons; this effect can be 

inhibited with GC implants around this brain region (Davis et al., 1986, Kovacs et al., 

1986, Kovacs and Mezey, 1987, Sawchenko, 1987, Ma and Aguilera, 1999, Kovacs et 

al., 2000).  

In this way, acute stress and exposure to GCs exert transcriptional changes in PVN 

neurons, altering its functionality and activating adaptive processes that allow the 

organism to maintain or restore homeostasis. However, persistent activation of PVN 

neurons and/or overexposure to GCs may induce maladaptive transcriptional changes. 

Due to the complex integrative function of these neurons, and the essential role they 

play on regulating HPA axis activity and exposure to GCs, dysregulations in any 

function of PVN cells may contribute to the development of a wide variety of 

pathologies such as cardiovascular, metabolic, and neurodegenerative diseases (Herman 

et al., 2008, Popoli et al., 2011).  
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Figure 1.2. Schematic representation of the hypothalamus and its nuclei. A. The 

hypothalamus is part of the limbic system and it is located ventrally to the diencephalon. It is a 

major integrational brain center which plays a key role in maintaining body homeostasis by 

controlling body temperature, hunger, sleep, thirst, stress-reactivity, and circadian rhythms. The 

image was generated using the FINR Brain Atlas, by Florida Institute for Neurologic 

Rehabilitation, Inc., http://www.finr.net/.  B. Schematic magnification of the hypothalamus 

showing its nuclei. C. Schematic magnification of the paraventricular nucleus of the 

hypothalamus (PVN) showing its subdivisions. Neurons located in the dorsal parvocellular (dp) 

and ventral division of the medial parvocellular regions (mpv) project to autonomic regulatory 

control centers in the brainstem and spinal cord. Neurons in the dorsal division of the medial 

parvocellular zone (mpd) project to the median eminence and orchestrate ACTH synthesis and 

release during the stress response. Neurons in the posterior magnocellular (pm) subdivision 

project to the pituitary and regulate peptide signals. 
 

1.4  Chronic stress and the PVN 

Chronic activation of the HPA axis and overexposure to GCs lead to changes at the 

transcriptional and protein level in PVN neurons (Herman et al., 2008). In contrast to 

the effects of acute stress and acute exposure to GCs on the PVN cells, chronic stress 

paradigms such as immobilization, footshock, chronic unpredictable stress, or chronic 

social stress, lead to increased expression of Crh and Avp mRNA in parvocellular 

neurons (Herman et al., 1995, Makino et al., 1995, Albeck et al., 1997). Moreover, 

magnocellular neurons respond to chronic stress with increased AVP and OXT 

expression in a stressor-dependent manner (Kiss and Aguilera, 1993, Herman et al., 

A B 
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1995, Albeck et al., 1997, Glasgow et al., 2000). Importantly, elevations of AVP in 

magnocellular PVN neurons are linked to increased anxiety behavior after chronic 

stress, providing further evidence for the essential role the PVN neurons play on 

adaptive processes triggered by stress (Landgraf et al., 2007, Choleris et al., 2013).  

Furthermore, chronic stress induces down-regulation of GR in PVN neurons 

(Herman et al., 1995, Ulrich-Lai and Herman, 2009). As described in section 1.2, GR is 

involved in the rapid termination of the acute stress response as well as in the delayed 

transcriptional changes occurring during adaptive processes to maintain homeostasis 

after a stressful event. Hence, downregulation of GR leads to a wide variety of changes 

in PVN neurons at a transcriptional and functional level.  

There is also evidence of altered PVN neuron activity after chronic stress. 

Expression of neurotransmitter receptors for both glutamatergic (excitatory) and 

GABAergic (inhibitory) signaling is changed after chronic stress (Cullinan, 2000, 

Verkuyl et al., 2004, Herman et al., 2008, Ziegler et al., 2005). While beta subunits of 

GABA-A receptor are down-regulated after chronic variable stress in PVN neurons 

(Cullinan, 2000), the GluR5 subunit of the kainate-preferring glutamate receptor is up-

regulated (Herman et al., 2008). Moreover, NMDA-receptor subunits are also altered, 

leading to enhanced calcium permeability and therefore to increased glutamate signaling 

(Ziegler et al., 2005). These changes may be involved in the mechanisms mediating 

enhanced activity of PVN neurons that leads to hyperactivity of the HPA axis and 

overexposure to endogenous GCs after chronic stress exposure.  Importantly, chronic 

stress and depletion of GC exposure by adrenalectomy also alters morphological 

plasticity of parvocellular PVN neurons by increasing glutamate innervation of CRH-

cells (Herman et al., 2008).  

Overall, chronic stress exerts changes in PVN neurons at the transcriptional, 

morphological, and functional level, leading to altered HPA axis activity. This may 

culminate in chronic dysregulation of the stress response and therefore lead to the 

development of stress-related pathologies. Many questions still remain open concerning 

the mechanisms mediating the changes in PVN cells after chronic stress. While some 

studies have shown that the changes are dependent on GC (as described above), little is 

known about the interaction between activity dependent changes in neuroplasticity due 

to increased excitatory input into the PVN cells, and the delayed effects of GCs on these 
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phenomena. Hence, further research is needed to dissect the dynamics and interactions 

between these processes.  

1.5 Early Life Experience and Developmental Programming 

GCs play a critical role both in development and in coping with a specific 

environmental challenge to the homeostasis of the organism (Wendelaar Bonga, 1997, 

Cottrell and Seckl, 2009, Nesan and Vijayan, 2012). However, when an adverse 

environment is present during early life and the HPA axis is activated, an overexposure 

to GCs may occur. Stress experiences and overexposure to GCs during early life 

modulate reconfigurations in neuronal circuits at the molecular, cellular, and 

physiological level mediated by gene-environment interactions, a process referred as 

developmental programming. This culminates in changes in emotional, cognitive and 

behavioral adaptations which define the individual’s fitness to cope with subsequent 

stressful events (Russo et al., 2012). Early life exposure to strong or prolonged adverse 

experience is linked to vulnerability to disease and detrimental effects in health such as 

cardiovascular and metabolic disease, and brain disorders (Seckl and Meaney, 2004, 

Reynolds, 2013). In contrast, mild predictable stress inoculation in early life stages has 

been shown to enhance stress resilience by facilitating the individual’s ability to adapt 

its phenotype and increasing its stress coping fitness in similar environmental conditions 

(Schmidt, 2010, Taylor, 2010, Khulan and Drake, 2012, Daskalakis et al., 2013).  

Because the HPA axis plays a fundamental role in the regulation of metabolic, 

cardiovascular, reproductive, and neurological systems, dysregulation in any of its 

functions may trigger the development of pathologies. Hence, developmental 

programming of the HPA axis has been identified as a critical link between early life 

adverse experience and the development of chronic disease later in adulthood 

(Reynolds, 2013, Moisiadis and Matthews, 2014); however, the molecular mechanisms 

mediating these changes are poorly understood.  

Epigenetics is a key player in the long lasting changes induced by early adverse 

experience that culminate in altered neurobiology, behavior, and potential pathologies. 

Changes in DNA methylation, posttranslational histone modifications, and regulation by 

micro-RNA (miRNA) of genes involved in the stress response occur after early adverse 

experience in animal models and in humans (Murgatroyd et al., 2009, Murgatroyd and 

Spengler, 2011, Jawahar et al., 2015). Among the stress-related genes showing altered 
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epigenetic profiles are: a) GR; increased methylation in the GR promoter region 

culminates in reduced GR mRNA in hippocampus of both pups with low nursing 

mothers and humans exposed to childhood abuse (Weaver et al., 2004, McGowan et al., 

2009, Jawahar et al., 2015); b) Crh; decreased methylation of the Crh promoter has 

been observed in PVN and hippocampal neurons of maternally deprived animals, which 

results in increased gene expression (Chen et al., 2012, Wang et al., 2014); c) Avp; 

decreased methylation of the Avp enhancer sequence has been observed in PVN neurons 

of maternally-deprived animals, resulting in increased gene expression (Murgatroyd et 

al., 2009). Moreover, other genes outside the HPA axis involved in the stress response 

such as Bdnf, serotonin transporter (5-HTT, Slc6a4), and estrogen receptor- (ER), 

also show epigenetic alterations which culminate in long lasting transcriptional changes 

after early adverse experience and potentially contribute to developing stress-related 

pathologies (Champagne et al., 2006, Lee et al., 2007, Roth et al., 2009, Jawahar et al., 

2015).  

Importantly, not only epigenetic, but also long-lasting transcriptional changes of 

stress-related genes such as Crh and Avp induced by early adverse experience are linked 

to altered coping fitness later in life (Korosi et al., 2010, Singh-Taylor et al., 2015, 

Murgatroyd et al., 2009); although this may be mediated by epigenetic changes, the 

exact molecular mechanisms of this process have been difficult to elucidate due to its 

high complexity. Among the factors involved in developmental programming after early 

adverse experience, there are three which may have repercussion on whether an 

organism will develop long-lasting adaptive changes that may culminate in dysfunction 

and disease: a) the nature of the stressor, b) the severity of the adverse experience, and 

c) the developmental time window in which the adverse experience is delivered (Bale, 

2015, Gee and Casey, 2015).  

Neurodevelopmental programing mainly occurs during sensitive periods, in which 

environmental influences on brain development is facilitated due to increased 

neuroplasticity (Moriceau and Sullivan, 2006, Callaghan and Richardson, 2011, Gee 

and Casey, 2015). This is the case during highly dynamic brain development periods, 

such as gestation, infancy, and adolescence (Bale, 2015, Gee and Casey, 2015). Since 

epigenetic processes are key players of neurodevelopment and maturation, any threat to 

the homeostasis of the organism during this critical time window may culminate in 

epigenome reprograming, and therefore potentially into long-lasting transcriptional, 
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functional, and behavioral changes (Daskalakis et al., 2013, Jawahar et al., 2015, Bale, 

2015). Adaptive changes resulting from this reprograming process, which is mediated 

by the environment, may increase the organism’s fitness to cope with subsequent 

adversities; however, if there is a mismatch between the environment in which the 

organisms developed and the one in later stages of life, a potential dysfunction may 

arise, culminating in disease (Nederhof and Schmidt, 2012, Daskalakis et al., 2013).  

A critical time window with increased vulnerability to long-lasting programming 

effects of stress and inflammation occurs prenatally, during early stages of gestation 

(Brown et al., 2009, Goines et al., 2011, Bale, 2015). Moreover, chronic stress presented 

at early postnatal stages also induces long-lasting epigenetic, functional, and structural 

changes in the hippocampus and the hypothalamus (Korosi et al., 2010, McClelland et 

al., 2011, Ivy et al., 2010). Interestingly, the effects on epigenetic reprogramming 

observed after postnatal chronic stress are of opposite direction relative to those 

observed in prenatal-stress models (Korosi et al., 2010, Mueller and Bale, 2008). This 

shows the high complexity of developmental programming mechanisms and highlights 

the need to elucidate the critical time windows in which neurodevelopment, and in 

particular the HPA axis, is more vulnerable to developmental programming. 

Furthermore, it remains to be explored whether epigenetic alterations are mediated by 

increased GC exposure or by activity-dependent mechanisms in neurons.   

Additionally, synaptic-plasticity mechanisms activated during acute or chronic 

stress responses (section 1.4) may play an important role in the adaptive changes 

occurring in hypothalamic neuroendocrine cells after early adverse experience (Herman 

et al., 2008, Bains et al., 2015). This may culminate in long lasting functional changes 

of hypothalamic neurons and therefore of the HPA axis. Little is known about the role 

of GCs in mediating these phenomena in the context of developmental programming. It 

is not known whether these mechanisms act during early life stages in maturing neurons 

and whether this culminates in long lasting changes still detectable in adulthood; 

however, synaptic-plasticity mechanisms are strong candidates to be mediators of the 

programming effects observed after early adverse experience.  

Further research is needed to dissect the mediators of early adverse experience 

effects on HPA axis function. Two main factors need to be taken into consideration: 1) 

delayed/transcriptional effects of increased GCs levels, which may orchestrate neuronal 
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circuits reconfigurations, and 2) activity-dependent synaptic plasticity mechanisms 

mediated by the increased excitatory input into the hypothalamic neuroendocrine cells, 

which may lead to long lasting changes in cell function. In both process, epigenetics 

may play an essential role. Dissecting these mechanisms requires tools that allow for the 

manipulation of the HPA axis function. To achieve this, the effects of increased 

excitatory input into hypothalamic cells should be studied in the absence of endogenous 

GCs either by inhibiting GCs secretion or by avoiding GR signaling. On the other hand, 

to study the effects of GC exposure on developmental programming of the HPA axis, 

overexposure to endogenous GCs should be achieved without activating hypothalamic 

cells. This task has been particularly difficult to achieve in the current mammalian 

models for stress research due to the lack of non-invasive ways to perform such 

manipulations.   

1.6 Zebrafish as a model organism for HPI axis research 

Most of the studies about the role of the HPA axis in developmental programming 

have been performed using animal models such as monkeys, rats, and mice. The use of 

these models has facilitated the understanding of mainly the physiological and 

behavioral correlates after early life stress, but the molecular mechanisms driving early 

life programming are largely unknown (Weaver et al., 2002, Seckl and Meaney, 2004, 

Schmidt, 2010). Although the use of these models has provided valuable information 

about HPA axis development and the impact of GCs in early life programming, they 

also present limitations. Current methods to induce activation of the HPA axis or 

exposure to GCs in mammals during early life include maternal separation, 

confinement, or systematic injection of substances (Schmidt et al., 2011); these methods 

are highly invasive making it difficult to draw conclusions about the manipulation 

effects.  

Zebrafish, Danio rerio, is a promising animal model to dissect the complex actions 

of GCs during early life programming of the stress axis as well as the molecular 

mechanisms involved in this process. The Hypothalamic-Pituitary-Interrenal (HPI) axis 

in zebrafish regulates the stress response and is highly conserved across phyla, with 

cortisol being the final GC effector (Alsop and Vijayan, 2008). The hypothalamic 

neurosecretory preoptic area (NPO) in zebrafish is homologous to the PVN in mammals 

(Herget et al., 2014); neurons expressing CRH and arginine vasopressin protein (AVP) 



Introduction 

 

13 
 

are found in this region and project innervations to the pituitary, establishing a direct 

connection between these two structures (Pogoda and Hammerschmidt, 2007, Herget et 

al., 2014).  

Importantly, the HPI axis in zebrafish larvae matures early in development, being 

able to increase cortisol levels as a response to an acute stressor after 97 hpf (Alsop and 

Vijayan, 2008). Moreover, the stress paradigms in the zebrafish model are less complex 

than those used in mammalian models, reducing significantly animal handling and 

invasive procedures; this allows a more accurate manipulation of the HPI axis activation 

(Macri and Wurbel, 2006). Furthermore, the immersion paradigm, although absorption 

dynamics need to be performed, facilitates the use of synthetic GC and pharmacological 

substances (Steenbergen et al., 2011).    

Another advantage of the zebrafish model is its transparency during early stages of 

development. This characteristic combined with molecular tools available nowadays 

which allow gene expression manipulation, facilitates the elucidation of molecular and 

cellular mechanisms under different conditions by performing in vivo imaging; this 

allows the observation of internally developing structures without the need of invasive 

procedures (Burne et al., 2011). Moreover, transparent larvae are remarkably suited for 

the application of optogenetic tools that can manipulate the activity of specific cell 

populations in developing freely-behaving zebrafish larvae (Simmich et al., 2012, De 

Marco et al., 2013).  

Besides these strengths, when compared with mammalian models, zebrafish present 

other advantages; they are relatively small and are easy to maintain under laboratory 

conditions. Moreover, each female is able to give from 100 to 500 eggs per week, 

allowing high-throughput analysis. All this together makes zebrafish a promising animal 

model to study maturation of the HPI axis and early life programming. Zebrafish can 

facilitate the generation of new insights into the molecular mechanisms involved in 

early life stress and its consequence later in life. Moreover, the role of overexposure to 

either endogenous or synthetic GCs in HPI axis development can be studied under 

highly controlled conditions, which is difficult to achieve in mammalian models. 

Altogether, zebrafish is a valuable complement to the existing mammalian models in 

stress research. 
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1.7 Activation of the HPI axis in zebrafish 

Zebrafish embryos acquire the ability to synthesize and secrete basal cortisol levels 

around hatching time (2 days post-fertilization (dpf)). However, stress-induced cortisol 

response starts between 3 and 5 days post-fertilization, depending on the nature and 

intensity of the stressor, suggesting that there is a hyporesponsive period similar to that 

reported in other vertebrates (Alsop and Vijayan, 2008, Schmidt, 2010, Steenbergen et 

al., 2012). Nevertheless, there is a need for further characterization of the HPI axis 

activity of zebrafish between the larval and juvenile stages, since most of the studies 

have reported HPI axis activity at developmental stages not later than 5 dpf. Our 

understanding of the changes in stress response activity after this stage is still poor. 

Important aspects of this process such as basal activity, stress-induced response 

maturation, negative feedback maturation, and response to repeated stress, are largely 

unexplored. 

A wide range of stressors has been used in order to activate the HPI axis in both 

larval and adult zebrafish; like mammals and other vertebrates, larval and adult 

zebrafish respond with increased cortisol levels to a wide variety of stressors such as net 

handling, osmotic shock, pH change, light intensity changes, temperature change, heavy 

metals, predator exposure, crowding, restraint, air exposure, swirling or turbulent water 

(bubbles), and novel environment (Ramsay et al., 2006, Barcellos et al., 2007, Alsop 

and Vijayan, 2008, Alderman and Bernier, 2009, Alsop and Vijayan, 2009, Ramsay et 

al., 2009, von Krogh et al., 2010, Clark et al., 2011, Yeh et al., 2013, De Marco et al., 

2013). Although all these stressors have been used successfully to increase cortisol 

levels, most of them do not allow precise control of input delivery. Acute and transient 

delivery of a stressor becomes difficult for some types of stressors such as osmotic 

shock or fluctuations in pH, which need sophisticated perfusion systems in order to 

achieve fast exchange of the incubation solution. Other stressors such as netting or 

exposure to air do not offer a way to deliver different strengths of the stimulation, an 

important aspect when studying subtle changes in HPI axis activation.  

Exposure to hydrodynamic flows, specifically of cylindrical vortex flows, of 

different strengths may provide a way to overcome these limitations. When fish and 

other aquatic organisms are exposed to water currents, they perform a robust and well 

characterized behavior known as rheotaxis. This behavior is involved in migration, 
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feeding behaviors, predator avoidance, schooling, and importantly, to reduce energetic 

costs when coping with strong hydrodynamic flows (Arnold, 1974, Montgomery et al., 

1995, Baker et al., 2002, Gardiner and Atema, 2007, Suli et al., 2012). Rheotaxis 

behavior is multisensory; several sensory inputs including optical, vestibular, tactile, 

and lateral line cues are integrated and involved in this complex behavior where one 

sensory input loss can be compensated by other sensory inputs (Bak-Coleman et al., 

2013, Baker and Montgomery, 1999, Arnold, 1974, Montgomery et al., 1997). Although 

it has been widely studied in several species, all studies describe this behavior in the 

presence of turbulent or laminar flows. To date, there is no report in literature about 

rheotaxis behavior of zebrafish larvae (or any other species) in the presence of a semi-

uniform vortex flow in a cylindrical arena.  

Rheotaxis behavior requires energy mobilization; therefore, exposure to vortex 

flows is expected to induce an increase in cortisol levels. In fact, it has been shown that 

swirling stimulation induces higher levels of cortisol in both larval and adult zebrafish 

(Alsop and Vijayan, 2008, Fuzzen et al., 2010); however, a systematic characterization 

of the effects of such stimulation has not been reported yet. This type of stimulation 

offers a more naturalistic manner to activate the HPI axis since it is based on exposure 

to differential speeds of water motion which may mimic the natural habitat of both, 

larval and adult zebrafish (Engeszer et al., 2007). Moreover, handling effects can be 

potentially reduced and it is easy to deliver in a transient way, allowing either 

continuous or repeated presentations of the stimulation in short periods of time. Also, 

since this type of stimulation is delivered in free swimming larvae, the study of 

behavioral correlates of HPI axis activation is facilitated.  

1.8 Long lasting effects of overexposure to glucocorticoids in 
zebrafish 

It has been shown in other teleost fish that exposure to stress perturbations at early 

stages of development (eyed, hatching, and yolk resorption) leads to long lasting hypo-

activity of the HPI axis in adult fish (Auperin and Geslin, 2008). The same effect was 

obtained when the embryos were incubated with exogenous cortisol (Auperin and 

Geslin, 2008). In zebrafish, cortisol incubation during the first 48 hours after 

fertilization leads to long lasting changes in behavior, specifically, in locomotor activity 

as a response to a pulse of darkness (Steenbergen et al., 2011). Moreover, prolonged 

incubation of zebrafish embryos in exogenous cortisol during the first five days post-
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fertilization increases whole-body basal cortisol levels, glucocorticoid signaling, and the 

expression of immune system-related genes. Interestingly, these changes persist into 

adulthood, culminating in dysfunctional regeneration capacities and increased 

expression of inflammatory genes which were dysregulated after injury (Hartig et al., 

2016). A similar treatment during the same time window but with incubation in 

dexamethasone, a synthetic GC, also induced long-lasting changes in behavior and 

metabolism which were still detected in adulthood (Wilson et al., 2016). Less is known 

about changes in HPI axis activity and function in response to acute or chronic stressors 

after such treatments, or whether exposure to stressors after 4 dpf, when the HPI axis of 

larval zebrafish is already able to elicit stress-induced cortisol increase, may disrupt the 

maturation process of the HPI axis elements. This in turn may lead to altered coping 

fitness to subsequent stressful events and contribute to the developmental programing 

effects of early adverse experience. Moreover, to date, there is no study using the 

zebrafish model addressing the effects of overexposure to GCs and/or early adverse 

experience on developmental programming of the HPI axis elements in a tissue-specific 

manner.  

1.9 Transcriptomics approach to study developmental programming 
of the HPI axis in zebrafish. 

The transcriptome consists of the complete set of transcripts, and their quantity, 

present in a cell at any given time and environmental context. Analyzing the 

transcriptome of a cell or group of cells provides essential information to understand the 

functional aspects of the genome in a specific temporal and physiological situation 

(Wang et al., 2009). In the last decade, performing such transcriptomic analyses has 

become much more accessible with the development of the deep sequencing RNAseq 

technology. RNAseq provides precise measurements for characterizing genome-wide 

transcript levels in a quantitative manner. This opens an avenue to study the effects of 

early adverse experience at the molecular level in specific tissues/cell types, facilitating 

the dissection of the molecular mechanisms involved in the adaptive processes 

occurring during developmental programming. 

Genome-wide gene expression profiling measures the expression levels of 

thousands of genes simultaneously. In this way, instead of following a hypothesis-

driven approach by investigating candidate genes, it is possible to ask: what are the 

genes whose expression changes after treatment? After identification and quantification 
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of transcripts using RNAseq technology, gene expression patterns are identified and 

candidate genes are further investigated to evaluate their role in cell function and 

functional contribution to the phenotype that results from the adaptive processes 

observed after early life adverse experience (Figure 1.3). In zebrafish, gene editing 

technologies such as CRISPR/Cas9 have been established allowing the generation of 

transgenic lines in which reverse genetics can be performed (Yin et al., 2016). This 

facilitates functional studies of candidate genes and the dissection of the molecular 

mechanisms involved in developmental programming after early adverse experience. 

Furthermore, with the use of transgenic tools available in zebrafish, such as optogenetic 

manipulation of the HPI axis, or targeted ablation of HPI axis elements, the mediators 

that induce the changes in expression of the candidate genes can be elucidated, further 

dissecting the mechanisms underlying developmental programming after early adverse 

experience. 

 

 

 

Figure 1.3. Transcriptomic approach. Overview of the transcriptomic approach to identify 

candidate molecules involved in adaptive changes occurring during developmental programing 

after early life adverse experience. Note that the scope of this thesis is not represented by this 

overview. 
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1.10 Transgenic tools to study the HPI axis in zebrafish 

Tissue-specific targeting of the HPI axis elements 

Tissue-specific analysis is essential to dissect the effects of early adverse experience 

on HPI axis function. To achieve this, specific promoter elements can be used to target 

tissue-specific populations, allowing cell-labeling and directed expression of a specific 

gene. Labeling cells with fluorescent proteins, such as GFP, is a valuable method to 

isolate specific-cell populations by using fluorescent activated cell sorting (FACS). To 

this end, transgenic lines have been generated by our laboratory and by others, in which 

GFP expression is directed to specific cell populations of all three elements of the HPI 

axis: 

1) NPO cells in the hypothalamus are labeled by driving GFP expression under a 

conserved cis-regulatory NPO-specific enhancer element of the gene orthopedia a 

(Otpa) (otpECR6). This regulatory element drives expression in the NPO region which 

co-localizes with crh, avp, and oxt expression (Figure 1.4A-C) (Gutierrez-Triana et al., 

2014). 2) Pituitary cells are labeled by driving GFP expression under the 

proopiomelanocortin (pomc) promoter. This promoter drives expression in both anterior 

and posterior pituitary corticotrophs, which regulate ACTH synthesis and secretion, but 

not in melanotrophs in the posterior pituitary, which control melanocyte-stimulating 

hormone synthesis and secretion (Liu et al., 2003). 3) Steroidogenic interrenal cells are 

labeled by driving GFP expression under a 2kb fragment of the StAR promoter. This 

regulatory element drives expression specifically in steroidogenic interrenal cells, which 

synthesize and secrete cortisol upon stress exposure, and not in chromaffin cells, which 

synthesize and secrete catecholamines (Figure 1.4E-F) (Gutierrez-Triana et al., 2015). 

These same promoter elements can be used to drive expression of molecular tools which 

allow manipulating and measuring HPI axis activity.  

Manipulating HPI axis activity 

In order to elucidate the mechanisms mediating the adaptive changes induced by 

adverse experience during early life in zebrafish, it is necessary to generate non-

invasive tools to manipulate the HPI axis activity. In mammalian models (rodents), 

inducing hyper- or hypocortisolic states is mainly performed by injecting GCs into the  
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Figure 1.4. Genetic targeting of HPI axis elements. A-C. Maximum intensity projections of 

confocal stacks show that neurons in the neurosecretory preoptic area (NPO) of zebrafish 

expressing the stress-related peptides corticotropin releasing hormone (CRH), arginine 

vasopressin  (AVP), and oxytocin (OXT) (fluorescence in situ hybridization) are labeled in the 

Tg(otpECR6-E1b:mmGFP)
hd12

 transgenic line, in which GFP expression (immuno- 

histochemistry)  is driven by the conserved promoter module otpECR6. Image courtesy of Dr. 

Ulrich Herget (Herget, 2015). D. Double transgenic zebrafish larvae in which the promoter 

module otpECR6 and the 2kb regulatory element of the StAR promoter are used to drive 

expression of the red and green fluorescent proteins (RFP and GFP), respectively (Tg(otpECR6-

E1b:RFP-CAAX)
hd13

 and Tg(2kbStARp:GFP)
hd17

). Note that the NPO and interrenal gland boxed 

regions are only for reference of the magnified regions showed in A-C and E-F, but show 

different transgenic lines expressing different fluorescent marker. Image courtesy of Dr. Ulrich 

Herget. E-F. Maximum intensity projections of confocal stacks show that the expression of GFP 

in Tg(2kbStARp:GFP)
hd17

 transgenic larvae co-localizes with steroidogenic acute regulatory 

protein (StAR)-expressing cells, but not with tyrosine hydroxylase (TH)-expressing cells. Scale 

bars: 50 mm. Image courtesy of Dr. Ulrich Herget (Herget, 2015). 
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blood stream or by adrenalectomy, respectively. Although these methods have been 

used widely and provided valuable information about the role and function of GCs, they 

are invasive protocols that may not be suitable for all experimental designs. In the case 

of the zebrafish model (and specifically in larval stages), none of the above mentioned 

methods is suitable for manipulating HPI axis activity, remaining as the only available 

option the incubation of the organisms in water containing GCs. However, the spatial 

resolution of this method is low, exposing the whole organism to exogenous GCs. 

Moreover, although the concentration of GCs can be controlled in the media, it is 

difficult to evaluate the extent to which GCs diffuse into the larval body. In order to 

extend the repertory of tools for manipulating HPI axis activity in freely swimming 

zebrafish larvae, Dr. Arturo Gutierrez-Triana, in our laboratory, has developed 

transgenic lines in which optogenetic and genetically targeted ablation approaches can 

be used to alter endogenous GCs levels and induce hyper- or hypocortisolic states (De 

Marco et al., 2013, Gutierrez-Triana et al., 2014, Gutierrez-Triana et al., 2015).   

To optogenetically manipulate HPI axis function and induce hypercortisolic states, 

Dr. Arturo Gutierrez-Triana, in our laboratory, generated transgenic lines where 

expression of a blue light-photoactivated adenylyl cyclase from the soil bacterium 

Beggiatoa (bPAC)  is driven by a fragment of either the pomc promoter, resulting in 

bPAC expression in pituitary corticotroph cells (Tg(Pomc:bPAC-2A-tdTomato)
hd10

) 

(Ryu et al., 2010, Stierl et al., 2011, De Marco et al., 2013), or by a 2kb regulatory 

region of the StAR promoter, resulting in bPAC expression in the steroidogenic 

interrenal cells (Tg(2kbStARp:bPAC-tdTomato)
hd19

) (Gutierrez-Triana et al., 2015). 

Upon stress exposure, CRH binds its receptor (CRHR) in pituitary cells, increasing 

cAMP levels that culminate in ACTH release and subsequently in cortisol secretion 

(Fleischer et al., 1969, King and Baertschi, 1990, Wendelaar Bonga, 1997). Since bPAC 

increases cAMP levels after blue light-photo activation (Ryu et al., 2010), it was 

hypothesized that expression of bPAC protein in corticotrophs cells would resemble 

CRH receptor signaling upon blue light illumination by increasing cAMP levels and 

would then induce higher cortisol levels in response to an otherwise similarly stressful 

event (Figure 1.5A and C). Similarly, when ACTH binds to its receptor, MC2R, in 

interrenal gland cells, it increases cAMP levels and Ca
2+

 influx, culminating in cortisol 

synthesis and release (Gallo-Payet and Payet, 2003). Therefore, following the same 

rationale, it was hypothesized that expression of bPAC in steroidogenic interrenal cells 
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would result in increased cortisol secretion upon blue light stimulation (Figure 1.5B, C). 

To validate these hypotheses, cortisol levels were measured after transgenic larvae of 

both genotypes (pomc:bPAC+ and StAR:bPAC+) were exposed to blue light. The 

characterization of the cortisol response of these transgenic lines is presented in this 

thesis as well as in (De Marco et al., 2013, Gutierrez-Triana et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Optogenetic manipulation of HPI axis elements to induce hypercortisolic states. 

A. In pituitary corticotrophs, Beggiatoa photoactivated adenylyl cyclase (bPAC) increases 

cAMP levels upon blue light exposure; this culminates in increased ACTH release, resembling 

CRH signaling. AC, adenylyl cyclase; CRHR, CRH receptor. B. In steroidogenic interrenal 

cells, bPAC is expected to increase cAMP levels upon blue light exposure, resembling ACTH 

signaling and culminating in cortisol secretion. MC2R, melanocortin 2 receptor. C. Overview of 

the possible outcomes of optogenetic manipulation of the HPI axis activity in wild type and 

transgenic larvae expressing bPAC either in the corticotrophs (pomc:bPAC) or in steroidogenic 

interrenal cells (StAR:bPAC). Blue light exposure in pomc:bPAC larvae leads to increased 

ACTH secretion and therefore increased cortisol secretion. In StAR:bPAC larvae, blue light 

exposure leads to increased cortisol secretion from the interrenal glands.  
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The most common and effective procedure in mammalian models to deprive the 

organism of endogenous cortisol and induce hypocortisolic states is by surgically 

removing the adrenal glands (adrenalectomy). Because of technical limitations to 

perform such a procedure in zebrafish larvae, alternative protocols to deprive larvae of 

endogenous cortisol were explored in our laboratory by generating genetically targeted 

ablation tools. To accomplish this, the conditional nitroreductase-metronidazole (NM) 

system has been used. The NM system allows conditional targeted cell ablation by 

directing the expression of bacterial nitroreductase (nfsB) to specific cell type 

populations and incubating in metronidazole (Mtz), leading to cell ablation only of 

those cells expressing nfsB (Curado et al., 2007, Gutierrez-Triana et al., 2014, 

Gutierrez-Triana et al., 2015). 

