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Abstract

Current developments of multi-omics technologies greatly accelerate advancements
in the field of cancer research. They not only allow us to unravel the complex
biology of tumors, but are also a huge step towards precision oncology, where a
personalized treatment is proposed based on the tumor’s unique combination of
molecular features. Heterogeneity present both within a single tumor and between
patients with the same disease pose serious challenges to treatment success and trial
design, as many factors influencing drug response in cancer remain unknown.

The work presented here investigated the diversity of drug response profiles and
their associations with the underlying molecular features of 273 primary cancer sam-
ples. The analysis combined data from high-throughput drug profiling of 90 com-
pounds with multi-omics comprising exome sequencing, RNA sequencing and methy-
lation profiling.

The analysis of various hematological malignancies uncovered a rich landscape
of phenotype-genotype relationships. Targeted inhibition of, for example, CHK,
SERCA, BCL2 and survivin revealed disease-specific pathway dependencies within
B- and T-cell lymphomas. Moreover, the observed similarity of drug response pro-
files identified unexpected activity of compounds including CHK inhibitors, which
implied to act through B-cell receptor (BCR) signaling pathway. By focusing specif-
ically on chronic lymphocytic leukemia, dissection of the molecular fundamentals
of known biomarkers was possible. Drug response measured ex vivo confirmed the
biological relevance of major predictors of patient clinical outcome: the sensitivity
of IGHV unmutated samples to BCR inhibition and the resistance of TP53 mutated
samples to chemotherapy and nutlin-3. Susceptibility of trisomy 12 cases to SYK,
BTK, PI3K and MEK inhibitors suggested a mode of action through amplification of
BCR pathway signaling. Additionally, the study proposed possible targeting options
for recurrently mutated genes, such as BRAF, CREBBP and PRPF8. Multivariate
analysis estimated the contributions of mutations, RNA expression and DNA methy-
lation to our power to predict drug response. Finally, drug response was shown to
be valuable and frequently superior to established biomarkers in predicting patient
clinical endpoints.

In summary, the combination of viability screening with multi-omics profiling is
a powerful tool for studying disregulated signaling pathways in cells. Ex vivo drug
profiling performed on primary cancer samples has proved to be a proxy of true
biology. Together with faithful reproducibility of measurements this shows great
promise in directly advancing precision oncology.
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Zusammenfassung

Aktuelle Entwicklungen im Bereich der “omik”-Technologien tragen wesentlich zur
Beschleunigung des Fortschritts in der Krebsforschung bei. Diese Entwicklungen er-
möglichen nicht nur die Entschlüsselung der komplexen Tumorbiologie, sondern stel-
len auch einen großen Schritt nach vorn bzgl. der personalisierten Onkologie dar, die
eine individuelle Behandlung eines jeden Tumors, basierend auf dessen einzigartigen
molekularen Eigenschaften zu ihrem Ziel hat. Heterogenität, sowohl auf der Ebene
des einzelnen Tumors, als auch zwischen verschiedenen Patienten mit der gleichen
Krankheit stellt eine große Herausforderung sowohl für die Behandlung von Patien-
ten als auch für die Planung wissenschaftlicher Studien dar, da viele Faktoren, die
die Wirkung bestimmter Medikamente beeinflussen, nach wie vor unbekannt sind.

Die vorliegende Arbeit untersucht Dosis-Wirkung-Zusammenhänge und deren
Wechselwirkung mit molekularen Eigenschaften anhand von 273 primären Tumorpro-
ben. Die Analyse verbindet dabei Daten aus der Hoch-Durchsatz-Charakterisierung
von 90 Wirkstoffen mit verschieden “-omik”-Messungen: Exome- und RNA-Sequen-
zierung, sowie Methylierung.

Die Analyse verschiedener hämatologischer Tumore führte dabei zu einer Ent-
schlüsselung eine großen Zahl von Verbindungen zwischen Genotyp und Phänotyp.
So konnte beispielsweise durch eine gezielte Hemmung von CHK, SERCA, BCL2 und
Survivin gezeigt werden, dass eine je nach Tumorart (B- oder T-Zellen Lymphome)
verschiedene Signalweise angesprochen werden. Desweiteren wurde eine durch eine
Ähnlichkeitsanalyse der Dosis-Wirkungsprofile oft unerwartete Aktivität bestimmter
Wirkstoffe, wie z.B. CHK Inhibitoren, die den B-Zellen Rezeptor (BCR) Signalweg
beeinflussen, festgestellt. Im Zentrum der Arbeit steht besonders die chronische lym-
phatische Leukämie, dabei war es möglich, die Wirkungsweise bekannter Biomarker
auf einer fundamentalen Ebene aufzuklären. Wirkungsmessungen bestimmter Me-
dikamente anhand von Ex vivo Experimenten bestätigten die biologische Relevanz
wichtiger Marker, die zur Vorhersage klinischer Ergebnisse geeignet sind, so z.B.
die Sensitivität von Proben ohne IGHV Mutation bzgl. der Inhibition von des B-
Zellen Rezeptors (BCR) und das Nichtanschlagen von TP53 -mutierten Proben auf
Chemotherapie und Nutlin-3. Die Anfälligkeit von Proben mit Trisomie 12 bzgl.
SYK, BTK, PI3K und MEK Inhibition legte nahe, dass diese durch eine verstärkte
Aktivierung des BCR Signalweges wirken. Außerdem liefert die vorliegende Arbeit
potentielle Angriffspunkte im Falle immer wieder vorkommender Genmutationen wie
BRAF, CREBBP and PRPF8. Mit Hilfe multivariater Analyse wurde der Beitrag
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der Mutationen, der RNA Expression und der DNA Methylierung zur Vorhersage
der Dosis-Wirkungsbeziehungen abgeschätzt. Zudem konnte gezeigt werden, das die
Dosis-Wirkungsbeziehung oft eine wertvolle Vorhersage des klinischen Resultates lie-
fert, die Prognosen auf Basis etablierter Biomarkers häufig überlegen ist.

Zusammenfassend kann festgehalten werden, dass die umfangreiche Analyse von
Dosis-Wirkungsbeziehungen in Kombination mit verschieden “-omik”-Daten ein lei-
stungsstarkes Werkzeug zur Untersuchung disregulierter Signalwege in Zellen ist. Es
hat sich gezeigt, dass Ex vivo Analysen basierend auf Zellen aus primären Tumo-
ren der tatsächlichen Biologie sehr nahe kommen können. Diese Ergebnisse zeigen
vielversprechende Wege zur personalisierten Krebsmedizin auf.

x



Streszczenie

Zauważalny obecnie rozwój technologii multiomicznych znacznie przyczynia się do
postępów w badaniach nad rakiem. Pozwala nie tylko na rozwikłanie złożoności
biologicznej nowotworów, lecz stanowi także duży krok w kierunku precyzyjnej on-
kologii, w której to indywidualna terapia proponowana jest na podstawie unikalnej
kombinacji cech molekularnych danego guza. Różnorodność obecna zarówno w ob-
rębie pojedynczego nowotworu, jak i pomiędzy pacjentami z tym samym typem no-
wotworu, stanowi poważne wyzwanie dla terapii i badań klinicznych, ponieważ wiele
czynników wpływających na odpowiedź na leki pozostaje wciąż nieznanych.

Przedstawiona praca bada różnorodność profili odpowiedzi na leki oraz ich związki
z charakterystyką molekularną 273 próbek nowotworowych. Przeprowadzona analiza
łączy dane z eksperymentów wysokiej wydajności testujących 90 leków z danymi
multiomicznymi składającymi się z egzomu, transkryptomu oraz metylomu.

Analiza różnych nowotworów hematologicznych ukazała bogaty zbiór relacji po-
między fenotypem a genotypem. Ukierunkowana inhibicja, na przykład, CHK,
SERCA oraz BCL2 ujawniła specyficzne dla danej choroby zależności w szlakach
sygnalizacji komórkowej chłoniaków komórek B i T. Ponadto, podobieństwa pomię-
dzy profilami odpowiedzi na leki wykazały nieoczekiwane działanie niektórych z nich,
włącznie z inhibitorami CHK, które przejawiały aktywność skierowaną na szlak sy-
gnalizacji receptora limfocytu B (BCR). Poprzez skoncentrowanie się jednym ty-
pie nowotworu, przewlekłej białaczce limfatycznej, możliwa była dokładna analiza
podstaw molekularnych znanych biomarkerów. Działanie leków mierzone ex vivo
potwierdziło biologiczne znaczenie głównych czynników predykcyjnych w rokowaniu
pacjenta: podatność próbek z niezmutowanym IGHV na inhibicję szlaku BCR, oraz
odporność próbek z mutacją genu TP53 na chemioterapię i nutlin-3. Podatność pró-
bek z trisomią 12 na inhibicję SYK, BTK, PI3K i MEK sugerowała tryb działania
przez amplifikację sygnału szlaku BCR. Dodatkowo w badaniu zaproponowane zo-
stały możliwe cele terapii ukierunkowanych dla często zmutowanych genów, takich
jak BRAF, CREBBP i PRPF8. Analiza wielowymiarowa pozwoliła oszacować wkład
mutacji, ekspresji RNA oraz metylacji DNA w możliwość przewidywania odpowiedzi
na leki. Na koniec pokazano, że odpowiedź na leki jest cennym i często nawet lepszym
narzędziem od klasycznych biomakerów w prognozowaniu rokowań pacjenta.
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Podsumowując, połączenie analizy odpowiedzi na leki z charakterystyką multio-
miczną jest mocnym narzędziem w badaniu rozregulowanych ścieżek sygnałowych.
Profilowanie leków ex vivo odzwierciedla rzeczywistą biologię, a wraz z dużą po-
wtarzalnością pomiarów stanowi obiecującą przyszłość w bezpośrednim rozwijaniu
precyzyjnej onkologii.
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Preface

Pharmacogenomics is a scientific discipline which aims to use different levels of
genomic information to infer a person’s response to drugs. Accessibility of high-
throughput drug screening and sequencing techniques promoted the field significantly
over the last years. Studying patient tumor cells in that fashion is currently consid-
ered as the finest available way to advance precision medicine [1].

Until recently high-throughput pharmacogenomics was pursued only by using
immortalized cancer cell lines as a model of the disease. The study presented in
this dissertation goes one step further. The screening was performed on primary
tumor samples derived from a large cohort of patients. Only such cells mirror the
real biology of tumors, and only such approach allows to achieve sufficient statistical
power of the analysis. The bioinformatic analysis aimed to explore the landscape of
drug response determinants in order to: (i) infer similarities in the drugs’ mode of
action, (ii) classify different diseases into functionally convergent groups, (iii) identify
compounds and targets preferably active in the presence of biomarkers or recurrently
mutated genes, (iv) explain heterogeneous drug response, (v) and estimate how much
of it can be explained by each multi-omics data type, and finally, (vi) assess the
importance of drug response in predicting patient’s survival. All of these objectives
are addressed in this thesis.

The dissertation is organized into eight chapters. Chapter 1 introduces the
different types of studied lymphoproliferative malignancies, describes the concept of
personalized therapy and reviews recent pharmocogenomic studies. The last sec-
tion presents the layout of the conducted study. The following two chapters give an
overview of data and its preprocessing, as well as assessments of its quality and in-
tegrity. Specifically, the drug screening and multi-omics approaches are described in
Chapter 2 and Chapter 3, respectively. The main results are presented in Chap-
ters 4–6. Chapter 4 focuses exclusively on the drug response data. First, we use
the “guilt by association” approach to query the similarities of action between com-
pounds. Next, we undertake a classification of the diseases based on drug response
profiles. As the last step, we compare the different diseases to identify disease-specific
vulnerabilities. In Chapter 5 we interrogate individual gene-drug associations and
revise the targets of drugs which showed sensitive or resistant profile in the presence
of mutation in order to inform pathway dependencies. We confirm clinical observa-
tions and that ex vivo drug screening is able to discover new associations. Chapter
6 combines multi-omics data comprising genetics, transcriptomics and methylomics
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in order to select groups of features responsible for the variability of response to a
given drug. We also show that drug profiling can be used to predict clinical out-
come. Tools which facilitated collaboration are shortly reviewed in Chapter 7. It
mainly concentrates on the developed web application, which allowed everybody in
the project irrespective of their training in bioinformatics, to visualize the data and
to formulate hypotheses. The last chapter Conclusions and perspectives con-
tains closing remarks and outlooks on developments in the studied field. Last but
not least, the thesis includes nine appendices which serve as a reference and provide
additional information for the sake of completeness of the document. Appendix A
includes a list of manuscripts (published, submitted for review, and in preparation)
on the projects in which the author was involved during her doctoral studies.

The study introduced here is the result of a fruitful collaboration between the
groups of Dr. Wolfgang Huber from the European Molecular Biology Laboratory
(EMBL) and Prof. Dr. med. Thorsten Zenz affiliated with the National Center for
Tumor Diseases (NCT). The experimental part was performed at NCT, whereas
bioinformatic analysis was carried out at EMBL. Thanks to close collaboration with
physician practitioners the study gained clinical insights. Although the project grew
over time and the number of people working on it increased recently, the author of
the thesis was the chief bioinformatican providing analysis, as well as managing and
processing all of the available data. The presented results were directly obtained by
the author unless otherwise stated.
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1Introduction

Doctors are men who
prescribe medicines of which they know little,
to cure diseases of which they know less,
in human beings of whom they know nothing.

— Voltaire
Voltaire’s Notebooks 1952

Curing cancer in a given patient is not only the responsibility of medical doctors,
but mostly, although implicitly, the obligation of cancer research community. First
insights into cancer biology and its classification were gained exclusively by medical
professionals who had direct contact with the affected patients. These actions, based
on histopathological exams of malignant tissue, were hardly ever useful for cancer
treatment itself; rather, they were intended to provide speculation on the prognosis
and probable course of the disease. With continuous advancements in biological and
sequencing technologies over the last two decades, scientists were able to acquire a
much deeper knowledge of the biology of cancer. They were able to characterize
hallmarks of carcinogenesis, identify malfunctioning signaling pathways and provide
genetic markup of malignant cells, determine cells’ strategies to fight misbehaving
cells (for example, by activation of tumor suppressor genes), redefine classification of
tumors, and build models of cancer evolution. And even though the understanding
is still far from complete, with some tumor types being much better studied than
the others, there are attempts to use this knowledge as feedback to adjust patients’
treatment according to the available information. Since every tumor is different, these
treatment strategies have to be individualized. This is the concept of personalized
medicine which currently starts to blossom. By the end of the day, it is scientists’
responsibility to provide medical doctors with specialized and precise tools to treat
malignant diseases.
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1.1 Biology and stratification of hematological malignancies

The findings described in this dissertation, although we believe can be generalized to
a diversity of cancers, are entirely based on examples of hematological malignancies.
It is instrumental for the reader to be introduced to the general characteristics of
specific entities on which the thesis focuses.

Hematological malignancies are a group of nonepithelial cancers which originate
from hematopoietic stem cells of blood-forming tissue, such as bone marrow, or
in the cells of immune system [2]. Their extensive classification distinguishes types
depending on: (i) the stage of hematopoiesis from which the tumor originates, (ii) the
place where tumor cells accumulate (and therefore cause symptoms), (iii) the severity
of the disease, (iv) and the molecular biomarkers identified in the cells. The most
up-to-date classification is published by the World Health Organization (WHO)[3, 4].
However, it is very complex, still ambiguous and subject to improvements as new
facts about hematological malignancies are being discovered.

1.1.1 B-cell neoplasms

B lymphocytes (B-cells) take part in acquired immune system by secreting antibodies
upon stimulation. Their maturation process originates from common lymphoid pro-
genitor cells and involves bone marrow and secondary lymphoid organs (spleen and
lymph nodes). A mature (or naïve) B-cell, which expresses B-cell receptor (BCR)
on its cell surface, finally differentiates into a plasma cell or a memory B-cell. B-cell
neoplasms can arise at different stages of the B-cell differentiation processes.

Chronic lymphocytic leukemia

Chronic lymphocytic leukemia (CLL) is the most common leukemia in developed
countries. It predominantly affects elderly white people (with 72 years old being
the median age at time of diagnosis) and twice as many males than females [5].
CLL remains an incurable disease with remarkably heterogeneous clinical course.
Asymptomatic patients may never require treatment. However, if they progress and
are in need of treatment, they tend to relapse afterwards and acquire resistance
to chemotherapy [6]. So far several factors have been identified to have significant
influence on overall survival (OS) and response to standard treatment, with the most
relevant being: (i) mutation status of immunoglobulin heavy-chain variable (IGHV)
region [7, 8], (ii) chromosomal aberrations such as deletions 17p, 11q, and 13q, and
trisomy 12 [9], (iii) and single gene mutations (especially in the TP53 gene [10]).

Mantle cell lymphoma

Mantle cell lymphoma (MCL) is a relatively rare disease with aggressive clinical
course and poor prognosis. Patients (mostly white males) are diagnosed typically
at an older age (60–70 years old) in already advanced stages. MCL begins with
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accumulation of abnormal cells in lymph nodes causing their enlargement. At the
later stages it also affects blood and the gastrointestinal tract. MCL cells harbor
t(11,14)(q13;q32) translocation [11].

Hairy cell leukemia

Hairy cell leukemia (HCL) is a rare disease with indolent clinical course. The name
comes from microscopic observations in which the malignant cells appear ‘hairy’.
Hairy cells accumulate in bone marrow, where they prevent normal hematopoiesis,
and in the spleen [12]. HCL is preliminary diagnosed during routine complete blood
tests ordered due to recurrent infections and weakness. Final diagnosis is achieved
after bone marrow biopsy. Two driver mutations of HCL have been identified: BRAF
V600E (present in all patients) [13] and CDKN1B (present in 16% of patients) [14].
About 10% of HCL patients have a more aggressive variant of the disease (HCL-V)
which differs mainly by internal morphology and overall appearance of the malignant
cells [15].

Other

Other neoplasms originating from the various stages of B-cell differentiation, which
were included in the study are: marginal zone lymphoma (MZL), lymphoplas-
macytic lymphoma (LPL), B-cell prolymphocytic leukemia (B-PLL) and
follicular lymphoma (FL). Their individual characteristics are mentioned in the
text when needed.

1.1.2 T-cell neoplasms

T lymphocytes (T-cells), the other type of white blood cells, act through cell medi-
ated immunity by activation of destructive processes or cells in response to antigens.
They originate in bone marrow from common lymphoid progenitors and maturate
in thymus. During the maturation process T-cells learn how to distinguish invasive
cells from the healthy ones present in the body. Mature T-cells, which express T-
cell receptor on their cell surface, circulate in the blood stream awaiting activation.
T-cells, similarly to B-cells, can arise at different stages of their differentiation.

