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Abstract 

Novel genes are being discovered at constantly increasing rates by sequencing 
bacterial genomes and bacterial communities. Gene function discovery has been 
lagging behind, but recent technological advances allow us to apply reverse 
genetics approaches on a genome wide scale. 

In this study I profile the growth of more than 3800 gene deletion mutants of 
the pathogen Salmonella Typhimurium in more than 550 perturbations including 
physical stresses, nutrient limitation, antibiotics and host defense molecules. 
Analysis of gene-drug interaction scores reveal significant phenotypes for 75% of 
the tested mutants. The data set provides a number of novel biological inferences, 
linking genes of unknown function to known pathways and providing insights 
into drug mode-of-action, uptake and efflux.  

Using similar high-throughput data available for E. coli., I provide the first 
comprehensive cross-species comparison of genetic networks in bacteria. 
Correlation analysis and detection of functional modules reveals broad 
conservation of cellular pathways and drug responses between Salmonella and E. 
coli. However, I also find intriguing cases of network rewiring and investigate how 
species-specific genes connect to conserved modules. 

Lastly, I investigate the highly different resistance levels of Salmonella and E. 
coli to the type 2 diabetes drug metformin and determine the Salmonella-specific 
efflux pump SmvA as the major component conferring drug resistance. 
Furthermore, I identify more transporters capable of exporting metformin and 
examine their wiring into the cellular networks of E. coli and Salmonella. This 
analysis reveals that many enterobacteria may have the potential to develop 
resistance against metformin leading to important implications for diabetic 
patients. 
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Zusammenfassung 

Sowohl durch die Genomsequenzierung einzelner Organismen als auch durch 
das Sequenzieren von bakteriellen Ökosystemen werden ständig neue Gene 
entdeckt, die Bestimmung ihrer Funktion hängt jedoch hinterher. Jüngste 
technologische Fortschritte erlauben es uns nun aber Methoden der reversen 
Genetik genomweit anzuwenden. 

In der vorliegenden Studie habe ich das Wachstum von mehr als 3800 
verschiedenen Deletionsmutanten des Pathogens Salmonella Typhimurium unter 
mehr als 500 verschiedenen Bedingungen charakterisiert, eine Methode bekannt 
als chemical genomics. Die getesteten Bedingungen beinhalteten unter anderem 
physikalische Stressoren, die Limitierung von verfügbaren Nährstoffen, Zugabe 
von Antibiotika oder Molekülen der Immunabwehr.  

Signifikante Phänotypen wurden für 75% der getesteten Mutanten gefunden. 
Das Datenset liefert Einblicke in eine Großzahl bisher unbekannter biologischer 
Zusammenhänge und erlaubt es Gene unbekannter Funktion mit bekannten 
zellulären Reaktionswegen oder Proteinkomplexen zu verknüpfen. Für die hier 
untersuchten Medikamente können außerdem Rückschlüsse auf Aufnahme und 
Export sowie zelluläre Targets geschlossen werden.  

Unter Zuhilfenahme eines ähnlichen, für E. coli verfügbaren Datensets 
präsentiere ich außerdem den ersten bakteriellen speziesübergreifenden Vergleich 
von chemical genomics Daten. Korrelationsanalyse und die Bestimmung 
funktioneller Genmodule offenbarten eine weitreichende Konservierung zellulärer 
Signalwege. Dennoch fanden sich auch interessante Beispiele von Neuvernetzung. 
Ich habe außerdem untersucht wie spezies-spezifische Gene mit den konservierten 
Modulen verbunden sind. 

Zuletzt habe ich die stark unterschiedlichen Resistenzniveaus von Salmonella 
und E. coli gegenüber dem Typ 2-Diabetesmedikament Metformin erforscht. Ein 
Salmonella-spezifischer Effluxtransporter namens SmvA wurde als entscheidende 
Komponente für die erhöhte Metforminresistenz identifiziert. Außerdem habe ich 
weitere zelluläre Pumpen entdeckt, die in der Lage sind Metformin zu 
exportieren. Die Ergebnisse zeigen, dass viele Enterobakterien das Potenzial haben 
Resistenz gegen Metformin zu entwickeln, was wichtige Auswirkungen für 
Diabetespatienten haben könnte. 
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1 Introduction 

1.1 Gene function discovery is lagging behind 

The number of bacterial genomes and communities sequenced has exploded 
in the last decade. Currently, almost 5,000 prokaryotic genomes are completely 
sequenced and assembled. Furthermore, >50,000 are in progress (NCBI, Jan 2016) 
and this number is constantly growing with the vast majority stemming from 
metagenomics studies sampling microbes in complex environments such as the 
gut or the ocean. With this overwhelming gain in sequence information comes the 
discovery of novel genes with sequences unseen before, with no similarity to any 
known gene or domain. 

This poses the question how researchers shall investigate the function of 
completely unknown genes and demands the implementation of high-throughput 
approaches able to match the pace of incoming sequence information. However, 
strictly speaking this problem is not a new one. To date even 1,600 E. coli genes 
(30% of its genome) remain of unknown function (Biocyc, Jan 2016).  

Thus, utilizing cutting-edge technology to discover gene function in a high-
throughput manner is imperative and should not only be applied to new, less 
known but also to well-studied organisms. By exploiting the extensive knowledge 
and experimental setups we have for model organisms, we will be able to establish 
new techniques faster. After all, filling the gaps of knowledge in our lab strains will 
allow for inferring the function of similar genes or their domains in other 
organisms. 

1.2 High-throughput approaches to understanding 

gene function 

Bacterial gene function has been classically investigated using forward or 
reverse genetics approaches. Forward genetics determine the underlying genetic 
basis for an observed phenotype, such as a fitness defect, the inability to infect or 
utilize certain nutrients. Once the responsible gene is found, the gene product can 
be expressed, isolated and biochemically characterized. This approach can be 
turned around by deliberately mutating (e.g. deleting, modifying, overexpressing) 
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a gene of interest to examine the resulting phenotypic changes, a method referred 
to as reverse genetics. 

Whereas forward genetics are not suitable to address the directed search for 
function of all the newly discovered genes, advances in genetic engineering, our 
ability to track many strains simultaneously (e.g. by genetic barcoding) and 
improvements in high-throughput acquisition and quantification of biological 
readouts allows adaptation of reverse genetics approaches to address this issue. 

However, modulating an uncharacterized gene often does not result in any 
severe phenotype. The difficulty often lies in redundancy and/or robustness of 
cellular networks. Bacteria live in extremely complex and often constantly 
changing environments. They need to adapt quickly and often more than one 
gene product is capable of fulfilling a specific task, as they cannot afford a single 
mutation to be detrimental. Furthermore, many genes carry out niche-specific 
tasks, only needed under rather extreme conditions, which the bacteria will not 
encounter when grown in standard laboratory conditions. 

Several ways to overcome this hurdle can be considered. For example, 
knowledge of the gene sequence allows for recombinant expression and 
subsequent biochemical characterization in vitro. Also, the search for direct, 
known interaction partners can be a very powerful tool to link a gene product of 
unknown function to a known cellular pathway. Alternatively, cellular back up 
systems can be overcome by challenging the organism with multiple physical, 
chemical or genetic perturbations (or combinations of those) to evoke a 
phenotype.  

1.2.1 High-throughput characterization of gene products 

With the advent of whole genome sequencing the opportunities to explore 
gene expression, protein localization and function increased drastically due to the 
possibility to systematically tag (and thereby purify or visualize), overexpress, and 
mutate genes. Combined with constantly improving robotic platforms 
tremendous advances have been made in systematically studying gene expression 
(both on RNA and protein level), protein and RNA localization and biochemical 
activity of gene products in various organisms.  

For instance, next-generation sequencing fueled the discovery of tracrRNA 
(trans-activating CRISPR RNA) as the third most abundant transcript class after 
rRNA and tRNA in Streptococcus pyogenes [1]. This was the missing piece in the 
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puzzle to finally determine the mechanism of adaptive immunity against viral 
infections in bacteria using CRISPRs (clustered regularly interspaced palindromic 
repeats).  

In another example knowledge of the genome sequence was used to construct 
a GFP-tagged library of yeast proteins to determine subcellular localization of 
more than 4,000 proteins, representing 75% of the yeast protein [2]. Later on this 
atlas was expanded to investigate the dynamics of 5330 proteins under different 
external stresses [3].  

Even biochemical activities of proteins can be investigated in a high-
throughput fashion. McKellar et al. recently determined the ligand binding 
profiles of three chemoreceptors from the kiwifruit pathogen, Pseudomonas 
syringae pathovar actinidiae (Psa). The strain used encodes 43 predicted 
chemoreceptors, none of which had been characterized before. In a high-
throughput fluorescence-based thermal shift assay the authors identified which of 
95 signal molecules tested are recognized by each recombinantly expressed ligand 
binding domain [4]. 

Of course also computational efforts to reliably annotate the biochemical 
activity of unknown gene products based on sequence and structure similarity, or 
using active side prediction are constantly improving [5, 6]. This will allow for 
rapidly transferring newly gained knowledge to similar protein domains or 
orthologous genes in other organisms. 

The studies above, despite representing just a few selected examples, 
impressively prove how information on mere existence, expression, localization or 
biochemical activity of gene products helps us understand their function. 
However, the interplay of proteins within the cellular network is complex. 
Understanding the biochemical function of a single protein is not enough to 
understand its true role in the dynamic system of a living cell. Regulation, 
feedback and interaction with other pathways have to be taken into account to 
gain a more detailed understanding of cellular processes. 

1.2.2 Physical interaction mapping 

Many cellular processes are performed by machineries composed of multiple 
proteins. Therefore, identification of direct protein-protein interactions (PPIs) is a 
powerful tool for studying gene function.  
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Two-hybrid techniques are commonly used to determine protein-protein 
interactions. The concept relies on bringing two fragments of a modular protein 
together resulting in measurable functionality, e.g. enzymatic activity or induction 
of GFP expression. One fragment of the modular protein is fused to the prey, 
whereas the second fragment is fused to the bait. Upon PPI between bait and prey 
the fragments complete each other, which can be detected in the chosen read-out. 
Early studies utilized two-hybrid strategies to systematically map protein-protein 
interactions in several viruses [7-9]. Later, assembly of the budding yeast genome 
resulted in extensive genome-wide studies to map protein-protein interactions 
using the same method [10-13].  

Furthermore, two landmark studies made use of affinity purification followed 
by mass spectrometry (AP-MS) to reveal modularity of the yeast protein complex 
landscape [14-16]. A bait protein is coupled to an AP tag and co-purified with 
interacting partners, which are subsequently detected by MS. The advantage of 
this method is that proteins are expressed at endogenous levels and associated 
proteins can be identified as well. However, this method will miss transient 
interactions. Both, two-hybrid as well as AP-MS strategies, have been successfully 
applied on a global scale in E. coli [17, 18] and other bacteria [19]. 

An extremely powerful method to detect also transient and even conditionally 
induced PPIs is FRET (fluorescence resonance energy transfer). The technique 
measures interaction of two proteins both fused to different fluorescent proteins. 
Detections of the PPI is due to the energy transfer between the excited donor 
fluorophore and the acceptor fluorophore when brought into close proximity by 
the protein-protein interaction. Kentner and Sourjik applied this concept for 
measuring all interactions in the chemotaxis network of E. coli and investigating 
their response to chemotactic stimulation [20]. Although the scale in which FRET 
has been applied so far is comparably small [20, 21], improvements in automated 
microscopy platforms promise up-scaling in the near future. 

Measuring PPIs gives insights into the structure and composition of protein 
complexes and can thereby be a useful tool to associate gene products of unknown 
function with known proteins. However, how protein complexes work together to 
build cellular pathways, crosstalk between those pathways and their responses to 
environmental cues remain largely elusive.  
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1.2.3 Genetic interaction mapping 

As previously mentioned, reverse genetics are a classical approach to address 
gene function discovery. Genetic perturbations comprise deletion, disruption (by 
insertions), overexpression or point mutation of a gene, all of them potentially 
resulting in gain or loss of function. However, a single genetic perturbation rarely 
results in a severe phenotypic change [22]. The gene of interest might be expressed 
only under specific conditions, the product of a related gene might cover for the 
loss or feedback regulation might normalize the effect.  

Thus, applying additional stress, e.g. a chemical or second genetic 
perturbation, might evoke a phenotype revealing the importance of the mutated 
gene, maybe even conditional essentiality. Before explaining how this reverse 
genetics strategy of investigating gene-gene, gene-drug or even drug-drug 
interactions facilitates gene function discovery, I will first outline the different 
kinds of interactions observed and how we can measure them in a high-
throughput fashion. 

Neutral, positive and negative interactions 

A genetic interaction between two loci suggests that the resulting gene 
products influence each other’s function and can be determined by measuring 
how the phenotype upon double perturbation differs from the expected 
combination of individual perturbations.  

The assumption is that the fitness upon double perturbation is equal to the 
product of fitness upon each single perturbation. For example, inhibition of 
protein 4 in Figure 1 using a drug and simultaneous deletion of gene 1 affects 
independent cellular pathways. If the drug treatment by itself results in a growth 
inhibition down to 70% of wild-type growth and the gene deletion mutant reaches 
60%, the expected fitness of the double perturbation would be 42% of wild-type 
growth. In this case we would speak of a neutral gene-drug interaction. 

However, if the targeted processes are connected in the cellular network, 
aggravating or alleviating interactions can be expected. For instance, deletion of 
gene 2 in Figure 1 will have no further effect if the downstream protein 4 is fully 
inhibited by a drug. The combination of the two perturbations will not result in 
the expected multiplicative fitness. Instead, the cells will behave just like upon 
drug treatment alone, thereby actually better than expected, which we refer to as a 
positive (or alleviating) interaction. Several studies have shown that positive 
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interactions frequently indicate gene products acting in the same cellular complex 
or pathway assuming that removal of the second component has no additional 
effect [23, 24].  

In contrast, when two targeted pathways lead to a common product (e.g. 
chemically inhibiting protein 4 and deleting gene 3 in Figure 1 the effect on the 
cell will be more severe than expected, which we refer to as a negative (or 
aggravating) interaction. If the common product is essential and there are no 
other pathways in place to yield this product the combination of perturbations 
will even result in synthetic lethality. 

 

 
Figure 1: Neutral, alleviating and aggravating gene-drug interactions.  
Deletion of a gene upon simultaneous inhibition of a second gene product (protein 4) using a drug can result 
in different gene-drug interactions depending on the functional dependencies between both genes. Typically, 
when independent pathways are targeted the interaction is neutral. In contrast, perturbation of the same 
pathway usually leads to alleviating (positive), perturbation of parallel pathways to aggravating (negative) 
interactions. Adapted from Brochado and Typas [25]. 

Positive and negative interactions follow the principles of a long known 
phenomenon called epistasis. Fisher described “deviations from the expected 
quantitative combination of independently functioning genes as epistacy”. 
Another typical use of the word epistasis is described by Bateson as “situations in 
which the activity of one gene masks effects of another locus, allowing inferences 
about the order of gene action”, so only referring to positive interactions (for both 
quotes see Box 1 in C. Boone’s review on Exploring genetic interactions and 
networks with yeast [26]). 

Measuring large scale genetic interactions in high throughput 

When the first complete systematic gene deletion libraries became available in 
yeast in 2002 [22], measuring genetic interactions was moved to a genome-wide 
scale pioneering tremendous advances in gene function discovery. The techniques 
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to measure fitness in high-throughput were largely developed in studies 
investigating gene-gene interactions but are applicable to other designs as well. 

In a landmark study, Tong et al. describe the development of synthetic genetic 
array (SGA), a technology to generate haploid double mutants and screen for 
synthetic lethality [27]. The screen was later expanded to cross 132 query mutants 
with the entire viable yeast deletion collection, so ~4700 mutants [28]. In SGA the 
phenotype of each mutant arrayed on a solid agar surface is assessed individually, 
however this approach was focused on detection of synthetic sickness or lethality 
(so negative interactions).  

The next step came with the introduction of the E-MAP (epistatic mini-array 
profile) strategy [29, 30]. In this method the colony size of mutants arrayed in a 
high-density format is measured precisely, thereby allowing for detection of 
negative as well as positive genetic interactions in a high-throughput manner.  

In parallel to SGA, an alternative method called dSLAM (diploid-based 
synthetic lethal analysis with microarrays) was developed to assess the fitness of 
mutants in competitive growth experiment. Each mutant is labeled with a genetic 
barcode and therefore the mutant’s abundance in a pool can be detected by 
microarray. The advantage of this method is the enormous throughput that can be 
reached due to the pooling approach and by now the analysis pipelines have 
improved to provide a quantitative interaction score [31, 32].  

All methods have been extensively used to study genetic and chemical genetic 
interactions in yeast [28, 30, 33, 34]. The E-MAP approach was afterwards 
adapted for use in E. coli, resulting in pioneering studies to build the first large-
scale interaction networks of bacterial cells [35-40].  

Genetic interactions provide insights into bacterial biology 

In principle, all kinds of perturbations can be combined to reveal gene-gene, 
gene-drug, or drug-drug interactions, all of them giving unique insights into 
cellular biology. Work in this field has been pioneered in yeast, but recently also 
cellular networks of bacteria are being explored using the same approach. 

When by 2006 the first systematic deletion libraries were available in E. coli 
[41, 42], two methods, GIANT-coli and eSGA, have been reported to construct 
double deletion mutants in this bacterium [35, 37]. In both methods Hfr 
conjugation is employed to transfer a mutation from a donor strain to a recipient 
strain carrying a second, differently marked mutation. The fitness of each strain is 
assessed by measuring growth on a solid agar surface.  
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A first genetic interaction map was published in 2011 and focused on 
interactions of genes involved in cell envelope biogenesis [38]. Considering that 
membrane proteins are usually difficult to purify and capture in PPI studies, this 
was a particularly interesting focus for the first genetic interaction study and 
indeed the authors report new players involved in outer membrane integrity, 
lipopolysaccharide (LPS) transport and formerly unknown regulatory circuits 
[38]. However, construction of targeted double deletions in high throughput is 
challenging in other bacteria lacking the Hfr mating system. One approach is to 
create random transposon insertion libraries in the background of a single 
deletion, but then throughput is greatly diminished [43]. However, the recently 
developed CRISPRi technology promises advances in combinatorial power in the 
near future [44].  

A much simpler, yet arguably equally powerful method is to combine a gene 
deletion with a chemical perturbation, also referred to as chemical genomics and 
following the principles of gene-drug interactions discussed above. Chemical 
genomics studies have been reported in a number of bacteria, including E. coli, 
Staphylococcus aureus, Streptococcus pneumonia, Francisella novicida and 
Shewanella oneidensis to name a few [36, 45-50]. All studies led to gene function 
or even pathway discovery, e.g. the identification of phosphofructokinase and an 
alternative proline biosynthesis pathway in F. novicida [49].  

Chemical genomics furthermore bring the advantage that not only gene 
function and wiring but also drug mode of action can be investigated. Amongst 
others the mechanism of kibdelomycin, a drug efficient against multidrug-
resistant S. aureus (MRSA), and the mechanism of synergy between trimethoprim 
and sulfa drugs have been discovered using the data sets mentioned above [36, 
50]. This aspect of chemical genomics is especially relevant considering studies 
conducted in bacterial pathogens. Another advantage is the possibility to probe 
complex stresses and mimic less defined, natural habitats in order to assess a 
gene’s importance in context of the multiple environmental cues encountered by 
the bacterium. Once the stress applied becomes more complex, the simple concept 
of neutral, positive and negative gene-drug interactions to map relationships 
between the targeted pathways seems less applicable, because the target of a 
complex stress cannot be defined. However, comparing interaction profiles of 
different mutants across conditions can reveal functional relation. 
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The power of genetic interaction profiles 

All large-scale genetic interaction studies mentioned above make use of the 
same powerful concept referred to as guilt by association. As all mutants (typically 
gene deletions) are sampled against a variety of chemical stresses or second 
genetic perturbations a profile across conditions, a so-called phenotypic signature, 
is obtained for each mutant. It turns out that genes with similar phenotypic 
signatures often act in the same cellular pathway, functional module or even 
protein complex [28, 36]. Therefore, it is possible to associate genes of unknown 
function to known cellular pathways, functional modules or even protein 
complexes. Typas et al. discovered two novel regulators of peptidoglycan synthesis 
aided by hierarchical clustering of E. coli chemical genomics data, to just name 
one example in which the guilt by association concept has been successfully 
applied [51]. 

Focusing on interaction profiles rather than single interactions also allows for 
comparison between cellular complexes and pathways on a network level in order 
to probe for crosstalk and regulatory relations. Furthermore, building networks 
based on chemical genomics can be especially useful to investigate drug uptake, 
targets and efflux. Considering that phenotypic signatures of drugs span across 
thousands of genes, whereas mutant signatures usually only range over hundreds 
of conditions, collapsing the long list of genes into functional modules and 
building networks based on their interaction with the tested drugs can positively 
reduce complexity in order to reveal higher order processes [36]. 

A more global visualization of interaction data will furthermore facilitate 
cross-species comparison. 

1.3 Comparing large-scale interaction data from 

different organisms reveals network rewiring 

Comparing genetic interaction data from different species has begun to shed 
light on how changes in DNA sequence result in changes in the cellular network 
and consequently phenotypic variation. 

In a landmark study Dixon et al. compare genetic interactions between 
budding and fission yeast (Saccharomyces cerevisiae and Schizosaccharomyces 
pombe, respectively) [52]. The two organisms share about 75% of their genes, but 
are separated by one billion years of evolution [53]. One distinct difference is a 
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genome duplication event in S. cerevisiae, resulting in paralogs for many genes, 
where S. pombe has only singletons. Thus, crucial differences in important cellular 
pathways can be observed. For instance, as the names suggest the division 
mechanism is different in both organisms. Also, S. cerevisiae as opposed to S. 
pombe is missing complexes involved in crucial regulatory tasks such as the pre-
mRNA splicing or the RNA interference machinery. Hence, substantial 
differences in cellular network organization between the two organisms are 
expected. Focusing on synthetic sick and lethal interactions Dixon et al. report 
29% conservation of genetic interactions [52]. This means the majority of 
interactions observed are species-specific confirming network rewiring and 
revealing interesting species-specific differences. 

In parallel, the investigation of E-MAP studies from orthologous gene pairs in 
S. cerevisiae and S. pombe led to the notion that although negative interactions 
between genes involved in parallel cellular processes show a certain level of 
conservation, the overall phenotypic signatures and especially positive 
interactions between genes coding for physically interacting proteins were even 
more conserved [24]. Thus, conservation at the level of functional modules is 
rather high (even human genes have been shown to be able to replace their yeast 
counterparts [54]), whereas cross-talk between those modules is less conserved 
(compare Figure 2).  

This observation suggests that not only loss, gain or change of function of 
certain genes is responsible for evolutionary changes and speciation events, but far 
more so the changes in how genes interact, how they are wired into the cellular 
network and how entire functional modules get repurposed [55]. Intuitively, this 
idea also explains the vast phenotypic variation that can be achieved even by little 
changes in DNA sequence. 

Supporting this concept Tischler et al. used RNA interference to perturb 
hundreds of C. elegans gene pairs orthologous to those showing synthetic lethality 
in S. cerevisiae. The conservation of essential genes between those organisms is 
comparably high, however, the authors estimated that maximum 5% of synthetic 
lethal interactions between non-essential genes are conserved [56]. 

Taken together, previous studies suggest that comparison of large-scale 
genetic interaction data has the power to reveal important features of cellular 
network organization, species-specific gene functions and will also give us a better 
understanding of how even highly conserved core processes interact and adapt to 
environmental changes. 
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Figure 2: Conservation between functional modules is higher than conservation between cellular 
processes. 
Genetic interactions between gene pairs whose products act in the same complex show the highest level of 
conservation (orange), whereas interactions between genes involved in the same biological process are less 
conserved (green). Interactions between genes acting in distinct biological processes are poorly conserved 
(blue). Adapted from Ryan et al. [55] 

1.4 Salmonella and E. coli – cousins or worlds apart? 

Comparing large-scale interaction data for bacteria has been lagging behind, 
although it is of crucial interest. As bacteria are haploid and in many cases easily 
genetically modified, creation of e.g. chemical genomics data sets is comparably 
easy. Since a single gene deletion results in complete removal of the gene product 
it is possible to assess conditional essentiality and find an essential common core 
genome between organisms. Furthermore, considering that we frequently find 
evolutionary related pathogenic and non-pathogenic bacterial strains (sometimes 
even within the same species), comparison of large-scale interaction might give 
insights into how rewiring and repurposing of cellular pathways and regulatory 
circuits contributes to the phenotypic variation resulting in such distinct life-
styles. It will help us understand how e.g. horizontally acquired virulence factors 
integrate in the cellular network, but also how existing pathways adapt to new 
environments like the infected host. Lastly, comparing chemical genomics in 
particular, allows for investigating differences in drug response between bacteria 
and might therefore contribute to the design of more narrowly targeted anti-
bacterial therapies, which is necessary to keep the development of multi-drug 
resistant strains to a minimum. 

positive genetic interactions within protein complexes (70%)
(S score > 1.8), we find a high degree of conservation for negative
interactions (68%) (S score < !2.3) (Figure 6A). This finding
suggests that not only the dependencies, but also the buffering
relationships within complexes are highly conserved.
However, biological systems do not exhibit just one level of

modularity, since groups of complexes and pathways function
together to carry out highly orchestrated and complex cellular
processes such as translation ormitosis. Indeed, careful scrutiny
of the data presented in Figure 2 reveals many instances of
such hierarchical modularity. For example, two distinct clusters
corresponding to the large and small ribosomal subunits can
be distinguished. These are ultimately united in a single ribo-
somal subtree (Figure S2B). Higher up the tree, a larger cluster
encompassing many genes involved in translation regulation
and ribosome biogenesis is apparent (Figure S2B).
Interestingly, using the interaction strength cut-offs described

above and process definitions obtained from the Gene Ontology
(Supplemental Experimental Procedures and Table S1), we find
that interactions between genes belonging to the same bio-
logical process are less conserved than interactions within
complexes (positive interactions, 58%; negative interactions,
38%), but significantly more conserved than interactions
between genes functioning in separate processes (positive inter-
actions, 19%; negative interactions, 15%) (Figure 6A). Analysis
of the complete data set is consistent with these observations:
the genetic interactions between the two species become less
conserved as larger modules are considered (same complex,
r = 0.46; same process, r = 0.16; different process, r = 0.03)
(Figure 6B). These observations, combined with the fact that
genes within the same complex or process are significantly
more likely to interact than random gene pairs, suggests that
biological systems exhibit multiple hierarchical levels of modu-
larity and that the extent of rewiring of genetic interactions is
dependent on the specificity of the module they belong to
(Figure 6C).

Global Connectivity of Biological Processes
We next analyzed the functional connectivity between the
different processes in the two organisms, identifying pairs of
processes that are enriched (or depleted) for genetic interactions
in fission yeast (Figure 7A and Table S3). Consistent with Fig-
ure 5A, we find that geneswithin the same process tend to be en-
riched in genetic interactions (large circles along the diagonal on
Figure 7A). Interestingly, we also see significant enrichment
between distinct biological processes, (large circles off the diag-
onal on Figure 7A). There is a clear indication of the existence of
‘‘hub processes’’—central processes that interact with many
diverse functions, such as chromatin/transcription, mitosis,
and mitochondrion organization. The role of chromatin as

A

B

C

Figure 6. Hierarchical Conservation of Genetic Interactions
(A) Calculated percentage of conserved genetic interactions for different

categories of gene pairs. Estimates were derived by comparing the observed

cross-species conservation of genetic interactions to the within-species

reproducibility of genetic interactions in the same category. See the Supple-

mental Experimental Procedures for full details.

(B) A scatter plot of S. pombe and S. cerevisiae genetic interaction scores for

pairs of genes belonging to different categories. r values were calculated with

Pearson’s correlation coefficient.

(C) A model for the evolution of genetic interactions with different colors

representing the level of conservation. Genetic interactions between gene

pairs whose products are cocomplexed are highly conserved (orange), those

between genes participating in the same biological process are less conserved

(green), while interactions between genes involved in distinct biological

processes are poorly conserved (blue).

See also Figure S5 and Data Set S4.
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Hierarchical Evolution of Genetic Interactomes
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The most comprehensive bacterial chemical genomics data set exists for E. 
coli [36]. Salmonella is one of E. coli’s closest relatives and a gene deletion library 
became recently available [57] allowing for creation of a comparable chemical 
genomics data set in this organism (this study). Whereas the species E. coli 
consists of commensal and pathogenic strains, Salmonella is almost purely 
pathogenic with the distinct feature of being able to survive and replicate inside of 
host cells. As the two bacteria exhibit such significant differences in life-style 
despite their comparably close relation, comparing their cellular networks might 
shed new light into adaptation of cellular processes to new niches. 

1.4.1 Evolution of Salmonella enterica subspecies enterica 

The genera Salmonella and Escherichia, both part of the gamma-
proteobacteria class and Enterobacteriaceae family, represent Gram-negative, rod-
shaped bacteria with a facultative anaerobe life style. Salmonella and E. coli 
diverged from a common ancestor approximately 100 million years ago [58]. 

Since the divergence of Salmonella from E. coli, virulence has evolved in three 
phases [59, 60].  

First came the acquisition of Salmonella pathogenicity island 1 (SPI-1) by 
horizontal gene transfer. SPI-1 encodes a set of virulence factors involved in 
invasion of epithelial cells in the intestine, recruitment of neutrophils and 
intestinal fluid secretion. Therefore, as demonstrated by experiments in mice, 
mutations in SPI-1 genes attenuate virulence of Salmonella upon oral infection 
but have no attenuating effect after intraperitoneal injection. The presence of SPI-
1 distinguishes all lineages of the genus Salmonella from E. coli.  

The acquisition of Salmonella pathogenicity island 2 (SPI-2) by horizontal 
gene transfer represents the second major evolutionary event forming two distinct 
species, Salmonella enterica and Salmonella bongori. S. bongori lacking SPI-2 is a 
pathogen of cold-blooded animals, most commonly found in reptiles. In S. 
enterica SPI-2 genes are involved in systemic spread of the infection and 
intracellular survival. Thus, mutations lead to attenuated virulence even upon 
injection of the bacteria into the peritoneal cavity of mice. 

