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1 Abbreviations and Symbols 

~ Approximately 

°C Degree Celsius 

Δ Difference 

∞ Infinity 

ACM Adult rat cardiomyocyte 

AngII Angiotensin II 

ANOVA Analysis of variance 

ATP Adenosine triphosphate 

Bambi BMP and activin membrane-bound inhibitor homolog 

c Molar concentration 

CCL2 C-C motif chemokine 2 

cDNA Complementary deoxyribonucleic acid 

DAMP Damage associated molecular pattern 

DMEM Dulbecco's Modified Eagle's Medium  

ECM Extracellular matrix 

ERK1/2 Extracellular signal-regulated kinases 1 and 2 

FCS Fetal calf serum 

FDR False discovery rate 

g Gram; also acceleration of gravity on Earth 

GSEA Gene set enrichment analysis 

h Hour 

H/R Hypoxia/reoxygenation 

HMGB1 High mobility group box 1 

i.p. Intraperitoneal 

iBAQ Intensity based absolute quantification 

IL Interleukin 

I.U. International unit 

kDa Kilodalton 

L Liter 

LC-MS/MS Liquid chromatography-tandem mass spectrometry  

LDH Lactate dehydrogenase 

LPS Lipopolysaccharide 

M Molar (mol/L); also molar mass (g/mol) 

m Meter 

MI Myocardial infarction 

min Minute 

MMP Matrix metalloproteinase 

mol Mole 

mRNA Messenger RNA 

MyD88 Myeloid differentiation primary response protein 88 

n Number of biological replicates 

NFκB 
Nuclear factor kappa-light chain enhancer of activated 
B cells 

Ø Diameter 

OD Optical density 

P Passage 

P/S Penicillin-streptomycin 



  Abbreviations and Symbols 

5 
  

PAMP Pathogen associated molecular pattern 

PBS Dulbecco's phosphate buffered saline  

PCA Principal component analysis 

pH 
Negative decimal logarithm of the hydrogen ion 
concentration 

PRR Pattern recognition receptor 

qPCR Quantitative polymerase chain reaction 

RAGE Receptor for advanced glycation end products 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

Scr Scramble control 

SEM Standard error of the mean 

siRNA Small interfering RNA 

TGFβ Transforming growth factor beta 

TIMP Tissue inhibitor of metalloproteinases 

TLR Toll-like receptor 

TNFα Tumor necrosis factor alpha 

TRIF 
Toll/interleukin-1 receptor domain containing adaptor 
protein inducing interferon beta 

αSMA Alpha smooth muscle actin 

 

Prefixes 

c centi-10-2 

m milli-10-3 

µ micro-10-6 

n nano-10-9 

p pico-10-12 
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2 Summary 

Despite advancement of therapeutic strategies, myocardial infarction (MI) and subsequent 

heart failure are still the leading causes of death and disability worldwide. Development of 

new therapeutic approaches is hampered by insufficient knowledge of the cellular and 

molecular mechanisms underlying myocardial repair. S100A1 is a Ca2+ governing protein 

in cardiomyocytes. When released upon MI, S100A1 targets neighboring cardiac 

fibroblasts and is thereby essential for preserving the left ventricular function. The aim of 

this study was to systematically assess the phenotype of cardiac fibroblasts in response 

to extracellular S100A1 by comprehensive gene expression and protein profile analysis. 

In order to mimic the ischemic myocardium, adult rat cardiac fibroblasts were exposed to 

extracellular S100A1. Using RNA microarray technology, a time-resolved transcriptome 

analysis revealed a rapid activation of gene sets involved in chemoattractance alongside 

downregulation of pro-fibrotic genes. Since the dominant functional changes comprised 

secreted proteins, a complete secretome analysis of the cardiac fibroblast supernatant 

was performed by mass spectrometry. On protein level, enrichment analysis highlighted 

chemotaxis, chemokine receptor binding, and chemokine activity as the predominantly 

increased categories upon exposure to S100A1. Chemoattractants formed the most 

abundantly secreted group of proteins in S100A1-treated cardiac fibroblasts, with CCL2 

showing the highest quantity. A prominent early-onset increase of CCL2 expression and 

secretion in response to S100A1 was confirmed by qPCR and ELISA. S100A1-induced 

CCL2 expression increase was abolished by chemical inhibition and siRNA knockdown of 

TLR4.  

This study demonstrates for the first time a rapid transformation of cardiac fibroblasts into 

a chemoattractant phenotype upon exposure to S100A1 from damaged cardiomyocytes. 

These results suggest a novel role for cardiac fibroblasts as the initial link between 

ischemic injury and the influx of inflammatory cells in the process of myocardial repair.  
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3 Zusammenfassung 

Trotz moderner Therapiemöglichkeiten stellen Myokardinfarkt und nachfolgende 

Herzinsuffizienz weltweit noch immer die häufigsten Ursachen von Tod und Invalidität dar. 

Die Entwicklung neuer Therapieansätze verlangt eine Entschlüsselung der zellulären und 

molekularen Mechanismen, die der Infarktheilung zugrunde liegen. S100A1 ist ein 

zentraler Regulator des Ca2+ Stoffwechsels in Kardiomyozyten. Bei Myokardinfarkt 

freigesetztes S100A1 verändert benachbarte kardiale Fibroblasten und ist dadurch 

wesentlich am Erhalt der linksventrikulären Pumpfunktion beteiligt. Ziel der vorliegenden 

Studie war die systematische Charakterisierung des S100A1-induzierten Phänotyps 

kardialer Fibroblasten mittels vollständiger Analyse von Genexpressions-  und 

Proteinprofil.  

Um die Situation im ischämischen Myokard zu imitieren, wurden aus adulten Rattenherzen 

isolierte kardiale Fibroblasten mit extrazellulärem S100A1 stimuliert. Eine serielle 

Transkriptom-Analyse mittels RNA Microarray zeigte eine schnelle Aktivierung von Genen, 

die mit der Freisetzung von Chemokinen in Verbindung stehen. Gleichzeitig war eine 

verminderte Expression von pro-fibrotischen Faktoren zu beobachten. Da die 

beobachteten Veränderungen im Genexpressionsmuster  überwiegend sezernierte 

Proteine betrafen, wurde eine Sekretom-Analyse des Überstands kardialer Fibroblasten 

mittels Massenspektrometrie durchgeführt. Auf Proteinebene wurden mittels Enrichment 

Analysis  "chemotaxis", "chemokine receptor binding" und "chemokine activity" als die 

bestimmenden Merkmale von S100A1-stimulierten kardialen Fibroblasten charakterisiert. 

Unter den sezernierten Proteinen stellten Chemokine hierbei die quantitativ größte Gruppe 

dar, wobei CCL2 die höchste Abundanz aufwies. Eine frühe und deutliche Überexpression 

und Sekretion von CCL2 als Reaktion auf S100A1 wurde durch qPCR und ELISA bestätigt. 

Die S100A1-induzierte CCL2 Produktion kardialer Fibroblasten konnte durch chemische 

Inhibition und siRNA Knockdown von TLR4 gehemmt werden.   

Diese Studie zeigt erstmals eine rasche Transformation kardialer Fibroblasten in einen 

chemotaktischen Phänotyp nach Stimulation durch S100A1 aus geschädigten 

Kardiomyozyten. Diese Ergebnisse deuten darauf hin, dass kardialen Fibroblasten beim 

Myokardinfarkt eine neue Funktion als initiale Verknüpfung zwischen ischämischer 

Schädigung und Immunzellinfiltration zukommen könnte. 
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4 Introduction 

4.1 Myocardial Infarction 

4.1.1 Definition and Epidemiology 

Myocardial infarction is defined as myocardial necrosis due to acute myocardial ischemia 

[1]. There are two major types of myocardial infarction representing different causal 

mechanisms. The main cause of necrotic injury in the heart (type I myocardial infarction) 

is the blockage of a coronary blood vessel by a thrombus due to the rupture of an 

atherosclerotic plaque. Alternatively, type II myocardial infarction occurs in response to an 

acute imbalance of myocardial demand and supply for oxygen, which can be caused by 

endothelial dysfunction, tachy- or bradycardia, severe hypo- or hypertension, vasospasm, 

or respiratory failure [1].  

Clinically, myocardial infarction is characterized by typical ischemic chest pain symptoms, 

electrocardiographic abnormalities, imaging technique findings, such as segmental 

ventricular akinesia in echocardiography, and by the detection of raise and/or fall of heart 

necrosis biomarkers in blood plasma, particularly cardiac troponin I or T [1–4]. The results 

of clinical and laboratory findings have to be interpreted together, thereby ensuring 

accurate differentiation between acute ischemic myocardial necrosis and myocardial 

damage due to other conditions, such as sepsis, heart failure or illicit drug use, which 

require a different therapeutic strategy [5,6].  

According to the World Health Organization, coronary heart disease and acute myocardial 

infarction are the leading causes of death and disability worldwide [7]. The major 

complication after myocardial infarction is chronic heart failure affecting 16% of men and 

22% of women within 5 years after myocardial infarction [8]. Heart failure has a negative 

prognosis for the patients with 50% mortality within 5 years and limited therapeutic options 

[9]. Factors, which favor the development of heart failure after MI, include larger size of 

initial infarction and improper healing thereafter [10]. Since the major cause of myocardial 

infarction is thrombotic occlusion of coronary arteries [11], the central therapeutic strategy 

is the timely recanalization of the culprit artery [2,3]. Since the extensive introduction of 

coronary care units and reperfusion therapies, the short term in-hospital mortality of MI 

patients has decreased from 30% in the mid of 20 century to 6% in 2006 [12,13]. Moreover, 

the success of reperfusion therapy has been attributed to 28% reduction in the incidence 

of subsequent heart failure [14] by limiting the extent of cardiomyocyte death and thus the 

size of myocardial infarction [15]. 
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4.1.2 Cardiac Repair after Infarction 

Myocardial infarction is followed by a fine-tuned healing cascade which is triggered by 

ischemic cardiomyocyte death (Figure 1) [10]. Since adult cardiomyocytes possess very 

limited regenerative capacity, the necrotic area is replaced with a durable scar in order to 

ensure cardiac function [16–18].  

 

Figure 1: Healing cascade after myocardial infarction. 

(1) Coronary blood vessel obstruction is the initial phase of myocardial infarction (not the case in type 

II - mentioned earlier in the text). (2) Subsequent cardiomyocyte death triggers inflammatory cell 

influx, which is facilitated by the degradation of extracellular matrix (ECM). Neutrophils and 

macrophages collectively clear the cellular debris. (3) Myofibroblasts synthesize a collagen-based 

matrix and angiogenesis ensures the restoration of the blood flow within the newly formed scar. (4) 

A mature scar with crosslinked matrix and low amount of persistent myofibroblasts is formed.  

Early studies of temporal coronary artery occlusion, which were performed in dogs, 

revealed that 40 min of ischemia result in a macroscopically visible subendocardial 

necrosis [19]. During the initial phase after myocardial infarction cellular debris is removed 

by inflammatory cells. They also trigger the transition to the scar formation phase, during 

which myofibroblasts fill the necrotic area with a collagen-based matrix and angiogenesis 

ensures the vascularization of the newly formed scar. In the final phase, the provisional 

scar is transformed into a tightly crosslinked type I collagen-based scar (Figure 1).   
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4.1.2.1 Inflammation 

Cardiomyocyte injury triggers a rapid infiltration of inflammatory cells [20], which is 

facilitated by extracellular matrix degradation [21] and increased vascular permeability 

[22]. The majority of infiltrating inflammatory cell types are neutrophils and inflammatory 

and reparative monocytes that further differentiate into macrophages [23].  Inflammatory 

monocytes become M1 macrophages and, in later stages, also M2 macrophages, whereas 

reparative monocytes are considered to give rise only to M2 macrophages [24–26]. In 

mice, inflammatory cells are reported to infiltrate the infarction area within the first minutes 

after the occlusion of a coronary blood vessel. Although the first infiltrating population is 

patrolling monocytes from the vasculature [27], the following neutrophil influx forms the 

dominant cell population within the infarct in the first 24 hours [28]. Thereafter, 

inflammatory and reparative monocytes numbers peak on day 3 and 5, respectively [24].  

The sequential influx, differentiation and activity of inflammatory cells lead to clearance of 

the infarction site from cellular debris and activation of scar formation. Neutrophils produce 

a vast amount of extracellular matrix degrading proteins and reactive oxygen species that 

participate in pro-angiogenic and pro-fibrotic processes [29–31]. Neutrophils also secrete 

α-defensin that acts as a monocyte chemoattractant [32] and lipocalin that, in turn, 

promotes macrophage polarization into an M2c phenotype, which has the highest 

efferocytotic (cellular debris clearance) activity [33,34]. The subsequently differentiated M1 

macrophages participate in cellular debris efferocytosis [28] and engulf apoptotic 

neutrophils [35], thus contributing to the restriction of the acute inflammatory phase [36]. 

The engulfment of apoptotic neutrophils triggers macrophage polarization towards an M2 

phenotype [37], which is known to resolve inflammation and to initiate the scar formation 

phase by promoting angiogenesis and myofibroblast accumulation [25,38]. 

Early attempts to improve the outcome of myocardial infarction by broadly suppressing the 

inflammatory response with glucocorticoids or nonsteroidal anti-inflammatory drugs have 

provided no benefits. Although the initial experiments in dogs showed that glucocorticoids 

reduce the myocardial necrosis following infarction [39], subsequent experiments indicated 

dose-dependent scar thinning [40], thereby increasing the risk of ventricular aneurysm 

formation or rupture. The initial trials of glucocorticoids in patients with myocardial 

infarction indicated conflicting outcomes [41], but larger randomized clinical trials showed 

no survival benefits [42]. Similarly, nonsteroidal anti-inflammatory drugs initially were 

shown to reduce the infarcted area, presumably, by reducing the rate of necrosis. In dogs, 

treatment with ibuprofen reduced the size of infarct without affecting blood flow or oxygen 

demand [43]. However, further experiments showed that ibuprofen administration after 
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myocardial infarction is also associated with scar thinning [44]. In humans, indomethacin 

or ibuprofen administration resulted in infarct scar thinning [45] and was suggested to be 

associated with ventricular rupture after myocardial infarction [46]. Since broad 

suppression of inflammatory response has failed to be beneficial, the ongoing search for 

new therapeutic approaches is focusing on targeted immunomodulatory strategies in order 

to improve infarct healing.      

4.1.2.2 Scar Formation 

During the inflammatory phase the original extracellular matrix is degraded in order to 

facilitate inflammatory cell traffic. To ensure the integrity of the heart wall during this phase 

a provisional matrix is formed. The initial plasma fibrin based structure is replaced by a 

more durable cellular-based fibronectin and hyaluronan matrix [47]. Cellular debris 

removal is accompanied by the infiltration of myofibroblasts, which start to extensively 

produce extracellular matrix proteins. Myofibroblasts also contract the newly formed 

collagen matrix, thus reducing the area and strengthening the durability of the scar [48,49]. 

Scar maturation is characterized by the replacement of initial type III collagen with type I 

collagen, crosslinking of collagen fibers and clearance of the initially excessive amount of 

myofibroblasts [49,50]. Finally, the mature scar represents a vascularized tissue consisting 

mainly of a collagen based matrix with a small portion of cellular components, such as 

myofibroblasts, smooth muscle cells and residual cardiomyocytes [51,52]. 

4.1.3 Therapeutic Implications 

Although each of the above described phases and cellular components are necessary for 

the appropriate healing of myocardial infarction, they may lead to exaggerated expansion 

of the initial injury and adverse cardiac remodeling when spatially and timely unrestricted 

[10]. Uncontrolled neutrophil activation, for instance, leads to thinning of the infarct wall 

and consequently systolic heart failure [10,53]. Moreover, unlimited myofibroblast 

activation causes heart wall stiffening and diastolic heart failure [10,54]. 

For the further reduction of long term adverse outcome after myocardial infarction, the 

development of new therapeutic strategies is needed. Therapeutic targeting of the 

subsequent healing process holds a great potential for the prevention of post-infarction 

complications. However, current attempts to introduce such modulatory therapeutic 

interventions have failed [55], thus substantiating the need for a deeper understanding of 

the underlying molecular mechanisms.  
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4.2 Danger Associated Molecule Patterns (DAMPs) 

4.2.1 Definition 

It has long been known that ischemically damaged myocardium elicits a strong 

inflammatory reaction [56]. Historically, the mechanism, which links myocardial injury to 

activation of the immune system, was strongly debated because of the paradigm that the 

immune system is evolved to protect the host against external pathogens. In 1994, Polly 

Matzinger first described a concept which postulated that “the immune system does not 

care about self and non-self, that its primary driving force is the need to detect and protect 

against danger” (Figure 2) [57].  

 

Figure 2: Models for discrimination of antigens that elicit an immune response. 

The historically oldest model, how the immune response discriminates immunogenic versus non-

immunogenic substances, proposes recognition of self (set a) versus non-self (set b). Janeway 

offered a refined version, saying that the immune system recognizes specific patterns of non-self 

antigens, so called pathogen-associated molecular patterns (PAMPs) (set e+f). Matzinger proposed 

a model, where an immunogenic response is elicited by substances that induce stress or 

inappropriate cell death. Part of this group are self-antigens, which are mutations or molecules that 

are normally hidden from immune system (set c), environmental toxins (set d) and pathogens (set e). 

Set f is microorganisms that have PAMPs, but which are harmless (symbiotic bacteria). 

(SNS- self versus non-self; INS- infectious non-self)  

Taken from [58] with modifications. 

Matzinger’s model stated that an immune response can be triggered by self-molecules, 

which are exposed to immune system upon the tissue injury, in order to clear the debris 
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and prevent further injury. Thereby, the model offered a hypothesis for how the immune 

system might be activated in response to sterile injury, such as myocardial infarction. In 

line with this concept, Seong and Matzinger first used the term “damage associated 

molecular pattern” (DAMP) in 2004,  describing immunogenic properties of hydrophobic 

portions of molecules, irrespective of their origin from pathogens or the organism itself [59].  

In 2005, Joost Oppenheim and De Yang proposed a classification where all DAMPs are 

divided into two groups: 1) pathogen-associated molecular patterns (PAMPs), 

representing molecules of microbial or viral origin, which elicit an immunogenic response, 

and 2) alarmins, endogenous molecules that signal tissue injury (Figure 3A) [60,61]. To 

date, two additional modifications of this concept are commonly used. They employ the 

term “DAMP” strictly for endogenous self-derived immunogens, whereas pathogen-

derived immunogens (PAMPs) are separate. In the first one, DAMPs are further divided 

into three subcategories. The first subgroup covers intracellular proteins, which are 

passively released from dying cells. The second subcategory encompasses damaged or 

modified extracellular matrix fragments. The third subcategory are alarmins, which denote 

cytokine-like molecules that are stored in cells and released upon cellular stress or lysis 

(Figure 3B) [62,63]. The second classification uses DAMPs and alarmins as synonyms 

[64,65] (Figure 3C).  

 

Figure 3: Three different classifications of antigens according to their origin. 

(A) Oppenheim’s and Yang’s classification uses DAMPs as an umbrella term for PAMPs 

(immunogens from bacteria and viruses) and alarmins (endogenous danger signals) [60]. (B) DAMPs 

are used as an umbrella term for passively released intracellular proteins, modified or damaged 

extracellular matrix, or alarmins (cytokine-like proteins, which are stored in cells and quickly released 

upon cellular stress) [62,63]. (C) DAMPs and alarmins are used as synonyms [64,66]. 

(DAMP- damage associated molecular pattern, PAMP- pathogen associated molecular pattern, ECM- 

extracellular matrix) 

Since there is no unified nomenclature, immunogenic molecules that signal tissue damage 

after myocardial infarction will be denoted as "DAMPs" in this thesis. 
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4.2.2 Pattern Recognition Receptors (PRRs) 

DAMPs signal through pattern recognition receptors (PRRs), expressed by immune cells, 

like dendritic cells and macrophages, and non-immune cells, such as fibroblasts, smooth 

muscle cells and endothelial cells  [67–70]. PRRs can be localized on the extracellular 

membrane as well as in the intracellular compartment [71]. On the extracellular membrane 

are localized groups of toll-like receptors (TLR), C-type lectin receptors (CLR) and various 

ungrouped receptors, like the receptor for advanced glycation end products (RAGE) or 

interleukin 1 receptors (IL1R). In the intracellular compartment, danger molecules are 

captured by nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and 

retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) [62,67,71]. 

4.2.3 Toll-Like Receptor 4 (TLR4) 

TLR4 is the most abundant toll-like receptor in the heart [72]. It can capture ligands both 

at the cell surface level or from endosomes [73,74]. The signal transduction  is ensured 

via two pathways that are determined by different recruited adaptor proteins: MyD88 and 

TRIF [75]. At the plasma membrane TLR4 triggers activation of the MyD88-dependent 

pathway that leads to an increase of inflammatory cytokine production [76]. TRIF-

dependent pathway is activated upon endocytosis of TLR4. It further induces inflammatory 

cytokine and type I interferon production [76,77]. It has been suggested that endosomal 

acidification is essential for the ligand binding and recruitment of TRIF adaptor protein to 

TLR4 in endosomes [78]. Moreover, stimulation of TLR4 augments the TGFβ-mediated 

fibrotic response in murine and human skin fibroblasts [79]. In murine hepatic stellate cells, 

the TLR4-triggered fibrotic response has been reported to be mediated via MyD88 by 

enhancing TGFβ signaling through downregulation of its pseudoreceptor Bambi [80].  

In the setting of myocardial infarction, TLR4 stimulation has been demonstrated to have 

divergent effects. Lipopolysaccharides (LPS) are classical ligands for TLR4 [67]. 

Pretreatment of rats with LPS has been reported to reduce the size of infarction and 

subsequent cardiac dysfunction after ischemia/reperfusion [81]. In ischemia/reperfusion of 

isolated rat hearts, the protective properties of LPS become apparent after 12 hours of 

pretreatment. The beneficial effect is abrogated by the protein synthesis inhibitor 

cycloheximide [82], thus indicating cardioprotective properties for the proteins that are 

produced upon the stimulation with LPS. On the other hand, TLR4 deficiency improves 

cardiac function without affecting infarct size, reduces inflammatory cytokine expression 

and interstitial fibrosis in remote myocardium after permanent coronary ligation in mice 

[83]. In an ischemia/reperfusion model, TLR4 deficiency reduces the size of infarct and 
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inflammatory cytokine expression [84,85], however, without improving cardiac function 

[85].  

MyD88 serves as a downstream adaptor protein for interleukin 1 and 18 and all toll-like 

receptors, except TLR3 [86–88]. Interestingly, induction of ischemia/reperfusion in MyD88-

deficient mice results in decreased size of infarction, improved cardiac function and 

attenuated neutrophil recruitment in comparison to wild type controls. However, MyD88 

deficiency has no impact on infarct size or cardiac function when ischemia/reperfusion is 

induced in isolated hearts [89]. Impeded recruitment of neutrophils and decreased size of 

myocardial infarction after ischemia/reperfusion can be influenced by MyD88 deficiency in 

the bone marrow [90], pointing out the differences between local cardiac PRR and 

systemic PRR signaling. 

4.2.4 DAMPs after Myocardial Infarction 

Recognition of DAMPs by PRRs represents the initial signaling event of tissue damage 

after myocardial infarction [91]. Several groups of DAMPs have been demonstrated to 

contribute to myocardial inflammation in the infarcted heart, including S100 proteins, heat 

shock proteins, high mobility group box 1 protein (HMBG1) and interleukin 1α [91,92]. 

DAMPs often do not display receptor specificity, so that one molecule can bind several 

PRRs. For example, HMGB1 signals through TLR4 [93], but also through TLR2 [94], TLR9 

[95] and RAGE [96]; S100A8/9 binds to TLR4 [97], but also to RAGE [98]. 

HMGB1 is one of the best characterized DAMPs and therefore often referred to as a 

prototype [99]. HMGB1 is a nuclear non-histone DNA binding protein. In the nucleus it is 

involved in gene transcription and DNA stabilization [92]. It is released from necrotic cells, 

but not from apoptotic cells, and elicits a pro-inflammatory response [100]. Additionally, 

HMGB1 has been reported to be secreted from murine macrophages and human 

monocytes upon exposure to LPS [101,102]. When directly injected into the heart, HMGB1 

triggers inflammatory cell infiltration, which is abrogated in TLR4 deficient mice [63]. The 

pro-inflammatory activity of HMGB1 depends on the extracellular redox milieu. It loses its 

cytokine activity upon oxidation of its cysteine residues [103]. In the setting of a myocardial 

infarction, HMGB1 has been reported to have opposing effects. After permanent coronary 

artery ligation, heightened HMGB1 release from HMGB1 overexpressing mice leads to 

smaller infarct size, improved cardiac function and increased vascularization [104]. In the 

model of ischemia/reperfusion, however, inhibition of HMGB1 reduces infarct size and 

improves cardiac function. The detrimental effect of HMGB1 is mediated in a RAGE-

dependent manner [96].  
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S100A1 has recently been described as a cardiovascular DAMP, which is rapidly released 

from cardiomyocytes upon myocardial infarction [64,105]. When directly injected in the 

heart, S100A1 elicits increase of pro-inflammatory ICAM1 and anti-inflammatory 

thrombospondin 2 expression, simultaneously suppressing collagen 1 expression. In the 

model of ischemia/reperfusion in mice, the inhibition of extracellular S100A1 leads to 

increased infarct size and worsened cardiac function. Of note, TLR4 has been identified 

as a receptor for extracellular S100A1 without any evidence of parallel signaling through 

RAGE [64]. 

The initial alarming about myocardial injury is ensured by DAMPs that bind to pattern-

recognition receptors. Targeting the DAMPs/PRR system, in vivo experiments in rodents 

have so far revealed divergent effects on the healing cascade after myocardial infarction. 

Further studies are required in order to delineate the effect of diverse DAMPs/PRRs on 

myocardial and immune cells and the resulting impact on myocardial infarct healing.   

4.3 Cardiac Fibroblasts  

Fibroblasts are commonly defined as cells of mesenchymal origin that produce 

extracellular matrix proteins, including interstitial collagens, fibronectin and laminin 

[106,107]. They are widely distributed throughout the complete organism and have diverse 

transcriptional profiles that depend on the organ of origin [108]. 

Cardiac fibroblasts are among the most numerous cell types within the heart [109,110]. 

Together with endothelial cells, fibroblasts form the majority of the non-myocyte fraction 

within the myocardium [111,112]. Fibroblasts are embedded in a collagen-based network 

that surrounds cardiomyocytes [110]. Cell-matrix organization and fibroblast content differs 

among different regions of the heart [107]. In the ventricles cardiomyocytes are organized 

in layers, which are enveloped by connective tissue and fibroblast sheets [113]. In the 

sinoatrial node, the pacemaker region of the heart, fibroblasts are more abundant, and the 

cell-matrix network is less organized than in the ventricles [107].  Besides surrounding 

pacemaker myocytes, fibroblasts also form islands of themselves [114].  

Under physiological conditions fibroblasts ensure the structural integrity of the heart by 

governing extracellular matrix turnover [109]. In addition to its structural role, connective 

tissue, which is produced by fibroblasts, also serves as an electrical insulator [115], 

thereby maintaining the electrical properties of the myocardium. Fibroblasts are known to 

express several gap-junction proteins, like connexin 40, 43 and 45 [109], although the 

precise role of fibroblasts in the electrical coupling of myocardium has yet to be defined 

[116]. Due to their close proximity to cardiomyocytes [117] and  lower vulnerability to 
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injurious factors [118], fibroblasts are often referred to as “sentinel cells" of the myocardium 

[106]. 