T-cell prolymphocytic leukemia

T-cell prolymphocytic leukemia (T-PLL) is a relatively rare and incurable leukemia
with aggressive clinical course. It originates from mature T-cells and affects elderly
people, with males outnumbering females [16]. T-PLL is characterized by resistance
to conventional treatment, however, recent introduction of alemtuzumab into first
therapy regime significantly prolongs patients’ survival. Genetic abnormalities in-
volving chromosome 14 are present in around 3/4 of diagnosed cases. These include:
inversion, tandem translocation t(14;14) and translocation t(X;14)(q28;q11). Also
common is the mutation in ATM gene.
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Other

Another two T-cell originated diseases which appear later in this dissertation are
Sézary syndrome (Sézary) and peripheral T-cell lymphoma not otherwise
specified (PTCL-NOS). Both malignancies are rare, difficult to treat, and even
hard to diagnose, especially the latter one [17].

1.1.3 Myeloid neoplasms

Myeloid cells are derived from common myeloid progenitor cells and can be clas-
sified into erythrocytes, granulocytes (neutrophils, eosinophils and basophils) and
monocytes. The last two types are involved in the innate immune system. They
fight with inflammation by phagocyte bacteria, larger organisms or damaged cells,
destroying parasites and secreting substances [18]. Myeloid neoplasms arise due to
overproduction of abnormal cells from the common myeloid progenitor.

Acute myeloid leukemia

25% of adult leukemia patients are diagnosed with acute myeloid leukemia (AML)
[19]. AML is a disease with poor outcome, which in about 15% of cases is caused
by previous chemo- or radiotherapy or environmental factors, such as pesticide ex-
posure or benzene inhalation. The disease is characterized by the heterogeneity
of its genomic landscape with abundance of driver mutations which, among others
include NPM1, RUNX1, ASXL1, CEBPA genes and cytogenic aberrations such as
t(15;17)(q22;q12), t(8;21)(q22;q22) and t(X;11q23) [20].

1.2 Standard treatment strategies for hematologic malignancies

A successful treatment of a hematologic malignancy is when the patient achieves
complete response (CR). Although it does not mean that the cancer has been cured,
the signs of disease can no longer be detected. At this stage the patient is progression-
free (or in complete remission). It is not uncommon that the disease returns some
time after treatment (the patient relapses). Treatment strategies are being evaluated
in clinical trials conducted by health care institutions. During such trials, medical
professionals often estimate the superiority of a tested new treatment over the well-
established one based on OS parameter. In short, they compare the number of
patients which are alive after a given time following the treatment administration.

The decision of treatment strategy depends on the staging of the disease and
patient-unique factors [6]. Most indolent diseases (or disease subtypes), such as
CLL or HCL, are predominantly detected in an asymptomatic phase accidentally
during routine medical checkups. These are usually followed by a “watch and wait”
strategy comprising only increased frequency of checkups (without administering any
treatment) which is continued until the disease progresses. However, in symptomatic
patients the treatment has to be provided quickly. As already mentioned in the
previous Section 1.1, hematological malignancies are affecting mostly elderly people,
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therefore the intensity of treatment has to be adjusted individually to the patient’s
fitness level. The more aggressive the treatment, the more efficient it is and the more
durable outcome can be expected [5]. However, it is up to the medical professional to
balance the treatment decision between: (i) its toxicity and efficacy and (ii) outcome
of improving or just maintaining the current patient’s quality of life [21]. Clinical
trials usually recruit younger (and fitter) patients than it is expected for a disease,
which makes these studies irrelevant in prognostication of treatment effectiveness
in unfit patients [22]. Last but not least, another important factor in the decision-
making process is comorbidity, that is coexistence of multiple diseases, such as blood
hypertension or diabetes, in addition to cancer [22].

Standard therapy of hematologic malignancies involves chemoimmunotherapy
and/or hematopoietic stem cell transplantation (with or without preceding irra-
diation). With the latter being a risky procedure (about 40% patients die from
complications related to transplantation [23]), it is the field of chemoimmunotherapy
where advancements are most desirable. The standard of care in hematopoietic ma-
lignancies haven’t changed much during the last decades and still includes unspecific
drugs selected by observation (for example, from the deadly weapons used to elim-
inate enemies in the World War I) which are chlorambucil [24], cyclophosphamide
or vincristine, rather than targeted compounds. With growing knowledge about un-
derlying biology of cancers, the care for some individual entities was revolutionized
[25, 26, 27, 28]. The discoveries of single targeted drugs often propagate on other
tumor entities which share similar biology. Although the idea is in principle good,
it does not always give expected results. Currently the gold standard in treatment
of fit CLL patients is FCR (fludarabine, cyclophosphamide, rituximab), a mixture
containing one unspecific drug (cyclophosphamide), and two targeted ones. Ritux-
imab, monoclonal antibody directed against membrane surface protein CD20, has
been shown to be effective despite the fact that CLL cells express CD20 at low levels
[29]. On the other hand, fludarabine is proved to be ineffective in patients harboring
mutation in TP53 gene, which occurs in 8–15% of cases [10, 30, 31]. Being able
to detect significant individual characteristics of a patient before the treatment is
administered could spare not only patient’s suffering from unnecessary treatment,
but also money [32].

1.3 Personalized therapy in hematologic malignancies

Curing blood cancer is like ordering a cocktail in a café. Ideally, each client could
have an individual mix tailored to his or her taste. Of course, there are mainstream
alternatives that taste the majority of people (patients), just like smoothies in Mc-
Donald’s (and old untargeted therapies), but in reality they do not satisfy (cure)
anyone entirely. In order to have a really delicious (working) cocktail a personal-
ized mixture of fresh, cherry-picked ingredients (compounds that target deregulated
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pathways specific to the patient) is needed. Currently, this concept which is called
‘personalized therapy’ (or ‘precision medicine’) seems to be the only reasonable
way to cure cancer.

Identification of biomarkers, biologic or genetic factors underlying pathologic
state of a cell, is the first step towards precision oncology. Biomarkers can be aimed
to: determine diagnosis (diagnostic biomarkers), forecast course of disease (prog-
nostic biomarkers), predict response prior to treatment (predictive biomarkers) or
outcome after the treatment (surrogate biomarkers), and keep track of the disease
(monitoring biomarkers) [33]. They can be anything that captures the biology of
tumor cells: from the composition of antigens on cell surface, through DNA methy-
lation or gene expression profiles, to eventually genomic mutations and rearrange-
ments. Advancements in the laboratory and in sequencing techniques over the last
two decades let scientists explore the landscape of biomarkers for the most common
hematologic malignancies [34, 20].

Biomarker identification followed by targeted treatment already revolutionized
the care of individual cancers. In chronic myeloid leukemia, for example, where the
BCR-ABL tyrosine kinase is constitutively activated (fusion gene resulted from the
translocation between chromosomes 9 and 22), targeted inhibition of BCR-ABL1 put
patients into remission [26]. In another study, the same was achieved in HCL patients
after treating them with vemurafenib, an inhibitor against specific mutation V600E
in the BRAF gene [28]. These successes were possible because of the following two
aspects. First, virtually all cases of a particular disease harbored the specific targeted
biomarker, which was driving the tumor growth. Second, targeted inhibitor of the
disregulated pathway was available to use. The situation is completely different for
heterogeneous diseases, such as CLL [35], for which patients still receive non-targeted
treatments. While a new generation of targeted drugs is emerging [36, 37, 38], the
impact of recurrent mutations on drug response is uncertain, including mutations
in ATM, NOTCH1, BIRC3, SF3B1, BRAF and KRAS, deletions on 13q, 11q, and
trisomy of chromosome 12 [39, 40].

Last but not least, the identification of biomarkers is always performed in pop-
ulation-wise studies mostly due to requirement of obtaining the necessary statisti-
cal power in the analysis. Scientists have to make sure they are not conducting
(de)personalized studies while focusing on disease-specific rather than on patient-
specific characteristics [41]. Moreover, not only every patient a harbors a unique set
of biomarkers, but also the individual characteristics of a tumor change over time due
to cancer evolution or the administered treatment. This suggests that patient care
should involve close monitoring during treatment and follow-up visits. But this only
makes sense if we can do something about these changes, meaning if it is possible to
translate the findings into treatment strategy.
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1.4 Pharmacogenomic studies and cancer treatment

Response to anti-cancer agents is often restricted to subsets of patients, but the
recognition of factors underlying this heterogeneity and the identification of the cor-
responding biomarkers is incomplete [42, 43]. There is a need for platforms that can
comprehensively map drug responses, determine associated biomarkers and provide
hypotheses for mechanisms underlying the variable response.

Several studies in recent years made an effort to identify determinants of drug
response in a high-throughput fashion [44, 45, 46]. They tested hundreds of im-
mortalized cancer cell lines derived from multiple cell origins. In their analysis they
confronted cell sensitivity to treatment with a wide range of compounds (including
targeted small molecules) with cells’ molecular markup. Although these studies were
able to prove the usefulness of high-throughput drug testing by recapitulating known
gene-drug dependencies, a few problems with them have been noticed.

First, the extensive data resources which have been published alongside Gernett
et al. [44] (Genomics of Drug Sensitivity in Cancer, GDSC) and Barretina et al. [45]
(Cancer Cell Line Encyclopedia, CCLE) brought up the question of reproducibility.
These two studies used overlapping sets of both cell lines and compounds, so direct
comparison was possible. The part which caused the most controversy was the drug
response data. One report claimed poor correlation of the measurements [47], while
the other found the correlation—after adjusting for biologically-relevant analytical
factors—satisfactory [48]. The most recent study went one step further by produc-
ing yet another drug sensitivity dataset [49]. Their results were more consistent
with CCLE than GDSC, however, the agreement with neither was impressive. The
sources of discrepancies included: (i) lack of a standardized experimental protocol
(for example, the number of cells seeded per well on a screening plate, cell viability
assays, drug concentrations used), and (ii) different definitions of drug response (half
maximal inhibitory concentration (IC50) vs. area under curve (AUC)). Reproducibil-
ity of drug screen data is an important issue especially when the findings are to be
translated into clinical practice. We found this matter very important, therefore
Section 2.3 provides extensive reproducibility checks on the dataset we have been
working on.

Second, using cell lines as a model of a disease puts the results far away from
being clinically relevant. The immortalized cells are often covering only a small subset
of disease heterogeneity and potential resistance mechanisms [50]. Moreover, same
mutations in different cancer types could result in diverse drug response phenotypes.
Therefore, in order to make the statistically significant discoveries a lot of cell lines
per tumor type have to be tested. Finally, developing cell lines not only takes a lot
of time but sometimes is just not feasible, as for CLL, for instance.

The shortcomings resulting from using cell lines can be defeated by working with
short-term cultures of primary cancer cells instead. Such approach not only avoids
clonal selection to occur, but also preserves natural genetic and phenotypic diversity
of the sample, including rarer mutations and combinatorial patterns of mutations.
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Responses of primary tumor cells to panels of inhibitors ex vivo have recently been
used to derive individualized therapeutic options for the donating patients [51, 52,
50]. Molecular characterization of individual samples yielded novel genetic markers
and led to drug repurposing opportunities [53, 54, 55].

1.5 Overview of the undertaken approach

In the previous section we reviewed the biggest studies published so far, which were
linking drug response to the biology of cancer cells. Their approaches differed mainly
by the studied disease model. They used either cell lines or a limited number of
primary tumor cells. The study which is the topic of this dissertation goes one step
forward by testing hundreds of primary tumor samples of one cancer type. This
allows to cover the disease heterogeneity in depth. The layout of the study, which
involved: obtaining mononuclear cells from patients’ peripheral blood, functional and
molecular profiling of samples followed by a various types of analyses, is presented
in the Figure 1.1.

The main focus of the study was CLL. However, additional samples of other
leukemia and lymphoma were also examined (see Appendix B for details). Tumor
material was collected from patients during routine blood exams, which made the
sampling quite straight-forward. Availability and abundance of this material makes
haematological malignancies a great research model. Even in relatively simple culture
conditions the cells survive outside the body for several days, which is long enough
to perform experiments on them.

The crucial component of conducting a translational research is a well-chosen
study cohort. It should mirror the different factors of age, sex, disease stage etc.,
and even the acquired chromosomal aberrations in a proportion which is usually
seen in clinical practice. The presented study satisfies these conditions (see Figure
3.3), which makes the results directly applicable to medicine with potential benefit
to participating patients.

The obtained samples were subjected to cell profiling. A high-throughput ex
vivo viability assay measured the response of cells to drug treatment. This part is
discussed in detail in Chapter 2. Additionally, the same samples underwent genomic
characterization by: whole exome sequencing, RNA-seq, DNA methylation and SNP-
array. The details are described in Chapter 3.

We have mapped drug sensitivity profiles of these tumors to genomic information
in order to both understand the biology behind heterogeneous drug response and
discover possible novel therapeutic targets. Abundance of samples and compounds
tested allowed us to: (i) provide functional classification of the compounds, (ii) define
patient functional subgroups, (iii) select determinants of drug response, and together
with the available patient metadata (iv) forecast clinical outcomes.
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Figure 1.1 Layout of the study.

Primary tumor sample collection was performed by selecting mononu-
clear cells from patients’ blood specimens. These cells where then subjected
to functional and molecular profiling. The former was testing drug response
simply by using a viability assay, while the latter characterized the cells
on multiple levels such as genetic mutation, gene expression and DNA
methylation. Analyses included i.a. classification of patients and drugs based
on a single dataset, and finding co-dependencies among different kinds of
datasets.
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2Phenotypic profiling of primary cancer
samples by high-throughput drug
screening

The true method of knowledge is experiment.

— William Blake
All Religions are One (1788)

2.1 Performed drug screens

Functional profiling of patient samples was done within two main initiatives, called
for simplicity—the drug screens. They were performed mainly by Leopold Sellner at
the NCT Heidelberg. The compounds were first seeded into 384-well plates and then
patient samples were added. One sample was used per plate. Each plate included
untreated control wells with DMSO solution instead of a drug. Cell viability was
assessed using the ATP-based CellTiter Glo assay (Promega, Fitchburg, WI, USA)
and luminescence level was measured with a Tecan Infinite F200 Microplate Reader
(Tecan Group AG, Männedorf, Switzerland) with an integration time of 0.2 seconds
per well. The compounds used in the drug screens are listed in Appendix C together
with their short characteristics. Concentrations of drugs were manually selected
and are cataloged in Appendix D. Figure 2.1 shows the number of patient samples
stratified by the diagnosis, and the number of compounds used in the two drug
screens—pilot screen and main screen—stratified by the annotated target.

2.1.1 Pilot screen

The pilot screen was a preliminary drug screen designed and performed mainly in
order to:

15



Figure 2.1 Characteristics of samples and drugs used in the drug screens.

Panel A shows a summary of patient samples and disease entities an-
alyzed in the pilot screen (top left), the main screen (bottom left) and both
screens combined (right). The outer circle characterizes the patient diagnosis
and the inner circle indicate the cell lineage.
Panel B shows a summary of drugs used in the pilot and the main screen
stratified by the annotated target.
Panels C and D show the overlap of patient samples and drugs, respectively,
between the screens.
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Figure 2.2 Viability of cells after 48 h and 72 h of drug treatment.

Left panel shows a scatter plot which compares cell viability readouts
after two incubation periods. The majority of dots (83%) lays under the
diagonal, meaning that the cells were in general less viable after 72 h than
after 48 h. At the third day of incubation period more of extra-viability
effects, where cells appear to be much more viable than controls, were
observed as compared to the second day (percentage of cells exhibiting
viability above 115%: 2.1% after 48 h and 2.7% after 72 h).
Right panel shows more pronounced spread of viability readouts in the 72 h
time point, with 11.1% and 18.8% of values below the 20% viability threshold
for 48 h and 72 h, respectively.

• prove feasibility of the screening approach,
• validate clinical observations,
• asses prospectiveness of further drug screens.

To reach these goals we took a variety of compounds (n = 67), including clinically
used drugs and tool compounds targeting important pathway nodes in lymphoma
and cancer, in limited concentration steps (16 drugs with one and 51 drugs with
two), and 111 unique patient samples. The cell viability was measured in two time
points: 48 h and 72 h after drug treatment. Both screening days produced meaningful
readouts, however, the longer the incubation period was, the more spontaneous cell
death was observed (Figure 2.2). Therefore, we performed the analysis only for the
first screening time point.

Each compound-concentration pair was present in the screening plate twice. Be-
sides that, for each dilution steps there were eight wells containing negative controls
placed on the plate.

2.1.2 Main screen

After the pilot screen has proven successful in its assignments, the follow-up, more
advanced drug screen was designed and conducted. Fundamental purposes of this
screen, called the main screen, were to:

• validate clinical observations,
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• find the causes of heterogeneous drug response within groups of patients suf-
fering from the same disease,
• stratify samples according to their drug response profiles,
• define molecular characteristics of samples which modulate drug response,
• describe to which degree those factors are either responsible for or can predict

patient outcome.

Compared to the pilot screen there were several changes accommodated in the drug
screen design. The number of CLL patient samples was increased from 97 to 184 in
order to cover the complex heterogeneity within the disease. Additionally, also the
number of samples representing less common than CLL diseases was increased (e.g.
T-PLL, from 5 to 25 samples), and some new ones were introduced (e.g. AML, the
disease of myeloid origin). The list of compounds was modified to include mainly
chemotherapeutics and targeted inhibitors already in clinical use or prospective treat-
ments for cancer which are currently being evaluated in clinical trials. Each com-
pound was screened in 5 concentration steps, giving, in principle, the opportunity to
fit the drug-response curve and retrieve the well-known parameters, e.g., IC50 and
AUC. Moreover, each compound-concentration pair was placed on the screening
plate once. Whole two columns on the plate (32 wells in total) contained negative
controls, in which the patient sample was incubated with DMSO solution instead of
a drug.

2.2 Processing of raw values obtained from cell viability assay

In this section, we provide explanation of how we normalized the raw luminescence
measurements into the viabilities, which were later used for analysis. Furthermore,
we discuss the types of quality control checks, which are crucial for the assessment
of drug screen performance. Additionally, we demonstrate how to calculate other
parameters, such as IC50 or half maximal effective concentration (EC50), which are
potentially useful in the analysis of high-throughput drug screens.

2.2.1 Data normalization and quality control

Differences in plate layout between the pilot and the main screens, especially in
the number of negative controls and replicates of drug-concentration pairs available,
forced us to take a slightly different approach to data normalization of these screens.
In both screens, the viability was calculated using raw luminescence intensities for
each drug-concentration pair for each screening plate (sample) separately. In the
pilot screen, the mean of the two measurements for a given drug-concentration pair
was divided by the mean of the 8 negative control wells. In the main screen, however,
one measurement for a given drug-concentration pair was divided by the median of
32 negative control wells present on each plate. These values were then multiplied
by 100, resulting in viability scores.
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Figure 2.3 Examples of normalized intensities in drug testing plates.

Figure shows viability values in the four example screening plates: two
CLL (H030, H070), one MCL (H144) and one T-PLL (H157) samples.
Columns 1–2 contained negative controls. Differences in viabilities for
samples representing distinct diseases could be observed. Here, in comparison
to CLL, MCL and T-PLL samples tend to be more sensitive and resistant,
respectively, to the compounds used in the screen.