Conditional cell ablation was targeted to the NPO and to steroidogenic interrenal 

cells, separately. To target cell ablation to hypothalamic cells in the NPO, a transgenic 

line was generated where the conserved cis-regulatory element of otpa, otpECR6, was 

used to drive expression of the E. coli nfsB as a GFP fusion protein (Tg(otpECR6-

E1b:nfsB-GFP)
hd14

) (Gutierrez-Triana et al., 2014). On the other hand, to target cell 

ablation to steroidogenic interrenal cells, expression of E.coli nfsB fused to GFP was 

driven by a 2kb regulatory fragment of the StAR promoter (Tg(2kbStARp:nfsB-

GFP)
hd18

) (Gutierrez-Triana et al., 2015). It was hypothesized that conditional ablation 

of NPO cells or steroidogenic interrenal cells would result in impaired HPI axis activity 

and therefore in reduced cortisol levels upon a stressful event (Figure 1.6). The 

characterization of the cortisol profiles of both transgenic lines (otpECR6:nfsB-GFP and 

StAR:nfsB-GFP) after cell ablation is presented in this thesis and in (Gutierrez-Triana et 

al., 2014, Gutierrez-Triana et al., 2015). 

Non-invasive manipulation of all three elements of the HPI axis facilitates the 

elucidation of the role that each element plays on the adaptive processes during 

developmental programming after early life adverse experience. These tools provide a 

valuable platform to dissect the effects of acute and prolonged exposure to GCs, as well 

as their rapid and non-rapid functions. Moreover, they can be used to further investigate 

the regulatory mechanisms of candidate genes identified by transcriptomic analysis after 

early adverse experience.   
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Measuring Ca
2+

 activity in vivo in hypothalamic NPO cells 

To evaluate the effects of developmental programming after early life adverse 

experience on cell function of hypothalamic neurons involved in HPA axis activation, it 

is essential to measure neuronal activity; however, the analysis of real-time CRH neuron 

activity upon stress exposure in mammalian models has been limited because of 

difficulties on identifying CRH neurons in vivo. Hence, electrophysiological studies of 

CRH neurons have been performed ex vivo in post-stress preparations (Alon et al., 2009, 

Martin et al., 2010, Wamsteeker Cusulin et al., 2013, Itoi et al., 2014). These studies 

have provided valuable morphological and functional information of CRH neurons; 

nonetheless, the study of these aspects in intact animals would provide a more complete 

understanding of CRH neurons function upon stress exposure, since the activation of the 

stress response involves integration of information coming from different brain areas 

and periphery.   

 

 

 

 

 

 

 

 

 

Figure 1.6. Genetically targeted cell ablation of HPI axis elements to induce hypocortisolic 

states. Overview of the possible outcomes upon stress exposure after metronidazole incubation 

of wild type and transgenic larvae expressing bacterial nitroreductase (nfsB) either in the NPO 

(otpECR6:nfsb-GFP) or in steroidogenic interrenal cells (StAR:nfsb-GFP). Ablation of NPO 

cells results in reduced cortisol response upon stress exposure. Since redundant regulatory 

mechanisms may play a role in the stress response, a reduced cortisol response may take place 

even when NPO cells are ablated. Steroidogenic interrenal cell ablation may result in blunted 

cortisol response upon stress exposure.  
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To measure in vivo CRH neuronal activity in zebrafish, Dr. Colette vom Berg-

Maurer, in our laboratory, generated a transgenic line in which expression of the 

calcium sensor GCaMP3.0 is driven by a promoter element of the Otpa transcription 

factor which contains an evolutionary conserved NPO-specific enhancer module 

(Tg(otpa3kb:GCaMP3.0)
hd22

) (Vom Berg-Maurer et al., 2016). Additionally, to identify 

CRH neurons in vivo, Dr. vom Berg-Maurer generated a transgenic line in which the 

expression of the red fluorophore tagRFP is driven by the crh promoter 

(Tg(crh:RFP)
hd21

) (Vom Berg-Maurer et al., 2016). To image CRH neuronal activity, 

double-transgenic larvae can be used. This allows in vivo recording of CRH-positive 

and CRH-negative cell activity using two-photon calcium imaging in intact larvae 

(Figure 1.7A).  

To perform in vivo calcium imaging in intact double-transgenic larvae, a custom 

made in vivo imaging chamber has been designed, in which temperature control, 

electrodes, and a perfusion system have been integrated, facilitating the delivery of 

osmotic shocks of known strength as threatening signals to activate the stress response 

in a highly controlled manner (Figure 1.7B) (Vom Berg-Maurer et al., 2016). 

Figure 1.7. Neuronal activity of CRH-positive cells can be measured in vivo using two-

photon Ca
2+

 imaging. A. Schematic representation of a double transgenic zebrafish larva 

expressing the calcium sensor GCaMP3.0 in NPO neurons and the red fluorescent protein in 

CRH-positive cells. B. Schematic representation of the in vivo Ca
2+ 

imaging chamber. Scheme 

adapted from (Vom Berg-Maurer et al., 2016). 

 



Aims of the project 

 

25 
 

2. AIMS OF THE PROJECT 

The aim of this thesis was to identify molecules involved in adaptive processes 

activated after early life exposure to adverse experiences. Specifically, I aimed to study 

the molecular changes in hypothalamic cells at the genome-wide level occurring after 

prolonged activation of the stress response axis. In order to achieve this, four main 

objectives were set: 

 First, I aimed to develop a stimulation protocol to activate the HPI axis of freely 

swimming larvae in a highly controlled manner and without invasive procedures. 

Special attention was paid in developing a stress protocol with reduced handling 

effects and without any unspecific effect of the stimulation on the cortisol response 

of zebrafish larvae.  

 Second, I aimed to characterize the ontogeny of the HPI axis activity in developing 

larvae by measuring cortisol levels, the final effector of the HPI axis. This was an 

essential step in order to elucidate the levels of endogenous cortisol to which the 

larvae are exposed through early development after stress exposure and identify a 

suitable developmental time window in which exposure to early adverse experience 

may be more likely to activate glucocorticoid-mediated adaptive mechanisms. 

 Third, I aimed to develop an early life stress paradigm in order to evaluate the 

effects of early adverse experience at the behavioral, endocrinological, and cellular 

level; subsequently, the goal of the project was to perform a genome-wide 

transcriptome analysis of hypothalamus-specific cell populations in order to 

elucidate the molecular correlates of early adverse experience.  

 Finally, I characterized the cortisol response profiles of optogenetic and genetically 

targeted ablation tools that allow the manipulation of all three elements of the HPI 

axis. This facilitates the subsequent study of the role of glucocorticoids on the 

adaptive changes induced by early adverse experience. 
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3. RESULTS 

3.1 Vortex flow stimulation as an activator of the HPI axis. 

3.1.1 Characterization of the vortex flow stimulation. 

To activate the HPI axis of free swimming zebrafish larvae, I developed a 

stimulation protocol using vortex flows of different strengths. Vortex flows were 

generated by a commercially available magnetic stirrer plate and a micro-stirrer. Larvae 

were placed in small petri dishes containing the micro-stirrer and exposed to different 

strengths of magnetic field inversion delivered by the magnetic stirrer plate (Figure 

3.1A). The generated vortex flow created a pattern of water motion that depended on the 

strength of the stimulation (Figure 3.1B-D). To analyze the trajectories of water flow 

elicited by the vortex, single anesthetized larvae were exposed to the stimulation; larvae 

were placed half the distance between the vortex origin and the edge of the petri dish 

and the magnetic stirrer plate was turned on. Anesthetized larvae exposed to water flows 

generated by the micro-stirrer followed an irregular trajectory underlain by the 

differential speed of the water flow inside the container, which depends on the distance 

to the vortex origin (Figure 3.1B-D). As expected, higher speeds reached by the 

anesthetized larvae were found in the proximity of the vortex origin. This was true for 

all the stimulation strengths tested; moreover, anesthetized larvae exposed to higher 

strengths of the magnetic field inversion reached higher absolute values of speed 

(Figure 3.1C).   Importantly, the strength of the magnetic field inversion determined the 

mean speed of the anesthetized larvae exposed to different strengths of vortex flow 

(Figure 3.1D). This allows controlling quantitatively the strength of the input delivered 

to the larvae and facilitates subsequent analysis of HPI axis activity.    

3.1.2 Exposure to vortex flow stimulation correlates with behavioral outputs.  

Vortex flow stimulation allows behavioral analysis in free swimming larvae. In 

order to characterize behavioral output during and after the stimulation, zebrafish larvae 

were filmed and tracked to measure locomotor activity and body orientation. Locomotor 

activity, as expected, was transiently increased immediately after the onset of the vortex 

flow stimulation (Figure 3.2A, C). Importantly, the increased locomotor activity of 

larvae exposed to the vortex flow stimulation was strength-dependent (Figure 3.2C), 

suggesting a link between the locomotor response to vortex flow onset and the speed of 

the vortex flow (Figure 3.1D). 
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Figure 3.1. Characterization of vortex flow stimulation using anesthetized larvae. A: 

Schematic representation of the magnetic stirrer plate and the micro-stirrer. B: Exemplary 

trajectories followed by a single anesthetized larva when exposed to vortex flow of different 

strengths. C: The speed of an anesthetized larva depends on the distance to the vortex origin 

during vortex flow stimulation. D: The mean speed of an anesthetized larva (30 frames) 

exposed to vortex flow depends on the strength of the magnetic field inversion (Kruskal-Wallis 

test: H = 92.79, p<0.0001; Dunn’s post-test: 
abc 

p<0.05; sample size indicated in parenthesis). 

 

To evaluate whether acute exposure to vortex flow stimulation leads to altered 

locomotor activity immediately after the stimulation, distance swam after stimulation 

offset was measured. Interestingly, a strength-dependent decrease in locomotor activity 

was observed at the offset of a three-minute long vortex flow stimulation, leading to 

almost no motion when the strongest stimulation was used (Figure 3.2D). In the same 

way, this suggests a link between the speed of the vortex flow to which the larvae are 

exposed and the levels of locomotor activity reached after the offset of the stimulation 

(Figure 3.1D and 3.2D). It is important to note that some individuals exposed to the 

strongest stimulation showed a transient decreased ability to maintain equilibrium of 

their body axes immediately after the vortex stimulation offset (data not shown). This 

suggests that higher strengths of vortex flow stimulation are likely to lead to exhaustion 

and potentially transient depletion of energy. 
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Figure 3.2. Vortex flow stimulation induces locomotor activity changes. A: Example of a 

trace showing the distance swam by larvae exposed to vortex flow stimulation with strength of 

330 rpm. Note that the distance swam increases immediately after stimulation onset. The mean 

of the distance swam in a time window of 10 seconds after stimulation onset (colored box in x-

axis) was selected to compare the locomotor response to the onset of vortex flow stimulation of 

different strengths. B: Example of a trace showing the distance swam after the offset of vortex 

flow stimulation with strength of 330 rpm. The mean of the distance swam in a time window of 

10 seconds after stimulation offset (colored box in x-axis) was selected to compare the 

locomotor activity after stimulation offset of vortex flow stimulation of different strengths. C: 

The increase in locomotor activity induced by vortex flow stimulation onset depends on the 

strength of the stimulation (One-way ANOVA: F (3,47) = 48.46, p<0.0001; Turkey’s post-test: 
abcd 

p<0.05; sample size indicated in parenthesis). D: The distance swam immediately after 

vortex flow stimulation offset depends on the strength of the stimulation (One-way ANOVA: F 

(2,36) = 38.07, p<0.0001; Turkey’s post-test: 
abcd 

p<0.05; sample size indicated in parenthesis). 

Basal levels of locomotion measured before onset of vortex flow stimulation are represented by 

the blue line.   
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Rheotaxis is a well characterized behavior in both larval and adult zebrafish. 

Generally, a fish showing rheotaxis behavior would face against an upcoming current 

and swim in that direction in order to efficiently maintain a position without being 

swept by the current. Swimming against a current would also allow the fish to maximize 

the distance between its position and the source of the generated current, potentially a 

predator. Although vortex flows are not uniform linear flows, they create continuous 

water currents around the vortex origin. Rheotaxis behavior of zebrafish larvae as a 

response to this type of currents has not been described before. Therefore, I 

characterized rheotaxis behavioral output of 6 dpf larvae during vortex flow stimulation. 

First, to test the hypothesis that zebrafish larvae would re-orientate their body axis 

during vortex flow stimulation, I measured change in body angle orientation as a 

response to the vortex flow stimulation onset. Larvae showed a brief and transient 

increase in change of body angle immediately after the onset of the vortex flow 

stimulation (Figure 3.3A). To reveal whether this is a directed response, I measured the 

position of the larvae with respect to the vortex origin right after the stimulation onset. 

To measure the position of the larvae, the petri dish was virtually divided in three 

concentric rings (Figure 3.3C-E). The proportion of larvae located in the most inner 

ring, close to the vortex origin, significantly decreases after vortex flow onset and is 

accompanied with an increased number of larvae positioned in the two outer rings. In 

line with this, the mean distance to the vortex origin of a population of larvae is 

significantly increased after vortex flow onset (Figure 3.3B). 
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Figure 3.3. Larvae re-orientate their body axis and move away from the vortex origin after 

vortex flow stimulation onset. A: Change of body angle increases transiently immediately 

after vortex flow onset (N=10). B: Mean distance to the vortex origin of a population of larvae 

increases after vortex flow onset (Kruskal-Wallis test: H = 11.98, p=0.0075; Dunn’s post-test: 
ab 

p<0.05; N=30). C: Schematic representation of the petri dish division. D-E: Proportion of 

larvae positioned in each of the three concentric rings before (D) and after (E) vortex 

stimulation onset (N=30). 

 

Rheotaxis behavior is characterized by the orientation of the fishes’ body axis with 

the water flow. This requires a specific body angle orientation and maintenance of that 

position. To analyze these aspects in zebrafish larvae exposed to vortex flow 

stimulation, I measured the proportion of larvae facing the direction of the flow and the 

frequency distribution of body angles shown by a larvae population after two minutes of 

vortex flow stimulation (Figure 3.4A-D). In line with typical rheotaxis behavior, the 

proportion of larvae facing against the water flow was strength-dependent. For the 

lowest strength of vortex flow stimulation, the proportion of larvae facing against the 

water flow was not different from 50%; however, higher strengths led to higher 

proportion of larvae facing against the water flow (Figure 3.4A). 

When larvae were exposed to the highest strength of vortex flow stimulation, 97% 

of the larvae faced against the water flow (Figure 3.4A). Since water currents are not 

linear during vortex flow stimulation, the larvae showed a wide distribution of body 

angles during the stimulation. Interestingly, the frequency distribution of body angles 

shown by the larvae during the stimulation was strength-dependent, being wider for 

basal conditions and low strengths of vortex flow stimulation and more restricted for the 

highest strength (530 rpm), where the median angle was around 55.1° (Figure 3.4C-F). 

Another important aspect of rheotaxis behavior is the maintenance of a specific 

orientation. To assess whether larvae maintain a specific orientation during vortex flow 

stimulation, I measured the change in body angle after 2 minutes of vortex flow 

stimulation of different strengths. Higher strengths of vortex flow stimulation led to a 

decreased change in body angle, suggesting that the strength of the stimulation 

correlates with the extent to which the larvae maintain a specific orientation during 

vortex flow stimulation (Figure 3.4B). 
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Figure 3.4. Larvae show rheotaxis behavior in a strength-dependent manner by facing 

against the water flow and maintaining that position. A: Proportion of larvae facing against 

the water flow after 2 minutes of vortex flow stimulation onset. B: Change of body angle after 2 

minutes of vortex flow stimulation onset was decreased when larvae were exposed to the 

highest strength of vortex flow stimulation (One-way ANOVA: F (3,35) = 5.115, p=0.0049; 

Turkey’s post-test: 
ab 

p<0.05). C-F: Circular representation of the frequency distribution of body 
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angles showed by larvae at basal conditions or after 2 minutes of vortex flow stimulation onset 

(130, 330, or 530 rpm). Mean angle is represented with a line and the arcs extending to either 

side represent the 95% confidence limits. Note that higher strengths of the vortex flow 

stimulation show a narrower frequency distribution. Significant differences when compared to 

basal conditions are indicated by an asterisk (*) next to the mean angle (Watson-Williams F-

test: Basal vs 130 rpm: F = 0.022, p=0.882, Basal vs 330 rpm: F = 30.57, p<0.0001, Basal vs 

530 rpm: F = 57.74, p<0.0001; N=90).  

 

3.1.3 Exposure to vortex flow stimulation activates the HPI axis 

Vortex flow stimulation elicits behavioral output in zebrafish larvae (Section 3.1.2): 

a) increased locomotor activity, b) active re-orientation of the body axis, and c) 

maintenance of a particular orientation. It is reasonable to assume that these three 

behavioral changes require energy mobilization. Since activation of the HPI axis and its 

final effectors, glucocorticoids, are involved in energy mobilization, I therefore 

hypothesized that exposure to vortex flow stimulation would activate this axis and 

increase cortisol levels, facilitating behavioral coping strategies. To test this, I used the 

highest strength of vortex flow stimulation as the input signal to activate the HPI axis 

and measured whole body cortisol as the output signal for HPI axis activation. Cortisol 

levels were increased 4-fold after vortex flow stimulation, suggesting that this 

stimulation activates the HPI axis (Figure 3.5A). Importantly, handling-induced cortisol 

levels of vortex flow stimulation are not different from basal cortisol levels of un-

stimulated larvae. To exclude any potential unspecific effects on HPI axis activation by 

electromagnetic field exposure, larvae were exposed to different magnetic field 

inversion strengths in the absence of the magnetic stirrer and cortisol levels were 

measured. Exposure to the magnetic field inversion of different strengths did not elicit a 

cortisol response (Figure 3.5B). 
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Figure 3.5. Vortex flow stimulation induces a cortisol response. A: Acute vortex flow 

exposure (1 min) increases cortisol levels in 6 dpf larvae. Samples were collected 10 minutes 

after stimulation onset (t-test, **** p<0.0001; sample sized indicated in parenthesis) B: 

exposure to magnetic fields of different strengths without the magnetic stirrer failed to elicit a 

cortisol response in 6 dpf larvae (One-way ANOVA: F (3,46) = 0.2948, p=0.8290; sample sized 

indicated in parenthesis). 

As described in section 3.1.2, behavioral correlates depend on the strength of the 

vortex flow stimulation. To evaluate whether HPI axis is also activated in a strength-

dependent manner by vortex flow stimulation, larvae were exposed to different 

strengths of vortex flow stimulation and peak cortisol levels were measured. Indeed, the 

cortisol levels reached after the stimulation were different depending on the strength to 

which they were exposed. Higher strengths of the stimulation induced higher cortisol 

levels (Figure 3.6A). 

To evaluate the effect of the duration of the vortex flow stimulation and its potential 

interaction with the strength of the stimulation, larvae were exposed to one, three, or six 

minutes of continuous stimulation of high (330 rpm) and low (130 rpm) strength and 

cortisol levels were measured after 10 minutes of stimulation onset. All treatments 

increased cortisol levels significantly (Figure 3.6B). High strength stimulation induced 

higher cortisol levels in all conditions when compared to the cortisol levels induced by 

the low strength stimulation. Different exposure time to the low strength vortex flow 

stimulation did not have an effect on cortisol levels. On the other hand, exposure to the 

high strength stimulation for three minutes induced higher cortisol levels than the ones 

reached after one minute of exposure. This effect was not significant when the duration 

of the stimulation was increased to six minutes. Moreover, two-way ANOVA analysis 

revealed an interaction between the duration and strength of the stimulation (Figure 

3.6B).  

In order to evaluate the degree of correlation between the behavioral output and the 

HPI axis activation after vortex flow stimulation, locomotor activity and maintenance of 

body orientation in the presence of vortex flows were plotted against cortisol levels 

reached after vortex flow exposure (Figure 3.7A, B). As described before in section 

3.1.2, higher strengths of vortex flow stimulation led to an increased locomotor 

response immediately after vortex flow onset; this correlates with cortisol levels 

induced by vortex flow exposure (r
2
=0.88). Similarly, increased maintenance of a 

specific body orientation after two minutes of high-strength vortex flow stimulation 
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correlated with higher levels of cortisol (r
2
= 0.99). These correlations suggest a link 

between cortisol release and behavioral coping strategies performed by larvae after 

vortex flow stimulation.  

 

 

 

 

 

 

Figure 3.6. Activation of the HPI axis by vortex flow stimulation depends on the strength 

and duration of the stimulation. A: Vortex flow stimulation (1 minute exposure) increased 

cortisol levels in 6 dpf zebrafish larvae in a strength-dependent manner (One-way ANOVA: F 

(5,41) = 56.52, p=0.0001; Turkey’s post-test: 
abcd

 p<0.05; sample size indicated in parenthesis). 

B: Cortisol levels reached by zebrafish larvae after 1, 3, or 6 minutes of exposure to vortex flow 

stimulation of low (130 rpm) or high (330 rpm) strength (Two-way ANOVA: duration: 

F(3,122)=112.9, p<0.0001; strength: F(1,122)=59.07, p<0.0001; duration x strength: F(3,122)=8.75, 

p<0.0001; Tukey’s post-test: comparison of duration within each strength: 
ab

p<0.05, indicated 

with lower case letters for low strength (130 rpm) and uppercase letters for high strength (330 

rpm)). Basal cortisol levels ± standard error of the mean (SEM) are indicated by the black/gray 

line.  

 

 

 

 

 

 

 

Figure 3.7. Activation of the HPI axis correlates with behavioral output after vortex flow 

stimulation. A: Correlation analysis showing that strength-dependent cortisol response 

correlates with locomotor activity after vortex flow onset (Pearson analysis, r
2
 = 0.88, 

p=0.0195). B: Correlation analysis showing that strength-dependent cortisol response negatively 

correlates with change in body angle orientation after vortex flow onset (Pearson analysis, r
2
 = 

0.99, p=0.0019). Cortisol values used for correlation analysis are also shown in Figure 3.6A. 
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3.2 Activation of the HPI axis during early life stages of zebrafish 
larvae. 

To characterize the ontogeny of the HPI axis activity during early life stages, I 

determined the changes in HPI axis activity of zebrafish larvae between 2 and 8 dpf. I 

quantified basal activity, acute activation, and responses to repeated stress during early 

development using vortex flow stimulation and osmotic shock as threatening input 

signals, and cortisol as the output measure of HPI axis activity.  

3.2.1 Basal cortisol levels and profiles of acute HPI axis activation after vortex 
flow stimulation change with age. 

To evaluate basal activity of the HPI axis through development, cortisol levels at 

resting conditions of unstimulated larvae of different developmental stages were 

measured. As expected, overall cortisol levels increased throughout the time window 

between 2 and 8 dpf (Figure 3.8). According to previous studies and based on these 

changes in basal cortisol levels, it is reasonable to hypothesize that the HPI axis of 

larvae at these developmental stages is still under maturation. To test this, I screened the 

effects of vortex flow stimulation on cortisol levels in 4, 6, and 8 dpf larvae. The larvae 

were exposed to different strengths of vortex flow stimulation (ranging from 130 to 430 

rpm) for either 1, 3, or 6 minutes. The aim of such a screening was threefold: 1) to 

identify when and how the cortisol-response profiles change through development; 2) to 

define appropriate conditions of the vortex flow stimulation for subsequent experiments 

to disrupt the maturation of the HPI axis activity, and 3) to define appropriate conditions 

of the stimulation that could be used to detect changes in stress-induced cortisol profiles 

after disruption of HPI axis activity maturation.  

Figure 3.9 shows an overall representation of the cortisol mean values measured 

after the larvae were exposed to the different conditions of the vortex flow stimulation 

(note that different colors in figure 3.9 do not represent significant differences). In all 

developmental stages, the highest mean cortisol value was observed after larvae were 

exposed to the highest strength (430 rpm) for 6 minutes. In general, absolute mean 

values of cortisol were lower in 4 dpf larvae. Moreover, 8 dpf larvae showed a smaller 

range of cortisol mean values as a response to different conditions of vortex flow 

stimulation.  
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Figure 3.8. Basal cortisol levels of zebrafish larvae from 2 to 8 dpf. Cortisol levels at basal 

conditions change with age (One-way ANOVA: F (6,120) = 17.72, p<0.0001; Turkey’s post-

test: 
abcd

 p<0.05; sample size indicated in parenthesis). 

 

 

 

 

 

 

 

Figure 3.9. Acute HPI axis activity through development. A-C: mean cortisol levels reached 

by 4, 6, or 8 dpf larvae after exposure to vortex flow stimulation of different strengths (130 to 

340 rpm) for either 1, 3, or 6 minutes. Bars are depicted in different colors according to the 

color code described in D. Note that different colors do not represent statistical significance, but 

only different category based on cortisol mean values. D: color code of cortisol levels 

depending on the percentage of cortisol change, where 0% is basal cortisol level for a particular 

age, and 100% is the maximum cortisol value observed in that particular age.  

 

To determine whether the developmental stage had an effect on the strength-

dependent cortisol profiles induced by the vortex flow stimulation, first, the data was 

grouped according to the duration of the vortex flow stimulation. The cortisol values of 

each developmental stage were normalized according to the basal cortisol levels (0%) 

and to the maximum cortisol value observed in each condition of duration of vortex 
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flow stimulation (1, 3, or 6 minutes) for that particular age (100%) (Figure 3.10). 

Normalization allowed analyzing the effects of age on the strength-dependent cortisol 

response without taking into account the differences in absolute values of cortisol 

observed at different developmental stages. Interestingly, Two-way ANOVA analysis 

revealed that the developmental stage had a significant effect on the strength-dependent 

cortisol response observed after the larvae were exposed to the vortex flow stimulation 

for 1 and 3 minutes, but not when exposed for 6 minutes (Figure 3.10). 

 

 

 

 

 

 

Figure 3.10. Strength-dependent cortisol response to acute vortex flow stimulation 

changes with age. A-C: cortisol response of 4, 6, and 8 dpf larvae, which were exposed to 

acute vortex flow stimulation of different strengths (130-430 rpm) for either 1, 3, or 6 minutes, 

respectively. Different developmental stages showed differences in cortisol profiles when 

exposed to the vortex flow stimulation for 1 or 3 minutes. Exposure to vortex flow stimulation 

for 6 minutes did not induce differences in cortisol profiles among the different developmental 

stages (A: 
1min

Two-way ANOVA: strength: F(3,125)=10.68, p<0.0001; age: F(2,125)=4.759, 

p=0.0102; strength x age: F(6,125)=1.059, p=0.3908. B: 
3min

Two-way ANOVA: strength: 

F(3,131)=14.11, p<0.0001; age: F(2,131)=66.53, p<0.0001; strength x age: F(6,131)=4.745, p=0.0002. 

C: 
6min

Two-way ANOVA: strength: F(3,89)=7.252, p=0.0002; age: F(2,89)=2.855, p=0.0628; 

strength x age: F(6,89)=0.5201, p=0.7917). 

 

To dissect further the differences in cortisol response at different developmental 

stages, I selected two strengths of stimulation: low and high. Low strength stimulation 

consisted of exposure to vortex flow stimulation of 130 rpm strength for 1 minute. High 

strength stimulation consisted of exposure to the stimulation of 330 rpm strength for 3 

minutes. These conditions were selected based on cortisol response data of 6 dpf larvae 

(Figure 3.9 and 3.10). The conditions for the low strength stimulation are the lowest 

which elicited a significant increase in cortisol levels when compared to basal levels (t 

test, T = 9.235, p<0.0001). The conditions for the high strength stimulation induced a 
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high increase of cortisol levels without reaching the maximum levels of cortisol 

observed when higher stimulation strengths were used. This avoids potential 

saturation/exhaustion of the cortisol response, which may mask subtle changes in 

cortisol profiles. Moreover, these conditions induced a cortisol response of clearly 

different magnitude among different developmental stages (One-way ANOVA 

3min330rpm
4dpf, 

3min330rpm
6dpf, 

3min330rpm
8dpf: F (2,67) = 65.35, p<0.0001). 

The cortisol levels induced by vortex flow stimulation of low and high strength in 4 

to 8 dpf larvae are shown in Figure 3.11A. High strength stimulation induced a high 

increase in cortisol levels at 6 dpf (Figure 3.10B and Figure 3.11A), which gradually 

decreased at 7 and 8 dpf. This increase was not detected when low strength stimulation 

was used. I then asked whether the pattern of cortisol response induced by vortex flow 

stimulation throughout development was stressor-specific. To evaluate this, 4 to 8 dpf 

larvae were exposed to an osmotic shock of low (50 mM NaCl) and high (250 mM 

NaCl) strengths and cortisol levels were measured. Similar to the cortisol response to 

vortex flow stimulation, zebrafish larvae elicited a higher cortisol response to a strong 

osmotic shock at 6 dpf (Figure 3.11A-B). Two-way ANOVA analysis revealed that for 

both type of stimulations the developmental stage, strength of the stimulation, and the 

interaction between these two factors, have a significant effect on the stress-induced 

cortisol levels (Figure 3.11A-B). Although the same general trend can be seen in 

cortisol response to both osmotic shock and vortex flow stimulations, some differences 

were found. Cortisol response to low strength vortex flow stimulation increased slightly 

after 5 dpf; in the case of low strength osmotic shock, there were no differences in 

cortisol response among the different developmental stages tested. Although cortisol 

response to a high strength stimulation of both types decreased gradually after 6 dpf, the 

cortisol response elicited by low- and high-strength osmotic shock stimulation was still 

significantly different at 8 dpf (Mann-Whitney test: U=2.5, p=0.0011); in contrast, the 

difference in cortisol response elicited by low- and high-strength of vortex flow 

stimulation in 8 dpf larvae was not detectable anymore (t test: T=0.5986, p=0.5559). In 

order to evaluate whether the decline in cortisol response to high strength stimulations 

after 6 dpf was due to a compromised energetic state or to limited nutritional resources, 

8 dpf larvae to which a feeding protocol was delivered starting from day 6 were exposed 

to the same stress protocol using vortex flow stimulation of low and high strengths 
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(Figure 3.11C). No significant difference in cortisol response was observed between fed 

and unfed 8 dpf larvae.  

 

 

 

 

 

 

 

 

Figure 3.11. Cortisol response profiles to acute stress in zebrafish larvae change with age. 

A: Cortisol levels reached after exposure to acute vortex flow stimulation of low (1 minute, 130 

rpm) or high (3 minutes, 330 rpm) strength at different developmental stages (4 to 8 dpf) (Two-

way ANOVA: age: F(4,98)=37.64, p<0.0001; strength: F(1,98)=27.12, p<0.0001; age x strength: 

F(4,98)=10.76, p<0.0001; Tukey’s post-test: comparison of age within each strength: 
abc

 p<0.05, 

indicated with lower case letters). B: Cortisol levels reached after acute osmotic shock exposure 

of low (50 mM NaCl) or high (250 mM NaCl) strength at different developmental stages (4 to 8 

dpf). Samples were collected 10 minutes after stimulation onset (Two-way ANOVA: age: 

F(4,82)=4.95, p=0.0013; strength: F(1,82)=55.19, p<0.0001; age x strength: F(4,82)=2.49, p<0.049; 

Tukey’s post-test: comparison among age groups within each strength: 
abc

 p<0.05, indicated 

with lower case letters). C: Cortisol levels reached after acute exposure to vortex flow 

stimulation of low (1 minute, 130 rpm) or high (3 minutes, 330 rpm) strength in either fed or 

unfed 8 dpf larvae. No difference was observed between fed or unfed larvae (Two-way 

ANOVA: strength: F(1,42)=0.4413, p=0.5101; feeding condition: F(1,42)=0.4046, p=0.5282; 

strength x feeding condition: F(1,42)=0.03809, p=0.8462). 