4.3.1 Cardiac Fibroblasts in Myocardial Infarction 

Cardiac fibroblasts actively participate in the healing process after myocardial infarction. 

To date, the best described form of cardiac fibroblast activation upon myocardial infarction 

is their transform into a myofibroblast phenotype, which ensures scar tissue formation 

[119,120]. In mice, myofibroblasts appear on day 4 after infarction and peak on day 7 [23]. 

In electron micrographs of the myocardium, cardiac fibroblasts are elongated cells with 

sheet-like extensions, whereas myofibroblasts are notably larger cells with multiple 

membrane processes and a high amount of exocytotic vesicles [116,117]. A classical 

marker for myofibroblasts is α smooth muscle actin (αSMA) [121]. The current model of 

fibroblast activation includes the transformation into a proto-myofibroblast, which further 

transforms into a mature myofibroblast (Figure 4) [48,106,122]. 

 

Figure 4: In vitro differentiation of cardiac myofibroblasts.  

Mechanical tension and TGFβ initiate the fibroblast transformation into αSMA expressing proto-

myofibroblasts. Further stimulation with TGFβ and/or retained mechanical tension results in the 

formation of fully differentiated myofibroblasts, which express high amounts of αSMA. Myofibroblasts 

produce various cytokines/chemokines, MMPs/TIMPs and AngII. Nonetheless, their most distinct 

feature is the prominent production of extracellular proteins, in particular collagens. Withdrawal of 

activating stimuli results in proto-myofibroblast de-differentiation into fibroblasts. In contrast, 

myofibroblasts are terminally differentiated cells that cannot convert back to proto-myofibroblasts or 

fibroblasts. 

(αSMA- alpha smooth muscle actin, TGFβ- transforming growth factor beta, AngII- angiotensin II, 

MMP- matrix metalloproteinase, TIMP- tissue inhibitor of metalloproteinase, ECM- extracellular 

matrix) 

Adapted from [48,106,122]. 

In 2014, Driesen and colleagues demonstrated the course of cardiac fibroblast 

differentiation into myofibroblasts in a cell culture model.  Cardiac fibroblasts transformed 

into proto-myofibroblasts upon mechanical tension and/or TGFβ stimulation. Fibroblasts 
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were αSMA negative and possessed high proliferative capacity, whereas proto-

myofibroblasts were αSMA positive with a decreased proliferative capacity. Further TGFβ 

stimulation and maintained mechanical tension resulted in mature myofibroblast formation 

that was characterized by prominent αSMA staining and the lack of proliferative capacity. 

With removal or blocking of the activating stimuli proto-myofibroblasts but not 

myofibroblasts were able to de-differentiate back to fibroblasts. On the protein level, 

myofibroblasts were secreting an increased amount of collagen, tissue inhibitor of 

metalloproteinases 1 (TIMP1), and chemoattractant CCL2. In contrast, fibroblasts were 

characterized by a prominent secretion of interleukin 10 (IL10). Proto-myofibroblasts 

secreted more collagens than fibroblasts, but less than myofibroblasts. Importantly, 

cardiac fibroblasts, grown in stiff plastic cell culture dishes and in serum enriched medium, 

developed a proto-myofibroblast phenotype spontaneously, resulting from mechanical 

tension from the plastic surface and the presence of TGFβ in fetal calf serum [122]. 

TGFβ elicits fibroblast differentiation into myofibroblasts, which produce various cytokines 

and a high amount of collagens [106,122–124]. In a model of dermal fibroblast and 

keratinocyte co-culture, keratinocyte-derived interleukin 1 (IL1) has been shown to inhibit 

TGFβ-mediated formation of myofibroblasts by activating nuclear factor κB (NFκB) 

transcription factors in fibroblasts. Although a notable amount of TGFβ has been found 

after 24 hours of co-culture, the myofibroblast phenotype was not observed before day 4 

[125].  

In the setting of myocardial infarction, IL1 is reported to be involved in the initiation and 

amplification of the inflammatory response [126]. In cell culture, IL1β is able to inhibit and 

reverse cardiac fibroblast differentiation into proto-myofibroblasts. This has been 

suggested as a potential endogenous control mechanism for the restriction of premature 

activation of myofibroblast differentiation after myocardial infarction in vivo [127–129]. 

Interestingly, IL1 also induces an increase in the production of inflammatory adhesion 

molecules and chemokines in cardiac fibroblasts [130,131].  

4.3.2 DAMPs and Cardiac Fibroblasts 

The signaling of sterile tissue injury is ensured by DAMPs that are sensed by various cell 

types, resulting in the initiation of an inflammatory response. Stimulation with HMGB1 

induces the expression of pro-inflammatory cytokines in cardiac fibroblasts and, to a lesser 

extent, also in myofibroblasts, thus demonstrating cardiac fibroblasts as potential sensors 

of DAMPs and active participants in the inflammatory phase. HMGB1 does not trigger 

fibroblast transformation into myofibroblasts. Notably, fibroblasts express significantly 



  Introduction 

19 
  

more RAGE, which is one of the receptors for HMGB1, than myofibroblasts [132]. When 

treated with S100A8/9 [133], the most significantly upregulated function in cardiac 

fibroblasts is chemokine activity, as assessed by transcriptome analysis [134].  

In conclusion, cardiac fibroblasts have been shown to be critically involved in the scar 

formation phase after infarction. Additionally, fibroblast phenotype modulation by DAMPs 

seems to represent a key event for the initiation of an inflammatory reaction. Further 

research will have to reveal how the immune response after infarction is modulated by 

DAMP-stimulated cardiac fibroblasts. 

4.4 S100A1 

S100A1 is a member of the S100 protein family that consists of small (9-13 kDa) Ca2+ 

binding proteins, which participate in various intracellular activities [135,136]. Members of 

the S100 protein family have been reported to have cytokine-like functions in extracellular 

space, although it is not clear, if they can be actively secreted or only passively released 

from damaged cells [137,138]. Homodimers are  the preferential form of oligomerization 

for S100 proteins [135]. The homodimer of S100A1 can bind four Ca2+ ions. This leads to 

the exposure of a hydrophobic pocket that represents a binding site for target proteins 

[139,140] (Figure 5).  

 

Figure 5: Conformational changes of S100A1 upon Ca2+ binding. 

The binding of Ca2+ results in conformational changes of the S100A1 dimer. It opens a hydrophobic 

pocket that interacts with target proteins. α3 and α3’ helices (blue) rotate 90˚, exposing highly 

bioactive hydrophobic residues on α3 and α4 helix and α3’ and α4’ helix, as well as on the hinge 

region between α2 and α3 helices and between α2’ and α3’ helices.  

Taken from [140] with modifications. 

S100A1 protein is most abundant in muscle tissues, with the highest amounts found in the 

heart. In lower quantity, it is also found in other organs, like brain, kidneys and skin [141]. 

In the heart, S100A1 is mainly localized in the left ventricle, predominantly in 

cardiomyocytes. So far, no S100A1 expression has been detected in cardiac fibroblasts 

[64,142,143].  
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4.4.1 S100A1 in Cardiomyocytes 

S100A1 is involved in all major intracellular Ca2+ handling events within cardiomyocytes. It 

interacts with proteins of sarcoplasmic reticulum, myofilaments, and mitochondria (Figure 

6). 

 

Figure 6: Target structures and functions of S100A1 in cardiomyocytes. 

During diastole, S100A1 increases sarcoplasmic reticulum Ca2+ load by enhancing SERCA2A-

mediated Ca2+ uptake from the cytosol and by preventing Ca2+ leakage through RYR2. S100A1 also 

decreases the stiffness of the sarcomere protein titin, thereby facilitating diastolic relaxation. Within 

the mitochondria S100A1 enhances ATP production. 

(LTCC-L-type calcium channel, NCX-sodium-calcium exchanger, ATP-adenosine triphosphate, SR-

sarcoplasmic reticulum, SERCA2A-sarcoplasmatic reticulum Ca2+ ATPase 2a, PLB-phospholamban, 

RYR2-ryanodine receptor 2, EC coupling-excitation-contraction coupling)  

Taken from [144] with modifications. 

S100A1 binds to sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2A) and enhances its 

capacity to transfer Ca2+ from cytosol to the sarcoplasmic reticulum [145]. During diastole, 

the binding of S100A1 to RYR2 protects from arrhythmogenic Ca2+ leakage from the 

sarcoplasmic reticulum [146,147]. S100A1 also improves mitochondrial ATP production 

[148] and reduces passive stiffness of titin [149]. The execution of various S100A1 

dependant processes in myocardium is ensured with the total amount of approximately 2 

μg/mg of S100A1 protein within the heart [141].  

4.4.2 Extracellular S100A1 

The effect of extracellular S100A1 has been investigated in neuronal, pulmonary, and 

cardiovascular systems [135,150–152]. Chicks that received an intracerebral injection of 

S100A1-neutralizing antibody developed amnestic disorders, as measured by the 
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decreased retention of an aversive experience [153]. In mouse neuroblastoma cells, 

extracellular S100A1 activates NFκB and enhances neurite outgrowth in a RAGE 

dependant manner [154]. In the same setting, S100A1 displayed toxic effects in 

concentrations higher than 1 μM [154].  A mixture of S100A1 and S100B was shown to 

induce apoptosis in the undifferentiated neural cell line P12, which is derived from the rat 

pheochromocytoma [155,156]. Recently it has been demonstrated that extracellular 

S100A1 is internalized by lung endothelial cells, where it interacts with endothelial nitric 

oxide synthase (eNOS), resulting in protection against TNFα induced apoptosis [151]. In 

neonatal cardiomyocytes, 2-deoxyglucose induced apoptosis is limited by extracellular 

S100A1 [157]. 

Upon myocardial infarction, S100A1 is rapidly depleted from human cardiomyocytes [105] 

and can be detected in the serum [64,141,158]. Although the kinetics of S100A1 serum 

levels resemble the time course of cardiac troponins [159], the diagnostic value of S100A1 

is limited by its non-cardiomyocyte specific expression pattern, since elevated serum 

values can also be found in skeletal muscle disorders [141].  

Most recently, extracellular S100A1 has been reported to be involved in the healing 

process after myocardial infarction. Systemic S100A1 inhibition with a neutralizing 

antibody results in larger size of infarction and worsened cardiac function after 

ischemia/reperfusion injury [64]. 
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Figure 7: Extracellular S100A1 effect on cardiac fibroblasts. 

(1) Upon myocardial infarction S100A1 is released from damaged cardiomyocytes. (2) Neighboring 

cardiac fibroblasts take extracellular S100A1 up by macropinocytosis. (3) and (4) Internalized S100A1 

binds to TLR4 in acidic endosomes and signals in a MyD88-dependent manner. (5) Stimulation with 

S100A1 elicits ERK1/2 and NFκB activation. (6) S100A1-induced signal transduction resulted in 

significant gene expression changes on mRNA and protein level.  

(TLR4- toll-like receptor 4, MyD88- myeloid differentiation primary response protein 88, ERK1/2- 

extracellular signal-related kinase 1/2, p65- nuclear factor κ B p65 subunit, col-1 – collagen 1, SMA- 

α smooth muscle actin, CTGF- connective tissue growth factor, MMP9- matrix metalloproteinase 9, 

IL10- interleukin 10, ICAM1- intercellular adhesion molecule 1, TNFα- tumor necrosis factor alpha, 

SDF1- stromal cell derived factor 1, TSP-2 - thrombospondin 2) 

Taken from [64] with modifications. 

It has been shown that S100A1 that is released from damaged cardiomyocytes is taken 

up by neighboring cardiac fibroblasts (Figure 7) [64]. In detail, S100A1 is immediately 

internalized in cardiac fibroblasts by macropinocytosis. Importantly, neither endothelial 

cells, smooth muscle cells, nor adult cardiomyocytes internalize extracellular S100A1. In 

cardiac fibroblasts, S100A1 binds to TLR4 in acidic endosomes and recruits cytoplasmic 

MyD88, resulting in activation of extracellular signal-related kinase 1/2 (ERK1/2) and NFκB 

transcription factors. On the level of gene expression, S100A1 triggers downregulation of 

αSMA and collagen 1, simultaneously increasing anti-inflammatory protein IL10 [160] and 

thrombospondin 2 (TSP2) [161], as well as inflammatory protein ICAM1 [162], stromal cell 

derived factor 1 (SDF1) [163] and TNFα [164] expression. Interestingly, administration of 

S100A1-neutralizing antibody prior ischemia/reperfusion injury results in abrogated 

expression increase of IL10 and ICAM1 that is accompanied with delayed TNFα 

expression increase.  

In summary, S100A1 is released from damaged cardiomyocytes upon myocardial 

infarction. Following rapid internalization, S100A1 activates a TLR4-MyD88-dependent 
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signal transduction cascade in cardiac fibroblasts, leading to decreased profibrotic 

markers, such as αSMA and col-1, and increased expression of immunomodulatory 

markers, for example, ICAM1, TNFα and IL10.  

4.5 Aims of the Study 

In myocardial infarction, cardiac fibroblasts have traditionally been linked with the phase 

of scar formation, during which they transform into myofibroblasts and extensively produce 

extracellular matrix proteins. However, there is growing evidence that fibroblasts rapidly 

respond to infarction-related DAMPs, suggesting an active role in the inflammatory phase 

after myocardial infarction. S100A1 has been shown to be released into the interstitial 

space from ischemic cardiomyocytes and rapidly internalized by cardiac fibroblasts. In a 

cell culture model, extracellular S100A1 initiates a distinct signal transduction cascade, 

resulting in downregulation of αSMA and collagen 1 and increased expression of IL10 and 

ICAM1. This cardiac fibroblast phenotype might play a key role in the initiation of immune 

response to myocardial infarction.  

Therefore, the aims of this study were: 

1) Systematic time-resolved characterization of the gene expression profile of cardiac 

fibroblasts upon exposure to extracellular S100A1.  

2) Comprehensive analysis of the proteomic profile that defines the S100A1-

stimulated cardiac fibroblast phenotype. 
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5 Materials and Methods 

5.1 Materials 

5.1.1 Equipment and Consumables 

Device/ instrument Manufacturer 

C1000 touch thermal cylcer Bio-Rad 

Centrifuges  

Heraeus Megafuge 40R 
Thermo Fisher 
Scientific 

Mikro 200 R Hettich 

Rotina 420 R Hettich 

Table top centrifuge Roth 

CFX96 Touch™ Real-Time PCR Detection 
System 

Bio-Rad 

Heating circulator HAAKE 

Incubator Heracell 150i with oxygen control 
Thermo Fisher 
Scientific 

Laminar flow hood 
Thermo Fisher 
Scientific 

Langendorf perfusion apparatus  Custom-made 

Magnetic stirrer with hot plate neoLab 

Magnetic stirring bars neoLab 

Microscope IMT-2 Olympus 

Microscope IX81S1F-3 Olympus 

MyiQ™ Single-Color Real-Time PCR Detection 
System 

Bio-Rad 

Neubauer cell counting chamber Marienfeld-Superior 

pH meter  WTW 

Pipette controller accu-jet® pro  BRAND 

Pipette Eppendorf 

Peristaltic pump Ismatec 

Scale KERN 

Scissors, fine tip forceps, surgical forceps, 
bulldog clamp 

Fine Science Tools,       
B Braun 

Spectrophotometer Multiskan Spectrum 
Thermo Fisher 
Scientific 

Spectrophotometer NanoDrop 2000  
Thermo Fisher 
Scientific 

Pump for cell culture NeoLab 

Vortex IKA 

Water bath Memmert 

 

Consumables Manufacturer 

Cell culture 6-well plates Greiner Bio-One 

Cell culture flasks, T75, T175 Sarsted 
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Clear bottom 96-well plates 
Thermo Fisher 
Scientific 

Cell strainer  

24mm Netwell™ insert with 440 µm 
mesh size polyester membrane, sterile 

Corning 

Amicon Ultra-2 Centrifugal Filter Unit with 
Ultracel-3 membrane 

Merck Millipore 

Adhesive seals, optical Bio-Rad 

RNAase clear 0.5, 1.5, 2 mL tubes, PCR plates nerbe plus 

1.5 mL tubes Sarsted 

15, 50 mL tubes Greiner Bio-One 

Plastic Pasteur pipettes BRAND 

Serological pipettes Greiner Bio-One 

Pipette tips with filters Sarsted 

Reagent reservoirs, 50 mL Corning 

Sterile vacuum filtration system Stericup Merck Millipore 

Syringes, needles BD 

 

5.1.2 Materials for Cell Isolation, Culturing and Stimulation 

Chemical Catalog number Manufacturer 

Butanedione monoxime (BDM)  B0753 Sigma-Aldrich 

CaCl2∙2H2O C7902 Sigma-Aldrich 

(±) Carnitine hydrochloride C9500 Sigma-Aldrich 

Creatine C3630 Sigma-Aldrich 

EDTA tetrasodium salt ∙2H2O E6511 Sigma-Aldrich 

D (+) Glucose G7021 Sigma-Aldrich 

HEPES H4034 Sigma-Aldrich 

KCl P5405 Sigma-Aldrich 

Mercaptopropionylglycin M6635 Sigma-Aldrich 

MgSO4 M2643 Sigma-Aldrich 

Na-Pyruvat P5280 Sigma-Aldrich 

Na-Acetate S5636 Sigma-Aldrich 

NaCl S5886 Sigma-Aldrich 

Na-Glutamate G5889 Sigma-Aldrich 

NaHCO3 S5761 Sigma-Aldrich 

NaOH 106498 Merck Millipore 

Phenol Red sodium salt P5530 Sigma-Aldrich 

Taurine T8691 Sigma-Aldrich 

Water, CHROMASOLVPlus, 
for HPLC 

34877 Sigma-Aldrich 

 

Medium/ reagent/ additive Catalog number Manufacturer 

CLI095 (TLR4 inhibitor) tlrl-cli95 Invivogen 

Collagenase, type 2 CLS-2 Worthington  



Materials and Methods 

26 
 

Dulbecco's Modified Eagle's 
Medium (DMEM) - high glucose 

D5796 Sigma-Aldrich 

Dulbecco's Phosphate Buffered 
Saline (PBS) 

D8537 Sigma-Aldrich 

Fetal Bovine Serum Superior 
(FCS) 

S0615 Biochrom 

Heparin Sodium, 25’000 I.U.    ratiopharm 

Insulin, 40 I.U./mL    Sanofi 

Penicillin-Streptomycin P4333 Sigma-Aldrich 

Human recombinant S100A1   
Self-produced, for 
detailed protocol 
see [64,165]  

Thiopental Sodium, 0.5 g   Inresa Arzneimittel 

Trypsin-EDTA (0.25%) 25200056 
Thermo Fisher 
Scientific 

 

5.1.3 Materials for Gene Knockdown by siRNA 

Reagent Catalog number Manufacturer 

Silencer® Select Negative 
Control No. 1 siRNA 

4390843 
Thermo Fisher 
Scientific 

TLR4, siRNA ID: s131044 4390771 
Thermo Fisher 
Scientific 

Lipofectamine® RNAiMAX 
Transfection Reagent 

13778075 
Thermo Fisher 
Scientific 

 

5.1.4 ELISA Kit 

Kit Catalog number Manufacturer 

Mouse/Rat CCL2/JE/MCP-1 
Quantikine ELISA Kit 

MJE00 R&D Systems 

 

 

5.1.5 Materials for Protein and RNA Isolation and qPCR 

Chemical/ reagent Catalog number Manufacturer 

Bromophenol blue 108122 Merck Millipore 

Chloroform 22711 VWR 

Dodecyl sulfate sodium salt 
(SDS) 

822050 Merck Millipore 

Ethanol 32205 Sigma-Aldrich 
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Glycerol solution 49781 Sigma-Aldrich 

iQTM SYBR Green Supermix  170-8884 Bio-Rad 

iScriptTM cDNA Synthesis Kit  1708891 Bio-Rad 

Isopropanol  33539 Sigma-Aldrich 

Polyacryl carrier   PC152 MRC 

TRIS- HCl T5941 Sigma-Aldrich 

TRIzol® Reagent  15596-026 
Thermo Fisher 
Scientific 

Water for molecular biology, 
DEPC- treated and sterile 
filtered  

95284 Sigma-Aldrich 

2- Mercaptoethanol 805740 Merck Millipore 

 
Gene symbol, primer assay 
name Catalog number Manufacturer 

Ccl2, Rn_Ccl2_1_SG QT00183253 Qiagen 

Tlr4, Rn_Tlr4_1_SG QT00387184 Qiagen 
 

Gene 
symbol 

Forward primer Reverse primer 

18s GTAACCCGTTGAACCCCATT GGCCTCACTAAACCATCCAA 

 

5.1.6 Materials Used by Dr. Martin Busch 

Chemical/ reagent Catalog number Manufacturer 

Total RNA Purification Plus Micro 
Kit  

48500 Norgen Biotek 

 

   Gene 
symbol 

Forward primer Reverse primer 

HPRT1 CCAGCGTCGTGATTAGTGAT AGAGGGCCACAATGTGAT 

CCL2 GGTCTCTGTCACGCTTCTG TTCTCCAGCCGACTCATTG 
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5.2 Methods 

5.2.1 Isolation and Culturing of Adult Rat Cardiac Fibroblasts 

5.2.1.1 Preparation of Isolation and Perfusion Buffers 

All buffers for the isolation of adult rat cardiac cells were prepared in ion free water 

Chromasolv Plus (Sigma-Aldrich). pH values were adjusted with 1M NaOH. 

Table 1: Composition of the cell isolation and perfusion buffer. 

  M (mol/g) C (mM) g/L for 1L 

10x stock solution    

Sodium chloride (NaCl) 58.4 850 50 

Potassium chloride (KCl) 74.6 54 4 

Magnesium Sulfate (MgSO4) 120.4 41.5 5 

Na Pyruvat 110.0 50 5.5 

Sodium bicarbonate (NaHCO3) 84.0 200 16.8 

D (+) Glucose 180.2 115 20.7 

HEPES 238.3 200 47.7 

Na-Glutamate 169.1 254 43.0 

Na-Acetate 82.0 48.8 4.0 
Phenol Red sodium salt 376.4 0.5 0.2 

1x isolation buffer  

(supplemented on the day of 
isolation )            

BDM 101.1 10 1 

Creatine 149.2 4.4 0.66 

Taurine 125.2 30 3.75 

Mercaptopropionylglycin 163.2 4.9 0.8 

Perfusion buffer (isolation buffer+ 
EDTA)    

EDTA tetrasodium salt dihydrate 416.2 0.09 0.04 

On the day of isolation, perfusion and cell isolation buffers were prepared. The pH for the 

final solutions was adjusted to 7.3. 

5.2.1.2 Cell Culture Mediums 

Adult rat cardiac fibroblasts were cultured in high glucose DMEM, supplemented with 10% 

FCS and 1% penicillin/ streptomycin (10% FCS DMEM). Before stimulation cells were 

starved in the DMEM, containing 1% penicillin/ streptomycin (P/S) and 0% or 0.5% FCS, 

depending on the subsequent experiments.    

Adjusted to  
pH 7.3, sterile 
filtered, stored 
at 4°C 
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5.2.1.3 General Cell Culturing 

Cells were cultured in a humidified, 37˚C, 5% CO2 incubator. Cell culture work was 

performed under sterile conditions in a laminar flow hood.   

5.2.1.4 Cardiac Cell Dissociation 

Adult rat cardiac cells were isolated according to the protocol from Xu and Colecraft [166] 

with minor modifications. The rat heart was perfused with digestion buffer in the 

Langendorff technique, thus enabling dissociation of single cardiac cells (Figure 8). 

 

 

Figure 8: Adult rat heart cell isolation by enzymatic digestion in the Langendorff technique. 

(A) Adult rat heart was mounted on the cannula for the retrograde perfusion with digestion buffer 

through the coronary arteries.  

(B) The cardiac tissues were digested in the closed circular system.  

(C)  Heart cells were dissociated from digested connective tissues yielding at least 60% viable, rod-

shaped cardiomyocytes right after the isolation, thereby indicating sufficient enzymatic digestion. 

(Scale bar represents 200 μm) 

An adult male Wistar rat (250-350 g) was anesthetized with 1 mL Thiopental i.p. injection, 

35 mg/mL, until loss of hind limb toe pinch reflex (surgical anesthesia). Incision areas on 

the abdomen and thorax were sterilized with 70% ethanol and opened with lateral cuts by 

scissors. The heart was exposed and cut out with a large portion of the aorta and quickly 

placed into a 10 cm Petri dish with 80 mL of room temperature perfusion buffer, 

supplemented with 8 I.U./mL heparin. The aorta was slid onto the cannula of the 

Langendorff apparatus, and fixed with a bulldog clamp. Perfusion was started immediately 

with a drip rate of 100 drops/min. Filling of the coronary arteries was checked and 

evaluated in order to determine, if the heart was correctly positioned on the cannula. Then 

the clamp was replaced with a suture.  In order to remove residual serum traces and free 

Ca2+, the heart was washed with 70 mL of perfusion buffer, where the first 20 mL contained 
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8 I.U./mL heparin. During the wash step, the pulmonary vessels were tied, in order to 

increase the pressure within the coronary system.  

When 26 mL of perfusion buffer were left in the system, collagenase II solution was added, 

thereby composing the digestion buffer for the heart cell dissociation. 50 mg Collagenase 

II was dissolved in 14 mL of perfusion buffer and added to the residual buffer in the system, 

thus together making the concentration of Collagenase II 1.25 mg/mL. The exact 

concentration of collagenase II was adjusted for each lot separately, varying from 1 to 1.5 

mg/mL. Next the circulatory flow was established, and the heart was perfused with the drip 

rate of 60 drops/min, 37˚C, for 30 minutes. The perfusion was stopped, when the heart 

became flaccid and easily penetrable by fine tip forceps. 

A small beaker was filled with 15mL of digestion buffer from the perfusion system for the 

first round of cell dissociation. Simultaneously, the ventricles were cut off and placed into 

the beaker. A 50 mL tube was filled with additional 15mL of digestion buffer (to be used 

later for the second round of cell dissociation). The ventricles were minced into 

approximately 10 pieces with scissors. For the first round of cell dissociation the 

suspension was incubated in the water bath (37°C) for 3 minutes with gentle shaking. In 

order to facilitate the dissociation of the cells, the tissue pieces were gently triturated 5-7 

times with the plastic Pasteur pipette with shortened tip (opening 3-4 mm Ø), followed by 

additional 3 minutes incubation in the water bath. The whole suspension was triturated 6-

10 times before being filtered through a 440 μm cell strainer into a 50 mL tube. 15 mL of 

isolation buffer (perfusion buffer without EDTA) was added to the cell suspension, and the 

cell suspension was left at room temperature to settle. The rest of the tissues from the cell 

strainer was placed back into the beaker, and mixed with the previously collected 

additional 15 mL of digestion buffer for the second round of cell dissociation. The rest of 

the tissues were once again incubated twice in the water bath and filtered as described 

above. The resulting cell suspension from the second round of dissociation was similarly 

mixed with 15 mL of isolation buffer.  

