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Computing with noise in spiking neural networks

Trial-to-trial variability is an ubiquitous characteristic in neural firing patterns and is
often regarded as a side-effect of intrinsic noise. Increasing evidence indicates that this
variability is a signature of network computation. The computational role of noise is not
yet clear and existing frameworks use abstract models for stochastic computation. In
this work, we use networks of spiking neurons to perform stochastic inference by sam-
pling. We provide a novel analytical description of the neural response function with an
unprecedented range of validity. This description enables an implementation of spiking
networks in simulations to sample from Boltzmann distributions. We show the robust-
ness of these networks to parameter variations and highlight the substantial advantages
of short-term plasticity in our framework. We demonstrate accelerated inference on neu-
romorphic hardware with a speed-up of 104 compared to biological networks, regardless
of network size. We further explore the role of noise as a computational component in
our sampling networks and identify the functional equivalence between synaptic connec-
tions and mutually shared noise. Based on this, we implement interconnected sampling
ensembles which exploit their activity as noise resource to maintain a stochastic firing
regime.

Rauschen als Prinzip der Informationsverarbeitung mit feuernden Neuronen

Neuronale Aktivität zeigt im Allgemeinen eine Trial-to-Trial Variabilität. Diese Variabil-
ität wird vermutlich durch intrinsisches Rauschen verursacht und es deutet viel darauf
hin, dass Trial-to-Trial Variabilität ein wichtiges Merkmal von Informationsverarbeitung
in Netzwerken ist. Jedoch ist die Funktion des Rauschens bei der Informationsverabritung
bislang nicht geklärt, weshalb in bereits existierenden Modellen abstrakte Beschreibungen
stochastischer Informationsverarbeitung benutzt werden. In dieser Arbeit benutzen wir
Netzwerke mit feuernden Neuronen zur stochastischen Informationsverarbeitung mittels
Sampling. Dabei beschreiben wir die neuronale Aktivität für Parameterbereiche, für die
es bislang keine Beschreibung gab, analytisch. Das erlaubt uns, mittels feuernden Neuro-
nen in Simulationen aus Boltzmannverteilungen Stichproben zu ziehen. Die Robustheit
solcher Netzwerke gegenüber Parametervariationen zeigen wir durch umfassende Simula-
tionen. Weiterhin erläutern wir die substanziellen Vorteile unserer Netzwerke gegenüber
konventionellen Implementierungen. Auf neuromorpher Hardware demonstrieren wir
beschleunigtes Sampling, welches hier, unabhängig von der Netzwerkgröße, 104 mal
schneller abläuft als in biologischen Systemen. Des Weiteren untersuchen wir die Rolle
des Rauschens in der Informationsverarbeitung und finden eine Äquivalenzbeziehung
zwischen synaptischen Gewichten und geteilten Rauschquellen. Auf dieser Beziehung
basierend, verbinden wir Neuronenensembles, die ihre Aktivität als Rauschquelle nutzen
und somit stochastisch feuern.
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1 Introduction

Suppose you are on a game show, facing three doors. Behind one door there is the grand
prize, a car. Behind each of the two remaining doors, there is a goat. The game show
host assigns you to pick a door. You pick door number one. Then, the host proceeds to
open one of the other doors, door number three. The door number three reveals a goat.
Then, eventually, you are given a choice. “Do you want to pick door number two or stick
with door number one?”
So, should you stick with door number one or switch to door number two?

Confronted with this thought experiment, the famous Monty Hall problem, many
firmly refuse to believe the correct answer. This is an example of how counter-intuitive
probabilistic reasoning can be. Although a mathematical description is easy to provide,
it shows that the brain has problems with dealing with many situations related to prob-
ability and uncertainty. Almost ironically, recent neuroscientific research studies suggest
that the human mind constructs and constantly reshapes an inherently probabilistic
model of the external world, based on statistical inference of noisy and uncertain sensory
data (Fiser et al., 2010; Brascamp et al., 2006). Studies on cognitive processes like
sensorimotor learning indicate that the brain continuously integrates new knowledge
into this model (Körding and Wolpert , 2004; Kersten et al., 2004; Pouget et al., 2013).
It is proposed that this integration is carried out in stochastic processes, based on
spontaneous, irregular cortical activity. This irregularity is reflected in the presence of
stochasticity in in-vivo activity, where trial-to-trial variability can be clearly observed
(Rolls and Deco, 2010). And yet, despite this irregularity in neural activity patterns,
mammals are able to integrate sensory stimuli over a short time scale with very high
precision. Survival in hostile environments hinges entirely on the ability to locate,
interpret and act upon perceived stimuli on short time scales. Therefore, stochasticity
may not only exist as a mere side effect of the physical substrate, but could be an
indispensable part of neural information processing (Yang and Shadlen, 2007).

Although it is not clear in neuroscience how such probabilistic computations are carried
out in neural tissue, the usefulness of stochasticity as a computational tool has already
been recognized and is adopted in the field of machine learning. In this field, computa-
tional models are trained to fulfill a certain computational task, such as classification of
data according to a learned data set. To be able to perform such inference, the model
needs to inherit an abstract representation of the data characteristics by learning. In
general, the more complex the data set, the more difficult it is to find a suitable rep-
resentation. Amongst the most efficient network models are those whose functionality
is inspired by biological neural networks. Networks such as Boltzmann machines (Sec-
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1 Introduction

tion 5.1) are apt at finding good representations of high-dimensional data sets (LeCun
et al., 2015). Upon defining a measure of inference quality, the applied training algo-
rithms adjust the network topology to obtain satisfactory results. By readjusting the
network topology, the network explores the network configuration space to find such a
solution. Interestingly, searching for the optimal network configuration using stochas-
tic network changes has yielded very good models. The resulting generative model is of
probabilistic nature, as it reproduces the target data in a reliable, but stochastic manner.
However, when applying such neural networks to increasingly complex and diverse

data sets, the network sizes need to increase as well (Krizhevsky and Hinton, 2009). This
causes the operational power costs to grow, limiting the applicability of such networks.
In a well-known recent event, the enormous computational costs have been showcased
during a match of the game of Go between Google’s AlphaGo computer and one of
the world’s best players, Lee Sedol. The running hardware infrastructure during the
series consisted of 1920 CPUs and 240 GPUs to implement customized, pretrained
convolutional nets (Silver et al., 2016). The estimated energy consumption amounts
to approximately 1 MW, compared to the consumption of 20 W for Lee Sedol’s brain.
Prior to the event, the computational model was trained for many months, improving its
probabilistic model of Go by playing against itself with energy consumption on a similar
order of magnitude as in competition.

This shows that the human brain is vastly more efficient than a machine which is
customized to optimally perform upon the chosen task. There are two main causes for
this difference of energy consumption levels. Firstly, the human brain utilizes different,
yet unexplored computational methods. Secondly, the computations in the brain are
performed on a substrate which allows for more efficient computation.
To increase the efficiency of neural networks, a promising approach consists in using
a computing substrate that is more similar to the brain. Such an approach is the
emulation of networks, which was popularized by Carver Mead decades ago (Mead ,
1989, 1990). In an emulation of networks, important aspects of the network correlates
are mimicked by the physical dynamics of the system. In case of so-called neuromorphic
hardware, the electronic circuitry copies aspects of the brain to mimic the properties
of the basic components of neural networks - neurons and synapses. This architecture
makes it possible to access time scales that allow accelerated network runtimes compared
to biological networks. Such neuromorphic implementations allow significantly faster
inference (Pfeil et al., 2013; Schmuker et al., 2014; Petrovici et al., 2015b).

In this thesis we will use a biologically realistic neuron model to build spiking networks
that perform inference tasks. In Chapter 2, we will introduce the neuron model that will
be used in simulations throughout this thesis. Inspired by biological mechanisms in the
cortex, we will implement a columnar architecture and assess its performance in pattern
completion tasks in Chapter 3. Due to the variety of dynamics in such biology-inspired
architectures, the crucial high-activity states can be difficult to interpret. A statistical
description of single-neuron dynamics would be helpful to understand network dynamics
in inference tasks. Therefore, we will investigate single neuron dynamics in the biological
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high-conductance state in Chapter 4. We will use this statistical characterization in
Chapter 5 to build spike-based networks that perform stochastic inference by sampling
from Boltzmann distributions. We will extensively evaluate the sampling performance
of such networks for a wide range of neuron and synapse parameters. In Chapter 6, we
will use these sampling networks to build spike-based, large-scale Boltzmann machines
which perform inference on real-world data sets. Exploiting the inherent parallelism of
neuromorphic architectures, we will demonstrate accelerated sampling from Boltzmann
distributions on the neuromorphic Spikey chip (Petrovici et al., 2015b; Stöckel , 2015).
In Chapter 7, we will address the implementation of noise sources on a neuromorphic
device. This leads to a more fundamental question of how to utilize stochasticity as a
computational network component. We will show that common sources of background
noise and synaptic connectivity in spiking networks can be used interchangeably for
network computation. We will use this knowledge to interconnect sampling networks
and remove external stochastic background. Finally, we will implement spiking networks
which use their output as background noise, which is crucial for sampling. Thereby
we show how spiking networks perform meaningful computation using network-inherent
noise.
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2 Key components of neural networks

In this chapter we will introduce the computational model which we will use throughout
this work. We will use a biology-inspired model that is mathematically tractable, but
still has functional components that are derived from biological mechanisms. We will
characterize these components, namely spiking neurons and synapses of the so-called
leaky integrate-and-fire model.

2.1 The leaky integrate-and-fire neuron

In biology, nerve cells can have many different shapes and therefore exhibit a variety
of dynamics. The relationship between neuron characteristics and their computational
function is still unclear to a large extent. Therefore, it is debatable how much of its
morphology plays a computational role (Lin et al., 2015; Marder and Goaillard , 2006).
Additionally, a highly detailed neuron model is often intractable to simulate. In the
following sections we will outline the leaky integrate-and-fire (LIF) dynamics and define
the terminology to construct neural networks in the next chapter.

The LIF model incorporates a point-like (single-compartment) model, thereby dis-
regarding the detailed morphology of biological neurons. This is a major simplification
from biological neurons, as a lot of research is dedicated to functional aspects of neuronal
spatial structures (Ermentrout and Terman, 2010; Lindsay et al., 2005). The dynamics
of a point-like LIF neuron is characterized by an ordinary differential equation (ODE).
It describes the dynamics of the membrane potential u,

Cm ·
d

dt
u(t) = −gl · [u(t)− El] + Isyn + Iext . (2.1)

The characteristic constant El denotes the leak potential (also resting potential) and gl
constitutes the leak conductance gl, which is the sum of conductances of all passive ion
channels in the neuron membrane. This quantity thereby describes the total conductance
of the membrane in absence of synaptic interactions. Interpreting the membrane as a
capacitor with capacitance Cm and resistance R = 1

gl
= R, we can define the intrinsic

membrane time constant as τm = Cm · R = Cm
gl
. This time constant determines the

speed with which the membrane potential reacts to stimuli; the smaller τm, the faster
the membrane potential u will respond to a stimulus. The parameter Iext is a current
resulting from external input. For now, we will return to a more detailed description of
El, as it can be regarded as a starting point for the description of membrane dynamics.
In the absence of stimulation, it represents the equilibrium membrane potential value.
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2 Key components of neural networks

Physiologically, the value of this quantity is the result of interactions between proteins
in the cell membrane that regulate the flow of particular ion types. The membrane
is mainly composed of a lipid bilayer which is impermeable for a majority of chemical
compounds. For certain chemical compounds (e.g. K+, Na+, Cl−, Ca2+), ion-specific
channels and pumps enable passive and active transport across the cell membrane. This
results in differences in concentration of these ions in the interior and exterior of the
cell. The resulting electric force at the membrane drives the ion flux and is opposed
by a diffusion gradient. The opposing forces of both the diffusion and electric gradient
establish an equilibrium at which certain ion concentrations and the electric membrane
potential stabilize. For monovalent ions, the resulting equilibrium potential El can be
calculated via the Goldmann-Hodgkin-Katz equation,

El =
R · T
F

ln

[∑n
i PX+

i
[X+

i ]out +
∑n

i PY−i
[Y−i ]in∑n

i PX+
i

[X+
i ]in +

∑n
i PY−i

[Y−i ]out

]
. (2.2)

Here, Pion denotes the permeability for the corresponding ion and [ion]site represents
the ion concentration inside or outside of the cell. The constants R and F denote the
ideal gas constant and Faraday’s constant, respectively.

2.2 Synaptic activity in the leaky integrate-and-fire model

The synaptic current Isyn models the impact of synaptic interaction on the membrane
potential and therefore plays a central role for communication in networks. We will now
discuss briefly how it is generated in chemical synapses.

We can write down the synaptic current as

Isyn(t) =
∑
i

gsyni (t) · [Erev
i − u(t)] . (2.3)

When an action potential arrives at a synapse, synapse-specific neurotransmitters are
released into the synaptic cleft. These neurotransmitters can bind to receptors located in
the postynaptic cell membrane, which are coupled to ion channels and thereby regulate
the influx of specific ions into the postsynaptic cell. The conductances of each of these
channels are summed up in

∑
i g

syn
i and mark the first term of the r.h.s. in Equation 2.3.

As a result, the membrane potential is driven towards the reversal potential Erev
i . This

new equilibrium can be calculated similarly to the leak potential El in Equation 2.3 via
the Nernst equation. For each of these channel-specific ion types, a reversal potential
exists and gives a contribution to the synaptic current. As can be seen in Equation
2.3, this contribution depends on the conductance gsyni and the difference (Erev

i − u).
This means that, the more neurotransmitters were released at site i, the more i-specific
channels open. This increases the current Isyn, driving u towards Erev

i . For one dominant
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2.2 Synaptic activity in the leaky integrate-and-fire model

channel i, this would lead to saturation of the membrane potential at Erev
i . In general,

the synaptic current is controlled by many channels, shaped by a weighted mean of all
Erev
i , as can be seen in Equation 2.3.

Aside of u, the conductances gsyn are the dynamic variables which make up the LIF
neuron dynamics by controlling the synaptic current. Hence, we need to describe the
second differential equation of our LIF system - the temporal evolution of gsyn,

d

dt
gsyni (t) = −

gsyni (t)

τsyn
+
∑
i,s

wi · δ(t− tis) . (2.4)

In absence of stimuli, the differential equation above describes exponential decay of the
synaptic conductance with the time constant τsyn. An increase in conductance is initiated
by neurotransmitter release (i.e. synaptic activity) to the synaptic cleft if an action
potential is activated. In our model of LIF neurons we define the time of this action
potential as ts and a spike is modelled as a δ-function time event, δ(t− tis). A sequence
of action potentials is then defined as,

S =
∑
i,s

δ(t− tis) . (2.5)

These points in time model the process of neurotransmitter release at site i. The spike
time series in Equation 2.5 constitutes the series of time events at which synapses are
activated with coupling strengths wi. We will denote these strengths synaptic weights,
or simply weights. In biology, the strength of synaptic connections can not be expressed
as a number, but depends on many factors1. For our purposes, this abstract quantity
characterizes the responsiveness of postsynaptic cells to incoming presynaptic signals.
We call the conductance increase following a stimulation by neurotransmitters a post-
synaptic conductance (PSC) (Figure 2.1). It triggers the ion flux at the cell membrane,
inducing a synaptic current and changing the membrane potential, as illustrated in Fig-
ure 2.2. This change of membrane potential is called the postsynaptic potential (PSP).
A positive change of the membrane potential is called excitation, a negative change is
called inhibition.

Excitation and inhibition are typically caused by release of different neurotransmitters.
For inhibition, one prominent neurotransmitter is GABA (γ-Aminobutyric acid), causing
K+ channels to open. Subsequently, the positive ions flow outside of the cell, hyperpo-
larizing the membrane potential towards Erev

K+ . For excitation, a common transmitter is
glutamate, regulating the gating of Na+ ion channels. This influx of positively charged
ions depolarizes the membrane potential, driving it towards Erev

Na+ .

1The morphology of neurons and chemical interactions can be very complex and impact the signal
transmission properties of nerve cells (Qu et al., 2009).
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2 Key components of neural networks

Figure 2.1: (Left) In LIF neurons, the synaptic conductance is a dynamic variable mod-
elling the impact of presynaptic spikes on the postsynaptic neuron (Equa-
tion 2.4). Synaptic release is considered instantaneous at time t = 0 ms with
the coupling parameter w = 0.02µS as synaptic weight. The exponential
decay time constant is set to τsyn = 5 ms. (Right) For excitatory synapses,
the generated PSP depolarizes the membrane potential (Equation 2.1). In
this exmple, we demonstrate the offset of the PSP, given by a leak potential
El and additional currents Iext. The decay time scale of the PSP determined
by the membrane time constant τm = 20 ms.

In our LIF model, an action potential is triggered if the membrane potential exceeds a
certain threshold potential θ. The action potential is a characteristic property of neurons
and is regarded as the primary means for signal transmission in neural circuitry. We will
now describe the generation of these events and will refer to action potentials as spikes.
The act of spike emission will be called firing.

An action potential is a sharp rise in membrane potential (i.e., depolarization), followed
by hyperpolarization and a subsequent phase of inactivity. The reason for this chain of
events is the voltage-dependence of specific K+ and Na+ ion channels, which will be
explained in the following.
As the Na+ influx increases the membrane potential, K+-specific channels open at

strongly depolarized potentials and lead to hyperpolarization by outflow of K+ ions.
Also, the Na+ channels are closed and deactivated for a certain amount of time. Thus,
even after no more K+ ions flow, the deactivated Na+-channels render further spiking
impossible. The duration of this inactivity is called refractory time and is a common
property of neurons. This characteristic inability of neurons to fire immediately after an
action potential is called refractoriness.

Although the described biological background of these processes is fairly complex, we
will model a simplified version of the action potential. In our LIF model, an action

8



2.3 Adaptive exponential leaky integrate-and-fire model

Figure 2.2: (Left) A leaky integrate-and-fire neuron is excited by multiple synaptic in-
puts, which are modeled as a superposition of exponential kernels with time
constant τsyn. (Right) The resulting ion flux generates multiple excitatory
PSPs on the membrane potential.

potential is emitted as soon as excitation of the membrane exceeds the threshold θ. The
model neuron will then instantly register a spike. Afterwards, u stays fixed at reset
potential ρ for a refractory period τref.

Although it is not entirely clear whether the shape of biological action potentials can
be regarded as generic (Villiere and McLachlan, 1996; Sasaki et al., 2011), in the LIF
model every action potential has an identical time course.

At this point we conclude the description of the conductance-based2 LIF model and
introduce two important extensions to LIF dynamics.

2.3 Adaptive exponential leaky integrate-and-fire model

Our previously defined LIF neuron model has two dynamic variables, the membrane
potential u(t) and synaptic conductance gsyn(t). Their evolution in time is described by
two differential equations, Equation 2.1 and 2.4, respectively. The Adaptive exponential
leaky integrate-and-fire model (AdEx) (Brette and Gerstner , 2005) is an extension of our
basic LIF model. It adds another term to the differential equation of u. It also adds
a new dynamic variable, representing adaptation. Thereby it is able to more closely
reproduce recorded electrophysiological data. The two defining differential equations of
the AdEx model are,

2The current-based LIF model is also widely-used and exhibits somewhat simpler dynamics, see
Bytschok (2011) for a more detailed discussion.
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2 Key components of neural networks

Figure 2.3: (Left) An excitatory PSP depolarizes the membrane potential towards the
reversal potential, Erev

exc. (Right) The PSP is large enough to lift the mem-
brane potential above the threshold θ = −57 mV, triggering a spike (action
potential). Immediately after the spike signal, a refractory period of 5 ms
ensues, fixing the potential at ρ = −70mV . After τref = 5 ms, the membrane
potential recovers and overshoots the equilibrium potential at El = −65 mV
due to excess excitation prior to the spike.

Cm ·
d

dt
u(t) = −gl · [u(t)− El] + gl∆T exp

(
u− ET

∆T

)
− w + Isyn + Iext , (2.6)

τw ·
d

dt
w(t) = a · [u(t)− El]− w + bτw

∑
tspk

δ(t− tspk) . (2.7)

In Equation 2.6, there are two additional terms compared to Equation 2.1 of the LIF
model.
The exponential term gl∆T exp

(
u−ET

∆T

)
implements the fast upsurge of membrane

potential u when it approaches a predefined threshold value ET . Note that ET is not
the hard spiking threshold θ we introduced in Chapter 2.1. Instead, ET indicates the
potential value at which the exponential term becomes dominant and pulls u further
upwards until a spike is emitted at u = θ. The slope of this exponential increase is
governed by the constant ∆T .

The second term in Equation 2.6 is the adaptation current w. This current changes
the neuron’s equilibrium potential and adapts the membrane potential to a given input.
In particular, a strong excitatory input would trigger a high firing rate. The negative
adaptation current −w pulls down u, decreasing the firing rate by “adapting” to the
strong stimulus (Figure 2.4). This effect is often observed in biology and is essential to
reproduce a variety of firing sequences that would not be possible without adaptation
(Naud et al., 2008).
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2.4 Synaptic short-term plasticity

The second equation, 2.7, describes the temporal evolution of w. The adaptation time
constant τw determines the time scale on which w decays towards zero. The parameter
a determines the influence of leak potential El. The parameter b defines the increment
added to the adaptation w after each spike in the spike train

∑
tspk

δ(t− tspk).

Figure 2.4: Membrane potential u (top) and adaptation current w (bottom) of an AdEx
neuron, receiving a strong, constant current stimulus that causes the neuron
to spike repeatedly. In contrast to the basic LIF model, the distance between
consecutive action potentials descreases due to an increase of adaptation cur-
rent w, as described in Equation 2.6 and 2.7. The adaptation current is
displayed below, increasing stepwise for each emitted action potential. Even-
tually, the stimulus is turned off at about 250 ms and prevents the neuron
from spiking further. Figure taken from Gerstner et al. (2014).

2.4 Synaptic short-term plasticity

Thus far, our LIF neuron model has been extended to an AdEx model. An exponential
term was implemented to model subthreshold dynamics more realistically, and an adap-
tation current enables adaptation.

These extensions change the neuron’s membrane characteristics but the synaptic
properties of the LIF model remain unaffected. In fact, the modeled synapses so far
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2 Key components of neural networks

are completely static. This means that the value of the synaptic strength (i.e. synaptic
weight w) remains constant. In contrast to this, biological synapses are plastic. There
are many mechanisms which alter the synaptic properties on shorter time scales - in
the range of milliseconds (Stevens and Wang , 1995; Markram and Tsodyks, 1996; Abbott
et al., 1997) and longer time scales - several hours and longer (Bi and Poo, 1998; Song
et al., 2000; Song and Abbott , 2001; Abbott and Nelson, 2000). These dynamics are
essential for reshaping brain structure and therefore enabling learning processes.

Here, we do not discuss long-term learning, but only focus on short-term changes in
our networks. The Tsodyks-Markram mechanism (TSO) describes the change of synaptic
coupling depending on the number of utilized and available neurotransmitters in the
synaptic cleft (Tsodyks and Markram, 1997; Markram et al., 1998).

In this model, three fractions of neurotransmitter pools exist at the synapse: effective,
recovered and inactive pools of neurotransmitters. The three fractions will be denoted
E, R, I and constitute the entirety of neurotransmitter capacity in the biological system.
Therefore, their sum is one:

E +R+ I = 1 (2.8)

Without any preceding synaptic interaction, there are no neurotransmitters in the
cleft. Also, all neurotransmitters are actively available, therefore R = 1, E = 0, I = 0.
As soon as synaptic activation happens, a fraction of R is transferred to the effective

partition E, from where it decays exponentially into the inactive partition I. Then it is
recovered with a certain time constant, returning to R. These processes can be described
mathematically with the following equations,

dR

dt
=

I

τrec
−
∑
tspk

U ·R · δ(t− tspk) , (2.9)

dE

dt
= − E

τinact
+
∑
tspk

U ·R · δ(t− tspk) . (2.10)

Equation 2.9 models the evolution of the recovered pool R. For each spike time in∑
tspk

δ(t− tspk), the fraction U ·R is depleted for synaptic activation. The parameter U
is also called utilization and determines utilized fraction of available resources at spike
arrival times tspk. For instance, for U = 1 all available neurotransmitters are released at
every spike time tspk. The term I

τrec
models the gradually exponential recovery of R with

time constant τrec. Equation 2.10 describes the time course of active neurotransmitter
fraction, E. For every spike time tspk it increases with U · R and declines exponentially
with time constant τinact into the inactive pool I.
The above mechanism is based on in-vitro measurements and affects the synaptic

conductance gsyn, since synaptic coupling strength depends on changes in available neu-
rotransmitter concentration. The time constants of interaction strength, τrec and τinact,
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2.5 Simulation framework: PyNN & NEST

take on values < 1 s, indicating that this form of synaptic plasticity takes place on a rela-
tively small time scale. These short-term changes in synaptic coupling are not permanent
and persist only during the spike-triggered activity. During this period, the amplitude of
the post-synaptic conductances gsyn is decreased, which is called short-term depression
(STD). The TSO mechanism can also describe temporary facilitation (Markram et al.,
1998), which is called short-term potentiation (STP). To achieve this, the utilization
U can also be modeled to increase by discrete amounts ∆U following each spike. The
utilization is then a dynamic variable as well, modeled by

d

dt
U(t) =

U0 − U
τfacil

+
∑
tspk

∆Uδ(t− tspk) , (2.11)

∆U = U0(1− U) . (2.12)

Here we assume a resting value of utilization U0, which changes at every spike by
∆U . The amount of utilization then recovers exponentially to U0 with time constant
τfacil. Since U can become larger than U0, it can have an amplifying effect on the
post-synaptic conductances in gsyn. The time constant τfacil determines the duration of
the potentiation effect.

In the next chapters we will describe the impact of the TSO mechanism on the network
functionality, as it will play an integral role in network dynamics.

2.5 Simulation framework: PyNN & NEST

All neural networks that we will discuss in this thesis are based on the differential equa-
tions that we have described in the previous sections. We will use a simulation framework
to perform the numerical integration of these equations for large networks. For our sim-
ulations, we will use the NEST simulation kernel (Diesmann and Gewaltig , 2002). For
network simulations in Chapters 5 and 6 we used the spike-based sampling (sbs) module
developed by Oliver Breitwieser. This module is a modification of NEST and simpli-
fies network setup and spike data evaluation for stochastic networks. We will use the
PyNN package (Davison et al., 2008) as an API (application programming interface) to
generate and run our LIF-based neural networks. It provides the definition language for
constructing neural networks.
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2 Key components of neural networks

Figure 2.5: For simulations, we used the PyNN package, which embeds different simula-
tion modules, based on different Python interpreters. The simulator kernel
we used in our simulations was NEST. Figure is taken from Davison et al.
(2008).

14



3 Cortical attractor networks

In the previous chapter, we have discussed the neuron model and simulation tools for our
neural network simulations. In this chapter we will build an AdEx-based cortical network
model and study its proficiency at performing inference tasks. The work presented in this
chapter has been done in collaboration with Boris Rivkin, Mihai A. Petrovici and Oliver
Breitwieser. Also, personal communication with Anders Lansner and Florian Fiebig from
the Royal Institute of Technology was very helpful. All simulations in this chapter have
been conducted by Boris Rivkin, who was supervised by the author of this thesis.

3.1 Cortical layer 2/3 networks with leaky integrate-and-fire
neurons

The cerebral cortex is a key research object in neuroscience, as it constitutes one of
the key architectures for information processing in the mammalian brain. The cortex
is a 2 mm − 4 mm thick sheet of neural tissue, which is composed of six layers, each
distinct in neuron morphology, topology and connectivity (Kandel et al., 2000; Shipp,
2007) (Figure 3.1). It plays an important role in information processing tasks linked to
perception, memory and attention mechanisms (Kandel et al., 2000). We will focus on
its role on working memory tasks that are processed by the prefrontal cortex, which is
located in the frontal lobe. The working memory describes the capacity of mammals to
store, retrieve and manipulate information in short-term. This capacity is an important
attribute that has far-reaching effects on higher-order processes like reasoning and deci-
sion making upon available information (Yang and Raine, 2009). Well-known examples
of working memory studies are experiments where human beings are presented sensory
stimuli which they are assigned to recall in a certain time frame (“short-term memory”).
In such experimental setups, sensory stimuli can be given by visual (e.g., colored shapes)
or auditory (e.g., pitch) cues. The capacity can represent the number of different stimuli
that the subject can recall during a certain amount of time. As a result of such studies,
the activity in prefrontal and parietal neurons has been linked to working memory
(Fuster et al., 1971; Gnadt and Andersen, 1988). These studies suggest that working
memory is an integral part of information processing in mammalian brains. Important
cognitive processes rely on the mechanisms of information encoding and processing in
the prefrontal lobe. Therefore, we will model the neural activity in the prefrontal cortex
using the leaky integrate-and-firing model.

The neural activity in these regions has been researched in several studies. The
investigated spike train patterns during working memory tasks suggest that populations
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3 Cortical attractor networks

Figure 3.1: Illustration of neural tissue of the layered cortical sheet. The layers are char-
acterized by different cell populations (left) and fibers (right). The morphol-
ogy and density of neural tissue is layer-specific as well. Figure has been
taken from Gray (1918).

in prefrontal neurons can exhibit both, irregular low-activity firing and regular high-
frequency firing (Pesaran et al., 2002; Compte et al., 2003; Shafi et al., 2007). During
the tasks, there appears to be a coexistence of these two population firing modes. The
low-frequency firing mode, which is referred to as background activity, is not selective
to the presented stimuli, but is carried out by the majority of the populations. The per-
sistent firing mode, on the other hand, is selective to stimuli and exhibits a considerably
higher frequency (Tsodyks and Sejnowski , 1995; van Vreeswijk and Sompolinsky , 1996;
Roudi and Latham, 2007; Barbieri and Brunel , 2007).

To investigate the computational properties of working memory in spiking networks,
we will define a model that captures the functional aspects of the prefrontal cortex and
reproduces the above described firing modes. Here, the first step lies in simplifying
biological architecture to be able to model networks on scales that allow simulations in
a reasonable time frame (i.e., several hours and up to two days).

We will use the layers 2 and 3 (L23) of the prefrontal cortex as the biological correlate
for our neural network architecture. Additionally, we will model the signal transmission
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from layer 4. To simplify the cortical architecture, we will assume a columnar structure
of the cortex. This follows the so-called minicolumn hypothesis, stating that the cortical
area can be subdivided into minicolumns, which can then be understood as functional
modules (Mountcastle, 1979; Hubel and Wiesel , 1962, 1965). These modules can be
regarded as clusters of neural tissue with high spatial density and intrinsic connectivity.
Topologically, these clusters permeate all cortical layers and expand perpendicularly to
the cortical sheet.

Although this structural interpretation of the cortex is debated (Horton and Adams,
2005; Buxhoeveden and Casanova, 2002a,b), it provides a framework that can be used
for computational studies (Markram et al., 2015). It offers the possibility to reduce the
network complexity by subsuming neurons into minicolumns, which are then interpreted
as the core computational components. This also applies to L23 networks, which have
been implemented using Hodgkin-Huxley neurons (Lundqvist et al., 2006, 2010) and AdEx
neurons (Petrovici et al., 2014).
Our task is to evaluate the L23 model as a columnar network model comprised of

AdEx neurons and assess its usability for inference tasks. An overview of the network
architecture can be seen in Figure 3.2.

Figure 3.2: Three example hypercolumns, drawn as cylindrical shapes. In each of these
hypercolumns three minicolumns are located. One minicolumn is considered
as a basic computational node, consisting of multiple populations and en-
compassing the second and third cortical layers. Figure has been taken from
Breitwieser (2011).

To study the potential of an AdEx-based working memory L23 network, we define
a task which the network is set up to solve. As a benchmark task to evaluate this
potential we will use a pattern completion setup where we store information in the
network and provide cues to initiate recall activity. As stated before this inference task
is related to human information processing and could potentially be used for classifying
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3 Cortical attractor networks

data. Images that are incomplete or noisy, could be retrieved by the network. Similar
approaches have already been investigated in Breitwieser (2011). The information will be
stored as so-called patterns, which is a subset of minicolumns that share strong excitatory
interconnections. Providing information that corresponds to a pattern means that a part
of the minicolumn subset is activated by excitation. As soon as pattern-specific cues are
provided, the network will tend to switch into the respective pattern state by activating
the remaining pattern minicolumns. This firing state will exhibit regular high-frequency
firing, which we will call an attractor state. Here, the provided cues are modelled as
additional high-frequency excitation from the cortical layer 4 and applied to a predefined
fraction of the pattern minicolumns. In case of absence of any cues, the full network will
be set to exhibit irregular activity that corresponds to observed background states which
are pattern-unspecific (Amit and Brunel , 1997a; Durstewitz et al., 2000).
To reproduce this characteristic dynamics in the L23 network, we will implement an

AdEx-based network topology that has been studied in Breitwieser (2011); Petrovici
et al. (2014). Substantial parts of the following descriptions are based on the work of
Boris Rivkin, which is documented in Rivkin (2014). The work published in Rivkin
(2014) and was supervised by the author of this thesis.

3.2 Layer 2/3 network architecture

The L23 network consists of hypercolumns (HCs), each of which contains a predefined
number of minicolumns (MCs, Figure 3.2). To describe the network topology more for-
mally, we will use a matrix notation, where populations have indices i and j, denoting the
HC and MC position, respectively. Each minicolumn includes three populations, which
have different parameters and specific roles in the columnar architecture. The popula-
tions in a minicolumn are pyramidal cells (PYR), the basket cells (BAS) and the regular
spiking non-pyramidal (RSNP) cells. The neuron parameters for the AdEx populations
can be found in Appendix A.2. Before we explain how exactly a pattern is formed, we
will describe the connectivity in the network. We denote unilateral connections as→ and
bilateral connections as↔. Additionally, we index inhibitory and excitatory connections
with inh or exc, respectively. The connection probabilities between the populations will
be denoted as P . We will now write down the connectivity and the respective connection
probabilities for a hypercolumn i and minicolumn j,

PYRij
exc←→ PYRij with PPYR↔PYR = 0.25 (3.1)

RSNPij
inh−→ PYRij with PRSNP→PYR = 0.7 (3.2)

BASij
inh−→ PYRj with PBAS→PYR = 0.7 (3.3)

PYRij
exc−→ BASij with PPYR→BAS = 0.7 (3.4)

There are also synaptic connections that are not restricted to the same hypercolumn with
index j,

PYRij
exc−→ BAS|8i with P

|8i
PYR→BAS = 0.7 . (3.5)

18



3.2 Layer 2/3 network architecture

Here, the connectivity of the PYRij cells is restricted to the BAS cells of the eight
minicolumns closest to minicolumn j.

For a minicolumn that is inside a pattern k, the pyramidal populations have additional
excitatory connections with every other minicolumn from pattern k, located in different
HCs,

PYRkj
exc←→ PYRk\j with P

pat
MC↔MC = 0.3 . (3.6)

The above relationship describes the excitatory connection that forms a pattern in the
network. There are additional projections from PYR cells from a pattern k to RSNP
cells from differing patterns (\k) regardless of hypercolumn location j,

PYRk
exc−→ RSNP\k with P \kPYR→RSNP = 0.17 . (3.7)

In our networks, each pattern consists of at least one MC and each MC that belongs
to the same pattern is located in a different HC. On the other hand, an MC can be
included in multiple patterns by having excitatory connections to the corresponding
MCs. Patterns that do not share any MCs with other patterns are often referred to as
orthogonal, whereas patterns that include MCs from other patterns, are described as
non-orthogonal (Figure 3.3).

Figure 3.3: A cortical column network with example pattern topologies. (A) In a network
consisting of three hypercolumns H and four minicolumns U per hypercol-
umn, there are four patterns which are marked by color. Since every MC en-
codes for at most one pattern, the network has only orthogonal patterns. (B)
The layout is identical to the architecture in (A), illustrating non-orthogonal
patterns where two minicolumns encode for multiple patterns. For both cases,
each pattern includes at most one MC per HC.

The connections that form a pattern are given in Connection 3.1. For a pattern k, the
cue in form of external excitatory input is presented to PYR cells in minicolumns that

19



3 Cortical attractor networks

are also part of the pattern k as excitatory input. Then, the excitation spreads to the
remaining minicolumns of k and within the PYR populations via Connections 3.1. As a
result of this excitation, attractor states emerge, resulting in high-frequency activity of
the PYR populations in the pattern.

During the activation process of patterns, the activity of pyramidal cells can become
very high. The BAS populations limit the PYR firing rates of its minicolumn by in-
hibiting PYR cells (Connection 3.3). This restrains the firing frequency of the PYR
cells. Even more importantly, the BAS cells also inhibit all pyramidal cells that do
not belong to their pattern (Connection 3.3). This mechanism enforces activity of the
activated minicolumns, but also suppresses PYR activity from the remaining patterns.
This mechanism is called winner-take-all (WTA) and is essential for the functionality of
pattern activation in many network architectures (Oster et al., 2009).

In the network states where cues are absent, PYR activity exhibits low-frequency
irregular firing which we have referred to as background activity. This irregularity of the
PYR cells results from additional presynaptic input that we have not discussed so far.
This input is not generated within the L23 network, but constitutes external diffusive
noise which induces the background activity that is also observed in biology (Amit
and Brunel , 1997a). The noise is modeled as spike sequences whose time events are
Poisson-distributed (“Poisson spike train”). Hence, their distribution in time is uniform
and each spike is uncorrelated to any other spike in the sequence. This implementation
of background activity is based on the L23 networks described in Breitwieser (2011);
Petrovici et al. (2014). Despite weak synaptic connections of this presynaptic input,
the Poisson spike trains ensure a certain PYR ground level activity. We will refer to
this activity state as the ground state. Due to its irregularity, the resulting activity of
pyramidal cells can lead to spontaneous pattern activation. The Poisson spike trains are
the main source of temporal stochasticity in the network and are the reason why pattern
activation is a stochastic process.