3.2.2 Profiles of HPI axis activation after repeated exposure to vortex flow 
change with age. 

Termination of the stress response is achieved by activation of the HPI axis negative 

feedback, in which the stress-induced cortisol feeds back to the hypothalamus and 

pituitary via the glucocorticoid receptor. Efficiency of the HPI axis negative feedback is 

therefore important for an appropriate stress response. Based on the data described in 

section 3.2.1, it is reasonable to hypothesize that the HPI axis negative feedback 

dynamics mature through the early stages of development tested: from 4 to 8 dpf. In 

order to evaluate this, cortisol response after a repeated exposure to vortex flow 

stimulation was measured. The magnitude of a cortisol response to a second 
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perturbation delivered at either 30 or 60 minutes after the first stimulation was used as 

an indicator of HPI axis negative feedback activation. I evaluated the effects of the 

developmental stage on cortisol response to repeated vortex flow stimulation 

considering the strength of the stimulation and the inter-trial interval in between 

subsequent stimulations (Figure 3.12A and B).  

When low-strength vortex flow stimulation was used, a second stimulation of the 

same strength with either 30 or 60 minutes of inter-trial interval failed to elicit a cortisol 

response comparable in magnitude to the one elicited after the first presentation (Figure 

3.12A). Two-way ANOVA analysis revealed neither an effect of the developmental 

stage nor of the inter-trial interval on the cortisol levels induced by the repeated 

stimulations.  

A different result was found when high-strength vortex flow stimulation was used. 

In this case, Two-way ANOVA analysis revealed a significant effect of both the 

developmental stage and the inter-trial interval on the cortisol levels induced by the 

repeated vortex flow stimulation of high strength (Figure 3.12B). Larvae of 4 and 6 dpf 

failed to elicit a cortisol response comparable to the one reached after the first 

stimulation when the inter-trial interval was set to 30 minutes. However, 8 dpf larvae 

did elicit a cortisol increase of similar magnitude than the one induced after the first 

stimulation, suggesting that at this developmental stage a faster recovery occurs (Figure 

3.12B). When the inter-trial interval was increased to 60 minutes, 4 dpf larvae 

responded with a cortisol increase of similar magnitude than the one elicited after the 

first vortex flow stimulation (Figure 3.12B). This was different from 6 dpf larvae, where 

the maximum cortisol levels reached after the second perturbation were not of the same 

magnitude than the ones reached after the first stimulation (Figure 3.12B). Interestingly, 

a tendency was found in 8 dpf larvae to respond to a second perturbation with even 

higher cortisol levels than the ones reached after the first vortex flow stimulation when 

the inter-trial interval was set to 60 minutes (Figure 3.12B).  
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Figure 3.12. Cortisol response profiles after repeated vortex flow stimulation change with 

age. A: Cortisol response of 4, 6 and 8 dpf larvae to a repeated vortex flow stimulation of low 

strength (1 minute, 130 rpm) with an inter-trial interval of either 30 or 60 minutes (Two-way 

ANOVA: age: F(2,30)=0.5648, p=0.5744; inter-trial interval: F(1,30)=2.450, p=0.128; age x inter-

trial interval: F(2,30)=1.976, p=0.1563; # indicates significant difference from 100 after one-

sample t-test, p<0.5; N=6). B: Cortisol response of 4, 6 and 8 dpf larvae to a repeated vortex 

flow stimulation of high strength (3 minutes 330 rpm) with an inter-trial interval of either 30 or 

60 minutes (Two-way ANOVA: age: F(2,41)=24.88, p<0.0001; inter-trial interval: F(1,41)=18.98, 

p<0.0001; age x inter-trial interval: F(2,41)=2.702,  p=0.0790; # indicates significant difference 

from 100 after one-sample t-test, p<0.05; N=6, except 
30min

6dpf: 12, and 
30min

8dpf: 11). All 

samples were collected after 10 minutes of the second stimulation onset. 

 

In order to evaluate whether the decreased cortisol response to repeated stimulations 

is mediated by the negative feedback via glucocorticoid receptor, 4, 6 or 8 dpf larvae 

were stimulated with repeated vortex flow stimulation (30 minutes inter-trial interval) in 

the presence of the glucocorticoid receptor antagonist mifepristone (Figure 3.13A-C). 4 

dpf larvae showed an enhanced cortisol response to a second vortex flow stimulation 

when incubated with mifepristone (Figure 3.13A). 6 dpf larvae incubated with 

mifepristone responded to the repeated stimulation with cortisol levels of the same 

magnitude than the first stimulation (Figure 3.13B). Similarly, 8 dpf larvae incubated 

with the GR antagonist responded to the repeated perturbation with cortisol levels even 

higher than the ones reached after the first cortisol response (Figure 3.13C). These data 

together suggest that the decreased cortisol response to repeated vortex flow stimulation 

is mediated, at least partially, by the negative feedback via glucocorticoid receptor and 

that it is already present in 4 dpf larvae. 
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Figure 3.13. Decreased cortisol response after repeated exposure to vortex flow is 

mediated by the glucocorticoid receptor. A-C: Cortisol response of 4, 6, and 8 dpf larvae to 

repeated vortex flow stimulation of high strength (330 rpm) with an inter-trial interval of 30 

minutes in the presence of the glucocorticoid receptor antagonist mifepristone. At all 

developmental stages, larvae elicited a cortisol response to a repeated acute stimulation in the 

presence of mifepristone. This response was of the same magnitude or higher than the cortisol 

response to the first stimulation (4 dpf: t test 1
st
 vs 2

nd
 Mif, T = 7.054, p<0.0001, t test 2

nd
 vs 2

nd
 

Mif, T = 8.468, p<0.0001, 
****

p<0.0001; 6 dpf: t test 1
st
 vs 2

nd
 Mif, T = 0.7430, p=0.4676, t test 

2
nd

 vs 2
nd

 Mif, T = 19.15, p<0.0001, 
****

p<0.0001; 8 dpf: t test 1
st
 vs 2

nd
 Mif, T = 3.105, 

p=0.0056, t test 2
nd

 vs 2
nd

 Mif, T = 3.573, p=0.0022, 
**

p<0.01; sample size is indicated in 

parenthesis). 

 

3.3 Development of an early life stress model using vortex flow 
stimulation.  
 

3.3.1 Prolonged exposure to vortex flow stimulation induces a hypercortisolic 
state. 

To evaluate the effects of early life experience on the maturation of the HPI axis and 

subsequent stress response, larvae were exposed to prolonged vortex flow stimulation 

during development. Based on data described in section 3.2.1, zebrafish larvae are able 

to elicit a cortisol response as early as 4 dpf. At 6 dpf, larvae showed higher cortisol 

response to vortex flow and osmotic shock stimulation (Figure 3.11A, B). These data 

indicates that the cortisol response induced by external stimuli increases from 4 to 6 dpf. 

To disrupt this process of maturation, I aimed to activate the HPI axis in a prolonged 

manner by exposing the larvae to prolonged continuous vortex flow stimulation during 

this developmental window. The prolonged stimulation consisted of 9 continuous hours 

of vortex flow stimulation (330 rpm). First, in order to characterize behavioral and 

cortisol outputs to the prolonged vortex flow stimulation, 5 dpf larvae were exposed to 

the stimulation and locomotor activity, body orientation, and cortisol levels were 

measured. At this developmental stage, larvae showed decreased locomotor activity 
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during the prolonged continuous vortex flow stimulation (Figure 3.14A-B). Together 

with this, larvae showed increased maintenance of body orientation as shown by 

decreased body angle change during the stimulation (Figure 3.14C-D). These changes in 

behavioral outputs were observed during the entire stimulation. Based on the correlation 

between the maintenance of body orientation and the vortex flow-induced cortisol levels 

(Figure 3.7B), it was predicted that prolonged vortex flow stimulation would induce a 

sustained hypercortisolic state. To evaluate this, cortisol levels were measured at 

different time points during the 9 hours of prolonged vortex flow stimulation (Figure 

3.15). Cortisol levels increased as an initial acute response, reaching its peak at 10 

minutes after the vortex flow onset; after this time, cortisol levels started to decrease 

gradually. At 60 minutes after the vortex flow onset, cortisol levels reached a steady 

state for a prolonged period of time, remaining higher than those of the control group. 

This hypercortisolic state was maintained for around 4 hours before it reached again 

normal basal levels which did not differ from those showed by the control group. 

3.3.2 Prolonged exposure to vortex flow stimulation attenuates the stress 
response only when delivered at early life stages. 

As described in the previous section, the HPI axis response to the vortex flow 

stimulation changes with age. To disrupt this process, 4 to 7 dpf larvae were exposed to 

prolonged vortex flow stimulation. To study the effects of prolonged vortex flow 

exposure on cortisol response to subsequent acute homotypic stress, a 3 minutes pulse 

of vortex flow stimulation (330 rpm) was delivered on the day following the prolonged 

stimulation and cortisol levels were measured. Prolonged exposure to the vortex flow 

stimulation attenuated the cortisol response to subsequent acute homotypic stress on the 

following day (Figure 3.16A-D). Interestingly, the attenuation of the cortisol response 

was observed when the prolonged exposure to vortex flow stimulation was delivered at 

4 to 6 dpf, but it failed to induce cortisol response changes when delivered at 7 dpf 

(Figure 3.16D). 
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Figure 3.14. Five-dpf larvae respond with reduced locomotor activity and change in body 

angle to continuous vortex flow stimulation A-B: distance swam in a time window of 30 

seconds after 5 minutes or 8.5 hours of continuous vortex flow stimulation, respectively. 

Distance swam is decreased after 5 minutes of stimulation onset; the same effect is still detected 

after 8.5 hours of continuous stimulation (t test: 
5min

T = 3.692, p=0.0008; 
8.5h

T = 3.385, 

p=0.0019, *p<0.05, **p<0.01, ***p<0.001; sample size is in parenthesis); prolonged vortex 

flow stimulation consisted of 9 hours of exposure to 330 rpm on day 5. C-D: Change in body 

angle orientation after 5 minutes or 8.5 hours of continuous vortex flow stimulation, 

respectively. Reduced body angle change is observed already after 5 minutes of continuous 

vortex flow stimulation onset; the same effect is observed after 8.5 hours of stimulation onset (t 

test: 
5min

T = 5.206, p=0.0002; 
8.5h

T = 5.248, p=0.0002, *p<0.05, **p<0.01, ***p<0.001; sample 

size is indicated by “N”); prolonged stimulation as described in A-B.  
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Figure 3.15. Cortisol levels as a function of time after onset of continuous vortex flow 

stimulation in 5 dpf larvae. Samples of 5 dpf larvae which were either exposed to continuous 

vortex flow stimulation (330rpm) or unstimulated controls were collected at different time 

points during the 9 hours of the prolonged vortex flow stimulation protocol and cortisol levels 

were measured. Onset of prolonged stimulation is at time 0. Prolonged vortex flow stimulation 

induced a hypercortisolic state which peaked at 10 minutes and was maintained for at least four 

hours before cortisol levels were not different from unstimulated larvae (Data generated jointly 

with Laura Flores) (Two way ANOVA: time: F(8,86)=13.55, p<0.0001; treatment: F(1,86)=246.9, 

p<0.0001; time x treatment: F(8,86)=18.96, p<0.0001; Sidak’s post-test: effect of treatment for 

each time point: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; N=6, except 
ELS9h-20min

N=4, 
ELS 

9h-180min
N=5).   

 

 

 

 

 

 

 

Figure 3.16. Cortisol response to an acute homotypic stressor is attenuated on the day 

following a prolonged exposure to vortex flow stimulation. A-D: Cortisol response measured 

10 minutes after onset of an acute vortex flow stimulation of 330 rpm for 3 minutes in 5 to 8 dpf 

larvae. Larvae were pre-exposed to 9 hours of continuous vortex flow stimulation (330 rpm) on 

the previous day of the measurement. Note that 5 to 7 dpf larvae, but not 8 dpf, presented an 

attenuated cortisol response after treatment (Data generated jointly with Laura Flores) (t test: 5 

dpf: T = 3.022, p=0.0128; 6 dpf: T = 4.331, p=0.0005; 7 dpf: T = 5.279, p=0.0005; 8 dpf: T = 

0.9989, p=0.3348; *p<0.05, ***p<0.001; sample size is indicated in parenthesis; ELS: early life 

stress, dpf: days post-fertilization).   
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3.3.3 Prolonged exposure to vortex flow induces long lasting changes in cortisol 
response profiles. 

Prolonged exposure to vortex flow stimulation during early developmental stages 

attenuated subsequent cortisol response to a homotypic stressor (Figure 3.16). To 

evaluate the effect of the strength of the prolonged stimulation on the subsequent 

cortisol response, different protocols of prolonged vortex flow exposure were presented 

to 5 dpf larvae. This developmental stage was selected based on data described in 

section 3.2.1, which suggests that the ability of the larvae to respond with endogenous 

cortisol to an external stimulus increases from 4 to 6 dpf (Figure 3.11). Since 

glucocorticoids play a key role in developmental programming of the HPI axis, 

overexposure to endogenous cortisol elicited by prolonged vortex flows stimulation at 

this developmental stage (Figure 3.15) may facilitate changes in HPI axis activity 

induced by early life experience. The early life stress (ELS) protocol consisted on 

variations of the pulse-length of the vortex flow stimulation which were delivered to the 

larvae at day 5: either 5 or 30 minutes pulses with an inter-trial interval of 60 minutes or 

continuous stimulation (Figure 3.17A). The strength of the magnetic field inversion was 

fixed to 330 rpm and the total length in which the larvae were treated was 9 hours in all 

cases. On the following day of the treatment, cortisol levels were measured either at 

basal conditions or at different time points during 60 minutes after an acute vortex flow 

stimulation of 3 minutes length.  
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Figure 3.17. Exposure to prolonged vortex flow stimulation at 5 dpf induces changes in 

cortisol response profiles depending on the structure of the prolonged stimulation 

(frequency and duration of vortex flow pulses) A: Schematic representation of the different 

protocols of prolonged vortex flow stimulation used. B-D: Cortisol profiles as a function of time 

after acute stimulation onset in 6 dpf larvae pre-exposed to prolonged vortex flow stimulation 

(330 rpm) on day 5 consisting of 9 pulses of 5 or 30 minutes, or continuous stimulation, 

respectively. Note that a tendency for an attenuated cortisol response was observed in larvae 

pre-exposed to 9 pulses of 5 minutes or 30 minutes delivered at 5 dpf; however, only larvae pre-

exposed to 9 continuous hours of vortex flow stimulation showed a significantly reduced 

cortisol response to an acute homotypic stimulation (
9pulses 5 min

Two-way ANOVA: time: 

F(5,138)=103.1, p<0.0001; treatment: F(1,138)=0.4370, p=0.5097; time x treatment: F(5,138)=2.159, 

p=0.0621; Sidak’s post-test: effect of treatment for each time point: non-significant; 
9pulses 30 

min
Two-way ANOVA: time: F(5,138)=75.32, p<0.0001; treatment: F(1,138)=1.029, p=0.3123; time x 

treatment: F(5,138)=5.336, p=0.0002; Sidak’s post-test: effect of treatment for each time point: 

non-significant; 
Continuous

Two-way ANOVA: time: F(5,138)=79.53, p<0.0001; treatment: 

F(1,138)=4.012, p=0.0471; time x treatment: F(5,138)=5.095, p=0.0003; Sidak’s post-test: effect of 

treatment for each time point: *p<0.05, **p<0.01; N=6 for ELS treatments, 
0min control

N=20, 
10min 

control
N=36, 

20min control
N=13, 

30min control
N=16, 

40min control
N=17, 

60min control
N=12; ELS: early life 

stress). 

The cortisol response profiles after acute stimulation showed that prolonged 

exposure to vortex flow stimulation induces changes in cortisol response (Figure 3.17B-

D). Larvae exposed to the 5 or 30 minutes long pulses of vortex flow stimulation 

showed higher cortisol levels at basal conditions (t-test: 
Control

Basal vs 
9pulses 5min

Basal, 

T=4.115, p=0.0004; 
Control

Basal vs 
9pulses 30min

Basal, T=4.805, p<0.0001); interestingly, 

when the larvae were exposed to the continuous vortex flow stimulation, no effect on 

basal cortisol levels was observed (t-test: 
Control

Basal vs 
Continuous

Basal, T=0.9683, 

p=0.3426). The cortisol peak was reached 10 minutes after the onset of the acute vortex 

flow stimulation in all cases. Larvae previously exposed to the prolonged continuous 

vortex flow stimulation showed an attenuated cortisol peak (Figure 3.17D). Although a 

similar tendency was observed in larvae exposed to the prolonged vortex flow 

stimulation consisting of 5 or 30 minutes pulses, the difference was not significant; The 

attenuated cortisol response of larvae previously exposed to the continuous stimulation 

was still detectable at 20 minutes after the acute stimulation onset and was no longer 

detectable at 30 minutes after stimulation onset (Figure 3.17D).  

Based on the changes in cortisol response seen at 6 dpf, the continuous and the 30 

minutes-pulses prolonged stimulations were selected. These two strengths were used to 

evaluate whether the changes in cortisol response induced by prolonged exposure to 

vortex flow stimulation during day 5 were maintained through development. Larvae 
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were exposed to these two protocols of prolonged stimulation on day 5 and then raised 

for 5 more days. At 10 dpf, larvae were exposed to an acute 3 minutes-pulse of vortex 

flow stimulation and cortisol profiles were evaluated (Figure 3.18A-B). No differences 

were found in cortisol levels at basal conditions among the different treatments. Only 

the continuous prolonged stimulation induced long lasting changes in acute cortisol 

response profiles still detectable at 10 dpf. Similarly to the cortisol profile changes 

found in 6 dpf larvae previously exposed to prolonged vortex flow stimulation on day 5, 

treatment of continuous exposure to vortex flow stimulation on day 5 induced an 

attenuated cortisol response to acute vortex flow stimulation in 10 dpf larvae; the 

attenuated response was detected at 10 and 20 minutes after the onset of an acute vortex 

flow stimulation and no longer detected at 30 minutes after stimulation onset (Figure 

3.18B). Cortisol response to a repeated homotypic stimulation of the same strength was 

also attenuated only in larvae pre-exposed to the continuous vortex flow stimulation on 

day 5 (Figure 3.18A)   

Since prolonged exposure to a homotypic stressor may induce a habituation process, 

I asked whether the cortisol profile changes observed after prolonged exposure to vortex 

flow stimulation were stressor specific (which may suggest that a habituation process is 

occurring) or whether the changes in cortisol response can be observed regardless of the 

nature of the stressor. To evaluate this, larvae previously exposed to either 9 continuous 

hours or 30 minutes-pulses of vortex flow stimulation (330 rpm) on day 5 were 

challenged on the following day with an osmotic shock of low (50 mM NaCl) or high 

(250mM NaCl) strength and cortisol levels were measured (Figure 3.18C). Although a 

tendency of an attenuated cortisol response to the low strength osmotic shock was 

observed in the larvae exposed to the prolonged stimulation consisting of 30 minutes-

pulses, only the continuous prolonged stimulation induced significant changes in 

cortisol response (Figure 3.18C). On the other hand, both prolonged stimulation 

protocols induced detectable changes in cortisol response to the high strength osmotic 

shock, indicating that altered cortisol response induced by prolonged vortex flow 

stimulation is also present when the larvae respond to a heterotypic stressor. For further 

experiments, the continuous vortex flow stimulation (9 hours, 330 rpm) was used.  
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Figure 3.18. Changes in cortisol profiles induced by prolonged vortex flow stimulation are 

long lasting and non-stressor specific. A: Cortisol levels of 10 dpf under three different 

conditions: 1) basal conditions, 2) acute response to 3 minutes of vortex flow stimulation (330 

rpm), and 3) repeated response to acute homotypic vortex flow stimulation (330 rpm) with 30 

minutes of inter-trial interval; larvae were treated with either 9 pulses of 30 minutes or 9 hours 

of continuous vortex flow stimulation (330 rpm) on day 5. Continuous exposure to vortex flow 

stimulation at day 5 resulted in attenuation of cortisol response to acute and repeated 

stimulations. 9p 30 min: 9 pulses of 30 minutes; (Data generated jointly with Laura Flores) (t 

test: **p<0.01, ****p<0.0001 compared to control group; sample size indicated in parenthesis). 

B: Cortisol response profile as a function of time after acute (3 min) vortex flow stimulation 

onset in 10 dpf larvae previously exposed to 9 hours of continuous vortex flow stimulation on 

day 5. Attenuated cortisol levels can be detected at 10 and 20 minutes after stimulation onset. 

ELS: early life stress; (Data generated jointly with Laura Flores) (Two-way ANOVA: time: 

F(5,72)=29.59, p<0.0001; treatment: F(1,72)=10.27, p=0.0020; time x treatment: F(5,72)=3.915, 

p=0.0034; Sidak’s post-test for multiple comparison, **p<0.01,***p<0.001; sample size is 

indicated in parenthesis) C: Cortisol response to an osmotic shock using either 50 or 250 mM of 

NaCl in 6 dpf larvae previously exposed to prolonged vortex flow stimulation consisting of 9 

pulses of 30 minutes or 9 hours of continuous stimulation during day 5. An attenuated cortisol 

response is observed after heterotypic acute stress exposure in larvae pre-exposed to prolonged 

vortex flow stimulation. 9p 30min: 9 pulses of 30 minutes; (t test: *p<0.05, **p<0.01 compared 

to control group; sample size is indicated in parenthesis).   
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Figure 3.19. Prolonged vortex flow stimulation delivered at 5 dpf induces locomotor 

activity changes in 6 dpf larvae. A: Total distance swam at basal conditions is increased in 6 

dpf previously exposed to prolonged vortex flow stimulation consisting of 9 continuous hours 

on day 5 (330 rpm) (t test: T = 2.240, p=0.0305, *p<0.05; sample sized indicated in parenthesis; 

ELS: early life stress). B: 6 dpf larvae pre-exposed to 9 hours of prolonged vortex flow 

stimulation on day 5 show a decreased locomotor activity as a response to an acute homotypic 

stimulation (Two-way ANOVA repeated measures: time: F(15,150)=2.189, p=0.0089; treatment: 

F(1,10)=6.622, p=0.0277; time x treatment: F(15,150)=0.7557, p=0.7242; N=11 for both treatments; 

ELS: early life stress). 

3.3.4 Prolonged exposure to vortex flow induces behavioral changes.  

Prolonged vortex flow stimulation induced changes in cortisol response when 

applied in early developmental stages (Figure 3.16). To evaluate whether prolonged 

vortex flow stimulation alters behavioral outputs as well, larvae were exposed to 

continuous vortex flow stimulation on day 5 and locomotor activity and body 

orientation were measured on the following day either at basal conditions or as a 

response to an acute homotypic stimulation. Locomotor activity at basal conditions of 6 

dpf larvae previously exposed to the prolonged vortex flow stimulation was enhanced 

(Figure 3.19A). Interestingly, when these larvae were exposed to an acute vortex flow 

stimulation (3 minutes, 330 rpm), they showed a reduced locomotor response at the 

stimulation onset (Figure 3.19B). Body angle orientation also changed after prolonged 

vortex flow stimulation. Larvae that were previously exposed to the prolonged vortex 

flow stimulation spent significantly more time than the untreated larvae re-orientating 

their body immediately after the onset of the stimulation (Figure 3.20A). Moreover, the 

frequency distribution of body angles during acute stimulation of a population of pre-

treated larvae differed from that of a population of untreated larvae (Figure 3.20B); 

previously treated larvae showed a narrower range of body angle orientation than the 

untreated larvae, with a mean body angle of 62.3° and 42°, respectively (Figure 20B). 
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Figure 3.20. Prolonged vortex flow stimulation delivered at 5 dpf induces changes in body 

angle orientation in 6 dpf larvae. A: 6 dpf larvae pre-exposed to prolonged vortex flow on day 

5 spend more time changing body angle orientation after acute vortex flow onset (Two-way 

ANOVA repeated measures: time: F(8,72)=2.982, p=0.0122; treatment: F(1,9)=6.507, p=0.0311; 

time x treatment: F(8,72)=1.815, p=0.0882; N=10 for both treatments; ELS: early life stress). B-

C: Circular representation of the frequency distribution of body angles showed by either un-

treated larvae or larvae pre-exposed to prolonged vortex flow stimulation on day 5, respectively. 

Larvae were exposed to acute vortex flow stimulation (330 rpm) and body angles measures 

were taken 2 minutes after stimulation onset. Mean angle is represented with a line and the arcs 

extending to either side represent the 95% confidence limits. Note that pre-treated larvae with 

prolonged vortex flow stimulation show a narrower frequency distribution. Significant 

differences when compared to un-treated larvae are indicated by an asterisk (*) next to the mean 

angle (Watson-Williams F-test: Un-treated + 330 rpm vs ELS + 330 rpm: F = 6.127, p=0.014; 

N=90). 

3.3.5 Prolonged vortex flow stimulation leads to decreased hypothalamic cell 
activity and stress-related peptide expression.  

Exposure to prolonged vortex flow stimulation leads to altered behavioral 

performance and decreased endocrinological output (Figures 3.16-3.20). Since cortisol 

response depends on the activation of hypothalamic cells that culminate in secretion of 

stress-related peptides, I hypothesized that the decreased endocrinological output 

observed after prolonged exposure to vortex flow stimulation was mediated by a 

decreased activity of hypothalamic cells or to a decreased expression of stress-related 

peptides such as CRH, AVP, or OXT in hypothalamic cells. To evaluate this hypothesis, 

in vivo calcium activity of CRH-expressing neurons in the hypothalamus was measured. 

It was shown in section 3.3.3 that the cortisol response to a 250mM NaCl osmotic shock 

is decreased in larvae previously exposed to the prolonged vortex flow stimulation 

(Figure 3.18C). Since I am interested in robust changes in hypothalamic cells that lead 

to altered HPI axis activity, I selected osmotic shock as a robust stimulus to study the 

potential correlates of hypothalamic cell activity and reduced cortisol response after 

prolonged vortex flow stimulation. This stimulus was selected because habituation to a 

homotypic stressor may occur and lead to decreased cell activity, masking the robust 

effects in hypothalamic cells of the prolonged stimulation. Moreover, in vivo calcium 

imaging is facilitated by using a stressor that can be delivered while the larvae are fixed 

(Section 1.10, Figure 1.7). Based on this, calcium activity was recorded by Marcel 

Kegel before and after an osmotic shock (250mM NaCl) in 6 dpf larvae which were 

either untreated or previously exposed to prolonged vortex flow stimulation on day 5. 

Prolonged vortex flow stimulation led to reduced hypothalamic cell activity upon the 
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osmotic shock stimulation as measured by the area under the curve of the calcium 

events recorded (analyzed data was provided by Marcel Kegel) (Figure 3.21A). To test 

whether the expression of stress-related peptides was also affected by prolonged 

exposure to vortex flow stimulation, immunohistochemistry analysis was performed in 

6 dpf larvae previously exposed to the prolonged stimulation protocol on day 5 and was 

compared with untreated larvae (imaging and immunohistochemistry analysis was 

performed by Dr. Ulrich Herget). The analysis revealed that the number of cells 

expressing CRH, AVP, and OXT was decreased after prolonged vortex flow stimulation 

when compared to control groups (Figure 3.21B-D). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. Prolonged vortex flow stimulation induces changes at the hypothalamic level. 

A: Calcium activity in hypothalamic cells of double transgenic Tg(otpa3kb:GCaMP3.0)
hd22

 x 

Tg(crh:RFP)
hd21

 larvae after acute osmotic shock (250 mM NaCl) is decreased in larvae pre-

exposed to prolonged vortex flow stimulation (9h continuous stimulation, 330 rpm). The area 

under the curve (AUC) of the calcium events recorded from the calcium sensor GCaMP3.0 

under a two-photon microscope after osmotic shock stimulation was calculated and compared 

between groups (data generated in collaboration with Marcel Kegel; Mann-Whithney test, U = 

35, p=0.0109, *p<0.05; sample size is indicated in parenthesis; ELS: early life stress). B-D: 

Expression of stress related peptides (CRH, AVP, and OXT, respectively) is decreased in 

hypothalamic cells of larvae pre-exposed to prolonged vortex flow stimulation (data generated 

in collaboration with Dr. Ulrich Herget; Mann-Whithney test: 
CRH

U = 606, p=0.0002; 
AVP

U = 

701.5, p=0.0027; t test 
OXT

T = 3.217, p=0.0018; sample size is indicated in parenthesis; ELS: 

early life stress). 
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3.4 Transcriptomics of hypothalamic and non-hypothalamic cells 
after prolonged exposure to vortex flow stimulation. 
 

3.4.1 Hypothalamic cell labeling and establishment of cell-dissociation protocol. 

The zebrafish NPO is homologous to the mammalian PVN (Herget et al., 2014). It 

plays a key role as an integrative center of signals coming from upstream sensory 

centers in the brain and translates these signals into an endocrine response when needed. 

Therefore, understanding to what extent this region undergoes developmental 

programming after early life stress is of pivotal importance.  

To study this in a tissue-specific manner, the transgenic zebrafish line Tg(otpECR6-

E1b:mmGFP)
hd12 

was used (section 1.10, Figure 1.4). In this transgenic line, GFP is 

driven by a cis-regulatory NPO-specific enhancer element of the gene otpa (otpECR6), 

labeling NPO cells involved in the stress response (Figure 1.4). GFP expression in these 

cells allows to isolate cell-specific populations using fluorescence activated cell sorting 

(FACS) for GFP+ and GFP- cells. 

To accomplish this, four cell-dissociation protocols were compared to evaluate their 

efficiency in generating single cell suspensions and maintaining cell viability as high as 

possible (Table 1 and Figure 3.22). Two simple homogenization protocols were tested 

in wild type zebrafish larvae, either using a syringe and needle or a plastic pestle 

attached to an electric-motorized rotor. Each of these homogenization protocols was 

used with or without a commercially available cell-dissociation buffer solution 

(FACSmax), resulting in four different cell-dissociation protocols. Cell viability and 

single cell suspension of each of the dissociation protocols were assessed using flow 

cytometry. All cell-dissociation protocols generated single cell-suspensions; the highest 

percentage of single cell counts was found when the plastic pestle attached to the 

motorized rotor was used in the presence of the cell-dissociation buffer solution giving 

90.3 % of single cell counts. This was followed closely with 88.5 % of single cell 

counts found when the larvae were homogenized using a syringe and a needle in the 

absence of the cell-dissociation buffer solution. The third best method regarding the 

generation of a single cell suspension was obtained with the syringe method in the 

presence of the cell-dissociation buffer solution, giving 80.1 % of single cell counts. 

Finally, when the motorized plastic pestle was used without the cell-dissociation buffer 

solution, a considerably lower single cell count of 62.4 % was found.   
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Table 1.  Analysis of cell dissociation protocols 

 

 

 

 

High levels of cell viability were found for all cell-dissociation protocols. The 

highest cell viability value was found when the syringe method was used in the presence 

of the cell-dissociation buffer solution; when this method was used, 96% of the cells 

were identified as viable as indicated by propidium iodide (PI) staining. This was 

followed by the motorized-pestle method with cell-dissociation buffer and the syringe 

method without cell-dissociation buffer, both showing 89 % of viable cells. Finally, the 

motorized-pestle method without the cell-dissociation buffer showed 85 % of viable 

cells. Based on these results, the syringe homogenization method in the presence of cell-

dissociation buffer was selected as cell-dissociation protocol for subsequent 

experiments.  

 

 

 

 

 

 

 

 

 

Figure 3.22. Comparison of cell dissociation protocols. A-D: four cell dissociation protocols 

were evaluated by measuring the total number of single cells generated and the cell viability 

using flow cytometry; cell dissociation using a syringe in the presence of dissociation buffer 

showed the higher cell viability rate as measured by PI staining.    

 

 Single cells (%) Alive (%) 

Syringe + FACSmax 80.1 96.2 
Pestle + FACSmax 90.3 89.4 
Syringe only 88.5 89.5 
Pestle only 62.4 85 
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C D 

Syringe + FACSmax Pestle + FACSmax 
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3.4.2 Fluorescence activated cell sorting (FACS) of hypothalamic cells. 