The species S. enterica is further divided into several subspecies: enterica 
(subspecies I), salamae (II), arizonae (IIIa), diarizonae (III), houtenae (IV), and 
indica (VI). Whereas most subspecies harbor bacteria associated with cold-
blooded animals, the formation of Salmonella enterica enterica resulted in a 
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drastic host range expansion. Strains of this subspecies are most frequently 
isolated from avian and mammalian hosts. This implies that divergence of S. 
enterica enterica involved the evolution of factors allowing the bacteria to 
overcome a more complex host immune system. 

Members of the subspecies enterica are further classified into more than 2300 
serological variants, so called serovars. The classification is based on the presences 
of antigens following the Kauffman-White scheme [61]. Interestingly, the host 
range varies widely between serovars. For instance, Salmonella Typhi (i.e. S. 
enterica subspecies enterica serovar Tyhpi) is restricted to higher primates and 
humans, whereas Salmonella Typhimurium can infect a broad variety of avian and 
mammalian hosts, including mice and humans [59]. 

1.4.2 Salmonella Typhimurium pathogenesis 

Non-typhoidal Salmonella (NTS) strains, such as Salmonella Typhimurium 
and Salmonella Enteriditis are the most common cause of food-borne disease 
worldwide with case numbers estimated as high as 1.3 billion per year including 3 
million deaths [62].  

In humans Salmonella Typhimurium (STm) causes acute gastroenteritis 
characterized by fever, diarrhea, intestinal cramping and neutrophil infiltrates. In 
otherwise healthy individuals this is a self-limiting disease. In 
immunocompromised, very young or elderly patients, however, the infection can 
spread to a systemic level and result in life-threatening bacteremia. Especially in 
sub-saharan Africa NTS strains have emerged as the dominant cause of 
bloodstream infections in adults and children, with the most prominent risk 
factors being HIV infection, malaria and malnutrition. All patients present with 
severe fever; hepatosplenomegaly and respiratory symptoms are common as well, 
whereas intestinal symptoms are rare. Case fatality has been estimated to 20-28% 
and many multi-drug resistant strains are emerging [63-65]. 

The infectious cycle of STm has been the subject of excellent reviews [66-70]. 
In brief, after ingestion of contaminated food or water, Salmonella is able to 
survive the acidic pH of the stomach and proceed to the small intestine. There it 
passes the mucous layer and invades the intestinal epithelium. The ability to enter 
non-phagocytic epithelial cells is mediated by a type III secretion system (T3SS) 
encoded on SPI-1. The needle-like complex allows the bacteria to inject effector 
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proteins into the host cell, where they cause major actin rearrangements resulting 
in membrane ruffling and uptake of the bacteria [70]. 

Once inside the host cell Salmonella resides in a membrane-bound 
compartment, the Salmonella containing vacuole (SCV). Effectors secreted 
through the vacuolar membrane by a second T3SS encoded on SPI-2 prevent 
fusion with lysosomes allowing for intracellular survival and replication [66]. 
After crossing the epithelial barrier the bacteria reside in phagocytic cells such as 
macrophages, dendritic cells and neutrophils.  

Interactions with the host cells trigger a series of events resulting in gut 
inflammation. Infected host cells secrete cytokines such as interleukin (IL) 18 and 
23 which help to amplify the innate immune response by activating T cells to 
secrete interferon-gamma, IL-17 and IL-22, which in turn stimulate antimicrobial 
responses in macrophages and epithelial cells. For instance, IL-17 triggers the 
secretion of chemokines by epithelial cells resulting in recruitment of neutrophils 
to the inflammation site. In sub-epithelial tissues neutrophils prevent extracellular 
growth of Salmonella and therefore help avoiding systemic dissemination. IL-22 
induces the secretion of antimicrobial peptides such as calprotectin and lipocalin-
2, designed to deprive luminal bacterial pathogens from zinc and iron, 
respectively. 

In consequence to the initiated immune response the bacteria are finally 
cleared from sub-epithelial tissues. Furthermore, during the course of 
inflammation the intestinal lumen is rendered a hostile environment due to the 
induced presence of reactive oxygen species (ROS), and antimicrobial peptides as 
well as the diminished nutrient availability caused by diarrhea. All of these 
represent general antibacterial defenses, therefore it is not surprising that the 
resident microbiota is damaged. Recent reports demonstrate that Salmonella 
Typhimurium, however, has developed several strategies to overcome the 
antibacterial defenses and exploit the created niche to outgrow the impaired 
microbiota (reviewed in [69]). For example, most commensal enterobacteria 
produce enterobactin, an iron chelator inhibited by the antimicrobial peptide 
lipocalin-2 produced during inflammation. Salmonella produces an additional 
iron chelator, salmochelin, which is not bound by lipocalin-2 and is therefore not 
affected by the iron deprivation [71]. Additionally, tetrathionate is produced in 
the gut lumen by oxidation of the naturally occurring thiosulfate during 
inflammation. Studies demonstrated how Salmonella can utilize tetrathionate as 
an electron acceptor for anaerobic respiration and how this allows utilization of 



 15 

ethanolamine as a carbon source not accessible for other bacteria [72, 73]. This 
confers an advantage to Salmonella, because most other bacteria are restricted to 
comparably less efficient fermentation. 

In conclusion, a subset of the Salmonella bacteria arriving in the terminal 
ileum invades the intestinal epithelium resulting in acute inflammation. In turn 
this gives an advantage to the bacteria staying behind in the lumen, allowing them 
to thrive and outcompete the resident microbiota, thereby promoting the 
transmission via the fecal/oral route. 

1.4.3 Genomic and phenotypic comparison of S. Typhimurium 

and E.coli 

In this study I create a chemical genomics data set for Salmonella 
Typhimurium using the recently published single gene deletion collections [57], 
which were kindly provided by Helene Andrews-Polymenis and Michael 
McClelland prior to publication. The data set is supposed to serve as a resource to 
investigate gene function as well as drug mode of action but also to allow for 
comparison to large-scale interaction data in E. coli. The available chemical 
genomics data set in E. coli is large and both organisms are well studied. Especially 
for E. coli annotation and experimental evidence for gene function are extensive 
allowing for benchmarking and ensuring comparability of the data sets.  

Furthermore, recent comparative genome studies provide insights into genes 
shared between strains of the E. coli and S. enterica species determining a core- 
and pangenome. For instance, in 2011, Jacobsen et al. compared 35 S. enterica 
genomes alongside two different E. coli genomes. The authors report a Salmonella 
core genome of approximately 2,800 gene families shared by all Salmonella strains 
investigated. The complement of gene families detected across all strains accounts 
to 10,000 and is referred to as the Salmonella pangenome. In a similar study 
Gordienko et al. demonstrate that despite extensive horizontal gene transfer 
between E. coli and Salmonella, the latter maintains a stable species-specific gene 
pool, whereas Shigella and E. coli share a common gene pool consistent with 
previous phylogenetic analyses [58].  

From studies like these we can derive information about genes specific to the 
genus, species, subspecies, serovar and even strain level. This will aid the 
investigation of how evolutionary recent or ancient genes contribute to 
phenotypic responses to external stresses. One assumption may be that 
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evolutionary young players are frequently involved in very niche-specific tasks 
and hence relevant only under very specific conditions (resulting in rare 
observations of significant phenotypes for those genes in chemical genomic 
screens). Furthermore, it will be interesting to test whether genes of the core 
genome shared between Salmonella and E. coli vary in their phenotypic response. 
This would indicate species-specific rewiring or repurposing of core cellular 
processes to adapt to a new environment, e.g. the Salmonella containing vacuole, 
or to respond to the acquisition of new genes. Differential regulation of 
homologous genes also brings implications for the clinical setting. For example, it 
has been shown to be involved in LPS modifications conferring resistance to the 
antibiotic polymyxin B to Salmonella [74]. In general, the cell envelope is of 
particular interest as it constitutes communication interface and at the same time 
barrier to the external environment, allowing interactions with e.g. the host or 
other microbes while conferring protection from unwanted molecules such as 
antibiotics. However, due to their biochemical properties envelope components 
are difficult to study. Genetic interactions of genes coding for envelope 
components or their synthesis machineries are therefore of great interest. 

1.5 Aim of the study 

The aim of my PhD study was to create an extensive gene-drug interaction 
map for the pathogen Salmonella Typhimurium to be used as a valuable resource 
for studying gene function, drug mode of action and wiring of cellular processes. 

In the following chapters I describe how I acquired the chemical genomics 
data set with more than 4 Mio gene-drug interactions and how it can be utilized to 
investigate gene function and drug mode of action. Furthermore, I describe how 
comparison of chemical genomics data from two different organisms can reveal 
network conservation as well as rewiring. Lastly, I investigate an intriguing 
difference in Salmonella’s and E. coli’s capacity to deal with the widely prescribed 
type 2 diabetes drug metformin. 

The completion of this project was of course a highly collaborative effort. 
Therefore, I included a disclaimer at the end of every chapter to ensure clarity on 
contributions of colleagues and collaborators. 
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2 Creating an extensive gene-drug interaction 

map for Salmonella Typhimurium 

In the following chapter I describe the creation of the chemical genomics data 
set for Salmonella Typhimurium. I used targeted single-gene deletion mutants 
arrayed on a solid agar surface containing sub-inhibitory concentrations of 
various chemicals. Colony size served as a proxy for fitness to determine gene-
drug interaction scores. After extensive quality control and curation of the mutant 
library the data set yields more than 4 Mio gene-drug interactions, providing 
significant phenotypes for many genes of unknown function. I furthermore show 
that comparing interaction profiles between mutants gives insights into their 
functional relation. 

2.1 Study design 

2.1.1 Method selection 

Chemical genomics are highly flexible in kind and scale of perturbations to be 
tested. Furthermore, they did not require any additional manipulation of the 
existing S. Typhimurium knock out strains. Therefore, I preferred this approach 
to measuring genetic interactions in double deletion mutants (i.e. gene-gene 
interactions), which would have required introduction of a high-throughput 
double mutant generation pipeline.  Furthermore, the aim of this study was to 
probe the role of each gene in the great variety of conditions Salmonella 
encounters in its natural habitat and the infected host, which can be more easily 
reflected by physical and chemical perturbations as compared to a second genetic 
perturbation. 

As robotics were available I preferred the arrayed setup to a pooled approach 
to avoid biases due to initial strain abundance and fitness [25]. Growing the 
bacteria on a solid surface allowed me to work in a high-throughput manner by 
selecting a high-density format of 1536 mutants per plate, whereas in liquid 
culture the maximum reasonable format would have been 384 mutants per plate. 
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Also, the higher throughput not only significantly reduces the time necessary to 
perform the experiments, but also costs.  

As a proxy of fitness I measured colony size after 12-14 h. This has been 
proven to be an accurate measure of growth as time course and end point 
measurements of colony size correlate (George Kritikos, unpublished data). Based 
on this end point colony size I calculated an interaction score for each gene-drug 
combination in order to obtain the chemical genomics data set. 

2.1.2 Genomic space probed 

The two single-gene deletion (SGD) libraries used in this study were provided 
by Helene Andrews-Polymenis (Texas A&M) and Michael McClelland (UCI) 
prior to publication. By design the collection does not include essential genes and 
amongst others excluded the following classes: rRNAs, tRNAs, ∼100 structural 

elements of active lysogenic phage and protein coding sequences under 100 aa in 
size if not annotated in the genome of S. Typhimurium strain LT2 [57].  

The mutants were created in the background of Salmonella enterica servovar 
Typhimurium 14028s, referred to as wild-type Salmonella in the following. 
Replacing the gene of interest with an antibiotic resistance cassette using the 
classical lamba-Red recombinase system yielded the desired mutants [75]. Primers 
were designed to preserve the first and last 30 bases of each targeted sequence in 
order to reduce polar effects on neighboring genes. The kanamycin (Kan) marker 
was placed co-directional with the deleted gene whereas the chloramphenicol 
(Cm) cassette was placed in opposite direction [57]. Both cassettes carry 
promoters at the end to ensure transcription of the downstream genes. Notably, as 
bacterial genes are organized in operons, this might result in polar effects due to 
transcription of the downstream gene at unphysiological levels or production of 
antisense RNA against the upstream gene in case of the oppositely placed Cm 
cassette. 

We single colony purified the two collections to remove any potential 
contaminants and ensure an isogenic population. Next, we rearranged them on a 
minimal number of 96 well plates so all mutants finally fit on five plates in the 
desired 1536 array format. The final data set presented here consists of 3834 
unique mutants covering more than 80 % of the S. Typhimurium genome (S. 
Typhimurium strain LT2, which is closely related to the 14028s strain used here 
but better annotated, has 4672 genes, Biocyc database, Dec 2015). More than 3000 
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mutants are present in both libraries, leaving around 400 mutants unique to each 
collection.  

2.1.3 Chemical space probed 

I selected the chemicals used in this study to impact a large variety of cellular 
processes and mimic different environments encountered by Salmonella (Figure 
3A).  

 
Figure 3: Chemical space probed.  
Grouping of 175 unique stresses subjected to further analysis. 

Antibiotics target central cellular processes such as replication, gene 
expression and cell wall synthesis. Thus, challenge with sub-inhibitory 
concentrations of antibiotics will reveal genes involved in these essential pathways 
and furthermore result in strong phenotypes for mutants of crucial players. As 
gene-drug interactions are generally rare, those strong phenotypes will provide 
power for cluster and network analysis.  

Chemical genomics proved useful to study not only gene function but also 
drug mode of action, because comparison of phenotypic signatures across genes 
gives insights into common or distinct secondary targets, uptake and efflux 
mechanisms. Thus, besides including a wide range of antibiotic classes, I often test 
members of different generations of the same class. Furthermore, synergies and 
antagonisms between drugs, or between drugs and components of the patient’s 
diet are often poorly understood. Keeping this in mind and taking into account 
other projects ongoing in the lab, I included a few antibiotic combinations as well 
as combinations of antibiotics with the common food additive vanillin.  

During the passage through different environments Salmonella encounters 
stresses like nutrient limitation, changes in osmolarity, pH (stomach acid) and 
temperature (e.g. inside host compared to outside). Thus, I included general 
stresses, such as changes in salt concentration, pH and temperature. I also test 
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minimal media with different carbon sources. Minimal media conditions allow us 
to assess nutrient requirements for the tested mutants. Furthermore, strong 
phenotypes for auxotrophs will add power when clustering algorithms are used to 
visualize chemical genomics data. 

Inside the host bacteria are furthermore exposed to other microbes (also 
relevant outside the host), the compounds they produce as well as host hormones, 
metabolites, components of the host defense mechanisms, and even drugs 
consumed by the human host. To sample these more complex stresses I included 
conditioned media derived from other bacteria, host hormones, human targeted 
drugs as well as minimal media conditions designed to mimic the environment in 
the Salmonella containing vacuole [76]. 

Initially I attempted to test 200 unique chemicals, many of them in up to four 
different concentrations resulting in 750 single conditions. A number of 
conditions had to be excluded due to solubility limits or insufficient growth of 
Salmonella. Finally, 175 unique stresses (Figure 3A) represented by 585 single 
conditions were subjected to further analysis. 

 
Figure 4: MIC test strip for Amoxicillin.  
Wild-type S. Typhimurium was spread as a lawn and the MIC test strip was placed on top immediately. After 
over night incubation at 37°C the MIC can be read at the intersection of the halo with the MIC test strip, in 
this case ~1.5 µg/ml. The highest concentration screened for Amoxicillin was 0.5 µg/ml. 

As every substance had to be applied in sub-inhibitory concentrations my first 
step was to determine the minimum inhibitory concentration (MIC) for each 
chemical. For most antibiotics MIC test strips were commercially available (Figure 
4). For the remaining compounds I determined the MIC by literature research 
(also taking into account data on related organisms, e.g. concentrations tested in 
the chemical genomics study in E. coli [36]) or manual testing. For most 
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chemicals I screened four different concentrations, the highest one usually not 
exceeding 50% MIC. 

2.1.4 Experimental layout 

In the following text I will use the terms Kan library and Cm library for the 
part of the single gene deletion collection carrying the kanamycin or 
chloramphenicol resistance marker, respectively. I arranged both libraries on a 
total of five different 1536 plates, the first two containing only Kan mutants, the 
second two containing only Cm mutants and the last one consisting of half Kan 
and half Cm mutants. I refer to these plates as the five library plates.  

A single condition describes one defined perturbation, e.g. one specific 
concentration of a chemical, one specific carbon source in minimal media or one 
specific temperature tested. I measured four replicates for every library plate 
under every condition. 

In the results below I will therefore frequently refer to three different 
dimensions: mutants (on five library plates), conditions and replicates. 

 

 
Figure 5: Screen layout.  
All mutants are combined on five different library plates in 1536 format.  Every single condition was 
measured in four replicates. 

2.2 Data acquisition 

2.2.1 Workflow 

To obtain the test plates we added the dissolved chemical to 2% LB-agar prior 
to pouring the plates. At this step some chemicals had to be discarded due to 
solubility limits.  

5 Library plates 4 Replicates 

...
 

585 Conditions 



 

 22 

Glycerol stocks of the mutants were kept in 384 well plates at -80°C and all of 
the transfer steps described below were carried out using the Singer Rotor. To 
arrange the library plates in 1536 format we transferred the mutants from a 
thawed well plate to an agar plate and in a second step combined four different 
384 plates into one 1536 plate. These 1536 plates served as sources for transferring 
the bacteria to the test plates and were maintained for up to one month by re-
arraying on LB agar (see also Maintenance of library plates, page 90). In the 
following I will use the term batch for all conditions tested from one initial 
arrangement of frozen stocks into 1536 format (Figure 6). 

 

 
Figure 6: Data acquisition workflow.  
Mutants were stored as glycerol stocks in 384 well plates at -80°C. Using the Singer Rotor the bacteria were 
transferred to agar plates and arranged in 1536 format. Next, the mutants were transferred to agar plates 
containing the chemical perturbation. All conditions tested from the same initial arrangement of five library 
plates in 1536 format belong to the same batch. After incubation at 37°C a high-resolution picture was 
obtained and the colony size was measured as area covered by the colony in pixels using the Salmonella 
growth profile of IRIS (developed by George Kritikos, unpublished data). 

Again the Singer Rotor was used to transfer the libraries from source to test 
plates containing the chemical perturbation. After incubation at 37°C for an 
average duration of 12 h a high-resolution picture was taken. When the bacteria 
were growing generally slow in a specific condition a longer incubation time was 
allowed. However, this time cannot be extended to more than 24 h, because plates 
dry out and even if kept wet the growth dynamics between outer and inner part of 
the plate will differ too much to be suitable for the analysis pipeline used. Thus, 
some conditions had to be discarded at this step due to insufficient growth, 
majorly a series of carbon sources in M9 minimal medium and anaerobic 
conditions.  
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Using the pictures I measured the colony sizes using the Salmonella growth 
profile of IRIS (software developed by George Kritikos, manuscript in 
preparation) as the area covered by the colony in pixels. 

2.2.2 Troubleshooting 

After a small pilot screen of 40 conditions I calculated general parameters 
such as distribution of median plate colony sizes, plate interquartile ranges (IQRs) 
and replicate correlation. It became evident that poor replicate correlations 
usually involved the first plate pinned from each source (see correlations involving 
replicate A in Figure 7). In the first transfer from a new source plate the plastic 
pad carries a lot of material to the target plate influencing the inoculum strongly.  

 

  
Figure 7: The first plates pinned from a new source show an inoculum effect.  
Pairwise Pearson replicate correlation across conditions and library plates. Pairs involving the first plate 
pinned (A-B, A-C, A-D) show lower correlation than the other pairs.  

In a test array I investigated correlation between consecutively arrayed plates 
with the premise of four replicates, so calculating overall correlation of four 
consecutive plates starting on the first, second, third plate and so on. No 
significant differences could be detected from the third plate onwards, meaning 
that plates 3-6 will yield similar correlations as plates 4-7 and so on. Plates 1-4 and 
2-5 show an overall decreased correlation indicating that the first two plates 
pinned from a fresh source show the inoculum effect (data not shown). Thus, I 
adapted the procedure by pinning two dummy plates (plain LB-agar) before each 
set of test plates and discarded the data from this first batch. 
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Initially, replicates for each condition were pinned from the same source plate 
to keep logistics simple and to avoid difference in storage time of the chemical 
plates. However, during the course of experiments, reproducible technical biases 
proved to be a confounding factor in the analysis. If replicates come from the 
same source the risk of reproducing technical artifacts and therefore detecting 
them as gene-drug interaction is higher. Thus, after becoming aware of this 
problem, I spread the array of replicates across different sources and days. 

2.2.3 Quality control 

First, I inspected all plates visually. Plates with insufficient overall growth, or 
with severe pinning errors (uneven agar plates can result in incomplete pinning) 
were removed immediately. The remaining plates were subjected to a thorough 
quality control procedure, for which I set up an automated pipeline applicable and 
used for other screen data in the lab. 

 
Quality control measure Threshold applied 
Replicate correlation < 0.8 
Median library plate correlation < 0.7 
Colony size median < 2300 px, > 3800 px 
Normalized colony size IQR > 300 px 
Circularity median < 0.83 
Circularity standard deviation > 0.07 
Table 1: Quality control parameters and their corresponding thresholds. 

 
I chose all thresholds for the measures discussed below based on the overall 

distribution in the data set as demonstrated for a few examples in Figure 8. For a 
complete overview of all quality control parameters and their corresponding 
thresholds see Table 1. 

I removed plates with poor replicate correlation or poor overall correlation to 
the same library plate across conditions, as this can be an indicator of technical 
errors such as irregular pinning of the agar surface or systematical errors such as 
faulty arrangement of the 1536 plate, accidental turning of the plate etc.  

In order to calculate a meaningful control size for the interaction scoring all 
plates have to be brought to the same level of overall growth (see 2.2.5). As this is 
achieved by a multiplicative normalization step (see 2.2.4), plates with extremely 
high or low median growth have to be removed otherwise small differences in 
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colony sizes would be artificially inflated or compacted due to extreme 
multiplication factors.  

As the growth of most mutants is unaffected by the genetic perturbation and 
interactions with the chemicals are rare due to the sub-inhibitory concentrations, 
the colony sizes are largely uniform. Therefore, a high IQR of colony sizes in one 
plate can indicate different sources of noise such as irregular pinning, strong 
stresses affecting many mutants, fluctuations in oxygen availability in center and 
edges of the plates. An uneven agar surface for example can result in locally higher 
pinning pressure, thereby larger colonies and eventually artificially high 
interaction scores. This bias can only be detected after normalizing for increased 
growth in outer rows and columns. Therefore, I excluded plates with a normalized 
colony size IQR higher than 300 px from the analysis. 

 

 
Figure 8: Overall distribution of selected quality control measures and thresholds applied.  
For every parameter the threshold was chosen based on the data set in order to remove only plates with very 
extreme values and is indicated by the red line. Minimal media data was excluded from this analysis. A) All 
pairwise Pearson replicate correlations of raw colony sizes. B) Plate medians of raw colony sizes. C) Plate 
interquartile ranges (IQRs) of normalized colony sizes. 

Furthermore I sometimes observed sliding of the pad on the agar surface 
during the transfer from the source to the test plate. This results in oval colonies 
and artificial colony sizes. I excluded plates with very poor overall colony 
circularity (median < 0.83) as well as plates with very diverse colony circularity 
values (standard deviation > 0.07) to account for local effects.  

Plates based on minimal media show widely different distributions in the 
investigated parameters. Auxotroph mutants cause an increased number of small 
colony sizes skewing median colony size and IQR. The extreme growth defects 
result in strong phenotypes and as the interaction scores are normalized by 
condition in a final step, it is unlikely that small changes caused by technical 
errors have a stronger impact than the actual phenotypes. Thus, I kept all minimal 
media conditions without applying the quality control pipeline. 

A B C 
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2.2.4 Normalization 

Before using the colony sizes as a proxy of fitness for the interaction scoring a 
series of normalization steps are necessary. All of them are implemented in an 
adapted version of the EMAP toolbox for MATLAB [30].  

In brief, a second order surface correction is applied to every 1536 plate to 
correct for pressure biases in the robotics used. Next, the two outermost rows and 
columns are normalized to the growth in the center of the plate. This is necessary 
as the colonies in the outer rows and columns grow to bigger sizes due to a higher 
availability of space, nutrients and oxygen. Lastly, every plate is brought to the 
same overall growth by a multiplicative correction. This step is crucial for the 
calculation of the control size representing the unperturbed growth of each 
mutant, which I will explain in more detail in 2.2.5. 

To account for small differences introduced in the initial arrangement of 1536 
plates from frozen stocks all normalization steps were carried out per batch (for 
definition see 2.2.1). 

2.2.5 Scoring and clustering 

The gene-drug interaction scores are calculated by comparing the normalized 
colony size of a mutant in a specific condition (mean across replicates in this 
condition) to the overall growth of that same mutant (median across all replicates 
and all conditions) in a modified t-test. If the mutant has a growth defect in the 
condition of question this will be reflected in a negative s-score, if the mutant 
grows better than usual it will yield a positive s-score (Figure 9). 

A minimum of two replicates per library plate and condition is required for 
the score calculation (note that although four replicates were measured for each 
plate, some of them may have been removed in the quality control process). 

As the mutants should be affected by only few conditions the median across 
many conditions should be representing the unperturbed growth of the mutant. 
This is only valid if the overall growth is similar across the tested conditions. 
Therefore, every plate is corrected for differences in overall growth (due to 
fluctuations in temperature, aeration, incubation time etc.) during the 
normalization. 

The modification lies in a minimum bound for the experimental and control 
standard deviation. Reproducibility can occasionally be extremely high resulting 
in artificially strong s-scores, which do not reflect the strength of the gene-drug 
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interaction proportionally but are caused by extremely low variance values in the 
denominator of the equation. Therefore, a minimum bound based on the 
expected variance for mutants with similar growth phenotypes was introduced. 

Finally, the s-score distribution of each condition was rescaled to fit the 
spread of a normal distribution by adjusting the IQR to 1.35, thereby ensuring 
comparability of conditions before applying clustering algorithms. The 
normalized s-score matrix was then subjected to two-dimensional, hierarchical 
clustering using Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/) 
and the resulting gene-drug interaction map was visualized using Java TreeView 
(http://jtreeview.sourceforge.net/). 

 

 
Figure 9: Calculation of gene-drug interaction scores.  
To calculate the gene-drug interaction a modified t-test is applied to yield the s-score. The s-score compares 
the colony size of a mutant upon one specific perturbation against the overall growth of that same mutant 
across all conditions. Minimum bounds on the experimental and control variance avoid artificially strong s-
scores. 

2.3 Determining sources of noise 

2.3.1 Batch effects 

While accumulating data I visually inspected the growing clustergram after 
every batch. Sometimes I noticed strong positive s-scores for a large set of mutants 
in one set of conditions and the same mutants having strong negative phenotypes 
in another set of conditions (Figure 10). There was neither obvious similarity 
between the chemicals nor between the mutants. However, the data for the 
chemicals was often obtained on consecutive days. Changes in colony size can 
occur while maintaining the library source plates on agar and those changes are 
consequently transferred to the chemical test plates. When this happens a mutant 
will have a bimodal distribution of colony sizes across the condition of the current 

μExp = Mean across replicates of normalized colony sizes for one specific mutant under one specific condition 
varExp = Variance of the above, with a minimum bound 
nExp = Number of replicates (usually 4) 
 
μCont = Median of normalized colony sizes for a specific mutant across all conditions (considering all replicates) 
varCont = Variance of the above, with a minimum bound 
nCont = Typical number of replicates (determined by the mode of number of replicates across all conditions) 
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batch. For example, some mutants might take a longer time to recover after being 
transferred from frozen stocks to agar plates or they might be affected by keeping 
the plates at 4°C, when sources are not used the same day. Also, these errors can 
be introduced while transferring the mutant from one agar plate to the next, either 
due to cross-contamination or uneven inoculum (e.g. pad has uneven length of 
pins or touches some colonies only at the edge, transferring very little bacteria). As 
the control size of each mutant is equal to the median across conditions, a 
bimodal distribution will lead to a false control size and all the conditions with 
smaller colony sizes (left peak in the distribution) will result in negative scores, 
whereas all the conditions with bigger colony sizes will result in positive scores. 

 

 
Figure 10: Sub-batch effects.  
Fragment of the entire clustergram across 585 conditions (x-axis) and ~650 mutants (y-axis). The cluster of 
conditions with almost all negative scores (blue stretch) are all conditions tested in the beginning of batch 4 
whereas conditions belonging to the yellow stretch were all tested at the end of batch 4. 

Thorough inspection of the conditions behaving similar always revealed a 
time dependency. To correct for this effect I introduced sub-batches when 

s-Score 
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necessary, meaning that data from the same batch was split dependent on the days 
they were obtained and processed separately for normalization and scoring. 

2.3.2 High mutant correlation can be caused by technical and 

intrinsic noise 

After correcting for sub-batch effects, I still observed the phenomenon of 
many mutants behaving extremely similar across conditions. However, this time 
there was no obvious relation between those conditions, neither in respect to 
chemical structure of the compounds tested, nor in acquisition time. Furthermore, 
there was no functional relation between the mutated genes. A similar observation 
was made in the E. coli data set for mutants of the KEIO collection separating 
from small RNA mutants [36]. The small RNA mutants were created in a different 
genetic background resulting in distinct base level sensitivity to the tested 
chemicals. Therefore, the mutants in this sub-population were more similar to 
each other than to any other mutant in most of the conditions. 

To investigate whether the effect in my data set is similar to the observation in 
E. coli, I calculated pairwise correlations of s-scores across all conditions and 
clustered the resulting data. Indeed there was one subset of mutants with 
extremely high correlations (see sub-cluster C1 in Figure 11A and B), which 
corresponded to the mutants described above. Furthermore, I observed additional 
clusters with underlying, yet much milder, correlations. 

Location effects contribute to underlying mutant correlation 

First, I determined the location of the mutants in all sub-clusters (Figure 11C). 
Surprisingly, sub-clusters C2 and C5 showed clear location effects. For example, 
mutants in cluster C5a are all located towards the plate corners. Several 
explanations can be considered. As the biases seem geometric it can be a 
systematic effect introduced by the robotic transfer. Furthermore, plate corners 
are the first place that would be affected by evaporation (plates drying out causes 
dips in the agar, especially in the corners), the plate center might be more 
deprived of oxygen etc. In any case, the mild surface correction implemented in 
EMAP might not be sufficient to correct for these biases. Alternatively, a simple 
solution is to normalize each subset to the same overall growth separately. This 
way the correcting factors are only applied to sets of mutants with similar 
underlying behavior, thereby avoiding the creation of bimodal distributions and 
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imprecise control sizes. As small underlying effects will not disturb the clustering 
whenever ‘real’ phenotypes occur, we only applied the separate normalization to 
the sub-clusters with high internal correlation (median correlation above 0.1 in 
Figure 11B), namely C2b, C5a and C5c. 