Performing quality control checks is an essential step before actual data analysis.
It includes identification of potential problems with:

• plate spatial effects: both edge and column or row effects,
• batch effects,
• data reproducibility.

We will now elaborate on these by taking the normalized values of the main screen
as an example. If any special effects could be identified, we would need to account
for them before starting the analysis.

The first kind of quality checks involved plotting the normalized values for each
sample as a heat map matching the exact layout of the screening plate. Figure 2.3
presents an example of such plots. We did not detect any alarming problems with
edge effects in any of the experiments. The plates project similar within samples of
the same disease origin. The differences between plates of divergent sample origin
look reasonable, for instance T-PLL patients tent to respond weaker to chemotherapy
than CLL patients, therefore the viability values of their cells are closer to 100% what
results in plates looking more pale.

In the main screen wells containing negative controls were placed in the first
two columns, which gave us one more opportunity to rule out serious spatial effects.
Figure 2.4 shows viabilities of the negative controls. For the vast majority of plates
the values are close to 100%. The average negative control mean viability per plate
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Figure 2.4 Viability of negative controls per screening plate.

The box plot shows the normalized luminescence intensities of the neg-
ative control wells per screening plate (sample). The plates were sorted and
colored by disease of donating patients.

was 99.63% (range 94.35–112.23%) with standard deviation of 6.08% (range 2.86–
33.03%). Although we can observe a few outliers (which are independent from the
type of disease), the screen looks good from this angle.

Column and row effects are usually introduced by the machines used for plating
drugs and samples on to the screening plates. Both the pilot and the main screens
were performed by hand. There were no column or row effects present in neither of
them.

Assessment of batch effects is the second step of screen quality checkup. The
main screen was performed over a time period of 1.5 years in three batch groups by
at least two different people. The batches were divided by samples screened in 2013,
in 2014 before August and in 2014 in August and September. In Figure 2.5 we show
the mean viability of all the drug-concentration pairs for each plate in the function
of time. All the screening days look comparable with no special differences between
the batches. This was further evaluated and the results are included in Appendix E.

The third and last part of quality control is the reproducibility of measurements.
This is a broad topic which we describe in detail in the following section.

Processing of raw files from the experiment was done with the help of Biocon-
ductor R package cellHTS2 [56] (version 2.34.1). I wrote bash scripts to construct
the input annotation tables, and functions in R for reading in and for normalizing
the data.

2.3 Data reproducibility

The important role of conducting reproducible research is being increasingly acknowl-
edged over the last months [47, 48, 49]. Therefore, we feel obliged to report on the
reproducibility of the performed drug screens in depth.
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Figure 2.5 Dependency of mean viability on the experiment date.

Each dot in the figure represents the mean viability for a sample. Color codes
the diagnosis of the patient from whom the sample was taken. Experiments
were conducted in three batches, which mainly differed in the person
performing the screen. Batch effects seem to be of marginal importance here.
The confirmation is presented in Appendix E.

2.3.1 Reproducibility within same drug screen

The most basic level of data reproducibility assessment is to ask whether the obtained
values agree within a given screening platform.

Three selected CLL samples from the pilot screen were assayed twice. The repli-
cates were performed on two different days. Additionally, measurements from both
incubation times: 48 h and 72 h were available. Figure 2.6 compares drug responses
of the two replicates for each patient after the two incubation periods. The obtained
Pearson correlation coefficients ranged from 0.74 to 0.92, with the mean being 0.85.
Coefficients calculated for the two incubation periods were not significantly different
from each other.

Six samples of the main screen were screened in two replicates, too. Three of
them were CLLs, the remaining ones were MCL, HCL and T-PLL. Two of the CLL
samples (H030, H073) were assayed on the same day whereas the rest was assayed
on different days. Figure 2.7 compares drug responses of the two replicates for each
patient. The mean of the obtained Pearson correlation coefficients was 0.91, with a
range of 0.84–0.97. Although the coefficients itself are high (which suggest powerful
concordance), the spread of individual values is rather big.

In the following analysis we used one out of the two available replicates. The
high level of reproducibility within the pilot screen made the selection irrelevant.
Only because there was a long 4-month gap between experiments with replicates we
decided to go with the one whose results came in earlier. The level of reproducibility
of the main screen was a motivation to search for clues of which replicate to choose.
The criteria was set based on the goodness of the fit of the dose-response curve
(Appendix F). In short, we took the replicate for which a greater number of drugs
produced good fits of the sigmoid curve.
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Figure 2.6 Reproducibility of drug response measurements in the pilot screen.

The scatter plots compare drug response measurements in patient sam-
ples that were repeatedly assayed at two different time points. The two
measurements were performed after 48 h and 72 h of incubation. The
calculated Pearson correlation coefficients are shown within each plot.
Triangles indicate data points outside the plotting range.

0.95 0.85 0.87

0.84 0.93 0.92

H030 H073 H133

H227 H251 H253

0

25

50

75

100

125

0

25

50

75

100

125

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
% viability − replicate 1

%
 v

ia
bi

lit
y 

−
 r

ep
lic

at
e 

2

Figure 2.7 Reproducibility of drug response measurements in the main screen.

The scatter plots compare drug response measurements in six patient
samples that were done in two replicates. The calculated Pearson correlation
coefficients are shown within each plot. Triangles indicate data points outside
the plotting range. There are 320 dots within each plot, which correspond to
drug responses to 64 compounds in 5 concentrations.
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2.3.2 Reproducibility between different drug screens

The next level in judging whether the data is reproducible was to compare drug
responses between pilot and main screens. Both experiments were done in the same
laboratory and usually by the same person. Although the design differed, there were
67 patient samples and 26 drug-concentration pairs (for 25 compounds) that were
overlapping and therefore ready for comparisons, see Figure 2.8. Some drugs showed
non-linear (vorinostat) or shifted to one side (for example dasatinib or orlistat) de-
pendency. For such, a useful measure of reproducibility is the Spearman correlation
coefficient, which appears to be high within this group. The second type group of
drugs is characterized by producing low response phenotype in tested samples (for
example everolimus or ralimetinib). The proper measure of reproducibility in such
cases is the root-mean-square deviation (RMSD), which basically states how big the
spread between each pair of the compared values is.

RMSD =

√∑n
i=1(xi − yi)2

n
, (2.1)

where n is the number of compared pairs, while x and y are the viabilities from pilot
and main screens, respectively.

In the end, we report both: the Spearman correlation coefficient and the RMSD,
because only when considered together they provide a good measure of data repro-
ducibility. To sum up, the reproducibility of drug response measurements was very
good, and the only potentially problematic drug identified was bortezomib.

2.3.3 Reproducibility between different screening platforms

Our collaborators from the University of Helsinki, predominantly interested in T-PLL
disease, tested three of our samples (H086, H172, H253) on their drug screening plat-
form (Helsinki screen). This gave us additional opportunity for assessing robustness
of the main screen data. 30 compounds were overlapping between both drug screens.
Unfortunately, the drug concentration steps were different, which made direct com-
parison of the drug responses impossible.

The solution to this shortcoming was to compare IC50 values obtained from the
dose-response curve fitting (Figure 2.9). The curves were fitted as explained in Ap-
pendix F. The parameter stating the goodness of the fit F.2 was much better for the
Heidelberg than for the Helsinki platform (median Γ 45.9 vs. 131.9, respectively).
Moreover, for some drugs (for example ibrutinib) the Helsinki platform used too low
concentrations to be able to detect the effect of the drug. The Pearson correlation
coefficient for the comparison was 0.75. There are two drugs which are clearly out-
liers: bortezomib and everolimus. In the scatter plot they appear way below the
diagonal, meaning that the samples were less sensitive to these drugs when tested in
Heidelberg than in Helsinki.
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Figure 2.8 Reproducibility between pilot and main screens.

The scatter plots compare drug response measurements of 26 drug-
concentration pairs in 67 patient samples that were screened in both, pilot
and main screens. Spearman correlation coefficients together with RMSD
in the brackets are shown within each plot. Triangles indicate data points
outside the plotting range.

24 CHAPTER 2. Phenotypic profiling of primary cancer samples by high-throughput drug screening



10−2

10−1

100

101

10−1 100 101 102

IC50 [µM] − Heidelberg

IC
50

 [µ
M

] −
 H

el
si

nk
i

Compounds

bortezomib

venetoclax

everolimus

other

Figure 2.9 Comparison of the two drug screening platforms.

The scatter plot compares IC50 values for sample-drug pairs obtained
from both screens. For 17 pairs the dose-response curve could not be obtained
for at least one platform, and these pairs were removed from the plot. In
case when the dose-response curve did reach 50% viability, the values were
censored. The three drugs (bortezomib, venetoclax and everolimus) which
exhibited poor similarity are plotted with distinct marks. Pearson correlation
coefficient for all 73 comparisons was equal to 0.75.

In conclusion, despite the differences in platforms and their sensitivity, the overall
drug responses correlate well. Smoother dose-response curves obtained with Heidel-
berg data confirm the platform to be robust and that the produced data is of good
quality.

2.4 Parameters characterizing drug response

Analysis of high-throughput drug screens is lacking standardization [47, 49]. The
ways of estimating fundamental parameters of drug response wildly differ between
the published studies. However, all of these approaches rely on the fit of a dose-
response curve. The drug response was previously characterized by the following
parameters:
• drug potency: half maximal inhibitory concentration [44], half maximal effec-

tive concentration [57],
• drug efficacy: curve asymptotes,
• drug potency and efficacy: area under curve [45].

Even though these parameters are sufficient to distinguish differences between sensi-
tive and resistant cells, and between effective and ineffective drugs, they have serious
shortcomings. In a high-throughput setting, the majority of the dose-response curves
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are shallow and do not reach the half-maximal inhibition. This leads to censoring of
potency parameters and produces ties which are not applicable to many statistical
methods. AUC, however, is relevant only when cells are treated with same range of
drug concentrations. If this is not the case, drug response of cells can be compared
only within one drug, as the comparison between different drugs is ambiguous. There
have been developments on multiparmetric approaches which take into account both
the midpoint and the shape of the dose-response curve [58]. However, they are falling
for the obstacles of curve fitting as well.

The use of raw measurements of cell viability normalized by negative controls
allowed us to overcome the weaknesses mentioned above. This simple approach pre-
vented us from data alteration in cases where viabilities over 100% were observed.
The reasons for such an effect could be explained by slower spontaneous dying of
cells in the presence of the drug in comparison to negative controls. Censoring the
measurements to 100% in such a case will strip the data from the potential biolog-
ical characteristics right from the beginning. Moreover, with such an approach it
is easier to account for the differences in drugs’ mode of action. It is known that
inhibitors of certain important signaling pathways, for example AKT/PI3K/mTOR,
are producing shallow dose-response curves which prevents them from correct inter-
pretation if usual metrics for drug response are used [57]. In summary, we believe
that by performing the analysis on separate cell viabilities we can test our data in a
robust fashion while still preserving all the biological effects.
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3Molecular profiling of primary cancer
samples by using multi-omics

If you think big, then it’s going to be big.

— Emeril Lagasse

Rapid advancements of sequencing technology since its introduction in 1977 by
the pioneers: Frederick Sanger, Allan Maxam and Walter Gilbert, let scientists gain
insights on the fundamental processes which hold the key to understanding identity
and functioning of the living study subjects.

Techniques of targeted sequencing focused only on a few selected genes of inter-
est allow to detect genetic variants in a cost-effective manner. Whole exome and
whole genome sequencing techniques provide an overview of the wide landscape of
genetic variants and structural rearrangements in the studied material. Array-based
technologies detecting RNA expression and epigenetic markup, such as DNA methy-
lation, complement the genetics with crucial additional information. They give follow
up information of gene regulation and expression, which together with the genetic
structure show all levels of functional activity of genes. Nowadays these so called
‘multi-omics’ techniques are fast, efficient and affordable enough to be applied in
a high-throughput manner. Strong competition between the companies developing
these technologies led to their high accessibility thanks to the simplification of the
design, yet leaving enough freedom to accommodate specific usage.

In this study we used several of these state-of-the-art techniques to thoroughly
characterize the collected patient samples. The principal aim was to utilize these
different blocks of information as features and measure their impact on drug response
of the samples.
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3.1 Genomics

We used fluorescence in situ hybridization (FISH), targeted sequencing and whole
exome sequencing (WES) to characterize genetic aberrations of primary tumor sam-
ples. We don’t have full coverage across all patients for each of these techniques.
Details on data availability are mentioned in the following sections. Analysis was
carried out on the harmonized and combined data, which contained simplified binary
information of whether a given gene (or cytoband in case of FISH) was mutated or
not.

3.1.1 Fluorescence in situ hybridization

FISH is a technique which allows to locate the sequence of interest in chromosomes
by using fluorescent probes. The FISH experiment was conducted for six genomic
regions, which could identify mutations such as deletion 11q22 (n = 184), deletion
17p13 (n = 182), deletion 13q14 (n = 177), trisomy 12 (n = 174), deletion 6q21
(n = 148) and gain 8q24 (n = 140). Samples were considered mutated even when
only a small mutated subclone was identified.

3.1.2 Targeted sequencing

Sequencing was performed on a GS Junior benchtop sequencer (Roche, Penzberg,
Germany) as described in [59]. This technology allows to sequence the specific loci
of interest in an effective and cost-efficient manner. It uses pyrosequencing, a method
in which nucleotides are detected during synthesis of the strand complementary to
the single DNA strand which is being sequenced. Targeted sequencing was performed
for the following genes: BRAF (n = 253), NOTCH1 (n = 253), TP53 (n = 252),
SF3B1 (n = 252), MYD88 (n = 252), KRAS (n = 199), NRAS (n = 198), EZH2
(n = 196), PIK3CA (n = 196).

3.1.3 SNP arrays

DNA copy numbers and single nucleotide polymorphisms (SNPs) were determined
with Illumina CytoSNP-12 and HumanOmni2.5-8 microarrays (n = 169; Illumina,
San Diego, CA, USA). The results were verified by exome sequencing data for a
subset of patients (n = 121).

3.1.4 Whole exome sequencing

High-throughput exome sequencing of paired control-tumor DNA samples was per-
formed on Illumina HiSeq 2000 machines (Illumina, San Diego, CA, USA). Material
from 121 patients was analyzed.

The pair-end reads were processed by two separate platforms. The first one, a
well-established pipeline located at the German Cancer Research Center (DKFZ) in
Heidelberg, provided a list of genome-wide single nucleotide variants (SNVs). This
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previously described platform [60, 61] uses SAM tools mpileup and bcftools with
parameter adjustments to allow for calling of somatic variants with heuristic filtering.
The variants were annotated with RefSeq (version September 2013) using ANNOVAR
[62] and only those of high confidence were selected. However, this platform is
typically used for the analysis of solid tumors. To confirm the validity of applying
it to hematologic malignancies, we developed a second platform which is described
in details below. Our pipeline used lenient SNV calling strategy that allowed us to
manually and visually inspect the mutated genome regions. Additionally, it was also
used to confirm the copy number estimates obtained from FISH and SNP arrays.

Data processing

The processing pipeline consisted of six steps. These led from raw sequencing data
stored in text-based FASTQ files to summarized per base nucleotide tallies saved to
a highly flexible and access-efficient HDF5 file format. For each step either a Python
script (run in Python 2.6.6) or an R script (run in R 3.1.1) together with a bash
launcher script were written. These scripts automatically created lists of inputs and
passed them to the processing functions, which were executed on the EBI computing
cluster. A detailed description of processing steps follows below. In some of them
Picard tools version 1.106 (http://broadinstitute.github.io/picard/) were used.

Align to reference GSNAP version 2013-08-14 [63] was used to align reads to the
reference genome GRCh37 available in ENSEMBL database release 72. GSNAP soft-
ware provides means of parallelizing the alignment procedure which were employed
due to a relatively large number of processed files. The files were split per sequencing
lane into 10 parts (-parts parameter) and 24 sub-processes were used for each of
these parts (-nthreads=24). The software reported one single alignment per read
(-npaths=1) and wrote them to an output SAM file [64] (-A sam) in a format
compatible with Picard tools (-sam-use-0M).

Merge SAM files Picard tools was used to merge SAM files and to convert them
to a compressed binary BAM file format on the single sample level. The Java tool
MergeSamFiles took as input all 10 parts created during the alignment step across
all sequencing lanes for a given sample and created one BAM file as output.

Remove duplicates MarkDuplicates from Picard tools was used to identify
and remove duplicated reads. These duplicates can arise from either the library
preparation process or the sequencing process. In either case, the safest approach is
to count each read mapped to unique coordinates only once.

Locally realign reads Alignment of a single sample is prone to artifacts, mainly
due to the existence of indels (insertions or deletions). This causes many bases to
mismatch the reference near the place of misalignment, which in turn leads to con-
fusing these phenomena with SNP. The local realignment step is crucial in assuring
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that the number of mismatching bases is minimized across all the reads and samples.
This step consisted of two parts, both of which were performed using the Genome
Analysis Toolkit (GATK) version 2.5-2 [65, 66].

The first part identified genomic intervals which needed realignment. This was
done by running RealignerTargetCreator on an input consisting of BAM files
of all the samples as well as a VCF file containing an comprehensive list of short
human variations downloaded from the dbSNP database [67] (file 00-All.vcf.gz dated
06-08-2013). This computationally intensive part was called on genomic intervals
1000000 bases long, which were then merged into one file by a bash command.

Output of the previous part served as input to the second part in which a realigner
processed the suspicious intervals identified in the first part. This was done by
running IndelRealigner for each patient separately, using as input tumor-control
sample pairs and the intervals created in part 1. To accelerate the process, each
chromosome was processed separately resulting in 24 output BAM files per patient
sample.

Merge BAM files This step utilized the same function as step 2 (MergeSamFiles
from Picard tools) to merge the alignment for all chromosomes split across separate
BAM files for each patient sample.

Create nucleotide tallies During this step the processed reads, which were saved
in compressed binary BAM files, were converted into easily accessible and reduced in
size nucleotide tallies saved in hdf5 file format. This new format allows for fast access
to the data for all samples, while at the same time enables easy exploration of the
data. One tally file contains information about count, coverage, deletion, insertion
and reference sequence per nucleotide base. The conversion process requires time and
computational resources, so to speed it up separate tally files for each chromosome
were created, additionally dividing each of them into smaller intervals of a maximum
length of 105 bases.

In order to achieve this a whole bunch of R/Bioconductor packages was utilized:

• GenomicRanges [68] (version 1.18.1), exomeCopy [69] (version 1.12.0) and
GenomeInfoDb [70] (version 1.2.2) to efficiently represent and manipulate ge-
nomic annotations and alignments;
• rhdf5 [71] (version 2.10.0) and h5vc [72] (version 2.0.5) to create nucleotide

tallies and to interface between R and HDF5 file format;
• BSgenome.Hsapiens.UCSC.hg19 [73] (version 1.4.0) and
TxDb.Hsapiens.UCSC.hg19.knownGene [74] (version 3.0.0) to use publicly avail-
able resources of annotations and genome sequences.