Once the cell-dissociation protocol was selected, GFP-labeled cells from 

Tg(otpERC6-E1b:mmGFP) larvae were sorted. Groups of 500 transgenic larvae were 

pooled and the cell dissociation protocol described above was performed. 

Approximately 60,000 GFP+ cells were sorted using FACS for every 500 larvae used. 

Figure 3.23 shows the gates used for cell sorting. The identity of the cells sorted as 

GFP+ after FACS was confirmed by two methods: 1) fluorescence microscopy and 2) 

real time qPCR to quantify the expression level of oxt, whose expression is strictly 

restricted to the hypothalamus. After cell-count of GFP+ cells under the fluorescent 

microscope, 92.5 % of the sorted cells were confirmed as GFP+ (Figure 3.24A-B). This 

was further evaluated by real time qPCR, where the analysis showed a significant 

enrichment of oxt relative gene expression in cells sorted as GFP+ when compared to 

the cells sorted as GFP-; oxt expression in GFP- cells was nearly absent (Figure 24C). 

 

 

 

 

 

 

 

 

Figure 3.23. Settings used to isolate GFP+ and GFP- cells by fluorescence activated cell 

sorting (FACS). A: Cells were sorted depending on the cell size (forward scatter, FSC-A) and 

granularity (side scatter, SSC-A); gates were set to avoid cell debris and clumps of cells. B: 

Cells were sorted depending on their fluorescence and divided in GFP+ and GFP- cell 

populations; gates were set as to minimize cross contamination. 
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Figure 3.24. Validation of cell identity of isolated cells from transgenic line Tg(otpERC6-

E1b:mmGFP). A-A'': single cells identified as GFP+ by fluorescence activated cell sorting 

(FACS) from transgenic larvae Tg(otpERC6-E1b:mmGFP) expressing GFP (92.5% of cells 

were GFP+)  (scale bar: 30 m). B-B'''': magnified view of a single cell identified as GFP+ by 

FACS expressing GFP (scale bar: 10m). Fluorescent signal was detected only for green 

fluorescent protein (GFP).  C: Relative expression of oxt was measured by qPCR in isolated 

cells identified as GFP+ and GFP-. Relative expression of oxt in cells identified as GFP- was 

nearly absent (t test: T = 8.582, p<0.0001, ****p<0.0001; sample size is indicated in 

parenthesis).   

  

3.4.3 RNA isolation and cDNA library preparation from hypothalamic and non-
hypothalamic cells after prolonged exposure to vortex flow stimulation. 

Prolonged vortex flow stimulation during early life stages of zebrafish larvae 

induces changes at the behavioral, endocrinological, and cellular level. In order to 

identify the molecular correlates of early life exposure to vortex flow stimulation, I 

performed a transcriptomic analysis of hypothalamic and non-hypothalamic cells sorted 

from 6 dpf transgenic larvae Tg(otpERC6-E1b:mmGFP), which were either 

unstimulated controls or exposed to 9 hours of continuous vortex flow stimulation 

during day 5. After sorting hypothalamic and non-hypothalamic cells using the protocol 

described in section 3.4.2, total RNA was isolated using a commercially available kit 

(Qiagen). Each treatment group was performed in triplicate (Table 2). Integrity of the 

isolated total RNA was evaluated by David Ibberson using a Bioanlayzer (Agilent 2100; 

Germany) (Figure 3.25). Concentration of total RNA is reported in table 3. 
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Table 2. Experimental groups and their corresponding sample identification. 

Groups Treatment Samples No. 

1 
GFP(+) cells 
Control 1, 2, 9 

2 
GFP (-) cells 
Control 3, 4, 10 

3 
GFP (+) cells 
Prolonged vortex flow stimulation 5, 6, 11 

4 
GFP (-) cells 
Prolonged vortex flow stimulation 7, 8, 12 

 

Table 3. Total RNA yield. 

Sample Total RNA (pg) Sample Total RNA (pg) 

1 370 7 210 

2 320 8 170 

3 1760 9 625 

4 1380 10 900 

5 110 11 350 

6 130 12 1875 

 

Isolated total RNA was then used as template for cDNA library preparation; this 

was performed as described in section 7.2.10 in collaboration with Enric Llorens-

Bobadilla, at the laboratory of Dr. Ana Martin-Villalba, Molecular Neurobiology 

Department of the German Cancer Research Center, Heidelberg, Germany. Figure 3.26 

shows the quality control for each of the samples performed with a Bioanalyzer 

(Agilent, Germany).  
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Figure 3.25. Quality control of the isolated total RNA from hypothalamic and non-

hypothalamic cells. All samples of isolated RNA showed good integrity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26. Quality control of cDNA generated from the total RNA isolated from 

hypothalamic and non-hypothalamic cells. All samples showed good integrity. 
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3.4.4 Transcriptome analysis of hypothalamic and non-hypothalamic cells after 
prolonged vortex flow stimulation. 

Transcriptomic analysis using RNA-seq technology was performed in order to 

identify genes that are affected by early life exposure to prolonged vortex flow 

stimulation at a global and hypothalamus-specific level. High-throughput sequencing of 

the cDNA libraries generated for all treatment groups was performed by GATC Biotech 

(Konstanz, Germany). The generated raw reads ranged from 5.5 to 11.8 million pairs. 

More than 98% of raw reads for each sample were identified as clean reads after quality 

filtering (Table 4). The RNA-seq reads were aligned to the zebrafish genome using 

Bowtie and TopHat, showing a percentage of mapped reads ranging from 88.5 to 92.9% 

(Table 5). Cufflinks and Cuffmerge were used to identify, quantify, and annotate the 

transcripts from the RNA-seq alignment assembly. Finally, Cuffdiff was used to 

compare samples and evaluate the differential expression levels at the transcript and 

gene level. A total of 22,917 expressed genes were identified, from which 16,249 were 

known annotated genes. In this study, only known genes were considered for further 

analysis.  

Table 4. Total amount of raw sequence data and quality control filtering of RNA-seq data.  

Sample No. Total Reads Discarded Reads Clean Reads (single)* Clean Reads 
1 9,700,846 1, 806 (0.0%) 156,524 (1.6%) 9,542,516 (98.4%) 
2 11,709,050 1,678 (0.0%) 190,290 (1.6%) 11,517,082 (98.4%) 
3 9,514,222 1,268 (0.0%) 120,420 (1.3%) 9,392,534 (98.7%) 
4 7,928,094 702 (0.0%) 76,122 (1.0%) 7,851,270 (99.0%) 
5 7,492,846 1,182 (0.0%) 100,188 (1.3%) 7,391,476 (98.6%) 
6 5,489,102 1,200 (0.0%) 84,396 (1.5%) 5,403,506 (98.4%) 
7 8,305,792 1,414 (0.0%) 93,840 (1.1%) 8,210,538 (98.9%) 
8 8,994,456 1,102 (0.0%) 86,376 (1.0%) 8,906,978 (99.0%) 
9 10,476,820 1,354 (0.0%) 95,262 (0.9%) 10,380,204 (99.1%) 

10 11,756,554 1,128 (0.0%) 102,004 (0.9%) 11,653,422 (99.1%) 
11 6,040,168 826 (0.0%) 57,338 (0.9%) 5,982,004 (99.0%) 
12 8,714,652 1,208 (0.0%) 103,834 (1.2%) 8,609,610 (98.8%) 

*Clean reads (single) are reads without mates and were not included in further analysis. 
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Table 5. Percentage reads mapped to the zebrafish genome (GRCz10) per sample. 

Sample No. 
Quality Control 

Passed Reads 
Mapped Reads % Mapped 

1 9,542,516  8,651,254 90.66 
2 11,517,082  10,454,060 90.77 
3 9,392,534 8,394,164 89.37 
4 7,851,270  7,292,452 92.88 
5 7,391,476  6,773,551 91.64 
6 5,403,506 4,943,405 91.49 
7 8,210,538  7,409,487 90.24 
8 8,906,978  7,880,694 88.48 
9 10,380,204  9,669,547 93.15 

10 11,653,422  10,787,378 92.57 
11 5,982,004  5,544,448 92.69 
12 8,609,610  7,889,058 91.63 

 

Genes were considered as differentially expressed according to Cuffdiff parameters 

(Trapnell et al., 2013). After prolonged exposure to vortex flow stimulation, 1170 and 

935 genes were identified as differentially expressed in hypothalamic and non-

hypothalamic cells, respectively. From the 1170 genes expressed differentially in 

hypothalamic cells, 301 were also found to be differentially expressed in non-

hypothalamic cells, leaving 869 genes whose differential expression was detected only 

in hypothalamic cells. In the same way, 634 genes were detected to be differentially 

expressed only in non-hypothalamic cells (Figure 3.27A).  

From the 1170 genes differentially regulated in hypothalamic cells after prolonged 

vortex flow stimulation, 503 genes were upregulated and 667 downregulated. In the 

case of the 935 genes detected in non-hypothalamic cells as differentially expressed, 

231 genes were upregulated and 705 downregulated (Figure 3.27B). Interestingly, from 

the 301 genes which were identified as differentially expressed in both hypothalamic 

and non-hypothalamic cells, there were some genes which showed opposite expression 

pattern depending on the cell type. From these genes, 12 were identified as 

downregulated in hypothalamic cells after prolonged vortex flow stimulation, but 

upregulated in non-hypothalamic cells. On the other hand, other 4 genes were identified 

as upregulated in hypothalamic cells after treatment, but downregulated in non-

hypothalamic cells (Table 6).  
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Figure 3.27. Number of genes differentially regulated in hypothalamic and non-

hypothalamic cells after prolonged exposure to vortex flow stimulation. A: Venn diagram 

showing the number of genes affected after prolonged exposure to vortex flow stimulation in 

either hypothalamic cells or non-hypothalamic cells, or shared by both. B: Number of genes 

identified as up- or downregulated in hypothalamic and non-hypothalamic cells after prolonged 

exposure to vortex flow stimulation.    

Table 6. Genes identified as regulated in opposite direction after prolonged exposure to 

vortex flow stimulation in hypothalamic cells when compared to non-hypothalamic cells. 

 

Genes downregulated in hypothalamic cells and upregulated in non-hypothalamic cells 
Gene symbol Gene name Fold change P-value 
agxtb Alanine-glyoxylate aminotransferase b 0.450 2.6E-02 
ggt1b Gamma-glutamyltransferase 1b 0.221 1.4E-03 
grin1b Glutamate receptor, ionotropic, N-methyl D-

aspartate 1b 0.388 1.4E-03 
mfsd4b Major facilitator superfamily domain containing 4b 0.133 1.2E-02 
mir124-2 microRNA 124-2 0.489 2.6E-02 
mir182 microRNA 182 0.244 2.9E-02 
si:ch211-139a5.9 Uncharacterized protein –  FXYD family 

(ATP1G1/PLM/MAT8 domain) 0.308 1.4E-03 
slc22a2 Solute carrier family 22 (organic cation transporter), 

member 2 0.315 1.4E-03 
slc22a6l Solute carrier family 22 (organic anion transporter), 

member 6, like 0.197 1.4E-03 
slc22a7b.1 Solute carrier family 22 (organic anion transporter), 

member 7b, tandem duplicate 1 0.300 1.9E-02 
slc5a8l Solute carrier family 5 (iodide transporter), member 

8, like 0.122 2.6E-03 
tmem27 Transmembrane protein 27 0.236 1.4E-03 
Genes upregulated in hypothalamic cells and downregulated in non-hypothalamic cells 
Gene symbol Gene name Fold change P-value 
caspb Caspase b 2.41 4.6E-03 
myl10 Myosin, light chain 10, regulatory 1.69 3.4E-02 
myl13 Myosin light chain 13 1.98 4.6E-03 
tnnt2e Troponin T2e, cardiac 1.94 2.9E-02 
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 Moreover, top up and downregulated genes in hypothalamic and non-hypothalamic 

cells after exposure to prolonged vortex flow stimulation were identified and are shown 

in tables 7 and 8, respectively. 

3.4.5 Validation of RNA-seq data by real time qPCR. 

To validate the gene expression profiles obtained by RNA-seq, real time qPCR was 

performed as an alternative method to measure relative gene expression. Two 

comparisons were made: 1) Control non-hypothalamic cells vs control hypothalamic 

cells (to assess oxt enrichment), and 2) control non-hypothalamic cells vs non-

hypothalamic cells from larvae exposed to prolonged vortex flow stimulation (to assess 

treatment effects). The expression of oxt and selected genes identified by RNA-seq data 

among the top up and downregulated genes after prolonged vortex flow exposure was 

confirmed by real time qPCR. Expression profiles of all genes evaluated by real time 

qPCR were in agreement with RNA-seq data, showing a high degree of correlation 

(Table 9 and Figure 3.28).  

Table 7. Top 15 genes identified as up and downregulated in hypothalamic cells after 

prolonged exposure to vortex flow stimulation. 

Hypothalamic cells 
Upregulated Downregulated 
Gene Fold change P-value Gene Fold change P-value 
si:dkey-30j10.5 20.47 1.5E-03 *stc1l 0.002 3.7E-03 
tnfa 8.51 1.5E-03 tcnl 0.053 1.5E-03 
si:dkey-29h14.10 7.86 2.1E-02 slc26a6 0.085 3.5E-02 
csf3a 7.20 1.5E-03 bx908782.1 0.090 1.5E-03 
si:dkey-202i12.5 6.90 1.5E-03 *myhz2 0.096 1.5E-03 
il4i1 6.49 1.5E-03 cnfn 0.100 3.7E-03 
alpk1 6.02 1.2E-02 trpm1a 0.102 1.5E-03 
itpripl2 5.87 3.7E-03 si:ch211-229d2.5 0.113 1.5E-03 
il1b 5.78 1.5E-03 cyp4v8 0.114 9.5E-03 
timp2b 5.73 1.5E-03 slc22a4 0.115 1.5E-03 
slc2a3b 5.27 2.2E-02 lye 0.120 1.5E-03 
tmtc4 5.12 3.7E-03 *mep1a.2 0.121 1.5E-03 
tnfrsf18 5.08 1.5E-03 slc5a8l 0.122 2.7E-03 
hapln2 5.04 2.1E-02 col10a1a 0.126 1.5E-03 
ccl35.2 5.04 2.7E-03 slc23a1 0.129 5.4E-03 
* Affected also in non-hypothalamic cells 
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Table 8. Top 15 genes identified as up and downregulated in non-hypothalamic cells after 

prolonged exposure to vortex flow stimulation. 

Non-hypothalamic cells 
Upregulated Downregulated 
Gene Fold change P-value Gene Fold change P-value 
mfsd4b 6.48 2.2E-03 *stc1l 0.037 2.2E-03 
si:dkey-90l23.1 6.03 2.2E-03 *mep1a.2 0.037 2.8E-02 
rsad2 6.02 5.4E-03 Mogat2 0.116 3.4E-02 
gpr84 5.26 3.9E-03 *myhz2 0.116 2.2E-03 
slc13a1 5.19 2.2E-03 enpp7.1 0.120 2.2E-03 
traf1 4.39 5.4E-03 fut9d 0.131 1.8E-02 
si:ch211-13o20.3 4.09 1.1E-02 ch25hl1.1 0.134 2.5E-02 
timd4 4.07 2.2E-03 si:dkey-22i16.7 0.136 2.2E-03 
thbs3b 4.05 2.4E-02 myhz1.2 0.139 1.3E-02 
slc2a6 4.00 2.2E-03 slc6a19a.2 0.141 2.2E-03 
arg1 3.82 1.9E-02 cyp2y3 0.142 2.2E-03 
slc6a18 3.80 2.2E-03 slc26a3.2 0.150 2.2E-03 
epg5 3.80 4.2E-02 fabp6 0.151 2.2E-03 
slc22a6l 3.71 2.2E-03 cd36 0.157 2.2E-03 
mdp1 3.69 3.9E-03 asah2 0.159 2.2E-03 
* Affected also in hypothalamic cells 

Table 9. Validation of RNA-seq data by real time qPCR 

Comparisons between RNA-seq and qPCR results 
Comparison Gene symbol 

 
Log(Fold change) 

 
 

 
RNA seq 

 
qPCR 

Control non-hypothalamic cells 
vs  

Control hypothalamic cells 
oxt  -10.36  -10.68 

Control non-hypothalamic cells 
vs  

Early Stress non-hypothalamic cells 
mfsd4b  2.70  4.07 

 rsad2  2.59  1.96 
 stc1l  -4.76  0.20 
 mep1a.2  -4.74  -1.17 
 nr3c1 

 
-0.02 

 
0.25 
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Figure 3.28. RNA-seq data and qPCR results are in 

agreement. Expression of oxt in control hypothalamic and 

non-hypothalamic cells and other 5 genes included in the 

top differentially expressed genes in non-hypothalamic cells 

after prolonged exposure to vortex flow stimulation (table 9) 

was analyzed by qPCR. The results were correspondingly 

compared to the RNA-seq data. Correlation analysis shows 

a high degree of agreement (Pearson analysis, p=0.0138).  
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3.4.6 Gene ontology enrichment analysis of hypothalamic and non-
hypothalamic cells after prolonged exposure to vortex flow stimulation.  

Gene ontology enrichment analysis was performed to elucidate overrepresented 

signaling and metabolic canonical pathways after molecular changes induced by 

prolonged exposure to vortex flow stimulation. To evaluate this, the Ingenuity Pathway 

Analysis (IPA) software, based on the Ingenuity Knowledge Base (Qiagen), was used. 

Differential expression data obtained from Cuffdiff was used as input data and an IPA’s 

core analysis was generated for each of the two data sets: hypothalamic and non-

hypothalamic cells.   

Tables 10 and 11 show the top 15 overrepresented canonical pathways which are 

enriched (either up or downregulated) after prolonged exposure to vortex flow 

stimulation in hypothalamic and non-hypothalamic cells, respectively. Among the top-

ranked pathway categories that are enriched in hypothalamic cells are lipid metabolism, 

cellular immune response, neurotransmitters and nervous system signaling, 

cardiovascular signaling, intracellular and second messenger signaling, and cellular 

stress and injury. In non-hypothalamic cells, the canonical pathway of eukaryotic 

initiation factor 2 signaling was ranked as the most significant enriched pathway; it was 

followed by the pathways categories of cellular growth, proliferation and development, 

neurotransmitters and nervous system signaling, lipid metabolism and nuclear receptor 

signaling, cardiovascular signaling, disease-specific pathways (Mitochondrial 

dysfunction and Maturity onset diabetes young signaling, MODY), glycolysis, electron 

transfer, and gluconeogenesis. 

To evaluate the activation state after the treatment (activated or inhibited), IPA software 

calculates the z-score. This is calculated based on the expression pattern of the genes in 

the data set that are involved in a particular pathway and the one reported in the 

Ingenuity Knowledge Base. Pathways with positive z-scores are considered as activated. 

However, only pathways with z-scores ≥ 2 are considered as statistically significant. On 

the other hand, pathways with negative z-scores are considered as inhibited and only z-

scores ≤ -2 are considered statistically significant. In hypothalamic cells, there is 

predicted activation of the canonical pathways identified as “Leukocyte Extravasation 

Signaling”, “Production of Nitric Oxide and Reactive Oxygen Species in 

Macrophages”, “Fc Receptor-mediated Phagocytosis in Macrophages and Monocytes”, 

“Tec Kinase Signaling”, and “Regulation of Actin-based Motility by Rho”. In the case 
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of non-hypothalamic cells, the canonical pathway identified as “eif2 signaling” was 

predicted to be inhibited while the pathway identified as “RhoGDI signaling” was 

predicted to be activated.  

3.4.7 Upstream regulator analysis 

The IPA software was used to identify candidate molecules which may be involved 

upstream of the molecular changes found in hypothalamic and non-hypothalamic cells 

after prolonged vortex flow stimulation. Tables 12 and 13 summarize the top 20 

upstream regulators which were predicted to be involved in hypothalamic and non-

hypothalamic cells, respectively. Common molecules in the top 20 predicted upstream 

regulators in both hypothalamic and non-hypothalamic cells after stimulation include: 

tumor necrosis factor (TNF), transforming growth factor beta 1 (TGFB1), peroxisome 

proliferator-activated receptor alpha (PPARA), interleukin 1 beta (IL1B), nuclear 

receptor subfamily 1 group H member 4 (NR1H4), insulin, peroxisome proliferator-

activated receptor gamma (PPARG), amyloid beta precursor protein (APP), leptin 

(LEP), and preproinsulin (Ins1). Predicted upstream regulators found in the top 20 

regulators only in hypothalamic cells include: Interferon gamma (IFGN), glucocorticoid 

receptor (NR3C1), interleukin 4 (IL4), CREB binding protein (CREBBP), estrogen 

receptor 2 (ESR2), Nuclear factor (NF), Colony stimulating factor 1 (CSF2), 

CCAAT/enhancer binding protein alpha (CEBPA), low density lipoprotein (LDL), and 

CD40 ligand (CD40LG). Predicted upstream regulators found only in the top 20 

regulators of non-hypothalamic cells include: Myelocytomatosis oncogene (MYC), 

Tumor protein p53 (TP53), hepatocyte nuclear factor 4 alpha (HNF4), RNA 

polymerase II, epidermal growth factor (EGF), microtubule associated protein Tau 

(MAPT), huntingtin (HTT), Harvey rat sarcoma viral oncogene homolog (HRAS), 

pancreatic and duodenal homebox 1 (PDX1), and presenilin 1 (PSEN1). Interestingly, 

the predicted upstream regulators TGB1 and insulin show an opposite direction of 

regulation in hypothalamic cells and non-hypothalamic cells; TGB1 was predicted to be 

activated after prolonged vortex flows stimulation in hypothalamic cells (z-score: 

2.827), while in non-hypothalamic cells a tendency to be inhibited was found (z-score: -

0.541). In the case of insulin, it was predicted to be activated after prolonged vortex 

flow treatment in hypothalamic cells (z-score: 2.070), while in non-hypothalamic cells 

there was a tendency to be inhibited (z-score: -0.305). 
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Table 10. Top 15 canonical pathways enriched in hypothalamic cells after exposure to 

prolonged vortex flow stimulation.  

Hypothalamic cells 
 

   
Ingenuity Canonical Pathway Pathway Category -log(p-value) Ratio z-score 
FXR/RXR Activation Lipid metabolism, Nuclear receptor signaling 12.69 28/126 NA 
Leukocyte Extravasation Signaling Cellular immune response 11.13 33/198 2.294 
Phototransduction Pathway Neurotransmitters and other nervous system 

signaling 10.69 17/53 NA 
Production of Nitric Oxide and Reactive 
Oxygen Species in Macrophages 

Cellular immune response 
10.17 30/180 2.502 

Axonal Guidance Signaling Neurotransmitters and other nervous system 
signaling 8.75 47/434 NA 

Atherosclerosis Signaling Cardiovascular signaling 8.15 22/124 NA 
Ephrin Receptor Signaling Neurotransmitters and other nervous system 

signaling, Organismal growth and development 7.87 26/174 1.964 
Protein Kinase A Signaling Intracellular and second messenger signaling 7.47 41/386 0.354 
Fc Receptor-mediated Phagocytosis in 
Macrophages and Monocytes 

Cellular immune response 
7.39 18/93 2.357 

Type II Diabetes Mellitus Signaling Cellular stress and injury 7.25 20/116 1.387 
Signaling by Rho Family GTPases Intracellular and second messenger signaling 6.86 29/234 1.460 
Tec Kinase Signaling Intracellular and second messenger signaling 6.27 22/157 2.840 
Relaxin Signaling Growth factor signaling, Organismal growth and 

development 6.15 20/135 0.333 
Regulation of Actin-based Motility by 
Rho 

Neurotransmitters and other nervous system 
signaling 6.05 16/91 2.324 

Thrombin Signaling Cardiovascular signaling 5.94 24/190 0.943 
 

 

 

Table 11. Top 15 canonical pathways enriched in non-hypothalamic cells after exposure to 

prolonged vortex flow stimulation. 

Non-hypothalamic cells 
 

   
Ingenuity Canonical Pathway Pathway Category -log(p-value) Ratio z-score 

EIF2 Signaling 
Cellular growth, proliferation and development, 
cellular stress and injury, intracellular and 
second messenger signaling. 

34.12 54/184 -4.914 

Regulation of eIF4 and p70S6k Signaling 
Cellular growth, proliferation and development, 
cellular stress and injury, intracellular and 
second messenger signaling. 

12.11 26/146 NA 

Phototransduction Pathway Neurotransmitters and other nervous system 
signaling 11.37 16/53 NA 

mTOR Signaling Cellular growth, proliferation and development 11.08 28/187 0.378 
FXR/RXR Activation Lipid metabolism, nuclear receptor signaling 9.34 21/126 NA 
Atherosclerosis Signaling Cardiovascular signaling 7.14 18/124 NA 
Mitochondrial Dysfunction Disease-specific pathway 6.93 21/171 NA 
Glycolysis I Glycolysis 6.19 8/25 NA 
Oxidative Phosphorylation Electron transfer 5.75 15/109 NA 
Maturity Onset Diabetes of Young 
(MODY) Signaling Disease-specific pathway 5.61 7/21 NA 
Gluconeogenesis I Gluconeogenesis 5.04 7/25 NA 
Tight Junction Signaling Apoptosis, Cell cycle regulation 4.63 17/167 NA 
Axonal Guidance Signaling Neurotransmitters and other nervous system 

signaling 4.62 31/434 NA 
LXR/RXR Activation Nuclear receptor signaling 4.53 14/121 -1.941 
RhoGDI Signaling Intracellular and second messenger signaling. 4.43 17/173 2.111 
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Table 12. Molecules predicted as upstream regulators of the molecular changes found in 

hypothalamic cells after prolonged exposure to vortex flow stimulation.   

Hypothalamic cells 

Upstream 
regulator 

Name Molecule type 

P-value of 
overlap 

Predicted 
activation 

state 

z-score 

TNF Tumor necrosis factor cytokine 6.76E-22 Activated 5.703 
IFNG Interferon gamma cytokine 5.22E-21 Activated 6.148 
TGFB1 Transforming growth factor beta1 growth factor 6.46E-21 Activated 2.827 
PPARA Peroxisome  proliferator-activated 

receptor alpha 
ligand-dependent nuclear receptor 

4.04E-17 
  -0.400 

IL1B Interleukin 1 beta cytokine 4.23E-16 Activated 3.545 
NR3C1 Nuclear receptor subfamily 3 

group C member 1 
ligand-dependent nuclear receptor 

1.10E-12 
  -1.005 

IL4 Interleukin 4 cytokine 
3.71E-12 

  1.677 

CREBBP CREB binding protein transcription regulator 
2.33E-11 

  0.149 

NR1H4 Nuclear receptor subfamily 1 
group H member 4 

ligand-dependent nuclear receptor 
3.37E-11 

  -0.697 
ESR2 Estrogen receptor 2 ligand-dependent nuclear receptor 5.01E-11 

 
-1.396 

Insulin Insulin group 5.03E-11 Activated 2.070 
NFkB 
(complex) 

Nuclear factor  complex 
7.45E-11 Activated 2.837 

PPARG Peroxisome  proliferator-activated 
receptor gamma 

ligand-dependent nuclear receptor 
1.41E-10 Inhibited -2.254 

CSF2 Colony stimulating factor 1 cytokine 2.30E-10 Activated 3.344 
APP Amyloid beta precursor protein other 3.30E-10 Activated 2.719 
LEP Leptin growth factor 3.35E-10 

 
1.679 

CEBPA CCAAT/enhancer binding protein 
alpha 

transcription regulator 
3.36E-10 

 
-0.059 

Ins1 Insulin I; preproinsulin other 3.88E-10 
 

0.107 
LDL Low density lipoprotein complex 4.38E-10 

 
0.456 

CD40LG CD40 ligand cytokine 7.89E-10 Activated 3.322 
 

3.4.8 Disease and function analysis 

Based on the differential expression analysis from the RNA-seq data set obtained 

after prolonged vortex flow stimulation for hypothalamic and non-hypothalamic cells, 

the IPA software was used to evaluate the enriched canonical pathways and to predict 

candidate upstream regulators (section 3.4.5 and 3.4.6). Moreover, I used the IPA 

software to predict relevant biological functions and diseases which may be activated or 

inhibited based on the gene expression changes observed in the experimental data set. 

Tables 14 to 17 show the top diseases or function annotations that are predicted to be 

decreased or increased in hypothalamic and non-hypothalamic cells after prolonged 

vortex flow stimulation.  
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Table 13. Molecules predicted as upstream regulators of the molecular changes found in 

non-hypothalamic cells after prolonged exposure to vortex flow stimulation.   

Non-hypothalamic cells 

Upstream 
regulator 

Name Molecule type 

P-value of 
overlap 

Predicted 
activation 

state 

z-score 

MYC Myelocytomatosis oncogene transcription regulator 1.52E-28 Inhibited -5.015 
TP53 Tumor protein p53 transcription regulator 1.52E-19 

 
-1.585 

PPARA Peroxisome  proliferator-activated 
receptor alpha 

ligand-dependent nuclear 
receptor 5.16E-19 

 
-0.746 

TGFB1 Transforming growth factor beta1 growth factor 3.88E-16 
 

-0.541 
HNF4A Hepatocyte nuclear factor 4 alpha transcription regulator 5.54E-16 Inhibited -3.911 
RNA 
polymerase II 

RNA polymerase II complex 
2.23E-14 

  Ins1 Insulin I; preproinsulin other 2.32E-14 Inhibited -2.107 
LEP Leptin growth factor 2.70E-14 

 
0.768 

APP Amyloid beta precursor protein other 6.22E-14 
 

1.264 
TNF Tumor necrosis factor cytokine 1.85E-13 Activated 2.911 
Insulin Insulin group 8.08E-13 

 
-0.305 

EGF Epidermal growth factor growth factor 7.72E-12 
 

-1.685 
IL1B Interleukin 1 beta cytokine 1.01E-11 

 
0.603 

MAPT Microtubule associated protein Tau other 1.42E-11 
  HTT Huntingtin transcription regulator 2.76E-11 
 

-1.844 
HRAS Harvey rat sarcoma viral oncogene 

homolog 
enzyme 

1.46E-10 
 

0.059 

PPARG Peroxisome  proliferator-activated 
receptor gamma 

ligand-dependent nuclear 
receptor 3.88E-10 Inhibited -2.380 

NR1H4 Nuclear receptor subfamily 1 group H 
member 4 

ligand-dependent nuclear 
receptor 1.11E-09 

 
-02.37 

PDX1 Pancreatic and duodenal homeobox 1 transcription regulator 1.50E-09 
 

0.131 
PSEN1 Presenilin 1 transcription regulator 1.78E-09 

 
0.928 

 

In hypothalamic cells, function annotations in the category of “molecular transport”, 

“small molecule biochemistry”, and “Lipid metabolism” are the most prevalent in the 

list; other categories such as “infectious diseases”, “development”, and “carbohydrate 

metabolism” were also predicted to be decreased in hypothalamic cells after treatment.  

On the other hand, among the most prevalent categories predicted to be increased in 

hypothalamic cells after prolonged vortex flow stimulation are “cellular movement”, 

“cellular function and maintenance”, and “cell to cell signaling and interaction”. 

Categories such as “immune cell trafficking”, “inflammatory response”, “organismal 

survival”, “cell death and survival”, and “hematological system development and 

function” also appeared among the top list.  

In the case of non-hypothalamic cells, the function annotation with decreased 

activity ranked as the most significant was “nucleic acid metabolism”; this was followed 

by function annotation categories such as “lipid metabolism”, “small molecule 
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biochemistry”, “molecular transport”, “organismal survival”, “endocrine system 

development and function”, “cardiovascular system development and function”, 

“energy production”, “infectious diseases”, and “cellular assembly and organization”. 

Among the categories which were predicted to have increased activity are “cell death 

and survival”, “cancer”, “organismal injury and abnormalities”, “tumor morphology”, 

“inflammatory disease”, “metabolic disease”, “gene expression”, and “cardiovascular 

disease”. 

Table 14. Top predicted categories of function annotations with a decreased activation 

state in hypothalamic cells after exposure to prolonged vortex flow stimulation. 