5.2.1.5 Separation of Cardiac Fibroblasts   

For the isolation of cardiac fibroblasts, after the cell dissociation both portions of cell 

suspension were centrifuged for 1 minute at 50 g to pellet the cardiomyocytes. The 

supernatant was collected and centrifuged one more time for 5 minutes at 1000 g. The 

resulting pellets were pulled together by resuspending them in 20 mL 10% FCS DMEM, 

and transferred to T75 cell culture flask. After 2 hours, the attached cells were gently 

washed with PBS and fresh 10% FCS DMEM was added.  



  Materials and Methods 

31 
  

5.2.1.6 Culturing of Cardiac Fibroblasts 

Four days after isolation, cardiac fibroblasts reached 100% confluence in the T75 cell 

culture flask. For the subculturing cells were washed twice with PBS, 3 mL of trypsin- 

EDTA 0.25% was added and fibroblasts were incubated for 3 minutes at 37˚C. 

Subsequently, 25 mL of 10% FCS DMEM was added to cells and the resulting fibroblast 

suspension was transferred into the T175 cell culture flask. After 2-3 days the cells were 

split again into 6-well plates with 100 000 cells per well. After 24-36 hours when the 

confluence was around 60-80%, the fibroblasts were washed twice with PBS and culturing 

medium was replaced by serum deprived medium. Cells were starved for 24 hours before 

further stimulation (for the differences in the siRNA transfection protocol see 5.2.2 siRNA 

Transfection). All experiments were performed on passage 2 (P2) (Figure 9).   

 

Figure 9: Density of cardiac fibroblasts at the beginning of stimulation. 

At 60-80% confluence, fibroblasts were serum starved for 24 hours before further stimulation. (Scale 

bar represents 200 μm) 

5.2.2 siRNA Transfection 

For the TLR4 siRNA knockdown, adult rat cardiac fibroblasts were plated on 6-well plates, 

100 000 cells per well. After 24-36 hours, when the confluence reached 60% (Figure 10), 

the cells were washed 1x with PBS and 1.5 mL of 0% FCS DMEM per well was added.  
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Figure 10: Density of adult rat cardiac fibroblasts before siRNA transfection. 

For the optimal knockdown results, transfection with siRNA was performed at ~60% confluence. 

(ACF, scale bar represents 200 μm) 

Transfection was performed with Lipofectamine RNA iMax Reagent according to the 

manufacturer’s protocol. For one well 250 μL of DMEM without any supplementation was 

mixed with 5 μL of Lipofectamine and shortly vortexed. 10 μL of siRNA (stock solution of 

10 μM, and final concentration of 50 nM per well) was added to 250 μL of DMEM without 

supplementation and shortly vortexed. 250 μL of transfection reagent mix was transferred 

to 250 μL of siRNA dilution, shortly vortexed and incubated at room temperature for 5 

minutes. Finally 500 μL of the siRNA reagent complex was added to each well, and the 

cells were incubated for 48 hours before further stimulation. The efficiency of TLR4 siRNA 

knockdown was assessed against negative control siRNA (scramble) knockdown using 

qPCR. 48 h after transfection cardiac fibroblasts were stimulated with 1 µM of recombinant 

S100A1 for additional 24 h.  

5.2.3 Enzyme Linked Immunosorbent Assay (ELISA) 

For the detection of rat CCL2 in the supernatant, the commercially available sandwich-

type ELISA kit was used according to the manufacturer’s protocol. Blank controls, 

standards, control of the assay and samples were added in duplicates to the wells of 

microplates that were pre-coated with CCL2 capture antibody. After 2 hours of incubation 

at room temperature, the wells were thoroughly washed and antibody against CCL2 

conjugated to horseradish peroxidase was pipetted into the each well. The plate was 

incubated once again for 2 hours at room temperature. Then the substrate solution was 

added. After 30 minutes of incubation at room temperature, protected from light, the stop 

solution was added, and the optical density was measured at the wavelength of 450 nm 

with correction wavelength set to 540 nm. The control value of the assay had to be in the 

range from 101 to 169 pg/mL. Detection range for the assay was 15.60- 1.000 pg/mL.   
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Correction optical density (540 nm) was subtracted from each data point. Subsequently, 

blank control (450 nm) was subtracted from each tested sample. For the calculation of the 

concentration of samples a 4-parameter logistic curve fit was created from OD and 

concentration values of  standards with the web-based application elysaanalysis.com 

[167]. Resulting formula was used for the calculation of the concentration of the samples. 

5.2.4 Isolation of RNA, Reverse Transcription, qPCR 

5.2.4.1 Isolation of Total RNA 

The total RNA from adult rat cardiac fibroblasts was isolated with TRIzol® Reagent 

according to the manufacturer’s instructions with minor changes. In brief, the supernatant 

from 6-well plates was collected or discarded, 1 mL of TRIzol® was added in each well 

and incubated for 2 minutes at room temperature. Samples were collected, and then 200 

μL of chloroform were added and mixed by vigorously shaking the tubes. For the phase 

separation, samples were centrifuged for 15 minutes at 18 000 g, 4˚C. From now on all 

steps were performed on ice. The upper aqueous phase that contains RNA was 

transferred to a new tube without disturbing the interphase or organic layer. In order to 

precipitate RNA, ice-cold 100% isopropanol and 1.5 µL of polyacryl carrier were added, 

then briefly mixed by inverting the tubes. After that, RNA was allowed to precipitate 

overnight at -20°C. To collect the RNA, the tubes were centrifuged for 15 min at 18 000 g, 

4˚C. The pellet was washed twice with ice cold 75% ethanol and air dried for approximately 

10 minutes and dissolved in 20 μL of DEPC-treated water. RNA quality and concentration 

were assessed with NanoDrop2000. 

For the RNA isolation of Dr. Martin Busch’s experiments Total RNA Purification Plus Micro 

Kit was used according to manufacturer’s instructions. 

5.2.4.2 Reverse Transcription 

Reverse transcription of the RNA was performed with iScript cDNA synthesis kit following 

the manufacturer’s protocol. 1 μg of RNA was mixed with 4 μL of iScript reaction mix and 

1 μL of reverse transcriptase. The volume was scaled up to 20 μL with DEPC-treated 

water. The reaction was performed with the following protocol: annealing- 5 minutes at 

25˚C, reverse transcription- 30 minutes at 42˚C, inactivation of the enzyme- 5 minutes at 

85˚C. The produced cDNA was stored at -20˚C until further use. 

5.2.4.3 Quantitative Real-Time PCR (qPCR) 

For the qPCR reaction, iQ SYBR Green Supermix was used according to the user manual 

for the final volume of 15 μL per reaction. 7.5 μL of iQ SYBR Green Supermix was mixed 
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with 1 μL of the forward and reverse primer mix (final concentration 300 nM each, or 

according to the primer data sheet for commercially available ones). The cDNA was diluted 

1:100 in DEPC-treated water. For one reaction 6.5 μL of diluted cDNA was used, resulting 

in 65 ng of cDNA per run. The qPCR was performed on Biorad MyIQ PCR cycler with the 

protocol, described in the Table 2. 

Table 2: Protocol for qPCR. 

Number of Cycles Temperature Dwell time Step 

1x 95°C 03:00 Denaturation 

 95°C 00:10 Denaturation 

40x 60°C 00:45 Annealing 

  72°C 00:30 Elongation 

1x 95°C 00:05 Termination 

1x 55°C 01:00 
Temperature 
gradient set 

point 

80x 55→95°C, 0,5°C/increment  00:10 Melting curve 

1x 4°C ∞ Hold 

    
Dr. Martin Busch used iQ SYBR Green Supermix according to the user manual for the final 

volume of 20 μL per reaction. 10 μL of iQ SYBR Green Supermix was mixed with 1 μL of 

the forward and reverse primer mix (final concentration 250 nM each). 50 ng of cDNA was 

used per run, diluted in 2 μL of water. The total volume was scaled up to 20 μL with 7 μL 

of water. The qPCR was performed on CFX96 Touch™ Real-Time PCR detection system 

with the protocol, described in the Table 3. 

Table 3: Protocol for qPCR, Dr. Martin Busch’s experiments 

Number of 
Cycles 

Temperature 
Dwell 
time 

Step 

1x 95°C 03:00 Denaturation 

40x 

95°C 00:15 Denaturation 

60°C 01:00 
Annealing, 
elongation 

1x 95°C 01:00 Termination 

80x 
55→95°C, 

0,5°C/increment  
00:05 Melting curve 
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18s was used as a reference gene (for the Dr. Martin Busch’s experiments- HPRT1). 

Relative gene expression changes were calculated applying ΔΔCt method according to 

Livak and Schmittgen [168] with the following formula: 

fold change=2
-∆∆Ct 

-∆∆Ct= -((CtGOI- Ct18s)treatment - (CtGOI- Ct18s)control) 

Ct- threshold cycle, GOI- gene of interest. 

5.2.5 Transcriptome 

In order to evaluate gene expression changes in cardiac fibroblasts in response to 

extracellular S100A1, serial transcriptome analysis was performed using microarray 

technology. Adult rat cardiac fibroblasts were starved for 24 hours in 0.5 % FCS DMEM 

(6-well plates, 2 mL of medium per well). For each time point a separate plate was 

prepared. Cells were stimulated with recombinant S100A1 for 1, 2, 4, 6, 8, 12, 18, 24 and 

48 hours. Unstimulated control samples were collected before stimulation ("0 hours") and 

at each indicated time point. RNA was isolated with TRIzol® Reagent as described above. 

The total amount of 1 μg was submitted to the DKFZ Genomics and Proteomics Core 

Facility. RNA quality control was performed on an Agilent 2100 Bioanalyzer. Gene 

expression profiling was performed with Affymetrix GeneChip® Rat Gene 2.0 ST Array. 

The sample preparation for the hybridization on the arrays was carried out with the 

GeneChip® WT PLUS Reagent Kit (Affymetrix), according to the manufacturer’s 

instructions. In brief, 200 ng of total RNA was used for the synthesis of the cDNA, which 

was further transcribed and amplified into cRNA. Next, single-stranded cDNA (ss-cDNA) 

was synthesized from cRNA, followed by fragmentation and biotinylation.  Finally, 5.5 µg 

of  fragmented and biotin-labeled ss-cDNA were hybridized for 17 h at 45°C on arrays with 

GeneChip® Hybridization, Wash and Stain Kit in automated system Fluidics Station 450 

(both from Affymetrix). The scanning of gene microarray was done with a 

GeneChip® Scanner 3000 (Affymetrix).  

The obtained data was processed in collaboration with Dr. Dr. Melanie Börries and Dr. 

Hauke Busch (Institute of Molecular Medicine and Cell Research, University of Freiburg). 

The functional enrichment analysis was performed with Gene Set Enrichment Analysis 

software [169,170].  
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5.2.6 Secretome 

5.2.6.1 Sample Preparation and LC-MS/MS Data Acquisition 

For the identification of secreted protein pattern by cardiac fibroblasts upon extracellular 

S100A1 stimulation secretome analysis was performed. Supernatant from stimulated and 

untreated cells was prepared as follows. Adult rat cardiac fibroblasts in 6-well plates were 

starved for 24 hours in 0% or 0.5% FCS DMEM, 2 mL per well. 1 mL of medium was 

aspirated from each well before stimulation with 1 μM recombinant S100A1. After 48 hours 

of incubation supernatant was collected. For the protein concentration an Amicon 

ultracentrifugation filter device (3 kDa pore size) was used according to the manufacturer’s 

instructions. One mL of supernatant was added in the filter device and centrifuged for 110 

minutes at 4000g, 8˚C using swinging bucket rotor. As a result one mL of supernatant was 

concentrated to 60 μL. In order to collect the concentrated supernatant in the collection 

tube, the reservoir of the filtrate was discarded, filtration device was inverted and 

centrifuged for 2 minutes at 1000g. 

30 μL of concentrated supernatant was mixed with 3 μL of loading buffer (300 mM TRIS-

HCl, 12% SDS, 0.3% Bromophenolblue, 60% glycerol, 12% β-mercaptoethanol). The 

further processing was done by the ZMBH Core Facility for Mass Spectrometry & 

Proteomics. After boiling for 3 minutes at 60˚C, samples were loaded into a 10% SDS 

acrylamide gel. The gel was run until the bromphenol blue front was about 2 cm into the 

well. Each lane was cut into four pieces according to their molecular size. Proteins in each 

piece were further digested with trypsin. The resulting peptides were labeled by reductive 

dimethylation, control samples being labeled as ‘light’ with mass increase of 28 kDa per 

primary amine and S100A1-treated samples as ‘intermediate’ with mass increase of 32 

kDa per primary amine. Then control and S100A1-treated samples from the same 

molecular size range were mixed together and subjected to liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) analysis with the Orbitrap Elite Hybrid Mass 

Spectrometer (Thermo Fisher Scientific). 

5.2.6.2 Identification and Sorting of Valid Secreted Proteins 

Protein identification performed Dr. Bernd Hessling with MaxQuant 1.5.2.8 software. 

Protein names and gene symbols were derived from the UniProt data base [171]. Data 

were sorted, marking common contaminants from sample preparation process (e.g. 

keratins, trypsin) and proteins of bovine origin, as well as false positive hits from decoy 

database.  
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The ratio of the treatment with S100A1 vs. control for each protein was calculated. In 

addition, the absolute amount of protein in the sample was determined with the absolute 

quantification (iBAQ) value. It represents the sum of intensities of detected peptides 

divided by the intensities of all theoretically obtainable peptides from the protein [172]. 

Ratios of the proteins were calculated from the intensities of peptides, which were detected 

both in control and S100A1 samples. iBAQ values were determined from the intensities of 

peptides, which were detected in the respective sample (Figure 11). 

 

Figure 11: Data sets for the calculation of ratios and iBAQ values of proteins. 

For the calculation of protein ratios from control vs. S100A1-treatment, only the intensities of peptides 

that were detected in both control and S100A1 stimulated samples were used (set b). The iBAQ value 

for each protein was determined from the intensities of all detected peptides for each samples: 

intensities from set b and c were used for the iBAQ value calculation of each protein from S100A1 

sample, whereas intensities of set a and b were used for the iBAQ value calculation of each protein 

from control sample. 

(iBAQ- intensity based absolute quantification) 

Further data processing, annotation and statistical analysis was performed with Perseus 

1.5.2.6 software (developed by group of Prof. Dr. Matthias Mann) with the assistance of 

Dr. Hessling. All values were logarithmically transformed and the median of triplicates was 

calculated, where appropriate. The data sets were reduced by excluding previously 

marked contaminants and false positive hits. To separate extracellular proteins from 

intracellular ones, filtering according to the UniProt identifier “gene ontology cellular 

compartment” (GOCC) was performed. Proteins annotated with one or more of the 

following GOCC names were included in downstream calculations: extracellular matrix, 

extracellular matrix part, extracellular membrane-bounded organelle, extracellular 

organelle, extracellular region, extracellular region part, extracellular space, and 

extracellular vesicular exosome.  
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5.2.6.3 Statistical Analysis and Biological Classification  

The significance of the upregulation or downregulation of the proteins was calculated with 

one-sample t-test, as an input matrix using protein ratios. The relative changes were 

expressed as a median of protein ratios from triplicates.  

Comparison and visualization of the protein composition from cell supernatants with or 

without FCS were performed with the web based application BioVenn [173]. In brief, the 

data sets of detected valid extracellular proteins from the 0% and 0.5% FCS groups were 

loaded into the software. The number of proteins was depicted as a Venn diagram that 

allows visualization of the groups of common proteins detected in both treatment 

conditions as well as proteins, detected only in one of the treatment condition.  

For the correlation analysis Pearson correlation was employed. It measures the strength 

of increasing or decreasing linear association between two variables that are normally 

distributed [174].  

Biological functions of the secretome were determined by grouping the proteins with one-

dimensional (1D) annotation enrichment analysis and Fisher’s exact test. Each protein was 

annotated according to its biological function, molecular function, cellular compartment 

and keywords from UniProt. Separate annotation category was created manually for 

distinct inflammatory proteins, and will be discussed in the Result section 6.2.4.  

1D annotation enrichment analysis was performed as described by Cox and Mann [175]. 

Enrichment of proteins from one biological category was tested with the two-sample 

Wilcoxon-Mann-Whitney test. This tests estimates, whether the category of interest ranks 

statistically significantly higher or lower comparing with the distribution of the whole group. 

For the multiple hypotheses testing Benjamini-Hochberg false discovery rate (FDR) was 

set to 2%. The input data were ratios or iBAQ values of each protein from the secretome. 

The enrichment of the category was expressed by positioning it in the overall distribution 

of data points. It was depicted as a position score, calculated as follows: 

s=
2×(R1-R2)

n
 

R1 was average rank of the input data from the group of interest, R2 was average rank of 

respective numerical items from the rest of the proteins and n was the total number of 

included proteins. 

Biological function enrichment analysis for upregulated proteins was performed with 

Fisher’s exact test. This test assesses, whether the non-random link between proteins 
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from predefined group exists. Within the computation proteins with ratios more than 4 were 

included. The Benjamini- Hochberg FDR was set to 2%. The enrichment of certain 

biological category was calculated with the following formula: 

enrichment factor=
intersection size

category size
×

total size 

selection size 
 

Intersection size represented proteins with the ratio more than 4 that belonged to the 

certain category, category size was the number of all detected extracellular proteins from 

the category of interest, total size was the number of all detected extracellular proteins and 

the selection size was the number of proteins, which ratio was more than 4. 

5.2.7 Statistics 

For the cell culture experiments, data were plotted as mean ± SEM, unless indicated 

otherwise. For comparison of two groups unpaired two-tailed Student’s test was used. For 

more than two groups one-way ANOVA was performed. Results were considered to be 

significant, if p<0.05. 
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6 Results  

Myocardial infarction results in a massive release of DAMPs [176–178]. They contribute 

to the activation of a systemic immune response that is needed for the clearance of cellular 

debris [10,92]. It has been demonstrated that HMGB1 and IL1α influence cardiac 

fibroblasts by increasing pro-inflammatory gene expression and suppressing their 

transformation into myofibroblasts [131,132]. S100A1 is a cardiomyocyte-derived DAMP, 

which is internalized by cardiac fibroblasts [179]. Within this study, the response of cardiac 

fibroblasts to stimulation with S100A1 was investigated.  

6.1 Gene Expression Profile of Cardiac Fibroblasts upon 

Stimulation with S100A1  

In cardiac fibroblasts, extracellular S100A1 triggers upregulation of several inflammation 

related genes and proteins, such as intercellular adhesion molecule 1 or interleukin 10. At 

the same time it downregulates collagen 1α1 and α smooth muscle actin production [64]. 

In order to understand the complex transformation of the fibroblast phenotype upon 

stimulation with S100A1, a time-resolved transcriptome analysis was performed. 

6.1.1 Principal Component Analysis of Time-Resolved Transcriptome  

In order to investigate the transcriptomic changes of S100A1-treated cardiac fibroblasts 

over time, cells were stimulated with recombinant S100A1 for 1, 2, 4, 6, 8, 12, 18, 24, and 

48 hours. After the acquisition of microarray data, intensities for each gene per time point 

were combined together for each experimental condition and principal component analysis 

was performed. All gene expressions per sample were reduced to two dimensions 

(principal components), which correspond to the greatest variances. With this approach it 

is possible to visualize the complete pattern of gene expression of a single sample as one 

point with two coordinates. The distance, which separates several probes from each other, 

is expressed in percentage and allows to assess the differences of transcriptome between 

several samples. Thereby, the impact of S100A1-treatment over time was evaluated by 

the calculation of principal components for each sample from control and stimulated 

groups. 

 As shown in Figure 12, treatment with S100A1 resulted in dynamic transcriptomic 

changes, which could be detected already at the early time points. At the 4 hour time point 

the gene expression pattern after the stimulation with S100A1 differed from the respective 

control sample by approximately 10% and 5% increase of principal component 2 (PC2) 

and principal component 1 (PC1), respectively. In the following time course, the S100A1-
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treated fibroblasts deviated further from their corresponding controls. After 24 hours, the 

stimulated sample was separated from the respective control by approximately 20% and 

5% increase of PC1 and PC2, respectively. At the final time point (48 hours) the S100A1-

treated sample decreased by 5% on PC2, comparing to 24 hours. Thus, in the last time 

point the control and S100A1-stimulated sample differed by around 20% of PC1, whereas 

according to PC2 they located roughly at the same level. It is important to note that the 

incubation of control samples for 48 hours had only a minor effect on the gene expression 

profile. The data points between 0 and 48 hours differed for approximately 5% on principal 

component 2 without any notable perturbations during the whole period of incubation. 

 

Figure 12: S100A1 elicits early gene expression profile changes in cardiac fibroblast with 

dynamic fluctuations over time. 

Principal component analysis of the serial transcriptome. Cardiac fibroblasts were stimulated with the 

S100A1 for 0, 1, 2, 4, 6, 8, 12, 18, 24 and 48 hours. After the data acquisition from gene microarray, 

the intensities of each sample were grouped together and plotted with respect to other samples. The 

greatest variances were calculated in 2 dimensions (principal components).  S100A1-treated 

fibroblasts showed early and dynamic fluctuations of the gene expression pattern over time. Starting 

from the 4 hours up to the final investigated time point the S100A1 stimulated samples strongly 

deviated from the gene expression profiles of earlier time points and respective controls. In contrast, 

the gene expression pattern of control samples had only minor changes over 48 hours of incubation. 

(ACF, n=1, S100A1 1μM, 0.5% FCS) 

Cardiac fibroblast stimulation with S100A1 led to an early shift of the gene expression 

profile that dynamically fluctuated over time, strongly deviating from the unstimulated 

samples. In the next step gene expression pattern changes were analyzed further by 

linking them with possible subsequent biological events. 
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6.1.2 Transcriptome-Derived Biological Functions  

The principal component analysis of the serial transcriptome revealed a prominent 

activation of cardiac fibroblasts with an alternating pattern of gene expression profile over 

time after the treatment with S100A1. For the evaluation of the biological events, which 

follow fibroblast stimulation, gene expression changes were sorted into categories of 

biological regulations and functions. 

Transcriptomic changes of cardiac fibroblasts upon treatment with S100A1 were analyzed 

with a Gene Set Enrichment Analysis (GSEA) software, identifying biological categories 

that significantly differed between control and treated samples. Since the control samples 

were collected after 1, 4, 12, 24 and 48 hours, these time points were taken for the 

calculation of the enriched biological functions. The intensity of regulation for each 

category per time point was obtained as an adjusted significance level, where the p-value 

was calculated for the enrichment of category that was normalized to the gene set size.  

For the adjustment of the p-value the permutation based false discovery rate was applied. 

The adjusted significance represents the probability that the enrichment of a given 

category is a false positive hit [169,180]. Higher relative differences for genes from 

particular category yields lower adjusted p-value. Note that the adjusted p value 0.05 

corresponds to 1.3 in –log10 scale. 

In Figure 13 significantly upregulated biological functions and pathways are shown, 

indicating a strong link between the stimulation with S100A1 and positive activation of 

inflammatory processes in cardiac fibroblasts. The category with the lowest adjusted p-

values was chemokine activity that was highly upregulated already at the one hour time 

point. The next most upregulated groups were categories of neutrophil chemotaxis and 

cellular response to tumor necrosis factor.  

From the intracellular signaling pathways the TLR4, ERK1/2 and NFκB signaling cascades 

were detected to be activated, albeit with less pronounced upregulation comparing to the 

highest ranked categories of chemokine activity or cellular response to tumor necrosis 

factor. It is in agreement with previous studies, where TLR4 has been identified as a 

receptor for recombinant S100A1, further signaling components being ERK1/2 and NFκB 

[64,181].  
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Figure 13: S100A1 triggers upregulation of inflammatory gene expression profile in cardiac 

fibroblasts. 

Significantly upregulated biological functions of the transcriptome from ACF after 1, 4, 12, 24 and 48 

hour stimulation with S100A1. Gene expression changes were clustered and annotated according to 

their biological functions with a gene set enrichment analysis (GSEA) software. The earliest and most 

prominently upregulated function were chemokine activity, cellular response to tumor necrosis factor 

and neutrophil chemotaxis. 

(ACF, n=1, S100A1 1μM, 0.5 % FCS) 

In the next step, calculation of the significantly downregulated categories was performed 

(Figure 14). Treatment of cardiac fibroblasts with S100A1 resulted in a decrease in the 

expression of genes, which are characteristics for the formation and function of 

myofibroblasts. Already at the 4 hour time point the category of extracellular matrix 

components was the most downregulated group. S100A1 stimulation also led to a 
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prominent suppression in the expression of genes, which are responsible for the stress 

fiber formation and cytoskeleton production, as well as for the collagen and collagen fibril 

organization. Besides the downregulation of various myofibroblast-related categories, 

according to the GSEA analysis S100A1 also suppressed mitosis related categories, for 

example, condensed chromosome kinetochore, chromosome segregation, and mitosis. 

However, the interpretation of the effect of S100A1 as an anti-mitotic and, therefore, anti-

proliferative might be misleading, because the list of upregulated functions included also 

the category of positive regulation of proliferation, and previous studies have demonstrated 

no effect of S100A1 on the proliferation of cardiac fibroblasts [64,182]. 

 

Figure 14: S100A1 stimulation leads to suppressed expression of extracellular matrix and 

cytoskeleton genes in cardiac fibroblasts. 

Significantly downregulated biological functions of the transcriptome from ACF after 1, 4, 12, 24 and 

48 hour stimulation with S100A1. Downregulated biological functions were calculated with GSEA.  

The earliest and most notably downregulated clusters of genes comprised categories of extracellular 

matrix and cytoskeleton.  

(ACF, n=1, S100A1 1μM, 0.5 % FCS) 
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In summary, the analysis of transcriptome from S100A1-treated adult cardiac fibroblasts 

revealed an early and notable upregulation of the immune response gene expression, 

particularly, chemokine activity. It was accompanied by the downregulation of the 

functional categories, which are related to the formation of extracellular matrix. The 

activation of immune response and suppression of extracellular matrix formation suggest 

a phenotype of cardiac fibroblasts, which resembles the response to other cardiovascular 

DAMPs, interleukin 1 and HMGB1. Both of them are shown to induce the cytokine 

production in cardiac fibroblasts without increasing or even suppressing the classical 

myofibroblast-related markers, such as collagens or αSMA [106,127,128,132].    

6.2 Characterization of S100A1-Evoked Pro-inflammatory 

Phenotype of Cardiac Fibroblasts on Protein Level 

The biological functions of the cell are driven by proteins [183]. The rate of their production 

may differ from the respective gene expression [172]. Therefore, in the next step the 

expression levels of proteins were investigated in order to verify the transcriptome data 

and further analyze the phenotype of cardiac fibroblasts upon stimulation with S100A1. 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology was applied 

for protein detection. Since the most notable differences from the transcriptome analysis 

indicated changes in the production of secreted proteins, the secretome from cardiac 

fibroblasts was investigated further. The mass spectrometry-based analysis was 

performed on the supernatant from S100A1-treated and control fibroblasts. 

Proteins were considered for the further analysis, if identified with at least 2 peptides, from 

which at least one was uniquely assigned to the particular protein. After filtering out the 

contaminants and false positive hits 606 proteins remained. From them 380 proteins were 

annotated to be extracellular (see section 5.2.6.2). 319 and 326 extracellular proteins 

overlapped in all 3 biological replicates from control and S100A1 samples, respectively. 