Parallel processing in this step was enabled by R package BatchJobs [75] (version
1.4). The created data structure allowed for efficient further analysis of the data.

30 CHAPTER 3. Molecular profiling of primary cancer samples by using multi-omics



Variant calling

Variant calling was performed with callVariantsPaired function from Biocon-
ductor R package h5vc. We identified 88 genes which were either interesting from
our current research perspective or have been identified as related to cancer (mostly
lymphoproliferative disorders) in previously publish studies. A complete list of genes
can be found in Appendix G.

We used fairly week thresholds for calling somatic variants. This was motivated
by the overall purpose of our pipeline, which was to visualize and guide the variant
calling done by the standard DKFZ pipeline. We decided to be more inclusive,
because further filtering of the results was possible. Being exclusive could limit the
possibility to spot the variant appearing at low frequency rate. Each control-tumor
sample pair was taken separately. In order to call the variant, the following criteria
had to be fulfilled:
• coverage per strand in either sample should be ≥ 2,
• support for the alternative allele per strand in the tumor sample should be ≥ 2,
• support for the alternative allele per strand in the control sample should be
≤ 4,
• support for the deletion per strand in the control sample should equal 0.

The output of callVariantsPaired function gives rich information about each
variant found.

The analysis provided both: a list of the SNVs called and customized mismatch
plots (Figure 3.1) for the visual inspection of somatic variants. The latter was plotted
per patient-gene pair spanning all exons of the given gene, with genomic ranges
extended by 100 bases on each side of every exon. Annotation of exons was taken
from Bioconductor R package TxDb.Hsapiens.UCSC.hg19.knownGene.

Copy number estimation

Copy numbers were estimated with the help of Bioconductor R packages: h5vc and
DNACopy [76], in a similar way as described previously [77]. In short, overlapping
genomic ranges for annotated exons were first merged into fragments. Then, for each
fragment of each sample the coverage depth was calculated with binnedCoverage
function from package h5vc. The coverage was further adjusted by accounting for the
GC-dependent bias. Finally, the resulting data was smoothed (smooth.CNA) and
regions of estimated equal copy number were joined using circular binary segmen-
tation [78]. An example visualization of the outcome can be appreciated in Figure
3.2.

3.1.5 Aggregation of genomic information

Genomic information collected by using all the different sequencing techniques ex-
plained above was manually merged and curated. The process involved well-estab-
lished genetic markers. This approach allowed us to eliminate inconsistencies within
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Figure 3.1 Mismatch plot.

Example of mutation in MYD88 gene for one of the studied patients
visualized by a mismatch plot. The two, top and bottom panels correspond
to control and tumor samples, respectively. Grey shadows show the coverage
on base resolution level. The multi-colored line at the bottom represents
the reference strand. White background defines exon ranges and pink area
represents parts of introns by which the exons were extended. The SNV is
marked by the blue dot at the top of the bottom plot. The horizontal lines
are guides which mark the coverage of 25 reads.

datasets and to come up with a comprehensive set of genomic characteristics of stud-
ied samples. As a result, a binary table (0/1 standing for unmutated and mutated
gene, respectively) of 264 samples and 89 genomic features was created. Even though
for most of the features the information about frequency of the mutated allele was
available, in the analysis we included this information only for TP53 and BRAF
genes.

3.2 Transcriptomics

RNA sequencing was performed for 103 patient samples on Illumina HiSeq 2000.
Output reads were aligned to the human reference genome (GRCh 37.1 / hg 19).
Read counts were calculated with HTSeq [79] and differential expression analysis
was performed in Bioconductor R package DESeq2 [80].

3.3 Methylomics

196 CLL patient samples were subjected to DNA methylation profiling using Illumina
Infinium HumanMethylation450 BeadChip arrays (Illumina, San Diego, CA, USA).
Each specimen was categorized to one of the three groups (highly-/interemdiate-
/low-programmed, HP/IP/LP in short) according to reference [81].
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Figure 3.2 Segmentation of copy number estimates.

Two examples of estimated copy number changes. Pink and blue ver-
tical stripes color-code different cytobands. Dots stand for the genomic
fragments which were the resolution of calculation. Red horizontal lines are
segments characterized by the same copy number.
Panel A shows the complete gain of an extra copy of chromosome 12
observed in patient H094.
Panel B shows partial deletion of chromosome arm 11q observed in patient
H111.

3.4 Mutational landscape of patient cohort

The genetic landscape of studied CLL patients was heterogeneous as shown in Figure
3.3. This recapitulates the real characteristics of the disease seen in clinical setting
and is a first step towards translation and applicability of the results.

During carcinogenesis CLL cells acquire multiple mutations, with some of them
being more frequent then the others. In the investigated CLL cohort the most fre-
quently appearing mutations were: del13q14 (61%), TP53 (19%), del11q22.3 (17%),
SF3B1 (15%), trisomy 12 (15%), del17p13 (14%), ATM (12%) and NOTCH1 (10%).
These numbers agree with the fractions observed in other studies: 55% del13q14,
15% TP53, 10-18% del11q22.3, 5-17% SF3B1, 15-20% trisomy 12, 7-10% del17p13,
5-17% ATM and 4-12% NOTCH [82, 83, 84].
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Figure 3.3 Genetic landscape and clinical characteristics of the CLL cohort.

The figure shows coexistence of a selection of clinical factors (top part)
and mutations (bottom part) for the total of 211 CLL patient samples
(x-axis) present in drug screens. Gray color codes unavailable data (NA).

Some mutations tend to occur together. That is a case for i.a. TP53 and del17p13,
or del13q14 and all other mutations. However, mutations of del17p13, del11q22.3
and trisomy 12 have a tendency for exclusiveness. This has been already observed
before and the groups have been correlated with clinical outcomes [9]. It has been
shown that the prognosis is the worst for carriers of 17p deletion, followed by those
with 11q deletions, and better for those with trisomy 12 or none of the mentioned
earlier. Surprisingly, patients with 13q deletions have favorable prognosis as com-
pared to the other four groups. However, predicting patient’s clinical outcome based
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on the presence of a given biomarker is strongly dependent on the available treat-
ment strategies. Differences in prognosis mentioned above are likely to change in the
upcoming years due to emergence of new targeted treatments.

3.5 Contributions

The author of this thesis was responsible for the processing pipeline described in the
current chapter. In essence, she processed raw sequencing data from the whole exome
sequencing, performed variant calling and copy number estimation. She controlled
genetic data consistency and made mismatch plots, which guided the manual process
of mutation annotation of the samples. During many steps she received guidance
from a former colleague, Paul-Theodor Pyl, the developer of Bioconductor R package
h5vc, which she was using. However, all the scripts she wrote and run on the cluster
solely by herself. DKFZ pipeline was run by Marc Zapatka. Manual aggregation of
genomic information (Section 3.1.5) was performed by Bian Wu. Transcriptomic data
was processed by Sascha Dietrich, Simon Anders and Sophie Rabe, and methylomics
data by Christopher Oakes.
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4Ex vivo drug sensitivity in primary
cancer cells

[Cancer treatment] is almost-not quite, but
almost-as hard as finding some agent that will
dissolve away the left ear, say, and leave the
right ear unharmed.

— William Woglom
The Emperor of All Maladies:

A Biography of Cancer

Our drug screens measure the individual phenotypes produced by the compounds
acting on patient primary material by comparing the ATP content of treated cells to
the value obtained for non-treated controls. This measure is assumed to be a good
surrogate of drug effectiveness. We tested a great variety of drugs. Although some of
them have the same main target assigned (see Appendix C), they all differ in chemical
structure and therefore they interact with their target in an unique way. Efficacy of
binding to the target is modulated on different levels and can be influenced by, for
example, receptor-ligand binding affinity, ligand efficacy, drug concentration and/or
individual characteristics of the patient’s cells. Other effects, directly connected to
drug concentration, are called off-target effects. The higher the concentration, the
higher the chance that a drug will modulate other targets (different from the one
it was designed for), which are not necessarily biologically related to the target of
interest. The choice of proper concentrations for each drug in the screen was a very
important step especially in the context of following the analysis part.
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4.1 Clustering of drug phenotypes

In the analysis we tried to minimize the influence of the off-target effects by focusing
on the lowest drug concentrations. Therefore, we used the mean of drug response over
the two lowest concentrations from the main screen to compare the response profiles
between different patient samples. The Pearson correlation of all drug response
profiles for CLL, MCL and T-PLL samples was calculated separately. We did it for
the three biggest patient subgroups according to the diagnosis (≥ 10 cases). The
correlation coefficients were subjected to hierarchical cluster analysis and visualized
as symmetrical heatmaps (Figures 4.1, 4.2, and 4.4).

4.1.1 Chronic lymphocytic leukemia

Although CLL is a very heterogeneous disease, we could observe groups of drugs
which exhibit similar drug response profiles. The correlation coefficients of the unique
pairs of drugs ranged from −0.49 to 0.91, and 3% of them showed a relatively high
correlation > 0.6. We can distinguish seven meaningful drug clusters in Figure
4.1. These include drugs with identical or related targets, and drugs of converging
pathway dependence.

The most prominent cluster I is formed mainly by inhibitors of the BCR sig-
naling pathway, which target such kinases as Bruton’s tyrosine kinase (BTK),
spleen tyrosine kinase (SYK) or phosphoinositide 3-kinase (PI3K). Several drugs
within this cluster produced response patterns similar to that of BCR inhibitors,
consistent with the roles of their annotated targets being downstream of BCR sig-
naling (MEK, AKT, LYN or SRC). Additionally, some other compounds showed
unexpected phenotypic similarity to BCR inhibitors. These include checkpoint ki-
nase (CHK) inhibitors (AZD7762; PF 477736) and the heat shock proteins (HSP)
inhibitor (AT13387). Cluster II contains all three inhibitors of redox signaling /
reactive oxygen species (ROS) present in the drug screen. Cluster III comprises
drugs which target two serine/threonine protein kinases, which are taking part in
DNA damage response. Cluster IV includes the drugs of converging p53 pathway
dependence including nutlin-3 (inhibits the interaction between MDM2 and tumor
suppressor p53) and two chemotherapeutics: fludarabine and doxorubicin. Although
these drugs show more activity in higher concentrations, we can already see their ac-
tivity in low drug concentrations. Cluster V consists of BH3-mimetics drugs, and
quite unexpectedly, the drug designed to combat obesity. Cluster VI comprises
inhibitors of MAPK/ERK signaling pathway, which plays a role in inhibiting the
uncontrolled growth of cancer. The last cluster VII contains drugs targeting CHK
and JAK inhibitors.
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Figure 4.1 Correlation of drugs based on response profile in CLL samples.

The symmetric heat map shows Pearson correlation coefficients for all
pairs of drugs for CLL. Major clusters include: (I) B-cell receptor signaling
inhibitors i.a. idelalisib (PI3K), ibrutinib (BTK), and duvelisib (PI3K), (II)
inhibitors of reactive oxygen species (SD51, SD07, MIS-43), (III) inhibitors
of ATM (KU-60019) and DNAPK (NU7441), a complementary couple in
DNA double strand break repair, (IV) modulators of p53 pathway and
chemotherapeutics (fludarabine, nutlin-3, doxorubicin), (V) BH3-mimetics
drugs (navitoclax, venetoclax), (VI) inhibitors of MAPK/ERK pathway
(gefetinib, BIX02188, afatinib), and (VII) drugs which interfere with key
players in cell cycle regulation and DNA damage response.

4.1.2 Mantle cell lymphoma

In the case of MCL, due to a common disease origin with CLL, we would expect
similar drug response profiles and hence comparable clusters to appear. The dynamic
range of correlation coefficient was spanning from −0.85 to 0.97, which made the
heat map in Figure 4.2 look more prominent than for CLL. 18% of all correlation
coefficients for unique drug pairs were strong, either < −0.6 or > 0.6. MCL and
CLL share a similar level of heterogeneity, therefore the most probable explanation
for such relatively strong correlations between drugs resulting in less specific clusters,
was the low number (10) of MCL patient samples available for the analysis. This is
not enough for catching multiple drug response phenotypes.
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Figure 4.2 Correlation of drugs based on response profile in MCL samples.

The symmetric heat map shows Pearson correlation coefficients for all
pairs of drugs for MCL. Major clusters include: (I) BH3-mimetics drugs
(navitoclax, venetoclax), (II) inhibitors of reactive oxygen species (SD51,
SD07, MIS-43), (III) B-cell receptor signaling inhibitors i.a. idelalisib (PI3K),
ibrutinib, spebrutinib (both BTK), duvelisib (PI3K).

We identified 3 both crisp and meaningful clusters. They all can be related to
specific clusters also seen in CLL, which confirms the similarity of these two diseases.
Cluster I includes small molecule compounds active through BH3-mimetics mech-
anism. Again, surprisingly, these two drugs cluster together with the anti-obesity
drug orlistat. Cluster II comprises all three tested inhibitors of redox signaling /
ROS. The last one, cluster III contains mostly inhibitors of BTK, PI3K, SYK,
SRC and other elements of BCR signaling pathway.

4.1.3 T-cell prolymphocytic leukemia

For T-PLL the situation is quite different as it is also commonly seen in the clinical
setting. Patients are in general less responsive to standard treatments, which is
reflected in the drug screen. The disease is characterized by more resistant phenotype
than CLL, as shown in Figure 4.3. The list of drugs used in the screen was enriched
for compounds interfering with components of the BCR signaling pathway (11/64
drugs; 17%). These are not relevant in the course of T-cell disease.
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Figure 4.3 Mean drug response of CLL vs. T-PLL.

The scatter plot shows the mean drug response for each drug and con-
centration calculated over all CLL (x-axis) and T-PLL (y-axis) samples
available in the main screen. 277/320 (87%) dots are located above the diag-
onal, which indicates resistance of T-PLL samples to the drug treatment as
compared to CLL. The increased resistance of T-PLL holds true irrespective
of drug targets.

The Pearson correlation coefficients for unique drug pairs ranged from −0.59 to
0.93. 6% of them exhibited a relatively high correlation > 0.6. Figure 4.4 visualizes
this correlation together with clustering of the highly-correlated drug pairs. As the
result of common weak activity of compounds in T-PLL, the emerging clusters are
sparse and scattered. There are only two clusters which share same or similar targets:
Cluster I comprising drugs which interfere with cell cycle regulation and DNA
damage response mechanisms, and cluster II consisting of all three ROS inhibitors.
The absence of a cluster with inhibitors of up- and down-stream components of the
BCR pathway is reassuring that they have no impact on the T-cell disease. Most
drugs cluster just because they exhibit low activity in general.

4.1.4 Summary

We observed distinct and heterogeneous viability effects produced by drugs across
samples. Clusters of phenotypic similarities profoundly identify drugs with related
targets. The most noticeable examples are BCR inhibitors such as ibrutinib, idelal-
isib, tamatinib, spebrutinib, duvelisib and PRT062607 HCl, targeting BTK, PI3K
and SYK. These were highly correlated with each other, and additionally, showed
similar response profiles to drugs such as selumetinib, MK-2206, and dasatinib, which
are inhibitors of the downstream BCR targets: MEK, AKT, LYN or SRC. We also
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Figure 4.4 Correlation of drugs based on response profile in T-PLL samples.

The symmetric heat map shows Pearson correlation coefficients for all
pairs of drugs for T-PLL. The two major clusters include: (I) drugs which
interfere with a key players in cell cycle regulation and DNA damage response
(VE-821, silmitasertib, CCT241533, rabusertib), and (II) inhibitors of
reactive oxygen species (SD51, SD07, MIS-43).

identified compounds with unexpected phenotypic resemblance to BCR inhibitors,
including AZD7762 and PF 477736 (targeting CHK [85, 86]) and AT13387 (tar-
geting HSP). This BCR-like response profile was presumably caused by off-target
effects directed towards the BCR pathway. Moreover, drugs of converging pathway
dependence, e.g. TP53 : nutlin-3 and fludarabine, also produced distinctively similar
response patterns.

Drug clustering varied depending on the selection of samples, which supports the
biological relevance of the results. For instance, the cluster of BCR inhibitors was
absent for T-PLL samples, whereas for the other groups of drugs (e.g. targeting ROS
or working through BH3-mimetics) clusters were present, which is consistent with
the observations in CLL and MCL.

We showed that survival dependencies of tumor cells can be decoded by the
analysis of drug response profiles. “Guilt by association” strategy allows for discovery
of unanticipated drug targets.
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4.2 Functional classification of lymphoproliferative disorders

To gain a global overview of the response variation across patients, we clustered
samples by the similarities of their drug response profiles (Figure 4.5).

We used a model-free approach that clustered both samples and drugs based on
signatures produced by separate drug concentrations and thus, allowed to account
for a dose-dependent target specificity.

The most prominent cluster, which can be characterized by the red-to-blue color
gradient within CLL, is driven by a group of drugs including BCR inhibitors. Same
pattern emerged for other kinase inhibitors, and we called their response to be “BCR-
like”. This gradient separates CLL with unmutated IGHV region (U-CLL) and CLL
with mutated IGHV region (M-CLL) almost perfectly. Our data also indicates that
dependence on BCR signaling varies on a continuous scale between different tu-
mors and is most pronounced in the majority of U-CLL, while weaker in M-CLL.
This observation is in line with increased BCR pathway activity in U-CLL [87, 88].
Within M-CLL reliance on other signaling pathways could be observed. The most
outstanding example, the dependency on mTOR pathway in a subgroup of M-CLL,
was high and exclusive, therefore independent of BCR signaling. A similar pattern
of variable response as seen in CLL was apparent in MCL, with a subset of sam-
ples showing sensitivity to BCR inhibitors, consistent with previous reports [89, 90].
Pronounced sensitivity to BRAF/MEK inhibition was seen in hairy cell leukemia
(HCL), reflecting the known role of the BRAF V600E mutation and clinical obser-
vations [28]. T-PLL samples again exhibited an extremely resistant phenotype to
almost all tested compounds. However, they were also the only disease sensitive to
multiple concentrations of thapsigargin.

Together, these results provide a fine-grained classification of disease based on
response phenotype and give insight into essential disease-specific signaling signatures
of blood cancer as e.g. BRAF/MEK/ERK signaling in HCL, and BCR signaling
across a set of B-NHL, including CLL and MCL.

4.3 Influence of cell lineage and disease subtype on drug response

In clinical setting, similarities of response to drugs between patients suffering from
same cancer type can be observed. In order to understand the role of cell lineage
and disease subtype on drug response, we compared drug sensitivity profiles across
diseases at single compound resolution. The analysis included all available diseases
for which at least three samples have been collected and tested. The most abundant
cohort of CLL samples was used as reference. We compared responses to single
drugs between the reference and other diseases using Student t-test (two-side; equal
variance). p-values were adjusted for multiple testing, and these were used to call
significant associations. The results are presented in Figure 4.6. Predominance of the
pink color in the figure indicates general resistance to drugs (rather than sensitivity)
for virtually all tested diseases as compared to CLL.
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Figure 4.5 Landscape of drug response.