In the following, we will describe our setup for a working memory experiment to
benchmark the capacity of our AdEx-based networks to store and retrieve patterns.

3.3 Pattern completion task as a benchmark

In the previous section we have introduced the layer 2/3 (L23) network and its architec-
ture. In this section we propose a working memory task to assess the pattern storage
and retrieval capacity of these networks. The resulting success rate of this task will be
referred to as the memory characteristic of the network.
For our simulations we will use the adaptive exponential LIF model (AdEx) with

adaptation and synaptic short-term plasticity, which were explained in detail in Sections
2.3, 2.4. Both components, the adaptation and the short-term plasticity mechanism play
an important role for our L23 networks. The role of the AdEx parameters is to adapt
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Figure 3.4: A schematic of the L23 attractor network topology. Each hypercolumn con-
sists of multiple minicolumns. In each minicolumn, three different popula-
tions are located: pyramidal (PYR), basket (BAS) and regular spiking non-
pyramidal (RSNP) cells. A pattern is represented by a group of minicolumns
which are connected by excitatory PYR-PYR connections and encode a spe-
cific firing pattern with their PYR firing activity. To constrain network ac-
tivity, inhibitory basket cells enforce inhibition via BAS-PYR connections.
To increase the probability that only one pattern is active, PYR-RSNP con-
nections between competing minicolumns activate RSNP cells, which inhibit
their own PYR cells. This implements a so-called winner-take-all mechanism.
Figure has been taken from Breitwieser (2011).

the membrane potential of pyramidal cells to strong excitation during attractor states.
Excitation from other pyramidal cells not only excites PYR neurons, but also induces
the adaptation current w. This counteracts the increasing PYR firing rate by lowering
the membrane potential. As a result, the pyramidal cells exhibit biologically plausible
firing rates during the attractor state. Also, the network can leave the attractor state
due to declining firing activity when adaptation becomes strong enough. This weakens
the attractor state, making a transition to other network states more probable. Similar
to adaptation, the Tsodyks-Markram (TSO) mechanism in Section 2.4 also serves as a
stabilization mechanism for the network. This synaptic depression mechanism weakens
the synaptic connections between pyramidal cells from different minicolumns. During
attractor states, the synapses exhaust their synaptic resources and excitation is reduced.
This limits the duration of attractor states approximately to the intrinsic time scale of
the synaptic depression, τrec, as illustrated in Figure 3.5.
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Figure 3.5: An example spike train of a full L23 network consisting of 8 hypercolumns and
20 patterns (8H ·20U). The network is comprised of 5125 neurons in total and
each pattern includes 8 minicolumns. We see two types of network states. The
high activity states indicate an attractor state of minicolumns that comprise
a pattern. During these high activity periods, a stored pattern is retrieved by
the network, silencing minicolumns from the remaining patterns. The other
type of network state is the ground state which occurs between attractor
states and exhibits a sparse, homogenous firing activity of all PYR neurons.
This ground state can be seen as a transient state between emerging attractor
states. Its average duration depends on both number and size of competing
patterns. During these ground states all PYR neurons exhibit sparse random
activity modulated by Poisson background input. Figure is taken from Rivkin
(2014).
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3.4 Measurement protocol of the memory characteristic

3.3.1 Criteria for pattern completion

In order to assess the memory characteristics of our L23 attractor networks, a suitable
simulation setup will be defined in this section. Since we are interested in the storage
and retrieval of patterns, we will first explain both processes.

The patterns are stored in the network by creating excitatory PYR-PYR connections
between minicolumns in different hypercolumns. To retrieve a target pattern, we ran-
domly choose a fixed number of minicolumns of the targeted pattern and feed additional
excitatory Poisson input into the PYR neurons. The biological correlate of this Poisson
source originates from the cortical layer 4 (L4) and stimulates PYR neurons in layers 2
and 3 (Miller , 2003). In our simulations, this Poisson input is generated in the same way
as the background input which induces the background activity in every PYR neuron.
The L4 Poisson stimulus has a higher rate, but is connected with a connection proba-
bility of 70% to a PYR neuron (see Appendix A.3). The L4 input causes an upsurge
of the PYR firing rate. This activity is spread via the excitatory connections between
minicolumns (Connection 3.6). For a successful pattern retrieval, all target PYR popu-
lations exhibit strong activity. To evaluate whether the network can retrieve a pattern,
we analyze the resulting network state in the following Tsim = 400 ms after the activation.

We consider the pattern retrieval successful if the following conditions are fulfilled:

• During Tsim, all PYR populations of the pattern minicolumns exhibit strong activity

• The PYR population activity from other patterns declines significantly during Tsim.

We say that a pattern is activated if in every hypercolumn, the PYR population of
the stimulated pattern is the most active one. To compare activity, we average over the
PYR population rates of the respective minicolumns (Figure 3.6).

The advantage of this criterion is that no additional parameters or membrane potential
traces are required, but only the spike counts of PYR populations. Extensive discussions
on advantages and downsides of this metric can be found in Breitwieser (2011); Rivkin
(2014).

3.4 Measurement protocol of the memory characteristic

To measure the L23 pattern retrieval success rate, we will use the following protocol.

• Network generation: We create an AdEx network with H hypercolumns and
U minicolumns per hypercolumn. We assign NP random patterns by establishing
excitatory PYR-PYR connections amongst the randomly chosen minicolumns. For
H total hypercolumns in the network, each pattern has at most one minicolumn
in a hypercolumn (NP ≤ H). A minicolumn can encode for multiple patterns,
as exemplified in Figure 3.3. Patterns sharing these MCs are non-orthogonal. As
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3 Cortical attractor networks

Figure 3.6: The spike train pattern shows the L23 network’s response to L4 stimulus. The
L4 stimulus is active in the yellow-colored time frames. As the L4 Poisson
stimulus is added (yellow), the probability of switching into an attractor state
(green background) increases. We can see that in most cases, the PYR popu-
laton rates increase (red curves) immediately after the L4 stimulus, initiating
attractor states. In some cases the L4 stimulus does not induce attractor
states, as seen in the time frame 5100 ms − 5200 ms. Figure is taken from
Rivkin (2014).
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the number of patterns is increased for a fixed network size, non-orthogonality
is inevitable. The PYR populations that encode for multiple patterns then have
additional connections. In our simulations, we vary the number of patterns from
6 to 48 and the number of stimulated minicolumns from 8 to 20. All simulations
have been conducted using networks of size 20H · 8U .

• Stimulation of patterns: For a pattern completion run, we first choose a target
pattern that we want to activate. Then we randomly select minicolumns from the
target pattern. The number of selected minicolumns is also called occlusion. We
stimulate these patterns for a short duration by adding Poisson stimulus. The
connection probability to this L4 stimulus is PL4→PYR = 0.75 with a total input
rate per neuron of νL4→PYR = 1500 Hz.

• Simulation trials: We set up the network and run all pattern completion trials
during one simulation. One completion trial lasts 1000 ms. We repeat this sim-
ulation run 10 times with different random seeds to collect statistics. In-between
completion trials there is a buffer time of 500 ms to ensure that the network is not
in the stimulated state anymore before the next trial.

• Invalid trials in case of spontaneous attractor states: We evaluate the PYR
population rates after the L4 stimulus, as defined in Section 3.3.1. This evaluation
also includes verifying whether the run was a valid trial, as there are conditions
that can invalidate the trial. One important reason is the occurrence of sponta-
neous attractor states, i.e., persistent firing states which emerge by chance in PYR
populations. If a pattern spontaneously starts firing before stimulation of the target
pattern, it impacts the probability of pattern completion. Since a (spontaneously)
emerging pattern silences all the others by the WTA mechanism, any stimulated
pattern is less likely to establish an attractor state. Also, if the target pattern itself
was in such a spontaneous attractor state before the L4 stimulation, side effects
will still persist during the stimulation. The side effects are the resulting negative
adaptation and short-term depression of PYR cells, which can last long enough to
decrease the activation probability when the stimulus is introduced. As a conse-
quence, if we detect spontaneous attractor states during the trial, we discard the
trial.

The network sizes are set according to existing studies (Lundqvist et al., 2006, 2010;
Johansson et al., 2006; Johansson and Lansner , 2007; Petrovici et al., 2014). If not
stated otherwise, we choose a network configuration of 20H · 8U . In this case, the
network simulations can be performed within a day and analysis of spike data can be
conducted in several hours. Each MC consists of 30 PYR cells, two RSNP cells and one
BAS cell.
Results from previous work (Petrovici et al., 2014) suggest that network sizes in this

order of magnitude yield results that are valid even for larger networks. All remaining
neuron and synapse parameters for the simulations can be found in Appendix A.2.
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3.4.1 Measurement results

The results of this series of simulations can be seen in Figure 3.7, where the memory
characteristic is represented as a hyperplane. Here we vary the total number of patterns
in the network and the number of stimulated minicolumns during a trial (occlusion).
The z-value of Figure 3.7 gives the percentage of successful pattern completions, which
is also indicated by the color of the hyperplane.

Figure 3.7: The memory characteristic of a 20H · 8U network is the pattern completion
success ratio, depending on the number of stored and stimulated minicolumns
per pattern. We vary both paramters during the completion run on the
Pattern− and SimulatedMC-axis. Each pattern configuration is initialized 10
times and the success ratio is an average. The pattern completion activation
ratio critically depends on the number of patterns stored in the network.
For high pattern densities, a satisfying success ratio (≥ 80%) can only be
achieved if a high percentage of pattern minicolumns is stimulated. If fewer
minicolumns are stimulated, the stimulus can be too weak compared to the
background noise. Also, if only few minicolumns are stimulated and shared
MCs are among them, then the cue becomes ambiguous and activates multiple
patterns at once. Figure is taken from Rivkin (2014).

For a low number of patterns, the network can store the patterns reliably, as even
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Figure 3.8: The relationship between the length of attractor states and the amount of
patterns that are stored in the network. The network parameters are chosen
as in Figure 3.9. Synaptic depression and spike adaptation limit the attractor
length, as they counteract the increased synaptic activity. The error bars
denote standard deviations from 10 trial runs for all pattern completion trials.
Figure is taken from (Rivkin, 2014).

the minimum occlusion number leads to a very high completion rate. As the pattern
count increases, larger numbers of minicolumns need to be stimulated to complete the
pattern. This is expected, since a larger number of patterns increases the number of
similar patterns. This leads to activation of patterns that are similar to the targeted
one. A second important observation of our simulations are the durations of detected
attractor states, (Figure 3.8). Here we see that the duration decreases with an increasing
number of patterns in the network. To find the reason for this decrease, we look at the
spike trains during the pattern completion trials in Figure 3.9. In addition to registered
attractor states (green background), we see strong ground state activity. Although the
ground states are not recognized as attractor states, in many PYR and RSNP populations
the activity is very high. The reason for this activity increase is given by stimulated
minicolumns that encode multiple patterns. The PYR populations in these minicolumns
excite PYR populations in patterns where they also encode, but which are not activated
by L4 stimuli. In this scenario, PYR populations from many competing minicolumns are
active, suppressing the stimulated pattern. As a result, there is no dominating pattern
and therefore no attractor state is detected. We can identify these elevated ground states
due to strong excitation (PYR activity) and inhibition (RSNP activity) at the same time
(Figure 3.4).
These ambiguous high-activity states are very important for our further discussion

of the L23 network and we will call them spurious attractors. The elevated network
activity during these spurious states causes the short duration of detected attractors
(green), because elevated activity facilitates adaptation of the membrane and depletion of
synaptic resources. If an unambiguous attractor state emerges soon after a certain period
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3 Cortical attractor networks

Figure 3.9: (Top) Spike trains of a pattern completion run with high pattern density.
We see ground states (white background) and detected attractor states (green
background). Even in ground states, the network exhibits elevated firing ac-
tivity. Since many patterns are stored in the network, active minicolumns
are likely to encode for multiple competing patterns. These minicolumns
facilitate activity in multiple patterns, which initiates inhibition directed to
the targeted pattern. This results in high-activity ground states where many
competing minicolumns are active, resulting in spurious attractors. Between
51700 ms and 52100 ms we see strong activity from more than one pattern
(yellow). (Bottom) The same spike train pattern is seen as in (A), overlayed
with excitatory PYR population rates (red) and inhibitory RSNP activity
(blue) from all 8 · 20 minicolumns. We see a pronounced spurious attractor
state during the time period between 51700ms to 52100ms, where few red
peaks of active PYR populations induce inhibition to large parts of the net-
work, including the targeted pattern itself. This network-wide inhibition is
illustrated by the high amplitudes of blue peaks. These peaks show inhibition
by RSNP populations that belong to patterns from shared MCs. Activated
MCs encoding multiple patterns activate RSNP populations of non-targeted
patterns. The resulting inhibition is then directed to all PYR populations,
including the targeted one. Figure is taken from Rivkin (2014).
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of spurious activity, it is still affected by adaptation and lack of synaptic resources. Even
during the attractor state, the dominating pattern still receives inhibition from MCs that
are shared with competing patterns.

3.4.2 Detection of attractor states in presence of spurious attractors

The results presented in Section 3.4.1 fully rely on the detection and measurement
of attractor states during pattern completion trials. For high pattern densities, the
stimulated minicolumns excite competing patterns, since these MCs are likely to encode
for multiple patterns. In our current setup, these trials are considered valid and lead
to a lower success ratio of pattern completion. The lower success ratio results from
inhibition of the stimulated patterns by other non-orthogonal patterns in the network.
Thus, some minicolumns that belong to the target patterns are not necessarily the ones
with the highest activity in their respective hypercolumn. This leads to a failed pattern
completion result due to the conditions set in Section 3.3.1. A manual assessment of
the network states reveals that many failed pattern completion results could still be
considered successful because a majority of target minicolumns is still dominant in their
respective hypercolumn. Although not all pattern MCs are the dominant ones in their
respective HC, we can argue that a pattern generated by the network is active if it shows
the strongest similarity to the targeted pattern. To consider such trial runs successful,
we need to modify our current pattern completion conditions that were defined in
Section 3.3.1.

3.5 Pattern detection with distance measure

In this section we will make a more formal approach to interpret attractor states and
adjust the present methodology of state detection. As argued in the previous section,
we will not require that every MC in the target pattern is the dominant one in its
hypercolumn to register a successful trial. Instead, we introduce a metric which will
quantify the distance between network activity after L4 stimulation and every stored
pattern. A trial is defined as successful if the distance between network activity and
the target pattern is the shortest one. We define the distance between different activity
states as,

pk = 1− ~mk · ~mnet

~mk · ~mk
. (3.8)

The distance is based on comparison of the PYR population rates in each HC. Here,
~mk =

(
r1
k, · · · , rNk

)
is the population rate vector of a pattern k with length N. It includes

entries of the N PYR population rates that encode for this pattern. The population
rates are calculated by applying a gaussian kernel on spike trains of each PYR cell and
averaging afterwards over the whole PYR population. The rates r{1,...N}k result from a
complete activation of pattern k and are measured before the pattern completion runs.
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3 Cortical attractor networks

Therefore, the rate vector ~mk is used as a reference for the population rates of each
pattern during their active state. The population rates ~mnet =

(
r1
net, · · · , rNnet

)
are net-

work PYR rates measured after L4 stimulation. The dot product between both vectors,
~mk · ~mnet, computes the distance between network activity and activity of pattern k.
The components in the vectors ~mk can vary for different networks and therefore are
normalized by ~mk · ~mk in the denominator. The resulting number ~mk· ~mnet

~mk· ~mk is then sub-
tracted from unity to define a distance measure between rate vectors ~mk and ~mnet. If the
complete pattern k is perfectly stimulated during the trial, we would yield ~mnet ≈ ~mk,
resulting in pk ≈ 0. In case of stimulating only minicolumns that do not encode pattern
k, ~mnet and ~mk are orthogonal and result in pk ≈ 1. Therefore, the distances lie in the
range pk ∈ [0, 1]. In Figure 3.10 we see the continuous distance measure for four patterns.

Figure 3.10: Distance measure pk for four network patterns. At time t = 0 ms, we stim-
ulate all minicolumns that encode the pattern and start measuring the dis-
tance on the Distance-axis. In the interval ∼ 400 ms−500 ms the attractors
begin to fade and the network states become less similar to the pattern. This
is indicated by the increase of pk.

Examples of this measure can be seen in Figure 3.11. Since the distance p is a con-
tinuous metric, it does not provide information whether the distance is low enough to
interpret the network state as an attractor state at all or whether the elevated activity
corresponds to a spurious attractor. To register a pattern, we define a threshold value
pthresh for the distance,
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3.5 Pattern detection with distance measure

Figure 3.11: (Top) The y-axis shows the continuous distance pk (Equation 3.8) that
quantifies the difference between the network state and a specific pattern k.
We see two time frames where the network switches into the target attractor
state of pattern k, indicated by low distance value pk. (Bottom) Different
patterns are activated sequentially during a simulation run. On the y-axis,
the different colors show the distance pk between the network state and
different patterns k. The L4 excitation of a pattern k causes a drop in
the respective distance pk for an amount of time that varies from 100ms
to 500ms. Due to shared MCs in these patterns, the distance of similar
attractors pk 6=l can also become low.
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3 Cortical attractor networks

pk ≥ pthresh ⇒ not attractor state k , (3.9)

pk < pthresh ⇒ attractor state k . (3.10)

This raises the problem of defining a threshold pthresh that is applicable to all attractor
states. If the threshold is set too low, we do not register all valid attractor states. If
the threshold is set too high, we wrongfully register spurious states as attractors. Any
threshold value would be an arbitrary parameter requiring adjustment for each specific
case, since it depends on the specific network size and number of stored patterns. To
avoid the introduction of such a free parameter, we will propose a mechanism which
automatically sets an appropriate threshold pthresh.

3.5.1 Automatic state detection for pattern completion

The continuous distance pk expresses the difference between a network state and pattern
k. In this section we will describe a method to set a threshold pthresh for a certain
network configuration that determines whether a network state can be interpreted as an
attractor state of pattern k.

First, we measure a distance pk for each pattern k in the network, immediately after
an L4 stimulation of the full pattern. The resulting distribution of distances Σnet can be
seen in Figure 3.12, most patterns can be produced reliably by the network, i.e., most
distances are low and accumulate on the left side. Still, some patterns are misclassified
by the network, indicated by a high distance value on the right end of the distribution. In
order to define a threshold pthresh, we estimate the network’s response to patterns that are
not stored, so-called “test patterns”. Therefore, we present the network unknown, random
patterns and evaluate the distance. We stimulate random MCs from the network and
again calculate the distance p in a time frame of 500ms after stimulation. We have
averaged the network’s response over 10 trials for each pattern, resulting in the distance
distribution Σtest (red color in Figure 3.12). To determine the threshold pthresh, we sum
both distributions, Σnet and Σtest, and define pthresh at the minimum value of their sum,

pthresh := min (Σnet + Σtest) (3.11)

The resulting threshold is low enough to reject a majority of test patterns and high
enough to include a vast majority of patterns that are stored in the network.
The results of the memory characteristic achieved using the metric from Equation 3.8

can be seen in Figure 3.13. With the new detection method, we do not require all mini-
columns of the stimulated pattern to have the highest PYR firing rate in the respective
hypercolumns. Every network state that is similar enough to be below threshold value
pthresh is accepted as an attractor state. The results have improved significantly compared
to the results shown in Figure 3.7.
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Figure 3.12: (Top) The stored attractor states are compared with network states after
pattern stimulation by measuring the distance metric given in Equation 3.8.
The resulting distribution shows low distance values for a majority of pat-
terns. This indicates that the network states are indeed similar to target
attractor states. We also see occurrence of higher distances, leading to a
low peak at the right. The cause of the right peak is a spread in attractor
state durations of the network. Attractor states that have ended before the
measurement time ends contribute to the peak at the right. This shows the
difficulty to capture all possible attractor states. The variation in attractor
length can also be seen in Figure 3.10. (Bottom) The plot shows the same
distribution as in (A), colored green, and measurements of test patterns,
i.e., patterns not ingrained in the network (red). Since the patterns are not
ingrained in the network topology, the distance is very high on average. The
resulting threshold for registering attractor states is extracted by taking the
minimum of the sum of both distributions, as described in Equation 3.11.
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3 Cortical attractor networks

Figure 3.13: Using the distance in Equation 3.8 we see vast improvements of pattern com-
pletion for higher pattern densities compared to the previously used method
(Figure 3.7) defined in Section 3.3.1. The success ratio stays approximately
constant even for a low number of stimulated minicolumns. Therefore, this
metric is the preferred method to detect attractor states in the network.

3.6 Conclusion and outlook: inference with cortical layer
2/3 networks

The goal of this chapter was to investigate the working memory characteristics (Fig-
ure 3.7) of a cortical layer 2/3 attractor network using AdEx neurons. We have
benchmarked the performance of these networks during a pattern completion task. We
found that this measure of network performance serves as a good indicator to assess the
capability of the network to store patterns and react to stimulation. The measure works
best with the pattern activation condition that we have introduced in Equation 3.8.
This, however, requires us to collect statistics of the network reaction to the stimulation
of all patterns before the pattern completion task, and to introduce test patterns to
compare the network performance.

Since we implemented AdEx neurons with short-term plasticity and adaptation, the
network dynamics is complex and exhibits variability. This variability is reflected in the
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attractor dynamics of the system for high pattern densities. Attractor activation during
the pattern completion task is often ambiguous due to the high number of competing,
non-orthogonal patterns. In such cases, spurious attractors complicate the evaluation of
the memory characteristic.
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4 The behavior of leaky
integrate-and-fire neurons under
stochastic stimulus

In the previous chapter we have studied a cortex-inspired network architecture, which
was adapted to function with AdEx neurons. The inferential performance of this down-
scaled cortical architecture was evaluated on a benchmark inference task. Although the
performance on this task was good, we encountered conceptual difficulties at interpreting
the network dynamics in terms of computation. For the functionality of the L23 attractor
dynamics, the adaptation was an important component. For an interpretation of net-
work states, it would be helpful to know the output rates of neurons for given synaptic
input. For the AdEx model, this relationship is difficult to compute. Therefore, we will
derive such an input-output relationship in this chapter for LIF neurons, omitting both
the adaptation and the exponential terms. This relationship will help us to develop a
theoretical framework to describe firing statistics for LIF neurons. Instead of studying
a fully-connected network like in the previous chapter, this framework will first include
only single neurons which receive stimulus that mimics network activity. Instead of fully
adapting a cortical architecture as an inference framework, we will look at a single neu-
ron from such a network. Its characterization will serve as a building block to model
networks performing stochastic inference in the next chapter.

4.1 The high-conductance state in biological neurons

When we introduced the leaky integrate-and-fire model in Chapter 2, we provided a
mechanistic description of a single spiking neuron. However, the exceptional computa-
tional capabilities of neural networks unfold when vast amounts of nerve cells transmit
electric signals in dense neural tissue. The dynamics in in-vivo spike trains exhibit high
variability and are highly sensitive to their environment (Fiser et al., 2004). Due to
this variability in network dynamics, recent studies employed statistical approaches to
understand coding schemes that appear to be of stochastic nature (Rolls and Deco,
2010; Fiser et al., 2010; Berkes et al., 2011). However, the neuron model that we use is
deterministic. We will characterize the dynamics of a single LIF neuron embedded in a
network receiving high-frequency Poisson stimulus. This type of stimulus will be used to
model the temporal variability that is observed in the firing patterns of cortical neurons
in attentive, responsive states (Destexhe et al., 2003; Kumar et al., 2008a). Observations
from in-vivo experiments suggest that this so-called high-conductance state is a hallmark
of cortical information processing, as it enhances alertness and decreases response time
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for integration of sensory stimuli (Hô and Destexhe, 2000; Shu et al., 2003; Chance et al.,
2002).

It is important to note that the high-frequency stimulus which every cortical neuron
receives, is of stochastic nature. Each cortical neuron can have more than 10000 synaptic
connections on average (Binzegger et al., 2004). These connections exhibit a certain
degree of irregularity in signal transmission and can be considered independent from
each other (Gerstner and Kistler , 2002, Chapter 5). Here we refer to presynaptic signal
transmission events as spikes which are propagated action potentials, as introduced in
Section 2.2. The rate of spikes received by a cortical neuron can be estimated to 1000 Hz
(Pare et al., 1998). It can be argued that many of these presynaptic connections are
random, so their presynaptic activity is uncorrelated and the presynaptic spikes have a
uniform time distribution. Due to the Palm-Khintchine theorem (Heyman and Sobel ,
2003), all the spike time events from this input can be characterized as Poisson point
processes (Brunel , 2000; Deco and Jirsa, 2012). Since the sum of these processes is
again a Poisson point process with a correspondingly increased rate, we can interpret
the sum of these time series as one time series. This argument is very important, as
we subsume all inputs from different synapses under one time series including the total
number of events. In the following section we will use the Poisson properties to formalize
the statistical moments of an LIF neuron resulting from this type of synaptic stimulus.
A part of the results described in this chapter also appear in already published material,
(Petrovici et al., 2013, 2015a, 2016), which was co-authored by the author of this thesis.

4.2 The high-conductance state of leaky integrate-and-fire
neurons

In the LIF model, the primary impact of presynaptic stimulus on the neuron happens
through its synaptic conductance. This conductance has been defined in Equation 2.4 as

dgsyni

dt
= −

gsyni

τsyn
+
∑
s

wi · δ(t− tis) . (4.1)

We assume that the synaptic time constant τsyn is equal for all synapses i (therefore,
τsyn i ≡ τsyn). The solution of this differential equation is a linear superposition of
exponential kernels,

gsyni (t) =
∑
s

Θ(t− tis)wi · exp

(
tis − t
τsyn

)
. (4.2)

Now we can use the membrane potential differential Equation 2.1,

Cm ·
d

dt
u(t) = −gl · [u(t)− El] + Isyn + Iext , (4.3)
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and plug Equation 4.2 into the synaptic current of Equation 2.3,

Isyn(t) =
∑
i

∑
s

Θ(t− tis)wi · exp

(
tis − t
τsyn

)
· [Erev

i − u(t)] . (4.4)

Now we can write down our membrane potential with Poisson-induced synaptic current
in Equation 4.4,

Cm ·
d

dt
u(t) = −gl · [u(t)− El] +

∑
i

∑
s

Θ(t− tis)wi · exp

(
tis − t
τsyn

)
· [Erev

i − u(t)]

+ Iext . (4.5)

This differential equation is a complete formulation of the LIF neuron stimulated by
Poisson spike trains on each synapse i. The current Iext is a parameter that shifts the
membrane potential by a constant value. In the following, we will derive the statistical
moments of the membrane potential.

First, we transform Equation 4.5 by introducing the total conductance of the mem-
brane,

gtot(t) =
∑
i

gsyni (t) + gl . (4.6)

We divide Equation 4.5 by the total conductance in Equation 4.6, yielding

Cm

gtot(t)
· d
dt
u(t) = −gl · [u(t)− El]

gtot(t)
+

∑
i

∑
ts

Θ(t− tis)wi · exp
(
tis−t
τsyn

)
· [Erev

i − u(t)]

gtot(t)

+
Iext
gtot(t)

. (4.7)

On the left hand side (LHS) we see the term Cm
gtot(t)

, which has the unit of a time constant
and is similar to the membrane time constant τm = Cm

gl
, as introduced in Section 2.1.

In Section 2.1 we described τm as a time constant which indicates the response time of
the membrane potential to synaptic stimuli. In Equation 4.7 we can extend our notion
of the membrane time constant by introducing the time-dependent effective membrane
time constant τeff,

τeff(t) :=
Cm∑

i g
syn
i + gl

. (4.8)
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The time constant τeff depends on the synaptic input
∑

i g
syn
i . This relationship is

crucial because it shows that the membrane potential changes fast for high synaptic con-
ductances. As synaptic input

∑
i g

syn
i decreases, the membrane potential change slows

down. Without any synaptic input, the effective time constant τeff becomes identical to
τm. The membrane potential response time can be observed at the rising flank of the
shape of the postsynaptic potential (PSP) in Figure 2.1 for τeff < τsyn. From now on we
will always assume the synaptic time constant larger than the effective time constant
because we will presuppose a fast membrane and a long synaptic interaction for our
probabilistic models in the next chapter. The smaller τeff, the sharper the PSP slope will
be at the beginning. For τeff → 0, the PSP approaches an exponential with an instant rise.

We can now reformulate Equation 4.7 using Equation 4.8 to obtain

τeff(t)
d

dt
u(t) = ueff(t)− u(t) , (4.9)

where we define a new auxiliary variable, the effective potential ueff,

ueff :=
gl · El +

∑
i g

syn
i (t)Erev

i + Iext
gl +

∑
i g

syn
i (t)

. (4.10)

In the numerator of Equation 4.10, ueff is essentially the synaptic conductance∑
i g

syn
i (t), weighted by Erev

i and shifted by gl · El + Iext. In the next steps we will sim-
plify Equation 4.10 by eliminating time dependencies in the total conductance gtot(t).
Essentially we can substitute the total conductance by its mean value if we can assume
that the mean remains approximately constant during the high-conductance state. To
estimate the correctness of this assumption, we need to calculate the statistical moments
of the total conductance.

The calculations of the mean 〈gsyn〉 and variance σ2
g of Equation 4.2 are straightforward

and can both be found in Bytschok (2011). The mean 〈gsyn〉 and variance σ2
g are given

by

〈gsyn(t)〉 = wsyn · νsyn · τsyn (4.11)

σ2
g =

1

2
w2
syn · νsyn · τsyn . (4.12)

With these quantities we can estimate the ratio between the standard deviation and
the mean of synaptic conductance using the coefficient of variation (cv):

cv =
σ

µ
=

√
1
2w

2
synνsynτsyn

wsyn · νsyn · τsyn

=
1√

2νsynτsyn
(4.13)
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Figure 4.1: Coefficient of variation as a function of the synaptic conductance. The simu-
lation data (green) confirms the theoretical prediction (Equation 4.13), with
the square root dependence directly reflected by the −1

2 slope of the red curve.
The error bars indicate the error of the mean, calculated from ten simulation
runs. Figure is taken from Bytschok (2011).

Equation 4.13 shows that the coefficient of variation decreases with the square root of
the input rate. Hence we can approximate the synaptic conductance as the mean for the
high-conductance state,

gsyni := 〈gsyni (t)〉 ≈ gsyni (t) . (4.14)

Due to the relationship between synaptic conductance and the time constant in Equa-
tion 4.8, we now can assume τeff(t) as constant. If we assume the synaptic conductance
sufficiently high (gtot →∞), then τeff → 0 according to Equation 4.8. In this case we can
identify the membrane potential as the effective potential due to τeff → 0 in Equation 4.9,

u(t) =
gl · El +

∑
i g

syn
i (t)Erev

i + Iext
gl +

∑
i g

syn
i

. (4.15)

We note that the membrane reacts immediately to synaptic input, as it is a super-
position of exponential synaptic kernels. From now on, we will presuppose the high-
conductance state. Therefore, the membrane potential in Equation 4.15 will be assumed
for all our following studies.
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Figure 4.2: The free membrane potential of an LIF neuron is the membrane potential
without a spiking mechanism. (Left) During high-frequency Poisson stimu-
lus, the resulting histogram shows the membrane potential values (blue bars)
from a Tsim = 104 ms simulation run. The resulting probability distribution
can be described by a normal distribution (red curve) with the statistical
moments from Equations 4.16, 4.17. (Right) In the low-frequency stimulus
case, the membrane potential distribution (blue) takes a complicated form
and does not allow for a straightforward theoretical description. The normal
distribution curve (red) is not a good fit for the histogram.

One major consequence of the Poisson statistics of the synaptic input is the resulting
shape of the membrane potential distribution. Due to the central limit theorem, the sum
of synaptic kernels gsyn(t) is a Gaussian (Petrovici , 2016, Section 4.3.2).
We see that the membrane potential in the high-conductance state (Equation 4.15) is a

rescaled and shifted synaptic conductance. Therefore, the membrane potential itself also
follows a normal distribution (Figure 4.2). Here, we introduce the so-called free mem-
brane potential as the LIF membrane potential without a spiking mechanism. Therefore,
the distribution is not distorted by the refractory mechanism. The mean and variance of
the LIF neuron’s free membrane potential have been calculated in Petrovici (2016) and
are given as

〈u(t)〉 =
El · gl +

∑
iwi · νi · τsyn · Erev

i
〈gtot〉+ Iext

, (4.16)

Var [u(t)] =
∑
i

νi ·
[
wi(E

rev
i − 〈u〉)τsyn
τsyn − τeff

]2

·
(
τsyn

2
+
τeff
2
− 2

τeffτsyn
τsyn − τeff

)
. (4.17)

Note that above expressions also yield valid approximations for the membrane potential
in low-conductance states, as τeff 6= 0. Nevertheless, other side effects arise for low
conductances, as discussed extensively in Bytschok (2011); Petrovici (2016). Since we
have presupposed the high-conductance state for our framework, above equations can be
simplified with τeff → 0. These statistical properties of the membrane potential are key
to derive the firing statistics of an LIF neuron in the high-conductance state.
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4.3 The high-conductance dynamics as an
Ornstein-Uhlenbeck process

In the previous section we have derived the properties of the LIF membrane potential dis-
tribution during the high-conductance state, generated by high-frequency Poisson inputs.

In this section we introduce the so-called Ornstein-Uhlenbeck process (OU process). It
can be understood as a continuous formulation of a physical random walk process with
an exponential decay towards an equilibrium. An intuitive illustration of this process is
is an overdamped oscillator (Kungl , 2016). The OU process has been studied extensively
and has found many applications, e.g. in financial markets (Chan et al., 1992), physical
systems (Cáceres and Budini , 1997) and neuroscientific modeling (Ricciardi and Sacer-
dote, 1979). In the following, we will show that the LIF neuron in the high-conductance
state exhibits the dynamics of an OU process. This equivalence plays a crucial role, as
we will later apply the knowledge of OU statistics to derive the firing rate statistics of
LIF neurons in the high-conductance state. We will start by giving a characterization of
the OU process (a detailed explanation can be found in Finch (2004)).
The stochastic differential equation of the OU process can be written as

dx = Θ [µ− x(t)] dt+ σdW (t) . (4.18)

Here, x(t) is the dynamic variable of the OU process at time t with time-average µ and
Θ being the inverse time constant of the exponential decay towards µ. It is a positive
constant with inverse time as unit. The two terms of the RHS of Equation 4.18 have
an intuitive meaning. The first term Θ [µ− x(t)] dt models the exponential drift towards
the equilibrium value µ with time constant 1

Θ . The second part σdW (t) implements a so-
called Wiener-Lévy process. It is the stochastic part of the OU differential equation. In
every time step, the increment σdW (t) is a sample from a normal distribution, σdW (t) ∈
N (0, σ2). In short, it is the continuous version of a random walk of a particle with friction
and a pullback towards the mean µ. Without the first term in Equation 4.18, the particle
would drift away from the initial position, analogously to a random walk (Durrett , 1996).
In the OU process the particle is drawn by the first term to an equilibrium µ with a time
constant 1

θ in an exponential decay.
In the following we will derive the equivalence of an LIF neuron in a high-conductance

state and the OU process. Our starting point will be the Fokker-Planck equation, which is
a partial differential equation describing the time evolution of a probability density under
certain physical conditions. It will be the starting point to show the analogy between
LIF neuron statistics in the high-conductance state and an OU process. This derivation
is, in most parts, taken from Petrovici et al. (2016).
For the OU process, such a probability density evolution function is known (Kol-

mogorov , 1931) and can be defined as
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f(x, t|x0) =

√
θ

πσ2(1− e−2θt)
exp

{
−θ
σ2

[
(x− µ+ (µ− x0)e−θt)2

1− e−2θt

]}
. (4.19)

This probability density function is the unique solution to the Fokker-Planck equation,

1

θ

∂f(x, t)

∂t
=

∂

∂x
[(x− µ)f ] +

σ2

2θ

∂2f

∂x2
. (4.20)

To describe the probability density evolution function of an LIF neuron in the high-
conductance state, we define an auxiliary quantity, the synaptic noise J syn(t), as the
dynamic variable in this system,

J syn(t) :=
∑
i

gsyni (t)Erev
i . (4.21)

It models synaptic conductance kernels weighted by their reversal potential Erev
i .

Therefore, we can write down a differential equation for J syn(t) analogously to the synap-
tic kernels from Equation 2.4,

dJ syn

dt
= −J

syn

τsyn
+
∑
i

∑
ts

∆J synδ(t− ts) . (4.22)

Here ∆J syn = wiE
rev
i is the increment to the synaptic input due to a spike event. We

use the so-called Chapman-Kolmogorov equation to describe the temporal evolution of
J syn after a duration ∆t,

f(J syn, t+ ∆t) =

∫ ∞
−∞

f(J syn, t+ ∆t|J ′, t)f(J ′, t)dJ ′ . (4.23)

This integral describes the evolution of the distribution f(J syn, t) starting at time t with
J ′ and evolving for a time interval ∆t. Equation 4.23 integrates over all possible inter-
mediate states J ′ with their respective probability leading to state J syn(t+ ∆t). We can
simplify Equation 4.23, since our synaptic input is a Poisson process. Therefore, we can
choose ∆t small enough, so that the probability of multiple Poisson events occurring in
∆t vanishes. The probability of a single Poisson event occurring in ∆t remains ∆t

∑
i νi.