Hypothalamic cells – Decreased activation state 
 

Category 
Disease or Functions 
Annotation 

P-value z-score 
No. of 

molecules 
Molecular Transport transport of molecule 5.40E-33 -4.317 216 
Lipid Metabolism, Small Molecule Biochemistry fatty acid metabolism 3.25E-19 -2.401 91 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry transport of lipid 1.63E-18 -2.449 50 
Molecular Transport secretion of molecule 8.83E-18 -2.366 84 
Infectious Diseases infection of Mammalia 2.75E-14 -3.532 55 
Cellular Development, Cellular Growth and Proliferation, 
Embryonic Development, Organ Development, Organismal 
Development, Tissue Development, Visual System 
Development and Function 

formation of retinal cells 2.03E-13 -2.724 21 

Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry transport of steroid 6.08E-13 -2.708 32 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry secretion of lipid 1.62E-11 -3.381 34 
Embryonic Development, Organ Development, Organismal 
Development, Tissue Development, Visual System 
Development and Function 

development of retina 8.75E-11 -2.462 23 

Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry absorption of lipid 3.03E-10 -2.356 16 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry flux of lipid 4.23E-10 -2.422 25 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry transport of sterol 5.81E-10 -2.021 25 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry efflux of lipid 7.44E-10 -2.290 24 
Molecular Transport export of molecule 9.32E-10 -3.056 42 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry transport of cholesterol 1.41E-09 -2.346 24 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry efflux of cholesterol 1.62E-09 -2.070 22 
Molecular Transport transport of ion 2.91E-09 -2.787 59 
Carbohydrate Metabolism, Molecular Transport transport of carbohydrate 4.57E-09 -2.050 31 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry uptake of cholesterol 4.95E-09 -2.610 14 
Infectious Diseases Bacterial Infections 1.07E-08 -3.379 51 
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Table 15. Top predicted categories of function annotations with an increased activation 

state in hypothalamic cells after exposure to prolonged vortex flow stimulation.  

Hypothalamic cells – Increased activation state 

 
Category 

Disease or Functions 
Annotation 

P-value z-score 
No. of 

molecules 
Cellular Movement cell movement 3.01E-26 2.652 243 
Cellular Movement migration of blood cells 6.92E-26 2.251 133 
Cellular Movement, Immune Cell Trafficking leukocyte migration 1.91E-25 2.226 132 
Cellular Movement migration of cells 1.64E-24 2.739 221 
Cellular Function and Maintenance cellular homeostasis 1.23E-21 2.617 187 
Cellular Movement homing of cells 2.53E-21 2.199 93 
Cellular Movement homing of blood cells 2.32E-20 2.388 70 
Inflammatory Response inflammatory response 2.13E-19 2.357 110 
Cellular Movement, Hematological System Development 
and Function, Immune Cell Trafficking homing of leukocytes 2.90E-19 2.275 68 
Cell-To-Cell Signaling and Interaction adhesion of blood cells 9.51E-19 2.312 67 
Organismal Survival morbidity or mortality 8.29E-18 2.046 240 
Cellular Movement, Hematological System Development 
and Function, Immune Cell Trafficking, Inflammatory 
Response 

chemotaxis of myeloid cells 1.33E-16 2.191 54 

Cellular Function and Maintenance, Inflammatory 
Response phagocytosis 6.39E-16 2.047 54 
Inflammatory Response immune response of cells 1.33E-15 2.302 82 
Cell Death and Survival cell death 3.42E-15 2.452 300 
Hematological System Development and Function, 
Tissue Morphology quantity of lymphocytes 1.16E-14 2.121 93 
Hematological System Development and Function, 
Tissue Morphology 

quantity of mononuclear 
leukocytes 1.96E-14 2.137 95 

Cellular Function and Maintenance engulfment of blood cells 2.24E-14 2.015 37 
Cellular Function and Maintenance, Hematological 
System Development and Function engulfment of myeloid cells 1.82E-13 2.132 32 
Cell-To-Cell Signaling and Interaction, Inflammatory 
Response immune response of leukocytes 1.88E-13 2.648 51 

 

3.5 Functional characterization of optogenetic and genetically 
targeted ablation tools for manipulating HPI axis activity. 
 

3.5.1 Optogenetic manipulation of pituitary corticotrophs increases stress-
induced cortisol levels. 

To manipulate endogenous cortisol levels in zebrafish larvae, Dr. Arturo Gutierrez-

Triana, in our laboratory, generated the transgenic line Tg(Pomc:bPAC-2A-

tdTomato)
hd10

 (pomc:bPAC) where expression of a blue light-photoactivated adenylyl 

cyclase from the soil bacterium Beggiatoa (bPAC) is driven by a fragment of the pomc 

promoter, resulting in bPAC expression in pituitary corticotroph cells (Ryu et al., 2010, 

Stierl et al., 2011, De Marco et al., 2013). This protein is expected to increase cAMP 

levels in corticotroph cells upon blue light stimulation, culminating in increased ACTH 

and cortisol secretion (Section 1.10, Figure 1.5A and C). 
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Table 16. Top predicted categories of function annotations with a decreased activation 

state in non-hypothalamic cells after exposure to prolonged vortex flow stimulation. 

Non-hypothalamic cells – Decreased activation state 
 

Category 
Disease or Functions 
Annotation 

P-value z-score 
No. of 

molecules 

Nucleic Acid Metabolism metabolism of nucleic acid 
component or derivative 7.08E-09 -2.723 51 

Nucleic Acid Metabolism, Small Molecule Biochemistry metabolism of nucleotide 8.46E-09 -2.183 45 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry transport of steroid 2.54E-08 -3.258 22 
Organismal Survival survival of organism 1.51E-07 -2.343 62 
Endocrine System Development and Function, Small 
Molecule Biochemistry metabolism of hormone 2.63E-07 -2.323 24 
Nucleic Acid Metabolism, Small Molecule Biochemistry synthesis of nucleotide 1.14E-06 -2.188 35 
Endocrine System Development and Function, Small 
Molecule Biochemistry synthesis of hormone 1.19E-05 -2.077 18 
Cardiovascular System Development and Function, 
Cellular Movement 

cell movement of endothelial 
cells 1.42E-05 -2.523 32 

Energy Production, Lipid Metabolism, Small Molecule 
Biochemistry oxidation of lipid 1.55E-05 -2.375 22 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry efflux of cholesterol 1.66E-05 -2.443 14 
Cardiovascular System Development and Function, 
Cellular Movement migration of endothelial cells 1.79E-05 -2.609 30 
Infectious Diseases replication of virus 3.22E-05 -3.355 44 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry flux of lipid 3.28E-05 -2.693 15 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry transport of sterol 3.89E-05 -2.612 15 
Cellular Assembly and Organization, Tissue 
Development formation of filaments 4.03E-05 -2.746 34 
Infectious Diseases replication of RNA virus 4.92E-05 -2.620 40 
Lipid Metabolism, Molecular Transport, Small Molecule 
Biochemistry excretion of lipid 9.61E-05 -2.117 7 
Lipid Metabolism, Small Molecule Biochemistry conversion of lipid 1.05E-04 -2.309 16 
Cardiovascular System Development and Function, 
Cellular Movement 

movement of vascular 
endothelial cells 1.25E-04 -2.282 18 

 

Table 17. Top predicted categories of function annotations with an increased activation 

state in non-hypothalamic cells after exposure to prolonged vortex flow stimulation. 

Non-hypothalamic cells – Increased activation state 

 
Category 

Disease or Functions 
Annotation 

P-value z-score 
No. of 

molecules 
Cell Death and Survival cell death 1.64E-26 2.178 275 
Cell Death and Survival necrosis 3.17E-24 2.812 226 
Cancer, Cell Death and Survival, Organismal Injury and 
Abnormalities, Tumor Morphology cell death of tumor cells 5.34E-21 3.221 69 
Cancer, Cell Death and Survival, Organismal Injury and 
Abnormalities, Tumor Morphology cell death of cancer cells 5.06E-18 3.357 58 
Cancer, Organismal Injury and Abnormalities cancer 6.50E-10 3.053 586 
Inflammatory Disease chronic inflammatory disorder 7.75E-09 2.183 82 
Metabolic Disease glucose metabolism disorder 4.46E-08 2.504 100 
Gene Expression expression of mRNA 5.85E-07 2.723 27 
Cardiovascular Disease, Organismal Injury and 
Abnormalities fibrosis of heart 3.22E-05 2.184 19 
Cancer, Hematological Disease, Immunological Disease, 
Organismal Injury and Abnormalities leukemia 1.21E-04 2.290 114 
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To evaluate whether bPAC expression in pituitary corticotrophs culminates in 

increased cortisol levels upon blue light stimulation, 6 dpf larvae expressing bPAC 

(bPAC+) and their negative siblings (bPAC-) were collected for cortisol measurement at 

either basal conditions, or after 5 minutes of blue light stimulation onset consisting of a 

3 minutes-squared pulse of blue light (2.8 mW*cm
-2

). Cortisol levels at basal conditions 

in bPAC+ and bPAC- did not present significant differences (Figure 3.29A). On the 

other hand, bPAC+ larvae showed higher cortisol levels after blue light stimulation 

(Figure 3.29A). I then asked whether repeated exposure to blue light stimulation would 

induce a sustained hypercortisolic state in bPAC+ larvae. To evaluate this, bPAC+ and 

bPAC- larvae were exposed to four consecutive squared blue light pulses (2.8 mW*cm-

2) with an inter-trial interval of 30 minutes. This inter-trial interval was selected because 

it assured comparable low cortisol levels in bPAC+ and bPAC- by the time of the onset 

of the subsequent blue light stimulations; by doing so, it was possible to compare the 

cortisol levels induced by the most recent blue light stimulation and not from previously 

elevated cortisol levels. Samples were collected 2 minutes after blue light offset in all 

cases. Figure 3.29B shows that, while bPAC+ larvae responded to each of the light 

pulses with higher cortisol levels, bPAC- larvae failed to do so after the first pulse, 

indicating that hypercortisolic states were induced in bPAC+ larvae after repeated blue 

light stimulation.     

 

 

 

 

 

 

 

Figure 3.29. Optogenetic manipulation of pituitary corticotrophs increases HPI axis gain 

and leads to hypercortisolic states. A: exposure to a blue light pulse of 3 minutes leads to 

higher cortisol levels in pomc:bPAC(+) larvae as compared to their siblings pomc:bPAC(-). No 

significant differences were observed between genotypes at basal conditions (Two way 

ANOVA: treatment: F(1,49)=35.17, p<0.0001; genotype: F(1,49)=11.37, p=0.0015; treatment x 
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genotype: F(1,49)=4.327, p=0.0428; Sidak’s post-test: genotype effect for each treatment, 

***p<0.001; sample size indicated in parenthesis). B: a sequence of blue light pulses consisting 

of 3 minutes with an inter-trial interval of 30 minutes induce sustained hypercortisolic state in 

pomc:bPAC(+) but not in pomc:bPAC(-) larvae (Two way ANOVA: stimulation: 

F(4,90)=15.99, p<0.0001; genotype: F(1,90)=50.04, p<0.0001; stimulation x genotype: 

F(4,90)=3.036, p=0.0213; Sidak’s post-test: genotype effect for each stimulation, *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001). 

 

3.5.2 Optogenetic manipulation of interrenal gland cells increases stress-induced 
cortisol levels. 

To manipulate HPI axis activity at the level of the interrenal gland, Dr. Arturo 

Guiterrez-Triana, in our laboratory, generated the transgenic line Tg(2kbStARp:bPAC-

tdTomato)
hd19

 (StAR:bPAC) where expression of bPAC is driven by a 2kb regulatory 

region of the StAR promoter, resulting in bPAC expression in the steroidogenic 

interrenal cells. Similar to the pomc:bPAC transgenic line, expression of bPAC in 

steroidogenic cells of the interrenal gland was expected to increase cortisol secretion 

upon blue light stimulation (Section 1.10, Figure 1.5B and C). 

To evaluate whether blue light exposure increases overall cortisol levels in larvae 

expressing bPAC under the StAR promoter, 4 dpf StAR:bPAC+ larvae were exposed to a 

squared pulse of blue light (2.8 mW*cm-2) for 3 minutes and samples were collected 

for cortisol measurement 2 minutes after blue light stimulation offset. Transgenic line 

Tg(2kbStARp:GFP), where GFP is driven by the same 2kb regulatory region of the StAR 

promoter used in the StAR:bPAC line, was used as control genotype and exposed to the 

same type of stimulation. Cortisol measures showed that at basal conditions both, 

StAR:bPAC+ and StAR:GFP+ larvae, presented similar cortisol levels which were not 

significantly different. However, after blue light stimulation, StAR:bPAC+ larvae 

showed higher cortisol levels than the StAR:GFP+ larvae (Figure 3.30).  
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Figure 3.30. Optogenetic manipulation of interrenal gland cells increases HPI axis gain 

leading to higher exposure to endogenous cortisol. Exposure to a blue light pulse of 3 

minutes leads to higher cortisol levels in StAR:bPAC larvae as compared to StAR:GFP. No 

significant differences were observed between genotypes at basal conditions (Two way 

ANOVA: treatment: F(1,20)=60.16, p<0.0001; genotype: F(1,20)=5.325, p=0.0318; treatment x 

genotype: F(1,20)=5.154, p=0.0344; Sidak’s post-test: genotype effect for each treatment: 

***p<0.001). 

 

3.5.3 Genetically targeted ablation of hypothalamic cells reduces stress-induced 
cortisol levels. 

The optogenetic tools described in previous sections (3.5.1 and 3.5.2) induced 

hypercortisolic states in freely swimming zebrafish larvae by manipulating pituitary 

corticotrophs or interrenal gland cells activity. In order to manipulate HPI axis activity 

in the opposite direction and generate hypocortisolic states in zebrafish larvae, Dr. 

Arturo Gutierrez-Triana generated in our laboratory a genetically targeted ablation tool 

targeted to the NPO region of the hypothalamus (Section 1.10, Figure 1.6). In the 

transgenic line Tg(otpECR6-E1b:nfsB-GFP)
hd14 

(otpECR6:nfsB-GFP) the regulatory 

element otpECR6 was used to drive expression of the E. coli nfsB as a GFP fusion 

protein. Metronidazole treatment in this transgenic line is expected to culminate in 

ablation of those cells expressing nfsB, and therefore in reduced HPI axis output 

(Section 1.10, Figure 1.6).  

To evaluate whether NPO cell ablation results in impaired cortisol response, cortisol 

levels were measured in 6 dpf otpECR6:nfsB-GFP and otpECR6:GFP (control) larvae 

at basal condition or after exposure to acute vortex flow stimulation (3 minutes, 330 

rpm). Larvae were previously incubated in either E2 medium or in E2 medium 

supplemented with Metronidazole (Met). Interestingly, neither genotype nor Met 

treatment had an effect in cortisol levels at basal conditions (Figure 31A). Acute vortex 

flow stimulation resulted in increased cortisol levels in both genotypes regardless of 

Met treatment (Figure 31B); however, Met treatment resulted in attenuation of cortisol 

response in both genotypes. Importantly, otpECR6:nfsB-GFP larvae exposed to Met 

showed a significant reduction in cortisol response when compared to otpECR6:GFP 

larvae treated with Met; in fact, cortisol response to the vortex flow stimulation differed 

between genotypes only when larvae were treated with Met (Figure 31B).        
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Figure 3.31. Targeted ablation of hypothalamic cells results in impaired cortisol response 

after metronidazole treatment. A: Cortisol levels at basal conditions of otpECR6:GFP and 

otpECR6:nfsb larvae with or without metronidazole (Met) treatment. No differences were 

observed between groups (Two way ANOVA: Met: F(1,20)=2.689, p<0.1167; genotype: 

F(1,20)=0.5703, p=0.4589; Met x genotype: F(1,20)=0.6486, p=0.4301; Sidak’s post- test: 

genotype effect for each treatment: no significant difference, p<0.05). B: Cortisol levels after 

acute exposure to vortex flow stimulation of otpECR6:GFP and otpECR6:nfsb larvae with or 

without Met treatment. Note that cortisol levels were different depending on genotype only 

when Met treatment was present (Two way ANOVA: Met: F(1,20)=73.11, p<0.0001; genotype: 

F(1,20)=2.412, p=0.1361; Met x genotype: F(1,20)=18.03, p=0.0004; Sidak’s post-test: 

genotype effect for each treatment, **p<0.01).    

 

3.5.4 Genetically targeted ablation of interrenal gland cells reduces basal and 
stress-induced cortisol levels. 

To target cell ablation to steroidogenic cells of the interrenal gland, the transgenic 

line Tg(2kbStARp:nfsB-GFP)
hd18

 (StAR:nfsB-GFP) was generated. In this transgenic 

line, expression of the bacterial nfsB is driven by a 2kb regulatory fragment of the StAR 

promoter. Similar to the otpECR6:nfsB-GFP line, ablation of steroidogenic cells of the 

interrenal gland was expected to decrease HPI axis output (Section 1.10, Figure 1.6). 

To evaluate whether ablation of interrenal cells in StAR:nfsB-GFP larvae culminates 

in hypocortisolic states, cortisol levels were measured in 6 dpf StAR:nfsB-GFP and 

StAR:GFP (control) larvae at basal conditions or after exposure to acute vortex flow 

stimulation (3 minutes, 330 rpm). Previous to acute stimulation, larvae were incubated 

in either E2 medium or E2 supplemented with Met. At basal conditions, cortisol levels 

were different between genotypes only when incubated in Met, where StAR:nfsB-GFP 

larvae showed reduced cortisol levels (Figure 3.32A). After acute vortex flow 

stimulation, cortisol levels were increased in both, StAR:nfsB-GFP and StAR:GFP larvae 
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without any significant difference between genotypes when the Met treatment was 

absent (Figure 3.32B). On the other hand, Met treatment attenuated the cortisol response 

to acute vortex flow stimulation of StAR:GFP larvae and completely abolished the 

response in StAR:nfsB-GFP larvae. 

 

 

 

 

 

 

 

Figure 3.32. Targeted ablation of interrenal gland cells results in impaired cortisol 

response after metronidazole treatment. A: Cortisol levels at basal conditions of StAR:GFP 

and StAR:nfsb-GFP larvae with or without metronidazole (Met) treatment. Note that in the 

presence of Met only StAR:nfsb-GFP larvae showed reduced cortisol levels (Two way ANOVA: 

Met: F(1,20)=1.562, p=0.2257; genotype: F(1,20)=10.52, p=0.0041; Met x genotype: 

F(1,20)=19.66, p=0.0003; Sidak’s post- test: effect of genotype for each treatment, 

****p<0.0001). B: Cortisol levels after acute exposure to vortex flow stimulation (330 rpm, 3 

minutes) of StAR:GFP and StAR:nfsb-GFP larvae with or without Met treatment. Note that 

cortisol levels were different depending on genotype only when Met treatment was present 

(Two way ANOVA: Met: F(1,28)=134.8, p<0.0001; genotype: F(1,28)=16.10, p<0.0004; Met x 

genotype: F(1,28)=22.24, p<0.0001; Sidak’s post-test: effect of genotype for each treatment, 

****p<0.0001).  
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4. DISCUSSION 
 

4.1 Characterization of the vortex flow stimulation. 

This work revealed that vortex flow stimulation can be used as an input signal to 

induce a stress response that culminates in increased cortisol levels and behavioral 

outputs changes in freely swimming zebrafish larvae. Although other studies have 

shown that different stressors are able to elicit a cortisol response in both larval and 

adult zebrafish, very few have reported a protocol capable of eliciting a strength-

dependent cortisol response. This feature is essential to elucidate the mechanisms 

involved in early programming of the HPA axis activity. Predicted and moderate stress 

inoculation during early life may enhance stress resilience by increasing the stress 

coping fitness of the organism when it is exposed to similar conditions in later stages of 

life (Schmidt, 2010, Taylor, 2010, Khulan and Drake, 2012, Daskalakis et al., 2013). On 

the other hand, strong or prolonged adverse experience is linked to metabolic and brain 

disorders (Seckl and Meaney, 2004, Reynolds, 2013). Being able to generate a wide 

range of physiological states where different magnitudes of HPA axis activity can be 

induced is essential for studying the intensity-dependent effects of early life adverse 

experience underlying the programming mechanism leading to a more resilient or 

disease-prone organism. 

The characterization of the stimulation protocol showed that the speed of the 

magnetic field inversion that can be controlled in the magnetic stirrer plate is linearly 

correlated to the mean speed to which a particle is exposed in the generated vortex flow; 

this allows the generation of a wide range of stress-induced states where the magnitude 

of the response can be manipulated by changing the strength of the input signal, an 

important aspect when analyzing subtle changes in HPA axis activity. 

 It is worth noting that, as expected, the speed to which a particle is exposed in the 

vortex flow depends on the distance to the center of the vortex: closer to the center, 

faster the flow. This represents an important feature of the stimulation protocol, since it 

allows free swimming larvae to actively direct themselves towards a preferred section of 

the dish, where the flow may be faster or slower This aspect of the stimulation protocol 

is essential for studying behavioral changes in adaptive coping strategies after early 

adverse experience.  
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An increased locomotor activity immediately after vortex flow stimulation onset 

was detected in 6 dpf larvae. Interestingly, this response was strength-dependent, being 

higher for higher strengths of vortex flow stimulation. Since the speed of the flow is 

faster at higher stimulation strengths, the larvae may respond with higher locomotor 

activity to cope with the perturbation. Other studies have shown that zebrafish larvae 

elicit an escape response by increasing their locomotor activity after sensing a water 

flow that may represent a predator threat (Kohashi and Oda, 2008, Olszewski et al., 

2012). The magnitude of the escape response depends on the flow speed to which the 

larvae are exposed and it is mediated, at least in part, by the visual and the 

mechanosensory lateral line systems. This may be relevant for survival in their natural 

environment in order to evade predation while efficiently using energetic resources. 

However, further experiments need to be performed in order to elucidate whether the 

strength-dependent locomotor activity seen after vortex flow stimulation onset is 

elicited by the speed of the generated flow and mediated by its perception by the visual 

and lateral line systems. 

Startle response to the onset of vibration stimulus of the stirrer may also contribute 

to the strength-dependent locomotor response observed. Startle response in zebrafish 

larvae consists of a “C-bend” of the body that is followed by a counter bend and a 

swimming bout (Kimmel et al., 1974). Features of this behavioral response, known as 

long-latency responses, have been shown to be dependent on the stimulus intensity 

(Eaton et al., 1977, Burgess and Granato, 2007, Kohashi and Oda, 2008). It is possible 

that the intensity-dependent locomotor activity (distance swam) seen immediately after 

the vortex flow stimulation onset is linked to a locomotor startle response elicited by the 

vibrational stimulus of the stirrer onset. This is also supported by the increase in change 

of body angle after onset of the stimulation (Figure 3.3A). Further characterization of 

the locomotor activity right after vortex flow onset is needed in order to elucidate the 

mechanisms mediating this response. 

4.1.1 Change in body angle orientation and rheotaxis behavior 

Analysis of the body orientation after vortex flow stimulation onset, together with 

the analysis of distance swam after stimulation onset, suggest that vortex flow 

stimulation elicit a directed locomotor activity. Zebrafish larvae may re-orientate their 

bodies to maximize the distance between their bodies and the vortex origin, and to 
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maintain a specific body orientation to cope with the water flow by showing rheotactic 

behavior. 

Increased change in body angle was found immediately after mild vortex flow 

stimulation onset. Startle response to vibrational stimulus of the stirrer onset (section 

4.1) may contribute to the increased change in body angle. This is further supported by 

the fact that change in body angle is only transiently increased after mild stimulation 

onset. Moreover, increase in change of body angle seems to be directed, since the larvae 

swim away from the vortex origin (Figure 3.3B) and remain away for the rest of the 

stimulation (data not shown). This may also contribute to the increased distance swam 

observed immediately after vortex flow stimulation onset (Figure 3.2C). This suggests 

that a complex and fast integration of cues occurs to rapidly detect the direction of the 

perturbation and avoid it, a typical escape behavior that has been widely described 

before (O'Malley et al., 1996, Budick and O'Malley, 2000).  

Further analysis of behavioral response to vortex flow stimulation showed that the 

percentage of larvae facing against the vortex current, a typical positive rheotactic 

behavior, positively correlates with the strength of the stimulation and therefore with the 

speed of the flow (Figure 3.4A and 3.1F). This is congruent with other studies showing 

that the strength of rheotaxis behavior in other fish species increases depending on the 

flow speed (Montgomery et al., 1997, Baker and Montgomery, 1999, Kanter and 

Coombs, 2003). Interestingly, the lowest speed flow tested (130 rpm) did not increase 

percentage of larvae facing to the vortex current nor affected the body angle orientation 

after stimulation onset (Figure 3.4A and B). Other studies have also found that low 

speed flows fail to elicit a consistent rheotactic behavior, confirming the presence of a 

rheotaxis threshold (Montgomery et al., 1997). This may be due simply to the low drag 

forces, where zebrafish larvae do not experience difficulty to keep performing, at least 

in part, exploratory behavior maintaining low energetic costs (Bak-Coleman et al., 

2013).  

 The frequency distribution of the body angles during vortex flow stimulation also 

changed depending on flow speed (Figure 3.4C-F). Higher vortex flow speeds 

decreased the change in body angle as well as the range of body angles during vortex 

flow stimulation (Figure 3.4B-F). It is possible that this behavioral output reduces 

energetic costs for larvae by aligning their body axes to the strong water flow while 
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maintaining a specific spatial location in the arena when the highest strength of the 

stimulation was used (530 rpm). On the other hand, mild strength stimulation (330 rpm) 

resulted in altered frequency distribution, but only a non-significant tendency of reduced 

change in body angle was observed. There are two possible explanations for the 

difference of body angle orientation induced by mild and high strength stimulations. 

One is that the performance of rheotactic behavior is flow speed-dependent. Since faster 

flows increase performance of rheotactic behavior, the body orientation acquired by the 

larvae exposed to the strongest strength of the stimulation (and maintaining this 

particular orientation) may be more beneficial for coping with the perturbation than the 

one induced by the mild speed flow. The second possible explanation relates to the 

actual hydrodynamics of the generated vortex flow. It is likely that the water flows in 

the arena are different depending on the strength of the magnetic field inversion that 

drives the magnetic stirrer. If this is the case, it is possible that in both cases, mild and 

high strengths of the vortex flow stimulation, zebrafish larvae acquire an optimal body 

axis position for those particular conditions. By doing so, larvae may cope more 

efficiently with the perturbation. A detailed characterization of the hydrodynamics of 

the generated vortex flows at different strengths is required to differentiate between 

these two possibilities. 

4.1.2 Vortex flow stimulation increases whole-body cortisol levels. 

Vortex flow stimulation induces a wide range of stress-induced cortisol levels 

depending on the strength and duration of the stimulation. Other studies have used 

swirling vortex flows successfully to increase cortisol levels in both larval and adult 

zebrafish (Alsop and Vijayan, 2008, Fuzzen et al., 2010). Alsop and Vjayan (2008) 

showed that 30 seconds of swirling vortex flows are sufficient to detect a cortisol 

increase five minutes after the stressor onset at different developmental stages (1 to 4 

dpf); however, they did not report the strength of the stimulation used. Fuzzen et al. 

(2010) used swirling vortex flows to activate the HPI axis of adult zebrafish. The 

authors report a clear linear correlation between the magnitude of the cortisol response 

and the vortex speed which is congruent with the data of 6 dpf zebrafish larvae reported 

in the present study. Although there are some differences between the study of Fuzzen 

et al. (2010) and the present study, such as duration of the stimulation, time of collection 

after the stimulation onset, and number of individuals per container, it is clear that both 

adults and larval zebrafish show a strength-dependent cortisol response to swirling 
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vortex flows, supporting the feasibility of using this protocol to study the mechanisms 

underlying stress-related processes in very early stages of development.  

Fuzzen et al. (2010) report this strength-dependent cortisol response to vortex flow 

with a fixed duration of the stimulation (20 minutes). In the present study, I further 

explored the interaction between the duration and the strength of the stimulation. 

Increasing the duration of the stimulation from 1 to 3 minutes led to higher cortisol 

levels only when high strength stimulation was used. When doubling the duration of the 

stimulation from 3 to 6 minutes, the cortisol response reached similar levels than those 

reached after 3 minutes of exposure to the vortex flow stimulation (Figure 3.6B). It is 

possible that the negative feedback already exerts its rapid effects after approximately 

three minutes of stimulation in order to limit the rise in cortisol levels (Evanson et al., 

2010, Tasker and Herman, 2011). Based on the data obtained in the present study, we 

can hypothesize that the absolute levels of cortisol reached after vortex flow stimulation 

are dictated, at least in part, by the strength of the stimulation perceived during the first 

minutes. This response is then terminated by the negative feedback relatively quickly 

after stress onset, preventing cortisol levels to keep increasing, even if the duration of 

the stimulation keeps increasing. This is further supported by data shown in section 

3.2.2 (Figure 3.13), where the glucocorticoid receptor antagonist mifepristone was used. 

In this experiment, the levels of cortisol reached after repeated vortex flow stimulation 

in the presence of the GR antagonist were higher than in the control groups in 4 and 8 

dpf larvae, suggesting that the absolute cortisol levels reached after repeated vortex flow 

stimulation of fixed duration and strength are controlled, at least in part, by rapid GR 

signaling (negative feedback), limiting the release of cortisol (details of this experiment 

are further discussed in section 4.2.3).  

Previous work in our laboratory and from others showed that the peak of stress-

induced cortisol levels in larvae can be detected 5-15 minutes after stressor onset (Alsop 

and Vijayan, 2008, Steenbergen et al., 2011, De Marco et al., 2013, Yeh et al., 2013). 

After this time, cortisol levels decrease as a function of time between 10 and 30 minutes 

after stressor onset, indicating that a functional negative feedback is present in 6 dpf 

larvae (De Marco et al., 2013). However, to date, there is no evidence in literature about 

how fast the HPI axis negative feedback exerts its effects in zebrafish larvae. 

Additionally, no study has addressed whether the stress-induced cortisol peak is 

influenced by rapid negative feedback signaling in zebrafish larvae. Taking into account 
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the data here presented, I propose that the negative feedback mediated by GR is already 

present and functional in zebrafish larvae and it may exert its rapid effects already after 

3-5 minutes after stressor exposure onset. Although further experiments need to be 

performed to explore this hypothesis, the data supports the suitability of the vortex flow 

stimulation protocol to address this and other questions to elucidate the mechanisms 

involved in stress-related processes related to the HPI axis development and function in 

zebrafish larvae.  

Further analysis of the vortex flow stimulation effects revealed a clear correlation 

between the behavioral output and the cortisol levels after exposure to vortex flow 

stimulation in 6 dpf zebrafish larvae (Figure 3.7A-B). It was previously discussed that 

locomotor activity (distance swam) immediately after vortex flow stimulation onset 

increases as the strength of the stimulation augments. This same trend in strength-

dependent response is true for vortex flow-induced cortisol levels, revealing a positive 

correlation between locomotor activity and cortisol levels. In the case of body 

orientation, a strength-dependent response was also observed: change in body angle 

decreases as vortex flow strength augments. This leads to a negative correlation 

between change in body angle and cortisol levels, where higher strengths of vortex flow 

stimulation lead to high cortisol levels and low change in body angle.  

A direct causal relationship between these aspects is difficult to establish without 

further experiments; however, it is reasonable to speculate that energy requirements and 

availability are common factors that may link locomotor activity, orientation 

maintenance, and cortisol response. The role of cortisol in energy mobilization is well 

established in both mammals and teleost fish (Dallman et al., 1993, Vijayan et al., 

1994). In humans, it is well known that physical activity increases cortisol levels 

depending on the intensity and duration of the exercise session (Davies and Few, 1973, 

Hill et al., 2008). Increased levels of cortisol during exercise exert vital physiological 

functions such as protein and lipid metabolism, and gluconeogenesis. These processes 

provide the energy necessary to cope with the challenging situation and allow the 

organism to adapt (McMurray and Hackney, 2000, Viru and Viru, 2004). It is intuitive 

to expect that increased physical activity increases energy requirements. Indeed, in 

zebrafish larvae it has been shown that exposure to water flows of different speeds 

increases oxygen consumption, suggesting that there is an increase in energy 

requirements to cope with the situation (Bagatto et al., 2001).   
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Hence, taking all together, it is possible to propose that after vortex flow 

stimulation, cortisol levels increase to facilitate energy mobilization that allow the 

performance of behavioral strategies to cope with the perturbation. 