316 extracellular proteins were detected in both control and S100A1-treated samples in 

all 3 biological replicates. Since mass spectrometry possesses high specificity, but relative 

low sensitivity [184–186], further analyses were performed with the set of all 380 proteins, 

thereby avoiding loss of proteins which might be missed in some experiments due to the 

limited power of detection. 

6.2.1 Significantly Regulated Secreted Proteins 

In order to visualize the effect of the stimulation with S100A1 on an individual secreted 

protein level, the relative fold change and significance for each protein were calculated by 
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one sample t-test. Proteins are depicted in a volcano plot (Figure 15), where red colored 

dots denote proteins with at least 2-fold (1 in log2 scale) upregulation and purple filled- at 

least 2-fold downregulation (-1 in log2 scale). For the separation between significantly and 

non-significantly regulated proteins, the threshold line for p value of 0.05 (1.3 in –log10 

scale) is shown. All significantly up- or downregulated proteins are located above the line. 

The full list of differently changed proteins from the volcano plot and their p-values is 

included in the Supplementary table 1. 

The volcano plot of single proteins revealed a marked effect of S100A1 on the relative 

increase of secreted proteins. Significantly downregulated proteins formed a numerously 

smaller group with less distinct fold changes between stimulated and unstimulated 

samples. 

Ranked according to relative changes, the highest upregulated proteins from significantly 

increased ones were lipocalin 2 (Lcn2), chitinase-3-like protein 1 (Chi3l1), complement C3 

and pentraxin 3 (Ptx3).  In case of downregulated proteins, collagen 8a1 (Col8a1), C-type 

lectin domain family 3, member B (Clec3b), and osteoglycin (Ogn) had the lowest ratios 

from the significantly changed proteins. 

The most prominently increased and significantly upregulated proteins possess various 

biological functions. Lipocalin 2 is reported to be involved in the attraction of neutrophils 

[187] and macrophage polarization into M1 phenotype [188].  In contrast, pentraxin 3 

impedes recruitment of neutrophils and macrophages [189], but also protects 

cardiomyocytes from ischemia/reperfusion injury [190]. C3a, which is the subunit of C3, 

induces T helper 1 response and degranulation of peripheral blood mononuclear cells 

[191]. However, in the setting of ischemia/reperfusion injury C3a also confines neutrophils 

within the bone marrow [192]. Chitinase-3-like protein 1 is reported to protect 

macrophages against oxidant-induced cell death [193]. Altogether, all the highest rated 

upregulated proteins according to the volcano plot possessed diverse functions that do not 

complement each other.  

The reported functions of the most downregulated from significantly regulated proteins 

correspond to the suppression of extracellular matrix formation. Collagen VIII is a structural 

component within the extracellular matrix [194] and osteoglycin takes part in its formation 

[195]. The functions of C-type lectin domain family 3, member B in the fields of cardiology 

or immunology are yet to be defined. This kind of functional suppression is consistent with 

the initially performed transcriptome analysis (see Section 6.1.2).  
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Figure 15: The profile of protein ratios indicates a prominent stimulatory and moderate 

suppressive effect of S100A1 on secreted proteins from cardiac fibroblasts. 

Volcano plot of p-values against the ratios of secreted proteins upon the stimulation with S100A1. 

Purple filled circles- at least 2-fold downregulated proteins, red filled circles- at least 2-fold 

upregulated proteins. The majority of differentially regulated proteins is upregulated. Relative fold 

changes of the upregulated proteins reach higher values, as compared to the downregulated ones. 

The highest ranked upregulated proteins are Lcn2, Chi3l1, C3 and Ptx3, whereas the most 

dowregulated significantly regulated proteins are Col8a1, Clec3b and Ogn. 

(ACF, n=3, S100A1 1μM, 48 h stimulation, 0% FCS, Lcn2- lipocalin 2, Chi3l1- chitinase-3-like protein 

1, C3- complement C3, Ptx3- pentraxin 3, Col8a1- collagen 8 A1, Clec3b- C-type lectin domain family 

3, member B, Ogn- osteoglycin) 

The sorting of proteins according to their fold change versus control and significance 

allows to assess the effect of S100A1. It demonstrated a prominent stimulatory and 

moderate suppressive impact on the relative ratios of secreted proteins from cardiac 

fibroblasts. Moreover, the volcano plot enabled visualization of the proteins, which might 

be responsible for the biological effect of the secretome from S100A1 stimulated 

fibroblasts.  However, the reported functions were not complementary for the proteins with 

highest significant relative changes. Therefore the biological activity of the secretome from 



Results 

48 
 

S100A1-treated cardiac fibroblasts was further analyzed by grouping proteins according 

to their biological functions.  

6.2.2 Correlation between Transcriptome and Secretome 

In order to analyze the link between gene expression changes and secreted proteins, 

relative fold changes from the transcriptome were correlated to the respective fold changes 

from the secretome. The differentially expressed mRNA translation into proteins may be 

delayed, the time lag between mRNA expression and protein production being 2-6 hours, 

when the correlation between gene expression and protein production are described to be 

the highest [196,197]. Since the protein secretion can potentially be even more delayed 

from the respective gene expression than protein production, the secretome analysis after 

48 hours of stimulation was correlated with the previous available time point from the time- 

resolved transcriptome analysis, which was 24 hours.  

As can be seen in Figure 16, the gene expression profile is highly correlated with the 

protein pattern from the secretome. The correlation is described by the Pearson correlation 

coefficient R=0.76. Among the secreted proteins, the most upregulated proteins were 

lipocalin 2 (Lcn2), chitinase-3-like protein 1 (Chi3l1), and complement C3 with higher fold 

changes on the protein level, as compared to the gene expression. On the transcriptome 

level, the highest relative increase was detected for Cxcl6, autotoxin (Enpp2) and 

phospholipase 2 group II a (Pla2g2a), all of which demonstrated more prominent relative 

ratios on the gene expression level as compared to the fold changes on the secretome 

level. Overall, higher fold changes of proteins are linked with lower fold changes of the 

respective gene expression, as can be seen from the equation of the trend line y=0.66x-

0.23, where x and y denotes fold change from the secretome and fold change from the 

transcriptome, respectively. 
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Figure 16: S100A1-triggered transcriptomic changes in cardiac fibroblasts are highly 

correlated with the relative changes of the protein secretion. 

Relative gene expression changes after 24 hours are strongly correlated with the fold changes of the 

secreted proteins after 48 hours.  The correlation is described by the Pearson correlation coefficient 

R=0.76. Higher fold changes of secretome are correlated with lower fold changes of transcriptome, 

as also seen in the equation of the trend line y=0.66x-0.23. 

(ACF, S100A1 1μM, for the secretome- 0% FCS, n=3, 48 h stimulation, for the transcriptome- 

0.5%FCS, n=1, 24 h stimulation, y denotes fold change secretome [log2], x denotes fold change 

transcriptome [log2]) 

The correlation of the serial transcriptome and secretome data demonstrates that 

according to the Pearson correlation the profile of secreted proteins after 48 hours is highly 

correlated with the respective gene expression pattern after 24 hours. It is consistent with 

the previously reported correlation analysis between the gene expression and protein 

production within the cell, where the profile of transcriptomic and proteomic fold changes 

are clearly interdependent [198]. However, the increase or decrease of the expression at 

the level of individual genes was not an indication that the secreted protein level will be 

changed to the same extent. Furthermore, it has been demonstrated that the amount of 

produced proteins mainly depends on the translational activity, and some gene increases 

might be silenced with a slowed or arrested further translation [172,199,200]. These results 

once again underline the importance of the verification of the transcriptome data on the 

level of proteins. 
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6.2.3 Biological Functions of Secretome  

Analysis of the serial transcriptome from cardiac fibroblasts upon stimulation with S100A1 

revealed a prominent upregulation of the inflammatory gene pattern with reduced stress 

fiber and extracellular matrix gene activity. In order to validate the transcriptional changes 

and define specific biological functions of the secreted protein profile, a functional 

enrichment analysis of the secretome was performed. 

At first, all relative fold changes of the secreted proteins were sorted with 1D annotation 

enrichment. For the annotation, category identifiers of biological process, molecular 

function, and keywords from UniProt [171] were used. The enrichment was depicted as a 

position score, which shows the center of distribution for the values of the particular 

category in relation to the distribution of all values. Categories closer to -1 stand for the 

enrichment among proteins with low relative ratios, whereas shift towards 1 indicates the 

enrichment among proteins with high relative ratios (for the details see section 5.2.6.3 

Statistical Analysis and Biological Classification ). 

In Figure 17 the 1D enrichment analysis of the most upregulated and downregulated 

protein categories is summarized. The upregulated protein categories comprised 

numerously more entities with higher position scores. Chemotaxis, chemokine receptor 

binding, and chemokine activity were the most prominently increased categories. At the 

same time the most downregulated categories were collagens and extracellular matrix part 

(the detailed analysis and list of proteins per category see Supplementary table 2, 

Supplementary table 3, Supplementary table 4). These data support results from 

transcriptome analysis, suggesting that S100A1 elicits distinct activation of cardiac 

fibroblasts from the well-known myofibroblast phenotype that is characterized by the 

increased extracellular matrix protein secretion [106,201].  
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Figure 17: S100A1 evokes upregulation of inflammatory protein secretion and downregulation 

of extracellular matrix components in cardiac fibroblasts. 

All secreted proteins were clustered together with a 1D annotation enrichment according to their 

relative ratios. The most downregulated categories are collagen and extracellular matrix part. The 

most upregulated functions are chemotaxis, chemokine receptor binding, and chemokine activity. 

Enrichment per category is indicated as a position score, where the center of values of particular 

category is depicted in relation to the center of values from the rest of members, which are included 

in the calculation. 

(ACF, n=3, S100A1 1μM, 48 h stimulation, 0% FCS) 

In order to cluster upregulated proteins into categories according to their biological function 

Fisher’s exact test was applied. Similar to 1D annotation enrichment analysis, labels from 

UniProt, which comprised biological process, molecular function and keywords, were 

applied. In 1D annotation enrichment all ratios are taken into account, thus also a small 

increase in protein secretion contributes to the overall enrichment of the particular 

functional category. In contrast to 1D annotation enrichment, in the Fisher’s exact test the 

threshold value for the upregulation of each protein must be introduced. Within this group 

no further ranking of the proteins according to their fold changes is applied. As a threshold 

level a 4-fold increase was used. Biological functions were ranked according to the 

enrichment factor, which indicates the number of proteins from the particular category with 

more than 4-fold upregulation versus the total number of detected proteins from the same 

category (for the formula of the calculation see section 5.2.6.3 Statistical Analysis and 

Biological Classification ).  

Results of the Fisher’s exact test are shown in Figure 18. All the highest enriched functions 

were related to different aspects of inflammatory reaction. The three top-rated categories 

were chemokine-mediated signaling pathway, chemotaxis, and chemokine activity, which 
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indicates a strong induction of chemoattractant protein secretion. The full analysis of the 

Fisher’s exact test is given in Supplementary table 5. 

 

Figure 18: Functions that are responsible for chemoattraction are the most enriched 

categories among the upregulated proteins in the secretome from cardiac fibroblasts 

stimulated with S100A1. 

Fisher’s exact test of biological functions for more than 4-fold upregulated secreted proteins. The 

most enriched functions are chemokine-mediated signaling pathway, chemotaxis and chemokine 

receptor binding. 

The value of enrichment factor indicates the size of the group of more than 4-fold upregulated 

proteins, which belong to the particular category, normalized with the number of all proteins from the 

same category. 

(ACF, n=3, S100A1 1μM, 48 h stimulation, 0% FCS) 

The highest stimulatory effect of S100A1 is exerted on the inflammatory response, as can 

be seen from the most upregulated biological functions (Figure 18). The proteins that 

define the first 15 most enriched categories from the Fisher’s test are listed in Table 4. 
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Chemoattractants are highlighted in dark blue. They determined the first three most 

enriched functions from the Fisher’s test. It is important to note that these proteins match 

also with the members of the first three most upregulated functions according to the 1D 

annotation enrichment analysis (see Supplementary table 3).  

Table 4: Proteins that determine the enrichment of immune response functions according to 

Fisher’s exact test in the secretome from S100A1 stimulated cardiac fibroblasts.  

In dark blue highlighted proteins corresponds to the three most upregulated biological functions, 

which cover the chemoattraction functions. 

Gene name Protein name 
Fold 

changes 
[log2] 

Gene name Protein name 
Fold 

changes 
[log2] 

Lcn2 Lipocalin-2 7.91 Pf4 Platelet factor 4 3.02 

C3 Complement C3 6.46 Sod2 
Manganese-
superoxide 
dismutase 

2.80 

Ptx3 Pentraxin 3 6.41 Mmp9 
Matrix 

metalloproteinase-
9 

2.74 

Cxcl1 
C-X-C motif 
chemokine 1 

6.00 Cd44 
Phagocytic 

glycoprotein-1 
2.73 

Ccl7 
C-C motif 

chemokine 7 
5.12 Tnfrsf11b Osteoprotegerin 2.67 

Ccl2 
C-C motif 

chemokine 2 
5.05 Rarres2 Chemerin 2.67 

Cxcl6 
C-X-C motif 
chemokine 6 

4.91 Mmp2 
Matrix 

metalloproteinase-
2 

2.49 

C1s 
Complement C1s 

subcomponent 
4.81 Csf1 

Macrophage 
colony-stimulating 

factor 1 
2,45 

Enpp2 Autotaxin 4.81 Cxcl12 
Stromal cell-

derived factor 1 
2.41 

Serping1 
Plasma protease 

C1 inhibitor 
4.22 Spp1 Osteopontin 2.35 

Lbp 
Lipopolysaccharide-

binding protein 
3.78 Mmp10 Stromelysin 2 2.33 

Ccl3 
C-C motif 

chemokine 3 
3.73 C1r 

Complement C1r 
subcomponent 

2.25 

Hp Haptoglobin 3.71 Cxcl3 
C-X-C motif 
chemokine 3 

2.16 

Serpina3n 
Serine protease 

inhibitor A3N 
3.49 Pla2g7 

Phospholipase 
A2, group VII 

2.09 

Dcn Decorin 3.43    

 

The functional enrichment analysis of the secretome indicated a prominent upregulation 

of immune response, in particular, chemoattractant function. It was accompanied by a 

moderately decreased secretion of extracellular matrix structural proteins, thereby 

confirming the results from the serial transcriptome analysis (see section 6.1.2). In the 

following analysis, the effect of stimulation with S100A1 on the absolute amounts of 

proteins was examined. 
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6.2.4 Effect of S100A1 on Absolute Protein Amounts  

Previously described biological functions and significantly upregulated single proteins 

were calculated based on the relative changes of each protein in the supernatant from 

S100A1-stimulated fibroblasts. However, this approach neglects the total amounts of 

proteins. Hence, it is not possible to evaluate whether the S100A1-elicited changes of the 

protein profile and biological functions relevantly impacts the absolute profile of secreted 

proteins and prevailing functions of cardiac fibroblasts. To distinguish, whether the 

detected alterations are minor deviations or notable hallmarks of a new pattern of the 

secretome of cardiac fibroblasts, proteins were sorted and analyzed according to their 

absolute abundance, expressed as an iBAQ value (in log10). It represents the sum of the 

peak intensities of detected peptides from one protein divided by the number of 

theoretically obtainable peptides per respective protein (for detailed information see 

5.2.6.2). 

1D functional enrichment analysis was performed on the sets of iBAQ values obtained 

from control and S100A1-treated samples. S100A1-targeted proteins, which comprised 

the most upregulated biological functions according to relative ratios, were grouped into a 

separate category. According to Fisher’s exact test the most upregulated biological 

functions were immune response categories (Figure 18). Thus, the respective S100A1-

targeted proteins (highlighted in Table 4) were grouped in a separate category and termed 

“Immune response”. It encompasses 29 proteins, such as lipocalin-2, complement C3 and 

pentraxin 3. From the upregulated immune response categories the top three most 

enriched ones were chemoattractant categories. The proteins, which defined this 

upregulation, were grouped in a separate category “Chemoattractant” (10 proteins, 

highlighted in dark blue, in Table 4). Majority of them were CC or CXC chemokines, such 

as CXCL1, CCL2 and CCL7. 

In the control group (Figure 19A) the 1D enrichment analysis from iBAQ values revealed 

the significant enrichment of collagens, which was detected at the region of proteins with 

the highest absolute abundances (position score 0.57). It is in agreement with the basal 

function of cardiac fibroblasts as extracellular matrix maintaining cells [106]. After the 

stimulation with S100A1 the significantly enriched categories comprised S100A1-targeted 

immune response proteins and, particularly, chemoattractants (Figure 19B). Both of these 

categories were enriched among proteins with highest iBAQ values with a position score 

0.65 for the group of S100A1-targeted chemoattractants and 0.53 for the category of 

S100A1-targeted immune response. Full 1D enrichment analysis is included the 
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Supplementary table 6. These data point towards a phenotypic shift of cardiac fibroblasts 

from collagen- to predominantly chemoattractant-secreting cells in response to S100A1. 

 

Figure 19: The most abundantly secreted proteins are changed from collagens in control to 

immune response factors and chemoattractants, in S100A1-treated fibroblasts.  

The histogram of the distribution of absolute amounts of quantified proteins, expressed in iBAQ 

values (in units of log10), in (A) control and (B) S100A1-treated samples. The colored histograms 

depict proteins that were grouped in significantly enriched categories according to the 1D enrichment 

analysis from iBAQ values of all proteins. In control samples (A) the only significantly enriched 

functional category is collagen (blue histogram) with the position score of 0.57. In the S100A1-

stimulated samples (B) the significantly enriched categories comprised S100A1-targeted 

chemoattractants (dark red histogram) and S100A1-targeted immune response proteins (green 

histogram) with a position score of 0.65 and 0.53, respectively. 

Position score indicates the center of iBAQ distribution of the particular category relative to the 

distribution of all iBAQ values. Values closer to 1 indicates enrichment of the category among the 

proteins with the highest iBAQ values, whereas values towards -1 stands for the enrichment closer 

to the lowest iBAQ values. 

 (ACF, n=3, S100A1 1μM, 48 h stimulation, 0% FCS) 

Next, the composition of the supernatant from S100A1 stimulated fibroblasts was 

evaluated. The absolute abundances of secreted proteins from the stimulated sample 

were plotted as the function of their fold changes (Figure 20). Green filled circles depict 

S100A1-targeted proteins that determine the most upregulated concordant biological 

functions according to Fisher’s exact test, namely, immune response functions. Illustrated 

in dark red are proteins that define the three most upregulated categories, which are 

chemokine-mediated signaling pathway, chemotaxis, and chemokine activity according to 

Fisher’s exact test. From the proteins with common biological functions the most abundant 

and the highest upregulated ones are CCL2, CCL7, CXCL1, pentraxin 3 (Ptx3), and 

lipocalin 2 (Lcn2). Additionally, the first three of them are members of the most enriched 

category upon S100A1 stimulation, "chemoattraction". Moreover, lipocalin 2 is also 
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reported to be a potent chemoattractant [187], thereby supporting the assumption that 

chemotaxis stimulation is the main biological function of the secretome from cardiac 

fibroblasts upon exposure to S100A1. 

 

Figure 20: CCL2 is the most abundantly secreted upregulated protein in S100A1-stimulated 

cardiac fibroblasts.  

Absolute amounts (iBAQ [log10]) of each protein in S100A1-stimulated samples against respective 

ratios from the treatment with S100A1 versus controls (in units of log2). CCL2 possesses the highest 

absolute amount from the detected S100A1-targeted immune response proteins. 

Vertical line separates more than 4-fold upregulated proteins. Solid circles represent proteins, which 

define the upregulation of immune response function, as determined by the Fisher’s exact test. Dark 

red triangles depict proteins, which determine the enrichment of predominantly upregulated 

chemoattraction function. 

(ACF, n=3, S100A1 1μM, 48 h stimulation, 0% FCS) 

Of all S100A1-targeted immune response proteins, CCL2 was determined to be the most 

abundant one. Evaluation of the iBAQ values for all detected proteins indicated that CCL2 

was among the most secreted proteins from the whole secretome. The only protein that 
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had a higher iBAQ value than CCL2 was biglycane (Bgn), which was slightly 

downregulated upon the stimulation with S100A1.  

The analysis of the absolute abundances of the proteins in the supernatant revealed that 

the secretome of the cardiac fibroblasts upon S100A1 stimulation was shifted towards an 

inflammation governing pattern. Detailed examination of the upregulated proteins 

indicated chemoattractant CCL2 [202] as the most abundantly secreted protein.  

6.2.5 Comparison of Serum Starvation Conditions for Secretome Analysis 

For the transcriptome experiment, cardiac fibroblasts were starved and stimulated in 

DMEM containing 0.5% FCS. For the mass spectrometry analysis, the external protein 

content in the supernatant had to be reduced to a minimum.  Therefore, samples for the 

mass spectrometry based analysis were prepared in DMEM containing no FCS. To 

examine the effect of FCS on the secreted protein profile, the detectable protein 

composition was tested in the cell supernatant from DMEM with 0% or 0.5% FCS 

supplementation with or without additional exposure to S100A1.  

The pattern of proteins after gel electrophoresis from the 0.5% FCS group showed a clear 

accumulation of the serum at the region of 60 kDa, indicating a strong contamination with 

serum albumin (Figure 21A). In the 0.5% FCS group the accumulated serum proteins 

would mask the proteins produced by cardiac fibroblasts, therefore this part of the gel was 

excluded from further mass spectrometry analysis. The protein lane from 0% FCS group, 

on the contrary, was subjected to the LC MS/MS in full length.  

In the next step, the number of detectable extracellular proteins was compared between 

0% and 0.5% FCS groups (Figure 21B). As expected, the 0% FCS treated sample 

contained more proteins than the 0.5% group. 363 and 292 proteins were identified in the 

0% and 0.5% FCS group, respectively. 251 of them were detected in both groups.  

In order to evaluate a possible impact of serum starvation conditions on the protein 

production and secretion, the absolute amounts of each protein from both groups were 

correlated using Pearson correlation coefficient. The absolute protein amounts were 

calculated as an iBAQ (intensity based absolute quantification) value. As shown in the 

Figure 21C, iBAQ values for proteins from 0% and 0.5% FCS group are strongly 

correlated, as described by a Pearson correlation coefficient of R=0.72.  



Results 

58 
 

 

Figure 21: Cardiac fibroblast treatment with 0.5% FCS in comparison with 0% FCS leads to 

less proteins detected in the supernatant by mass spectrometry without affecting their 

absolute amount. 

(A) Proteins were separated with a gel electrophoresis and stained with Coomassie blue.  Samples 

with 0.5% FCS treatment showed accumulation of calf serum proteins with the maximum at around 

60 kDa. For the 0.5% FCS group this part of the gel was excluded from the further analysis.  

(B) Proteins were detected by LC MS/MS. The count of proteins in 0% FCS and 0.5% FCS treated 

samples were compared with a BioVenn, a web application for the comparison and visualization of 

biological lists. More proteins was detected in the 0% FCS treated sample. 

(C) Absolute amount of each protein was expressed as iBAQ. The iBAQ values were correlated 

between the 0% and 0.5% FCS treated groups. 0% versus 0.5% FCS treatment had no substantial 

effect on the secreted protein amount, since iBAQ values from both groups were strongly lineary 

correlated (Pearson correlation coefficient R=0.72). 

(ACF, n=1, S100A1 1μM, 48 h stimulation) 

In conclusion, the presence or absence of serum during the stimulation period had no 

major effect on the amounts of detectable secreted proteins; however, due to the serum 

protein accumulation at the region of around 60 kDa this part of the gel could not be used 

for the secreted protein detection with mass spectrometry, resulting in lower number of 

identified proteins.  
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6.3 CCL2 Expression and Secretion by Cardiac Fibroblasts upon 

Stimulation with S100A1  

According to the transcriptome and secretome data, the most upregulated biological 

function in response to S100A1 was chemokine activity. Analysis of single proteins from 

the secretome revealed that CCL2 is the most abundantly secreted chemokine. Therefore, 

the molecular mechanisms underlying increased CCL2 expression and secretion in 

S100A1-stimulated cardiac fibroblasts were further investigated. 

6.3.1 Verification of S100A1-Triggered Upregulation of CCL2  

Since the gene microarray-based approach possesses a high background noise, the 

investigation of single gene expression pattern requires qPCR [170,203]. Due to the limited 

sensitivity of the unlabeled mass spectrometry-based data acquisition [186], for  the 

examination of time-dependent secretion pattern of individual proteins an ELISA assay is 

required. Therefore, CCL2 gene expression and protein secretion were verified and 

investigated by qPCR and ELISA, respectively.   

In order to validate CCL2 gene expression with qPCR, cardiac fibroblasts were stimulated 

with S100A1 for 24 hours. CCL2 gene expression was significantly upregulated, showing 

a 10 fold increase over control (Figure 22A). The secreted protein was verified by treating 

cardiac fibroblasts with S100A1 for 48 hours. Subsequently the conditioned medium was 

subjected to ELISA analysis (Figure 22B). The treatment with S100A1 led to a substantial 

increase of CCL2 amount. In the control samples approximately 1.5 ng/mL of CCL2 was 

detected, whereas in the supernatant from stimulated cardiac fibroblasts the amount of 

CCL2 was increased to 27 ng/mL.  
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Figure 22: S100A1 stimulation of cardiac fibroblasts induces a robust upregulation of CCL2 

gene expression and protein secretion.  

(A) The verification of CCL2 gene expression increase with qPCR. CCL2 expression shows a 

prominent relative upregulation after 24 h treatment with S100A1. (n=5) 

(B) ELISA verification of the upregulated CCL2 protein secretion upon treatment with S100A1 for 48 

h. Stimulated samples contained high absolute amount of CCL2 protein, resulting in a prominent 

increase over control. (n=4) 

(ACF, S100A1 1μM, 0% FCS **p<0.01 vs. control)  

To examine the expression time course of CCL2, cardiac fibroblasts were stimulated with 

S100A1 for 4, 8, 12, 24 and 48 hours. In the data, kindly provided by Dr. Martin Busch, the 

expression increase of CCL2 mRNA started already at 4 hours (Figure 23).  

 

Figure 23: S100A1 induces an early upregulation of CCL2 gene expression. 

Cardiac fibroblasts were incubated with S100A1 for 4, 8, 12, 24 and 48 hours. qPCR measurement 

indicated an increase of CCL2 mRNA already after 4 hours of stimulation. 

(ACF, n=2, S100A1 1μM, 0% FCS) 

Data and figure courtesy of Dr. Martin Busch. 
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The ELISA-based protein measurement indicated a very early upregulation of CCL2 at the 

secreted protein level (Figure 24A). The supernatant from S100A1-stimulated cardiac 

fibroblasts already after 4 hours contained 1.9 ng/mL of CCL2. After 48 hours the amount 

increased to 26 ng/mL. For comparison, control samples at 4 hour time point contained 

only 0.07 ng/mL CCL2, which increased to 2.3 ng/mL at 48 hours. Measuring CCL2 mRNA 

expression in the corresponding experiment, CCL2 was increased over control 23-fold and 

21-fold at the 4 hour and 48 hour time points, respectively (Figure 24B). 

 

 

Figure 24: S100A1 evokes an early and stable upregulation of CCL2 protein secretion and 

mRNA expression.  