The heat map gives an overview of the measured viabilities for all the
samples (rows) under drug treatment. For each drug-concentration pair
(column) the viability readouts were centered and presented on a z-score
scale. We show 204 drug-concentration pairs (for 53 drugs) which exhibited
the most variable response. The most important features of the samples
are presented on the right hand side of the figure. Hierarchical clustering
(Euclidean metric, complete linkage) of the samples divided the heat map
into functional disease subgroups.
Figure created by Wolfgang Huber.
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Figure 4.6 Summary of disease-specific drug effects.

The heat map shows the significant differences in drug responses of
seven diseases and control mononuclear cells (hMNC) as compared to CLL.
The color indicates the direction of difference (pink: less, blue: more sensitive
compared to CLL) and p-value (two-sided t-test; 10% FDR). The five columns
within each block correspond to the five concentrations tested (c1: highest,
c5: lowest). Not significant differences are shown in light gray. FDR of 10%
was used.

T-PLL is characterized by the remarkably resistant phenotype, which is in line
with clinical observations (see also Figure 4.3). This is clearly evident not only for in-
hibitors of the BCR signaling pathway, but also for broadly active compounds includ-
ing the BH3-mimetics navitoclax and venetoclax, the HSP inhibitor AT13387, and
agents interfering with reactive oxygen species (ROS). Nutlin-3 (10 µM); p = 0.001)
was more active in T-PLL (Figure 4.7), which could be potentially reflecting the ab-
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Figure 4.7 Drug response differences between CLL and T-PLL.

T-PLL samples were more sensitive to nutlin-3 and thapsigargin.

sence of TP53 mutations in T-PLL. We identified thapsigargin, a non-competitive
inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) with prefer-
ential activity in T-PLL for 4 of 5 drug concentrations (p < 0.001, Figure 4.7).
Additionally, JAK inhibitors ruxolitinib and tofacitinib showed increased activity
in T-PLL in lower drug concentrations (p < 0.001). Both findings offer potential
repurposing opportunities.

In comparison to our representative of myleoid-originated disease, AML, a set
of drugs showed increased activity. Those included inhibitors of: SYK (tamatinib),
farnesyltransferase (tipifarnib), FLT3 (sunitinib) and epidermal growth factor recep-
tor (EGFR) (gefitinib) (Figure 4.8). Their potential in treating AML has already
been noticed in other studies [91, 92, 93, 94]. Clinical trials conducted for suni-
tinib yielded promising results, however, tipifarnib and gefitinib proved not to be an
appropriate therapy for AML patients.

Although all B-cell lymphoma subtypes seem to respond to treatment in a similar
fashion, several distinct features could be observed. In order to further zoom in
into these differences we repeated the analysis, this time using U-CLL and M-CLL
separately as references (Figure 4.9). By doing so we redirected the focus from the
biggest biological divider of CLL (meaning IGHV status) into more subtle pathway
dependencies.
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Figure 4.8 Drug response differences between CLL and AML.

AML samples were more sensitive to tamatinib, tipifarnib, sunitinib
and gefitinib.

MCL showed novel and specific sensitivity to the survivin inhibitor YM155 (8
nM; p < 0.001). On the other hand, it was less sensitive than CLL to BH3-mimetic
drugs. Similar to clinical observations, MCL were sensitive to BCR inhibitors [89],
showing a similar response pattern to U-CLL and the mTOR inhibitor everolimus
(2.5 µM; p = 0.004; Figures 4.9A and 4.10). Marginal zone lymphoma samples in
this study were distinctly resistant to inhibitors of the BCR including a broader set of
kinase inhibitors (dasatinib, PRT062607), and the HSP inhibitor AT13387 (Figures
4.9B and 4.11). Individual drugs, e.g. PF 477736, dasatinib, showed preferential
activity in LPL (Figures 4.9C and 4.12). Hairy cell leukemia samples were exquisitely
sensitive to a BRAF and MEK inhibition (encorafenib, selumetinib; Figures 4.9E
and 4.13). This finding is based on the presence of BRAF V600E mutation in HCL,
which results in activation of the MEK/ERK pathway [12]. Moreover, CLL samples
harboring same BRAF mutation tend to respond better than BRAF wild-type CLL,
although still not as effectively as HCL cases (Figure 4.14).
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Figure 4.9 Drug response differences within B-cell cancers.

Drug response in MCL (Panel A), MZL (Panel B), LPL (Panel C),
B-PLL (Panel D), and HCL (Panel E) as compared to two references:
U-CLL (top heat map) and M-CLL (bottom heat map). The pink and blue
colors indicate a more resistant or sensitive drug response profile than the
reference, respectively. The bar in different shades of gray on the left hand
side of each heat map indicates the drug concentrations.
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Figure 4.10 Drug response differences between M-CLL and MCL.

MCL samples were sensitive to survivin inhibitor YM155 and BCR
inhibitor ibrutinib.

These data demonstrate that distinct and disease-specific sensitivity profiles of
blood cancer subtypes can be uncovered by ex vivo drug response profiling. Ad-
ditionally, new disease-specific effects could be observed, which in principle can be
exploited clinically or used for improving the not-yet-perfect disease classification.
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Figure 4.11 Drug response differences between U-CLL and MZL.

MZL samples were resistant to the HSP inhibitor AT13387 and kinase
inhibitors (dasatinib, PRT062607).
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Figure 4.12 Drug response differences between M-CLL and LPL.

LPL samples were more sensitive to PF 477736 and dasatinib
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Figure 4.13 Drug response differences between CLL and HCL.

HCL samples were more sensitive to inhibitors of MEK (selumetinib)
and BRAF (encorafenib).
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Figure 4.14 Drug response in samples with V600E BRAF mutation.

Bee swarms show drug response for all CLL and HCL samples to
BRAF inhibitor encorafenib. The red color indicates the presence of BRAF
V600E mutation with an allele frequency > 10%.
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5Molecular factors influencing drug
response in CLL

The statistician is no longer an alchemist
expected to produce gold from any worthless
material offered him. He is more like a
chemist capable of assaying exactly how much
of value it contains, and capable also of
extracting this amount, and no more.

— Sir Ronald A. Fisher

Knowledge about the presence of single gene mutations is becoming increasingly
valuable to inform treatment approaches. Therefore, we combined information on
molecular aberrations for each sample and evaluated their associations with drug
sensitivity profiles in CLL samples. The matrix of molecular aberrations comprised:
somatic mutations (aggregated at gene level), copy number aberrations and IGHV
mutation status.

We univariantly tested each genomic feature (43 features for the pilot screen and
63 for the main screen) for their associations with the drug response by using Student
t-test (two-sided, with equal variance). Each concentration was tested separately, and
the minimal size of the compared groups was set to 3. For each screen the p-values
were adjusted for multiple testing by applying the Benjamini-Hochberg procedure.
Adjusted p-values were then used for setting the significance threshold of 10% false
discovery rate. The distinction between monoallelic and biallelic deletion 13q was
discarded from the results [95].

Before going into any detailed analysis, we checked again for the potential con-
founding of the results with the fact that the main screen was performed in three
separate batches (see Figure 2.5). We repeated the drug-feature association tests
using batch group as a blocking factor in a two-way ANOVA test, and then com-
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pared the p-values from both tests (see Appendix E). Only one drug, bortezomib,
showed discrepant p-values, and further exploration of its data suggested that it lost
its activity during storage. All the remaining associations yielded equivalent results
regardless of whether tested with or without batch as a blocking factor. Therefore,
all the reported p-values for associations come from the t-test without blocking for
batch effects.

5.1 Biomarkers of chronic lymphocytic leukemia

Within the main screen we identified 273 highly significant associations between
drug response and molecular aberration (see Figure 5.1). All 64 compounds were
associated with at least one mutation, and similarly, 48 (79%) of mutations were
associated with at least one compound. The detected associations were supported
by one (157; 57.5%) or multiple drug concentrations (54, 27, 23 or 12 associations
corresponding to 19.8%, 9.9%, 8.4%, 4.4% of all associations for 2–5 concentrations,
respectively). IGHV was the factor which modulated the response to the most num-
ber of compounds (46; 72%), including all 10 drugs which are targeting either the
BCR pathway directly or downstream from it—the PI3K/AKT pathway. Excluding
IGHV, in majority of cases (141; 62%) the mutated samples exhibited a more resis-
tant phenotype as compared to wild type ones. Mutation caused increased sensitivity
to drug treatment in 85 (37%) of all associations. There was one association where
the mutation caused divergent effect on the drug response, depending on the drug
concentration. Moreover, we compared the number of significant drug-gene associ-
ations between the pilot and the main screens and observed their increase coupled
with more samples tested (for details see Appendix H). Given the fact that we were
able to detect many single gene-drug associations across a variety of gene mutations,
the data suggests that those biomarkers could explain therapeutic selectivity of the
drugs.

Mutations, which were identified to be associated with the drug response tar-
geting diverse molecular processes including: DNA damage (TP53), MEK/ERK sig-
nalling (BRAF, RAS ), epigenetic modification (CREBBP), pre-mRNA-processing /
splicing (PRPF8, SF3B1 ) and nuclear export (XPO1 ). Some of the associations in-
cluded mutations with less well-defined function such as ABI3BP,MED12, UMODL1
and gain 8q24. Several unexpected associations including rare variants will be fol-
lowed up in Section 5.1.4.

5.1.1 IGHV status

IGHV status is a well-established marker of prognosis in CLL. Variable regions of
immunoglobulin, which are part of the B-cell receptor, have unique characteristics in
malignant cells. They allow to identify the stage of B-cell differentiation and matura-
tion from which the tumor originates [96]. The B-cell receptor plays a crucial role in
B-cells by regulating key signaling pathways responsible for cell survival, apoptosis,
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Figure 5.1 Summary of drug-mutation associations found in the main screen.

The heat map shows associations between drug responses (y-axis) and
gene mutations, structural aberrations or IGHV status (x-axis) identified
within the CLL cohort. Student’s t-test was used to compare responses
of the drug (in each concentration step separately) between samples with
and without a given mutation. A false discovery rate of 10% was used.
p-values and direction of the effect are color coded, with pink and blue
indicating resistant and sensitive phenotypes, respectively, in the presence
of the tested mutation. For IGHV status, pink indicates sensitivity of
M-CLL and blue indicates sensitivity of U-CLL. Each gray box consists of
5 horizontal bars, which correspond to five concentration steps (highest to
lowest concentration going from top to bottom of a square). The bar plot on
the bottom summarizes the number of associations found per gene (on the
drug level; color coded by type of mutation). Dots on the right indicate basic
characteristics of drugs.
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proliferation, migration, and, only in case of healthy B-cells, differentiation. The
level of antigens present on the surface of B-cells is assumed to be the main factor
modulating the response to BCR activation [97] (most presumably self-activation
[98]). In the case of U-CLL expression of these immunoglobulins is retained to a
greater extent than in M-CLL (B-cells which went through somatic hypermutation
in germinal center) [97]. Therefore, it is believed that the pro-survival signals re-
ceived by malignant B-cells can be suppressed by targeting kinases downstream of
BCR.

Indeed, IGHV mutation status was a major determinant of CLL response to the
six BCR inhibitors (ibrutinib, saracatinib, tamatinib, KX2-391, spebrutinib, and
PRT062607 HCl; Figure 5.2). Their robust differences were observed over multiple
drug concentrations (Figure 5.3), including the lowest ones tested. The obtained
effect sizes were comparable to the ones observed in the previous smaller studies like
Guo et al. [88]. The effectiveness of BCR inhibitors in patients is currently being
extensively tested in clinical trials. Some of them are already showing promising
results in improving the survival of patients [36, 37].

Moreover, U-CLL were sensitive to SRC inhibitor dasatinib, similarly to what
already has been noticed in a modest cohort of patients [99]. Previous studies with
this drug suggested a potential benefit when used in combination with drugs whose
target is outside of BCR signaling [100]. Such approach could disturb pro-survival
signals originating from BCR-independent pathways which play a significant role,
especially in M-CLL.

Several compounds exhibited a “BCR-like” profile. These included CHK in-
hibitors AZD7762 [85], PF477736 [86] (Figure 5.4) and AT13387 targeting HSP90
(Figure 5.5). We further investigated the effect of AZD7762 by looking at the changes
in gene expression under treatment (Figure 5.6). The results suggest that the CHK
inhibitor acts on the BCR signaling pathway through off-target effects. Similarly,
AT13387 most probably interferes with components of BCR-signalosome, such as
BTK and SYK [101].

5.1.2 TP53 mutation / 17p deletion

TP53 gene is a tumor suppressor, whose function is frequently impaired in cancer
due to mutation. It encodes a whole family of proteins, which are regulating gene
expression through binding to DNA. TP53 gene is sometimes called the “guardian
of the genome”, because it influences cell fate under stress signals. It guides the cell
into DNA repair, cell-cycle arrest, senescence or apoptosis [105]. In CLL, TP53 gene
is a well-known biomarker. If it is mutated, patients poorly respond to standard
front line fludarabine-based therapy [10]. After many recommendations to include
the TP53 mutation status into treatment decision [10, 106], it was finally accepted
as a first, and so far the only one, genetic factor which guides treatment regimen
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Figure 5.2 Drug responses associated with IGHV status.

Bar plot shows drugs (y-axis) which produced significantly different re-
sponses between U-CLL and M-CLL groups. Positive difference (blue)
indicates higher sensitivity of U-CLL as compared to M-CLL. Conversely,
negative difference (pink) indicates higher sensitivity of M-CLL as compared
to U-CLL. The five concentrations of each drug were tested separately and
the color intensity of the bars encodes for how many of them the difference in
viability was statistically significant (FDR 10%). The length of a bar shows
the greatest effect produced within the tested concentration steps.

applied in the hospital [5]. TP53 mutation often occurs together with the deletion
17p, and its frequency increases with subsequent treatments from around 5-15% [107]
to approximately 44% [108].

Our approach markedly recapitulated clinical observations. Response to fludara-
bine and doxorubicin—the two chemotherapeutics used in the study, which both
cause cell death through apoptosis [109, 110]—were highly dependent on the muta-
tion status of TP53 gene and deletion 17p (Figure 5.7). These associations were very
strong, thus yielded significant with multiple drug concentration steps. A similarly
robust effect of resistant phenotype within mutated sample was observed for nutlin-3.
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Figure 5.3 Drug response to BCR inhibitors stratified by IGHV status.

Effect of treatment with BCR inhibitors targeting BTK (ibrutinib,
spebrutinib), PI3K (idelalisib, duvelisib), and SYK (PRT062607, tamatinib)
is significantly different between M-CLL (n = 98) and U-CLL (n = 74)
samples.
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Figure 5.4 Drug response to CHK inhibitors stratified by IGHV status.

Effect of treatment with CHK inhibitors AZD7762, SCH 900776 and
PF 477736 is significantly different between M-CLL (n = 98) and U-CLL
(n = 74) samples.
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Figure 5.5 Drug response to HSP inhibitor stratified by IGHV status.

Effect of treatment with HSP inhibitor AT13387 is significantly differ-
ent between M-CLL (n = 98) and U-CLL (n = 74) samples.

This drug inhibits MDM2, a negative regulator of p53 proteins, and therefore facil-
itates cell apoptosis. Additionally, in agreement with clinical observations, samples
which are harboring neither TP53 mutation nor 17p deletion were highly susceptible
to treatment with all three drugs. Knowing the approximate mode of action of both
fludarabine and nutlin-3, we were able to confirm the dependency of the response on
the size of the TP53 mutated clone (Figure 5.8).
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Figure 5.6 Changes in gene expression under treatment with AZD7762.

Gene expression profiling was performed on three patient samples within each
of the two groups: M-CLL and U-CLL, before and after treatment with CHK
inhibitor AZD7762. For each sample, we divided the gene expression level of
the treated sample by the untreated one, and log2 transformed the obtained
ratios. For each gene, we compared log2 fold changes between M-CLL and
U-CLL using moderated t-test statistics. In order to increase power, we used
independent filtering, which limited our analysis to 1000 most variable probes
[102]. Multiple testing was controlled by applying Benjamini-Hochberg
procedure (FDR 20%; p = 0.0058).
Figure shows down-regulation of cytokines and chemokines (arrows) exhibited
by M-CLL samples, which suggests off-target effects of AZD7762 on the BCR
pathway [103, 104].

Clinical observations similar to the described above were also reported in MCL
[111]. Although we tested only 10 representative cases of the disease (seven of which
acquired a mutation in TP53 gene), we found the TP53 mutation status to be sig-
nificantly associated with reduced response to both nutlin-3 and fludarabine (Figure
5.9).

5.1.3 Trisomy 12

Trisomy of chromosome 12 is an important independent predictor of patient’s clinical
outcome [9]. This one of the most frequently observed mutations in CLL is almost
always characterized by a complete duplication of one chromosome [82]. Relatively
good prognosis for patients harboring trisomy 12 is likely to be a reason why we are
still lacking knowledge about its impact on the activity of the cell.
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Figure 5.7 Mutation in gene TP53 and deletion 17p13 are associated with
resistance to chemotherapy and nutlin-3.

Volcano plots summarize all drug responses which were modulated by
TP53 mutation (top panel) and 17p13 deletion (bottom panel). Significance
was tested using the Student t-test. p-values (y-axis) were adjusted using
Benjamini-Hochberg procedure. 10% FDR was used. x-axis shows difference
in the mean viability between wild type and mutated groups. Presence of
either mutation (both often co-occur) make cells more resistant (pink) to
chemotherapy and nutlin-3.

We observed that the response to 39 drugs was significantly modulated by the
presence of trisomy 12 (Figure 5.10). In the majority of cases, the chromosomal
aberration was sensitizing the cells to the drug (62%). We found trisomy 12 to
be positively associated with the response to the inhibition of: SYK (tamatinib,
PRT062607 HCl), BTK (ibrutinib, spebrutinib), PI3K (duvelisib, idelalisib), mTOR
(everolimus), AKT (MK-2206) and MEK (selumetinib). Separate analysis confirmed
that these findings were not confounded by IGHV mutation status. Figure 5.11
presents the effect of several inhibitors stratified by IGHV status based on raw vi-
ability data. It has been shown previously that patients with trisomy 12 uniquely
respond to treatment with ibrutinib [112], and present elevated phosphorylation of
ERK [113] which could be stimulated by BCR. All this suggests that trisomy 12
causes amplification of the BCR signaling, which affects its downstream pathways,
such as PI3K, mTOR and MEK/ERK.
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Figure 5.8 Drug response dependence on TP53 mutated subclone.

Within TP53 mutated samples (n = 22), the level of sensitivity to
treatment with nutlin-3 and fludarabine is inversely proportional to the
size of the mutated clone (Pearson correlation ranged from 0.53 to 0.76 for
nutlin-3 and from 0.28 to 0.48 for fludarabine).
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Figure 5.9 TP53 mutation status modulates drug response in MCL.