4.2 Activation of the HPI axis during early life stages of zebrafish 
larvae. 

The activity of the HPI axis of zebrafish larvae through early development was 

characterized; this was evaluated by using vortex flow stimulation as the input signal 

and cortisol levels as the output measure. All three aspects evaluated (basal activity, 

acute response activation, and response to repeated exposure) revealed significant 

changes in HPI axis activity through development (4 to 8 dpf). This is the first time the 

interaction between the stimulus-strength, duration of the stimulation, developmental 

stage, and cortisol levels is characterized in developing zebrafish. Besides contributing 

to our understanding of the HPI axis ontogeny, this information is necessary to develop 

early life stress protocols to study developmental programming processes after early life 

adverse experience. 

4.2.1 Basal HPI axis activity 

Previous studies have reported the changes in basal cortisol levels in developing 

zebrafish larvae (Alsop and Vijayan, 2009, Alderman and Bernier, 2009, Alsop and 

Vijayan, 2008). A general trend of increasing basal cortisol levels after hatching is 

consistent throughout the studies. At very early stages of development, deposition of 

maternal cortisol has been detected; this decreases as the embryo develops until 

endogenous cortisol can be synthesize at around 2 – 3 dpf, when the embryos hatch 

(Alsop and Vijayan, 2008). Previous work in our laboratory (Dr. Chen-Min Yeh) has 

shown a validated protocol to measure and report cortisol levels (Yeh et al., 2013). 

However, to date, there is no consensus about the units of cortisol levels to be used, 

making the comparisons among studies complicated. Different raising conditions and 

experimental procedures to measure hormone levels add another level of variability 

difficult to tackle. Despite these complications, the general trend observed in the present 

study in basal cortisol levels through development is in agreement with previous 

studies. A consistent increase in cortisol levels was observed from 2 to 8 dpf larvae. 

Although from day 4 to day 7 no significant difference in cortisol levels was detected, 
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the general tendency of basal cortisol levels to increase through development reported in 

earlier studies was confirmed.  

4.2.2 HPI axis activation through development 

Taking advantage of the versatility of vortex flows as a stressor, I exposed 

developing larvae to different strengths of vortex flow stimulation using either 1, 3, or 6 

minutes as exposure time and asked whether the strength-dependent cortisol response 

profiles change through development. This characterization was essential to achieve the 

goals of the present study. First, it provides information about the nominal values of 

endogenous cortisol reached by zebrafish larvae after acute exposure to an external 

stimulation at different developmental stages; this facilitates the identification of 

potential deviations in HPI axis activity after early adverse experience (section 3.3). 

Second, it expands our understanding about the ontogeny and activity of the HPI axis 

after acute stress exposure, facilitating subsequent studies about stress response 

dynamics and effects of early life stress.  

One of the differences observed in cortisol profiles at different developmental stages 

was that 4 dpf larvae responded with the lowest absolute values of cortisol when 

exposed to vortex flow stimulation of different strengths. There are several potential 

explanations for this. One possibility is that 4 dpf larvae have a reduced capacity to 

synthesize and/or release cortisol from the interrenal glands. Previous studies have 

shown that the HPI axis of zebrafish larvae starts responding to external stimulus at 3-4 

dpf, suggesting that this hormonal response is in its early stages of maturation at 4 dpf 

(Alsop and Vijayan, 2008, Alderman and Bernier, 2009). However, it is unlikely that 

the relatively low cortisol levels observed in 4 dpf larvae can be explained only by a 

reduced capacity for cortisol synthesis/release from interrenal glands, since high 

strength osmotic shock induced higher cortisol response (Figure 3.11B). Moreover, by 

using optogenetic tools to increase endogenous cortisol levels, I observed that cortisol 

levels can be increased to higher levels than the ones observed after vortex flow 

stimulation (data not shown). Studies in trout have shown that cortisol synthesis starts 1 

week after hatching, but stress-induced cortisol increase does not occur until 2 weeks 

after hatching (Barry et al., 1995a). Additionally, ACTH stimulation of embryonic 

interrenal tissue coming from unhatched trouts led to increased cortisol levels in vitro 

(Barry et al., 1995b). In zebrafish larvae, it has been shown that the expression of the 

ACTH receptor is increased by 2 dpf (To et al., 2007); moreover, expression of 
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enzymes involved in the synthesis of cortisol such as the steroidogenic acute regulatory 

protein (StAR) and steroid 11-b hydroxylase, are also increased starting from 2 dpf 

(Alsop and Vijayan, 2008). This together suggests that unhatched zebrafish embryos 

may also be able to respond to increased ACTH levels with an increase in cortisol. 

Therefore, other authors have proposed that the reduced cortisol response to external 

stimuli seen in early stages immediately after hatching may be due to limiting factors 

mediating the activation of upstream sensory inputs and integration centers in the brain 

involved in triggering the hormonal cascade leading to a cortisol increase (Alsop and 

Vijayan, 2008). This may also represent the hypo-responsive period of the stress 

response axis which has been reported widely in mammals and lately in zebrafish larvae 

(Levine, 1994, Lupien et al., 2009, Steenbergen et al., 2011).  

Other possibility to explain the reduced cortisol response at 4 dpf is that the organs 

involved in sensing the vortex flow stimulation are not completely developed at this 

stage. However, the lateral line (the system most likely to be involved in sensing the 

water flow perturbation induced by vortex flow stimulation) develops at early stages of 

development before hatching (Kimmel et al., 1995, Sarrazin et al., 2010). Hence, it is 

most likely that the lower cortisol levels observed in 4 dpf larvae may be mediated by a 

combination of reduced capacity to synthesize/release cortisol, limited activation of the 

brain regions responsible for eliciting an input signal to the HPI axis, and/or an 

enhanced negative feedback mediated by glucocorticoids. Further experiments need to 

be performed to elucidate whether the mechanisms mediating the reduced cortisol 

response are an active developmental strategy to avoid detrimental effects of 

overexposure to glucocorticoids. This may provide insights into new interventions 

against stress-related disorders.  

Interestingly, at 6 dpf, high strengths of vortex flow stimulation induced the highest 

absolute values of cortisol when compared to 4 and 8 dpf. Cortisol levels induced by 

high strength stimulation decreased from 6 to 8 dpf. In fact, 8 dpf larvae showed a 

narrower range of cortisol levels as a response to different strengths of the vortex flow 

stimulation. Importantly, it is unlikely that this was due to a compromised nutritional 

state, since both fed and unfed larvae showed comparable cortisol responses (Figure 

3.11C). Hence, this difference in strength-dependent cortisol response observed in 8 dpf 

larvae may be due to a maturation process where either one or a combination of three 

aspects may be involved: 1) maturation of the regulatory systems involved in HPI axis 
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activity, 2) maturation of the sensory systems involved in perception and integration of 

the vortex flow stimulation input, and/or 3) maturation and growth of elements that 

facilitate coping with vortex flow perturbations, such as swimming bladder, muscle 

development, etc. Based on the current data, it is reasonable to propose that from 6 to 8 

dpf, a change in the HPI axis activation threshold occurs. This is supported by the fact 

that only the highest strength of vortex flow stimulation elicited higher cortisol levels in 

8 dpf larvae exposed for 3 or 6 minutes to the stimulation. All other conditions elicited 

lower cortisol levels in a narrow range, presumably because the threshold to respond 

with higher cortisol levels was not met by those conditions. Whether this change in 

threshold is at the level of the sensory system or at the HPI axis level is unclear (aspects 

No. 1 and 2); however, data from pharmacological experiments, where the GR was 

blocked using the antagonist mifepristone, showed that in the presence of the antagonist, 

cortisol levels reached higher levels than controls (Figure 3.13C). Although this 

experiments were performed using repeated vortex flow stress, they suggest that the low 

cortisol levels observed after exposure to vortex flow of low to medium strengths (130, 

230, 330 rpm) at 8 dpf may be mediated by GR signaling; hence, it is possible that the 

cortisol peak is regulated by rapid negative feedback exerted by the GR-signaling, 

suggesting that the regulatory systems of the HPI axis are mediating, at least partially, 

the low cortisol levels observed in 8 dpf larvae (aspect No. 1). It is important to keep in 

mind that this change in cortisol output in 8 dpf larvae can also be mediated by a change 

in the “meaning” of the vortex flow perturbation input for the larvae, i.e. how 

challenging the situation is for them at a particular developmental stage. The 

hydrodynamic perturbation may not induce the same physiological and behavioral 

adaptations to cope with the situation in zebrafish larvae at different developmental 

stages; mechanisms that facilitate the larvae to deal with the perturbation may be more 

developed at 8 dpf, leading to a reduced cortisol demand required to cope with the 

situation (aspect No. 3). This opens new avenues to study the mechanisms mediating the 

establishment of this threshold of HPI axis activity through early development 

providing a valuable model that offers a well-defined time window in which this 

process occurs.  

Moreover, the peak in HPI axis activity observed at 6 dpf is not stressor specific. 

Cortisol profiles obtained from 4 to 8 dpf after osmotic shock of low and high strengths 

revealed a similar pattern (Figure 3.11A-B). Based on this data, a potential explanation 
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for these patterns of cortisol profiles is proposed: first, a still ongoing maturation of the 

larvae’s capacity to synthesize/secrete cortisol is present before 6 dpf, resulting in 

limited levels of cortisol after stress exposure (even to high strength-stressors); second, 

increased maturation of HPI axis regulatory elements accompanied with an increased 

maturation of elements that facilitate the ability of the organism to cope with the 

perturbation results in a decreased cortisol demand to maintain homeostasis in 8 dpf 

larvae; this in turn sets a higher threshold of the HPI axis to elicit a response.  

4.2.3 Activation of the HPI axis after repeated exposure to vortex flow 
stimulation 

Analysis of repeated exposure to vortex flow stimulation revealed that the cortisol 

response to a second perturbation depends on the strength of the stimulation, the time of 

recovery between the two stimulations, and the developmental stage. A clear inhibition 

of the cortisol response to a second vortex flow stimulation was observed; this 

inhibition is likely to be mediated by the negative feedback exerted by GCs at any of the 

three levels of the HPI axis (Wendelaar Bonga, 1997). Supporting this is the 

pharmacological data showing that in the presence of the GR antagonist mifepristone, 

larvae of all developmental stages tested (4, 6 and 8 dpf) were able to respond again 

with increased cortisol levels to repeated vortex flow stimulation. Interestingly, since 

these actions take place in the order of minutes, it suggests that the inhibition of the 

cortisol response to a second perturbation is mediated by a rapid negative feedback that 

involves GR signaling instead of the slow transcriptional negative feedback widely 

studied (Wendelaar Bonga, 1997, Dallman et al., 1994). Previous studies have shown 

that the endocannabinoid system is involved in the rapid negative feedback mediated by 

GC at the level of hippocampus, amygdala, anterior pituitary, and hypothalamus (Tasker 

and Herman, 2011). Within 10 minutes, increased GC levels induce the release of 

endocannabinoids in the hypothalamus in a concentration-dependent manner (Hill et al., 

2010); released endocannabinoids from the postsynaptic neurons in hypothalamic 

neurons travel through the synaptic cleft and bind the cannabinoid receptor (CB1) 

located at the presynaptic neuron, forming a retrograde signaling process; this inhibits 

the release of excitatory neurotransmitters, facilitating the termination of the stress 

response (Di et al., 2003, Evanson et al., 2010). Although this particular mechanism has 

not been studied in zebrafish or other teleost fish, it has been shown that the 

endocannabinoid system is present and functional in zebrafish larvae (Lam et al., 2006, 
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Akhtar et al., 2013, Krug and Clark, 2015). It is possible that endocannabinoid signaling 

mediated by GCs is involved in the inhibition of the cortisol response to a second 

perturbation that was observed when a high strength stimulation was presented 30 

minutes after the first one in 4 and 6 dpf larvae.  

The fact that 8 dpf larvae responded with increased cortisol levels to a second 

perturbation 30 minutes after the first one indicates a faster recovery time. This may be 

due to a faster clearance of the negative feedback mechanisms exerting the inhibition of 

subsequent cortisol responses or to an increased capacity or availability of cortisol to be 

released. It has been previously postulated that one of the main functions of the rapid 

negative feedback that terminates the stress response in the brain is to prevent the 

depletion of stress hormones so the organism is able to elicit subsequent responses to 

cope with potential threatening situations (Tasker and Herman, 2011). As discussed in 

section 4.2.2, 8 dpf show a more restricted cortisol response to a wide range of 

stimulation strengths, presumably due to a more mature regulatory system. This may 

function as a way to prevent depletion of stress hormones, allowing the organism to 

respond to repeated exposures to stress as observed in 8 dpf larvae in the present study.  

If this is the case, it would also explain, at least partially, why 6 dpf larvae failed to 

elicit a cortisol response to repeated vortex flow stimulations; as shown by Hill et al. 

(2010), the strength of the cortisol response determines the strength of the negative 

feedback, suggesting that there is a relationship between the cortisol levels reached after 

the first stimulation and the probability of a cortisol response to a second perturbation. 

At 6 dpf, larvae respond with the highest cortisol levels to a high strength vortex flow 

stimulation. This high cortisol levels may induce a stronger and long lasting negative 

feedback, which may explain why 6 dpf larvae failed to elicit a cortisol response to a 

second stimulation even after 60 minutes of recovery. 

Interestingly, when 8 dpf larvae were exposed to a second perturbation 60 minutes 

after the first one, they showed a tendency (although not statistically significant) to 

respond with even higher cortisol levels than the ones reached after the first exposure. 

Sapolsky et al. (2000) proposed that under some circumstances the actions of GCs can 

be preparative, meaning that they do not act immediately after stress onset to help 

coping with that situation, but to modulate the organism’s response to subsequent 

homeostasis-threatening situations. It is possible that the cortisol increase induced by 

vortex flow stimulation in 8 dpf larvae may facilitate subsequent stress responses to 
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help coping with the perturbation. However, this goes in opposite direction to what is 

widely known about the transcriptional effects of the GCs negative feedback, where 

stress-related molecules are downregulated culminating in a reduced stress response to 

immediate subsequent stressors (Dallman et al., 1994). Further experiments are required 

to address the expression level dynamics as a function of time of stress-related 

molecules after vortex flow stimulation; this would contribute to elucidate the reasons 

why 8 dpf larvae are more prone to respond with increased cortisol levels after 60 

minutes of the first stimulation.  

Importantly, it was also revealed that the stress response to repeated exposure to 

vortex flow in 8 dpf larvae depends on the strength of the stimulation. This is evident 

from the results of cortisol response to a repeated vortex flow stimulation of low 

strength, where larvae did not respond with increased cortisol levels after any of the 

recovery times tested. Since higher strengths did induce a cortisol response, it is likely 

that the lack of cortisol increase after low strength stimulation is due to an insufficient 

stimulus input to reach the HPI axis activation threshold. On the other hand, cortisol 

profiles of 4 and 6 dpf larvae after repeated vortex flow stimulation were comparable 

regardless of the strength of the stimulation used. It is difficult to speculate whether the 

mechanisms mediating the inhibition of cortisol response after repeated stimulation in 4 

and 6 dpf are the same for the different strengths tested; however, the data from 8 dpf 

larvae suggest that the strength of the stimulation plays indeed a role on the stress 

response to repeated stimulations, supporting the possibility of the presence of similar 

mechanisms at 4 and 6 dpf. If this is the case, it is possible that 4 and 6 dpf larvae 

showed reduced cortisol response to a repeated stimulation of low strength due to 

insufficient sensory input to overcome the HPI axis activation threshold; on the other 

hand, the reduced cortisol response observed after repeated stimulation of high strength 

may be mediated by an enhanced negative feedback due to the high levels of cortisol 

reached after the first response, especially for 6 dpf larvae. 

4.3 Development of an early life stress model using vortex flow 
stimulation 
 

4.3.1 Prolonged vortex flow stimulation induces changes in HPI axis activity 

As discussed in section 4.1, zebrafish larvae initially respond to acute vortex flow 

stimulation with increased locomotor activity (distance swam); however, here it is 
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shown that after 5 minutes of the stimulation onset, larvae decreased their locomotor 

activity and kept this behavior for the entire duration of the stimulation (Figure 3.14A-

B). This was accompanied with a decreased of body angle change (Figure 3.14C-D), 

meaning that the larvae kept a specific body orientation throughout the prolonged vortex 

flow stimulation. This indicates that zebrafish larvae respond to the vortex flow 

stimulation with a biphasic locomotor behavior; first, they respond to the onset of the 

vortex flow stimulation with increased locomotor activity to maximize the distance 

between the vortex flow center and their bodies (Figure 3.2C, Figure 3.3B-E); second, 

they maintain that position in order to cope with the perturbation. This is consistent with 

previous studies reporting rheotaxis behavior is fish (Montgomery et al., 1997, Bak-

Coleman et al., 2013). Maintaining this behavior implies increasing energy availability. 

This is supported by the fact that a sustained hypercortisolic state that lasted for at least 

4 hours after the stimulation onset was observed in larvae exposed to prolonged vortex 

flow (Figure 3.15). As discussed in section 4.1.2, it is well known that GCs play a key 

role in mobilizing energy to facilitate performance of coping strategies in threatening 

situations (Sapolsky et al., 2000). Hence, it is reasonable to suggest that zebrafish larvae 

that are exposed to prolonged vortex flow stimulation respond with a sustained increase 

in cortisol levels that facilitate coping strategies to deal with the vortex flow 

perturbation. Interestingly, increased cortisol levels were not sustained for the entire 

duration of the prolonged vortex flow stimulation. After approximately 4 hours, cortisol 

levels decreased to basal levels. It has been proposed that if stressful situations persist 

after the “general alarm reaction” (release of stress-related chemicals in the blood), a 

“general adaptation syndrome” would occur in which the stress-related chemicals would 

go back to basal levels (Selye, 1936). This decrease in cortisol levels during prolonged 

vortex flow stimulation  may be due to the slow negative feedback exerted by cortisol, 

where transcriptional regulation takes place at the three levels of the HPI axis, 

culminating in the termination of a stress response (Wendelaar Bonga, 1997). It is also 

possible that cortisol levels decreased to basal levels during prolonged vortex flows 

stimulation due to exhaustion of the endocrine system or to an habituation process 

(Hontela et al., 1992). This is supported by previous studies showing that interrenal 

tissue of fish exposed to chronic stress becomes less sensitive to ACTH, culminating in 

decreased cortisol secretion (Mommsen et al., 1999).    
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Cortisol response to an acute homotypic stressor was attenuated after prolonged 

vortex flow stimulation (Figure 3.16). Prolonged activation of the stress axis has been 

previously shown to induce attenuated stress responses in fish (Barton, 2002). One of 

the known mechanisms to mediate these changes in stress response is the transcriptional 

regulation of stress-related molecules such as CRH and ACTH, which culminate in 

reduced stress responses (Birnberg et al., 1983, Eberwine and Roberts, 1984, Imaki et 

al., 1991). Moreover, as discussed before, endocrine exhaustion or desensitization to 

CRH or ACTH may occur at the level of corticotrophs or interrenal glands, respectively 

(Hontela et al., 1992, Mommsen et al., 1999). Interestingly, the attenuated cortisol 

response to acute vortex flow observed on the following day of exposure to prolonged 

vortex flow stimulation was only present when the prolonged stimulation was delivered 

from 4 to 6 dpf; this indicates that the effects of prolonged vortex flow stimulation on 

cortisol response to subsequent homotypic stimulations depend on the developmental 

stage at which it is delivered, being inducible only in early stages of development.  

Since prolonged vortex flow exposure induces hypercortisolic states, the changes in 

HPI axis activity after prolonged exposure to vortex flow stimulation may be mediated, 

at least in part, by overexposure to cortisol. Hence, any aspect leading to a reduced 

exposure to endogenous cortisol may be linked to a reduced vulnerability to changes in 

HPI axis activity. As shown in section 3.2, 8 dpf larvae show reduced levels of cortisol 

when exposed to acute vortex flow stimulation, a tendency which started to be 

detectable already at 7 dpf. Although in the present study the response to prolonged 

vortex flow stimulation was only measured in 5 dpf larvae, based on the data of acute 

response to vortex flow stimulation through development (Figure 3.11), it is reasonable 

to suggest that the meaning of the prolonged vortex flow stimulation is not the same for 

7 dpf larvae than for younger stages; this may culminate in a reduced probability to 

induce changes in cortisol response to subsequent stressors.  

Some potential explanations about why prolonged vortex flow stimulation induced 

changes in cortisol response when presented at 4, 5, and 6 dpf, but not when presented 

at 7 dpf are: 1) It is possible that the probability to induce changes in the cortisol 

response by early adverse experience is linked to the state of maturation of regulatory 

elements of the stress response, i.e. larvae younger than 8 dpf may be more susceptible 

to cortisol overexposure which would facilitate adaptive changes in HPI axis activity; 2) 

the maturation of the sensory system or integrating centers of sensory information may 
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also be linked to the probability of inducing HPI axis activity changes by exposing the 

larvae to prolonged vortex flow stimulation, i.e. older larvae may be more efficient in 

filtering and integrating sensory information, culminating in a more regulated cortisol 

response and avoiding overexposure to endogenous cortisol; 3) anatomical elements 

which facilitate coping with vortex flow perturbations may be more mature in later 

stages of development, reducing the cortisol demand to deal with the situation and 

maintain homeostasis. These three aspects are linked to the magnitude of the cortisol 

response at different developmental stages and therefore to the probability of 

overexposure to endogenous cortisol.  

Other possible explanation for the attenuated cortisol response to acute vortex flow 

stimulation that was observed after prolonged vortex flow exposure may be related to a 

stress response habituation process. It is known that prolonged or repeated exposure to a 

homotypic stressor leads to a reduction in physiological response in comparison to the 

stress response elicited by acute exposure to the same type of stressor (Grissom and 

Bhatnagar, 2009). The fact that cortisol response to a heterotypic stressor (osmotic 

shock) was also attenuated (Figure 3.18C), suggests that the changes induced by 

prolonged vortex flow stimulation are not at the sensory system level but rather may be 

at the level of the integrating centers of sensory input or at the level of the HPI axis 

elements. When a habituation process occurs, it is sometimes possible that the 

habituation is generalized to heterotypic stimulations; however, it has been reported that 

for this criteria to be fulfilled, it is necessary that both types of stimulation are similar in 

modality (Grissom and Bhatnagar, 2009). The sensory systems involved in the 

perception and processing of the sensory input after osmotic stress or hydrodynamic 

flow stimulation present substantial differences (Fiol and Kultz, 2007, Montgomery et 

al., 1995). Hence, it is likely that the changes induced by prolonged vortex flow 

stimulation occur at the level of the integrating centers or at any of the HPI axis 

elements.  

Changes at the level of hypothalamic cells in larvae previously exposed to the 

prolonged vortex flow stimulation were confirmed by measuring calcium activity of 

CRH cells during a heterotypic stressful event (osmotic shock) and by analyzing the 

number of cells expressing the stress-related peptides CRH, AVP, and OXT. The 

attenuated cortisol response observed after prolonged exposure to vortex flow 

stimulation is in line with the lower cell activity observed in hypothalamic cells and 
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reduced hypothalamic cell number expressing CRH, AVP, and OXT (Figure 3.21A-D) 

revealing a decreased HPI axis activity. Both decreased hypothalamic activity and 

decreased expression of these three peptides after chronic stress or early adverse 

experience have been reported previously and it is known that these processes are 

mediated, at least partially, by GCs (Erkut et al., 1998, Wismer Fries et al., 2005, 

Herman et al., 2008, Tasker and Herman, 2011). Since prolonged vortex flow 

stimulation induces sustained hypercortisolic states, overexposure to endogenous 

cortisol after prolonged stimulation may be linked to the reduced expression of the 

stress-related peptides in hypothalamic cells, and therefore also to the attenuated cortisol 

response to subsequent acute stimulations. Further experiments are needed to confirm 

this hypothesis. To achieve this, it is possible to deliver the prolonged vortex flow 

stimulation in the presence of a GR antagonist in order to inhibit GCs signaling and then 

ask whether the changes seen in cortisol response to acute stress and in hypothalamic 

cells are still detectable. 

Altogether, these results showed that prolonged exposure to vortex flow stimulation 

induced sustained hypercortisolic states that culminated in reduced cortisol responses to 

subsequent acute stimulation of both homotypic and heterotypic nature. Importantly, the 

attenuated cortisol response was still detectable at 10 dpf. This was the case only when 

the prolonged stimulation consisted of 9 hours of continuous stimulation at 5 dpf, and 

not when the prolonged exposure was delivered in 9 pulses of 30 minute at the same 

developmental stage. This suggests that the effects of prolonged vortex flow stimulation 

depend on the format on which it is delivered. The reduced cortisol response observed 

at 6 dpf may be mediated by overexposure to endogenous cortisol, which presumably 

exerts its adaptive effects on hypothalamic cells through transcriptional mechanisms, 

culminating in reduced hypothalamic cell activity and reduced expression of stress-

related peptides; this together may contribute to the attenuated cortisol response.  

Hypocortisolemic stress response has been observed in patients with stress-related 

disorders such as post-traumatic stress disorder (PTSD), chronic fatigue syndrome 

(CFS), burn-out, and atypical depression (Fries et al., 2005). It has been proposed that 

an hyporeactive HPA axis might result from exposure to prolonged periods of stress 

accompanied with increased activity of the HPA axis and overexposure to GCs 

(Hellhammer and Wade, 1993). In rodents, chronic stress consisting of repeated restrain 

induces a shift from hyperactive HPA axis during the chronic stress period, to 
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hypoactive HPA axis 2 weeks after the offset of the chronic stress period (Fries et al., 

2005).  These adaptive changes may occur to protect the organism and reduce the 

impact of the potential deleterious effects of overexposure to GCs. It has been proposed 

that the change from hyper- to hypoactivity of the HPA axis may be mediated by 1) 

downregulation of receptors at different levels of the HPA axis that regulate the cascade 

of events after stress response activation, 2) reduced synthesis and/or depletion of 

stress-hormones at different levels of the HPA axis, and/or 3) increased negative 

feedback sensitivity to GCs (Hellhammer and Wade, 1993, Heim et al., 2000, Fries et 

al., 2005). Further experiments are needed to evaluate whether these mechanisms 

mediate the reduced cortisol response observed in 6 dpf larvae after prolonged exposure 

to vortex flow stimulation.     

4.3.2 Prolonged vortex flow stimulation induces behavioral changes 

Changes in cortisol profiles, hypothalamic cell activity, and expression of stress-

related peptides after prolonged exposure to vortex flow stimulation were accompanied 

by changes in the behavioral output. Larvae exposed to the prolonged vortex flow 

stimulation showed increased basal locomotor activity. This is congruent with previous 

studies showing that swimming training during larval stages leads to increased 

swimming activity at basal conditions (Bagatto et al., 2001).  

Although swimming activity was increased at basal conditions in larvae previously 

exposed to prolonged vortex flow stimulation, locomotor activity as a response to acute 

vortex flow stimulation onset was reduced. Figure 3.7 shows the relationship between 

the locomotor activity immediately after vortex flow stimulation onset and the peak of 

cortisol reached after the stimulation. Here, it was observed that prolonged vortex flow 

stimulation induced both a reduced locomotor activity after acute vortex flow 

stimulation onset and a reduced cortisol response, suggesting that this relationship is 

maintained; however, whether this is a causal relationship remains unclear.  

Interestingly, the frequency distribution of the body angle orientation shown after 

acute vortex flow stimulation by larvae previously exposed to prolonged vortex flow 

stimulation was also different when compared to control larvae (Figure 3.20). Larvae 

previously exposed to the prolonged stimulation showed a narrower frequency 

distribution of body angle orientation. This suggests that more larvae were able to 

acquire a body angle orientation that presumably facilitates coping with the vortex flow 
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perturbation in a more efficient manner, potentially leading to a reduced cortisol 

demand. In this way, increased ability to acquire a particular body orientation to cope 

better with the vortex flows may be linked to the reduced cortisol response observed 

after prolonged vortex flow exposure.  

4.4 Transcriptomics of hypothalamic and non-hypothalamic cells after 
prolonged exposure to vortex flow stimulation. 

Transcriptomic analysis of whole body and tissue-specific hypothalamic cells 

coming from larvae previously exposed to prolonged vortex flow stimulation revealed 

substantial molecular changes when compared to control larvae. Molecular candidates 

likely to be involved in adaptive strategies after early adverse experience were 

identified. Moreover, gene ontology enrichment analysis showed that core pathways 

involved in lipid metabolism, immune response, and neurotransmitter and nervous 

system signaling were affected in hypothalamic cells. In the case of whole body cells, 

gene ontology enrichment analysis showed that pathways involved in cellular growth 

and proliferation, neurotransmitter and nervous system signaling, and glucose 

metabolism were affected. This is the first time a genome-wide transcriptome analysis is 

performed from tissue-specific cells from hypothalamus of developing larvae after early 

adverse experience. The results provide valuable insights into the potential mechanisms 

by which early adverse experience shapes the function of hypothalamic cells. 

I optimized a cell isolation protocol for 6 dpf larvae using the transgenic line 

Tg(otpECR6-E1b:mmGFP) and fluorescent activated cell sorting (FACS). The cell 

dissociation protocol showed comparable results to previous studies which have 

reported cell isolation from zebrafish larvae (Manoli and Driever, 2012, Gallardo and 

Behra, 2013, Rougeot et al., 2014). This protocol successfully generated a single-cell 

suspension that allowed the isolation of around 60,000 cells identified as GFP+ coming 

from 500 zebrafish larvae. The transgenic line used in this study labels around 130-150 

cells per larvae with GFP (personal communication Dr. Ulrich Herget); this indicates 

that for 500 larvae a total amount of cells ranging from 65-75 thousand cells should be 

present. The lower number of cells isolated may be due to several factors: 1) the 

dissociation protocol was not 100% efficient, since it generated 80% of single cells and 

96% of viable cells; 2) there may be variations on the number of cells labeled with GFP; 

3) false negative and false positive results while cell sorting may occur.  
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Importantly, the identity of the cells identified as GFP+ was confirmed successfully 

using fluorescence microscopy and levels of oxt expression by qPCR. GFP+ cells 

presented a much higher relative oxt expression than the one showed by cells identified 

as GFP-. Since expression of oxt is restricted to the hypothalamic region (Eaton et al., 

2008, Herget et al., 2014), this confirms the identity of the isolated cells, supporting the 

feasibility of using these cells for further analysis. The RNA isolated from sorted cells 

and subsequent cDNA library preparation showed high quality (Figure 3.25 and 3.26). 

The generated raw reads from RNAseq ranged from 5.5 to 11.8 million pairs per 

sample, indicating that the data generated was suitable for further differential gene 

expression analysis of mid to high abundance gene transcripts; however, the number of 

generated reads may not be sufficient for identification of low abundant gene 

transcripts.  

A direct comparison between the results from hypothalamic cells and non-

hypothalamic cells should be done only after considering the implications of how the 

samples were obtained. While hypothalamic cells represent a tissue-specific sample, 

non-hypothalamic cells are a combination of all other cell types coming from whole 

body tissue (except hypothalamus). Hence, the differences observed in the differential 

gene expression analysis need to be interpreted with special care. For example, when a 

gene is identified as differentially expressed in hypothalamic cells, but not in non-

hypothalamic cells, it does not necessarily mean that the gene is only differentially 

expressed in the hypothalamus; although in some cases these differences may be due to 

genes that are only expressed in the hypothalamic region, in other cases this may be due 

to a dilution effect resulting from the fact that non-hypothalamic cells samples consist 

of a combination of different cell types of diverse tissues. Therefore, results from non-

hypothalamic cells samples should be considered as a robust indication at a global level 

about the effects of prolonged vortex flow exposure at early developmental stages. On 

the other hand, there are genes which were identified as differentially expressed in non-

hypothalamic cells but not in hypothalamic cells; in these cases it can be proposed with 

more certainty that these differences may be due either to the lack of expression of those 

gene in the hypothalamic region or to the absence of an effect of the treatment in the 

hypothalamic region.  