 

 
Figure 11: Position effects partly account for underlying correlations between mutants.  
A) Clustergram of all pairwise Pearson correlations of s-scores across all conditions (except minimal media 
conditions). B) Distributions of Pearson correlations within each selected sub-cluster. C) Location of mutants 
in each selected sub-cluster across the five library plates. White spots indicate the presence of the mutant 
located in this position of the plate in the respective sub-cluster. Sub-clusters C2 and C5 show clear position 
effects, which are broken down further when investigating smaller sub-clusters whereas the mutants in sub-
clusters C1, C3 and C4 seem to be randomly distributed across the five library plates.  

However, mutants belonging to sub-clusters C1, C3 and C4 showed random 
distribution across the library plates, indicating that there was neither a technical 
nor a systematic effect during creation or re-array of the library. Notably, the 
correlation of mutants in C3 and C4 to those in C1 was comparably high. 
Therefore, I combined data from only C1, C3 and C4 and clustered them 
separately to obtain a better separation for the respective mutants (Figure 12A). 
Again, I selected fragments of this clustergram for further analysis. The 
distributions showed that it is desirable to separate C*1a, C*1b and C*4 for 
normalization as overall correlation is well above 0.2 (Figure 12B). However, C*1b 
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and C*4 consist of a rather low number of mutants. If distributed unevenly across 
library plates this can cause problems, as the normalization factor will be 
calculated on a very low number of mutants. Combining mutants from C*1b and 
C*4 results in a bimodal distribution of score signature correlations indicating 
different behavior of these two sets of mutants (Figure 12C). Thus, normalizing 
them together might result in artifacts. Therefore, I combined C*1b and C*1c as 
well as C*3 and C*4 to increase the number of mutants in each group. As shown 
in Figure 12C, combining these groups does not result in bimodal distributions 
indicating that their behavior is sufficiently similar.  

 
Figure 12: Grouping genes with high underlying correlation for separate normalization.  
Note that all sub-clusters shown in this figure are referred to as C* in the main text. A) Mutants from sub-
clusters C1, C3 and C4 were combined, pairwise correlations calculated and clustered. Several sub-clusters 
were selected for further analysis. B) Distribution of s-score correlations within the selected sub-clusters. C) 
Distributions of correlations across sub-clusters and combinations of those. D) All pairwise correlations of 
mutants within selected normalization groups before and after separate normalization. 

Changes in genetic background might account for high mutant correlation 

While separate normalization can solve the effect, the cause of this is still 
under investigation. First, I performed whole genome sequencing on seven 
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problematic mutant strains alongside several control mutants as well as the S. 
Typhimurium wild-type strain from two different stock aliquots (one of them 
stemming from the library plates). No common mutation between all problematic 
mutants but absent in the control group could be detected. However, many 
genetic variations could lead to a common phenotype. Indeed, several mutations 
observed might impair envelope integrity (data not shown) and consequently alter 
drug permeability. As the initial sample size was small and sequencing coverage 
for some not ideal, we decided to experimentally confirm genetic background 
alterations as a cause for the phenotypic similarity between those mutants before 
sequencing more strains. To achieve this we re-transduced 30 mutants into wild-
type background to loose any genetic background alterations that may have 
occurred. We are currently testing the sensitivities of the library strains and their 
re-transduced equivalents in a subset of conditions that displayed strong 
interactions in the original screen.  

Separate median normalization resolves underlying mutant correlations 

To summarize, the following groups have been separated for the 
multiplicative plate-to-plate normalization: sub-clusters C2b, C5a and C5c from 
the initial score signature correlation clustering due to strong position effects 
caused by the technique as well as C*1a, C*1b+C*1c and C*3+C*4 from the 
subsequent correlation clustering. In the last step of the normalization procedure 
a separate factor is applied to bring these mutant sets to the same median growth 
thereby accounting for difference in base line sensitivity or growth (see also 6.1.6 
Normalization, interaction scoring and clustering in the Materials and Methods 
section). Note, that strong phenotypes (very big or small colony sizes) are not 
affected by this procedure. 

2.4 Data quality 

Finally, after applying the quality control pipeline and correcting for 
underlying effects I present a gene-drug interaction map for 7200 mutants in 558 
conditions yielding more than 4 Mio interaction scores (Figure 13A).  



 33 

2.4.1 Responses for 75% of the tested mutants 

As shown in Figure 13B the s-score distribution of the entire data set is 
centered around zero, indicating that gene-drug interactions are rare (by design 
due to the sub-inhibitory concentrations used). Nevertheless, 75% of the tested 
mutants show at least one significant phenotype considering a false discovery rate 
of 0.05. Considering gene redundancy this shows that the set of conditions tested 
was sufficiently broad to target many different processes. In a similar study 
conducted in E. coli around 50% of the tested mutants showed at least one 
phenotype in 324 single conditions.  I could not observe any differences in 
phenotype numbers between the Kan and Cm library (Figure 13C).   

 

 
Figure 13: Chemical genomics for 7200 Salmonella Typhimurium mutants in 558 conditions reveals 
phenotypes for three quarters of the tested mutants.  
A) Gene-drug interaction map of the entire data set. Shown are the s-scores two-dimensionally clustered 
across all 7200 mutants and 558 conditions. B) The distribution of s-scores shows that gene-drug interactions 
are rare (by design due to the sub-inhibitory concentrations tested). C) With a false discovery rate of 0.05 
~75% of the mutants show at least one phenotype. The Kan and Cm library behave the same.  
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2.4.2 Clone correlation 

As mutants of the same gene should exhibit the same behavior testing the 
correlation between clones is a good quality check. Therefore, we first calculated 
correlation of s-score signatures between clones present multiple times in the 
same library (introduced when re-arranging the library after colony purification 
and referred to as intra-library correlation). As shown in Figure 14A and B most 
clones behave similar across conditions, which becomes especially evident when 
strong growth defects (negative s-scores) are observed. The seemingly low overall 
correlation value can be explained by the low number of data points and the fact 
that the majority of scores is neutral (so around zero), a phenomenon explained in 
more detail below. 

 

 
Figure 14: Intra- and inter-library clone correlation.  
One data point represents the s-scores of one clone pair in one condition. A) Scatter plot of s-scores across 
conditions for all clone pairs of mutants with multiple clones present within the Kan library B) Same as A) for 
the Cm library. C) Mutants of the same gene derived from the Kan or Cm library are compared. 

However, for the Cm library there are a few cases when one clone shows 
significant phenotypes whereas its replicate exhibits s-scores around zero in the 
same condition (e. g. data points along the horizontal in Figure 14B). Note that 
there is one point per clone pair and condition, so several data points could be 
derived from the same clone pair. Indeed, all points along the horizontal were 
derived from just one clone pair. Possible explanations are cross-contamination 
from adjacent wells or one clone having acquired a secondary mutation. We 
removed the disagreeing pair from further analysis.  

Additionally, we examined the correlation between mutants of the same gene 
derived from the Kan or Cm library (inter-library correlation, Figure 14C). 

Here we observe that many more clone pairs show diverging behavior. This is 
first of all due to the overall much higher number of pairs (few hundred in the 
intra-library comparison, but almost every mutant is present in both libraries, 
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resulting in over 3000 pairs tested in the inter-library comparison). Also, as the 
clones come from two different libraries, there are more possible explanations 
besides cross-contamination and secondary mutations mentioned above. Because 
the two clones carry different resistance cassettes with slightly different design 
(co-directional vs. opposite placement), different polar effects may account for 
differences in behavior. Another possibility is that one mutant is simply not 
correct or was misplaced at any step of the library assemble or subsequent 
rearrangements. 

In total, 429 Kan-Cm pairs showed significantly different behavior. To decide 
which clone to keep for further analysis we manually curated this list based on 
total number of phenotypes for each mutant, conditions in which those occur and 
most correlated genes. For example, sometimes we will find genes of the same 
operon correlating highly with one but not the other clone. This approach allowed 
us to keep the more likely correct clone in most cases. Whenever we were unable 
to make an informed decision based on the data, we excluded the Kan-Cm pair 
completely. 

We excluded a total of 223 strains (126 Kan and 97 Cm) from further analysis. 
This represents only 3% of the tested mutants, leaving almost 7000 mutants 
subjected to further analysis. Intra- and inter-library correlations after removal of 
these noisy strains are shown in Figure 15. 

 

 
Figure 15: Intra and inter-library clone correlation after removal of noisy strains.  
One data point represents the s-scores of one clone pair in one condition. A) Scatter plot of s-scores across 
conditions for all clone pairs of mutants with multiple clones present within the Kan library B) Same as A) for 
the Cm library. C) Mutants of the same gene derived from the Kan or Cm library are compared. 

Only few strains present multiple times within a library were removed, 
therefore the change in overall intra-library correlation is marginal, resulting in a 
correlation of 0.24 for Kan clone pairs and 0.25 for Cm clone pairs. The curation 
applied for Kan-Cm clone pairs resulted in removal of strongly disagreeing pairs, 
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which is reflected in the highly reduced number of data points along the 
horizontal and vertical of Figure 15C (after curation) compared to Figure 14C 
(before curation). Overall inter-library correlation improved from 0.28 to 0.35. 
Note that the number of data points in Figure 15A and B are several orders of 
magnitudes smaller than for Figure 15C explaining why the overall correlation 
value is smaller for the intra-library correlation compared to the inter-library 
correlation. 
 

 
Figure 16: The presence of significant phenotypes is crucial for calculation of meaningful correlations. 
Distribution of Kan-Cm clone correlations after removal of noisy strain considering (from left to right): 
random Kan-Cm pairs (mutants of different genes), Kan-Cm pairs with no phenotypes, Kan-Cm pairs with 
the requirement of one significant phenotype for at least one clone, or Kan-Cm with the requirement of one 
clone showing significant phenotypes in at least 5% of the tested conditions. 

The overall correlations may appear low but are expected as most s-scores are 
centered around zero (note the density in Figure 14 and Figure 15). When most 
data points are scattered around zero, correlation will be accordingly low and only 
a sufficient amount of strong negative or positive s-scores is able to drive 
correlation. This is demonstrated in Figure 16. Correlations between Kan and Cm 
clones of the same gene barely differ from a control set of random pairs (different 
genes!) when none of the clones show a significant phenotype. However, when 
one or more significant phenotypes are observed, the distribution clearly shifts to 
higher correlations. This effect is even stronger when at least one clone shows 
significant s-scores in at least 5% of the tested conditions.  
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This phenomenon indicates that lacking correlation is not necessarily an 
indicator for lacking relation between mutants. The number of observed 
phenotypes has to be considered. However, high correlation between mutant pairs 
indicates relation (compare the two rightmost boxes to the random set in Figure 
16). This is a concept that can be expanded to functional relation and is applied in 
the benchmarking discussed below. 

2.5 Benchmarking 

In order to associate genes of unknown function with known pathways or 
complexes I make the assumption that similar behavior across conditions and 
thereby high s-score signature correlations indicate functional relation. To test 
this hypothesis I investigated the s-score correlation of genes with known 
interaction on e.g. operon, pathways or protein complex level. 

2.5.1 Defining benchmarking sets 

Known direct protein-protein interactions (PPIs) are the most valuable 
benchmarking set. In many cases removal of a single protein complex component 
will render the complex unfunctional. Therefore, gene deletions of different 
components of the same complex are expected to show highly similar behavior.  

Most bacterial protein complexes have been experimentally validated in E. 
coli and are conserved in Salmonella. Thus, experimental evidence for protein-
protein interactions in Salmonella Typhimurium is scarce. In fact, less than 20 
PPIs experimentally verified in S. Typhimurium can be found in databases. 
However, functional modules are highly conserved across organisms [24, 54, 56, 
77] and surely this observation holds true for players of crucial cellular pathways 
between the closely related E. coli and Salmonella.  

Therefore, we took a list of known pairwise protein-protein interactions of E. 
coli from the Biocyc database and tested all pairs with orthologs in Salmonella for 
their score signature correlation. Furthermore, we included data for Salmonella 
from Biocyc pathways and operons, KEGG modules and pathways as well as 
STRING experimental data. 
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2.5.2 Mutants of functionally related genes show high score 

signature correlations 

First, we calculated all possible pairwise correlations between mutants across 
all conditions, which are represented by the black lines in all panels of Figure 17. 
As expected, most mutants are uncorrelated, so the distribution is sharply 
centered around zero.  

 

 
Figure 17: Benchmarking - high correlation of phenotypic signatures indicates functional relation. 
A) All possible pairwise mutant correlations within the Kan library (black line) and correlation of mutant 
pairs present in KEGG modules with no restriction on phenotype number (Phenos.0) or requiring at least 1, 
2, 5 or 10 significant phenotypes to be present in each mutant of the pair. B) All possible pairwise mutant 
correlations within the Kan library (black line) and correlation of mutant pairs present in different 
benchmarking data sets (also see Table 5 on page 94 in the Materials and Methods section) requiring at least 
10 significant phenotypes to be present in each mutant of the pair. C) Same as B) for the Cm library. 

However, if I limit the calculation to include only pairs of mutants with 
known interactions I observe a second peak at high correlations. Figure 17A 
demonstrates this on the example of mutant pairs of the Kan library present in 
KEGG modules. As gene-drug interactions are rare, it has to be considered that 
meaningful correlations can only be calculated if the mutants exhibit at least a few 
significant phenotypes. If no significant phenotypes are detected all s-scores will 
be centered around zero and correlation will be poor even if the deleted genes 
interact (in this case the chemical stresses were not of the right kind or strength). 
To account for this, I next restrained the calculation to only consider mutant pairs 
with at least 1, 2, 5, or 10 significant phenotypes present in each mutant. As shown 
in Figure 17A, the peak around zero decreases with increasing number of 
phenotypes whereas the peak at high correlations increases. Note, that the total 
number of mutant pairs considered decreases due to the minimum bound for 
phenotypes. The number of considered pairs is indicated in the legend. 

The same trend is observed for all other benchmarking sets used, both for the 
Kan and Cm library (Figure 17 B and C). Interestingly the Cm library seems to 
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benchmark better against gene pairs present in the same operon. As the Cm 
resistance cassette is placed in the opposite direction of the original gene, the 
produced antisense RNA against the upstream gene can cause polar effects. Due to 
these polar effects a mutant of the Cm library might behave similar to a double 
mutant of the intended and the upstream gene. Thus, the likelihood of showing 
similar behavior to a mutant in the same operon (e.g. the actual mutant of the 
upstream gene) would be increased. 

In conclusion, mutants of functionally related genes show highly similar 
reactions across the conditions tested. Therefore, a high score signature 
correlation serves as an indicator of functional relation and will allow to link genes 
of unknown function to known cellular pathways or complexes. 

2.6 Merging the Kan and Cm library 

For the interspecies comparison described in the following chapter, 
robustness of the chemical genomics data set is of crucial importance. As we 
screened two different knock-out libraries, tested their correlation and removed 
disagreeing strains (see 2.4.2 Clone correlation), we have the opportunity to 
combine these two data sets to yield a more robust s-score matrix.  

To approach this we averaged the s-scores derived from Kan or Cm mutants 
of the same gene. If multiple Kan or Cm clones were present one was randomly 
selected to calculate the Kan-Cm average. If a mutant was present in only one 
library a pseudo-averaging strategy as described by Collins [30] was applied unless 
the mutant was present multiple times within that library. In this case two clones 
of the same library were averaged. 

In Figure 18 we compare benchmarking performance of the separate libraries 
to the averaged data set. The presented ROC (receiver operator characteristics) 
curves describe how well a set of gene-pairs with known interaction can be 
distinguished from a random set of the same size based on their score signature 
correlation. In brief, true positive rates are plotted against false positive rates for 
different thresholds of s-score signature correlation (assuming above the 
threshold the pair should be interacting). The larger the area under the curve, the 
better the distinction of the two sets. For each individual benchmarking set 
correlations derived from the combined libraries yield a larger area under the 
curve than correlations derived from each single library, indicating that the 
combined data set is indeed more robust. 
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Figure 18: Combining the Kan and Cm libraries yields a more robust data sets with better benchmarking 
performance.  
ROC (receiver operating characteristics) curves of mean s-score signature correlation of gene pairs belonging 
to the indicated annotation compared to a random set of the same size. Number in parenthesis is the area 
under the curve. A) Benchmarking against Biocyc protein complexes (inferred from E. coli), Biocyc pathways 
and KEGG modules for the separate libraries. B) Same as A) after averaging clones of the same gene from the 
different libraries.  

2.7 Robust phenotypes for genes of unknown function 

Using the chemical genomics map of merged, robust s-scores I next wanted to 
determine whether we are able to detect significant phenotypes for genes of 
unknown function (orphans). As a joined effort in the lab we recently curated the 
functional annotations of all E. coli genes resulting in 1585 confirmed orphans. 
For 915 of those orthologous genes exist in Salmonella, 760 of which are 
represented as mutants in my data set. We can assume that the great majority of 
genes present but not annotated in E. coli are likewise orphans in Salmonella. 
Thus we divided all Salmonella mutants in the following three categories: mutants 
orthologous to an E. coli orphan, mutant orthologous to an E. coli gene of known 
function and mutants with no ortholog in E. coli. 

In Figure 19 we count the number of mutants with no or at least one 
significant phenotype in each category and observe significant phenotypes for 
more than 500 orphan genes. The conditions a particular orphan is sensitive or 
resistant to will provide a starting point for follow up analysis. Additionally, ~10% 
of the orphans show high correlation to a gene present in the combined 
benchmarking sets of BioCyc complexes, pathways and KEGG modules (and 
therefore of known function, data not shown). As the benchmarking analysis 
proofed that high score signature correlations indicate functional relation, we will 
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be able to link the orphans to known cellular complexes and pathways providing 
further information on their potential function. In the next chapter I expand this 
idea to linking orphans to robust modules of functionally related genes predicted 
from chemical genomics data. 

 
Figure 19: More than 500 orphan genes show significant phenotypes. 
We divided all Salmonella mutants in the following three categories: mutants orthologous to an E. coli orphan 
(‘ortholog orphan’), mutant orthologous to an E. coli gene of known function (‘ortholog known’) and 
mutants with no ortholog in E. coli, which can be of known or unknown function (‘no ortholog, orphan & 
known’). For each set we count the number of mutants with no phenotype and the number of mutants with at 
least one significant phenotype (considering a false discovery rate of 0.05).  

In contrast to orthologous genes, mutants of Salmonella-specific genes (panel 
‘no ortholog’ in Figure 19) show a higher proportion of mutants with no 
phenotypes. Species-specific genes might fulfill specialized tasks, which may be 
important for growth only under niche-specific conditions, which are not easily 
mimicked by chemical perturbations. Therefore mutants of species-specific genes 
might be generally less responsive than conserved genes, an idea explored in more 
detail in the following chapter. 

2.8 Conclusions 

In summary, I created a chemical genomics data set for 7200 Salmonella 
Typhimurium mutants in 558 conditions yielding more than 4 million gene-drug 
interaction scores.  

In the course of obtaining this data set I setup an automated quality control 
pipeline and discovered potential genetic background changes in part of the 
utilized mutant collection, which we are currently investigating. Furthermore, we 
subjected the two subsets of the collection (Kan and Cm library) to a detailed 
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comparative analysis including manual curation of Kan-Cm pairs with diverging 
phenotypes. This allowed us to average the data in order to obtain a robust gene-
drug interaction map. Benchmarking against sets of known interactions from 
different sources proved high correlation of phenotypic signature as an indicator 
of functional relation.  

From this data set we can derive significant phenotypes for more than 500 
genes of unknown function. Thus, it will serve as a valuable resource for exploring 
gene function and drug mode of action for both, our laboratory as well as the 
entire microbiology community. 

2.9 Contribution disclaimer 

I designed concept, acquisition and analysis of the presented chemical 
genomics screen in S. Typhimurium. The gene deletion libraries were provided by 
Helene-Andrews-Polymenis (Texas A&M) and Michael McClelland (UCI) prior 
to publication. Steffen Porwollik (UCI) provided updates on the library 
annotation. Data acquisition was partly aided by Anja Telzerow, Nadja Nepke and 
Matylda Zietek (all EMBL Heidelberg). George Kritikos (EMBL Heidelberg) 
developed the image analysis software used in this study (Iris, unpublished 
software). Shu-Yi Su (former EMBL Heidelberg, currently Max Planck Institute of 
Psychiatry, Munich) contributed to adaptations in the EMAP toolbox used for 
normalization and scoring. Alison Waller (EMBL Heidelberg) implemented the 
benchmarking pipeline. Marco Galardini (EBI Hinxton) co-designed and 
implemented the detailed mutant analysis (correlation cluster analysis, clone 
correlations and removal of noisy strains). 
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3 Inter-species comparison reveals conservation 

and rewiring of cellular networks 

In the following chapter I compare the chemical genomics data set created for 
Salmonella Typhimurium to a previously published E. coli data set [36]. First, I 
determine a set of shared conditions and investigate whether conserved genes also 
show conserved phenotypic responses. Furthermore, I gain insights about the 
conservation level of highly responsive mutants and their spatial distribution 
across the chromosome. Next I investigate modules of functionally related genes 
and drugs predicted from each data set, their overlap and differences. From this 
analysis we can derive a number of inferences for orphan gene function. 

3.1 Determining a shared data set 

3.1.1 Condition selection 

In 2011, Nichols et al. presented a chemical genomics data set for E. coli, 
measuring the growth of the KEIO collection of single gene deletions in 324 
conditions covering 114 unique stresses [36]. A total of 91 unique stresses overlap 
with the study presented here. Both studies include physical perturbations as well 
as chemical stresses, most of them tested in several concentrations. Whereas 
physical stresses (temperature, pH, UV exposure) and minimal media conditions 
will be compared directly, we employed correlation analysis to determine the most 
comparable concentrations for each chemical stress.  

Assuming a certain gene-drug interaction, we expect this interaction to be 
visible in the highest drug concentration tested. Following this rationale, one 
approach was to pick the highest concentration of a given chemical present in 
each data set. However, the minimal inhibitory concentrations (MICs) of a given 
drug can differ significantly between E. coli and Salmonella due to differences in 
drug uptake and efflux, or primary target sensitivity. Even if each concentration 
would represent e.g. 20% MIC for the respective organism, the drug effect might 
still differ depending on the shape of the dose response curve. In one organism the 
dose response might be very sharp, meaning that a slight increase in drug 
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concentration can make the difference between full growth and complete 
inhibition. If the other organism has a more linear drug response, the tested 
concentrations, even if based on percent MIC, will have widely different effects. 
Therefore, we wanted to choose concentration pairs that behave similarly. 

To decide on the most comparable concentrations we took into account the 
overall amount of significant phenotypes observed for each organism, the fraction 
of common genes sharing phenotypes, as well as the overall correlation between s-
scores for orthologs. To outline this strategy, Figure 20 demonstrates one example.  

 

 
Figure 20: Overall correlation, total and common number of phenotypes were used to determine the most 
comparable concentration pair for a given chemical.  
Different combinations of vancomycin concentrations (in µg/ml) tested in E. coli and Salmonella are shown 
rank ordered by overall correlation (A-D). Indicated are the overall correlation across orthologs (in 
parentheses), the total number of phenotypes observed in each organism as well as the fraction of phenotypes 
in common (orthologous genes showing a phenotype, red points) as opposed to phenotypes present only in E. 
coli (green) or only in Salmonella (blue). 

It shows scatter plots comparing vancomycin s-scores derived from E. coli 
mutants or their corresponding Salmonella ortholog for different concentration 
pairs. Here I show the four concentration pairs with the highest overall correlation 
(rank ordered A-D). Figure 20A, for example, shows the interaction scores of E. 
coli mutants grown at 50 µg/ml vancomycin and their S. Typhimurium ortholog 
grown at 200 µg/ml vancomycin. This is the concentration pair with the highest 
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overall correlation (amongst all possible combinations, having tested E. coli in 20 
and 50 µg/ml and Salmonella in 50, 100 and 200 µg/ml). However, for Salmonella 
we detect a total of 153 significant phenotypes in this condition, while only 51 are 
detected for E. coli, suggesting that 200 µg/ml vancomycin generally affect 
Salmonella more than 50 µg/ml affect E. coli. Lowering the concentration used for 
Salmonella to 100 µg/ml results in a more similar number of phenotypes between 
the two organisms (Figure 20B). In this combination we find common genes with 
similar phenotypes, as well as species-specific phenotypes while overall correlation 
is still comparably high, so we choose it for further analysis. The same strategy for 
selecting the most comparable concentration pair was applied to all other 
chemicals. If several concentration pairs showed similar behavior, we selected the 
higher concentrations. 

In a few cases the tested concentration range and/or sensitivity to the tested 
chemical differed too much between the two species. This is reflected in the 
residual number of phenotypes: For each selected concentration pair and each 
ortholog pair we substract the E. coli s-score from the Salmonella s-score resulting 
in a residual. The mean of these residuals across ortholog pairs is shown in Figure 
21. Conditions with an absolute mean of residuals greater than 50 were excluded 
from further analysis. This is the case for azidothymidine (more/stronger 
phenotypes in E.coli) and triclosan (more/stronger phenotypes in Salmonella).  

3.1.2 Mutant selection 

In the following comparative analysis I either refer to the complete data set for 
each organism or a shared set of mutants. The shared set is based on orthologous 
genes predicted using OrthoMCL [78].  

In the E. coli chemical genomics map the s-score of each mutant is derived 
from the average of two clones carrying the Kan cassette [36]. The s-score used for 
Salmonella is derived from the average of the Kan and Cm clone as described in 
2.6 Merging the Kan and Cm library (page 39). 

In conclusion, we compare two robust data sets with s-scores derived from 
multiple clones in a set of conditions tested for comparability in strength and 
similarity of effect. 
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Figure 21: Comparing conditions from the E. coli and Salmonella data set.  
For each chemical stress the selected concentration pair was tested for differences in overall effect in E. coli vs 
Salmonella. The s-score from E. coli in the respective condition was substracted from the Salmonella s-score 
for each pair of orthologous genes. The mean of these residuals across ortholog pairs is shown.  
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3.1.3 The shared conditions recover a large proportion of 

responsive mutants 

For E. coli Nichols et al. reported at least one significant phenotype for 50% of 
the tested mutants (considering a false discovery rate of 0.05). As described in 
chapter 2.4.1 (page 33) I find at least one significant phenotype for 75% of all 
Salmonella mutants tested. Figure 22 demonstrates that this holds true when 
testing the s-scores averaged between Kan and Cm clones. The discrepancy 
between the number of responsive mutants in each organism may be explained by 
the bigger and broader range of conditions tested in Salmonella. If this is the case, 
the numbers should be more similar when considering only shared conditions.  

 
Figure 22: A large proportion of responsive mutants is recovered based on phenotypes detected in shared 
conditions. 
Number of mutants with at least one significant phenotype considering different false discovery rates for the 
EC and STM data set, based either on all conditions or on shared conditions. 

The total amount of mutants with at least one significant phenotype 
expectedly drops for both organisms when considering only shared and therefore 
much less conditions. Despite reducing the number of conditions more than 3.5-
fold for E.coli and more than 6-fold for Salmonella, we recover the majority of 
responsive mutants. The absolute number remains slightly higher for Salmonella 
than for E. coli (dotted lines in Figure 22), but the difference between the two 
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organisms is significantly reduced. One possible explanation for the residual 
difference is a greater sensitivity in colony size detection for the Salmonella screen 
caused by a higher camera resolution and improved image analysis software. 
Higher precision in the colony size detection results in a bigger dynamic range for 
detecting phenotypes and allows the detection of subtle differences as significant 
phenotypes. Second, higher reproducibility in the Salmonella data set would lead 
to increased absolute s-scores (see s-score formula on page 27, the lower the 
variance the higher the s-score). This would distinguish true interactions better 
from noise and thus lead to the detection of more significant phenotypes. Lastly, 
higher levels of gene redundancy in E. coli would explain this effect. Upon 
deletion of one gene the paralog is still available to fulfill the tasks, therefore no 
phenotype would be detected. 

3.2 Conserved genes are more responsive and show 

conserved phenotypic signatures 

3.2.1 Orthologous mutants behave similar across conditions 

The species Escherichia coli and Salmonella enterica are closely related and 
many of the chemicals tested in each study are antibiotics targeting core cellular 
processes. Given the close relation of the two organisms, I expect genes involved 
in these pathways to respond similar to treatment with sub-inhibitory 
concentrations of antibiotics. Also the response to physical stresses should be 
largely conserved.  

To investigate this hypothesis, we determined the similarity in the phenotypic 
responses of orthologous mutants by comparing their s-score signature 
correlation.  

As mentioned before, the calculation of meaningful correlations depends on 
the presence of significant phenotypes. Thus, it is not surprising that correlations 
derived from orthologous pairs with no significant phenotypes are centered 
around zero (Figure 23, panel ‘blank’). However, when requiring at least one 
significant phenotype for each mutant, the correlation distribution shifts to higher 
values (note the tail towards high correlations in Figure 23, panel ‘phenotype’). 
This effect is strongly increased when at least one mutant of each pair is very 
responsive and presents significant phenotypes in at least 10% of the shared 
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conditions. In this case we observe a clear shift towards high correlations when 
compared to random mutant pairs from the same subset (compare panel 
‘important’ to panel ‘random important’ in Figure 23).  

 
Figure 23: Mutants of orthologous genes behave similar across conditions.  
S-score signature correlation (Pearson) of orthologous gene pairs with no phenotypes (blank), or with the 
requirement of one mutant having at least one phenotype (phenotype), or with the requirement of one 
mutant having a significant phenotype in more than 10% of the shared conditions (important) compared to a 
set of random correlations from the same mutant subset (random important).  

Nevertheless, a few ortholog pairs remain with low correlation despite being 
wired deeply into the cellular networks. I plan to investigate these cases in the 
future. Possible explanations are either biological (one organism may have 
repurposed the gene, or has a redundant player) and/or technical (polar effects in 
one organism confounding the phenotypic signature of the gene, incorrect 
mutants on one side etc.). 

In conclusion, I find mutants of orthologous genes central to the cellular 
network (many phenotypes) to behave largely similar across conditions. 