Viability of MCL cells under treatment with nutlin-3 and fludarabine
was significantly influenced by the presence of mutation in the TP53 gene.
Strong effect could be observed even with small sample sizes (n = 3 and
n = 7 for TP53wt and TP53mt, respectively).
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Figure 5.10 Drug responses associated with trisomy 12.

Bar plot shows drugs (y-axis) which produced significant difference in
the mean viability (x-axis) between CLL without and with trisomy 12.
Blue/pink color indicates that the cells with trisomy 12 were more sensi-
tive/resistant to the drug treatment, respectively. The five concentrations of
each drug were tested separately and the color intensity of the bars encodes
for how many of them the difference in viability was statistically significant
(FDR 10%). The length of a bar shows the greatest effect produced within
the tested concentration steps.

Trisomy 12 exhibited a resistant phenotype to 15 of the tested compounds. These
included two ROS inhibitors: SD07 and MIS-43, and two drugs acting through
BCL2: venetoclax and navitoclax. Particularly interesting is the second pair. BCL-2
protein family is involved in a pro-survival pathway. A whole novel class of drugs,
the so-called ‘BH3-mimetics’, like venetoclax, were developed to directly target the
members of BCL2 and initiate programmed cell death [114]. It has been shown that
these molecules are active no matter if the mutation of p53, an upstream initiator
of apoptosis, is present [115]. Although we see the impact of trisomy 12 on the
response to BH3-mimetics, the resistant phenotype is yet to be confirmed during
clinical studies.
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Figure 5.11 Drug response to BCR, mTOR and MEK inhibitors stratified by
the presence of trisomy 12 and IGHV status.

Irrespective of IGHV mutation status, samples with trisomy 12 were
more sensitive to treatment with BTK (ibrutinib, spebrutinib), PI3K (ide-
lalisib, duvelisib), mTOR (everolimus) and MEK (selumetinib) inhibitors
than samples with unmutated chromosome 12.

64 CHAPTER 5. Molecular factors influencing drug response in CLL



silmitasertib (1)
YM155 (3)

−100 −75 −50 −25 0 25 50

ABI3BP (97 wt / 3 mt)

fludarabine (1)
encorafenib (1)

dasatinib (1)
PF 477736 (1)

−100 −75 −50 −25 0 25 50

BRAF (169 wt / 10 mt)

BX912 (1)
MK−2206 (1)

everolimus (3)
UCN−01 (2)
AT13387 (1)

−100 −75 −50 −25 0 25 50

CREBBP (97 wt / 3 mt)

silmitasertib (1)
spebrutinib (1)
PF 477736 (1)

AT13387 (3)
AZD7762 (1)

−100 −75 −50 −25 0 25 50

gain8q24 (162 wt / 7 mt)

navitoclax (1)
BAY 11−7085 (1)

−100 −75 −50 −25 0 25 50

MED12 (94 wt / 6 mt)

chaetocin (1)
actinomycin D (4)

BX912 (1)
ibrutinib (1)

duvelisib (2)
TAE684 (1)

idelalisib (1)
KX2−391 (1)

bortezomib (2)
KU−60019 (2)

UCN−01 (1)
enzastaurin (1)

arsenic trioxide (2)
SNS−032 (3)

orlistat (1)
cephaeline (1)
doxorubicin (1)

−100 −75 −50 −25 0 25 50

PRPF8 (97 wt / 3 mt)

orlistat (1)
venetoclax (1)
navitoclax (1)

−100 −75 −50 −25 0 25 50

UMODL1 (97 wt / 3 mt)

silmitasertib (1)
doxorubicin (1)

YM155 (2)
BAY 11−7085 (1)

−100 −75 −50 −25 0 25 50

Maximum difference of effects

XPO1 (96 wt / 4 mt)

encorafenib (1)
VE−821 (1)

BAY 11−7085 (1)

−100 −75 −50 −25 0 25 50

Maximum difference of effects

KRAS (136 wt / 8 mt)

10−12
10−8
10−4
1
10−4
10−8
10−12

p−value

Figure 5.12 Rare mutations as modulators of drug response in CLL.

Each plots shows all drugs (y-axis), whose response was influenced by
the presence of a given rare mutation (plot titles; alphabetical order). The
effect of mutation (calculated as the difference in mean viabilities between
wild type and mutated groups) is represented by the length of the bar.
The color of the bar encodes the direction of the effect, where blue and
pink indicates that samples harboring the mutation were more sensitive
and resistant than wild type samples, respectively. Intensity of a bar
indicates p-value. Numbers in brackets in y-axis labels indicate how many
concentrations of a given drug showed significant association. Only the
effects and the p-values of the drug concentration producing the strongest
effect are shown. The brackets in titles indicate sizes of the two compared
groups.

5.1.4 Rare mutational subclones

Almost 90% of CLL samples in our study harbor at least one mutation in the assessed
genes. Although each has a potential influence on the heterogeneity of drug response,
majority of them is very rare, which prevents the analysis from providing statistically
significant results. We included rare mutations in our analysis only if they were
present in at least 3 samples of the studied cohort. This allowed us to observe some
trends for which only a limited evidence is present (Figure 5.12).
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BRAF is an oncogene, which when mutated causes tumorgenic transformation
through activation of MEK/ERK signaling [116]. We noticed encorafenib, a BRAF
inhibitor targeting specific V600E mutation, to show favorable effects in the BRAF
mutated samples. However, the very weak effect observed (consistent with other
studies [117]) is due to the low frequency of V600E mutated subclone in CLL.

Mutations in oncogene KRAS occur frequently in many malignancies. We found
the NF-κB inhibitor (BAY 11-7085) to be more effective in KRAS mutated samples.
On the other hand, the same mutation caused resistance to encorafenib. This ob-
servation is in line with the counter-intuitive fact that MAPK/ERK signaling gets
activated under treatment with BRAF inhibitor [118, 119].

CREBBP is a transcriptional coactivator which plays a role in hematopoiesis
[120]. It has been shown that mutations in CREBBP influence epigenetics by caus-
ing reduced histon acetylation. We observed samples harboring the mutation in
CREBBP to exhibit a phenotype sensitive to compounds targeting HSP90 (AT13387),
PKC (UCN-01), mTOR (everolimus), and two components of AKT pathway (MK-
2206, BX912).

PRPF8 gene encodes one of many proteins which are involved in splicing of pre-
mRNA. We detected resistance of PRPF8 mutated samples to many compounds.
These included inhibitors of BCR pathway, such as ibrutinib, duvelisib, idelalisib
and KX2-391, and compounds playing part in DNA damage response—actinomycin
D and doxorubicin.

XPO1 gene is recurrently found mutated in CLL [121]. It encodes proteins which
are responsible for nuclear export, whose activity is affected when XPO1 is mutated
[122]. Our XPO1 mutated samples were highly resistant to silmitasertib, a small-
molecule inhibitor of CK2.

The amplification of q24 fragment of chromosome 8 usually involves a protein
coding gene called MYC and has been associated with a number of hematopoietic
tumors. Specifically, it was associated with short time to first treatment clinical
endpoint in CLL [123]. Similarly to the XPO1 mutation explained above, samples
with gain of 8q24 were resistant to silmitasertib. However, presumably the more
important fact was that the mutated samples were sensitive to BTK inhibitor spe-
brutinib, and two CHK inhibitors (AZD7762 and PF 477736), which are acting on
BCR pathway by off-target effects, as suggested in Section 5.1.1.

Yet another mutation which caused strong resistance to silmitasertib was affect-
ing ABI3BP gene. The same effect was also noticed for survivin inhibitor YM155.
Although both effects are strong, the exact impact of the mutation on cancer is still
unknown.

Mutation in MED12 reoccurs in CLL patients and so far was associated with
markers of poor prognosis [124]. In our study it modulated the response to inhibitors
targeting NF-κB (BAY 11-7085) and BLC2 (navitoclax) pathways .
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The last mutation which showed interesting associations is affecting UMODL1.
Although little is known about its function, we obtained consistent results indicating
that BH3-mimetics drugs (venetoclax and navitoclax) are less active in the mutated
samples.

5.2 Summary

Unsupervised univariate analysis identified a number of gene-drug associations in
CLL. The main purposes of the study comprised:
• validation of clinically relevant biomarkers of drug response and patient out-

come,
• determination of cellular pathways affected by a given mutation,
• identification of vulnerabilities of recurrent but rare mutations.

IGHV status was by far the greatest modulator of drug response. Sensitivity of
U-CLL samples to treatment with targeted BCR inhibitors confirmed their stronger
(than in M-CLL) dependency on BCR signaling pathway. The introduction of such
compounds into standard clinical care is likely to improve the, so far inferior, prog-
nosis of U-CLL patients. Mutation in TP53 produced a phenotype resistant to
chemotherapy and nutlin-3. Unexpectedly, the activity of many compounds was
influenced by the presence of trisomy 12, a biomarker associated with moderate
prognosis. Those drugs include a wide range of targeted inhibitors of BCR pathway
components suggesting a role of trisomy 12 in the amplification of BCR signaling.
We found a number of individual examples of drug-gene associations within the stud-
ied group of compounds, however, their true relevance could be only assessed by a
more comprehensive screen including compounds covering a wider range of possible
targets in a cell.
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6Modulators of drug response and
clinical outcome

The only relevant test of the validity of a
hypothesis is comparison of its predictions with
experience.

— Milton Friedman
Essays in Positive Economics

University of Chicago Press (1953), 1970, 3–43

In the previous chapter we investigated the influence of a single molecular fea-
ture on multiple drug response profiles. This approach allows to identify deregulated
pathways and to relate them to a specific feature of interest, for example gene muta-
tion. However, the real power of multi-omics studies lays in the ability to consolidate
the information from different biological layers (genomics, transcriptomics, etc.) in
order to look at them simultaneously. The resulting big picture opens new oppor-
tunities to study codependency and interplay between those layers and to look at
their combined impact on, for example, drug response or patient’s clinical outcome.
So far, multi-omics data, such as gene mutation, copy number estimates and gene
expression, were integrated into machine learning techniques in order to understand
the drug response of cell lines [45, 46]. Although such approach has great potential, a
few suggestions on boosting the power of analysis were made. The two main concerns
included: (i) sufficient sample size [125] and (ii) focus on one tumor entity at a time
[45]. In our study we address both these issues by concentrating on a large cohort of
CLL tumor samples. By using primary material we were able to integrate not only
different omics but also patient clinical characteristics. To our best knowledge this
is the first attempt of such a comprehensive analysis.

The work described in this chapter was done jointly by myself, Britta Velten and
Sascha Dietrich.
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6.1 Multivariate assessment of drug response determinants

The key challenge in identifying biomarkers of drug response lays in the multifac-
torial nature of the underlying biology. Multiple genes play a role, but each one is
responsible only for a part of the variability, and their effects can be interdependent.
Intratumor heterogeneity only adds to the complexity of this convoluted information.

We dissected the data dependencies by using multivariate linear regression mod-
eling with L1-penalty (i.e., lasso regression). The analysis was performed in two
steps. First, the regularization parameter which controls the strength of the penalty
imposed on the predictor features was tuned by using 10-times repetition of 10-fold
cross-validation implemented in function cvr.glmnet from R package ipflasso (ver-
sion 0.1) [126]. Optimized parameter was further used for modeling performed by
function glmnet from R package glmnet (version 2.0) [127]. The set of features which
were used as predictors comprised: gene mutations, copy number estimates, IGHV
status, DNA methylation, gene expression and demographic covariates (including sex
and age). Depending on the question asked, we used a different subset of the above.
However, the high dimensional nature of gene expression and DNA methylation data
made the model prone to overfitting and hard to interpret. To overcome this, we
performed principal component analysis based on 5000 of the most variable features
from each experiment and selected only the first 20 principal components (PCs) to
use in a model. All the other data types were binarized depending on the absence
or presence of the given feature in a sample. All gene mutations and copy number
estimates which were detected in less than 6 samples were removed from the analy-
sis. Moreover, we also used summarized DNA methylation data [81]. LP, IP and HP
clusters were marked as 0, 0.5 and 1, respectively. Overall, we included only features
for which the data was complete in at least 90% of samples. All features were scaled
to unit variance before supplying them to a model.

We modeled the response to chemotherapeutics and a selection of targeted drugs.
Depending on compound activity we used responses to different concentration steps.
For doxorubicin, fludarabin and nutlin-3 we used mean of all concentrations, whereas
for ibrutinib, idelalisib, selumetinib, everolimus and PRT062607 we used mean over
the two lowest concentrations. We asked two fundamental questions: (i) what are
the modulators of drug response, and (ii) what data types explain best the variability
of drug sensitivity profiles.

To answer the first question we supplied gene mutations, copy number estimates,
IGHV status and methylation cluster information as features to the model. Those
which played a significant role in influencing drug responses are shown in Figures 6.1
and 6.2.

We observed consistence in dependence on TP53 mutation and 17p deletion in the
group comprising chemotherapeutics. Response to fludarabine was almost equally
strongly driven by those two factors. For nutlin-3, mutation in TP53 gene was the
leading predictor followed by deletion 11q and a much weaker contribution from dele-
tion 17p. Multiple predictors of comparable effect were detected for doxorubicin. In
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Figure 6.1 Modulators of drug sensitivity to chemotherapeutic agents.

Results of the multivariate analysis assessing the influence of different
molecular features (rows) on the response to nutlin-3 and chemotherapeutics:
fludarabine and doxorubicin. Patient samples (columns) are sorted according
to decreasing viability induced by a given compound (bottom scatter plots).
Horizontal bars on the left are model coefficients, which when negative
indicate increased sensitivity to drug treatment in the presence of the feature.

this case the most important one was trisomy 12, which when present was sensitizing
cells to the drug. Moreover, the results suggested a link between the mutation in
ATM gene and response to doxorubicin.

Response to the kinase inhibitors was predominantly modulated by DNA methy-
lation cluster, IGHV status and the presence of trisomy 12. The first two were
indicators of cells’ resistance to the drug, whereas trisomy 12 was making the cells
more sensitive. It is worth noting that our model tends to pick correlated features
randomly (mixing parameter alpha = 1), therefore the presence of both IGHV sta-
tus and DNA methylation cluster simultaneously as key factors was unexpected.
For BCR inhibitors, DNA methylation cluster was a dominant predictor of drug re-
sponse. The more downstream in the BCR signaling pathway the target was, the
more complex was the constructed model. This was observed for the MEK inhibitor
selumetinib. Moreover, we found gain 8q24 as a modulator of response to kinase
inhibitors mentioned above. The most modest model was determined for mTOR
inhibitor everolimus. In this case both genetic features: trisomy 12 and mutation in
SF3B1 gene, are sensitizing cells to the drug.
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Figure 6.2 Modulators of drug sensitivity to targeted kinase inhibitors.

Results of the multivariate analysis assessing the influence of different
molecular features (rows) on the response to targeted kinase inhibitors:
ibrutinib (BTK), idelalisib (PI3K), PRT062607 HCl (SYK), selumetinib
(MEK) and everolimus (mTOR). Patient samples (columns) are sorted
according to decreasing viability induced by a given compound (bottom
scatter plots). Horizontal bars on the left are model coefficients, which when
negative indicate increased sensitivity to drug treatment in the presence of
the feature.
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To address the second question we took: genetic and demographic features, IGHV
status, 20 PCs of DNA methylation and RNA expression as explained previously,
and asked about their both separate and joint contribution to the drug response vari-
ability. Results are summarized in Figure 6.3. Again, sensitivity to drug treatment
with chemotherapeutics was almost exclusively modulated by genetic factors (gene
mutation and copy number changes), with small contributions from RNA expression
for doxorubicin and nutlin-3. Variability of drug sensitivity profiles of BCR inhibitors
was explained separately by RNA expression, IGHV status and DNA methylation
to a comparable degree. A combination of these three did not improve prediction.
Yet again, MEK inhibitor selumetinib was characterized by the most complex model.
Here every tested feature except demographics contributed to the drug response, with
the most significant one being RNA expression and genetics. Although in general a
subset of tested features played an important role in modulating drug response pro-
files, that was not the case for doxorubicin and everolimus. Low prediction power in
these two cases suggests that there might be some additional not-yet-known factors.

In summary, our analysis supported the finding of trisomy 12 being the funda-
mental modulator of response to BCR inhibitors in CLL. We comprehensively pro-
vided confirmation and extended the list of biomarkers influencing sensitivity profiles
[87, 128, 39, 81]. We showed that depending on the compound, drug response can be
predicted by different multi-omics datasets, and that multiple multi-omics datasets
share a lot of redundancy.

6.2 Predictors of patient outcome

Primary tumor samples used in the study could be linked to specific patients and
their clinical data. We extracted the available information on dates of treatments
and death, if applicable. These were then used to create two clinical endpoints: from
the sampling date to the date of the following treatment (time to treatment, TTT),
and from the sampling date to the time of death (overall survival, OS), for which we
conducted the survival analysis.

First we asked which of the most frequent aberrations in CLL have impact on
both TTT and OS. We used log-rank test and obtained hazard ratios for the tested
features (Figure 6.4). Results are consistent both between the two clinical endpoints
and with previous studies [8, 7, 10, 39]. Presence of mutated IGHV was an indicator
of better prognosis. On the other hand, presence of deletions 11q and 17p, mutations
in TP53, BRAF, SF3B1 genes significantly worsened the patient outcome. In this
case, patients have a more aggressive disease—they need treatment earlier and also
die sooner. Although we observed a negative tendency towards both OS and TTT
for patients harboring trisomy 12 or mutation in NOTCH1 gene, the difference was
not statistically significant. It might be due to the low fraction of patients with these
mutations present in the study.
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Figure 6.3 Predictors of drug response.

The figure shows how much variance in drug response of the samples
(y-axis) to 8 compounds can be explained by different multi-omics data.
In this analysis, for each data type and drug combination, 10-fold cross-
validation was first conducted in order to optimize the penalty parameter
using function cv.glmnet from glmnet R package. The obtained parameter
was used in a model with 100 repetitions of cross-validation from which the
mean and standard error of the explained fraction of variance were calculated.
Figure created by Britta Velten

Encouraged by the results confirming established genetic biomarkers, we checked
if ex vivo drug response could also predict patient survival (Figure 6.4). As pre-
viously, we focused on the two groups of compounds: chemotherapeutics (doxoru-
bicin, fludarabine and nutlin-3) and targeted kinase inhibitors (ibrutinib, idelalisib,
PRT062607 HCl, selumetinib and everolimus). Yet again, we took a mean viabil-
ity over five and two lowest concentration steps for the first and the second group,
respectively. Univariate Cox regression analysis evaluated hazard ratios for OS and
TTT, which corresponded to good responders to the above drugs.
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Figure 6.4 Biomarkers of patient outcomes.