Cardiac fibroblasts were stimulated with S100A1 for 4, 8, 12, 24, and 48 hours.  

(A) ELISA of secreted CCL2. The increase of CCL2 protein in the supernatant was detectable already 

after 4 hours and notably accumulated over 48 hours. 

(B) qPCR of CCL2 mRNA expression from the corresponding ELISA experiment. CCL2 was robustly 

increased at all measured time points. 

(ACF, n=1, S100A1 1μM, 0% FCS)  

The ELISA and qPCR experiments indicated a strong and early upregulation of CCL2 

protein secretion and gene expression in cardiac fibroblasts upon stimulation with S100A1. 

The examination of mRNA expression and protein secretion time course showed a 
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prominent induction of CCL2 production already after 4 hours. Further incubation resulted 

in a substantial accumulation of CCL2 in the supernatant at all subsequent time points.  

6.3.2 TLR4-Mediated Increase of CCL2 Expression  

After internalization by cardiac fibroblasts, S100A1 binds to TLR4 [64]. TLR4 is crucially 

involved in the eliciting of inflammatory response after the myocardial infarction [204,205]. 

Activation of TLR4 has been shown to trigger CCL2 production [206]. Therefore, the 

involvement of TLR4 in S100A1-induced increase of CCL2 expression was investigated. 

At first, TLR4 was chemically inhibited by using CLI095, which is also known as a 

resatorvid. It binds specifically to the intracellular domain of TLR4 and interferes with the 

subsequent interaction with TLR4 adaptor proteins that are needed for downstream signal 

transduction [207]. Results of chemical inhibition are shown in Figure 25. 30 minutes pre-

incubation of cardiac fibroblasts with CLI095 completely abolished the S100A1-triggered 

CCL2 upregulation. 

 

Figure 25: Chemical inhibition of TLR4 abolishes S100A1-induced CCL2 upregulation in 

cardiac fibroblasts. 

Cardiac fibroblasts were treated with S100A1 for 24 hours with or without a 30 minute pre-incubation 

with TLR4 chemical inhibitor CLI095. The blockage of TLR4 resulted in a completely abrogated CCL2 

mRNA increase upon the stimulation with S100A1, measured with qPCR. 

(ACF, n=3, S100A1 1μM, CLI095 3 μM, 0% FCS **p<0.01)  

In order to verify the TLR4 pathway-dependent suppression of CCL2 expression, a 

knockdown of TLR4 was established. 48 hours after transfection with TLR4 and scramble 

siRNA, qPCR analysis indicated knockdown to 10% TLR4 expression in comparison to 

scramble controls (Figure 26A). Consequently, cardiac fibroblast stimulation with S100A1 

for 24 hours was performed 48 hours after transfection. After the stimulation with S100A1, 

CCL2 was significantly upregulated in cardiac fibroblasts, which were transfected with the 

scramble siRNA. The stimulation resulted in a 21-fold increase of CCL2 over the untreated 
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scramble control (Figure 26B). TLR4 knockdown suppressed the S100A1-mediated 

upregulation of CCL2.  

 

Figure 26: TLR4 knockdown blocks the increase of CCL2 in S100A1-stimulated cardiac 

fibroblasts. 

(A) Cardiac fibroblasts were transfected with scramble (Scr) and TLR4 siRNA. After 48 h the efficiency 

of knockdown was verified with the qPCR, which showed a 10% rest expression of TLR4.  

(B) 48 h after the transfection cells were stimulated with S100A1 for 24 hours. TLR4 knockdown 

suppressed the upregulation of secreted CCL2 from S100A1-stimulated cardiac fibroblasts.  

(ACF, n=3, S100A1 1μM, Scr and TLR4 siRNA 50 nM, 0% FCS **p<0.01 ***p<0.001) 

Taken together, the data from chemical inhibition and knockdown of TLR4 provide 

evidence for a direct involvement of TLR4 activation in S100A1-triggered increase of CCL2 

expression in cardiac fibroblasts. 
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7 Discussion 

Upon myocardial infarction, S100A1 is released from damaged cardiomyocytes and 

rapidly endocytosed by neighboring cardiac fibroblasts in vivo [64,158,159]. S100A1 

internalization subsequently triggers activation of ERK1/2 and NFκB signaling pathways 

in cardiac fibroblasts, resulting in fundamental gene expression changes of inflammatory 

and fibrotic genes. The aim of this study was to provide a detailed characterization of the 

S100A1-mediated cardiac fibroblast phenotype in order to define its possible biological 

function in vivo. For this purpose time-resolved whole transcriptome and comprehensive 

secretome analyses were performed on S100A1-treated adult rat cardiac fibroblasts in 

vitro. Within the first hours of S100A1 stimulation, cardiac fibroblasts acquired a marked 

chemoattractant phenotype. The most abundantly secreted chemokine was CCL2, a 

cytokine that is reported to be critically involved in the healing cascade after myocardial 

infarction [208]. The initial cellular source of CCL2 after myocardial infarction in vivo is so 

far poorly understood [209]. This study provides first evidence for a rapidly evolving 

chemoattractant phenotype of cardiac fibroblasts upon exposure to extracellular S100A1. 

This indicates that cardiac fibroblasts might actively participate in the initiation of the 

inflammatory response to ischemia/reperfusion injury in vivo. 

7.1 Time-Resolved Transcriptomic Analysis of Cardiac 

Fibroblast Phenotype upon Stimulation with S100A1 

Previous studies on both adult and neonatal cardiac fibroblast cell cultures showed an 

anti-fibrotic and both pro- and anti-inflammatory response upon the stimulation with 

S100A1 [64,210]. Effect on the inflammatory response was demonstrated by the increase 

of pro-inflammatory ICAM1 and anti-inflammatory IL10 expression. Anti-fibrotic effect was 

detected by a prominent downregulation of collagen 1 and αSMA [64,210]. Since the 

downregulation of pro-fibrotic genes contradicts the classical fibroblast activation and 

transformation into myofibroblasts [211], a time-resolved transcriptome analysis was 

performed in order to elucidate the whole gene expression profile of cardiac fibroblasts 

upon their exposure to extracellular S100A1. This approach was chosen because it offers 

a comprehensive and unbiased estimation of all gene expression driven events, 

discriminated by an early or late manifestation. For the evaluation of the complete 

transcriptomic profile over time a principal component analysis was performed. It reduces 

multiple gene expressions of samples to only two dimensions, which represents the 

greatest variances of gene expressions between different samples. Thereby, principal 

component analysis allows the evaluation of the degree by which samples differ from each 

other. 
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S100A1 elicited an early and marked cardiac fibroblast activation. Notably, already after 2 

to 4 hours of stimulation with S100A1, the gene expression profile strongly deviated away 

from the control fibroblasts. The gene expression pattern upon treatment with S100A1 

dynamically changed until the last measured time point at 48 hours. The effect of cell 

culturing conditions on the gene expression changes were measured by the principal 

component analysis of unstimulated samples, which showed only modest changes.  

In order to understand the biological role of the gene expression changes upon S100A1 

stimulation a gene set enrichment analysis (GSEA) was performed. GSEA is a 

computational tool that allows to build a hypothesis about possible biological functions. It 

is based on the clustering of gene expression ratios according to their involvement in 

different biological pathways [169,170]. This approach provides several advantages over 

the conventional focus on the individual most up- or downregulated genes, especially in 

the evaluation of differentially regulated cellular processes. First, the biological function 

may be driven by the majority of regulated genes, which individually do not possess high 

relative changes. Second, the group of the most upregulated genes may include members 

without a concordant biological function. Finally, it may be hard to reproduce the results of 

relative changes of individual genes, since the gene microarrays possess a high 

background noise. GSEA overcomes these limitations by an unbiased functional 

classification that is based on the analysis of all gene expression changes [169,170,203].  

GSEA of S100A1 stimulated cardiac fibroblasts revealed an early and strong upregulation 

of inflammatory biological functions. Already after 1 hour, the chemokine activity was the 

most upregulated function, remaining the most notably increased biological activity at all 

subsequent time points. It is in line with the transcriptome analysis of cardiac fibroblasts 

upon the treatment with S100A8/9, which is another DAMP that is involved in 

cardiovascular pathologies [98]. There the most upregulated function has been reported 

to be chemokine activity [134]. Also other highly upregulated functions upon stimulation 

with S100A1 covered different aspects of inflammatory activity, such as response to tumor 

necrosis factor or neutrophil chemotaxis.  

Besides biological functions, GSEA categories include intracellular signaling pathways, 

which are predicted according to gene expression changes that are reported to be driven 

by the activation of particular signaling cascades. Stimulation with S100A1 led to 

enrichment of categories ERK1/2, NFκB and TLR4 signaling pathway. To TLR4 signaling 

pathway annotated genes with the highest relative expression changes after 24 hours 

were Tnip3, Lbp and Nfkbia. For I-kappaB kinase/NF-kappa B signaling the top three 

genes were ILβ, ILα and Tnfaip3, and for ERK1 and ERK2 cascade- Pla2g2a, CCL3 and 
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Chi3l1 [212]. Activation of these pathways agrees well with previous results about the 

signaling cascades, which are activated by the extracellular S100A1 [64,157,181].  

The downregulated GSEA categories comprised of genes that are responsible for 

cytoskeleton and stress fibers, as well as extracellular matrix formation. This finding 

emphasizes a new type of fibroblast activation that differs from the formation of 

myofibroblasts, which are characterized by an increased αSMA content and extensive 

collagen production [63,64,201]. This observation resembles the response to IL1α and 

cytokine ILβ, which have been reported to also decrease αSMA and collagen production 

[131,213]. In addition, the downregulated categories included also cholesterol biosynthetic 

activity and various mitosis related categories, such as spindle microtubule, condensed 

chromosome kinetochore and chromosome segregation. The suppression of mitotic 

components and cholesterol synthesis, which is a structural cell membrane component 

[214], might indicate an inhibited proliferative activity. At the same time the category 

positive cell proliferation was listed among the upregulated functions. In addition, previous 

studies have demonstrated no impact of extracellular S100A1 on the proliferation rate of 

cardiac fibroblasts [64,179,182].  

7.2 Changes of Cardiac Fibroblast Secretome upon Stimulation 

with S100A1 

The amount of proteins, which are determinants of the biological phenotype, mainly 

depends on the efficiency of translation, therefore the cellular response on mRNA level 

requires confirmation on protein level [215]. Since the most prominently changed biological 

categories from the transcriptome analysis implied production of secreted proteins, such 

as cytokines and collagens, extracellular proteins were of particular interest for this study. 

In order to further investigate the phenotype of S100A1-treated adult cardiac fibroblasts, 

their secretome was analyzed with mass spectrometry.  

Mass spectrometry allows a large-scale investigation of extracellular matrix protein 

secretion upon different stimuli, as well as evaluation of the composition and secretion rate 

of signaling molecules, that ensure the subsequent intercellular communication [216,217]. 

To date, this study provides the first analysis of the complete secretome of cardiac 

fibroblasts upon their exposure to a cardiovascular DAMP. 

7.2.1 Relative Changes in Amounts of Secreted Proteins 

The effect of S100A1 on cardiac fibroblasts was analyzed by calculating relative changes 

of individual proteins and grouping their ratios into clusters according to their biological 
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functions.  Relative changes of individual secreted proteins were evaluated by visualizing 

the p-value against relative ratio in a volcano plot.  

The visualization of the relative changes of individual secreted proteins upon the treatment 

with S100A1 in the volcano plot revealed a strong stimulatory and low suppressive effect. 

The majority of secreted proteins belonged to the upregulated proteins that possessed 

also the most notable relative changes.  

Conventionally, the volcano plot is also used to define the proteins, which are the most 

probable candidates for the cause of the biological effect of stimulation under investigation 

[218,219]. However, the determination of the biological effect via the investigation of 

functions of individual, highest ranked proteins faces several problems. For example, 

highest ranked proteins may have contradictive functions, small relative changes 

collectively may notably impact the biological function, and a small number of experiments 

is linked to reduced power of significance due to biological variance. 

To overcome the limitations of individual protein analysis, biological functions of the 

secretome from S100A1-treated fibroblasts were evaluated by grouping proteins into 

functional categories. Enrichment and significance of each category were calculated with 

1D annotation enrichment and Fisher’s exact test. 1D annotation enrichment employs all 

relative changes, independent of their numerical value. Fisher’s exact test uses relative 

changes above or below a certain threshold, thereby only assessing biological functions 

from the most notably changed proteins.  

1D annotation enrichment analysis revealed a strong activation of proteins with a 

chemokine activity, which was also reflected in the results from transcriptome analysis. 

The most downregulated categories were collagens and extracellular matrix part, however, 

with a mediocre median ratio of downregulation. Since upregulated proteins formed the 

major part of population, Fishers exact test was applied to the group of proteins with at 

least 4-fold increase. The first 15 most upregulated functions comprised various 

inflammatory related categories, from which the most upregulated ones again were 

chemokines and chemotaxis. These findings indicate that the stimulation of cardiac 

fibroblasts with S100A1 induces the chemoattractant function, while simultaneously 

suppressing myofibroblast-related activation. 

7.2.2 Absolute Changes in Amounts of Secreted Proteins 

While the investigation of relative protein changes is useful for the characterization of the 

secretome’s biological function, the relative ratios cannot predict the impact of the global 
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secreted protein profile. If, for example, the protein content in the control sample is close 

to zero, a prominent relative ratio can potentially be derived from a small absolute amount 

of protein in the stimulated sample. 

In order to investigate the impact of S100A1-elicited changes on the cardiac fibroblast 

secretome, proteins were evaluated according to their absolute amounts applying protein 

functional clustering by 1D annotation enrichment analysis. In the control samples, the 

most significantly enriched category was collagen. Upon stimulation with S100A1, the 

most significantly enriched category was chemoattractants, representing the category with 

the highest average absolute amount. In other words, S100A1-treated cardiac fibroblasts 

predominantly secrete chemoattractants, whereas the secretome from control cells is 

dominated by collagens, as assessed by absolute abundances of secreted proteins. This 

suggests that cardiac fibroblasts could execute the surveilling and alarming function in the 

initial inflammatory phase of myocardial infarction by sensing DAMPs and subsequently 

acquiring a pronounced chemoattractant phenotype. 

Since cardiac fibroblasts also produce collagenases MMP2 and MMP9 upon treatment 

with S100A1, it is not possible to specifically attribute the reduced amount of collagens to 

downregulated production or to increased degradation. For the detection with mass 

spectrometry, proteins are cleaved into peptides with trypsin. Identification of detected 

peptides using sequence databases is therefore performed based on a C-terminal tryptic 

cleavage at lysine and arginine residues [220]. If the protein is already extensively digested 

by another enzymes, mass spectrometry analysis might be misleading, because the 

cleavage products are not recognized by the database and, consequently, the level of 

detected collagens is artificially lower. Yet, the downregulation of collagen gene 

expression was also demonstrated on transcriptome level. Together these results indicate 

that reduced synthesis of collagens plays an important role in the decreased amount of 

collagens in the secretome from S100A1-treated cardiac fibroblasts.  

S100A1 triggers the conversion of cardiac fibroblasts into cells that secrete 

chemoattractants in high abundances. In order to extract the proteins, which determine 

the chemoattractant phenotype, they were ranked according to their absolute abundance 

and relative ratios in S100A1-stimulated sample. The highest ranked chemoattractants 

were CCL2, CXCL1 and CCL7, with CCL2 being the most prominently produced one. 

Moreover, in the complete secretome only biglycane was secreted more than CCL2. 

Hence, upon exposure to the S100A1, cardiac fibroblasts extensively secrete the highly 

potent chemoattractant CCL2 [221], which has previously been reported to be involved in 
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the healing cascade after myocardial infarction by attracting inflammatory cells [222] and 

protecting cardiomyocytes from hypoxia-induced injury [223]. 

7.2.3 Limitations of Secretome Analysis 

Secretome analysis enabled the elucidation of S100A1-targeted biological functions and 

highlighted specific proteins that define this phenotype. However, the detected protein 

profile represented accumulated proteins over 48 hours of treatment. Therefore, the 

detected biological functions and the underlying protein profile illustrated the sum of all 

secretory events during a 48 hour time frame, regardless of early or late manifestation.  

Since the secreted proteins are highly diluted in the cell culture supernatant, their 

successful detection by mass spectrometry requires the concentration of the media [224]. 

For this study, a centrifuge filtration device with a pore size of 3 kDa was used, which might 

have led to the loss of small proteins and bioactive peptides. Yet, chemokines, which are 

small cytokines with a molecular size of 8 to 10 kDa [202,221], were detected and 

calculated to be the most abundantly secreted portion of the secretome.  

7.3 Serum Impact on Secretome from Cardiac Fibroblasts 

Since the secretome analysis by mass spectrometry was performed without labeling 

during cell culturing, 0% FCS starvation was chosen in order to reduce the interference of 

serum proteins with the detection of secreted proteins [224]. However, alteration of the 

serum amount may affect the abundance of secreted proteins [186], therefore, secretomes 

from 0% and 0.5% FCS starved cardiac fibroblasts were compared. The highly abundant 

bovine serum albumin in the 0.5% FCS treated samples masked extracellular proteins of 

a comparable molecular weight, therefore this region was excluded from the further 

analysis of the 0.5% FCS group. Consequently, in samples with 0.5% FCS, the number of 

detected proteins was notably smaller, as compared to control samples. Yet, the absolute 

amount of each protein that was detected under both treatment conditions strongly 

correlated between the 0% and 0.5% FCS treated samples. Hence, no relevant impact of 

serum on the abundance of extracellular proteins was observed. 

In this study, transcriptome analysis was performed in the presence of 0.5% FCS, but 

secretome analysis with 0% FCS. Despite the differences in cell treatment, the correlation 

between the transcriptome and secretome was consistent with the previously described 

association between gene expression and protein production. The amount of produced 

protein depends on the efficiency of translation, where one mRNA can be translated into 

up to 1300 proteins per hour [172,215].  Still, the fold changes on transcriptome level are 
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clearly associated with the fold changes on protein level [196,198]. The transcription profile 

changes of S100A1-treated fibroblasts were highly correlated with secretion, however the 

extent of secretion changes was more prominent.  

7.4 Upregulation of CCL2 in Cardiac Fibroblasts upon Treatment 

with S100A1 

In the setting of myocardial infarction, the absence of CCL2 results in delayed infiltration 

of macrophages, defective efferocytosis of injured cardiomyocytes and reduced density of 

myofibroblasts, highlighting the importance of CCL2 in the resolution of tissue injury [208]. 

However, the initial cellular source of CCL2 and the triggering factors of its production after 

myocardial infarction are so far poorly understood.  S100A1 is rapidly released from 

damaged cardiomyocytes and immediately internalized by the neighboring cardiac 

fibroblasts [64,105], thus signaling cardiac injury. In this study, a mass spectrometry-based 

investigation of the secretome from S100A1-stimulated cardiac fibroblasts revealed CCL2 

as the most abundantly produced upregulated protein. A prominent increase of CCL2 in 

cardiac fibroblasts was also confirmed with qPCR on gene expression level and with 

ELISA on protein level. 

Previous studies have demonstrated that internalized S100A1 binds to TLR4 in cardiac 

fibroblasts [64]. TLR4 activation has been reported to be linked to increased CCL2 

production [206,225]. Therefore, the cascade of TLR4 signaling was investigated as a 

potential mechanism of S100A1-triggered upregulation of CCL2 in S100A1-treated cardiac 

fibroblasts. Both chemical inhibition and siRNA mediated knockdown of TLR4 in cardiac 

fibroblasts resulted in a complete abolishment of S100A1-mediated increase of CCL2 

expression. The downstream activation from TLR4 can be driven by two distinct adaptor 

proteins, MyD88 and TRIF [75]. Additional investigations are required in order to elucidate 

which of these signaling pathways are involved in the increased CCL2 production by 

cardiac fibroblasts upon stimulation with S100A1.  

The secretome analysis in this work has highlighted cardiac fibroblasts as a prominent 

source of CCL2 in response to S100A1, which is a cardiomyocyte derived DAMP, released 

upon myocardial infarction. For the investigation of the time frame, which is needed for the 

initiation of CCL2 secretion, ELISA technique was used. ELISA is less specific than mass 

spectrometry, but more sensitive [184,185]. Examination of gene expression and secreted 

protein amount revealed an early and prominent increase of CCL2 already after 4 hours 

with steady relative increase on gene expression levels and prominent accumulation in the 

supernatant on protein level over 48 hours of stimulation. Since the experiment was 
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performed in one biological replicate, further experiments are required for the statistical 

confirmation of the findings. 

Altogether, these results show that CCL2 is rapidly produced by cardiac fibroblast and 

secreted in high amounts upon S100A1 stimulation. Further studies are needed to clarify, 

whether this effect is restricted only to the exposure to S100A1 or if other DAMPs, which 

are released from cardiomyocytes after infarction, can trigger a similar early induction of 

CCL2 production in cardiac fibroblasts. 

7.5 S100A1-Targeted Upregulated Proteins in the Healing of 

Myocardial Infarction  

As has been shown in a previous study, the blockage of extracellular S100A1 after 

ischemia/reperfusion injury results in an increased infarct size and a reduced left 

ventricular ejection fraction [64]. It was hypothesized that the beneficial effect of 

extracellular S100A1 on healing cascade after cardiac injury might be conveyed through 

activated cardiac fibroblasts [64].  

During the current study cardiac fibroblasts have been identified as a potent source of 

chemoattractants upon stimulation with S100A1. The secreted protein profile suggests 

effect on various inflammatory cells. For example, CXCL1 and CXCL6 are classical 

neutrophil chemoattractants [226–228]. Additionally, CXCL1 participates also in the 

recruitment of monocytes by potentiating their arrest [229]. CXCL12 is a potent 

chemoattractant for lymphocytes and monocytes [230]. CCL2 and CCL7 are strong 

monocyte chemoattractants, which participate also in the recruitment of T lymphocytes 

[221,222,231,232].  Further studies should reveal how the influx of inflammatory cells is 

governed by S100A1-stimulated cardiac fibroblasts over the course of myocardial healing 

in vivo. 

Interestingly, these classical chemoattractants are reported to indirectly and directly 

potentiate angiogenesis. During wound healing angiogenesis require controlled 

extracellular matrix proteolysis that activates angiogenic growth factors and facilitates 

endothelial cell migration [233]. Chemoattractant-mediated influx of neutrophils, which 

further secrete proteolytic enzymes, enables initiation of neoangiogenesis [234]. 

Additionally, CXCL1 and CXCL6 induces endothelial cell chemotaxis in vitro and 

neovascularization of rat cornea in vivo [235].  CXCL12 chemoattracts hematopoietic stem 

cells [236]. CCL2 induces migration of endothelial cells and CCL7 stimulates chemotaxis 

of circulating angiogenic cells and angiogenesis in Matrigel plugs, implanted in mice 
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[237,238]. These findings suggest facilitation of restorative angiogenesis by S100A1-

induced proteins through promoting inflammatory and endothelial cell migration. 

Several upregulated proteins upon stimulation with S100A1 have been reported to be 

involved in the cardiomyocyte survival after ischemic injury. For example, pentraxin 3, 

CXCL12 and CCL2 have been shown to protect cardiomyocytes from ischemic injury 

[190,223,239], whereas Pla2g2a is known to mark ischemically damaged cardiomyocytes 

by binding to the flip-flopped components of the cell membrane and thereby facilitating 

their clearance [240]. These findings point out a potential indirect S100A1 involvement in 

the preservation of viable cardiomyocytes during the ischemia/reperfusion stress. 

To sum up, S100A1 mediates an intense activation of cardiac fibroblasts, triggering 

massive production and secretion of chemoattractants, which are reported to recruit 

various inflammatory and endothelial cells. This activation might accelerate resolution of 

the infarction by timely clearance of cellular debris and promoted angiogenesis. In addition, 

S100A1-stimulated cardiac fibroblasts secrete also cardiomyocyte-protecting proteins 

together with marker for terminally injured cells. Such composition might selectively 

preserve viable cardiomyocytes, while simultaneously potentiating clearance of lethally 

damaged cells. Further investigation should clarify whether these effects are responsible 

for the protective activity of extracellular S100A1 on the size of infarction and heart function 

after the ischemia/reperfusion injury in vivo. 
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8 Conclusion and Outlook 

Myocardial infarction elicits a strong inflammatory response that ensures the resolution of 

injured tissues and initiates subsequent replacement of the lost area with a durable scar. 

DAMPs are the principal signaling molecules, which evoke the inflammatory cascade, 

however, the underlying cellular mechanism of how inflammatory cells are alarmed and 

guided to the injury is largely unknown. This study elucidated the detailed effect of S100A1, 

which is a cardiomyocyte derived DAMP, on cardiac fibroblast secretory profile. A potential 

initial signaling mechanism for the attraction of inflammatory cells upon myocardial injury 

was discovered. 

Upon exposure to S100A1 cardiac fibroblasts acquire a pronounced inflammatory 

phenotype, characterized by expressed gene and secreted protein profile. Unlike the 

transformation into myofibroblasts, this type of fibroblast activation is a rapid process, 

which take effect already in the first hours of stimulation. Besides increased inflammatory 

protein secretion it is also characterized by decreased extracellular matrix production. 

Such activation pattern suggests the importance of fibroblasts not only in the phase of scar 

formation but also in the initiation of the inflammatory stage after the myocardial infarction. 

In the presence of extracellular S100A1 the most abundantly secreted upregulated 

proteins in cardiac fibroblasts are chemoattractants, and among them- CCL2, which is a 

crucial chemokine for the inflammatory monocyte recruitment.  

The findings from this work have raised several questions, which should be addressed in 

further studies: 

1) Do other cardiovascular DAMPs, which are released along with S100A1, elicit 

similar activation of an early inflammatory protein profile in cardiac fibroblasts? 

2) Is the inflammatory phenotype of cardiac fibroblasts reversible after the withdrawal 

of stimuli? 

3) Is the inflammatory phenotype the predominant early activation form of cardiac 

fibroblasts in the in vivo setting of myocardial infarction? 

4)  What is the contribution of cardiac fibroblasts to the initiation of inflammatory 

response upon myocardial infarction in vivo?  

Currently, scar formation is the best described function of cardiac fibroblast upon 

myocardial infarction, where fibroblasts transform into secretory active myofibroblasts. 

This study demonstrates an early and strong transformation of cardiac fibroblasts into 

chemoattractant phenotype upon exposure to S100A1, which is released from injured 

cardiomyocytes. Accordingly, it provides the first evidence that the initial function of cardiac 
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fibroblasts upon myocardial infarction might be sensing the tissue injury and triggering the 

influx of debris-resolving inflammatory cells. 

 

 



  References 

75 
  

9 References 

[1] Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third 

universal definition of myocardial infarction. Eur Heart J 2012;33:2551–67.  

[2] Steg PG, James SK, Atar D, Badano LP, Lundqvist CB, Borger MA, et al. ESC 

Guidelines for the management of acute myocardial infarction in patients presenting 

with ST-segment elevation. Eur Heart J 2012;33:2569–619.  

[3] Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC 

Guidelines for the management of acute coronary syndromes in patients presenting 

without persistent ST-segment elevation. Eur Heart J 2016;37:267–315.  

[4] Montecucco F, Carbone F, Schindler TH. Pathophysiology of ST-segment elevation 

myocardial infarction: novel mechanisms and treatments. Eur Heart J 

2016;37:1268–83.  