There are two possible ways J ′ can evolve during ∆t. Either one spike occurs or no spike
occurs,

f(J syn, t+ ∆t|J ′) =

[
1−∆t

∑
i

νi

]
δ

[
J syn − J ′ exp

(
− ∆t

τsyn

)]
+ ∆t

∑
i

νiδ

[
J syn −

(
J ′ + ∆J syn

i

)
exp

(
− ∆t

τsyn

)]
. (4.24)
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4.3 The high-conductance dynamics as an Ornstein-Uhlenbeck process

The first term describes the approximated Poisson probability [1−∆t
∑

i νi] that no
spike occurs and J ′ decays exponentially resulting in J syn = J ′ exp(− ∆t

τsyn
). The second

term represents the occurrence of a spike during ∆t, incrementing J ′ by ∆J syn
i . Their

sum J ′ + ∆J syn
i decays exponentially over time ∆t.

We can insert 4.24 into the Chapman-Kolmogorov Equation 4.23. The integral elimi-
nates the δ-functions, resulting in

f(J syn, t+ ∆t) =

(
1−∆t

∑
i

νi

)
exp

(
∆t

τsyn

)
f

[
J syn exp

(
∆t

τsyn

)
, t

]
+ ∆t

∑
i

νi exp

(
∆t

τsyn

)
f

[
J syn exp

(
∆t

τsyn

)
−∆J syn

i , t

]
. (4.25)

Since we assumed ∆t→ 0, we can now perform a Taylor expansion of f(J syn, t+ ∆t)
up to first order in ∆t,

f(J syn, t+ ∆t) ≈ f(J syn, t) +
∂f(J syn, t+ ∆t)

∂∆t

∣∣∣∣
∆t=0

∆t . (4.26)

We can now reformulate the equation above and take the partial derivative on both sides
of Equation 4.25 by ∂∆t,

f(J syn, t+ ∆t)− f(J syn, t)

∆t
=
∂f(J syn, t+ ∆t)

∂∆t

∣∣∣∣
∆t=0

=

{
−
∑
i

νi exp

(
∆t

τsyn

)
f

[
J syn exp

(
∆t

τsyn

)
, t

]

+

(
1−∆t

∑
i

νi

)
1

τsyn
exp

(
∆t

τsyn

)
f

[
J syn exp

(
∆t

τsyn

)
, t

]

+

(
1−∆t

∑
i

νi

)
1

τsyn
exp

(
2

∆t

τsyn

)
J syn

∂f
[
J syn exp

(
∆t
τsyn

)
, t
]

∂J syn exp
(

∆t
τsyn

)
+
∑
i

νi exp

(
∆t

τsyn

)
f

[
J syn exp

(
∆t

τsyn

)
−∆J syn

i , t

]

+ (. . . )∆t

}
∆t=0

. (4.27)

Now we can finally set ∆t = 0 in Equation 4.27. This simplifies the equation, resulting
in

∂f(J syn, t)

∂t
=

1

τsyn

∂

∂J syn [J synf(J syn, t)] +
∑
i

νi [f(J syn −∆J syn
i , t)− f(J syn, t)] .

(4.28)
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4 The behavior of leaky integrate-and-fire neurons under stochastic stimulus

At this point we can discuss conditions which need to be valid to sustain a high-
conductance state. In the biological high-conductance state, the impact of single spike
events on the conductance is negligible. It is the sum of synaptic kernels that generates
a noise environment of a biological neuron (Burkitt , 2006). As a consequence, the incre-
ment of the synaptic noise due to a single event, ∆J syn = wiE

rev
i , can be considered as

negligible, i.e., ∆J syn → 0.
We can use this approximation and apply it to Equation 4.28, performing a Taylor

expansion up to the second order at ∆J syn = 0. This expansion is also known as the
Kramers-Moyal expansion (Paul and Baschnagel , 1999) and results in

∂f(J syn, t)

∂t
=

1

τsyn

∂

∂J syn

[(
J syn −

∑
i

νi∆J
syn
i τsyn

)
f(J syn, t)

]
+

∑
i νi∆J

syn
i

2

2

∂2f(J syn, t)

∂J syn2 .

(4.29)

Above equation has the same form as the Fokker-Planck Equation 4.20 and we can
identify the parameters µ, σ and Θ in the LIF domain,

θ =
1

τsyn
, (4.30)

µ =
Iext + glEl +

∑
i νiwiE

rev
i τsyn

〈gtot〉
, (4.31)

σ2

2
=

∑
i νi [wi (Erev

i − µ)]2 τsyn

2〈gtot〉2
. (4.32)

The equivalence between the Fokker-Planck Equation 4.20 and the high-conductance
formulation in Equation 4.29 shows that a LIF neuron in the high-conductance state
exhibits the dynamics of an OU process. Consequently, the statistical moments of the
OU process, µ and σ, in Equations 4.31,4.32 are identical to the LIF-based statistical
moments 〈u(t)〉 and Var [u(t)] from Equations 4.16, 4.17. We can also see that Θ is
the inverse of the synaptic time constant. This result is intuitive, since τsyn is the
exponential decay time constant for synaptic noise. For the OU process, Θ determines
how quickly the process is drawn towards the equilibrium value µ. This can be described
as a correlation parameter. It should be noted that the membrane potential u (described
in Equation 4.15) in the high-conductance state is merely a linear transformation of the
noise J syn.
With this result we have completed the derivation of the equivalence between the

Ornstein-Uhlenbeck process and the membrane potential of an LIF neuron stimulated
with high-frequency synaptic Poisson input. In the next section we will use characteristics
of OU processes to derive the firing statistics of LIF neurons.
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4.4 The activation function of a leaky integrate-and-fire neuron

4.4 The activation function of a leaky integrate-and-fire
neuron

Nerve cells can be characterized by many properties to understand their functional role in
networks. A particularly useful attribute of a neuron is its response behavior to stimulus
in a network. A so-called activation function (or response function) is a measure of the
spike output rate of a neuron receiving synaptic input. This measure is also applied
to LIF neurons to characterize their output spike rate as a function of input current.
We have argued at the beginning of this chapter that an analytic approach for AdEx
neurons is difficult to achieve (Hertäg et al., 2014). Here we will focus on a single LIF
neuron without the AdEx extension and show how its activation function can be derived
analytically.

4.4.1 Leaky integrate-and-fire neurons as stochastic computing units

We have shown that the dynamics of an LIF neuron can be described by an Ornstein-
Uhlenbeck process. Since the membrane potential of the LIF neuron is stimulated by
Poisson input, the firing behaviour of the neuron can also be formulated as a stochastic
process. As a prerequisite for the description of the firing behaviour, we introduce a
statistical interpretation of a neuron’s activity.
We define the neuron state as a binary random variable zi(t) ∈ {0, 1} for neuron i as,

zi(t) =

{
1, neuron has spiked during (t− τref, t)
0, else

(4.33)

This means that spikes are the defining property of a neuron state. In particular,
the exact timing of a spike generation is crucial, since it encodes the transition between
two states. This means that neuron i stays at zi = 0 until it spikes at a time tspk.
The spike sets the neuron to zi = 1 instantaneously for the duration of the refractory
period tspk + τref. After the refractory time, the state is reset to zi = 0. This definition
appears like an oversimplification of an LIF neuron’s dynamics, as we propose only two
possible states that encode a neuron’s full state, instead of membrane potential u(t) and
conductance gsyn(t). However, the membrane potential still plays an essential role, as it
needs to exceed the threshold θ to trigger a spike event.
Our goal is to predict the activation function in terms of neuron states z(t) by pre-

dicting the rate of threshold-crossings. To do this, we will use the properties of the OU
process and transfer it to the LIF domain.

4.4.2 The first-passage times of the Ornstein-Uhlenbeck process

A fundamental property of the Ornstein-Uhlenbeck process is the so-called first-passage
time (FPT). Starting at an initial state, the FPT is the time a stochastic process needs
to cross a certain threshold for the first time since starting at the initial state. Due to
the stochasticity of the system, the passage times follow a distribution, as can be seen
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4 The behavior of leaky integrate-and-fire neurons under stochastic stimulus

in Figure 4.3.

Figure 4.3: (Left) The first-passage time (FPT) measures the average duration of a pro-
cess starting at u and crossing a threshold θ. (Right) The mean FPT can
be calculated, but there is no closed-form description of its distribution. The
average FPT is marked as a red line and the green curve is a numerical
approximation (Plesser and Tanaka, 1997) of the distribution. The simula-
tion (blue bars) has been performed for a quasi-ideal high-conductance state
of an LIF neuron, with νexc = νinh = 5 · 104 Hz, wexc = winh = 0.003µS,
τeff = 10−2 ms.

We will use the first-passage times to calculate the activation function of LIF neurons
in the high-conductance state. Due to τeff → 0, we have identified membrane potential
u (Equation 4.15) as the effective membrane potential ueff (Equation 4.10). As soon
as ueff crosses the threshold θ, n spikes are triggered with following refractory periods
n · τref. The length of the spike sequence n depends on the excitation of the LIF neuron.
Spikes are triggered as long as condition ueff > θ is fulfilled. As soon as ueff falls below
the threshold, we calculate the FPT as the time it takes to get from the end of the
spike sequence (ueff < θ) to the beginning of the next one, which again is triggered by
(ueff > θ). For a finite time Tsim, this allows us to calculate the total number of output
spikes Nspk. We can describe the output rate in terms of the probability to find the
neuron in the active state z = 1, p(z = 1),

p(z = 1) =
Nspkτref
Tsim

. (4.34)

This probability depends on the length of spike sequences. This equation needs to be
adjusted to different spike sequence lengths n,

p(z = 1) =

∑
n Pn · n · τref∑

n Pn · (nτref + Tn)
. (4.35)
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4.4 The activation function of a leaky integrate-and-fire neuron

In the numerator, the z = 1 state duration during Tsim is considered. A sequence
of n subsequent spikes causes a z = 1 duration of length n · τref. Each sequence of
length n has a probability to occur, Pn. Therefore, we sum over every possible sequence
with n consecutive spikes and weight them with the probability of the occurrence of the
sequence. In the denominator, both the duration of the z = 1 state and the subthreshold
state, z = 0, is included. The time the membrane spends in the subthreshold regime
(ueff < θ) is defined by the first-passage times between the spike sequence intervals, Tn.
Just like the probabilities Pn, the first-passage times Tn depend on the length of the
triggered spike sequence. Both these quantities are crucial for the calculation of p(z = 1)
and will be calculated in the following.

For the case n = 1, we need to calculate P1 and T1. As the beginning of the one-spike
sequence, the membrane potential at time t0 = 0, u0 := u(t0), crosses the threshold
(u0 ≥ θ) and activates an action potential (see Figure 4.4). After the refractory time
τref, the membrane potential u1 (u1 := u(t0 + τref)) converges to the effective membrane
potential ueff. Since the LIF neuron is stimulated by Poisson input, the membrane
potential follows a probability distribution. Then, the probability that only one spike
occurs (n = 1), is given as

P1 :=

∫ θ

−∞
du1p(u1|u0 = θ) . (4.36)

To consider a one-spike event, the membrane potential value is below the threshold,
u1 ∈ (−∞, θ). The conditional probability density p(u1|u0 = θ) is a Gaussian which
incorporates the condition that the neuron spikes at t0 = 0 (Burkitt , 2006). The Gaussian
can be given as

p(u(t)|u0 = θ) =
1√

2π · σ2
t (t)

exp

(
(u− µt(t))2

2σt(t)2

)
. (4.37)

The conditional distribution is governed by the time-dependent statistical quantities,
µt and σt,

µt(t) = µ− (µ− θ) exp

(
− t

τsyn

)
, (4.38)

σ2
t (t) = σ2(1− exp

(
− t

τsyn

)
. (4.39)

To calculate the first-passage time T1, we need to calculate the integral

T1 =

∫ θ

−∞
du1p(u1|u0 = θ) 〈TFPT(θ, u1)〉 . (4.40)
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4 The behavior of leaky integrate-and-fire neurons under stochastic stimulus

Figure 4.4: (A) The blue trace shows the membrane potential of an LIF neuron in the
high-conductance state. The black bars show the output spike times of the
LIF neuron. (B) In a cutout region of (A), we see the membrane poten-
tial u (blue), which activates three spikes. During the subthreshold activity,
the membrane potential is identical to the effective membrane potential ueff
(red), which does not have a spike mechanism. As soon as the threshold θ
is crossed, the neuron transitions into an activity state z = 1, while ueff is
suprathreshold. The refractory times are colored grey. At the end of each
refractory time, the membrane potential converges to the effective membrane
potential. The conditional probability distributions (purple) at the end of
the refractory period indicate whether u is subthreshold or suprathreshold.
In the subthreshold case (≈ 25 ms), T1 is calculated to estimate the next
activation of a spike sequence. In this case, the next activation happens at
≈ 46 ms. In this case, a two-spike sequence is triggered, with the second spike
at (≈ 56 ms). After this spike sequence (n = 2), T2 determines the time until
the next activation. (C) The blue crosses show simulation results from a
high-conductance neuron. The red dots represent the theoretical calculation
of the activation function, as given in Equation 4.35. The green curve is a
fitted logistic function σ. The simulation results are based on Tsim = 104 ms
runtime and default parameters, as given in Appendix A.3. Figure is taken
from Petrovici et al. (2013).
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4.4 The activation function of a leaky integrate-and-fire neuron

The quantity TFPT(θ, u1) defines the first-passage time of the OU process (Ricciardi
and Sato, 1988). For the membrane potential u1 after the spike sequence, TFPT(θ, u1)
is the average time it takes to cross the threshold θ again and activate the next spike
sequence (Figure 4.3). Since u1 follows a distribution, we need to consider each mem-
brane potential after the refractory period (Figure 4.4). Therefore, the integral in
Equation 4.40 includes all subthreshold membrane potentials, u1 ∈ (−∞, θ).

We will not provide the calculations for spike sequences with n > 1. The corresponding
first-passage times and probabilities, Tn and Pn, are different for each n and need to be
calculated seperately. In general, an n-spike event occurs with a probability of Pn and
is followed by a first-passage time of Tn until the next spike sequence (Figure 4.4). The
calculations of the n-order spike-events is done recursively and will not be described
here. A very general treatment and calculation of this is detailed in Petrovici et al.
(2015a); Petrovici (2016); Petrovici et al. (2016). In general, spike-sequence length n
can become arbitrarily high if the mean membrane potential µ is high enough. The
membrane potential after an n-spike sequence is then un = u(n · τref). We then need to
calculate all FTPs Tn to ensure a sufficiently accurate activation function. In general,
the longer the spike sequence n, the smaller its occurrence probability Pn becomes. The
first-passage times Tn become longer with increasing n as well.

We have now demonstrated the conceptual approach to calculate the activation func-
tion of an LIF neuron in the high-conductance state. The accuracy of Equation 4.35 can
still be improved. For LIF neurons in a high-conductance state, Equation 4.35 provides
a very good approximation of the activation function. For finite effective time constants
τeff, the membrane potential u is slower than the effective membrane potential ueff.
After a spike sequence, this time difference becomes negligible compared to Tn. But
in-between spikes in a spike sequence, additional down-states occur between the end of
a refractory period and the next spike within the sequence. The calculation of the full
activation function has been performed in collaboration with Mihai Petrovici. We will
only show the final result here, as a detailed discussion can be found in Petrovici et al.
(2013, 2015a); Petrovici (2016); Petrovici et al. (2016).

The full activation function can be given as

p(z = 1) =

∑
n Pn · n · τref∑

n Pn ·
(
nτref +

∑n−1
k=1 τ

b
k + Tn

) . (4.41)

Compared to Equation 4.35, the above equation not only respects the first-passage
times Tn, but also includes the inter-spike downtimes τb

k . These downtimes become
significant when the subthreshold membrane potential is not fast enough to converge to
the effective membrane potential, which is still suprathreshold. As a result, the membrane
potential u is too slow to trigger the spikes in an n-spike sequence. This introduces
additional down-states in-between spikes. In an n-spike sequence, the down-state between
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4 The behavior of leaky integrate-and-fire neurons under stochastic stimulus

spikes k and k+1 is given as τb
k . It is the time the membrane needs to cross the distance

ρ− θ in-between spikes k and k + 1. This is summed for all n− 1 spike intervals. Since
we include these additional down-states into the calculation of the activation function,
Equation 4.41 can be applied for parameter sets that do not rely on the high-conductance
state. Specifically, it improves the accuracy of the activation function for slow membrane
potentials, i.e., high τeff. This becomes crucial when the membrane potential needs to
rise from ρ to θ to switch states z = 0 → z = 1 during a spike sequence. Then τb

k is
the additional time the membrane needs to cross the distance ρ− θ in-between spikes k
and k+1. This quantity becomes particularly important for the parameter configuration
ρ� θ, because for long distances ρ− θ the membrane needs longer to reach θ to initiate
the next spike in the sequence.

Figure 4.5: (Left) The activation function of an LIF neuron that is not in a high-
conductance state. The green crosses show simulation results and are de-
scribed well by Equation 4.41. The dashed red activation curve assumes
high conductance (τb

k ≈ 0) and therefore overestimates the activity. This
highlights the importance of the τb

k rise times for parameter ranges outside of
high-conductance dynamics. The black curve shows a calculation from Brunel
and Sergi (1998) and assumes a very small synaptic time constant. The blue
curve assumes only slow changes of the membrane potential (Moreno-Bote
and Parga, 2004) and also has no concept of spike sequences. (Right) A very
important attribute of an LIF neuron with high conductance is its symmet-
ric activation function. The prediction (Equation 4.41) as well as simulation
results show that it can be fitted to a logistic function σ (Equation 4.42).

We can see the comparison between our prediction in Equation 4.41 to known pre-
dictions from literature (Brunel and Sergi , 1998; Moreno-Bote and Parga, 2004) and
simulation results. In both existing calculations of the LIF activation function, in Brunel
and Sergi (1998) and Moreno-Bote and Parga (2004), there is no concept of spike se-
quences. In Brunel and Sergi (1998), the activation function can only be applied to
parameter ranges where τsyn � τref and τsyn � τeff. The description does not describe
firing statistics caused by strong autocorrelations in the membrane potential due to a
long synaptic time constant τsyn. As a result, the activation function shows deviations
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for strong synaptic inputs. In Moreno-Bote and Parga (2004), the activation function
calculation was provided for τsyn � τeff. Due to this relationship between the time con-
stants, the effective membrane potential is governed by the synaptic time constant only.
Since τsyn is large, the membrane potential reacts slowly to changes in the synaptic cur-
rent. This causes an underestimation of firing activity in the activation function, as seen
in Figure 4.5. The prediction of the activation function given in Equation 4.41 is valid
for every parameter regime, including the ones described in Brunel and Sergi (1998);
Moreno-Bote and Parga (2004).

4.5 Conclusion: significance of the activation function

The mathematical analysis of an LIF neuron in the Poisson-induced high-conductance
state description enabled us to derive an essential characteristic of this neuron model,
namely its activation function. Also, we introduced a binary random variable that rep-
resents the neuron’s activity state, z(t) ∈ {0, 1}. We used the average first-passage times
of the Ornstein-Uhlenbeck process, TFPT, to accurately predict the activation function
(Figure 4.5) as the probability of the neuron being active, p(z = 1) ∈ (0, 1). We consider
the neuron active (z = 1) during its refractory time in the sense that it transmits synap-
tic activity within this time frame. For our probabilistic networks in the next chapter, it
is essential that the activation function is symmetric in the high-conductance state (see
Figure 4.5). We can fit the LIF response curve to a logistic function σ(x),

σ(x) =
1

1 + exp (−x)
. (4.42)

We will see in the next chapter that this attribute is crucial for LIF networks to perform
inference.
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integrate-and-fire neurons

We have achieved a stochastic formulation of single LIF neuron states driven by stochastic
synaptic inputs. We will see that this formulation provides us a rigid theory framework
to construct stochastic inference networks. This approach will differ from our L23 net-
work evaluation in Chapter 3 insofar as the statistical formulation provides a concept
of predicting activity of single neuron states. Therefore, introducing free parameters is
not necessary. Another crucial difference is that we will not use continuous population
rates for encoding, as population rates are not timing-sensitive. Also, population rates
are quantities that reduce stochasticity in the system, since they constitute averages
over single neuron’s activity states. In such a neural system, stochasticity is not consid-
ered a mean of computation, but is rather a side-effect that arises from thalamo-cortical
connectivity patterns (Bruno and Sakmann, 2006).
Our more probabilistic interpretation of neuron states from the previous chapter is

consistent with recent findings that show evidence for optimization of statistical compu-
tation in the brain (Fiser et al., 2010; Berkes et al., 2011). Such models are supported
by measurements of in-vivo activity showing wide ranges of trial-to-trial variability on
single neuron level. Physiological reasons behind such variability lie in the inherently
stochastic manner of synaptic interaction. The neurotransmitter release and diffusion of
these compounds within the synaptic cleft (Faisal et al., 2008; Yang and Xu-Friedman,
2013), as well as the depletion on the postsynaptic membrane are stochastic processes.
These findings show a certain disparity between neural processes where stochasticity is
present and, on the other hand, neuron models with deterministic spiking mechanisms
where noise is merely a side-effect or even an obstacle. Although it is not yet clear to
what extent noise constitutes a computational component or hindrance in the cortical
circuitry, it certainly is present during cortical information processing (López , 2001).
Our goal in this chapter is to build a network model that links both domains - using

the mechanistic LIF model with Poisson-induced stochasticity to perform stochastic in-
ference. Hence, we can define a network consisting of N LIF neurons with a random state
vector z(t) = (z1(t), . . . , zi(t), . . . , zN (t)), encoding 2N states. Under certain conditions,
the dynamics of such a network represent a well-defined probability distribution p(z).
We can then interpret the network activity as sampling from p(z). We will refer to the
corresponding network dynamics as neural sampling.
From a purely computational perspective, such an approach is vastly more efficient

than population-based coding. The reason for this are the required neural resources for
encoding information. For instance, in the L23 network, encoding of attractor states was
carried out by several minicolumn populations. Each minicolumn incorporated hundreds
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5 Probabilistic computing with leaky integrate-and-fire neurons

of AdEx neurons to represent an attractor state. In the neural sampling framework, only
N LIF units are necessary to sample from 2N states. In the following sections we will
motivate and describe this framework.

5.1 Neural computability condition in recurrent neural
networks

To define a probabilistic representation of neural activity, we have introduced the single
neuron random variables zi(t). We can also describe each neuron’s average activity
as an activation function p(z = 1). These attributes so far characterized single units.
For a network representation of random variables zi(t), we need a model to implement
interaction between the neurons. Since LIF neurons mediate interaction via PSPs, this
model must link membrane potential changes to the probability distribution p(z) of
the random variable vector z(t). Such a relationship between probabilistic states and
membrane potentials of neurons has been established in Buesing et al. (2011) and will
be referred to as the neural computability condition (NCC):

vk = log

(
p(zk = 1|z\k)
p(zk = 0|z\k)

)
(5.1)

It states that the membrane potential vk of neural unit k can be defined as a logarithmic
ratio (log-odds) between the conditional probability of unit k being in an active (zk = 1)
and inactive (zk = 0) state. This equation allows to derive the membrane potential vk
given the conditional probability distribution function p(zk|z\k).
The authors of Buesing et al. (2011) have developed a neural sampling framework for

an abstract neuron model (ANM) and have shown that, under the neural computability
condition, neural network states z(t) can be interpreted as samples from the target
distribution p(z). More specifically, the underlying sampling mechanism of the ANM is
a form of Markov-Chain Monte Carlo sampling. We will explain the basics of the ANM
in the next section in more detail.
In principle, it is possible to insert any well-defined probability distribution p(z) into

Equation 5.1 and derive the corresponding membrane potential vk. We will focus on a
particular distribution, which is well-studied, the Boltzmann distribution,
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This distribution was originally formulated by Ludwig Boltzmann to describe the state
distribution of gas particles in a thermal equilibrium. It was later reformulated by Josiah
Willard Gibbs (Gibbs, 1961). The energy of the system E depends on the states z, given
a temperature T , where k is the Boltzmann constant.
Although this description was established in the context of statistical physics, it has

been generalized and widely adopted to problems of information processing. For our
purposes, we set the inverse temperature β = 1

kT = 1 in Equations 5.2 and 5.3 and
will review this parameter in the next chapter. Most prominently, it describes recurrent
neural networks consisting of computing nodes that interact with each other.
Such networks are widely known as Boltzmann machines (BMs) and are used for a

vast range of optimization problems1 (Geman and Geman, 1984; Ackley et al., 1985;
Hinton and Salakhutdinov , 2006).

Our goal will be to use the Boltzmann distribution (as defined in Equations 5.2, 5.3) to
build Boltzmann machines with LIF neurons by using the neural computability condition
(NCC, Equation 5.1). At first glance, this seems to be an odd choice for neural modeling,
since BMs originate from physics and lack biological context. Their connection matrix
is symmetric (Wij = Wji) and the NCC in Equation 5.1 has no biological foundation.
But from a practical perspective, they are well-studied, efficient and sufficiently versatile
to be applied to many different problems in pattern classification and generative tasks
(Sutskever et al., 2009; Nair and Hinton, 2010) on big data sets. These types of stochas-
tic recurrent networks were fundamental for many state-of-the-art network models and
significantly progressed the field of machine learning.
For this reason these functional networks can be used to study the significance of spik-

ing neurons with biology-inspired noise sources on solving inference problems. We will
develop LIF-based BMs and compare their performance to conventional BM implemen-
tations known from machine learning.

1Boltzmann machines are similar to Hopfield nets, which were described in Hopfield (1982) and popu-
larized the idea of using recurrent network descriptions for optimization problems.
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5 Probabilistic computing with leaky integrate-and-fire neurons

5.2 Leaky integrate-and-fire networks as Boltzmann
machines

There are two principal attributes that LIF neurons need in order to function as sampling
Boltzmann machines. Both attributes can be derived from the NCC in Equation 5.1.
The first attribute concerns the interaction of LIF neurons, which has to encode joint
states like in conventional Boltzmann machines. The second attribute is the single LIF
neuron firing statistics, induced by Poisson noise. These statistical attributes must be
implemented accordingly.

To obtain both attributes, we will first derive the membrane potential vk from the NCC
under the condition that p(z) is a Boltzmann distribution. If we insert the Boltzmann
distribution from 5.2 into the RHS of 5.1, the exponential function disappears and the
normalization Z cancels out. We then obtain

log

(
p(zk = 1|z\k)
p(zk = 0|z\k)

)
=
∑
i

Wikzi + bk (5.4)

According to the NCC (Equation 5.1), we can identify the RHS of Equation 5.4 with the
membrane potential for vk,

vk =
∑
i

Wikzi + bk . (5.5)

The membrane potential vk, as well as all the other components of this equation are unit-
less. We will explain the membrane potential of BM units after deriving the activation
function p(zk = 1|z\k), which describes the activity of a single BM unit. For the deriva-
tion, we use the property 1 = p(zk = 1|z\k) + p(zk = 0|z\k) and calculate p(zk = 1|z\k)
from Equation 5.4 explicitly,

log

(
p(zk = 1|z\k)

1− p(zk = 1|z\k)

)
=
∑
i

Wikzi + bk (5.6)

p(zk = 1|z\k) = exp

(∑
i

Wikzi + bk

)[
1− p(zk = 1|z\k)

]
(5.7)

p(zk = 1|z\k) =
exp (

∑
iWikzi + bk)

1 + exp (
∑

iWikzi + bk)
=

1

1 + exp (−
∑

iWikzi − bk)
(5.8)

p(zk = 1|z\k)
Eq. 5.5

=
1

1 + exp(−vk)
(5.9)

We can now elaborate on the results. First, we take a look at the membrane potential
vk. This “abstract” potential consists of two terms and is the membrane of the abstract
neuron model (ANM) we referred to at the beginning of this section. The first term is a
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5.2 Leaky integrate-and-fire networks as Boltzmann machines

weighted sum of network states
∑

iWikzi. This part describes the interaction between
network units. The abstract membrane of neuron k is incremented by Wik if presynaptic
unit i is active (zi = 1) and connected to unit zk (Wik 6= 0). We will refer to Wik

as Boltzmann weights, which are elements of the symmetric coupling strength matrix
W in a Boltzmann machine. The weights multiplied by the state can be regarded as
a sum of rectangular kernels. This means that the mediated interaction by Wik is a
constant PSP that is added to the membrane potential vk for a certain period of time.
Additionally, the membrane potential vk has a fixed value bk, which is referred to as
bias. This quantity adds a constant shift to the membrane potential. Although vk has
no evident similarities to the LIF neuron model (Equation 2.1), it models a linear sum of
weights as a consequence of synaptic interaction. This is an important correspondence
between both models, which we will use later to define LIF Boltzmann machines.

The second result of the derivation, p(zk = 1|z\k), is a sigmoidal function σ(vk) =
1/ [1 + exp(−vk)], with vk being the abstract, unitless membrane potential. It represents
the probability of a network unit zk being active (zk = 1), given all the other network unit
states v\k. This is consistent with our result from Equation 4.42, where we have shown
that the symmetric LIF activation function can be identified as a logistic function. This
means that, in principle, a LIF neuron with membrane potential uk can be configured to
exhibit firing statistics according to the activation curve σ(uk).
Therefore, if we want to run LIF networks as Boltzmann machines, we need to construct
a mapping scheme from LIF parameters to Boltzmann parameters,

(El, E
rev
i , wi, νi, . . .)←→ (W , b) . (5.10)

To develop such translation rules, we will take a closer look at the ANM from Buesing
et al. (2011). This model will serve as a reference point on our way to define LIF-based
Boltzmann machines.
The membrane potentials of an ANM network are as stated in Equation 5.5. In every

point in time t, the membrane potential value vk =
∑

iWikzi + bk is used to calculate
the spiking probability as the activation function σ(vk) (shown in Equation 5.9). The
bias of neuron k equates to a constant offset probability towards zk = 1 or zk = 0, with
bk > 0 or bk < 0, respectively. The interaction weights Wik increase or decrease the
spiking probability.
If neuron k is inactive at time t, the probability σ(vk) determines whether it will

transition into state zk = 1 or remain inactive. The higher the membrane potential vk,
the more likely it switches to zk = 1. If the neuron is activated, it remains in state
zk = 1 for a fixed period of time, which we will call τon. This duration has two roles in
the model. Firstly, it can be understood as a refractory period that lasts for a certain
number of time steps after the neuron switched to zk = 1. Secondly, in this time the unit
k transmits a rectangular PSP to its postsynaptic neighbor j with height Wij . After
this refractory period τon, the PSP ends and the probability σ(vk) is evaluated again to
determine a state change.
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5 Probabilistic computing with leaky integrate-and-fire neurons

Figure 5.1: (A) We see the encoding of four states (z1, z2, z3, z4). The grey area marks
periods of activity with zi = 1, triggered by action potentials (black bars).
The binary states can be read out at any time, providing an approximation
of the underlying distribution with 24 network states. (B) The schematic
shows the membrane potential from the abstract neuron model in Buesing
et al. (2011). The spikes are triggered according to the logistic firing proba-
bility σ(v). The higher the membrane potential v, the more likely an action
potential becomes. Note that the membrane potential is unbounded and can
rise to arbitrarily high levels. (C) The LIF spiking mechanism is triggered if
potential u exceeds the threshold ρ, which is colored grey. In contrast to the
abstract model shown in (B), the mechanism is deterministic. The grey bar
illustrates the upper bound of the threshold. Figure is taken from Petrovici
et al. (2013).

The authors in Buesing et al. (2011) have shown that this mechanism implements
MCMC sampling from a target Boltzmann distribution with network parameters (W , b).
Further, they have proven that the distributions sampled by the network converge to
the target distribution on an exponential time scale. A more detailed and technical
description of these network dynamics can be found in Buesing et al. (2011); Petrovici
(2016).

5.2.1 From sampling with abstract neurons to leaky integrate-and-fire
networks

A conceptual difference between the ANM and LIF neurons is the entirely different
way of embedding stochasticity in the network. In the LIF model, we impose biology-
inspired temporal Poisson input onto a deterministic spiking mechanism. In the ANM,
the spiking probability σ(vk) is compared in each discrete time step with a random
number, determining whether to switch states in the state vector z. The contrast between
both models is shown in Figure 5.1. Despite the conceptual discrepancy between discrete
time MCMC sampling and an LIF neuron driven by Poisson input, we will show that it
is possible to use LIF neurons with average membrane potentials ūk as Boltzmann units
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5.2 Leaky integrate-and-fire networks as Boltzmann machines

with a spiking probability σ(uk). We demand this condition for each LIF neuron,

σ(ūk)
!

= σ(vk) . (5.11)

Note that for the LIF domain we use the average membrane potential ūk, since the
stochasticity is present as temporal noise, which follows a distribution over time. There
is no state transition probability for the LIF neuron since its membrane potential is
deterministic in a given time step. The time-averaged membrane potential and the firing
statistics of LIF neurons have been calculated in Chapter 4.
For every average membrane potential ū there is a well-defined total average firing

probability σ(ūk) = p(zk = 1) in the LIF domain. We define a mean membrane potential
ū0
k, which is characterized by σ(ū0

k) = 1
2 . For this specific average membrane potential

the firing activity is exactly at the inflection point of σ(ūk). This membrane potential
implies the bias bk = 0 in the LIF domain. Since both the ANM domain and the LIF
domain have different scales, we define a scaling parameter α to rescale the voltage-based
LIF membrane potential into the dimensionless BM domain. We can now express the
bias bk in terms of ūk:

bk =
ūk − ū0

k

α
. (5.12)

Using Equation 5.12, we can now equate the firing probabilities σ for both domains:

σ(bk) = σ(
ūk − ū0

k

α
) = σ(ūk) (5.13)

In the activation function the parameter α determines the slope and ū0
k is a constant

shift of the logistic curve. Both parameters, α and ū0
k, can be predicted by calculating

the activation function for a LIF neuron in Equation 4.41.

The firing probability in Equation 5.13 is identical in both domains. The interaction
between the Boltzmann units is not included in the translation of the sigmoid σ(bk). To
implement the neuron-to-neuron interaction in the LIF domain, we aim to approximate
the PSP shapes of the ANM as closely as possible, as their network evolution is guaranteed
to converge to the target distribution.
The PSPs of the ANM are rectangular and, in contrast to physical systems, they are

mediated without delay (Figure 5.2). When neuron i switches into state zi = 1, the
membrane of the postsynaptic neuron j is incremented instantaneously by Wij for a
duration of τon.
The crucial point here is that synaptic transmission is carried out for a fixed duration

and is deactivated after τon, unlike LIF interaction. In the LIF domain, the synaptic
interaction is mediated by exponentially-shaped PSPs. If the synaptic time constant τsyn
is not significantly smaller than the refractory time constant τref, then the exponential
tail of the PSP gives a contribution to the membrane potential even after the refractory
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5 Probabilistic computing with leaky integrate-and-fire neurons

Figure 5.2: (Left) We see an exemplary membrane potential trace of an abstract neuron.
The potential is essentially a superposition of synaptic weights, as described
in Equation 5.5. (Right) The plot shows a comparison between the PSP
shapes of a LIF neuron and an abstract neuron. The refractory time has
been chosen τon = τref = 30 ms. The rectangular ANM PSP (red) is induced
instantaneously after synaptic transmission has a fixed length τref, while the
LIF curve (green) declines exponentially with time constant τsyn. In contrast
to the ANM PSP, the LIF PSP continues after τref and contributes even
after the refractory period to the membrane potential. Figures is taken from
Petrovici (2016).
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5.2 Leaky integrate-and-fire networks as Boltzmann machines

period. This is an important difference to the rectangular PSPs of the ANM that bears
important consequences.
When approximating the PSP shape of the ANM, we can adjust several free LIF

parameters. The most important ones are refractory time τref and synaptic transmission
time constant τsyn. We will propose a method to map Boltzmann interaction to LIF
neurons motivated by following arguments:

1. To compare the membrane potential time scales between LIF and ANM neurons,
we set a reference time scale. This time scale is the duration in which the network
unit is active, which is the zk = 1 state. Since the interaction happens during this
refractory time for both models, we set both activity durations equal, τref = τon.

2. In the ANM, the refractory phase τon is also the duration of synaptic signal trans-
mission. We transfer this relationship of refractoriness and synaptic transmission
into the LIF domain by setting τsyn = τref. This relationship is a heuristic approx-
imation, as the synaptic interaction for LIF neurons is not cut off, but declines
exponentially. By performing this approximation, we assume that the relevant in-
teraction happens during the time frame of the refractory period, (tspk, tspk + τref).

3. Having fixed τsyn = τref, the final step to achieve a mapping between both domains
is to equate the impact of synaptic interaction. The area under the PSP is often
used as a measure of interaction impact.

We can formalize the last condition,

Wij · α · τref
!

=

∫ τref

0
PSPLIF

j (t)dt . (5.14)

The PSP time course of the LIF neuron, PSP (t), can be approximated in the high-
conductance state. A solution was given in Bytschok (2011) and reads

PSPLIF
j (t) =

wij(E
rev
j − ūj)τsyn

gtot(τsyn − τeff)

[
exp

(
− t

τsyn

)
− exp

(
− t

τeff

)]
. (5.15)

Note that the difference-of-exponential shape of the LIF PSP becomes exponential as
τeff → 0 in the high-conductance state. We can insert Equation 5.15 into Equation 5.14
and set τref = τsyn as argued above. This yields

Wij =
1

αCm

wij(E
rev
j )− ūj

1
τsyn
− 1

τeff

·
[

1− e
e
− τeff
τsyn

(
e
− τsyn
τeff − 1

)]
. (5.16)

This represents the translation between Boltzmann weights Wij and LIF weights wij .
The weight translation itself, just like the parameter translation for the bias in Equa-
tion 5.12, can be done in both directions. Starting from a LIF neuron, the translation of
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5 Probabilistic computing with leaky integrate-and-fire neurons

Figure 5.3: On the left plot we see the membrane potential during a succession of pre-
synaptic spikes. The membrane potential is amplified because the tail-ends
of the exponential residuals sum up after τref. In this case, the approximation
made in Equation 5.16 does not hold. In the right plot we see the same se-
quence of PSPs with the TSO mechanism (see Section 2.4) implemented. The
recovery time constant τrec can be chosen such that the origin PSP amplitude
is recovered after precisely τref = τrec. This mechanism improves the qual-
ity of LIF sampling in general, and in particular in cases with high spiking
probabilities. Figure is taken from Petrovici (2016).

the biases and weights towards the BM domain can be done directly by using Equations
5.12 and 5.16. Translating a BM to a LIF neuron, however, involves choosing LIF param-
eters deliberately, as the RHS of Equation 5.16 depends on numerous LIF parameters.
We will show that, following certain principles, many LIF parameter configurations can
be used to achieve accurate sampling from Boltzmann distributions.