3.2.2 Highly responsive genes are often highly conserved 

Genes conserved across organisms are often involved in central cellular 
pathways. In contrast, species-specific genes and/or those acquired recently in 
evolution are believed to be involved in niche-specific tasks. Thus, one can expect 
that species-specific genes are only relevant for fitness in special conditions. 
Highly conserved genes on the other hand would be expected to respond to a 
variety of perturbations targeting central cellular pathways.  
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Figure 24: Highly responsive genes are often highly conserved. 
Highly conserved genes are wired deeper into the cellular network and are more likely to exhibit a high 
number of interactions with chemicals. For each gene the proportion of significant phenotypes observed in 
the shared conditions is plotted against its intra-species conservation level (large-scale blast score ratio). 

In Figure 24 we plot the proportion of conditions in which a mutant shows 
significant phenotypes against its conservation level within the species. Note that 
for each organism the respective complete data set is considered. Indeed, I observe 
that only highly conserved genes are wired deeply into the cellular network and 
exhibit a great amount of gene-drug interactions, while poorly conserved genes 
usually show only very little significant phenotypes.  

Interestingly, there are a few exceptions. For E. coli we find the mutants of 
genes involved in LPS biosynthesis (waaQ, waaP) and one prophage element 
(ylcG) as highly responsive despite poor conservation. For Salmonella we find 
mutants of the rfb cluster encoding genes for O-antigen biosynthesis (rfbDIFGJ 
and rfbUNP). The rfb gene cluster is one determinant used for serotyping of 
Salmonella strains as it is known to be very diverse between serovars. In line with 
this we observe low intra-species conservation for these genes.  

Disruptions in LPS and O-antigen biosynthesis will alter outer membrane 
properties of bacteria. The outer membrane constitutes the major barrier against 
chemical perturbations and disruption of its composition impacts entry of many 
compounds [79].  
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3.2.3 Responsive mutants show a similar distribution across the 

chromosome 

The above observations are also reflected in the distribution of responsive 
mutants (phenotypes in at least 10% of the shared conditions) across the 
chromosome of each organism. 

 

 
Figure 25: Distribution of responsive mutants across the E. coli and Salmonella chromosomes. 
For each organism the circular plot depicts the chromosome with coordinates adjusted to start at the origin of 
replication (oriC = 0 bp). We plotted the spatial enrichment for genes exhibiting phenotypes in at least 10% of 
the shared conditions in a 100 kb sliding window. The middle dashed line indicates zero enrichment, positive 
enrichment is plotted towards the outside with the outer and inner dashed line representing the maximum 
and minimum permutation thresholds, respectively (for details see page 96 in the Materials and Methods 
section). The Salmonella plasmid is represented in a separate trace in the center of the plot and a 10 kb sliding 
window was used for its analysis. 

In Figure 25 we show chromosomal regions enriched for highly responsive 
genes (peaking towards the outside). Regions enriched for or reduced in 
responsive genes largely overlap between E. coli and Salmonella with small shifts 
accounting for insertions or deletions in one or the other organism (so the 
responsive genes are actually the same). This reflects the broad conservation of 
phenotypic responses observed between orthologs. 

rfb gene cluster 
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Consistent with the previous notion of the highly responsive rfb gene cluster 
in Salmonella, we find the chromosomal region in which it is encoded strongly 
enriched in responsive mutants (strong peak in lower left quadrant of Figure 25). 
The E. coli K12 lab strain is known to lack production of O-Antigen due to 
mutations in the rfb region [80]. In fact, a large part of the rfb gene cluster is 
missing explaining the lack of phenotypes in this region and the subsequent shifts 
between E. coli and Salmonella peaks. 

As previously observed by Nichols et al. for E. coli [36], the region around the 
origin of replication is enriched for responsive mutants while the terminus region 
is void. This is congruent with the idea of very important (and therefore 
responsive) genes often being located near the origin of replication so their 
expression can benefit from the higher gene dosage during replication [81]. In 
contrast, the plasmid majorly encoding for virulence determinants shows no 
region enriched for responsive mutants. This is expected considering that the 
shared conditions do not target virulence-related processes. 

In conclusion, comparing single genes across E. coli and Salmonella revealed 
that conserved genes often show conserved phenotypic signatures. Furthermore 
we find that highly responsive genes are often wired deeply into the cellular 
network.  

3.3 Conservation and rewiring of functional modules 

After investigating the phenotypic responses of single mutants shared between 
E. coli and Salmonella, we next wanted to test how well their interactions, so the 
similarity between different mutants is conserved across the two organisms. 

3.3.1 Predicting conserved functional modules based on 

phenotypic signatures 

As demonstrated in 2.5 Benchmarking a high correlation between s-score 
signatures of two mutants is indicative of functional relation. Thus, we can use s-
score signature correlation to predict clusters of related mutants in each organism 
but also to identify conserved functional modules.  
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Identification of conserved clusters 

To identify gene modules conserved between E. coli and Salmonella we used a 
variant of a method applied in a similar study investigating conservation of 
functional modules between S. cerevisiae and S. pombe [55, 82]. In brief, we 
considered each ortholog pair between E. coli and Salmonella as one entity. Next, 
a merge score was computed for each possible combination of entities m1 and m2:  

 
where r is the Pearson correlation between gene a and gene b across the shared 
conditions. If the sum of correlations in E. coli or Salmonella was below zero, the 
merge score was set to zero for this pair of entities. A high merge score was 
obtained when s-score signatures of genes a and b correlate strongly in both 
organisms. 

Once the merge scores had been computed for each possible entity pair, we 
sorted them and started merging the pairs with the highest merge score into 
modules. Each time a pair was merged, the merge score between this expanded 
module and all other entities was recomputed and all the scores were sorted again. 
This procedure was repeated until the merge score fell under a defined threshold, 
which was chosen as 0.4 based on the benchmarks. The benchmarking 
performance for the selected threshold is shown in Figure 26.  

 
Figure 26: Benchmarking of conserved modules and their expansions. 
Mutant pairs present in the conserved modules predicted based on a merge score of 0.4 are tested against gene 
pairs present in Biocyc complexes and pathways as well as DOOR operons for the respective organisms (STm 
complexes inferred from EC, for database references see Table 5 on page 94 of the Materials and Methods 
section).  

E. coli Salmonella
VERAPAMIL-1 VERAPAMIL-50

Orthologs correlations

The correlation between orthologs in the shared conditions was measured by
considering only the 1:1 (one-to-one) orthologous groups found by OrthoMCL,
thus excluding any groups including paralogs. The orthologs when then divided
by their number of phenotypes: an ortholog pair was either defined “blank” (both
mutants do not show any phenotype across all shared conditions), “phenotype”
(both mutants show at least one phenotype in the shared conditions) and
“important” (at least one mutant shows more a phenotype in at least 10% of the
shared conditions).

Conserved and expanded gene modules

To identify conserved gene modules between the two species we used a variant
of a method adopted in a similar study between the budding and fission yeast
(Bandyopadhyay et al. 2008; Ryan et al. 2012). Each ortholog pairs between E.
coli and Salmonella were arranged in separate modules, such that each module
contains one ortholog pair. A merge score was then computed for each pair of
modules m1 and m2:

1
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where r is the Pearson’s correlation between gene a and gene b across the shared
conditions. If the sum of correlations in E. coli or Salmonella was below zero,
the merge score was set to zero for that modules pair.

Once the merge scores had been computed for each possible module pairs, we
sorted them and started merging the pairs with the highest merge score, until the
merge score fell under a defined threshold. Each time a pair is merged, the merge
score between the expanded module and all other modules was recomputed and
all the scores were sorted again. Additional controls were put in place before
merging modules: modules were kept separated if the merge score was found to
be less than half the maximum self merge score of the two modules, Additionally,
modules were not merged if they contained a gene that was already featured
in another module with size greater than one; this was due to the presence
of paralogs. A merge score threshold of 0.4 was choosen for the creation of
conserved modules, using the ROC curve benchmarks described above.

6
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Conserved modules represent various cellular processes 

Within the conserved modules we often find protein complexes, cellular 
pathways or entire operons. Figure 27 gives a few, selected examples and 
demonstrates that we find conservation in all kinds of cellular processes. For 
instance, we find components of the Rcs signal transduction system to behave 
similar in both organisms. The module also includes wcaF, a gene involved in 
colanic acid biosynthesis, which is regulated by the Rcs system [83]. LpoB was 
discovered as the regulator of peptidoglycan synthesis factor PBP1B (encoded by 
mrcB) during follow up of E. coli genetic interaction studies [51]. This interaction 
is also reflected in the cellular network of Salmonella. Additionally, dedD and 
yajG are associated with this cluster. DedD is involved in cell division [84], which 
has to be closely linked to the synthesis of new cell wall material. YajG is located 
upstream of ampG and harbors the promoter region for ampG in its open reading 
frame. Thus, deletion of yajG likely abolishes expression of ampG, which is 
involved in recycling of cell wall material [85]. Furthermore we find many clusters 
involved in metabolism such amino acid biosynthesis, sugar uptake and 
breakdown. One example is represented in Figure 27 showing genes involved in 
maltose uptake and breakdown clustering into a functional module. 

 

 
Figure 27: Examples of functional modules conserved between E. coli and Salmonella. 
Nodes represent ortholog pairs, the E. coli gene name was chosen for display. Edges represent the merge 
score. 

Interestingly, we also find genes of unknown function within conserved 
functional modules. This presents a great starting point for follow up studies as 
the connections are extremely robust due to the combination of data sets from 
different organisms obtained independently in different labs.  

One example is the E. coli orphan gene ygeH, found in one module with genes 
involved in enterobactin synthesis (Figure 27). Enterobactin is a siderophore 
necessary for iron uptake. YgeH is a predicted transcriptional regulator located 
within the remnants of a pathogenicity island fully present in pathogenic E. coli 
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and Shigella strains, where it has been shown to be involved in virulence [86, 87]. 
Interestingly, it appears to be orthologous to the Salmonella hilA gene (passing the 
threshold for calling orthologs but genomic context is different). HilA is a 
transcriptional regulator activating invasion genes and has been indicated to be 
regulated by iron availability [88, 89]. Limited iron availability is a typical signal 
for the bacterium to be inside the human host. Therefore, it can be assumed that 
hilA and ygeH are activated upon iron limitation and in turn positively regulate 
the expression of enterobactin to ensure sufficient iron uptake. 

As a next step I plan to systematically detect orphan genes within conserved 
modules and investigate their phenotypic signatures in more detail. This will aid 
creating hypotheses about their function and designing targeted validation 
experiments.  

However, this analysis only includes orthologous pairs with conserved 
phenotypic signatures. In order to investigate the role of species-specific genes and 
those behaving differently in the two organisms we expanded the functional 
modules by testing their correlation to the remaining genes. 

3.3.2 Expanding conserved modules with species-specific 

genes reveals their wiring into the cellular network 

Expansion of conserved clusters with species-specific genes 

We expanded the conserved modules to include genes with behavior specific 
to either species. For each organism we collected all genes not already represented 
in a conserved module. Next, we calculated the median Pearson correlation of the 
sole gene with all other genes within a given conserved module. The median value 
was put equal to zero if any of the correlations with the genes present in the 
module were found to be below zero. If the median correlation met a certain 
minimum we added the sole gene to the highest correlated conserved module. The 
benchmarking performance of the resulting expanded modules is shown in Figure 
28A. The minimum required median correlation was chosen as 0.3 based on ROC 
curve benchmarking only considering gene pairs between the expanded and 
conserved modules. An example demonstrating the benchmarking performance 
based on this threshold for the EC specific expansion is shown in Figure 28B. 
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Figure 28: Benchmarking of expanded gene modules. 
A) Mutant pairs present in the expanded modules were tested against gene pairs present in several 
benchmarking sets. The minimum correlation required to add a gene to a conserved module was 0.3. B) Same 
as A) considering only gene pairs where one is present in a conserved module whereas the other is a species-
specific addition.  

Figure 29A illustrates the diversity of functional modules. While some 
modules remain entirely conserved, others have a few species-specific additions or 
are composed almost entirely of genes with distinct responses in both organisms. 

One specific example is shown in Figure 29B, where I show the expansions for 
the previously discussed conserved module containing the peptidoglycan 
synthesis gene mrcB and its regulator lpoB.  

 

 
Figure 29: Functional modules predicted based on phenotypic signature similarity show varying levels of 
conservation. 
Conserved functional modules predicted based on similarity of phenotypic signatures and their species-
specific expansion. White/grey nodes represent orthologs of E. coli and Salmonella found to be in conserved 
modules, edges between them are based on their merge score. Blue nodes represent E. coli specific genes, red 
nodes represent Salmonella specific genes. Edges involving species-specific genes are based on s-score 
signature correlation across the shared conditions.  
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In E. coli we find the soluble lytic transglycosylase (slt) involved in 
peptidoglycan recycling associated with the module [90]. The corresponding 
Salmonella gene was not represented by a mutant in the library and can therefore 
not be connected to the module. It would be interesting to investigate why folM 
(tetrahydrofolate biosynthesis), thiK (thiamin kinase), rplA (ribosomal protein of 
the 50S subunit) and ybdZ (STM14_0685, orphan gene) are connected to the 
cluster. For this purpose the first step would be to examine the conditions in 
which the phenotypes overlap with the conserved part of the module. 

This analysis furthermore allows us to investigate how species-specific genes 
are linked to conserved modules. In the example depicted in Figure 29B we find 
two Salmonella-specific genes safA (STM14_0352) and STM14_0398 (putative 
inner membrane protein). SafA is the major subunit of Salmonella atypical 
fimbriae, a virulence factor with largely unexplored function discovered by 
Folkesson et al. [91, 92]. Expression of fimbriae has to be tightly coordinated with 
rearrangements in the cell wall and, interestingly, the same group later on 
described the impact of peptidoglycan recycling components on invasion and 
intracellular survival [93]. Thus it would be interesting to investigate this link 
further and the second Salmonella-specific gene should be considered as potential 
mediator. 

In conclusion, the expanded module analysis allows us to identify shared 
genes with differing responses. However, the presence of a mutant in each data set 
has to be considered. Therefore it would be useful to overlay this information with 
the network for easier exploration. Furthermore, softening the correlation 
threshold might identify cases detected as species-specific because one ortholog is 
just above the threshold while the other one is just below. Allowing additions 
where at least one ortholog is above the correlation threshold and the other one 
has the same tendency (low residual between correlations) would tackle this 
problem. The big benefit of this analysis approach is that we can see the role of 
genes present in only one species. 

3.4 Drug response conservation 

In chemical genomics studies we not only obtain a phenotypic signature for 
each mutant, but also for each drug. Significant phenotypes can indicate genes 
involved in the uptake or efflux of the drug as well as cellular processes targeted. 
Furthermore, similarities between phenotypic signatures of conditions across 
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genes can indicate shared (primary or secondary) targets, or mechanisms of 
uptake and efflux. Using the same principles as applied for gene modules we 
calculated a merge score for shared conditions between E. coli and Salmonella and 
grouped drugs with related responses into modules. 

 

 
Figure 30: Network of drugs with conserved phenotypic signatures and species-specific correlated drugs. 
Drugs with conserved phenotypic responses in both organisms are shown as grey nodes and the edges 
between them are based on the merge score. Species-specific additions are shown in blue for E. coli and in red 
for Salmonella. Edges involving species-specific genes represent s-score correlation with the connected drug 
within the organism. 
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Figure 30 demonstrates that physical stresses evoke highly conserved 
responses. Conditions falling in the same category, such as exposure to UV, high 
temperature, low or high pH cluster into modules with phenotypic signatures 
conserved in both organisms (grey nodes). The same can be observed for minimal 
media conditions with differing carbon sources. The responses to the majority of 
antibiotics are conserved. Furthermore, drugs targeting the same process are 
frequently connected in the network, e.g. nitrofurantoin and levofloxacin, cefaclor 
and cefsulodin or bile salts and SDS.  

Notably, many of the perturbations with differing responses in both 
organisms evoke envelope stress (benzalkonium, vancomycin, EDTA to name just 
a few). It would be interesting to test, whether this difference is due to the missing 
O-antigen in E. coli. Generally, we plan to examine differences between the two 
organisms as follows: Within a module of drugs we can apply gene ontology (GO) 
enrichment analysis for each drug in each organism to identify the cellular 
processes targeted. We can then compare drug responses based on both, the 
merge score (overall similarity) and the overlap in GO processes targeted. This 
way differences and commonalities between the two organisms can be related to 
distinct biological processes related to uptake, efflux or target of the drug. 

3.5 Conclusions 

Here I present the first cross-species comparison of chemical genomics data in 
bacteria. We established that conserved genes frequently show conserved 
phenotypic signatures. Furthermore we find that responsive genes are usually 
highly conserved and wired deeply into the cellular network whereas species-
specific genes, with some exceptions, show only few responses. 

We implemented a strategy do detect modules of functionally related genes 
based on their chemical genomics profile. We find that many cellular processes 
are reflected in modules conserved in E. coli and Salmonella. Next, we expanded 
these modules to detect connected genes with species-specific responses. Both 
strategies provide insights into orphan gene function. In the future we would like 
to probe the conservation of connections between modules, as this could reveal 
conserved and rewired cross-talk between pathways. 

Lastly, I compare drug signatures between the two organisms. Whereas many 
stress responses are conserved, we get hints that certain envelope perturbations 
evoke distinct responses.  
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3.6 Contribution disclaimer 

The comparative analysis presented in this chapter was designed in close 
collaboration with Marco Galardini (EBI, Hinxton). Marco Galardini led the 
implementation of the analysis pipeline, but all steps were first extensively 
discussed between the two of us and revised for refinements by me. 
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4 The Salmonella efflux pump SmvA confers 

resistance to the diabetes drug metformin 

In this chapter I will describe the role of a rare efflux pump, SmvA, in 
conferring resistance to the widely prescribed type 2 diabetes (T2D) drug 
metformin. The drug was included in the chemical genomics due to a previously 
observed high resistance level of Salmonella compared to other organisms (Ana 
Rita Brochado, personal communication). The obtained gene-drug interaction 
map revealed the Salmonella-specific SmvA as a major player in drug efflux. 
Introducing the pump into the much more metformin sensitive E. coli, thereby 
conferred resistance to metformin. Furthermore, I explored the wiring of other 
pumps capable of exporting metformin into the cellular networks of E. coli and 
Salmonella. 

4.1 Background 

4.1.1 Salmonella shows high levels of resistance to metformin 

I included the T2D drug metformin in my study due to an interesting 
observation made by my colleague Ana Rita Brochado. For her project she was 
determining the MIC of a broad range of drugs for a variety of bacteria. 
Interestingly, Salmonella Typhimurium showed the highest level of resistance to 
metformin amongst the Gram-negative bacteria she tested (Figure 31). It was even 
more resistant than Pseudomonas aeruginosa, which is known for its multi-drug 
resistant properties [94]. 
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Figure 31: Metformin dose responses of E. coli BW25113, S. Typhimurium 14028s and P. aeruginosa 
PA01 and PA14.  
Salmonella is the most resistant among the three organisms with only mild growth inhibition at 400 mM 
metformin, a concentration at which all other bacteria are completely inhibited. Figure provided by Ana Rita 
Brochado. 

4.1.2 Metformin reduces hepatic glucose production 

Metformin, a biguanide drug, is currently the first-line oral treatment against 
hyperglycemia in T2D. The use of this drug is extensive with prescriptions for at 
least 120 million patients worldwide. It was shown to reduce the risk of 
complications in overweight diabetic patients and, compared to insulin or 
sulfonylureas, result in fewer hypoglycemic attacks and less extensive weight gain 
[95, 96]. 

Although the drug was introduced in the clinic many years ago, the complete 
mechanism of action remains elusive. However, it is generally accepted that a 
decrease in hepatic glucose production and consequently reduction in blood 
glucose levels are the main beneficial result of the treatment [95].  

Under physiological conditions metformin appears in a positively charged 
form explaining both, the preferential action on hepatocytes, as those express 
comparably high levels of the organic cation transporter 1 (OCT1, Figure 32), as 
well as the accumulation of the drug in active mitochondria. Furthermore, in 
2000, two independent reports showed a mild but specific inhibition of the 
respiratory chain complex I by metformin. The resulting reduction in cellular 
energy and the associated increase in the AMP/ATP ratio explain the observed 
activation of AMPK (AMP activated protein kinase). Activation of AMPK 
switches the cell from an anabolic to a catabolic state, resulting in increased 
glucose uptake and fatty acid oxidation to restore the cellular ATP pool, while 
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ATP-consuming biosynthetic pathways are shut down. Here, the key aspect in 
metformin’s beneficial effect on hyperglycemia is the inhibition of 
gluconeogenesis [95, 97]. Additionally, metformin has been shown to increase 
insulin sensitivity, adding to the improvement of metabolic parameters in diabetic 
patients [98]. 

 

 
Figure 32: Proposed mechanism of metformin action in hepatocytes.  
Metformin is taken up by the organic cation transporter 1 (OCT1) and exerts an inhibiting effect on the 
respiratory chain complex 1 in mitochondria. The resulting decrease in cellular energy levels and thereby 
increase of relative AMP levels yield AMPK activation. Consequently gluconeogenesis is inhibited by reduced 
gluconeogenesis gene expression as well as allosteric inhibition of involved enzymes. Furthermore, lipogenesis 
is decreased (reducing the risk of complications due to steatosis) and insulin sensitivity is increased 
contributing to the control of glucose excretion by the liver. Adapted from Viollet et al. [95]. 

Taken together, the discussed effects of metformin on the hepatocyte 
metabolism explain its anti-hyperglycemic properties.  

Notably, new mechanisms of action are being discovered constantly [99, 100]. 
For example, metformin has been proposed to have anti-neoplastic properties and 
to protect against several diabetic complications, both, in AMPK-dependent and –
independent pathways [95, 99, 101, 102]. Furthermore, the drug is widely used 
off-label for the treatment of polycystic ovary syndrome, steatohepatitis and HIV-
associated metabolic abnormalities [103] and is the first drug in clinical trials 
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addressing longevity (MILES – Metformin in Longevity Study, Identifier: 
NCT02432287, TAME – Targeting Aging with Metformin, currently waiting for 
approval, [104]) 

4.1.3 Metformin affects the gut microbiota 

Metformin is only effective upon oral administration. In fact, already in 1984, 
Bonora and colleagues reported that metformin has no acute, hypoglycemic effect 
on non-diabetic subjects when administered intravenously [105]. This poses the 
question whether metformin affects the human gut microbiota and whether this 
could contribute to the beneficial effect of the drug.  

A recent study conducted in mice on a high-fat diet showed that metformin 
treatment besides improving glucose homeostasis indeed shifted the microbiota 
composition. Interestingly, the microbial composition shifted towards a 
community found in mice consuming a regular chow diet [106]. Akkermansia, 
bacteria capable of using mucin as a nutrient source dominated after metformin 
treatment (also reported in [107]). The authors furthermore show that oral 
administration of Akkermansia was able to improve glucose homeostasis and 
insulin sensitivity in mice on a high-fat diet [106]. A similar study showing the 
reverting effect of metformin on a high-fat diet as well as changes in the 
microbiota was recently conducted in rats [108]. The above results suggest that the 
beneficial effect of metformin is at least partially due to changes in the 
microbiome. 

Furthermore, Forslund et al. recently found a significant influence of 
metformin treatment on changes in the gut flora of diabetic patients. The authors 
use metagenomics to integrate patient data from multiple countries and compare 
non-diabetic controls to diabetic patients with or without metformin treatment. 
Significant differences between the untreated diabetic patients and the non-
diabetic controls were observed, accounting for the dysbiosis caused by the 
diabetic condition itself. However, the authors also detect significant differences 
within the diabetic patients dependent on their metformin treatment status. Upon 
metformin treatment they report an increase in Escherichia subspecies as well as a 
decrease in Intestinibacter subspecies compared to untreated diabetic patients. 
Also, consistent with previous reports in animals, in some of the used data sets 
metformin treatment reverted Akkermansia abundance towards levels found in 
non-diabetic controls [109]. 
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The ability of metformin to affect host health status indirectly has been 
furthermore demonstrated in a study in Caenorhabditis elegans. A positive effect 
of metformin on C. elegans longevity, reported in 2010, was later shown to be 
caused by alterations in the metabolism of E. coli used as a food source for the 
worm [110, 111]. The authors observe that metformin disrupts the folate 
metabolism of E. coli. Consequently the amount of folate and methionine 
available to the worm is reduced mimicking a beneficial diet restriction. The dose-
dependent effect of metformin was not observed when the worm was fed on 
metformin-resistant bacteria [110]. Taken together these results suggest that 
alterations in bacterial metabolism can contribute to how drugs affect the host. 

4.1.4 Motivation 

Taken together, the above results suggest that metformin might have an 
extremely complex mechanism of action influencing host metabolism as well as 
microbiota composition, potentially allowing the creation of a niche for 
enterobacteria.  

Therefore, I was very interested in investigating the source of the high 
resistance level of the pathogenic enterobacterium Salmonella Typhimurium to 
metformin. Potential implications on susceptibility of diabetic patients to 
Salmonella infection are discussed at the end of this chapter. 

4.2 Results 

4.2.1 The efflux pump SmvA contributes to resistance against 

the type II diabetes drug metformin 

To identify players contributing to the high resistance level of Salmonella 
Typhimurium to the T2D drug metformin, I first determined gene deletion 
mutants exhibiting sensitivity to the drug in my chemical genomics data set. As 
described in 2.2.5 Scoring and clustering (see page 26) increased susceptibility of a 
mutant towards a specific drug will result in negative s-scores. 

Table 2 shows the top ten most sensitive mutants at the highest metformin 
concentration tested. At the top of the list are both deletion mutants of the gene 
ndh coding for an NADH dehydrogenase (NDH). Salmonella has two distinct 
NDHs, NDH-1 encoded by the nuo cluster of genes and NDH-2 encoded by ndh. 
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NDHs constitute complex I of the respiratory chain and E. coli has been shown to 
utilize both NDHs during glucose limited aerobic growth [112].  

 
Gene Name Locus Tag Library S-score at 100 mM  

Metformin 
ndh STM14_1385 Cm -26.05 
ndh STM14_1385 Kan -21.89 
smvA STM14_1900 Cm -13.46 
sixA STM14_2936 Kan -9.60 
dam STM14_4196 Kan -8.88 
smvA STM14_1900 Kan -8.02 
 STM14_2111 Cm -7.71 
sapA STM14_2042 Cm -7.53 
ylbF STM14_0621 Cm -7.33 
hisA STM14_2570 Cm -7.02 
Table 2: Metformin sensitive mutants.  
The top ten most sensitive mutants to 100 mM metformin and their corresponding s-scores are shown in 
rank order.  

As metformin inhibits complex I of the respiratory chain in mitochondria it is 
likely that the bacterial complex I is inhibited as well. Interestingly, the mutants of 
both NDHs show distinct phenotypes upon treatment with metformin in 
Salmonella. Whereas ndh deletion leads to strong negative interaction, deletion of 
any nuo component has the opposite effect (Figure 33A). The same trend was 
observed in a similar E. coli chemical genomics data set (data not shown). 

Deletion of one NDH forces the bacterium to use the other one. The positive 
interactions observed for the nuo mutants mean that metformin treatment is 
irrelevant upon deletion of NDH-1, therefore suggesting it as the drug target. In 
line with this premise we observe a synthetic sick interaction when deleting NDH-
2 and simultaneously inhibiting NDH-1 by treatment with metformin. 

NDH-2 exclusively uses NADH and flow of electrons to ubiquinone does not 
result in an electrochemical gradient [113]. If metformin uptake depends on the 
proton motive force (pmf), this might also explain the discrepancy in phenotypes. 
Upon knock-out of NDH-1, Salmonella is forced to use NDH-2 resulting in 
reduced pmf and potentially reduced uptake of metformin explaining the positive 
gene-drug interaction. In contrast, deletion of NDH-2 might result in a stronger 
pmf leading to increased metformin uptake and synthetic sickness. 

In addition to ndh, the smvA deletion mutants of both libraries exhibited 
dose-dependent negative interactions in all metformin concentrations tested and 



 67 

were amongst the top ten negative scores in the highest concentration (Figure 33 
B and C as well as Table 2). 

 

 
Figure 33: Mutants of smvA show high sensitivity to metformin and other substances.  
A) Distributions of s-scores across all mutants for all metformin concentrations tested. Mutants of the 
respiratory complex I show positive interactions with metformin (all nuo mutants present in the Kan library 
are shown, namely nuoABEGHJKN), whereas a respiratory complex II mutant (ndh) interacts negatively with 
metformin. Both smvA mutants as well as E.coli show high sensitivity to metformin reflected in strongly 
negative s-scores with increasing metformin concentration.B) s-Scores of the smvA Kan and Cm clone in 
selected conditions. C) Distribution of s-scores across all conditions for both smvA deletion mutants. S-scores 
in the highest concentration of chemicals exported by the SmvA pump are indicated.  

SmvA is an inner membrane transporter of the major facilitator superfamily 
(MFS) [114]. In S. Typhimurium SmvA has been reported to be responsible for 
efflux of paraquat, also called methyl viogen, hence the name (deletion resulting in 
sensitivity to methyl viogen) [114-116]. Furthermore, SmvA is involved in the 
efflux of paraquat, acriflavine and ethidium bromide. Indeed, both smvA mutants 
tested show negative interactions with these drugs and their highest 
concentrations result in the most negative s-scores observed for smvA mutants 
across all conditions (Figure 33 B and C). 

Already when the smvA nucleotide sequence was first reported, it was pointed 
out that genomic organization in the surroundings of the gene differ between 
Salmonella and E. coli [115], and indeed the pump is not present in the closely 
related bacterium. In fact, SmvA is only present in selected Salmonella, Klebsiella 
and Acinetobacter subspecies amongst a few exceptions (STRING database, Feb 
2016 and [114]). These bacteria are not directly related, suggesting that smvA was 
acquired multiple times independently, likely by horizontal gene transfer. 

Interestingly, wild-type E. coli, which I had included in the library array, 
behaves similar to the smvA deletion strains, scoring very negative in all 
metformin concentrations (Figure 33A). This is consistent with the greater 
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sensitivity compared to Salmonella observed before (Figure 31) and supports the 
hypothesis that the SmvA pump not present in E. coli might play a major role in 
metformin export. 