[5] Giannitsis E, Katus HA. Cardiac troponin level elevations not related to acute 

coronary syndromes. Nat Rev Cardiol 2013;10:1–12.  

[6] Javed U, Aftab W, Ambrose JA, Wessel RJ, Mouanoutoua M, Huang G, et al. 

Frequency of Elevated Troponin I and Diagnosis of Acute Myocardial Infarction. Am 

J Cardiol 2009;104:9–13.  

[7] Mendis S, Puska P, Norrving B editors. Global atlas on cardiovascular disease 

prevention and control. World Health Organisation, Geneva; 2011. 

[8] Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart 

Disease and Stroke Statistics—2016 Update: A Report From the American Heart 

Association. Circulation 2016;133:38–360.  

[9] Kober L. Heart failure in 2015: Better results from prevention than from additional 

treatment. Nat Rev Cardiol 2016;13:75–7.  

[10] Frangogiannis NG. The inflammatory response in myocardial injury, repair, and 

remodelling. Nat Rev Cardiol 2014;11:255–65.  

[11] Larsen AI, Galbraith PD, Ghali WA, Norris CM, Graham MM, Knudtson ML. 

Characteristics and outcomes of patients with acute myocardial infarction and 

angiographically normal coronary arteries. Am J Cardiol 2005;95:261–3.  

 



References 

76 
 

[12] Braunwald E. Shattuck lecture–cardiovascular medicine at the turn of the 

millennium: triumphs, concerns, and opportunities. N Engl J Med 1997;337:1360–

1369. 

[13] Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart 

Disease and Stroke Statistics - 2014 Update: A report from the American Heart 

Association. Circulation 2014;129:28–292.  

[14] Hellermann JP, Goraya TY, Jacobsen SJ, Weston SA, Reeder GS, Gersh BJ, et al. 

Incidence of heart failure after myocardial infarction: Is it changing over time? Am J 

Epidemiol 2003;157:1101–7.  

[15] Garcia-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M, Inserte J. Protection 

against myocardial ischemia-reperfusion injury in clinical practice. Rev Esp Cardiol 

(Engl Ed) 2014;67:394–404.  

[16] Liehn EA, Postea O, Curaj A, Marx N. Repair after myocardial infarction, between 

fantasy and reality: The role of chemokines. J Am Coll Cardiol 2011;58:2357–62.  

[17] Blankesteijn WM, Creemers E, Lutgens E, Cleutjens JPM, Daemen MJAP, Smits 

JFM. Dynamics of cardiac wound healing following myocardial infarction: 

Observations in genetically altered mice. Acta Physiol Scand 2001;173:75–82.  

[18] Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as 

a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 2013;14:529–

41.  

[19] Reimer K a, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon 

of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion 

in dogs. Circulation 1977;56:786–94.  

[20] Ghigo A, Franco I, Morello F, Hirsch E. Myocyte signalling in leucocyte recruitment 

to the heart. Cardiovasc Res 2014;102:270–80.  

[21] Hu J, Van den Steen PE, Sang Q-X a, Opdenakker G. Matrix metalloproteinase 

inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 

2007;6:480–98. 

[22] Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from 

mechanism to therapy. Nat Med 2014;20:857–69.  

 



  References 

77 
  

[23] Vandervelde S, Van Amerongen MJ, Tio RA, Petersen AH, Van Luyn MJA, 

Harmsen MC. Increased inflammatory response and neovascularization in 

reperfused vs. nonreperfused murine myocardial infarction. Cardiovasc Pathol 

2006;15:83–90.  

[24] Knorr M, Münzel T, Wenzel P. Interplay of NK cells and monocytes in vascular 

inflammation and myocardial infarction. Front Physiol 2014;5:295.  

[25] Dutta P, Nahrendorf M. Monocytes in myocardial infarction. Arterioscler Thromb 

Vasc Biol 2015;35:1066–70.  

[26] Nahrendorf M, Swirski FK. Monocyte and macrophage heterogeneity in the heart. 

Circ Res 2013;112:1624–33.  

[27] Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, et al. Endoscopic time-

lapse imaging of immune cells in infarcted mouse hearts. Circ Res 2013;112:891–

9.  

[28] Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo J-L, 

et al. The healing myocardium sequentially mobilizes two monocyte subsets with 

divergent and complementary functions. J Exp Med 2007;204:3037–47.  

[29] Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling 

following myocardial infarction. Fibrogenesis Tissue Repair 2013;6:11.  

[30] Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y. Reactive oxygen species promote 

angiogenesis in the infarcted rat heart. Int J Exp Pathol 2009;90:621–9.  

[31] Liu XH, Pan LL, Deng HY, Xiong QH, Wu D, Huang GY, et al. Leonurine (SCM-198) 

attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4. Free 

Radic Biol Med 2013;54:93–104.  

[32] Territo MC, Ganz T, Selsted ME, Lehrer R. Monocyte-chemotactic activity of 

defensins from human neutrophils. J Clin Invest 1989;84:2017–20.  

[33] Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic 

cells by human macrophages requires M2c polarization and MerTK induction. J 

Immunol 2012;189:3508–20.  

[34] Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, et al. 

Neutrophils orchestrate post-myocardial infarction healing by polarizing 

macrophages towards a reparative phenotype. Eur Heart J 2016:ehw002.  



References 

78 
 

[35] Rydell-Törmänen K, Uller L, Erjefält JS. Neutrophil cannibalism--a back up when 

the macrophage clearance system is insufficient. Respir Res 2006;7:143.  

[36] Nathan C. Points of control in inflammation. Nature 2002;420:846–52.  

[37] Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ 

Res 2012;110:159–73.  

[38] Lech M, Anders HJ. Macrophages and fibrosis: How resident and infiltrating 

mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim 

Biophys Acta 2013;1832:989–97.  

[39] Libby P, Maroko PR, Bloor CM, Sobel BE, Braunwald E. Reduction of Experimental 

Myocardial Infarct Size by Corticosteroid Administration. J Clin Invest 1973;52:599–

607. 

[40] Hammerman H, Kloner R a., Hale S, Schoen FJ, Braunwald E. Dose-dependent 

effects of short-term methylprednisolone on myocardial infarct extent, scar 

formation, and ventricular function. Circulation 1983;68:446–52.  

[41] Seropian IM, Toldo S, Van Tassell BW, Abbate A. Anti-inflammatory strategies for 

ventricular remodeling following St-segment elevation acute myocardial infarction. 

J Am Coll Cardiol 2014;63:1593–603.  

[42] Giugliano GR, Giugliano RP, Gibson CM, Kuntz RE. Meta-analysis of corticosteroid 

treatment in acute myocardial infarction. Am J Cardiol 2003;91:1055–9.  

[43] Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC. Salvage of Ischemic Myocardium 

by Ibuprofen Durin Infarction in the Conscious Dog. Am J Cardiol 1980;46:74–82. 

[44] Brown EJ, Kloner RA, Schoen FJ, Hammerman H, Hale S, Braunwald E. Scar 

thinning due to ibuprofen administration after experimental myocardial infarction. 

Am J Cardiol 1983;51:877–83.  

[45] Pfeffer MA, Braunwald E. Ventricular Remodeling After Myocardial Infarction 

Experimental Observations and Clinical Implications. Circulation 1989;81:1161–72. 

[46] Silverman HS, Pfeifer MP. Relation between use of antiinflammatory agents and 

left ventricular free wall rupture during acute myocardial infarction. Am J Cardiol 

1987;59:363–4.  

 



  References 

79 
  

[47] Dobaczewski M, Bujak M, Zymek P, Ren G, Entman ML, Frangogiannis NG. 

Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell 

Tissue Res 2006;324:475–88.  

[48] Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown R a. Myofibroblasts and 

mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 

2002;3:349–63.  

[49] Czubryt MP. Common threads in cardiac fibrosis, infarct scar formation, and wound 

healing. Fibrogenes Tissue Repair 2012;5:19.  

[50] Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular matrix 

as a modulator of the inflammatory and reparative response following myocardial 

infarction. J Mol Cell Cardiol 2010;48:504–11.  

[51] Bogatyryov Y, Kelly M, Christensen LP, Tomanek RJ, Dedkov EI. Structural 

Composition of Myocardial Infarction Scar Does Not Differ Between Male and 

Female Middle-Aged Rats. FASEB J 2012;26.  

[52] Szaraz P, Lucato A, Li SH, Wu J, Gauthier-Fisher A, Li R-K, et al. Local Injection of 

First Trimester Human Umbilical Cord Perivascular Cells (FTM-HUCPVCs) After 

Myocardial Infarction Increases Extracellular Matrix Processing Activity, Vascular 

Density and Blood Vessel Size Within the Infarct Scar. Circulation 

2015;132:A19359. 

[53] Ma Y, Yabluchanskiy A, Iyer RP, Cannon PL, Flynn ER, Jung M, et al. Temporal 

neutrophil polarization following myocardial infarction. Cardiovasc Res 

2016;110:51–61. 

[54] Weber KT, Sun Y, Bhattacharya SK, Ahokas R a, Gerling IC. Myofibroblast-

mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 

2013;10:15–26.  

[55] Saxena A, Russo I, Frangogiannis NG. Inflammation as a therapeutic target in 

myocardial infarction: Learning from past failures to meet future challenges. Transl 

Res 2016;167:152–66.  

[56] Mallory GK, White PD, Salcedo-Salgar J. The Speed of Healing of Myocardial 

Infarcts. A study of the pathologic anatomy in seventy-two cases. Am Heart J 

1936;18:647–671.  



References 

80 
 

[57] Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 

1994;12:991–1045. 

[58] Matzinger P. The danger model: a renewed sense of self. Science  2002;296:301–

5.  

[59] Seong S-Y, Matzinger P. Hydrophobicity: an ancient damage-associated molecular 

pattern that initiates innate immune responses. Nat Rev Immunol 2004;4:469–78.  

[60] Oppenheim JJ, Yang D. Alarmins: Chemotactic activators of immune responses. 

Curr Opin Immunol 2005;17:359–65.  

[61] Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J 

Leukoc Biol 2007;81:1–5.  

[62] Kaczmarek A, Vandenabeele P, Krysko D V. Necroptosis: The Release of Damage-

Associated Molecular Patterns and Its Physiological Relevance. Immunity 

2013;38:209–23.  

[63] Zhang W, Lavine KJ, Epelman S, Evans SA, Weinheimer CJ, Barger PM, et al. 

Necrotic myocardial cells release damage-associated molecular patterns that 

provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis 

in vivo. J Am Heart Assoc 2015;4:e001993.  

[64] Rohde D, Schön C, Boerries M, Didrihsone I, Ritterhoff J, Kubatzky KF, et al. 

S100A1 is released from ischemic cardiomyocytes and signals myocardial damage 

via Toll-like receptor 4. EMBO Mol Med 2014;6:778–94.  

[65] Vogl T, Eisenblatter M, Voller T, Zenker S, Hermann S, van Lent P, et al. Alarmin 

S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity. 

Nat Commun 2014;5:4593.  

[66] Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C. Danger- and 

pathogen-associated molecular patterns recognition by pattern-recognition 

receptors and ion channels of the transient receptor potential family triggers the 

inflammasome activation in immune cells and sensory neurons. J 

Neuroinflammation 2015;12:21.  

[67] Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation. Cell 

2010;140:805–20.  

 



  References 

81 
  

[68] Christ A, Temmerman L, Legein B, Daemen MJAP, Biessen EAL. Dendritic cells in 

cardiovascular diseases epiphenomenon, contributor, or therapeutic opportunity. 

Circulation 2013;128:2603–13.  

[69] Marchant DJ, Boyd JH, Lin DC, Granville DJ, Garmaroudi FS, McManus BM. 

Inflammation in myocardial diseases. Circ Res 2012;110:126–44.  

[70] Michelsen KS, Doherty TM, Shah PK, Arditi M. TLR signaling: an emerging bridge 

from innate immunity to atherogenesis. J Immunol 2004;173:5901–7.  

[71] Mann DL. Innate immunity and the failing heart: The cytokine hypothesis revisited. 

Circ Res 2015;116:1254–68.  

[72] Ishimura MN, Aito SN, Nishimura M, Naito S. Tissue-specific mRNA expression 

profiles of human toll-like receptors and related genes. Biol Pharm Bull 

2005;28:886–92. 

[73] Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW. Endosomes: a 

legitimate platform for the signaling train. Proc Natl Acad Sci U S A 

2009;106:17615–22.  

[74] Kumagai Y, Akira S. Identification and functions of pattern-recognition receptors. J 

Allergy Clin Immunol 2010;125:985–92.  

[75] Chao W. Toll-like receptor signaling: a critical modulator of cell survival and 

ischemic injury in the heart. Am J Physiol Heart Circ Physiol 2009;296:H1–12.  

[76] Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: 

update on Toll-like receptors. Nat Immunol 2010;11:373–84.  

[77] Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples 

endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 

2008;9:361–8.  

[78] Gangloff M. Different dimerisation mode for TLR4 upon endosomal acidification? 

Trends Biochem Sci 2012;37:92–8.  

[79] Bhattacharyya S, Kelley K, Melichian DS, Tamaki Z, Fang F, Su Y, et al. Toll-like 

receptor 4 signaling augments transforming growth factor-β responses: a novel 

mechanism for maintaining and amplifying fibrosis in scleroderma. Am J Pathol 

2013;182:192–205.  



References 

82 
 

[80] Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner D a, et al. TLR4 

enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007;13:1324–32.  

[81] Zacharowski K, Otto M, Hafner G, Chatterjee PK, Thiemermann C. Endotoxin 

Induces a Second Window of Protection in the Rat Heart as Determined by Using 

p-Nitro-Blue Tetrazolium Staining, Cardiac Troponin T Release, and Histology. 

Arterioscler Thromb Vasc Biol 1999;19:2276–80. 

[82] Meng X, Ao L, Brown JM, Meldrum DR, Sheridan BC, Cain BS, et al. LPS induces 

late cardiac functional protection against ischemia independent of cardiac and 

circulating TNF-alpha. Am J Physiol 1997;273:H1894-902. 

[83] Timmers L, Sluijter JPG, Van Keulen JK, Hoefer IE, Nederhoff MGJ, Goumans MJ, 

et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and 

impairs cardiac function after myocardial infarction. Circ Res 2008;102:257–64.  

[84] Chong AJ, Shimamoto A, Hampton CR, Takayama H, Spring DJ, Rothnie CL, et al. 

Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac 

Cardiovasc Surg 2004;128:170–9.  

[85] Kim S-C, Ghanem A, Stapel H, Tiemann K, Knuefermann P, Hoeft A, et al. Toll-like 

receptor 4 deficiency: Smaller infarcts, but nogain in function. BMC Physiol 

2007;7:5.  

[86] Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J. Inhibition of 

interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, 

short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 2003;197:263–

8.  

[87] O’Neill L a J, Golenbock D, Bowie AG. The history of Toll-like receptors - redefining 

innate immunity. Nat Rev Immunol 2013;13:453–60.  

[88] Warner N, Nunez G. MyD88: A Critical Adaptor Protein in Innate Immunity Signal 

Transduction. J Immunol 2013;190:3–4.  

[89] Feng Y, Zhao H, Xu X, Buys ES, Raher MJ, Bopassa JC, et al. Innate immune 

adaptor MyD88 mediates neutrophil recruitment and myocardial injury after 

ischemia-reperfusion in mice. Am J Physiol Heart Circ Physiol 2008;295:H1311–8.  

 

 



  References 

83 
  

[90] Feng Y, Zou L, Si R, Nagasaka Y, Chao W. Bone marrow MyD88 signaling 

modulates neutrophil function and ischemic myocardial injury. Am J Physiol Cell 

Physiol 2010;299:C760-9.  

[91] Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol 

2015;5:1841–75.  

[92] De Haan JJ, Smeets MB, Pasterkamp G, Arslan F. Danger signals in the initiation 

of the inflammatory response after myocardial infarction. Mediators Inflamm 

2013;2013:206039.  

[93] Su Z, Zhang P, Yu Y, Lu H, Liu Y, Ni P, et al. HMGB1 Facilitated Macrophage 

Reprogramming towards a Proinflammatory M1-like Phenotype in Experimental 

Autoimmune Myocarditis Development. Sci Rep 2016;6:21884.  

[94] Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim J, Strassheim D, et al. 

High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J 

Physiol Cell Physiol 2006;290:917–24.  

[95] Hirata Y, Kurobe H, Higashida M, Fukuda D, Shimabukuro M, Tanaka K, et al. 

HMGB1 plays a critical role in vascular inflammation and lesion formation via toll-

like receptor 9. Atherosclerosis 2013;231:227–33.  

[96] Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, et al. High-

mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 

2008;117:3216–26.  

[97] Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen M a D, et al. Mrp8 

and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, 

endotoxin-induced shock. Nat Med 2007;13:1042–9.  

[98] Averill MM, Kerkhoff C, Bornfeldt KE. S100A8 and S100A9 in cardiovascular biology 

and disease. Arterioscler Thromb Vasc Biol 2012;32:223–9.  

[99] Liu L, Yang M, Kang R, Dai Y, Yu Y, Gao F, et al. HMGB1-DNA complex-induced 

autophagy limits AIM2 inflammasome activation through RAGE. Biochem Biophys 

Res Commun 2014;450:851–6.  

[100] Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic 

cells triggers inflammation. Nature 2002;418:191–5. 

 



References 

84 
 

[101] Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 

as a late mediator of endotoxin lethality in mice. Science  1999;285:248–51.  

[102] Gardella S, Andrei C, Ferrera D, Lotti L V., Torrisi MR, Bianchi ME, et al. The nuclear 

protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated 

secretory pathway. EMBO Rep 2002;3:995–1001.  

[103] Yang H, Lundback P. Redox modification of cysteine residues regulates the 

cytokine activity of high mobility group box-1 (HMGB1). Mol Med 2012;18:1.  

[104] Kitahara T, Takeishi Y, Harada M, Niizeki T, Suzuki S, Sasaki T, et al. High-mobility 

group box 1 restores cardiac function after myocardial infarction in transgenic mice. 

Cardiovasc Res 2008;80:40–6.  

[105] Bi H, Yang Y, Huang J, Li Y, Ma C, Cong B. Immunohistochemical detection of 

S100A1 in the postmortem diagnosis of acute myocardial infarction. Diagn Pathol 

2013;8:84.  

[106] Dostal D, Glaser S, Baudino TA. Cardiac fibroblast physiology and pathology. 

Compr Physiol 2015;5:887–909.  

[107] Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac 

fibroblasts. Cardiovasc Res 2005;65:40–51.  

[108] Chang HY, Chi J-TJ, Dudoit S, Bondre C, van de Rijn M, Botstein D, et al. Diversity, 

topographic differentiation, and positional memory in human fibroblasts. Proc Natl 

Acad Sci U S A 2002;99:12877–82.  

[109] Souders CA, Bowers SLK, Baudino TA. Cardiac fibroblast: the renaissance cell. 

Circ Res 2009;105:1164–76.  

[110] Chen W, Frangogiannis NG. Fibroblasts in post-infarction inflammation and cardiac 

repair. Biochim Biophys Acta 2013;1833:945–53.  

[111] Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni M, Debuque RJ, et al. 

Revisiting Cardiac Cellular Composition. Circ Res 2016;118:400–9.  

[112] Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA. Determination of cell types 

and numbers during cardiac development in the neonatal and adult rat and mouse. 

Am J Physiol Heart Circ Physiol 2007;293:1883–91.  

 



  References 

85 
  

[113] LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. Laminar structure 

of the heart: ventricular myocyte arrangement and connective tissue architecture in 

the dog. Am J Physiol 1995;269:H571-82. 

[114] Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast Network in Rabbit Sinoatrial 

Node: Structural and Functional Identification of Homogeneous and Heterogeneous 

Cell Coupling. Circ Res 2004;94:828–35.  

[115] Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The living scar – cardiac 

fibroblasts and the injured heart. Trends Mol Med 2016;22:99–114.  

[116] Kohl P, Gourdie RG. Fibroblast-myocyte electrotonic coupling: Does it occur in 

native cardiac tissue? J Mol Cell Cardiol 2014;70:37–46.  

[117] Baum J, Duffy HS. Fibroblasts and myofibroblasts: what are we talking about? J 

Cardiovasc Pharmacol 2011;57:376–9. 

[118] Zhang X, Azhar G, Nagano K, Wei JY. Differential vulnerability to oxidative stress 

in rat cardiac myocytes versus fibroblasts. J Am Coll Cardiol 2001;38:2055–62.  

[119] Ma Y, De Castro Brás LE, Toba H, Iyer RP, Hall ME, Winniford MD, et al. 

Myofibroblasts and the extracellular matrix network in post-myocardial infarction 

cardiac remodeling. Pflugers Arch Eur J Physiol 2014;466:1113–27.  

[120] van den Borne SWM, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J. 

Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 

2010;7:30–7.  

[121] Swaney JS, Roth DM, Olson ER, Naugle JE, Meszaros JG, Insel PA. Inhibition of 

cardiac myofibroblast formation and collagen synthesis by activation and 

overexpression of adenylyl cyclase. Proc Natl Acad Sci U S A 2005;102:437–42.  

[122] Driesen RB, Nagaraju CK, Abi-Char J, Coenen T, Lijnen PJ, Fagard RH, et al. 

Reversible and irreversible differentiation of cardiac fibroblasts. Cardiovasc Res 

2014;101:411–22. 

[123] Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol 

2000;15:264–72.  

[124] Petrov V V, Fagard RH, Lijnen PJ. Stimulation of collagen production by 

transforming growth factor-beta1 during differentiation of cardiac fibroblasts to 

myofibroblasts. Hypertension 2002;39:258–63.  



References 

86 
 

[125] Shephard P, Martin G, Smola-Hess S, Brunner G, Krieg T, Smola H. Myofibroblast 

differentiation is induced in keratinocyte-fibroblast co-cultures and is 

antagonistically regulated by endogenous transforming growth factor-beta and 

interleukin-1. Am J Pathol 2004;164:2055–66.  

[126] Frangogiannis NG. Interleukin-1 in cardiac injury, repair, and remodeling: 

pathophysiologic and translational concepts. Discov 2015;3:1–14.  

[127] Brønnum H, Eskildsen T, Andersen DC, Schneider M, Sheikh SP. IL-1β suppresses 

TGF-β-mediated myofibroblast differentiation in cardiac fibroblasts. Growth Factors 

2013;31:81–9.  

[128] Saxena A, Chen W, Su Y, Rai V, Uche OU, Li N, et al. IL-1 induces proinflammatory 

leukocyte infiltration and regulates fibroblast phenotype in the infarcted 

myocardium. J Immunol 2013;191:4838–48.  

[129] Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After 

Myocardial Infarction. Circ Res 2016;119:91–112.  

[130] Turner NA, Das A, O’Regan DJ, Ball SG, Porter KE. Human cardiac fibroblasts 

express ICAM-1, E-selectin and CXC chemokines in response to proinflammatory 

cytokine stimulation. Int J Biochem Cell Biol 2011;43:1450–8.  

[131] van Nieuwenhoven FA, Hemmings KE, Porter KE, Turner NA. Combined effects of 

interleukin-1α and transforming growth factor-β1 on modulation of human cardiac 

fibroblast function. Matrix Biol 2013;32:399–406.  

[132] Rossini A, Zacheo A, Mocini D, Totta P, Facchiano A, Castoldi R, et al. HMGB1-

stimulated human primary cardiac fibroblasts exert a paracrine action on human 

and murine cardiac stem cells. J Mol Cell Cardiol 2008;44:683–93.  

[133] Schiopu A, Cotoi OS. S100A8 and S100A9: DAMPs at the crossroads between 

innate immunity, traditional risk factors, and cardiovascular disease. Mediators 

Inflamm 2013;2013:828354.  

[134] Wu Y, Li Y, Zhang C, Xi A, Wang Y, Cui W, et al. S100a8/a9 released by 

CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-

induced cardiac inflammation and injury. Hypertension 2014;63:1241–50.  

[135] Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 

2003;60:540–51.  



  References 

87 
  

[136] Zimmer DB, Wright Sadosky P, Weber DJ. Molecular mechanisms of S100-target 

protein interactions. Microsc Res Tech 2003;60:552–9.  

[137] Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: From 

evolution to function and pathology (including an update of the nomenclature). 

Biochem Biophys Res Commun 2004;322:1111–22.  

[138] Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer 

2015;15:96–109.  

[139] Goch G, Vdovenko S, Kozłsowska H, Bierzyñski A. Affinity of S100A1 protein for 

calcium increases dramatically upon glutathionylation. FEBS J 2005;272:2557–65.  

[140] Cannon BR, Zimmer DB, Weber DJ. S100A1 (S100 calcium binding protein A1). 

Atlas Genet Cytogenet Oncol Haematol 2011;15:873–6.  

[141] Kato K, Kimura S. S100ao (alpha alpha) protein is mainly located in the heart and 

striated muscles. Biochim Biophys Acta 1985;842:146–50.  

[142] Rohde D, Ritterhoff J, Voelkers M, Katus H a, Parker TG, Most P. S100A1: a 

multifaceted therapeutic target in cardiovascular disease. J Cardiovasc Transl Res 

2010;3:525–37.  

[143] Ehlermann P, Remppis  a, Guddat O, Weimann J, Schnabel P a, Motsch J, et al. 

Right ventricular upregulation of the Ca(2+) binding protein S100A1 in chronic 

pulmonary hypertension. Biochim Biophys Acta 2000;1500:249–55. 

[144] Ritterhoff J, Most P. Targeting S100A1 in heart failure. Gene Ther 2012;19:613–21.  

[145] Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Börries M, et al. S100A1: 

a regulator of myocardial contractility. Proc Natl Acad Sci U S A 2001;98:13889–

94.  

[146] Völkers M, Loughrey CM, MacQuaide N, Remppis A, DeGeorge BR, Wegner F v., 

et al. S100A1 decreases calcium spark frequency and alters their spatial 

characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium 

2007;41:135–43.  

[147] Ritterhoff J, Völkers M, Seitz A, Spaich K, Gao E, Peppel K, et al. S100A1 DNA-

based Inotropic Therapy Protects Against Proarrhythmogenic Ryanodine Receptor 

2 Dysfunction. Mol Ther 2015;23:1320–30.  



References 

88 
 

[148] Boerries M, Most P, Gledhill JR, Walker JE, Katus H a, Koch WJ, et al. Ca2+ -

dependent interaction of S100A1 with F1-ATPase leads to an increased ATP 

content in cardiomyocytes. Mol Cell Biol 2007;27:4365–73.  

[149] Fukushima H, Chung CS, Granzier H. Titin-isoform dependence of titin-actin 

interaction and its regulation by S100A1/ Ca2+ in skinned myocardium. J Biomed 

Biotechnol 2010;2010:727239.  

[150] Wright NT, Cannon BR, Zimmer DB, Weber DJ. S100A1: Structure, Function and 

Therapeutical Potential. Curr Chem Biol 2009;3:138–45.  

[151] Teichert-Kuliszewska K, Tsoporis JN, Desjardins JF, Yin J, Wang L, Kuebler WM, 

et al. Absence of the calcium-binding protein, S100A1, confers pulmonary 

hypertension in mice associated with endothelial dysfunction and apoptosis. 

Cardiovasc Res 2015;105:8–19. 

[152] Rohde D, Busch M, Volkert A, Ritterhoff J, Katus HA. Cardiomyocytes , endothelial 

cells and cardiac fibroblasts : S100A1’s triple action in cardiovascular 

pathophysiology. Future Cardiol 2015;11:309–21. 