Of particular interest are those genes which were expressed in both hypothalamic 

and non-hypothalamic cells, but which showed opposite direction in their regulation. 
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Members of the solute carrier family 22 were downregulated in hypothalamic cells but 

upregulated in non-hypothalamic cells (slc22a2, sc22a6l, slc22a7b.1); this group of 

proteins is involved in transporting endogenous substrates such as steroids, hormones 

and neurotransmitters across the cell membrane (Roth et al., 2012). Downregulation of 

these molecules at the hypothalamic level suggests that decreased transport of 

neurotransmitters may occur, leading to decreased cell activity. This was further 

supported by the function annotation analysis performed with the software IPA, where 

the category of “molecular transport” was ranked first on the list of categories with 

decreased activation state, showing 216 molecules involved and a z-score of -4.317. The 

decreased transport of molecules may underlie the lower calcium activity of 

hypothalamic cells observed after exposure to an osmotic shock in larvae which were 

previously exposed to the prolonged vortex flow stimulation. 

The gene slc5a8l was also found to be downregulated in hypothalamic cells but 

upregulated in non-hypothalamic cells. It has been reported that the protein encoded by 

this gene plays a key role in transporting l-lactate and ketone bodies across the cell 

membrane in neurons in order to maintain the energy requirements of the cell (Martin et 

al., 2006). In situations of intense neuronal activity, or when the energy demand is 

higher than the energy availability, glycogen in astrocytes is converted into lactate, 

which is then transported into the neurons to fulfill energy requirement (Falkowska et 

al., 2015). The prolonged vortex flow stimulation may induce a state in which energy 

homeostasis is compromised. Reduced expression of slc5a8l in hypothalamic cells may 

be related to the reduced cell activity observed after prolonged vortex flow stimulation; 

it is possible that hypothalamic cells reduce their energy requirements after reducing its 

overall activity as indicated by calcium imaging and expression of other genes involved 

in neurotransmitter transport. On the other hand, the fact that slc5a8l is upregulated in 

non-hypothalamic cells suggests that increased transport of lactate occurs potentially to 

supply cells with the energy required.   

MicroRNA molecules miR-124-2 and miR-182 where identified as downregulated 

in hypothalamic cells but upregulated in non-hypothalamic cells. The molecule miR-

124-2 is one of the most abundant microRNAs in the brain (Sun et al., 2015). It has 

been reported that miR124 targets anti-neuronal function of phosphatase SCP1, leading 

to reduced expression of the latter and therefore, to neurogenesis (Visvanathan et al., 

2007). Moreover, it has been shown that reduced expression of miR-124 results in 
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changes of glutamate receptor composition, which leads to social dysfunction (Gascon 

et al., 2014). Gascon and colleagues showed that the mechanisms by which miR-124 

homeostasis is disrupted involves the gene Chmp2b (charged multivesicular body 

protein 2B), which is a component of the endosomal sorting complex required for 

transport-III (ESCRT-III) involved in endosomal trafficking. They reported that in mice 

with increased activity of Chmp2b, decreased expression of miR-124 leads to increased 

levels of certain AMPAR (glutamate receptors) subunits (GLUA2, GLUA3, and 

GLUA4). Changes in these subunits mediate calcium permeability in the cell, leading to 

cell activity changes and consequently to dysfunctional behavior.  

In the present study, several genes involved in glutamate signaling were 

differentially regulated. The glutamate ionotropic receptor NMDA type subunit 1 

(grin1b) was identified as downregulated in hypothalamic cells, but upregulated in non-

hypothalamic cells. This gene encodes a subunit of the ionotropic glutamate receptor 

NMDA, which mediate the postsynaptic excitation after ligand binding allowing 

positively charged ions to flow through the cell membrane (Furukawa et al., 2005). The 

glutamate ionotropic receptor kainate 1a and 1b (grik1a, grik1b), and the glutamate 

ionotropic receptor AMPA type subunit 4b (gria4b) were identified as downregulated 

only in hypothalamic cells. These genes encode glutamate receptor subunits which 

mediate excitatory neurotransmission and play key roles in synaptic function (Monyer 

et al., 1992, Seeburg et al., 2001, Lerma, 2003). Downregulation of these genes in 

hypothalamic cells suggest that the reduced hypothalamic cell activity observed in 

larvae previously exposed to the prolonged vortex flow stimulation (Figure 3.20A) may 

be due to a reduced input to the hypothalamus mediated by a reduction in glutamate 

signaling.  

The molecular mechanisms mediating the effects of chronic or prolonged stress on 

glutamate receptor expression is largely unknown. However, it has been shown that the 

subtype composition, trafficking, and posttranslational regulation of the glutamate 

receptors are essential for synaptic plasticity (Kessels and Malinow, 2009, Lau and 

Zukin, 2007, Mabb and Ehlers, 2010). In particular, the ubiquitin pathway is involved in 

changes of synaptic transmission through posttranslational modification of the 

glutamate receptors and their interacting proteins (Mabb and Ehlers, 2010). In rodents, 

repeated stress reduced the number of glutamate receptors in PFC neurons through 

increased ubiquitin-proteasome-dependent degradation of Gria1 and Grin1, a process 
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which relied on glucocorticoid receptor activation (Popoli et al., 2011, Yuen et al., 

2012). Moreover, chronic exposure to corticosterone reduced expression of the 

glutamate receptor Grin2b and Gria2/3 also in PFC neurons of rats (Gourley et al., 

2009). In this way, chronic stress may alter membrane trafficking and/or synthesis and 

degradation of glutamate receptors, culminating in reduced glutamate transmission 

(Popoli et al., 2011). The main mechanism for downregulating transmembrane 

receptors, and hence downstream signaling, is by sorting the cell-surface proteins into 

multi-vesicular bodies (MVBs) through the ESCRT-I complex, a process that is 

regulated by ubiquitination (Raiborg and Stenmark, 2009, de Souza and Aravind, 2010). 

The MVBs then fuse with lysosomes and are degraded. In metazoan, the protein 

MVB12 (multivesicular body sorting factor of 12 kD) plays a key role for receptor 

endocytosis (Morita et al., 2007). This protein contains an UMA domain (UBAP-1-

MVB12-associated) and a MABP domain (MVB12-associated -prism). While the 

UMA domain recruits MVB12 to the ESCRT-I complex, the MABP domain has been 

suggested to be involved in the recognition of membranes and/or specific interaction 

with membrane components. It is likely that MABP domains act as adaptors that link 

other associated domains found in the same polypeptide to vesicular membranes (de 

Souza and Aravind, 2010).  

In the present study, the molecule si:dkey-30j10.5 was ranked first on the top 

upregulated molecules in hypothalamic cells after prolonged exposure to the vortex 

flow stimulation. This molecule showed a 20-fold difference in expression when 

compared with controls. After analyzing the protein sequence of si:dkey-30j10.5 with 

Interproscan software, a MABP domain was identified. Interestingly, no other domain 

was identified in the same polypeptide. Further characterization of the protein needs to 

be performed in order to clarify its function. Nevertheless, it is likely that this protein is 

involved in the trafficking of MVBs and hence, in the downregulation of 

transmembrane proteins. This, together with downregulation of miR-124-2, may 

mediate the reduced expression of molecules involved in glutamate signaling and may 

contribute to the reduced activity of hypothalamic cells observed after prolonged 

exposure to vortex flow stimulation.  

There were also genes identified as upregulated in hypothalamic cells but 

downregulated in non-hypothalamic cells. Among these genes is caspb. This gene 

encodes the protein caspase b, which is the human ortholog of caspase 1 and is involved 
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in initiation of inflammatory responses and programmed cell death (Denes et al., 2012). 

This suggests that prolonged vortex flow stimulation induces an inflammatory response 

in hypothalamic cells; this is further supported by expression profiles in hypothalamic 

cells of other molecules involved in inflammatory response such as TNF and 

IL1which were ranked 2
nd

 and 9
th

 on the top upregulated genes in hypothalamic cells 

(Table 7). Moreover, pathway enrichment analysis revealed that several canonical 

pathways involved in cellular immune response were enriched in hypothalamic cells 

from larvae that were exposed to prolonged vortex flow stimulation (Table 10). In the 

same way, among the predicted upstream regulators of the molecular changes found in 

hypothalamic cells after stimulation, several cytokines such as TNF, IFNG, IL1IL4, 

were predicted to be activated, suggesting an activation of the immune cellular response 

(Table 12). Additionally, functional annotation analysis of hypothalamic cells after 

prolonged vortex flow stimulation also revealed a predicted activation of inflammatory 

response (Table 15).  

The molecule si:dkey-29h14.10 was ranked 3
rd

 among the upregulated genes in 

hypothalamic cells after prolonged exposure to the vortex flow stimulation. Analysis of 

the product of this gene with the Interproscan software revealed a caspase recruitment 

domain (CARD), suggesting that this molecule plays a role on programmed cell death 

and/or inflammatory response. Additionally, function annotation analysis revealed “cell 

death” as one of the top categories with increased activation in hypothalamic cells from 

larvae previously exposed to the prolonged vortex flow stimulation (Table 15). This, 

together with increased expression of caspase b, suggests that prolonged exposure to 

vortex flow stimulation increases apoptosis and/or inflammatory response, which may 

be linked to the decreased number of cells expressing CRH, AVP, and OXT that was 

observed in hypothalamic cells after prolonged exposure to vortex flow stimulation 

(Figure 3.21B-D). Moreover, this is in line with the hypoactivity of the HPI axis 

observed after prolonged exposure to vortex flow stimulation. GCs are essential players 

on the anti-inflammatory response (Coutinho and Chapman, 2011). Hence, 

hypocortisolic stress response may culminate in hyperactivity of inflammatory 

responses, due to the impaired inhibition of low GC levels (Heim et al., 2000, Fries et 

al., 2005). Further experiments need to be performed to evaluate apoptosis and 

inflammation in hypothalamic cells and confirm this hypothesis.  
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Interestingly, two genes encoding proteins from the myosin light chain family were 

upregulated in hypothalamic cells but downregulated in non-hypothalamic cells (myl10 

and myl13, table 6). Members of the myosin light chain family have been shown to 

interact with glutamate NMDA receptors and to be involved in the contractile and 

motile forces occurring during process such as synaptic plasticity and neuronal 

morphogenesis (Amparan et al., 2005). Moreover, annotation functional analysis 

revealed “Cellular movement” as the top function which showed an increased activation 

state in hypothalamic cells after prolonged exposure to vortex flow stimulation (Table 

15). This suggests that vortex flow stimulation may induce changes in hypothalamic 

morphology, which could potentially lead to long lasting changes in its function. 

Function annotation analysis of hypothalamic cells from larvae which were exposed 

to the prolonged vortex flow stimulation revealed a decreased activation of lipid 

metabolism. Dysfunction in brain lipid homeostasis may contribute to 

neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, and 

Parkinson disease, among many others (Yadav and Tiwari, 2014). Among the lipid 

metabolism categories of function annotation analysis with a decreased activation state 

are “transport of cholesterol”, “efflux of cholesterol”, and “uptake of cholesterol” 

(Table 14). Cholesterol metabolism homeostasis has been shown to have a strong 

impact on neurodegeneration; modifications of cholesterol homeostasis may create 

favorable environments for the initiation or progression of neurodegenerative diseases 

(Anchisi et al., 2012). Moreover, there is evidence showing that lower levels of 

cholesterol in neurons may culminate in neurodegeneration (Anchisi et al., 2012). This 

suggests that prolonged vortex flow stimulation may induce detrimental effects on 

hypothalamic cells. In line with this, apolipoprotein E gene (apoe) was significantly 

downregulated in hypothalamic cells, but not in non-hypothalamic cells. The protein 

encoded by this gene is an essential regulator of cholesterol metabolism and the main 

carrier of cholesterol in the brain (Puglielli et al., 2003, Sato and Morishita, 2015). 

Moreover, apoe is one of the strongest genetic risk factor for sporadic Alzheimer’s 

disease and it has been linked to post-traumatic stress disorder (PTSD), a condition 

closely related to HPA axis function (Ashford, 2004, Johnson et al., 2015). It has been 

shown that Apoe deficiency in transgenic mice (Apoe
-/-

) culminates in dysregulation of 

the HPA axis (Raber et al., 2000). This together, suggests that prolonged vortex flow 

stimulation induces changes in lipid homeostasis in hypothalamic cells, which may have 
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further effects on hypothalamic neuronal function and therefore on stress response 

activity.  

Moreover, decreased cholesterol metabolism may reduce steroidogenesis, which has 

been linked to detrimental health conditions such as PTSD, anxiety spectrum disorders, 

and depression (Pinna, 2013). Specifically, reduced levels of the hormone 

allopregnanolone have been related to these disorders, and administration of this 

hormone has been shown to reduce HPA axis activity and have anxiolytic and 

antidepressant effects (Rouge-Pont et al., 2002, Wirth, 2011). In the present study, the 

molecule srd5a2 was downregulated in hypothalamic cells from larvae previously 

exposed to prolonged vortex flow stimulation. This gene encodes the enzyme 5-

reductase 2, which is involved in the first step of allopregnanolone biosynthesis by 

converting progesterone into 5-dihydroprogesterone (Reddy, 2010). This further 

suggests that prolonged vortex flow stimulation induced detrimental states in 

hypothalamic cells which may culminate in dysregulation of the stress response 

reactivity.    

The canonical pathway “FXR/RXR activation” was ranked first after enriched 

pathway analysis. The fernesoid X receptor (FXR) is activated by bile acids and their 

intermediates, and therefore functions as a bile acid sensor (Zhang and Edwards, 2008). 

This receptor is a member of the nuclear family of receptors and, together with the 

retinoid X receptor (RXR), plays a key role in a wide range of metabolic pathways 

linking bile acid levels with lipid and glucose metabolism (Zhang and Edwards, 2008). 

The hepato-biliary system regulates cortisol clearance (Vijayan and Leatherland, 1990). 

Since prolonged vortex flow stimulation induced a sustained hypercortisolic state during 

the stimulation at 5 dpf, it is possible that the hepato-biliary system activity was 

increased to process the increased cortisol levels. It has been shown that increased bile 

acids can penetrate the brain blood barrier and alter peptide expression in hypothalamic 

cells, resulting in attenuated CRH expression and repression of the HPA axis (McMillin 

et al., 2015, Piekarski et al., 2016). This together, suggests that prolonged vortex flow 

stimulation results in altered FXR/RXR signaling in hypothalamic cells which may 

culminate in metabolic changes and dysregulation of the HPA axis. 
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4.5 Functional characterization of optogenetic and genetically 
targeted ablation tools for manipulating HPI axis activity 

Our laboratory has developed optogeneitc and genetically targeted ablation tools in 

order to manipulate HPI axis activity in freely swimming zebrafish larvae in a non-

invasive manner. In the present study, I showed evidence of altered levels of 

endogenous cortisol in larvae that were manipulated at any of the three levels of the HPI 

axis. Expression of the protein bPAC specifically in pituitary corticotrophs resulted in 

enhanced cortisol levels after blue light exposure when compared to control larvae. It is 

important to note that exposure to blue light induced a cortisol response also in larvae 

which did not express bPAC; however, this cortisol response was of lower magnitude. 

Importantly, the cortisol levels reached after blue light stimulation in bPAC+ larvae are 

kept in a physiological range. Moreover, by amplifying only the GC response through 

enhanced corticotroph cell activity, no other upstream processes are altered. This 

facilitates the study of the effects of enhanced levels of ACTH and GC on upstream 

elements, such as the hypothalamus, in a more natural context. 

Repeated exposure to blue light stimulation resulted in blunted cortisol response in 

bPAC- larvae after the first stimulation. This is in line with the results described in 

section 3.2.2, where repeated exposure to vortex flow stimulation in 6 dpf larvae failed 

to elicit a cortisol response of the same magnitude then the first one (inter-trial interval: 

30 min). Previous work in our laboratory showed that the blunted cortisol response 

observed in bPAC- larvae was mediated by GR signaling, since incubation in the GR 

antagonist mifepristone resulted in a higher cortisol response, suggesting that the GC 

negative feedback is activated (De Marco et al., 2013). Interestingly, bPAC+ larvae did 

respond with increased cortisol levels to each of the blue light stimulations, indicating 

that optogeneitc manipulation of corticotroph cells can be used to induce sustained 

hypercortisolic states even if the HPI axis has been downregulated due to previously 

elevated GC levels. Similarly, amplified HPI axis activity in response to blue light was 

observed when bPAC expression was targeted to steroidogenic interrenal cells. 

However, further experiments are needed in order to evaluate whether repeated blue 

light exposure leads to sustained hypercortisolic states when bPAC is expressed in these 

cells.  

Genetically targeted cell ablation of either hypothalamic NPO cells or steroidogenic 

interrenal cells resulted in reduced cortisol levels after Met treatment. Work in our 
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laboratory has confirmed the specific cell ablation for both transgenic lines by TUNEL 

and immunohistochemistry (Gutierrez-Triana et al., 2014, Gutierrez-Triana et al., 2015). 

Importantly, in the case of steroidogenic interrenal cell ablation, chromaffin cells were 

not affected; this represents an advantage when compared with traditional 

adrenalectomy methods, where the entire adrenal gland is surgically removed, resulting 

in extraction of both steroidogenic and chromaffin cells, which adds an extra variable to 

the experimental design.  

Interestingly, there were some differences in cortisol profiles depending on what 

type of cells were ablated. Ablation of NPO cells did not affect cortisol levels at basal 

conditions. On the other hand, ablation of steroidogenic interrenal cells resulted in a 

significant reduction of cortisol levels at basal conditions. This is in line with several 

previous studies showing the association between the suprachiasmatic nucleus in the 

hypothalamus, the circadian clock in the adrenal glands, and basal cortisol levels, 

indicating that cortisol levels at basal conditions are not exclusively under the control of 

the NPO/PVN activity (Dickmeis, 2009, Chung et al., 2011).  

Stress-induced cortisol levels were also different depending on which cell type was 

ablated. Although Met treatment induced a reduction in cortisol response also in larvae 

that did not express nfsB (no cell ablation), cortisol levels were lower in NPO-ablated 

larvae and completely blunted in larvae with ablated steroidogenic interrenal cells. 

Importantly, the reduced stress-induced cortisol levels induced by Met treatment in 

control larvae may be mediated by a reduced volume of the rostral pituitary pomc and 

interrenal StAR clusters, and not to a reduced cell number (Gutierrez-Triana et al., 

2015). The fact that ablation of NPO cells was not sufficient to completely abolish 

stress-induced cortisol response is in line with several other studies showing that extra-

pituitary and pituitary hormones (different from ACTH) may play a role in controlling 

plasma cortisol levels. This together suggests that other compensatory regulatory 

mechanisms may be involved in cortisol release after stress exposure (Mommsen et al., 

1999).    
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5. CONCLUSION 

In this thesis, I developed and characterized vortex flow stimulation as a suitable, 

non-invasive tool to activate the HPI axis in developing zebrafish in a strength-

dependent manner, reducing handling effects, and avoiding unspecific effects of the 

stimulation. This type of stimulation can be readily delivered transiently in short bursts, 

facilitating the analysis of the effects of repeated activation of the HPI axis and the 

mechanisms underlying this process. Moreover, since it can be applied in freely 

swimming larvae, behavioral outputs that result from HPI axis activation can be studied.  

Using this stimulation, I characterized the ontogeny of the HPI axis activity and 

revealed that the strength-dependent cortisol response changes substantially through 

development. Importantly, I identified a dynamic maturation process of the cortisol 

response occurring from 4 to 8 dpf, which potentially occurs at the level of HPI axis 

regulatory elements, sensory systems, and/or anatomical elements that facilitate stress 

coping strategies.  

Prolonged exposure to vortex flow stimulation delivered to 5 dpf larvae as an early 

life stress paradigm induced an overall downregulation of the HPI axis activity at the 

endocrinological, behavioral, and cellular level. Transcriptomic analysis of 

hypothalamus-specific cell populations identified downregulation of glutamate 

signaling, molecular transport, and lipid metabolism as potential mechanisms to mediate 

the reduced activity of these cells. Additionally, increased expression of molecules 

involved in inflammatory response and programmed cell death may contribute to the 

reduced hypothalamic cell activity and therefore to the reduced cortisol response 

observed after prolonged exposure to vortex flow stimulation.  

Finally, this thesis contributed to the development of optogenetic and targeted 

transgenic tools suitable to manipulate all three elements of the HPI axis in a non-

invasive manner. Manipulation of these elements resulted in altered exposure to 

endogenous cortisol (hypo- or hypercortisolemia), providing a valuable platform to 

study the effects of rapid and non-rapid negative feedback mediated by GCs as well as 

the effects of both acute and prolonged exposure to GCs.  

Altogether, this work provides evidence that zebrafish is a suitable model to study 

developmental programming of the HPI axis in a highly controlled fashion. By taking 
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advantage of the versatility of the zebrafish model and of the molecular tools available 

for its manipulation, further studies will be able to reveal detailed mechanisms 

underlying developmental programming of the HPI axis elements after early adverse 

experience. This knowledge is essential to understand the link between early life stress, 

dysregulation of the stress response, and subsequent development of stress-related 

disorders such as PTSD, anxiety, and depression. This will open new avenues for the 

development of more comprehensive treatments and preventive measures against these 

disorders. 

6. OUTLOOK 

Vortex flow stimulation is a valuable tool to activate zebrafish larvae HPI axis and 

induce changes in its activity. In the present study, in order to identify potential 

mechanisms involved in the adaptive processes occurring after early adverse 

experience, I focused on the analysis of molecular changes observed relatively shortly 

after prolonged exposure to vortex flow stimulation; this was done in this way under the 

assumption that all adaptive mechanisms which are activated during or shortly after the 

stimulation are necessary for regulating or maintaining homeostasis, i.e. if any of these 

mechanisms are disrupted, it would potentially lead to dysfunction. Hence, the 

molecular changes observed in hypothalamic and non-hypothalamic cells after 

prolonged exposure to vortex flow stimulation include both transient adaptive changes 

and potential long-lasting changes. Therefore, further complementary work will 

evaluate juvenile zebrafish which had been exposed to prolonged vortex flow 

stimulation in order to elucidate which of the molecular changes observed in the present 

study are transient adaptive processes and which present a more persistent change 

through development. 

Moreover, future work will study what aspects of the stimulation are driving the 

molecular changes observed in hypothalamic and non-hypothalamic cells. Potential 

aspects of the prolonged vortex flow stimulation that may be driving the molecular 

changes observed in hypothalamic cells include: 1) Overexposure to endogenous GC; 2) 

increased excitatory input to hypothalamic cells coming from sensory integrational 

centers in the brain; 3) metabolic challenge due to increased energy demand and limited 

nutritional resources. 
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To elucidate whether the molecular changes observed in hypothalamic cells are 

mediated by overexposure to GCs or by increased excitatory input to hypothalamic 

cells, our laboratory has generated a plethora of molecular tools to manipulate all three 

levels of the HPI axis in zebrafish larvae. Optogenetic manipulation at the pituitary and 

interrenal gland level has been demonstrated effective for inducing hypercortisolic 

states in zebrafish larvae while minimizing sensory inputs which may otherwise 

culminate in activation of upstream integrational centers in the brain (section 3.5) (De 

Marco et al., 2013, Gutierrez-Triana et al., 2015). Moreover, our laboratory has 

developed molecular tools which allow the ablation of interrenal gland cells, 

culminating in blunted stress-induced cortisol release (Section 3.5) (Gutierrez-Triana et 

al., 2015). Altogether, these molecular and optogenetic tools will be essential for 

dissecting the role of overexposure to endogenous GCs and increased excitatory input to 

hypothalamic cells on the molecular changes observed after prolonged exposure to 

vortex flow stimulation.   

Of particular interest is the study of the top differentially regulated molecules 

identified by transcriptome analysis of hypothalamic cells after prolonged exposure to 

vortex flow stimulation. These molecules represent strong candidates to be key players 

of the changes observed in HPI axis activity at the endocrinological and hypothalamic 

cell activity level and therefore also potential candidates to mediate developmental 

programming processes.  

Overall, future experiments will address three questions: 1) what are the dynamics 

of the adaptive processes induced by early adverse experience, i.e. which processes are 

transient and which are long-lasting?  2) What are the mediators involved in the 

regulation of the differentially regulated molecules after early adverse experience? And 

3) what is the role of these molecules in altered HPI axis activity? 
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7. MATERIALS AND METHODS 
 

7.1 Materials  
7.1.1 Buffers and solutions 

Buffers and solutions 
 

Name Composition 
4 % Paraformaldehyd (PFA) 40 g PFA in 1 L PBS. Make aliquots and store at -20°C. 
Anti-Cortisol monoclonal 
antibody 

40 μg/mL Cortisol mAB in 1x PBS and store at -20°C. Dilute to 1.6 μg/mL 
with 1x PBS upon use. 

Blocking buffer 0.1% BSA in PBS. 

Citrate Buffer (205 mmol/L) 
21.53 g Citric acid monohydrate in 300 mL milli-Q-H

2
O. Adjust with NaOH 

to pH = 4.5 add milli-QH
2
O to 500 mL and store at 4 °C. 

Cortisol-HRP 1 mL of cortisol-HRP (see section 6.1.2) and add 1x PBS to reach a total 
volume of 20 mL. Store at 4°C. 

Cortisol stock solution  
(50 g/ml) 

Dissolved 1 mg cortisol in 1 mL EtOH and add 19 mL 1x PBS. Store at -20°C 
in BSA blocked tubes. 

Embryo-Medium 2 (E2), 
modified 

5 mM NaCl, 0.25 mM KCl, 0.5 mM MgSO
4
x7 H

2
O, 0.15 mM KH

2
PO

4
, 0.05 mM 

Na
2
HPO

4
, 0.5 mM CaCl

2
, 0.71 mM NaHCO

3
  

To make 1 L 0.5x E2:5 mL E2-A, 1 mL E2-B, 1 mL E2-C into 950 mL milli-Q-H
2
O. pH 

was adjusted to 7.0. Make final volume to 1 L with milli-Q-H
2
O. 

E2-A 
14.61 g NaCl, 0.933 g KCl, 6.163 g MgSO

4
 × 7 H

2
O, 1.02 g KH

2
PO

4
, 0.355 g 

Na
2
HPO

4
. Add milli-Q-H

2
O to 250 mL. Make 5 mL aliquots, store at -20°C. 

E2-B 3.675 g CaCl
2
 and add milli-Q-H

2
O to 50 mL make 1 mL aliquots, store at -

20°C. 

E2-C 2.99 g NaHCO
3
 add milli-Q-H

2
O to 50 mL make 1 mL aliquots, store at -

20°C. 
Egg water 3 g Red Sea Salt in 10 L ddH

2
O. 

Mifepristone (50 mM) Disolve in DMSO and make aliquots. Store at -20°C. 
PBS (20x) 160 g/L NaCl, 4 g/L KCl, 28.8 g/L Na

2
HPO

4
, 4.8 g/L KH

2
PO

4
. 

PTU 0.03 % 1-phenyl-2-thiourea in egg water buffer. 
Sample-Buffer 0.2% BSA in PBS. 
Staining solution A 
(TMB; TBABH) 

41 mM TMB and 8 mM TBABH in DMA. Store at 2-8°C and protected from 
light. 

Staining solution B 3.14 μL 30% H
2
O

2
 (3.075 mM) in 10 ml Citrate-Buffer and store at 2-8°C, 

protected from light (up to 1 month). 
Staining solution for ELISA 200 L solution A, 8 mL solution B. Protect from ligth. 
Stop solution 1M sulfuric acid. 
Tricaine  solution 4 g/L tricaine powder, 25 mL 1M Tris-HCL, pH 7 
Wash buffer ELISA 1x PBS, 0.05 % Tween-20 
Washing solution cell 
dissociation 7.5 L DNase I (10 KU)in 1 mL PBS 
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7.1.2 Chemicals and other reagents 

Chemicals and other reagents 
Name Supplier 
3,3',5,5'-Tetramethylbenzidine (TMB), ultra pure Biomol GmbH 
Albumin from bovine serum, > 98% Sigma-Aldrich Chemie GmbH 
Citric acid monohydrate, p. a. > 99.5% Roth 
Cortisol-HRP conjugate EastCoast Bio, Inc. 
DNase I from bovine pancreas 10KU Sigma-Aldrich Chemie GmbH 
DMSO Sigma-Aldrich Chemie GmbH 
Ethanol absolute, p.a.  ≥99,8% Sigma-Aldrich Chemie GmbH 
Ethyl acetate, p. a. ≥99,5% Fluka Chemie GmbH 
FACSmax cell dissociation solution Amsbio 
Hydrogen peroxide, 30 %, p.a. Merck KGaA 
Magnesium sulfate heptahydrate, p.a., ≥99,5 % Merck KGaA 
Metronidazole  Sigma-Aldrich Chemie GmbH 

Mifepristone, RU-486 Sigma-Aldrich Chemie GmbH 
N,N-dimethylacetamide, p. a. ≥99,5% Sigma-Aldrich Chemie GmbH 
Propodium Iodide Sigma-Aldrich Chemie GmbH 
Sodium chloride, p. a. ≥99,5% Merck KGaA 
Tricaine, MS-222 Sigma-Aldrich Chemie GmbH 
Sulfuric acid, p.a., 95- 97% Fluka Chemie GmbH 
Tetrabutylammonium borohydride, 98% (TBABH) Sigma-Aldrich Chemie GmbH 
Tween-20 Roth 
-Cortisol monoclonal antibody EastCoast Bio, Inc. 