5.2.2 Synaptic short-term plasticity in sampling

In the previous section we have shown a method to approximate a single LIF PSP to
rectangular PSPs of the ANM (see Figure 5.2). One major systematic deviation results
from the tail-end of the LIF PSP after τref. This deviation becomes significant when per-
sisting synaptic input occurs at high spiking probabilities. In this case, the exponential
tails of LIF PSPs will sum up after the refractory period and add to subsequent PSPs.
This amplifies the synaptic interaction, as can be seen in the left plot of Figure 5.3.
We can alleviate this effect by introducing short-term depression into synapses between
LIF Boltzmann units. The underlying Tsodyks-Markram mechanism was described in
Section 2.4. The mechanism temporarily decreases the synaptic efficacy in network
connections by modelling neurotransmitter consumption. The recovery time constant
τrec is chosen such that the original PSP height is recovered after the refractory time,
hence τrec = τref. Implementing this biological mechanism into the LIF-based Boltzmann
machine is a heuristic method that accommodates to strong interaction between two

64



5.3 Sampling with leaky integrate-and-fire neurons

LIF neurons in a BM.

To quantify the performance of LIF-based Boltzmann machines, we will introduce a
measure to compare the performance of probabilistic LIF networks with conventional
sampling implementations.

5.3 Sampling with leaky integrate-and-fire neurons

To assess the inference capabilities of LIF-based Boltzmann machines, we need a method
to evaluate how well the LIF network samples from a Boltzmann distribution. We can
evaluate the performance measuring how close the LIF-sampled distribution pN(z) is to
a target BM distribution, pT(z).

A commonly used distance measure is the so-called Kullback-Leibler divergence (DKL).
It quantifies the difference between two probability distributions, p(z) and q(z),

DKL (p(z) || q(z)) =
∑
z

p(z) log

(
p(z)

q(z)

)
. (5.17)

This measure has several important characteristics that we point out:

• The DKL is positive-semidefinite (DKL (p(z) || q(z)) ≥ 0) and zero for identical
distributions, p(z) ≡ q(z).

• It is not symmetric (DKL (p(z) || q(z)) 6= DKL (q(z) || p(z))), therefore not a met-
ric. The order of arguments can be chosen freely, but needs to be specified when
comparing results.

• The DKL requires to sum over all states z. This becomes intractable for a large
number of neurons N , as the state size grows with 2N . Because of this limitation,
we will apply the DKL only for small networks.

• Due to finite sampling time, there can be valid network states zj that the network
never visits, e.g., q(zj) = 0. This results in a log [q(zj) = 0] calculation. We avoid
such cases by interpreting the theoretical target probability distribution as the
second distribution in Equation 5.17, q(z). Due to the exponential function inside
the Boltzmann distribution, the probability is never zero.

Due to the second point, we will use the DKL to study small networks, where we
compare both, the network-sampled distribution pN(z), and the theoretical target distri-
bution pT(z),

DKL (pN(z) || pT(z)) =
∑
z

pN(z) log

(
pN(z)

pT(z)

)
. (5.18)
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To evaluate the quality of LIF-based BMs, we set up networks consisting of five
neurons and draw their Boltzmann parameters (W , b) from a beta distribution B(a, b)
with parameters a, b (Appendix A.4).

The results in Figure 5.4 show a randomly chosen distribution of 25 = 32 network
states, where the average of 10 simulation runs (blue) shows a good correspondence to
the theoretical target bars (red). The distribution was taken after a simulation time of
104 ms. The sampling results indicate a good approximation of the target distribution
after this time frame, the sampled network distribution still improves when sampling
longer. In Figure 5.4C we see two DKL curves on a logarithmic x- and y-axis. The
dashed line shows the sampling quality of the ANM, converging to the target distribu-
tion pT(z) exponentially as DKL (pANM(z) || pT(z))→ 0. The full colored lines show ten
simulations of LIF-based sampling with different seeds. We see that the quality improves
as DKL (pN(z) || pT(z)) decays exponentially, even after 104 ms. This illustrates the any-
time computing aspect of the sampling method: the accuracy improves continuously for
longer sampling runtimes and the results can be evaluated at any point in time. This
provides a tradeoff between speed and accuracy of the sampling approximation. This
is an advantage to inference algorithms which allow an evaluation only after a certain
(algorithmic) runtime (e.g., belief propagation). We see that the LIF-DKL curve in Fig-
ure 5.4C saturates at a certain point. This means that systematic deviations between
both models are present at any runtime.
The main reason for this deviation is the interaction via PSPs. After refractoriness

in the LIF model, interaction still exists because of exponential PSP decline. This con-
tributes to the LIF membrane potential even after synaptic interaction. Although the
TSO mechanism mitigates this effect to a certain degree (see Figure 5.3), it still impacts
the sampling dynamics. Another reason for the deviation is the fact that the ANM em-
ploys PSPs with constant amplitude for a duration of τon. The probability of spiking
therefore stays constant. For the LIF network, on the other side, the PSP shape is expo-
nential and reaches its peak at the beginning of the interaction. This affects the sampled
probability distribution.
In general, sampling with LIF neurons is still very accurate, as can be seen in

Figure 5.4D. The distribution of DKL results indicates very good agreement between
LIF-sampled distributions and the randomly drawn target distributions.

To demonstrate the scalability of our LIF sampling framework, we conducted simu-
lations with larger networks. We have randomly drawn Boltzmann parameters (W , b)
to set up 500-neuron networks with a 10% connectivity (see Appendix A.4 for more
details). To demonstrate the versatility of the sampling framework, we have chosen
three network activity modes that reflect vastly different firing states. The first firing
state is the so-called Asynchronous irregular state, which is known from neuroscientific
studies (Destexhe, 2009; Destexhe et al., 2001; Brunel , 2000). In this state the network
exhibits sparse and stochastic firing (Figure 5.5A). The asynchrony signifies that the
network neurons fire independently from each other and irregularity indicates that the
spike train of each neuron is random. It is similar to ground states of L23 cortical
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Figure 5.4: The randomly chosen Boltzmann parameters (W , b) define an LIF network
of 5 neurons. (A) The firing pattern of the network encodes a Boltzmann
probability distribution. (B) The resulting distribution is shown in blue bars
after a simulation time of Tsim = 104 ms, averaged over 10 runs. The network
distribution is compared with the target distribution (red bars). The error
bars result from the standard deviation over the runs. We see that the agree-
ment between both distributions is very good, especially in the frequently-
occurring high probability states. (C) The plot shows the sampling per-
formance of the ten LIF simulations with progressing simulation time on the
logarithmic x-axis. The ten sampled distributions are compared with the tar-
get distribution with the distance DKL (pB(z) || pT(z)) (t) (colored curves) on
a logarithmic y-scale. The exponential decrease of DKL (pLIF(z) || pT(z)) (t)
shows the improvement of the LIF sampling accuracy with increasing sam-
pling duration. The dashed line represents the quality of the ANM model
as DKL (pANM(z) || pT(z)) (t). We see the exponential convergence of pANM
towards pT as DKL (pANM(z) || pT(z)) (t) → 0. In contrast, the systematic
deviations towards the LIF model are visible, as DKL (pLIF(z) || pT(z)) (t)
saturates and does not converge to zero for Tsim → ∞. (D) The histogram
consists of DKL (pLIF(z) || pT(z)) (t) results from 100 randomly chosen LIF-
based Boltzmann machines after 106 ms simulation time. The parameters
were drawn from a beta distribution. Figure is taken from Petrovici et al.
(2013).
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Figure 5.5: We test the scalability of the sampling framework by evaluating the LIF
sampling performance on networks of 500 neurons. The Boltzmann param-
eters (W , b) for the networks were drawn from a beta distribution. We
chose networks that produce three important firing modes in A, B, C re-
spectively. (A) The network produces asynchronous and irregular spiking
patterns. We randomly select five neurons and compare their marginal dis-
tribution to an MCMC-sampled estimate of the target distribution. We see
that the network distribution approximates the target distribution very ac-
curately. The DKL (pLIF(z) || pMCMC(z))A (t) curves of 10 trials show the
improving quality of the network distribution on the logarithmic x- and y-
axis up to the saturation point. (B) We doubled the amplitude of ran-
domly drawn Boltzmann weights, yielding more synchronized firing pat-
terns. The target distribution is still approximated well. We see that
DKL (pLIF(z) || pMCMC(z))B (t) converges to a higher saturation point than
DKL (pLIF(z) || pMCMC(z))A (t) due to larger systematic deviations resulting
from the weight translation (see text). (C) We quadrupled the weights from
(A), resulting in strong interaction, causing synchronized network spiking ac-
tivity. The high-probability modes can still be approximated well and the
saturation point of DKL (pLIF(z) || pMCMC(z))C (t) lies significantly higher.
Figure is taken from Petrovici et al. (2016).
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networks that we have discussed in Section 3.2. Although BMs do not exhibit biological
neural dynamics, the class of Boltzmann distributions is powerful enough to reproduce
biological firing patterns. Compared to spiking networks with biological architecture,
like the previously discussed L23 network, we can measure the network performance for
our sampled networks more intuitively using the DKL distance.

Aside from these biological firing domains we also evaluated 500-neuron BMs using
larger weights, thereby regularizing network activity, as seen in Figure 5.5B. To test an
even more extreme case, we further increased the average amplitude of Boltzmann weights
W to yield even more regular and synchronized network firing patterns (Figure 5.5C).
This firing mode is very similar to attractor states of the cortical L23 network, where a
significant part of the network also fires synchronously. This shows that we can reproduce
the firing behaviour of cortical spiking networks with LIF-based Boltzmann machines.
Even for large-scale networks, the performance of the LIF-based BMs can be esti-

mated. Since we cannot calculate all 2500 states in the 500-neuron networks for the DKL,
we evaluated the marginalized probability distribution of 5 randomly chosen neurons
after 10 trials with the same network topology. We did this for all three firing modes in
Figure 5.5. We see that the network-sampled distribution in Figure 5.5B is still a very
good approximation despite significantly increased network weights. The network dis-
tribution in Figure 5.5C shows clear deviation from theoretical results, but still samples
correctly from the most frequent states - the high-probability bars are well-matched by
the network probabilities. We can quantify the improvement of the network distribution
with ongoing sampling by evaluating the DKL runtime curves. In Figure 5.5A we can
see the DKL converging with increased simulation time to a constant value, which is a
saturation we already discussed in Figure 5.4. This saturation point indicates the order
of magnitude of systematic errors compared to a conventional Markov-Chain Monte
Carlo sampler. We see that the saturation point becomes higher with increasing weights
for Figure 5.4A,B,C. With increasing LIF PSPs, the rectangular PSP approximation,
described in Figure 5.2, becomes less accurate.

We still can conclude that even for larger networks we can sample reliably from target
Boltzmann distributions. Due to the approximation of LIF PSPs in Equation 5.16, the
extent of network interactions is an important factor which determines systematic errors.

5.4 Parameter robustness of sampling leaky
integrate-and-fire networks

A Boltzmann distribution is fully defined by its network parameters (W , b). An LIF
network, on the other hand, is specified by many neuron and synapse parameters. In this
section we will evaluate LIF sampling performance for different parameter sets. These
results will reveal the parameter configurations which yield the best performance and
parameters that the sampling networks are sensitive to.
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Figure 5.6: We investigate the sampling quality of LIF Boltzmann machines. We vary
the membrane responsiveness on the y-axis, Cm

gl
, and the mean Poisson

noise amplitude on the x-axis, wiνi. The results are evaluated in terms of
DKL (pLIF(z) || pT(z)) for the 5-neuron network described in Fig. 5.4A,B,C.
The DKL (pLIF(z) || pT(z)) for default parameters C0

m
g0l

and w0
i ν

0
i is shown in

the center and is used as a reference.
The colormap shows two important results, which can be seen along the y-
axis. A declining ratio of Cm/gl

C0
m/g

0
l
implies an increasing responsiveness of the

membrane potential. Consequently, the DKL becomes lower, indicating bet-
ter sampling. The second key impact factor is the change in noise amplitude
on the x-axis. As we increase wiνi, the membrane does not only become more
responsive, but also more stochastic and similar to an Ornstein-Uhlenbeck
process, as explained in Section 4.3. Since increased stochasticity facilitates
state changes, it improves sampling. The simulations were run for 106 ms and
averaged over 10 trials. The error bars show the standard error of the mean.
Figure is taken from Petrovici et al. (2013).

70



5.4 Parameter robustness of sampling leaky integrate-and-fire networks

We have already pointed out that the responsiveness of LIF neurons in sampling net-
works is vital to encode fast transitions between zk = 0 and zk = 1. The parameter that
controls the responsiveness of LIF neurons, is the effective time constant τeff = Cm

gl+ ¯gsyn .
The smaller τeff becomes, the faster the membrane reacts to stimuli. This time constant
can be changed by membrane properties or the noise amplitude. The former can be
modified by changing the membrane capacitance Cm in the numerator or changing the
leak conductance gl in the denominator. The noise amplitude can be controlled by the
average synaptic input 〈gsyn〉 ∝ wiνi.
We vary both the noise amplitude wiνi and the membrane responsiveness Cm

gl
, investi-

gating the effects on the sampling performance of a small 5-neuron network. The default
parameters that were used in all our previous studies, will be defined as w0

i , ν
0
i , C

0
m and

g0
l . The parameter list of the default values can be found in Appendix A.7.

The results of these simulations are illustrated in Figure 5.6, where the color-coded
DKL values indicate the sampling quality. The findings validate two important as-
sumptions. The first finding is that a less responsive membrane due to a larger ratio
Cm
gl

is detrimental to sampling quality. The second result shows that increasing the
noise wiνi is beneficial, as stochasticity and responsiveness are increased at the same
time. The increase of stochasticity in each neuron improves the approximations made in
Section 4.3, where we identified the LIF membrane potential as an Ornstein-Uhlenbeck
process.

Aside from membrane and noise parameters, the LIF neuron’s sampling quality also
depends on the distance between the spiking reset and threshold, ∆uθρ := θ − ρ. Most
importantly, when sampling from a Boltzmann distribution, we assume that switching
of neuron states z = 0 → z = 1 and z = 1 → z = 0 happens instantaneously. This
is true for the ANM implementation, where state changes can occur at any point in
time. For an LIF neuron this is fundamentally different. Here the membrane potential
propagates continuously in time and requires finite time to propagate from u = ρ to
u = θ. This finiteness becomes crucial in case of a very high probability of spiking,
p(z = 1). In such a case synaptic input is so high that it pulls the membrane potential
upwards immediately after the refractory period ends with z = 1 → z = 0. According
to the target distribution, an immediate state switch z = 0 → z = 1 is very likely.
In LIF simulation though, this state change is delayed because the neuron requires a
certain time to elevate from ρ to θ. This duration becomes longer if the distance ∆uθρ
increases. During this rise time, the LIF sampling network introduces a systematic error,
as it necessarily samples from the z = 0 state while approaching the threshold. Since
the effective time constant τeff governs the speed of this increase, a sufficiently low time
constant will bridge an arbitrarily large distance ∆uθρ in a short time window. We can
see in Figure 5.7A that the DKL is unaffected by an increase of the distance ∆uθρ as
long as the effective time constant is small enough.

The last important parameter study is dedicated to synaptic interaction of LIF neu-
rons. In Section 5.2.1 we have set τref ≡ τsyn to equate the time window where the
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5 Probabilistic computing with leaky integrate-and-fire neurons

Figure 5.7: We study the impact of crucial parameter changes in the LIF sampling net-
work described in Figure 5.4. We do not change the remaining parameters
(Appendix A.7). (A) We vary the distance between threshold ∆uθρ = θ− ρ,
with θ := −52 mV being fixed. The y-axis gives the sampling performance of
the 5-neuron network as DKL (pLIF(z) || pT(z)). Due to the high noise input
and an effective time constant of τeff ≈ 0.2 ms, the membrane potential is fast
enough to overcome the potential difference ∆uθρ and to perform state tran-
sitions z = 0 → z = 1 quasi-instantaneous. (B) The variation of the ratio
between refractory and synaptic transmission duration, τsynτref

at τref = 10 ms is
shown. The sampling performance measure DKL (pLIF(z) || pT(z)) indicates
the best performance at the default setting, τsynτref

≈ 1.
All simulations have been run for 105 ms and have been averaged over 20 sim-
ulation runs. The error bars indicate the standard error of the mean. Figure
is taken from Petrovici et al. (2013).
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state is z = 1 and synaptic interaction occurs, τsyn. To validate this heuristic ap-
proach, we swept over the parameter ratio of τsynτref

while keeping τref = 10 ms. We see in
Figure 5.7B that the DKL (pLIF(z) || pT(z)) minimum (i.e. best sampling performance)
is located at the ratio τsyn

τref
≈ 1. This supports the rationale behind the heuristic approach.

Conclusively, we can summarize LIF sampling parameter studies and write down key
points that are crucial for good sampling performance:

• Stochasticity: Providing a reasonable amount of stochastic input via Poisson
noise weights wi and input rates νi is necessary to facilitate state changes in the
network. Lack of stochastic resources would result in more deterministic network
dynamics, unable to transition to all states that make up the target distribution2.

• Membrane responsiveness: The speed of neuron state transitions plays an im-
portant role in sampling. In the ANM a spike is triggered according to a probability
and state changes are instantaneous. Therefore, multiple spikes can be triggered
immediately after the elapsed activity period τon. For LIF networks this does not
apply after the refractory period, as it requires finite time to cross the threshold θ.
By increasing the membrane conductivity or the synaptic noise input, we decrease
state transition times. With sufficiently high synaptic input we can achieve a suf-
ficiently low effective time constant τeff. This enables state changes z = 0→ z = 1
that require negligible time.

5.5 Conclusion: sampling with leaky integrate-and-fire
neurons

In this chapter we extended the framework from single LIF neurons with high conduc-
tance to a network description that allows sampling from Boltzmann distributions. To
assess its performance, we benchmarked the LIF sampling framework using the Kullback-
Leibler divergence measure and performed LIF parameter studies to investigate valid
parameter ranges for LIF Boltzmann machines. In our LIF sampling framework single
spikes encode a probability distribution and are driven by stochastic membrane dy-
namics. Therefore, it is crucial that the membrane potential responds fast enough to
stochastic inputs, ensuring the desired spike-based encoding of states.

Following this principle we can also reproduce biological firing patterns that we ana-
lyzed in cortical networks in Chapter 3. Although we can encode states more efficiently
with the sampling framework than with the cortical network, the sampling framework
has several non-biological attributes. One important constraint is the symmetry of Boltz-
mann weights, which restricts possible connectivity topologies of sampling networks.
Also, neurons in a Boltzmann machine do not act exclusively inhibitorily or excitatorily

2In Chapter 7 we will see that Poisson input is not mandatory to achieve stochastic network dynamics.
We will present different methods to enforce stochastic network behavior.

73



5 Probabilistic computing with leaky integrate-and-fire neurons

on other neurons. In physiology, the so-called Dale’s principle is an empirical law stating
that neurons are limited to one set of neurotransmitters, thereby enforcing one type of
synaptic interaction (Eccles et al., 1954). This is one of the reasons why Boltzmann
machines are not directly mappable to cortical structures. On the other hand, LIF-based
Boltzmann machines can also be seen as practical tools to explore real-world inference
tasks, utilizing the benefits of spike-based encoding and biological mechanisms like
short-term plasticity.
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6 Applications of leaky integrate-and-fire
Boltzmann machines

In the course of the previous two chapters we have developed a framework that enables
probabilistic inference by sampling from binary probability distributions using spiking
neurons in biological parameter regimes. The performance of these networks indicated
potential for real-world inference tasks.

In the development of a sampling LIF network, the abstract model from Buesing
et al. (2011) was an important reference point. However, there are many other sampling
algorithms that are engineered to perform efficient inference on given data sets. In fact,
the field of machine learning is dedicated to develop custom-tailored models to draw and
process information on real-world data (Bishop, 2009). In this chapter we want to point
out why using LIF neurons for predictive data analysis tasks is preferable to conven-
tional sampling methods. One of the key points is the spike-based signal transmission,
which is inspired from the transmission mechanisms in neural tissue. Biological neurons
communicate primarily via emission of spikes. In contrast to this, in the abstract neuron
model (ANM) each neuron communicates its state during every time step, increasing
the necessary number of calculations per time step.

In this chapter we will see how spiking LIF networks employ mechanisms to use stochas-
ticity as a computational tool, making them more efficient than conventional sampling
techniques (e.g., Metropolis-Hastings sampling). To review these properties, we will con-
struct restricted Boltzmann machines using our LIF sampling framework and apply them
on inference tasks. These layered architectures are versatile networks and are commonly
used as generative models and classifiers for big data sets (Tieleman, 2008; Le Roux and
Bengio, 2008; Sutskever et al., 2009).

6.1 Real-world inference tasks with spiking neurons

Before introducing multi-layered Boltzmann machines for stochastic inference, we will
present a simple demonstration of LIF-based stochastic inference with only one layer.
The network will be assigned to generate images from a benchmark data set, the
MNIST database (Mixed National Institute of Standards and Technology) (LeCun and
Cortes, 1998). It contains 60000 black-white hand-written digits with an image size of
28x28 pixels (Figure 6.1). The simulations described in Section 6.1 are based on the pub-
lications Petrovici et al. (2013, 2016), which were co-authored by the author of this thesis.

75



6 Applications of leaky integrate-and-fire Boltzmann machines

Figure 6.1: Subset of 100 images with 28x28 pixels from the MNIST database from a
training set of 50000 digits (LeCun and Cortes, 1998).

We will illustrate a simple inference problem using a LIF network with 144 neurons.
To reduce simulation overhead and limit the complexity of the images, we reduced
the original image size of 28x28 to 12x12 pixels by averaging over pixel intensities.
Accordingly, we arrange the network as a 12x12 grid where each neuron’s firing rate
represents a pixel value from white to black (0 to 255) with an all-to-all connectivity
matrix. A white pixel indicates that the neuron is inactive on average with p(zwhite) = 0,
while a black pixel signifies constant firing with p(zblack) = 1. The connectivity matrix
W has 144x144 entries and the bias b is represented as a 144-dimensional vector. In
our demonstration we choose three MNIST images for this representation. Each image
displays a single digit in (0, 3, 4).

After initialization, the network is assigned to learn a Boltzmann distribution p(z)
with parameters (W , b) as a statistical model of the three digits (see Section 6.1.1).
Note that we describe the network in the Boltzmann domain (W , b), since they define
the distribution which we want to sample from. We transfer the distribution parameters
to the LIF domain by applying the translation rules which we presented in Section 5.2.1.
The distribution p(z) corresponds to the prior distribution of the data. The network
encodes pixel intensities as firing activity and is trained to reproduce the trained image
data. This internal model of the three-digit data set is connected to an external input
y. The yk nodes can be thought of as observed values for internal neuron states zk, with
k ∈ {1, . . . , 144}.
Given the shape of a likelihood distribution p(y|z) as a Gaussian (Figure 6.2), the

LIF-based BM with the distribution p(z,y) aims to infer the corresponding posterior
distribution p(z|y). Since the network has learned the prior p(z), it infers according to
Bayes’ law
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Figure 6.2: The figures show a proof-of-concept network setup to evaluate stochastic in-
ference with LIF neurons. In (A) the graphical model is illustrated. The red
circles show a fully-connected network of sampling units zk that are trained
on three digits, “0”, “3” and “4”. The black circles show the connected bias
currents yk. (B) The likelihood function p(yk|zk) is modeled as a Gaussian.
(C) After the network of 144 neurons has learned the three digits (axes),
the network freely samples from all digits for a duration of 4000 ms with the
same frequency. The network samples are shown as blue dots. The red trace
shows a continuous propagation between all three digits on the axes. The
timeline on the left displays sampled network states during the continuous
propagation. We see that the network recognizes the images reliably. (D)
The input yk is inserted into sampling units zk as an additional positive bias
that increases the spiking rate of the four center neurons. This fixes four
black pixels in the center of the images. The network infers correctly that
the underlying image is “3” or “4”. Consequently, the network samples (blue
dots) from regions close to these two digits with equal probability, but ne-
glects the “0” regions. The network infers from the given input yk correctly
that black center pixels are not compatible with the “0” digit.
Figure is taken from Petrovici et al. (2013).
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p(z|y) ∝ p(z) · p(y|z) . (6.1)

In Figure 6.2C we see a 2D projection of the network state z(t). This projection shows
trajectory of the network state, traversing the state space. Most samples (blue dots)
are accumulated at the axes, where the three MNIST digit states are located. The red
curve portrays a trajectory of the network state, also displayed at the time axis to the
left. We introduce an additional bias input, y, to the trained network. Effectively, this
corresponds to a positive current that shifts the mean membrane potential. The bias
current is injected into the four center neurons, effectively clamping them to achieve
maximum firing activity. The relationship between input y and states z is determined
by a multivariate Gaussian p(y|z).
Since we activated the pixels in the center of the image, the underlying posterior p(z|y)

is a distribution with a high frequency of states in the proximity of the “3” and “4” digits,
but does not enclose states in the proximity of “0”. Since all states z have a corresponding
energy value E(z), we will refer to this landscape as the energy landscape.
We see this network behaviour in Figure 6.2D, as the projected network states (blue

points) are located close to “3” and “4”. The regions in the proximity of “0” are visited
significantly less frequent since we imposed black pixels in the center of the images with
current y.

This simple setup already shows the potential of the LIF networks, but one key at-
tribute is the training algorithm for neural network performance. Since the used training
algorithm follows a general principle, we will describe it in detail.

6.1.1 The contrastive divergence training algorithm

For a given data set, we define a Boltzmann machine with parameters (W , b) and a
binary state vector z. The objective is to adjust the parameters such that the Boltzmann
machine is able to reproduce the data from the target data set. In such a case, averaging
over the states in vector z after a sufficiently long of sampling duration, the states would
reproduce the pixel intensities of the images as firing probabilities. To achieve such a
generate model of the data set, we want to iteratively modify the network parameters
until the given data can be reproduced by binary state vector z.

A very common approach (not limited to Boltzmann machines) aremaximum likelihood
algorithms. This class of algorithms is based on finding the network parameters W , b
that maximize the likelihood p(z|W , b) of observing the target data set by means of z.
To achieve this, so-called gradient descent methods are applied. To maximize p(z|W , b),
we look for the minima of the derivatives ∂p(z|W ,b)

∂Wij
, ∂p(z|W ,b)

∂bi
reached. From now on we

will omit the parameters W and b in the conditional distribution. We will formulate the
maximization condition for Wij , as the formulation is analogous for the biases bi. We
condition can be stated as,
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∂p(z)

∂Wij
=
∂
[

e−E(z)∑
z′ e
−E(z′)

]
∂Wij

(6.2)

= e−E(z)zizj
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′
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]
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= p(z)zizj − p(z)

∑z′

(
e−E(z′)z′iz

′
j

)
∑

z′ e
−E(z′)

 , (6.4)

where we used the relationship ∂E(z)
∂Wij

= −zizj to evaluate the derivative of the energy
terms. Here z denotes the states produced by data and z′ corresponds to states generated
by the network model. We can reformulate the RHS of Equation 6.4 to eliminate p(z)

on both sides by taking the partial derivative of the logarithm, ∂ log p(z)
∂Wij

. This reads

∂ log p(z)

∂Wij
= zizj −

∑z′

(
e−E(z′)z′iz

′
j

)
∑

z′ e
−E(z′)

 , (6.5)

with the second term on the RHS being the mean of all model states z′iz
′
j . We can

therefore take the average of the states given by the data on both sides. This reads〈
∂ log p(z)

∂Wij

〉
data

= 〈zizj〉data − 〈zizj〉model . (6.6)

This equation describes the gradient of the log-likelihood. In this form, maximizing
the log-likelihood is equivalent to minimizing the gradient

〈
∂ log p(z)
∂Wij

〉
data

. This can be
described by the RHS intuitively: the gradient is minimized by decreasing the average
distance between data states 〈zizj〉data and model states 〈zizj〉model. Ideally, this differ-
ence corresponds to a model which produces states that are similar to the desired data
states.

We can discretize the differentials in Equation 6.6 to adjust Boltzmann parameters
(W , b). This results in

∆Wij = η(〈zizj〉data − 〈zizj〉model) . (6.7)

The complete derivation can also be done analogously for the biases bi. Therefore, we
only provide the result,

∆bi = η(〈zi〉data − 〈zi〉model) . (6.8)

These equations represent the change of parameters after one training step, where the
model state average 〈zizj〉model was subtracted from the data state average 〈zizj〉data.

79



6 Applications of leaky integrate-and-fire Boltzmann machines

This result is multiplied by η, which is referred to as the learning rate. This quantity
modulates the amplitude of the increments ∆Wij and ∆bi. It determines how large
the change of Boltzmann parameters will be in each training step and often needs to
be adjusted to the targeted data set. If the learning rate is set too low, the system
only slowly converges towards a gradient minimum. If it is chosen too high, the system
performs too large changes, causing large parameter fluctuations. The reason for the
strong fluctuations is that the parameter increments described in Equations 6.7, 6.8 are
linear approximations of the gradient and therefore only valid in the proximity of the
current parameters.

Equations 6.7 and 6.8 conclude our derivation of the learning algorithm that we will
use for Boltzmann machines. One important consideration here is that the training step
in form of Equation 6.6 is intractable due to the evaluation of the term 〈zizj〉model. The
calculation of this term requires to average over every state in the probability landscape
given by p(z). Due to the number of possible states, this approach is not feasible. As
an example, our system consists of 2144 states and a calculation of the probabilities
〈zizj〉model would demand a calculation of all the states to evaluate the normalizing
partition function, Z =

∑
z and collecting a sufficient amount of samples from all of

these model states. In conventional CPU architectures the calculation would take an
insurmountable amount of time and overflow any existing memory.
To avoid these problems, a common approximation is made by averaging over a finite

number n of model states before calculating the average. This method is a well-known
approximation called contrastive divergence (CD), which is described in Hinton (2002).
This heuristic approximation method speeds up the calculation of parameter updates
and has proven to provide very good results, in many cases for only few samples (n ≈ 1).
There is no mathematical proof that CD minimizes the likelihood, but has shown to yield
very good approximations for a variety of training tasks.
We have already shown the applicability of the CD training method for the proof-of-

concept generative model we described in the previous Section 6.1, where we trained a
Boltzmann machine consisting of ANM units and transferred the result to a LIF-based
BM. The network parameters are described in Appendix A.5. In the following we will
use our LIF sampling framework and approach bigger data sets with a layered network
topology.

6.2 Deep learning architectures with spiking neurons

For a very simple 3-digit case we employed a Boltzmann machine with all-to-all connec-
tivity, where the number of neurons (144) corresponds to the number of image pixels in a
grid (12x12). Such an architecture where every network unit has a corresponding input
unit, is called a visible Boltzmann machine. We trained this network with a simple CD
algorithm on a network of ANM units. For larger data sets, this type of architecture
declines in generative performance, as the number of parameters becomes insufficient to
model all possible correlations between pixels. Also, not every data set is suitable to be

80



6.2 Deep learning architectures with spiking neurons

Figure 6.3: The layout of a restricted Boltzmann machine (RBM) consists of three lay-
ers. The lowest layer is the input layer, which is referred to as the visible
layer. The states of the visible units are trained to represent the image pixel
intensities (see Equation 6.9). The visible layer is connected to the hidden
layer, which models the correlations between images from the data set. The
label layer is an extension of the RBM architecture and serves as a readout
for classification. Each label neuron is assigned to a class and fires as soon as
the network recognizes the respective image.

represented by a Boltzmann machine. Every neuron has only one bias value and one
possible trained weight to another neuron. For a sufficiently high variety of images, one
weight per input unit cannot model all possible relationships between pixels from differ-
ent images. In this section we want to test the generative and discriminative properties
of the LIF-based framework on a large data set. To do this, we train the Boltzmann
machines on the full MNIST training set, which includes 50000 hand-written digits of
10 digit classes (with 10000 test images). Afterwards we evaluate the classification and
generative performance of the LIF model. The content in Section 6.2 is based on Leng
et al. (2016), which was co-authored by the author of this thesis. All simulations in
Section 6.2 have been conducted by Luziwei Leng.
Layered architectures are characterized by lateral and forward connections, which play

different roles in information propagation. We will use so-called restricted Boltzmann
machines (RBMs), which incorporate three different layers (Figure 6.3) (Smolensky ,
1986). The lowest layer is called the visible layer, where the number of units corresponds
to the number of inputs. In our case, all 28x28 pixels require 784 neurons. The visible
layer connects to the next-higher layer, which is called the hidden layer. The name
originates from the property that hidden states are not considered observable through
pixel intensities. The purpose of the hidden layer is to provide additional degrees of
freedom to a Boltzmann distribution for data set representation.
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Adding even only one additional hidden layer for more degrees of freedom increases
the computational overhead for simulation and training, as the number of connections
is vastly increased. So far we also have not imposed any boundary conditions on how
additional connections of the hidden units should be shaped. This introduces the problem
that training of these connections leads to overfitting of data due to an increased size of
non-observed, free parameters. These problems can be avoided using RBMs. For this
type of network, all lateral (visible-to-visible, hidden-to-hidden) connections are removed
and the network is restricted to inter-layer connections. This is a fixed constraint that
simplifies the training of Boltzmann machines, since it removes lateral dependencies
between random variables.
We can now adapt the CD algorithm to RBM connectivity by defining v as visible

states and h as hidden states. We then maximize the log-probability of the network to
generate visible states v:〈

∂ log p(v)

∂Wij

〉
data

= 〈vihj〉data − 〈vihj〉model (6.9)

Here we define a and b as the biases for visible and hidden units, respectively. Then we
obtain weight and bias increments analogously to Equations 6.7, 6.8:

∆Wij = η(〈vihj〉data − 〈vihj〉model) , (6.10)
∆ai = η(〈vi〉data − 〈vi〉model) , (6.11)
∆bi = η(〈hi〉data − 〈hi〉model) . (6.12)

For the full MNIST data set, we use 784 (28x28) neurons and 1200 hidden units. Ad-
ditionally, we introduce so-called label units. Each of these ten auxiliary units encodes
a respective digit class by exhibiting activity if the network is shown an image from the
corresponding class. Each label unit’s firing activity indicates the digit class the network
generates at that point in time. The label unit provides the readout for discriminating
between different MNIST digits and the hidden units shape the generative network model
for the data set. Hidden units encode similarities between digits and generalize common
features to a certain degree. For instance, a similar curvature of the digits “8” and “9”
causes correlated firing states between certain hidden units after training the network.
The RBM architecture is a widely-used building block for multi-layered architectures.