[153] O’Dowd BS, Zhao WQ, Ng KT, Robinson SR. Chicks injected with antisera to either 

S-100 alpha or S-100 beta protein develop amnesia for a passive avoidance task. 

Neurobiol Learn Mem 1997;67:197–206.  

[154] Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. 

Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins 

through receptor for advanced glycation end products (RAGE) activation. J Biol 

Chem 2000;275:40096–105.  

[155] Mariggió MA, Fulle S, Calissano P, Nicoletti I, Fanó G. The brain protein S-100ab 

induces apoptosis in PC12 cells. Neuroscience 1994;60:29–35. 

[156] Fulle S, Mariggió MA, Belia S, Petrelli C, Ballarini P, Guarnieri S, et al. Rapid 

desensitization of PC12 cells stimulated with high concentrations of extracellular 

S100. Neuroscience 1999;89:991–7.  

[157] Most P, Boerries M, Eicher C, Schweda C, Ehlermann P, Pleger ST, et al. 

Extracellular S100A1 Protein Inhibits Apoptosis in Ventricular Cardiomyocytes via 

Activation of the Extracellular Signal-regulated Protein Kinase 1/2 (ERK1/2). J Biol 

Chem 2003;278:48404–12.  



  References 

89 
  

[158] Usui A, Kato K, Sasa H, Minaguchi K, Abe T, Murase M, et al. S-100ao protein in 

serum during acute myocardial infarction. Clin Chem 1990;36:639–41. 

[159] Kiewitz R, Acklin C, Minder E, Huber PR, Schafer BW, Heizmann CW. S100A1, a 

new marker for acute myocardial ischemia. Biochem Biophys Res Commun 

2000;274:865–71.  

[160] Murray PJ. The primary mechanism of the IL-10-regulated antiinflammatory 

response is to selectively inhibit transcription. Proc Natl Acad Sci U S A 

2005;102:8686–91.  

[161] Daniel C, Vogelbacher R, Stief A, Grigo C, Hugo C. Long-term gene therapy with 

thrombospondin 2 inhibits TGF-beta activation, inflammation and angiogenesis in 

chronic allograft nephropathy. PLoS One 2013;8:e83846.  

[162] Zinovkin RA, Romaschenko VP, Galkin II, Zakharova V V., Pletjushkina OY, 

Chernyak B V., et al. Role of mitochondrial reactive oxygen species in age-related 

inflammatory activation of endothelium. Aging (Albany NY) 2014;6:661–74. 

[163] Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer 

Res 2010;16:2927–31.  

[164] Bradley JR. TNF-mediated inflammatory disease. J Pathol 2008;214:149–60.  

[165] Ehlermann P, Remppis A, Most P, Bernotat J, Heizmann CW, Katus HA. Purification 

of the Ca2+-binding protein S100A1 from myocardium and recombinant Escherichia 

coli. J Chromatogr B 2000;737:39–45.  

[166] Xu X, Colecraft HM. Primary culture of adult rat heart myocytes. J Vis Exp 

2009;June 16.  

[167] http://www.elisaanalysis.com/app. 

[168] Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT 

method. Nat Protoc 2008;3:1101–8.  

[169] Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. 

PGC-1alpha-responsive genes involved in oxidative phosphorylation are 

coordinately downregulated in human diabetes. Nat Genet 2003;34:267–73.  

 

 



References 

90 
 

[170] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette M a, et al. 

Gene set enrichment analysis: a knowledge-based approach for interpreting 

genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545–50.  

[171] http://www.uniprot.org/. 

[172] Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global 

quantification of mammalian gene expression control. Nature 2011;473:337–42.  

[173] Hulsen T, de Vlieg J, Alkema W. BioVenn - a web application for the comparison 

and visualization of biological lists using area-proportional Venn diagrams. BMC 

Genomics 2008;9:488.  

[174] Altman N, Krzywinski M. Points of Significance: Association, correlation and 

causation. Nat Methods 2015;12:899–900.  

[175] Cox J, Mann M. 1D and 2D annotation enrichment: a statistical method integrating 

quantitative proteomics with complementary high-throughput data. BMC 

Bioinformatics 2012;13:S12.  

[176] Jacquet S, Yin X, Sicard P, Clark J, Kanaganayagam GS, Mayr M, et al. 

Identification of cardiac myosin-binding protein C as a candidate biomarker of 

myocardial infarction by proteomics analysis. Mol Cell Proteomics 2009;8:2687–99.  

[177] Cordwell SJ, Edwards AVG, Liddy KA, Moshkanbaryans L, Solis N, Parker BL, et 

al. Release of tissue-specific proteins into coronary perfusate as a model for 

biomarker discovery in myocardial ischemia/reperfusion injury. J Proteome Res 

2012;11:2114–26.  

[178] Thorp EB. Contrasting inflammation resolution during atherosclerosis and post 

myocardial infarction at the level of monocyte/macrophage phagocytic clearance. 

Front Immunol 2012;3:1–8.  

[179] Rohde D. Extrazelluläres S100A1 : ein neuer Regulator der Funktion kardialer 

Fibroblasten nach Myokardinfarkt. MD thesis, Heidelberg University, Germany, 

2011. 

[180]  http://software.broadinstitute.org/gsea/doc/GSEAUserGuideTEXT.htm. 

[181] Yu J, Lu Y, Li Y, Xiao L, Xing Y, Li Y, et al. Role of S100A1 in hypoxia-induced 

inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway. J Pharm 

Pharmacol 2015:1240–50.  



  References 

91 
  

[182] Börries M. Extrazelluläre Effekte des Ca2+-bindenden Proteins S100A1: 

Grundlegende Experimente zur Morphologie und Funktion neonataler 

Kardiomyozyten in Abhängigkeit der Kulturbedingungen. MD thesis, University of 

Lübeck, Germany, 2003. 

[183] O’Connor C, Adams JU. Proteins Are Responsible for a Diverse Range of Structural 

and Catalytic Functions in Cells. Essentials Cell Biol., Cambridge, MA: NPG 

Education; 2010. 

[184] Brown KJ, Formolo C a, Seol H, Marathi RL, An E, Pillai D, et al. Advances in the 

proteomic investigation of the cell secretome. Expert Rev Proteomics 2012;9:337–

45.  

[185] Pan S, Aebersold R, Chen R. Mass spectrometry based targeted protein 

quantification: methods and applications. J Proteome Researh 2008;8:787–97.  

[186] Eichelbaum K, Winter M, Diaz MB, Herzig S, Krijgsveld J. Selective enrichment of 

newly synthesized proteins for quantitative secretome analysis. Nat Biotechnol 

2012;30:984–90.  

[187] Schroll A, Eller K, Feistritzer C, Nairz M, Sonnweber T, Moser PA, et al. Lipocalin-

2 ameliorates granulocyte functionality. Eur J Immunol 2012;42:3346–57.  

[188] Cheng L, Xing H, Mao X, Li L, Li X, Li Q. Lipocalin-2 promotes M1 macrophages 

polarization in a mouse cardiac ischaemia-reperfusion injury model. Scand J 

Immunol 2015;81:31–8.  

[189] Zhu H, Cui D, Liu K, Wang L, Huang L, Li J. Long pentraxin PTX3 attenuates 

ischemia reperfusion injury in a cardiac transplantation model. Transpl Int 

2014;27:87–95.  

[190] Danieli P, Copes F, Dekker L, Malpasso G, Roccio M, Bassani R, et al. Pentraxin-

3 and galectin-1 are key mediators of the cardioprotective paracrine effects exerted 

by fetal mesenchymal stem cells isolated from human placenta. Eur Heart J 

2013;34:P3271. 

[191] Coulthard LG, Woodruff TM. Is the Complement Activation Product C3a a 

Proinflammatory Molecule? Re-evaluating the Evidence and the Myth. J Immunol 

2015;194:3542–8.  

 



References 

92 
 

[192] Wu MCL, Brennan FH, Lynch JPL, Mantovani S, Phipps S, Wetsel RA, et al. The 

receptor for complement component C3a mediates protection from intestinal 

ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc Natl Acad 

Sci U S A 2013;110:9439–44.  

[193] He C, Lee C, DelaCruz CS, Lee CM, Zhou Y, Ahangari F, et al. Chitinase 3-like 1 

regulates cellular and tissue responses via IL-13 receptor α2. Cell Rep 2013;4:830–

41.  

[194] Skrbic B, Engebretsen KVT, Strand ME, Lunde IG, Herum KM, Marstein HS, et al. 

Lack of collagen VIII reduces fibrosis and promotes early mortality and cardiac 

dilatation in pressure overload in mice. Cardiovasc Res 2015;106:32–42.  

[195] Van Aelst LNL, Voss S, Carai P, Van Leeuwen R, Vanhoutte D, Sanders-Van Wijk 

S, et al. Osteoglycin prevents cardiac dilatation and dysfunction after myocardial 

infarction through infarct collagen strengthening. Circ Res 2015;116:425–36.  

[196] Fournier ML, Paulson A, Pavelka N, Mosley AL, Gaudenz K, Bradford WD, et al. 

Delayed correlation of mRNA and protein expression in rapamycin-treated cells and 

a role for Ggc1 in cellular sensitivity to rapamycin. Mol Cell Proteomics 2010;9:271–

84.  

[197] Robles MS, Cox J, Mann M. In-Vivo Quantitative Proteomics Reveals a Key 

Contribution of Post-Transcriptional Mechanisms to the Circadian Regulation of 

Liver Metabolism. PLoS Genet 2014;10:e1004047.  

[198] Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T, Cox J, et al. Defining the 

transcriptome and proteome in three functionally different human cell lines. Mol Syst 

Biol 2010;6:1–10.  

[199] Vogel C, Marcotte EM. Insights into the regulation of protein abundance from 

proteomic and transcriptomic analyses. Nat Rev Genet 2012;13:227–32.  

[200] Greenbaum D, Colangelo C, Gernstein M, Williams K. Comparing protein 

abundance and mRNA expression levels on a genomic scale. Genome Biol 

2003;4:117.  

[201] Van Linthout S, Miteva K, Tschöpe C. Crosstalk between fibroblasts and 

inflammatory cells. Cardiovasc Res 2014;102:258–69.  

 



  References 

93 
  

[202] Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte Chemoattractant 

Protein-1 (MCP-1): An Overview. J Interf Cytokine Res 2009;29:313–26.  

[203] Li Y-H, Chen H, Li Y, Wu S-Y, Wangta-Liu, Lin G, et al. Progranulin regulates 

zebrafish muscle growth and regeneration through maintaining the pool of myogenic 

progenitor cells. Sci Rep 2013;3:1176.  

[204] Fallach R, Shainberg A, Avlas O, Fainblut M, Chepurko Y, Porat E, et al. 

Cardiomyocyte Toll-like receptor 4 is involved in heart dysfunction following septic 

shock or myocardial ischemia. J Mol Cell Cardiol 2010;48:1236–44.  

[205] Vilahur G, Badimon L. Ischemia/reperfusion activates myocardial innate immune 

response: The key role of the toll-like receptor. Front Physiol 2014;5:496–501.  

[206] Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A, Álvarez-Vallina L, Sanz L. 

Lipopolysaccharide activates toll-like receptor 4 (TLR4)-mediated NF-κB signaling 

pathway and proinflammatory response in human pericytes. J Biol Chem 

2014;289:2457–68.  

[207] Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), a small-

molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 

and interferes with interactions between TLR4 and its adaptor molecules. Mol 

Pharmacol 2011;79:34–41.  

[208] Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. 

CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses 

critical to healing myocardial infarcts. Circ Res 2005;96:881–9.  

[209] Dutta P, Sager HB, Stengel KR, Naxerova K, Courties G, Saez B, et al. Myocardial 

Infarction Activates CCR2(+) Hematopoietic Stem and Progenitor Cells. Cell Stem 

Cell 2015;16:477–87.  

[210] Schön C. S100A1: Ein neues kardiales Damage-Associated Molecular Pattern. MD 

thesis, Heidelberg University, Germany, 2015. 

[211] Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: Novel roles and mediators. 

Front Pharmacol 2014;5 MAY:1–13.  

[212] http://amigo.geneontology.org/amigo. 

 



References 

94 
 

[213] Siwik D a, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-

alpha decrease collagen synthesis and increase matrix metalloproteinase activity in 

cardiac fibroblasts in vitro. Circ Res 2000;86:1259–65. 

[214] Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol 

Cell Biol 2008;9:125–38.  

[215] Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated 

through reversible m6A RNA methylation. Nat Rev Genet 2014;15:293–306.  

[216] Schäfer M, Oeing CU, Rohm M, Baysal-Temel E, Lehmann LH, Bauer R, et al. 

Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction 

in cancer cachexia. Mol Metab 2016;5:67–78.  

[217] Abonnenc M, Nabeebaccus AA, Mayr U, Barallobre-Barreiro J, Dong X, Cuello F, 

et al. Extracellular matrix secretion by cardiac fibroblasts: Role of MicroRNA-29b 

and MicroRNA-30c. Circ Res 2013;113:1138–47.  

[218] Oberg AL, Mahoney DW. Statistical methods for quantitative mass spectrometry 

proteomic experiments with labeling. BMC Bioinformatics 2012;13:S7.  

[219] Zhang W, Wei Y, Ignatchenko V, Li L, Sakashita S, Pham NA, et al. Proteomic 

profiles of human lung adeno and squamous cell carcinoma using super-SILAC and 

label-free quantification approaches. Proteomics 2014;14:795–803.  

[220] Olsen J V, Ong S-E, Mann M. Trypsin Cleaves Exclusively C-terminal to Arginine 

and Lysine Residues. Mol Cell Proteomics 2004;3:608–14.  

[221] Rollins BJ. Chemokines. Blood 1997;90:909–28.  

[222] Bardina S V, Michlmayr D, Hoffman KW, Obara CJ, Sum J, Charo IF, et al. 

Differential Roles of Chemokines CCL2 and CCL7 in Monocytosis and Leukocyte 

Migration during West Nile Virus Infection. J Immunol 2015;195:4306–18.  

[223] Tarzami ST, Calderon TM, Deguzman A, Lopez L, Kitsis RN, Berman JW. MCP-

1/CCL2 protects cardiac myocytes from hypoxia-induced apoptosis by a Gai-

independent pathway. Biochem Biophys Res Commun 2005;335:1008–16.  

[224] Stastna M, Van Eyk JE. Investigating the secretome lessons about the cells that 

comprise the heart. Circ Cardiovasc Genet 2012;5:8–19.  

 



  References 

95 
  

[225] Arnott C, Punnia-Moorthy G, Tan J, Sadeghipour S, Bursill C, Patel S. The Vascular 

Endothelial Growth Factor Inhibitors Ranibizumab and Aflibercept Markedly 

Increase Expression of Atherosclerosis-Associated Inflammatory Mediators on 

Vascular Endothelial Cells. PLoS One 2016;11:e0150688.  

[226] Bigorgne AE, John B, Ebrahimkhani MR, Shimizu-Albergine M, Campbell JS, 

Crispe IN. TLR4-dependent secretion by hepatic stellate cells of the neutrophil-

chemoattractant CXCL1 mediates liver response to gut microbiota. PLoS One 

2016;11:1–13.  

[227] Van Damme J, Wuyts  a, Froyen G, Van Coillie E, Struyf S, Billiau  a, et al. 

Granulocyte chemotactic protein-2 and related CXC chemokines: from gene 

regulation to receptor usage. J Leukoc Biol 1997;62:563–9. 

[228] Fox SE, Lu W, Maheshwari A, Christensen RD, Calhoun DA. The effects and 

comparative differences of neutrophil specific chemokines on neutrophil chemotaxis 

of the neonate. Cytokine 2005;29:135–40.  

[229] Smith DF, Galkina E, Ley K, Huo Y. GRO family chemokines are specialized for 

monocyte arrest from flow. Am J Physiol Heart Circ Physiol 2005;289:H1976-84.  

[230] Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti  a, Springer T a. A highly efficacious 

lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 

1996;184:1101–9.  

[231] Carr MW, Roth SJ, Luther E, Rose SS, Springer T a. Monocyte chemoattractant 

protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A 

1994;91:3652–6.  

[232] Roth SJ, Carr MW, Springer TA. C-C chemokines, but not the C-X-C chemokines 

Il-8 and IP-10, stimulate transendothelial chemotaxis of T lymphocytes. Eur J 

Immunol 1995;25:3482–8. 

[233] Van Hinsbergh VWM, Engelse MA, Quax PHA. Pericellular proteases in 

angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 2006;26:716–28.  

[234] Tazzyman S, Lewis CE, Murdoch C. Neutrophils: Key mediators of tumour 

angiogenesis. Int J Exp Pathol 2009;90:222–31.  



References 

96 
 

[235] Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, et al. 

The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J 

Biol Chem 1995;270:27348–57.  

[236] Lapidot T, Dar A, Kollet O. How do stem cells nd their way home? Blood 

2005;106:1901–10.  

[237] Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic A V. CCL2 regulates 

angiogenesis via activation of Ets-1 transcription factor. J Immunol 2006;177:2651–

61.  

[238] Bousquenaud M, Schwartz C, Léonard F, Rolland-Turner M, Wagner D, Devaux Y. 

Monocyte chemotactic protein 3 is a homing factor for circulating angiogenic cells. 

Cardiovasc Res 2012;94:519–25.  

[239] Hu X, Dai S, Wu W-J, Tan W, Zhu X, Mu J, et al. Stromal Cell Derived Factor-

1  Confers Protection Against Myocardial Ischemia/Reperfusion Injury: Role of the 

Cardiac Stromal Cell Derived Factor-1  CXCR4 Axis. Circulation 2007;116:654–63.  

[240] Nijmeijer R, Willemsen MJ, Meijer CJ, Visser CA, Verheijen RH, Gottlieb RA, et al. 

Type II secretory phospholipase A2 binds to ischemic flip-flopped cardiomyocytes 

and subsequently induces cell death. AmJ Physiol Hear CircPhysiol 

2003;285:H2218–24.  

 

 

 

 

 

 

 



  Appendix 

97 
  

10 Appendix 

Supplementary table 1: Up- and downregulated proteins from the volcano plot of the 

secretome from the Figure 15. 

In the table are listed proteins with at least 2-fold up- or downregulation. 

No. Gene symbol Protein name 
Fold 

change 
[log2] 

p-value       
[-log10] 

iBAQ in 
control 
[log10] 

iBAQ in 
S100A1 
[log10] 

1 Lcn2 Lipocalin 2  7.91 1.63 6.66 8.47 

2 Chi3l1 Chitinase-3-like protein 1  6.91 1.58 7.35 9.02 

3 C3 Complement C3 6.46 2.16 6.58 7.94 

4 Ptx3 Pentraxin 3  6.41 1.79 7.42 8.82 

5 Cxcl1 C-X-C motif chemokine 1 6.00 1.37 6.41 8.55 

6 Clu Clusterin 5.60 2.35 6.96 8.64 

7 Pla2g2a 
Phospholipase A2, membrane 

associated 
5.14 4.09 4.89 7.05 

8 Ccl7 C-C motif chemokine 7 5.12 1.15 7.62 8.88 

9 Ccl2 C-C motif chemokine 2 5.05 1.76 8.12 9.21 

10 Cxcl6 C-X-C motif chemokine 6 4.91 2.09 6.48 8.29 

11 C1s Complement C1s 4.81 1.06 6.29 7.45 

12 Enpp2 Autotaxin 4.81 1.30 7.09 7.90 

13 Mgp Matrix Gla protein 4.48 1.39 7.28 8.59 

14 Igfbp3 
Insulin-like growth factor-binding 

protein 3 
4.45 2.01 7.96 8.94 

15 Serping1 Plasma protease C1 inhibitor 4.22 1.92 7.97 8.64 

16 C1s Complement C1s subcomponent 3.99 1.37 8.49 8.93 

17 Lbp 
Lipopolysaccharide-binding 

protein 
3.78 2.26 7.45 8.21 

18 Hp Haptoglobin 3.71 0.82 6.50 8.14 

19 Serpina3n Serine protease inhibitor A3N 3.49 1.45 7.17 7.99 

20 Dcn Decorin 3.43 1.10 8.01 9.01 

21 Mmp14 Matrix metalloproteinase-14 2.82 1.08 6.55 7.37 

22 Sod2 
Manganese-superoxide 

dismutase 
2.80 1.94 7.43 8.08 

23 Fst Follistatin 2.76 0.81 6.31 6.97 

24 Atp5b ATP synthase, subunit beta 2.76 1.43 6.25 6.95 

25 Mmp9 Matrix metalloproteinase-9 2.74 1.37 5.30 6.58 

26 Tnfrsf11b Osteoprotegerin 2.67 1.63 6.79 7.40 

27 Rarres2 Chemerin 2.67 1.89 7.37 8.30 

28 Mmp2 Matrix metalloproteinase-2 2.49 1.68 8.42 8.92 

29 Csf1 
Macrophage colony-stimulating 

factor 1 
2.45 1.03 6.77 7.40 
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30 Ltbp1 
Latent-transforming growth factor 

beta-binding protein 1 
2.38 0.60 5.57 6.32 

31 Lgals3bp Galectin-3-binding protein 2.31 1.96 7.97 8.39 

32 C1r Complement C1r subcomponent 2.25 2.37 8.57 8.83 

33 Cp Ceruloplasmin 2.18 1.22 6.07 6.58 

34 Pla2g7 Phospholipase A2, group VII 2.09 2.48 6.50 7.03 

35 Aprt 
Adenine 

phosphoribosyltransferase 
2.07 0.92 5.91 6.52 

36 Pgk1 Phosphoglycerate kinase 1 2.00 1.13 6.49 6.98 

37 Hist1h2bl Histone H2B 1.97 0.48 7.69 8.00 

38 Cfl1 Cofilin-1 1.82 1.91 7.46 7.79 

39 Thbs2 Thrombospondin-2 1.78 1.69 7.36 7.72 

40 Gda Guanine deaminase 1.76 1.04 6.50 7.01 

41 Mdh2 Malate dehydrogenase 1.76 2.89 7.30 7.80 

42 Abi3bp Protein Abi3bp 1.70 2.20 6.92 7.45 

43 Ran GTP-binding nuclear protein Ran 1.62 0.64 6.27 6.68 

44 Mmp11 Stromelysin-3 1.59 1.20 7.24 7.55 

45 Sod1 Superoxide dismutase [Cu-Zn] 1.57 1.20 7.38 7.77 

46 Epdr1 
Mammalian ependymin-related 

protein 1 
1.55 0.51 7.44 7.39 

47 Akr1b1 Aldose reductase 1.52 0.68 7.01 7.23 

48 Eef1a1 Elongation factor 1-alpha 1 1.52 1.91 7.61 7.92 

49 Pdia6 Protein disulfide-isomerase A6 1.49 1.25 6.82 7.15 

50 C4 Complement C4 1.48 0.83 6.83 7.06 

51 Capg Macrophage-capping protein 1.47 1.39 6.41 6.77 

52 Gstm2 Glutathione S-transferase Mu 2 1.43 1.70 6.17 6.48 

53 Ctsh Pro-cathepsin H 1.43 1.50 7.43 7.73 

54 Pdia3 Protein disulfide-isomerase A3 1.40 1.26 7.49 7.77 

55 Eno1 Alpha-enolase 1.39 1.28 7.71 8.05 

56 Rpl12 60S ribosomal protein L12 1.37 0.89 7.01 7.28 

57 H3f3c Histone H3 1.33 0.43 7.27 7.50 

58 Calu Calumenin 1.33 0.79 7.48 7.64 

59 Sdf4 45 kDa calcium-binding protein 1.33 0.99 6.58 7.01 

60 Timp1 Metalloproteinase inhibitor 1 1.32 1.18 8.26 8.59 

61 Ppib 
Peptidyl-prolyl cis-trans isomerase 

B 
1.30 1.15 8.32 8.49 

62 Prdx2 Peroxiredoxin-2 1.30 1.56 7.20 7.49 

63 Hspa5 78 kDa glucose-regulated protein 1.29 1.30 7.23 7.54 

64 Fabp5 
Fatty acid-binding protein, 

epidermal 
1.28 0.58 7.06 7.21 
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65 Ppia 
Peptidyl-prolyl cis-trans isomerase 

A 
1.26 1.89 7.94 8.20 

66 Cap1 
Adenylyl cyclase-associated 

protein 1 
1.21 0.88 6.04 6.38 

67 Prelp Prolargin 1.20 0.61 6.70 6.79 

68 Serpinb6 Protein Serpinb6 1.20 2.30 6.44 6.76 

69 B2m Beta-2-microglobulin 1.18 2.78 8.65 8.83 

70 Ctsb Cathepsin B 1.18 2.33 8.39 8.62 

71 Gaa Lysosomal alpha-glucosidase 1.18 1.40 6.31 6.49 

72 Eef2 Elongation factor 2 1.17 1.24 6.83 7.04 

73 Gdi2 
Rab GDP dissociation inhibitor 

beta 
1.15 1.61 7.13 7.36 

74 Sdcbp Syntenin-1 1.14 1.57 7.22 7.50 

75 Hsp90aa1 Heat shock protein HSP 90-alpha 1.14 1.09 6.48 6.47 

76 Postn Periostin 1.12 1.73 8.96 9.16 

77 Ldha L-lactate dehydrogenase 1.11 3.30 8.06 8.26 

78 Kpnb1 Importin subunit beta-1 1.11 0.82 5.78 6.09 

79 Emilin1 Elastin microfibril interfacer 1 1.10 0.89 6.74 7.13 

80 Aldoa Fructose-bisphosphate aldolase A 1.08 1.00 7.79 8.12 

81 Got1 
Aspartate aminotransferase, 

cytoplasmic 
1.08 0.56 6.35 6.65 

82 Btd Biotinidase 1.06 0.79 6.16 6.32 

83 Dpysl2 
Dihydropyrimidinase-related 

protein 2 
1.05 1.01 6.11 6.39 

84 Actg1 Actin, cytoplasmic 2 1.05 1.60 8.83 9.00 

85 Wdr1 WD repeat-containing protein 1 1.04 0.61 6.66 6.76 

86 Nme2 Nucleoside diphosphate kinase B 1.02 0.96 8.15 8.32 

87 Csrp1 
Cysteine and glycine-rich protein 

1 
1.01 1.00 6.50 6.77 

88 Sod3 
Extracellular superoxide 

dismutase [Cu-Zn] 
1.01 2.24 8.51 8.70 

89 Col3a1 Collagen, type III, alpha 1 -1.01 1.70 8.75 8.27 

90 Islr 
Immunoglobulin superfamily 

containing leucine-rich repeat 
protein 

-1.02 2.23 7.57 7.04 

91 Loxl3 Lysyl oxidase-like 3 -1.04 1.13 6.18 5.71 

92 LOC680322 Histone H2A -1.12 0.17 7.54 7.80 

93 Qsox1 Sulfhydryl oxidase 1 -1.14 0.55 7.21 6.90 

94 Gdf6 Growth/differentiation factor 6 -1.15 2.08 6.91 6.40 

95 Olfml1 Olfactomedin-like protein 1 -1.19 2.14 7.13 6.54 

96 Tgfb3 Transforming growth factor beta-3 -1.22 2.55 7.14 6.69 
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97 C1qb 
Complement C1q subcomponent 

subunit B 
-1.22 0.61 6.98 6.67 

98 Tpp1 Tripeptidyl-peptidase 1 -1.23 0.47 7.80 7.56 

99 Hspg2 Protein Hspg2 -1.23 1.32 8.36 7.91 

100 Vegfc 
Vascular endothelial growth factor 

C 
-1.30 2.23 7.02 6.52 

101 Ogn Osteoglycin -1.45 3.03 8.08 7.39 

102 Loxl2 Lysyl oxidase homolog 2 -1.56 1.11 7.33 6.70 

103 Gpc6 Protein Gpc6 -1.59 0.96 6.88 6.24 

104 Fstl3 Follistatin-related protein 3 -1.72 0.59 7.12 6.50 

105 Clec3b 
C-type lectin domain family 3, 

member B  
-1.80 2.20 8.22 7.49 

106 Col8a1 Collagen, type VIII, alpha 1  -1.94 2.32 7.79 7.26 

107 Eln Elastin -2.42 1.00 8.29 7.18 

 

Supplementary table 2: 1D annotation enrichment analysis of the ratios of proteins [log2] from 

the secretome (see section 6.2.3 Biological Functions of Secretome ). 