 

7.1.3 Commercial kits 

Commercial kits 
Name Supplier 
Agencourt AMPure XP Beckman Coulter, Life Sciences 
Cortisol Saliva ELISA kit IBL International 
Dnase PureLink Set Life Technologies, Ambion 
KAPA HiFi PCR kit Kapa Biosystems 
Nextera XT Index Kit Ilumina 
Nextera XT Sample Preparation Kit Ilumina 
MessageAmp II aRNA Amplification Kit Life Technologies 
Power SYBR Green RNA-to-CT 1-Step kit Thermo Fisher Scientific 
Power SYBR Green PCR Master Mix Thermo Fisher Scientific 
Rneasy Micro Kit Qiagen 
RNA 6000 Pico kit Agilent Technologies 
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7.1.4 Consumables and equipment 

Consumables and equipment 
 Name Supplier Catalog / Model 

7500 Real-time PCR System Applied Biosystems 
 

Camcorder Sony HDR-CX240 HD Flash 
Cell strainer 40m Sigma-Aldrich Chemie GmbH Corning, CLS431750-50EA 
Centrifuges Heraeus Labofuge 400 R 

 
Eppendorf 5417R 

ELISA plate reader Thermo scientific Multiskan Ascent  
ELISA plates, Flat-bottom VWR International GmbH Immulon 2 HB, 735-0462 
FACS tube with cell strainer neoLab Migge GmbH BD Falcon 352235 
Fluorescence stereomicroscope Leica MZ16 
Incubator Rubarth Apparate GmbH RuMed 3101 
Light glass filters 550nm Thorlabs FGL550S 
Magentic stirrer plate Thermo scientific Variomag Poly 15 
Magnetic stir bar 6x3 mm Fischer scientific 11888882 
Microscope Laser scanning confocal Leica SP5 
Orbital shaker Heidolph Polymax 2040 
Pestles VWR International GmbH 431-0094 
Pestle motor VWR International GmbH 431-0100 
Petri dishes  Ø=35mm 

  
pH-meter Knick 766 Calimatic 
Thermomixer Eppendorf Thermomixer compact 5350 
Vacum concentrator Eppendorf Vacufuge 5301 
Vacum pump Vacuubrand GmbH PC2004 
 

7.1.5 Fish lines 

Fish strains 
 Strain Description Reference 

AB/TL Wild type. 
 otpECR6:GFP NPO marker (hypothalamus). Gutierrez-Triana et al. , 2014 

otp:ECR6:nfsB-GFP Nitroreductase-Metronidazole system for NPO 
cell ablation. Gutierrez-Triana et al. , 2014 

2kbStAR:bPAC Optogenetic manipulation of steroidogenic 
interrenal cells. Gutierrez-Triana et al., 2015 

2kbStAR:nfsB-GFP Nitroreductase-Metronidazole system for 
steroidogenic interrenal cell ablation. Gutierrez-Triana et al., 2015 

pomc:bPAC Optogenetic manipulation of corticotrophs De Marco et al., 2013 
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7.1.6 Riboprobes 

Riboprobes 
Target Plasmid Enzyme Polymerase Reference 

avp zVasotocin EcoRI Sp6 Eaton et al. , 2008 
crh pCRII-CRH NotI Sp6 Löhr et al., 2009 
oxt zIsotocin SalI Sp6 Eaton and Glasgow, 2006 

 

7.1.7 Primers for real time qPCR 

Primers for qPCR 
 Target Sequence forward (F) and reverse (R) Reference 

Ef1 alpha F - 5’-CTG GAG GCC AGC TCA AAC GT-3’ 
R - 5’-ATC AAG AAG AGT AGT ACC GCT AGC ATT AC-3’ Yeh, 2015 

mep1a.2 F - 5’-CAG AAG CTT TAC CAC TGA TGC-3’ 
R - 5’-AAG CAA AGG CAA CTA TCA TCC-3’ GETPrime 

mfsd4b F - 5’-CTA TCT TTC TGC AGG CTC TG-3’ 
R - 5’-CGG ATA TGA AAG GCT CTG C-3’ GETPrime 

nr3c1 F - 5’-ACA GCT TCT TCC AGC CTC AG-3’ 
R - 5’-CCG GTG TTC TCC TGT TTG AT-3’ GETPrime 

oxt F - 5’-CGG CCT GCT ACA TCT CAA AC-3’ 
R - 5’-TGC CTT CAC CAC AGC AGA TA-3’ GETPrime 

rsad2 F - 5’-GCT GAA AGA AGC AGG AAT GG-3’ 
R - 5’-AAA CAC TGG AAG ACC TTC CAA-3’ Briolat et al. 2014 

stc1l F - 5’-CCA AGC CAC TTT CCC AAC AG-3’ 
R - 5’-ACC CAC CAC GAG TCT CCA TTC-3’ Chou et al. 2015 

 

7.1.8 Software 

Software 
Name Company/Institution 
7500 Software v. 2.0.6 Applied Biosystems 
Amira 5.3, 5.4, 5.6 FEI VSG 
Ascent software 2.6 Thermo scientific 
GETPrime Swiss Federal Institute of Technology in Lausanne 
Image J 1.48v National Institute of Health, USA 
InterProScan  EMBL-EBI 
Ingenuity Pathway Analysis (IPA) Qiagen 
Leica LAS AF Leica Microsystems 
Oriana v 4.02 Kovach Computing Services 

Prism 6 GraphPad Software Inc. 
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7.2 Experimental procedures 
 

7.2.1 Fish maintenance 

Maintenance and breeding of AB/TL wildtype zebrafish (Danio rerio) were 

performed under standard conditions at 28.5°C (Westerfield, 2000). All procedures 

were performed according to the guidelines of the German animal walfare law and 

approved by the local government. Zebrafish embryos were obtained by random mating 

between one male and one female which were set one day before in a container where 

the fish were separated by a plastic divider. The divider was removed on the following 

day at 9-10 a.m. Embryos were collected within 2-3 after the divider was removed and 

placed in petri dishes (Ø=100mm) with E2 medium for later sorting in small petri dishes 

(Ø=35 mm). Groups of 30 embryos were sorted in the small petri dishes containing 5 

mL of E2. Zebrafish embryos were kept in an incubator (Rubarth Apparate GmbH, 

RuMed 3101) with a 12h/12h light/dark cycle at 28°C (lights on at 9 a.m.). At 3 dpf, 

chorions and other debris were removed with a pipette and E2 medium was replaced 

with fresh one. No feeding was provided in the petri dishes. These conditions were kept 

in experiments performed in 4-8 dpf larvae. For experiments in older stages, groups of 

30 zebrafish larvae were transferred at 6 dpf at 3:00 p.m. to plastic cages (5 L) 

containing 400 mL of egg water. Larvae were fed using standard procedures and 

maintained at 28°C until the day of the experiment (10 dpf). 

7.2.2 Exposure to stressors 
 

7.2.2.1 Vortex flow stimulations 

 

Acute exposure 

Groups of 30 larvae were contained in small petri dishes with 5mL of E2 media. In 

order to avoid handling on the day of the experiments, a small magnetic stir bar (6 x 

3mm; Fisher scientific) was placed in the petri dishes one day before the stimulation and 

immediately placed on top of a magnetic stirrer plate (Variomag Poly 15; Thermo 

scientific) inside an incubator (28°C). Control groups were managed in the same way, 

but placed on a second magnetic stirrer plate of the same model and specifications in 

order to avoid perturbations on the day of the experiment. On the day of the stimulation, 

larvae of the required age (4-8 dpf) contained on the small petri dishes were exposed to 

vortex flow stimulation of either 1, 3, or 6 minutes; the strength of the magnetic field 
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inversion was controlled on the magnetic stirrer plate and ranged from 130 to 530 rpm. 

Samples were either recorded for later behavioral analysis or immobilized with ice 

water and collected at the required time after stimulation onset for cortisol extraction. 

For experiments in 10 dpf larvae, plastic cages (5 L) containing the larvae were placed 

on top of the magnetic stirrer plate on the day of the stimulation; three magnetic stir bars 

(150 x 50 mm) were placed distributed along the plastic cage. Larvae were exposed to 3 

minutes of vortex flow stimulation with a strength of 330 rpm. Samples were 

immobilized with ice water and collected for cortisol extraction 10 minutes after the 

stimulation onset. All experiments were performed between 11 a.m. and 2 p.m. 

 

Repeated exposure (including mifepristone treatment) 

For repeated vortex flow stimulation, all steps described in last section (7.2.2.1. 

acute exposure) were followed with some modifications. Larvae were exposed for 3 

minutes to a vortex flow stimulation generated by 330 rpm of magnetic field inversion. 

Instead of sample collection after 10 minutes of acute stimulation onset, petri dishes 

containing the larvae of the desired age were left on the magnetic stirrer plate after acute 

vortex flow stimulation. A second stimulation of the same characteristics was delivered 

either 30 or 60 minutes after onset of the first stimulation. Samples were immobilized 

with ice water and collected for cortisol extraction 10 minutes after the second 

stimulation onset (40 or 70 minutes after first stimulation onset). All experiments were 

performed between 11 a.m. and 2 p.m. 

 

Prolonged exposure  

Prolonged exposure to vortex flow stimulation was carried out in small petri dishes 

(Ø=35 mm) containing 30 larvae each. The dishes containing the larvae were placed on 

top of a magnetic stirrer plate (Variomag Poly 15; Thermo scientific) and a magnetic 

stir bar (6 x 3mm; Fisher scientific) was placed on each of the dishes. Prolonged vortex 

flow stimulations were started at 11 a.m. and consisted of 9 pulses with an inter-trial 

interval of 60 minutes of either 5 or 30 minutes length, or 9 hours of continuous 

stimulation; strength of the stimulation was fixed at 330 rpm. Prolonged stimulations 

were delivered in 4-7 dpf larvae. Control larvae were placed on top of the magnetic 

stirrer plate and exposed to the magnetic field without a magnetic stir bar. At the end of 

the prolonged vortex flow stimulation, samples were prepared for the following day 

depending on further experiments to be performed.  
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7.2.2.2 Osmotic shock  

Groups of 30 embryos were sorted in small petri dishes (Ø=35 mm) with 5 mL of 

E2 media. In order to minimize handling on the day of the experiments, E2 medium was 

adjusted to 4 mL one day before the experiment. On the day of the experiment, 1 mL of 

a 5X NaCl solution of concentration 50mM or 250mM was added to each experimental 

petri dish containing the larvae of the desired age. For control larvae, 1 mL of pre-

warmth (28°C) E2 medium was added.  Larvae were incubated for 10 minutes in the 

solution inside the incubator (28°C). Larvae were immobilized with ice water after the 

incubation time and collected for cortisol extraction. All experiments were performed 

between 11 a.m. and 2 p.m. 

 

7.2.3 Cortisol measure 
 

7.2.3.1 Cortisol extraction 

Cortisol extraction was performed as described elsewhere (Yeh et al., 2013). 

Briefly, upon collection, samples were immobilized with ice water, frozen in an 

ethanol-dry ice bath after medium was removed, and stored at -20°C until cortisol 

extraction was performed. For extraction, samples were thawed on ice and 150 L of 

milli-Q-H2O was added into each tube. Samples were homogenized with a motor pestle 

(VWR-International) for 20 seconds. After homogenization, 1 mL of ethyl acetate was 

added to each sample and they were vortexed at maximum speed for 30 seconds.  

Samples where then centrifuged at 3000x g at 4°C for 5 minutes for solvent and 

aqueous phase separation. The aqueous phase was frozen in an ethanol/dry ice bath and 

the solvent phase, which contained the extracted cortisol, was transferred into a new 

tube (1.5 mL). To evaporate the ethyl acetate, samples were placed in a vacuum 

concentrator (Eppendorf, Vacufuge 5301) for 30 minutes at 30°C. Cortisol was re-

dissolved in 60L of sample buffer (0.2% BSA in PBS) and samples were frozen at -

20°C for at least 6 hours before using them for cortisol ELISA. To prepare the samples 

for cortisol ELISA, the tubes were thawed at room temperature and then mixed at 1200 

rpm and 37°C for 5 minutes in a thermomixer (Eppendorf). Samples were then spun 

down and directly used for cortisol ELISA.   

 

 

 



Materials and Methods 

 

115 
 

7.2.3.2 Cortisol ELISA 

Cortisol measurements were performed by ELISA as described elsewhere (Yeh et 

al., 2013). Briefly, 96-well plates (Immulon 2 HB, VWR International) were pre-coated 

with cortisol monoclonal antibody (1.6 g mL
-1

; EastCoast Bio, Inc.) overnight at 4°C. 

On the following day, unbound cortisol monoclonal antibody was washed three times 

with washing buffer (0.05% tween-20 in PBS). After drying by inverted tapping into a 

paper towel, 250 L of blocking buffer (0.1% BSA in PBS) was added into each well 

and the plate was incubated for 30 minutes at room temperature in an orbital shaker. 

The plate was then washed three times with washing buffer and dried using the same 

method. Samples and standards were loaded to the corresponding wells (50 L into 

each well); subsequently, 50L of conjugate cortisol-HRP (1:80 dilution from stock; 

EastCoast Bio, Inc.) was added into each well and the plate was covered and incubated 

at room temperature for 2 hours. After incubation, the plate was washed three times 

with washing buffer and dried as before. Each well then received 100 L of TMB 

substrate (staining solution) prepared by mixing 200L of solution A and 8 mL of 

solution B not longer than 30 minutes before usage. The plate was incubated for 20 

minutes and the reaction was stopped with 100L of 1M sulfuric acid (stop solution) in 

each well. Immediately after adding the stop solution, absorbance was read at 450 nm in 

a microplate reader (Multiskan Ascent, Thermo Scientific). The data were corrected for 

dilution factor, extraction efficiency, and recovery function.   

 

7.2.4 Behavioral analysis – Video analysis 
 

Behavioral analysis during or after vortex flow stimulation were performed in 5 or 6 

dpf AB/TL wildtype larvae, depending on the experiment. Groups of 30 larvae 

contained in small petri dishes (Ø=35 mm) were placed on a magnetic stirrer plate 

inside an incubator (Rubarth Apparate GbmH, RuMed 3101) and recorded with a 

camcorder (Sony, HDR-CX240 HD) from above. Videos were analyzed using the 

software ImageJ 1.48v (National Institute of Health, USA) and the plugin MTrackJ 

(Meijering et al., 2012). 

 

7.2.4.1 Distance swam 

Total distance swam and speed were calculated by the software plugin MTrackJ 

after calibration with the measures of the arena and specification of the time length per 



Materials and Methods 

116 
 

frame (0.08s frame
-1

). For evaluating the trajectories and speed of anesthetized larvae 

during vortex flow stimulation of different strengths (130, 330, and 530 rpm), individual 

animals (6 dpf) were placed in a small petri dish containing 5 mL of E2 medium with 

100 L of Tricaine solution and a magnetic stir bar. Larvae were considered to be 

anesthetized when they failed to respond to tactile stimulation. Video recordings were 

obtained for each condition and 30 consecutive frames taken one minute after vortex 

flow stimulation onset were considered for analysis using the tracking tool of the plugin 

MTrackJ. 

  

To evaluate total distance swam after acute vortex flow stimulation exposure in 

freely swimming larvae, groups of 30 larvae (6 dpf) contained in small petri dishes with 

5 mL of E2 medium were exposed to 130, 330 or 530 rpm of vortex flow stimulation for 

three minutes. Video recordings were five minutes in length (starting one minute before 

stimulation onset and finishing one minute after stimulation offset). The plugin 

MTrackJ was used to track individual larvae and the total distance swam was calculated 

based on the tracking data after calibration. For some analysis, the mean of the total 

distance swam during the first 10 seconds after the stimulation onset was calculated and 

used for statistical comparisons. Similarly, the mean of the total distance swam during 

the first 10 seconds after the stimulation offset was calculated and used for further 

comparisons. To evaluate total distance swam during prolonged continuous exposure to 

vortex flow stimulation (9 hours of continuous vortex flow stimulation), groups of 30 

larvae (5 dpf) were placed in small petri dishes and videos were recorded starting either 

before stimulation onset, 5 minutes after prolonged stimulation onset, or 8.5 hours after 

prolonged stimulation onset. Analysis was performed as described before for acute 

vortex flow stimulations with one modification: the mean of the total distance swam 

during a period of time of 30 seconds was used for comparisons.   

 

7.2.4.2 Distance to vortex origin 

Distance to vortex origin was calculated by the software plugin MTrackJ after 

calibration with the measures of the arena and establishment of the magnetic stir bar as 

the reference point. 
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7.2.4.3 Body angle orientation 

Body angle orientation was measured by analyzing the recorded videos with the 

software ImageJ 1.48v (videos used for measuring distance swam, described above). 

Body axis angle was measured by drawing a line along the larva’s axis from the tail to 

the head (point between the larva’s eyes); then, a second line from the head of the larvae 

to the origin of the vortex flow (center of the dish) was drawn. The value of the angle 

was automatically stored by the software and the orientation of the larvae, i.e. facing 

towards or against the water flow, was manually documented. The measures were 

performed in two ways: 1) to evaluate frequency distribution of body angle orientation 

at a specific time point, three measures (10 seconds apart) were taken starting at two 

minutes after the onset of the stimulation. 2) To evaluate change in body angle as a 

function of time, the identity of individual larvae was considered and the angle 

orientation was measured every 10 frames for a total period of time of five seconds. 

Change in body angle was measured before, during, and after two minutes of the onset 

of vortex flow stimulation.    

 

7.2.5 Whole-mount fluorescence in situ hybridization 
 

To evaluate the cell number expressing CRH, AVP, and/or OXT in the NPO region 

of zebrafish larvae, whole mount fluorescence in situ hybridization was performed by 

Ulrich Herget in our laboratory as described elsewhere (Wolf and Ryu, 2013); probes 

for crh, avp, and oxt are reported in (Herget et al., 2014). Larvae were imaged in 80% 

glycerol in PBS using a Nikon 20x glycerol objective and a Leica SP5 confocal laser 

scanning microscope. Acquisition and analysis of confocal images for later cell 

counting was performed as reported in (Herget et al., 2014).  

 

7.2.6 Calcium Imaging 
 

For quantification of hypothalamic cell activity, the transgenic lines 

Tg(crh:RFP)hd21 and Tg(otpa3kb:GCaMP3.0)hd22 were used; these transgenic lines 

were established by Dr. Colette vom Berg-Maurer as described in (Vom Berg-Maurer et 

al., 2016). Double-transgenic larvae were either exposed to prolonged vortex flow 

stimulation, or untreated at day 5 and on the following day were used for cell activity 

measurements. In order to measure hypothalamic cell activity upon stress response 

activation, larvae were exposed to osmotic shock (250 mM NaCl) and calcium imaging 
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was measured in vivo. Calcium imaging was performed by Marcel Kegel in our 

laboratory using a custom-built two-photon microscope. Imaging acquisition, osmotic 

shock stimulation, and analysis of calcium events in hypothalamic cells were performed 

as described in (Vom Berg-Maurer et al., 2016). For this thesis, the area under the curve 

of calcium events elicited by responsive CRH cells after osmotic shock stimulation was 

calculated and plotted for comparison between larvae exposed to prolonged vortex flow 

stimulation at 5 dpf and untreated larvae.  

 

7.2.7 Cell dissociation protocol 
 

For cell isolation experiments, the transgenic line otpECR6:GFP (Tg(otpECR6-

E1b:mmGFP)hd12) was used (Gutierrez-Triana et al., 2014). otpECR6:GFP fish were 

incrossed and their progenies collected and maintained in standard conditions. At 2-3 

dpf, embryos were selected for the presence of GFP expression in the NPO region using 

a fluorescent dissecting microscope (Leica, MZ16). Groups of 100 otpECR6:GFP (+) 

and (-) larvae were placed in petri dishes (Ø=100 mm) containing 35 mL of E2 medium 

and kept at 28°C in an incubator (Rubarth Apparate GmbH, RuMed 3101). On the day 

of the experiment, groups of 100 larvae were sacrificed with ice water and collected in 

1.5 mL tubes placed on ice. All samples were collected at 9 a.m. Medium was removed 

from the tubes and larvae were washed one time with PBS. Either 600 L of cell 

dissociation solution (FACSmax, Amsbio), or of PBS, was added to each tube together 

with 5 L of 10 KU/mL DNaseI (Sigma Aldrich Chemie GmbH). Tubes were placed on 

a water bath at 28°C to facilitate cell dissociation. Samples were homogenized either by 

using a syringe and needle or a plastic pestle with a motor (VWR International, 431-

0100). In the case of syringe-needle homogenization, three sizes of needles were used to 

progressively homogenize the sample going from the largest to the smallest size (needle 

Ø= 0.6, 0.5, and 0.4 mm). The same size of a needle was used until no clumps were 

observed. Both homogenization protocols (syringe-needle and motor pestle) were 

performed in a period of time no longer than 30 minutes, alternating one-two minutes of 

homogenization and five minutes of resting periods on the water bath. When the 

homogenization was finished, samples were placed on ice and one volume (600 L) of 

washing solution (7.5 L DNase I (10 KU) in 1 mL PBS) was added to each sample. 

The content of each tube belonging to the same experimental group was then passed 

through a 40m cell strainer (Sigma Aldrich Chemie GmbH; Corning) and collected in 
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one single 50 mL tube. Samples were then centrifuged at 4500 rpm and 4°C for 5 

minutes (Heraeus Labofuge 400R) and the supernatant was removed. Cell pellet coming 

from 500 dissociated larvae was re-suspended in 4 mL of a 1:1 solution of PBS and 

FACSmax (resuspension solution); propodium iodide was added in order to evaluate 

cell viability. The cell suspension was then passed through a 35 m cell strainer and 

collected in a 5 mL FACS tube (neoLab Migge GmbH; BD Falcon). Samples were kept 

on ice until entered into the FACS machine (no longer than 20 minutes). 

 

7.2.8 FACS 
 

In order to separate GFP+ and GFP- cells, cell suspensions coming from the cell 

dissociation protocol were passed through a fluorescent activated cell sorter (BD 

FACSAria Illu). Cell sorting was performed at room temperature and the cell sorter 

laser was set at a wavelength of 488 nm at 200 mW. Sorted cells were directly collected 

either in lysis buffer for RNA extraction (Qiagen, RNeasy MicroKit) and stored at -

80°C, or in PBS for confirmation of GFP expression by fluorescence microscopy. The 

settings for cell sorting were empirically determined by using a cell suspension coming 

from wildtype larvae. Cells were sorted depending on cell size (forward scatter, FSC-A) 

and granularity (side scatter, SSC-A) in order to avoid cell debris and clumps of cells. 

Single cells were then sorted depending on their fluorescence and categorized as GFP+ 

and GFP-; the gates for GFP+ and GFP- cell populations were carefully set as to assure 

minimum probability of cross contamination. Confirmation of the quality (cell debris vs 

single cells; percentage of GFP-expressing cells) and identity of cells sorted as GFP+ or 

GFP- was evaluated by fluorescence microscopy and qPCR (oxt expression), 

respectively.   

 

7.2.9 RNA extraction 
 

Isolation of total RNA was performed using the RNeasy Micro Kit (Qiagen) 

according to the manufacturer instructions. Quantitation and quality control of isolated 

RNA was evaluated by running a chip (Agilent Technologies, RNA6000 Pico Kit) on a 

bioanalyzer (Agilent 2100).    

 

 

 



Materials and Methods 

120 
 

7.2.10 RNAseq libraries preparation 
 

Libraries for RNAseq were prepared using Smart-seq2 technology as described 

elsewhere (Picelli et al., 2014, Llorens-Bobadilla et al., 2015); libraries were prepared 

by Enirc Llorens-Bobadilla at the Molecular Neurobiology Department of the German 

Cancer Research Center, Heidelberg, Germany. Briefly, 100 ng of total RNA were 

subjected to reverse transcription using an oligo(dT) primer and a locked nucleic acid 

(LNA)-containing template-switching oligonucleotide (Exiqon). The generated full-

length cDNAs were amplified using 15 cycles of PCR with KAPA HiFi DNA 

polymerase (KAPA biosystems). The amplified cDNAs were purified using two rounds 

of AMPure XP SPRI purification at 0.8X (Beckman Coulter Inc.). Quantification of 

cDNAs was performed by using Qubit and cDNA integrity was controlled by running a 

High Sensitivity Bioanalyzer chip (Agilent). A total of 500 pg of cDNA from each 

sample was converted into uniquely barcoded libraries for Ilumina sequencing 

according to the Nextera XT Sample Preparation protocol (Ilumina) with minor 

modifications. Briefly, the tegmentation step was extended to 8 minutes and a double 

cleanup with 0.8X AMPure XP SPRI beads was performed after 9 cycles of PCR 

amplification. Multiplexing was performed with 5 ng of each sample. The multiplex 

was finally cleaned and concentrated using 1X SPRI beads, measured again by Qubit, 

and run on a bioanalyzer chip to evaluate the final molarity prior to sequencing.  

 

7.2.11 RNA-seq and expression analysis 
 

RNA sequencing was performed by GATC Biotech AG (Constance, Germany) 

using a Genome Sequencer Ilumina HiSeq2500. Briefly, RNAseq reads were aligned to 

zebrafish genome (GRCz10) using Bowtie (Langmead et al., 2009). TopHat (Trapnell et 

al., 2009) was used to identify the potential exon-exon splice junctions of the initial 

alignment; identification and quantification of the transcripts from the RNA-seq 

alignment-assembly was performed using Cufflinks (Trapnell et al., 2013). 

Subsequently, Cuffmerge (Trapnell et al., 2013) was used to merge the identified 

transcript pieces to full length transcripts and annotate the transcripts based on the given 

annotations. Finally, differential expression levels at the transcript and gene level were 

determined using Cuffdiff (Trapnell et al., 2013). 
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7.2.12 qPCR 
 

Real time qPCR for validation of RNAseq data was performed from the generated 

cDNA libraries (section 6.2.10) using Power SYBR Green PCR Master Mix (Thermo 

Fisher Scientific) according to the manufacturer instructions. In the case of real time 

qPCR for confirmation of GFP(+) cell identity, total RNA was extracted from sorted 

cells as described in section 6.2.9 and one round of amplification using the 

MessageAmp II aRNA amplification kit (Life Technologies) was performed. Amplified 

RNA was then used as template for real time qPCR using the Power SYBR Green 

RNA-to-Ct 1 Step Kit (Thermo Fisher Scientific) according to the manufacturer 

instructions. Section 7.1.7 shows the list of primers used for real time qPCR. The 

sequences of the primers were obtained either from literature or from GETPrime (Swiss 

Federal Institute of Technology in Lausanne). All primers were tested for efficiency by 

running serial dilutions of samples. Efficiency was calculated with the formula:  

E = 10
^
(-1/slope)-1 

Where E is efficiency and slope is calculated from plotting template concentration 

(log) vs Ct values. Only primers with 90-110% efficiency were considered for further 

experiments. Real time qPCR was carried out in a 7500 Real Time PCR system 

(Applied Biosystems) and data was analyzed using the 2
-ΔΔCt

 method in order to 

calculate relative gene expression (Schmittgen and Livak, 2008). 

 

7.2.13 Gene ontology analysis 
  

Gene ontology, network, and pathway analysis were performed using the Ingenuity 

Pathway Analysis (IPA) software (Qiagen). Molecule identifiers from RNA-seq data 

from zebrafish larvae were converted into their human orthologs using BioMart 

(Smedley et al., 2015) and used as input to performer a core analysis using IPA 

software. The input data contained the Ensembl gene IDs, fragments per kilo base per 

million (FPKM), log ratio (log2(fold change)), and adjusted p-value (q-value) for each 

gene of the experimental groups that were compared. From 16,249 annotated genes 

identified after RNA-seq, IPA mapped 13,272. The criteria for gene selection for further 

pathway analysis were set as follows: adjusted p-value below 0.05, log ratio larger than 

0.5, and FPKM larger than 1. Up- and downregulated genes were analyzed 

simultaneously.  IPA software performs Fisher’s exact tests for each network/interaction 

and it gives a p-value which is then converted into a score (-log10(p-value)). Top 
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enriched canonical pathways, upstream regulators, and function annotations were 

selected based on IPA’s score.  

 

7.2.14 Optogenetic manipulation 
 

The transgenic lines pomc:bPAC (Tg(Pomc:bPAC-2A-tdTomato)hd10) and 

StAR:bPAC (Tg2kbStARp:bPAC-tdTomato)hd19) were generated as described 

elsewhere (De Marco et al., 2013, Gutierrez-Triana et al., 2015). Transgenic 

pomc:bPAC and StAR:bPAC fish were crossed with wild type fish and embryos were 

collected in groups of 30 in small petri dishes (Ø= 35 mm) with 5 mL of E2 media. To 

avoid unspecific activation of bPAC during development, small petri dishes containing 

the transgenic embryos were placed in custom-made containers covered by 550 nm 

long-pass filters (Thorlabs). The containers where then placed in an incubator (28°C) 

with a 12:12 light/dark cycle. For the transgenic line pomc:bPAC, larvae were screened 

for the presence of dtTomato expression in the pituitary at 4 or 5 dpf using a florescence 

dissecting microscope (MZ6, Leica). In the case of StAR:bPAC, larvae were screened 

for the presence of dtTomato expression in the interrenal gland at 3 dpf. Optogenetic 

manipulations were performed in 6 dpf pomc:bPAC or 4 dpf StAR:bPAC larvae using a 

custom-made LED ring placed at a fixed distance above a small petri dish containing 

the larvae. The incident angle of the LEDs allowed for homogenous illumination of the 

petri dish. LEDs were controlled with custom-made drivers, pulse generators and a TTL 

control box (USB-IO box, Noldus). Larvae were exposed to a single or multiple 

stimulations consisting of three minutes of blue light with an intensity of 2.8 mW*cm
-2

. 

For multiple stimulations, pomc:bPAC larvae were exposed to four light stimulations 

with an inter-trial interval of 30 minutes. Each light pulse consisted of 100 ms flashes at 

5Hz. Samples were immobilized with ice cold water and collected for cortisol extraction 

two minutes after the light stimulation offset.  

 

7.2.15 Genetically targeted cell ablation 
 

The transgenic lines otpECR6:nfsB-GFP (Tg(otpECR6-E1b:nfsb-GFP)hd14) and 

StAR:nfsB-GFP (Tg(2kbStARp:nfsb-GFP)hd18) were generated as described elsewhere 

(Gutierrez-Triana et al., 2014, Gutierrez-Triana et al., 2015). Transgenic otpECR6:nfsB-

GFP and StAR:nfsB-GFP fish were incrossed and embryos were collected in groups of 

80 in petri dishes (Ø= 100 mm) with 25-30 mL of E2 media. Conditional cell ablation 
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was performed as reported (Curado et al., 2007). At 3 dpf, embryos were screened for 

GFP expression in the NPO region for otpECR6:nfsB-GFP embryos, or in the interrenal 

gland for StAR:nfsB-GFP embryos. GFP+ and GFP- embryos were transferred in groups 

of 30 to small petri dishes (Ø= 35 mm) containing either 5 mL of E2 or 5 mL of E2 + 

MTZ (10 mM). Embryos were maintained in this solution for 48 h (with medium 

exchange at 24 h) at 28°C, under dark conditions. At 5 dpf, medium was exchanged to 

fresh E2 medium for all experimental groups and larvae were kept at 28°C under normal 

12:12 light/dark conditions for 24 h. GFP+ and GFP- larvae with or without exposure to 

MTZ treatment on the previous days, were then exposed to acute vortex flow 

stimulation as described in 6.2.2.1. Larvae were immobilized with ice cold water and 

collected for cortisol extraction after 10 minutes of vortex flow stimulation onset.    

 

7.2.16 Statistical analysis 
 

All group data are presented as mean ± standard error of the mean (S.E.M). Two-

group comparisons were made using a Student’s t-test; null hypothesis was rejected at 

the *p<0.05, **p<0.01, ***p<0.001, or ****p<0.0001 level. Multiple group 

comparisons were performed using One-way or Two-way ANOVA, followed by 

Turkey’s or Sidak’s post-test, respectively, for multiple comparisons between individual 

groups; null hypothesis was rejected at the p<0.05 level. When the data did not meet the 

assumptions of One-way ANOVA, the non-parametric Kruskal-Wallis test was 

performed, followed by a Dunn’s multiple comparison post-test; null hypothesis was 

rejected at the p<0.05 level. To evaluate correlations, the Pearson’s rank correlation 

coefficient was used. Fisher’s test was used for comparing circular data; the null 

hypothesis was rejected at the p<0.05 level. 
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9. LIST OF ABBREVIATIONS 

ACTH - adrenocorticotropic hormone 

AEA -  anandamide 

2-AG -  2-arachidonoylglycerol 

AVP -  arginine vasopressin  

BDNF - brain derived neurotrophic factor 

BNST - bed nucleus of the stria terminalis    

bPAC - Beggiatoa photoactivated adenylyl cyclase 

CB1 -  Cannabinoid receptor type 1 

CRH -   corticotropin releasing hormone 

CRHR - corticotropin releasing hormone receptor 

CREB - cyclic AMP response element binding protein 

DNA -  deoxyribonucleic acid 

dp -  dorsal parvocellular  

dpf -  days post-fertilization 

ELS -  early life stress 

FACS - fluorescence activated cell sorting 

FSC-A - forward scatter  

GABA - gamma aminobutyric acid 

GCs -  glucocorticoids 

GFP -  green fluorescence protein 

GluR5 - (also GRIK1) glutamate ionotropic receptor kainate type subunit 1 
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GR -  glucocorticoid receptor 

GRE -  glucocorticoid responsive element 

h -  hours 

HPA -   hypothalamus-pituitary-adrenal axis 

hpf -  hours post-fertilization 

HPI -   hypothalamus-pituitary-adrenal axis 

IPA -  Ingenuity Pathway Analysis software (Qiagen) 

mc2r -  melanocortin 2 receptor 

Met -  metronidazole 

min -  minutes 

miRNA - micro ribonucleic acid 

mM -  millimolar  

mW -  milliwatts 

mpv -  ventral division of the medial parvocellular regions  

mpd -  dorsal division of the medial parvocellular regions  

MR -  mineralocorticoid receptor 

n.s. -  non-significant 

nfsB - nitroreductase (dihydropteridine reductase, NAD(P)H-dependent, 

oxygen-insensitive) 

NaCl -  Sodium chloride 

NM -  nitroreductase-metronidazole  

NMDA - N-methyl-D-aspartate 

NPO -  neurosecretory preoptic area 
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Otp -  orthopedia 

OXT -  oxytocin 

p -  pulses 

PFC -  prefrontal cortex 

pg -  picograms 

pm -  posterior magnocellular  

pomc -  proopiomelanocortin 

PVN -  paraventricular nucleus  

q-PCR - quantitative polymerase chain reaction 

RFP -  red fluorescence protein  

RNA -  ribonucleic acid 

rpm -   revolutions per minute 

SSC-A - side scatter 

StAR -  steroidogenic acute regulatory protein 
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