In these so-called deep Boltzmann machines, the network is extended by additional hid-
den layers with restricted connectivity to map more complex data. Multiple network
layers introduce a certain “depth”, allowing to encode more features than pixel intensity
or curvature. However, we will only discuss RBM architectures, since the same compu-
tational principles apply to networks with more layers. Also, we will see that LIF-based
RBMs already achieve very good results for our applied problems. To identify unique
properties of LIF-based networks, we will compare their performance to results from
conventional methods.
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Figure 6.4: The setup and functionality of the LIF-based RBM. (A) A simplified illus-
tration of the RBM network architecture. The visible layer consists of 784
neurons to encode input from 28x28 pixel-sized images. The hidden layer
incorporates 1200 neurons and for each of the 10 digit classes, a label neu-
ron is assigned. (B) An example spike train sequence shows the output of
the network. (C) To ensure that the network learns digits from the entire
probability space, an annealing algorithm is used (Salakhutdinov , 2010). It
introduces a second Markov chain (AST), which samples on a reshaped en-
ergy landscape. In this chain, the energy is modulated by modifying the
inverse temperature β with a control parameter k. The higher k, the flat-
ter the energy landscape becomes, increasing the rate of state transitions to
disjoint states. After a certain number of sampling steps, k is degraded to
k = 1, returning to the original chain. (D) The LIF sampling framework
implements alpha-shaped PSPs (blue, green) that approximate a rectangular
shape of abstract neurons. The TSO mechanism (see Section 2.4) determines
the PSP amplitude during subsequent spiking (blue). The orange area marks
the constant PSP area that is set in the abstract neuron model. The orange
line marks the targeted amplitude height for the translation from the ANM to
the LIF model. In our approximation, the blue and orange area are identical
(Section 5.2.1). (E) The TSO mechanism incorporates potentiation (p) and
depression (d). In a system without TSO (r), the energy landscape is static
and PSPs are kept constant, as shown in (D). Potentiation (p) increases the
amplitude at the beginning of the spike sequence, consolidating the network
in a mode in the network by deepening the potential valley. To transition
from this state, synapses are weakened using depression (d), flattening the
potential minimum. This leads to an uplift (p), then a decline (d) of PSP
amplitudes. The neuron and synapse parameters of the network can be found
in Leng et al. (2016). Figure is taken from Leng et al. (2016).
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6.2.1 Deep learning on the full MNIST data set

For the visible Boltzmann machine we used the standard CD parameter update scheme
that we described in Section 6.1.1. Since we will use the full MNIST data set (50000
training images), the network takes longer to generate a probabilistic model of the data
set. Also, an increased heterogeneity of the data increases the difficulty of traversing
the full energy landscape. We will look at the probability density p(v) and the energy
function E(v,h),

p(v) =
1

Z

∑
vh

exp (−E(v,h)) , (6.13)

E(v,h) = −
∑

i∈visible
aivi −

∑
j∈hidden

bjhj −
∑
i,j

Wijvihj . (6.14)

States with a higher occurrence probability have a lower energy. The probability
landscape is fully defined by the target data set. Big, inhomogeneous data sets cause
many potential walls in the energy landscape, often hindering sampling from parts of the
state space during training. Consequently, data subsets that show less similarity to the
remaining data, are often separated by potential walls and often undersampled by the
sampler during the training procedure. Since this problem is well-known, many methods
exist to facilitate transitions to all high-probability modes in separated state regions after
updating the parameters. The so-calledmixing time describes the time it takes to traverse
separated regions of different high-probability modes in the energy landscape. To decrease
the mixing time (i.e., facilitate training), we will extend the CD training mechanism to
facilitate improbable state transitions. We will train the ANM-based RBM defined by
(W ,a, b), using a training algorithm called coupled adapted simulated tempering (CAST)
(Salakhutdinov , 2010). We will briefly outline how the training mechanism works in
principle. More detailed discussions can be found in Leng (2014); Martel (2015); Leng
et al. (2016). The CAST mechanism combines CD training with a tempering procedure
shown in Figure 6.4C. This combination includes two sampling Markov chains in order
to collect the model state averages to implement the parameter updates in Equations
6.10, 6.11, 6.12. The first chain implements a procedure called Persistent contrastive
divergence (PCD), which updates the network parameters after a predefined number of
sampling steps. The second chain, however, samples in parallel to the first chain while
reshaping the energy landscape. This part constitutes the adapted simulated tempering
(AST) of the CAST algorithm. To provide a closer look at the tempering mechanism,
we consider the inverse temperature β = 1

kT in the Boltzmann probability distribution,

p(v) =
1

Z

∑
vh

exp (−βE(v,h)) . (6.15)

Here, the inverse temperature β is used to reshape the probability landscape. In our
initial definition in Equation 5.3 we set β ≡ 1. Now we use β to change the probability
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landscape. This is analogous to physical systems, where an increase of temperature
results in an increase of energy and thereby increases the probability of state transitions.
For our RBMs this has comparable consequences, since it alters the probability landscape.
In our CAST training algorithm, the tempering Markov chain takes valid samples only
at the default temperature (β = 1). The temperature is increased to enable unlikely
state transitions. To make sure that the system transitions into all probability regions,
the temperature is varied accordingly. If the network samples oversamples a certain
probability region, the temperature is increased (β < 1) to facilitate a state transition
into undersampled regions. The CAST algorithm modulates the probabilities of state
transitions; the higher the temperature becomes, the more likely it is to transition into
an undersampled, high-probability state. This happens automatically, as the probability
of sampling in a certain region (Equation 6.15) depends on β.
As soon as the tempering Markov chain switches back to β = 1, both the PCD and the

AST chain switch their states. The purpose of this state switch is to initiate the successive
training step in a state subspace different from the previous one. This ensures that the
training includes samples from as many different regions as possible from the state space
that represents the full MNIST data set with Boltzmann parameters (W ,v,h). These
trained parameters define the full RBM. In principle we could choose any sampling model
to evaluate the generative properties and perform classification of hand-written digits.
For comparison, we will use the widely-adopted Gibbs sampling routine to sample from
the probability distributions. We will compare the performance with LIF-based results.
We will then qualitatively discuss the benefits and downsides of their biological properties
compared to conventional approaches.
To evaluate both the generative and discriminative properties, we need means to assess

this performance. To evaluate the performance of LIF-based RBMs as a generative model,
we choose a projection which illustrates the differences between conventional MCMC
sampling and our LIF-based approach. This requires to project the {0, 1}N state space
onto a two-dimensional plane, retaining the structure of the internalized data set. It is
crucial that neighbouring states still stay close to each other in the projected state space.
Unlike for the simple generative model with three digits in Section 6.1, we cannot

visualize the full data set of 50000 digits on a two-dimensional plane by means of simple
coordinate transformation. Instead, we use a method called t-distributed stochastic em-
bedding (t-SNE), introduced in Maaten and Hinton (2008). In this projection method,
data pairs that are close to each other in the {0, 1}N space have a high probability of
being placed close to each other in a 2D space. Conversely, data pairs with dissimilar
features have a low probability to be mapped in a neighborhood. We perform this nonlin-
ear projection on the 2D space, making it possible to compare sampling paths of Gibbs
sampling and LIF-based inference. More details on t-SNE projection of a probability
landscape can be found in Martel (2015).
The results can be seen in Figure 6.5. Here we look at the projected states which the

network assumed during inference. In 6.5C, Gibbs sampling has been used to draw 4000
samples from the trained probability distribution. We see that the network is unable
to transition into states other than “7” and “9” during the whole runtime. It is trapped
in these probability modes. In Figure 6.5C we see the sampling trace of the LIF-based
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Figure 6.5: (A) The t-SNE projection of Gibbs-sampled states of the trained system
shows that the network almost exclusively samples from the “7” states (pur-
ple), and occasionally transitions to “9” and “4” states. All in all, the network
generates only a small fraction of the data set. The projections include 4000
sampling steps. In-between each plotted sampling step, 10 steps have been
left out. (B) The LIF-sampled results show a uniform coverage of all digits,
which are represented in different colors. The LIF simulation has been run
for Tsim = 4000 · τref, with τref = 10 ms. Here, the refractory period in the
LIF domain corresponds to one sampling step in the Gibbs domain.
(C) Both networks classify the digits. For Gibbs-sampled classification (blue
bars), we see that only three digits are generated by the network. In the LIF
case, we see that the network traverses through the modes of the entire data
set and samples from all digit modes (red bars). The samples were classified
during 4000 sampling steps with intervals of 10 sampling steps. Figure is
taken from Leng et al. (2016).

86



6.2 Deep learning architectures with spiking neurons

network. To compare the LIF-based sampling sampling time to the Gibbs sampling
in discrete time steps, we assumed one sampling step as τref, since it constitutes the
fixed time period a network spends in the z = 1 state. Therefore, Figure 6.5C shows
states resulting from the runtime of τref · 4000 = 40000 ms. We see that the LIF network
exhibits transitions between all ten digit classes and samples from a complete data
set. For both networks we used the same trained parameters (W ,a, b). The difference
between both models therefore lies in the dynamics of the network.

A key difference that explains the superior LIF sampling is the short-term plasticity
of the LIF synapses. In the abstract model, the constant rectangular PSPs are a con-
sequence of the NCC (Equation 5.1) and follow as a necessary condition from sampling
from a Boltzmann distribution. In the LIF model, however, the TSO short-term plasticity
mechanism is used to achieve equal PSP amplitudes for successive spiking (Figure 6.4).
This mechanism temporarily changes the local energy landscape of the system during
each sampling step.
An energy minimum in the data space represents a state region where the network

state is similar to a digit of the data set. In this probability mode, the hidden units
encoding for the digit are excited and units that do not encode for this digit, are inhibited
by visible units. The stronger the output from the digit-encoding hidden units, the more
distinct the network-sampled digit becomes. We can strengthen these connections to
deepeen the energy minimum by introducing short-term potentiation (STP), as described
in Section 2.4. This makes the generated image more recognizable. On the other hand,
it also decreases the probability to transition to another mode since it deepens the
potential well. We add short-term depression (STD) to enforce a state transition a to
different digit when the network has settled in the local mode. As soon as the system
produces a highly recognizable (i.e., discriminative) digit, the STD mechanism initiates
a weakening of digit-encoding synaptic connections and facilitates transitions into other
modes (Figure 6.4).

Therefore, we apply short-term plasticity to balance two effects:

• Improving image recognition: The specialized, feature-encoding hidden-to-
visible synapses are strengthened to generate more distinctive digits. We apply
the STP mechanism to deepen the corresponding energy minimum.

• Improving transition rate to other digits: As soon as the system samples
for a sufficiently long time from the distinct digit, the STD mechanism weakens
the hidden-to-visible connections to lift the energy minimum. This increases the
probability to leave the mode.

Using these mechanisms, the LIF network continuously reshapes local regions of the
energy landscape to sample from the data set more efficiently than a CAST tempering
algorithm. This means that it changes the connectivity strength and thereby locally
changes the energy landscape. This allows shorter mixing times. In contrast to this, the
Gibbs algorithm exhibits significantly longer mixing times, although it samples according
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to the trained probability distribution p(v). Here, some digits are more probable to
occur than others due to their distinct properties like total pixel intensity or uniqueness
in curvature. In practical applications, we are often interested in modelling all different
classes with the same probability despite differences in training data count. In a data set
where a class is overrepresented by more available training images, the network will map
the data set accordingly, sampling frequently from the overrepresented image class modes.
To build a model that generates all image classes equally often, the skewed probabilities
towards specific digits then need to be compensated. In LIF networks this compensation
occurs via short-term plasticity during reshaping of the local energy landscape. These
generative properties of the RBM are difficult to asses quantitatively, since the number
of network states do not allow a straightforward calculation of measures like the DKL,
which we have used in the previous chapter. An extensive discussion on the assessment of
the generative properties can be found in Leng (2014). Aside of the generative properties,
the LIF-based network also achieves very good discriminative results. The classification
rate of LIF-based units amounts to 96.4%, while the Gibbs-sampled network achieves a
rate of 96.7% (Leng et al., 2016).

6.2.2 Sampling from an inhomogeneous MNIST data set

We have argued that the LIF network is capable to efficiently sample from data sets
which have a heterogeneous energy landscape. To further validate these LIF properties,
we train our networks on an unbalanced data subset which contains 1000 digits from the
original MNIST data set and evaluate the samples obtained by the LIF network. From
these digits, 820 images contain the “1” image and “0”, “2”, “3” and “8” are included in 45
different realizations each. We have specifically chosen this set of digits because the “1”
digit is particularly dissimilar to all the other digits, therefore difficult to transition to
the probability modes of the remaining digits. We trained an RBM with 28x28 visible
neurons, 400 hidden neurons and 5 label neurons, with one label per digit. We have
chosen less hidden units for this subset because we only have 5 different digit classes and
therefore require less feature-encoding units.

As in the previous section, we trained an ANM network using the CAST algorithm,
where temperature changes facilitate state transitions. On this trained RBM, we per-
formed sampling via Gibbs sampling, tempered Gibbs sampling and LIF sampling. We
can see the sampled results in Figure 6.6. Standard Gibbs sampling produces almost ex-
clusively “1” digits and is basically trapped in this mode (Fig. 6.6A). Tempered sampling
performs significantly better, but despite its temperature-modulated state transitions, it
samples from the “1” state for a majority of time (Fig. 6.6B). From a statistical point of
view, this represents the trained Boltzmann distribution accurately, since the “1” digit is
overrepresented in the training data set.
In the LIF-based case, the short-term plasticity mechanisms reshape the trained energy

landscape to sample equally often from all trained digits (Fig. 6.6C). This highlights the
ability of short-term plasticity to locally change the underlying connectivity structure.
For practical purposes this is an essential feature of functional networks, as it naturally
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Figure 6.6: The RBM has been trained on a data subset {1, 2, 3, 8, 0} of 1000 images
with the “1” image being represented in 820 images. All remaining images are
equally represented in 45 images. (A) The states are projected with t-SNE
to two dimensions and show Gibbs-sampled states, where only the overrepre-
sented digit “1” is generated. The grey lines indicate the traveled distance in
energy landscape. (B) The states were sampled using simulated annealing to
transition to remote states. The tempered system performs better than the
Gibbs-based system. (C) LIF-based sampling shows a homogeneous genera-
tion of MNIST digits, independent from their occurrence in the data subset.
(D) All digits are sampled equally often in the LIF simulations (red bars).
The AST sampler generates all digits, but shows a strong preference of the
“1” mode (black bars). The Gibbs sampler only samples from the dominant
“1” mode. The timelines below the distribution show state changes during
a duration of 8000 sampling steps for all three samplers. We rarely observe
state transitions of the Gibbs sampler, whereas the AST sampler exhibits in-
frequent mode changes and samples predominantly from the “1” mode. The
LIF network switches frequently between all modes, independent from the
training data sizes. Figure is taken from Leng et al. (2016).
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incorporates a way to sample from all possible states equally often.

To strengthen this property in LIF networks, one can think of more biologically
plausible mechanisms that naturally extend the properties of stochastic networks. So
far we have only studied short-term plasticity. Mechanisms such as adaptation of the
membrane (AdEx) or spike-timing-dependent plasticity (STDP) can potentially improve
the sampling performance of spike-based networks (Pfister et al., 2006; Neftci et al.,
2015; Nessler et al., 2013).

Thus far we have discussed the computational properties of LIF networks, but the
simulation substrate remained the same as for conventional sampling techniques. On a
fundamental level, network simulations can only be as fast as the simulation substrate
allows. Although the LIF network performs significantly better than the MCMC sampling
algorithms, it is still governed by a differential equation that needs to be solved in each
time step for each neuron and synapse. This constraint appears unnatural in the sense
that the power of neural networks in biology stems from computing in parallel. In the next
section we will introduce the idea of a physical model, which is a computing architecture
that incorporates model components as physical entities.

6.3 Neuromorphic hardware

Biological neural systems can be regarded as exceptional computational devices in terms
of energy efficiency and robustness. To use such systems for real-world computational
tasks, there are two key aspects. Firstly, an adequate representation of the neural
correlate needs to be chosen in a computational model. For instance, in this work we
have thus far used AdEx and LIF neurons, which employ the membrane potential and
conductance as dynamic variables in an ODE. The second key component is the sub-
strate that is used for computation. Up to now, we have built computational networks
based on differential equations. We performed numerical integration of these equations
using the simulation infrastructure presented in Section 2.5 on conventional computers.
For large network sizes and dense connectivities, this conventional computing substrate
shows severe limitations in terms of speed and energy consumption. These limitations
make it necessary to simplify the neural networks to a substantial degree. With many
computational constituents in neural nets still unknown, it is often not clear which
segments of the neural architecture should be simplified. Some computational traces
can often only be observed at large-scale simulations (Markram et al., 2015; van Albada
et al., 2015). For such studies, often neuron counts up to the order of 108 with extensive
connectivity patterns (108 synapses) need to be simulated (Djurfeldt et al., 2008; Helias
et al., 2012). To conduct such large-scale simulations, computing clusters are used to
cope with the vast simulation overhead (Markram, 2006; Potjans and Diesmann, 2012).
For spiking neurons with adaptation properties, simulating large topologies even on a
time scale of seconds takes many hours, depending on the connection density (Kunkel
et al., 2014). Although simulations on time scales of seconds can be sustainable, de-
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velopmental processes that happen over several months or years in biology require an
insurmountable amount of energy.

The reason for this energy consumption is the key difference between computations of
nerve cells and von-Neumann simulation substrates: the prime attribute of neural com-
puting is the parallel and asynchronous signal processing. Using von-Neumann simulation
substrates diminishes the advantage of spike-based computing compared to other compu-
tational algorithms. Spike-based encoding becomes efficient in substrates that do not rely
on iterating over all network components in a time step. In biology, instead, each nerve
cell carries out computations in parallel. A resolution of this energy efficiency problem
could lie in emulating the biological substrate. Consequently, the solution is a physical
model of biological tissue. Such a physical model requires a physical representation of the
components from neural networks. A device that embeds such representations and mim-
ics the biological template of neural networks is called neuromorphic hardware. The idea
to represent neural tissue on electronic devices was first proposed by C. Mead and has be-
come increasingly popular since (Mead , 1990). In principle, many types of neuromorphic
architectures can be thought of and customized to solve specific computational problems.
We will restrict ourselves to very-large-scale integration (VLSI) of electrical circuits that
are engineered to emulate electric properties of neurons and synapses (Schemmel et al.,
2010). In particular, we will focus on systems that incorporate LIF networks.
In the following we will describe the challenges of such implementations and present

results of small stochastic networks.

6.3.1 The Spikey chip-based system

We will start with the Spikey system (Figure 6.7), which is based on a neuromorphic chip
built in the FACETS project (FACETS , 2010). The mixed-signal chip is developed in a
180nm CMOS process and is a physical model of the conductance-based leaky integrate-
and-fire neuron,

Cm
du

dt
= −gl(u− El)−

∑
i

gi(u− Erev
i ) , (6.16)

where the quantities are denoted according to our introduction of the LIF model in
Chapter 2. In this description, u is the membrane potential and gl, El, Erev

i are the leak
conductance, leak potential and reversal potential, respectively. The synaptic conduc-
tance gi(t), however, is composed of multiple factors,

gi(t) = pi(t) · gmax
i · wi . (6.17)

Here the synaptic weights are denoted as wi and have a 4-bit resolution due to hard-
ware constraints. The conductance kernels pi(t) are chosen to be exponential functions.
The quantity gmax

i is a multiplicative hardware parameter which increases amplitude of

91



6 Applications of leaky integrate-and-fire Boltzmann machines

Figure 6.7: (Right) The core part of the Spikey system is the neuromorphic chip with a
size of 5x5mm2. The chip has been developed in a CMOS 180 nm fabrication
process. The picture shows a Spikey chip with the digital part in the lower
right and the neuromorphic part in the upper left. The digital part encom-
passes the infrastructure of configuration and spike data transmission to the
host PC. (Right, A) The digital spike signals are transmitted as rectangular
signals to one of the 256 synapse drivers (red), where they are converted to
voltage kernels with a falling edge tfall. (Right, B) In the synapse nodes the
voltage is amplified by the excitatory or inhibitory weights wi and converted
to exponentially decaying currents (green curves). (Right, C) These cur-
rents are transmitted to the neuron circuits, where they are converted into
voltages proportional to reversal potentials Eexc and Einh. Note that the
synaptic input is the same for all neurons that are connected to the same
synapse column. This restricts the total connection topology of the system.
If Vm exceeds threshold value Vth, the membrane is clamped to Vreset and a
digital spike is emitted in the shape of a rectangular pulse (blue). The Figure
is taken from Pfeil et al. (2013).
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the synaptic conductance gi(t). More detailed descriptions can be found in Schemmel
et al. (2006).

The Tsodyks-Markram short-term plasticity mechanism (TSO, Section 2.4) is also
implemented. In the hardware implementation of TSO, additional circuitry modulates
the conductance time course pi(t) to either induce depression (decrease of amplitude)
or potentiation (increase of amplitude) of the conductance trace gi(t). In the previous
section we have already highlighted its importance for stochastic inference with LIF
neurons.
The physical implementation of the LIF components in the Spikey chip is outlined

in Figure 6.7. The core functional blocks of the neuromorphic chip are the neuron
and synapse circuitry. Each neuron can be connected with any neuron on the chip via
so-called synapse arrays. In these arrays, synaptic signals are integrated in nodes into
synaptic currents and relayed to the postsynaptic neurons. The postsynaptic neurons
integrate arriving signals in the membrane potential according to Equation 6.16. The
conductance, as well as the membrane potentials of all neurons, are governed by dif-
ferential equations of the LIF model, devised as electronic circuits placed on the chip.
Consequently, the dynamic variables of the LIF neuron model are analog signals resulting
from physical processes that occur on the chip.

In this analog approach the temporal scales are reduced. An indicator of the time scale
of the neuron is the membrane time constant τm = Cm

gl
= Cm · R. In biological neurons

the membrane capacitance integrated over the whole membrane surface is in the order
of Cm ≈ 0.1 nF (Alberts et al., 1994). The nanoscale circuit integration on the Spikey
chip employs capacitances Cm and resistances R such that the time scales are smaller by
a factor of 10−4. This implies that dynamics on the hardware propagates 10000 times
faster than biological systems in real-time. We will therefore refer to the acceleration of
network dynamics by 104 as the speed-up factor. Since the correlates of neuron parame-
ters are physical components, they evolve in continuous time. This makes neuromorphic
computing substantially more energy-efficient than solving differential equations in sim-
ulation environments (Brüderle et al., 2011). In addition to the advantages of analog
aspects of the system spike event transmission is digital. A transmission via currents
would require would introduce additional resistive elements along the signal lines, caus-
ing energy loss during transmission. Instead, the digital FPGA-based communication
in this mixed-signal architecture transmits time stamps of spike events and does not re-
quire large quantities of current flows in the system. This further increases the energy
efficiency of the system. This type of communication is similar to biological systems
where communication occurs primarily through spike events.

Variability of neuromorphic components

A neuromorphic system based on analog dynamics not only brings the advantage of a
significant speed-up, but also entails challenges for users. As typical to any hardware
production process, resulting mismatches of the components are a natural side effect
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Figure 6.8: The figure shows an example calibration procedure of an excitatory PSP
generated by neuron interaction on the chip. The objective here is to find
sets of biological parameters for hardware settings. In this example case, we
know the remaining biological parameters and look for the time constants τsyn
and τm for the given hardware settings. In theory, we know the dependencies
of the PSP of all parameters, therefore we can use Spikey-produced PSPs
to obtain fitted values of the time constants. Figure is taken from Petkov
(2012a).

of the fabrication process. In digital computing devices, such mismatches are removed
and do not affect the computation outcome. But in computation using analog signals,
the mismatch characteristics of each neuron and synapse unit are reflected in network
dynamics. This spatial variation between different parts of hardware circuitry is often
referred to as fixed-pattern noise. Neuron and synapse circuits having the same specifi-
cation on a device can exhibit significant deviations from ideal behavior. However, these
systematic deviations can be characterized and dealt with to a certain degree, making
emulation possible. Technical details to the order of magnitude of these variations can
be found in Pfeil (2011); Petkov (2012b).
A second type of variation that needs to be considered is the so-called trial-to-trial

variation. Here, the same hardware component exhibits different dynamics on each run
due to statistical fluctuations, e.g. temperature variations. For instance, the leak mem-
brane potential of a neuron can vary in every run. In contrast to simulations, emulations
relying on analog signals are not deterministic. Since this trial-to-trial variation is caused
by statistical properties, it is possible to decrease these variations by performing multiple
emulation runs. This methodology is encouraged for analog computing devices because
of the high speed-up, making it possible to measure and reset hardware parameters on
a time scale of seconds before performing the emulation run.
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Figure 6.9: The schematic shows the communication infrastructure of the Spikey system.
The user defines network topologies on the host computer via the PyNN-
backend (see Section 2.5). The software interface transmits the configura-
tion data. The FPGA module stores the network configuration onto the
DAC/ADC modules to set up the emulation. During the emulation run, the
results are stored to the 512MB memory (RAM) and retrieved at the end of
the emulation. Figure is taken from Pfeil et al. (2013).

To make such measurements possible, it is necessary to provide a translation between
parameters in the biological network specification and in terms of hardware settings.
Ideally, the hardware settings are automatically read out and deployed according to the
network specification. Finding such a mapping between hardware and biological networks
will is referred to as calibration. The calibration procedure involves sweeping over an
extensive range of parameters to find agreeable settings for network specifications. As
a result, fixed-pattern noise can be compensated for in part by finding configurations
for each neuron and synapse to reproduce the desired values. This is exemplified in
Figure 6.8 for the calibration of a PSP shape. Calibration settings are embedded in
the software framework of the Spikey chip and can be loaded automatically for each
individual emulation run (Brüderle et al., 2011). We will outline the infrastructure to
run experiments on the Spikey chip in the next section.
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Emulation interface of the Spikey chip

To run network emulations on the hardware, a communication infrastructure is in place
to transmit the target network configuration (Figure 6.9). This infrastructure consists
of field-programmable gate arrays (FPGA) that relay configuration data in digitized
form onto the random access memory (RAM) on the chip. Before the emulation, the
data is read out and set to analog signal values via so-called digital-to-analog converters
(DAC). Here the values of the DACs are set according to the calibration to ensure
the best possible settings. As soon as the network is set up, the network emulation
is initiated. During the runtime the spike times of all neurons are routed as digitized
events via FPGA and stored on the RAM of the chip. It is possible to record membrane
potential and conductance traces of eight different neurons on a chip. After the network
emulation, the stored data can be transmitted to a local host computer.

The described usage of the Spikey chip relies on a comprehensive software framework
to access, control and store the network data in an easily manageable database. The
application programming interface (API) of Spikey was adapted to the simulation en-
vironment of PyNN, which we also use to set up and run neural networks (see Section
2.5). This front-end allows to run emulations on the Spikey chip with the same interface
as the PyNN-supported simulators (Davison et al., 2010).

6.4 Boltzmann machines on the Spikey chip

The potential benefit of network experiments with a 104 speed-up compared to real-time
is a substantial advantage compared to conventional simulations. Due to its size and low
energy consumption, the chip has potential to serve as a portable device solving numerous
tasks (Pfeil et al., 2013). As we have noted before, to implement network models on the
neuromorphic chip, the model has to be adapted to analog computing devices.
We will present the implementation of LIF-based Boltzmann machines on the Spikey

chip and evaluate the potential of solving neuromorphic inference tasks. The following re-
sults were preceded by collaborations of several years in the VISIONS group. It took sev-
eral years of hardware testing, software development, calibration and hardware-tailored
development of network models to achieve stochastic computing on the platform. The
subsequent implementation of Boltzmann machines has been done in collaboration with
David Stöckel, Thomas Pfeil, Mihai A. Petrovici, Johannes Bill and Alexander Kononov.
In particular, material has been taken from the Bachelor’s thesis Stöckel (2015), which
was co-supervised by the author of this thesis.
The starting point of Spikey-based Boltzmann machines is the implementation of

stochastically firing LIF neurons and a fast membrane potential, as argued in Sec-
tion 5.4. Therefore, as a prerequisite, we will aim to produce the correct firing statistics
in the high-conductance state of LIF neurons on Spikey, as described in Chapter 4. Es-
sentially, we want to use LIF neurons with high-frequency Poisson input and reproduce
a sigmoidal activation function.
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Figure 6.10: The single-neuron activation function of a LIF neuron on Spikey was
recorded in a high-conductance state driven by Poisson noise stimuli. The
red crosses show the firing probability of the LIF neuron. The black curve is
a sigmoidal fit σ(u) = 1

1+exp(−u) . Although the onset and saturation is dif-
ferent, we see that the general shape of both results corresponds well. This
indicates that the single-neuron firing statistics on the Spikey chip is com-
patible to the sampling framework. Figure is taken from Bill and Petrovici
(2011).

97



6 Applications of leaky integrate-and-fire Boltzmann machines

Figure 6.11: The membrane potential trace is recorded from a neuron S1 in the high-
conductance state and averaged over multiple runs. The neuron is con-
nected to neuron S2 via symmetric excitatory weights. As soon as S1 spikes
at ∝ 371 ms, it transmits a strong excitatory pulse to S2. Neuron S2 re-
sponds with an excitatory spike, arriving at the S1 membrane potential at
∝ 374 ms (red line). The time difference results from the signal travel dis-
tances S1 −→ S2 and back, S2 −→ S1. This implies a synaptic delay of
≈ 1.5 ms. The same phenomenon can be observed during the second spike
at ∝ 625 ms. This delay is not accounted for in the software model, which as-
sumes instantaneous synaptic transmission (see Figure 5.2). Figure is taken
from Bill and Petrovici (2011).

In software simulations, the stochastic input has been implemented by applying
presynaptic spike trains with Poisson-distributed spike times. To supply networks on
hardware, we generated the Poisson spike trains on the host PC and applied them as
presynaptic input via external connections to the Spikey LIF neurons. The Poisson
input rate was chosen νexc = νinh = 400 Hz, high enough to elevate the LIF neuron to a
high-conductance state, ensuring a sufficiently fast effective time constant τeff = Cm

gl+gsyn
.

The resulting activation function is shown in Figure 6.10. The Spikey measurements (red
crosses) can be fitted by a logistic function σ(u) ≈ 1

1+exp(−u) (black curve), which is a
prerequisite to apply the LIF sampling framework described in Chapter 5. We identify a
good correspondence between the experimental data and a logistic fit and conclude that
single LIF neurons on the chip are capable to reproduce the necessary firing statistics to
perform sampling. Technical details to these single-neuron simulations can be found in
Bill and Petrovici (2011).
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Figure 6.12: The schematic shows a two-neuron Boltzmann machine with a very strong
excitatory weight. The upper case shows perfectly correlated states z1 and
z2 due to the strong excitation. The lower case shows the states with an
extreme synaptic delay, τdel = 1

2τref, to illustrate the impact on the sampled
distribution. We see that the delay introduces erroneous states (red bars),
severely impairing the joint firing probability. Figure is taken from Petrovici
(2016).

As a next step, we evaluate the dynamics of connected neurons with symmetric weights
to validate whether neuron interaction on Spikey is compatible with Boltzmann interac-
tion of sampling networks. We connect neurons S1 and S2 with a symmetric excitatory
weight, building a two-neuron Boltzmann machine to study the simplest possible case.
The resulting membrane potential trace of one of the two neurons can be seen in Fig-
ure 6.11. The membrane potential of S1 has been averaged over multiple runs to decrease
the effect of temporal noise. It shows two output spikes with ensuing refractory potentials
at ≈ 70 mV. These two spikes trigger output spikes at the site of the other LIF neuron,
S2. The neuron S2 immediately spikes and excites S1, since the Boltzmann weight is
symmetric.
During the refractory phase of τref ≈ 14 ms we see another spike signal after ≈ 3 ms.

This signal indicates the arrival of the spike transmitted from S2, implying that there is a
delay between spike signals of S1 and S2 of about 1.5 ms. These delays are a consequence
of the physical model itself and are caused by signal integration times in the synapse
driver nodes. This is a conceptual difference to simulations, where synaptic transmission
can be lowered to the duration of a time step. Since time steps can be set arbitrarily
short in simulations, it is possible to set synaptic transmission to a values negligible
compared to neural dynamics. In a physical model, transmission delays are inevitable,
since information is transmitted in finite time. We can illustrate the impact of hardware
delays on the sampling performance by means of a simple thought experiment. In the
above described emulation run, we observed a delay τdel ≈ 1.5 ms in biological time.
Effectively, this means that during each refractory state (z = 1), the network suffers a
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relative systematic error. An extreme case of this effect is illustrated in Figure 6.12,
where we see that the resulting systematic error distorts the probability distribution of
the network.

To mitigate this systematic error, the ratio τdel
τref

needs to be as small as possible.
Since τdel ≈ 1.5 ms is a physical constraint bound to the hardware architecture, only the
refractory period can be changed. On Spikey, refractory periods are set by a control
current icb. The lower this current, the larger τref becomes. Naturally, the lower a
current becomes, the larger shot noise effects will be (Schottky , 1918). Consequently, a
decrease of icb currents results in imprecise refractory times (Bill and Petrovici , 2011)
in the range of ∝ 10 ms (Figure 6.13). Since refractory times τref in higher ranges (i.e.,
lower icb currents) become unreliable, LIF sampling on Spikey becomes unfeasible.

Conclusively, these experiments require a different approach to make LIF sampling
possible on the Spikey chip. Since the problem was identified in the short refractory
times on the chip, we will modify the networks to prolong the refractoriness of the
neurons.

6.4.1 Sampling on hardware using Synfire chains

Since the single neuron LIF dynamics on Spikey yield the correct firing statistics (see
Figure 6.10), the synaptic noise input does not need to be changed. However, during
interaction between Boltzmann units, hardware delays introduce systematic errors into
the sampled distribution. To eliminate this systematic deviation, we aim to increase
the duration of the active state, z = 1. Since the duration of the active state is the
refractory time, prolonging the z = 1 state duration decreases the ratio τdel

τref
.

Essentially, the state zk = 1 of a sampling neuron Sk is defined by two characteristics:

• Neuron Sk is not allowed to emit an action potential while being in state zk = 1.
It is fixed to the reset potential ρ.

• Neuron Sk emits a spike, which triggers a switch into state zk = 1. At the same
time, this spike causes synaptic interaction for the duration of the refractory period
with neurons with synaptic weights W .

Both properties are consequences of theoretical derivations explained in Section 5.1.
Our goal is to set up a group of neurons to inhibit Si for a time period Tref, which is
configured to be significantly longer than delay τdel. This defines the new state zi = 1
for the sampling neuron Si,

zi(t) =

{
1, neuron has spiked during (t− Tref, t)
0, else .

(6.18)
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6.4 Boltzmann machines on the Spikey chip

Figure 6.13: The histograms show refractory times of 36 randomly chosen neurons on
the Spikey chip. The histograms show trial-to-trial variation of τref from
multiple runs. The τref settings on Spikey are controlled by the so-called
icb currents. We see a tendency for an incrase of trial-to-trial variability for
larger τref values in the histograms, as icb-related shot-noise becomes more
significant. The delays around 10 ms show high variability. Figure is taken
from Bill and Petrovici (2011).
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6 Applications of leaky integrate-and-fire Boltzmann machines

This definition is analogous to the one provided in Section 4.4.1. The only difference
is that Tref is not the refractory period resulting from the LIF spiking mechanism, but
an inactivity duration enforced through network architecture.
The sampling neuron Si is in the high-conductnce state and spikes stochastically anal-

ogously to the simulation setup. We introduce an excitatory neuron population pool E1
i ,

which is activated by Si. Its purpose is to respond by activating inhibitory populations
I1
i . These activated inhibitory neurons, in turn, silence the sampling neuron Si with
inhibition. The neurons in the pools E1

i fire synchronously to activate I1
i and trigger

a synchronous inhibitory burst to decrease the membrane potential of Si. This ensures
that Si does not fire for a certain period of time. This inactivity time is our effective
refractory period Tref. To set the duration of Tref, we connect E1

i excitatorily to another
group, E2

i . The neurons in this pool also synchronously fire a burst, activating I2
i to

keep Si inhibited, preventing it from spiking. We can prolong this feedforward chain of
pools, Eci and Ici , to set Tref to a desired length. For our experiments, the desired length
of Tref is around 15 ms. For this value, the ratio τdel

Tref
≈ 0.1 is small enough to achieve

good sampling results.
This feedforward mechanism is known and defines a so-called Synfire chain (Abeles,

1991; Diesmann et al., 1999; Abeles et al., 2004) because it incorporates a chain of neuron
pools with length n, where all neurons in pool Eci or I

c
i fire synchronuously to propagate

a signal. This mechanism has been observed in biological studies (Reyes, 2003) and we
will construct it on the chip with the purpose to obtain stable effective refractory times
Tref.
In our network, the chain propagates the signal that the sampling neuron Si has

fired and is to set zi = 1. The length of the chain, n, determines the length of Tref.
At the end of the refractory period, Si needs to be set to zi(t = tspk + Tref) = 0 with
a membrane potential that is elevated to its mean value. Therefore, a last excitatory
neuron group En+1

i at the end of the chain is activated by Eni to excite Si at the
end of Tref. This mechanism is described in Figure 6.14. Note that the binary ran-
dom variables zi are controlled by the activity of Si and not by activity of pools Eci and I

c
i .

So far we have described how to prolong the refractory time of the neurons, but the
setup also requires a new way to mediate synaptic transmission during the activity states
zi = 1. Since the duration of zi = 1 is now controlled by pools Eci and I

c
i , we will use them

for synaptic interaction during Tref. Instead of direct interactions between Si and Sj like
in the software model, the Boltzmann weightsWij are mediated by pool neurons Eci → Sj
(Wij excitatory) or Ici → Sj (Wij inhibitory) (see Fig. 6.14). This ensures that synaptic
interaction occurs only during Tref, since Eci and I

c
i are only active during this time frame.

We have implemented this network architecture on the Spikey chip and evaluated
the sampling performance. We set up a three-neuron Boltzmann machine with three
sampling neurons S1, S2, S3, defining their random variables z1, z2 and z3. The re-
fractory mechanism was implemented with pool populations consisting of 183 neurons
in total, with 61 auxiliary neurons per random variable. The high number of auxiliary
neurons ensured a high degree of robustness and accuracy of synchronous firing during
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6.4 Boltzmann machines on the Spikey chip

Figure 6.14: (A) The Synfire chain architecture is implemented to prolong the effective
refractory duration Tref of LIF neurons. The duration is controlled by the
chain length n of auxiliary pools Eci and Ici . The chain is activated as soon
as sampling neuron Si spikes. It activates both E1

i and I1
i . The inhibitory

pool I1
i silences Si with a spike burst. The excitatory pool E1

i triggers I2
i

to deactivate I1
i and inhibit Si again. Additionally, E1

i also triggers E2
i to

activate the next pair E3
i and I

3
i to prevent Si from spiking. The feedforward

propagation continues until the last excitatory pool En+1
i is activated. It

eventually terminates the inactivity of Si by exciting the sampling neuron
to leave its inhibited state. (B) The Boltzmann connections between two
sampling neurons S1 and S2 are established via unilateral pool connections
from Ici (inhibitory weights) or Eci (excitatory weights). The pool neurons
mediate interaction in synchronous bursts during Tref. Figure is taken from
Stöckel (2015).
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6 Applications of leaky integrate-and-fire Boltzmann machines

Figure 6.15: Sampling with LIF neurons on the Spikey chip. (A) The membrane poten-
tial of a sampling neuron which spikes on two occasions and is inhibited by
pool neurons, keeping the membrane potential below −81 mV. Note that
the time scale is in real-time, which translates into biological network time
with the speedup factor of 104. (B) The spike times of this sampling neu-
ron can be seen in the lowest row, marked as green dots. The state z = 1
is triggered at the spike time of the sampling neuron (green) and contin-
ues as long as excitatory pool neurons (red) activate the inhibitory pool
neurons (blue) to inhibit the sampling neuron. The states of all three ran-
dom variables are marked grey and exhibit a very robust refractory time of
Tref ≈ 1.5µs·104. (C) The network-sampled probability distribution (red) is
compared with the target Boltzmann distribution (red). The sampled prob-
ability distribution approximates the targeted one very accurately. (D) The
DKL (pHW(z) || pT (z)) distance between both distributions is shown for an
increasing sampling time in real-time on a log-log scale. In the context of the
anytime computing paradigm, we can read out the sampled states anytime
and accuracy increases with the runtime.
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6.4 Boltzmann machines on the Spikey chip

Figure 6.16: The correlation coefficient of two membrane potential traces U1 and U2.
(A) The sampling neurons S1 and S2 are not connected, therefore there
is no correlation pattern. (B) The increase of cross-correlation is due to
an unilateral connection, W21, from S2 to S1. (C) A connection from S1

to S2 by W12 also results in a visible cross-correlation pattern. (D) The
connectivity between S1 and S2 is calibrated to a fixed lenght and amplitude.
The symmetry in the correlogram indicates that the weights W12 and W21

are identical and the interaction is symmetric. Figure is taken from Stöckel
(2015).

the refractory times. The described experiments were conducted on the Spikey v4 chip,
where 192 neurons were usable. This pool size limits the sampling networks on Spikey
to three random variables.