To investigate the role of SmvA in metformin resistance in more detail, I 
measured the growth of wild-type E.coli (EC), wild-type Salmonella (STM) and 
the Salmonella ∆smvA::kan mutant in increasing concentrations of metformin. 
First however, both smvA mutants were confirmed by PCR and re-transduced 
into wild-type background to exclude secondary mutations. Both mutants 
behaved the same, before and after re-transduction (data not shown), therefore I 
only use the ∆smvA::kan mutant (in the following referred to as STM ∆smvA). 

 

 
Figure 34: Metformin dose response for wild-type E. coli (EC) and wild-type Salmonella (STM) and a 
Salmonella smvA deletions strain (STM ∆smvA).  
OD (578nm) was measured every half an hour upon incubation in LB with different concentrations of 
metformin, shaking at 37°C. Area under the curve (AUC) after 8 h is displayed.  

As shown in Figure 34 E. coli is very sensitive to metformin, with a significant 
drop in growth (represented by area under the curve after 8h) at as little as 100 
mM metformin. Wild-type STM on the other hand is rather resistant and severely 
impacted only at 400 mM. Confirming the results obtained in the high-
throughput screen (see Figure 33), the smvA deletion mutant is more sensitive 
than wild-type STM. However, sensitivity does not reach the level of EC 
suggesting there are other factors contributing to the difference in resistance 
between EC and STM.  

4.2.2 Efficient drug efflux may be critical for resistance to 

biguanide drugs 

Although differences in drug uptake and primary target sensitivity may well 
contribute to the difference in resistance between EC and STM ∆smvA, I focused 
on the potential role of other efflux pumps, because preliminary results from 
experiments investigating the response of gut bacterial species alongside E. coli 
and Salmonella to metformin and phenformin suggested that efficient drug export 
might be the key to Salmonella’s high resistance levels. Phenformin is a compound 
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closely related to metformin but capable of passing the bacterial envelope more 
easily due to a large hydrophobic side group (Figure 35). 

 

 
Figure 35: Dose response of gut bacterial species to metformin (left panel) and phenformin (right panel).  
The bacteria were grown anaerobically in MGAM, at 37°C in a two-fold dilution series of the indicated drug 
and OD (578 nm) was measured every 30 min. Shown is the lowest concentration at which no growth was 
observed. Gram-negative species are shown in orange, with the Salmonella wild-type strain used in this study 
highlighted in red. Gram-positive organisms are shown in blue. Numbers are retrieved from two within plate 
replicates (cultures were grown in 384 well plates).  

Figure 35 shows the lowest deadly concentration of metformin (left panel) 
and phenformin (right panel) for several gut bacterial species in comparison to 
Salmonella and E. coli. Amongst the Gram-negative bacteria tested, Salmonella, 
Bacteroides vulgatus and Akkermansia muciniphila show high resistance to 
metformin. This is worth noting, as an increase in Akkermansia subspecies was 
reported for metformin treated mice and humans [106, 109].  

In phenformin however, the two Salmonella strains tested are clearly the most 
resistant among the Gram-negatives. As phenformin enters the cell more easily, 
efficient drug efflux is probably critical for decreasing intracellular drug 
concentration and thereby avoiding detrimental effects.  

With this in mind the role of other efflux pumps should be considered for 
explaining the remaining difference between EC and STM ∆smvA metformin 
sensitivity as deletion of smvA might induce the expression of another pump by 
feedback regulation. 

First, Salmonella may possess more species-specific efflux pumps involved in 
metformin efflux. Although no other pumps are detected in the metformin top 

Metformin Phenformin 
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hits of the chemical genomics data, induction of a second pump upon smvA 
deletion might explain this phenomenon. In this case a single deletion of the 
second pump would not result in a phenotype. 

Second, a pump shared by both organisms but with differential expression 
levels might be involved. If expressed higher in Salmonella this would explain the 
discrepancy between EC and STM ∆smvA. Both, different base line expression 
levels as well as different levels of induction upon stress should be considered. 

4.2.3 Multiple efflux transporters present in both organisms 

are capable of exporting metformin 

To explore the possibility of other pumps involved in bacterial metformin 
efflux, I examined other large-scale data sets created in the lab, including an EC 
chemical genomics data set, provided by Lucía Herrera, and an EC overexpression 
screen, provided by Lisa Maier. 

In the EC chemical genomics the KEIO collection of single gene deletions [41] 
was tested against a variety of stresses following the same method used in this 
study. 

The overexpression screen was performed using a library of ASKA barcoded 
deletion mutants complemented with their corresponding TransBac plasmid 
(Hirotada Mori, unpublished resource). The growth of this library was 
determined at 0 and 100 mM metformin and using different IPTG concentrations 
to induce expression of the deleted gene from the single copy plasmid. For each 
IPTG concentration a t-test was applied to compare the relative growth of each 
strain between drug and no drug condition. 

The first thing I noticed was that deletion of the mdtK gene resulted in the 
strongest negative interaction at 40 mM metformin in the EC chemical genomics 
(Figure 36A). This implied that the corresponding gene product MdtK, a 
multidrug efflux transporter of the MATE (multidrug and toxic compound 
extrusion) family, is involved in metformin efflux in EC. Due to technical reasons 
no data for this mutant is available for higher concentrations. This result was 
confirmed in the EC overexpression screen. Overexpression of mdtK resulted in 
better growth at 100 mM metformin compared to other strains (Figure 36B). 

In the STM chemical genomics presented in this study, however, I could not 
detect a significant phenotype for mdtK deletion mutants (Figure 36C), which can 
be explained by the presence of smvA in these strains. I only observed a mild 
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negative interaction at the highest concentration. This might hint towards a 
contribution of MdtK to metformin efflux once the SmvA pump is saturated. 

 

 
Figure 36: Additional chemical genomics and overexpression data reveal other pumps capable of 
exporting metformin.  
A) EC chemical genomics (Lucía Herrera). S-score distribution across all EC deletion mutants of the KEIO 
collection in 40, 60, 80 and 100 mM metformin. Due to technical reasons the mdtK deletion mutant was only 
present in 40 mM metformin. B) EC overexpression screen (Lisa Maier). T-value distribution of all 
complemented deletion mutants using 0, 10, 50 or 100 µM IPTG to induce expression of the deleted gene 
from the TransBac plasmid. The t-test compared growth of each strain compared to all other strains in drug 
(100 mM metformin) vs no drug. C) STm chemical genomics (this study). S-score distribution of all STM 
deletion mutants in 10, 25, 50 and 100 mM metformin. Data points for one representative clone of the smvA, 
mdtK, ybjJ and emrE mutants are highlighted if present in the respective data set. 

The second outstanding observation was the positive interactions of ybjK 
mutants with metformin in the EC chemical genomics (Figure 36A). Positive 
interactions indicate increased resistance to the chemical perturbation. 
Interestingly, YbjK (also RcdA) is the repressor of YbjJ [117], a putative MFS 
transporter. Deletion of ybjK would therefore result in enhanced expression of 
ybjJ, which in turn would explain the increased resistance to metformin assuming 
that YbjJ is capable of exporting metformin. 

This result was confirmed in the EC overexpression screen. Overexpression of 
ybjJ facilitated growth at 100 mM metformin (Figure 36B). In contrast, deletion of 
ybjJ does not result in any significant phenotypes in the EC or STM chemical 
genomics (Figure 36 A and C). Therefore it can be assumed, that YbjJ does not 
play a role in metformin efflux under physiological conditions when smvA and 
mdtK are present in STM and EC, respectively. However, YbjJ appears to be 
capable of metformin efflux. Hence, it is a potential candidate to explain the 
discrepancy between EC and STM ∆smvA, if induced upon smvA deletion or if 
induced upon metformin stress only in STM but not in EC. 

Lastly, the EC overexpression screen revealed EmrE as another multidrug 
efflux protein able to export metformin. EmrE overexpression rescued growth at 
100 mM metformin (Figure 36B). Interestingly, EmrE has a very broad substrate 
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spectrum and overexpression of the pump has been reported to confer resistance 
to paraquat, ethidium bromide and acriflavine amongst others [118-120]. This 
profile is similar to the substrate spectrum of SmvA. 

Nevertheless, deletion of emrE does not result in any significant phenotypes 
in the EC chemical genomics (Figure 36A). Also, deletion of an emrE paralog 
found in Salmonella (STM14_1998) does not yield significant phenotypes in the 
STM chemical genomics (Figure 36C). Taken together, the above results suggest 
that emrE, just as ybjJ, may not be expressed under normal conditions. 

However, induction of all three pumps (MdtK, YbjJ, EmrE) upon deletion of 
smvA might be responsible for the discrepancy in metformin resistance observed 
between EC and STM ∆smvA. 

4.2.4 SmvA and MdtK are the major players in metformin efflux 

in E. coli and Salmonella, respectively 

To investigate the role of MdtK, YbjJ and EmrE in metformin efflux, I first 
confirmed the previously observed sensitivities by measuring the dose response of 
the corresponding EC and STM deletion strains to metformin. 

 

 
Figure 37: SmvA and MdtK are the major players in metformin export in STM and EC, respectively.  
A) Heatmap displaying growth of the indicated strains as area under the curve (AUC) after 8h of growth at 
37°C, shaking with increasing concentrations of metformin. Shown is the average of six replicates, for EC 
emrE the average of two replicates. B) Complementation of EC and EC mdtK with pTBmdtK (+/- IPTG) at 
100 mM metformin compared to empty vector. C) Complementation of STM and STM ∆smvA with 
pTBsmvA (+/- IPTG) at 250 mM metformin compared to empty vector. B and C) Shown is the average (thick 
line) growth as area under the curve after 8h +/- standard error (box outlines) of two replicates. 

As shown in Figure 37A deletion of mdtK in EC indeed results in increased 
metformin sensitivity compared to wild-type EC. This effect can be rescued by 
providing mdtK on a plasmid (TransBac, unpublished resource, H. Mori) as 
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demonstrated for growth at 100 mM metformin in Figure 37B. Notably, leaky 
expression of mdtK is sufficient to rescue growth (compare Figure 37B, pTBmdtK 
– no IPTG).  

In contrast, neither deletion of ybjJ nor emrE result in any changes in 
sensitivity to metformin in E. coli. Similarly, the EC ∆mdtK ∆ybjJ double mutant 
behaves like the single deletion mutant of mdtK. (Figure 37A). Altogether these 
results suggest, that MdtK is the major player in E. coli metformin efflux, whereas 
YbjJ and EmrE are likely not expressed under physiological conditions. 

As previously discussed, deletion of smvA in STM increases susceptibility to 
metformin. This effect can be reverted by complementation with smvA expressed 
from a plasmid. For this purpose we cloned the Salmonella smvA gene into the 
TransBac plasmid background. Figure 37C demonstrates the IPTG-dependent 
rescue of STM ∆smvA growth at 250 mM metformin when complemented with 
pTBsmvA. 

Deletion of no other pump (mdtK, ybjJ, Salmonella emrE paralog) results in 
any noticeable change in STM sensitivity to metformin. This can be explained by 
the presence of SmvA in those strains.  

To determine whether these pumps might be induced upon deletion of smvA, 
thereby explaining the different behavior of EC and STM ∆smvA we constructed 
several double and triple deletion mutants. If any of the pumps take over 
metformin efflux upon deletion of smvA, additional deletion of the second pump 
should abolish resistance to metformin. However, neither the STM ∆smvA 
∆mdtK nor the STM ∆smvA ∆ybjJ double mutants show higher sensitivities than 
the smvA single mutant. The same is true for an STM ∆smvA ∆mdtK ∆ybjJ triple 
mutant (Figure 37A). Together these results suggest, that induced expression of 
mdtK and ybjJ upon smvA deletion cannot be the explanation for the high 
residual metformin resistance. 

Notably, the STM ∆mdtK ∆ybjJ double mutant has a mild fitness defect in the 
no drug condition (see first column in Figure 37A), which seems to be absent 
upon additional knock out of smvA (see triple mutant). One possible explanation 
is induction of another pump compensating for the lack of MdtK and/or YbjJ as a 
result of feedback regulation upon smvA deletion. Thus, we are currently testing a 
double mutant of smvA and the Salmonella emrE paralog. 

In conclusion, MdtK appears to be the major player in metformin efflux in 
EC, whereas STM uses the species-specific pump SmvA, despite the presence of 
MdtK and YbjJ. 
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4.2.5 Investigating the global cellular response to metformin 

To gain a more global understanding of each organism’s response to 
metformin treatment, we are currently investigating transcriptomic changes upon 
metformin treatment. EC, STM and STM ∆smvA were grown to exponential 
phase and treated with a pulse of 250 mM metformin or a no drug control for 20 
min before harvesting for RNA extraction.  

We will determine differentially expressed genes in a) STM vs STM ∆smvA in 
absence of metformin to understand changes induced by deletion of smvA, e.g. 
the expression of another pump compensating for loss of smvA, b) EC drug vs no 
drug as opposed to STM drug vs no drug to understand differences in the 
response to metformin treatment between the two organisms and c) the 
differences in metformin response between STM and STM ∆smvA. 

4.2.6 Conferring metformin resistance to E. coli 

As SmvA appears to be the major player in metformin efflux in Salmonella, 
transfer of the smvA gene to E. coli should result in increased resistance to 
metformin. To test this hypothesis we recombinantly expressed the Salmonella 
smvA gene in E. coli using the IPTG-inducible low copy vector pTBsmvA.  

As presented in Figure 38 expression of smvA indeed results in increased 
resistance of wild-type E. coli to metformin. At 200 mM metformin the growth of 
wild-type EC or EC carrying the empty vector is fully inhibited, whereas upon 
expression of smvA growth is only partially affected.  

Notably, overexpression of the pumps MdtK, YbjJ and EmrE, also confers 
increased resistance to metformin. This is in agreement with the observations of 
the EC overexpression screen (Figure 36B) and with the notion that 
complementation of EC mdtK with pTBmdtK resulted in better than wild-type 
growth (Figure 37B). 

In conclusion, the above results suggest that despite E. coli’s sensitivity to 
metformin the organisms harbors the potential to acquire resistance by altering 
expression or activity levels of intrinsic pumps. 

Notably, none of the pump overexpressions renders EC as resistant as STM, 
suggesting the organisms do not only differ in drug efflux. Therefore, after taking 
into account results from the ongoing RNAseq analysis, we will also investigate 
drug uptake and molecular target sensitivity to determine the cause of the distinct 
drug responses. 
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Figure 38: Expression of the Salmonella Typhimurium gene smvA or overexpression of an intrinsic pump 
confers metformin resistance to E. coli.  
Wild-type E. coli as well as E. coli carrying the empty TransBac vector show complete inhibition at 200 mM 
metformin. When E. coli is complemented with plasmids carrying either smvA, mdtK, ybjJ or emrE, 
susceptibility to metformin is decreased and complete inhibition is only reached at 300 mM metformin. 
Shown is the average (thick line) growth as area under the curve after 8h +/- standard error (box outlines) of 
two replicates. 

4.3 Conclusions and discussion 

In summary, I confirmed a high resistance level of Salmonella Typhimurium 
to the T2D drug metformin and identified SmvA as the efflux transporter 
responsible for metformin export in Salmonella.  

E. coli does not carry the smvA gene and is much more sensitive to the drug. 
Although deletion of smvA renders Salmonella more susceptible to metformin, it 
is still able to outperform E. coli.  Thus, I investigated the potential role of other 
efflux pumps, namely MdtK, YbjJ and EmrE, which were previously shown to 
increase resistance to metformin upon overexpression.  

Whereas YbjJ and EmrE do not seem to be involved in metformin efflux in 
any of the two organisms, MdtK is the pump responsible for metformin efflux in 
E. coli. However, deletion of mdtK in a Salmonella smvA deletion background has 
no additional effect on metformin sensitivity. This indicates that differential 
regulation of MdtK does not account for the discrepancy in metformin 
susceptibility in E. coli compared to the Salmonella smvA deletion mutant. To 
gain a better understanding of the underlying cause for this difference, we are 
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currently investigating the global changes in gene expression upon metformin 
stress in both strains. 

In further experiments I show that complementation of wild-type E. coli with 
the Salmonella smvA gene results in increased resistance to metformin. However, 
the same can be achieved by overexpressing other pumps present in E. coli and 
capable of exporting metformin (including MdtK responsible for metformin 
efflux in E. coli) suggesting that E. coli carries the potential for developing 
resistance to metformin.  

This is particularly interesting considering the observed increase in 
Escherichia subspecies in the microbiota of metformin treated diabetic patients 
[109] and the notion that MdtK, YbjJ and EmrE are rather specific to 
Enterobacteriaceae (Table 3).  

 
Pump Highest conservation level in subspecies of the genera 
mdtK Escherichia, Enterobacter, Salmonella, Citrobacter, Klebsiella 
ybjJ Escherichia, Enterobacter, Salmonella, Citrobacter, Klebsiella, Shigella 
emrE Escherichia, Citrobacter, Shigella, paralog present in Salmonella 
Table 3: MdtK, YbjJ and EmrE are conserved in Enterobacteriaceae.  
For each pump the genera with the highest conservation level are shown (STRING database, Feb 2016). 

Taken together with the high metformin resistance of A. muciniphila, also 
showing elevated abundance in metformin treated patients, this poses the 
question whether constant exposure of gut bacteria to metformin in diabetic 
patients constitutes a selective pressure favoring metformin resistant bacteria. 
During the course of experiments we interestingly observed E. coli mutants 
involving an mdtK deletion to develop secondary mutations rendering them 
metformin resistant quite quickly. This suggests that the cellular network indeed 
tries to adjust to the selective pressure. Characterization of these suppressor 
mutants would give additional insights in the resistance potential. 

Furthermore, enteric side effects are common upon metformin treatment, but 
can be diminished by gradually increasing the dose instead of starting on the 
desired dose directly [121]. This could be because more time is allowed for the 
microbiota to adjust to the constant exposure to metformin.  

Mutations leading to elevated expression or activity of any of the investigated 
pumps, such as loss of function mutation in ybjK (repressor of ybjJ) could render 
Escherichia resistant to the drug. Thus, we are currently collaborating with 
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Kristoffer Forslund (Bork lab, EMBL) to examine the published metagenomics 
study for mutations in any of the pumps carried by Escherichia. 

Furthermore, metformin treatment may confer an advantage to smvA 
carrying species. Interestingly, SmvA is a rare, rather pathogen-specific pump, 
reported to be present only in Salmonella enterica, Klebsiella pneumoniae and 
Acinetobacter baumannii. It has to be considered that metformin treated diabetic 
patients may be more susceptible to these pathogens. Whereas Salmonella 
Typhimurium infections are comparably rare in the western world (where T2D is 
most prevalent), A. baumannii and K. pneuomoniae have emerged as important 
multi-drug resistant nosocomial pathogens. Interestingly, diabetes has been 
reported to be a common risk factor [122-124], but metformin treatment status is 
often not mentioned in the relevant literature. As records of A. baumannii and K. 
pneuomoniae infections should be available from hospitals, we started a 
collaboration with Lars Juhl Jensen (University of Copenhagen) to compare 
whether diabetic patients on metformin treatment present this complication more 
often than diabetic patients on other treatment.  

Overall the increased resistance of the pathogen Salmonella Typhimurium to 
the orally administered T2D drug metformin brings implications for long-term 
treatments. The effects of non-antibiotic drugs on the human microbiome are 
more and more considered, and we may even be able to exploit beneficial shifts in 
microbial composition. However, the creation of new niches, which may be 
occupied by pathogens should be a concern, especially in long-term treatments.  

4.4 Contribution disclaimer 

I designed concept, acquisition and analysis of the presented experiments. The 
deletion strains were created by Matylda Zietek (EMBL Heidelberg) and myself. 
Acquisition of growth curves was carried out together with Matylda Zietek. 
Mihaela Pruteanu (EMBL Heidelberg) provided the gut bacterial species and I 
obtained anaerobic growth curves for them. I analyzed all data aided by a script 
for growth curve analysis provided by Ana Rita Brochado (EMBL Heidelberg). 
She furthermore provided Figure 31. Lucía Herrera and Lisa Maier (both EMBL 
Heidelberg) provided data for Figure 36A and Figure 36B, respectively. 
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5 Discussion and perspectives 

Salmonella Typhimurium (STM) is a Gram-negative pathogen causing acute 
gastroenteritis and in immune-compromised, very young or elderly individuals 
infection can result in life-threatening bacteremia [68]. Especially in the African 
continent, invasive non-typhoidal Salmonella strains are emerging as a major 
source of multi-drug resistant bacteria [63]. Although STM is an extensively 
studied model pathogen, the function on many genes remains unknown. 

In the presented study I used a high-throughput reverse genetics approach to 
gain insights into the roles of non-essential genes and simultaneously monitor 
drug responses. I profiled the growth of more than 3800 unique STM mutants in 
more than 550 single conditions ranging from simple physical perturbations, such 
as changes in pH and temperature, over treatment with sub-inhibitory 
concentrations of antibiotics, targeting specific cellular pathways, to highly 
complex stresses like the exposure to conditioned media stemming from other 
microbes. This yielded a chemical genomics map with more than 4 Mio gene-drug 
interactions. 

In the course of the experiments I developed a quality control pipeline 
applicable and used for other data sets of similar kind. Furthermore, I determined 
important characteristics of the utilized deletion collection. In particular we find 
evidence for a higher proportion of polar effects in the Cm library, which was 
anticipated due to the antisense transcripts created from this cassette. 
Additionally, we find a set of mutants with extremely high underlying correlation. 
We are currently investigating changes in genetic background, which might have 
occurred during library construction, as a possible explanation for this 
phenomenon. 

5.1 Potential for directed follow up studies 

5.1.1 Investigating gene function and drug mode of action 

I detected significant phenotypes for 75% of the tested mutants and 
demonstrated that correlation of phenotypic signatures indicates functional 
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relation. Thus, we can link genes of unknown function to known protein 
complexes or cellular pathways. 

Indeed, after merging the libraries to ensure robust s-scores we detect a 
phenotype for more than 500 confirmed orphan genes. For many of those we find 
high correlation to a known gene  (present in benchmarking set) and/or can draw 
connections to modules of functionally related genes. Thus, the presented data set 
is rich in information content to drive future follow up studies. 

Chemical genomics data are not only useful for investigating gene function 
but also give insights into drug mode of action. Mutants showing strong 
phenotypes  within a specific condition can be involved in uptake or efflux of the 
compound or be (connected to) the primary or secondary targets. In the follow up 
study on metformin efflux I identify primary target specificity as well as the drug 
efflux pump for the type 2 diabetes drug metformin based on its gene-drug 
interaction profile.  

Strong interactions with uptake or efflux mechanisms are particularly 
interesting as they might indicate that the compound does not reach high 
intracellular concentration in the wild-type. Hence, combining those compounds 
with adjuvants altering membrane integrity could render them effective. 

Furthermore, similarities of phenotypic signatures between two drugs can 
indicate common modes of uptake and efflux as well as shared primary or 
secondary targets. Based on this data, it would be possible to propose drug 
combinations likely acting synergistically. It would be particularly interesting to 
investigate this for combinations of outdated antibiotics or the combination of an 
antibiotic and drugs not designed for targeting bacteria. Especially in the light of 
emerging multi-drug resistant Salmonella strains the directed search for efficient 
treatment strategies is indicated. Furthermore, this knowledge might be 
transferable to other bacteria. 

Of course, the follow up potential of the presented data set is by far not 
exhausted in this thesis. However, previous studies of similar kind have 
demonstrated the long-term usage of chemical genomic maps to drive hypothesis-
based projects ([51, 125-128] to name just a few mechanistic studies utilizing the 
E. coli chemical genomics data). Therefore, the gene-drug interactions detected in 
this study will continue to allow researchers to generate hypotheses or confirm 
results obtained for genes and drugs they are investigating.  



 81 

5.1.2 Exploring evolution 

I also presented the to my knowledge first comparison of bacterial phenotypic 
landscapes. After thorough curation we compared the STM data set created in this 
study to a similar E. coli chemical genomic map published by Nichols et al. [36].  

Interestingly, mutants of conserved genes are more likely to be responsive to 
multiple conditions and their phenotypic signature is frequently conserved 
between STM and the related E. coli (EC). Less conserved genes often show only 
few or no significant phenotypes congruent with the idea that evolutionary 
distinct genes may be involved in rather niche-specific tasks and thereby relevant 
for growth in only few conditions.  

From pan-genome studies conducted in STM and EC we can retrieve 
information about whether a gene is shared between species or only present 
within one species, subspecies or even strain-specific [58, 129]. It will be 
interesting to test whether there is a correlation between the responsiveness of a 
mutant and the time since acquisition. Presumably more recently acquired genes 
will be wired less deeply into the cellular network and thus exhibit less 
phenotypes. Furthermore, this analysis can be expanded to elements of horizontal 
gene transfer such as prophages. 

Analysis of functional modules predicted based on the phenotypic signatures 
in each data set shows a large conservation of core cellular processes. As a next 
step it would be interesting to probe interaction between those modules and their 
conservation. In eukaryotes it has been proposed that within module conservation 
is high whereas between module conservation is poor suggesting rewiring of 
cross-talk between pathways in order to adjust to new environmental conditions 
[55]. 

Adding genes with species-specific responses or those present in only one 
organism gives insights how they wire into the existing cellular network. In fact, 
many clear species-specific differences observed throughout the whole study stem 
from components known to have high subspecies or strain specificity (LPS, O-
antigen, virulence factors). This is not surprising, as the strain classification is 
based on phenotypic differences and differential antigen expression. However, this 
brings the implication that obtaining chemical genomics profiles for natural 
isolates and overlaying this data with sequence similarity information might 
provide new insights into evolution. 
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5.2 Expanding the cellular network 

For every bacterium a large proportion of genes is not needed for growth in 
laboratory conditions, but only important upon certain environmental cues. 
While I detected phenotypes for 75% of the mutants, a similar study conducted in 
E. coli reported phenotypes for 50% of the tested mutants [36]. The chemical 
space probed in my study was bigger and more diverse. Furthermore, I included 
complex stresses such as media conditioned by other microbes and conditions 
mimicking the infected host environment. This demonstrates that expansion of 
the chemical space can increase the number of insights we gain. Growing the 
mutants in presence of other bacteria or within the host environment would be 
ideal, however, increased technical challenges, costs and diminished throughput 
have to be considered.  

5.2.1 Addressing genes with no phenotype 

A fraction of the mutants presenting no phenotype will be comprised of 
mutants of redundant genes. Upon deletion of one gene the other one will take 
over the tasks so that no phenotype will be detected. Simultaneous application of 
multiple stresses or creating multiple deletions can address this issue. 

As an alternative to increasing the degree of perturbation, read-outs other 
than growth should be considered. While growth or survival may not be affected 
by certain mutations (under any condition), deletion of the gene in question may 
well affect the bacterium’s ability to attach to a surface, swim, form biofilm or 
infect the host to name just a few. All of these processes are crucial for bacterial 
survival throughout its life cycle but will not be captured when measuring growth. 

The expansion of read-outs is currently addressed in the lab. In an ongoing 
study the proportion of E. coli mutants, for whom a phenotype was detected, 
increased from 50% to 82% by combining information from a growth and biofilm 
formation read-out (personal communication, Lucía Herrera). The biofilm assay 
used in this study can be easily applied for other bacteria.  

Furthermore, we are testing the entire Salmonella Kan deletion collection for 
its ability to infect and replicate in epithelial cells as well as macrophages (personal 
communication, Bachir El Debs). Processes such as epithelial cell invasion, 
intracellular survival and replication are extremely complex and rely on a constant 
communication between bacterial and host cell factors in the correct spatial and 
temporal resolution. As it is impossible to recreate this complex interplay in vitro, 
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I expect that we will be able to retrieve phenotypes for so far silent mutants from 
this infection screen. 

5.2.2 Integration of other large-scale data sets 

Another strategy to increase the information content is the integration of 
multiple data types as orthogonal information can complete the global picture of 
the cellular network. Pioneering work in yeast sought to interpret genetic 
interaction networks by taking into account physical interaction data and revealed 
insights into pathway redundancy as well as gene essentiality [82, 130-133].  

Physical interaction data for STM proteins is scarce and inferring the 
interactions from other organisms might lead to faulty conclusions. However, 
there are a number of Salmonella specific data sets that can be used. 

For example, co-expression of genes is often associated with functional 
relation. STM gene expression has been extensively studied in the context of 
infection and small RNA discovery [76, 134]. Identifying genes co-expressed in 
multiple studies and/or different conditions would provide robust co-expression 
data eliminating biases caused by differing sample treatments, sequencing 
platforms or analysis pipelines. This information can be subsequently used to 
complement the gene-drug interaction network. The big advantage of using e.g. 
expression data is that we can include information on essential genes which are by 
design not represented in studies utilizing deletion mutants. 

Furthermore, it will be highly interesting to implement data from the 
Salmonella infection screen ongoing in our lab. The expression of virulence genes 
is often activated only upon detection of certain host signals. Thus, their influence 
on core cellular processes is difficult to determine in vitro. Combining gene-drug 
interaction and infection related data might be able to bridge this gap. After all, it 
is intuitive that bacteria have to wire virulence factors into existing cellular 
pathways to efficiently counter host defenses and to successfully adapt to replicate 
in a hostile host environment such as the acidic Salmonella containing vacuole. 

5.3 Considerations for long-term drug treatments 

The follow up study on metformin efflux presented in this thesis is just one 
example of how we can combine knowledge from different large-scale interaction 
data sets to accelerate and focus hypothesis-driven research. Additionally to 



 

 84 

discovering distinct mechanisms of efflux in E. coli and Salmonella, I report two 
more silent efflux pumps capable of exporting this drug. This implies a higher 
potential for resistance in bacteria carrying these genes.  

The great impact of the human microbiota on the health of the host is 
becoming more and more evident. Thus, consequences of disrupting the 
microbiota must be considered. Although awareness of microbiota-related side 
effects of antibiotic treatment is rising, we are just at the beginning of 
understanding the manifold disruptions our microbial system may be exposed to 
in daily life.  

Gastroenteric side effects are amongst the most common consequences of any 
drug treatment, also for metformin. Even if not designed to inhibit functions of 
the bacterial cell, many drugs will nevertheless influence them. This may not result 
in inhibition of bacterial growth, but it can shift the balance in the microbiota, if 
some bacteria are more affected than others. These shifts in microbial 
compositions can subsequently create new ecological niches. Prebiotics even 
exploit this phenomenon by favoring bacteria beneficial for the host. Other 
treatments might create niches for harmful bacteria or even pathogens. However, 
we must consider that any compound, drug or potential prebiotic, may have 
mixed effects on the microbiome, which might furthermore depend on the exact 
composition of the resident microbiota before treatment. Metformin, the drug 
investigated in this study, illustrates the potential for opposing effects. The 
increase in Akkermansia subspecies and alterations in bacterial metabolism seem 
to have a positive influence on host metabolism and health. However, prolonged 
treatment might also increase the risk of severe infections with multi-drug 
resistant bacteria. Also, the effect on funghi and viruses present in the flora has 
been largely unexplored. 