Assesment of dependence of molecular factors (left panel) and eight
drugs (ibrutinib, idelalisib, selumetinib, everolimus, PRT062607, fludarabine,
doxorubicin and nutlin-3; right panel) on two clinical endpoints: from
sampling date to treatment (TTT; n = 162) and from sampling date to
death (OS; n = 172). Figure shows hazard ratios (HR) obtained from either
log-rank test (left panel) or univariate Cox regression analysis (right panel).
The horizontal bars correspond to 95% confidence intervals.
Figure created by Sascha Dietrich

Positive response to chemotherapy and nutlin-3 showed favorable OS. TP53 mu-
tation was partially responsible for this observation. We further divided samples into
responder and non-responder groups using maximally selected rank statistics [129].
Survival analysis based on these groups showed even greater hazard ratio associated
with drug response and clinical endpoints than the traditional biomarker TP53 gene
mutation (Figure 6.5). Additionally, we used multivariate Cox model which tested
all frequent and established biomarkers (i.a. trisomy 12, deletions 11q and 17p, IGHV
status and TP53 mutation) together with response to doxorubicin. The unique in-
formation included in the drug response profile of doxorubicin significantly increased
the prediction accuracy (see Appendix I).
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Figure 6.5 Chemotherapeutics and patient survival.

Kaplan-Meier estimates of overall survival according to TP53 mutation
status and response to nutlin-3, fludarabine and doxorubicin. Patients were
assigned to the responder and non-responder groups based on maximally
selected rank statistics [129].
Figure created by Sascha Dietrich

Better response to BCR inhibitors is connected with worse prognosis of both
TTT and OS, with greater impact on the former. The closer the target to the BCR
receptor, the better the observed correlation. Drug response measured ex vivo simu-
lated the effects of the most important biomarker in CLL, meaning IGHV mutation
status (Figure 6.6). To make this point even stronger, we first divided patients into
responders and non-responders to ibrutinib and idelalisib, and only then calculated
Kaplan-Meier estimates. Those BTK and PI3K inhibitors significantly separated the
compared groups and gave comparable hazard ratios to the ones observed for IGHV
status. Targeted treatment towards BCR is not yet a front line therapy in CLL.
Unmutated IGHV status is still being connected to worse prognosis. We show that
this can dramatically change if the therapies inhibit activity of the BCR signaling
pathway. However, in order to estimate the benefits of treating U-CLL with tar-
geted therapies aiming for BCR kinases we have to be patient. Survival studies need
extensive follow up data to prove the beneficial effects.

In summary, we showed that ex vivo drug response can predict clinical endpoints
as good as or sometimes even better than the well-established biomarkers. Our
analysis suggests that the biomarker landscape should be updated with drug response
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Figure 6.6 BCR inhibitors and patient survival.

Kaplan-Meier estimates of time between sampling and treatment ac-
cording to IGHV mutation status and response to ibritinib and idelalisib.
Patients were assigned to the responder and non-responder groups based on
maximally selected rank statistics [129].
Figure created by Sascha Dietrich

signatures. Their continuous nature contains more information than, for example,
single mutation, therefore we obtain much more fine-grained insight into the biology
of the tumor. We are convinced that ex vivo drug screens have the potential to
become a daily routine for medical professionals. A tool which will make them more
confident in diagnostics and treatment decisions, as well as in prognostication.
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7Tools facilitating collaboration

Collaboration isn’t about giving up our
individuality; it’s about realizing our greater
potential.

— Joseph Rain
Facebook, 8 April 2016

Nowadays, close scientific collaboration can be improved by a variety of tools
which facilitate both communication between scientists and formulation of hypothe-
ses; by tools, which streamline the flow of ideas and the process of invention. Bioin-
formatic data analysis usually needs far-reaching understanding of the underlaying
biology of the model object. In our project, besides bioinformatics competence, clin-
ical expertise and assessment of therapeutic relevance were necessary. Jointly with
Prof. Dr. med. Thorsten Zenz’s group (whose many members are active medical doc-
tors) from the NCT Heidelberg we brought these two parts together in a fruitful
collaboration.

The old-fashioned, yet very popular method of data exploration is to create nu-
merous figures or tables which satisfy each combination of possible features. In this
way, one can produce advanced reports (using for example ggplot2, lattice, ggvis or
ReportingTools in R) in a high-throughput fashion. However, this usually leads to
either multi-page PDFs or long HTML documents, which then have to be compre-
hended in a rather inefficient manual fashion. Such approach was used in the project
several times, but quickly became bothersome.

In last years significant development of the RStudio Shiny framework was made.
This framework allows to build interactive web applications on top of the powerful
R engine. Depending on the complexity of the programmed interface, the user can
interact with the data by her- or himself, which stimulates the formulation of hy-
potheses that can be tested within the same application. Additionally, there are no
requirements for the user to have any programming experience.
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One of such applications which I implemented VisualScreenExplorer (VSE),
turned out to be particularly helpful (Figure 7.1). It uses drug responses of the main
screen, patient genetic information, and metadata as input. The output is a plot of
responses of two drug-concentration pairs across patients. The user can modify the
information which is displayed in the plot by:

1. choosing both the drug and the concentration for each axis separately,
2. color-coding the points according to the features of the samples: diagnosis, sex,

IGHV status, and selected important genetic markers,
3. subsetting the samples (points) according to: diagnosis, IGHV status, and

presence of mutation in TP53 gene,
4. modifying the appearance of the plot, such as axis ranges and point trans-

parency.

Hovering with the mouse cursor over a point in the plot shows the ID and charac-
teristics of the given sample. Additionally, the current state of the app is encoded
in an URL which can be shared with others, or saved for future reference.

By using the VSE app one can quickly visualize some of the conclusions of the
study. In Figures 7.1 and 7.2A drugs which share the same target show almost iden-
tical profile of drug responses. Figure 7.2B shows the resistant phenotype of T-PLL
in response to BCR inhibition in comparison to the sensitive phenotype exhibited
by CLL. Figure 7.2C, however, shows sensitivity of BRAF mutated HCL samples
to BRAF inhibitor encorafenib, whereas all the other diseases stay resistant to this
drug.

In order to enable other scientists to construct and to test their own hypotheses
using the valuable dataset we collected, an open-access version of the application will
be distributed together with the published article. It will be available on a dedicated
EMBL server under: http://pace.embl.de/VisualScreenExplorer.
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Figure 7.1 Interface of the VisualScreenExplorer.

VSE interface is split into two panels: the sidebar panel on the left,
and the main panel on the right. The sidebar panel (gray area) consists of
two tabs: “General” (displayed on the left) and “Select groups” (copied to the
bottom-right corner for visualization purposes). The user can interact with
different input widgets (described by blue labels within the figure) in order to
modify the output plot located in the main panel. The plot is automatically
updated each time the state of the widgets changes. The results can be
further explored by hovering the mouse cursor over the points in the plot,
which will show a label with detailed characteristics of the sample of interest.
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Figure 7.2 Selected findings visualized in VisualScreenExplorer.

The figure shows three example observations of the presented study,
which could be noticed by using VSE. See the main text for details.
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8Conclusions and perspectives

The success of precision medicine will depend
on our ability to translate large compedia of
genomic, epigenomic, and proteomic data into
clinically actionable predictions.

— Costello et al.
Nature 2014

The presented study is, to our knowledge, the first one which comprehensively
and on a large-scale investigates drug sensitivities together with multi-omics char-
acteristics of a panel comprising primary tumor samples. Throughout the study we
paid particular attention to clinical relevance and applicability of the results. We
closely examined reproducibility of our approach and confirmed its scalability both
within same screening platform and between two different platforms.

We identified unexpected disease-specific sensitivities. Profoundly resistant to
chemotherapy T-cell prolymphocytic leukemia exhibited sensitivity to SERCA inhi-
bition. Mantle cell lymphoma, however, was sensitive to YM155 drug targeting sur-
vivin. This inhibitor of apoptosis has already shown anti-tumor activity in prostate
and pancreatic cancers studied in vitro [130, 131]. Moreover, our approach allowed us
to unravel mechanisms of action of the known biomarkers. For example, sensitivity
of CLL samples harboring trisomy 12 to a wide range of BCR inhibitors suggested
the amplification of BCR signaling in those cells. This observation is in line with pre-
vious studies which concluded short progression free survival [9], high pERK levels
[113] and general overrepresentation of trisomy 12 in B-cell lymphomas. We dis-
covered additional unknown targets of known drugs which offers drug repurposing
opportunities. Specifically, CHK and HSP inhibitors exhibited both similar response
profile to BCR inhibitors, and strong and selective activity in U-CLL, concluding
that they target components of the BCR pathway. Furthermore, comparison of drug
response profiles provided the identification of a new subgroup within M-CLL. It was
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molecularly distinct by sensitivity to mTOR inhibition, suggesting a potential new
targetable pathway. Last but not least, we show great potential in predicting clinical
outcome from ex vivo drug profiling. We believe that together with thoughtful selec-
tion of compounds and standardized screening techniques such approach can benefit
the care of patients.

Our methodology was independent of the ambiguous interpretation of the dose-
response curve parameters. This made us not only bypass the heated discussion
on that topic, but also allowed for robustness which stands behind raw viability
measurements. Moreover, we avoided parametric models in the analysis and removed
unnecessary assumptions in order to see the true complexity of the studied system.

The understanding of the exact influence of all discovered key cancer biomarkers
on the deregulation of signaling pathways in a cell is still full of unknowns. Fur-
ther dissection of mechanisms of action with ex vivo drug screens and multi-omics
technologies is pending. However, in order to make it informative, the field of drug
discovery has to come up with new targeted compounds. Only after specific treat-
ment approaches can be guided by viability assays, introduction of such screens into
standard clinical care will be reasonable. Nevertheless, in order to make it available
for all patients suffering from cancer, the method has to be optimized and standard-
ized, and the tested compound group has to be selected in such a way that it provides
maximum information at a minimum library size. Needless to say, this assay should
be distributed in an easy-to-use testing kit. Last but not least, ex vivo drug screens
have the potential of revolutionizing and accelerating clinical trial studies, which are
currently designed to benefit larger groups of patients rather than an individual.
Since so many biomarkers play a role in drug response, specific groups on which
the testing could be done will significantly shrink, taking away the statistical power
of the analysis. Although the vision of redesigning the process of clinical trials is
exciting, one has to keep in mind that short and long term side effects of the drugs
can not be assessed based on viability assays. These effects need additional testing
and careful evaluation.
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BPatient clinical data

Characteristics of samples used in the pilot screen (P) and in the main screen (M);
n.d. = no data available.

Patient ID Diagnosis Age Sex IGHV Treated Alive Screen
H001 hMNC n.d. n.d. n.d. n.d. n.d. P,M
H002 hMNC n.d. n.d. n.d. n.d. n.d. P,M
H003 hMNC n.d. n.d. n.d. n.d. n.d. P,M
H004 CLL 68 female unmutated yes yes P
H005 CLL 75 male mutated yes yes P,M
H006 CLL 81 male mutated no yes P
H007 CLL 79 female unmutated yes yes P
H008 CLL 56 male unmutated no yes P
H009 B-PLL 57 male unmutated yes yes P,M
H010 CLL 73 female unmutated no yes P,M
H011 CLL 73 female mutated no yes P,M
H012 CLL 62 female unmutated yes no P,M
H013 CLL 77 male unmutated yes no P,M
H014 CLL 86 female unmutated yes no P,M
H015 CLL 62 female unmutated no yes P,M
H016 CLL 55 male mutated no yes P,M
H017 CLL 56 male unmutated no no P,M
H018 CLL 50 female mutated no yes P
H019 CLL 70 female unmutated yes no M
H020 CLL 64 male mutated no yes P,M
H021 CLL 50 male mutated no yes P,M
H022 CLL 59 male mutated no yes P
H023 CLL 71 female unmutated yes no P,M
H024 CLL 55 male mutated no yes P
H025 T-PLL 73 male n.d. yes no P,M
H026 LPL 59 male mutated no yes P,M
H027 CLL 58 male unmutated no yes P,M
H028 CLL 73 female mutated no no P,M
H029 CLL 75 female mutated yes yes P,M
H030 CLL 53 male unmutated no yes P,M
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H031 CLL 62 female mutated no yes P,M
H032 CLL 67 male unmutated yes no M
H033 CLL 63 female mutated no yes P,M
H035 CLL 79 female mutated yes yes P,M
H036 CLL 75 female mutated no yes P,M
H037 CLL 71 male mutated no yes M
H038 CLL 74 male mutated no yes M
H039 CLL 55 female mutated no yes P,M
H040 CLL 84 female mutated no no P,M
H041 CLL 76 male mutated no yes P,M
H042 CLL 72 female unmutated yes no P,M
H043 CLL 44 female unmutated yes yes P,M
H044 CLL 61 male unmutated yes yes P,M
H045 CLL 91 male unmutated yes no P,M
H046 CLL 88 male mutated no yes P,M
H047 CLL 69 male unmutated yes no P,M
H048 CLL 65 female unmutated yes yes M
H049 CLL 58 male mutated no yes M
H050 CLL 63 female mutated no yes M
H051 CLL 79 female unmutated yes no P,M
H052 CLL 82 male mutated no yes P
H053 CLL 83 female mutated no yes P,M
H054 CLL 50 female mutated no yes P,M
H055 CLL 65 male mutated no yes P,M
H056 CLL 83 male mutated no yes P,M
H057 CLL 67 male mutated no yes P,M
H058 CLL 75 female mutated no no P,M
H059 CLL 55 male mutated no yes P,M
H060 CLL 75 male unmutated no yes P,M
H062 CLL 53 male mutated no yes M
H063 CLL 49 female mutated no yes P,M
H064 CLL 71 male n.d. yes yes P,M
H065 CLL 77 female unmutated yes no P,M
H066 CLL 47 male unmutated yes no P,M
H067 CLL 77 female mutated no yes M
H068 CLL 63 male unmutated no yes P
H069 CLL 77 female unmutated yes no P,M
H070 CLL 71 male n.d. no yes M
H071 FL 60 male mutated no yes M
H072 CLL 58 male unmutated no yes P,M
H073 CLL 65 male mutated yes yes P,M
H074 CLL 62 male unmutated no yes P

88 APPENDIX B. Patient clinical data



H075 CLL 72 male unmutated no yes P
H076 MCL 67 male mutated no yes P,M
H077 CLL 70 female unmutated no yes P,M
H078 CLL 68 male unmutated yes yes P,M
H079 CLL 48 male unmutated no yes P,M
H080 CLL 82 male unmutated yes yes P,M
H081 CLL 64 female mutated no yes P,M
H082 CLL 82 male mutated no yes P,M
H083 CLL 69 male n.d. no yes P,M
H084 CLL 88 male mutated no yes M
H085 CLL 62 male unmutated yes yes P
H086 T-PLL 64 male n.d. no yes P,M
H087 CLL 70 male unmutated yes yes P
H088 CLL 60 female mutated no yes P,M
H089 CLL 55 female mutated no yes P,M
H090 CLL 70 female mutated yes yes P,M
H091 CLL 69 female mutated no yes P
H092 MZL 82 male mutated no yes M
H093 CLL 76 female unmutated no yes P,M
H094 CLL 46 male mutated no yes P,M
H095 CLL 53 female unmutated no yes P,M
H096 CLL 62 female n.d. no yes P,M
H097 CLL 59 male unmutated yes yes P
H098 MCL 79 male unmutated no no P,M
H099 CLL 54 female mutated no yes M
H100 CLL 74 male mutated no yes P,M
H101 CLL 73 female mutated no yes P,M
H102 CLL 78 female unmutated no yes P,M
H103 CLL 71 male mutated no yes M
H104 CLL 79 male unmutated no yes P,M
H105 CLL 49 male mutated no yes P,M
H106 CLL 71 male mutated no yes M
H107 CLL 43 male unmutated no yes P,M
H108 CLL 57 male mutated no yes P,M
H109 CLL 85 male unmutated no yes M
H110 CLL 66 male mutated no yes M
H111 CLL 55 male unmutated yes no M
H112 CLL 65 male mutated no yes P
H113 CLL 70 male mutated no yes P,M
H114 CLL 43 female unmutated yes no P
H115 CLL 72 male mutated no no P,M
H116 CLL 54 male unmutated yes yes P
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H117 CLL 51 female unmutated yes yes P,M
H118 CLL 49 male mutated yes yes P,M
H119 CLL 60 male unmutated no yes P
H120 MZL 74 female mutated no yes P,M
H121 CLL 57 male mutated yes yes P
H122 LPL 53 male mutated no yes P,M
H123 CLL 61 male unmutated no yes P
H124 CLL 66 male n.d. no yes P
H125 CLL 71 male n.d. yes yes P
H126 T-PLL 68 male n.d. no yes P,M
H127 T-PLL 69 female n.d. no no P,M
H128 T-PLL 78 female n.d. no yes P,M
H129 CLL 68 female n.d. n.d. n.d. P
H130 CLL 72 female n.d. n.d. n.d. P
H131 CLL 53 female n.d. n.d. n.d. P
H132 CLL 75 male n.d. n.d. n.d. P
H133 CLL 69 male n.d. no yes M
H134 Sezary 67 male n.d. yes yes M
H135 CLL 76 female mutated yes no M
H136 CLL 66 male unmutated yes yes M
H137 CLL 53 male mutated no yes M
H140 HCL 55 female n.d. no yes M
H141 MCL 46 female n.d. yes no M
H142 MCL 67 male n.d. no yes M
H143 HCL-V n.d. male n.d. n.d. n.d. M
H144 MCL 67 male n.d. yes no M
H145 HCL 45 male n.d. no yes M
H146 MCL n.d. male n.d. n.d. no M
H147 MCL 59 male n.d. no yes M
H148 CLL 34 female unmutated yes no M
H149 T-PLL 83 male n.d. no no M
H150 T-PLL 75 female n.d. no yes M
H151 T-PLL 63 female n.d. no no M
H152 T-PLL 42 female n.d. no no M
H153 T-PLL 52 female n.d. yes no M
H154 T-PLL 65 female n.d. no no M
H155 T-PLL 74 female n.d. yes no M
H156 B-PLL 61 female n.d. no no M
H157 T-PLL 70 female n.d. no no M
H158 MZL 60 male n.d. yes yes M
H159 LPL 58 female n.d. no yes M
H160 LPL 62 male n.d. yes yes M
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H161 T-PLL 83 male n.d. no yes M
H162 MZL 50 female n.d. no yes M
H163 CLL 65 male mutated no yes M
H164 CLL 73 female unmutated no yes M
H165 CLL 58 female unmutated no yes M
H166 CLL 63 female unmutated no yes M
H167 CLL 64 female unmutated no yes M
H168 CLL 58 male n.d. yes yes M
H169 CLL 42 female mutated no yes M
H170 CLL 75 female mutated yes yes M
H171 CLL 73 male unmutated yes yes M
H172 T-PLL 45 male n.d. no yes M
H173 CLL 74 female mutated yes yes M
H174 CLL 64 female unmutated yes yes M
H175 CLL 62 male unmutated yes yes M
H176 CLL 70 male mutated no yes M
H177 CLL 70 male unmutated no yes M
H178 CLL 71 male unmutated yes yes M
H179 CLL 61 male mutated no yes M
H180 CLL 86 male unmutated no yes M
H181 CLL 76 female mutated no yes M
H182 CLL 72 female mutated no yes M
H183 CLL 70 male unmutated no yes M
H184 CLL 75 male mutated no no M
H185 CLL 87 female mutated no no M
H186 CLL 73 female mutated no yes M
H187 CLL 60 male unmutated no yes M
H188 T-PLL 71 male n.d. no no M
H189 T-PLL 71 male n.d. yes yes M
H190 MCL 66 male n.d. no yes M
H191 CLL 39 male n.d. yes yes M
H192 CLL 72 female mutated no yes M
H193 CLL 81 male mutated no yes M
H194 CLL 76 male mutated no yes M
H195 T-PLL 76 male n.d. no yes M
H196 CLL 85 male mutated no yes M
H197 CLL 74 female mutated yes yes M
H198 CLL 58 female mutated no yes M
H199 CLL 83 male mutated no yes M
H200 CLL 83 female unmutated yes yes M
H201 CLL 72 female n.d. no yes M
H202 CLL 80 male mutated n.d. yes M
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H203 CLL 83 female mutated no yes M
H204 CLL 66 female n.d. no yes M
H205 CLL 66 female unmutated no yes M
H206 CLL 69 male mutated no yes M
H207 CLL 65 male mutated no yes M
H208 CLL 73 male mutated no yes M
H209 CLL 72 female mutated yes yes M
H210 CLL 73 female mutated no yes M
H211 CLL 51 male unmutated no yes M
H212 CLL 74 male mutated no yes M
H213 CLL 63 male mutated no yes M
H214 CLL 65 male unmutated no yes M
H215 CLL 47 male unmutated no yes M
H216 CLL 48 female mutated no yes M
H217 CLL 65 male mutated no yes M
H218 CLL 50 male n.d. yes yes M
H219 CLL 74 female mutated no yes M
H220 CLL 75 female mutated no yes M
H221 CLL 55 male mutated no yes M
H222 CLL 56 male mutated no yes M
H223 CLL 47 female mutated no yes M
H224 CLL 47 male unmutated no yes M
H225 CLL 47 female mutated no yes M
H226 HCL 64 male n.d. no yes M
H227 MCL 64 male n.d. no no M
H228 CLL 65 male unmutated no yes M
H229 CLL 75 female mutated yes no M
H230 CLL 71 male unmutated yes no M
H231 CLL 47 male unmutated no yes M
H232 T-PLL 62 male n.d. no yes M
H233 CLL 55 male unmutated no yes M
H234 CLL 68 male unmutated no yes M
H235 CLL 73 male mutated no yes M
H236 CLL 67 male mutated no yes M
H237 CLL 73 female mutated no yes M
H238 CLL 75 male unmutated no no M
H239 CLL 70 female unmutated no yes M
H240 CLL 83 male mutated no yes M
H241 Sezary 59 male n.d. no yes M
H242 CLL 49 male unmutated no yes M
H243 CLL 80 male unmutated no yes M
H244 B-PLL 80 male n.d. n.d. yes M
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H245 PTCL-
NOS