Calibration of the Spikey neurons

To set up the described network architecture, the neuron and synapse circuits on Spikey
need to be configured. The main challenge consists in calibrating all 4-bit weights of the
183 Ec and Ic neurons. In contrast to many other neural networks, Boltzmann machines
require a mathematically precise calibration to map the BM parameters (W , b). A
particularly sensitive factor is the symmetry of the Boltzmann weight matrix, which
needs to be incorporated into the connections of auxiliary pools. Due to the large
number of auxiliary neurons and synapses, there are too many degrees of freedom to

105



6 Applications of leaky integrate-and-fire Boltzmann machines

calibrate each one of the pool neuron weights.

Due to this complexity, we did not configure hardware settings to achieve a mapping
of BM parameters, but set the hardware parameters based on correlated membrane
potentials during firing activity. We enabled synaptic interaction from pool neurons Ec

(excitatory) and Ic (inhibitory) to sampling neurons Si and Sj ,

Eci → Sj (excitatory from i to j) , (6.19)
Ecj → Si (excitatory from j to i) , (6.20)

Ici → Sj (inhibitory from i to j) , (6.21)
Icj → Si (inhibitory from j to i) . (6.22)

In Figure 6.16 we see the measured cross-correlations of two membrane potentials of Si
and Sj to calibrate an excitatory connection Wij . These cross-correlation measurements
have been done for all connections between all three random variables. The membrane
cross-correlations have a relationship to the joint firing probability p(zi = 1|zj = 1)
of sampling neurons Si and Sj . We adjusted the hardware synapse settings until the
cross-correlations yielded correct firing statistics. The resulting PSPs induced by aux-
iliary pools in Figure 6.15 are similar to the rectangular shapes of the ANM, which
served as the starting point of the LIF sampling framework (see Section 5.2.2). Detailed
descriptions on the iterative weight calibration can be found in Stöckel (2015).

After the calibration is performed, we have run the three-RV network on the hardware
and have evaluated its sampling performance. We used the DKL to measure the distance
between the target Boltzmann distribution and the one sampled by the network on
Spikey. In Figure 6.15C we see a predefined Boltzmann distribution (blue bars) which
the network is set to sample from. The quality of sampling increases, since the DKL
decreases on a logarithmic scale in Figure 6.15D. It shows sampling on neuromorphic
hardware in real-time, measured in µs. Indeed, the real-time of 104 µs(= 10 ms) is
required to emulate network dynamics of 100 s biological time. The logarithmically
decreasing DKL highlights the anytime computing aspect, which is a conceptual prop-
erty of sampling as an inference method. The approximation of the target distribution
becomes better with increasing sample size over time and can be evaluated at any point
in time, in contrast to to other existing inference algorithms (e.g., belief propagation
(Pearl , 1982)).

The successful demonstration of stochastic inference can be extended to host a larger
number of random variables on the Spikey v5 chip, which has 384 available neurons.
However, even with a more efficient allocation of neuron pool resources, the refractory
mechanism impedes an implementation of large-scale networks that have been presented
in Section 6.2.1. With only 384 available neurons, the experiments on Spikey would
have a very limited practical applicability. Still, the demonstrated networks can be used
as conceptual studies to identify important discrepancies between hardware design and
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6.4 Boltzmann machines on the Spikey chip

Figure 6.17: A photograph of the BrainScaleS wafer-scale system. It is a VLSI neuromor-
phic system which includes 384 HICANN chips, several FPGA communica-
tion boards and a power supply infrastructure. The hardware is operated
with a 104 speed-up of biological processes due to the high integration den-
sity and implements AdEx networks. Image courtesy by Dan Husmann.

parameter requirements for stochastic networks. For instance, the problem of hardware
delays was revealed in the course of many experiments and has influenced future hardware
development to a great extent.
Consequently, the successor of the Spikey chip has been specifically designed to host
large-scale networks and has been decisively influenced by countless experiments and
research effort on the Spikey project.

6.4.2 Outlook: wafer-scale stochastic computing

The BrainScaleS neuromorphic system (BSS system) is a mixed-signal VLSI system
developed during the BrainScaleS project (BrainScaleS , 2012). The system itself has
undergone several revisions and its development is ongoing during the Human Brain
Project (HBP SP9 partners, 2014). Although it is an analog computing system like
the Spikey chip, it is devised for large-scale of networks. The system is operated as a
full silicon wafer, which has a size of ≈ 21 cm, governs 196608 neuron circuits and 44
million synapses (Schemmel et al., 2010). After the fabrication process of the wafer, the
single neuromorphic chips were not cut out but are kept on the original wafer. In an
additional postprocessing step, wafer-wide connections are established. This approach
simplifies the communication and energy supply infrastructure of the individual wafer
components, which in turn lowers the energy consumption immensely.

The neuromorphic circuitry on the wafer is structured in blocks of neuromorphic
chips, the so-called High Input Count Analog Neural Networks (HICANNs) (6.17). Each
HICANN chip contains 512 so-called dentritic membranes (denmems), whose name is
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6 Applications of leaky integrate-and-fire Boltzmann machines

derived from biological dendrites. Multiple dendrites are interconnected to construct a
“neuron” circuit. Here, like on the Spikey chip, the inherent time constants of the electric
components, τm = R ·Cm are also in the order of microseconds and yield a 104 speed-up
compared to biological dynamics.

Despite the architectual differences to the Spikey chip-based system, the BSS system
also performs analog computing. Therefore, it is also sensitive to fixed-pattern noise and
temporal noise. Correspondingly, calibration also needs to be conducted to be able to
work with the system. Due to increased number of parameters and increased complexity
of circuits, the calibration procedure on the wafer is still ongoing. A detailed and more
technical treatment of these topics can be found in Schwartz (2012); Schmidt (2014);
Koke (2017). In our work, we will focus on the potential of the BSS system in terms of
stochastic inference. In particular, the implementation of large-scale networks presented
in Section 6.2, in principle, appears to be viable on the BSS system, since the refractory
mechanism allows longer stable τref and has sufficient neuron and synapse resources
available.
To implement deep learning architecture, we have already explored a simple learning

method based on so-called contrastive divergence (CD). This learning method can be
seen as a starting point for more elaborate training techniques. So far we have trained
our Boltzmann machines on abstract neuron models and then transferred the Boltzmann
parameters to LIF networks. To train LIF networks directly, stopping the network to
update to the trained network parameters would be necessary. This describes so-called
offline learning. On the BSS hardware, ongoing development is focused on embedding
the hardware ciruits into such a training scheme. In the currently developed in-the-loop
calibration framework in the VISIONS group, a network target functionality is defined
and the network performance is measured during each run. According to a predefined
functionality metric, the hardware parameters are adjusted iteratively to approximate
the target functionality. Future platforms in the HBP are designed to train LIF networks
without stopping the emulation after each learning step. With the recently developed
plasticity processor “Nux” in place, the networks could be able to update parameters
without interrupting the emulation run (Friedmann, 2013; Hartel , 2016). Such online
learning mechanisms can further increase the efficiency of running neuromorphic net-
works. In particular, LIF networks could adapt the biological spike-timing dependend
plasticity (STDP) mechanism to apply it on deep learning topologies in a noisy envi-
ronment (Bi and Poo, 1998). Theoretical studies of such an approach exist and show
promising results (Neftci et al., 2015; Weilbach, 2015). Additional approaches may
include the modulation of noise input to facilitate state transitions. This describes a
tempering mechanism similar to AST, allowing LIF networks to learn data sets more
efficiently.

In our work we will focus on a different and yet fundamental aspect of physical
models, namely the embedding of stochasticity in the network environment. In software,
this does not pose a problem, since it is always possible to seed a random number
generator to provide pseudo-stochasticity and reproducibility of results. In the networks
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we described, the source of randomness for LIF networks were temporal Poisson pro-
cesses, which supplied each of the neurons to induce a stochastic high-conductance state.
Large-scale models like the RBM described in Section 6.2 potentially require thousands
of individual Poisson sources with rates of approximately 400 Hz to maintain the vital
stochasticity in the network. For neuromorphic applications, this stochastic input has
to either be input into the device or generated on the chips itself. Both options pose
challenges for computational neuroscience.

In the next chapter we will discuss these challenges and propose solutions. In devel-
oping these solutions, we will address the question whether neural networks might even
perform stochastic computations entirely without external noise.
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7 Stochastic neural networks without
stochastic input

In the course of this work, we have investigated two types of networks. First, we have
studied the computational properties of cortical layer networks in Chapter 3 where bio-
logical neural architectures were transferred into AdEx topologies to perform stochastic
inference. Due to the difficulty in interpreting the network dynamics for high pattern
densities, we have started to develop a stochastic inference framework by characterizing
the response of LIF neurons, which are easier to describe than AdEx-based neurons.
The description of the LIF neural response to synaptic stimuli was used to build LIF-
based Boltzmann machines (BMs) in Chapter 5. An important component common in
both inference networks, the AdEx-based cortical networks and the LIF-based BMs, was
presynaptic noise that stimulated each network neuron. In both types of networks, each
neuron received completely independent Poisson input generated by random number gen-
erators in software. For these stochastic networks we have emphasized the benefits of
using neuromorphic computing. Like any physical system, neuromorphic systems have
bandwidth limitations, setting an upper bound on potential signal transmission. Con-
sidering the amount of stochastic input that a large-scale stochastic network requires for
operation, it becomes difficult to support such networks with uncorrelated noise exclu-
sively from external sources. First we will discuss this problem from a practical point
of view for the specific case of the BrainScaleS wafer system and present an approach
to implement LIF-based BMs despite this limitation. Although this appears to be an
exclusively hardware-related problem setting, it will give us deeper insight into the role
of noise sources in spiking neural networks. This will allow conclusions that relate to
general principles of computational networks in general.

7.1 Stochasticity on neuromorphic hardware

We concluded the previous chapter with an introduction to the BrainScaleS wafer system
and will proceed now by looking at the two basic possibilities to supply the networks with
stochasticity.

• Noise supply from external host: The stochastic input is generated in software
on a host computer and transmitted to the neuromorphic device and then relayed
via digital communication into the synaptic circuits. This is identical to our ap-
proach on the Spikey (Section 6.3.1), where Poisson noise was generated on a host
PC to supply the emulated BMs on the chip.
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Figure 7.1: The photograph shows the HICANN chip, which is sized 5x10mm2. The
different building blocks are marked. The largest building block is made up
of synaptic arrays, allowing flexible connectivity between hardware neurons.
The 512 neuron circuits are placed at the center edges of the synapse arrays.
The Layer 1 network implements the digital spike transmission and relays the
signals between neurons and synaptic arrays. The Repeaters at the edges of
the HICANN are connection nodes to other HICANN chips. Figure is taken
from Jeltsch (2014).
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Figure 7.2: The schematic shows the merger tree of the HICANN chip (Figure 7.1). The
merger tree is part of the Layer 1 routing architecture and merges incoming
digital signals from different sources. The event flow starts at the top and
follows to the bottom. Events from the HICANN-internal background gen-
erator (2) and other HICANN neurons (3) are merged or forwarded in (1).
External events entering the routing network are merged in (4). Figure is
taken from Jeltsch (2014).
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• Noise generation on the neuromorphic system: The noise is generated on
the neuromorphic chips (HICANNs) and distributed to the network circuits.

The first option is the preferable one, since it allows to control all noise parameters
in software. After generating the spike trains in software, the generated spike trains
are transmitted via ethernet to the wafer. On the wafer, the spike trains are relayed
via FPGA to the neuron circuits on the HICANN chips through the so-called merger
tree. In Figure 7.2, we see a merger tree routing schematic. The externally generated
spike events can be fed through the FPGA channels in the DNC mergers (4). They are
then relayed to the HICANN denmems (dendritic membranes). The data throughput
of these channels is limited to 24 MHz per HICANN in real-time. For bandwidths
≥ 20 MHz, event data loss occurs, i.e., a portion of externally transmitted spikes is
lost during transmission in a non-deterministic way. On a biological time scale, the
maximum bandwidth per HICANN amounts to νmax = 25 · 10−4 MHz = 2500 Hz (Koke
and Vogginger). If we modestly assume that we can use approximately 100 well-suited
neurons per HICANN, we would have a maximum noise input rate of 2500 Hz

100 = 25 Hz
available for each neuron. If we separate this total bandwidth into an inhibitory and
excitatory part, we would achieve a bandwidth of 12.5 Hz per source. Even with such a
low number of usable neurons (100), the input bandwidth is not sufficient to sustain a
high-conductance state in each neuron and establish the necessary stochastic dynamics
in the system. Therefore, running networks with high-conductance neurons driven by
externally pre-generated noise is difficult to accomplish.

The second proposed option is to generate noise input on the wafer system itself. In
Figure 7.2, a background generator (3) is marked, whose purpose is to generate pseudo-
random numbers during each hardware clock cycle. The generator is a Linear feedback
shift register (LFSR) and consists of a logic gate that calculates a linear function of an
input bit. The output of this linear function is set as the new binary state and depends
on the current state. A spike event is generated if a state gives a larger number than
a number defined by the binary state. This binary state serves as a spiking threshold
of the background source. Consequently, the rate of a stochastic process is then set by
this predefined threshold and can be adjusted to achieve the desired stochastic rate. The
number of states that can be generated is bounded by the length of the register. On the
HICANNs, the length of each register is 16 bit, yielding 216 − 1 possible states 1. After
this deterministic state sequence has been generated, the deterministic cycle repeats the
same (216 − 1)-state sequence. We can briefly summarize the properties of the LFSR
generators on the HICANN.

• Total spike rate of LFSR-generated noise: There are 8 LFSRs on one HI-
CANN and each LFSR can generate spike rates of up to 5000 Hz in biological
network time. For 100 functional neurons per HICANN, this results in a spike rate
of 40000 Hz

100 = 400 Hz (Koke, 2016). These frequencies are high enough to induce a
stochastic high-conductance state.

1Here we exclude the zero-state because it generates identical states.
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• Mathematical properties of the LFSR output: Up to this point we have
only considered Poisson processes as viable stochastic inputs. Although LFSR-
generated temporal sequences are autocorrelated, existing work shows that they do
not impair sampling statistics (Großkinski , 2016).

• Length of the LFSR sequence: We can calculate how long networks on the
hardware are supplied with noise by LFSRs in terms of network runtime. For a
(216−1)-state sequence and a HICANN clock of νop = 100 MHz, a number of 65535
states is generated during a biological network runtime of 65535 · νop · 104 = 6.56 s.
This means that the LFSR-generated pseudo-random number sequence covers a
relatively short network runtime, which is not long enough to ensure convergence
to stationary distributions. After a runtime of 6.56 s, the noise pattern is repeated.

• Relaying the generated noise to all neurons: Since there are only 8 LFSRs
per HICANN, the noise has to be split and distributed to all network neurons on
each HICANN chip. Since there are limited routing lines, a significant portion of
network neurons is bound to share noise inputs with other network neurons. This
becomes significant for large-scale networks that we have presented in the previous
chapter.

All in all, the LFSR noise generators are suited to support a fraction of the network
with noise input. The limited length of the state sequence causes temporal correlations,
since the noise input pattern is repeated after a relatively short period of network run-
time. More importantly, since all sampling neurons require a certain amount of noise
input, a fraction of neurons is bound to share these noise sources among each other.
This inevitably introduces spatial correlations between these neurons, which is not ac-
counted for in our LIF sampling framework, where we have used independent Poisson
noise sources. For such networks, these correlations affect the stochastic dynamics. This
problem will be the focal point of this chapter. In particular, we will restrict our analysis
to pairwise correlations of neuron pairs (Figure 7.3), since these correlations constitute
a substantial part of higher-order correlations in neuron dynamics and can be analyzed
using straightforward methods.
The problem of having spatial correlations on a wafer-scale system due to shared noise

sources has been worked on for several years, started by Johannes Bill and Mihai A.
Petrovici (Petrovici and Bill , 2009). The original idea to deal with this problem was to
minimize correlated firing of network neurons by minimizing the number of shared inputs
between neuron pairs. that share noise input ((Petrovici and Bill , 2009)). We will refer
to this type of correlations as shared input correlations and will introduce approaches in
which the networks itself counteract spatial correlations.

7.2 Compensation of correlations with neural networks

A possible solution to deal with spatial correlations on hardware is to implement addi-
tional networks whose purpose it is to counteract these correlations (Jordan et al., 2014,
2016).
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Figure 7.3: A practical problem that is bound to neuromorphic implementations is the
bandwidth limitation of external signals. This problem is crucial for stochas-
tic computing networks, as it affects stochastic sources in particular. Com-
monly, stochastic sources are used to drive network activity in a biological
regime (see Section 4.3). The illustration shows two neurons, N1 and N2,
that are connected to a private source each, P1 and P2, and also share one
noise source, S. As a result from the shared noise source, their spike output
is correlated. Since the spike output encodes our probabilistic states, the
correlations impair the network performance.
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For large-scale networks on the hardware, such decorrelation networks demand sub-
stantial neuron and synapse resources on the wafer. This increases the complexity of
mapping the complete network topology on the wafer and thereby also limits the size of
possible inference networks. On a more fundamental level, running computational and
decorrelating networks in parallel appears to be an arbitrary separation between neu-
ral computation and decorrelation. In contrast to this, biological networks can perform
decorrelation, as well as computational tasks at the same time (Gütig et al., 2003; Helias
et al., 2008). We aim to resolve this discrepancy by embedding a decorrelational function
into our stochastic sampling networks.

7.3 Equivalence of weights and noise

In principle, not only hardware substrates, but also biological systems show bandwidth
and resource constraints, since the number of synapses and neurons is limited in the neu-
ral substrate. One of the main questions is whether the measured correlation traces in
biological networks are mere artefacts resulting from the consequences of shared inputs
or whether shared inputs could be used as means of computation in neural circuitry. The
relationship between correlation traces and encoding of information is a major topic in
computational neuroscience (Moreno-Bote et al., 2014; Rosenbaum et al., 2014; Tchu-
matchenko et al., 2011). Our goal is to build networks that use shared noise to encode
information by sampling from Boltzmann probability distributions, thereby impementing
shared noise as a computational component of stochastic networks. To characterize cor-
relations in spiking neural networks, we can make a distinction between two key causes
for correlations in firing activity.

• Shared feedforward input: Neurons in a layered network receive stochastic input
from presynaptic sources (Figure 7.4A). Neurons that receive input from the same
source (marked in color), also exhibit correlated output. The correlations resulting
from these shared inputs are propagated to the next layer. Note that there are no
lateral (intralayer) connections to propagate these correlations within the layer.

• Lateral synaptic connections: Each neuron receives a private source (Fig-
ure 7.4B) without shared inputs. The correlations in the neuron output are caused
by intralayer synaptic connections.

We can interpret the relayed shared noise as shared background input, which is prop-
agated through Boltzmann connections to other neurons in the BM. We aim to mod-
ify the network connectivity to compensate the feedforward correlations by introducing
additional lateral synaptic connections. These additional synaptic connections will be
implemented to counteract the correlations originating from shared noise.
We will describe spatial correlations in the context of the sampling framework that

was introduced in Chapter 5. Again, the firing activity of each neuron can be described
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Figure 7.4: The figures show two possible causes of correlations in a network. (A) Each
neuron receives independent input and is laterally connected to other neurons
in the network. The interneuron connections induce correlated firing patterns.
(B) In a feedforward architecture, the neurons in the layer are not connected
via synapses, but receive shared input from the lower layer, which propagates
the signal, causing output correlations in the upper layer.
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Figure 7.5: The effect of shared noise and synaptic interaction on pairwise joint proba-
bilities. (A) Given a two-neuron BM encoding a uniform Boltzmann distri-
bution, we see the effect of positive spike train correlations in shared noise.
The probabilities of the (00) and (11) states increase by the same quantity,
since neurons are correlated during active and inactive states by the same
amount. (B) An increase in excitatory weight increases correlations only for
the (11) state. The neurons are correlated only during synaptic transmission,
which happens only during the z = 1 state. (C) The same probability dis-
tribution can be modeled using states zI ∈ {−1, 1} that are known from the
Ising model. In the Ising domain, correlations due to synaptic weights are
equivalent to correlations resulting from shared input noise (A). To use this
equivalence, the BM needs to be translated into the Ising domain, character-
ized by states zI ∈ {−1, 1}. This translation is done by rescaling weights and
biases, as described in Equations 7.7, 7.8.
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as a binary random variable,

zi(t) =

{
1, neuron has spiked during (t− τref, t)
0, else .

(7.1)

Since we are interested in pairwise correlations, we look at pairwise joint activity states
zij . The corresponding pairwise joint probabilities, p(zi, zj), are affected by shared inputs
and synaptic connections and reflect the quantity of correlated pairwise activity of the
neuron pair. We can exploit this relationship and introduce additional Boltzmann weights
to change these joint probabilities. Since shared noise gives positive correlations, we can
connect positively correlated neuron pairs with inhibitory Boltzmann weights to achieve
a net pairwise correlation coefficient of zero. In the following we will investigate the
applicability of this intuitive approach.
It is important to note that the impact of weights and shared inputs on the probability

distribution is different. In Figure 7.5 we can see the effect on the state distribution
for both, shared inputs (Figure 7.5A) and (excitatory) synaptic weights (Figure 7.5B).
The two correlation patterns cannot be mapped onto each other in a straightforward
way. In the case of present shared noise (A), the neuron pair synchronizes its dynamics
perpetually, not only during interaction periods. As a result, both probabilities p(zi =
1, zj = 1) and p(zi = 0, zj = 0) change in the same way. In contrast to this, correlations
due to synaptic interaction require both neurons to be active at the same time (i.e., be
in the z = 1 state), since synapses are active only during z = 1 states (B). A strong
excitatory weight therefore increases the probability p(zi = 1, zj = 1) and decreases all
remaining state probabilities. Analogously, a strong inhibitory weight would increase the
probabilities p(zi = 1, zj = 0) and p(zi = 0, zj = 1) by the same amount and decrease
remaining ones.
This means that we cannot compensate shared noise by using weights only. We have

seen in Figure 7.5 that an increase in shared noise ratio is inherently different from
an increase in excitatory interaction. During interaction, an asymmetric relocation of
probability mass towards the p(zi = 1, zj = 1) probability occurs. In contrast to this,
shared noise shifts the probability mass in a symmetric manner. If we want to show how
synaptic weights can be applied to compensate for shared noise, we need a modification
of our theoretical sampling framework.

7.4 Sampling in the Ising domain

A key point of our theoretical framework is the abstraction of neuron dynamics to binary
states. The binary states {0, 1} intuitively reflect the (non)refractory neuron state, as
“0” defines an inactive (subthreshold) state and “1” defines a neuron during its refractory
period. We have already pointed out that in a sampling network governed by these
states, the state probability is not shifted in a symmetric manner in case of positive
synaptic weights. A network model that fulfills the symmetric relocation of probability
mass is the Ising model (Ising , 1925). The Ising model was proposed by Ernst Ising in
1925 and was originally used to model magnetic dipoles in a spin system with spin states
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7.4 Sampling in the Ising domain

{−1, 1}. Although being very similar to Boltzmann machine networks, the network
of spin particles exhibits an important difference. Since the interaction between spin
particles occurs during both spin states, −1 and 1, the resulting correlations in the spin
states are symmetric in pIsing(1, 1) and pIsing(−1,−1). Therefore, we aim to map our
system of z ∈ {0, 1} states to a system of {−1, 1} states and validate the equivalence
of shared input correlations and weight-induced correlations. To perform this mapping,
we will first look at the energy landscape of the Ising model, which is described by a
Hamiltonian H of the spin system,

H = −
∑
〈ij〉

Jijz
I
iz

I
j − µ

∑
i

hiz
I
i . (7.2)

In a solid state model we consider a set of lattice sites where spin particles are located.
In the original Ising model on a two-dimensional grid, the spin interaction occurs only
between the adjacent (indicated by 〈.〉) sites i, j with magnetic interaction J . The
strength of the external field is modeled by h and the particles on the sites are all
identical with spin states denoted as zI ∈ {−1, 1}. The interaction with an external field
is modeled by the second term in Equation 7.2, where µ represents the induced magnetic
moment of the particles. The probability of finding a particle in a particular spin state
is then described by a Boltzmann distribution,

pIsing(z
I) =

e−βH(zI)

Zβ
, (7.3)

Zβ =
∑
zI

e−βH(zI) . (7.4)

Here, β is the known inverse temperature and Zβ denotes the partition function, which is
the normalization of the probability density. The statistics of the Hamiltonian in Equa-
tion 7.2 are governed by a Boltzmann distribution as well. As already noted before, a key
difference is that spin states have positive and negative interaction states in zI ∈ {−1, 1},
whereas BM states only map a positive interaction state in z ∈ {0, 1}. Consequently, for
an interaction J , both probabilities pIsing(zIi = 1, zIj = 1) and pIsing(zIi = −1, zIj = −1)
are symmetric.

Since the states of both systems, z and zI, are sampled from Boltzmann distributions,
it is possible to find a mapping between the Ising domain and the BM domain (Baumbach,
2016). To keep the network notation consistent, we will move away from the notation
of physical spin systems and will denote the Ising weights and biases as W I and bI,
respectively.
A detailed derivation of the mapping rule can be found in Baumbach (2016) and here

we will provide only the resulting translation rules for a given Boltzmann machine energy
function,

E(z) = −1

2

∑
i,j

Wijzizj +
∑
i

bizi , (7.5)
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and an Ising energy function,

H(zI) = −1

2

∑
i,j

W I
ijz

I
iz

I
j +

∑
i

bIiz
I
i . (7.6)

We translate Ising parameters (W I, bI) into Boltzmann parameters (W , b) by using

b = 2bI + 2W I , (7.7)

W = 4W I . (7.8)

By translating the parameters, we can map the statistics of the Ising system onto our
Boltzmann machines and vice versa. The dynamics of LIF-based Boltzmann machines
do not change, as it still operates according to the LIF-based differential equations. The
refractoriness is still modeled as a z = 1 state during the simulation and the results
are interpreted according to the BM energy function (Equation 7.5). Therefore, we will
define our networks in the Ising domain and translate the parameters to the BM domain
according to Equations 7.7, 7.8 to run the simulation. A key point in these translation
rules is that the weight W I is used to convert the bias bI. This means that part of
the interaction W I is stored in a BM bias b in order to compensate for the lack of the
“-1”-interaction parts in the Boltzmann domain. In an example calculation we can see
the distribution of states for both cases, zI ∈ {−1, 1} (Ising domain) and z ∈ {0, 1}
(Boltzmann domain) for a simple network of 2 neurons:

b1 = b2 = 0 (7.9)
W12 = 2

bI1 = bI2 = 0

W I
12 = 2

From these parameters we obtain the resulting probabilities,

p(z1 = 0, z2 = 0) =
e(0+0+0)

ZBM
, (7.10)

p(z1 = 1, z2 = 0) = p(z1 = 1, z2 = 0) =
e(0+0+0)

ZBM
, (7.11)

p(z1 = 1, z2 = 1) =
eW

ZBM
, (7.12)

ZBM = 3 · e0 + eW . (7.13)

We see that p(z1 = 1, z2 = 1) is different from the remaining three state probabilities.
On the other hand, in the Ising domain,
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pIsing(z
I
1 = −1, zI2 = −1) =

eJ

ZI
, (7.14)

pIsing(z
I
1 = 1, zI2 = −1) = pIsing(z

I
1 = −1, zI2 = 1) =

e−J

ZI
, (7.15)

pIsing(z
I
1 = 1, zI2 = 1) =

eJ

ZI
, (7.16)

ZI = 3 · e0 + eJ , (7.17)

the probabilities pIsing(zI1 = −1, zI2 = −1) and pIsing(z
I
1 = 1, zI2 = 1) are identical.

This simple example shows that the probability mass is shifted symmetrically, as can
be seen in Figure 7.5. We can now use these translation rules defined in Equations 7.7,
7.8 to validate our proposed compensation method by introducing additional inhibitory
synaptic interaction W I to counteract correlation.

7.5 Compensation of shared noise correlations

We will first restrict ourselves to two-neuron LIF networks, where we characterize the
shared input correlations of two cases, namely synaptic connections and shared Poisson
input. We use the default parameters, as stated in Appendix A.3. We will define our
networks in the Ising domain with parameters (W I, bI) but translate them into the
BM domain to run the LIF simulations. After the simulations we will compute the
pairwise correlations, using the well-known measure Pearson product-moment correlation
coefficient (CC),

ρXY =
Cov(X,Y )

σXσY
(7.18)

=
E[(X − µX)(Y − µY )]

σXσY
. (7.19)

Here, Cov(X,Y ) is the covariance of random variables X and Y . The population
average and standard deviation is denoted as E[.] and σ, respectively.
The random variables X and Y are interpreted in terms of Boltzmann neuron states

z. We look at joint activity states zij that are governed by pairwise joint probabilities
p(zi, zj) with binary states (zi, zj) ∈ {0, 1}2.
We can rewrite Equation 7.19, using the known relationship,

E[(X − µX)(Y − µY )] = E[X,Y ]− E[X]E[Y ] ,
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7 Stochastic neural networks without stochastic input

and zi, zj as random variables of neurons i and j,

ρXY =
E[zi, zj ]− E[zi]E[zj ]

σiσj
(7.20)

=

∑
zi,zj∈{0,1} p(zi, zj)zizj −

∑
zi∈{0,1} p(zi)

∑
zj∈{0,1} p(zj)√

(E[z2
i ]− E2[zi])(E[z2

j ]− E2[zj ])
(7.21)

=

∑
zi,zj∈{0,1} p(zi, zj)zizj −

∑
zi∈{0,1} p(zi)

∑
zj∈{0,1} p(zj)√∏

i,j

[∑
zn∈{0,1} p(zn)z2

n −
(∑

zn∈{0,1} p(zn)zn

)2
] . (7.22)

Here we can simplify above expression by eliminating all terms with zn = 0. This results
in

ρij =
p(zi = 1, zj = 1)− p(zi = 1) · p(zj = 1)√

p(zi = 1)− p(zi = 1)2
. (7.23)

The above measure will be used to quantify pairwise correlations of neuron states. Note
that this procedure is equivalent to evaluating spike train correlations where the spike
convolution kernel is a rectangle with length τref.

7.5.1 Impact of weights on shared input correlations

We apply ρij to evaluate the correlation impact of shared input s and compare it to the
correlations caused by synaptic weights of an LIF neuron pair, as described in Figure 7.5.
To compare the functional form of ρij of both cases, we sweep over excitatory synaptic
weights in the range W I ∈ [0, 1] and the ratio of shared to private Poisson inputs,
s ∈ [0, 1] for a single neuron pair. The ratio s determines the percentage of shared input,
given a total input rate. In the sweeps, the total rate that an LIF neuron receives, is
νexc = νinh = 5000 Hz. Then, the Poisson rate that is shared with the other neuron is
set as νs = s · νexc = s · νinh. The independent, private part of the Poisson input rate is
then νp = (1 − s) · νexc = (1 − s) · νinh. The rest of the parameters is set to standard
values, as described in Appendix A.3. We define our networks in the Ising domain where
we set bI = 0. Note that the Boltzmann bias b is still nonzero, as given in translation
rules in Equations 7.7, 7.8. Results of the sweep can be seen in Figure 7.6. The fitted
curves show a qualitatively different shape, since the underlying causes for correlations
are different. It is important to note that fully correlated dynamics can be achieved using
shared noise, s = 1, resulting in a maximum correlation coefficient, ρsij = 1. On the other
hand, applying excitatory synaptic interaction, the correlation coefficient converges to
its maximum, ρW I

ij −→ 1, for increasing weights, W I −→ ∞. This means that perfectly
correlated states cannot be achieved using synaptic weights in the sampling framework.
This is also reflected in Equation 7.17.
Still, in principle, it is possible to compensate for shared inputs that induce correlation

coefficients 0 < ρsij < 1 by using inhibitory weights W I
ij < 0, resulting in

ρsij + ρW
I

ij = 0 . (7.24)
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7.5 Compensation of shared noise correlations

Figure 7.6: The pairwise correlation coefficient was measured for a two-neuron network
with synaptic connections W I ∈ [0, 1] (dashed green) and the ratio of shared
input noise in the range s ∈ [0, 0.95] (dashed blue). Note that the curves
have different functional shapes, but it is still possible to map a correlation
coefficient value from one curve to the other.
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7 Stochastic neural networks without stochastic input

Figure 7.7: The two-neuron network samples from a uniform distribution, i.e., the target
BM has zero biases and weights. We introduce shared input correlations by
increasing s on the y-axis, inducing positive correlations. This leads to a
decrease in sampling quality, which is measured by the DKL and encoded
in color in the heatmap. We sweep over inhibitory connection weights W I

c

on the x-axis to find a compensation weight for the shared noise correla-
tion. Uncompensated shared input correlations impair the sampling quality,
as indicated by red DKL data points. If correlations are compensated, the
quality improves (blue). Hence, we see a continuous valley of low DKL val-
ues, starting at (W I = 0, s = 0). This valley marks the parameter pairs
(W I, s) at which the correlation coefficients are cancelled out, resulting in
good sampling. Strikingly, we see that this valley of low DKL values becomes
less pronounced for larger compensating weights. The reason is that for a
high shared input ratio s, large compensating weights are necessary. In these
cases, systematic deviations occur, as explained in Section 5.3. The DKL is
averaged over ten simulation runs with a runtime of Tsim = 105 ms each.
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7.5 Compensation of shared noise correlations

To validate this, we set up a two-neuron network that is set to sample from a uniform
distribution, where ptarget(zIi , z

I
j) = 1

22
∀zIi , zIj . We have chosen this setup because this

distribution is encoded without connections and biases, therefore, there are no pairwise
correlations which would complicate the analysis. As soon as shared noise is implemented,
the LIF-sampled distribution pLIF(zI) is significantly impaired. As a result, the Kullback-
Leibler divergence DKL (pLIF || ptarget) increases. In Figure 7.7, we implement shared
noise ratios s ∈ [0, 1] and connect the neuron pair with weights W I ∈ [−0.7, 0] to find
the inhibitory weights that compensate for these ratios s. The results in Figure 7.7 show
a valley of low DKL values. This valley of low DKL values indicates a good network
performance and suggests that the harming spatial correlations have been cancelled out
by inhibitory weights, according to Equation 7.24. Note that the shape of the DKL
valley is very similar to the correlation curve ρW I

ij shown in Figure 7.6, where positive
correlations were induced by excitatory connections.
One concerning observation in Figure 7.7 is the substantial flattening of the valley for

larger Ising weights. This indicates a decreasing impact of synaptic weights and can be
explained by systematic deviations due to large weights, as discussed in Section 5.3. We
still can conclude that compensation with small weights is possible to a certain degree.

7.5.2 Connectivity as shared noise

In our original goal we aimed to compensate positive shared noise correlations, ρsij > 0,
by introducing inhibitory connections. We have seen in the previous section that com-
pensation of correlations decreases in quality as compensating weights become larger. In
practice we can compensate small shared input correlations with synaptic connections. It
is important that the problem resulting from large weights is not related to the compen-
sation of correlation, but a consequence of the LIF sampling framework. We have already
investigated and benchmarked this effect in Section 5.3. This means that mapping high
pairwise correlations by using synaptic weights leads to systematic errors. Since we are
able to model strong correlations by using a high shared input ratio s, it should also
be possible to use shared noise instead of weights to model strong correlations. This
would lift the necessity to introduce large weights into networks and improve sampling
quality, while keeping the same pairwise correlation pattern. We invert direction of the
compensation from s −→ W I to W I −→ s and model the impact of large weights via
shared inputs. If both parameters impact the network in the same way, i.e., induce the
same correlation coefficient, then connectivity patterns could be substituted by shared
input patterns allowing the network to sample well from the target probability distribu-
tion without synaptic weights. This could be particularly useful for a hardware network
setup where strong pairwise correlations are necessary, but constrained by upper bounds
of synapse strengths (Schmidt , 2014).
We want to investigate this case by sampling with two LIF neurons from a probability

distribution which is not uniform, but defined by (W I > 0, bI = 0). The bias bI will be
zero to simplify analysis. The weight W I is randomly drawn from a beta distribution, as
described before. Although these parameters define the target distribution, the neuron
pair will not be connected by W I, but only share noise sources with ratio s. The DKL
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7 Stochastic neural networks without stochastic input

Figure 7.8: The sampling performance of a two-neuron network without connections. The
network is set up to sample from a target Boltzmann distribution defined by
(W I > 0, bI = 0). We sweep over these theoretical weights W I on the x-axis.
The neuron pair shares Poisson noise with a ratio s, mapping the pairwise
correlations. The quality of the resulting sampling is measured by the DKL,
which is shown in color in the heatmap. We find good sampling quality (blue)
in regions where the shared noise parameter s is set to match the pairwise cor-
relation structure defined by the target Boltzmann parameters. This region
can be identified as a valley of low DKL, starting at (W I = 0, s = 0). The
quality of sampling is preserved in this region because s implements precisely
the pairwise correlations that correspond to the weights, W I, as predefined
in theory. Note that, in contrast to shared noise compensation shown in
Figure 7.7, we do not implement any synaptic connections. Therefore, the
sampling performance remains good even for large s, since we avoid system-
atic weight-induced errors. The DKL has been averaged over ten simulation
runs with a runtime of Tsim = 105 ms each.
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measures the distance between both distributions, the targeted one, pW I , and the one
sampled by the neuron pair, ps. The DKL will indicate whether networks operating on
shared noise can carry out the same computations as synaptic weights. In the simula-
tions we will use the standard LIF sampling parameters (Appendix A.3) and sweep over
the target weights W I ∈ [0, 0.75] while using shared noise ratios of s ∈ [0, 1]. Note that
weights W I are positive because they are equivalent to a positive correlation coefficient
resulting from shared input ratio s. Negative shared input correlations can be imple-
mented by inverting the synapse types where the shared noise is injected. In such a case
the one neuron would receive the shared spike trains through excitatory synapses, the
other neuron would receive them through inhibitory synapses. However, we will limit
our study case to positive W I only, since both cases are analogous.
The results of the two-neuron sweeps are shown in Figure 7.8. Here we see a valley of

low DKLs for pairs of excitatory target weights W I and shared noise ratios s. This means
that the network performance remains high for a subset of (W I, s)-pairs, since the dis-
tance between pW I and ps is small. The valley of low DKL values does not flatten, since
we use shared input to model pairwise correlations instead of synaptic weights. Hence
there are no systematic errors resulting from the weight translation described in Sec-
tion 5.4. Excluding the effects of large weights on the sampling dynamics, the sampling
performance remains the same if we interchange lateral weights and shared noise, as indi-
cated by the DKL. Since the DKL is our measure of the functional properties of sampling
networks, we can conclude that the network functionality can be maintained regardless
of the origin of network correlations. This, in turn, suggests that we can characterize
the network parameter pair (W I, s) as a single free parameter, namely the correlation
coefficient ρW I,s. This parameter fully defines the pairwise correlation structure.