5.4 Perspectives 

The investigations on metformin efflux revealed that E. coli and Salmonella 
use distinct pumps to export the drug. E. coli uses MdtK whereas Salmonella 
appears to be rewired to use the species-specific pump SmvA despite the presence 
of mdtK in the Salmonella genome. Furthermore, both organisms encode other 
pumps capable of exporting metformin. However, even upon deletion of the 
major players these pumps remain unused.  
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This example nicely demonstrates a few remaining questions and challenges 
in understanding bacterial biology. First, it shows that presence of a gene does not 
necessarily imply usage. Likewise, absence of a gene should not be blindly 
correlated to absence of function. This is especially important in the light of 
bacteria living in communities. For example, in the human gut bacteria utilize 
each other’s metabolites, horizontal gene transfer allows for acquiring certain gene 
functions, degradation of extracellular compounds may be carried out by enzymes 
secreted from one bacterium, whereas the breakdown products may be used by 
others as well.  

Therefore, we have to ask ourselves how complete the picture we gain of the 
cellular network by studying single bacteria can possibly be. We use gain and loss 
of genes as a measure for speciation events and expect accordingly differential 
behavior of the diverging strains. However, we must consider that genes may be 
lost because their function is not needed in the presence of other bacteria. 
Whereas this loss may alter the outcome of experimental investigations in the 
laboratory the role in the natural environment may be much less impacted (or 
much more for the matter). 

In conclusion, information from large-scale genetic, chemical and physical 
interaction data has accelerated our understanding of cellular processes and 
dynamics and will continue to spur hypothesis-driven research. With recent 
advances in technology we have the means to manipulate any variable at any scale. 
Genetic perturbations can range from point mutations to deleting entire operons, 
the condition space can include single, highly defined perturbations or very 
complex stresses. We must consider interaction partners depending on whether 
we measure single cells, cultures, communities or even interactions with the host. 
Effective integration and presentation of the accumulating data will certainly be 
one of the next big challenges in the field. 
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6 Materials and Methods 

6.1 Creating a chemical genomics data set for 

Salmonella Typhimurium 

6.1.1 Bacterial strains 

The single gene deletion collections used in this study are based on Salmonella 
enterica serovar Typhimurium 14028s [57]. They were provided by Helene 
Andrews-Polymenis (Texas A&M) and Michael McClelland prior to publication.  

In brief, the deletion mutants were created by replacing the gene of interest by 
either a kanamycin (Kan) or a chloramphenicol (Cm) resistance cassette using the 
lamba-Red recombinase system [75]. To reduce polar effects the first and last 30 
bases of each targeted sequence were preserved. The kanamycin cassette was 
placed co-directional to the deleted gene, whereas the chloramphenicol cassette 
was placed in opposite direction.  

We single colony purified and re-arrayed the library, so in this study I present 
7200 mutants of 3834 unique genes. For more than 3000 genes a clone is present 
in each library, for a number of genes duplicates of the same clone were included 
to fill up plates. Furthermore we included E. coli BW25113 (referred to as wild-
type E. coli), Salmonella Typhimurium LT2 and Salmonella Typhimurium 14028s 
(ATCC14028, referred to as wild-type Salmonella) in the re-array. 

6.1.2 Chemical perturbations 

Tested conditions 

For a complete list of perturbations tested in this study see Appendix B Tested 
conditions (page 113). 

MIC testing 

Minimal inhibitory concentrations were tested using MIC test strips (Oxoid 
or Liofilchem) if available. Wild-type Salmonella (ATCC14028) was spread as a 
lawn on a regular LB Lennox agar plate. Next, the MIC test strip was carefully 
placed on top ensuring complete contact with the agar surface. After over night 
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incubation at 37°C the MIC was read at the intersection of the resulting halo with 
the MIC test strip. If no halo was observed the MIC was determined as greater 
than the highest concentration on the strip. 

For manual testing chemical solutions were added in a concentration series to 
liquid LB Lennox agar before pouring the plates reflecting the method used for the 
chemical genomics study itself. After the agar was solidified Salmonella was 
streaked out on the agar surface and inspected for growth after over night 
incubation at 37°C. 

Test plate preparation 

For all steps involving agar plates Singer Plus Plates were used. The plates 
were prepared using a pump (PM05, AES Laboratoire) dispensing a fixed volume 
of 43 ml media into every plate at 500 rpm. All plates contained 2% (w/v) agar and 
unless otherwise indicated the base media was LB Lennox. Chemicals were added 
to the liquid agar from higher concentrated stock solutions to reach the desired 
final concentration. For the detailed overview of base media used for each 
condition see Appendix B Tested conditions (page 113) and for the base media 
recipes Appendix A Base media (page 113). 

Conditioned media (CM) conditions were created by mixing 2x LB Lennox 
agar with equal amounts of conditioned media (filter sterilized) and water to reach 
1x LB Lennox agar. Therefore, the base media is still full LB Lennox and the 
conditioned media is diluted by the factor 4. Growth conditions were: For 
Pseudomonas aeruginosa (PA01 and PA14): LB Miller, aerobically, 37°C, shaking, 
over night. For Akkermansia muciniphila: MGAM (GAM Broth_Modified, 
HyServe), anaerobically, 37°C, standing, over night. A media control treated 
exactly like the culture was included for both cases. 

SPI2-inducing and non-inducing conditions were based on conditions tested 
by Kröger et al. when creating a transcriptomic atlas of Salmonella in infection-
relevant conditions [76]. For the low magnesium modification, final 
concentration of MgSO4 was lowered to 0.01 mM. For the low iron modification I 
added the iron scavenger bipyridyl at a final concentration of 0.1 mM. 

UV exposure 

For UV treatment the mutant collections were arrayed on LB Lennox agar 
plates and exposed to UV (254 nm) using a UV Stratalinker 2400 (Stratagene) for 
6, 12, 18 or 24 seconds prior to incubation at 37°C. 
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6.1.3 Robotic procedures 

All robotic transfers were carried out using the Singer Rotor (Singer 
Instruments). 

Transfer from glycerol stock to agar plate 

The mutant libraries were stored as glycerol stocks in 384 well plates at -80°C 
(15% (v/v) glycerol). First, all plates (10 Kan, 10 Cm) were thawed completely and 
centrifuged at 800 rpm for 2 min. The Singer Rotor was used to transfer the 
bacteria from the well plates to LB Lennox, 2% (w/v) agar plates containing either 
30 µg/ml kanamycin or 10 µg/ml chloramphenicol. The only exception was 384 
Kan plate 7 as it contained E. coli and Salmonella wild-type strains as well as S. 
Typhimurium LT2, therefore it was arrayed onto LB agar without antibiotic. 

In brief, the procedure selected from the standard methods of the Singer rotor 
was the following:  

• Source: Multi-Well 384, Target: PlusPlate 384, Pad: Long Pin 384 
• Program: Spot Many  
• Settings: 2 plates per source, wet mix for the source plate and default 

pinning pressure for the target plate. 
The resulting agar plates were incubated over night at 37°C. 

Arrangement of library plates in 1536 format 

Next day, the 20 agar plates in 384 format were used to assemble the five 
library plates in 1536 format using the following Singer Rotor procedure: 

• Source: PlusPlate 384, Target: PlusPlate 1536, Pad: Short Pin 384 
• Program: 1:4 Array  
• Settings: No offset and default pinning pressure for the source plate as 

well as the target plate. 
• Assembly: see Table 4 

The resulting plates were incubated at 37°C for 4-6 hours and re-arrayed 
using the procedure described below (see Transfer to test plate). 
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1536 plate number 384 plates used Antibiotic used 
1 Kan 1-4 Kan 
2 Kan 5-8 None (includes wt strains) 
3 Cm 1-4 Cm 
4 Cm 5-8 Cm 
5 Kan 9/10 and Cm 9/10 None 
Table 4: Arrangement of library plates in 1536 format from 384 format source plates.  
 

Maintenance of library plates 

Library plates were maintained for up to one month before going back to 
glycerol stocks and arranging them freshly. During this time the plates were kept 
at 4°C unless they were used the same day, but never for longer than one week. 
Instead they were regularly re-arrayed using the same procedure as described 
below for transferring mutants to the test plates containing chemical perturbation. 

Transfer to test plates 

To transfer the bacteria from source plates to test plates containing the 
chemicals a Singer Rotor procedure with the following parameters was used: 

• Source: PlusPlate 1536, Target: PlusPlate 1536, Pad: Short Pin 1536 
• Program: Replicate many 
• Settings:  

• Recycle: Full, revisiting source (up to 20 plates were pinned 
from one source plate using the same pad) 

• Source: no offset, pinning pressure 50% 
• Target: pinning pressure 70% 

From each source I first pinned 2-4 times on LB Lennox agar (with Kan and Cm 
as applicable). Those plates were later used as new source plates. Only then I 
transferred mutants from the same source to test plates. All test plates were 
incubated at 37°C for approximately 12 hours unless otherwise indicated (e.g. 
room temperature or high temperature conditions). If growth was poor the 
incubation time was extended. 
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6.1.4 Colony size measurement 

Picture acquisition 

Pictures were taken using a robotic setup (SPImager, S&P Robotics Inc.) 
fixing the positions of camera (Canon EOS Rebel T3i) and plate on a black 
background. The camera settings used are: shutter speed 1/100, aperture F2.8, ISO 
400. Plates with severe pinning errors (e.g. incomplete pinning due to uneven agar 
surface) were discarded right away. 

IRIS 

All pictures were subjected to analysis using the Salmonella growth profile of 
Iris version 0.9.4.57. In brief, the software crops the picture, converts it to gray 
scale, detects the format and divides the picture in the corresponding number of 
tiles. In each tile the largest circular object is detected as the colony using an 
intensity threshold. The colony size corresponds to the number of pixels in the 
area covered by the colony. 

6.1.5 Quality control 

The quality control applied is described quite extensively in the main text. In 
brief, all parameters (see Table 1 on page 24) were calculated for the entire initial 
data set and thresholds for extreme values decided based on the overall 
distributions. File names of plates exceeding the thresholds were automatically 
detected using a Matlab script and combined in one text file. This text file can be 
provided when using the Matlab EMAP toolbox to normalize and score the data. 
If provided data from the listed files are automatically blanked for the analysis. 

6.1.6 Normalization, interaction scoring and clustering 

All normalization and scoring steps were carried out using the EMAP toolbox 
for Matlab [30].  

The normalization steps include a second order surface correction, an outer 
frame correction and a plate-to-plate normalization. The outer frame correction 
brings mutants of the two outer-most rows and columns to the overall growth of 
the plate center. The plate-to-plate correction brings the plate middle mean (mean 
of middle 10% of colony sizes around the median) to the same value (calculated 
based on the entire data set) by multiplying every colony size on a 1536 plate with 
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the same factor. This procedure was adapted to take into account the different 
normalization groups described in chapter 2.3.2 High mutant correlation. For 
every subgroup the factor is calculated to bring the median colony size of this 
subgroup to the desired plate middle mean. The subsequent interaction scoring 
was not modified and a description can be found in the EMAP toolbox manual. 

Prior to using cluster analysis to visualize the data it is necessary to bring 
conditions to a comparable level. Therefore, we rescaled the s-score distribution of 
each condition (across all mutants) to the spread of a standard normal 
distribution (IQR=1.35) as described by Nichols et al. [36].   

Two-dimensional hierarchical clustering analysis (similarity metric: 
correlation (centered), clustering method: complete linkage) was performed using 
Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) and 
the resulting dendrogram was visualized using Java TreeView 
(http://jtreeview.sourceforge.net/).  

6.2 Further analysis of the Salmonella chemical 

genomics data set 

All the computational analysis carried out on the chemical genomics data 
after s-score rescaling were based on the Python programming language. The 
following python software libraries have been used for data analysis and 
visualization:  

• Python v2.7.11 
• NumPy v1.10.2 [135]  
• SciPy v0.16.1 [136] 
• Pandas v0.17.1 [137] 
• Fastcluster v1.1.13 [138] 
• Scikit-learn v0.17 [139] 
• Networkx v1.9.1 [140] 
• BioPython v1.65 [141] 
• Matplotlib v1.5.1 [142] 
• Seaborn v0.7.0 [143] 
• Jupyter v1.0.0 [144]  
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6.2.1 Mutant correlations for detecting normalization groups  

Mutant-mutant correlation matrices were constructed computing all versus 
all Pearson’s correlations of s-scores across conditions. The correlations were then 
subjected to hierarchical clustering (distance metric euclidean and linkage method 
average). Sub-clusters for further analysis were selected manually and within 
cluster correlation recalculated. 

6.2.2 Defining significant phenotypes  

The s-scores of all Salmonella mutants were subjected to an FDR correction, 
in order to highlight true phenotypes from experimental noise, using the same 
approach described by Nichols et al. [145]. Phenotype rarefaction curves were 
derived from counting the number of strains exhibiting at least one significant 
phenotype upon the respective threshold and a final FDR threshold of 5% was 
chosen.  

6.2.3 Exclusion of noisy strains and library averaging 

Noisy clone pairs were determined by their residual s-scores in each condition 
(i.e. s-score clone A minus s-score clone B). Mutants were labeled noisy if a) the 
sum of residuals across all conditions was <-100 or >100 or b) they showed 
particularly high residuals (greater than mean of all residuals +/- three times the 
standard deviation of all residuals) in 10 or more conditions. Noisy pairs were 
manually revised based on total number of phenotypes, conditions in which they 
occur and top correlated genes. If no informed decision on which clone is more 
likely correct could be made the complete pair was removed from further analysis. 

To yield the Kan-Cm combined data set, we averaged the s-scores derived 
from Kan or Cm mutants of the same gene. If multiple Kan or Cm clones were 
present one was randomly selected to calculate the Kan-Cm average. If a mutant 
was present in only one library a pseudo-averaging strategy as described by 
Collins [30] was applied. In brief, the single s-score was averaged together with the 
median s-score of all mutants in the same condition and from the other library 
with similar s-score; an s-score was considered similar if the residual with the 
mutant was below half the s-score of the mutant. This strategy was not used if the 
mutant was present multiple times within that library. In that case two clones of 
the same library were averaged.  
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6.2.4 Benchmarking 

To determine whether a high s-score signature correlation between two 
mutants is indicative of functional relation we benchmarked all pairwise mutant 
correlations against sets of genes known to interact, participate in the same 
cellular pathway or sharing genomic context. The various sets used as benchmarks 
are listed in Table 5.  

 
Name Database Organism Reference 
CycCplx Biocyc S. Typhimurium 14028s + 

inferred from E. coli MG1655 
[146] 

CycPath Biocyc S. Typhimurium 14028s [147] 
CycOper Biocyc S. Typhimurium 14028s [147] 
DOOR Operons DOOR S. Typhimurium 14028s [148] 
KGmod KEGG S. Typhimurium LT2 [149, 150] 
KGpath KEGG S. Typhimurium LT2 [149, 150] 
STRExp STRING S. Typhimurium 14028s [151-154] 
Table 5: Benchmarking data sets used. 

 
For each benchmarking data set we broke all entries down into binary 

combinations, e.g. a protein complex ABC, was broken down into the 
combinations A-B, A-C and B-C. Next, homodimeric combinations (A-A) were 
removed. 

The Pearson correlation of s-scores across all conditions for all possible 
pairwise mutant combinations was calculated and the distribution plotted in a 
density curve. Next, only correlations of mutant pairs present in the 
corresponding benchmarking data set were added as a separate density curve. The 
same was repeated requiring a minimum number of significant phenotypes to be 
present in each mutant to be considered. 

To compare benchmarking performance before and after merging the Kan 
and Cm library ROC (receiver operating characteristic) curves were drawn. 
Mutant pairs derived from the respective benchmarking set were used as true 
positive set. The negative set was derived from all possible mutant combinations 
between genes present in the benchmarking sets but not interacting, as we cannot 
infer the relationship status between genes not present in the annotations sets. The 
s-score signature correlation threshold was then changed to measure the changes 
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in true and false positives rates. An additional test was carried out comparing the 
average correlation inside each benchmarking set as compared to the same 
number of random mutant pairs.  

6.3 Interspecies comparison 

The E. coli data set used in this comparative analysis was published in 2011 by 
Nichols et al. [145]. Significant phenotypes were defined using a false discovery 
rate as described in the publication and as applied also for this study (see 6.2.2 
Defining significant phenotypes). 

6.3.1 Selection of shared conditions 

The E. coli and Salmonella chemical genomics data sets overlap in 91 unique 
stresses. The original s-score matrices were restricted to those conditions to enable 
direct comparisons between the two species. Conditions related to cellular stresses 
(pH, temperature, exposure to UV) and minimal media conditions were paired 
directly. For chemical stresses the different concentrations used in the two species 
might not be directly comparable, therefore requiring a strategy to highlight the 
most comparable concentrations for each chemical. We reasoned that in the 
optimal concentrations the orthologs in the two species should show some degree 
of correlation in their s-scores, exhibit a comparable number of phenotypes, and 
that some orthologs might show similar significant phenotypes in both species. 
For each single chemical condition shared by the two species, concentration pairs 
were sorted by their residual ratio in the number of phenotypes shown by 
orthologs in both species. To avoid local minimum, conditions pairs with residual 
ratios up to three times the lowest ones were considered. The selected 
concentrations pairs were then sorted by the ratio of phenotypes shared between 
the two species, again allowing pairs with up to three times the minimum shared 
phenotypes ratio. If more than one concentration pair satisfied those 
requirements, we chose the pair with higher concentrations, as it would show 
more significant phenotypes and thereby facilitate the detection of correlations 
between mutants and conditions. If the resulting paired concentrations still 
showed a residual in the number of phenotypes higher than 50, the chemical was 
excluded entirely. This was the case for azidothymidine and triclosan.  
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The resulted shared conditions matrices then comprised 89 single conditions 
and are listed in Appendix C Shared conditions for interspecies comparison. 

6.3.2 Ortholog correlation and intra-species conservation 

The following genome sequences were used (NCBI RefSeq entries):  
• E. coli: NC_000913.3 (Escherichia coli str. K-12 substr. MG1655) 
• S. Typhimurium: NC_016856.1 / NC_016855.1 (Salmonella enterica 

subsp. enterica serovar Typhimurium str. 14028S)  
Orthologous genes between the two species (as well as paralogs) were 

predicted using OrthoMCL [78]. 
The correlation between orthologs in the shared conditions was measured by 

considering only the 1:1 (one-to-one) orthologous groups found by OrthoMCL, 
thus excluding any groups including paralogs. The orthologs were then divided by 
their number of phenotypes: an ortholog pair was either defined “blank” (both 
mutants do not show any phenotype across all shared conditions), “phenotype” 
(both mutants show at least one phenotype in the shared conditions) and 
“important” (at least one mutant shows more a phenotype in at least 10% of the 
shared conditions).  

Gene conservation levels inside the two species were assessed by measuring 
the BSR (blast score ratio) [155] of each gene inside all the available closed 
genome sequences available for E. coli and S. enterica; the genomes (61 for E. coli 
and 41 for S. enterica) were downloaded from the NCBI FTP database. The 
average BSR across all genomes was used as a measure of gene conservation inside 
the species; genes with an average BSR score lower than 0.9 were considered 
poorly conserved in the species.  

6.3.3 Chromosomal location of responsive genes 

Spatial enrichment of responsive genes showing significant phenotypes in at 
least 10% of the shared conditions was inspected with an enrichment strategy 
similar to the one used for E. coli [36]. For both, the Salmonella and E. coli 
chromosome, regions of 100kb with a 1kb sliding window were used, while 
regions of 10kb were used for Salmonella plasmid. Genomic positions were 
adjusted so that position zero is occupied by the origin of replication (oriC). For 
E. coli the position was derived from the refseq entry NC_000913.3 (feature 
"rep_origin"). For Salmonella's chromosome the position of oriC was determined 
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from the DoriC database [156, 157], while for the plasmid the position of the repC 
gene was used as a starting point. 

6.3.4 Detecting clusters of mutants and conditions 

Only mutants/conditions with at least one significant phenotype were 
considered. Mutant correlation matrices were constructed computing all pairwise 
Pearson correlations of s-score signatures across the shared conditions. The 
correlations were then subjected to hierarchical clustering (distance metric 
euclidean and linkage method average). The same was done for calculating s-score 
signature correlations of conditions across mutants. Clusters of genes and 
conditions were defined by requiring the average within cluster correlation to 
exceed a certain threshold. For mutants clustering the selected correlation 
threshold was 0.3 for both species, while for conditions clustering a correlation 
threshold of 0.2 and 0.15 was used for E. coli and Salmonella, respectively. This 
was necessary due to the different overall conditions correlation profiles in the 
two species.  

6.3.5 Conserved and expanded gene modules 

To identify conserved gene modules between the two species we used a 
variant of a method adopted in a similar study between the budding and fission 
yeast [55, 82]. Each ortholog pair between E. coli and Salmonella was arranged in 
separate modules, such that each module contains one ortholog pair. A merge 
score was then computed for each pair of modules m1 and m2:  

 
where r is the Pearson correlation between gene a and gene b across the shared 
conditions. If the sum of correlations in E. coli or Salmonella was below zero, the 
merge score was set to zero for that modules pair.  

Once the merge scores had been computed for each possible module pair, we 
sorted them and started merging the pairs with the highest merge score, until the 
merge score fell under a defined threshold. Each time a pair is merged, the merge 
score between the expanded module and all other modules was recomputed and 
all the scores were sorted again. Additionally, modules were not merged if they 
contained a gene that was already featured in another module with size greater 
than one (due to the presence of paralogs). A merge score threshold of 0.4 was 

E. coli Salmonella
VERAPAMIL-1 VERAPAMIL-50

Orthologs correlations

The correlation between orthologs in the shared conditions was measured by
considering only the 1:1 (one-to-one) orthologous groups found by OrthoMCL,
thus excluding any groups including paralogs. The orthologs when then divided
by their number of phenotypes: an ortholog pair was either defined “blank” (both
mutants do not show any phenotype across all shared conditions), “phenotype”
(both mutants show at least one phenotype in the shared conditions) and
“important” (at least one mutant shows more a phenotype in at least 10% of the
shared conditions).

Conserved and expanded gene modules

To identify conserved gene modules between the two species we used a variant
of a method adopted in a similar study between the budding and fission yeast
(Bandyopadhyay et al. 2008; Ryan et al. 2012). Each ortholog pairs between E.
coli and Salmonella were arranged in separate modules, such that each module
contains one ortholog pair. A merge score was then computed for each pair of
modules m1 and m2:
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where r is the Pearson’s correlation between gene a and gene b across the shared
conditions. If the sum of correlations in E. coli or Salmonella was below zero,
the merge score was set to zero for that modules pair.

Once the merge scores had been computed for each possible module pairs, we
sorted them and started merging the pairs with the highest merge score, until the
merge score fell under a defined threshold. Each time a pair is merged, the merge
score between the expanded module and all other modules was recomputed and
all the scores were sorted again. Additional controls were put in place before
merging modules: modules were kept separated if the merge score was found to
be less than half the maximum self merge score of the two modules, Additionally,
modules were not merged if they contained a gene that was already featured
in another module with size greater than one; this was due to the presence
of paralogs. A merge score threshold of 0.4 was choosen for the creation of
conserved modules, using the ROC curve benchmarks described above.

6
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chosen for the creation of conserved modules, using the ROC curve benchmarks 
described above.  

The conserved modules created with this strategy were expanded to include 
genes specific to either species clustering with the module. For each gene not 
already present in a module with size greater than one we computed the median 
Pearson’s correlation with all genes in each conserved module. The median value 
was put equal to zero if any of the correlations with the genes present in the 
module were found to be below zero. We then sorted all the median correlations 
and added each gene to the conserved module for which they showed the highest 
correlation, until a certain threshold was met. We used a ROC curve benchmark 
considering only the gene pairs between the expanded and conserved modules to 
pick a correlation threshold of 0.3.  

6.4 Investigating Salmonella Typhimurium metformin 

resistance 

6.4.1 Bacterial strains, plasmids and antibiotics 

Bacterial strains 

All S. Typhimurium deletion strains were derived from the single gene 
deletion collection used in this study. All mutants were re-transduced into 
ATCC14028s wild-type background by P22 transduction and verified by PCR.  

The E. coli strains were isolated from the KEIO collection [41], re-transduced 
into BW25113 wild-type background by P1 transduction and the mutation was 
likewise verified by PCR.  

In all cases, when multiple clones were present, both were tested and one was 
kept for further experiments. 

Double mutants were constructed by P1/P22 transduction. If necessary, the 
antibiotic cassette was removed from one strain using transient expression of 
flippase from the temperature-sensitive pCP20 plasmid as described by Datsenko 
and Wanner [75]. A list of all strains used in chapter 4 can be found below. 
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Label Background Mutation 
STM S. Typhimurium 14028s --- 
STM ∆smvA S. Typhimurium 14028s ∆smvA::kan 
STM mdtK S. Typhimurium 14028s ∆mdtK::cat 
STM ybjJ S. Typhimurium 14028s ∆ybjJ::cat 
STM emrE S. Typhimurium 14028s ∆emrE::kan 
STM ∆smvA mdtK S. Typhimurium 14028s ∆smvA::kan ∆mdtK::cat 
STM ∆smvA ybjJ S. Typhimurium 14028s ∆smvA::kan ∆ybjJ::cat 
STM mdtK ybjJ S. Typhimurium 14028s ∆mdtK::cat ∆ybjJ 
STM ∆smvA mdtK 
ybjJ 

S. Typhimurium 14028s ∆smvA::kan ∆mdtK::cat ∆ybjJ 

EC E. coli BW25113 --- 
EC mdtK E. coli BW25113 ∆mdtK::kan 
EC ybjJ E. coli BW25113 ∆ybjJ::kan 
EC emrE E. coli BW25113 ∆emrE::kan 
EC mdtK ybjJ E. coli BW25113 ∆mdtK::kan ∆ybjJ 
Table 6: Bacterial strains used in chapter 4 The Salmonella efflux pump SmvA confers resistance to the 
diabetes drug metformin. 
 

Plasmids 

Except for pTBsmvA all plasmids were derived from the TransBac library, a 
collection of self-transmissible low copy expression plasmids of E. coli genes 
(unpublished). 

pTBsmvA was created by amplifying smvA from wild-type S. Typhimurium 
with primers containing regions homologous to the TransBac empty vector (5’-
attcattaaagaggagaaacgagctcGAAGGGAGAGTTATGTTTCGTCAGTG-3’ and 5’-
ggccgcataggccggcccccgcatgcTTATCGGCGTTGGGCTTTTG-3’). The empty 
TransBac vector was cut using AvrII and CutSmart Buffer (NEB). Gibson 
assembly was used to join the fragments (Gibson Assembly Master Mix, NEB, 1:2 
vector to insert ratio). Subsequent electroporation into electro-competent wild-
type E.coli, selection on tetracycline and MidiPrep (Qiagen) yielded the pTBsmvA 
plasmid. 

TSS transformation was used to transform all plasmids into all E. coli strains 
used here. As the TransBac library is available in BW38029 Hfr background we 
used conjugation to introduce the plasmids into the Salmonella strains tested in 
this study. I used repeated streak outs on non-selective medium to derive 
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BW38029 Hfr from BW38029 Hfr carrying pTBmdtK. After confirming that the 
strain had lost the plasmid conferring tetracycline resistance I used TSS 
transformation to introduce pTBsmvA, which was not part of the TransBac 
library, into the same background. 

 
Label Source Resistance 
pTBempty TransBac plasmid library Tetracycline 
pTBsmvA TransBac plasmid library Tetracycline 
pTBmdtK TransBac plasmid library Tetracycline 
pTBybjJ TransBac plasmid library Tetracycline 
pTBemrE This study Tetracycline 
Table 7: Plasmids used in chapter 4 The Salmonella efflux pump SmvA confers resistance to the diabetes 
drug metformin. 
 

Antibiotics 

Antibiotics were used in the following final concentrations: 30 µg/ml 
kanamycin (Kan), 10 µg/ml chloramphenicol (Cm), 10 µg/ml tetracycline (Tet). 

6.4.2 Previous studies analyzed 

E. coli chemical genomics 

The E. coli chemical genomics data set I examined was created by Lucía 
Herrera (unpublished) using the KEIO collection of E. coli single gene deletions 
[41] and following the same principles and analysis pipeline as outlined for this 
study. Here I use s-scores obtained for all mutants in four different concentrations 
of metformin: 40, 60, 80 and 100 mM. 

E. coli overexpression screen 

The overexpression screen was performed by Lisa Maier (unpublished) using 
a library of E. coli barcoded deletion mutants (ASKA, background BW38029) 
complemented with their corresponding TransBac plasmid (Hirotada Mori, 
unpublished resource). The growth of this library was determined at 0 and 100 
mM metformin employing different IPTG concentrations to induce expression of 
the deleted gene from the low copy plasmid. For every strain and every IPTG 
concentration a t-test was used to compare the relative growth of each strain in 
drug to no drug condition. 
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6.4.3 Growth experiments 

Unless otherwise indicated, all growth curves for EC and STM strains were 
obtained in LB Lennox, at 37°C, shaking with an initial OD (578nm) of 0.01. The 
strains were grown in 384 well plates with a total volume of 50 µl and OD at 578 
nm was measured every 30 min using a BioTek Synergy HT plate reader. The 
resulting growth curves were objected to base line correction and final OD as well 
as area under the curve (AUC) after 8 h were calculated (script provided by Ana 
Rita Brochado).  

Metformin dose responses and complementation experiments 

The dose response to metformin was tested by growing all bacterial strains in 
increasing concentrations of metformin, namely 0 (no drug control), 50, 100, 150, 
200, 250, 300, 350, 400, 450, 500 and 550 mM. 

All complementation experiments were performed across the metformin 
concentration range mentioned above, either without IPTG (the plasmids exhibit 
leaky expression) or with 100 µM IPTG. 