80 male n.d. yes yes M

H246 CLL 75 male unmutated no yes M
H247 CLL 47 female mutated no yes M
H248 CLL 63 female mutated no yes M
H249 CLL 83 male unmutated no yes M
H250 CLL 52 male unmutated no yes M
H251 HCL-V 73 male n.d. no yes M
H252 CLL 70 male unmutated no yes M
H253 T-PLL 57 female n.d. no yes M
H254 CLL 75 male mutated no yes M
H255 CLL 67 male unmutated yes yes M
H256 CLL 63 female n.d. yes yes M
H257 CLL 66 female unmutated no yes M
H258 CLL 65 male mutated no yes M
H259 CLL 60 male unmutated yes yes M
H260 CLL 63 male unmutated yes yes M
H261 T-PLL 49 female n.d. no yes M
H262 T-PLL 86 male n.d. no n.d. M
H263 T-PLL 77 male n.d. n.d. n.d. M
H264 CLL 77 male mutated yes yes M
H265 CLL 59 male unmutated yes yes M
H266 CLL 74 male mutated yes yes M
H267 T-PLL 68 male n.d. no no M
H268 CLL 83 male n.d. no yes M
H269 MCL 46 female n.d. no no M
H270 CLL 67 female mutated no yes M
H271 CLL 65 male mutated no yes M
H272 CLL 56 male unmutated yes yes M
H273 MZL 77 male n.d. yes yes M
H274 AML 61 female n.d. yes yes M
H275 AML 77 female n.d. no no M
H276 AML 62 male n.d. no yes M
H277 AML 83 male n.d. no no M
H278 AML 75 male n.d. yes yes M
H279 T-PLL 58 male n.d. no yes M
H280 MZL 63 male n.d. no yes M
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CCharacteristics of drugs used in the
drug screens

Drug ID Name Target

D_001 navitoclax BCL2, BCL-XL, BCL-W
D_002 ibrutinib BTK
D_003 idelalisib PI3K delta
D_004 SNS-032 CDK2/7/9
D_005 olaparib PARP1/2
D_006 fludarabine Purine analogue
D_007 vorinostat HDAC I/IIa/IIb/IV
D_008 bortezomib Proteasome
D_009 entinostat HDAC I/III
D_010 nutlin-3 MDM2
D_011 enzastaurin PKC
D_012 selumetinib MEK1/2
D_013 afatinib EGFR, ERBB2
D_014 deforolimus mTOR
D_015 MK-1775 WEE1
D_016 vismodegib SMO
D_017 AT13387 HSP90
D_018 RO4929097 Gamma-secretase
D_019 XAV-939 WNT
D_020 AZD7762 CHK1/2
D_021 rigosertib PLK
D_022 SP600125 JNK
D_023 ralimetinib p38 MAPK
D_024 SGI-1776 PIM
D_025 NSC 74859 STAT
D_026 tozasertib Aurora A/B/C, FLT3, ABL1, JAK2
D_027 TAME Anaphase-Promoting Complex (APC)
D_028 galunisertib TGF-beta
D_029 TAE684 ALK
D_030 MK-2206 AKT1/2 (PKB)
D_031 pomalidomide -
D_032 NU7441 DNAPK
D_033 tipifarnib Farnesyltransferase (FNTA)
D_034 chaetocin Lysine-specific histone methyltransferase
D_035 saracatinib SRC, ABL1
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D_036 tamatinib SYK
D_037 2-methoxyestradiol Microtubules, HIF-1
D_038 serdemetan MDM2
D_039 thapsigargin Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA)
D_040 YM155 Survivin
D_041 BAY 11-7085 NFkB
D_042 curcumin COX2, NFkB
D_043 SGX-523 MET
D_044 MLN9708 Proteasome
D_045 KU-60019 ATM
D_046 ZM 336372 RAF1
D_047 sorafenib BRAF, RAF1, FLT3, KIT, PDGFRA, PDGFRB
D_048 orlistat LPL
D_049 chaetoglobosin A Actin
D_050 dasatinib ABL1, KIT, LYN, PDGFRA, PDGFRB, SRC
D_051 PKI-402 Pan PI3K
D_052 PIK-75 PI3K alpha
D_053 sunitinib VEGFR, PDGFRA/B, FLT3, KIT
D_054 gefitinib EGFR
D_055 lapatinib EGFR, HER2
D_056 actinomycin D RNA synthesis
D_057 crizotinib ALK, MET
D_058 ochratoxin A Oxidative DNA damage
D_059 lasalocid A Cation transport
D_060 cephaeline 40S ribosomal subunit
D_061 oligomycin A ATP synthase
D_062 fumonisin B1 Ceramide synthase
D_063 everolimus mTOR
D_064 spliceostatin A SF3b
D_065 ATRA Retinoic acid and retinoid X receptor agonist
D_066 arsenic trioxide -
D_067 rotenone Electron transport chain in mitochondria
D_071 KX2-391 SRC
D_074 VE-821 ATR
D_075 rabusertib CHK1
D_077 SCH 900776 CHK1, CDK2
D_078 PF 477736 CHK1, CHK2
D_079 spebrutinib BTK
D_081 venetoclax BCL2
D_082 duvelisib PI3K gamma, PI3K delta
D_083 encorafenib BRAF
D_084 ruxolitinib JAK1/2/3
D_127 SD07 ROS
D_141 SD51 ROS
D_149 MIS-43 ROS
D_159 doxorubicin DNA intercalation, Topoisomerase II
D_162 BML-277 CHK2
D_163 CCT241533 CHK2
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D_164 BX912 PDK1
D_165 silmitasertib CK2
D_166 PRT062607 HCl SYK
D_167 UCN-01 PKC, MK2, CHK1
D_168 sotrastaurin PKC
D_169 tofacitinib JAK3
D_172 BIX02188 MEK5
D_CHK BML-277 + rabusertib -
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DConcentrations of drugs used in the
drug screens

Drug ID Pilot screen [µM] Main screen [µM]
c1 c2 c1 c2 c3 c4 c5

D_001 0.1 0.05 1 0.25 0.063 0.016 0.004
D_002 10 1 40 10 2.5 0.625 0.156
D_003 10 1 40 10 2.5 0.625 0.156
D_004 0.2 0.1 4 1 0.25 0.063 0.016
D_005 10 - - - - - -
D_006 10 1 40 10 2.5 0.625 0.156
D_007 5 1 20 5 1.25 0.313 0.078
D_008 5 2 20 5 1.25 0.313 0.078
D_009 5 1 - - - - -
D_010 10 1 40 10 2.5 0.625 0.156
D_011 5 2 40 10 2.5 0.625 0.156
D_012 10 1 40 10 2.5 0.625 0.156
D_013 4 2 15 5 1.667 0.556 0.185
D_014 10 1 - - - - -
D_015 10 1 40 10 2.5 0.625 0.156
D_016 10 - - - - - -
D_017 1 0.1 10 2.5 0.625 0.156 0.039
D_018 10 - - - - - -
D_019 10 - - - - - -
D_020 10 1 40 10 2.5 0.625 0.156
D_021 5 2 40 10 2.5 0.625 0.156
D_022 10 - - - - - -
D_023 10 - 40 10 2.5 0.625 0.156
D_024 5 2 40 10 2.5 0.625 0.156
D_025 10 - 40 10 2.5 0.625 0.156
D_026 10 - - - - - -
D_027 10 - - - - - -
D_028 10 - - - - - -
D_029 5 2 40 10 2.5 0.625 0.156
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D_030 10 1 40 10 2.5 0.625 0.156
D_031 10 1 - - - - -
D_032 10 1 40 10 2.5 0.625 0.156
D_033 10 1 40 10 2.5 0.625 0.156
D_034 0.2 0.1 2 0.5 0.125 0.031 0.008
D_035 10 1 40 10 2.5 0.625 0.156
D_036 10 1 40 10 2.5 0.625 0.156
D_037 10 - - - - - -
D_038 10 1 - - - - -
D_039 10 1 20 5 1.25 0.313 0.078
D_040 0.1 0.05 2 0.5 0.125 0.031 0.008
D_041 2 1 40 10 2.5 0.625 0.156
D_042 10 1 - - - - -
D_043 10 1 40 10 2.5 0.625 0.156
D_044 10 - - - - - -
D_045 10 1 40 10 2.5 0.625 0.156
D_046 10 - - - - - -
D_047 10 1 - - - - -
D_048 10 1 40 10 2.5 0.625 0.156
D_049 8 4 20 10 5 2.5 1.25
D_050 10 1 40 10 2.5 0.625 0.156
D_051 10 1 - - - - -
D_052 2 1 - - - - -
D_053 10 - 40 10 2.5 0.625 0.156
D_054 10 - 40 10 2.5 0.625 0.156
D_055 10 - - - - - -
D_056 0.02 0.01 0.3 0.1 0.033 0.011 0.004
D_057 10 1 - - - - -
D_058 10 1 - - - - -
D_059 2 1 - - - - -
D_060 0.1 0.05 4 1 0.25 0.063 0.016
D_061 1 0.1 - - - - -
D_062 10 1 - - - - -
D_063 10 1 40 10 2.5 0.625 0.156
D_064 0.02 0.01 - - - - -
D_065 10 1 - - - - -
D_066 2 1 8 4 2 1 0.5
D_067 10 1 40 10 2.5 0.625 0.156
D_071 - - 40 10 2.5 0.625 0.156
D_074 - - 40 10 2.5 0.625 0.156
D_075 - - 40 10 2.5 0.625 0.156
D_077 - - 40 10 2.5 0.625 0.156
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D_078 - - 40 10 2.5 0.625 0.156
D_079 - - 40 10 2.5 0.625 0.156
D_081 - - 1 0.25 0.063 0.016 0.004
D_082 - - 40 10 2.5 0.625 0.156
D_083 - - 40 10 2.5 0.625 0.156
D_084 - - 40 10 2.5 0.625 0.156
D_127 - - 30 10 3.333 1.111 0.37
D_141 - - 30 10 3.333 1.111 0.37
D_149 - - 30 10 3.333 1.111 0.37
D_159 - - 4 1 0.25 0.063 0.016
D_162 - - 40 10 2.5 0.625 0.156
D_163 - - 40 10 2.5 0.625 0.156
D_164 - - 40 10 2.5 0.625 0.156
D_165 - - 40 10 2.5 0.625 0.156
D_166 - - 40 10 2.5 0.625 0.156
D_167 - - 10 2.5 0.625 0.156 0.039
D_168 - - 40 10 2.5 0.625 0.156
D_169 - - 40 10 2.5 0.625 0.156
D_172 - - 40 10 2.5 0.625 0.156
D_CHK - - 10 2.5 0.625 0.156 0.039
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EInfluence of batch effect on drug-gene
associations

Continued on the next page.
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Figure E.1 Influence of batch effect on drug-gene associations.

To assess the potential influence of the three experimental batches of
main screen on finding associations between drug responses and genetic
features, we compared p-values computed in two different ways. We used
two-way ANOVA with batch as a blocking factor (y-axis) and Student’s
t-test, which does not account for experimental batch group (x-axis).
Triangles symbolize censored p-values (< 10−8).
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FDose-response curve fitting

A 4-parameter sigmoid curve given by the following equation (F.1) was fitted to the
viability scores y in the function of log10 of drug concentration x (in µM).

σ(x, ξ, κ, η1, η0) =
η1 − η0

1 + eκ(x−ξ)
+ η0, (F.1)

where: ξ is the inflection point, κ is the curve slope in the inflection point, η1 is the
maximum asymptote, and η0 is the minimum asymptote.

The fitting algorithm minimizes the value of the Γ function given by

Γ = (100− η1)2 + min(0, η0)
2 + (κ− κ′)2 +

n∑
i=1

(yi − σ (xi, ξ, κ, η1, η0))
2 . (F.2)

In the above equation, the weights of the different parts of the function Γ were
identical and set to 1. The initial values of the parameters ξ and κ (ξ′ and κ′,
respectively) were calculated for each drug and sample combination separately as
follows. From the slope a and intercept b, the parameters obtained from fitting
a linear equation to the two neighboring points between which there is maximum
difference in viabilities, and by substituting y with 50, we obtain

ξ′ =
(50− b)

a
. (F.3)

Then the first derivative of Eq. (F.1) for x = ξ′ is calculated, which gives the
initial parameter for the slope.

κ′ = − a

25
. (F.4)

Initial values for the parameters η0 and η1 are 0 and 100, respectively.
The fitting algorithm returns the parameters of the fitted sigmoid. To obtain the

true value of IC50 we solve the sigmoid function equation for the 50% viability

IC50 = ξ +
ln
(
50−η1
η0−50

)
κ

. (F.5)

The slope can be obtained by reversing Eq. (F.4) and calculating a.

105





GGenes used in variant calling

Alphabetical list of genes for which variant calling was performed.

1. ABCC9
2. ACTB
3. ACTN2
4. ADAMTS7
5. ASXL1
6. ATM
7. BAZ2A
8. BCOR
9. BIRC3
10. BLK
11. BRAF
12. BRCC3
13. CARD11
14. CCND2
15. CDH2
16. CDKN1A
17. CDKN2A
18. CDKN2B
19. CDKN2B-

AS1
20. CHD2
21. CHEK2
22. CREBBP

23. DCC
24. 3X
25. DENND4A
26. DYRK1A
27. EGFR
28. EGR2
29. ELF4
30. ERBB2IP
31. EWSR1
32. FAM50A
33. FAT1
34. FAT3
35. FBXW7
36. FLRT2
37. FUBP1
38. GNB1
39. HDAC2
40. HIST1H1E
41. HMCN1
42. IGLL5
43. IKZF3
44. IL26
45. IRF2BP2

46. IRF4
47. ITPKB
48. KLHL6
49. KRAS
50. LRP1B
51. MAG
52. MAP2K1
53. MAPK1
54. MED12
55. MED12L
56. MUC16
57. MYCBP2
58. MYD88
59. NFKBIE
60. NOTCH1
61. NRAS
62. NRXN1
63. NXF1
64. PCLO
65. PIM1
66. PLEKHG5
67. POT1
68. PRPF8

69. PTPN11
70. RFTN1
71. RIPK1
72. ROBO2
73. RPS15
74. RYR1
75. RYR2
76. RYR3
77. SAMHD1
78. SEMA4D
79. SF3B1
80. TET2
81. TGM7
82. TP53
83. TRAF2
84. TRAF3
85. UMODL1
86. XPO1
87. XPO4
88. ZMYM3
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HComparison of significant associations
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Figure H.1 Intersection of drug response modulators between drug screens in
CLL.

The heat map shows associations of drug response (y-axis) and muta-
tion (x-axis) which were statistically significant (FDR 10%) in the pilot
and main screens. 39 mutations and 40 drugs were overlapping in the two
analyses. Within this set 136 associations in total were found, from which
15 and 80 were uniquely identified in the pilot and in the main screen,
respectively. 41 associations were in common. Association was deemed
significant if any of the drug-concentration pairs showed significant result.
Due to a lower number of both tested drug concentrations and patient
samples in the pilot screen, there is less yellow squares than turquoise ones.
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IResults of multivariate Cox regression

We used the multivariate Cox model to assess which features from the well-established
biomarkers and response to doxorubicin add to prediction of the overall survival in
CLL (n = 156, including 24 deaths). Results presented in the table below show
increased prediction accuracy by drug response profile of doxorubicin.

p-value HR lower 95% CI upper 95% CI
age (per 10 years) 0.12 1.4 0.92 2

pretreatment 1.8e-4 8.8 2.8 27
trisomy 12 0.01 6.1 1.5 25

del(11)(q22.3) 0.99 1 0.34 3
del(17)(p13) 0.92 1.1 0.3 3.8

TP53 0.72 0.81 0.26 2.5
U-CLL 0.04 2.9 1.1 8.1

doxorubicin 0.03 0.52 0.28 0.95

Analysis performed by Sascha Dietrich.
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