7.5.3 Equivalence of interaction weights and shared noise

Assuming that we only need ρW I,s to describe the pairwise correlation topology, we
can configure networks to arbitrary noise-weight configurations (W I, s). This yields the
same correlation structure and sampling performance if the implemented weights W I are
not too strong. We have already demonstrated that it is possible to implement a purely
weight-driven network with an additional weightW I

c that incorporates the computational
part of the shared noise ratio s. This means that a network with (W I + W I

c, 0) would
achieve the same network functionality as (W I, s), if ρW I,s = ρW I+W I

c,0
. In the same

way, it is also possible to achieve the same functionality by using only additional shared
noise sc, resulting in a (0, s+ sc) configuration with

ρW I,s = ρW I+W I
c,0

= ρ0,s+sc . (7.25)

Since the correlation coefficient ρW I,s cannot be computed analytically, it is necessary
to sweep over weights and shared ratios to find compensation parameters for a specific
correlation setup. Such a measurement over ρW I,s of value pairs in W I ∈ [−1, 1] and
s ∈ [0, 1] is shown in Figure 7.9. For a given set of LIF parameters, the correlation
coefficients on the hyperplane in Figure 7.9 define any correlation pattern of a neuron
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7 Stochastic neural networks without stochastic input

Figure 7.9: The hyperplane in the three-dimensional space shows the correlation coef-
ficient, ρW I,s, for a neuron pair for varied shared noise ratios (y-axis) and
synaptic weights W I (x-axis). The color, as well as the z-axis value denote
the value of the correlation coefficient ρW I,s. Blue color marks negative, red
color marks positive correlation coefficients. The correlation coefficient hyper-
plane could be used to map a desired correlation pattern, defined by ρW I,s for
a variety of weights and shared noise ratios. For networks on neuromorphic
hardware, it could be possible to combine shared noise and weight configura-
tions to adapt to hardware-imposed parameter constraints. Each data point
is a result of ten averaged simulation runs with a runtime of Tsim = 105 ms
each.
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Figure 7.10: A ten-neuron network is set to sample from a uniform distribution with
(W I = 0, bI = 0). Each neuron shares noise with only one other neuron.
We increase the shared noise input (x-axis) and at the same time introduce
an additional negative weight matrix W I

c to decorrelate the network. The
red curve shows the DKL of the network in comparison to a benchmark
with independent noise (blue) and the same network without decorrelation
of the noise sources (green). Although the decorrelation does not achieve
the results of the benchmark, there is a strong improvement compared to
the network without decorrelating weights. The simulations were run for
Tsim = 105 ms.

pair, regardless whether the correlations result from weights or shared noise. We see that,
in principle, shared noise and synaptic weights can be interchanged to yield an identical
correlation coefficient. The network components (W I, s) can be freely modified, defining
the same quality of network computation as long as the resulting correlation coefficient
ρW I,s is identical. This could benefit hardware implementations of sampling networks,
as it provides a method to obtain a desired pairwise correlation topology, respecting
hardware-imposed constraints on shared inputs and synaptic weights.

7.5.4 Compensation of shared noise in networks

We can apply the results that are illustrated on the hyperplane in Figure 7.9 to extend our
compensation of shared noise to bigger networks. We will again compensate undesired
shared noise correlations for pairs of neurons in a ten-neuron sampling network.
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The parameters for the target distribution are again drawn from a beta distribution,
as described in A.4. We implement shared input noise with s ∈ [0, 1] and counteract the
resulting increase of correlations by setting additional compensation weightsW I

c . Ideally,
this would result in the elimination of correlations, (W I, s) −→ (W I +W I

c, 0). Since we
have measured the correlation coefficient ρW I,s for a range of weight-noise configurations
(W I, s), we can read out the necessary compensation weightsW I

c to cancel out the shared
noise correlations.
In Figure 7.10 we see the result of the simulations, where we have compared the DKL

values for three cases. In a case without shared input, the DKL remains flat (blue),
as performance stays constant. For an increase of the shared noise ratio (x-axis), the
performance deteriorates if the network correlations are not compensated for (green). By
adding compensating synaptic weights to the network (red), (W I, s) −→ (W I +W I

c, 0),
the DKL decreases significantly. But for higher shared noise ratios (s > 0.4), the DKL
increases noticeably. Although it is possible to compensate for low shared noise ratios
(s ≤ 0.3), higher ratios require higher inhibitory synaptic weights W I

c . In such cases
systematic errors arise again, as we have already observed in Figure 7.8. The increase of
the total presynaptic weight input per neuron due to additional compensation weights,
W I

c, leads to higher systematic errors. This impact has also been illustrated in Sec-
tion 5.3 (e.g., Figure 5.5). Even if the single compensating weights are small, they
sum up in large networks where many pairwise correlations need to be compensated
for. For instance, in the classification networks in Section 6.2, the connectivity pattern
includes up to 784x1200 connections (Figure 6.4). Realistically, it requires a complicated
connectivity scheme to embed compensational weights or shared noise for each neuron
to achieve a good network performance.

Overall, cases in which connectivity and shared noise ratios are small can be success-
fully decorrelated using compensational weights without substantial loss of performance.
For larger networks, we will use the obtained results to develop a more practical method
to deal with shared noise correlations.

7.5.5 Training correlations

In Section 6.2 we have used a simple training method to find Boltzmann parameters
that map the MNIST data set on a Boltzmann distribution. We will use a training
approach to adapt the network to shared noise correlations such that it can sample from
target Boltzmann distributions. In this method, the knowledge of the desired correlation
coefficent ρW I,s is not necessary, since the parameters Boltzmann parameters (W I, bI)
are updated according to a predefined learning rule. In the training rule, the target
pairwise correlations are defined by the pairwise joint probabilities of the neurons. We
can implement this information into the already known contrastive divergence training
algorithm (Section 6.1.1). In the update rules we will still use the Ising parameters
(W I, bI). This does not change the shape of the CD equations,
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∆W I
ij = η

[
〈zizj〉data − 〈zizj〉model

]
, (7.26)

∆bIj = η [〈zi〉data − 〈zi〉model] . (7.27)

Note that the terms 〈zizj〉 are probabilities of correlated pairwise firing, p(zi = 1, zj =
1), so we can rewrite both equations according to

∆W I
ij = η [p(zi = 1, zj = 1)data − p(zi = 1, zj = 1)model] , (7.28)

∆bIj = η [p(zi)data − p(zi)model] . (7.29)

This means that the updates adjust the network firing probabilities (p(zi = 1, zj =
1)model, p(zi)model) to the desired firing probabilities (p(zi = 1, zj = 1)data, p(zi)data).
The correlation structure of each neuron pair in the network is reflected in the pairwise
joint probabilities. Therefore, the training is conducted to adjust the parameters (W I, bI)
to sample from a target distribution ptarget(zI).

We will validate the training method (Equations 7.28,7.28) by training Boltzmann
machines consisting of ten neurons to sample from a uniform Boltzmann distribution.
We will set a ratio of pairwise shared Poisson noise input, s = 0.3. The LIF parameters
are set according the standard parameters, as defined in Appendix A.3.

In our simulation we will train the LIF network directly, in contrast to the CD training
scheme in Section 6.1.1, where we trained the ANM and mapped the parameters to LIF-
based Boltzmann machines. In our LIF training scheme, we will perform simulation
runs of duration Tsim = 5000 ms and calculate p(zi, zj) after each run. Then we apply
update rules 7.28, 7.29 to modify the parameters. Each of these simulation runs is then
considered a training step. The learning rate η(ttrain) is set as a function of training steps
ttrain,

η(ttrain) =
0.05

1 + ·ttrain
. (7.30)

The parameters for η(ttrain) in the equation above have been chosen after several
parameter sweeps and are robust to variations of up to ≈ 10%. The decline of the learning
rate η(ttrain) asserts that the updates cause small changes in the energy landscape do not
overshoot the parameters that represent the desired probability distribution. Since we
use only a small BM, we can use the DKL as a function of ttrain to assess the sampling
performance of the trained network, as shown in Figure 7.11. The benchmark DKL line
(green) shows the performance of a network without shared noise, initialized with the
target weights. The trained network in the presence of shared noise has a decreasing
DKL (red) with increasing training time (x-axis). Most importantly, it also falls below
the benchmark measurement. This means that the trained network, despite shared noise,
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7 Stochastic neural networks without stochastic input

Figure 7.11: (Top) Sampling performance of a ten-neuron Boltzmann machine with pair-
wise shared inputs (s = 0.3) and synaptic weights drawn from a beta dis-
tribution (Appendix A.4). The green curve indicates the benchmark with
independent inputs and the red curve shows the DKL of a CD-trained net-
work with shared noise. The blue curve shows the sampling performance
during the training iterations, which are set to T = 5000 ms. We see that the
performance of the trained network (red) even exceeds the benchmark that
is simulated with independent inputs. This means that the training does
not only adapt the network to shared input correlations, but also modifies
the parameters to mitigate the systematic errors resulting from parameter
translation from the BM domain to the LIF domain. (Bottom) The pair-
wise firing rate p(zIi , z

I
j) is trained to yield the target probability of 1

210
.

The sampling runtime of the trained network (red) in each data point was
Tsim = 5 · 104 ms.
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7.5 Compensation of shared noise correlations

Figure 7.12: Both plots show parameters of the ten-neuron Boltzmann machine from Fig-
ure 7.11, trained to sample from a randomly drawn probability distribution
in presence of a shared input ratio of s = 0.3. Each training iteration lasts
5000 ms. The correlated firing probabilities are averaged over the runtime
after each training iteration. (Top) The weights W I are trained to adjust
the network to shared background input. (Bottom) The biases are addi-
tional free parameters and are also trained with the same training algorithm.
The preliminary results are promising, but the convergence of both, weights
and biases, can be improved by using more elaborate training algorithms.
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7 Stochastic neural networks without stochastic input

performs better than an LIF network initialized with the target Boltzmann parameters
without shared noise.
A significant shared noise ratio of s = 0.3 requires a certain amplitude of compensat-

ing Boltzmann weights for each of the ten neurons. Using a simple training algorithm
like CD, the network successfully compensates for shared input correlations by training
weights and biases, overcoming the inherent weight-related systematic errors of the LIF
sampling framework. The trained BM weights and biases can be seen in Figure 7.12. In
this preliminary result we can conclude that it is possible to adapt the network to the
underlying correlation pattern. At this point we conclude the preliminary studies in this
section and will use the results to address the shared noise correlation problem for larger
networks. The success of the preliminary training results show potential to run networks
which have even higher shared noise ratios than what we have seen here. In fact, we
will show that it is possible to construct LIF-based Boltzmann machines which perform
sampling without independent noise sources.

7.6 Sea of Boltzmann machines: stochastic computing
without noise sources

In this work we have investigated two different types of neural networks in terms of
their potential to perform stochastic inference. For both network architectures, the L23
networks in Chapter 3 as well as LIF-based sampling networks introduced in Chapter 5,
a common functional component was external stochastic input in form of presynaptic
Poisson stimuli. In both systems, stochasticity is vital to perform meaningful computa-
tion. For the sampling framework, we have shown potential applications using LIF-based
Boltzmann machines and highlighted the importance of using an efficient substrate for
sampling. We have further emphasized the potential of mixed-signal neuromorphic
computing, in particular boasting a 104 speed-up compared to biological runtime.

For an emulation of stochastic networks, the neuromorphic platform needs to be
supplied with stochasticity. In particular, in the studied large-scale stochastic networks
(Section 6.2), each of the 1984 neurons ideally would require independent Poisson sources.
Due to bandwidth and routing limitations, external noise and on-chip generated noise
is still not enough to sustain such network sizes (Kungl , 2016). This means that the
existing background noise needs to be shared among network neurons to provide a basic
level of stochastic drive to the networks. The resultung shared input correlations are
harmful for our sampling networks, but it is possible to adjust the networks by training,
as seen in the previous section.

In this section we will go a step further and extend our LIF sampling framework to
sample from Boltzmann machines without providing any external noise. These networks
will be referred to as sea of Boltzmann machines throughout this chapter, since they
consist of a pool of interconnected BMs that share their output spikes as noise (illus-
tration in Figure 7.13). Since we aim to omit external input, such a system can be
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7.6 Sea of Boltzmann machines: stochastic computing without noise sources

Figure 7.13: The closed neural system illustrates the goal of this section, which is to build
a self-supplying network that does not need external stochastic spike trains
for stochastic computing. In our functional approach, the network consists
of computational nodes which sample from Boltzmann distributions. In a
sparse connectivity scheme, the spiking output of the stochastic computing
nodes will serve as stochastic drive for the remaining BMs in the network.
This way, no external input is necessary to maintain network ability. This
does not only solve practical issues of neuromorphic bandwidth limitations,
but also steps forward to model functional networks which encode states
and generate stochasticity in the same operational regime. Figure is taken
from Dold (2016).

considered a closed system where the spatial correlations have the same cause as the
pairwise correlations that we have studied so far. Results in the previous section suggest
that pairwise correlations are not prohibitive for sampling performance if the networks
are adjusted to the correlations by training. One main difference which we will have
to look at is that the correlations result from BM-generated noise, not from Poisson
statistics.

The results in Section 7.6 were achieved in collaboration with Dominik Dold and are
published in the Master’s thesis, Dold (2016), which was supervised by the author of this
thesis. The simulations are conducted by Dominik Dold.
An important aspect of such closed neural systems is the difficulty to maintain a

network activity. One of the common attributes of such closed networks is that they
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7 Stochastic neural networks without stochastic input

cannot sustain stable, irregular activity. The activity is not regulated with outside control
parameters, but is fed back through the other network components. In many cases, the
firing activity either recedes or synchronizes the network, destroying the stochasticity that
is vital to computation. These are common problems that are also discussed in literature
(Kriener et al., 2014; Kumar et al., 2008b). Before we investigate these problems, we
will first look at the properties of the BM-generated noise compared to the Poisson spike
trains that we have used thus far as background input.

7.6.1 Correlations in Boltzmann machine spike trains

In a sea of Boltzmann machines each LIF-based BM samples from a predefined Boltz-
mann distribution. The output spike trains of these BMs are at the same time used as
background input for other BMs in the network. Each background input that a neuron
receives, consists of multiple spike trains from other LIF neurons. The neurons in the
BMs that generate the noise are connected via Boltzmann weights, and therefore gen-
erate spike trains that have autocorrelations. These autocorrelations can be measured
within any spike train that originates from a neuron that is connected to other neurons
in a BM (Figure 7.14).

First, we will compare the difference between BM-generated spike trains and Pois-
son background noise (Figure 7.14). We will not yet connect multiple BMs, but only
investigate the impact of autocorrelations inside a spike train that is generated by an
LIF neuron in a BM. We will look at the activation function of an LIF neuron that is
stimulated by BM-generated noise input to assess the impact of these autocorrelations.
We remember that the activation function describes the firing statistics of an LIF neuron
as a firing probability p(z = 1), encoding the probability of its binary states. There are
two properties in BM-generated output that are important for the LIF firing statistics.
The first property is the minimum interspike interval τref which can be found in any
LIF-generated spike train. Since a neuron is deactivated for a refractory period after
every output spike, there is a minimum interval that regularizes the spike trains. The
second important property is the occurrence of activity bursts of a BM-neuron in case
of strong BM interactions. This also increases regularity, which is harmful for stochastic
inference.

The impact of these effects will be evaluated by running a BM where one neuron is
stimulated by BM-generated background, as illustrated in Figure 7.14. This background
input is generated from a fully functional LIF-based BM (blue) consisting of three
neurons. The generated output is applied as background input into each neuron of a BM
(red) that samples from a distribution. For now, we will refer to the noise-generating
BMs as BMn, and the background-receiving, computing BMs as BMc. Note that both
types of BMs sample from well-defined Boltzmann distributions. The distributions for
the BMs were again drawn from a beta distribution, as described in Appendix A.6. The
Poisson input rates and weights of the BMn networks were chosen νinh = νexc = 400 Hz
and winh = wexc = 0.001µS respectively to suffice the high-conductance state.
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7.6 Sea of Boltzmann machines: stochastic computing without noise sources

Figure 7.14: (A) We evaluate the sampling properties of neurons in the red Boltzmann
machine where each neuron (red) receives excitatory and inhibitory back-
ground input from merged spike trains from different BMs (blue). The
marked input lines on the other two red neurons also consist of balanced
inhibitory and excitatory connections. In this setup the blue BMs serve as
background noise generators and receive uncorrelated Poisson noise, consist-
ing of excitatory (green) and inhibitory (purple) input. (B) The difference
between a Poisson background generator and background generated by a
BM neuron are interspike intervals of at least τref. These interspike intervals
regularize the background spike trains. Figure is taken from Dold (2016).

139



7 Stochastic neural networks without stochastic input

Figure 7.15: On the left (A1, B1, C1) we see free membrane potential (no spiking
mechanism) distributions of an LIF neuron receiving BM-generated noise
(νnoise = 0.9997τ−1

ref ) with strong autocorrelations. On the right (A2, B2,
C2) we see the corresponding activation functions. (A) For a simulation
runtime of Tsim = 104 ms we see artefacts in the shape of the distribution
(left) and in the curve of activation function (right). (B) As we increase the
runtime to Tsim = 5 · 104 ms, the distribution resembles a Gaussian and the
activation function becomes smoother. (C) The simulation time is further
increased to Tsim = 105 ms. If the simulation time is sufficiently long, we
can reliably fit a logistic function (red curve) to the measured firing rates
p(z = 1), as can be seen in the bottom right plot. Figure is adapted from
Dold (2016).
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7.6 Sea of Boltzmann machines: stochastic computing without noise sources

In the measurement results of the activation function (Tsim = 105 ms) we see that high
firing activity in BMn indeed impacts the quality of the firing statistics of BMc neurons
(Figure 7.15). The reason for this is the increased regularity of the calibration spike
trains, which distorts the firing statistics. However, a significantly longer calibration
time recovers a smooth activation function, since regularity artefacts in the spike trains
are averaged out during longer simulation runs. The activation functions, as well as the
membrane potential distributions resulting from the BM-generated noise (Figure 7.15)
can be fitted to a logistic function, σ, and Gaussian distributions, respectively.

To assess the quality of sampling of a BMc, we set up a six-neuron BMc that is
supplied with noise from a BMn. We compare the sampling performance of BMc with
the performance from Poisson-driven BMs by using the DKL. The parameters for both,
BMc and BMn, were drawn from a beta distribution,

W ∝W0 · B [(0.5, 0.5)− 0.5] , (7.31)
b ∝ 1.2 · B [(0.5, 0.5)− 0.5] . (7.32)

The simulation results can be seen in Figure 7.16 and confirm that the amplitude of
weights, W0, affects the sampling quality of BMc. Simulations in (Dold , 2016, Chapter
3) show that the weight amplitude in the noise-generating BMs, BMn, does not affect
the sampling quality of BMc.
These results already show potential for sea of BMs, since the autocorrelations do not

prohibit a good sampling performance. The implemented network setups thus far do not
reflect a real use case of interconnected BMs, as only one BMc is supplied with correlated
noise and there are no interconnections between different BMs yet (Figure 7.14).

After we have evaluated the impact of autocorrelations in BM-generated spike trains we
will increase the amount of spatial correlations by including all spike trains generated in a
BMn as background noise for BMc networks. In three-neuron BMc networks, two neurons
will receive BMn-generated background noise, while the third neuron will still receive
independent Poisson input(illustrated in Figure 7.17). There are still no connections from
BMc to BMn. In this setup we will test the influence of the additional crosscorrelations
between neurons in the BMc network, since many of them emerge from the same BMn
network. To quantify only the background-propagated correlations, we do not connect
neurons in the BMc network, and set the parameters (Wcomp = 0, bcomp = 0). The
lack of synaptic connections guarantees that there are no correlations introduced in BMc
networks and the zero bias is set for simplicity, without loss of generality. The number
of BMn networks is chosen such that their output rate supplies each BMc neuron with
at least 800 Hz for excitation and inhibition.
Since we use multiple background spike trains from the same BMn, we introduce ad-

ditional correlations. These crosscorrelations between noise spike trains result in corre-
lations in the BMc ouput in Figure 7.18. It shows three distinctly colored distributions
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7 Stochastic neural networks without stochastic input

Figure 7.16: The six-neuron BMc networks are initialized with target Boltzmann pa-
rameters drawn from a beta distribution. The colored full lines show the
sampling performance of networks receiving BMn-generated noise and the
dashed curves show the DKL of Poisson-driven BMs. The DKL curves mea-
sure the sampling quality for different weight amplitudes W0, where each
curve is averaged over 24 different BMc networks. We see that the per-
formance heavily depends on the synaptic weights of the distributions in
the BMc networks, W0. Lower synaptic weights lead to less systematic de-
viations, resulting in a lower DKL. Interestingly, for the smallest weight,
W0 = 0.6, the networks on average perform better than their Poisson coun-
terparts. The synaptic weights for the noise-generating BMn have the same
amplitude, W0 = W noise

0 = 1.2, in all simulations. The shaded areas enclose
the 15th and 85th percentile. Figure is taken from Dold (2016).
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7.6 Sea of Boltzmann machines: stochastic computing without noise sources

exc. Poisson source

inh. Poisson source

Figure 7.17: The setup shows noise-generating BMs (blue) and computing BMs (red).
Two of the three neurons in the red network receive merged spike trains
that are generated in the same BMn. This introduces correlations between
different background spike trains that are injected into the BMc networks.
The third neuron in BMc receives independent noise sources. Figure is taken
from Dold (2016).

of measured correlation coefficients, resulting from three different simulation setups. All
three setups have in common that the Boltzmann weights between the BMn pair of neu-
rons are negative. Therefore, the background spike trains have a negative correlation
coefficient. The simulation setups differ in the way the BMn-generated background is
connected to the BMc neurons. Depending on the synapse configuration of the back-
ground spike trains to the BMc neurons, the negative correlations will remain or invert
into positive ones. In the left histogram, the negative correlation from the BMn spike
trains remains negative since the background is connected to identical synapses of the
neuron pair in BMc, “EE” or “II”. The right histogram in Figure 7.18 shows the case where
the generated negative correlation in the background is inverted into a positive one, since
the synapses of the BMc neuron pair differ (either “EI” or “IE”). This propagation of cor-
relation is reflected in the location of the histograms, as they show either a negative mean
correlation (same synapse type) or a positive mean correlation (different synapse type).
This shows that we can modulate the correlations exhibited by BMc-generated output
by adjusting the synapse types to the background noise.
In the histogram in the center (Figure 7.18), the synaptic connections BMn −→ BMc

are random, resulting in a correlation mean of ρ = 0. On average, the negatively cor-
related background spike trains are connected inhibitorily or excitatorily with the same
probability to the BMc neuron pairs, therefore yielding a net correlation of zero. This is
an interesting and encouraging finding, since random connectivity is the simplest method
and does not demand for sophisticated routing schemes on the hardware to decrease cor-
relations. A drawback in this result is the large spread of the center histogram in Fig-
ure 7.18, which suggests that the network performance is still suffering from correlations.
To verify this assumption, we will use the randomized connectivity scheme between

BMn and BMc neuron pairs in a three-neuron BMc network. The BM parameters are
again drawn from the same beta distribution as before. The sampling results were quanti-

143



7 Stochastic neural networks without stochastic input

-

0
ρ

rand rand

-

+
ρ

E E
I I

or

-

- ρ

E
EI
I

or

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
correlation coeff cient

0

5

10

15

20

25

30

35

40

45

no
rm

.d
is

tr
ib

ut
io

n

EI/IE
EE/II
random

Figure 7.18: We connect three-neuron BMc networks with BMn-generated noise, where
two BMc neurons receive background input with at least 800 Hz. The
weights from BMn are drawn from a beta distribution, according toW noise ∝
6 · [B(0.5, 0.5)− 0.5]. The W noise weights are all negative, therefore the
BMn output spike trains propagate negative correlations to the BMc net-
works. Inside the BMc network there are no connections, so the net cor-
relations between BMc neurons result from the background noise injected
to two neurons. The bottom histograms show the correlation coefficient
resulting from three different types of connectivity of BMc to the BMn-
generated background connections (same synapses, different synapses, ran-
domized synapses). We see that random connectivity yields a mean pairwise
correlation of zero, which suggests that decorrelation works by randomizing
the connectivity to the BMc neurons. The distribution shows still a large
spread, indicating that there is still shared noise correlation in the network.
Each histogram includes 200 simulations. Figure is taken from Dold (2016).
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7.6 Sea of Boltzmann machines: stochastic computing without noise sources

Figure 7.19: We simulate three-neuron BMc networks with the Boltzmann parameters
drawn from a beta distribution, according to Equations 7.31, 7.32. The
parameters for the BMn networks are identical to the ones in Figure 7.18.
(Top) The yellow DKL curve on the y-axis shows the sampling quality of
BMc networks in runtime on a logarithmic scale for 10 BMn networks. The
blue DKL curve shows the sampling quality of BMc supplied by 20 BMn
networks. The colored areas mark the interval between the 15th and 85th
percentile of DKL curves, which were averaged over 24 different Boltzmann
machines. We see that an increased number of noise-supplying BMn net-
works causes more accurate sampling (i.e., lower DKL) for the blue curve.
Still, we do not achieve the quality of purely Poisson-driven networks (dashed
red), which show a significantly lower DKL. (Bottom) We increase the
number of noise-supplying BMn networks to 100 (blue curve). This dras-
tically improves sampling, as the DKL average almost reaches the quality
of Poisson-driven networks (dashed red). We have plotted the DKL curve
for 10 BMn nets (yellow) again for comparison. The error bands and the
number of simulation runs are the same as in the upper plot. Figure is taken
from Dold (2016).
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7 Stochastic neural networks without stochastic input

Figure 7.20: Two types of network architectures are shown. On the left, a network of
BMs is shown, which has internal connections WBM, i and interconnections
Wint. The internal connections and the biases define the target Boltzmann
distributions. The function of the interconnections Wint is to transmit the
output spikes between each BM to apply it as background sources. Addition-
ally, each neuron receives excitatory (green) and inhibitory (blue) Poisson
sources. These sources serve as kickstart mechanism to provide a reasonable
activity to the network. On the right, we see the same network where the
frequencies of the Poisson sources are decreased. In our simulations, we will
start with both, Poisson input as well as BM-generated input to stabilize
the network activity. The Poisson rate is then reduced continuously dur-
ing runtime, until the BM networks supply each other with BM-generated
background noise only. Figure is adapted from Dold (2016).

fied via DKL and are shown in Figure 7.19. The results suggest that random connectivity
is a viable method to mitigate correlations from BMn-generated spike trains. An increase
of noise-supplying BMn networks has a positive effect on the sampling performance, as
the probability for pairwise correlation patterns decreases for an increasing background
source pool.

7.6.2 A closed network of Boltzmann machines: removing external
sources

We have now verified that sampling quality of BMc networks improves if the network size
grows. Since BM networks can cope with shared noise correlations in the background
noise, we will now interconnect all BMs such that there will be no distinction anymore
between noise-generating BMs (BMn) and computing BMs (BMc). All neurons will be
grouped into BMs which will be interconnected. First, each neuron will receive Poisson
background, as well as BM-generated background from the network-generated noise.
After initialization we will gradually reduce the external Poisson frequency and assess
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7.6 Sea of Boltzmann machines: stochastic computing without noise sources

Figure 7.21: The plot shows the sampling performance results of 200 three-neuron BMs
after a sampling time of Tsim = 106 ms with Poisson rate reduction (see
Figure 7.20). We varied the final Poisson frequencies νtarget and the mean
interconnection weights µint in the unit of Poisson weights, [wp]. For a mean
weight of zero, µint = 0, the DKL becomes higher, as the sampling perfor-
mance decreases. Strong weights, in turn, still guarantee good sampling
quality, even for decreasing Poisson rates. As long as the interconnection
weights remain strong enough, the neurons stay in the high-conductance
state, ensuring the LIF sampling properties. If the weights become too
large, though, the DKL rises again, with declining quality. In such a sce-
nario, the mean interconnection weights, µint, become high enough to distort
the interaction within each BM. In such a case, the synaptic impact of the
background noise is in the order of magnitude of the interactions within a
BM. Figure is taken from Dold (2016).

the performance of the network operating only on BM-generated background input
(Figure 7.20).

We set up a network of 200 three-neuron BMs with randomly drawn weights (beta
distribution) and biases that define each Boltzmann machine.
We define an initial background frequency νstart, which serves as an approximation of

the total target frequency of the sampling network. To define the parameter translation
from the BM domain to the LIF domain, we first measure the activation function of the
BMs without interconnections, although connections within the BMs are present. The
background noise is external Poisson background. We measure the resulting output spike
trains and set the LIF parameters according to this Poisson-based calibration (see Section
5.2.1). To perform sampling, we then interconnect the BMs but still add Poisson noise
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7 Stochastic neural networks without stochastic input

Figure 7.22: The sampling quality of a network consisting of 200 three-neuron BMs with
reduced Poisson noise is compared to a Poisson-driven network after a run-
time of Tsim = 106 ms. (A) The DKL curves indicate the performance of
the sampling networks. For a Poisson-driven network with only 2 Hz input
(green), the network does not receive enough stochastic input to reliably
sample from the complete state space. This misrepresentation of the tar-
geted probability distribution causes the relatively high DKL. For a BM
with interconnections and mean interconnection weights µW = 0.2wp and
µW = 0.3wp, we see significant improvement (blue, red curves). Still, the
Poisson-driven network (black curve) with a 700 Hz input shows the best
sampling performance. The colored areas indicate the interval between the
15th and 85th percentile from the mean. (B) We vary the mean intercon-
nection weights to find the optimal value with only 2 Hz Poisson input and
network-generated input. This value lies close to µoptW ≈ 0.3wp. For weaker
interconnections, the high-conductance state is not guaranteed and increas-
ingly strong synapses distort the dynamics within the BMs. (C) The sam-
pled distribution of a three-neuron network after a runtime of Tsim = 106 ms
shows that the sea of BM networks (blue) achieves very good sampling using
a Poisson rate of only 2 Hz and an interconnection strenght µW = 0.3wp.
The purely Poisson-driven networks with a frequency of 700 Hz (yellow) and
the BM-driven networks are both very close to the theoretical computation
of the probabilities (black). This suggests that the removal of Poisson rates
does not impair the sampling and the network can operate on BM-generated
background noise. Figure is taken from Dold (2016).
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with a lower frequency νtarget. This frequency defines the target frequency of the network.
The network will now be calibrated again with an approximate rate of νstart + νtarget,
resulting from the BM interconnections and Poisson noise. Here, νtarget is the rate of
the Poisson process and νstart is the approximate rate of the background generated by
interconnected BMs.
To start sampling, we again connect the BM networks and initialize with a Poisson

frequency of νstart. Since the network has been set up to sample with an approximate rate
of νstart + νtarget, the network will initially sample erroneously, as it receives background
with an approximate rate of 2 · νstart from both the BM interconnections and Poisson
noise. We accept this intentional discrepancy because the higher rate at the beginning
serves as a kickstart effect and asserts that network activity is maintained. After this
rate stability is assured at the beginning, the Poisson rate is reduced, according to

ν(t) = νstart −
νstart − νtarget

1 + exp
(
− t−tν

σν

) . (7.33)

The function describes a logistic decrease of the frequency ν(t), where νtarget defines the
target frequency, which will be set at the end of the process. The parameter tν = 5·103 ms
approximately defines the midpoint of the rate reduction and σν = 102 ms determines the
smoothness of the frequency reduction. As the Poisson rate decreases, the BMs provide
the main supply of stochasticity. Note that the network is set up to sample with a total
background Poisson rate of νtarget and the output spikes from other BMs, which are
approximated as νstart. After the Poisson rate reduction period we arrive at the correct
network firing frequency, as shown in Figure 7.21 (top). Remarkably, it is possible to
reduce the Poisson rate considerably almost without loss of sampling quality as long as
the networks have sufficiently strong network connections. Depending on the interaction
weights between the BMs, the performance can get close to the ideal Poisson-only case,
as seen in Figure 7.21(center, bottom).
These results suggest that a replacement of Poisson noise by BM-generated output

yields good sampling results, but the BM-output driven network still achieves visibly
lower performance than the Poisson-driven networks. The main cause for this are shared
noise correlations in the network, as indicated by the large spread of the histograms. Al-
though the network has a very sparse BM-to-BM connectivity, there are still correlations
left that distort the sampling mechanism. From the simulation of three-BM networks we
can see the evaluated distribution of correlation coefficients in Figure 7.23. The correla-
tions decrease with the increase of network size, leading to improved sampling. This can
be formalized by looking at the connectivity ε. In a sea of BMs with N neurons, each
neuron receives an average of ε · N inputs. A neuron pair then shares ε2 · N inputs on
average. In our networks, the total number of received inputs per neuron is set to

nin = ε · (NBM − 1) ·Nnrn = 20 . (7.34)

In Figure 7.23 we see histograms for BM networks with a BM count from NBM = 10
up to NBM = 150. Since the number of total inputs per neuron remains fixed at nin = 20,
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Figure 7.23: Shown are the pairwise correlation coefficient histograms of a sea of BMs.
(A) The sea of BMs generate their own background noise and the BM inter-
connections are governed by a random connectivity pattern. The correlation
coefficient distribution is centered around zero due to the random connec-
tivity between BMs, but is very broad due to shared input correlations. The
correlation coefficients were evaluated for random neuron pairs within a BM.
(B) A doubling in network size from 10 BMs (blue) to 20 BMs (red) de-
creases the spread of the distribution, since the number of interconnections
is kept constant and the probability of pairwise correlations within a BM
decreases. (C) With an increasing number of BMs and a constant number of
interconnections in the network, the histogram width (red) narrows further.
(D) For a network consisting of 150 BMs, the interconnectivity (ε = 5%)
and the spread decrease further. The blue distributions serve as comparison
to networks with higher connectivity. For all distributions, up to 500 neuron
pair correlations were evaluated. Figure is taken from Dold (2016).
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the connectivity decreases with ε ∝ 1
NBM

. Then the number of shared inputs decreases
with ε2 · NBM ∝ 1

NBM
. As a result, the correlation coefficient also decreases with an

increasing number of NBM, as seen in Figure 7.23.

These results already indicate a successful implementation of BM networks that can
sample without Poisson noise. We will aim to further improve the performance of sam-
pling without Poisson inputs by using the results from Section 7.1. In particular, we
have seen that the harmful impact shared input correlations can be mitigated by train-
ing Boltzmann parameters to suffice the pairwise firing statistics. Since our preliminary
training results in Section 7.1 showed potential, our goal will be to adapt the closed BM
networks to the inevitable shared noise correlations in closed networks.

7.6.3 Training Boltzmann machines without external noise sources

In all our simulations thus far we have included external noise sources at least at the
beginning of the simulation. We have started to slowly remove the Poisson input during
a simulation run, slowly adjusting the network to BM-generated background noise. Even
with only a negligible amount of external Poisson noise left, the network performed very
well. We will now run the network entirely without external noise and remove the shared
input correlations by training.

As stated before, a main concern regarding closed networks are the risks of network
activity divergence from the target activity. There are two potential scenarios that can
occur in a closed neural network. If the network activity is not sufficient to sustain all
network neurons, the activity will subside and eventually cease. Therefore, we need to
assert continuous network firing. In the second scenario, network activity can increase
disproportionately due to excessive firing until regular firing patterns persist and prohibit
stochastic inference. Such regular firing modes reduce stochasticity until sampling is not
possible anymore. To avoid both scenarios, we need to set up the interconnectivity of
BMs accordingly, considering two important network parameters. The first important
parameter is the ratio between inhibitory and excitatory connections that an LIF neuron
receives from other BMs as background, η =

Nsyn
inh

Nsyn
exc

. The second one is the connectivity of
the network, ε, which we discussed in the previous section. The lower the connectivity,
the sparser the network becomes and the less likely neuron pairs share a background
source. Combinations of both these parameters can be used to set up an appropriate
firing regime. Different firing modes of LIF-based Boltzmann machines were investigated
in (Korcsak-Gorzo, 2015) and showed that different configurations of these two param-
eters enable a variety of different firing modes. We will use these results and evaluate
the sampling quality of a closed network by varying η and ε. More general studies of
sparse network firing dynamics can be found in (Amit and Brunel , 1997b; Brunel , 2000;
Kumar et al., 2008b; Kriener et al., 2014; Deco and Jirsa, 2012).