Metformin and phenformin dose response of gut bacterial species 

Growth curves for the following bacteria were determined under anaerobic 
conditions: Salmonella enterica Typhimurium 14028s, Salmonella enterica 
Typhimurium LT2, Escherichia coli BW25113, Akkermansia muciniphila (DSM 
22959), Bacteroides thetaiotaomicron (DSM 2079), Bacteroides vulgatus (DSM 
1447), Bifidobacterium adolescentis (DSM 20083), Bifidobacterium longum (DSM 
20088), Clostridium bolteae (DSM 15670), Clostridium perfringens (DSM 756), 
Clostridium ramosum (DSM 1402), Fusobacterium nucleatum (DSM 15643), 
Lactobacillus paracasei (ATCC SD5275), Prevotella copri (DSMZ 18205), 
Roseburia intestinalis (DSM 14610), Ruminococcus gnavus (ATCC 29149), 
Streptococcus salivarius (DSMZ 20560). 

The bacteria were grown anaerobically in 384 well plates, at 37 °C. MGAM 
medium (GAM Broth_Modified, HyServe) was used and metformin and 
phenformin added in a two-fold dilution series (starting at 750 mM and 26 mM, 
respectively). A no drug control was included. The bacteria were grown statically 
and shaken for 30 sec before measuring OD (578 nm) every 30 min in a BioTek 
Eon plate reader. 
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Appendix 

A. Base media 
LB Lennox 
1% (w/v) Bacto tryptone 
0.5 % (w/v) Bacto yeast extract 
 0.5 % (w/v) NaCl 
  
LB no salt 
1% (w/v) Bacto tryptone 
0.5 % (w/v) Bacto yeast extract 
  
M9 Minimal media 
1x M9 salts 
 1 mM MgSO4 
 0.1 mM CaCl2 
 20% (w/v) glucose (or other carbon sources with equimolar C atom concentration) 
  
M9 Minimal media complete 
1x M9 salts 
 1 mM MgSO4 
 mM CaCl2 
 20% (w/v) glucose (or other carbon sources with equimolar C atom concentration) 
 1x AAA 
 1x BAA 
1x FAA 
 
PCN media 
80 mM MES (pH 5.8) for InSPI2 
 80 mM MOPS (pH 7.4) for NonSPI2 
 4 mM Tricine 
 100 µM FeCl3 
 376 µM K2SO4 
 50 mM NaCl 
 0.4 mM K2HPO4/KH2PO4 pH 5.8 for InSPI2 
 25 mM K2HPO4/KH2PO4 pH 7.4 for NonSPI2 
 0.4 % glucose (22.2 mM) 
 15 mM NH4Cl 
 1 mM MgSO4 
 0.01 mM CaCl2 
 10 nM Na2MoO4 
 10 nM Na2SeO3 
 4 nM H3BO3 
 300 nM CoCl2 
 100 nM CuSO4 
 800 nM MnCl2 
 1 nM ZnSO4 
  

B. Tested conditions 
Label Chemical Concentration Media background Batch 
4AMINOSALICYLICACID-10 4-Aminosalicylic acid 10 µg/ml LB Lennox 7 
4AMINOSALICYLICACID-100 4-Aminosalicylic acid 100 µg/ml LB Lennox 7 
4AMINOSALICYLICACID-200 4-Aminosalicylic acid 200 µg/ml LB Lennox 7 
4AMINOSALICYLICACID-50 4-Aminosalicylic acid 50 µg/ml LB Lennox 7 
5BROMODEOXYURIDINE-10 5-Bromodeoxyuridine 10 µg/ml LB Lennox 7 
5BROMODEOXYURIDINE-100 5-Bromodeoxyuridine 100 µg/ml LB Lennox 7 
5BROMODEOXYURIDINE-200 5-Bromodeoxyuridine 200 µg/ml LB Lennox 7 
5BROMODEOXYURIDINE-50 5-Bromodeoxyuridine 50 µg/ml LB Lennox 7 
5FLUOROURACIL-10UM 5-Fluorouracil 10 µM LB Lennox 6 
5FLUOROURACIL-1UM 5-Fluorouracil 1 µM LB Lennox 6 
5FLUOROURACIL-2UM 5-Fluorouracil 2 µM LB Lennox 6 
5FLUOROURACIL-5UM 5-Fluorouracil 5 µM LB Lennox 6 
A22-0.05 A22 0.05 µg/ml LB Lennox 4 
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Label Chemical Concentration Media background Batch 
A22-0.1 A22 0.1 µg/ml LB Lennox 4 
A22-0.25 A22 0.25 µg/ml LB Lennox 4 
A22-0.5 A22 0.5 µg/ml LB Lennox 4 
A22-2.0 A22 2 µg/ml LB Lennox 7 
ACRIFLAVINE-10 Acriflavine 10 µg/ml LB Lennox 6 
ACRIFLAVINE-2 Acriflavine 2 µg/ml LB Lennox 6 
ACRIFLAVINE-5 Acriflavine 5 µg/ml LB Lennox 6 
ADULTBOVINESERUM-10PCVV Adult bovine serum 10 %(v/v) LB Lennox 7 
ADULTBOVINESERUMHI-10PCVV Adult bovine serum - heat inactivated 10 %(v/v) LB Lennox 7 
AMIKACIN-0.05 Amikacin 0.05 µg/ml LB Lennox 2 
AMIKACIN-0.1 Amikacin 0.1 µg/ml LB Lennox 2 
AMIKACIN-0.25 Amikacin 0.25 µg/ml LB Lennox 2 
AMOXICILLIN-0.05 Amoxicillin 0.05 µg/ml LB Lennox 3 
AMOXICILLIN-0.1 Amoxicillin 0.1 µg/ml LB Lennox 3 
AMOXICILLIN-0.25 Amoxicillin 0.25 µg/ml LB Lennox 3 
AMPICILLIN-0.1 Ampicillin 0.1 µg/ml LB Lennox 5 
AMPICILLIN-0.25 Ampicillin 0.25 µg/ml LB Lennox 5 
AMPICILLIN-0.5 Ampicillin 0.5 µg/ml LB Lennox 5 
ARTICAINE-100 Articaine 100 µg/ml LB Lennox 7 
ARTICAINE-250 Articaine 250 µg/ml LB Lennox 7 
ARTICAINE-50 Articaine 50 µg/ml LB Lennox 7 
ARTICAINE-500 Articaine 500 µg/ml LB Lennox 7 
AZIDOTHYMIDINE-0.5 Azidothymidine 0.5 µg/ml LB Lennox 7 
AZIDOTHYMIDINE-1.0 Azidothymidine 1 µg/ml LB Lennox 7 
AZIDOTHYMIDINE-2.5 Azidothymidine 2.5 µg/ml LB Lennox 7 
AZIDOTHYMIDINE-5.0 Azidothymidine 5 µg/ml LB Lennox 7 
AZITHROMYCIN-0.01 Azithromycin 0.01 µg/ml LB Lennox 5 
AZITHROMYCIN-0.025 Azithromycin 0.025 µg/ml LB Lennox 5 
AZITHROMYCIN-0.05 Azithromycin 0.05 µg/ml LB Lennox 5 
AZITHROMYCIN-0.1 Azithromycin 0.1 µg/ml LB Lennox 5 
AZTREONAM-0.0005 Aztreonam 0.0005 µg/ml LB Lennox 2 
AZTREONAM-0.001 Aztreonam 0.001 µg/ml LB Lennox 2 
AZTREONAM-0.002 Aztreonam 0.002 µg/ml LB Lennox 2 
AZTREONAM-0.005 Aztreonam 0.005 µg/ml LB Lennox 2 
BENZALKONIUM-1 Benzalkonium 1 µg/ml LB Lennox 4 
BENZALKONIUM-10 Benzalkonium 10 µg/ml LB Lennox 4 
BENZALKONIUM-2 Benzalkonium 2 µg/ml LB Lennox 4 
BENZALKONIUM-5 Benzalkonium 5 µg/ml LB Lennox 4 
BERBERINE-100 Berberine 100 µg/ml LB Lennox 7 
BERBERINE-200 Berberine 200 µg/ml LB Lennox 7 
BERBERINE-25 Berberine 25 µg/ml LB Lennox 7 
BERBERINE-50 Berberine 50 µg/ml LB Lennox 7 
BILESALTS-0.05PCWV Bile salts 0.05 %(w/v) LB Lennox 5 
BILESALTS-0.1PCWV Bile salts 0.1 %(w/v) LB Lennox 5 
BILESALTS-0.25PCWV Bile salts 0.25 %(w/v) LB Lennox 5 
BILESALTS-0.5PCWV Bile salts 0.5 %(w/v) LB Lennox 5 
BILESALTS-1PCWV Bile salts 1 %(w/v) LB Lennox 7 
BILESALTS-2PCWV Bile salts 2 %(w/v) LB Lennox 7 
BIPYRIDIL-0.01MM Bipyridil 0.01 mM LB Lennox 5 
BIPYRIDIL-0.025MM Bipyridil 0.025 mM LB Lennox 6 
BIPYRIDIL-0.05MM Bipyridil 0.05 mM LB Lennox 5 
BIPYRIDIL-0.1MM Bipyridil 0.1 mM LB Lennox 6 
BLASTICIDINS-1 Blasticidin S 1 µg/ml LB Lennox 7 
BLASTICIDINS-10 Blasticidin S 10 µg/ml LB Lennox 7 
BLASTICIDINS-5 Blasticidin S 5 µg/ml LB Lennox 7 
BLEOMYCIN-0.01 Bleomycin 0.01 µg/ml LB Lennox 4 
BLEOMYCIN-0.025 Bleomycin 0.025 µg/ml LB Lennox 4 
BLEOMYCIN-0.05 Bleomycin 0.05 µg/ml LB Lennox 4 
BLEOMYCIN-0.1 Bleomycin 0.1 µg/ml LB Lennox 4 
BUTYRATE-10MM Butyrate 10 mM LB Lennox 7 
BUTYRATE-20MM Butyrate 20 mM LB Lennox 7 
CARBAMAZEPINE-100 Carbamazepine 100 µg/ml LB Lennox 7 
CARBAMAZEPINE-250 Carbamazepine 250 µg/ml LB Lennox 7 
CARBAMAZEPINE-50 Carbamazepine 50 µg/ml LB Lennox 7 
CCCP-0.1 CCCP (Carbonyl cyanide 3-chlorophenylhydrazone) 0.1 µg/ml LB Lennox 4 
CCCP-0.5 CCCP (Carbonyl cyanide 3-chlorophenylhydrazone) 0.5 µg/ml LB Lennox 4 
CCCP-1.0 CCCP (Carbonyl cyanide 3-chlorophenylhydrazone) 1.0 µg/ml LB Lennox 4 
CCCP-2.0 CCCP (Carbonyl cyanide 3-chlorophenylhydrazone) 2.0 µg/ml LB Lennox 4 
CECROPINB-0.05 Cecropin B 0.05 µg/ml LB Lennox 6 
CECROPINB-0.1 Cecropin B 0.1 µg/ml LB Lennox 6 
CECROPINB-0.25 Cecropin B 0.25 µg/ml LB Lennox 6 
CECROPINB-0.5 Cecropin B 0.5 µg/ml LB Lennox 6 
CEFACLOR-0.05 Cefaclor 0.05 µg/ml LB Lennox 3 
CEFACLOR-0.1 Cefaclor 0.1 µg/ml LB Lennox 3 
CEFACLOR-0.25 Cefaclor 0.25 µg/ml LB Lennox 3 
CEFACLOR-0.5 Cefaclor 0.5 µg/ml LB Lennox 3 
CEFACLOR-0.5REPEAT Cefaclor 0.5 µg/ml LB Lennox 7 
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Label Chemical Concentration Media background Batch 
CEFACLOR+TOBRAMYCIN-0.5+0.5 Cefaclor + Tobramycin 0.5+0.5 µg/ml LB Lennox 7 
CEFOTAXIME-0.0025 Cefotaxime 0.0025 µg/ml LB Lennox 3 
CEFOTAXIME-0.005 Cefotaxime 0.005 µg/ml LB Lennox 3 
CEFOTAXIME-0.01 Cefotaxime 0.01 µg/ml LB Lennox 3 
CEFOTAXIME-0.02 Cefotaxime 0.02 µg/ml LB Lennox 3 
CEFOXITIN-0.05 Cefoxitin 0.05 µg/ml LB Lennox 7 
CEFOXITIN-0.1 Cefoxitin 0.1 µg/ml LB Lennox 7 
CEFOXITIN-0.25 Cefoxitin 0.25 µg/ml LB Lennox 7 
CEFOXITIN-0.5 Cefoxitin 0.5 µg/ml LB Lennox 7 
CEFSULODIN-1 Cefsulodin 1 µg/ml LB Lennox 4 
CEFSULODIN-10 Cefsulodin 10 µg/ml LB Lennox 4 
CEFSULODIN-2 Cefsulodin 2 µg/ml LB Lennox 4 
CEFSULODIN-5 Cefsulodin 5 µg/ml LB Lennox 4 
CEFTAZIDIME-0.01 Ceftazidime 0.01 µg/ml LB Lennox 7 
CEFTAZIDIME-0.02 Ceftazidime 0.02 µg/ml LB Lennox 7 
CEFUROXIME-0.1 Cefuroxime 0.1 µg/ml LB Lennox 4 
CEFUROXIME-0.25 Cefuroxime 0.25 µg/ml LB Lennox 4 
CEFUROXIME-0.5 Cefuroxime 0.5 µg/ml LB Lennox 4 
CEPHALEXIN-1 Cephalexin 1 µg/ml LB Lennox 4 
CEPHALEXIN-10 Cephalexin 10 µg/ml LB Lennox 4 
CEPHALEXIN-2 Cephalexin 2 µg/ml LB Lennox 4 
CEPHALEXIN-5 Cephalexin 5 µg/ml LB Lennox 4 
CEPHALOTHIN-0.05 Cephalothin 0.05 µg/ml LB Lennox 4 
CEPHALOTHIN-0.1 Cephalothin 0.1 µg/ml LB Lennox 4 
CEPHALOTHIN-0.25 Cephalothin 0.25 µg/ml LB Lennox 4 
CEPHALOTHIN-0.5 Cephalothin 0.5 µg/ml LB Lennox 4 
CERULENIN-0.5 Cerulenin 0.5 µg/ml LB Lennox 7 
CERULENIN-1.0 Cerulenin 1 µg/ml LB Lennox 7 
CERULENIN-2.5 Cerulenin 2.5 µg/ml LB Lennox 7 
CERULENIN-5.0 Cerulenin 5 µg/ml LB Lennox 7 
CHIR090-0.0025 CHIR-090 0.0025 µg/ml LB Lennox 5 
CHIR090-0.005 CHIR-090 0.005 µg/ml LB Lennox 5 
CHIR090-0.01 CHIR-090 0.01 µg/ml LB Lennox 5 
CHIR090-0.02 CHIR-090 0.02 µg/ml LB Lennox 6 
CHLORHEXIDINE-0.05REPEAT Chlorhexidine 0.05 µg/ml LB Lennox 5 
CHLORHEXIDINE-0.1REPEAT Chlorhexidine 0.1 µg/ml LB Lennox 5 
CHLORHEXIDINE-0.25REPEAT Chlorhexidine 0.25 µg/ml LB Lennox 5 
CHLORHEXIDINE-0.5REPEAT Chlorhexidine 0.5 µg/ml LB Lennox 5 
CHLORHEXIDINE-1 Chlorhexidine  1 µg/ml LB Lennox 7 
CHLORHEXIDINE-2.5 Chlorhexidine  2.5 µg/ml LB Lennox 7 
CHLORPROMAZINE-10UM Chlorpromazine 10 µM LB Lennox 6 
CHLORPROMAZINE-1UM Chlorpromazine 1 µM LB Lennox 6 
CHLORPROMAZINE-2.5UM Chlorpromazine 2.5 µM LB Lennox 6 
CHLORPROMAZINE-5UM Chlorpromazine 5 µM LB Lennox 6 
CINOXACIN-0.01 Cinoxacin 0.01 µg/ml LB Lennox 7 
CINOXACIN-0.05 Cinoxacin 0.05 µg/ml LB Lennox 7 
CINOXACIN-0.1 Cinoxacin 0.1 µg/ml LB Lennox 7 
CINOXACIN-0.25 Cinoxacin 0.25 µg/ml LB Lennox 7 
CIPROFLOXACIN-0.00025NGML Ciprofloxacin 0.25 ng/ml LB Lennox 3 
CIPROFLOXACIN-0.0005NGML Ciprofloxacin 0.5 ng/ml LB Lennox 3 
CIPROFLOXACIN-0.001NGML Ciprofloxacin 1.0 ng/ml LB Lennox 3 
CIPROFLOXACIN-0.002NGML Ciprofloxacin 2.0 ng/ml LB Lennox 3 
CLARITHROMYCIN-0.1 Clarithromycin 0.1 µg/ml LB Lennox 5 
CLARITHROMYCIN-0.25 Clarithromycin 0.25 µg/ml LB Lennox 5 
CLARITHROMYCIN-0.5 Clarithromycin 0.5 µg/ml LB Lennox 5 
CLARITHROMYCIN-1.0 Clarithromycin 1.0 µg/ml LB Lennox 6 
CLINDAMYCIN-1 Clindamycin 1 µg/ml LB Lennox 4 
CLINDAMYCIN-20 Clindamycin 20 µg/ml LB Lennox 4 
CLINDAMYCIN-5 Clindamycin 5 µg/ml LB Lennox 4 
CLINDAMYCIN-50 Clindamycin 50 µg/ml LB Lennox 4 
CLOFAZIMINE-0.1 Clofazimine 0.1 µg/ml LB Lennox 5 
CLOFAZIMINE-0.25 Clofazimine 0.25 µg/ml LB Lennox 5 
CLOFAZIMINE-0.5 Clofazimine 0.5 µg/ml LB Lennox 5 
CLOFAZIMINE-1.0 Clofazimine 1.0 µg/ml LB Lennox 5 
CLOFAZIMINE-10 Clofazimine 10 µg/ml LB Lennox 7 
CLOFAZIMINE-5 Clofazimine 5 µg/ml LB Lennox 7 
CM-AKKKERMANSIAMUCINIPHILA Conditioned media Akkermansia muciniphila n/a LB Lennox 7 
CM-LBCONTROL Conditioned media LB control n/a LB Lennox 7 
CM-MGAMCONTROL Conditioned media MGAM control n/a LB Lennox 7 
CM-PSEUDOMONASAERUGINOSA01 Conditioned media Pseudomonas aeruginosa PA01 n/a LB Lennox 7 
CM-PSEUDOMONASAERUGINOSA14 Conditioned media Pseudomonas aeruginosa PA14 n/a LB Lennox 7 
COBALT-0.05MM CoCl2 0.05 mM LB Lennox 5 
COBALT-0.1MM CoCl2 0.1 mM LB Lennox 6 
COBALT-0.3MM CoCl2 0.3 mM LB Lennox 5 
COBALT-0.5MM CoCl2 0.5 mM LB Lennox 6 
COLICINM-0.004PCVV Colicin M 0.004 %(v/v) LB Lennox 7 
COLICINM-0.008PCVV Colicin M 0.008 %(v/v) LB Lennox 7 



 