Size- the number of proteins, forming the particular category; position score- the center of iBAQ value 

distribution of the particular category relative to the distribution of all iBAQ values; adjusted p-value- 

p-value for the enrichment of category with Benjamini-Hochberg FDR 2%; mean- mean of the fold-

changes of proteins from the particular category; median- median of the fold-changes of proteins from 

the particular category. 

Category Size Score 
Adjusted        
p-value 

Mean Median 

Collagen 15 -0.70 4.65E-06 -0.59 -0.49 

Extracellular matrix 
part 

52 -0.49 4.97E-06 -0.17 -0.32 

Cytokine 14 0.62 0.00296 2.77 2.56 

G-protein-coupled 
receptor binding 

11 0.71 0.00652 3.32 3.02 

Chemokine activity 8 0.88 0.01437 3.62 3.37 

Chemokine receptor 
binding 

8 0.88 0.00718 3.62 3.37 

Chemotaxis 10 0.92 4.70E-05 4.29 4.86 
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Supplementary table 3: Proteins from the upregulated categories according to the 1D 

annotation enrichment analysis of  median ratios of proteins [log2] from secretome. 

Gene 
symbol 

Fold 
change 
[log2] 

Category 

Chemotaxis 
Chemokine 

receptor 
binding 

Chemokine 
activity 

G-protein-coupled 
receptor binding 

Cytokine 

C3 6.46 x   x  

Calm1 0.57    x  

Ccl2 5.05 x x x x x 

Ccl3 3.73 x x x x x 

Ccl7 5.12 x    x 

Csf1 2.45     x 

Cx3cl1 1.67 x x x x x 

Cxcl1 6.00 x x x x x 

Cxcl12 2.41  x x x  

Cxcl3 2.16 x x x x x 

Cxcl6 4.91 x x x x x 

Enpp2 4.81 x     

Flna 0.56    x  

Gdf6 -1.15     x 

Gpi 0.78     x 

Grn 0.01     x 

Pf4 3.02 x x x x x 

Spp1 2.35     x 

Tnfrsf11b 2.67     x 

 

Supplementary table 4: Proteins from downregulated categories according to the 1D 

annotation enrichment analysis of median ratios of proteins [log2] from secretome. 

Gene 
symbol 

Fold 
change 
[log2] 

Category 

Collagen 
Extracellular 
matrix part 

Col11a1 -0.68 x x 

Col12a1 -0.17 x  

Col14a1 -0.09 x  

Col15a1 -0.54 x x 

Col1a1 -0.93 x x 

Col1a2 -0.98 x x 

Col3a1 -1.01 x x 

Col4a1 -0.24 x x 

Col4a2 -0.35 x x 

Col5a1 -0.83 x x 

Col5a2 -0.49 x x 

Col6a1 -0.08 x  

Col6a2 -0.13 x x 

Col6a3 -0.36 x  

Col8a1 -1.94 x x 

Agrn 0.11  x 

Ang 0.34  x 

Anxa2 0.07  x 

Bmp1 -0.73  x 

C1qa -1.10  x 

C1qb -1.22  x 

C1qc -0.54  x 

C1qtnf5 -0.26  x 

Ccdc80 0.03  x 
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Cst3 0.10  x 

Dag1 -0.54  x 

Dcn 3.43  x 

Eln -2.42  x 

Emilin1 1.10  x 

Fbln1 0.39  x 

Fbln5 -0.58  x 

Fbn1 -0.42  x 

Fn1 -0.02  x 

Hspg2 -1.23  x 

Itgb1 0.05  x 

Lama2 -0.39  x 

Lama4 0.10  x 

Lama5 -0.71  x 

Lamb1 0.04  x 

Lamb2 0.11  x 

Lamc1 -0.02  x 

Lox 0.74  x 

Loxl1 -0.47  x 

Loxl2 -1.56  x 

Ltbp1 2.38  x 

Lum 0.72  x 

Mfap5 -0.42  x 

Nid1 -0.29  x 

Nid2 0.31  x 

Plod1 0.24  x 

Serpinf1 -0.39  x 

Sparc -0.88  x 

Tgfb2 -0.66  x 

Thbs2 1.78  x 

Timp1 1.32  x 

Timp2 -0.02  x 
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Supplementary table 5: Top 15 of the most enriched categories according to the Fisher’s exact 

test of proteins with more than 4-fold upregulation from secretome. 

Total size- the number of all proteins; selection size- the number of proteins with at least 4-fold 

upregulation; category size- the number of all proteins, which form the particular category; 

intersection size- the number of proteins with at least 4-fold upregulation from the particular category; 

enrichment factor- the size of the group of at least 4-fold upregulated proteins from the particular 

category, normalized with the count of all proteins from the same category; adjusted p-value- p-value 

for the enrichment of category with Benjamini-Hochberg FDR 2%. 

Category  
Total 
size 

Selection 
size 

Category 
size 

Intersection 
size 

Enrichment 
factor 

Adjusted    
p-value 

Chemokine-mediated 
signaling pathway 

380 52 6 6 7.31 0.00061 

Chemotaxis 380 52 10 9 6.58 4.39E-05 

Chemokine activity 380 52 8 7 6.39 0.00198 

Chemokine receptor 
binding 

380 52 8 7 6.39 0.00149 

Cytokine 380 52 14 10 5.22 8.87E-05 

G-protein-coupled 
receptor binding 

380 52 12 8 4.87 0.00609 

Cell chemotaxis 380 52 15 10 4.87 0.00038 

Positive regulation of 
leukocyte chemotaxis 

380 52 17 11 4.73 0.00024 

Positive regulation of 
leukocyte migration 

380 52 19 12 4.62 0.00012 

Response to 
lipopolysaccharide 

380 52 23 14 4.45 3.27E-05 

Inflammatory response 380 52 25 15 4.38 2.08E-05 

Response to molecule of 
bacterial origin 

380 52 25 14 4.09 8.89E-05 

Immune response 380 52 32 16 3.65 8.92E-05 

Defense response 380 52 41 20 3.56 1.68E-05 

Positive regulation of 
immune system process 

380 52 37 18 3.56 3.51E-05 
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Supplementary table 6: 1D annotation enrichment analysis, calculated from absolute amounts 

of proteins, expressed in iBAQ values [log10], in secretome of control and S100A1-treated 

samples.  

Size- the number of proteins, which form the particular category; position score- the center of iBAQ 

value distribution of the particular category relative to the distribution of all iBAQ values; adjusted p-

value- p-value for the enrichment of category with Benjamini-Hochberg FDR 2%; mean- the mean of 

the iBAQ values of proteins from the particular category; median- the median of the iBAQ values of 

proteins from the particular category. 

Control 

Category Size Score 
Adjusted   
p-value 

Mean Median 

Collagen 15 0.57 0.00019 7.94 7.99 
      

      

S100A1 

Category Size Score 
Adjusted   
p-value 

Mean Median 

Immune 
response 

30 0.53 1.77E-06 7.95 8.03 

Chemoattractant 10 0.65 0.00047 8.13 7.92 
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Supplementary table 7: 2-fold up- or downregulated genes upon stimulation with S100A1 from 

the transcriptome analysis after 48 hours. 

Gene 
symbol 

Fold 
change 
[log2] 

Gene symbol 
Fold 

change 
[log2] 

Gene symbol 
Fold 

change 
[log2] 

Cxcl6 8.15 Serping1 2.58 Flrt2 2.03 

Enpp2 7.71 Duox1 2.58 Ecscr 2.03 

Pla2g2a 6.94 Chrm2 2.57 Pdgfra 2.03 

Lcn2 6.79 Ccl7 2.55 Slc43a3 2.02 

Chi3l1 5.82 Enpep 2.54 Plek 2.02 

Cfb 5.71 Cxcl2 2.54 Rnd1 2.02 

Sfrp2 5.33 Thbs2 2.53 Cyp7b1 2.00 

Slpi 4.92 LOC685067 2.52 C1s 1.99 

C3 4.90 Irg1 2.50 Il1rn 1.99 

Mmp9 4.83 Bst1 2.49 Il2rg 1.99 

Cxcl1 4.77 Isyna1 2.48 Dcn 1.98 

Vcam1 4.39 Tnip3 2.47 Mgst2 1.98 

Naaa 4.31 C4b 2.46 Ccl9 1.98 

Ccl3 4.23 Ch25h 2.46 Cldn15 1.97 

Hp 4.18 Cxadr 2.45 Cx3cl1 1.97 

Clu 4.13 Parm1 2.43 Socs3 1.97 

Sod2 4.06 Trem1 2.41 Slamf6 1.97 

Nos2 3.71 Tnip1 2.38 Cd302 1.96 

Lrrn4 3.67 Acvr1b 2.36 Adora2a 1.96 

Il1b 3.52 Galnt14 2.35 Htr2a 1.95 

Selp 3.48 Tlr2 2.35 Lcp1 1.95 

Ccl12 3.42 RGD1560281 2.35 Slc6a12 1.94 

Emr1 3.38 Serpina3n 2.35 Aldh1a2 1.94 

Igfbp3 3.36 Ugcg 2.35 Kif26b 1.93 

Opn3 3.26 Grem2 2.34 Csf2rb 1.93 

Rac2 3.22 Steap4 2.34 Tnfaip3 1.93 

Lbp 3.22 Fgl2 2.34 Ncf1 1.92 

Siglec5 3.16 Ntn1 2.32 Usp53 1.92 

Ptx3 3.15 Slamf9 2.31 Irak3 1.92 

Tlr1 3.13 Tmem176a 2.30 Slc39a14 1.92 

Arpc1b 3.07 Fcgr1a 2.29 Gpr88 1.91 

Mt1m 3.04 Jak2 2.29 Lrba 1.91 

Cxcl12 3.03 Adamts9 2.26 Sulf1 1.90 

Il1a 2.99 Usp18 2.24 Duoxa1 1.90 

Spp1 2.98 Birc3 2.24 Slc1a3 1.90 

Tmem178a 2.96 Agtr1a 2.21 Siglec8 1.90 

Lgals9 2.90 Ptpn6 2.20 LOC103693629 1.89 

Mme 2.88 Fyb 2.20 Tgfbr3 1.88 

Ccl20 2.88 Rgs16 2.19 Slc13a3 1.88 

Itgal 2.87 Cilp 2.16 Tmem176b 1.88 

Ccl4 2.85 C6 2.15 Fcgr2b 1.87 

Prkcb 2.85 C5ar1 2.14 LOC24906 1.87 

LOC500066 2.85 Cd180 2.13 Sdc4 1.86 

Fmod 2.82 Pstpip2 2.11 Msln 1.86 

Il6 2.82 Upp1 2.10 Hsd11b1 1.85 

Pik3cg 2.79 Cpxm1 2.09 Adm 1.85 

Slc11a1 2.78 Ebi3 2.09 Gsap 1.84 

Evi2b 2.78 Sema6d 2.08 Grem1 1.83 

Lifr 2.76 Serpinb2 2.08 Abcb1b 1.83 

Rasl12 2.75 Ntm 2.07 Srgn 1.83 

Pla2g7 2.69 Steap2 2.07 Nfkbia 1.82 

Itgb2 2.63 Efna5 2.06 St3gal6 1.81 

Rasgef1b 2.62 Nfkbiz 2.04 Pik3r5 1.81 

St6galnac2 2.60 Plbd1 2.04 RGD1561730 1.81 
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Ctsh 1.81 Ppap2a 1.52 Selplg 1.34 

Cxcl16 1.80 Dpep1 1.52 Plscr1 1.34 

Angptl4 1.80 Mmd 1.51 Evi2a 1.33 

Cd200 1.79 Mycbp2 1.51 Stard10 1.33 

Apoe 1.77 Lrrc25 1.50 Serpinb9 1.33 

Hs6st1 1.77 Steap1 1.50 Lpar1 1.33 

Cdon 1.77 Cdhr4 1.49 Sox4 1.33 

Il18 1.76 Bcl3 1.49 Cdc42ep5 1.33 

Enpp3 1.76 Gas1 1.48 Star 1.33 

Arhgdib 1.75 LOC681325 1.48 Mmp11 1.32 

Glul 1.75 Slfn2 1.46 Tnfrsf14 1.32 

Ncf4 1.74 Pim1 1.46 Nr1h4 1.32 

Npr3 1.74 Pla2g5 1.46 Il33 1.31 

Slco4a1 1.71 Cebpd 1.45 LOC100362819 1.31 

Fam169b 1.70 Elf5 1.45 Ank3 1.31 

Hpx 1.70 Gda 1.45 Ptk2b 1.31 

LOC681383 1.70 Spn 1.45 Aqp1 1.31 

Nrp2 1.70 NEWGENE_1565505 1.45 Ampd3 1.30 

Coro1a 1.69 Optc 1.44 Osmr 1.30 

Sh2b2 1.69 C1r 1.43 Sema5a 1.30 

Ginm1 1.68 Fbxl5 1.43 Rasgrp3 1.30 

Pik3ap1 1.68 Cacna2d3 1.43 Rasgrp1 1.29 

Angpt1 1.68 Niacr1 1.43 Tnfrsf1b 1.29 

Ccl2 1.68 Pde7b 1.42 MGC112715 1.29 

Kcnj8 1.67 Phyhipl 1.42 Tshz2 1.28 

Tpbg 1.67 Nabp1 1.42 Itgam 1.28 

Serinc2 1.66 Icam1 1.42 Fbxo32 1.28 

Chml 1.66 Mzt2b 1.41 C2 1.28 

Ltbp1 1.65 Hcls1 1.41 Fmo1 1.27 

Xdh 1.65 Pkhd1l1 1.40 Plscr2 1.26 

Slc16a2 1.65 Fcer1g 1.40 Scimp 1.26 

Gxylt2 1.64 Tfpi2 1.40 LOC678893 1.26 

Epas1 1.64 Sorcs1 1.40 Tank 1.26 

Zfand5 1.63 Gpr126 1.39 Adamts7 1.26 

Aldoc 1.63 Ddhd2 1.39 LOC102546902 1.25 

Hck 1.63 Cyth4 1.39 Prokr2 1.25 

Bmp3 1.63 Cd24 1.38 C3ar1 1.25 

Fgr 1.62 Pnrc1 1.38 Ugt1a6 1.24 

Ifitm1 1.62 Ccl6 1.38 Relt 1.24 

Ugdh 1.61 Hmox1 1.38 Klf5 1.23 

Clec4d 1.61 Sdk1 1.38 Ifitm2 1.23 

Cd274 1.61 Alox5 1.38 Fth1 1.23 

Tnfaip6 1.61 Mgst1 1.37 Ackr3 1.22 

Fxyd2 1.61 Cd4 1.37 Tagap 1.22 

St3gal1 1.59 Ptprk 1.37 Chrdl1 1.22 

Dapk1 1.59 Aif1 1.36 Bcl6 1.22 

Emilin1 1.58 LOC100360218 1.36 St5 1.21 

Bnc2 1.57 Peli1 1.36 Man1a1 1.21 

Cd72 1.57 Arhgap24 1.36 Akr1b8 1.21 

Il10 1.56 Slc11a2 1.35 Gja1 1.21 

F3 1.56 Vstm4 1.35 Cd55 1.20 

Slamf8 1.56 C7 1.35 RGD1561113 1.20 

Ednrb 1.56 Spi1 1.35 Zfp36l1 1.20 

Sh3kbp1 1.56 Col18a1 1.35 Scara5 1.19 

Slc15a3 1.55 Cybb 1.35 Tyrobp 1.19 

Il1rl1 1.54 Adora2b 1.35 Abca1 1.19 

Atp8b4 1.54 Hpgds 1.34 Rftn1 1.19 

Zc3h12a 1.54 Nckap1l 1.34 Mmp2 1.19 

Mmrn1 1.53 Bag4 1.34 Gnai1 1.18 
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Cables1 1.18 Slc5a3 1.09 Psip1 -1.01 

Tbxas1 1.18 Csf2ra 1.09 Olfml2b -1.01 

Ccl19 1.18 Cxcl13 1.09 Cxcr4 -1.01 

Fosl2 1.18 LOC103693634 1.08 Dmpk -1.01 

Rbks 1.18 Ifi47 1.08 Creb3l1 -1.01 

Nfkbie 1.18 Ebf3 1.08 Zfp64 -1.01 

Phactr2 1.17 Rcan1 1.08 Racgap1 -1.01 

Arhgap26 1.17 Laptm5 1.08 Reps2 -1.01 

Nlrp3 1.17 Egfr 1.07 Klra1 -1.02 

Tnfsf15 1.17 Oasl 1.07 Tns1 -1.02 

Fam131b 1.17 Vav1 1.07 Ecm1 -1.02 

Hgf 1.17 Fst 1.07 Itm2a -1.02 

Fbln1 1.17 Cyba 1.07 Ptpla -1.02 

Ifngr1 1.17 Nhs 1.06 Afap1 -1.02 

Galk2 1.16 Nfkb2 1.06 Pkia -1.02 

Fam213b 1.16 Prg4 1.06 Sh3pxd2a -1.02 

Cygb 1.16 Tlr7 1.06 LOC100359633 -1.03 

Slc44a1 1.16 Prr16 1.06 Mmp16 -1.03 

Lnx1 1.16 Apobec1 1.06 Gars -1.03 

Sqrdl 1.15 Gpr146 1.05 Crispld2 -1.03 

Lst1 1.15 Dgkh 1.05 Nfxl1 -1.03 

Prelp 1.15 Tmcc3 1.05 Tnfrsf10b -1.03 

P4ha3 1.15 Fgd6 1.05 Plxnc1 -1.03 

Tmem2 1.15 Naprt1 1.05 LOC103694412 -1.04 

Adamts3 1.15 P2rx4 1.05 Arhgef2 -1.04 

Il6st 1.15 C1rl 1.05 Gdf15 -1.04 

Ptgir 1.15 Rarres2 1.04 Pdlim3 -1.04 

Egln3 1.15 Rbp1 1.04 Zeb1 -1.04 

Slfn3 1.15 Tlr8 1.04 LOC100365921 -1.04 

Btg2 1.15 Hpse 1.03 Htr1f -1.04 

Ptpn1 1.14 Timp1 1.03 Plekhb1 -1.04 

Hsph1 1.14 LOC314492 1.03 Sgol1 -1.04 

Clec14a 1.14 Tifa 1.03 Plxna4a -1.05 

Itgb8 1.14 Ptgs2 1.03 Bub1 -1.05 

LOC301748 1.14 Oplah 1.02 Vcpkmt -1.05 

Ucp2 1.13 Cd53 1.02 Etv5 -1.05 

Pde4b 1.13 Wt1 1.02 Rnf144a -1.05 

Relb 1.13 Lsm1 1.02 Ldb2 -1.05 

Sbno2 1.13 Acvrl1 1.02 Ckap2l -1.05 

Pcsk5 1.13 Lcp2 1.02 Mtfr1 -1.06 

Htra4 1.12 Map4k3 1.02 Otub2 -1.06 

Plcxd3 1.12 Abcc9 1.02 Hist1h2bl -1.06 

Sept6 1.12 March3 1.01 Il1rap -1.06 

Svep1 1.12 Amigo2 1.01 Plk1 -1.06 

Art4 1.11 Crebrf 1.01 Casp12 -1.06 

Fam43a 1.11 Olfml3 1.01 Slc3a2 -1.07 

LOC102555109 1.11 Aebp1 1.00 Lmod1 -1.07 

Ksr1 1.11 Cdh2 1.00 Hist1h2ai -1.07 

Cd244 1.11 Aldh1l2 -1.00 Pde7a -1.07 

Ccl24 1.10 Ehd2 -1.00 NEWGENE_6497336 -1.07 

Scin 1.10 Cstf2 -1.00 Lmna -1.07 

Tlr6 1.10 LOC100361180 -1.00 Lama5 -1.07 

Rcl1 1.10 Pxdc1 -1.00 Hist1h2ah -1.08 

Pld5 1.10 Hspb6 -1.00 Dusp8 -1.08 

Csf1 1.10 LOC366763 -1.00 Uap1l2 -1.08 

Gramd4 1.10 Kif2c -1.00 Tfec -1.08 

Dtnb 1.09 Asb12 -1.01 Syt17 -1.08 

Tgm1 1.09 Plat -1.01 Eps15 -1.08 

Ifitm3 1.09 Mpeg1 -1.01 LOC103690838 -1.09 
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Klf2 -1.09 Slc40a1 -1.22 Kcnv2 -1.42 

Hist1h2ac -1.09 Igfbp6 -1.23 Cenpf -1.42 

Zfp385d -1.09 Epyc -1.23 Slc6a9 -1.42 

Ccnb1 -1.09 Mical2 -1.24 Hist1h2bf -1.42 

Snrpd2 -1.10 Herpud1 -1.24 Cars -1.43 

Shcbp1 -1.10 Kif23 -1.24 Ackr4 -1.43 

Pqlc3 -1.10 Tnc -1.24 Fbxl7 -1.43 

Matn2 -1.10 Pragmin -1.24 Lyrm1 -1.43 

Me1 -1.10 Lars -1.24 Sphkap -1.43 

Sdc2 -1.10 Unc5b -1.24 Slc7a3 -1.44 

Mthfd1l -1.11 Trabd2b -1.25 Shmt2 -1.44 

Mars -1.11 LOC102556004 -1.25 Nrk -1.44 

Hist1h2bcl1 -1.11 Inhba -1.25 Slc8a1 -1.45 

Mir421 -1.11 LOC691984 -1.25 Mrpl42 -1.45 

Col4a5 -1.12 Napb -1.25 LOC103690963 -1.45 

Pxdn -1.12 Xpot -1.26 Ndc80 -1.46 

Aspm -1.13 Cdh3 -1.26 Cdkl5 -1.46 

Zfp469 -1.13 Casc5 -1.26 Dbndd2 -1.47 

Lrrc17 -1.14 Ap1s3 -1.27 Mmp28 -1.47 

Pdia5 -1.14 Tmeff2 -1.27 Ncam1 -1.48 

Mybl1 -1.14 Fndc1 -1.27 Fbln2 -1.48 

Pde1a -1.14 Hmmr -1.27 Ssbp2 -1.48 

Tubb3 -1.14 St8sia2 -1.27 Ddit3 -1.48 

Oaf -1.15 Sesn3 -1.27 LOC103693330 -1.49 

Nuf2 -1.15 Psg19 -1.27 Wars -1.50 

RGD1566307 -1.15 Ttk -1.28 Capn6 -1.51 

Ncapg -1.15 Aars -1.28 Creb5 -1.51 

Kif11 -1.16 Ccdc141 -1.28 Col11a1 -1.52 

Cenpn -1.16 Itga6 -1.28 LOC102554096 -1.52 

Ccdc6 -1.16 S100a10 -1.29 Diaph3 -1.52 

Nexn -1.16 LOC100361756 -1.29 Crlf1 -1.52 

Pdgfrl -1.16 Dnajb4 -1.29 Pmepa1 -1.53 

Uchl1 -1.17 Mid2 -1.30 Pck2 -1.53 

Col3a1 -1.17 Itgb5 -1.30 Ppp1r14a -1.53 

Ccnd2 -1.17 Zmynd19 -1.31 Adamtsl2 -1.54 

Plac9 -1.17 Mki67 -1.31 Tfrc -1.55 

Col5a3 -1.17 Hist2h2ab -1.31 Sipa1l2 -1.55 

LOC100360754 -1.18 Nars -1.31 Stxbp6 -1.56 

Eprs -1.18 Hey2 -1.32 LOC100911253 -1.56 

Tubb6 -1.19 Top2a -1.32 Ppp1r14c -1.57 

Ncaph -1.19 Ect2 -1.32 Mmp12 -1.58 

C1qc -1.19 Pcdh18 -1.32 Prune2 -1.59 

Gata3 -1.19 Cenpe -1.33 Psph -1.61 

Ccna2 -1.20 Gpr34 -1.33 Pdlim7 -1.61 

Arhgap6 -1.20 Bcat1 -1.33 Sdpr -1.61 

Plau -1.20 Peg10 -1.34 Esco2 -1.62 

Fam107b -1.20 Sesn2 -1.35 Dmd -1.62 

Slc1a4 -1.21 Gpr64 -1.35 Cd74 -1.64 

Ifi27l2b -1.21 Olr1 -1.36 Dysf -1.65 

Cap2 -1.21 Tsc22d3 -1.36 LOC103690836 -1.66 

Adam19 -1.21 Igfbp5 -1.37 Nrep -1.68 

Atp2b4 -1.21 Rgs17 -1.38 Rgs4 -1.70 

Kif2a -1.22 Pycr1 -1.39 Aldh1a1 -1.70 

Hadhb -1.22 Depdc1 -1.40 Tubb2a -1.72 

Prrg4 -1.22 Jam2 -1.40 Notch3 -1.73 

Sema3d -1.22 Cth -1.41 Aoc3 -1.74 

LOC499229 -1.22 Bambi -1.41 Casp4 -1.75 

Daam1 -1.22 Anln -1.41 Jun -1.75 

Rhob -1.22 LOC103692529 -1.41 Mrgprf -1.76 

 



  Appendix 

109 
  

Gucy1b3 -1.76 

Slc7a1 -1.77 

Enpp1 -1.78 

Zdhhc2 -1.78 

Itgb3 -1.78 

Timp3 -1.80 

RT1-Da -1.81 

Prss35 -1.81 

Cntnap2 -1.81 

Adarb1 -1.82 

Cthrc1 -1.84 

Olr63 -1.85 

LOC103690839 -1.86 

Plxdc2 -1.87 

Mthfd2 -1.88 

Asns -1.88 

Loxl2 -1.89 

Cnn1 -1.95 

Cx3cr1 -1.95 

Galnt18 -1.96 

Fras1 -1.98 

Chac1 -1.99 

Fam129a -2.01 

LOC102546963 -2.02 

Slc7a5 -2.03 

Atf5 -2.09 

Ms4a4a -2.10 

LOC103690837 -2.12 

Psat1 -2.15 

Sox9 -2.17 

Itga11 -2.18 

Itga4 -2.18 

Tgfb3 -2.28 

Col6a3 -2.40 

Cmklr1 -2.42 

Piezo2 -2.45 

Serpine2 -2.50 

Trib3 -2.57 

C1qb -2.64 

Mcam -2.74 

Gucy1a3 -3.00 

Eln -4.08 
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