In our simulations we will use smaller networks than in the previous section, since
training demands a time-consuming iterative simulation scheme. Our networks will con-
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Figure 7.24: (Top) The heatmap shows the network firing rate ν for a variation of the
connectivity (x-axis) and the ratio of excitatory and inhibitory synapse
strengths (inverted y-axis). The network firing rates are set to ≈ 50 Hz.
For a constant connectivity on the x-axis, the yellow regions of these sta-
ble firing rates are found for higher inhibition, i.e., higher g = |wi|

we
. As we

increase connectivity, these regions become smaller because synchronization
of inhibition occurs. The smaller g = |wi|

we
is chosen, the fewer kickstarting

neurons are initialized (i.e., neurons with above-threshold resting potential)
to ensure a reasonable firing activity. For low g values, the probability in-
creases for activity to cease (blue area). A higher connectivity ε on the x-axis
synchronizes the network and thereby limits the parameter region where the
target firing rate is robust. (Bottom) The number of kickstarting neurons
can be seen on the y-axis. For decreasing g, the number of kickstarting neu-
rons decreases. If g becomes too low, there is not sufficient excitation at the
beginning of the network simulation because there are too few neurons with
leak potential above threshold. This results in a low network firing rate, as
seen in the upper plot. For high g, there is an abundance of kickstarting
neurons, enabling the network to converge to the target firing rate ν. All in
all, the quantity of kickstarting neurons coincides well with the robustness
of the firing rate. Figure is taken from Dold (2016).
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7.6 Sea of Boltzmann machines: stochastic computing without noise sources

sist of 10 ten-neuron BMs that will be initialized without external input. We will vary
the parameters ε and g to investigate network dynamics. Again, the BM parameters are
drawn randomly from a beta distribution (see Appendix table A.10). To measure the
activation function, we initialize Poisson inputs with rates νinh = νexc = 700 Hz without
BM interconnections. After measuring the activation function of each network neuron,
we set the connectivity ε and inhibition/excitation ratio g. The connections are chosen
randomly, while the ratio g is set by randomly drawn excitatory weights from a beta
distribution within the interval µW ± σW . Here, µW is the mean of the distribution and
σW the interval of the beta distribution. We draw the absolute values of the inhibitory
weights from the same interval and rescale them according to ratio g. More information
on these parameters can be found in Dold (2016, Appendix 8.8.8).
We use the previously recorded spike trains as input for the interconnected network to

adjust the activation function to the added interconnections. The activation functions
are determined to a large degree by ε and g, since they influence the firing statistics of
every LIF neuron in the network. For a predominantly inhibitory setup with g > 1, the
network activity can only be maintained if the leak potential El is set to a value above
the spiking threshold θ. This is automatically adjusted during the mapping of the BM
parameters (W , b) to the LIF domain, as described in Section 5.2. Since the inhibitory
feedback is present during measurement of the activation function, the LIF leak potential
is set correspondingly to match the firing activity. For the parameter pair (ε, g), we have
found configurations at which stable network activity is asserted. Most importantly,
the ratio g determines the number of neurons starting with an above-threshold leak
potential, El > θ. The higher g is set, the more inhibition the network receives. The
LIF neurons are initialized with a high leak potential to counteract this high inhibition
rate from the interconnections. We can see the number of these kickstarting neurons in
Figure 7.24 (bottom) and their impact on the network firing rate. For a large parameter
regime of g and ε, the networks can be kickstarted reliably. In general, g > 1 yields a
stable network activity because there are more above-threshold neurons.

We have confirmed that networks can maintain activity without external noise, so
we can now address our initial concern of this section, namely reducing the correla-
tions by training to improve sampling. We evaluate the training algorithm by setting
up a network in which shared input correlations are the only source of correlations, i.e.,
(W = 0, b = 0). This way we do not introduce BM-weight-related correlations, which
could mask the correlations introduced by shared inputs from BM interconnections. We
use 40 ten-neuron BMs in the unconnected network. The interconnections between the
BMs will have connectivity ε = 5.2% and weight ratio η = 4. The measurement protocol
of the activation function will be according to the description in the previous section.
First, we will use Poisson sources with a frequency of νinh = νexc = 700 Hz without
setting BM interconnections and record the resulting network spike trains. We then
set interconnections and use the spike trains acquired from the previous Poisson-driven
simulation run. Then we again record the activation function and readjust the LIF pa-
rameters according to the simulation run with interconnections. Now there will be no
external Poisson sources during the sampling process, and only BM interconnections pro-
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7 Stochastic neural networks without stochastic input

vide background input. The network activity is kickstarted by above-threshold neurons
with predominantly inhibitory connections (η = 4). We know from the simulations in
Figure 7.23 that correlations persist. To cancel out these correlations, we will train the
BM parameters (W , b) with the CD algorithm as described in Section 7.5.5,

∆W ij = η(ttrain) [p(zi = 1, zj = 1)target − p(zi = 1, zj = 1)net] , (7.35)
∆bj = η(ttrain) [p(zi = 1)target − p(zi = 1)net] . (7.36)

Again, we refer to p(zi = 1, zj = 1) as probabilities of correlated pairwise firing. We
do not use Ising states here, since we already know that training (W I, bI) and (W , b)
parameters is equivalent for the CD scheme. The learning rate η(ttrain) is a function of
training iterations ttrain,

η(ttrain) =
400

2000 + ttrain
. (7.37)

The functional shape and parameters in η(ttrain) have been set after correspondance
with Luziwei Leng and are a result of parameter sweeps. The differences in η(ttrain)
compared to the learning rate in Equation 7.30 result from different network sizes and
connectivity. The decline of the learning rate asserts that the parameter changes do
not overshoot into a particular direction after a training step. This lowers the risk of
paramter fluctuation during training.
As in Section 7.5.5 we train the pairwise firing probabilities p(zi = 1, zj = 1)

between neuron pairs i and j. In a Poisson-driven network, the probability distribu-
tion is uniformly distributed and the correlation coefficient is zero, since we have set
(W = 0, b = 0) for now. We train the LIF network for 500 training steps according to
Equations 7.35, 7.36 to eliminate the correlations. The results in Figure 7.25 (top) show
the evolution of pairwise correlation coefficients between randomly drawn neuron pairs
from the same BM. The correlations decrease significantly already after several hundred
training iterations. The trained network has a correlation coefficient distribution that
becomes very similar to the one from the ideal Poisson case.

After we have minimized the correlations in our closed network, we will use a similar
setup to reevaluate the sampling performance of the trained network. This time we
set up a practical case with nonzero BM parameters, (Wtarget, btarget), drawn from
the beta distribution (see Appendix A.8) with a weight amplitude W0 = 2. Again,
the total number of background inputs per neuron is set to 20 with a connectivity
ε = 5.2%. The setup of LIF parameters via measurement of the activation function,
as well as the training scheme, are performed in the same way as in the previous
simulation. A comparison of the resulting DKL to Poisson-driven sampling can be
seen in Figure 7.26. Note that the trained BM parameters (Wnet, bnet) are different
from (Wtarget, btarget), since they were modified during training to minimize the impact
of shared input correlations. We have also compared our trained networks to trained

154



7.6 Sea of Boltzmann machines: stochastic computing without noise sources

Figure 7.25: (Top) The evolution of the pairwise correlation coefficient is shown during
the training of 40 ten-neuron Boltzmann machines with (W = 0, b = 0).
The training was performed using the contrastive divergence algorithm (CD,
Equations 7.35, 7.35). Since the LIF neurons in a BM have no connections,
the only sources of correlation are shared background inputs. Training the
Boltzmann parameters in 500 training steps minimizes these correlations sig-
nificantly already after 200 training iterations. (Bottom) The histograms
show a comparison of the correlation coefficients before (blue) and after
(red) training the network. The training after 500 iterations shows substan-
tial improvement and yields results similar to the quality of a Poisson-driven
network. Figure is taken from Dold (2016).
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7 Stochastic neural networks without stochastic input

Figure 7.26: Comparison of the sampling performance of different network realizations.
The DKL serves as a measure for performance on the log-log scale. An un-
trained sea of BMs (dashed red) shows poor performance, as untreated corre-
lations distort the sampled probability distributions. An untrained Poisson-
driven network (dashed blue), although performing significantly better than
an untrained sea of Boltzmann machine, still suffers from weight-induced
systematic deviations. The trained networks show a remarkable improve-
ment compared to the untrained networks. As expected, trained Poisson
networks (blue) show the lowest DKL. The trained sea of BMs (red), how-
ever, still performs better than untrained Poisson-driven networks and a
close to the Poisson-driven case in terms of sampling performance. The re-
sults are averaged over all BMs in the network. The colored areas mark the
interval between the 15th and 85th percentile over all DKL measurements.
Figure is taken from Dold (2016).
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7.6 Sea of Boltzmann machines: stochastic computing without noise sources

Figure 7.27: (Left) Shown are the weights and biases from the simulation runs of Fig-
ure 7.26. The parameters were selected randomly from the set of trained
parameters (Wnet, bnet). The weights converge after only ≈ 100 training
steps and remain stable. (Right) The convergence of the biases could be
improved, potentially by introducing a more elaborate training scheme while
keeping the number of training iterations low. Still, the trained networks
perform very well, as shown in Figure 7.26. Figure is taken from Dold
(2016).

Poisson-driven networks and conclude that the quality is very similar. As we found
out in Section 7.5.5, training not only removes shared input correlations, but also miti-
gates systematic deviations caused by the obligatory BM-to-LIF parameter translation.
Therefore, even a Poisson-driven network benefits immensely from training. We can see
the convergence of the trained weights and biases of the sea of BM network in Figure 7.27.

In conclusion, we can state that it is possible to sample from BMs without external
noise sources, using only network-inherent activity. Here, the BM-generated spike trains
that are used for encoding probability distributions are also used as stochastic background
sources. This underlines the unification of two important aspects in computational neu-
roscience that are often regarded as separate network components: information encoding
on one side, and the network-driving stochasticity on the other side. We have devel-
oped a framework where sampling is accomplished in a closed system without external
stochasticity. Further studies regarding the stability of network activity can be pursued
to characterize the robustness of these closed systems extensively. In terms of network
parameters, high g ratios increase the number of above-threshold neurons (kickstarting
neurons), whose activity increasess the robustness of the network. Note that our network
configurations are different from network setups in studies of so-called self-sustained net-
works (Kumar et al., 2008b; Kriener et al., 2014). These studies implemented the leak
potentials of the LIF neurons below spiking threshold and incorporated strong inhibition
with delays. This guaranteed asynchronous irregular firing modes, which are important
firing modes observed in biology. Since delays are not compatible with the LIF sampling

157



7 Stochastic neural networks without stochastic input

paradigm (see Figure 6.12), we cannot use them to decorrelate the network to a substan-
tial degree. We have already seen in the hardware implementation in Section 6.4 that
delays distort the sampled distribution. However, in (Korcsak-Gorzo, 2015) it was shown
that asynchronous irregular firing modes can also be established in Boltzmann machine
networks without delays.
At this point we can conclude that the training of the network, even in its simplest form,

can fundamentally restructure the network to adapt to persistent correlation structures
of the underlying substrate.
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In the present work we focused on stochastic computing as a key component of neural
computation. Our aim was to explore the potential of biological architectures and mech-
anisms to perform stochastic inference using spiking neurons. In these networks, we have
also seen how dynamics facilitated by adaptation and short-term plasticity improve their
performance in the computational task they solve.

8.1 Cortical attractor networks

Our initial approach in Chapter 3 was to evaluate the capability of an AdEx-based
cortical network to solve inference tasks. In this model, the network stores and retrieves
information by switching between an irregular firing mode and so-called attractor states
(Section 3.1). To quantify the performance of the network on pattern completion tasks,
we have introduced the so-called memory characteristic (Section 3.3). The memory
characteristic is a meaningful measure because it characterizes a general attribute of
networks, namely their proficiency to store and retrieve information after stimulus is
received. In this measure, the network size and the number of stimulated columnar units
during the task are taken into account. For an increasing number of stored patterns,
the interpretation of network states, and conclusively, the assessment of the performance
became increasingly difficult (Section 3.5.1). By changing the existing conditions for
attractor state detection, we were able to evaluate the network performance even for
high pattern densities. The memory characteristic could be applied as an universal
benchmark tool to compare the storage and retrieval performance of different network
architectures.

8.2 The behavior of leaky integrate-and-fire neurons under
stochastic stimulus

In Chapter 3 the evaluation of cortical network states was difficult to achieve for high
pattern densities. To understand network dynamics, a reasonable approach is to first
fully characterize single neuron dynamics in the irregular, spontaneous cortical firing
regime. Since an analytical description of AdEx firing activity is not possible, our goal
in Chapter 4 was to formalize the stochastic firing dynamics of single LIF neurons in the
biological high-conductance state, as such states are observed in cortical in-vivo networks
(Section 4.3). We have provided a novel description of the firing statistics of a LIF neuron,
which enabled us to predict the activation function for a wide range of parameter regimes,
for which a prediction was not possible by using existing approaches (Brunel and Sergi ,
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1998; Moreno-Bote and Parga, 2004). In particular, our approach allows us to consider
burst firing modes that are characterized by strong autocorrelations due to long synaptic
time constants. This characterization could even be extended to provide an analytical
description of cross-correlations between neuron pairs resulting from shared input.

8.3 Probabilistic computing with leaky integrate-and-fire
neurons

The properties of LIF neurons in the high-conductance state enabled us to build networks
that perform stochastic inference, as described in Chapter 5. We have derived precise
translation rules between an abstract sampling domain and the LIF domain. This con-
figuration requires a translation between the neuron and synaptic parameters of LIF
networks and Boltzmann parameters (Section 5.2). This allows us to use LIF neurons to
sample from the general class of Boltzmann probability distributions (Section 5.2). As we
have shown, LIF-sampled distributions converge reliably to their target distribution even
in more extreme regimes, such as strong weights and high connectivities. Moreover, we
have also shown their robustness to variations of many LIF neuron and synapse param-
eters as long as the membrane potential reacts sufficiently fast to synaptic input. This
is an attribute of the membrane potential during the high-conductance state (Sections
5.4, 5.5). It should be pointed out that an important difference to biological constraints
is the violation of Dale’s principle in Boltzmann machines, since Boltzmann units can
exhibit excitation and inhibition to their postsynaptic partners. In cortical architectures,
such as the ones described in Chapter 3, inhibitory and excitatory interaction is carried
out by different populations in the minicolumns, thereby obeying Dale’s principle. To
adapt to such biological constraints, implementations of LIF-based sampling networks in
cortical L23 architectures can be explored. Such network architectures could potentially
provide a conceptual link between both domains, sampling spiking neurons and cortical
computation.

8.4 Applications of leaky integrate-and-fire Boltzmann
machines

Using the LIF-based sampling framework, we have built generative models of the MNIST
data set using a restricted Boltzmann machine topology (Section 6.2). The classifica-
tion rates of LIF-based RBMs (96.4%) are similar to Gibbs-sampled networks (96.7%),
using one hidden layer for feature encoding. While the discriminative performance of
both models is similar, the Gibbs-based model suffers from a low state transition rate
during the training. The potential walls in the energy landscape impede transitions
towards other high-probability states. To compensate for this disadvantage, the Gibbs
algorithm is often extended by tempering mechanisms, such as CAST. This requires
additional computational effort, as it is necessary to reshape the energy landscape to
improve the generative properties (Section 6.2.1). The LIF-based generative model uses
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short-term plasticity to locally reshape the energy landscape and overcome potential
barriers. This enables the LIF-based network to traverse between high-probability modes
more efficiently and achieve a better generative performance. Moreover, the short-term
plasticity mechanism enables LIF networks to adapt to heterogeneous data sets. In
such data sets, some classes are overrepresented, including more training data. LIF
networks sample from all classes with the same frequency because short-term plasticity
reshapes the energy landscape as soon as the network stays too long in a certain mode
that represents a class (Section 6.2.2). In the Gibbs sampling case, such homogenization
requires additional preprocesing of the target data set.
Although the performance of LIF-based sampling is already very good, it could be further
improved by introducing modulation of the noise input to LIF samplers. This would
be analogous to an annealing mechanism. We have seen that the inverse temperature
β = 1

kT is an important property in Boltzmann distributions (Section 6.2.1). For single
Boltzmann units, it determines the slope of the activation function and thereby the
probability of state transitions. In background-stimulated LIF networks, the slope of the
activation function depends on the amount of presynaptic noise input. This establishes
an analogy between the functional role of temperature in physical systems and noise in
neural networks. For instance, to facilitate improbable state transitions during sampling,
the amplitude of background noise could be modulated, controlling the transition rate
in the networks. Such a mechanism could be used to identify the functional role of
time-dependent modulation of diffusive input in neural networks.

Above we have pointed out the benefits of spiking neurons with biology-inspired mech-
anisms compared to conventional sampling algorithms. A key reason for the efficiency
of biological networks is a substrate which respects the parallel computing architectures
of biological networks. In contrast to simulations, the dynamics of the sampling units
evolves in parallel, allowing to increase the network sizes while maintaining a constant
network runtime. Our platform of choice, the Spikey chip, offers a speed-up factor of 104

compared to biological networks. For our stochastic networks, this speed-up increases
the convergence speed of the sampled distributions towards the target distributions.
Different to simulation, physical delays are inevitable on neuromorphic hardware and
fundamentally violate the representation of states assumed in the sampling framework
(Section 6.4). To adjust our sampling networks to finite delays, we have modified our net-
work architecture by implementing an artificial refractory mechanism that is controlled
by auxiliary neuron pools. We have implemented Boltzmann machines of three random
variables and demonstrated fast convergence of the sampled probability towards the tar-
get probability distribution (Figure 6.15). Despite the limitations imposed by physical
delays, neurons on the Spikey chip could still be used as the hidden layer of an RBM
architecture, since there are no intra-layer connections. In such a setup, the device could
be used as a classifier for data provided by a connected host computer.
For a neuromorphic implementation of multiple layers, a wafer-scale platform offers sev-
eral advantages. In the case of the BrainScaleS system (Section 6.4.2), the refractory
times can be set sufficiently long to neglect the present physical delays during sampling.
The network runtime is also accelerated by a 104 speed-up and offers a flexible config-
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urability of the neuron and synapse parameters. Due to the large number of parameters
in large scale networks, there is a need for automatized training procedures during which
the hardware parameters are adjusted to suffice a predefined functionality metric. This
so-called in-the-loop software framework is currently developed in the VISIONS group
and implements such a training procedure. A representational network, such as the LIF-
based RBM, could be trained to discriminate images, with the functionality metric being
the classification rate. We have already demonstrated the contrastive divergence update
rules for an iterative adjustment of network parameters. However, it would be beneficial
to explore more biology-oriented training mechanisms, like the so-called spike-timing-
dependent plasticity (STDP) mechanism. Combining on-line training with contrastive
divergence update rules could further boost the efficiency of inference on hardware, since
the network would not need to be reset after a parameter update. Instead, synapses
would be adjusted during a single hardware emulation run according to correlations in
post- and presynaptic firing patterns. To combine the STDP mechanism with training
methods, work has already been done and is currently ongoing (Weilbach, 2015).

8.5 Noise correlations

In the previous sections we have presented our results in implementing sampling-based
inference using spiking neurons. So far, in the investigated networks, the functional
role of noise consisted in generating a stochastic firing regime for LIF neurons in high
conductance. In general, temporal noise is either an intrinsic property of the network
constituents (i.e., neurons and synapses) or is introduced externally. In our software
simulations in both the L23 network in Chapter 3, and in the LIF-based Boltzmann
machines, the stochasticity was implemented via presynaptic Poisson sources. In Chap-
ter 7, our initial motivation was to transfer large-scale networks on a wafer-scale system.
Due to bandwidth limitations on the hardware, it is not possible to supply each of the
network neurons with temporal noise (Section 7.1). As a result, network neurons receive
common noise sources and exhibit correlated spiking dynamics as a consequence. This
raises the question whether these correlations reduce the sampling performance of the
networks. This question can be regarded in a more general context, since it affects
every stochasticity-driven network. Therefore, we investigate how shared noise-induced
correlations affect the computational properties of noise-driven spiking networks. In
Section 7.3, we show that temporal noise does not only serve as means to maintain
stochastic firing modes in networks, but that it can also play an active role to transmit
information. More precisely, the functional role of shared noise can be regarded the same
as synaptic weights. We show that an LIF neuron pair that shares background noise has
the same computational properties as a pair with a synaptic connection. To show this
for sampling units, we translate the network parameters (W , b) with states z ∈ {0, 1}
to the Ising model domain with states zI ∈ {−1, 1} (Section 7.4). Due to this functional
equivalence between synaptic weights and shared sources, the effects of both can be
described by one correlation coefficient (Figure 7.9). We demonstrate the equivalence in
two cases. Firstly, we compensate for present shared noise-induced correlations by in-
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troducing additional, counteracting synaptic weights (Figure 7.7). Secondly, we define a
target distribution which implies nonzero connectivity (W I 6= 0) and successfully sample
from the distribution without connecting the neuron pair (Figure 7.8). This means that
noise decorrelation and computation do not need to be carried out by separate network
architectures, but could be carried out in one network where shared noise and synaptic
weights fulfill corresponding roles.

The equivalence of synaptic properties and shared noise also implies that a network
can adapt to an imprinted noise architecture to fulfill a certain computational task. We
confirm this assumption in Section 7.5.5, where we train LIF networks to adjust to a
predefined shared noise configuration. We show that it is possible to adapt the network
to an environment with an imprinted correlation structure by training its network pa-
rameters, (W , b) (Figure 7.11). Additionally, by training the network to sample from a
target distribution p(z), we also remove LIF sampling-specific systematic deviations that
we have discussed in Section 5.2.1. During training, the network parameters are adjusted
to minimize the distance to the target distribution, measured by the Kullback-Leibler
divergence (DKL).

Addressing the initial problem of how to deal with the inevitable shared noise cor-
relations on neuromorphic hardware, a potential solution would consist in introducing
weights and train the network to adapt to the present noise input topology. This differs
from existing decorrelation approaches, where additional decorrelating networks are
implemented (Section 7.2).

In the results above, we have argued that shared noise sources can assume the same
computational role as synaptic weights. Also, we have shown that networks can be
trained to sample in the presence of shared noise in Section 7.5.5. This leads to the ques-
tion whether external noise sources are needed at all for computation. Since networks
are able to adapt to shared noise correlations, in principle, networks could be trained
to adapt to a setup in which the noise is generated within the network itself without
any external noise sources. In Section 7.6 we propose the so-called sea of Boltzmann
machines, which is a network consisting of many interconnected Boltzmann machines.
In such a network, each Boltzmann machine samples from a target distribution and pro-
vides its output spike trains as background noise for other Boltzmann machines in the
sea. Of course, shared input correlations arise in the network, potentially affecting the
sampling properties. In Section 7.6.3 we train the network to sample without external
noise sources, but only using spike trains that are generated within the network. We
retain a sampling quality that is similar to a network which receives external Poisson
sources (Figure 7.26) and thereby show that sampling networks can adapt to shared
input correlations even in such an extreme case (Figure 7.25).

In the sea of Boltzmann machines, we unify all three network functionalities - compu-
tation, generation of stochasticity and adaptation to correlations. The network performs
computation by sampling and utilizes the output spike trains to preserve the stochastic
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firing modes which are crucial for sampling. The same firing patterns can be used to
iteratively train the BM parameters to adjust to correlated firing patterns. We show
that temporal noise is not merely a prerequisite to provide the ground for stochastic
computation in spiking networks, but is a substantial part of computation.
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A.1 Acronyms

AdEx Adaptive exponential leaky integrate-and-fire

AI Asynchronous irregular

ANM Abstract neuron model

API Application programming interface

AST Adapted simulated tempering

BAS Basket cell

BM Boltzmann machine

CAST Coupled adapted simulated tempering

CC Pearson product-moment correlation coefficient

CD Contrastive divergence

CV Coefficient of variation

DAC Digital-to-analog converter

denmem Dendritic membrane

DKL Kullback-Leibler divergence

DNC Do not connect

EPSP Excitatory postsynaptic potential

FPGA Field-programmable gate arrays

FPT First-passage time

HC Hypercolumn

HCS High-conductance state

HICANN High Input Count Analog Neural Network
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IPSP Inhibitory postsynaptic potential

ISI Interspike interval

LFSR Linear feedback shift register

LHS Left-hand side

LIF Leaky integrate-and-fire

L23 Cortical layer 2/3 network

MC Minicolumn

MCMC Markov chain Monte Carlo

MNIST Mixed National Institute of Standards and Technology

NCC Neural computability condition

NEST Neural Simulation Tool

ODE Ordinary differential equation

OU Ornstein-Uhlenbeck

PCD Persistent contrastive divergence

PSC Postsynaptic conductance

PSP Postsynaptic potential

PYR Pyramidal cells

RBM Restricted Boltzmann machine

RHS Right-hand side

RSNP Regular spiking non-pyramidal cells

RV Random variable

SBS Spike-based sampling

STD Short-term depression

STP Short-term potentiation

TSO Tsodyks-Markram model

t-SNE t-distributed stochastic embedding

VLSI Very-large-scale integration

WTA Winner-take-all
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A.2 Cortical layer 2/3 simulation parameters

We provide simulation parameters for the presented results in Chapter 3. Note that
the technical information in this section is taken from Rivkin (2014). The technical
information in Section A.2 has been taken from the supplementary material in Rivkin
(2014).

Table A.1: Fitted neuron parameters for the L23 model. In each MC module there are
30 PYR cells, two RSNP cells and one BAS cell.

Parameter PYR RSNP BAS Unit

Cm 0.179 0.0072 0.00688 nF
Erev
exc 0.0 0.0 0.0 mV

Erev
inh -80.0 - - mV

τm 16.89 15.32 15.64 ms
τref 0.16 0.16 0.16 ms
τsyn, exc 17.5 66.6 6.0 ms
τsyn, inh 6.0 - - ms
ρ -60.7 -72.5 -72.5 mV

-61.71 -57.52 -56.0 mV
a 0.0 0.28 0.0 nS
b 0.0132 0.00103 0.0 nA
θ 0.0 0.0 0.0 mV
τw 196.0 250.0 0.0 ms
Espike -53.0 -51.0 -52.5 mV
VT - - - mV

Table A.2: Connectivities between L23 populations, synaptic and plasticity time con-
stants.

Pre-Post type weight [µS] τsyn [ms] U τrec [ms] τfacil [ms]

PYR-PYR (local) exc 0.004125 17.5 0.27 575. 0.
PYR-PYR (global) exc 0.000615 17.5 0.27 575. 0.

PYR-BAS exc 0.000092 6.0 - - -
PYR-RSNP exc 0.000024 66.6 - - -
BAS-PYR inh 0.0061 6.0 - - -
RSNP-PYR inh 0.0032 6.0 - - -

background-PYR exc 0.000224 17.5 - - -
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Table A.3: Stimulus parameters for the L23 model.

Background

# of sources per PYR 1
rate 300 Hz

weight 0.000224µS

Stimulus during pattern completion

# of sources per MC 5
pL4→PYR 0.75
weight 0.0012375µS

(30% local PYR→PYR)

Table A.4: Original network structure: connection probabilities.

within an MC

PYR → PYR 0.25
RSNP → PYR 0.70

between MCs inside the same HC

PYR → BAS 0.70
BAS → PYR 0.70

between MCs in different HCs

PYR → PYR 0.30
PYR → RSNP 0.17

Table A.5: Parameters applied during the evaluation of pattern completion.

Parameter Value or formula

time frame after stimulus 500 ms
minimum on-state duration 100 ms
pre-stimulus buffer time 500 ms
typical on-state duration 300 ms

168



A.3 The behavior of leaky integrate-and-fire neurons under stochastic stimulus

Table A.6: Parameters applied during the evaluation of pattern completion.

Parameter Value or formula

time frame after stimulus 500 ms
minimum on-state duration 100 ms
pre-stimulus buffer time 500 ms
typical on-state duration 300 ms

cone - lower border RSNP rate = 4.5·PYR rate
cone - upper border RSNP rate = 30·PYR rate
tolerance amount 14 MC states

A.3 The behavior of leaky integrate-and-fire neurons under
stochastic stimulus

The technical information in this section is taken from the supplementary material of
Petrovici et al. (2013). The simulations have been performed with the parameters below,
if not stated otherwise in the main text. The choice of parameters is similar to parameters
in Naud et al. (2008).

Cm 0.1 nF membrane capacitance
gl 5 nS leak conductance
El -65mV leak potential
ρ -53mV reset potential

Erev
exc 0mV excitatory reversal potential

Erev
inh -90mV inhibitory reversal potential
θ -52mV threshold voltage
τsyn 10ms synaptic time constant
τref 10ms refractory time constant

Table A.7: Neuron parameters used for the simulations in the main manuscript. The
parameters apply to simulations in Chapters 4, 5, 7.

The synaptic background noise was implemented as presynaptic spike stimulus by in-
hibitory and excitatory Poisson stimuli with rates νinh = νexc = 5000 Hz. The excitatory
synaptic weight for the noise stimuli was set to wp exc = 0.0035µS. The inhibitory weight
wp inh was adjusted to result in p(zk = 1) ≈ 0.5 without current stimulus. For above
parameters, this happens at an average free membrane potential of Vg = −55 mV. This
determines wp inh according to

∣∣∣∣Erev
inh − Vg

Erev
exc − Vg

∣∣∣∣ =
wp exc

wp inh
. (A.1)

169



A Appendix

A.4 Probabilistic computing with leaky integrate-and-fire
neurons

We draw the Boltzmann parameters (W , b) from a beta distribution B(a, b), where we
vary constants a and b. These constants determine the inclination and symmetry of the
probability density of the distribution. We mainly use symmetric distributions in this
work because we want symmetric conditions between positive and negative parameters
(W , b).

Figure A.1: The beta distribution B(a, b) − 0.5 is shown for different parameters a and
b. These parameters determine the slope and and inflection of the prob-
ability density. For our setups, we draw our Boltzmann parameters from
distributions with a = b, since it ensures a symmetry of positive and nega-
tive Boltzmann parameters. In particular, for a = b = 0.5, the distribution
yields BM parameters that are predominantly drawn close to the edges of the
parameter ranges. The probability to draw BM parameters close to the ori-
gin is low. This way we ensure that the mapped BMs are not trivial uniform
distributions. Figure is adapted from Commons (2014).

We map the drawn weight and bias values to a parameter interval, (Wij , bi) ∈ [c, d].
This means that we are mapping the beta distribution to a specific parameter range. The
purpose of the beta distribution is to yield parameter values that are bounded to a certain
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interval. We choose parameters from a distribution to collect a randomized sample size of
the quality of BM networks. To draw random parameters, we need to consider a suitable
probability function. Unbounded probability densities (e.g. Gaussians) are inadequate
for this purpose, since samples are not bounded. Drawing from unbounded probability
distributions could yield arbitrarily large weights and biases. This would destroy network
dynamics. In the beta distribution, the constants c and d are set to match the interval
in the distribution B(0.5, 0.5) and are mapped linearly to the interval [−0.6, 0.6]. More
specifically, the parameters are drawn according to

bi,Wij ∼ 1.2 · [B(0.5, 0.5)− 0.5] . (A.2)

Here, we draw from a beta distribution B(0.5, 0.5) and shift it by −0.5 to center the
distribution to the origin. We increase the amplitude of sampled weights and biases
(without increasing the range) by 1.2. This makes the probability distribution symmetric
so that positive and negative weights and biases have an identical probability to be drawn.

For the large-scale distributions shown in Figure 5.5 we have also drawn from a beta
distribution. In Figure 5.5, for each simulation we have drawn the biases according
to bi ∼ 1.2 · [B(0.5, 0.5)− 0.5]. For small weights (Figure 5.5A) we have drawn Wij ∼
0.6·[B(0.5, 0.5)− 0.5], for intermediate weights (Figure 5.5B)Wij ∼ 1.2·[B(0.5, 0.5)− 0.5]
and for large weights Wij ∼ 2.4 · [B(0.5, 0.5)− 0.5] (Figure 5.5C).

A.5 Stochastic computing with leaky integrate-and-fire
Boltzmann machines

The training algorithm used to produce the results in Figure 6.2 C,D was a contrastive
divergence algorithm which was trained on a Gibbs sampler, initialized with (W =
0, b = 0). The number of training steps amounted to Ttrain = 20000. We used a linearly
decreasing learning rate η = 5 ·10−4 until T12 = 10000, and then a constant learning rate
η12 = 10−4 was applied.
In Figure 6.2C the network states z(t) from the simulation are projected onto a basis

B:

z034(t) = (B0 · z(t),B3 · z(t),B4 · z(t))T . (A.3)

For a representation in two dimensions, the vector z034(t) is projected onto plane
coordinates,

zproj(t) =

(
sin(φ0

B) sin(φ3
B) sin(φ4

B)
cos(φ0

B) cos(φ3
B) cos(φ4

B)

)
z034(t) (A.4)

with (φ0
B, φ

3
B, φ

4
B) = (0, 2π

3 ,
4π
3 ) being parallel to the basis vectors. On these basis vectors,

the three digits are projected. In Figure 6.2C, the network is run in total for 4000 ms,
where we take samples of z(t) taken every 2 ms. This means that on the projection plane,
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we see a total of 2000 states (blue dots). We have confirmed that this simulation runtime
is sufficiently long to represent a meaningful distribution of the Markov Chain.
We can also confirm that most states in the prior distribution are clustered around

the digit states (0, 3, 4). To show the state transitions of the Markov Chain, we have
illustrated the network states z(t) as a red trajectory. The red trajectory connects 100
network states that are projected on the plane. The total time interval is 200 ms.

The snapshots at the left of Figure 6.2C represent averaged states taken during the
projection time interval of 200 ms and show the states of the red trajectory. We average
the pixels of the snapshots over a time window of 25 ms with

z̄k(t) =
1

25 ms

∫ t+12.5 ms

t−12.5 ms
zk(t

′) dt′. (A.5)

The intervals between the snapshots were 25 ms during the total simulation time.

In Figure 6.2D we add incomplete input into the network. We activate four pixels
with a positive current, which are located at the center of the image. More precisely,
the pixel indices are I = {77, 78, 79, 80} if the pixel counter starts at the top-left and
proceeds row-wise. The current amplitude is constant for all four pixels, Ipx = 0.831 nA.
For Figure 6.2D we have used the same projection methods that we have described above
for Figure 6.2C. We can refer to this input as “ambiguous” in the sense that it activates
the 3- and 4-modes. Since positive current causes an excitation, the pixels in the center
indicate that the inferred digit is either a “3” or a “4”. This is what the network infers
and what is seen in the projected states, which are more concentrated in the “3” and “4”
domains.

A.6 Stochastic neural networks without stochastic input

The single neuron parameters in Sections 7.5.5, 7.2, 7.3, 7.4, 7.5.1, 7.5.2, 7.5.3, 7.5.4
and 7.5.5 were chosen according to the default parameters in Table A.7, if not stated
otherwise in the main text. The parameters for the Boltzmann machine have been drawn
from a beta distribution, as described in A.4.

A.6.1 Sea of Boltzmann machines: stochastic computing without noise
sources

The full parameter list of Section 7.6 are taken from Dold (2016). The parameters used
for Section 7.6 will be described in the following tables.
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Table A.8: The single LIF neuron parameters below are used in Section 7.6.1. The re-
spective results are shown in Figures 7.14, 7.14, 7.15 and 7.16

Cm 0.2 nF membrane capacitance
τm 0.1 ms membrane time constant
Erev
exc 0.0 mV exc. reversal potential

Erev
inh -100.0 mV inh. reversal potential
θ -50.0 mV threshold potential
τsyn 10.0 ms exc. synaptic time constant
EL -50.0 mV leak potential
ρ -50.01 mV reset potential
τref 10.0 ms refractory time
Ioffset 0.0 nA offset current
winh/exc 0.001 µS Poisson noise weights

Table A.9: For Figures 7.22, 7.21, 7.25, 7.26 and 7.27 the below LIF neuron parameters
are used. The simulations can be found in Sections 7.6.1, 7.6.2 and 7.6.3.

Cm 0.2 nF membrane capacitance
τm 1.0 ms membrane time constant
Erev
exc 0.0 mV exc. reversal potential

Erev
inh -100.0 mV inh. reversal potential
θ -50.0 mV threshold potential
EL -50.0 mV rest/leak potential
τsyn 10.0 ms inh. synaptic time constant
ρ -50.1 mV reset potential
τref 10.0 ms refractory time
Ioffset 0.0 nA offset current
winh/exc 0.001 µS Poisson noise weights
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Table A.10: For the closed-network simulations in Figures 7.25, 7.26, 7.27 we used the
below simulation parameters. The simulations are described in Section 7.6.3.
Note that there are no Poisson sources used. The beta distribution beta(a, b)
is described in Section A.4.

#BMs 40
#neurons per BM 10

g 4.0
ε 5.13%
η 0.5
µW 0.001 µS
σW 0.001 µS

weight distr. 0.0 or 2.0 ·
(
B(0.5, 0.5)− 0.5

)
bias distr. 1.2 ·

(
B(0.5, 0.5)− 0.5

)
calibration time 105ms
sampling time 105ms
training steps 1200
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