 116 

Label Chemical Concentration Media background Batch 
COLICINM-0.02PCVV Colicin M 0.02 %(v/v) LB Lennox 7 
COLICINM-0.04PCVV Colicin M 0.04 %(v/v) LB Lennox 7 
COLISTIN-0.05 Colistin 0.05 µg/ml LB Lennox 4 
COLISTIN-0.1 Colistin 0.1 µg/ml LB Lennox 4 
COLISTIN-0.25 Colistin 0.25 µg/ml LB Lennox 4 
COLISTIN-0.5 Colistin 0.5 µg/ml LB Lennox 4 
COPPER-0.5MM CuCl2 0.5 mM LB Lennox 6 
COPPER-1MM CuCl2 1 mM LB Lennox 6 
COPPER-2MM CuCl2 2 mM LB Lennox 6 
COPPER-4MM CuCl2 4 mM LB Lennox 6 
CTAB-16 CTAB (Cetyltrimethylammonium bromide) 16 µg/ml LB Lennox 7 
CTAB-32 CTAB (Cetyltrimethylammonium bromide) 32 µg/ml LB Lennox 7 
CTAB-4 CTAB (Cetyltrimethylammonium bromide) 4 µg/ml LB Lennox 7 
CTAB-8 CTAB (Cetyltrimethylammonium bromide) 8 µg/ml LB Lennox 7 
CYCLOSERINED-1.0 Cycloserine D 1.0 µg/ml LB Lennox 6 
CYCLOSERINED-2.5 Cycloserine D 2.5 µg/ml LB Lennox 5 
CYCLOSERINED-5.0 Cycloserine D 5.0 µg/ml LB Lennox 6 
CYCLOSERINED-7.5 Cycloserine D 7.5 µg/ml LB Lennox 5 
DEFENSINHNP1-16.67NGML Defensin HNP-1 Human 16.67 ng/ml LB Lennox 7 
DEFENSINHNP2-16.67NGML Defensin HNP-2 Human 16.67 ng/ml LB Lennox 7 
DLSERINEHYDROXAMATE-25 DL-Serine hydroxamate 25 µg/ml LB Lennox 7 
DLSERINEHYDROXAMATE-50 DL-Serine hydroxamate 50 µg/ml LB Lennox 7 
DTPA-10 DTPA (Diethylene triamine pentaacetic acid) 10 µg/ml LB Lennox 7 
DTPA-25 DTPA (Diethylene triamine pentaacetic acid) 25 µg/ml LB Lennox 7 
DTPA-5 DTPA (Diethylene triamine pentaacetic acid) 5 µg/ml LB Lennox 7 
DTPA-50 DTPA (Diethylene triamine pentaacetic acid) 50 µg/ml LB Lennox 7 
EDTA-0.1MM EDTA 0.1 mM LB Lennox 4 
EDTA-0.5MM EDTA 0.5 mM LB Lennox 4 
EGCG-1 EGCG (Epigallocatechin gallate) 1 µg/ml LB Lennox 4 
EGCG-20 EGCG (Epigallocatechin gallate) 20 µg/ml LB Lennox 4 
EGCG-5 EGCG (Epigallocatechin gallate) 5 µg/ml LB Lennox 4 
EGCG-50 EGCG (Epigallocatechin gallate) 50 µg/ml LB Lennox 4 
EGTA-0.1MM EGTA 0.1 mM LB Lennox 4 
EGTA-0.5MM EGTA 0.5 mM LB Lennox 4 
EGTA-1MM EGTA 1.0 mM LB Lennox 4 
EPINEPHRINE-0.5MM Epinephrine 0.5 mM LB Lennox 7 
ERYTHROMYCIN-0.5 Erythromycin 0.5 µg/ml LB Lennox 6 
ERYTHROMYCIN-1 Erythromycin 1.0 µg/ml LB Lennox 6 
ERYTHROMYCIN-2 Erythromycin 2.0 µg/ml LB Lennox 6 
ERYTHROMYCIN-4 Erythromycin 4.0 µg/ml LB Lennox 6 
ETHIDIUMBROMIDE-1REPEAT Ethidium bromide 1 µg/ml LB Lennox 7 
ETHIDIUMBROMIDE-20REPEAT Ethidium bromide 20 µg/ml LB Lennox 7 
ETHIDIUMBROMIDE-5REPEAT Ethidium bromide 5 µg/ml LB Lennox 7 
ETHIDIUMBROMIDE-5REPEAT0 Ethidium bromide 50 µg/ml LB Lennox 7 
FOSFOMYCIN-0.005 Fosfomycin 0.005 µg/ml LB Lennox 3 
FOSFOMYCIN-0.01 Fosfomycin 0.01 µg/ml LB Lennox 3 
FOSFOMYCIN-0.025 Fosfomycin 0.025 µg/ml LB Lennox 3 
FOSFOMYCIN-0.05 Fosfomycin 0.05 µg/ml LB Lennox 3 
FUSIDICACID-1 Fusidic acid 1 µg/ml LB Lennox 4 
FUSIDICACID-20 Fusidic acid 20 µg/ml LB Lennox 4 
FUSIDICACID-5 Fusidic acid 5 µg/ml LB Lennox 4 
FUSIDICACID-50 Fusidic acid 50 µg/ml LB Lennox 4 
G418SULFATE-0.01 G418 sulfate 0.01 µg/ml LB Lennox 7 
G418SULFATE-0.05 G418 sulfate 0.05 µg/ml LB Lennox 7 
G418SULFATE-0.1 G418 sulfate 0.1 µg/ml LB Lennox 7 
G418SULFATE-0.25 G418 sulfate 0.25 µg/ml LB Lennox 7 
GENTAMICIN-0.01 Gentamicin 0.01 µg/ml LB Lennox 2 
GENTAMICIN-0.025 Gentamicin 0.025 µg/ml LB Lennox 2 
GENTAMICIN-0.05 Gentamicin 0.05 µg/ml LB Lennox 2 
GENTAMICIN-0.1 Gentamicin 0.1 µg/ml LB Lennox 2 
GRAMICIDIN-10 Gramicidin 10 µg/ml LB Lennox 7 
GRAMICIDIN-20 Gramicidin 20 µg/ml LB Lennox 7 
GRAMICIDIN-5 Gramicidin 5 µg/ml LB Lennox 7 
GRAMICIDIN-50 Gramicidin 50 µg/ml LB Lennox 7 
HYDROXYUREA-1 Hydroxyurea 1 µg/ml LB Lennox 7 
HYDROXYUREA-10 Hydroxyurea 10 µg/ml LB Lennox 7 
HYDROXYUREA-2.5 Hydroxyurea 2.5 µg/ml LB Lennox 7 
HYDROXYUREA-5 Hydroxyurea 5 µg/ml LB Lennox 7 
IMIPENEM-0.005 Imipenem 0.005 µg/ml LB Lennox 3 
IMIPENEM-0.005REPEAT Imipenem 0.005 µg/ml LB Lennox 7 
IMIPENEM-0.01 Imipenem 0.01 µg/ml LB Lennox 3 
IMIPENEM-0.01REPEAT Imipenem 0.01 µg/ml LB Lennox 7 
IMIPENEM-0.02 Imipenem 0.02 µg/ml LB Lennox 3 
IMIPENEM-0.025 Imipenem 0.025 µg/ml LB Lennox 7 
IMIPENEM-0.04 Imipenem 0.04 µg/ml LB Lennox 3 
IMIPENEM-0.05 Imipenem 0.05 µg/ml LB Lennox 7 
INSPI2-BASIC InSPI2 n/a PCN medium 7 
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INSPI2-LOWIRON InSPI2 low iron n/a PCN medium 7 
INSPI2-LOWMAGNESIUM InSPI2 low magnesium n/a PCN medium 7 
ISONIAZID-100 Isoniazid 100 µg/ml LB Lennox 7 
ISONIAZID-20 Isoniazid 20 µg/ml LB Lennox 7 
ISONIAZID-5 Isoniazid 5 µg/ml LB Lennox 7 
ISONIAZID-50 Isoniazid 50 µg/ml LB Lennox 7 
KASUGAMYCIN-1.0 Kasugamycin 1.0 µg/ml LB Lennox 6 
KASUGAMYCIN-10.0 Kasugamycin 10.0 µg/ml LB Lennox 6 
KASUGAMYCIN-2.5 Kasugamycin 2.5 µg/ml LB Lennox 5 
KASUGAMYCIN-5.0 Kasugamycin 5 µg/ml LB Lennox 5 
LEVOFLOXACIN-0.005 Levofloxacin 0.005 µg/ml LB Lennox 7 
LEVOFLOXACIN-0.01 Levofloxacin 0.01 µg/ml LB Lennox 7 
LIDOCAINE-10 Lidocaine 10 µg/ml LB Lennox 7 
LIDOCAINE-100 Lidocaine 100 µg/ml LB Lennox 7 
LIDOCAINE-200 Lidocaine 200 µg/ml LB Lennox 7 
LIDOCAINE-50 Lidocaine 50 µg/ml LB Lennox 7 
LINEZOLID-1 Linezolid 1 µg/ml LB Lennox 4 
LINEZOLID-10 Linezolid 10 µg/ml LB Lennox 4 
LINEZOLID-2 Linezolid 2 µg/ml LB Lennox 4 
LINEZOLID-5 Linezolid 5 µg/ml LB Lennox 4 
LL37-0.67 LL37 Human 0.67 µg/ml LB Lennox 7 
LOPERAMIDE-100 Loperamide 100 µg/ml LB Lennox 4 
LOPERAMIDE-20 Loperamide 20 µg/ml LB Lennox 4 
LOPERAMIDE-5 Loperamide 5 µg/ml LB Lennox 4 
LOPERAMIDE-50 Loperamide 50 µg/ml LB Lennox 4 
LYSOSTAPHIN-3.33 Lysostaphin  3.33 µg/ml LB Lennox 7 
M9-ARABINOSE M9Minimal - Arabinose 0.4 %(w/v) M9 Minimal 4 
M9-DMALICACID M9Minimal - D-Malic acid n/a M9 Minimal 7 
M9-FRUCTOSE M9Minimal - Fructose 0.4 %(w/v) M9 Minimal 4 
M9-FUMARATE M9Minimal - Fumarate 0.4 %(w/v) M9 Minimal 4 
M9-GALACTOSE M9Minimal - Galactose n/a M9 Minimal 7 
M9-GLUCOSAMINE M9Minimal - Glucosamine 0.4 %(w/v) M9 Minimal 5 
M9-GLUCOSE M9Minimal - Glucose 0.4 %(w/v) M9 Minimal 4 
M9-GLYCEROL M9Minimal - Glycerol 0.4 %(w/v) M9 Minimal 4 
M9-LACTICACID M9Minimal - Lactic acid n/a M9 Minimal 7 
M9-LRHAMNOSE M9Minimal - L-Rhamnose n/a M9 Minimal 7 
M9-MALTOSE M9Minimal - Maltose 0.4 %(w/v) M9 Minimal 4 
M9-METHYLPYRUVATE M9Minimal - Methylpyruvate n/a M9 Minimal 7 
M9-NACETYLGLUCOSAMINE M9Minimal - N-Acetylglucosamine 0.4 %(w/v) M9 Minimal 5 
M9-PROLINE M9Minimal - Proline 0.3 %(w/v) M9 Minimal 4 
M9-PYRUVATE M9Minimal - Pyruvate 0.4 %(w/v) M9 Minimal 5 
M9-SORBITOL M9Minimal - Sorbitol 0.4 %(w/v) M9 Minimal 5 
M9-SUCCINATE M9Minimal - Succinate 0.4 %(w/v) M9 Minimal 4 
M9COMPLETE-MINUSAAA M9Complete - minusAAA n/a M9 Complete 6 
M9COMPLETE-MINUSBAA M9Complete - minusBAA n/a M9 Complete 6 
M9COMPLETE-MINUSFAA M9Complete - minusFAA n/a M9 Complete 6 
MECILLINAM-0.01 Mecillinam 0.01 µg/ml LB Lennox 2 
MECILLINAM-0.025 Mecillinam 0.025 µg/ml LB Lennox 2 
MECILLINAM-0.05 Mecillinam 0.05 µg/ml LB Lennox 2 
MEROPENEM-0.1NGML Meropenem 0.1 ng/ml LB Lennox 4 
MEROPENEM-0.25NGML Meropenem 0.25 ng/ml LB Lennox 4 
MEROPENEM-0.5NGML Meropenem 0.5 ng/ml LB Lennox 4 
MEROPENEM-1.0NGML Meropenem 1.0 ng/ml LB Lennox 4 
METFORMIN-100MM Metformin 100 mM LB Lennox 7 
METFORMIN-10MM Metformin 10 mM LB Lennox 7 
METFORMIN-25MM Metformin 25 mM LB Lennox 7 
METFORMIN-50MM Metformin 50 mM LB Lennox 7 
METRONIDAZOLE-1.0 Metronidazole 1 µg/ml LB Lennox 2 
METRONIDAZOLE-10.0 Metronidazole 10 µg/ml LB Lennox 2 
METRONIDAZOLE-30.0 Metronidazole 30 µg/ml LB Lennox 2 
METRONIDAZOLE-5.0 Metronidazole 5 µg/ml LB Lennox 2 
MINOCYCLINE-0.05 Minocycline 0.05 µg/ml LB Lennox 3 
MINOCYCLINE-0.1 Minocycline 0.1 µg/ml LB Lennox 3 
MINOCYCLINE-0.25 Minocycline 0.25 µg/ml LB Lennox 3 
MINOCYCLINE-0.5 Minocycline 0.5 µg/ml LB Lennox 3 
MITOMYCINC-0.005 Mitomycin C 0.005 µg/ml LB Lennox 4 
MITOMYCINC-0.01 Mitomycin C 0.01 µg/ml LB Lennox 4 
MITOMYCINC-0.025 Mitomycin C 0.025 µg/ml LB Lennox 4 
MITOMYCINC-0.05 Mitomycin C 0.05 µg/ml LB Lennox 4 
MMS-0.005PCVV MMS (Methyl methanesulfonate) 0.005 µg/ml LB Lennox 6 
MMS-0.01PCVV MMS (Methyl methanesulfonate) 0.01 µg/ml LB Lennox 6 
MMS-0.025PCVV MMS (Methyl methanesulfonate) 0.025 µg/ml LB Lennox 6 
MMS-0.05PCVV MMS (Methyl methanesulfonate) 0.05 µg/ml LB Lennox 6 
NACL-0MM NaCl 0 mM LB no salt 5 
NACL-150MM NaCl 150 mM LB no salt 5 
NACL-300MM NaCl 300 mM LB no salt 5 
NACL-75MM NaCl 75 mM LB no salt 5 
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NALIDIXICACID-0.1 Nalidixic acid 0.1 µg/ml LB Lennox 4 
NALIDIXICACID-0.25 Nalidixic acid 0.25 µg/ml LB Lennox 4 
NALIDIXICACID-0.5 Nalidixic acid 0.5 µg/ml LB Lennox 4 
NALIDIXICACID-1.0 Nalidixic acid 1.0 µg/ml LB Lennox 4 
NICKEL-0.1MM NiCl2 0.1 mM LB Lennox 7 
NICKEL-0.5MM NiCl2 0.5 mM LB Lennox 7 
NICKEL-1MM NiCl2 1 mM LB Lennox 7 
NICKEL-2MM NiCl2 2 mM LB Lennox 7 
NIGERICIN-0.1UM Nigericin 0.1 µM LB Lennox 6 
NIGERICIN-0.5UM Nigericin 0.5 µM LB Lennox 6 
NIGERICIN-1.0UM Nigericin 1 µM LB Lennox 6 
NIGERICIN-5.0UM Nigericin 5 µM LB Lennox 6 
NISIN-1 Nisin 1 µg/ml LB Lennox 4 
NISIN-10 Nisin 10 µg/ml LB Lennox 4 
NISIN-2 Nisin 2 µg/ml LB Lennox 4 
NISIN-5 Nisin 5 µg/ml LB Lennox 4 
NITROFURANTOIN-0.25 Nitrofurantoin 0.25 µg/ml LB Lennox 7 
NITROFURANTOIN-0.5 Nitrofurantoin 0.5 µg/ml LB Lennox 7 
NITROFURANTOIN-1.0 Nitrofurantoin 1 µg/ml LB Lennox 3 
NITROFURANTOIN-1.0REPEAT Nitrofurantoin 1 µg/ml LB Lennox 7 
NITROFURANTOIN-10.0 Nitrofurantoin 10 µg/ml LB Lennox 3 
NITROFURANTOIN-2.0 Nitrofurantoin 2 µg/ml LB Lennox 3 
NITROFURANTOIN-2.0REPEAT Nitrofurantoin 2 µg/ml LB Lennox 7 
NITROFURANTOIN-5.0 Nitrofurantoin 5 µg/ml LB Lennox 3 
NITROFURANTOIN-5.0REPEAT Nitrofurantoin 5 µg/ml LB Lennox 7 
NONACTIN-0.5 Nonactin 0.5 µg/ml LB Lennox 4 
NONACTIN-1 Nonactin 1.0 µg/ml LB Lennox 4 
NONACTIN-2 Nonactin 2.0 µg/ml LB Lennox 4 
NONACTIN-20 Nonactin 20 µg/ml LB Lennox 7 
NONACTIN-4 Nonactin 4.0 µg/ml LB Lennox 4 
NONACTIN-8 Nonactin 8 µg/ml LB Lennox 7 
NONSPI2-BASIC NonSPI2 n/a PCN medium 7 
NONSPI2-LOWIRON NonSPI2 low iron n/a PCN medium 7 
NONSPI2-LOWMAGNESIUM NonSPI2 low magnesium n/a PCN medium 7 
NOREPINEPHRINE-0.5MM Norepinephrine 0.5 mM LB Lennox 7 
NORFLOXACIN-0.0025 Norfloxacin 0.0025 µg/ml LB Lennox 3 
NORFLOXACIN-0.005 Norfloxacin 0.005 µg/ml LB Lennox 3 
NORFLOXACIN-0.01 Norfloxacin 0.01 µg/ml LB Lennox 3 
NORFLOXACIN-0.02 Norfloxacin 0.02 µg/ml LB Lennox 3 
NOVOBIOCIN-0.5 Novobiocin 0.5 µg/ml LB Lennox 4 
NOVOBIOCIN-1 Novobiocin 1.0 µg/ml LB Lennox 4 
NOVOBIOCIN-10 Novobiocin 10 µg/ml LB Lennox 7 
NOVOBIOCIN-2.5 Novobiocin 2.5 µg/ml LB Lennox 4 
NOVOBIOCIN-20 Novobiocin 20 µg/ml LB Lennox 7 
NOVOBIOCIN-5 Novobiocin 5.0 µg/ml LB Lennox 4 
OXACILLIN-10 Oxacillin 10 µg/ml LB Lennox 3 
OXACILLIN-100 Oxacillin 100 µg/ml LB Lennox 3 
OXACILLIN-50 Oxacillin 50 µg/ml LB Lennox 3 
PARAQUAT-0.5 Paraquat 0.5 µg/ml LB Lennox 4 
PARAQUAT-1.0 Paraquat 1.0 µg/ml LB Lennox 4 
PARAQUAT-2.5 Paraquat 2.5 µg/ml LB Lennox 4 
PARAQUAT-5.0 Paraquat 5.0 µg/ml LB Lennox 4 
PAROMOMYCIN-0.1 Paromomycin 0.1 µg/ml LB Lennox 7 
PAROMOMYCIN-0.25 Paromomycin 0.25 µg/ml LB Lennox 7 
PAROMOMYCIN-0.5 Paromomycin 0.5 µg/ml LB Lennox 7 
PAROMOMYCIN-1 Paromomycin 1.0 µg/ml LB Lennox 7 
PENICILLING-0.05REPEAT Penicillin G 0.05 µg/ml LB Lennox 5 
PENICILLING-0.1REPEAT Penicillin G 0.1 µg/ml LB Lennox 6 
PENICILLING-0.25REPEAT Penicillin G 0.25 µg/ml LB Lennox 5 
PENICILLING-0.5REPEAT Penicillin G 0.5 µg/ml LB Lennox 6 
PENTAMIDINE-100 Pentamidine 100 µg/ml LB Lennox 7 
PENTAMIDINE-20 Pentamidine 20 µg/ml LB Lennox 7 
PENTAMIDINE-5 Pentamidine 5 µg/ml LB Lennox 7 
PENTAMIDINE-50 Pentamidine 50 µg/ml LB Lennox 7 
PH-10 Basic pH (TAPS) 10 pH LB Lennox 5 
PH-5 Acidic pH (HOMOPIPES) 5 pH LB Lennox 5 
PH-6 Acidic pH (MES) 6 pH LB Lennox 5 
PH-6.5 Acidic pH (MES) 6.5 pH LB Lennox 6 
PH-8 Basic pH (TAPS) 8 pH LB Lennox 5 
PH-8.5 Basic pH (TAPS) 8.5 pH LB Lennox 6 
PH-9 Basic pH (TAPS) 9 pH LB Lennox 5 
PH-9.5 Basic pH (TAPS) 9.5 pH LB Lennox 6 
PHLEOMYCIN-0.01 Phleomycin 0.01 µg/ml LB Lennox 4 
PHLEOMYCIN-0.025 Phleomycin 0.025 µg/ml LB Lennox 4 
PHLEOMYCIN-0.05 Phleomycin 0.05 µg/ml LB Lennox 4 
PHLEOMYCIN-0.1 Phleomycin 0.1 µg/ml LB Lennox 4 
PHOSPHOLIPASEA2-6.67 Phospholipase A2 6.67 µg/ml LB Lennox 7 
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PIPERACILLIN-0.05 Piperacillin 0.05 µg/ml LB Lennox 3 
PIPERACILLIN-0.1 Piperacillin 0.1 µg/ml LB Lennox 3 
PIPERACILLIN-0.25 Piperacillin 0.25 µg/ml LB Lennox 3 
PLUMBAGIN-100 Plumbagin 100 µg/ml LB Lennox 7 
PLUMBAGIN-50 Plumbagin 50 µg/ml LB Lennox 7 
PMS-0.01 PMS (Phenazine methosulfate) 0.01 µg/ml LB Lennox 4 
PMS-0.05 PMS (Phenazine methosulfate) 0.05 µg/ml LB Lennox 4 
PMS-0.1 PMS (Phenazine methosulfate) 0.1 µg/ml LB Lennox 4 
PMS-0.5 PMS (Phenazine methosulfate) 0.5 µg/ml LB Lennox 4 
POLYMYXINB-0.025 Polymyxin B 0.025 µg/ml LB Lennox 2 
POLYMYXINB-0.05 Polymyxin B 0.05 µg/ml LB Lennox 2 
POLYMYXINB-0.1 Polymyxin B 0.1 µg/ml LB Lennox 2 
POLYMYXINB-0.25 Polymyxin B 0.25 µg/ml LB Lennox 2 
PROCAINE-0.05MM Procaine 0.05 mM LB Lennox 3 
PROCAINE-0.1MM Procaine 0.1 mM LB Lennox 3 
PROCAINE-0.25MM Procaine 0.25 mM LB Lennox 3 
PROCAINE-0.5MM Procaine 0.5 mM LB Lennox 3 
PROMETHAZINE-1 Promethazine 1 µg/ml LB Lennox 7 
PROMETHAZINE-10 Promethazine 10 µg/ml LB Lennox 7 
PROMETHAZINE-25 Promethazine 25 µg/ml LB Lennox 7 
PROMETHAZINE-5 Promethazine 5 µg/ml LB Lennox 7 
PROPIDIUMIODIDE-1 Propidium iodide 1 µg/ml LB Lennox 6 
PROPIDIUMIODIDE-10 Propidium iodide 10 µg/ml LB Lennox 6 
PROPIDIUMIODIDE-20 Propidium iodide 20 µg/ml LB Lennox 6 
PROPIDIUMIODIDE-5 Propidium iodide 5 µg/ml LB Lennox 6 
PROPIONATE-10MM Propionate 10 mM LB Lennox 7 
PROPIONATE-20MM Propionate 20 mM LB Lennox 7 
PROPIONATE-40MM Propionate 40 mM LB Lennox 7 
PSEUDOMONICACID-0.01 Pseudomonic acid 0.01 µg/ml LB Lennox 4 
PSEUDOMONICACID-0.025 Pseudomonic acid 0.025 µg/ml LB Lennox 4 
PSEUDOMONICACID-0.05 Pseudomonic acid 0.05 µg/ml LB Lennox 4 
PSEUDOMONICACID-0.1 Pseudomonic acid 0.1 µg/ml LB Lennox 4 
PUROMYCIN-1 Puromycin 1 µg/ml LB Lennox 4 
PUROMYCIN-10 Puromycin 10 µg/ml LB Lennox 4 
PUROMYCIN-2 Puromycin 2 µg/ml LB Lennox 4 
PUROMYCIN-5 Puromycin 5 µg/ml LB Lennox 4 
PVPI-100 PVP-I 100 µg/ml LB Lennox 7 
PVPI-20 PVP-I 20 µg/ml LB Lennox 7 
PVPI-5 PVP-I 5 µg/ml LB Lennox 7 
PVPI-50 PVP-I 50 µg/ml LB Lennox 7 
PYOCYANIN-0.1 Pyocyanin 0.1 µg/ml LB Lennox 4 
PYOCYANIN-0.5 Pyocyanin 0.5 µg/ml LB Lennox 4 
PYOCYANIN-1.0 Pyocyanin 1.0 µg/ml LB Lennox 4 
PYOCYANIN-4.0 Pyocyanin 4.0 µg/ml LB Lennox 4 
RAMOPLANIN-10 Ramoplanin 10 µg/ml LB Lennox 7 
RAMOPLANIN-100 Ramoplanin 100 µg/ml LB Lennox 7 
RAMOPLANIN-200 Ramoplanin 200 µg/ml LB Lennox 7 
RAMOPLANIN-50 Ramoplanin 50 µg/ml LB Lennox 7 
RESERPINE-1 Reserpine 1 µg/ml LB Lennox 4 
RESERPINE-20 Reserpine 20 µg/ml LB Lennox 4 
RESERPINE-5 Reserpine 5 µg/ml LB Lennox 4 
RESERPINE-50 Reserpine 50 µg/ml LB Lennox 4 
RIFAMPICIN-0.5 Rifampicin 0.5 µg/ml LB Lennox 2 
RIFAMPICIN-1.0 Rifampicin 1.0 µg/ml LB Lennox 2 
RIFAMPICIN-2.0 Rifampicin 2.0 µg/ml LB Lennox 2 
RIFAMPICIN-4.0 Rifampicin 4.0 µg/ml LB Lennox 2 
SANGUINARINE-16.67 Sanguinarine 16.67 µg/ml LB Lennox 7 
SDS-0.05PCWV SDS 0.05 %(w/v) LB Lennox 5 
SDS-0.1PCWV SDS 0.1 %(w/v) LB Lennox 6 
SDS-0.2PCWV SDS 0.2 %(w/v) LB Lennox 5 
SDS-0.5PCWV SDS 0.5 %(w/v) LB Lennox 6 
SDS+EDTA-0.1PCWV+0.1MM SDS+EDTA 0.1/0.1 %(w/v)/mM LB Lennox 6 
SDS+EDTA-0.1PCWV+0.5MM SDS+EDTA 0.1/0.5 %(w/v)/mM LB Lennox 5 
SDS+EDTA-0.5PCWV+0.1MM SDS+EDTA 0.5/0.1 %(w/v)/mM LB Lennox 5 
SDS+EDTA-0.5PCWV+0.5MM SDS+EDTA 0.5/0.5 %(w/v)/mM LB Lennox 5 
SPECTINOMYCIN-0.1 Spectinomycin 0.25 µg/ml LB Lennox 5 
SPECTINOMYCIN-0.5 Spectinomycin 0.5 µg/ml LB Lennox 5 
SPECTINOMYCIN-1.0 Spectinomycin 1 µg/ml LB Lennox 5 
SPECTINOMYCIN-2.5 Spectinomycin 2.5 µg/ml LB Lennox 5 
SPECTINOMYCIN-3.0 Spectinomycin 3 µg/ml LB Lennox 7 
SPECTINOMYCIN+VANILLIN-3.0+100 Spectinomycin+Vanillin 3+100 µg/ml LB Lennox 7 
SPIRAMYCIN-1 Spiramycin 1 µg/ml LB Lennox 4 
SPIRAMYCIN-10 Spiramycin 10 µg/ml LB Lennox 4 
SPIRAMYCIN-2 Spiramycin 2 µg/ml LB Lennox 4 
SPIRAMYCIN-5 Spiramycin 5 µg/ml LB Lennox 4 
STREPTOMYCIN-0.1 Streptomycin 0.1 µg/ml LB Lennox 6 
STREPTOMYCIN-0.25 Streptomycin 0.25 µg/ml LB Lennox 6 
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STREPTOMYCIN-0.5 Streptomycin 0.5 µg/ml LB Lennox 6 
STREPTOMYCIN-1.0 Streptomycin 1.0 µg/ml LB Lennox 6 
SUCROSE-10PCWV Sucrose 10 %(w/v) LB no salt 7 
SUCROSE-1PCWV Sucrose 1 %(w/v) LB no salt 7 
SUCROSE-2.5PCWV Sucrose 2.5 %(w/v) LB no salt 7 
SUCROSE-5PCWV Sucrose 5 %(w/v) LB no salt 7 
SULFAMONOMETHOXINE-1 Sulfamonomethoxine 1 µg/ml LB Lennox 4 
SULFAMONOMETHOXINE-20 Sulfamonomethoxine 20 µg/ml LB Lennox 4 
SULFAMONOMETHOXINE-5 Sulfamonomethoxine 5 µg/ml LB Lennox 4 
SULFAMONOMETHOXINE-50 Sulfamonomethoxine 50 µg/ml LB Lennox 4 
TBUTYLHYDROPEROXIDE-0.1MM tert-Butyl hydroperoxide 0.1 mM LB Lennox 7 
TBUTYLHYDROPEROXIDE-0.5MM tert-Butyl hydroperoxide 0.5 mM LB Lennox 7 
TBUTYLHYDROPEROXIDE-1MM tert-Butyl hydroperoxide 1 mM LB Lennox 7 
TEICOPLANIN-1 Teicoplanin 1 µg/ml LB Lennox 4 
TEICOPLANIN-10 Teicoplanin 10 µg/ml LB Lennox 4 
TEICOPLANIN-2 Teicoplanin 2 µg/ml LB Lennox 4 
TEICOPLANIN-20 Teicoplanin 20 µg/ml LB Lennox 7 
TEICOPLANIN-5 Teicoplanin 5 µg/ml LB Lennox 4 
TEICOPLANIN-50 Teicoplanin 50 µg/ml LB Lennox 7 
TEMPERATURE-25C Temperature 25 °C LB Lennox 4 
TEMPERATURE-30C Temperature 30 °C LB Lennox 4 
TEMPERATURE-37C Temperature 37 °C LB Lennox 4 
TEMPERATURE-40C Temperature 40 °C LB Lennox 5 
TEMPERATURE-42C Temperature 42 °C LB Lennox 5 
TETRACYCLINE-0.05 Tetracycline 0.05 µg/ml LB Lennox 2 
TETRACYCLINE-0.1 Tetracycline 0.1 µg/ml LB Lennox 2 
TETRACYCLINE-0.25 Tetracycline 0.25 µg/ml LB Lennox 2 
TETRACYCLINE-0.5 Tetracycline 0.5 µg/ml LB Lennox 2 
THEOPHYLLINE-1 Theophylline 1 µg/ml LB Lennox 4 
THEOPHYLLINE-100 Theophylline 100 µg/ml LB Lennox 7 
THEOPHYLLINE-20 Theophylline 20 µg/ml LB Lennox 4 
THEOPHYLLINE-200 Theophylline 200 µg/ml LB Lennox 7 
THEOPHYLLINE-5 Theophylline 5 µg/ml LB Lennox 4 
THEOPHYLLINE-50 Theophylline 50 µg/ml LB Lennox 4 
THIOSTREPTON-0.05 Thiostrepton 0.05 µg/ml LB Lennox 7 
THIOSTREPTON-0.1 Thiostrepton 0.1 µg/ml LB Lennox 7 
THIOSTREPTON-0.25 Thiostrepton 0.25 µg/ml LB Lennox 7 
THIOSTREPTON-0.5 Thiostrepton 0.5 µg/ml LB Lennox 7 
TIGECYCLINE-0.05 Tigecycline 0.05 µg/ml LB Lennox 3 
TIGECYCLINE-0.1 Tigecycline 0.1 µg/ml LB Lennox 3 
TIGECYCLINE-0.25 Tigecycline 0.25 µg/ml LB Lennox 3 
TIGECYCLINE-0.5 Tigecycline 0.5 µg/ml LB Lennox 3 
TOBRAMYCIN-0.025 Tobramycin 0.025 µg/ml LB Lennox 3 
TOBRAMYCIN-0.05 Tobramycin 0.05 µg/ml LB Lennox 3 
TOBRAMYCIN-0.075 Tobramycin 0.075 µg/ml LB Lennox 3 
TOBRAMYCIN-0.1 Tobramycin 0.1 µg/ml LB Lennox 3 
TOBRAMYCIN-0.1REPEAT Tobramycin 0.1 µg/ml LB Lennox 7 
TOBRAMYCIN-0.25 Tobramycin 0.25 µg/ml LB Lennox 7 
TOBRAMYCIN-0.4 Tobramycin 0.4 µg/ml LB Lennox 7 
TOBRAMYCIN-0.5 Tobramycin 0.5 µg/ml LB Lennox 7 
TRICLOSAN-0.005 Triclosan 0.005 µg/ml LB Lennox 6 
TRICLOSAN-0.01 Triclosan 0.01 µg/ml LB Lennox 6 
TRICLOSAN-0.025 Triclosan 0.025 µg/ml LB Lennox 6 
TRICLOSAN-0.05 Triclosan 0.05 µg/ml LB Lennox 6 
TRIMETHOPRIM-0.1 Trimethoprim 0.01 µg/ml LB Lennox 5 
TRIMETHOPRIM-0.25 Trimethoprim 0.025 µg/ml LB Lennox 5 
TRIMETHOPRIM-0.5 Trimethoprim 0.05 µg/ml LB Lennox 5 
TUNICAMYCIN-0.5 Tunicamycin 0.5 µg/ml LB Lennox 6 
TUNICAMYCIN-1 Tunicamycin 1.0 µg/ml LB Lennox 6 
TUNICAMYCIN-3 Tunicamycin 3.0 µg/ml LB Lennox 6 
TUNICAMYCIN-7 Tunicamycin 7.0 µg/ml LB Lennox 6 
TYLOSIN-1 Tylosin 1 µg/ml LB Lennox 7 
TYLOSIN-20 Tylosin 20 µg/ml LB Lennox 7 
TYLOSIN-5 Tylosin 5 µg/ml LB Lennox 7 
TYLOSIN-50 Tylosin 50 µg/ml LB Lennox 7 
UV254NM-12S UV 12 s LB Lennox 7 
UV254NM-18S UV 18 s LB Lennox 7 
UV254NM-24S UV 24 s LB Lennox 7 
UV254NM-6S UV 6 s LB Lennox 7 
VANCOMYCIN-10 Vancomycin 10 µg/ml LB Lennox 5 
VANCOMYCIN-100 Vancomycin 100 µg/ml LB Lennox 7 
VANCOMYCIN-20 Vancomycin 20 µg/ml LB Lennox 5 
VANCOMYCIN-200 Vancomycin 200 µg/ml LB Lennox 7 
VANCOMYCIN-5 Vancomycin 5 µg/ml LB Lennox 5 
VANCOMYCIN-50 Vancomycin 50 µg/ml LB Lennox 5 
VANILLIN-100 Vanillin 100 µg/ml LB Lennox 7 
VANILLIN-100REPEAT Vanillin 100 µg/ml LB Lennox 7 
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Label Chemical Concentration Media background Batch 
VANILLIN-200 Vanillin 200 µg/ml LB Lennox 7 
VANILLIN-50 Vanillin 50 µg/ml LB Lennox 7 
VERAPAMIL-1 Verapamil 1 µg/ml LB Lennox 4 
VERAPAMIL-20 Verapamil 20 µg/ml LB Lennox 4 
VERAPAMIL-5 Verapamil 5 µg/ml LB Lennox 4 
VERAPAMIL-50 Verapamil 50 µg/ml LB Lennox 4 

C. Shared conditions for interspecies comparison 
E. coli Salmonella 
M9-GLUCOSAMINE M9-GLUCOSAMINE 
M9-GLUCOSE M9-GLUCOSE 
M9-GLYCEROL M9-GLYCEROL 
M9-MALTOSE M9-MALTOSE 
M9-NACETYLGLUCOSAMINE M9-NACETYLGLUCOSAMINE 
M9-SUCCINATE M9-SUCCINATE 
TEMPERATURE-25C TEMPERATURE-25C 
TEMPERATURE-40C TEMPERATURE-40C 
TEMPERATURE-42C TEMPERATURE-42C 
UV254NM-12S UV254NM-12S 
UV254NM-18S UV254NM-18S 
UV254NM-24S UV254NM-24S 
UV254NM-6S UV254NM-6S 
PH-10 PH-10 
PH-5 PH-5 
PH-6 PH-6 
PH-8 PH-8 
PH-9 PH-9 
PH-9.5 PH-9.5 
A22-0.5 A22-0.1 
ACRIFLAVINE-10 ACRIFLAVINE-5 
AMIKACIN-0.2 AMIKACIN-0.1 
AMOXICILLIN-0.5 AMOXICILLIN-0.1 
AMPICILLIN-4.0 AMPICILLIN-0.1 
AZITHROMYCIN-1.0 AZITHROMYCIN-0.1 
AZTREONAM-0.04 AZTREONAM-0.005 
BENZALKONIUM-10 BENZALKONIUM-10 
BILESALTS-2PCWV BILESALTS-1PCWV 
BLEOMYCIN-2.0 BLEOMYCIN-0.025 
CCCP-2.0 CCCP-2.0 
CECROPINB-0.1 CECROPINB-0.1 
CEFACLOR-3.0 CEFACLOR-0.1 
CEFOXITIN-1.0 CEFOXITIN-0.5 
CEFSULODIN-12 CEFSULODIN-5 
CEFTAZIDIME-0.05 CEFTAZIDIME-0.02 
CERULENIN-2.0 CERULENIN-1.0 
CHIR090-0.04 CHIR090-0.02 
CHLORPROMAZINE-24UM CHLORPROMAZINE-2.5UM 
CIPROFLOXACIN-0.008 CIPROFLOXACIN-0.001NGML 
CLARITHROMYCIN-5.0 CLARITHROMYCIN-0.25 
COBALT-0.1MM COBALT-0.1MM 
COPPER-4MM COPPER-2MM 
CYCLOSERINED-16 CYCLOSERINED-5.0 
EDTA-1.0MM EDTA-0.5MM 
EGCG-50 EGCG-20 
EGTA-2MM EGTA-1MM 
EPINEPHRINE-0.25MM EPINEPHRINE-0.5MM 
ERYTHROMYCIN-0.1 ERYTHROMYCIN-0.5 
ETHIDIUMBROMIDE-10 ETHIDIUMBROMIDE-5 
FOSFOMYCIN-1.0 FOSFOMYCIN-0.05 
FUSIDICACID-50 FUSIDICACID-50 
GENTAMICIN-0.1 GENTAMICIN-0.025 
HYDROXYUREA-10 HYDROXYUREA-2.5 
ISONIAZID-1.0 ISONIAZID-20 
LEVOFLOXACIN-0.002 LEVOFLOXACIN-0.005 
MECILLINAM-0.03 MECILLINAM-0.01 
MINOCYCLINE-1.0 MINOCYCLINE-0.5 
MITOMYCINC-0.1 MITOMYCINC-0.05 
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MMS-0.05PCVV MMS-0.01PCVV 
NACL-600MM NACL-300MM 
NALIDIXICACID-2.0 NALIDIXICACID-1.0 
NICKEL-1MM NICKEL-2MM 
NIGERICIN-0.1UM NIGERICIN-0.1UM 
NITROFURANTOIN-2.0 NITROFURANTOIN-2.0 
NOREPINEPHRINE-1.0MM NOREPINEPHRINE-0.5MM 
NORFLOXACIN-0.02 NORFLOXACIN-0.005 
NOVOBIOCIN-8 NOVOBIOCIN-5 
OXACILLIN-0.5 OXACILLIN-50 
PARAQUAT-5.0 PARAQUAT-1.0 
PHLEOMYCIN-1.0 PHLEOMYCIN-0.1 
PMS-0.05 PMS-0.5 
POLYMYXINB-6.0 POLYMYXINB-0.1 
PROCAINE-10 PROCAINE-0.5MM 
PROPIDIUMIODIDE-20 PROPIDIUMIODIDE-20 
PUROMYCIN-5 PUROMYCIN-5 
PYOCYANIN-1.0 PYOCYANIN-0.5 
RIFAMPICIN-2.0 RIFAMPICIN-1.0 
SDS-4.0PCWV SDS-0.5PCWV 
SPECTINOMYCIN-6.0 SPECTINOMYCIN-3.0 
SPIRAMYCIN-1 SPIRAMYCIN-10 
STREPTOMYCIN-0.05 STREPTOMYCIN-0.5 
SULFAMONOMETHOXINE-50 SULFAMONOMETHOXINE-1 
TETRACYCLINE-0.5 TETRACYCLINE-0.1 
THEOPHYLLINE-10 THEOPHYLLINE-1 
TOBRAMYCIN-0.05 TOBRAMYCIN-0.05 
TRIMETHOPRIM-0.4 TRIMETHOPRIM-0.1 
TUNICAMYCIN-1 TUNICAMYCIN-0.5 
VANCOMYCIN-50 VANCOMYCIN-100 
VERAPAMIL-1 VERAPAMIL-50 

 


